WorldWideScience

Sample records for superconducting sc dipoles

  1. Superconducting dipole electromagnet

    Science.gov (United States)

    Purcell, John R.

    1977-07-26

    A dipole electromagnet of especial use for bending beams in particle accelerators is wound to have high uniformity of magnetic field across a cross section and to decrease evenly to zero as the ends of the electromagnet are approached by disposing the superconducting filaments of the coil in the crescent-shaped nonoverlapping portions of two intersecting circles. Uniform decrease at the ends is achieved by causing the circles to overlap increasingly in the direction of the ends of the coil until the overlap is complete and the coil is terminated.

  2. Superconducting Coil of Po Dipole

    CERN Multimedia

    1983-01-01

    The Po superconducting dipole was built as a prototype beam transport magnet for the SPS extracted proton beam P0. Its main features were: coil aperture 72 mm, length 5 m, room-temperature yoke, NbTi cable conductor impregnated with solder, nominal field 4.2 T at 4.7 K (87% of critical field). It reached its nominal field without any quench.After this successful test up to its nominal field of 4.2 T, the power was not raised to reach a quench. The magnet was not installed in a beam and had no other further use. Nevertheless its construction provided knowledges and experience which became useful in the design and construction of the LHC magnets. The photo shows a detail of the inner layer winding before superposing the outer layer to form the complete coil of a pole. Worth noticing is the interleaved glass-epoxy sheet (white) with grooved channels for the flow of cooling helium. See also 8211532X.

  3. Collaring of Po Superconducting Dipole

    CERN Multimedia

    1983-01-01

    The picture shows the placing of a stack of stainless steel collars around the superconducting coils.Pre-assembled collar stacks were placed under and on top of the coils,the collars interleaving as comb teeth. During the following collaring operation of compression under a press the collars were locked together by means of side wedges. See also photos 8211532X, 7903168

  4. Technology of superconducting accelerator dipoles

    Energy Technology Data Exchange (ETDEWEB)

    Hassenzahl, W.V.; Meuser, R.B.; Taylor, C.

    1983-06-01

    We discuss accelerator dipoles and their characteristics. Other types of magnets, in particular bubble chamber magnets have been quite successful. Their performance is based on cryogenic stability which is addressed only briefly in this chapter. This type of stability is not available to the accelerator designer because of the large quantities of copper or other stabilizer that would reduce the current density in the windings to an unacceptably low value.

  5. The optimised sc dipole of SIS100 for series production

    Science.gov (United States)

    Roux, Christian; Mierau, Anna; Bleile, Alexander; Fischer, Egbert; Kaether, Florian; Körber, Boris; Schnizer, Pierre; Sugita, Kei; Szwangruber, Piotr

    2017-02-01

    At the international facility for antiproton and ion research (FAIR) in Darmstadt, Germany, an accelerator complex is developed for fundamental research in various fields of modern physics. In the SIS100 heavy-ion synchrotron, the main accelerator of FAIR, superconducting dipoles are used to bend the particle beam. The fast ramped dipoles are 3 m long super-ferric curved magnets operated at 4.5 K. The demands on field homogeneity required for sufficient beam stability are given by ΔB/B ≤ ±6 · 10‑4. An intense measurement program of the First of Series (FoS) dipole showed excellent quench behavior and lower than expected AC losses yielding the main load on the SIS100 cryoplant. The FoS is capable to provide a field strength of 1.9 T. However, with sophisticated measurement systems slight distortions of the dipole field were detected. Those effects were tracked down to mechanical inaccuracies of the yoke proven by appropriate geometrical measurements and simulations. After a survey on alternative fabrication techniques a magnet with a new yoke was built with substantial changes to improve the mechanical accuracy. Its characteristics concerning cryogenic losses, cold geometry and the resulting magnetic-field quality are presented and an outlook on the series production of superconducting dipoles for SIS100 is given.

  6. Trapped field internal dipole superconducting motor generator

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Downers Grove, IL)

    2001-01-01

    A motor generator including a high temperature superconductor rotor and an internally disposed coil assembly. The motor generator superconductor rotor is constructed of a plurality of superconductor elements magnetized to produce a dipole field. The coil assembly can be either a conventional conductor or a high temperature superconductor. The superconductor rotor elements include a magnetization direction and c-axis for the crystals of the elements and which is oriented along the magnetization direction.

  7. Dipole model test with one superconducting coil; results analysed

    CERN Document Server

    Durante, M; Ferracin, P; Fessia, P; Gauthier, R; Giloux, C; Guinchard, M; Kircher, F; Manil, P; Milanese, A; Millot, J-F; Muñoz Garcia, J-E; Oberli, L; Perez, J-C; Pietrowicz, S; Rifflet, J-M; de Rijk, G; Rondeaux, F; Todesco, E; Viret, P; Ziemianski, D

    2013-01-01

    This report is the deliverable report 7.3.1 “Dipole model test with one superconducting coil; results analysed “. The report has four parts: “Design report for the dipole magnet”, “Dipole magnet structure tested in LN2”, “Nb3Sn strand procured for one dipole magnet” and “One test double pancake copper coil made”. The 4 report parts show that, although the magnet construction will be only completed by end 2014, all elements are present for a successful completion. Due to the importance of the project for the future of the participants and given the significant investments done by the participants, there is a full commitment to finish the project.

  8. Dipole model test with one superconducting coil: results analysed

    CERN Document Server

    Bajas, H; Benda, V; Berriaud, C; Bajko, M; Bottura, L; Caspi, S; Charrondiere, M; Clément, S; Datskov, V; Devaux, M; Durante, M; Fazilleau, P; Ferracin, P; Fessia, P; Gauthier, R; Giloux, C; Guinchard, M; Kircher, F; Manil, P; Milanese, A; Millot, J-F; Muñoz Garcia, J-E; Oberli, L; Perez, J-C; Pietrowicz, S; Rifflet, J-M; de Rijk, G; Rondeaux, F; Todesco, E; Viret, P; Ziemianski, D

    2013-01-01

    This report is the deliverable report 7.3.1 “Dipole model test with one superconducting coil; results analysed “. The report has four parts: “Design report for the dipole magnet”, “Dipole magnet structure tested in LN2”, “Nb3Sn strand procured for one dipole magnet” and “One test double pancake copper coil made”. The 4 report parts show that, although the magnet construction will be only completed by end 2014, all elements are present for a successful completion. Due to the importance of the project for the future of the participants and given the significant investments done by the participants, there is a full commitment to finish the project.

  9. SSC (Superconducting Super Collider) dipole coil production tooling

    Energy Technology Data Exchange (ETDEWEB)

    Carson, J.A.; Barczak, E.J.; Bossert, R.C.; Brandt, J.S.; Smith, G.A.

    1989-03-01

    Superconducting Super Collider dipole coils must be produced to high precision to ensure uniform prestress and even conductor distribution within the collared coil assembly. Tooling is being prepared at Fermilab for the production of high precision 1M and 16.6M SSC dipole coils suitable for mass production. The design and construction methods builds on the Tevatron tooling and production experience. Details of the design and construction methods and measured coil uniformity of 1M coils will be presented. 4 refs., 10 figs.

  10. Electromagnetic Design of Superconducting Dipoles Based on Sector Coils

    CERN Document Server

    Todesco, Ezio

    2007-01-01

    We study the coil lay-outs of superconducting dipoles for particle accelerators based on the sector geometry. We show that a simple model based on a sector coil with a wedge allows us to derive an equation giving the short sample field as a function of the aperture, coil width, cable properties and superconducting material. The equation agrees well with the actual results of several dipole coils that have been built in the last 30 years. The improvements due to the grading technique and the iron yoke are also studied. The proposed equation can be used as a benchmark to judge the efficiency of the coil design, and to carry out a global optimization of an accelerator lay-out.

  11. SUPERCONDUCTING RF-DIPOLE DEFLECTING AND CRABBING CAVITIES

    Energy Technology Data Exchange (ETDEWEB)

    Delayen, Jean [ODU, JLAB; De Silva, Paygalage Subashini [ODU, JLAB

    2013-09-01

    Recent interests in designing compact deflecting and crabbing structures for future accelerators and colliders have initiated the development of novel rf structures. The superconducting rf-dipole cavity is one of the first compact designs with attractive properties such as higher gradients, higher shunt impedance, the absence of lower order modes and widely separated higher order modes. Two rf-dipole designs of 400 MHz and 499 MHz have been designed, fabricated and tested as proof-of-principle designs of compact deflecting and crabbing cavities for the LHC high luminosity upgrade and Jefferson Lab 12 GeV upgrade. The first rf tests have been performed on the rf-dipole geometries at 4.2 K and 2.0 K in a vertical test assembly with excellent results. The cavities have achieved high gradients with high intrinsic quality factors, and multipacting levels were easily processed.

  12. Structural analysis of superconducting dipole prototype for HIAF

    CERN Document Server

    Zhang, Xiaoying; Ni, Dongsheng; Chen, Yuquan; Wu, Wei; Ma, Lizhen

    2015-01-01

    The High Intensity Heavy-Ion Accelerator Facility is a new project in the Institute of Modern Physics. The dipole magnets of all rings are conceived as fast cycled superconducting magnet with high magnetic field and large gap, the warm iron and superconducting coil structure (superferric) is adopted. The reasonable structure design of coil and cryostat is very important for reliable operation. Based on the finite element software ANSYS, the mechanical analysis of electromagnetic stress, the thermal stress in the cooling down and the stress in the pumping are showed in detail. According to the analysis result, the supporter structure is the key problem of coil system. With reasonable support's structure design, the stress and the deformation of coil structure can be reduced effectively, which ensure the stable operation of superconducting coil system.

  13. Superconducting dipole magnet for the CBM experiment at FAIR

    Directory of Open Access Journals (Sweden)

    Kurilkin P.

    2017-01-01

    Full Text Available The scientific goal of the CBM (Compressed Baryonic Matter experiment at FAIR (Darmstadt is to explore the phase diagram of strongly interacting matter at highest baryon densities. The physics program of the CBM experiment is complimentary to the programs to be realized at MPD and BMN facilities at NICA and will start with beam derived by the SIS100 synchrotron. The 5.15 MJ superconducting dipole magnet will be used in the silicon tracking system of the CBM detector. The magnet will provide a magnetic field integral of 1 Tm which is required to obtain a momentum resolution of 1% for the track reconstruction. The results of the development of dipole magnet of the CBM experiment are presented.

  14. Performance of the First LHC Pre-series Superconducting Dipoles

    CERN Document Server

    Bottura, L; Modena, M; Pojer, M; Pugnat, P; Rossi, L; Sanfilippo, S; Siemko, A; Vlogaert, J; Walckiers, L; Wyss, C

    2003-01-01

    Within the LHC magnet program, a preseries production of final design, full-scale superconducting dipoles has presently started in industry and magnets are being tested at CERN. The main features of these magnets are: two-in-one structure, 56 mm aperture, six-block two layer coils wound from 15.1 mm wide graded NbTi cables, and all-polyimide insulation. This paper reviews the main test results of magnets tested to date in both supercritical and superfluid helium. The results of the quench training, conductor performance, magnet protection, sensitivity to ramp rate, and magnetic field quality are presented and discussed in terms of the design parameters and the aims of the LHC magnet programme.

  15. Superconductivity at 3.1 K in the orthorhombic ternary silicide ScRuSi

    Science.gov (United States)

    Ruan, Bin-Bin; Wang, Xiao-Chuan; Yu, Jia; Pan, Bo-Jin; Mu, Qing-Ge; Liu, Tong; Chen, Gen-Fu; Ren, Zhi-An

    2017-02-01

    We report the synthesis, crystal structure, superconductivity and physical property characterizations of the ternary equiatomic compound ScRuSi. Polycrystalline samples of ScRuSi were prepared by an arc-melting method. The as-prepared samples were identified as the orthorhombic Co2P-type o-ScRuSi by powder x-ray diffraction analysis. Electrical resistivity measurements show o-ScRuSi to be a metal which superconducts below a T c of 3.1 K; the upper critical field μ 0 H c2(0) is estimated to be 0.87 T. The magnetization and specific heat measurements confirm the bulk type-II superconductivity in o-ScRuSi, with a specific heat jump within the BCS weak coupling limit. o-ScRuSi is the first Co2P-type superconductor to contain scandium. After annealing at 1273 K for a week, o-ScRuSi transforms into hexagonal Fe2P-type h-ScRuSi, which is a Pauli-paramagnetic metal with no superconductivity observed above 1.8 K.

  16. Testing of the large bore single aperture 1-meter superconducting dipoles made with phenolic inserts

    CERN Document Server

    Boschmann, H; Dubbeldam, R L; Kirby, G A; Lucas, J; Ostojic, R; Russenschuck, Stephan; Siemko, A; Taylor, T M; Vanenkov, I; Weterings, W

    1998-01-01

    Two identical single aperture 1-metre superconducting dipoles have been built in collaboration with HMA Power Systems and tested at CERN. The 87.8 mm aperture magnets feature a single layer coil wound using LHC main dipole outer layer cable, phenolic spacer type collars, and a keyed two part structural iron yoke. The magnets are designed as models of the D1 separation dipole in the LHC experimental insertions, whose nominal field is 4.5 T at 4.5 K. In this report we present the test results of the two magnets at 4.3 K and 1.9 K.

  17. 超导ECR离子源DECRIS-SC2%Project of the Superconducting ECR Ion Source DECRIS-SC2

    Institute of Scientific and Technical Information of China (English)

    V.V.Bekhterev; V.V.Seleznev; A.Shishov; G.P.Tsvineva; N.YU.Yazvitsky; B.I.Yakovlev; S.L.Bogomolov; V.I.Datskov; V.M.Drobin; S.N.Dmitriev; A.A.Efremov; V.N.Loginov; A.N.Lebedev; H.Malinowski

    2007-01-01

    A new compact version of the"liquid He-free"superconducting Electron Cyclotron Resonance Ion Source,to be used as an injector for the U-400M cyclotron,is presently under construction at the FLNR in collaboration with LHE(JINR).The axial magnetic field of the source is created by the superconducting magnet,and the NdFeB hexapole is used for the radial plasma confinement.The microwave frequency of 14GHz will be used for ECR plasma heating.The DECRIS-SC2 superconducting magnet is designed for the induction of a magnetic field on the axis of the source of up to 1.4T (extraction side) and 1.9T (injection side) at nominal current of 75A.Cooling of the coils is carried out by GM cryocooler with cooling power of 1W at the temperature 4.5K.The basic design features of the superconducting magnet and of the ion source are presented.The main parts of the source are in production.The first beam test of the source is expected in the beginning of 2007.

  18. Interaction between an electric charge and a magnetic dipole of any kind (permanent, para- or dia- magnetic or superconducting)

    CERN Document Server

    Coïsson, R

    2015-01-01

    The interaction between point charge and magnetic dipole is usually considered only for the case of a rigid ferromagnetic dipole (constant-current): here the analysis of force, momentum and energy (including the energy provided by the internal current generator) is generalised to any magnetic dipole behaviour: rigid, paramagnetic, diamagnetic or superconducting (perfectly diamagnetic).

  19. Cryogenic Test of a Proof-of-Principle Superconducting RF-Dipole Deflecting and Crabbing Cavity

    CERN Document Server

    De Silva, S U; Delayen, Jean Roger

    2013-01-01

    Recent applications in need of compact low-frequency deflecting and crabbing cavities have initiated the design and development of new superconducting structures operating at high gradients with low losses. Previously, TM$_{110}$ -type deflecting and crabbing cavities were developed and have also been operated successfully. However, these geometries are not favorable designs for low operating frequencies. The superconducting rf-dipole cavity is the first compact deflecting and crabbing geometry that has demonstrated high gradients and high shunt impedance. Since the fundamental operating mode is the lowest mode and is widely separated from the nearest higher order mode, the rf-dipole design is an attractive geometry for effective damping of the higher order modes in high current applications. A 400 MHz rf-dipole cavity was designed, fabricated, and tested as a proof-of-principle cavity. The cavity achieved high operating gradients, and the multipacting levels were easily processed and did not reoccur.

  20. Performance of the LHC Final Prototype and First Pre-series Superconducting Dipole Magnets

    CERN Document Server

    Bottura, L; Gateau, M; Legrand, P; Modena, M; Naoui, K; Perini, D; Pugnat, P; Sanfilippo, S; Savary, F; Scandale, Walter; Siemko, A; Sievers, P; Spigo, G; Vlogaert, J; Wyss, C

    2002-01-01

    Within the LHC cryo-dipole program, six full-scale superconducting prototypes of final design were built in collaboration between Industry and CERN, followed by launching the manufacture of pre-series magnets. Five prototypes and the first of the pre-series magnets were tested at CERN. This paper reviews the main features and the performance of the cryo-dipoles tested at 4.2 K and 1.8 K. The results of the quench training, conductor performance, magnet protection, sensitivity to ramp rate and field characteristics are presented and discussed in terms of the design parameters.

  1. Superconductive coil characterization for next dipoles and quadrupoles generation

    CERN Document Server

    Khalil, Malathe

    2016-01-01

    The LHC is the most sophisticated scientific machine ever built as a device that allows the scientists to explore the universe and its origin. Scientists from all over the world are working to upgrade the LHC to open the door for new physics. HL-LHC (high luminosity LHC) project is the core project at CERN which was approved in 2013 by CERN’s council. In order to increase the integrated luminosity up to 3000 fb-1 within this decade. To do so it is crucial to design cutting edge superconducting magnets that can elevate the magnetic field up to 20T, which is Nb3Sn. However this material is brittle when it functions as superconductor, which makes it hard to be used as a cold magnet. So in this report the fabrication of 10 stacks of Nb3Sn superconducting multifilament wires was investigated as well as primary test using experimental setup and creating material model for Nb3Sn with the finite element analysis [ANSYS] is carried out.

  2. Investigation of the Periodic Magnetic Field Modulation in LHC Superconducting Dipoles

    CERN Document Server

    Pugnat, P; Siemko, A

    2002-01-01

    The windings of high-field accelerator magnets are usually made of Rutherford-type superconducting cables. The magnetic field distribution along the axis of such magnets exhibits a periodic modulation with a wavelength equal to the twist pitch length of the cable used in the winding. This effect, resulting from quasi-persistent currents, was investigated with a Hall probes array inserted inside the aperture of the LHC superconducting dipoles, both in short models and full-scale prototypes. The amplitude and the time dependence of this periodic field oscillation have been studied as a function of the magnet current history. The origin and the impact on the LHC dipoles stability of the non-uniform current redistribution producing such a field modulation are discussed.

  3. Production of Austenitic Steel for the LHC Superconducting Dipole Magnets

    CERN Document Server

    Bertinelli, F; Komori, T; Peiro, G; Rossi, L

    2006-01-01

    The austenitic-steel collars are an important component of the LHC dipole magnets, operating at cryogenic temperature under high mechanical stress. The required steel, known as YUS 130S, has been specifically developed for this application by Nippon Steel Corporation (NSC), who was awarded a CERN contract in 1999 for the supply of 11 500 tonnes. In 2005 - after six years of work - the contract is being successfully completed, with final production being ensured since October 2003 by Nippon Steel & Sumikin Stainless Steel Corporation (NSSC). The paper describes the steel properties, its manufacturing and quality control process, organization of production, logistics and contract follow-up. Extensive statistics have been collected relating to mechanical, physical and technological parameters. Specific attention is dedicated to measurements of magnetic permeability performed at cryogenic temperatures by CERN, the equipment used and statistical results. Reference is also made to the resulting precision of the...

  4. Statistical Analysis of Conductor Motion in LHC Superconducting Dipole Magnets

    CERN Document Server

    Calvi, M; Pugnat, P; Siemko, A

    2004-01-01

    Premature training quenches are usually caused by the transient energy release within the magnet coil as it is energised. The dominant disturbances originate in cable motion and produce observable rapid variation in voltage signals called spikes. The experimental set up and the raw data treatment to detect these phenomena are briefly recalled. The statistical properties of different features of spikes are presented like for instance the maximal amplitude, the energy, the duration and the time correlation between events. The parameterisation of the mechanical activity of magnets is addressed. The mechanical activity of full-scale prototype and first preseries LHC dipole magnets is analysed and correlations with magnet manufacturing procedures and quench performance are established. The predictability of the quench occurrence is discussed and examples presented.

  5. Design and analysis of the tooling upgrade for the production of the superconductive main dipole magnet prototypes of LHC

    CERN Document Server

    AUTHOR|(CDS)2093638

    Design and analysis of the tooling upgrade for the production of the superconductive main dipole magnet prototypes of LHC Master of Science Thesis, 110 pages, 12 Appendix pages September 2013 Major: Design of machines and systems Examiner: Professor Reijo Kouhia Keywords: CERN, LHC, High Luminosity LHC project, superconductive dipole magnet, welding press, Nb3Sn, pre-stress, Ar-inert gas furnace This thesis work has been carried out as a contribution to the development program of superconductive magnets within the LHC High Luminosity study. The thesis provides an insight to the steps that need to be taken in order to produce a superconductive magnet mainly focusing on mechanical assembly. Tooling upgrade is necessary for the production of the superconductive dipole magnet prototypes in near future. Major attention is given by the introduction of the welding assembly in chapter three. The structural compression is given by the so called shell stress defined by the thermal shrinkage of the weld. The associated ...

  6. Field Quality of the Short Superconducting Dipole Models for the LHC

    CERN Document Server

    Ang, Z; Sanfilippo, S; Siemko, A; Tommasini, D; Venturini-Delsolaro, W; Walckiers, L

    2002-01-01

    A full characterization of the magnetic field in warm and cold conditions was performed as a part of the standard test on the LHC 1-m long superconducting dipole models. Furthermore, dedicated measurement campaigns addressed the effect of current cycles and quenches on field quality. Powering and quenches were found to generate characteristic instabilities in the geometric harmonics. Detailed results are presented on this phenomenon, as well as correlations between warm and cold measurements and field reconstructions.

  7. Field quality of the short superconducting dipole models for the LHC

    CERN Document Server

    Venturini-Delsolaro, W; Bottura, L; Sanfilippo, S; Siemko, A; Tommasini, D; Walckiers, L

    2002-01-01

    A full characterization of the magnetic field in warm and cold conditions was performed as a part of the standard test on the LHC 1- m long superconducting dipole models. Furthermore, dedicated measurement campaigns addressed the effect of current cycles and quenches on field quality. Powering and quenches were found to generate characteristic instabilities in the geometric harmonics. Detailed results are presented on this phenomenon, as well as correlations between warm and cold measurements and field reconstructions. (9 refs).

  8. Mechanical, electronic, optical, thermodynamic properties and superconductivity of ScGa3

    Science.gov (United States)

    Parvin, F.; Hossain, M. A.; Ali, M. S.; Islam, A. K. M. A.

    2015-01-01

    The rare occurrence of type-I superconductivity in binary system ScGa3 has experimentally been shown recently. In the present paper we study the electronic, optical, thermodynamic properties and some aspects of superconductivity of this compound using first-principles calculations. The mechanical properties like elastic constants, bulk modulus, shear modulus, Pugh's ductility index, Young's modulus, Poisson's ratio, elastic anisotropy factor, Peierls stress are calculated for the first time. The material is anisotropic and brittle. Electronic band structure, density of states, Fermi surfaces and bonding nature have also been studied. The optical functions are estimated and discussed for the first time. The high reflectivity is found in the ultraviolet regions up to ~13 eV and thus ScGa3 can serve as a possible shielding material for ultraviolet radiation. Thermal effects on some macroscopic properties of ScGa3 are predicted using the quasi-harmonic Debye model and phonon approximation in the temperature and hydrostatic pressure in the ranges of 0-1000 K and 0-40 GPa, respectively. The calculated electron-phonon coupling constant λ=0.52 yields Tc=2.6 K, which is in very good agreement with the experimentally observed value. The value of the coupling constant and the Ginzburg-Landau parameter (κ=0.09) indicate that the compound is a weak-coupled type-I rare binary BCS superconductor.

  9. Mechanical, electronic, optical, thermodynamic properties and superconductivity of ScGa{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Parvin, F. [Department of Physics, Rajshahi University, Rajshahi (Bangladesh); Hossain, M.A. [Department of Physics, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902 (Bangladesh); Ali, M.S. [Department of Physics, Rajshahi University, Rajshahi (Bangladesh); Islam, A.K.M.A., E-mail: azi46@ru.ac.bd [International Islamic University Chittagong, 154/A College Road, Chittagong 4203 (Bangladesh)

    2015-01-15

    The rare occurrence of type-I superconductivity in binary system ScGa{sub 3} has experimentally been shown recently. In the present paper we study the electronic, optical, thermodynamic properties and some aspects of superconductivity of this compound using first-principles calculations. The mechanical properties like elastic constants, bulk modulus, shear modulus, Pugh's ductility index, Young's modulus, Poisson's ratio, elastic anisotropy factor, Peierls stress are calculated for the first time. The material is anisotropic and brittle. Electronic band structure, density of states, Fermi surfaces and bonding nature have also been studied. The optical functions are estimated and discussed for the first time. The high reflectivity is found in the ultraviolet regions up to ∼13 eV and thus ScGa{sub 3} can serve as a possible shielding material for ultraviolet radiation. Thermal effects on some macroscopic properties of ScGa{sub 3} are predicted using the quasi-harmonic Debye model and phonon approximation in the temperature and hydrostatic pressure in the ranges of 0–1000 K and 0–40 GPa, respectively. The calculated electron–phonon coupling constant λ=0.52 yields T{sub c}=2.6 K, which is in very good agreement with the experimentally observed value. The value of the coupling constant and the Ginzburg–Landau parameter (κ=0.09) indicate that the compound is a weak-coupled type-I rare binary BCS superconductor.

  10. Determination of AC Characteristics of Superconducting Dipole Magnets in the Large Hadron Collider Based on Experimental Results and Simulations

    CERN Document Server

    Ambjørndalen, Sara; Verweij, Arjan

    The Large Hadron Collider (LHC) utilizes high-field superconducting Main Dipole Magnets that bend the trajectory of the beam. The LHC ring is electrically divided into eight octants, each allocating a 7 km chain of 154 Main Dipole Magnets. Dedicated de- tection and protection systems prevent irreversible magnet damage caused by quenches. Quench is a local transition from the superconducting to the normal conducting state. Triggering of such systems, along with other failure scenarios, result in fast transient phenomena. In order to analyze the consequence of such electrical transients and failures in the dipole chain, one needs a circuit model that is validated against measurements. Currently, there exists an equivalent circuit of the Main Dipole Magnet resolved at an aperture level. Each aperture model takes into account the dynamic effects occurring in the magnets, trough a lossy-inductance model and parasitic capacitances to ground. At low frequencies the Main Dipole Magnet behaves as a linear inductor. Ca...

  11. Compensation of the magnetization current induced sextupole error at LHC injection field by short lumped permanent sextupole magnets, incorporated into the end configuration of superconducting dipoles

    CERN Document Server

    Asner, A

    1985-01-01

    Compensation of the magnetization current induced sextupole error at LHC injection field by short lumped permanent sextupole magnets, incorporated into the end configuration of superconducting dipoles

  12. Performance of the LHC Final Design, Full-Scale Superconducting Dipole Prototypes

    CERN Document Server

    Bottura, L; Siemko, A; Vlogaert, J; Wyss, C

    2001-01-01

    Within the LHC magnet program, a series of six, final design, full-scale superconducting dipole prototypes are presently being built in industry and tested at CERN. The main features of these magnets are: two-in-one structure, 56 mm aperture, six-block two layer coils wound from 15.1 mm wide graded NbTi cables, and all-polyimide insulation. This paper reviews the main test results of magnets tested to day at 4.2 K and 1.8 K. The results of the quench training, conductor performance, magnet protection, sensitivity to ramp rate and field quality are presented and discussed in terms of the design parameters and the aims of the full scale dipole prototype program.

  13. Quench calculations for the superconducting dipole magnet of CBM experiment at FAIR

    Science.gov (United States)

    Kurilkin, P.; Akishin, P.; Bychkov, A.; Floch, E.; Gusakov, Yu.; Ladygin, V.; Malakhov, A.; Moritz, G.; Ramakers, H.; Senger, P.; Shabunov, A.; Szwangruber, P.; Toral, F.

    2016-08-01

    The scientific mission of the Compressed Baryonic Matter (CBM) experiment is the study of the nuclear matter properties at the high baryon densities in heavy ion collisions at the Facility of Antiproton and Ion Research (FAIR) in Darmstadt. The 5.15 MJ superconducting dipole magnet will be used in the silicon tracking system of the CBM detector. It will provide a magnetic field integral of 1 Tm which is required to obtain a momentum resolution of 1% for the track reconstruction. This paper presents quench modeling and evaluation of candidate protection schemes for the CBM dipole magnet. Two quench programs based on finite-difference method were used in simulation. One of them is currently used at GSI, and the other based on CIEMAT (Madrid, Spain) was modified to perform quench calculation for the CBM magnet.

  14. Elastic Modulus Measurements of the LHC Dipole Superconducting Coil at 300 K and at 77 K

    CERN Document Server

    Couturier, K; Todesco, Ezio; Tommasini, D; Scandale, Walter

    2002-01-01

    We present measurements of the stress-displacement relation for the superconducting coils used in the Large Hadron Collider main magnets (dipoles and quadrupoles). This mechanical property is relevant to determine the correct amount of azimuthal pre-stress to be imposed on the coil. The hysteresis pattern in the loading and unloading curves is discussed. The stress-displacement curves are used to compute the corresponding elastic moduli and deformations. Measurements are also carried out at liquid nitrogen temperature, using the same framework to interpret experimental data.

  15. Superconducting curved transport solenoid with dipole coils for charge selection of the muon beam

    Energy Technology Data Exchange (ETDEWEB)

    Strasser, P., E-mail: patrick.strasser@kek.jp [Muon Science Laboratory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); J-PARC Center, 2-4 Shirane Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Ikedo, Y.; Miyake, Y.; Shimomura, K.; Kawamura, N.; Nishiyama, K.; Makimura, S.; Fujimori, H.; Koda, A.; Nakamura, J.; Nagatomo, T. [Muon Science Laboratory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); J-PARC Center, 2-4 Shirane Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Adachi, T. [Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Pant, A.D. [Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu 400-8511 (Japan); Ogitsu, T. [Cryogenic Science Center, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); J-PARC Center, 2-4 Shirane Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Makida, Y.; Yoshida, M. [Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); J-PARC Center, 2-4 Shirane Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Sasaki, K. [Cryogenic Science Center, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); J-PARC Center, 2-4 Shirane Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Okamura, T. [Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); J-PARC Center, 2-4 Shirane Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); and others

    2013-12-15

    Highlights: • Superconducting curved transport solenoid. • Muon charge selection by superimposed dipole field. • World strongest pulsed muon source. -- Abstract: At the J-PARC Muon Science Facility (MUSE) the Super-Omega muon beamline is now under construction in the experimental hall No. 2 of the Materials and Life Science Facility building. Muons up to 45 MeV/c will be extracted with a large acceptance solid angle to produce the world highest intensity pulsed muon beam. This beamline comprises three parts, a normal-conducting capture solenoid, a superconducting curved transport solenoid and an axial focusing solenoid. Since only solenoids are used, both surface μ{sup +} and cloud μ{sup −} are extracted simultaneously. To accommodate future experiments that would only require either μ{sup +} or μ{sup −} beam, two dipole coils located on the straight section of the curved solenoid provide the muon charge selection by directing one of the beam onto the solenoid inner-wall. The design parameters, the construction status and the initial beam commissioning are reported.

  16. Magnetic dipole moment of the doubly closed-shell plus one proton nucleus $^{49}$Sc

    CERN Multimedia

    Gaulard, C V; Walters, W; Nishimura, K; Muto, S; Bingham, C R

    It is proposed to measure the magnetic moment of $^{49}$Sc by the Nuclear Magnetic Resonance on Oriented Nuclei (NMR-ON) method using the NICOLE on-line nuclear orientation facility. $^{49}$Sc is the neutron rich, doubly closed-shell, nucleus $^{48}$Ca plus one proton. Results will be used to deduce the effective g-factors in the $^{48}$Ca region with reference to nuclear structure and meson exchange current effects.

  17. Chromaticity decay due to superconducting dipoles on the injection plateau of the Large Hadron Collider

    CERN Document Server

    Aquilina, N; Sammut, N; Strzeclzyk, M; Todesco, E

    2012-01-01

    It is well known that in a superconducting accelerator a significant chromaticity drift can be induced by the decay of the sextupolar component of the main dipoles. In this paper we give a brief overview of what was expected for the Large Hadron Collider on the grounds of magnetic measurements of individual dipoles carried out during the production. According to this analysis, the decay time constants were of the order of 200 s: since the injection in the LHC starts at least 30 minutes after the magnets are at constant current, the dynamic correction of this effect was not considered to be necessary. The first beam measurements of chromaticity showed significant decay even after few hours. For this reason, a dynamic correction of decay on the injection plateau was implemented based on beam measurements. This means that during the injection plateau the sextupole correctors are powered with a varying current to cancel out the decay of the dipoles. This strategy has been implemented successfully. A similar pheno...

  18. 1999 Review of superconducting dipole and quadrupole magnets for particle accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Devred, A. [CEA/Saclay, Dept. d' Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l' Instrumentation Associee (DAPNIA), 91 - Gif-sur-Yvette (France); CERN, Conseil Europeen pour la recherche nucleaire, Laboratoire europeen pour la physique des particules Geneve (Switzerland)

    1999-12-01

    The quest for elementary particles has promoted the development of particle accelerators producing beams of increasingly higher energies. In a synchrotron-type accelerator, the particle energy is directly proportional to the product of the machine's radius times the bending magnets' field strength. Present proton experiments at the TeV scale require facilities with circumferences ranging from a few to tens of kilometers and relying on a large number (several hundreds to several thousands) of high field dipole magnets and high field gradient quadrupole magnets. These electro-magnets use high current density, low critical temperature superconducting cables and are cooled down at liquid helium temperature. They are among the most costly and the most challenging components of the machine. After explaining what are the various types of accelerator magnets and why they are needed (section 1), we present a brief history of large superconducting particle accelerators, and we detail ongoing superconducting accelerator magnet R and D programs around the world (Section 2). Then, we review the superconducting materials that are available at industrial scale (chiefly, NbTi and Nb3Sn), and we describe the manufacturing of NbTi wires and cables (section 3). We also present the difficulties of processing and insulating Nb3Sn conductors which, so far, have limited the use of this material in spite of its superior performances. We continue by presenting the complex formalism used to represent two-dimensional fields (section 4), and we discuss the two-dimensional current distributions that are the most appropriate for generating pure dipole and pure quadrupole fields (section 5). We explain how these ideal distributions can be approximated by so-called cos{theta} and cos{sup 2}{theta} coil designs and we describe the difficulties of realizing coil ends. Next, we present the mechanical design concepts that have been developed to restrain magnet coils and to ensure proper

  19. Two-gap superconductivity in R2Fe3Si5 (R=Lu, Sc and Sc5Ir4Si10

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Tamegai, Yasuyuki Nakajima, Tsuyoshi Nakagawa, Guoji Li and Hisatomo Harima

    2008-01-01

    Full Text Available R2Fe3Si5 (R= Sc, Y, Lu contains nonmagnetic iron and has a relatively high superconducting transition temperature Tc among iron-containing superconductors. An anomalous temperature dependence of specific heat C(T has been reported for polycrystalline samples down to 1 K. We have grown R2Fe3Si5 single crystals, confirmed the anomalous C(T dependence, and found a second drop in specific heat below 1 K. In Lu2Fe3Si5, we can reproduce C(T below Tc, assuming two distinct energy gaps 2Δ 1/kBTc = 4.4 and 2Δ 2/kBTc = 1.1, with nearly equal weights, indicating that Lu2Fe3Si5 is a two-gap superconductor similar to MgB2. Hall coefficient measurements and band structure calculation also support the multiband contributions to the normal-state properties. The specific heat in the Sc2Fe3Si5 single crystals also shows the two-gap feature. R5Ir4Si10 (R = Sc, rare earth is also a superconductor where competition between superconductivity and the charge-density wave is known for rare earths but not for Sc. We have performed detailed specific heat measurements on Sc5Ir4Si10 single crystals and found that C(T deviates slightly from the behavior expected for weak-coupling superconductors. C(T for these superconductors can also be reproduced well by assuming two superconducting gaps.

  20. Chromaticity decay due to superconducting dipoles on the injection plateau of the Large Hadron Collider

    Directory of Open Access Journals (Sweden)

    N. Aquilina

    2012-03-01

    Full Text Available It is well known that in a superconducting accelerator a significant chromaticity drift can be induced by the decay of the sextupolar component of the main dipoles. In this paper we give a brief overview of what was expected for the Large Hadron Collider (LHC on the grounds of magnetic measurements of individual dipoles carried out during the production. According to this analysis, the decay time constants were of the order of 200 s: since the injection in the LHC starts at least 30 minutes after the magnets are at constant current, the dynamic correction of this effect was not considered to be necessary. The first beam measurements of chromaticity showed significant decay even after a few hours. For this reason, a dynamic correction of decay on the injection plateau was implemented based on beam measurements. This means that during the injection plateau the sextupole correctors are powered with a varying current to cancel out the decay of the dipoles. This strategy has been implemented successfully. A similar phenomenon has been observed for the dependence of the decay amplitude on the powering history of the dipoles: according to magnetic measurements, also in this case time constants are of the order of 200 s and therefore no difference is expected between a one hour or a ten hours flattop. On the other hand, the beam measurements show a significant change of decay for these two conditions. For the moment there is no clue of the origin of these discrepancies. We give a complete overview of the two effects, and the modifications that have been done to the field model parameters to be able to obtain a final chromaticity correction within a few units.

  1. Cryogenic magnetic coil and superconducting magnetic shield for neutron electric dipole moment searches

    Science.gov (United States)

    Slutsky, S.; Swank, C. M.; Biswas, A.; Carr, R.; Escribano, J.; Filippone, B. W.; Griffith, W. C.; Mendenhall, M.; Nouri, N.; Osthelder, C.; Pérez Galván, A.; Picker, R.; Plaster, B.

    2017-08-01

    A magnetic coil operated at cryogenic temperatures is used to produce spatial, relative field gradients below 6 ppm/cm, stable for several hours. The apparatus is a prototype of the magnetic components for a neutron electric dipole moment (nEDM) search, which will take place at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory using ultra-cold neutrons (UCN). That search requires a uniform magnetic field to mitigate systematic effects and obtain long polarization lifetimes for neutron spin precession measurements. This paper details upgrades to a previously described apparatus [1], particularly the introduction of super-conducting magnetic shielding and the associated cryogenic apparatus. The magnetic gradients observed are sufficiently low for the nEDM search at SNS.

  2. Temperature Profiles During Quenches in LHC Superconducting Dipole Magnets Protected by Quench Heaters

    CERN Document Server

    Maroussov, V; Siemko, A

    2000-01-01

    The efficiency of the magnet protection by quench heaters was studied using a novel method which derives the temperature profile in a superconducting magnet during a quench from measured voltage signals. In several Large Hadron Collider single aperture dipole models, temperature profiles and temperature gradients in the magnet coil have been evaluated in the case of protection by different sets of quench heaters and different powering and protection parameters. The influence of the insulation thickness between the quench heaters and the coil has also been considered. The results show clear correlation between the positions of quench heaters, magnet protection parameters and temperature profiles. This study allowed a better understanding of the quench process mechanisms and the efficiency assessment of the different protection schemes.

  3. Cryogenic Test of a 750 MHz Superconducting RF Dipole Crabbing Cavity

    Energy Technology Data Exchange (ETDEWEB)

    Castilla, Alejandro [ODU; Delayen, Jean R. [ODU, JLAB; Park, HyeKyoung [JLAB

    2014-07-01

    A superconducting rf dipole cavity has been designed to address the challenges of a high repetition rate (750 MHz), high current for both electron/ion species (0.5/3 A per bunch), and large crossing angle (50 mrad) at the interaction points (IPs) crabbing system for the Medium Energy Electron-Ion Collider (MEIC) proposed by Jefferson Lab. The cavity prototype built at Niowave, Inc. has been tested at the Jefferson Lab facilities. In this work we present a detailed analysis of the prototype cavity performance at 4 K and 2 K, corroborating the absence of hard multipacting barriers that could limit the desired transverse fields, along with the surface resistance (Rs) temperature dependency.

  4. A model for correlating 4. 2-K performance with room-temperature mechanical characteristics in superconducting test dipole magnets for the Superconducting Super Collider (SSC)

    Energy Technology Data Exchange (ETDEWEB)

    Ige, O.O.; Lyon, R.H.; Iwasa, Y. (Francis Bitter National Magnet Laboratory Plasma Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States))

    1992-03-15

    The longitudinal attenuation of impact-generated pulses in ten superconducting dipole magnets was measured at room temperature. A lumped-parameter model was constructed for the collared dipole. Using the method of nonlinear least-squares, the model was used to estimate the internal damping in the main components of the dipoles and the coupling resistances between the components: collars, inner, and outer coils. A positive correlation was found between the collar-inner coil coupling resistance and the 4.2-K performance of the magnets: the higher the coupling resistance, the fewer the number of quenches required to reach design operating current. There was virtually no correlation between any of the other internal or coupling resistances and 4.2-K performance. These observations are explained in terms of frictional slip of the inner coil against the collars causing premature quenches. The magnets are more susceptible to quenches at the collar-inner coil interface than at the collar-outer coil interface because the inner coil is subject to higher fields and forces. The experiment is potentially useful as a technique for screening high-performance superconducting magnets such as Superconducting Super Collider (SSC) dipoles at room temperature.

  5. Fabrication of Rutherford-type superconducting cables for construction of dipole magnets

    Energy Technology Data Exchange (ETDEWEB)

    Scanlan, R.M.; Royet, J.; Hannaford, R.

    1988-05-01

    An experimental cabling machine has been constructed and used to investigate the fabrication of a variety of superconducting cables. These include the 23-strand and 30-strand NbTi alloy cables for the Superconducting Supercollider (SSC) and a number of experimental cables. The experimental cables include 24-strands and 36-strands as well as two-level cables with a 6 or 7-strand first level and 23 or 30-strand second level. These results were used to aid in selecting the optimum cable for the SSC dipole and quadrupole magnets. As a result of these studies, cable can now be fabricated to exacting mechanical tolerances (+/- .006 mm) and with low critical current degradation (2-5%). In addition, tooling design studies have been performed and a Prototype SSC Production Cabling Machine has been designed. The results of the cable optimization studies and the tooling design studies will be discussed. SSC cable production experience on the experimental cabling machine and the production cabling machine will be reported.

  6. Transition energy and dipole oscillator strength of 1s23d- 1s2nf transitions for Sc18+ ion

    Institute of Scientific and Technical Information of China (English)

    WANG Zhi-wen; ZHANG Nan; HU Mu-hong

    2006-01-01

    The transition energies of the 1s23d-1s2nf (4≤n ≤9) transitions and fine structure splittings of 1sZnf (n≤9)states for Sc18+ ion are calculated with the full-core plus correlation method.The quantum defect of ls2nf series is determined by the single-channel quantum defect theory.The energies of any highly excited states with n≥ 10 for this series can be reliably predicted using the quantum defect as function of energy.Three alternative forms of the dipole oscillator strengths for the 1s23d-1s2nf (n≤9) transitions of SC18+ ion are calculated with the transition energies and wave functions obtained above.Combining the quantum defect theory with the discrete oscillator strengths,the discrete oscillator strengths for 1s23d-1sEnf (n > 9) transitionsand the oscillator strengths densities corresponding to the bound-free transitions are obtained.

  7. Design and Manufacture of a Large-Bore 10 T Superconducting Dipole for the CERN Cable Test Facility

    CERN Document Server

    Leroy, D; Verweij, A P; Boschmann, H; Dubbeldam, R L; González-Pelayo, J

    2000-01-01

    A large-bore 10 T superconducting dipole magnet was designed and fabricated in close cooperation between CERN and HMA Power Systems. The dipole has a length of about 1.7 m and an aperture of 88 mm and is composed of two two-layer poles wound with NbTi cables cooled to 1.9 K to reach magnetic inductions close to 10 T. This dipole will be installed at the CERN cable test facility and used as a background field magnet to test LHC superconducting cables. In its large aperture up to four cable samples can be tested at the same time. The mechanical design of the magnet is such that coil prestress variations between warm and cold conditions are kept within 20 MPa. A short model was also built and cooled down in order to check and confirm with test results the mechanical behavior of the dipole. Magnetic measurements, at room temperature, were performed upon its arrival at CERN prior to installation in the test facility. The dipole was recently cooled down and tested. This paper will discuss the design, the main manu...

  8. Design, Fabrication and Initial Testing of a Large Bore Single Aperture 1 m Long Superconducting Dipole Made with Phenolic Inserts

    CERN Document Server

    Boschmann, H; Kirby, G A; Lucas, J; Ostojic, R; Russenschuck, Stephan; Siemko, A; Vanenkov, I; Weterings, W

    1997-01-01

    In the framework of the LHC magnet development programme, a large bore single aperture 1-meter long superconducting dipole has been built in collaboration with HOLEC. The magnet features a single layer coil wound using the LHC main dipole outer layer cable, phenolic inserts, and a keyed two part structural iron yoke. This paper presents the magnetic and mechanical design and optimisation of the magnet. We describe the coil winding and curing, and present the construction and assembly procedures. Finally we report on the mechanical behaviour during assembly and cooling, and present the magnet training behaviour.

  9. Design of MgB2 superconducting dipole magnet for particle beam transport in accelerators

    DEFF Research Database (Denmark)

    Abrahamsen, A.B.; Zangenberg, N.; Baurichter, A.

    2006-01-01

    A comprehensive analysis of the innovation potential of superconductivity at Risø was performed in February 2004 by the main author of this report [1]. Several suggestions for new products and new markets were formulated by the superconductivity group andexamined by the innovation staff at Risø. ...... accelerator, B = 4:4 Tesla and coil aperture D = 76 mm [6], which has been identified by Danfysik A/S as interesting. It isconcluded that MgB2 is useful for the dipole application and construction of a small test coil of one half of the magnet is planned in 2007....

  10. Collaborative Simulation and Testing of the Superconducting Dipole Prototype Magnet for the FAIR Project

    Institute of Scientific and Technical Information of China (English)

    ZHU Yinfeng; ZHU Zhe; XU Houchang; WU Weiyue

    2012-01-01

    The superconducting dipole prototype magnet of the collector ring for the Facility for Antiproton and Ion Research (FAIR) is an international cooperation project. The collaborative simulation and testing of the developed prototype magnet is presented in this paper. To evaluate the mechanical strength of the coil case during quench, a 3-dimensional (3D) electromagnetic (EM) model was developed based on the solid97 magnetic vector element in the ANSYS commercial software, which includes the air region, coil and yoke. EM analysis was carried out with a peak operating current at 278 A. Then, the solid97 element was transferred into the solid185 element, the coupled analysis was switched from electromagnetic to structural, and the finite element model for the coil case and glass-fiber reinforced composite (G10) spacers was established by the ANSYS Parametric Design Language based on the 3D model from the CATIA V5 software. However, to simulate the friction characteristics inside the coil case, the conta173 surface-to-surface contact element was established. The results for the coil case and G10 spacers show that they are safe and have sufficient strength, on the basis of testing in discharge and quench scenarios.

  11. LHC Superconducting Dipole Production Follow-up Results of Audit on QA Aspects in Industry

    CERN Document Server

    Modena, M; Cornelis, M; Fessia, P; Liénard, P; Miles, J; de Rijk, G; Savary, F; Sgobba, Stefano; Tommasini, D; Vlogaert, J; Völlinger, C; Wildner, E

    2006-01-01

    The manufacturing of the 1232 Superconducting Main Dipoles for LHC is under way at three European Contractors: Alstom-Jeumont (Consortium), Ansaldo Superconduttori Genova and Babcock Noell Nuclear. The manufacturing is proceeding in a very satisfactory way and in March 2005 the mid production was achieved. To intercept eventually â€ワweak points” of the production process still present and in order to make a check of the Quality Assurance and Control in place for the series production, an Audit action was launched by CERN during summer-fall 2004. Aspects like: completion of Production and Quality Assurance documentation, structure of QC Teams, traceability, calibration and maintenance for tooling, incoming components inspections, were checked during a total of seven visits at the five different production sites. The results of the Audit in terms of analysis of â€ワsystematic” and â€ワrandom” problems encountered as well as corrective actions requested are presented.

  12. Collaborative Simulation and Testing of the Superconducting Dipole Prototype Magnet for the FAIR Project

    Science.gov (United States)

    Zhu, Yinfeng; Zhu, Zhe; Xu, Houchang; Wu, Weiyue

    2012-08-01

    The superconducting dipole prototype magnet of the collector ring for the Facility for Antiproton and Ion Research (FAIR) is an international cooperation project. The collaborative simulation and testing of the developed prototype magnet is presented in this paper. To evaluate the mechanical strength of the coil case during quench, a 3-dimensional (3D) electromagnetic (EM) model was developed based on the solid97 magnetic vector element in the ANSYS commercial software, which includes the air region, coil and yoke. EM analysis was carried out with a peak operating current at 278 A. Then, the solid97 element was transferred into the solid185 element, the coupled analysis was switched from electromagnetic to structural, and the finite element model for the coil case and glass-fiber reinforced composite (G10) spacers was established by the ANSYS Parametric Design Language based on the 3D model from the CATIA V5 software. However, to simulate the friction characteristics inside the coil case, the conta173 surface-to-surface contact element was established. The results for the coil case and G10 spacers show that they are safe and have sufficient strength, on the basis of testing in discharge and quench scenarios.

  13. Field induced by an axial magnetic dipole in the presence of two fused superconducting spheres: Analytic solution

    Science.gov (United States)

    Palaniappan, D.

    2009-04-01

    An exact solution for a magnetostatic boundary value problem involving two fused (overlapping) spheres placed in a field generated by an axial magnetic point dipole is constructed based on the image method. The basic idea is illustrated for two unequal superconducting spheres intersecting with a vertex angle π /2 and the analytical solution for the scalar magnetic potential satisfying the Neumann boundary condition at the surface is derived. The image solution for a dipole-twin-sphere configuration consists of three image dipoles—one inside each sphere and the third inside a pseudo-/virtual sphere—all located at the respective inverse points inside the superconducting two-sphere assembly. The levitation force acting on the two-sphere superconducting surface is also calculated for the overlapping geometry. These exact results can be used as a benchmark for testing numerical algorithms for overlapping spherical superconductors. Our simple approach also offers clues for solving the Neumann boundary value problem for vertex angles π /n, n is an integer, and other related superconducting geometries.

  14. Study of Cavity Imperfection Impact on RF-Parameters and Multipole Components in a Superconducting RF-Dipole Cavity

    CERN Document Server

    Olave, R G; Delayen, Jean Roger; De Silva, S U; Li, Z

    2014-01-01

    The ODU/SLAC superconducting rf-dipole cavity is under consideration for the crab-crossing system in the upcoming LHC luminosity upgrade. While the proposed cavity complies well within the rf-parameters and multipolar component restrictions for the LHC system, cavity imperfections arising from cavity fabrication, welding and frequency tuning may have a significant effect in these parameters. We report on an initial study of the impact of deviation from the ideal shape on the cavity’s performance in terms of rf-parameters and multipolar components.

  15. Theory for electric dipole superconductivity with an application for bilayer excitons.

    Science.gov (United States)

    Jiang, Qing-Dong; Bao, Zhi-qiang; Sun, Qing-Feng; Xie, X C

    2015-07-08

    Exciton superfluid is a macroscopic quantum phenomenon in which large quantities of excitons undergo the Bose-Einstein condensation. Recently, exciton superfluid has been widely studied in various bilayer systems. However, experimental measurements only provide indirect evidence for the existence of exciton superfluid. In this article, by viewing the exciton in a bilayer system as an electric dipole, we derive the London-type and Ginzburg-Landau-type equations for the electric dipole superconductors. By using these equations, we discover the Meissner-type effect and the electric dipole current Josephson effect. These effects can provide direct evidence for the formation of the exciton superfluid state in bilayer systems and pave new ways to drive an electric dipole current.

  16. The preliminary tests of the superconducting electron cyclotron resonance ion source DECRIS-SC2.

    Science.gov (United States)

    Efremov, A; Bekhterev, V; Bogomolov, S; Drobin, V; Loginov, V; Lebedev, A; Yazvitsky, N; Yakovlev, B

    2012-02-01

    A new compact version of the "liquid He-free" superconducting ECR ion source, to be used as an injector of highly charged heavy ions for the MC-400 cyclotron, is designed and built at the Flerov Laboratory of Nuclear Reactions in collaboration with the Laboratory of High Energy Physics of JINR. The axial magnetic field of the source is created by the superconducting magnet and the NdFeB hexapole is used for the radial plasma confinement. The microwave frequency of 14 GHz is used for ECR plasma heating. During the first tests, the source shows a good enough performance for the production of medium charge state ions. In this paper, we will present the design parameters and the preliminary results with gaseous ions.

  17. Methods for the Evaluation of Quench Temperature Profiles and their Application for LHC Superconducting Short Dipole Magnets

    CERN Document Server

    Sanfilippo, S

    2000-01-01

    This paper presents a study of the thermal effects on quench performance for several Large Hadron Collider single aperture short dipole models. The analysis is based on the temperature profile in a superconducting magnet evaluated after a quench. Peak temperatures and temperature gradients in the magnet coil are estimated for different thicknesses of insulation layer between the quench heaters and the coil and different powering and protection parameters. The results show clear correlation between the thermo-mechanical response of the magnet and quench performance. They also display that the optimisation of the position of quench heaters can reduce the decrease of training performance caused by the coexistence of a mechanical weak region and of a local temperature rise.

  18. 1D to 3D dimensional crossover in the superconducting transition of the quasi-one-dimensional carbide superconductor Sc3CoC4.

    Science.gov (United States)

    He, Mingquan; Wong, Chi Ho; Shi, Dian; Tse, Pok Lam; Scheidt, Ernst-Wilhelm; Eickerling, Georg; Scherer, Wolfgang; Sheng, Ping; Lortz, Rolf

    2015-02-25

    The transition metal carbide superconductor Sc(3)CoC(4) may represent a new benchmark system of quasi-one-dimensional (quasi-1D) superconducting behavior. We investigate the superconducting transition of a high-quality single crystalline sample by electrical transport experiments. Our data show that the superconductor goes through a complex dimensional crossover below the onset T(c) of 4.5 K. First, a quasi-1D fluctuating superconducting state with finite resistance forms in the [CoC(4)](∞) ribbons which are embedded in a Sc matrix in this material. At lower temperature, the transversal Josephson or proximity coupling of neighboring ribbons establishes a 3D bulk superconducting state. This dimensional crossover is very similar to Tl(2)Mo(6)Se(6), which for a long time has been regarded as the most appropriate model system of a quasi-1D superconductor. Sc(3)CoC(4) appears to be even more in the 1D limit than Tl(2)Mo(6)Se(6).

  19. High Tc superconductivity mechanism controlled by electric dipole correlation and charge correlation

    OpenAIRE

    2008-01-01

    The model is based on a mirror symmetry breaking second order phase transition leading to a pairing between a free charge carriers and a free mirror charge carriers. This approach gives a unified description of low and high Tc superconductivity with a point of view differing from that of BCS theory.The material's crystal structure symmetry is the key to understand the mechanism of pairing by introducing a mirror plane polarization effect in lattice as it is described below.

  20. Stress management as an enabling technology for high-field superconducting dipole magnets

    Science.gov (United States)

    Holik, Eddie Frank, III

    This dissertation examines stress management and other construction techniques as means to meet future accelerator requirement demands by planning, fabricating, and analyzing a high-field, Nb3Sn dipole. In order to enable future fundamental research and discovery in high energy accelerator physics, bending magnets must access the highest fields possible. Stress management is a novel, propitious path to attain higher fields and preserve the maximum current capacity of advanced superconductors by managing the Lorentz stress so that strain induced current degradation is mitigated. Stress management is accomplished through several innovative design features. A block-coil geometry enables an Inconel pier and beam matrix to be incorporated in the windings for Lorentz Stress support and reduced AC loss. A laminar spring between windings and mica paper surrounding each winding inhibit any stress transferral through the support structure and has been simulated with ALGORRTM. Wood's metal filled, stainless steel bladders apply isostatic, surface-conforming preload to the pier and beam support structure. Sufficient preload along with mica paper sheer release reduces magnet training by inhibiting stick-slip motion. The effectiveness of stress management is tested with high-precision capacitive stress transducers and strain gauges. In addition to stress management, there are several technologies developed to assist in the successful construction of a high-field dipole. Quench protection has been designed and simulated along with full 3D magnetic simulation with OPERARTM. Rutherford cable was constructed, and cable thermal expansion data was analysed after heat treatment. Pre-impregnation analysis techniques were developed due to elemental tin leakage in varying quantities during heat treatment from each coil. Robust splicing techniques were developed with measured resistivites consistent with nO joints. Stress management has not been incorporated by any other high field dipole

  1. The Dependence of the Field Decay on the Powering History of the LHC Superconducting Dipole Magnets

    CERN Document Server

    Sammut, N; Micallef, J; Sanfilippo, S

    2006-01-01

    The decay of the allowed multipoles in the Large Hadron Collider (LHC) dipoles is expected to perturb the beam stability during the particle injection. The decay amplitude is largely affected by the powering history of the magnet and is particularly dependent on the pre-cycle flat-top current and duration as well as the pre-injection preparation duration. With possible prospects of having different genres of cycles during the LHC operation, the powering history effect must be taken into account in the Field Description Model for the LHC and must hence be corrected during machine operation. This paper presents the results of the modelling of this phenomenon.

  2. Design And Tests Of A Superconducting Magnet With A Cryocooler For The Ion Source Decris-sc

    CERN Document Server

    Datskov, V I; Bekhterev, V V; Bogomolov, S L; Bondarenko, P G; Dmitriev, S N; Drobin, V M; Efremov, A A; Iakovlev, B I; Leporis, M; Malinowski, H; Nikiforov, S A; Paschenko, S V; Seleznev, V V; Shishov, Yu A; Tsvineva, G P; Yazvitsky, N Yu

    2004-01-01

    A superconducting magnet system (SMS) for the multicharged ion source DECRIS-SC was designed and manufactured at the Joint Institute for Nuclear Research. Successful tests of the SMS were conducted in late 2003 - early 2004. The peculiarities of this system are stipulated by using of a cryocooler 1 W in power for the cryostabilization of the magnet, and also by a special configuration of the magnetic field demanded for the source of ions. Four coils ensure induction of a magnetic field on the axes of the source of up to 3T (the mirror ratio of ~6) which considerably extends possibilities of the ion source from the point of view of producing intense highly charged ion beams. The problem of compensating large forces of interaction between the coils and surrounding iron yoke in this magnet has been successfully solved, and a reliable suspension of the magnet in a cryostat realized. For compounding of the windings working in vacuum at indirect cryostabilization prepreg is used. There has been applied a new techno...

  3. Data Analysis of Transient Energy Releases in the LHC Superconducting Dipole Magnets

    CERN Document Server

    Calvi, M; Bottura, L; Di Castro, M; Masi, A; Siemko, A

    2007-01-01

    Premature training quenches are caused by transient energy released within the LHC dipole magnet coils while it is energized. Voltage signals recorded across the magnet coils and on the so-called quench antenna carry information about these disturbances. The transitory events correlated to transient energy released are extracted making use of continuous wavelet transform. Several analyses are performed to understand their relevance to the so called training phenomenon. The statistical distribution of the signals amplitude, the number of events occurring at a given current level, the average frequency content of the events are the main parameters on which the analysis have been focalized. Comparisons among different regions of the magnet, among different quenches in the same magnet and among magnets made by different builders are reported. Conclusions about the efficiency of the raw data treatment and the relevance of the parameters developed with respect to the magnet global behavior are finally given.

  4. A study of beam position diagnostics using beam-excited dipole modes in third harmonic superconducting accelerating cavities at a free-electron laser

    CERN Document Server

    Zhang, P; Jones, R M; Shinton, I R R; Flisgen, T; Glock, H W

    2012-01-01

    We investigate the feasibility of beam position diagnostics using Higher Order Mode (HOM) signals excited by an electron beam in the third harmonic 3.9 GHz superconducting accelerating cavities at FLASH. After careful theoretical and experimental assessment of the HOM spectrum, three modal choices have been narrowed down to fulfill different diagnostics requirements. These are localized dipole beam-pipe modes, trapped cavity modes from the fifth dipole band and propagating modes from the first two dipole bands. These modes are treated with various data analysis techniques: modal identification, direct linear regression (DLR) and singular value decomposition (SVD). Promising options for beam diagnostics are found from all three modal choices. This constitutes the first prediction, subsequently confirmed by experiments, of trapped HOMs in third harmonic cavities, and also the first direct comparison of DLR and SVD in the analysis of HOM-based beam diagnostics.

  5. A study of beam position diagnostics using beam-excited dipole modes in third harmonic superconducting accelerating cavities at a free-electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Pei [School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Deutsches Elektronen-Synchrotron (DESY), 22607 Hamburg (Germany); Baboi, Nicoleta [Deutsches Elektronen-Synchrotron (DESY), 22607 Hamburg (Germany); Jones, Roger M.; Shinton, Ian R. R. [School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Cockcroft Institute, Cheshire WA4 4AD (United Kingdom); Flisgen, Thomas; Glock, Hans-Walter [Institut fuer Allgemeine Elektrotechnik, Universitaet Rostock, 18051 Rostock (Germany)

    2012-08-15

    We investigate the feasibility of beam position diagnostics using higher order mode (HOM) signals excited by an electron beam in the third harmonic 3.9 GHz superconducting accelerating cavities at FLASH. After careful theoretical and experimental assessment of the HOM spectrum, three modal choices have been narrowed down to fulfill different diagnostics requirements. These are localized dipole beam-pipe modes, trapped cavity modes from the fifth dipole band, and propagating modes from the first two dipole bands. These modes are treated with various data analysis techniques: modal identification, direct linear regression (DLR), and singular value decomposition (SVD). Promising options for beam diagnostics are found from all three modal choices. This constitutes the first prediction, subsequently confirmed by experiments, of trapped HOMs in third harmonic cavities, and also the first direct comparison of DLR and SVD in the analysis of HOM-based beam diagnostics.

  6. Superconductivity

    CERN Document Server

    Poole, Charles P; Farach, Horacio A

    1995-01-01

    Superconductivity covers the nature of the phenomenon of superconductivity. The book discusses the fundamental principles of superconductivity; the essential features of the superconducting state-the phenomena of zero resistance and perfect diamagnetism; and the properties of the various classes of superconductors, including the organics, the buckministerfullerenes, and the precursors to the cuprates. The text also describes superconductivity from the viewpoint of thermodynamics and provides expressions for the free energy; the Ginzburg-Landau and BCS theories; and the structures of the high

  7. {sup 27}Al and {sup 45}Sc NMR spectroscopy on ScT{sub 2}Al and Sc(T{sub 0.5}T{sup '}{sub 0.5}){sub 2}Al (T = T{sup '} = Ni, Pd, Pt, Cu, Ag, Au) Heusler phases and superconductivity in Sc(Pd{sub 0.5}Au{sub 0.5}){sub 2}Al

    Energy Technology Data Exchange (ETDEWEB)

    Benndorf, Christopher [Institut fuer Anorganische und Analytische Chemie, Westfaelische Wilhelms-Universitaet Muenster (Germany); Institut fuer Physikalische Chemie, Westfaelische Wilhelms-Universitaet Muenster (Germany); Niehaus, Oliver; Janka, Oliver [Institut fuer Anorganische und Analytische Chemie, Westfaelische Wilhelms-Universitaet Muenster (Germany); Eckert, Hellmut [Institut fuer Physikalische Chemie, Westfaelische Wilhelms-Universitaet Muenster (Germany)

    2015-02-15

    The intermetallic Heusler compounds with ScT{sub 2}Al and Sc(T{sub 0.5}T{sup '}{sub 0.5}){sub 2}Al composition with T = T{sup '} = Ni, Pd, Pt, Cu, Ag, Au were synthesized from the elements by arc melting. They crystallize in the cubic MnCu{sub 2}Al type structure, space group Fm anti 3m. The unit cell parameters were determined by powder X-ray diffraction and the structure of Sc(Pd{sub 0.5}Au{sub 0.5}){sub 2}Al was refined on the basis of single-crystal X-ray diffraction. While the majority of the compounds show Pauli-paramagnetism, ScAu{sub 2}Al and the newly synthesized solid solution Sc(Pd{sub 0.5}Au{sub 0.5}){sub 2}Al exhibit superconductivity with transition temperatures of T{sub C} = 4.4 K and T{sub C} = 3.0(1) K, respectively. The superconducting state of Sc(Pd{sub 0.5}Au{sub 0.5}){sub 2}Al was also investigated by electrical resistivity measurements. All the synthesized compounds were furthermore studied by {sup 27}Al and {sup 45}Sc MAS-NMR spectroscopy. The resonance shifts of the synthesized compounds were determined and in Sc(Pd{sub 1-x}Au{sub x}){sub 2}Al a linear relationship between the resonance shifts and the composition was found. Line broadening effects and enhanced quadrupolar interaction strengths observed in the mixed samples can be attributed to the effect of Pd/Au mixing on the 8c Wyckoff site. The NMR spectroscopic data give no clear evidence for or against Sc/Al site disordering. (Copyright copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Superconductivity

    CERN Document Server

    Thomas, D B

    1974-01-01

    A short general review is presented of the progress made in applied superconductivity as a result of work performed in connection with the high-energy physics program in Europe. The phenomenon of superconductivity and properties of superconductors of Types I and II are outlined. The main body of the paper deals with the development of niobium-titanium superconducting magnets and of radio-frequency superconducting cavities and accelerating structures. Examples of applications in and for high-energy physics experiments are given, including the large superconducting magnet for the Big European Bubble Chamber, prototype synchrotron magnets for the Super Proton Synchrotron, superconducting d.c. beam line magnets, and superconducting RF cavities for use in various laboratories. (0 refs).

  9. On the control parameters of the quasi-one dimensional superconductivity in Sc{sub 3}CoC{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Eickerling, Georg; Hauf, Christoph; Scheidt, Ernst-Wilhelm; Reichardt, Lena; Schneider, Christian; Scherer, Wolfgang [Institut fuer Physik, Universitaet Augsburg, Universitaetstrasse 1, 86179 Augsburg (Germany); Munoz, Alfonso [Departamento de Fisica Fundamental II, Instituto de Materiales y Nanotecnologia, Universidad de La Laguna, Tenerife (Spain); Lopez-Moreno, Sinhue [Escuela Superior Cd. Sahagun, Universidad Autonoma del Estado de Hidalgo, Carretera Cd. Sahagun-Otumba s/n. 43990, Hidalgo (Mexico); Humberto Romero, Aldo [Physics Department, West Virginia University, Morgantown, West Virginia 26506-6315 (United States); Max Planck Institut fuer Mikrostruktur Physik, Weinberg 2, 06120 Halle (Germany); Porcher, Florence; Andre, Gilles [Laboratoire Leon Brillouin, UMR12 CEA-CNRS, Bat 563 CEA Saclay, 91191 Gif sur Yvette Cedex (France); Poettgen, Rainer [Institut fuer Anorganische und Analytische Chemie, Universitaet Muenster, Corrensstrasse 30, 48149 Muenster (Germany)

    2013-09-15

    Within the series of ternary rare-earth transition metal carbides Sc{sub 3}TC{sub 4} (T = Fe, Co, Ni) only the Co congener displays a structural phase transition at 72 K and an onset of bulk superconductivity at 4.5 K. In this paper we present the results of a detailed analysis of the structural, electronic, and vibrational properties of the low-temperature phase of Sc{sub 3}CoC{sub 4} that represents one of the few well-documented examples of a quasi one-dimensional (1D) superconductor. Variable temperature neutron powder diffraction and low temperature X-ray diffraction experiments were performed in order to confirm the subtle structural distortions during the phase transition. The results of periodic electronic structure calculations indicate, that the structural transition can clearly be identified as a Peierls-type distortion and by a comparison with the isostructural carbide Sc{sub 3}FeC{sub 4} we are able to identify the chemical, electronic, and the vibrational control parameters of the transition. Topological analyses of the electron density distribution and of the valence shell charge concentrations at the cobalt atom finally allow us to directly correlate the changes in the electronic structure due to the Peierls transition in reciprocal space with the according subtle changes in the real space properties of Sc{sub 3}CoC{sub 4}. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. PERSISTENT CURRENT EFFECT IN 15-16 T NB3SN ACCELERATOR DIPOLES AND ITS CORRECTION

    Energy Technology Data Exchange (ETDEWEB)

    Kashikhin, V. V. [Fermilab; Zlobin, A. V. [Fermilab

    2016-11-08

    Nb3Sn magnets with operating fields of 15-16 T are considered for the LHC Energy Doubler and a future Very High Energy pp Collider. Due to large coil volume, high critical current density and large superconducting (SC) filament size the persistent current effect is very large in Nb3Sn dipoles al low fields. This paper presents the results of analysis of the persistent current effect in the 15 T Nb3Sn dipole demonstrator being developed at FNAL, and describes different possibilities of its correction including passive SC wires, iron shims and coil geometry.

  11. Superconductivity

    Science.gov (United States)

    1989-07-01

    SUPERCONDUCTIVITY HIGH-POWER APPLICATIONS Electric power generation/transmission Energy storage Acoustic projectors Weapon launchers Catapult Ship propulsion • • • Stabilized...temperature superconductive shields could be substantially enhanced by use of high-Tc materials. 27 28 NRAC SUPERCONDUCTIVITY SHIP PROPULSION APPLICATIONS...motor shown in the photograph. As a next step in the evolution of electric-drive ship propulsion technology, DTRC has proposed to scale up the design

  12. Proposal for the award of a contract for the supply of austenitic steel strips for non-magnetic laminations of the LHC superconducting dipole magnets

    CERN Document Server

    1999-01-01

    This document concerns the award of a contract for the supply of 2 400 tonnes of cold-rolled austenitic steel strips for non-magnetic laminations of the cold mass of the LHC superconducting dipole magnets. Following a market survey carried out among 32 firms in fourteen Member States and two firms in Japan, a call for tenders (IT-2617/LHC/LHC) was sent on 3 June 1999 to three firms in two Member States and two firms in Japan. The Council agreed to the Management?s proposal to invite Japanese industry to participate, where appropriate, in calls for tenders for supplies for the LHC Project (CERN/CC/2110). By the closing date, CERN had received four tenders. The Finance Committee is invited to approve the negotiation of a contract with the firm KAWASAKI STEEL (JP), the lowest bidder complying with the technical specification, for the supply of 2 400 tonnes of cold-rolled austenitic steel for non-magnetic laminations of the cold mass of the LHC superconducting dipole magnets for a total amount of 1 277 856 000 Ja...

  13. Proposal for the award of a contract for the supply of austenitic steel strips for collars of the LHC superconducting dipole magnets

    CERN Document Server

    1999-01-01

    This document concerns the award of a contract for the supply of 410 mm-wide austenitic steel strips for the collars of the LHC superconducting dipole magnets. Following a market survey carried out among 39 firms in twelve Member States and two firms in Japan, a call for tenders (IT-2618/LHC/LHC) was sent on 3 June 1999 to five firms in four Member States and two firms in Japan. The Council agreed to the Management?s proposal to invite Japanese industry to participate, where appropriate, in calls for tenders for supplies for the LHC Project (CERN/CC/2110). By the closing date, CERN had received six tenders. The Finance Committee is invited to approve the negotiation of a contract with the firm NIPPON STEEL CORPORATION (JP) for the supply of 11 000 tonnes of 410 mm-wide austenitic steel strips for the collars of the LHC superconducting dipole magnets for a total amount of 4 298 943 000 Japanese yen, subject to revision for contractual deliveries after 31 December 2000, with an option for the supply of up to 10...

  14. Superconductivity

    CERN Document Server

    Ketterson, John B

    2008-01-01

    Conceived as the definitive reference in a classic and important field of modern physics, this extensive and comprehensive handbook systematically reviews the basic physics, theory and recent advances in the field of superconductivity. Leading researchers, including Nobel laureates, describe the state-of-the-art in conventional and unconventional superconductors at a particularly opportune time, as new experimental techniques and field-theoretical methods have emerged. In addition to full-coverage of novel materials and underlying mechanisms, the handbook reflects continued intense research into electron-phone based superconductivity. Considerable attention is devoted to high-Tc superconductivity, novel superconductivity, including triplet pairing in the ruthenates, novel superconductors, such as heavy-Fermion metals and organic materials, and also granular superconductors. What’s more, several contributions address superconductors with impurities and nanostructured superconductors. Important new results on...

  15. Superconductivity

    CERN Document Server

    Poole, Charles P; Creswick, Richard J; Prozorov, Ruslan

    2014-01-01

    Superconductivity, Third Edition is an encyclopedic treatment of all aspects of the subject, from classic materials to fullerenes. Emphasis is on balanced coverage, with a comprehensive reference list and significant graphics from all areas of the published literature. Widely used theoretical approaches are explained in detail. Topics of special interest include high temperature superconductors, spectroscopy, critical states, transport properties, and tunneling. This book covers the whole field of superconductivity from both the theoretical and the experimental point of view. This third edition features extensive revisions throughout, and new chapters on second critical field and iron based superconductors.

  16. A fiber-optic strain measurement and quench localization system for use in superconducting accelerator dipole magnets

    NARCIS (Netherlands)

    Oort, van Johannes M.; Scanlan, Ronald M.; Kate, ten Herman H.J.

    1995-01-01

    A novel fiber-optic measurement system for superconducting accelerator magnets is described. The principal component is an extrinsic Fabry-Perot interferometer to determine localized strain and stress in coil windings. The system can be used either as a sensitive relative strain measurement system o

  17. The Future of Superconducting Technology for Particle Accelerators

    CERN Document Server

    Yamamoto, Akira

    2015-01-01

    Introduction: - Colliders constructed and operated - Future High Energy Colliders under Study - Superconducting Phases and Applications - Possible Choices among SC Materials Superconducting Magnets and the Future - Advances in SC Magnets for Accelerators - Nb3Sn for realizing Higher Field - NbTi to Nb3Sn for realizing High Field (> 10 T) - HL-LHC as a critical milestone for the Future of Acc. Magnet Technology - Nb3Sn Superconducting Magnets (> 11 T)and MgB2 SC Links for HL-LHC - HL-LHC, 11T Dipole Magnet - Nb3Sn Quadrupole (MQXF) at IR - Future Circular Collider Study - Conductor development (1998-2008) - Nb3Sn conductor program - 16 T Dipole Options and R&D sharing - Design Study and Develoment for SppC in China - High-Field Superconductor and Magnets - HTS Block Coil R&D for 20 T - Canted Cosine Theta (CCT) Coil suitable with Brittle HTS Conductor - A topic at KEK: S-KEKB IRQs just integrated w/ BELLE-II ! Superconducting RF and the Future - Superconducting Phases and Applications - Poss...

  18. Superconductivity in Italian Secondary Schools: the experimentation carried out by Udine University with Supercomet2 (SC2) materials

    Science.gov (United States)

    Michelini, Marisa; Santi, Lorenzo; Viola, Rossana; Corni, Federico

    2008-05-01

    Through a highly interactive tools on CD, which comprises animation and films of demonstrative experiments, and uses modern pedagogical methods, such as collaborative learning and problem solving, the Supercomet 2 Project (SUPERCOnductivity Multimedia Educational Tool phase 2 of the European Union) aims to introduce superconductivity to European high school curriculums. During the first year of the project the following were produced: a CD-ROM with didactic material, a teacher's guide to clarify characteristics and roles of support material (texts, worksheets and computer presentations) and preview didactic courses. During the second year of the project It was: translated the material into the languages of countries participating in the project, experimented the application in high school classes in various parts of Europe, tested the updating course and the teacher's guide with a group of reference teachers. At the end of the first period of experimentation and dissemination were revised and new material was integrated in order to produce a final version at the end of the project. Further integrated proposals have been included with the revised material. In this paper the main characteristics realized during the project will be described.

  19. Ab initio calculations of NMR shielding of Sc3+, Y3+ and La3+ ions in the water solution and 45Sc, 89Y, 138La and 139La nuclear magnetic dipole moments

    Science.gov (United States)

    Antušek, Andrej; Šulka, Martin

    2016-09-01

    Ab initio calculations of NMR shielding constants for water solvated trivalent scandium, yttrium and lanthanum cations are presented. The solvent effects of the first solvation shell are calculated explicitly using coupled cluster theory. The relativistic correction is calculated at non-correlated level. The influence of the second solvation shell is estimated at DFT level. The final NMR shielding constants define new NMR absolute shielding scales of scandium, yttrium and lanthanum and these shieldings were used for re-derivation of the nuclear magnetic dipole moments, eliminating long standing errors of ≈ 0.005μN .

  20. Deformations and Displacements of the LHC Superconducting Dipoles Induced by Standard and Non-Standard Operational Modes

    CERN Document Server

    La China, M; Gubello, G; Scandale, Walter

    2004-01-01

    A full-scale and fully-instrumented working model of the LHC lattice cell has been tested at CERN between March and December 2002. Aside of the current, pressure and temperature sensors, controlled by an industrial supervision system, a novel device has been set to monitor magnet positions with respect to the surrounding cryostat. The series of operating modes to test cryogenics, current leads and quench recovery electronics offered the chance to investigate potentially harmful deformations of the superconducting structure. In this paper we present a survey of displacements and deformations experienced by the LHC cell magnets during thermal cycles, current ramps and resistive transitions. Although the system complexity prevented from complete modeling, a preliminary phenomena explanation is given.

  1. Modelling and transmission-line calculations of the final superconducting dipole and quadrupole chains of CERN's LHC collider methods and results

    CERN Document Server

    Dahlerup-Petersen, K

    2001-01-01

    Summary form only given, as follows. A long chain of superconducting magnets represents a complex load impedance for the powering and turns into a complex generator during the energy extraction. Detailed information about the circuit is needed for the calculation of a number of parameters and features, which are of vital importance for the choice of powering and extraction equipment and for the prediction of the circuit performance under normal and fault conditions. Constitution of the complex magnet chain impedance is based on a synthesized, electrical model of the basic magnetic elements. This is derived from amplitude and phase measurements of coil and ground impedances from d.c. to 50 kHz and the identification of poles and zeros of the impedance and transfer functions. An electrically compatible RLC model of each magnet type was then synthesized by means of a combination of conventional algorithms. Such models have been elaborated for the final, 15-m long LHC dipole (both apertures in series) as well as ...

  2. Contribution to the design of superconducting Nb{sub 3}Sn dipole windings for particle accelerator; Contribution a la conception des bobinages supraconducteurs de type dipolaire en Nb{sub 3}Sn pour les accelerateurs de particules

    Energy Technology Data Exchange (ETDEWEB)

    Felice, H

    2006-10-15

    Improvement of particle accelerators relies on complex technologies such as the design and fabrication of superconducting magnets. A key parameter in magnet design is the mechanical pre-stress, applied at room temperature to insure compression of the coil during excitation. In dipole magnets, high field and high mechanical stresses in windings combined with the Nb{sub 3}Sn stress sensitivity ask the question of the limit of the mechanical stress that the Nb{sub 3}Sn can undergo without degradation. This limit estimated around 150 MPa is still discussed and has to be investigated. Whatever its value, preliminary studies show that conventional cosine theta design induces mechanical stresses (> 200 MPa) in large aperture (> 130 mm) and high field configurations, which underscore the need of alternative coil arrangements. The first part of this thesis gives an introduction to the issues and challenges encountered by the designers of superconducting ma nets. The second part is devoted to the study of large aperture (88, 130 and 160 mm) and high field (13 T) dipoles based on intersecting ellipses. After a theoretical study, a 2D magnetic design is detailed for each aperture and a mechanical study is developed for the 130 mm aperture dipole. In the last part, an experimental device dedicated to the study of the influence of the pre-stress on the training of sub-scale Nb{sub 3}Sn dipole and to the investigation of the mechanical stress limit is presented. The design of this magnet is detailed and the result of the first test carried out with the structure is reported. (author)

  3. X-ray photoelectron spectroscopy studies of the electronic structure of superconducting Nb{sub 2}SnC and Nb{sub 2}SC

    Energy Technology Data Exchange (ETDEWEB)

    Romero, M.; Huerta, L.; Akachi, T. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, México D.F. 04510 (Mexico); Llamazares, J.L. Sánchez [Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Col. Lomas 4a, San Luis Potosí, S.L.P. 78216 (Mexico); Escamilla, R., E-mail: rauleg@unam.mx [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, México D.F. 04510 (Mexico)

    2013-12-05

    Highlights: •XPS was used to investigate chemical shift in the Nb{sub 2}SnC and Nb{sub 2}SC compounds. •Valence band of the Nb{sub 2}SnC and Nb{sub 2}SC compounds was studied by XPS. •Positive and negative chemical shift are observed in the Nb{sub 2}SnC and Nb{sub 2}SC. •The charge transfer model can be applicable to the Nb{sub 2}SnC and Nb{sub 2}SC compounds. •The decrease of the N(E{sub F}) of Nb{sub 2}SC respect to Nb{sub 2}SnC explain the decrease of T{sub c}. -- Abstract: X-ray photoelectron spectroscopy (XPS) was used to investigate the binding energies and valence band of the Nb{sub 2}SnC and Nb{sub 2}SC compounds. The Nb 3d{sub 5/2}, Sn 3d{sub 5/2}, S 2p{sub 3/2} and C 1s core levels associated with the chemical states of Nb{sub 2}SnC and Nb{sub 2}SC were identified. The spectra for Nb{sub 2}SnC revealed Nb and Sn oxides on the surface of the sample, mainly Nb{sub 2}O{sub 5} and SnO{sub 2}, while the Nb{sub 2}SC only Nb{sub 2}O{sub 5} oxide. After Ar{sup +} ion etching the intensity of the oxides decreased in both samples. Comparing the Nb 3d, Sn 3d, S 2p and C 1s core levels with metallic Nb, Sn, S and C reference materials, we observed a positive chemical shift for Nb 3d{sub 5/2} and a negative chemical shift for C 1s in both samples. These results suggest that the charge transfer model can be applicable to the Nb{sub 2}SnC and Nb{sub 2}SC compounds. Finally, the decrease in the T{sub c} in the Nb{sub 2}SC compound respect to Nb{sub 2}SnC might be associated to decrease in the density of states N(E{sub F})

  4. Higher order mode spectra and the dependence of localized dipole modes on the transverse beam position in third harmonic superconducting cavities at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pei [Manchester Univ. (United Kingdom); Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Baboi, Nicoleta [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Jones, Roger M. [The Cockcroft Institute, Daresbury (United Kingdom)

    2012-06-15

    An electron beam entering an accelerating cavity excites a wakefield. This wakefield can be decomposed into a series of multi-poles or modes. The dominant component of the transverse wakefield is dipole. This report summarizes the higher order mode (HOM) signals of the third harmonic cavities of FLASH measured at various stages: transmission measurements in the single cavity test stand at Fermilab, at CMTB (Cryo- Module Test Bench) and at FLASH, and beam-excited measurements at FLASH. Modes in the first two dipole bands and the fifth dipole band have been identified using a global Lorentzian fit technique. The beam-pipe modes at approximately 4 GHz and some modes in the fifth dipole band have been observed as localized modes, while the first two dipole bands, containing some strong coupling cavity modes, propagate. This report also presents the dependence of the localized dipole modes on the transverse beam position. Linear dependence for various modes has been observed. This makes them suitable for beam position diagnostics. These modes, together with some propagating, strong coupling modes, have been considered in the design of a dedicated electronics for beam diagnostics with HOMs for the third harmonic cavities.

  5. High-field dipoles for future accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Wipf, S.L.

    1984-09-01

    This report presents the concept for building superconducting accelerator dipoles with record high fields. Economic considerations favor the highest possible current density in the windings. Further discussion indicates that there is an optimal range of pinning strength for a superconducting material and that it is not likely for multifilamentary conductors to ever equal the potential performance of tape conductors. A dipole design with a tape-wound, inner high-field winding is suggested. Methods are detailed to avoid degradation caused by flux jumps and to overcome problems with the dipole ends. Concerns for force support structure and field precision are also addressed. An R and D program leading to a prototype 11-T dipole is outlined. Past and future importance of superconductivity to high-energy physics is evident from a short historical survey. Successful dipoles in the 10- to 20-T range will allow interesting options for upgrading present largest accelerators.

  6. Superconductive imaging surface magnetometer

    Science.gov (United States)

    Overton, Jr., William C.; van Hulsteyn, David B.; Flynn, Edward R.

    1991-01-01

    An improved pick-up coil system for use with Superconducting Quantum Interference Device gradiometers and magnetometers involving the use of superconducting plates near conventional pick-up coil arrangements to provide imaging of nearby dipole sources and to deflect environmental magnetic noise away from the pick-up coils. This allows the practice of gradiometry and magnetometry in magnetically unshielded environments. One embodiment uses a hemispherically shaped superconducting plate with interior pick-up coils, allowing brain wave measurements to be made on human patients. another embodiment using flat superconducting plates could be used in non-destructive evaluation of materials.

  7. Dissecting an LHC dipole

    CERN Multimedia

    2004-01-01

    The cold mass of a 15-metre main dipole magnet has some fifteen different components. All the main components are manufactured under CERN's direct responsibility. Four of them transit through CERN before being shipped to the dipole assembly contractors, namely the cable, which constitutes the magnet's superconducting core (see Bulletin 14/2004), the beam screens, the heat exchanger tubes and the cold bore beam tubes. The two latter components transit via Building 927 where they undergo part of the production process. The 58-mm diameter heat exchanger tubes will remove heat from the magnets using superfluid helium. The 53-mm diameter cold bore tubes will be placed under vacuum to allow the twin beams to circulate around the LHC.

  8. Giant Primeval Magnetic Dipoles

    Science.gov (United States)

    Thompson, Christopher

    2017-07-01

    Macroscopic magnetic dipoles are considered cosmic dark matter. Permanent magnetism in relativistic field structures can involve some form of superconductivity, one example being current-carrying string loops (“springs”) with vanishing net tension. We derive the cross-section for free classical dipoles to collide, finding it depends weakly on orientation when mutual precession is rapid. The collision rate of “spring” loops with tension { T }˜ {10}-8{c}4/G in galactic halos approaches the measured rate of fast radio bursts (FRBs) if the loops compose most of the dark matter. A large superconducting dipole (LSD) with mass ˜1020 g and size ˜1 mm will form a ˜100 km magnetosphere moving through interstellar plasma. Although hydromagnetic drag is generally weak, it is strong enough to capture some LSDs into long-lived rings orbiting supermassive black holes (SMBHs) that form by the direct collapse of massive gas clouds. Repeated collisions near young SMBHs could dominate the global collision rate, thereby broadening the dipole mass spectrum. Colliding LSDs produce tiny, hot electromagnetic explosions. The accompanying paper shows that these explosions couple effectively to propagating low-frequency electromagnetic modes, with output peaking at 0.01-1 THz. We describe several constraints on, and predictions of, LSDs as cosmic dark matter. The shock formed by an infalling LSD triggers self-sustained thermonuclear burning in a C/O (ONeMg) white dwarf (WD) of mass ≳1 M ⊙ (1.3 M ⊙). The spark is generally located off the center of the WD. The rate of LSD-induced explosions matches the observed rate of Type Ia supernovae.

  9. Superconducting Hadron Linacs

    CERN Document Server

    Ostroumov, Peter

    2013-01-01

    This article discusses the main building blocks of a superconducting (SC) linac, the choice of SC resonators, their frequencies, accelerating gradients and apertures, focusing structures, practical aspects of cryomodule design, and concepts to minimize the heat load into the cryogenic system. It starts with an overview of design concepts for all types of hadron linacs differentiated by duty cycle (pulsed or continuous wave) or by the type of ion species (protons, H-, and ions) being accelerated. Design concepts are detailed for SC linacs in application to both light ion (proton, deuteron) and heavy ion linacs. The physics design of SC linacs, including transverse and longitudinal lattice designs, matching between different accelerating–focusing lattices, and transition from NC to SC sections, is detailed. Design of high-intensity SC linacs for light ions, methods for the reduction of beam losses, preventing beam halo formation, and the effect of HOMs and errors on beam quality are discussed. Examples are ta...

  10. LHC dipoles flood into CERN : the dipole nr 154 crowns the efforts of the LHC teams for increasing the fabrication rate of the magnets.

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    On 3 December the "tableau" on the 4th floor in building 30 indicated 1078 dipoles to completion - or in other words, 154 dipoles had by this day been delivered to CERN, enough to complete the first octant of the machine. CERN has also now received enough superconducting cable - the "heart" of the magnets - for 600 dipoles, nearly half the total number of 1232.

  11. The superconducting bending magnets 'CESAR'

    CERN Document Server

    Pérot, J

    1978-01-01

    In 1975, CERN decided to build two high precision superconducting dipoles for a beam line in the SPS north experimental area. The aim was to determine whether superconducting magnets of the required accuracy and reliability can be built and what their economies and performances in operation will be. Collaboration between CERN and CAE /SACLAY was established in order to make use of the knowledge and experience already acquired in the two laboratories. (0 refs).

  12. Preparation and characterization of Sc doped MgB2 wires

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Burdusel, M.

    2016-01-01

    The in-situ technique was used to manufacture scandium (Sc) doped MgB2 wires in a composite Cu–Nb sheath. After reaction at 700 °C, at most 1 at.% Mg was replaced by Sc in the MgB2 phase, without significant influence on its superconducting transition temperature. For higher Sc concentrations...

  13. Dipole nano-laser

    Energy Technology Data Exchange (ETDEWEB)

    Protsenko, I E; Uskov, A V; Krotova, K E [Lebedev Physical Institute, Leninsky prospect 53, Moscow (Russian Federation); O' Reilly, E P [Tyndall National Institute, ' Lee Maltings' , Prospect Row, Cork (Ireland)], E-mail: protsen@sci.lebedev.ru, E-mail: protsenk@gmail.com

    2008-03-15

    Theoretically predicted 'dipole lasing', i.e., spontaneous excitation of coherent metal nano-particle dipole oscillations through interaction with a quantum-dot two-level system subject to population inversion is demonstrated. Equations for dipole lasing are the same as equations for ordinary laser, where the dipole momentum of nano-particle stands for the electromagnetic field cavity mode. Dipole lasing frequency corresponds to the localized plasmon resonance of the nano-particle. Dipole momentum of nano-particle leads to coherent dipole radiation. Optical cavity is not necessary, the size of the dipole laser can be smaller than the optical wavelength, i.e. it is dipole nano-laser. Threshold conditions and optical bistability in dipole nano-lasers are considered.

  14. Global and local superconductivity in boron-doped granular diamond.

    Science.gov (United States)

    Zhang, Gufei; Turner, Stuart; Ekimov, Evgeny A; Vanacken, Johan; Timmermans, Matias; Samuely, Tomás; Sidorov, Vladimir A; Stishov, Sergei M; Lu, Yinggang; Deloof, Bart; Goderis, Bart; Van Tendeloo, Gustaaf; Van de Vondel, Joris; Moshchalkov, Victor V

    2014-04-02

    Strong granularity-correlated and intragrain modulations of the superconducting order parameter are demonstrated in heavily boron-doped diamond situated not yet in the vicinity of the metal-insulator transition. These modulations at the superconducting state (SC) and at the global normal state (NS) above the resistive superconducting transition, reveal that local Cooper pairing sets in prior to the global phase coherence.

  15. Large Superconducting Magnet Systems

    CERN Document Server

    Védrine, P.

    2014-07-17

    The increase of energy in accelerators over the past decades has led to the design of superconducting magnets for both accelerators and the associated detectors. The use of Nb−Ti superconducting materials allows an increase in the dipole field by up to 10 T compared with the maximum field of 2 T in a conventional magnet. The field bending of the particles in the detectors and generated by the magnets can also be increased. New materials, such as Nb3Sn and high temperature superconductor (HTS) conductors, can open the way to higher fields, in the range 13–20 T. The latest generations of fusion machines producing hot plasma also use large superconducting magnet systems.

  16. A study of beam position diagnostics with beam-excited dipole higher order modes using a downconverter test electronics in third harmonic 3.9 GHz superconducting accelerating cavities at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, P. [Manchester Univ. (United Kingdom); Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Baboi, N.; Lorbeer, B.; Wamsat, T. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Eddy, N.; Fellenz, B.; Wendt, M. [Fermi National Accelerator Lab., Batavia, IL (United States); Jones, R.M. [Manchester Univ. (United Kingdom); The Cockcroft Institute, Daresbury (United Kingdom)

    2012-08-15

    Beam-excited higher order modes (HOM) in accelerating cavities contain transverse beam position information. Previous studies have narrowed down three modal options for beam position diagnostics in the third harmonic 3.9 GHz cavities at FLASH. Localized modes in the beam pipes at approximately 4.1 GHz and in the fifth cavity dipole band at approximately 9 GHz were found, that can provide a local measurement of the beam position. In contrast, propagating modes in the first and second dipole bands between 4.2 and 5.5 GHz can reach a better resolution. All the options were assessed with a specially designed test electronics built by Fermilab. The aim is to de ne a mode or spectral region suitable for the HOM electronics. Two data analysis techniques are used and compared in extracting beam position information from the dipole HOMs: direct linear regression and singular value decomposition. Current experiments suggest a resolution of 50 m accuracy in predicting local beam position using modes in the fifth dipole band, and a global resolution of 20 m over the complete module. Based on these results we decided to build a HOM electronics for the second dipole band and the fifth dipole band, so that we will have both high resolution measurements for the whole module, and localized measurements for individual cavity. The prototype electronics is being built by Fermilab and planned to be tested in FLASH by the end of 2012.

  17. Applied superconductivity

    CERN Document Server

    Newhouse, Vernon L

    1975-01-01

    Applied Superconductivity, Volume II, is part of a two-volume series on applied superconductivity. The first volume dealt with electronic applications and radiation detection, and contains a chapter on liquid helium refrigeration. The present volume discusses magnets, electromechanical applications, accelerators, and microwave and rf devices. The book opens with a chapter on high-field superconducting magnets, covering applications and magnet design. Subsequent chapters discuss superconductive machinery such as superconductive bearings and motors; rf superconducting devices; and future prospec

  18. Relaxation of polarized nuclei in superconducting rhodium

    DEFF Research Database (Denmark)

    Knuuttila, T.A.; Tuoriniemi, J.T.; Lefmann, K.

    2000-01-01

    Nuclear spin lattice relaxation rates were measured in normal and superconducting (sc) rhodium with nuclear polarizations up to p = 0.55. This was sufficient to influence the sc state of Rh, whose T, and B-c, are exceptionally low. Because B-c

  19. Activities on RF superconductivity at DESY

    Energy Technology Data Exchange (ETDEWEB)

    Matheisen, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); TESLA Collaboration

    1996-01-01

    At DESY the HERA electron storage ring is supplied with normal and superconducting cavities. The superconducting system transfers up to 1 MW klystron power to the beam. Experiences are reported on luminosity and machine study runs. Since 1993 one major activity in the field of RF superconducting cavities is the installation of the TESLA Test Facility. Set-up of hardware and first tests of s.c. resonators are presented. (R.P.). 11 refs.

  20. Academic Training - Pulsed SC Magnets

    CERN Multimedia

    Françoise Benz

    2006-01-01

    2005-2006 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 2, 3, June 29, 30, 31 May, 1, 2 June 11:00-12:00 - Auditorium, bldg 500 Pulsed SC Magnets by M. Wilson Lecture 1. Introduction to Superconducting Materials Type 1,2 and high temperature superconductors; their critical temperature, field & current density. Persistent screening currents and the critical state model. Lecture 2. Magnetization and AC Loss How screening currents cause irreversible magnetization and hysteresis loops. Field errors caused by screening currents. Flux jumping. The general formulation of ac loss in terms of magnetization. AC losses caused by screening currents. Lecture 3. Twisted Wires and Cables Filamentary composite wires and the losses caused by coupling currents between filaments, the need for twisting. Why we need cables and how the coupling currents in cables contribute more ac loss. Field errors caused by coupling currents. Lecture 4. AC Losses in Magnets, Cooling and Measurement Summary of all loss mech...

  1. Roton dipole moment

    OpenAIRE

    Mineev, V. P.

    2009-01-01

    The roton excitation in the superfluid He-4 does not possess a stationary dipole moment. However, a roton has an instantaneous dipole moment, such that at any given moment one can find it in the state either with positive or with negative dipole moment projection on its momentum direction. The instantaneous value of electric dipole moment of roton excitation is evaluated. The result is in reasonable agreement with recent experimental observation of the splitting of microwave resonance absorpt...

  2. Automated Design of a Correction Dipole Magnet for LHC

    CERN Document Server

    Karppinen, M; Ijspeert, Albert

    1996-01-01

    A correction dipole magnet, with a horizontal dipole nested inside a vertical dipole has been designed and optimized linking together different electromagnetic software and CAD/CAM systems. The necessary interfaces have recently been established in the program ROXIE which has been developed at CERN for the automatic generation and optimization of superconducting coil geometries. The program provides, in addition to a mathematical optimization chest, interfaces to commercial electromagnetic and structural software packages, CAD/CAM and databases. The results from electromagnetic calculations with different programs have been compared. Some modelling considerations to reduce the computation time are also given.

  3. Final Report: Levitated Dipole Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kesner, Jay [Massachusetts Institute of Technology, Cambridge, MA (United States); Mauel, Michael [Columbia Univ., New York, NY (United States)

    2013-03-10

    Since the very first experiments with the LDX, research progress was rapid and significant. Initial experiments were conducted with the high-field superconducting coil suspended by three thin rods. These experiments produced long-pulse, quasi-steady-state microwave discharges, lasting more than 10 s, having peak beta values of 20% [Garnier et al., Physics of Plasmas, 13 (2006) 056111]. High- beta, near steady-state discharges have been maintained in LDX for more than 20 seconds, and this capability made LDX the longest pulse fusion confinement experiment operating in the U.S. fusion program. A significant measure of progress in the LDX research program was the routine investigation of plasma confinement with a magnetically-levitated dipole and the resulting observations of confinement improvement. In both supported and levitated configurations, detailed measurements were made of discharge evolution, plasma dynamics and instability, and the roles of gas fueling, microwave power deposition profiles, and plasma boundary shape. High-temperature plasma was created by multi frequency electron cyclotron resonance heating at 2.45 GHz, 6.4 GHz, 10.5 GHz and 28 GHz allowing control of heating profiles. Depending upon neutral fueling rates, the LDX discharges contain a fraction of energetic electrons, with mean energies above 50 keV. Depending on whether or not the superconducting dipole was levitated or supported, the peak thermal electron temperature was estimated to exceed 500 eV and peak densities to approach 1e18 m-3. We have found that levitation causes a strong inwards density pinch [Boxer et al., Nature Physics, 6 (2010) 207] and we have observed the central plasma density increase dramatically indicating a significant improvement in the confinement of a thermal plasma species.

  4. Dipole strength distribution of {sup 50}Ti

    Energy Technology Data Exchange (ETDEWEB)

    Gayer, Udo; Beck, Tobias; Beller, Jacob; Mertes, Laura; Pai, Haridas; Pietralla, Norbert; Ries, Philipp; Romig, Christopher; Werner, Volker; Zweidinger, Markus [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany)

    2015-07-01

    A first nuclear resonance fluorescence (NRF) experiment with a 68% isotopically enriched {sup 50}Ti target has been performed at the superconducting Darmstadt electron linear accelerator S-DALINAC to investigate particle-bound dipole excitations in this nucleus. The target was irradiated with an unpolarized bremsstrahlung photon beam at endpoint energies of 7.5 MeV and 9.7 MeV. The observed excited states are analyzed with respect to their excitation energies, spin quantum numbers and transition strengths. A complementary NRF experiment with polarized photons will be conducted at the High Intensity gamma-ray Source in Durham, NC, USA to determine the polarity of the dipole transitions. Data will be analyzed with regard to the Pygmy Dipole Resonance, a weakly-collective electric dipole excitation which starts to form in nuclei of this mass region. The measured transition strengths will be compared to microscopic calculations in the quasiparticle-phonon model. The investigation of the magnetic dipole strength distribution will focus on strong spin-flip transitions between the p,f spin-orbit partners expected in the nuclear shell model. First results of the measurements and the evaluation will be presented and discussed.

  5. SC Power leads and cables - Nominal Current Test Performance of 2 kA-Class High-Tc Superconducting Cable Conductors and Its Implications for Cooling Systems for Utility Cables

    DEFF Research Database (Denmark)

    Willen, D. W. A; Daumling, M.; Rasmussen, C. N.

    2000-01-01

    at high currents. The critical currents of these conductors are in the range of 1-3 kA, and ac losses smaller than 1 W/m are measured at 2 kArms. AC currents with peak values exceeding the dc critical currents are applied. Increased losses, in excess of the expected magnitization losses are observed when...... individual layers in the cables saturate. The loss-contributions from other components of the cable system are discussed,and the implications for the cooling apparatus for superconducting utility cables are determined....

  6. Superconducting Accelerator Magnets

    CERN Document Server

    Mess, K H; Wolff, S

    1996-01-01

    The main topic of the book are the superconducting dipole and quadrupole magnets needed in high-energy accelerators and storage rings for protons, antiprotons or heavy ions. The basic principles of low-temperature superconductivity are outlined with special emphasis on the effects which are relevant for accelerator magnets. Properties and fabrication methods of practical superconductors are described. Analytical methods for field calculation and multipole expansion are presented for coils without and with iron yoke. The effect of yoke saturation and geometric distortions on field quality is studied. Persistent magnetization currents in the superconductor and eddy currents the copper part of the cable are analyzed in detail and their influence on field quality and magnet performance is investigated. Superconductor stability, quench origins and propagation and magnet protection are addressed. Some important concepts of accelerator physics are introduced which are needed to appreciate the demanding requirements ...

  7. Superconducting transistor

    Science.gov (United States)

    Gray, Kenneth E.

    1979-01-01

    A superconducting transistor is formed by disposing three thin films of superconducting material in a planar parallel arrangement and insulating the films from each other by layers of insulating oxides to form two tunnel junctions. One junction is biased above twice the superconducting energy gap and the other is biased at less than twice the superconducting energy gap. Injection of quasiparticles into the center film by one junction provides a current gain in the second junction.

  8. S-C Mylonites

    NARCIS (Netherlands)

    Lister, G.S.; Snoke, A.W.

    1984-01-01

    Two types of foliations are commonly developed in mylonites and mylonitic rocks: (a) S-surfaces related to the accumulation of finite strain and (b) C-surfaces related to displacement discontinuities or zones of relatively high shear strain. There are two types of S-C mylonites. Type I S-C mylonites

  9. Superconductivity and superconductive electronics

    Science.gov (United States)

    Beasley, M. R.

    1990-12-01

    The Stanford Center for Research on Superconductivity and Superconductive Electronics is currently focused on developing techniques for producing increasingly improved films and multilayers of the high-temperature superconductors, studying their physical properties and using these films and multilayers in device physics studies. In general the thin film synthesis work leads the way. Once a given film or multilayer structure can be made reasonably routinely, the emphasis shifts to studying the physical properties and device physics of these structures and on to the next level of film quality or multilayer complexity. The most advanced thin films synthesis work in the past year has involved developing techniques to deposit a-axis and c-axis YBCO/PBCO superlattices and related structures. The in-situ feature is desirable because no solid state reactions with accompanying changes in volume, morphology, etc., that degrade the quality of the film involved.

  10. Superconductivity and ferromagnetism in nanomaterial NbSe2

    Science.gov (United States)

    Gill, Raminder

    2017-07-01

    Finding of superconductivity (SC) in ultra thin layer of Niobium diselenide (NbSe2) caught the attention of each condensed matter physicist in the era of nanotechnology. The coexistence of SC and magnetism have been a topic of interesting research in solid-state physics since the discovery of superconductivity. Ferromagnetism induced in any compound could destroy superconductivity by disturbing the cooper pairing of electrons of the atoms. The interplay between ferromagnetism (FM) and SC in nanomaterial NBSe2 impressed to study and to know the exact mechanism behind this coexistence which can lead to a very interesting research: superconductivity at room temperature. In this paper, I have theoretically studied the coexistence of SC and FM in NbSe2 and how this material could be useful in finding many high Tc nanomaterials.

  11. Superconducting doped topological materials

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Satoshi, E-mail: sasaki@sanken.osaka-u.ac.jp [Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Mizushima, Takeshi, E-mail: mizushima@mp.es.osaka-u.ac.jp [Department of Materials Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Department of Physics, Okayama University, Okayama 700-8530 (Japan)

    2015-07-15

    Highlights: • Studies on both normal- and SC-state properties of doped topological materials. • Odd-parity pairing systems with the time-reversal-invariance. • Robust superconductivity in the presence of nonmagnetic impurity scattering. • We propose experiments to identify the existence of Majorana fermions in these SCs. - Abstract: Recently, the search for Majorana fermions (MFs) has become one of the most important and exciting issues in condensed matter physics since such an exotic quasiparticle is expected to potentially give rise to unprecedented quantum phenomena whose functional properties will be used to develop future quantum technology. Theoretically, the MFs may reside in various types of topological superconductor materials that is characterized by the topologically protected gapless surface state which are essentially an Andreev bound state. Superconducting doped topological insulators and topological crystalline insulators are promising candidates to harbor the MFs. In this review, we discuss recent progress and understanding on the research of MFs based on time-reversal-invariant superconducting topological materials to deepen our understanding and have a better outlook on both the search for and realization of MFs in these systems. We also discuss some advantages of these bulk systems to realize MFs including remarkable superconducting robustness against nonmagnetic impurities.

  12. Device to measure elastic modulus of superconducting windings

    CERN Multimedia

    CERN PhotoLab

    1979-01-01

    This device was made to measure elastic modulus of the Po dipole superconducting coils. More elaborated devices, but based on the same concept, were later used to measure the apparent elastic moduli of the LHC superconducting magnet coils. See also 7903547X, 7901386.

  13. Superconducting Sphere in an External Magnetic Field Revisited

    Science.gov (United States)

    Sazonov, Sergey N.

    2013-01-01

    The purpose of this article is to give the intelligible procedure for undergraduate students to grasp proof of the fact that the magnetic field outside the hollow superconducting sphere (superconducting shell) coincides with the field of a point magnetic dipole both when an uniform external magnetic field is applied as when a ferromagnetic sphere…

  14. Three-flavor color superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Malekzadeh, H.

    2007-12-15

    I investigate some of the inert phases in three-flavor, spin-zero color-superconducting quark matter: the CFL phase (the analogue of the B phase in superfluid {sup 3}He), the A and A{sup *} phases, and the 2SC and sSC phases. I compute the pressure of these phases with and without the neutrality condition. Without the neutrality condition, after the CFL phase the sSC phase is the dominant phase. However, including the neutrality condition, the CFL phase is again the energetically favored phase except for a small region of intermediate densities where the 2SC/A{sup *} phase is favored. It is shown that the 2SC phase is identical to the A{sup *} phase up to a color rotation. In addition, I calculate the self-energies and the spectral densities of longitudinal and transverse gluons at zero temperature in color-superconducting quark matter in the CFL phase. I find a collective excitation, a plasmon, at energies smaller than two times the gap parameter and momenta smaller than about eight times the gap. The dispersion relation of this mode exhibits a minimum at some nonzero value of momentum, indicating a van Hove singularity. (orig.)

  15. Dr Marta Bajko in front of the Gold pated "half-moon" connector of an LHC dipole Diode in SM18.

    CERN Multimedia

    Maximilien Brice

    2012-01-01

    Photo 1 : Cold Diode for the LHC superconducting dipoles protection. Prepared for cryogenic powering test OFF line in SM18. - Photo 2 : A gold plated bus bar of an LHC dipole diode ready for cryogenic powering test in Sm18. - Photo 3 : The gold pated “ half-moon” connector of an LHC dipole diode. Ready for a cryogenic powering test in SM18.

  16. 3-wave mixing Josephson dipole element

    Science.gov (United States)

    Frattini, N. E.; Vool, U.; Shankar, S.; Narla, A.; Sliwa, K. M.; Devoret, M. H.

    2017-05-01

    Parametric conversion and amplification based on three-wave mixing are powerful primitives for efficient quantum operations. For superconducting qubits, such operations can be realized with a quadrupole Josephson junction element, the Josephson Ring Modulator, which behaves as a loss-less three-wave mixer. However, combining multiple quadrupole elements is a difficult task so it would be advantageous to have a three-wave dipole element that could be tessellated for increased power handling and/or information throughput. Here, we present a dipole circuit element with third-order nonlinearity, which implements three-wave mixing. Experimental results for a non-degenerate amplifier based on the proposed third-order nonlinearity are reported.

  17. Testing of TAMU3: a Nb3Sn Block–Coil Dipole with Stress Management

    Energy Technology Data Exchange (ETDEWEB)

    McIntyre, Peter [Texas A & M Univ., College Station, TX (United States)

    2015-09-20

    The Accelerator Research Lab (ARL) at Texas A&M has recently concluded the construction and testing of a superconducting block-coil dipole TAMU3. TAMU3 reached 85% of the resistive-onset short sample critical current (0.1 μV/cm criterion) that was measured on extracted strands at the National High Magnetic Field Lab. Peak magnet current was 6603 amps, and all with quenches originated in the vicinity of the hard-way chicane near the exit lead of the TAMU3c inner winding. Leading up to the testing we discovered that we had made two grievous mistakes in the fabrication (we mistakenly used the wrong superconducting wire for the cables of the inner windings) and the heat treatment (we used a heat treatment that was too hot and too long). We extracted strands from the leads of the inner and outer windings, and colleagues at NHMFL performed short-sample measurements upon them. The NHMFL measurements indicated RRR ~ 2-5, which gives very little stability against microquenches. The short-sample tests of the extracted strands exhibited a long resistive transition, in which there was a current Isc(B) beyond which it became resistive, then a higher current In(B) at which it went fully normal. Using the Isc(B) data we predicted a short-sample limit for the revised load line of TAMU3 of 7700 A (9 T) – a disappointing reduction from the 14 T objective. On those unhappy notes we undertook the testing of the dipole. The first quench occurred at 5695 A, and the dipole trained thereafter to a maximum quench current of 6600 A (7.6 T), 85% of the compromised short-sample limit. All quenches occurred at a single location, in the region of the S-bend transition and outer lead of one inner winding. Data was collected from stress transducers on the outer windings to evaluate stress management, and on the coil ends to evaluate capture of axial forces by staticfriction lock. The low field reached prevented us from extending those tests to the stress levels where they

  18. Feeding helium to superconducting magnets

    CERN Multimedia

    1979-01-01

    The photo shows two of the 3 superconducting magnets (two MBS dipoles (CESAR) of 150 mm bore and 4.5 T, and one quadrupole (CASTOR) of 90 mm bore and 54 T/m) which were installed in the hall EHN1 (Annual Report 1978 p. 134) and ran until 1985. They formed a section of the beam H6 travelling from target T4 (down the bottom of the photo) towards the NA30 setup followed by the NA11 setup. The two big transversal pipelines are the quench lines of the two magnets (on the right, one quadrupole and one dipole, the other dipole lays down the photo and is not visible). The Jura side of the hall is on the right.

  19. Tevatron AC dipole system

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, R.; Kopp, S.E.; /Texas U.; Jansson, A.; Syphers, M.J.; /Fermilab

    2007-06-01

    The AC dipole is an oscillating dipole magnet which can induce large amplitude oscillations without the emittance growth and decoherence. These properties make it a good tool to measure optics of a hadron synchrotron. The vertical AC dipole for the Tevatron is powered by an inexpensive high power audio amplifier since its operating frequency is approximately 20 kHz. The magnet is incorporated into a parallel resonant system to maximize the current. The use of a vertical pinger magnet which has been installed in the Tevatron made the cost relatively inexpensive. Recently, the initial system was upgraded with a more powerful amplifier and oscillation amplitudes up to 2-3{sigma} were achieved with the 980 GeV proton beam. This paper discusses details of the Tevatron AC dipole system and also shows its test results.

  20. Diamond dipole active antenna

    OpenAIRE

    Bubnov, Igor N.; Falkovych, I. S.; Gridin, A. A.; Stanislavsky, A. A.; Reznik, A. P.

    2015-01-01

    Advantages of the diamond dipole antenna as an active antenna are presented. Such an antenna is like an inverted bow-tie antenna, but the former has some advantages over the ordinary bow-tie antenna. It is shown that the diamond dipole antenna may be an effective element of a new antenna array for low-frequency radio astronomy as well as a communication antenna.

  1. Superconducting electronics

    NARCIS (Netherlands)

    Rogalla, Horst

    1994-01-01

    During the last decades superconducting electronics has been the most prominent area of research for small scale applications of superconductivity. It has experienced quite a stormy development, from individual low frequency devices to devices with high integration density and pico second switching

  2. An experimental superconducting helical undulator

    Energy Technology Data Exchange (ETDEWEB)

    Caspi, S.; Taylor, C. [Lawrence Berkeley Lab., CA (United States)

    1995-12-31

    Improvements in the technology of superconducting magnets for high energy physics and recent advancements in SC materials with the artificial pinning centers (APC){sup 2}, have made a bifilar helical SC device an attractive candidate for a single-pass free electron laser (FEL){sup 3}. Initial studies have suggested that a 6.5 mm inner diameter helical device, with a 27 mm period, can generate a central field of 2-2.5 Tesla. Additional studies have also suggested that with a stored energy of 300 J/m, such a device can be made self-protecting in the event of a quench. However, since the most critical area associated with high current density SC magnets is connected with quenching and training, a short experimental device will have to be built and tested. In this paper we discuss technical issues relevant to the construction of such a device, including a conceptual design, fields, and forces.

  3. LHC News : The 39th and final repaired dipole magnet was lowered into Sector 3-4 and installed

    CERN Multimedia

    CERN Multimedia Productions

    2009-01-01

    The 39th and final repaired dipole magnet was lowered into Sector 3-4 and installed on Thursday 16 April. This is the last of the LHC’s easily recognizable 15-metre-long blue superconducting dipoles required for the 3-4 repair. Interviews with Hervé Prin, Member of the LHC reconstruction team, Caterina Bertone, Magnet transport leader

  4. Energy Deposition and DPA in the Superconducting Links for the HILUMI LHC Project at the LHC Interaction Points

    CERN Document Server

    AUTHOR|(CDS)2092158; Broggi, Francesco; Santini, C; Ballarino, Amalia; Cerutti, Francesco; Esposito, Luigi Salvatore

    2015-01-01

    In the framework of the upgrade of the LHC machine, the powering of the LHC magnets foresees the removal of the power converters and distribution feedboxes from the tunnel and its location at the surface[1]. The Magnesium Diboride (MgB2) connecting lines in the tunnel will be exposed to the debris from 7+7 TeV p-p interaction. The Superconducting (SC) Links will arrive from the surface to the tunnel near the separation dipole, at about 80 m from the Interaction Point at IP1 and IP5. The Connection Box (where the cables of the SC Links are connected to the NbTi bus bar) will be close to the beam pipe. The debris and its effect on the MgB2 SC links in the connection box (energy deposition and displacement per atom) are presented. The effect of thermal neutrons on the Boron consumption and the contribution of the lithium nucleus and the alpha particle on the DPA are evaluated. The results are normalized to an integrated luminosity of 3000 fb-1, value that represents the LHC High Luminosity lifetime. The dose de...

  5. Development of superconducting power devices in Europe

    Science.gov (United States)

    Tixador, Pascal

    2010-11-01

    Europe celebrated last year (2008) the 100-year anniversary of the first liquefaction of helium by H. Kammerling Onnes in Leiden. It led to the discovery of superconductivity in 1911. Europe is still active in the development of superconducting (SC) devices. The discovery of high critical temperature materials in 1986, again in Europe, has opened a lot of opportunities for SC devices by broking the 4 K cryogenic bottleneck. Electric networks experience deep changes due to the emergence of dispersed generation (renewable among other) and to the advances in ICT (Information Communication Technologies). The networks of the future will be “smart grids”. Superconductivity will offer “smart” devices for these grids like FCL (Fault Current Limiter) or VLI (Very Low Inductance) cable and would certainly play an important part. Superconductivity also will participate to the required sustainable development by lowering the losses and enhancing the mass specific powers. Different SC projects in Europe will be presented (Cable, FCL, SMES, Flywheel and Electrical Machine) but the description is not exhaustive. Nexans has commercialized the first two FCLs without public funds in the European grid (UK and Germany). The Amsterdam HTS cable is an exciting challenge in term of losses for long SC cables. European companies (Nexans, Air Liquide, Siemens, Converteam, …) are also very active for projects outside Europe (LIPA, DOE FCL, …).

  6. SC tuning fork

    CERN Multimedia

    The tuning fork used to modulate the radiofrequency system of the synchro cyclotron (SC) from 1957 to 1973. This piece is an unused spare part. The SC was the 1st accelerator built at CERN. It operated from August 1957 until it was closed down at the end of 1990. In the SC the magnetic field did not change with time, and the particles were accelerated in successive pulses by a radiofrequency voltage of some 20kV which varied in frequency as they spiraled outwards towards the extraction radius. The frequency varied from 30MHz to about 17Mz in each pulse. The tuning fork vibrated at 55MHz in vacuum in an enclosure which formed a variable capacitor in the tuning circuit of the RF system, allowing the RF to vary over the appropriate range to accelerate protons from the centre of the macine up to 600Mev at extraction radius. In operation the tips of the tuning fork blade had an amplitude of movement of over 1 cm. The SC accelerator underwent extensive improvements from 1973 to 1975, including the installation of a...

  7. SC2 dee

    CERN Multimedia

    1974-01-01

    Checking the positioning of the dee before its introduction into the vacuum chamber of SC2. The dee is mounted on a large cover plate which also carries the dee liner and the pump manifold. The dummy dee is fixed to the pole faces within the vacuum chamber.

  8. Final Report: Levitated Dipole Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kesner, Jay; Mauel, Michael

    2013-03-10

    Since the very first experiments with the LDX, research progress was rapid and significant. Initial experiments were conducted with the high-field superconducting coil suspended by three thin rods. These experiments produced long-pulse, quasi-steady-state microwave discharges, lasting more than 10 s, having peak beta values of 20% [Garnier, Phys. Plasmas, v13, p. 056111, 2006]. High-beta, near steady-state discharges have been maintained in LDX for more than 20 seconds, and this capability makes LDX the longest pulse fusion confinement experiment now operating in the U.S. fusion program. In both supported and levitated configurations, detailed measurements are made of discharge evolution, plasma dynamics and instability, and the roles of gas fueling, microwave power deposition profiles, and plasma boundary shape. High-temperature plasma is created by multifrequency electron cyclotron resonance heating allowing control of heating profiles. Depending upon neutral fueling rates, the LDX discharges contain a fraction of energetic electrons, with mean energies above 50 keV. Depending on whether or not the superconducting dipole is levitated or supported, the peak thermal electron temperature is estimated to exceed 500 eV and peak densities reach 1.0E18 (1/m3). Several significant discoveries resulted from the routine investigation of plasma confinement with a magnetically-levitated dipole. For the first time, toroidal plasma with pressure approaching the pressure of the confining magnetic field was well-confined in steady-state without a toroidal magnetic field. Magnetic levitation proved to be reliable and is now routine. The dipole's cryostat allows up to three hours of "float time" between re-cooling with liquid helium and providing scientists unprecedented access to the physics of magnetizd plasma. Levitation eliminates field-aligned particle sources and sinks and results in a toroidal, magnetically-confined plasma where profiles are determined by cross

  9. Bent Solenoids with Superimposed Dipole Fields

    Energy Technology Data Exchange (ETDEWEB)

    Meinke, Rainer, B.; Goodzeit, Carl, L.

    2000-03-21

    A conceptual design and manufacturing technique were developed for a superconducting bent solenoid magnet with a superimposed dipole field that would be used as a dispersion device in the cooling channel of a future Muon Collider. The considered bent solenoid is equivalent to a 180° section of a toroid with a major radius of ~610 mm and a coil aperture of ~416 mm. The required field components of this magnet are 4 tesla for the solenoid field and 1 tesla for the superimposed dipole field. A magnet of this size and shape, operating at these field levels, has to sustain large Lorentz forces resulting in a maximum magnetic pressure of about 2,000 psi. A flexible round mini-cable with 37 strands of Cu-NbTi was selected as the superconductor. Detailed magnetic analysis showed that it is possible to obtain the required superimposed dipole field by tilting the winding planes of the solenoid by ~25°. A complete structural analysis of the coil support system and the helium containment vessel under thermal, pressure, and Lorentz force loads was carried out using 3D finite element models of the structures. The main technical issues were studied and solutions were worked out so that a highly reliable magnet of this type can be produced at an affordable cost.

  10. Status of the LHC Superconducting Cable Mass Production

    CERN Document Server

    Adam, J D; Cavallari, Giorgio; Charifoulline, Z; Denarié, C H; Le Naour, S; Leroy, D F; Oberli, L R; Richter, D; Verweij, A P; Wolf, R

    2002-01-01

    Six contracts have been placed with industrial companies for the production of 1200 tons of the superconducting (SC) cables needed for the main dipoles and quadrupoles of the Large Hadron Collider (LHC). In addition, two contracts have been placed for the supply of 470 tons of NbTi and 26 tons of Nb sheets. The main characteristic of the specification is that it is functional. This means that the physical, mechanical and electrical properties of strands and cables are specified without defining the manufacturing processes. Facilities for the high precision measurements of the wire and cable properties have been implemented at CERN, such as strand and cable critical current, copper to superconductor ratio, interstrand resistance, magnetisation, RRR at 4.2 K and 1.9 K. The production has started showing that the highly demanding specifications can be fulfilled. This paper reviews the organisation of the contracts, the test facilities installed at CERN, the various types of measurements and the results of the ma...

  11. Helical Dipole Magnets for Polarized Protons in RHIC

    Science.gov (United States)

    Syphers, M.; Courant, E.; Fischer, W.; Luccio, A.; Mariam, F.; Peggs, S.; Pilat, F.; Roser, T.; Tepikian, S.; Tsoupas, N.; Willen, E.; Katayama, T.; Hatanaka, K.; Kawaguchi, T.; Okamura, M.; Tominaka, T.; Wu, H.; Ptitsin, V.; Shatunov, Y.

    1997-05-01

    The Brookhaven Relativistic Heavy Ion Collider (RHIC) will be able to support experiments using polarized proton beams. Siberian Snakes are used to maintain polarization in this high energy superconducting collider. To make efficient use of available space while taking advantage of high field superconducting magnets, 4 Tesla helical dipole magnets will be used. These magnets generate a central dipole field in which the field direction rotates through 360^circ about the longitudinal axis over the length of the device. An arrangement of four such magnets can produce the desired change in the spin direction while keeping the proton orbit outside of the ``Snake'' unaltered. Similar magnet arrangements will be used to produce longitudinal polarization at the two major interaction points in RHIC. The basic requirements and layout of these magnets are described, as well as tolerances on field quality and integrated field strengths. First results of tests of prototype helical magnets will be discussed.

  12. Charge ordering phenomena and superconductivity in underdoped cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Tassini, Leonardo [Bayerische Akademie der Wissenschaften, Muenchen (Germany). Lehrstuhl E23 fuer Technische Physik

    2008-01-16

    In this thesis electronic properties of two prototypical copper-oxygen superconductors were studied with Raman scattering. The underdoped regime including the onset point of superconductivity p{sub sc1} was investigated. Evidence of quasi one-dimensional (1D) dynamical stripes was found. The 1D structures have a universal preferential orientation along the diagonals of the CuO{sub 2} planes below p{sub sc1}. At p{sub sc1}, lattice and electron dynamics change discontinuously. The results show that charge ordering drives the transition at p{sub sc1} and that the maximal transition temperature to superconductivity at optimal doping T{sub c}{sup MAX} depends on the type of ordering at p{sub sc1}. (orig.)

  13. Intercalated Nanocomposites Based on High-Temperature Superconducting Ceramics and Their Properties

    Directory of Open Access Journals (Sweden)

    Sevan Davtyan

    2009-12-01

    Full Text Available High temperature superconducting (SC nanocomposites based on SC ceramics and various polymeric binders were prepared. Regardless of the size of the ceramics’ grains, the increase of their amount leads to an increase of resistance to rupture and modulus and a decrease in limiting deformation, whereas an increase in the average ceramic grain size worsens resistance properties. The SC, thermo-chemical, mechanical and dynamic-mechanical properties of the samples were investigated. Superconducting properties of the polymer ceramic nanocomposites are explained by intercalation of macromolecule fragments into the interstitial layer of the ceramics’ grains. This phenomenon leads to a change in the morphological structure of the superconducting nanocomposites.

  14. Experiments with Dipole Antennas

    Science.gov (United States)

    Kraftmakher, Yaakov

    2009-01-01

    Employment of a data-acquisition system for data collection and calculations makes experiments with antennas more convenient and less time consuming. The determined directional patterns of the dipole antennas of different lengths are in reasonable agreement with theory. The enhancement of the signal by using a reflector is demonstrated, and a…

  15. Preparation and characterization of Sc doped MgB2 wires

    Science.gov (United States)

    Grivel, J.-C.; Burdusel, M.

    2016-09-01

    The in-situ technique was used to manufacture scandium (Sc) doped MgB2 wires in a composite Cu-Nb sheath. After reaction at 700 °C, at most 1 at.% Mg was replaced by Sc in the MgB2 phase, without significant influence on its superconducting transition temperature. For higher Sc concentrations in the nominal composition, the formation of Sc-rich impurity phases was evidenced by SEM/EDS observations. The critical current density and accommodation field of the wires are weakly dependant on the Sc content. It is believed that these effects are related more to modifications of the thermal behaviour of the precursor powders revealed by DTA measurements than to actual doping. The best performance was obtained in a wire with Mg:Sc = 0.995_0.005 atomic ratio.

  16. Ripple Field AC Losses in 10-MW Wind Turbine Generators With a MgB2 Superconducting Field Winding

    DEFF Research Database (Denmark)

    Liu, Dong; Polinder, Henk; Magnusson, Niklas

    2016-01-01

    Superconducting (SC) synchronous generators are proposed as a promising candidate for 10-20-MW direct-drive wind turbines because they can have low weights and small sizes. A common way of designing an SC machine is to use SC wires with high current-carrying capability in the dc field winding...

  17. Induced spectral gap and pairing correlations from superconducting proximity effect

    Science.gov (United States)

    Chiu, Ching-Kai; Cole, William S.; Das Sarma, S.

    2016-09-01

    We theoretically consider superconducting proximity effect, using the Bogoliubov-de Gennes (BdG) theory, in heterostructure sandwich-type geometries involving a normal s -wave superconductor and a nonsuperconducting material with the proximity effect being driven by Cooper pairs tunneling from the superconducting slab to the nonsuperconducting slab. Applications of the superconducting proximity effect may rely on an induced spectral gap or induced pairing correlations without any spectral gap. We clarify that in a nonsuperconducting material the induced spectral gap and pairing correlations are independent physical quantities arising from the proximity effect. This is a crucial issue in proposals to create topological superconductivity through the proximity effect. Heterostructures of three-dimensional topological insulator (TI) slabs on conventional s -wave superconductor (SC) substrates provide a platform, with proximity-induced topological superconductivity expected to be observed on the "naked" top surface of a thin TI slab. We theoretically study the induced superconducting gap on this naked surface. In addition, we compare against the induced spectral gap in heterostructures of SC with a normal metal or a semiconductor with strong spin-orbit coupling and a Zeeman splitting potential (another promising platform for topological superconductivity). We find that for any model for the non-SC metal (including metallic TI) the induced spectral gap on the naked surface decays as L-3 as the thickness (L ) of the non-SC slab is increased in contrast to the slower 1 /L decay of the pairing correlations. Our distinction between proximity-induced spectral gap (with its faster spatial decay) and pairing correlation (with its slower spatial decay) has important implications for the currently active search for topological superconductivity and Majorana fermions in various superconducting heterostructures.

  18. Pygmy dipole resonance and dipole polarizability in 90Zr

    Science.gov (United States)

    Iwamoto, C.; Tamii, A.; Utsunomiya, H.; Akimune, H.; Nakada, H.; Shima, T.; Hashimoto, T.; Yamagata, T.; Kawabata, T.; Fujita, Y.; Matsubara, H.; Suzuki, T.; Fujita, H.; Shimbara, Y.; Nagashima, M.; Sakuda, M.; Mori, T.; Izumi, T.; Okamoto, A.; Kondo, T.; Lui, T.-W.; Bilgier, B.; Kozer, H. C.; Hatanaka, K.

    2014-05-01

    Electric dipole (E1) reduced transition probability B(E1) of 90Zr was obtained by the inelastic proton scattering near 0 degrees using a 295 MeV proton beam and multipole decomposition analysis of the angular distribution by the distorted-wave Born approximation with the Hartree-Fock plus random-phase approximation model and inclusion of El Coulomb excitation, and the E1 strength of the pygmy dipole resonance was found in the vicinity of the neutron threshold in the low-energy tail of the giant dipole resonance. Using the data, we plan to determine the precise dipole polarizability αD which is defined as an inversely energy-weighted sum value of the elecrric dipole strength. The dipole polarizability is expected to constrain the symmetry energy term of the neutron matter equation of state. Thus systematical measurement of the dipole polarizability is important.

  19. Pygmy dipole resonance and dipole polarizability in {sup 90}Zr

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, C.; Tamii, A.; Shima, T.; Hashimoto, T.; Suzuki, T.; Fujita, H.; Hatanaka, K. [Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Utsunomiya, H.; Akimune, H.; Yamagata, T.; Okamoto, A.; Kondo, T. [Department of Physics, Konan University, Okamoto 8-9-1, Higashinada, Kobe 658-8501 (Japan); Nakada, H. [Department of Physics, Graduate School of Science, Chiba University, Yayoi-cho 1-33, Inage, Chiba 263-8522 (Japan); Kawabata, T. [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); Fujita, Y. [Department of Physics, Osaka University, Toyonaka, Osaka, 560-0043 (Japan); Matsubara, H. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan); Shimbara, Y.; Nagashima, M. [Department of Physics, Niigata University, Niigata 950-21-2 (Japan); Sakuda, M.; Mori, T. [Department of Physics, Okayama University, Okayama 900-0082 (Japan); and others

    2014-05-02

    Electric dipole (E1) reduced transition probability B(E1) of {sup 90}Zr was obtained by the inelastic proton scattering near 0 degrees using a 295 MeV proton beam and multipole decomposition analysis of the angular distribution by the distorted-wave Born approximation with the Hartree-Fock plus random-phase approximation model and inclusion of El Coulomb excitation, and the E1 strength of the pygmy dipole resonance was found in the vicinity of the neutron threshold in the low-energy tail of the giant dipole resonance. Using the data, we plan to determine the precise dipole polarizability α{sub D} which is defined as an inversely energy-weighted sum value of the elecrric dipole strength. The dipole polarizability is expected to constrain the symmetry energy term of the neutron matter equation of state. Thus systematical measurement of the dipole polarizability is important.

  20. ALICE dipole and decoration

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    The ALICE cavern receives a painting made specially to mark the 50th anniversary of CERN that is mounted on the L3 solenoid magnet, reused from the LEP experiment that ran from 1989 to 2000. The dipole, which is cooled by demineralised water, will bend the path of muons that leave the huge rectangular solenoid. These muons are heavy electrons that interact less with matter allowing them to be studied at large distances from the interaction point.

  1. Visualizing dipole radiation

    Science.gov (United States)

    Girwidz, Raimund V.

    2016-11-01

    The Hertzian dipole is fundamental to the understanding of dipole radiation. It provides basic insights into the genesis of electromagnetic waves and lays the groundwork for an understanding of half-wave antennae and other types. Equations for the electric and magnetic fields of such a dipole can be derived mathematically. However these are very abstract descriptions. Interpreting these equations and understanding travelling electromagnetic waves are highly limited in that sense. Visualizations can be a valuable supplement that vividly present properties of electromagnetic fields and their propagation. The computer simulation presented below provides additional instructive illustrations for university lectures on electrodynamics, broadening the experience well beyond what is possible with abstract equations. This paper refers to a multimedia program for PCs, tablets and smartphones, and introduces and discusses several animated illustrations. Special features of multiple representations and combined illustrations will be used to provide insight into spatial and temporal characteristics of field distributions—which also draw attention to the flow of energy. These visualizations offer additional information, including the relationships between different representations that promote deeper understanding. Finally, some aspects are also illustrated that often remain unclear in lectures.

  2. Dipole defects in beryl

    Energy Technology Data Exchange (ETDEWEB)

    Holanda, B A; Cordeiro, R C; Blak, A R, E-mail: bruna.holanda@usp.br, E-mail: renan.cordeiro@usp.br, E-mail: anablak@if.usp.br

    2010-11-15

    Dipole defects in gamma irradiated and thermally treated beryl (Be{sub 3}Al{sub 2}Si{sub 6}O{sub 18}) samples have been studied using the Thermally Stimulated Depolarization Currents (TSDC) technique. TSDC experiments were performed in pink (morganite), green (emerald), blue (aquamarine) and colourless (goshenite) natural beryl. TSDC spectra present dipole peaks at 190K, 220K, 280K and 310K that change after gamma irradiation and thermal treatments. In morganite samples, for thermal treatments between 700K and 1100K, the 280K peak increase in intensity and the band at 220K disappears. An increase of the 280K peak and a decrease of the 190K peak were observed in the TSDC spectra of morganite after a gamma irradiation of 25kGy performed after the thermal treatments. In the case of emerald samples, thermal treatments enhanced the 280K peak and gamma irradiation partially destroyed this band. The goshenite TSDC spectra present only one band at 280K that is not affected either by thermal treatments or by gamma irradiation. All the observed peaks are of dipolar origin because the intensity of the bands is linearly dependent on the polarization field, behaviour of dipole defects. The systematic study, by means of TSDC measurements, of ionizing irradiation effects and thermal treatments in these crystals makes possible a better understanding of the role played by the impurities in beryl crystals.

  3. Design of self-correction coils in a superferric dipole magnet

    Indian Academy of Sciences (India)

    K Ruwali; K Hosoyama

    2012-05-01

    Design of self-correction coils in a superferric dipole magnet is carried out. By adopting the self-correction coil (SCC) scheme, we can do online correction of unwanted fields inside the magnet aperture during the whole operating cycle irrespective of their origin. The self-correction coils are short-circuited superconducting coils of required symmetry placed in the useful aperture of the AC dipole magnet. Design and operation mechanism of self-correction coils in a superferric dipole magnet are discussed in this paper.

  4. Microwave probes Dipole Blockade and van der Waals Forces in a Cold Rydberg Gas

    CERN Document Server

    Teixeira, R Celistrino; Nguyen, Thanh Long; Cantat-Moltrecht, T; Raimond, Jean-Michel; Haroche, S; Gleyzes, S; Brune, M

    2015-01-01

    We show that microwave spectroscopy of a dense Rydberg gas trapped on a superconducting atom chip in the dipole blockade regime reveals directly the dipole-dipole many-body interaction energy spectrum. We use this method to investigate the expansion of the Rydberg cloud under the effect of repulsive van der Waals forces and the breakdown of the frozen gas approximation. This study opens a promising route for quantum simulation of many-body systems and quantum information transport in chains of strongly interacting Rydberg atoms.

  5. Superconducting Microelectronics.

    Science.gov (United States)

    Henry, Richard W.

    1984-01-01

    Discusses superconducting microelectronics based on the Josephson effect and its advantages over conventional integrated circuits in speed and sensitivity. Considers present uses in standards laboratories (voltage) and in measuring weak magnetic fields. Also considers future applications in superfast computer circuitry using Superconducting…

  6. Quantum emitter dipole-dipole interactions in nanoplasmonic systems

    CERN Document Server

    Nečada, Marek; Törmä, Päivi

    2016-01-01

    We introduce a generalized Dicke-like model to describe two-level systems coupled with a single bosonic mode. In addition, the two-level systems mutually interact via direct dipole-dipole interaction. We apply the model to an ensemble of dye molecules coupled to a plasmonic excitation in a metallic nanoparticle and study how the dipole-dipole interaction and configurational randomness introduced to the system affect the energy spectra. Comparing the system eigenenergies obtained by our model with the light spectra from a multiple-scattering simulation, we suggest a way to identify dark modes in our model. Finally, we perform a parameter sweep in order to determine the scaling properties of the system and to classify the regions of the parameter space where the dipole-dipole interactions can have significant effects.

  7. Comparing superconducting and permanent magnets for magnetic refrigeration

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Nielsen, Kaspar Kirstein; Bahl, C. R. H.

    2016-01-01

    We compare the cost of a high temperature superconducting (SC) tape-based solenoidwith a permanent magnet (PM) Halbach cylinder for magnetic refrigeration.Assuming a five liter active magnetic regenerator volume, the price of each type ofmagnet is determined as a function of aspect ratio of the r......We compare the cost of a high temperature superconducting (SC) tape-based solenoidwith a permanent magnet (PM) Halbach cylinder for magnetic refrigeration.Assuming a five liter active magnetic regenerator volume, the price of each type ofmagnet is determined as a function of aspect ratio...

  8. Retardation effects in induced atomic dipole-dipole interactions

    CERN Document Server

    Graham, S D

    2016-01-01

    We present mean-field calculations of azimuthally averaged retarded dipole-dipole interactions in a Bose-Einstein condensate induced by a laser, at both long and short wavelengths. Our calculations demonstrate that dipole-dipole interactions become significantly stronger at shorter wavelengths, by as much as 30-fold, due to retardation effects. This enhancement, along with inclusion of the dynamic polarizability, indicate a method of inducing long-range interatomic interactions in neutral atom condensates at significantly lower intensities than previously realized.

  9. Mechanical and electromagnetic analysis of 50 millimeter designs for the SSC dipole

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, J.; Leung, K.; Nobrega, F.; Orrell, D.; Sanger, P.; Snitchler, G.; Spigo, G.; Turner, J. (Superconducting Super Collider Lab., Dallas, TX (United States)); Goodzeit, C.; Gupta, R.; Kahn, S.; Morgan, G.; Willen, E. (Brookhaven National Lab., Upton, NY (United States)); Kerby, J.; Strait, J. (Fermi National Accelerator Lab., Batavia, IL (United States)); Schermer, R. (Lawrence Berkeley Lab., CA (Uni

    1990-09-01

    Several designs for the Superconducting Super Collider dipole magnet have been analyzed. This note discusses the mechanical and electromagnetic features of each design. Electromagnetic and Mechanical analyses were performed using hand, computer programs and finite element techniques to evaluate the design. 10 refs., 6 figs., 3 tabs.

  10. Conduction cooled high temperature superconducting dipole magnet for accelerator applications

    DEFF Research Database (Denmark)

    Zangenberg, N.; Nielsen, G.; Hauge, N.

    2012-01-01

    impregnated with epoxy and mounted between a support of stainless steel and a collar made from aluminum. The cold mass consisting of the coil assembly and a laminated steel yoke is cooled by two cryocoolers from via copper bars to below 20 K. Current leads were made from the same batch of HTS tape. Cryogen...... for accelerator applications in many fields, in particular where cryogenic liquid cooling is not an option....

  11. Color superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Wilczek, F. [Institute for Advanced Study, Princeton, NJ (United States)

    1997-09-22

    The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken.

  12. LHC Report: superconducting circuit powering tests

    CERN Multimedia

    Mirko Pojer

    2015-01-01

    After the long maintenance and consolidation campaign carried out during LS1, the machine is getting ready to start operation with beam at 6.5 TeV… the physics community can’t wait! Prior to this, all hardware and software systems have to be tested to assess their correct and safe operation.   Most of the cold circuits (those with high current/stored energy) possess a sophisticated magnet protection system that is crucial to detect a transition of the coil from the superconducting to the normal state (a quench) and safely extract the energy stored in the circuits (about 1 GJ per dipole circuit at nominal current). LHC operation relies on 1232 superconducting dipoles with a field of up to 8.33 T operating in superfluid helium at 1.9 K, along with more than 500 superconducting quadrupoles operating at 4.2 or 1.9 K. Besides, many other superconducting and normal resistive magnets are used to guarantee the possibility of correcting all beam parameters, for a total of mo...

  13. SUPERCONDUCTING PHOTOCATHODES.

    Energy Technology Data Exchange (ETDEWEB)

    SMEDLEY, J.; RAO, T.; WARREN, J.; SEKUTOWICZ, LANGNER, J.; STRZYZEWSKI, P.; LEFFERS, R.; LIPSKI, A.

    2005-10-09

    We present the results of our investigation of lead and niobium as suitable photocathode materials for superconducting RF injectors. Quantum efficiencies (QE) have been measured for a range of incident photon energies and a variety of cathode preparation methods, including various lead plating techniques on a niobium substrate. The effects of operating at ambient and cryogenic temperatures and different vacuum levels on the cathode QE have also been studied.

  14. Slice of the LHC prototype beam tubes in dipole magnet

    CERN Multimedia

    1995-01-01

    A slice of the LHC accelerator prototype beam tubes surrounded by magnets. The LHC will accelerate two proton beams in opposite directions. The high bending and accelerating fields needed can only be reached using superconductors. At very low temperatures superconductors have no electrical resistance and therefore no power loss. The LHC will be the largest superconducting installation ever built, a unique challenge for CERN and its industrial partners. About dipole magnets: There will be 1232 dipole magnets in the LHC, used to guide the particles around the 27 km ring. Dipole magnets must have an extremely uniform field, which means the current flowing in the coils has to be very precisely controlled. Nowhere before has such precision been achieved at such high currents. The temperature is measured to five thousandths of a degree, the current to one part in a million. The current creating the magnetic field will pass through superconducting wires at up to 12 500 amps, about 30 000 times the current flowing ...

  15. Superconducting accelerating structures for very low velocity ion beams

    Directory of Open Access Journals (Sweden)

    J. Xu

    2008-03-01

    Full Text Available This paper presents designs for four types of very-low-velocity superconducting (SC accelerating cavity capable of providing several MV of accelerating potential per cavity, and suitable for particle velocities in the range 0.006Superconducting TEM-class cavities have been widely applied to cw acceleration of ion beams. SC linacs can be formed as an array of independently phased cavities, enabling a variable velocity profile to maximize the output energy for each of a number of different ion species. Several laboratories in the U.S. and Europe are planning exotic beam facilities based on SC linacs. The cavity designs presented here are intended for the front end of such linacs, particularly for the postacceleration of rare isotopes of low charge state. Several types of SC cavities have been developed recently to cover particle velocities above 0.06c. Superconducting four-gap quarter-wave resonators for velocities 0.008<β=v/c<0.05 were developed about two decades ago and have been successfully operated at the ATLAS SC linac at Argonne National Laboratory. Since that time, progress in simulation tools, cavity fabrication, and processing have increased SC cavity gradients by a factor of 3–4. This paper applies these tools to optimize the design of a four-gap quarter-wave resonator for exotic beam facilities and other low-velocity applications.

  16. Emergent vortices at a ferromagnetic superconducting oxide interface

    Science.gov (United States)

    Petrović, A. P.; Paré, A.; Paudel, T. R.; Lee, K.; Holmes, S.; Barnes, C. H. W.; David, A.; Wu, T.; Tsymbal, E. Y.; Panagopoulos, C.

    2014-10-01

    Understanding the cohabitation arrangements of ferromagnetism and superconductivity at the LaAlO3/SrTiO3 interface remains an open challenge. Probing this coexistence with sub-Kelvin magnetotransport experiments, we demonstrate that a hysteretic in-plane magnetoresistance develops below the superconducting transition for ≤ft| {{H}//} \\right| \\lt 0.15 T, independently of the carrier density or oxygen annealing. This hysteresis is argued to arise from vortex depinning within a thin (\\lt 20 nm) superconducting layer, mediated by discrete ferromagnetic dipoles located solely above the layer. The pinning strength may be modified by varying the superconducting channel thickness via electric field-effect doping. No evidence is found for bulk magnetism or finite-momentum pairing, and we conclude that ferromagnetism is strictly confined to the interface, where it competes with superconductivity. Our work indicates that oxide interfaces are ideal candidate materials for the growth and analysis of nanoscale superconductor/ferromagnet hybrids.

  17. Survey of high field superconducting material for accelerator magnets

    Energy Technology Data Exchange (ETDEWEB)

    Scahlan, R.; Greene, A.F.; Suenaga, M.

    1986-05-01

    The high field superconductors which could be used in accelerator dipole magnets are surveyed, ranking these candidates with respect to ease of fabrication and cost as well as superconducting properties. Emphasis is on Nb/sub 3/Sn and NbTi. 27 refs., 2 figs. (LEW)

  18. An integrated 500 GHz receiver with superconducting local oscillator

    NARCIS (Netherlands)

    Koshelets, VP; Shitov, SV; Filippenko, LV; Baryshev, AM; Luinge, W; Golstein, H; vandeStadt, H; Gao, [No Value; deGraauw, T

    1997-01-01

    An integrated quasioptical receiver consisting of a planar double - dipole antenna, SIS mixer and superconducting Flux-Flow Oscillator (FFO) with matching circuits has been designed, fabricated and tested in the frequency range 420-530 GHz. The integrated receiver is very suitable for space applicat

  19. Magnetic dipole moment of a moving electric dipole

    OpenAIRE

    Hnizdo, V.

    2012-01-01

    The current density of a moving electric dipole is expressed as the sum of polarization and magnetization currents. The magnetic field due to the latter current is that of a magnetic dipole moment that is consistent with the relativistic transformations of the polarization and magnetization of macroscopic electrodynamics.

  20. Design and comparative analysis of 10 MW class superconducting wind power generators according to different types of superconducting wires

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Hae-Jin, E-mail: haejin90@changwon.ac.kr [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of); Kim, Gyeong-Hun; Kim, Kwangmin; Park, Minwon [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of); Yu, In-Keun, E-mail: yuik@changwon.ac.kr [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of); Kim, Jong-Yul [Korea Electrotechnology Research Institute, Changwon 641-120 (Korea, Republic of)

    2013-11-15

    Highlights: •10 MW SC wind power generators are designed using different types of SC wires. •SCSGs using YBCO and Bi-2223 wires are optimized by the modified Taguchi method. •The results demonstrate a proper type of SC wire for the optimal design of SCSG. -- Abstract: Wind turbine concepts can be classified into the geared type and the gearless type. The gearless type wind turbine is more attractive due to advantages of simplified drive train and increased energy yield, and higher reliability because the gearbox is omitted. In addition, this type resolves the weight issue of the wind turbine with the light weight of gearbox. However, because of the low speed operation, this type has disadvantage such as the large diameter and heavy weight of generator. Super-Conducting (SC) wind power generator can reduce the weight and volume of a wind power system. Properties of superconducting wire are very different from each company. This paper considers the design and comparative analysis of 10 MW class SC wind power generators according to different types of SC wires. Super-Conducting Synchronous Generators (SCSGs) using YBCO and Bi-2223 wires are optimized by an optimal method. The magnetic characteristics of the SCSGs are investigated using the finite elements method program. The optimized specifications of the SCSGs are discussed in detail, and the optimization processes can be used effectively to develop large scale wind power generation systems.

  1. Splitting of the Dipole and Spin Dipole Resonances in Pb

    Science.gov (United States)

    Austin, Sam M.

    2000-10-01

    The response to different neutrino flavors of a supernova neutrino detector based on Pb depends on the position of the spin-dipole resonance(Fuller, Fowler and McLaughlin, Phys. Rev. D59,085005(1999)). In this talk I will present a phenomenolgical model that allows one to extract the splitting of the dipole and spin-dipole resonances from the variation with bombarding energy of the L=1 resonance in (p,n) reactions. This model has been applied previously to the Zr isotopes (Sam M. Austin, Phys. Rev. C, submitted). The dipole splitting for ^208Pb is determined from available data on the (p,n) reaction for bombarding energies between 45 to 200 MeV. It is found to be 4.7±2.0 MeV, with the spin-dipole resonance lying at lower excitation energy.

  2. Correlation between magnetic field quality and mechanical components of the Large Hadron Collider main dipoles

    Energy Technology Data Exchange (ETDEWEB)

    Bellesia, B

    2006-12-15

    The 1234 superconducting dipoles of the Large Hadron Collider, working at a cryogenic temperature of 1.9 K, must guarantee a high quality magnetic field to steer the particles inside the beam pipe. Magnetic field measurements are a powerful way to detect assembly faults that could limit magnet performances. The aim of the thesis is the analysis of these measurements performed at room temperature during the production of the dipoles. In a large scale production the ideal situation is that all the magnets produced were identical. However all the components constituting a magnet are produced with certain tolerance and the assembly procedures are optimized during the production; due to these the reality drifts away from the ideal situation. We recollected geometrical data of the main components (superconducting cables, coil copper wedges and austenitic steel coil collars) and coupling them with adequate electro-magnetic models we reconstructed a multipolar field representation of the LHC dipoles defining their critical components and assembling procedures. This thesis is composed of 3 main parts: 1) influence of the geometry and of the assembling procedures of the dipoles on the quality of the magnetic field, 2) the use of measurement performed on the dipoles in the assembling step in order to solve production issues and to understand the behaviour of coils during the assembling step, and 3) a theoretical study of the uncertain harmonic components of the magnetic field in order to assess the dipole production.

  3. Backfire antennas with dipole elements

    DEFF Research Database (Denmark)

    Nielsen, Erik Dragø; Pontoppidan, Knud

    1970-01-01

    A method is set up for a theoretical investigation of arbitrary backfire antennas based upon dipole structures. The mutual impedance between the dipole elements of the antenna is taken into account, and the field radiated due to a surface wave reflector of finite extent is determined by calculating...

  4. Status of RF superconductivity at Argonne

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.

    1989-01-01

    Development of a superconducting (SC) slow-wave structures began at Argonne National Laboratory (ANL) in 1971, and led to the first SC heavy-ion linac (ATLAS - the Argonne Tandem-Linac Accelerating System), which began regularly scheduled operation in 1978. To date, more than 40,000 hours of bean-on target operating time has been accumulated with ATLAS. The Physics Division at ANL has continued to develop SC RF technology for accelerating heavy-ions, with the result that the SC linac has, up to the present, has been in an almost continuous process of upgrade and expansion. It should be noted that this has been accomplished while at the same time maintaining a vigorous operating schedule in support of the nuclear and atomic physics research programs of the division. In 1987, the Engineering Physics Division at ANL began development of SC RF components for the acceleration of high-brightness proton and deuterium beams. This work has included the evaluation of RF properties of high-{Tc} oxide superconductors, both for the above and for other applications. The two divisions collaborated while they worked on several applications of RF SC, and also worked to develop the technology generally. 11 refs., 6 figs.

  5. Superconducting Fault Current Limiter optimized design

    Science.gov (United States)

    Tixador, Pascal; Badel, Arnaud

    2015-11-01

    The SuperConducting Fault Current Limiter (SCFCL) appears as one of the most promising SC applications for the electrical grids. Despite its advantages and many successful field experiences the market of SCFCL has difficulties to take off even if the first orders for permanent operation in grids are taken. The analytical design of resistive SCFCL will be discussed with the objective to reduce the quantity of SC conductor (length and section) to be more cost-effective. For that the SC conductor must have a high resistivity in normal state. It can be achieved by using high resistivity alloy for shunt, such as Hastelloy®. One of the most severe constraint is that the SCFCL should operate safely for any faults, especially those with low prospective short-circuit currents. This constraint requires to properly design the thickness of the SC tape in order to limit the hot spot temperature. An operation at 65 K appears as very interesting since it decreases the SC cost at least by a factor 2 with a simple LN2 cryogenics. Taking into account the cost reduction in a near future, the SC conductor cost could be rather low, half a dollar per kV A.

  6. Superconducting Fault Current Limiter optimized design

    Energy Technology Data Exchange (ETDEWEB)

    Tixador, Pascal, E-mail: Pascal.Tixador@grenoble-inp.fr [Univ. Grenoble Alpes, G2Elab – Institut Néel, F-38000 Grenoble (France); CNRS, G2Elab – Institut Néel, F-38000 Grenoble (France); Badel, Arnaud [CNRS, G2Elab – Institut Néel, F-38000 Grenoble (France)

    2015-11-15

    Highlights: • A low cost design of YBCO Fault Current Limiter. • A high resistance conductor for reduced length. • An asymmetrical YBCO conductor (injection and AC losses). • A thickness suitable for non destructive hot spots. - Abstract: The SuperConducting Fault Current Limiter (SCFCL) appears as one of the most promising SC applications for the electrical grids. Despite its advantages and many successful field experiences the market of SCFCL has difficulties to take off even if the first orders for permanent operation in grids are taken. The analytical design of resistive SCFCL will be discussed with the objective to reduce the quantity of SC conductor (length and section) to be more cost-effective. For that the SC conductor must have a high resistivity in normal state. It can be achieved by using high resistivity alloy for shunt, such as Hastelloy®. One of the most severe constraint is that the SCFCL should operate safely for any faults, especially those with low prospective short-circuit currents. This constraint requires to properly design the thickness of the SC tape in order to limit the hot spot temperature. An operation at 65 K appears as very interesting since it decreases the SC cost at least by a factor 2 with a simple LN2 cryogenics. Taking into account the cost reduction in a near future, the SC conductor cost could be rather low, half a dollar per kV A.

  7. Test Results for LHC Insertion Region Dipole Magnets

    CERN Document Server

    Muratore, Joseph F; Cozzolino, John P; Ganetis, George; Ghosh, Arup; Gupta, Ramesh C; Harrison, Michael; Kumar-Jain, Animesh; Marone, Andrew; Richard-Plate, Stephen; Schmalzle, Jesse D; Thomas, Richard A; Wanderer, Peter; Willen, Erich; Wu, Kuo-Chen

    2005-01-01

    The Superconducting Magnet Division at Brookhaven National Laboratory (BNL) has made 20 insertion region dipoles for the Large Hadron Collider (LHC) at CERN. These 9.45 m-long, 8 cm aperture magnets have the same coil design as the arc dipoles now operating in the Relativistic Heavy Ion Collider (RHIC) at BNL and are of single aperture, twin aperture, and double cold mass configurations. They produce fields up to 3.8 T for operation at 7.56 TeV. Eighteen of these magnets have been tested at 4.5 K using either forced flow supercritical helium or liquid helium. The testing was especially important for the twin aperture models, which have the most challenging design. In these, the dipole fields in both apertures point in the same direction, unlike LHC arc dipoles. This paper reports on the results of these tests, including spontaneous quench performance, verification of quench protection heater operation, and magnetic field quality. Magnetic field measurements were done at 4.5K and at room temperature, and warm-...

  8. Low-lying dipole strengths of {sup 50}Cr

    Energy Technology Data Exchange (ETDEWEB)

    Pai, H.; Beck, T.; Beller, J.; Gayer, U.; Mertes, L.; Pietralla, N.; Ries, P.; Romig, C.; Werner, V.; Zweidinger, M. [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany)

    2015-07-01

    Low-lying electric and magnetic dipole strengths (E1 and M1, respectively), particularly Pygmy Dipole Resonance (PDR) and Spin-flip M1 excitations, of atomic nuclei have drawn considerable attention in the last decade. The low-lying dipole strengths of {sup 50}Cr were studied with the method of nuclear resonance fluorescence up to 9.7 MeV, using bremsstrahlung provided by the superconducting Darmstadt electron linear accelerator S-DALINAC. Twenty-four spin-1 states were observed between 3.0 and 9.7 MeV excitation energy, 17 of those for the first time. The excited states' parities are determined through polarized photon scattering at the High Intensity gamma ray Source (HIγS), Triangle Universities Nuclear Laboratory (TUNL) in Durham, NC, USA. Microscopic calculations within the quasiparticle-phonon nuclear model are performed to interpret the dipole strength distribution of {sup 50}Cr. The experimental results of {sup 50}Cr are compared to data on its closed-shell N=28 isotone {sup 52}Cr and may provide information on the onset of the PDR in atomic nuclei.

  9. Monitor of SC beam profiles

    CERN Multimedia

    1977-01-01

    A high-resolution secondary emission grid for the measurement of SC beam profiles. Modern techniques of metal-ceramic bonding, developed for micro-electronics, have been used in its construction. (See Annual Report 1977 p. 105 Fig. 12.)

  10. First coil for the SC

    CERN Multimedia

    CERN PhotoLab

    1955-01-01

    The coils for the SC magnet were stored in the large hangar of the Cointrin Airport (to make sure that they would be available before snow and ice would block the roads and canals from Belgium, where they were built).

  11. Radiation Damage to the Elements of the SIS300 Dipoles

    CERN Document Server

    Mustafin, Edil; Latysheva, Ludmila N; Moritz, Gebhard; Sobolevskiy, Nikolai; Walter, Gertrud

    2005-01-01

    Radiation damage to various elements of the cosine-theta type dipoles of the SIS300 synchrotron of the FAIR Project was calculated. Among the elements under consideration were the superconducting cable, insulating materials, and high-current by-pass protection diodes. The Monte-Carlo particle transport codes MARS and SHIELD were used to simulate propagation of the lost ions and protons, together with the products of nuclear interactions in the material of the elements. It was found that the lifetime of the protection diodes under irradiation is a more restrictive limit for the tolerable level of beam losses than the occurrence of magnet quenches.

  12. First 15-m dipole prototype for the LHC

    CERN Multimedia

    Laurent Guiraud

    1998-01-01

    The first full-size dipole prototype for the LHC was delivered to CERN on 16 December 1997. This 56 mm diameter bore twin-aperture magnet has a physical length of 15.16 m and a magnetic length at 1.9 K of 14.2 m. The magnet, which weighs about 26 ton radius of curvature of 2700 m. This prototype was developed in the framework of a collaboration between CERN and INFN (the Italian "Istituto Nazionale di Fisica Nucleare") on LHC superconducting magnets.

  13. Magnetic Field of a Dipole and the Dipole-Dipole Interaction

    Science.gov (United States)

    Kraftmakher, Yaakov

    2007-01-01

    With a data-acquisition system and sensors commercially available, it is easy to determine magnetic fields produced by permanent magnets and to study the dipole-dipole interaction for different separations and angular positions of the magnets. For sufficiently large distances, the results confirm the 1/R[superscript 3] law for the magnetic field…

  14. Comparing superconducting and permanent magnets for magnetic refrigeration

    Directory of Open Access Journals (Sweden)

    R. Bjørk

    2016-05-01

    Full Text Available We compare the cost of a high temperature superconducting (SC tape-based solenoid with a permanent magnet (PM Halbach cylinder for magnetic refrigeration. Assuming a five liter active magnetic regenerator volume, the price of each type of magnet is determined as a function of aspect ratio of the regenerator and desired internal magnetic field. It is shown that to produce a 1 T internal field in the regenerator a permanent magnet of hundreds of kilograms is needed or an area of superconducting tape of tens of square meters. The cost of cooling the SC solenoid is shown to be a small fraction of the cost of the SC tape. Assuming a cost of the SC tape of 6000 $/m2 and a price of the permanent magnet of 100 $/kg, the superconducting solenoid is shown to be a factor of 0.3-3 times more expensive than the permanent magnet, for a desired field from 0.5-1.75 T and the geometrical aspect ratio of the regenerator. This factor decreases for increasing field strength, indicating that the superconducting solenoid could be suitable for high field, large cooling power applications.

  15. Overview of Superconductivity and Challenges in Applications

    Science.gov (United States)

    Flükiger, Rene

    2012-01-01

    Considerable progress has been achieved during the last few decades in the various fields of applied superconductivity, while the related low temperature technology has reached a high level. Magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR) are so far the most successful applications, with tens of thousands of units worldwide, but high potential can also be recognized in the energy sector, with high energy cables, transformers, motors, generators for wind turbines, fault current limiters and devices for magnetic energy storage. A large number of magnet and cable prototypes have been constructed, showing in all cases high reliability. Large projects involving the construction of magnets, solenoids as well as dipoles and quadrupoles are described in the present book. A very large project, the LHC, is currently in operation, demonstrating that superconductivity is a reliable technology, even in a device of unprecedented high complexity. A project of similar complexity is ITER, a fusion device that is presently under construction. This article starts with a brief historical introduction to superconductivity as a phenomenon, and some fundamental properties necessary for the understanding of the technical behavior of superconductors are described. The introduction of superconductivity in the industrial cycle faces many challenges, first for the properties of the base elements, e.g. the wires, tapes and thin films, then for the various applied devices, where a number of new difficulties had to be resolved. A variety of industrial applications in energy, medicine and communications are briefly presented, showing how superconductivity is now entering the market.

  16. Itinerant Ferromagnetism and Superconductivity

    OpenAIRE

    Karchev, Naoum

    2004-01-01

    Superconductivity has again become a challenge following the discovery of unconventional superconductivity. Resistance-free currents have been observed in heavy-fermion materials, organic conductors and copper oxides. The discovery of superconductivity in a single crystal of $UGe_2$, $ZrZn_2$ and $URhGe$ revived the interest in the coexistence of superconductivity and ferromagnetism. The experiments indicate that: i)The superconductivity is confined to the ferromagnetic phase. ii)The ferromag...

  17. 100 years of superconductivity

    CERN Document Server

    Rogalla, Horst

    2011-01-01

    Even a hundred years after its discovery, superconductivity continues to bring us new surprises, from superconducting magnets used in MRI to quantum detectors in electronics. 100 Years of Superconductivity presents a comprehensive collection of topics on nearly all the subdisciplines of superconductivity. Tracing the historical developments in superconductivity, the book includes contributions from many pioneers who are responsible for important steps forward in the field.The text first discusses interesting stories of the discovery and gradual progress of theory and experimentation. Emphasizi

  18. Dipole-Dipole Interactions of Charged Magnetic Grains

    CERN Document Server

    Perry, Jonathan; Hyde, Truell

    2010-01-01

    The interaction between dust grains is an important process in fields as diverse as planetesimal formation or the plasma processing of silicon wafers into computer chips. This interaction depends in large part on the material properties of the grains, for example whether the grains are conducting, non-conducting, ferrous or non-ferrous. This work considers the effects that electrostatic and magnetic forces, alone or in combination, can have on the coagulation of dust in various environments. A numerical model is used to simulate the coagulation of charged, charged-magnetic and magnetic dust aggregates formed from ferrous material and the results are compared to each other as well as to those from uncharged, non-magnetic material. The interactions between extended dust aggregates are also examined, specifically looking at how the arrangement of charge over the aggregate surface or the inclusion of magnetic material produces dipole-dipole interactions. It will be shown that these dipole-dipole interactions can ...

  19. Two types of superconducting domes in unconventional superconductors

    Science.gov (United States)

    Das, Tanmoy; Panagopoulos, Christos

    2016-10-01

    Uncovering the origin of unconventional superconductivity is often plagued by the overwhelming material diversity with varying normal and superconducting (SC) properties. In this article, we deliver a comprehensive study of the SC properties and phase diagrams using multiple tunings (such as disorder, pressure or magnetic field in addition to doping and vice versa) across several families of unconventional superconductors, including the copper-oxides, heavy-fermions, organics and the recently discovered iron-pnictides, iron-chalcogenides, and oxybismuthides. We discover that all these families often possess two types of SC domes, with lower and higher SC transition temperatures T c, both unconventional but with distinct SC and normal states properties. The lower T c dome arises with or without a quantum critical point (QCP), and not always associated with a non-Fermi liquid (NFL) background. On the contrary, the higher-T c dome clearly stems from a NFL or strange metal phase, without an apparent intervening phase transition or a QCP. The two domes appear either fully separated in the phase diagram, or merged into one, or arise independently owing to their respective normal state characteristics. Our findings suggest that a QCP-related mechanism is an unlikely scenario for the NFL phase in these materials, and thereby narrows the possibility towards short-range fluctuations of various degrees of freedom in the momentum and frequency space. We also find that NFL physics may be a generic route to higher-T c superconductivity.

  20. Superconducting accelerating structures for very low velocity ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Xu, J.; Shepard, K.W.; Ostroumov, P.N.; Fuerst, J.D.; Waldschmidt, G.; /Argonne; Gonin, I.V.; /Fermilab

    2008-01-01

    This paper presents designs for four types of very-low-velocity superconducting accelerating cavity capable of providing several MV of accelerating potential per cavity, and suitable for particle velocities in the range 0.006 < v/c < 0.06. Superconducting TEM-class cavities have been widely applied to CW acceleration of ion beams. SC linacs can be formed as an array of independently-phased cavities, enabling a variable velocity profile to maximize the output energy for each of a number of different ion species. Several laboratories in the US and Europe are planning exotic beam facilities based on SC linacs. The cavity designs presented here are intended for the front-end of such linacs, particularly for the post-acceleration of rare isotopes of low charge state. Several types of SC cavities have been developed recently to cover particle velocities above 0.06c. Superconducting four-gap quarter-wave resonators for velocities 0.008 < {beta} = v/c < 0.05 were developed about two decades ago and have been successfully operated at the ATLAS SC linac at Argonne National Laboratory. Since that time, progress in simulation tools, cavity fabrication and processing have increased SC cavity gradients by a factor of 3-4. This paper applies these tools to optimize the design of a four-gap quarter-wave resonator for exotic beam facilities and other low-velocity applications.

  1. LHC Dipoles Accelerate

    CERN Multimedia

    2001-01-01

    Andrezej Siemko (left), Peter Sievers (centre), and Lucio Rossi (right), have the exciting challenge of preparing and testing 2000 magnets for the LHC. The LHC is going to require a lot of powerful magnets by the time it begins operation in 2006. More specifically, it is going to need 130 special magnets, 400 quadrupoles, and a whopping 1250 dipoles! Preparing and testing these magnets for the conditions they will encounter in the LHC is not an easy task. But evaluation of the most recently received magnet, from the German company Noell, is showing that while the monumental task of receiving and testing nearly 2000 magnets is going to be exhausting, the goals are definitely attainable. At the moment and over the next year, pre-series magnets (the magnets that CERN uses to fine tune performance) are arriving slowly (90 in total will arrive), but by 2003 the rate of series magnet arrival will accelerate to 9 per week, that's over 450 in a single year! And working with these magnets when they arrive is tough. ...

  2. Fractional vortex dipole phase filter

    Science.gov (United States)

    Sharma, Manoj Kumar; Joseph, Joby; Senthilkumaran, Paramasivam

    2014-10-01

    In spatial filtering experiments, the use of vortex phase filters plays an important role in realizing isotropic edge enhancement. In this paper, we report the use of a vortex dipole phase filter in spatial filtering. A dipole made of fractional vortices is used, and its filtering characteristics are studied. It is observed that the filter performance can be tuned by varying the distance of separation between the vortices of the dipole to achieve better contrast and output noise suppression, and when this distance tends to infinity, the filter performs like a 1-D Hilbert mask. Experimental and simulation results are presented.

  3. Fermion Dipole Moment and Holography

    CERN Document Server

    Kulaxizi, Manuela

    2015-01-01

    In the background of a charged AdS black hole, we consider a Dirac particle endowed with an arbitrary magnetic dipole moment. For non-zero charge and dipole coupling of the bulk fermion, we find that the dual boundary theory can be plagued with superluminal modes. Requiring consistency of the dual CFT amounts to constraining the strength of the dipole coupling by an upper bound. We briefly discuss the implications of our results for the physics of holographic non-Fermi liquids.

  4. Dipoles, unintentional antennas and EMC

    Directory of Open Access Journals (Sweden)

    Berend Danker

    2008-01-01

    Full Text Available Radiated emissions from equipment commonly originate from electronic circuits that act as electric dipoles created by the signal voltage between the signal conductors or as magnetic dipoles formed by the signal current flowing in a loop. Direct emission is mostly small, but circuits often couple to long conductors or large wiring loops which act as antennas and are efficient radiators. A comparable situation exists when short dipole antennas or small wiring loops receive ambient noise (susceptibility. Usually the amplitude of noise sources or the susceptibility of circuits is an invariable. The dipole strength increases with the distance between the conductors and the area. Shielding and proper grounding decreases the interaction via unintentional antennas. Short-circuiting and the insertion of lossy ferrite cores reduce the efficiency of unintentional antennas.

  5. Synchronization of interacting quantum dipoles

    Science.gov (United States)

    Zhu, B.; Schachenmayer, J.; Xu, M.; Herrera, F.; Restrepo, J. G.; Holland, M. J.; Rey, A. M.

    2015-08-01

    Macroscopic ensembles of radiating dipoles are ubiquitous in the physical and natural sciences. In the classical limit the dipoles can be described as damped-driven oscillators, which are able to spontaneously synchronize and collectively lock their phases in the presence of nonlinear coupling. Here we investigate the corresponding phenomenon with arrays of quantized two-level systems coupled via long-range and anisotropic dipolar interactions. Our calculations demonstrate that by incoherently driving dense packed arrays of strongly interacting dipoles, the dipoles can overcome the decoherence induced by quantum fluctuations and inhomogeneous coupling and reach a synchronized steady-state characterized by a macroscopic phase coherence. This steady-state bears much similarity to that observed in classical systems, and yet also exhibits genuine quantum properties such as quantum correlations and quantum phase diffusion (reminiscent of lasing). Our predictions could be relevant for the development of better atomic clocks and a variety of noise tolerant quantum devices.

  6. Quantum optical dipole radiation fields

    CERN Document Server

    Stokes, Adam

    2016-01-01

    We introduce quantum optical dipole radiation fields defined in terms of photon creation and annihilation operators. These fields are identified through their spatial dependence, as the components of the total fields that survive infinitely far from the dipole source. We use these radiation fields to perturbatively evaluate the electromagnetic radiated energy-flux of the excited dipole. Our results indicate that the standard interpretation of a bare atom surrounded by a localised virtual photon cloud, is difficult to sustain, because the radiated energy-flux surviving infinitely far from the source contains virtual contributions. It follows that there is a clear distinction to be made between a radiative photon defined in terms of the radiation fields, and a real photon, whose identification depends on whether or not a given process conserves the free energy. This free energy is represented by the difference between the total dipole-field Hamiltonian and its interaction component.

  7. High field superconducting magnets

    Science.gov (United States)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  8. Novel Approach to Linear Accelerator Superconducting Magnet System

    Energy Technology Data Exchange (ETDEWEB)

    Kashikhin, Vladimir; /Fermilab

    2011-11-28

    Superconducting Linear Accelerators include a superconducting magnet system for particle beam transportation that provides the beam focusing and steering. This system consists of a large number of quadrupole magnets and dipole correctors mounted inside or between cryomodules with SCRF cavities. Each magnet has current leads and powered from its own power supply. The paper proposes a novel approach to magnet powering based on using superconducting persistent current switches. A group of magnets is powered from the same power supply through the common, for the group of cryomodules, electrical bus and pair of current leads. Superconducting switches direct the current to the chosen magnet and close the circuit providing the magnet operation in a persistent current mode. Two persistent current switches were fabricated and tested. In the paper also presented the results of magnetic field simulations, decay time constants analysis, and a way of improving quadrupole magnetic center stability. Such approach substantially reduces the magnet system cost and increases the reliability.

  9. Superconducting Cable and Magnets for the Large Hadron Collider

    CERN Document Server

    Rossi, L

    2004-01-01

    The Large Hadron Collider (LHC) is a high energy, high luminosity particle accelerator under construction at CERN and it will be the largest application of superconductivity. Most of the existing 27 km underground tunnel will be filled with superconducting magnets, mainly 15 m long dipoles and 3 m long quadrupoles. These 1232 dipole and 400 quadrupole magnets as well as many other magnets, are wound with copper stabilized NbTi Rutherford cables and will be operated at 1.9 K by means of pressurized superfluid helium. The operating dipole field is 8.33 T; however the whole system is designed for possible operation up to 9 T. The coils are powered at about 12 kA and about 12 GJ of magnetic energy will be stored in superconducting devices. After a brief review of the main characteristics of the superconductors and of the magnets, the special measures taken to fulfill the mass production with the necessary accuracy are presented. The results on one third of the superconducting cable production and on the first f...

  10. Theory of superconductivity

    CERN Document Server

    Crisan, Mircea

    1989-01-01

    This book discusses the most important aspects of the theory. The phenomenological model is followed by the microscopic theory of superconductivity, in which modern formalism of the many-body theory is used to treat most important problems such as superconducting alloys, coexistence of superconductivity with the magnetic order, and superconductivity in quasi-one-dimensional systems. It concludes with a discussion on models for exotic and high temperature superconductivity. Its main aim is to review, as complete as possible, the theory of superconductivity from classical models and methods up t

  11. Alternative Approach to the Provision of the High-field Dipole for FCC-hh

    CERN Document Server

    AUTHOR|(SzGeCERN)435046

    2015-01-01

    This paper describes a possible approach to reducing the complexity and cost of the high field dipole magnets. In addition the cooling of the winding could be improved in the proposed design, with a consequent reduction in the shielding requirements. The correction of multipoles is also addressed: this feature may impact on the dynamic range of operation of the magnets. Noting that it would be possible to add a small gradient component to the dipole, it is suggested that a (partially) combined function lattice should be considered. The proposals lead to a brief re-appraisal of how best to apply superconductivity to magnets for large accelerators.

  12. The metallofullerene field-induced single-ion magnet HoSc2 N@C80.

    Science.gov (United States)

    Dreiser, Jan; Westerström, Rasmus; Zhang, Yang; Popov, Alexey A; Dunsch, Lothar; Krämer, Karl; Liu, Shi-Xia; Decurtins, Silvio; Greber, Thomas

    2014-10-13

    The low-temperature magnetic properties of the endohedral metallofullerene HoSc2 N@C80 have been studied by superconducting quantum interference device (SQUID) magnetometry. Alternating current (ac) susceptibility measurements reveal that this molecule exhibits slow relaxation of magnetization in a small applied field with timescales in the order of milliseconds. The equilibrium magnetic properties of HoSc2 N@C80 indicate strong magnetic anisotropy. The large differences in magnetization relaxation times between the present compound and the previously investigated DySc2 N@C80 are discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Spread in Dipole Cable Magnetization and Consequences on the Spread of DC Persistent Currents in the Main Dipole of the Large Hadron Collider

    CERN Document Server

    Bellesia, B; Granata, V; Le Naour, S; Oberli, L R; Sanfilippo, S; Santoni, C; Scandale, Walter; Schwerg, N; Todesco, Ezio; Völlinger, C

    2004-01-01

    The production of more than 60% of superconducting cables for the main dipoles of the Large Hadron Collider has been completed. The results of the measurements of cable magnetization and the dependence on the manufacturer are presented. The strand magnetization produces field errors that have been measured in a large number of dipoles, all tested in cold conditions. We examine here the correlation between the available magnetic measurements and the large database of cable magnetization. The analysis is based on models documented in the literature. Finally, a forecast of the persistent current effects to be expected in the LHC main dipoles is presented, and the more critical parameters for beam dynamics are singled out.

  14. Color-Neutral Superconducting Quark Matter

    CERN Document Server

    Steiner, A W; Prakash, M; Steiner, Andrew W.; Reddy, Sanjay; Prakash, Madappa

    2002-01-01

    We investigate the consequences of enforcing local color neutrality on the color superconducting phases of quark matter by utilizing the Nambu-Jona-Lasinio model supplemented by diquark and the t'Hooft six-fermion interactions. In neutrino free matter at zero temperature, color neutrality guarantees that the number densities of $u, d, {\\rm and} s$ quarks in the Color-Flavor-Locked (CFL) phase will be equal even with physical current quark masses. Electric charge neutrality follows as a consequence and without the presence of electrons. In contrast, electric charge neutrality in the less symmetric 2-flavor superconducting (2SC) phase with $ud$ pairing requires more electrons than the normal quark phase. The free energy density cost of enforcing color and electric charge neutrality in the CFL phase is lower than that in the 2SC phase, which favors the formation of the CFL phase. With increasing temperature and neutrino content, an unlocking transition occurs from the CFL phase to the 2SC phase with the order of...

  15. Superconducting magnets for the LHC main lattice

    CERN Document Server

    Rossi, L

    2004-01-01

    The main lattice of the Large Hadron Collider (LHC) will employ about 1600 main magnets and more than 4000 corrector magnets. All superconducting and working in pressurized superfluid helium bath, these impressive line of magnets will fill more than 20 km of the underground tunnel. With almost 70 main dipoles already delivered and 10 main quadrupoles almost completed, we passed the 5% of the production and now all manufacturers have fully entered into series production. In this paper the most critical issues encountered in the ramping up in such a real large scale fabrication will be addressed: uniformity of the coil size and of prestress, special welding technique, tolerances on curvature (dipoles) or straightness (quadrupoles) and of the cold mass extremities, harmonic content and, most important, the integrated field uniformity among magnets. The actual limits and the solution for improvements will be discussed. Finally a realistic schedule based on actual achievements is presented.

  16. Rotary condenser for SC2

    CERN Multimedia

    1975-01-01

    During 1975 the SC2 performance was improved among other things by redesigning some of the elements of the ROTCO (Annual Report 1975, p. 55). The photo shows an interior wiew of the housing of the rotary condenser and of the sixteen sets of shaped stator blades.

  17. Overview of Superconductivity and Challenges in Applications

    CERN Document Server

    Flükiger, Rene

    2012-01-01

    Considerable progress has been achieved during the last few decades in the various fields of applied superconductivity, while the related low temperature technology has reached a high level. Magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR) are so far the most successful applications, with tens of thousands of units worldwide, but high potential can also be recognized in the energy sector, with high energy cables, transformers, motors, generators for wind turbines, fault current limiters and devices for magnetic energy storage. A large number of magnet and cable prototypes have been constructed, showing in all cases high reliability. Large projects involving the construction of magnets, solenoids as well as dipoles and quadrupoles are described in the present book. A very large project, the LHC, is currently in operation, demonstrating that superconductivity is a reliable technology, even in a device of unprecedented high complexity. A project of similar complexity is ITER, a fusion device...

  18. Micromagnetic simulations of interacting dipoles on an fcc lattice: application to nanoparticle assemblies.

    Science.gov (United States)

    Plumer, M L; van Lierop, J; Southern, B W; Whitehead, J P

    2010-07-28

    Micromagnetic simulations are used to examine the effects of cubic and axial anisotropy, magnetostatic interactions and temperature on M-H loops for a collection of magnetic dipoles on fcc and sc lattices. We employ a simple model of interacting dipoles that represent single-domain particles in an attempt to explain recent experimental data on ordered arrays of magnetoferritin nanoparticles that demonstrate the crucial role of interactions between particles in an fcc lattice. Significant agreement between the simulation and experimental results is achieved, and the impact of intra-particle degrees of freedom and surface effects on thermal fluctuations is investigated.

  19. Coherent manipulation of two dipole-dipole interacting ions

    CERN Document Server

    Beige, A; Knight, P L; Plenio, M B; Thompson, R C

    2000-01-01

    We investigate to what extent two trapped ions can be manipulated coherently when their coupling is mediated by a dipole-dipole interaction. We will show how the resulting level shift induced by this interaction can be used to create entanglement, while the decay of the states remains nearly negligible. This will allow us to implement conditional dynamics (a CNOT gate) and single qubit operations. We propose two different experimental realisations where a large level shift can be achieved and discuss both the strengths and weaknesses of this scheme from the point of view of a practical realization.

  20. Design for a superconducting niobium RFQ structure

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.; Kennedy, W.L.; Sagalovsky, L.

    1992-09-01

    This paper reports a design for a niobium superconducting RFQ operating at 192 Mhz. The structure is of the rod and post type, novel in that each of four rods is supported by two posts oriented radially with respect to the beam axis. Although the geometry has four-fold rotation symmetry, the dipole-quadrupole mode splitting is large, giving good mechanical tolerances. The simplicity of the geometry enables designing for good mechanical stability while minimizing tooling cost for fabrication with niobium. Results of MAFIA numerical modeling, measurements on a copper model, and plans for a beam test are discussed.

  1. Design for a superconducting niobium RFQ structure

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.; Kennedy, W.L.; Sagalovsky, L.

    1992-01-01

    This paper reports a design for a niobium superconducting RFQ operating at 192 Mhz. The structure is of the rod and post type, novel in that each of four rods is supported by two posts oriented radially with respect to the beam axis. Although the geometry has four-fold rotation symmetry, the dipole-quadrupole mode splitting is large, giving good mechanical tolerances. The simplicity of the geometry enables designing for good mechanical stability while minimizing tooling cost for fabrication with niobium. Results of MAFIA numerical modeling, measurements on a copper model, and plans for a beam test are discussed.

  2. Construction of a superconducting RFQ structure

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.; Kennedy, W.L. [Argonne National Lab., IL (United States); Crandall, K.R. [AccSys Technology, Inc., Pleasanton, CA (United States)

    1993-07-01

    This paper reports the design and construction status of a niobium superconducting RFQ operating at 194 MHz. The structure is of the rod and post type, novel in that each of four rods is supported by two posts oriented radially with respect to the beam axis. Although the geometry has four-fold rotation symmetry, the dipole-quadrupole mode splitting is large, giving good mechanical tolerances. The simplicity of the geometry enables designing for good mechanical stability while minimizing tooling costs for fabrication with niobium. Design details of a prototype niobium resonator, results of measurements on room temperature models, and construction status are discussed.

  3. LHC dipole magnets start to roll off the production line

    CERN Multimedia

    2000-01-01

    The first pre-series LHC dipole magnet has been delivered to CERN, a further 1247 are due to be produced by 2005. Their production is the result of technology transfer from CERN to its suppliers. Fifteen metres long, thirty-tonnes in weight, and using several kilometres of superconducting cable, the magnet that has just arrived in hall 181 is a true colossus. It is the first pre-series dipole that will begin service in 2005 in the future Large Hadron Collider, LHC. Delivered by the French Alstom-Jeumont Industrie consortium, it is the first of 1248 magnets that will be manufactured over the coming five years. Needless to say, lavish attention has been devoted to this magnet by the engineers and technicians who accompanied it to CERN from Belfort in north east France. The task of the dipole magnets will be to steer the LHC's proton beams on a circular trajectory around the LHC's 27 kilometre circumference. A magnetic field of 8.33 Tesla is required to guide the protons, accelerated to an energy of 7 TeV, aroun...

  4. Retraining of the 1232 Main Dipole Magnets in the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Verweij, A. [CERN; Auchmann, B.; Bednarek, M.; Bottura, L.; Charifoulline, Z.; Feher, S. [Fermilab; Hagen, P.; Modena, M.; Le Naour, S.; Romera, I.; Siemko, A.; Steckert, J.; Tock, J. Ph; Todesco, E.; Willering, G.; Wollmann, D.

    2016-01-05

    The Large Hadron Collider (LHC) contains eight main dipole circuits, each of them with 154 dipole magnets powered in series. These 15-m-long magnets are wound from Nb-Ti superconducting Rutherford cables, and have active quench detection triggering heaters to quickly force the transition of the coil to the normal conducting state in case of a quench, and hence reduce the hot spot temperature. During the reception tests in 2002-2007, all these magnets have been trained up to at least 12 kA, corresponding to a beam energy of 7.1 TeV. After installation in the accelerator, the circuits have been operated at reduced currents of up to 6.8 kA, from 2010 to 2013, corresponding to a beam energy of 4 TeV. After the first long shutdown of 2013-2014, the LHC runs at 6.5 TeV, requiring a dipole magnet current of 11.0 kA. A significant number of training quenches were needed to bring the 1232 magnets up to this current. In this paper, the circuit behavior in case of a quench is presented, as well as the quench training as compared to the initial training during the reception tests of the individual magnets.

  5. Retraining of the 1232 Main Dipole Magnets in the LHC

    CERN Document Server

    Verweij, A; Bednarek, M; Bottura, L; Charifoulline, Z; Feher, S; Hagen, P; Modena, M; Le Naour, S; Romera, I; Siemko, A; Steckert, J; Tock, J Ph; Todesco, E; Willering, G; Wollmann, D

    2016-01-01

    The Large Hadron Collider (LHC) contains eight main dipole circuits, each of them with 154 dipole magnets powered in series. These 15-m-long magnets are wound from Nb-Ti superconducting Rutherford cables, and have active quench detection triggering heaters to quickly force the transition of the coil to the normal conducting state in case of a quench, and hence reduce the hot spot temperature. During the reception tests in 2002-2007, all these magnets have been trained up to at least 12 kA, corresponding to a beam energy of 7.1 TeV. After installation in the accelerator, the circuits have been operated at reduced currents of up to 6.8 kA, from 2010 to 2013, corresponding to a beam energy of 4 TeV. After the first long shutdown of 2013-2014, the LHC runs at 6.5 TeV, requiring a dipole magnet current of 11.0 kA. A significant number of training quenches were needed to bring the 1232 magnets up to this current. In this paper, the circuit behavior in case of a quench is presented, as well as the quench training as...

  6. TESTING AND EVALUATION OF SUPERCONDUCTING CABLES FOR THE LHC.

    Energy Technology Data Exchange (ETDEWEB)

    THOMAS,R.; GHOSH,A.; MCCHESNEY,D.; JAIN,A.

    1999-03-29

    As one of the activities of the US-LHC Accelerator Project, BNL is testing short samples of superconducting cables that will be used in the main LHC dipoles and quadrupoles. The purpose of these tests is to verify that the reels of superconducting cables as supplied by the vendors meet the required critical current specifications. The short-sample testing facility and the computer-assisted testing techniques for acquiring the data will be described. We also describe the data analysis, data storage, and data transmission methods.

  7. Simple Superconducting "Permanent" Electromagnet

    Science.gov (United States)

    Israelson, Ulf E.; Strayer, Donald M.

    1992-01-01

    Proposed short tube of high-temperature-superconducting material like YBa2Cu3O7 acts as strong electromagnet that flows as long as magnetic field remains below critical value and temperature of cylinder maintained sufficiently below superconducting-transition temperature. Design exploits maximally anisotropy of high-temperature-superconducting material.

  8. Basic principle of superconductivity

    OpenAIRE

    De Cao, Tian

    2007-01-01

    The basic principle of superconductivity is suggested in this paper. There have been two vital wrong suggestions on the basic principle, one is the relation between superconductivity and the Bose-Einstein condensation (BEC), and another is the relation between superconductivity and pseudogap.

  9. Characterization of superconducting multilayers samples

    CERN Document Server

    Antoine, C Z; Berry, S; Bouat, S; Jacquot, J F; Villegier, J C; Lamura, G; Gurevich, A

    2009-01-01

    Best RF bulk niobium accelerating cavities have nearly reached their ultimate limits at rf equatorial magnetic field H  200 mT close to the thermodynamic critical field Hc. In 2006 Gurevich proposed to use nanoscale layers of superconducting materials with high values of Hc > HcNb for magnetic shielding of bulk niobium to increase the breakdown magnetic field inside SC RF cavities [1]. Depositing good quality layers inside a whole cavity is rather difficult but we have sputtered high quality samples by applying the technique used for the preparation of superconducting electronics circuits and characterized these samples by X-ray reflectivity, dc resistivity (PPMS) and dc magnetization (SQUID). Dc magnetization curves of a 250 nm thick Nb film have been measured, with and without a magnetron sputtered coating of a single or multiple stack of 15 nm MgO and 25 nm NbN layers. The Nb samples with/without the coating clearly exhibit different behaviors. Because SQUID measurements are influenced by edge an...

  10. DC superconducting fault current limiter

    Science.gov (United States)

    Tixador, P.; Villard, C.; Cointe, Y.

    2006-03-01

    There is a lack of satisfying solutions for fault currents using conventional technologies, especially in DC networks, where a superconducting fault current limiter could play a very important part. DC networks bring a lot of advantages when compared to traditional AC ones, in particular within the context of the liberalization of the electric market. Under normal operation in a DC network, the losses in the superconducting element are nearly zero and only a small, i.e. a low cost, refrigeration system is then required. The absence of zero crossing of a DC fault current favourably accelerates the normal zone propagation. The very high current slope at the time of the short circuit in a DC grid is another favourable parameter. The material used for the experiments is YBCO deposited on Al2O3 as well as YBCO coated conductors. The DC limitation experiments are compared to AC ones at different frequencies (50-2000 Hz). Careful attention is paid to the quench homogenization, which is one of the key issues for an SC FCL. The University of Geneva has proposed constrictions. We have investigated an operating temperature higher than 77 K. As for YBCO bulk, an operation closer to the critical temperature brings a highly improved homogeneity in the electric field development. The material can then absorb large energies without degradation. We present tests at various temperatures. These promising results are to be confirmed over long lengths.

  11. Stacks of SPS Dipole Magnets

    CERN Multimedia

    1974-01-01

    Stacks of SPS Dipole Magnets ready for installation in the tunnel. The SPS uses a separated function lattice with dipoles for bending and quadrupoles for focusing. The 6.2 m long normal conducting dipoles are of H-type with coils that are bent-up at the ends. There are two types, B1 (total of 360) and B2 (384). Both are for a maximum field of 1.8 Tesla and have the same outer dimensions (450x800 mm2 vxh) but with different gaps (B1: 39x129 mm2, B2: 52x92 mm2) tailored to the beam size. The yoke, made of 1.5 mm thick laminations, consists of an upper and a lower half joined together in the median plane once the coils have been inserted.

  12. Synchronization of Interacting Quantum Dipoles

    CERN Document Server

    Zhu, Bihui; Xu, Minghui; Urbina, Felipe H; Restrepo, Juan G; Holland, Murray J; Rey, Ana Maria

    2015-01-01

    Macroscopic ensembles of radiating dipoles are ubiquitous in the physical and natural sciences. In the classical limit the dipoles can be described as damped-driven oscillators, which are able to spontaneously synchronize and collectively lock their phases. Here we investigate the correspond- ing phenomenon in the quantum regime with arrays of quantized two-level systems coupled via long-range and anisotropic dipolar interactions. Our calculations demonstrate that the dipoles may overcome the decoherence induced by quantum fluctuations and inhomogeneous couplings and evolve to a synchronized steady-state. This steady-state bears much similarity to that observed in classical systems, and yet also exhibits genuine quantum properties such as quantum correlations and quan- tum phase diffusion (reminiscent of lasing). Our predictions could be relevant for the development of better atomic clocks and a variety of noise tolerant quantum devices.

  13. Advanced fusion technologies developed for JT-60 superconducting tokamak

    Science.gov (United States)

    Sakasai, A.; Ishida, S.; Matsukawa, M.; Akino, N.; Ando, T.; Arai, T.; Ezato, K.; Hamada, K.; Ichige, H.; Isono, T.; Kaminaga, A.; Kato, T.; Kawano, K.; Kikuchi, M.; Kizu, K.; Koizumi, N.; Kudo, Y.; Kurita, G.; Masaki, K.; Matsui, K.; Miura, Y. M.; Miya, N.; Miyo, Y.; Morioka, A.; Nakajima, H.; Nunoya, Y.; Oikawa, A.; Okuno, K.; Sakurai, S.; Sasajima, T.; Satoh, K.; Shimizu, K.; Takeji, S.; Takenaga, K.; Tamai, H.; Taniguchi, M.; Tobita, K.; Tsuchiya, K.; Urata, K.; Yagyu, J.

    2004-02-01

    Modification of JT-60 as a full superconducting tokamak (JT-60SC) is planned. The objectives of the JT-60SC programme are to establish scientific and technological bases for steady-state operation of high performance plasmas and utilization of reduced-activation materials in an economically and environmentally attractive DEMO reactor. Advanced fusion technologies relevant to the DEMO reactor have been developed for the superconducting magnet technology and plasma facing components of the JT-60SC design. To achieve a high current density in a superconducting strand, Nb3Al strands with a high copper ratio of 4 have been newly developed for the toroidal field coils (TFCs) of JT-60SC. The R&D to demonstrate the applicability of the Nb3Al conductor to TFCs by a react-and-wind technique has been carried out using a full-size Nb3Al conductor. A full-size NbTi conductor with low ac loss using Ni-coated strands has been successfully developed. A forced cooling divertor component with high heat transfer using screw tubes has been developed for the first time. The heat removal performance of the carbon fibre composite target was successfully demonstrated on an electron beam irradiation stand.

  14. Superconductivity in Medicine

    Science.gov (United States)

    Alonso, Jose R.; Antaya, Timothy A.

    2012-01-01

    Superconductivity is playing an increasingly important role in advanced medical technologies. Compact superconducting cyclotrons are emerging as powerful tools for external beam therapy with protons and carbon ions, and offer advantages of cost and size reduction in isotope production as well. Superconducting magnets in isocentric gantries reduce their size and weight to practical proportions. In diagnostic imaging, superconducting magnets have been crucial for the successful clinical implementation of magnetic resonance imaging. This article introduces each of those areas and describes the role which superconductivity is playing in them.

  15. Enhanced superconductivity of fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Washington, II, Aaron L.; Teprovich, Joseph A.; Zidan, Ragaiy

    2017-06-20

    Methods for enhancing characteristics of superconductive fullerenes and devices incorporating the fullerenes are disclosed. Enhancements can include increase in the critical transition temperature at a constant magnetic field; the existence of a superconducting hysteresis over a changing magnetic field; a decrease in the stabilizing magnetic field required for the onset of superconductivity; and/or an increase in the stability of superconductivity over a large magnetic field. The enhancements can be brought about by transmitting electromagnetic radiation to the superconductive fullerene such that the electromagnetic radiation impinges on the fullerene with an energy that is greater than the band gap of the fullerene.

  16. Superconducting microfabricated ion traps

    CERN Document Server

    Wang, Shannon X; Labaziewicz, Jaroslaw; Dauler, Eric; Berggren, Karl; Chuang, Isaac L

    2010-01-01

    We fabricate superconducting ion traps with niobium and niobium nitride and trap single 88Sr ions at cryogenic temperatures. The superconducting transition is verified and characterized by measuring the resistance and critical current using a 4-wire measurement on the trap structure, and observing change in the rf reflection. The lowest observed heating rate is 2.1(3) quanta/sec at 800 kHz at 6 K and shows no significant change across the superconducting transition, suggesting that anomalous heating is primarily caused by noise sources on the surface. This demonstration of superconducting ion traps opens up possibilities for integrating trapped ions and molecular ions with superconducting devices.

  17. Superconducting material development

    Science.gov (United States)

    1987-09-01

    A superconducting compound was developed that showed a transition to a zero-resistance state at 65 C, or 338 K. The superconducting material, which is an oxide based on strontium, barium, yttrium, and copper, continued in the zero-resistance state similar to superconductivity for 10 days at room temperature in the air. It was also noted that measurements of the material allowed it to observe a nonlinear characteristic curve between current and voltage at 65 C, which is another indication of superconductivity. The research results of the laboratory experiment with the superconducting material will be published in the August edition of the Japanese Journal of Applied Physics.

  18. Protective link for superconducting coil

    Science.gov (United States)

    Umans, Stephen D.

    2009-12-08

    A superconducting coil system includes a superconducting coil and a protective link of superconducting material coupled to the superconducting coil. A rotating machine includes first and second coils and a protective link of superconducting material. The second coil is operable to rotate with respect to the first coil. One of the first and second coils is a superconducting coil. The protective link is coupled to the superconducting coil.

  19. Study of the relation between evaluation of strain distribution on superconducting coil and mechanical heat generation

    Science.gov (United States)

    Seino, Hiroshi; Kurihara, Minoru; Herai, Toshiki; Suzuki, Eiji

    2002-10-01

    In the superconducting Maglev system, on-board superconducting magnets (SCMs) are vibrated at various frequencies according to the train speed by the electromagnetic disturbance which is caused when the train passes over ground coils. Then a mechanical loss is generated inside the inner vessel in the SCM. This phenomenon increases the heat load on the cryogenic equipment in the SCM. It has been surmised that the mechanical heat inside the inner vessel is generated by the frictional heat caused by the relative microscopic slips between fasteners and superconducting coil (SC coil). Nevertheless, heat generation mechanisms inside the inner vessel have not been studied sufficiently. In this study, we suggest a hypothesis that the frictional heat generated by the relative microscopic slips between fasteners and a SC coil will be indicated if the calculated strain distribution on the SC coil is evaluated. The results of this study supported this hypothesis.

  20. First Operation of PIAVE, the Heavy Ion Injector Based on Superconducting RFQ's

    CERN Document Server

    Bisoffi, Giovanni; Battistella, Andrea; Bezzon, Giampietro; Boscagli, Lucia; Calore, Andrea; Canella, Stefania; Carlucci, Davide; Chiurlotto, Francesca; Comunian, Michele; De Lazzari, Mauro; Facco, Alberto; Fagotti, Enrico; Lombardi, Augusto; Modanese, Paolo; Moisio, M Francesca; Pisent, Andrea; Poggi, Marco; Porcellato, Anna M; Stark, Sergey

    2005-01-01

    The Positive Ion Accelerator for low-Velocity Ions (PIAVE), based on superconducting RFQ's (SRFQ's), has been completed in fall 2004 with the first acceleration of beams from the ECR ion source. Superconducting RFQ's were used, for the first time, for beam acceleration on a user-oriented accelerator complex. A general status of the injector performances is given: it includes, besides the SRFQ's, eight superconducting (SC) QWR's and three bunchers; the beam is received from an ECR source on a HV platform and is delivered, through the SC accelerator ALPI, to nuclear physics experimental apparatuses. The paper emphasizes, in particular, the technological challenges related to the operation of the SC cavities, the cryogenics, control, diagnostics and vacuum systems.

  1. Van der Waals Interactions and Dipole Blockade in a Cold Rydberg Gas Probed by Microwave Spectroscopy

    Science.gov (United States)

    Nguyen, Thanh Long; Celistrino Teixeira, Raul; Hermann Avigliano, Carla; Cantat Moltrecht, Tigrane; Raimond, Jean Michel; Haroche, Serge; Gleyzes, Sebastiens; Brune, Michel

    2016-05-01

    Dipole-dipole interactions between Rydberg atoms are a flourishing tool for quantum information processing and for quantum simulation of complex many-body problems. Microwave spectroscopy of a dense Rydberg gas trapped close to a superconducting atom chip in the strong dipole blockade regime reveals directly the many-body atomic interaction spectrum. We present here a direct measurement of the interaction energy distribution in the strong dipole blockade regime, based on microwave spectroscopy. We first apply this method to the observation of the excitation dynamics of the Rydberg gas, conditioned by dipole-dipole interactions, in either the strong blockade regime or the so-called facilitation regime. We also observe with this method the atomic cloud expansion driven by the repulsive Van der Waals interaction after excitation. This measurement, in good agreement with Monte Carlo simulations of the excitation process and of the cloud dynamics, reveals the limits of the frozen gas approximation. This method can help investigate self-organization and dynamical phase transitions in Rydberg-atom based quantum simulators. This study thus opens a promising route for quantum simulation of many-body systems and quantum information transport in chains of strongly interacting Rydberg atom.

  2. 2010 ARRA Lidar: Hampton County (SC)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Provide high density LiDAR elevation data map of Hampton County, SC. Provide Bare Earth DEM (vegetation removal) of Hampton County, SC.

  3. Magnetic moment of {sup 48}Sc

    Energy Technology Data Exchange (ETDEWEB)

    Ohtsubo, T., E-mail: tohtsubo@np.gs.niigata-u.ac.jp; Kawamura, Y.; Ohya, S. [Niigata University, Department of Physics (Japan); Izumikawa, T. [Niigata University, Radioisotope Center (Japan); Nishimura, K. [Toyama University, Faculty of Engineering (Japan); Muto, S. [Neutron Science Laboratory, KEK (Japan); Shinozuka, T. [Tohoku University, Cyclotron and Radioisotope Center (Japan)

    2007-11-15

    Nuclear magnetic resonances were measured for {sup 48}Sc and {sup 44m}Sc oriented at 8 mK in an Fe host metal. The magnetic hyperfine splitting frequencies at an external magnetic field of 0.2 T were determined to be 63.22(11) MHz and 64.81(1) MHz for {sup 48}Sc and {sup 44m}Sc, respectively. With the known magnetic moment of {mu}({sup 44m}Sc)=+3.88 (1) {mu}{sub N}, the magnetic moment of {sup 48}Sc is deduced as {mu}({sup 44}Sc)=+3.785(12) {mu}{sub N}. The measured magnetic moment of {sup 48}Sc is discussed in terms of the shell model using the effective interactions.

  4. Superconductivity in transition metals.

    Science.gov (United States)

    Slocombe, Daniel R; Kuznetsov, Vladimir L; Grochala, Wojciech; Williams, Robert J P; Edwards, Peter P

    2015-03-13

    A qualitative account of the occurrence and magnitude of superconductivity in the transition metals is presented, with a primary emphasis on elements of the first row. Correlations of the important parameters of the Bardeen-Cooper-Schrieffer theory of superconductivity are highlighted with respect to the number of d-shell electrons per atom of the transition elements. The relation between the systematics of superconductivity in the transition metals and the periodic table high-lights the importance of short-range or chemical bonding on the remarkable natural phenomenon of superconductivity in the chemical elements. A relationship between superconductivity and lattice instability appears naturally as a balance and competition between localized covalent bonding and so-called broken covalency, which favours d-electron delocalization and superconductivity. In this manner, the systematics of superconductivity and various other physical properties of the transition elements are related and unified.

  5. A self-consistent determination of the RVB and SC gaps in the YRZ ansatz

    Science.gov (United States)

    Rao, Zi-Ye; Wang, Xiao-Min; Jiang, Hong-Min

    2017-03-01

    A correct understanding of the origin of the pseudogap in high temperature (high-T c) cuprate superconductors is considered to be a peripheral breakthrough in the understanding of the microscopic mechanism of the high-T c superconductivity. Yang-Rice-Zhang (YRZ) ansatz is an important phenomenological theory to describe the phenomenon of pseudogap. However, in the framework of YRZ, the pseudogap (resonant valence bond (RVB) gap) and the superconducting (SC) gap are unable to have a self-consistent determination at different doping concentrations, and this severely limits the application of the YRZ ansatz. Based on the YRZ ansatz, this study develops a technical method to determine the RVB and SC gaps in a self-consistent manner. It is revealed that the self-consistent calculations of the doping dependence of RVB, SC gaps and spectral function are not only consistent with the empirical gap formula in the YRZ framework, but also consistent with the doping evolution of the Fermi surface observed in the angle-resolved photoemission spectroscopy (ARPES) experiments. Our method will greatly extend the applications of the YRZ ansatz, and will deepen our understanding of the origin of pseudogap as well as the mechanism of high-T c superconductivity.

  6. Xemilofiban: SC 54684A, xemlofiban.

    Science.gov (United States)

    2003-01-01

    Xemilofiban [SC 54684, SC 54684A (HCl), xemlofiban], a glycoprotein IIb/IIIa antagonist, is an orally available prodrug of a non-peptide mimetic of the tetrapeptide RGDF. It is converted to the active metabolite, SC 54701 (the free base form of SC 54701A). Development was initiated by Searle (Monsanto). Searle became part of Pharmacia Corporation, which was acquired by, and merged into, Pfizer in April 2003. Searle had co-development and co-marketing agreements with Sankyo in Japan; these have been discontinued. In January 2003, Pharmacia donated the intellectual property for xemilofiban to Western Michigan University. In February 2003, Western Michigan University granted an exclusive worldwide licence of xemilofiban to VDDI Pharmaceuticals (formerly Virtual Drug Development Inc.). Xemilofiban was in a phase III clinical trial, the Evaluation of Xemilofiban in Controlling Thrombotic Events (EXCITE) trial, with Searle (Monsanto) in the US and Europe for the treatment of thrombosis in patients with unstable angina pectoris and acute myocardial infarction undergoing angioplasty. However, as xemilofiban demonstrated no significant clinical benefit, Searle discontinued its development. In Japan, Sankyo discontinued the development of xemilofiban for thrombosis at phase II following Searle's decision to drop the project. VDDI Pharmaceuticals plans to develop xemilofiban in cardiovascular disorders following on from the phase III studies completed by Pharmacia; a restructured dosing schedule and narrowed patient selection will be used. VDDI has research facilities worldwide and will utilise facilities in Ireland for the European clinical development programme; research facilities in the Southwest Michigan Innovation Center are planned while the head office of VDDI is based in Tennessee. Xemilofiban is in phase III development for the treatment of cardiovascular disease in conjunction with percutaneous coronary intervention.

  7. Searching for electric dipole moments

    NARCIS (Netherlands)

    Jungmann, Klaus

    2013-01-01

    Searches for a permanent Electric Dipole Moment (EDM) of a fundamental particle provide a wide window for the discovery of potential New Physics. Within todays Standard Model in particle physics the well established violation of CP symmetry gives rise to EDMs which are several orders of magnitude be

  8. Particle electric dipole-moments

    Energy Technology Data Exchange (ETDEWEB)

    Pendlebury, J.M. [Sussex Univ., Brighton (United Kingdom)

    1997-04-01

    The incentive to detect particle electric dipole-moments, as a window on time-reversal violation, remains undiminished. Efforts to improve the measurements for the neutron, the electron and some nuclei are still making rapid progress as more powerful experimental methods are brought to bear. A new measurement for the neutron at ILL is presented. (author). 7 refs.

  9. On the Color Dipole Picture

    CERN Document Server

    Schildknecht, Dieter

    2016-01-01

    We give a brief representation of the theoretical results from the color dipole picture, covering the total photoabsorption cross section, high-energy $J/\\psi$ photoproduction with respect to recent experimental data from the LHCb Collaboration at CERN, and ultra-high energy neutrino scattering, relevant for the ICE-CUBE experiment.

  10. A Tale of Two Dipoles

    DEFF Research Database (Denmark)

    Andersen, Jørgen Bach

    2006-01-01

    A number of antenna topics may be treated by studying just two parallel, closely spaced electrical dipoles. They form an array and they may be coupled to form a single antenna with one port, or coupled through a coupling network to form a multiport antenna. The situations discussed are the creation...

  11. Competition between superconductivity and charge density waves

    Science.gov (United States)

    Kim, Ki-Seok

    2007-02-01

    We derive an effective field theory for the competition between superconductivity (SC) and charge density waves (CDWs) by employing the SO(3) pseudospin representation of the SC and CDW order parameters. One important feature in the effective nonlinear σ model is the emergence of a Berry phase even at half filling, originating from the competition between SC and CDWs, i.e., the pseudospin symmetry. A-well known conflict between the previous studies of Oshikawa [Phys. Rev. Lett. 84, 1535 (2000)] and Lee and Shankar [Phys. Rev. Lett. 65, 1490 (1990)] is resolved by the appearance of the Berry phase. The Berry phase contribution allows a deconfined quantum critical point of fractionalized charge excitations with e instead of 2e in the SC-CDW quantum transition at half filling. Furthermore, we investigate the stability of the deconfined quantum criticality against quenched randomness by performing a renormalization group analysis of an effective vortex action. We argue that, although randomness results in a weak disorder fixed point differing from the original deconfined quantum critical point, deconfinement of the fractionalized charge excitations still survives at the disorder fixed point owing to a nonzero fixed point value of the vortex charge.

  12. Power deposition in superconducting magnets of the momentum cleaning insertion

    CERN Document Server

    CERN. Geneva; Baishev, I S; Jeanneret, J B; Kourotchkine, I A

    2002-01-01

    This note describes the calculation of power deposition in the superconducting magnets Q6, Q7 and MB8 downstream of the momentum collimators in IR3. To reduce a relatively high power deposition density of 1.8mW/cm^3 in the coils of Q6, we propose to install some fixed shielding collimators upstream of the warm dogleg dipoles D4.

  13. Modeling of the Voltage Waves in the LHC Main Dipole Circuits

    CERN Document Server

    Ravaioli, E; Formenti, F; Steckert, J; Thiesen, H; Verweij, A

    2012-01-01

    When a fast power abort is triggered in the LHC main dipole chain, voltage transients are generated at the output of the power converter and across the energy-extraction switches. The voltage waves propagate through the chain of 154 superconducting dipoles and can have undesired effects leading to spurious triggering of the quench protection system and firing of the quench heaters. The phase velocity of the waves travelling along the chain changes due to the inhomogeneous AC behavior of the dipoles. Furthermore, complex phenomena of reflection and superposition are present in the circuit. For these reasons analytical calculations are not sufficient for properly analyzing the circuit behavior after a fast power abort. The transients following the switch-off of the power converter and the opening of the switches are analyzed by means of a complete electrical model, developed with the Cadence© suite (PSpice© based). The model comprises all the electrical components of the circuit, additional components simula...

  14. Linear beam dynamics and ampere class superconducting RF cavities at RHIC

    Science.gov (United States)

    Calaga, Rama R.

    The Relativistic Heavy Ion Collider (RHIC) is a hadron collider designed to collide a range of ions from protons to gold. RHIC operations began in 2000 and has successfully completed five physics runs with several species including gold, deuteron, copper, and polarized protons. Linear optics and coupling are fundamental issues affecting the collider performance. Measurement and correction of optics and coupling are important to maximize the luminosity and sustain stable operation. A numerical approach, first developed at SLAC, was implemented to measure linear optics from coherent betatron oscillations generated by ac dipoles and recorded at multiple beam position monitors (BPMs) distributed around the collider. The approach is extended to a fully coupled 2D case and equivalence relationships between Hamiltonian and matrix formalisms are derived. Detailed measurements of the transverse coupling terms are carried out at RHIC and correction strategies are applied to compensate coupling both locally and globally. A statistical approach to determine BPM reliability and performance over the past three runs and future improvements also discussed. Aiming at a ten-fold increase in the average heavy-ion luminosity, electron cooling is the enabling technology for the next luminosity upgrade (RHIC II). Cooling gold ion beams at 100 GeV/nucleon requires an electron beam of approximately 54 MeV and a high average current in the range of 50-200 mA. All existing e-Coolers are based on low energy DC accelerators. The only viable option to generate high current, high energy, low emittance CW electron beam is through a superconducting energy-recovery linac (SC-ERL). In this option, an electron beam from a superconducting injector gun is accelerated using a high gradient (˜ 20 MV/m) superconducting RF (SRF) cavity. The electrons are returned back to the cavity with a 180° phase shift to recover the energy back into the cavity before being dumped. A design and development of a half

  15. 2-D Electromagnetic Model of Fast-Ramping Superconducting Magnets

    CERN Document Server

    Auchmann, B; Kurz, S; Russenschuck, Stephan

    2006-01-01

    Fast-ramping superconducting (SC) accelerator magnets are the subject of R&D efforts by magnet designers at various laboratories. They require modifications of magnet design tools such as the ROXIE program at CERN, i.e. models of dynamic effects in superconductors need to be implemented and validated. In this paper we present the efforts towards a dynamic 2-D simulation of fast-ramping SC magnets with the ROXIE tool. Models are introduced and simulation results are compared to measurements of the GSI001 magnet of a GSI test magnet constructed and measured at BNL.

  16. Magnetic instabilities along the superconducting phase boundary of Nb /Ni multilayers

    Science.gov (United States)

    Joshi, Amish G.; Kryukov, Sergiy A.; De Long, Lance E.; Gonzalez, Elvira M.; Navarro, Elena; Villegas, Javier E.; Vicent, Jose L.

    2007-05-01

    We report vibrating reed and superconducting quantum interference device magnetometer data that exhibit prominent dips or oscillations of the superconducting (SC) onset temperature, ΔTC(H )≈0.01-0.7K, for a [Nb(23nm)/Ni(5nm)]5 multilayer (ML) in dc magnetic fields applied nearly parallel to the ML plane. The vibrating reed data exhibit reproducible structures below TC that may reflect multiple SC transitions, but they are sensitive to ac field amplitude and dc field orientation. This striking behavior poses challenges for theoretical and experimental investigations of interfaces between SC and ferromagnetic layers that involve magnetic pair breaking effects, "pi phase shifts" of the SC order parameter, and exotic ("LOFF") pairing states. Alternatively, the anomalies may mark dynamical instabilities within a confined, strongly anisotropic Abrikosov vortex lattice.

  17. Materials Characterization of High-Temperature Epoxy Resins: SC-79 and SC-15/SC-79 Blend

    Science.gov (United States)

    2011-03-01

    Army composite applications. SC-15 is a toughened commercial vacuum-assisted resin transfer molding ( VARTM ) resin produced by Applied Poleramic Inc...very well in VARTM processes and has good damage resistance in structural and ballistic applications. However, the relatively low glass transition...low-viscosity, two-phase toughened, cycloaliphatic amine–cured commercial VARTM resin system designed to be easy to handle and have a long processing

  18. Refutation of stability proofs for dipole vortices

    DEFF Research Database (Denmark)

    Nycander, J.

    1992-01-01

    Five stability proofs for dipole vortices (modons) that have been presented by various authors are examined. It is shown that they are all incorrect, and that westward-propagating dipoles are in fact unstable, in contradiction to some of the proofs.......Five stability proofs for dipole vortices (modons) that have been presented by various authors are examined. It is shown that they are all incorrect, and that westward-propagating dipoles are in fact unstable, in contradiction to some of the proofs....

  19. Evidence for Triplet Superconductivity in a Superconductor-Ferromagnet Spin Valve

    Science.gov (United States)

    Leksin, P. V.; Garif'yanov, N. N.; Garifullin, I. A.; Fominov, Ya. V.; Schumann, J.; Krupskaya, Y.; Kataev, V.; Schmidt, O. G.; Büchner, B.

    2012-08-01

    We have studied the dependence of the superconducting (SC) transition temperature on the mutual orientation of magnetizations of Fe1 and Fe2 layers in the spin valve system CoOx/Fe1/Cu/Fe2/Pb. We find that this dependence is nonmonotonic when passing from the parallel to the antiparallel case and reveals a distinct minimum near the orthogonal configuration. The analysis of the data in the framework of the SC triplet spin valve theory gives direct evidence for the long-range triplet superconductivity arising due to noncollinearity of the two magnetizations.

  20. Quantum Zeno suppression of dipole-dipole forces

    CERN Document Server

    Wüster, Sebastian

    2016-01-01

    We consider inter-atomic forces due to resonant dipole-dipole interactions within a dimer of highly excited Rydberg atoms, embedded in an ultra-cold gas. These forces rely on a coherent superposition of two-atom electronic states, which is destroyed by continuous monitoring of the dimer state through a detection scheme utilizing controllable interactions with the background gas atoms. We show that this intrinsic decoherence of the molecular energy surface can gradually deteriorate a repulsive dimer state, causing a mixing of attractive and repulsive character. For sufficiently strong decoherence, a Zeno-like effect causes a complete arrest of interatomic forces. We finally show how short decohering pulses can controllably redistribute population between the different molecular energy surfaces.

  1. Effects of dipole-dipole interaction on entanglement transfer

    Institute of Scientific and Technical Information of China (English)

    Guo Hong; Xiong Heng-Na

    2008-01-01

    A system consisting of two different atoms interacting with a two-mode vacuum, where each atom is resonant only with one cavity mode, is considered.The effects of dipole-dipole (dd) interaction between two atoms on the atom-atom entanglement and mode-mode entanglement are investigated. For a weak dd interaction, when the atoms are initially separable, the entanglement between them can be induced by the dd interaction, and the entanglement transfer between the atoms and the modes occurs efficiently; when the atoms are initially entangled, the entanglement transfer is almost not influenced by the dd interaction. However, for a strong dd interaction, it is difficult to transfer the entanglement from the atoms to the modes, but the atom-atom entanglement can be maintained when the atoms are initially entangled.

  2. Noncommutative Dipole Field Theories And Unitarity

    CERN Document Server

    Chiou, D W; Chiou, Dah-Wei; Ganor, Ori J.

    2004-01-01

    We extend the argument of Gomis and Mehen for violation of unitarity in field theories with space-time noncommutativity to dipole field theories. In dipole field theories with a timelike dipole vector, we present 1-loop amplitudes that violate the optical theorem. A quantum mechanical system with nonlocal potential of finite extent in time also shows violation of unitarity.

  3. Perturbative Odderon in the Dipole Model

    CERN Document Server

    Kovchegov, Yu V; Wallon, S; Kovchegov, Yuri V.; Szymanowski, Lech; Wallon, Samuel

    2003-01-01

    We show that, in the framework of Mueller's dipole model, the perturbative QCD odderon is described by the dipole model equivalent of the BFKL equation with a $C$-odd initial condition. The eigenfunctions and eigenvalues of the odderon solution are the same as for the dipole BFKL equation and are given by the functions $E^{n,\

  4. Balanced Dipole Effects on Interfacial Engineering for Polymer/TiO2 Array Hybrid Solar Cells

    Science.gov (United States)

    Wu, Fan; Zhu, Yanyan; Ye, Xunheng; Li, Xiaoyi; Tong, Yanhua; Xu, Jiaxing

    2017-02-01

    The polymer/TiO2 array heterojunction interfacial characteristics can be tailored by balanced dipole effects through integration of TiO2-quantum dots (QDs) and N719 at heterojunction interface, resulting in the tunable photovoltaic performance. The changes of V oc with interfacial engineering originate from the shift of the conduction band ( E c) edge in the TiO2 nanorod by the interfacial dipole with different directions (directed away or toward the TiO2 nanorod). The J sc improvement originates from the enhanced charge separation efficiency with an improved electronic coupling property and better charge transfer property. The balanced dipole effects caused by TiO2-QDs and N719 modification on the device V oc are confirmed by the changed built-in voltage V bi and reverse saturation current density J s.

  5. Critical behavior of isotropic three-dimensional systems with dipole-dipole interactions

    Energy Technology Data Exchange (ETDEWEB)

    Belim, S. M., E-mail: sbelim@mail.ru [Dostoevsky Omsk State University (Russian Federation)

    2013-06-15

    The critical behavior of Heisenberg magnets with dipole-dipole interactions near the line of second-order phase transitions directly in three-dimensional space is investigated in terms of a field-theoretic approach. The dependences of critical exponents on the dipole-dipole interaction parameter are derived. Comparison with experimental facts is made.

  6. Final Scientific/Technical Report On AWARD NO. DE-SC0015635 “Organization of the 17th Advanced Accelerator Concepts (AAC16) Workshop by the IEEE” The IEEE Council on Superconductivity David F. Sutter (PI) Institute of Electrical & Electronics Engineers, Inc. 445 Hoes Lane Piscataway, NJ, 088544141, US. Period of time covered by the report: 5/1/2016 – 7/30/2017

    Energy Technology Data Exchange (ETDEWEB)

    Sutter, David F. [Inst. of Electrical and Electronics Engineers Inc., Piscataway, NJ (United States)

    2017-07-15

    The 2016 Workshop on Advanced Accelerator Concepts (AAC) was held at the Gaylord Hotel and Conference Center, National Harbor, Maryland, from July 31 through August 5, 2016. This workshop was the seventeenth in a biennial series that began at Los Alamos National Laboratory in 1982 with a workshop on laser acceleration of particles (see AIP Conf. Proc. 91). AAC16 was organized under the sponsorship of the IEEE Council on Superconductivity with financial support from the U. S. Department of Energy Office of High Energy Physics and the National Science Foundation. The scope of the AAC Workshop has grown since 1982 to encompass a broad range of topics related to advancing accelerator science and technology beyond its current scientific and technical limits and is now an internationally acknowledged forum for interdisciplinary discussions on advanced accelerator and beam physics/technology concepts covering the widest possible range of applications. The Workshop continued the trend of growing worldwide participation, attracting world wide participation. The Workshop had a total of 256 attendees comprising (including the U.S.) representatives from 11 countries representing 65 different institutions. Each day’s schedule began with plenary sessions covering broad, cross disciplinary interests or general tutorial topics as selected by the Program Committee, followed by a break out into more narrowly focused working groups. The Workshop was organized into eight Working Groups each with a published statement of topical focus, scope of discussion and goals. A summary of the Working Group activities and conclusions is included in the American Institute of Physics’ (AIP) Conference Proceedings now available as an on line open source document. It has been a long tradition of the AAC workshops to encourage strong student participation. This is accomplished in part by subsidizing student attendance, done for this work shop by using funds from the DOE and National Science

  7. Characteristics of persistent-current mode of HTS coil on superconducting electromagnet

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.Y., E-mail: cylee@krri.re.kr [Korea Railroad Research Institute, Woram Dong, Uiwang Si 437-757 (Korea, Republic of); Kim, J.; Han, Y.J.; Kang, B. [Korea Railroad Research Institute, Woram Dong, Uiwang Si 437-757 (Korea, Republic of); Chung, Y.D. [Department of Electrical Engineering, Suwon University, Bongdang Eup, Hwaseong Si 445-743 (Korea, Republic of); Yoon, Y.S. [Department of Electrical Engineering, Ansan College of Technology, Choji-Dong, Ansan Si 425-792 (Korea, Republic of); Chu, S.Y.; Hwang, Y.J.; Jo, H.C.; Jang, J.Y.; Ko, T.K. [Department of Electrical and Electronic Engineering, Yonsei University, Sinchon-dong, Seoul 120-749 (Korea, Republic of)

    2011-11-15

    The levitation gap of an electromagnetic suspension (EMS) system affects the current decay rate of superconducting electromagnet. The presence of iron core provides a significant benefit in the PCM performance of SC coil. The increased levitation gap of the EMS model with the SC-EM could negatively affect the design of SC-EM operated in PCM. This paper investigates the way in which the levitation gap of an electromagnetic suspension (EMS) system affects the current decay rate of superconducting electromagnet (SC-EM) operated in persistence-current mode (PCM). Using inductance analyzed from the magnetic circuit of an EMS model, the current decay rate caused by the variation in the levitation gap was simulated. In order to experimentally verify the simulation results, we fabricated a small-scale EMS model with SC coil operated in PCM and measured the current decay rates at different levitation gaps. The result showed that the presence of iron core provides a significant benefit in the PCM performance of SC coil, but the benefit decreased as the levitation gap increases. This study revealed that the increased levitation gap of the EMS model with the SC-EM could negatively affect the design of SC-EM operated in PCM.

  8. A Scaling Law for the Snapback in Superconducting Accelerator Magnets

    CERN Document Server

    Bottura, L; Bauer, P; Haverkamp, M; Pieloni, T; Sanfilippo, S; Velev, G

    2005-01-01

    The decay of the sextupole component in the bending dipoles during injection and the subsequent snapback at the start of beam acceleration are issues of common concern for all superconducting colliders built or in construction. Recent studies performed on LHC and Tevatron dipole magnets revealed many similarities in the snapback characteristics. Some are expected, e.g. the effect of operational history. One particular similarity, however, is striking and is the subject of this paper. It appears that there is a simple linear relation between the amount of sextupole drift during the decay and the magnet current (or field) change during the ramp required to resolve the snapback. It is surprising that the linear correlation between snapback amplitude and snapback field holds very well for all magnets of the same family (e.g. Tevatron or LHC dipoles). In this paper we present the data collected to date and discuss a simple theory that explains the scaling found.

  9. High temperature superconducting current leads for the Large Hadron Collider

    CERN Document Server

    Ballarino, A

    1999-01-01

    The large hadron collider (LHC) will be equipped with about 8000 superconducting magnets. Some 3380 leads will feed the currents ranging from 60 to 13000 A. To reduce the heat inleak into the liquid helium, CERN aims to use high temperature superconducting material for leads having current ratings between 600 and 13000 A. Specifications have been written for 13000 A current leads, incorporating a high temperature superconducting section, for the main of the LHC, and contracts have been placed with several firms for the supply of prototypes for comparative testing. The leads used for feeding locally the 60 and 120 A dipole orbit correctors will be conventional conduction cooledmagnets resistive leads. An optimized lead of variable cross section has been tested, and an integral design has been initiated. This report describes the design status of the current leads for the LHC, emphasizing, for the different solutions, the principle of optimization and the choice of cooling methods. (8 refs).

  10. Frontiers in Superconducting Materials

    CERN Document Server

    Narlikar, Anant V

    2005-01-01

    Frontiers in Superconducting Materials gives a state-of-the-art report of the most important topics of the current research in superconductive materials and related phenomena. It comprises 30 chapters written by renowned international experts in the field. It is of central interest to researchers and specialists in Physics and Materials Science, both in academic and industrial research, as well as advanced students. It also addresses electronic and electrical engineers. Even non-specialists interested in superconductivity might find some useful answers.

  11. Superconducting energy recovery linacs

    Science.gov (United States)

    Ben-Zvi, Ilan

    2016-10-01

    High-average-power and high-brightness electron beams from a combination of laser photocathode electron guns and a superconducting energy recovery linac (ERL) is an emerging accelerator science with applications in ERL light sources, high repetition rate free electron lasers , electron cooling, electron ion colliders and more. This paper reviews the accelerator physics issues of superconducting ERLs, discusses major subsystems and provides a few examples of superconducting ERLs.

  12. High-Temperature Superconductivity

    Science.gov (United States)

    Tanaka, Shoji

    2006-12-01

    A general review on high-temperature superconductivity was made. After prehistoric view and the process of discovery were stated, the special features of high-temperature superconductors were explained from the materials side and the physical properties side. The present status on applications of high-temperature superconductors were explained on superconducting tapes, electric power cables, magnets for maglev trains, electric motors, superconducting quantum interference device (SQUID) and single flux quantum (SFQ) devices and circuits.

  13. Radiating dipoles in photonic crystals

    OpenAIRE

    Busch, Kurt; Vats, Nipun; John, Sajeev; Sanders, Barry C.

    2000-01-01

    The radiation dynamics of a dipole antenna embedded in a Photonic Crystal are modeled by an initially excited harmonic oscillator coupled to a non--Markovian bath of harmonic oscillators representing the colored electromagnetic vacuum within the crystal. Realistic coupling constants based on the natural modes of the Photonic Crystal, i.e., Bloch waves and their associated dispersion relation, are derived. For simple model systems, well-known results such as decay times and emission spectra ar...

  14. Field quality of the LHC dipole magnets in operating conditions

    CERN Document Server

    Bottura, L; Fartoukh, Stéphane David; Russenschuck, Stephan; Sanfilippo, S; Scandale, Walter; Schmidt, F; Todesco, Ezio; Walckiers, L; Wolf, R

    2002-01-01

    We report here the main results of the field measurements performed so far on the pre-series LHC superconducting dipoles at superfluid helium temperature. After discussing the results at injection and collision conditions, we focus on the non-linear contributions at high field, on the contribution of superconductor magnetization at injection, and on ramp rate effects. The statistics accumulated on the first magnets of the production verify the hypotheses that have been used to design the correctors scheme for the LHC. In particular high field saturation is in line with the expectations, although a small systematic deformation due to Lorentz forces affects both sextupole and decapole terms. The decay at injection and snap-back at beginning of beam acceleration require careful characterization.

  15. Monolayer patterning using ketone dipoles.

    Science.gov (United States)

    Kim, Min Kyoung; Xue, Yi; Pašková, Tereza; Zimmt, Matthew B

    2013-08-14

    The self-assembly of multi-component monolayers with designed patterns requires molecular recognition among components. Dipolar interactions have been found to influence morphologies of self-assembled monolayers and can affect molecular recognition functions. Ketone groups have large dipole moments (2.6 D) and are easily incorporated into molecules. The potential of ketone groups for dipolar patterning has been evaluated through synthesis of two 1,5-disubstituted anthracenes bearing mono-ketone side chains, STM characterization of monolayers self-assembled from their single and two component solutions and molecular mechanics simulations to determine their self-assembly energetics. The results reveal that (i) anthracenes bearing self-repulsive mono-ketone side chains assemble in an atypical monolayer morphology that establishes dipolar attraction, instead of repulsion, between ketones in adjacent side chains; (ii) pairs of anthracene molecules whose self-repulsive ketone side chains are dipolar complementary spontaneously assemble compositionally patterned monolayers, in which the two components segregate into neighboring, single component columns, driven by side chain dipolar interactions; (iii) compositionally patterned monolayers also assemble from dipolar complementary anthracene pairs that employ different dipolar groups (ketones or CF2 groups) in their side chains; (iv) the ketone group, with its larger dipole moment and size, provides comparable driving force for patterned monolayer formation to that of the smaller dipole, and smaller size, CF2 group.

  16. Fundamentals of Superconducting Nanoelectronics

    CERN Document Server

    Sidorenko, Anatolie

    2011-01-01

    This book demonstrates how the new phenomena in superconductivity on the nanometer scale (FFLO state, triplet superconductivity, Crossed Andreev Reflection, synchronized generation etc.) serve as the basis for the invention and development of novel nanoelectronic devices and systems. It demonstrates how rather complex ideas and theoretical models, like odd-pairing, non-uniform superconducting state, pi-shift etc., adequately describe the processes in real superconducting nanostructues and novel devices based on them. The book is useful for a broad audience of readers, researchers, engineers, P

  17. Superconducting optical modulator

    Science.gov (United States)

    Bunt, Patricia S.; Ference, Thomas G.; Puzey, Kenneth A.; Tanner, David B.; Tache, Nacira; Varhue, Walter J.

    2000-12-01

    An optical modulator based on the physical properties of high temperature superconductors has been fabricated and tested. The modulator was constructed form a film of Yttrium Barium Copper Oxide (YBCO) grown on undoped silicon with a buffer layer of Yttria Stabilized Zirconia. Standard lithographic procedures were used to pattern the superconducting film into a micro bridge. Optical modulation was achieved by passing IR light through the composite structure normal to the micro bridge and switching the superconducting film in the bridge region between the superconducting and non-superconducting states. In the superconducting state, IR light reflects from the superconducting film surface. When a critical current is passed through the micro bridge, it causes the film in this region to switch to the non-superconducting state allowing IR light to pass through it. Superconducting materials have the potential to switch between these two states at speeds up to 1 picosecond using electrical current. Presently, fiber optic transmission capacity is limited by the rate at which optical data can be modulated. The superconducting modulator, when combined with other components, may have the potential to increase the transmission capacity of fiber optic lines.

  18. Basic Study of Superconductive Actuator

    OpenAIRE

    涌井, 和也; 荻原, 宏康

    2000-01-01

    There are two kinds of electromagnetic propulsion ships : a superconductive electromagnetic propulsion ship and a superconductive electricity propulsion ship. A superconductive electromagnetic propulsion ship uses the electromagnetic force (Lorenz force) by the interaction between a magnetic field and a electric current. On the other hand, a superconductive electricity propulsion ship uses screws driven by a superconductive motor. A superconductive propulsion ship technique has the merits of ...

  19. Detail of photo 7903109 stack of superconducting cables in the modulus measuring device

    CERN Multimedia

    1979-01-01

    The picture shows an assembly of insulated superconducting cables of the type used in the Po dipole magnet inserted in the elastic modulus measuring device (photos 7903547X and 7903169) in order to measures its mechanical properties under azimuthal compression. See also 7903547X, 7903169, 8307552X.

  20. Cs2Te normal conducting photocathodes in the superconducting rf gun

    CERN Document Server

    Xiang, R; Buettig, H; Janssen, D; Justus, M; Lehnert, U; Michel, P; Murcek, P; Schamlott, A; Schneider, Ch; Schurig, R; Staufenbiel, F; Teichert, J

    2010-01-01

    The superconducting radio frequency photoinjector (SRF gun) is one of the latest applications of superconducting rf technology in the accelerator field. Since superconducting photocathodes with high quantum efficiency are yet unavailable, normal conducting cathode material is the main choice for SRF photoinjectors. However, the compatibility between the photocathode and the cavity is one of the challenges for this concept. Recently, a SRF gun with Cs2Te cathode has been successfully operated in Forschungszentrum Dresden-Rossendorf. In this paper, we will present the physical properties of Cs2Te photocathodes in the SC cavity, such as the quantum efficiency, the lifetime, the rejuvenation, the charge saturation, and the dark current.

  1. Low-lying dipole strength in the N = 28 shell-closure nucleus {sup 52}Cr

    Energy Technology Data Exchange (ETDEWEB)

    Pai, Haridas; Beller, Jacob; Benouaret, Nadia; Enders, Joachim; Hartmann, Timo; Karg, Oliver; Neumann-Cosel, Peter von; Pietralla, Norbert; Ponomarev, Vladimir Yu.; Romig, Christopher; Schnorrenberger, Linda; Volz, Stephan; Zweidinger, Markus [Institut fuer Kernphysik, Technische Universitaet Darmstadt (Germany); Scheck, Marcus [Institut fuer Kernphysik, Technische Universitaet Darmstadt (Germany); School of Engineering, University of the West of Scotland, Paisley (United Kingdom); SUPA, Scottish Universities Physics Alliance, Glasgow (United Kingdom)

    2014-07-01

    Low-lying electric and magnetic dipole strengths (E1 and M1, respectively) of atomic nuclei have drawn considerable attention in the last decade. The low-lying dipole strength of the N = 28 closed-shell nucleus {sup 52}Cr was studied with nuclear resonance fluorescence up to 9.9 MeV, using bremsstrahlung at the superconducting Darmstadt electron linear accelerator S-DALINAC. Twenty-eight spin-1 states were observed between 5.0 and 9.5 MeV excitation energy, 14 of those for the first time and uncertainties for cross sections were reduced in many cases. Both, electric dipole excitations (E1, around 8 MeV) and magnetic dipole excitations (M1, around 9 MeV) were detected. Microscopic calculations within the quasiparticle-phonon nuclear model were performed using a basis which includes one-, two-, and three-phonon configurations to interpret the dipole strength distributions of {sup 52}Cr and show good agreement with experimental results.

  2. Design and comparative analysis of 10 MW class superconducting wind power generators according to different types of superconducting wires

    Science.gov (United States)

    Sung, Hae-Jin; Kim, Gyeong-Hun; Kim, Kwangmin; Park, Minwon; Yu, In-Keun; Kim, Jong-Yul

    2013-11-01

    Wind turbine concepts can be classified into the geared type and the gearless type. The gearless type wind turbine is more attractive due to advantages of simplified drive train and increased energy yield, and higher reliability because the gearbox is omitted. In addition, this type resolves the weight issue of the wind turbine with the light weight of gearbox. However, because of the low speed operation, this type has disadvantage such as the large diameter and heavy weight of generator. Super-Conducting (SC) wind power generator can reduce the weight and volume of a wind power system. Properties of superconducting wire are very different from each company. This paper considers the design and comparative analysis of 10 MW class SC wind power generators according to different types of SC wires. Super-Conducting Synchronous Generators (SCSGs) using YBCO and Bi-2223 wires are optimized by an optimal method. The magnetic characteristics of the SCSGs are investigated using the finite elements method program. The optimized specifications of the SCSGs are discussed in detail, and the optimization processes can be used effectively to develop large scale wind power generation systems.

  3. Low-energy dipole strength in 112,120Sn

    CERN Document Server

    Özel-Tashenov, B; Lenske, H; Krumbholz, A M; Litvinova, E; von Neumann-Cosel, P; Poltoratska, I; Richter, A; Rusev, G; Savran, D; Tsoneva, N

    2014-01-01

    The 112,120Sn(gamma,gamma') reactions below the neutron separation energies have been studied at the superconducting Darmstadt electron linear accelerator S-DALINAC for different endpoint energies of the incident bremsstrahlung spectrum. Dipole strength distributions are extracted for 112Sn up to 9.5 MeV and for 120Sn up to 9.1 MeV. A concentration of dipole excitations is observed between 5 and 8 MeV in both nuclei. Missing strength due to unobserved decays to excited states is estimated in a statistical model. A fluctuation analysis is applied to the photon scattering spectra to extract the amount of the unresolved strength hidden in background due to fragmentation. The strength distributions are discussed within different model approaches such as the quasiparticle-phonon model and the relativistic time blocking approximation allowing for an inclusion of complex configurations beyond the initial particle-hole states. While a satisfactory description of the fragmentation can be achieved for sufficently large...

  4. Coupling nitrogen-vacancy centers in diamond to superconducting flux qubits.

    Science.gov (United States)

    Marcos, D; Wubs, M; Taylor, J M; Aguado, R; Lukin, M D; Sørensen, A S

    2010-11-19

    We propose a method to achieve coherent coupling between nitrogen-vacancy (NV) centers in diamond and superconducting (SC) flux qubits. The resulting coupling can be used to create a coherent interaction between the spin states of distant NV centers mediated by the flux qubit. Furthermore, the magnetic coupling can be used to achieve a coherent transfer of quantum information between the flux qubit and an ensemble of NV centers. This enables a long-term memory for a SC quantum processor and possibly an interface between SC qubits and light.

  5. Coupling nitrogen-vacancy centers in diamond to superconducting flux qubits

    DEFF Research Database (Denmark)

    Marcos, D.; Wubs, Martijn; Taylor, J.M.

    2010-01-01

    We propose a method to achieve coherent coupling between nitrogen-vacancy (NV) centers in diamond and superconducting (SC) flux qubits. The resulting coupling can be used to create a coherent interaction between the spin states of distant NV centers mediated by the flux qubit. Furthermore, the ma......, the magnetic coupling can be used to achieve a coherent transfer of quantum information between the flux qubit and an ensemble of NV centers. This enables a long-term memory for a SC quantum processor and possibly an interface between SC qubits and light....

  6. Main: 3SC2 [RPSD[Archive

    Lifescience Database Archive (English)

    Full Text Available 3SC2 小麦 Bread Wheat Triticum aestivum Serine Carboxypeptidase Ii Chains A And B Nam... 1WHS; X-ray; A=6-260, B=266-418.|PDB; 1WHT; X-ray; A=5-260, B=266-418.|PDB; 3SC2; X-ray; A=1-259, B=266-417...WHDAPRSMLPIYRELIAAGLRIWVFSGDTDAVVPLTATRYSIGALGLPTTTSWYPWYDDQEVGGWSQVYKGLTLVSVRGAGHEVPLHRPRQALVLFQYFLQGKPMPGQTKNAT wheat_3SC2.jpg ...

  7. Graphene: Carbon's superconducting footprint

    Science.gov (United States)

    Vafek, Oskar

    2012-02-01

    Graphene exhibits many extraordinary properties, but superconductivity isn't one of them. Two theoretical studies suggest that by decorating the surface of graphene with the right species of dopant atoms, or by using ionic liquid gating, superconductivity could yet be induced.

  8. Superconducting cavities for LEP

    CERN Multimedia

    1983-01-01

    Above: a 350 MHz superconducting accelerating cavity in niobium of the type envisaged for accelerating electrons and positrons in later phases of LEP. Below: a small 1 GHz cavity used for investigating the surface problems of superconducting niobium. Albert Insomby stays on the right. See Annual Report 1983 p. 51.

  9. Academic training: Applied superconductivity

    CERN Multimedia

    2007-01-01

    LECTURE SERIES 17, 18, 19 January from 11.00 to 12.00 hrs Council Room, Bldg 503 Applied Superconductivity : Theory, superconducting Materials and applications E. PALMIERI/INFN, Padova, Italy When hearing about persistent currents recirculating for several years in a superconducting loop without any appreciable decay, one realizes that we are dealing with a phenomenon which in nature is the closest known to the perpetual motion. Zero resistivity and perfect diamagnetism in Mercury at 4.2 K, the breakthrough during 75 years of several hundreds of superconducting materials, the revolution of the "liquid Nitrogen superconductivity"; the discovery of still a binary compound becoming superconducting at 40 K and the subsequent re-exploration of the already known superconducting materials: Nature discloses drop by drop its intimate secrets and nobody can exclude that the last final surprise must still come. After an overview of phenomenology and basic theory of superconductivity, the lectures for this a...

  10. RHIC spin flipper AC dipole controller

    Energy Technology Data Exchange (ETDEWEB)

    Oddo, P.; Bai, M.; Dawson, C.; Gassner, D.; Harvey, M.; Hayes, T.; Mernick, K.; Minty, M.; Roser, T.; Severino, F.; Smith, K.

    2011-03-28

    The RHIC Spin Flipper's five high-Q AC dipoles which are driven by a swept frequency waveform require precise control of phase and amplitude during the sweep. This control is achieved using FPGA based feedback controllers. Multiple feedback loops are used to and dynamically tune the magnets. The current implementation and results will be presented. Work on a new spin flipper for RHIC (Relativistic Heavy Ion Collider) incorporating multiple dynamically tuned high-Q AC-dipoles has been developed for RHIC spin-physics experiments. A spin flipper is needed to cancel systematic errors by reversing the spin direction of the two colliding beams multiple times during a store. The spin flipper system consists of four DC-dipole magnets (spin rotators) and five AC-dipole magnets. Multiple AC-dipoles are needed to localize the driven coherent betatron oscillation inside the spin flipper. Operationally the AC-dipoles form two swept frequency bumps that minimize the effect of the AC-dipole dipoles outside of the spin flipper. Both AC bumps operate at the same frequency, but are phase shifted from each other. The AC-dipoles therefore require precise control over amplitude and phase making the implementation of the AC-dipole controller the central challenge.

  11. Topological Crystalline Superconductivity in Locally Noncentrosymmetric Multilayer Superconductors.

    Science.gov (United States)

    Yoshida, Tomohiro; Sigrist, Manfred; Yanase, Youichi

    2015-07-10

    Topological crystalline superconductivity in locally noncentrosymmetric multilayer superconductors (SCs) is proposed. We study the odd-parity pair-density wave (PDW) state induced by the spin-singlet pairing interaction through the spin-orbit coupling. It is shown that the PDW state is a topological crystalline SC protected by a mirror symmetry, although it is topologically trivial according to the classification based on the standard topological periodic table. The topological property of the mirror subsectors is intuitively explained by adiabatically changing the Bogoliubov-de Gennes Hamiltonian. A subsector of the bilayer PDW state reduces to the two-dimensional noncentrosymmetric SC, while a subsector of the trilayer PDW state is topologically equivalent to the spinless p-wave SC. Chiral Majorana edge modes in trilayers can be realized without Cooper pairs in the spin-triplet channel and chemical potential tuning.

  12. Collective Dipole-Dipole Interactions in an Atomic Array

    CERN Document Server

    Sutherland, R T

    2016-01-01

    The coherent dipole-dipole interactions of atoms in an atomic array are studied. It is found that the excitation probability of an atom in an array parallel to the direction of laser propagation ($\\boldsymbol{\\hat{k}}$) will either grow or decay logarithmically along $\\boldsymbol{\\hat{k}}$, depending on the detuning of the laser. The symmetry of the system for atomic separations of $\\delta r = j\\lambda/2$, where $j$ is an integer, causes the excitation distribution and scattered radiation to abruptly become symmetric about the center of the array. For atomic separations of $\\delta r < \\lambda/2$, the appearance of a collection of extremely subradiant states ($\\Gamma\\sim 0$), disrupts the described trend. In order to interpret the results from a finite array of atoms, a band structure calculation in the $N\\rightarrow \\infty$ limit is conducted where the decay rates and the Collective Lamb Shifts of the eigenmodes along the Brillouin zone are shown. Finally, the band structure of an array strongly affects it...

  13. The sign of the dipole-dipole potential by axion exchange

    Science.gov (United States)

    Daido, Ryuji; Takahashi, Fuminobu

    2017-09-01

    We calculate a dipole-dipole potential between fermions mediated by a light pseudoscalar, axion, paying a particular attention to the overall sign. While the sign of the potential is physical and important for experiments to discover or constrain the axion coupling to fermions, there is often a sign error in the literature. The purpose of this short note is to clarify the sign issue of the axion-mediated dipole-dipole potential. As a by-product, we find a sign change of the dipole-dipole potenital due to the different spin of the mediating particle.

  14. Superconductivity in carbon nanomaterials

    Science.gov (United States)

    Dlugon, Katarzyna

    The purpose of this thesis is to explain the phenomenon of superconductivity in carbon nanomaterials such as graphene, fullerenes and carbon nanotubes. In the introductory chapter, there is a description of superconductivity and how it occurs at critical temperature (Tc) that is characteristic and different to every superconducting material. The discovery of superconductivity in mercury in 1911 by Dutch physicist Heike Kamerlingh Onnes is also mentioned. Different types of superconductors, type I and type II, low and high temperatures superconductors, as well as the BCS theory that was developed in 1957 by Bardeen, Cooper, and Schrieffer, are also described in detail. The BCS theory explains how Cooper's pairs are formed and how they are responsible for the superconducting properties of many materials. The following chapters explain superconductivity in doped fullerenes, graphene and carbon nanotubes, respectively. There is a thorough explanation followed by many examples of different types of carbon nanomaterials in which small changes in chemical structure cause significant changes in superconducting properties. The goal of this research was not only to take into consideration well known carbon based superconductors but also to search for the newest available materials such as the fullerene nanowhiskers discovered quite recently. There is also a presentation of fairly new ideas about inducing superconductivity in a monolayer of graphene which is more challenging than inducing superconductivity in graphite by simply intercalating metal atoms between its graphene sheets. An effort has been taken to look for any available information about carbon nanomaterials that have the potential to superconduct at room temperature, mainly because discovery of such materials would be a real revolution in the modern world, although no such materials have been discovered yet.

  15. Dipoles on a Two-leg Ladder

    DEFF Research Database (Denmark)

    Gammelmark, Søren; Zinner, Nikolaj Thomas

    2013-01-01

    We study polar molecules with long-range dipole-dipole interactions confined to move on a two-leg ladder for different orientations of the molecular dipole moments with respect to the ladder. Matrix product states are employed to calculate the many-body ground state of the system as function...... of lattice filling fractions, perpendicular hopping between the legs, and dipole interaction strength. We show that the system exhibits zig-zag ordering when the dipolar interactions are predominantly repulsive. As a function of dipole moment orientation with respect to the ladder, we find...... that there is a critical angle at which ordering disappears. This angle is slightly larger than the angle at which the dipoles are non-interacting along a single leg. This behavior should be observable using current experimental techniques....

  16. Superconductivity in aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Kubozono, Yoshihiro, E-mail: kubozono@cc.okayama-u.ac.jp [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Research Center of New Functional Materials for Energy Production, Storage and Transport, Okayama University, Okayama 700-8530 (Japan); Japan Science and Technology Agency, ACT-C, Kawaguchi 332-0012 (Japan); Goto, Hidenori; Jabuchi, Taihei [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Yokoya, Takayoshi [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Research Center of New Functional Materials for Energy Production, Storage and Transport, Okayama University, Okayama 700-8530 (Japan); Kambe, Takashi [Department of Physics, Okayama University, Okayama 700-8530 (Japan); Sakai, Yusuke; Izumi, Masanari; Zheng, Lu; Hamao, Shino; Nguyen, Huyen L.T. [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Sakata, Masafumi; Kagayama, Tomoko; Shimizu, Katsuya [Center of Science and Technology under Extreme Conditions, Osaka University, Osaka 560-8531 (Japan)

    2015-07-15

    Highlights: • Aromatic superconductor is one of core research subjects in superconductivity. Superconductivity is observed in certain metal-doped aromatic hydrocarbons. Some serious problems to be solved exist for future advancement of the research. This article shows the present status of aromatic superconductors. - Abstract: ‘Aromatic hydrocarbon’ implies an organic molecule that satisfies the (4n + 2) π-electron rule and consists of benzene rings. Doping solid aromatic hydrocarbons with metals provides the superconductivity. The first discovery of such superconductivity was made for K-doped picene (K{sub x}picene, five benzene rings). Its superconducting transition temperatures (T{sub c}’s) were 7 and 18 K. Recently, we found a new superconducting K{sub x}picene phase with a T{sub c} as high as 14 K, so we now know that K{sub x}picene possesses multiple superconducting phases. Besides K{sub x}picene, we discovered new superconductors such as Rb{sub x}picene and Ca{sub x}picene. A most serious problem is that the shielding fraction is ⩽15% for K{sub x}picene and Rb{sub x}picene, and it is often ∼1% for other superconductors. Such low shielding fractions have made it difficult to determine the crystal structures of superconducting phases. Nevertheless, many research groups have expended a great deal of effort to make high quality hydrocarbon superconductors in the five years since the discovery of hydrocarbon superconductivity. At the present stage, superconductivity is observed in certain metal-doped aromatic hydrocarbons (picene, phenanthrene and dibenzopentacene), but the shielding fraction remains stubbornly low. The highest priority research area is to prepare aromatic superconductors with a high superconducting volume-fraction. Despite these difficulties, aromatic superconductivity is still a core research target and presents interesting and potentially breakthrough challenges, such as the positive pressure dependence of T{sub c} that is clearly

  17. 46 CFR 7.70 - Folly Island, SC to Hilton Head Island, SC.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Folly Island, SC to Hilton Head Island, SC. 7.70 Section... BOUNDARY LINES Atlantic Coast § 7.70 Folly Island, SC to Hilton Head Island, SC. (a) A line drawn from the southernmost extremity of Folly Island to latitude 32°35′ N. longitude 79°58.2′ W. (Stono Inlet Lighted...

  18. LOG PERIODIC DIPOLE ARRAY WITH PARASITIC ELEMENTS

    Science.gov (United States)

    The design and measured characteristics of dipole and monopole versions of a log periodic array with parasitic elements are discussed. In a dipole...array with parasitic elements, these elements are used in place of every alternate dipole, thereby eliminating the need of a twisted feed arrangement...for the elements to obtain log periodic performance of the anntenna. This design with parasitic elements lends itself to a monopole version of the

  19. Impact of eigenvalues on the pseudopotential calculation of superconducting parameters of metals Ga, Cd and In

    Science.gov (United States)

    Yadav, Jayprakash; Rafique, S. M.; Kumari, Shanti

    2009-10-01

    In the present paper some superconducting (SC) state parameters of metals Ga, Cd and In have been studied through Harrison's First Principle [HFP] pseudopotential technique using McMillan's formalism. The impact of choosing two different sets of core energy eigenvalues viz. Herman-Skillman and Clementi (or Experimental) has been studied.

  20. Model study of coexistence of Jahn-Teller distortion, antiferromagnetism and superconductivity in iron pnictide superconductors

    Science.gov (United States)

    Pradhan, B.; Goi, S. K.; Behera, Srikanta; Parida, P. K.; Mishra, R. N.

    2016-12-01

    We have proposed a theoretical model for the coexistence of superconductivity (SC), antiferromagnetism (AFM) and Jahn-Teller (JT) effect in the mean field approximation for iron based superconductors. The model is solved by using Zubarev's double-time Green's function technique to get their selfconsistent gap equations. Then these gap equations are solved numerically.

  1. Coupling nitrogen-vacancy centers in diamond to superconducting flux qubits

    DEFF Research Database (Denmark)

    Marcos, D.; Wubs, Martijn; Taylor, J.M.;

    2010-01-01

    We propose a method to achieve coherent coupling between nitrogen-vacancy (NV) centers in diamond and superconducting (SC) flux qubits. The resulting coupling can be used to create a coherent interaction between the spin states of distant NV centers mediated by the flux qubit. Furthermore, the ma...

  2. The first experimental results on laser ion loading into superconducting ECR ion source at RIKEN

    CERN Document Server

    Arzumanyan, G M; Shirkov, G D; Yano, Y

    2002-01-01

    The first experimental results on ions and neutrals injection by means of laser ablation from metal targets into the RIKEN 18 GHz superconducting electron cyclotron resonance ion source (SC ECRIS) are presented. Pulsed aluminium ion currents up to Al sup 8 sup + were generated in the source. The difference in pulse shapes of various charge states of the extracted ion currents is registered

  3. The Inverse Problem for the Dipole Field

    CERN Document Server

    Epp, V

    2015-01-01

    The Inverse problem for an electromagnetic field produced by a dipole is solved. It is assumed that the field of an arbitrary changing dipole is known. Obtained formulae allow calculation of the position and dynamics of the dipole which produces the measured field. The derived results can be used in investigations on radiative process in solids caused by changing of the charge distribution. For example, generation of the electromagnetic field caused by oscillations of atoms or electron gas at the trace of a particle channeling in a crystal, or fields arising at solids cracking or dislocation formation -- in any case when one is interested in the details of the dipole field source.

  4. Which dipole are you studying in lab?

    Science.gov (United States)

    Binder, P.-M.; Tate, Reuben B.; Crowder, Callie K.

    2017-01-01

    We explore the similarities and differences between the electric dipole studied in introductory physics and the purportedly equivalent elementary experiment in which the electric potential is measured on a conductive sheet as a current flows. The former is a three-dimensional electrostatic dipole while the latter is a two-dimensional steady-state dipole. In spite of these differences, and as shown in this work, the potentials due to these dipoles look very similar. This may be misleading to either students or unaware instructors.

  5. Axion Induced Oscillating Electric Dipole Moments

    CERN Document Server

    Hill, Christopher T

    2015-01-01

    The axion electromagnetic anomaly induces an oscillating electric dipole for any static magnetic dipole. Static electric dipoles do not produce oscillating magnetic moments. This is a low energy theorem which is a consequence of the space-time dependent cosmic background field of the axion. The electron will acquire an oscillating electric dipole of frequency $m_a$ and strength $\\sim 10^{-32}$ e-cm, two orders of magnitude above the nucleon, and within four orders of magnitude of the present standard model DC limit. This may suggest sensitive new experimental venues for the axion dark matter search.

  6. Simplified approach to double jumps for fluorescing dipole-dipole interacting atoms

    CERN Document Server

    Hannstein, V; Hannstein, Volker; Hegerfeldt, Gerhard C.

    2006-01-01

    A simplified scheme for the investigation of cooperative effects in the quantum jump statistics of small numbers of fluorescing atoms and ions in a trap is presented. It allows the analytic treatment of three dipole-dipole interacting four-level systems which model the relevant level scheme of Ba+ ions. For the latter, a huge rate of double and triple jumps was reported in a former experiment and the huge rate was attributed to the dipole-dipole interaction. Our theoretical results show that the effect of the dipole-dipole interaction on these rates is at most 5% and that for the parameter values of the experiment there is practically no effect. Consequently it seems that the dipole-dipole interaction can be ruled out as a possible explanation for the huge rates reported in the experiment.

  7. rotor of the SC rotating condenser

    CERN Multimedia

    1974-01-01

    The rotor of the rotating condenser was installed instead of the tuning fork as the modulating element of the radiofrequency system, when the SC accelerator underwent extensive improvements between 1973 to 1975 (see object AC-025). The SC was the first accelerator built at CERN. It operated from August 1957 until it was closed down at the end of 1990.

  8. Radiation Protection Section (SC/SL/RP)

    CERN Multimedia

    2006-01-01

    We should like to inform you that the Radiation Protection Section (SC/SL/RP) located on the Prévessin site has moved from Building 865 (ground floor) to new premises in Wing A of Building 892 (second floor). Telephone numbers remain the same. SC/SL/RP section

  9. The superconducting spin valve and triplet superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Garifullin, I.A., E-mail: ilgiz_garifullin@yahoo.com [Zavoisky Physical-Technical Institute, Kazan Scientific Center of Russian Academy of Sciences, 420029 Kazan (Russian Federation); Leksin, P.V.; Garif' yanov, N.N.; Kamashev, A.A. [Zavoisky Physical-Technical Institute, Kazan Scientific Center of Russian Academy of Sciences, 420029 Kazan (Russian Federation); Fominov, Ya.V. [L. D. Landau Institute for Theoretical Physics RAS, 119334 Moscow (Russian Federation); Moscow Institute of Physics and Technology, 141700 Dolgoprudny (Russian Federation); Schumann, J.; Krupskaya, Y.; Kataev, V.; Schmidt, O.G. [Leibniz Institute for Solid State and Materials Research IFW Dresden, D-01171 Dresden (Germany); Büchner, B. [Leibniz Institute for Solid State and Materials Research IFW Dresden, D-01171 Dresden (Germany); Institut für Festkörperphysik, Technische Universität Dresden, D-01062 Dresden (Germany)

    2015-01-01

    A review of our recent results on the spin valve effect is presented. We have used a theoretically proposed spin switch design F1/F2/S comprising a ferromagnetic bilayer (F1/F2) as a ferromagnetic component, and an ordinary superconductor (S) as the second interface component. Based on it we have prepared and studied in detail a set of multilayers CoO{sub x}/Fe1/Cu/Fe2/S (S=In or Pb). In these heterostructures we have realized for the first time a full spin switch effect for the superconducting current, have observed its sign-changing oscillating behavior as a function of the Fe2-layer thickness and finally have obtained direct evidence for the long-range triplet superconductivity arising due to noncollinearity of the magnetizations of the Fe1 and Fe2 layers. - Highlights: • We studied a spin switch design F1/F2/S. • We prepared a set of multilayers CoOx/Fe1/Cu/Fe2/S (S=In or Pb). • The full spin switch effect for the superconducting current was realized. • We observed its oscillating behavior as a function of the Fe2-layer thickness. • We obtained direct evidence for the long-range triplet superconductivity.

  10. Testing of a Single 11 T $Nb_3Sn$ Dipole Coil Using a Dipole Mirror Structure

    Energy Technology Data Exchange (ETDEWEB)

    Zlobin, Alexander [Fermilab; Andreev, Nicolai [Fermilab; Barzi, Emanuela [Fermilab; Chlachidze, Guram [Fermilab; Kashikhin, Vadim [Fermilab; Nobrega, Alfred [Fermilab; Novitski, Igor [Fermilab; Turrioni, Daniele [Fermilab; Karppinen, Mikko [CERN; Smekens, David [CERN

    2014-07-01

    FNAL and CERN are developing an 11 T Nb3Sn dipole suitable for installation in the LHC. To optimize coil design parameters and fabrication process and study coil performance, a series of 1 m long dipole coils is being fabricated. One of the short coils has been tested using a dipole mirror structure. This paper describes the dipole mirror magnetic and mechanical designs, and reports coil parameters and test results.

  11. Static Measurements on HTS Coils of Fully Superconducting AC Electric Machines for Aircraft Electric Propulsion System

    Science.gov (United States)

    Choi, Benjamin B.; Hunker, Keith R.; Hartwig, Jason; Brown, Gerald V.

    2017-01-01

    The NASA Glenn Research Center (GRC) has been developing the high efficiency and high-power density superconducting (SC) electric machines in full support of electrified aircraft propulsion (EAP) systems for a future electric aircraft. A SC coil test rig has been designed and built to perform static and AC measurements on BSCCO, (RE)BCO, and YBCO high temperature superconducting (HTS) wire and coils at liquid nitrogen (LN2) temperature. In this paper, DC measurements on five SC coil configurations of various geometry in zero external magnetic field are measured to develop good measurement technique and to determine the critical current (Ic) and the sharpness (n value) of the super-to-normal transition. Also, standard procedures for coil design, fabrication, coil mounting, micro-volt measurement, cryogenic testing, current control, and data acquisition technique were established. Experimentally measured critical currents are compared with theoretical predicted values based on an electric-field criterion (Ec). Data here are essential to quantify the SC electric machine operation limits where the SC begins to exhibit non-zero resistance. All test data will be utilized to assess the feasibility of using HTS coils for the fully superconducting AC electric machine development for an aircraft electric propulsion system.

  12. Cs3ScCl6

    Directory of Open Access Journals (Sweden)

    Matthew D. Ward

    2014-06-01

    Full Text Available Crystals of tricaesium scandium(III hexachloride were obtained as a side product from the reaction of U, SnCl2, Sc, and S in a CsCl flux at 1073 K. Cs3ScCl6 crystallizes in the Rb3YCl6 structure type. The asymmetric unit comprises three Cs sites, two Sc sites, and six Cl sites, all of which have site symmetry 1, except for the two Sc sites that have site symmetries of 2 and -1, respectively. The structure is composed of isolated [ScCl6]3− octahedra that are surrounded by Cs+ cations. Two Cs+ cations have interactions with eight Cl− anions, while the third has interactions with ten Cl− anions.

  13. Tunneling in superconducting structures

    Science.gov (United States)

    Shukrinov, Yu. M.

    2010-12-01

    Here we review our results on the breakpoint features in the coupled system of IJJ obtained in the framework of the capacitively coupled Josephson junction model with diffusion current. A correspondence between the features in the current voltage characteristics (CVC) and the character of the charge oscillations in superconducting layers is demonstrated. Investigation of the correlations of superconducting currents in neighboring Josephson junctions and the charge correlations in neighboring superconducting layers reproduces the features in the CVC and gives a powerful method for the analysis of the CVC of coupled Josephson junctions. A new method for determination of the dissipation parameter is suggested.

  14. Superconductivity in doped insulators

    Energy Technology Data Exchange (ETDEWEB)

    Emery, V.J. [Brookhaven National Lab., Upton, NY (United States); Kivelson, S.A. [California Univ., Los Angeles, CA (United States). Dept. of Physics

    1995-12-31

    It is shown that many synthetic metals, including high temperature superconductors are ``bad metals``, with such a poor conductivity that the usual meanfield theory of superconductivity breaks down because of anomalously large classical and quantum fluctuations of the phase of the superconducting order parameter. It is argued that the supression of a first order phase transition (phase separation) by the long-range Coulomb interaction leads to high temperature superconductivity accompanied by static or dynamical charge inhomogeneIty. Evidence in support of this picture for high temperature superconductors is described.

  15. Solitary excitations in discrete two-dimensional nonlinear Schrodinger models with dispersive dipole-dipole interactions

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Gaididei, Yuri Borisovich; Johansson, M.

    1998-01-01

    The dynamics of discrete two-dimensional nonlinear Schrodinger models with long-range dispersive interactions is investigated. In particular, we focus on the cases where the dispersion arises from a dipole-dipole interaction, assuming the dipole moments at each lattice site to be aligned either...

  16. Dipole Engineering for Conducting Polymers

    Science.gov (United States)

    McClain, William Edward

    A method for the growth of a TiO2 adhesion layer on PEDOT:PSS (poly[3,4- ethylenedioxythiophene]: poly[styrenesulfonate]) and for further functionalization with self-assembled monolayers of phosphonates (SAMPs) was developed. The TiO2 adhesion layer was grown via chemical vapor deposition using a titanium(IV) t-butoxide precursor, and was characterized by goniometry and X-ray photoelectron spectroscopy. TiO 2 grown on a model system, H-terminated silicon, indicated that the surface was t-butoxide terminated. Phenylphosphonic acids were synthesized with a variety of molecular dipoles and were used to change the work function of PEDOT:PSS through the formation of an aggregate surface dipole. Good correlation was found between the z-component of the molecular dipole and the change in work function, indicating that the film was well-ordered and dense. The magnitude of the changes in work function and goniometry measurements were similar to measurements on ITO, a substrate on which phosphonates form well-ordered monolayers. As-grown PEDOT:PSS/TiO 2 electrodes showed a lower work function compared to PEDOT:PSS, which is attributed to residual t-butoxide groups on the TiO 2 surface. UPS measurements revealed that reductions in work function in the modified electrodes lowered the difference in energy between the Fermi energy (EF) of the conducting polymer and the LUMO of PCBM ([6,6]-phenyl-C 61-butyric acid methyl ester). A reduction of this energy difference should translate into increased electron injection in electron-only diodes; however, devices with modified electrodes showed decreased current densities. UPS/IPES measurements show that TiO2 grown using this method has a much larger band gap than bulk or nanocrystalline TiO2, which is likely responsible for this decrease in device currents. At high bias, device currents increase dramatically, and the effects of the phosphonates or t-butoxide terminated TiO2 vanish. This is attributed to a reduction of the TiO2 to

  17. Quasiparticle entropy in the high-field superconducting phase of CeCoIn(5).

    Science.gov (United States)

    Tokiwa, Y; Bauer, E D; Gegenwart, P

    2012-09-14

    The heavy-fermion superconductor CeCoIn(5) displays an additional transition within its superconducting (SC) state, whose nature is characterized by high-precision studies of the isothermal field dependence of the entropy, derived from combined specific heat and magnetocaloric effect measurements at temperatures T≥100  mK and fields H≤12  T aligned along different directions. For any of these conditions, we do not observe an additional entropy contribution upon tuning at constant temperature by magnetic field from the homogeneous SC into the presumed Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) SC state. By contrast, for H∥[100] a reduction of entropy was found that quantitatively agrees with the expectation for spin-density-wave order without FFLO superconductivity. Our data exclude the formation of a FFLO state in CeCoIn(5) for out-of-plane field directions, where no spin-density-wave order exists.

  18. Superconductive technologies for the Large Hadron collider at CERN

    CERN Document Server

    Rossi, L

    2000-01-01

    The Large Hadron Collider (LHC) project is the largest plant based on superconductivity and cryogenics: 27 km of tunnel filled with superconducting magnets and other equipment that will be kept at 1.9 K. The dipole magnets have to generate a minimum magnetic field of 8.3 T to allow collisions of proton beams at an energy of 14 TeV in the centre of mass. The construction of LHC started in 1997 at CERN in Geneva and required 10 years of research and development on fine- filament NbTi superconducting wires and cables, on magnet technology and on He-II refrigerators. In particular the project needs the production of about 1000 tons of high-homogeneity NbTi with current densities of more than 2000 A mm/sup -2/ at 9 T and 1.9 K, with tight control also of all other cable properties such as magnetization, interstrand resistance and copper resistivity. The paper describes the main dipole magnets and reviews the most significant steps in the research and development, focusing on the issues related to the conductor, to...

  19. Radiating dipoles in photonic crystals

    Science.gov (United States)

    Busch; Vats; John; Sanders

    2000-09-01

    The radiation dynamics of a dipole antenna embedded in a photonic crystal are modeled by an initially excited harmonic oscillator coupled to a non-Markovian bath of harmonic oscillators representing the colored electromagnetic vacuum within the crystal. Realistic coupling constants based on the natural modes of the photonic crystal, i.e., Bloch waves and their associated dispersion relation, are derived. For simple model systems, well-known results such as decay times and emission spectra are reproduced. This approach enables direct incorporation of realistic band structure computations into studies of radiative emission from atoms and molecules within photonic crystals. We therefore provide a predictive and interpretative tool for experiments in both the microwave and optical regimes.

  20. Superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Mijatovic, Nenad; Seiler, Eugen

    2010-01-01

    , the main challenge of the superconducting direct drive technology is to prove that the reliability is superior to the alternative drive trains based on gearboxes or permanent magnets. A strategy of successive testing of superconducting direct drive trains in real wind turbines of 10 kW, 100 kW, 1 MW and 10...... offshore turbines of 8 and 10 MW have been determined from an up-scaling of an existing 5 MW turbine and the necessary properties of the superconducting drive train are discussed. We have found that the absence of the gear box is the main benefit and the reduced weight and size is secondary. However...... MW generator and it is concluded that the present production capacity of coated conductors must be increased by a factor of 36 by 2020, resulting in a ten times lower price of the tape in order to reach a realistic price level for the superconducting drive train....

  1. Magnetic and superconducting nanowires

    DEFF Research Database (Denmark)

    Piraux, L.; Encinas, A.; Vila, L.

    2005-01-01

    magnetic and superconducting nanowires. Using different approaches entailing measurements on both single wires and arrays, numerous interesting physical properties have been identified in relation to the nanoscopic dimensions of these materials. Finally, various novel applications of the nanowires are also...

  2. Superconductivity fundamentals and applications

    CERN Document Server

    Buckel, Werner

    2004-01-01

    This is the second English edition of what has become one of the definitive works on superconductivity in German -- currently in its sixth edition. Comprehensive and easy to understand, this introductory text is written especially with the non-specialist in mind. The authors, both long-term experts in this field, present the fundamental considerations without the need for extensive mathematics, describing the various phenomena connected with the superconducting state, with liberal insertion of experimental facts and examples for modern applications. While all fields of superconducting phenomena are dealt with in detail, this new edition pays particular attention to the groundbreaking discovery of magnesium diboride and the current developments in this field. In addition, a new chapter provides an overview of the elements, alloys and compounds where superconductivity has been observed in experiments, together with their major characteristics. The chapter on technical applications has been considerably expanded...

  3. Integral Measurement of Dipole Prototype of CSR

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The dipole prototype is C type used as bending magnet of the injection beam line in CSR, and acts as a model of the dipoles in the CSR main ring simultaneously. The designed relative uniformity of good field is 0.001 in 100 mm width. The results of the local distribution and transfunction at transverse profile measured

  4. Gravitational radiation from a rotating magnetic dipole

    CERN Document Server

    Hacyan, Shahen

    2016-01-01

    The gravitational radiation emitted by a rotating magnetic dipole is calculated. Formulas for the polarization amplitudes and the radiated power are obtained in closed forms, considering both the near and radiation zones of the dipole. For a neutron star, a comparison is made with other sources of gravitational and electromagnetic radiation.

  5. Magnetic dipole oscillations and radiation damping

    Science.gov (United States)

    Stump, Daniel R.; Pollack, Gerald L.

    1997-01-01

    We consider the problem of radiation damping for a magnetic dipole oscillating in a magnetic field. An equation for the radiation reaction torque is derived, and the damping of the oscillations is described. Also discussed are runaway solutions for a rotating magnetic dipole moving under the influence of the reaction torque, with no external torque.

  6. Experimental results on the Pygmy Dipole Resonance

    Directory of Open Access Journals (Sweden)

    Savran Deniz

    2014-03-01

    Full Text Available The so-called Pygmy Dipole Resonance, an additional structure of low-lying electric dipole strength, has attracted strong interest in the last years. Different experimental approaches have been used in the last decade in order to investigate this new interesting nuclear excitation mode. In this contribution an overview on the available experimental data is given.

  7. How to Introduce the Magnetic Dipole Moment

    Science.gov (United States)

    Bezerra, M.; Kort-Kamp, W. J. M.; Cougo-Pinto, M. V.; Farina, C.

    2012-01-01

    We show how the concept of the magnetic dipole moment can be introduced in the same way as the concept of the electric dipole moment in introductory courses on electromagnetism. Considering a localized steady current distribution, we make a Taylor expansion directly in the Biot-Savart law to obtain, explicitly, the dominant contribution of the…

  8. Electric dipoles on the Bloch sphere

    CERN Document Server

    Vutha, Amar C

    2014-01-01

    The time evolution of a two-level quantum mechanical system can be geometrically described using the Bloch sphere. By mapping the Bloch sphere evolution onto the dynamics of oscillating electric dipoles, we provide a physically intuitive link between classical electromagnetism and the electric dipole transitions of atomic & molecular physics.

  9. Computation of Normal Conducting and Superconducting Linear Accelerator (LINAC) Availabilities

    Energy Technology Data Exchange (ETDEWEB)

    Haire, M.J.

    2000-07-11

    A brief study was conducted to roughly estimate the availability of a superconducting (SC) linear accelerator (LINAC) as compared to a normal conducting (NC) one. Potentially, SC radio frequency cavities have substantial reserve capability, which allows them to compensate for failed cavities, thus increasing the availability of the overall LINAC. In the initial SC design, there is a klystron and associated equipment (e.g., power supply) for every cavity of an SC LINAC. On the other hand, a single klystron may service eight cavities in the NC LINAC. This study modeled that portion of the Spallation Neutron Source LINAC (between 200 and 1,000 MeV) that is initially proposed for conversion from NC to SC technology. Equipment common to both designs was not evaluated. Tabular fault-tree calculations and computer-event-driven simulation (EDS) computer computations were performed. The estimated gain in availability when using the SC option ranges from 3 to 13% under certain equipment and conditions and spatial separation requirements. The availability of an NC LINAC is estimated to be 83%. Tabular fault-tree calculations and computer EDS modeling gave the same 83% answer to within one-tenth of a percent for the NC case. Tabular fault-tree calculations of the availability of the SC LINAC (where a klystron and associated equipment drive a single cavity) give 97%, whereas EDS computer calculations give 96%, a disagreement of only 1%. This result may be somewhat fortuitous because of limitations of tabular fault-tree calculations. For example, tabular fault-tree calculations can not handle spatial effects (separation distance between failures), equipment network configurations, and some failure combinations. EDS computer modeling of various equipment configurations were examined. When there is a klystron and associated equipment for every cavity and adjacent cavity, failure can be tolerated and the SC availability was estimated to be 96%. SC availability decreased as

  10. Superconductivity and symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Sarasua, L.G., E-mail: sarasua@fisica.edu.uy [Instituto de Fisica, Facultad de Ciencias, Universidad de la Republica, Montevideo (Uruguay)

    2012-02-15

    In the present work we consider the relation between superconductivity and spontaneous gauge symmetry breaking (SGBS). We show that ODLRO does not require in principle SBGS, even in the presence of particle number fluctuations, by examining exact solutions of a fermionic pairing model. The criteria become equivalent if a symmetry breaking field is allowed, which can be attributed to the interaction with the environment. However, superconducting states without SBGS are not forbidden.

  11. Photoemission, Correlation and Superconductivity:

    Science.gov (United States)

    Abrecht, M.; Ariosa, D.; Cloëtta, D.; Pavuna, D.; Perfetti, L.; Grioni, M.; Margaritondo, G.

    We review some of the problems still affecting photoemission as a probe of high-temperature superconductivity, as well as important recent results concerning their solution. We show, in particular, some of the first important results on thin epitaxial films grown by laser ablation, which break the monopoly of cleaved BCSCO in this type of experiments. Such results, obtained on thin LSCO, may have general implications on the theory of high-temperature superconductivity.

  12. Direct summation of dipole-dipole interactions using the Wolf formalism.

    Science.gov (United States)

    Stenqvist, Björn; Trulsson, Martin; Abrikosov, Alexei I; Lund, Mikael

    2015-07-07

    We present an expanded Wolf formalism for direct summation of long-range dipole-dipole interactions and rule-of-thumbs how to choose optimal spherical cutoff (Rc) and damping parameter (α). This is done by comparing liquid radial distribution functions, dipole-dipole orientation correlations, particle energies, and dielectric constants, with Ewald sums and the Reaction field method. The resulting rule states that ασ 3 for reduced densities around ρ(∗) = 1 where σ is the particle size. Being a pair potential, the presented approach scales linearly with system size and is applicable to simulations involving point dipoles such as the Stockmayer fluid and polarizable water models.

  13. Efimov effect for three interacting bosonic dipoles.

    Science.gov (United States)

    Wang, Yujun; D'Incao, J P; Greene, Chris H

    2011-06-10

    Three oriented bosonic dipoles are treated by using the hyperspherical adiabatic representation, providing numerical evidence that the Efimov effect persists near a two-dipole resonance and in a system where angular momentum is not conserved. Our results further show that the Efimov features in scattering observables become universal, with a known three-body parameter; i.e., the resonance energies depend only on the two-body physics, which also has implications for the universal spectrum of the four-dipole problem. Moreover, the Efimov states should be long-lived, which is favorable for their creation and manipulation in ultracold dipolar gases. Finally, deeply bound two-dipole states are shown to be relatively stable against collisions with a third dipole, owing to the emergence of a repulsive interaction originating in the angular momentum nonconservation for this system.

  14. Multiscale dipole relaxation in dielectric materials

    DEFF Research Database (Denmark)

    Hansen, Jesper Schmidt

    2016-01-01

    the cross coupling between the electric field fluctuations and dipole moment fluctuations can be ignored. The peak frequencies in the spectra of the autocorrelation functions are also derived. They depend on the wave vector squared which is a fingerprint of the underlying dipole diffusion mechanism....... For the longitudinal direction the simulation results show that the cross coupling between the electric field and the dipole moment is non-negligible compromising the theoretical predictions. The underlying mechanism for this coupling is not clear.......Dipole relaxation from thermally induced perturbations is investigated on different length scales for dielectric materials. From the continuum dynamical equations for the polarisation, expressions for the transverse and longitudinal dipole autocorrelation functions are derived in the limit where...

  15. Emergent Higgsless Superconductivity

    Directory of Open Access Journals (Sweden)

    Cristina Diamantini M.

    2017-01-01

    Full Text Available We present a new Higgsless model of superconductivity, inspired from anyon superconductivity but P- and T-invariant and generalizable to any dimension. While the original anyon superconductivity mechanism was based on incompressible quantum Hall fluids as average field states, our mechanism involves topological insulators as average field states. In D space dimensions it involves a (D-1-form fictitious pseudovector gauge field which originates from the condensation of topological defects in compact lowenergy effective BF theories. There is no massive Higgs scalar as there is no local order parameter. When electromagnetism is switched on, the photon acquires mass by the topological BF mechanism. Although the charge of the gapless mode (2 and the topological order (4 are the same as those of the standard Higgs model, the two models of superconductivity are clearly different since the origins of the gap, reflected in the high-energy sectors are totally different. In 2D thi! s type of superconductivity is explicitly realized as global superconductivity in Josephson junction arrays. In 3D this model predicts a possible phase transition from topological insulators to Higgsless superconductors.

  16. Superconducting Fullerene Nanowhiskers

    Directory of Open Access Journals (Sweden)

    Yoshihiko Takano

    2012-04-01

    Full Text Available We synthesized superconducting fullerene nanowhiskers (C60NWs by potassium (K intercalation. They showed large superconducting volume fractions, as high as 80%. The superconducting transition temperature at 17 K was independent of the K content (x in the range between 1.6 and 6.0 in K-doped C60 nanowhiskers (KxC60NWs, while the superconducting volume fractions changed with x. The highest shielding fraction of a full shielding volume was observed in the material of K3.3C60NW by heating at 200 °C. On the other hand, that of a K-doped fullerene (K-C60 crystal was less than 1%. We report the superconducting behaviors of our newly synthesized KxC60NWs in comparison to those of KxC60 crystals, which show superconductivity at 19 K in K3C60. The lattice structures are also discussed, based on the x-ray diffraction (XRD analyses.

  17. High temperature interfacial superconductivity

    Science.gov (United States)

    Bozovic, Ivan [Mount Sinai, NY; Logvenov, Gennady [Port Jefferson Station, NY; Gozar, Adrian Mihai [Port Jefferson, NY

    2012-06-19

    High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting per se, is described. Depending upon the layering sequence of the bilayers, T.sub.c may be either .about.15 K or .about.30 K. This highly robust phenomenon is confined to within 2-3 nm around the interface. After exposing the bilayer to ozone, T.sub.c exceeds 50 K and this enhanced superconductivity is also shown to originate from a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi two-dimensional high T.sub.c phases and to significantly enhance superconducting properties in other superconductors. The superconducting interface may be implemented, for example, in SIS tunnel junctions or a SuFET.

  18. Measurement of the magnetic-field parameters of the NICA Booster dipole magnet

    Science.gov (United States)

    Kostromin, S. A.; Borisov, V. V.; Bichkov, A. V.; Golubitsky, O. M.; Donyagin, A. N.; Morozov, N. A.; Samsonov, E. V.; Omelyanenko, M. M.; Khodzhibagiyan, H. G.; Shemchuk, A. V.

    2016-12-01

    Serial assembly and tests of dipole and quadrupole magnets of the NICA Booster have started at the Laboratory of High Energy Physics of the Joint Institute for Nuclear Research (JINR). The accelerator is fitted with Nuclotron-type magnets with a superconducting winding and an iron yoke for shaping the needed magnetic field. The design of magnets for NICA was optimized (based on the experience gained in constructing and operating the JINR Nuclotron) for the production of magnetic fields of the required configuration in terms of the beam dynamics in the accelerator and the collider. Measurements of parameters of the field of each magnet are expected to be performed in the process of assembly and testing of each module of the magnet-cryostat system of the NICA Booster and Collider. The results of magnetic measurements for the NICA Booster dipole magnet are presented.

  19. Development and Manufacture of the Coil End Spacers of the LHC Pre-series Dipoles

    CERN Document Server

    Farina, E; Perini, D; Schiappapietra, A; Seneé, L

    2002-01-01

    The coil end spacers play an important role in the performance of superconducting coils, as their shape and location determine the mechanical stability of the conductors in the coil ends (and hence the overall coil training performance) and the local field quality. The dipole end spacers are often of a size and a geometry difficult to be industrially series manufactured and measured. Efficiency of the production and related costs are a key issue to achieve the required production rate of the LHC main dipoles at an affordable price. For the latter reasons, a design approach integrating state-of-the-art CAD/CAM optimization techniques allowing to considerably decrease design and machining time was implemented. This paper gives examples and describes the design criteria, the computation methods, the machining and measuring procedures adopted to carry out the pre-series production.

  20. Performance of the Main Dipole Magnet Circuits of the LHC during Commissioning

    CERN Document Server

    Verweij, A; Ballarino, A; Bellesia, B; Bordry, Frederick; Cantone, A; Casas Lino, M; Castaneda Serra, A; Castillo Trello, C; Catalan-Lasheras, N; Charifoulline, Z; Coelingh, G; Dahlerup-Petersen, K; D'Angelo, G; Denz, R; Fehér, S; Flora, R; Gruwé, M; Kain, V; Khomenko, B; Kirby, G; MacPherson, A; Marqueta Barbero, A; Mess, K H; Modena, M; Mompo, R; Montabonnet, V; le Naour, S; Nisbet, D; Parma, V; Pojer, M; Ponce, L; Raimondo, A; Redaelli, S; Reymond, H; Richter, D; de Rijk, G; Rijllart, A; Romera Ramirez, I; Saban, R; Sanfilippo, S; Schmidt, R; Siemko, A; Solfaroli Camillocci, M; Thurel, Y; Thiessen, H; Venturini-Delsolaro, W; Vergara Fernandez, A; Wolf, R; Zerlauth, M

    2008-01-01

    During hardware commissioning of the Large Hadron Collider (LHC), 8 main dipole circuits are tested at 1.9 K and up to their nominal current. Each dipole circuit contains 154 magnets of 15 m length, and has a total stored energy of up to 1.3 GJ. All magnets are wound from Nb-Ti superconducting Rutherford cables, and contain heaters to quickly force the transition to the normal conducting state in case of a quench, and hence reduce the hot spot temperature. In this paper the performance of the first three of these circuits is presented, focussing on quench detection, heater performance, operation of the cold bypass diodes, and magnet-to-magnet quench propagation. The results as measured on the entire circuits will be compared to the test results obtained during the reception tests of the individual magnets.

  1. SC-FDMA for mobile communications

    CERN Document Server

    Abd El-Samie, Fathi E

    2013-01-01

    SC-FDMA for Mobile Communications examines Single-Carrier Frequency Division Multiple Access (SC-FDMA). Explaining this rapidly evolving system for mobile communications, it describes its advantages and limitations and outlines possible solutions for addressing its current limitations. The book explores the emerging trend of cooperative communication with SC-FDMA and how it can improve the physical layer security. It considers the design of distributed coding schemes and protocols for wireless relay networks where users cooperate to send their data to the destination. Supplying you with the re

  2. The superconducting spin valve and triplet superconductivity

    Science.gov (United States)

    Garifullin, I. A.; Leksin, P. V.; Garif`yanov, N. N.; Kamashev, A. A.; Fominov, Ya. V.; Schumann, J.; Krupskaya, Y.; Kataev, V.; Schmidt, O. G.; Büchner, B.

    2015-01-01

    A review of our recent results on the spin valve effect is presented. We have used a theoretically proposed spin switch design F1/F2/S comprising a ferromagnetic bilayer (F1/F2) as a ferromagnetic component, and an ordinary superconductor (S) as the second interface component. Based on it we have prepared and studied in detail a set of multilayers CoOx/Fe1/Cu/Fe2/S (S=In or Pb). In these heterostructures we have realized for the first time a full spin switch effect for the superconducting current, have observed its sign-changing oscillating behavior as a function of the Fe2-layer thickness and finally have obtained direct evidence for the long-range triplet superconductivity arising due to noncollinearity of the magnetizations of the Fe1 and Fe2 layers.

  3. Properties of superconductivity on a density wave background with small ungapped Fermi surface parts

    Science.gov (United States)

    Grigoriev, P. D.

    2008-06-01

    We investigate the properties and the microscopic structure of superconductivity (SC) coexisting and sharing the common conducting band with density wave (DW). Such coexistence may take place when the nesting of the Fermi surface (FS) is not perfect, and in the DW state some quasiparticle states remain on the Fermi level and lead to the Cooper instability. The dispersion of such quasiparticle states strongly differs from that without DW, and so do the properties of SC on the DW background. The upper critical field Hc2 in such a SC state increases as the system approaches the critical pressure, where the ungapped quasiparticles and superconductivity just appear, and it may considerably exceed the usual Hc2 value without DW. The spin-density wave (SDW) background strongly suppresses the singlet SC pairing, while it does not affect so much the triplet SC transition temperature. The results obtained explain the experimental observations in layered organic metals (TMTSF)2PF6 and α-(BEDT-TTF)2KHg(SCN)4 , where SC appears in the DW states under pressure and shows many unusual properties.

  4. Structural Stability Driven by the Spin-Orbit Coupling and the Superconductivity in simple-cubic Polonium

    Science.gov (United States)

    Kang, Chang-Jong; Kim, Kyoo; Min, B. I.

    2013-03-01

    Polonium is the only element which has the simple-cubic (SC) structure in the periodic table. We have studied its structural stability based on the phonon dispersion calculations using the first-principles all-electron full-potential band method. We have demonstrated that the strong spin-orbit coupling (SOC) in SC-Po suppresses the Peierls instability and makes the SC structure stable. We have also discussed the structural chirality realized in beta-Po, as a consequence of the phonon instability. Further, we have investigated the possible superconductivity in SC-Po, and predicted that it becomes a superconductor with Tc ~ 4 K at ambient pressure. The transverse soft phonon mode at q ~ 2/3 R, which is greatly affected by the SOC, plays an important role both in the structural stability and the superconductivity in SC-Po. We have explored effects of the SOC and the volume variation on the phonon dispersions and superconducting properties of SC-Po.

  5. Experimental Study of Synchro-Betatron Coupling Induced By Dipole Modulation

    Energy Technology Data Exchange (ETDEWEB)

    Syphers, M.; Ball, M.; Brabson, B.; Budnick, J.; Caussyn, D.D.; Chao, A.W.; Collins, J.; Derenchuk, V.; Dutt, S.; East, G.; Ellison, M.; Ellison, T.; Friesel, D.; Gabella, W.; Hamilton, B.; Huang, H.; Jones, W.P.; Lee, S.Y.; Li, D.; Minty, M.G.; Nagaitsev, S.; /Unlisted /Indiana U., IUCF /SLAC /Fermilab /Argonne /Brookhaven

    2011-11-04

    Synchro-betatron coupling in a proton storage ring with electron cooling was studied experimentally by modulating a transverse dipole field close to the synchrotron frequency. The combination of the electron cooling and transverse field modulation on the synchrotron oscillation is equivalent to a dissipative parametric resonant system. The proton bunch was observed to split longitudinally into two pieces, or beamlets, converging toward attractors of the dissipative system. These phenomena might be important in understanding the effect of ground vibration on the Superconducting Super Collider beam, and the effect of power supply ripple on the Relativistic Heavy-Ion Collider beam.

  6. Development of the 11 T $Nb_{3}Sn$ dipole model at Fermilab

    CERN Document Server

    Ambrosio, G; Arkan, T T; Barzi, E; Caspi, S; Chichili, D R; Chow, K; Kashikhin, V V; Limon, P J; Makarov, A A; Ozelis, J P; Terechkine, Yu; Tompkins, J C; Wake, M; Yadav, S; Yamada, R; Yarba, V A; Zlobin, A V

    2000-01-01

    A one meter long Nb/sub 3/Sn dipole model with 11 T nominal magnetic field in a 43.5 mm bore is being developed at Fermilab in collaboration with LBNL and KEK as part of the R&D efforts for a future Very Large Hadron Collider. This paper describes the magnet design and fabrication procedure as well as summarizes the results of magnetic, mechanical and quench protection analyses. The main parameters of superconducting strand and cable are also reported. (12 refs).

  7. Reshimming of Tevatron Dipoles; A Process-Quality and Lessons-Learned Perspective

    CERN Document Server

    Blowers, James N; Harding, David J; John, Carson; Robotham, William

    2005-01-01

    Over the last two years corrections have been made for the skew quadrupole moment in 530 of the 774 installed dipoles in the Tevatron. This process of modifying the magnets in situ has inherent risk of degrading the performance of the superconducting accelerator. In order to manage the risk, as well as to ensure the corrections were done consistently, formal quality tools were used to plan and verify the work. The quality tools used to define the process and for quality control are discussed, along with highlights of lessons learned.

  8. Superconducting Helical Snake Magnet for the AGS

    CERN Document Server

    Willen, Erich; Escallier, John; Ganetis, George; Ghosh, Arup; Gupta, Ramesh C; Harrison, Michael; Jain, Animesh K; Luccio, Alfredo U; MacKay, William W; Marone, Andrew; Muratore, Joseph F; Okamura, Masahiro; Plate, Stephen R; Roser, Thomas; Tsoupas, Nicholaos; Wanderer, Peter

    2005-01-01

    A superconducting helical magnet has been built for polarized proton acceleration in the Brookhaven AGS. This "partial Snake" magnet will help to reduce the loss of polarization of the beam due to machine resonances. It is a 3 T magnet some 1940 mm in magnetic length in which the dipole field rotates with a pitch of 0.2053 degrees/mm for 1154 mm in the center and a pitch of 0.3920 degrees/mm for 393 mm in each end. The coil cross-section is made of two slotted cylinders containing superconductor. In order to minimize residual offsets and deflections of the beam on its orbit through the Snake, a careful balancing of the coil parameters was necessary. In addition to the main helical coils, a solenoid winding was built on the cold bore tube inside the main coils to compensate for the axial component of the field that is experienced by the beam when it is off-axis in this helical magnet. Also, two dipole corrector magnets were placed on the same tube with the solenoid. A low heat leak cryostat was built so that t...

  9. SUPERCONDUCTING HELICAL SNAKE MAGNET FOR THE AGS.

    Energy Technology Data Exchange (ETDEWEB)

    WILLEN, E.; ANERELLA, M.; ESCALLIER, G.; GANETIS, G.; GHOSH, A.; GUPTA, R.; HARRISON, M.; JAIN, A.; LUCCIO, A.; MACKAY, W.; MARONE, A.; MURATORE, J.; PLATE, S.; ET AL.

    2005-05-16

    A superconducting helical magnet has been built for polarized proton acceleration in the Brookhaven AGS. This ''partial Snake'' magnet will help to reduce the loss of polarization of the beam due to machine resonances. It is a 3 T magnet some 1940 mm in magnetic length in which the dipole field rotates with a pitch of 0.2053 degrees/mm for 1154 mm in the center and a pitch of 0.3920 degrees/mm for 393 mm in each end. The coil cross-section is made of two slotted cylinders containing superconductor. In order to minimize residual offsets and deflections of the beam on its orbit through the Snake, a careful balancing of the coil parameters was necessary. In addition to the main helical coils, a solenoid winding was built on the cold bore tube inside the main coils to compensate for the axial component of the field that is experienced by the beam when it is off-axis in this helical magnet. Also, two dipole corrector magnets were placed on the same tube with the solenoid. A low heat leak cryostat was built so that the magnet can operate in the AGS cooled by several cryocoolers. The design, construction and performance of this unique magnet will be summarized.

  10. The relation between ferroelasticity and superconductivity

    Science.gov (United States)

    Molak, A.; Manka, R.

    1991-01-01

    The high-temperature superconductivity is explained widely by the layered crystal structure. The one- and two-dimensional subsystems and their interaction are investigated here. It is assumed that the high-T(sub c) superconductivity takes place in the two-dimensional subsystem and the increase of the phase transition temperature from 60 K up to 90 K is the consequence of turning on the influence of one-dimensional chains. The interaction between the two subsystems is transferred along the c axis by the phonons of breathing mode, which causes the hybridization of the electronic bonds between these subsystems. The experimental works indicate that the existence of both the chains Cu(1)-O and their interaction with the superconducting plane of Cu(2)-O modify the temperature of the transition to the superconducting state. It is seen from the neutron scattering data that the rates of the interatomic distance dependencies on temperature are changed around 240 K and 90 K. The 'zig-zag' order in Cu(1)-O chains has been postulated but, on the other hand, the vibrations with a large amplitude only were reported. The bi-stabilized situation of the oxygen ions can be caused by the change of distance between these ions and the Ba ions. It leads to the appearance of a two-well potential. Its parameters depend on temperature and the dynamics of the oxygen ions' movement. They can induce the antipolar order, which can be, however, more or less chaotic. The investigation of the ferroelastic properties of Y-Ba-Cu-O samples lead to the conclusion that they are related to jumps of ions inside the given chain and not to a diffusion between different sites in the ab plane. Researchers deduce, thus, that the fluctuating oxygen ions from these chains create dipoles in the ab plane. They can be described with the pseudo-spin formalism (- Pauli matrices). The system can be described with the Ising model. The pseudo-spins interact with phonons and influence the superconductivity in the second

  11. z206sc_video_observations

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents video observations from cruise Z206SC for the Santa Barbara Channel region and beyond in southern California. The vector data file is...

  12. z107sc_video_observations

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents video observations from cruise Z107SC for the Santa Barbara Channel region and beyond in southern California. The vector data file is...

  13. z206sc_video_observations

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents video observations from cruise Z206SC for the Santa Barbara Channel region and beyond in southern California. The vector data file is...

  14. z107sc_video_observations

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents video observations from cruise Z107SC for the Santa Barbara Channel region and beyond in southern California. The vector data file is...

  15. Bandwidth challenge teams at SC2003 conference

    CERN Multimedia

    2003-01-01

    Results from the fourth annual High-Performance Bandwidth Challenge, held in conjunction with SC2003, the international conference on high-performance computing and networking which occurred last week in Phoenix, AZ (1 page).

  16. Recrystallization of Al-Sc alloys

    Energy Technology Data Exchange (ETDEWEB)

    Drits, M.E.; Toropova, L.S.; Bykov, Yu.G.; Ber, L.B.

    Scandium effect on the temperature range of aluminium recrystallization was investigated. Al-Sc alloys were studied under cold rolled and hot pressed conditions. It is found that the temperature range of Al-Sc alloy recrystallization depends on ScAl/sub 3/ particle dispersion during recrystallization heats. During heating in quenched alloys at 200-300 deg C decomposition occurs which prevents recrystallization, In the alloys with scandium contents less 0.2% decomposition and recrystallization processes pass simultaneously. In quenched alloys with scandium contents over 0.2% and in aged alloys the initiation and subsequent development of recrystallization are determined by the processes of coalescence and solution of ScAl/sub 3/ phase particles.

  17. A New Superconducting Wire for Future Accelerators

    CERN Multimedia

    2006-01-01

    The CARE/NED project has developed a new superconducting wire that can achieve very high currents (1400 amps) at high magnetic fields (12 teslas). Cross-section of the CARE/NED wire produced by SMI. As we prepare to enter a new phase of particle physics with the LHC, technological development is a continuous process to ensure the demands of future research are met. The next generation of colliders and upgrades of the present ones will require significantly larger magnetic fields for bending and focusing the particle beams. NED (Next European Dipole) is one of the projects taking on this challenge to push technology beyond the present limit (see: More about NED). The magnets in the LHC rely on niobium titanium (NbTi) as the superconducting material, with a maximum magnetic field of 8 to 10T (tesla). In order to exceed this limitation, a different material together with the corresponding technology needs to be developed. NED is assessing the suitability of niobium tin (Nb3Sn), which has the potential to at le...

  18. Effects of the Next Nearest Neighbor Hopping on Superconductivity and Antiferromagnetism of Gossamer Superconductivity

    Institute of Scientific and Technical Information of China (English)

    刘芬芬; 张勇; 袁峰; 夏临华

    2012-01-01

    The two dimensions hole-doped t-t '-J-U model was studied based on the Gutzwiller approach and the renormalized mean-field theory.The phase diagrams of gossamer superconductors and the effects of the next-nearestneighbor hopping(t ') on superconductivity and antiferromagnetism based on the t-t '-J-U model were investigated.The results show that the qualitative feature of the phase diagrams in the t-t '-J-U model is the same as in the case of the t-J-U model.The antiferromagnetic order coexists with the d-wave superconductivity(dSC) in the underdoped region below the doping δ≈ 0.1 and is enhanced by the t '.The dSC order is slightly suppressed by t ' in the underdoped region and greatly enhanced in the overdoped region.The dSC order is pushed to a larger doping region and the coexistence region of the AF and dSC extends to higher doping.

  19. Spectral distortions of the CMB dipole

    CERN Document Server

    Balashev, S A; Chluba, J; Ivanchik, A V; Varshalovich, D A

    2015-01-01

    We consider the distortions of the CMB dipole anisotropy related to the primordial recombination radiation (PRR) and primordial $y$- and $\\mu$-distortions. The signals arise due to our motion relative to the CMB restframe and appear as a frequency-dependent distortion of the CMB temperature dipole. To leading order, the expected relative distortion of CMB dipole does not depend on the particular observation directions and reaches the level of $10^{-6}$ for the PRR- and $\\mu$-distortions and $10^{-5}$ for the $y$-distortion in the frequency range 1 $-$ 700 GHz. The temperature differences arising from the dipole anisotropy of the relic CMB distortions depend on observation directions. For mutually opposite directions, collinear to the CMB dipole axis, the temperature differences because of the PRR- and $\\mu$-dipole anisotropy attain values $\\Delta T\\simeq 10\\,$nK in the considered range. The temperature difference arising from the $y$-dipole anisotropy may reach values up to $1\\,\\mu$K. The key features of the ...

  20. Nonadiabatic Induced Dipole Moment by High Intensity Femtosecond Optical Pulses

    OpenAIRE

    Koprinkov, I. G.

    2006-01-01

    Nonadiabtic dressed states and nonadiabatic induced dipole moment in the leading order of nonadiabaticity is proposed. The nonadiabatic induced dipole moment is studied in the femtosecond time domain.

  1. Impact of pseudogap on photoinduced superconducting phase transition in underdoped Bi2212

    Energy Technology Data Exchange (ETDEWEB)

    Toda, Y., E-mail: toda@eng.hokudai.ac.jp [Department of Applied Physics, Hokkaido University, Sapporo 060-8628 (Japan); Mertelj, T.; Kusar, P. [Complex Matter Department, Jozef Stefan Institute, Jamova 39, Ljubljana SI-1000 (Slovenia); Kurosawa, T.; Oda, M.; Ido, M. [Department of Physics, Hokkaido University, Sapporo 060-0810 (Japan); Mihailovic, D. [Complex Matter Department, Jozef Stefan Institute, Jamova 39, Ljubljana SI-1000 (Slovenia)

    2013-10-15

    Highlights: • QP dynamics of UD-Bi2212 in the photoinduced phase transition was investigated by pump-probe spectroscopy. • The pump fluence dependence of the QP dynamics shows a delay of the SC recovery. • The observed delay time is comparable to a recovery time of PG, suggesting a role of PG responsible for the SC formation. -- Abstract: We report nonequilibrium quasiparticle (QP) dynamics in underdoped Bi2212 crystals using ultrafast optical spectroscopy, which allows to analyze the dynamics associated with the superconducting (SC) and psuedogap (PG) QPs independently. In the saturation condition of the SC component, where the SC condensate is fully destroyed within the photoexcited volume, we found a delay of the SC state recovery associated with a transient normal state. The delay increases linearly with increasing the pump fluence. The QP dynamics also shows a contribution of the PG component, whose magnitude at the start of the SC state recovery was almost constant at various pump fluences, suggesting a critical level of PG order before the SC condensate can recover.

  2. Effects of pressure and magnetic field on superconductivity in ZrTe3: local pair-induced superconductivity

    Science.gov (United States)

    Tsuchiya, S.; Matsubayashi, K.; Yamaya, K.; Takayanagi, S.; Tanda, S.; Uwatoko, Y.

    2017-06-01

    In this work, the origin of the highly anisotropic superconducting transition in ZrTe3, where the resistance along the a axis, R a , is reduced at 4 K but those along the b axis, R b , and {c}\\prime axis, R c‧, are reduced at 2 K, was explored with the application of a magnetic field and pressure by the electrical resistance measurements. We found that the behavior of the upper critical field and its anisotropy as well as the pressure dependence determined by the R a measurements are quite similar to those of R b . Moreover, the excess conductivity for R b indicates anomalous behavior. These results support an unconventional origin for the anisotropic transition rather than conventional superconducting fluctuation. The reduction in R a is due to filamentary superconductivity (SC) induced by locally bound electron pairs (local pairs), which correspond to bi-polarons, and the transition of R b corresponds to the emergence of bulk SC originating from the Cooper pairs triggered by the transfer of the local pairs.

  3. A new family of high-Tc compounds-Stepping stones toward understanding unconventional superconductivity

    Institute of Scientific and Technical Information of China (English)

    SUN Yang; Mike GUIDRY; WU ChengLi

    2008-01-01

    @@ High-transition temperature (Tc) superconductivity was first discovered in layered copper-based oxides (cuprates)more than two decades ago[1], but its theoretical inter-pretation remains controversial[2,3]. The main question concerning the high-Tc superconductivity phase diagram is the transition between the antiferromagnetic (AF) and superconducting (SC) phases, which is dominated by anomalous properties commonly attributed to a pseu-dogap[4,5] in the spectrum. It is believed that the high-Tc mechanism in cuprates cannot be fully understood within the BCS theory[6] that explains normal supercon-ductivity. Despite much effort, there is no consensus as to the origin of the pseudogap properties, and the high-Tc mechanism remains an open question.

  4. Formation number for vortex dipoles

    Science.gov (United States)

    Sadri, Vahid; Krueger, Paul S.

    2016-11-01

    This investigation considers the axisymmetric formation of two opposite sign concentric vortex rings from jet ejection between concentric cylinders. This arrangement is similar to planar flow in that the vortex rings will travel together when the gap between the cylinders is small, similar to a vortex dipole, but it has the advantage that the vortex motion is less constrained than the planar case (vortex stretching and vortex line curvature is allowed). The flow was simulated numerically at a jet Reynolds number of 1,000 (based on ΔR and the jet velocity), jet pulse length-to-gap ratio (L / ΔR) in the range 10-20, and gap-to-outer radius ratio (ΔR /Ro) in the range 0.01-0.1. Small gap ratios were chosen for comparison with 2D results. In contrast with 2D results, the closely paired vortices in this study exhibited pinch-off from the generating flow and finite formation numbers. The more complex flow evolution afforded by the axisymmetric model and its influence on the pinch-off process will be discussed. This material is based on work supported by the National Science Foundation under Grant No. 1133876 and SMU. This supports are gratefully acknowledged.

  5. Axion induced oscillating electric dipole moments

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Christopher T. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2015-06-24

    In this study, the axion electromagnetic anomaly induces an oscillating electric dipole for any magnetic dipole. This is a low energy theorem which is a consequence of the space-time dependent cosmic background field of the axion. The electron will acquire an oscillating electric dipole of frequency ma and strength ~ 10-32 e-cm, within four orders of magnitude of the present standard model DC limit, and two orders of magnitude above the nucleon, assuming standard axion model and dark matter parameters. This may suggest sensitive new experimental venues for the axion dark matter search.

  6. Collisional blockade in microscopic optical dipole traps.

    Science.gov (United States)

    Schlosser, N; Reymond, G; Grangier, P

    2002-07-08

    We analyze the operating regimes of a very small optical dipole trap, loaded from a magneto-optical trap, as a function of the atom loading rate, i.e., the number of atoms per second entering the dipole trap. We show that, when the dipole trap volume is small enough, a "collisional blockade" mechanism locks the average number of trapped atoms on the value 0.5 over a large range of loading rates. We also discuss the "weak loading" and "strong loading" regimes outside the blockade range, and we demonstrate experimentally the existence of these three regimes.

  7. Genetic Algorithms for the Optimal Design of Superconducting Accelerator Magnets

    CERN Document Server

    Ramberger, S

    1998-01-01

    The paper describes the use of genetic algorithms with the concept of niching for the optimal design of superconducting magnets for the Large Hadron Collider, LHC at CERN. The method provides the designer with a number of local optima which can be further examined with respect to objectives such as ease of coil winding, sensitivity to manufacturing tolerances and local electromagnetic force distribution. A 6 block dipole coil was found to have advantages compared to the standard 5 block version which was previously designed using deterministic optimization methods. Results were proven by a short model magnet recently built and tested at CERN.

  8. Po Superconducting Magnet:detail of the windings

    CERN Multimedia

    1982-01-01

    The Po superconducting dipole was built as a prototype beam transport magnet for the SPS extracted proton beam Po. Its main features were: coil aperture 72 mm, length 5 m, room-temperature yoke, NbTi cable conductor impregnated with solder, nominal field 4.2 T at 4.7 K (87% of critical field). It reached its nominal field without any quench. The photo shows a detail of the inner layer winding before superposing the outer layer to form the complete coil of a pole. Worth noticing is the interleaved glass-epoxy sheet (white) with grooved channels for the flow of cooling helium. See also 8307552X.

  9. Sc3N and Sc2C2 encapsulated B40: Smarter than its carbon analogue

    Science.gov (United States)

    Shah, Esha V.; Roy, Debesh R.

    2016-10-01

    A detailed comparative investigation on the recently synthesised B40 and C40 along with their metal nitride (Sc3N)and carbide (Sc2C2) encapsulated endohedral fullerenes, is performed under density functional theory for the first time. The structures, electronic, thermodynamic and magnetic properties of all the considered compounds are explored in detail. The present study identifies borospherene (B40) and its encapsulated nitride (Sc3N@B40) and carbide (Sc2C2@B40) endohedral borofullerenes as the better candidates for future novel nano-applications compared to their carbon bucky ball analogues.

  10. STM/STS study of the superconducting gap in SmFeAsO1-xFx

    Science.gov (United States)

    Kawashima, Yuki; Ichimura, Koichi; Katono, Kazuhiro; Kurosawa, Tohru; Oda, Migaku; Tanda, Satoshi; Kamihara, Yoichi; Hosono, Hideo

    2015-02-01

    We report an electron tunneling study of SmFeAsO1-xFx in the low doping region (x=0, 0.045, 0.046, 0.069) by low temperature UHV-STM/STS. Superconducting gaps are observed for each superconducting sample x=0.045 (Tc=12.9 K), x=0.046 (Tc=32.9 K) and x=0.069 (Tc=46.9 K). We obtained corresponding superconducting gap size of ΔSC = 9.5 ± 0.5 meV, 9.75±0.25 meV and 11±1 meV. While Tc increases, ΔSC is kept the same. This suggests that the effective attractive interaction is the same and that there is some mechanism that suppresses the superconductivity in the low doping region. On the other hand, similar gap structures were found in a non-superconducting sample with x=0 at 7.8 K. The obtained gap size was ΔN = 8.5 ± 1.5 meV, which is almost the same as the superconducting gap in the superconducting samples (x=0.045, 0.046, 0.069).

  11. Nanoscience and Engineering in Superconductivity

    CERN Document Server

    Moshchalkov, Victor; Lang, Wolfgang

    2010-01-01

    For emerging energy saving technologies, superconducting materials with superior performance are needed. Such materials can be developed by manipulating the 'elementary building blocks' through nanostructuring. For superconductivity the 'elementary blocks' are Cooper pair and fluxon (vortex). This book presents new ways how to modify superconductivity and vortex matter through nanostructuring and the use of nanoscale magnetic templates. The basic nano-effects, vortex and vortex-antivortex patterns, vortex dynamics, Josephson phenomena, critical currents, and interplay between superconductivity

  12. Transition energy and oscillator strength of Sc18+ion

    Institute of Scientific and Technical Information of China (English)

    Wang Zhi-Wen; Yang Di; Hu Mu-Hong; Han Qiu-Ju; Li Jin-Ying

    2005-01-01

    The transition energies and the dipole oscillator strengths for the 1s22s-1s2np (2 ≤ n ≤ 9) and 1s22p-1s2nd (3≤n ≤ 9) of lithium-like Sc18+ ion are calculated by using the full core plus correlation method. The fine structure splittings of 1s2np and 1s2nd (n ≤ 9) states are determined from the expectation values of spin-orbit and spin-otherorbit interaction operators. The quantum defects of these series, as function of principal quantum number n, are obtained. The agreement between the f-values obtained from three alternative formulae is excellent. Comparisons of our results with experimental data available in the literature are carried out. Combining the single-channel quantum defect theory with the discrete oscillator strengths obtained in this work, this paper obtains the behaviour of discrete oscillator strengths and oscillator strength densities corresponding to the bound-free transitions adjacent to ionization threshold.

  13. Evidence for strong-coupling s-wave superconductivity in MgB2: (11)B NMR Study.

    Science.gov (United States)

    Kotegawa, H; Ishida, K; Kitaoka, Y; Muranaka, T; Akimitsu, J

    2001-09-17

    We have investigated a gap structure in a newly discovered superconductor, MgB2, through measurement of the (11)B nuclear spin-lattice relaxation rate, (11)(1/T(1)). (11)(1/T(1)) is proportional to the temperature (T) in the normal state, and decreases exponentially in the superconducting (SC) state, revealing a tiny coherence peak just below T(c). The T dependence of 1/T(1) in the SC state can be accounted for by an s-wave SC model with a large gap size of 2Delta/k(B)T(c) approximately 5 which suggests it is in a strong-coupling regime.

  14. Frustrated magnetic response of a superconducting Nb film with a square lattice of columnar defects

    Energy Technology Data Exchange (ETDEWEB)

    Zadorosny, R; Ortiz, W A [Grupo de Supercondutividade e Magnetismo, Departamento de Fisica, Universidade Federal de Sao Carlos, Sao Carlos, SP (Brazil); Lepienski, C M [Universidade Federal do Parana, Departamento de Fisica, Curitiba, PR (Brazil); Patino, E; Blamire, M G [Department of Materials Science, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom)], E-mail: rafazad@df.ufscar.br

    2008-02-01

    The magnetic response of a superconducting system presenting a frustrated state is investigated. The system is a superconducting film with mechanically pierced columns, cooled in a field which is then removed. Frustration originates from the competition between return flux of a dipole - created by flux trapped in the empty columns - and flux exclusion by the surrounding superconductor in the Meissner state. The system resolves the incompatibility among conflicting constraints, leading to frustration, by eliminating return flux, which is possibly assimilated by nearby columns, as manifested by a sudden reduction of the magnetic moment on the decreasing field branch of the hysteresis loop.

  15. Interface high-temperature superconductivity

    Science.gov (United States)

    Wang, Lili; Ma, Xucun; Xue, Qi-Kun

    2016-12-01

    Cuprate high-temperature superconductors consist of two quasi-two-dimensional (2D) substructures: CuO2 superconducting layers and charge reservoir layers. The superconductivity is realized by charge transfer from the charge reservoir layers into the superconducting layers without chemical dopants and defects being introduced into the latter, similar to modulation-doping in the semiconductor superlattices of AlGaAs/GaAs. Inspired by this scheme, we have been searching for high-temperature superconductivity in ultra-thin films of superconductors epitaxially grown on semiconductor/oxide substrates since 2008. We have observed interface-enhanced superconductivity in both conventional and unconventional superconducting films, including single atomic layer films of Pb and In on Si substrates and single unit cell (UC) films of FeSe on SrTiO3 (STO) substrates. The discovery of high-temperature superconductivity with a superconducting gap of ∼20 meV in 1UC-FeSe/STO has stimulated tremendous interest in the superconductivity community, for it opens a new avenue for both raising superconducting transition temperature and understanding the pairing mechanism of unconventional high-temperature superconductivity. Here, we review mainly the experimental progress on interface-enhanced superconductivity in the three systems mentioned above with emphasis on 1UC-FeSe/STO, studied by scanning tunneling microscopy/spectroscopy, angle-resolved photoemission spectroscopy and transport experiments. We discuss the roles of interfaces and a possible pairing mechanism inferred from these studies.

  16. Connectivity and superconductivity

    CERN Document Server

    Rubinstein, Jacob

    2000-01-01

    The motto of connectivity and superconductivity is that the solutions of the Ginzburg--Landau equations are qualitatively influenced by the topology of the boundaries, as in multiply-connected samples. Special attention is paid to the "zero set", the set of the positions (also known as "quantum vortices") where the order parameter vanishes. The effects considered here usually become important in the regime where the coherence length is of the order of the dimensions of the sample. It takes the intuition of physicists and the awareness of mathematicians to find these new effects. In connectivity and superconductivity, theoretical and experimental physicists are brought together with pure and applied mathematicians to review these surprising results. This volume is intended to serve as a reference book for graduate students and researchers in physics or mathematics interested in superconductivity, or in the Schrödinger equation as a limiting case of the Ginzburg--Landau equations.

  17. Role of dipole-dipole interaction on the magnetic dynamics of anisotropic layered cuprate antiferromagnets

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, M. [Dept. of Physics and Astro-Physics, Univ. of Delhi (India); Govind, N.; Pratap, A. [Condense Matter Theory Group, National Physical Lab., New Delhi (India); Ajay; Tripathi, R.S. [Dept. of Physics, G.B. Pant Univ. of Agriculture and Technology, Pantnagar (India)

    2001-07-01

    In the present paper, we report the role of dipole-dipole interaction on the magnetic dynamics of single layer antiferromagnets. For this, the model Hamiltonian includes the exchange Heisenberg Hamiltonian as well as dipole-dipole interactions. Within the linear spin-wave theory, we employ the double time Green's function technique to obtain expressions for the spin wave dispersion, sublattice magnetization and the magnetic contribution to specific heat as a function of various parameters of the model Hamiltonian. We observe through numerical calculations that in the absence of anisotropy in exchange couplings the dipole-dipole interaction works as an anisotropy and sustains the magnetization even in a pure 2D system. (orig.)

  18. Concepts relating magnetic interactions, intertwined electronic orders, and strongly correlated superconductivity.

    Science.gov (United States)

    Davis, J C Séamus; Lee, Dung-Hai

    2013-10-29

    Unconventional superconductivity (SC) is said to occur when Cooper pair formation is dominated by repulsive electron-electron interactions, so that the symmetry of the pair wave function is other than an isotropic s-wave. The strong, on-site, repulsive electron-electron interactions that are the proximate cause of such SC are more typically drivers of commensurate magnetism. Indeed, it is the suppression of commensurate antiferromagnetism (AF) that usually allows this type of unconventional superconductivity to emerge. Importantly, however, intervening between these AF and SC phases, intertwined electronic ordered phases (IP) of an unexpected nature are frequently discovered. For this reason, it has been extremely difficult to distinguish the microscopic essence of the correlated superconductivity from the often spectacular phenomenology of the IPs. Here we introduce a model conceptual framework within which to understand the relationship between AF electron-electron interactions, IPs, and correlated SC. We demonstrate its effectiveness in simultaneously explaining the consequences of AF interactions for the copper-based, iron-based, and heavy-fermion superconductors, as well as for their quite distinct IPs.

  19. Superconductivity on the density-wave background with soliton-wall structure

    Science.gov (United States)

    Grigoriev, P. D.

    2009-03-01

    Superconductivity (SC) may microscopically coexist with density wave (DW) when the nesting of the Fermi surface (FS) is not perfect. There are, at least, two possible microscopic structures of a DW state with quasi-particle states remaining on the Fermi level and leading to the Cooper instability: (i) the soliton-wall phase and (ii) the small ungapped FS pockets. The dispersion of such quasi-particle states strongly differs from that without DW, and so do the properties of SC on the DW background. The upper critical field H in such an SC state strongly increases as the system approaches the critical pressure, where SC first appears. H may considerably exceed its typical value without DW and has unusual upward curvature as function of temperature. The results obtained explain the experimental observations in layered organic superconductors (TMTSF)2PF6 and α-(BEDT-TTF)2KHg(SCN)4.

  20. Plasmonic functionalities based on detuned electrical dipoles

    DEFF Research Database (Denmark)

    Pors, Anders Lambertus; Nielsen, Michael Grøndahl; Bozhevolnyi, Sergey I.

    2013-01-01

    We introduce and demonstrate the concept of detuned electrical dipoles (DED) that originates from the plasmonic realization of the dressed-state picture of electromagnetically induced transparency in atomic physics. Numerically and experimentally analyzing DED metamaterials consisting of unit cells...

  1. Plasmonic functionalities based on detuned electrical dipoles

    DEFF Research Database (Denmark)

    Pors, Anders Lambertus; Nielsen, Michael Grøndahl; Bozhevolnyi, Sergey I.

    2013-01-01

    We introduce and demonstrate the concept of detuned electrical dipoles (DED) that originates from the plasmonic realization of the dressed-state picture of electromagnetically induced transparency in atomic physics. Numerically and experimentally analyzing DED metamaterials consisting of unit cells...

  2. Pygmy dipole resonance in stable nuclei

    Indian Academy of Sciences (India)

    P Von Neumann-Cosel

    2010-07-01

    Two examples of recent work on the structure of low-energy electric dipole modes are presented. The first part discusses the systematics of the pygmy dipole resonance (PDR) in stable tin isotopes deduced from high-resolution (, ′) experiments. These help to distinguish between microscopic QRPA calculations based on either a relativistic or a non-relativistic mean-field description, predicting significantly different properties of the PDR. The second part presents a novel approach to measure the complete electric dipole strength distribution from excitation energies starting at about 5 MeV across the giant dipole resonance (GDR) with high-resolution inelastic proton scattering under 0° at energies of a few 100 MeV/nucleon. The case of 208Pb is discussed in detail and first result from a recent experiment on 120Sn is presented.

  3. Preliminary Tests Of The Decris-sc Ion Source

    CERN Document Server

    Efremov, A; Bechterev, V; Bogomolov, S L; Bondarenko, P G; Datskov, V I; Dmitriev, S; Drobin, V; Lebedev, A; Leporis, M; Malinowski, H; Nikiforov, A; Paschenko, S V; Seleznev, V; Shishov, Yu A; Smirnov, Yu; Tsvineva, G; Yakovlev, B; Yazvitsky, N Yu

    2004-01-01

    A new "liquid He-free" superconducting Electron Cyclotron Resonance Ion Source DECRIS-SC, to be used as injector for the IC-100 small cyclotron, has been designed by FLNR and LHE JINR. The main feature is that a compact refrigerator of Gifford-McMahon type is used to cool the solenoid coils. For the reason of very small cooling power at 4.2 K (about 1 W) our efforts were to optimize the magnetic structure and minimize an external heating of the coils. The maximum magnetic field strength is 3 T and 2 T in injection and extraction region respectively. For the radial plasma confinement a hexapole made of NdFeB permanent magnet is used. The source will be capable of ECR plasma heating using different frequencies (14 GHz or 18 GHz). To be able to deliver usable intensities of solids, the design is also allow axial access for evaporation oven and metal samples using the plasma sputtering technique. Very preliminary results of the source test are presented.

  4. Population Dynamics in Cold Gases Resulting from the Long-Range Dipole-Dipole Interaction

    CERN Document Server

    Mandilara, A; Pillet, P

    2009-01-01

    We consider the effect of the long range dipole-dipole interaction on the excitation exchange dynamics of cold two-level atomic gase in the conditions where the size of the atomic cloud is large as compared to the wavelength of the dipole transition. We show that this interaction results in population redistribution across the atomic cloud and in specific spectra of the spontaneous photons emitted at different angles with respect to the direction of atomic polarization.

  5. Failed theories of superconductivity

    CERN Document Server

    Schmalian, Joerg

    2010-01-01

    Almost half a century passed between the discovery of superconductivity by Kammerlingh Onnes and the theoretical explanation of the phenomenon by Bardeen, Cooper and Schrieffer. During the intervening years the brightest minds in theoretical physics tried and failed to develop a microscopic understanding of the effect. A summary of some of those unsuccessful attempts to understand superconductivity not only demonstrates the extraordinary achievement made by formulating the BCS theory, but also illustrates that mistakes are a natural and healthy part of the scientific discourse, and that inapplicable, even incorrect theories can turn out to be interesting and inspiring.

  6. Superconducting magnetic quadrupole

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.W.; Shepard, K.W.; Nolen, J.A.

    1995-08-01

    A design was developed for a 350 T/m, 2.6-cm clear aperture superconducting quadrupole focussing element for use in a very low q/m superconducting linac as discussed below. The quadrupole incorporates holmium pole tips, and a rectangular-section winding using standard commercially-available Nb-Ti wire. The magnet was modeled numerically using both 2D and 3D codes, as a basis for numerical ray tracing using the quadrupole as a linac element. Components for a prototype singlet are being procured during FY 1995.

  7. Fingerprints of Mott Superconductivity

    Institute of Scientific and Technical Information of China (English)

    王强华

    2003-01-01

    We improve a previous theory of doped Mott insulators with duality between pairing and magnetism by a further duality transform. As the result we obtained a quantum Ginzburg-Landau theory describing the Cooper pair condensate and the dual of spin condensate. We address the superconductivity by doping a Mott insulator,which we call the Mott superconductivity. Some fingerprints of such novelty in cuprates are the scaling between neutron resonance energy and superfluid density, and the induced quantized spin moment by vortices or Zn impurity (together with circulating charge super-current to be checked by experiments).

  8. Cosmological CMBR dipole in open universes?

    CERN Document Server

    Langlois, D

    1997-01-01

    The observed CMBR dipole is generally interpreted as a Doppler effect arising from the motion of the Earth relative to the CMBR frame. An alternative interpretation, proposed in the last years, is that the dipole results from ultra-large scale isocurvature perturbations. We examine this idea in the context of open cosmologies and show that the isocurvature interpretation is not valid in an open universe, unless it is extremely close to a flat universe, $|\\Omega_0 -1|< 10^{-4}$.

  9. On the dipole moment of CO/+/.

    Science.gov (United States)

    Certain, P. R.; Woods, R. C.

    1973-01-01

    Results of self-consistent field calculations on neutral CO, its positive ion, and on neutral CN to verify an earlier estimate of the dipole moment of CO(+) in its ground super 2 Sigma state. Based on the above-mentioned calculations, direct evidence is obtained that the dipole moment (relative to the center of mass) is approximately 2.5 plus or minus 0.5 C, as previously determined by Kopelman and Klemperer (1962).

  10. Dynamic Dipole-Dipole Interactions between Excitons in Quantum Dots of Different Sizes

    DEFF Research Database (Denmark)

    Matsueda, Hideaki; Leosson, Kristjan; Xu, Zhangcheng

    2005-01-01

    Micro-photoluminescence spectra of GaAs/AlGaAs coupled quantum dots (QDs) are given, and proposed to be analyzed by our resonance dynamic dipole-dipole interaction (RDDDI) model, based on parity inheritance and exchange of virtual photons among QDs of different sizes.......Micro-photoluminescence spectra of GaAs/AlGaAs coupled quantum dots (QDs) are given, and proposed to be analyzed by our resonance dynamic dipole-dipole interaction (RDDDI) model, based on parity inheritance and exchange of virtual photons among QDs of different sizes....

  11. Intrinsic Decoherence of a Two-Atom System with Dipole-Dipole Interaction

    Institute of Scientific and Technical Information of China (English)

    QI Lin-Na; ZHU Ai-Dong; ZHANG Shou

    2008-01-01

    @@ We investigate the effect of dipole-dipole interaction on the intrinsic decoherence of a system which consists of two two-level atoms and an optical cavity. The entanglement of the system is calculated by making use of concurrence. Our results show that the appropriate choice for the coupling constant Ω of dipole-dipole interaction can restrain the intrinsic decoherence of the system. We also find a special phenomenon. No matter what the value of γ is, the concurrence of system slowly increases and cannot exceed 0.71 when Ω= 1.

  12. Dynamic Dipole-Dipole Interactions between Excitons in Quantum Dots of Different Sizes

    DEFF Research Database (Denmark)

    Matsueda, Hideaki; Leosson, Kristjan; Xu, Zhangcheng;

    2005-01-01

    Micro-photoluminescence spectra of GaAs/AlGaAs coupled quantum dots (QDs) are given, and proposed to be analyzed by our resonance dynamic dipole-dipole interaction (RDDDI) model, based on parity inheritance and exchange of virtual photons among QDs of different sizes.......Micro-photoluminescence spectra of GaAs/AlGaAs coupled quantum dots (QDs) are given, and proposed to be analyzed by our resonance dynamic dipole-dipole interaction (RDDDI) model, based on parity inheritance and exchange of virtual photons among QDs of different sizes....

  13. Dipole-moment-driven cooperative supramolecular polymerization.

    Science.gov (United States)

    Kulkarni, Chidambar; Bejagam, Karteek K; Senanayak, Satyaprasad P; Narayan, K S; Balasubramanian, S; George, Subi J

    2015-03-25

    While the mechanism of self-assembly of π-conjugated molecules has been well studied to gain control over the structure and functionality of supramolecular polymers, the intermolecular interactions underpinning it are poorly understood. Here, we study the mechanism of self-assembly of perylene bisimide derivatives possessing dipolar carbonate groups as linkers. It was observed that the combination of carbonate linkers and cholesterol/dihydrocholesterol self-assembling moieties led to a cooperative mechanism of self-assembly. Atomistic molecular dynamics simulations of an assembly in explicit solvent strongly suggest that the dipole-dipole interaction between the carbonate groups imparts a macro-dipolar character to the assembly. This is confirmed experimentally through the observation of a significant polarization in the bulk phase for molecules following a cooperative mechanism. The cooperativity is attributed to the presence of dipole-dipole interaction in the assembly. Thus, anisotropic long-range intermolecular interactions such as dipole-dipole interaction can serve as a way to obtain cooperative self-assembly and aid in rationalizing and predicting the mechanisms in various synthetic supramolecular polymers.

  14. The Properties of Normal Conducting Cathodes in FZD Superconducting Gun

    CERN Document Server

    Xiang, R; Buettig, H; Janssen, D; Justus, M; Lehnert, U; Michel, P; Murcek, P; Schamlott, A; Schneider, Ch; Schurig, R; Staufenbiel, F; Teichert, J

    2009-01-01

    The superconducting radio frequency photoinjector (SRF photoinjector) is one of the latest applications of SC technology in the accelerator field. Since superconducting cathodes with high QE are not available up to now, normal conducting cathode material is the main choice for the SRF photoinjectors. However, the compatibility between the cathode and the cavity is one of the challenges for this concept. The SRF gun with Cs2Te cathode has been successfully operated under the collaboration of BESSY, DESY, FZD, and MBI. In this paper, some experience gained in the gun commissioning will be concluded. The results of the properties of Cs2Te photocathode in the cavity will be presented, such as the Q.E., the life time, the dark current and the thermal emittance.

  15. Sc20C60: a volleyballene

    Science.gov (United States)

    Wang, Jing; Ma, Hong-Man; Liu, Ying

    2016-06-01

    An exceptionally stable hollow cage containing 20 scandium atoms and 60 carbon atoms has been identified. This Sc20C60 molecular cluster has a Th point group symmetry and a volleyball-like shape that we refer to below as ``Volleyballene''. Electronic structure analysis shows that the formation of delocalized π bonds between Sc atoms and the neighboring pentagonal rings made of carbon atoms is crucial for stabilizing the cage structure. A relatively large HOMO-LUMO gap (~1.4 eV) was found. The results of vibrational frequency analysis and molecular dynamics simulations both demonstrate that this Volleyballene molecule is exceptionally stable.An exceptionally stable hollow cage containing 20 scandium atoms and 60 carbon atoms has been identified. This Sc20C60 molecular cluster has a Th point group symmetry and a volleyball-like shape that we refer to below as ``Volleyballene''. Electronic structure analysis shows that the formation of delocalized π bonds between Sc atoms and the neighboring pentagonal rings made of carbon atoms is crucial for stabilizing the cage structure. A relatively large HOMO-LUMO gap (~1.4 eV) was found. The results of vibrational frequency analysis and molecular dynamics simulations both demonstrate that this Volleyballene molecule is exceptionally stable. Electronic supplementary information (ESI) available: Sc20C60: a Volleyballene_SI. See DOI: 10.1039/c5nr07784b

  16. Undoped high-Tc superconductivity in T'-La1.8Eu0.2CuO4+δ revealed by 63,65Cu and 139La NMR: Bulk superconductivity and antiferromagnetic fluctuations

    Science.gov (United States)

    Fukazawa, Hideto; Ishiyama, Seiya; Goto, Masato; Kanamaru, Shuhei; Ohashi, Kohki; Kawamata, Takayuki; Adachi, Tadashi; Hirata, Michihiro; Sasaki, Takahiko; Koike, Yoji; Kohori, Yoh

    2017-10-01

    We performed 63,65Cu and 139La NMR measurements of T'-La1.8Eu0.2CuO4+δ (T'-LECO) with the Nd2CuO4-type structure (so-called T'-structure). As a result, we detected the 63,65Cu NMR signal under finite magnetic fields and found superconductivity without antiferromagnetic (AF) order only in the reduced T'-LECO, where excess apical oxygen atoms are properly removed. This indicates that the intrinsic ground state of the ideal T'-LECO is a paramagnetic and superconducting (SC) state. Below Tc, the Knight shift was found to rapidly decrease, which indicates the emergence of bulk superconductivity due to spin-singlet Cooper pairs in the reduced T'-LECO. In the SC state of the reduced T'-LECO, moreover, a characteristic temperature dependence of the spin-lattice relaxation rate 1/T1 was observed, which implies the existence of nodal lines in the SC gap. These findings suggest that the superconductivity in the reduced T'-LECO probably has d-wave symmetry. In the normal state of the reduced T'-LECO, on the other hand, AF fluctuations were found to exist from the temperature dependence of 1/T1T, though no clear pseudogap behavior was observed. This suggests that the AF correlation plays a key role in the superconductivity of undoped high-Tc cuprate superconductors with the T'-structure.

  17. Effects of Surface Electron Doping and Substrate on the Superconductivity of Epitaxial FeSe Films.

    Science.gov (United States)

    Zhang, W H; Liu, X; Wen, C H P; Peng, R; Tan, S Y; Xie, B P; Zhang, T; Feng, D L

    2016-03-09

    Superconductivity in FeSe is greatly enhanced in films grown on SrTiO3 substrates, although the mechanism behind remains unclear. Recently, surface potassium (K) doping has also proven able to enhance the superconductivity of FeSe. Here, by using scanning tunneling microscopy, we compare the K doping dependence of the superconductivity in FeSe films grown on two substrates: SrTiO3 (001) and graphitized SiC (0001). For thick films (20 unit cells (UC)), the optimized superconducting (SC) gaps are of similar size (∼9 meV) regardless of the substrate. However, when the thickness is reduced to a few UC, the optimized SC gap is increased up to ∼15 meV for films on SrTiO3, whereas it remains unchanged for films on SiC. This clearly indicates that the FeSe/SrTiO3 interface can further enhance the superconductivity, beyond merely doping electrons. Intriguingly, we found that this interface enhancement decays exponentially as the thickness increases, with a decay length of 2.4 UC, which is much shorter than the length scale for relaxation of the lattice strain, pointing to interfacial electron-phonon coupling as the likely origin.

  18. DFBX boxes - electrical and cryogenic distribution boxes for the superconducting magnets in the LHC straight sections

    CERN Document Server

    Zbasnik, J P; Gourlay, S A; Green, M A; Hafalia, A Q; Kajiyama, Y; Knolls, M J; La Mantia, R F; Rasson, J E; Reavill, D; Turner, W C

    2003-01-01

    DFBX distribution boxes provide cryogenic and electrical services to superconducting quadrupoles and to a superconducting dipole at either end of four of the long straight sections in the LHC. The DFBX boxes also provide instrumentation and quench protection to the magnets. Current for the quadrupole and the dipole magnet is delivered through leads that combine HTS and gas cooled leads. Current for the 600 A and 120 A correction magnets is provided by pure gas-cooled leads. The bus bars from the leads to the magnets pass through low leak-rate lambda plugs between 1.8 K and 4.4 K. The heat leak into the 1.9 K region from the liquid helium tank is determined by the design of the lambda plugs. This paper describes the DFBX boxes and their function of delivering current and instrumentation signals to the magnets. (2 refs).

  19. Estimation of the Required Amount of Superconductors for High-field Accelerator Dipole Magnets

    CERN Document Server

    Schwerg, N

    2007-01-01

    The coil size and the corresponding amount of superconducting material that is used during the design process of a magnet cross-section have direct impacts on the overall magnet cost. It is therefore of interest to estimate the minimum amount of conductors needed to reach the defined field strength before a detailed design process starts. Equally, it is useful to evaluate the efficiency of a given design by calculating the amount of superconducting cables that are used to reach the envisaged main field by simple rule. To this purpose, the minimum amount of conductors for the construction of a dipole of given main field strength and aperture size is estimated taking the actual critical current density of the used strands into account. Characteristic curves applicable for the NED Nb3Sn strand specification are given and some of the recently studied different dipole configurations are compared. Based on these results, it is shown how the required amount of conductors changes due to the iron yoke contribution and...

  20. Projected Dipole Moments of Individual Two-Level Defects Extracted Using Circuit Quantum Electrodynamics.

    Science.gov (United States)

    Sarabi, B; Ramanayaka, A N; Burin, A L; Wellstood, F C; Osborn, K D

    2016-04-22

    Material-based two-level systems (TLSs), appearing as defects in low-temperature devices including superconducting qubits and photon detectors, are difficult to characterize. In this study we apply a uniform dc electric field across a film to tune the energies of TLSs within. The film is embedded in a superconducting resonator such that it forms a circuit quantum electrodynamical system. The energy of individual TLSs is observed as a function of the known tuning field. By studying TLSs for which we can determine the tunneling energy, the actual p_{z}, dipole moments projected along the uniform field direction, are individually obtained. A distribution is created with 60 p_{z}. We describe the distribution using a model with two dipole moment magnitudes, and a fit yields the corresponding values p=p_{1}=2.8±0.2  D and p=p_{2}=8.3±0.4  D. For a strong-coupled TLS the vacuum-Rabi splitting can be obtained with p_{z} and tunneling energy. This allows a measurement of the circuit's zero-point electric-field fluctuations, in a method that does not need the electric-field volume.

  1. Superconducting Magnets for Particle Accelerators

    CERN Document Server

    Rossi, L

    2012-01-01

    Superconductivity has been the most influential technology in the field of accelerators in the last 30 years. Since the commissioning of the Tevatron, which demonstrated the use and operability of superconductivity on a large scale, superconducting magnets and rf cavities have been at the heart of all new large accelerators. Superconducting magnets have been the invariable choice for large colliders, as well as cyclotrons and large synchrotrons. In spite of the long history of success, superconductivity remains a difficult technology, requires adequate R&D and suitable preparation, and has a relatively high cost. Hence, it is not surprising that the development has also been marked by a few setbacks. This article is a review of the main superconducting accelerator magnet projects; it highlights the main characteristics and main achievements, and gives a perspective on the development of superconducting magnets for the future generation of very high energy colliders.

  2. Spin-orbit-coupled superconductivity.

    Science.gov (United States)

    Lo, Shun-Tsung; Lin, Shih-Wei; Wang, Yi-Ting; Lin, Sheng-Di; Liang, C-T

    2014-06-25

    Superconductivity and spin-orbit (SO) interaction have been two separate emerging fields until very recently that the correlation between them seemed to be observed. However, previous experiments concerning SO coupling are performed far beyond the superconducting state and thus a direct demonstration of how SO coupling affects superconductivity remains elusive. Here we investigate the SO coupling in the critical region of superconducting transition on Al nanofilms, in which the strength of disorder and spin relaxation by SO coupling are changed by varying the film thickness. At temperatures T sufficiently above the superconducting critical temperature T(c), clear signature of SO coupling reveals itself in showing a magneto-resistivity peak. When T superconductivity. By studying such magneto-resistivity peaks under different strength of spin relaxation, we highlight the important effects of SO interaction on superconductivity.

  3. Application concepts of small regenerative cryocoolers in superconducting magnet systems

    Science.gov (United States)

    van der Laan, M. T. G.; Tax, R. B.; ten Kate, H. H. J.

    Superconducting magnets are in growing use outside laboratories for example MRI scanners in hospitals. Other applications under development are magnet systems for separation, levitated trains and ship propulsion. The application of cryocoolers can make these systems more practical. Interfacing these cryocoolers to the magnets can be designed in several different ways. The four basic methods will be dealt with. Test results of a realized GM cryocooler-SC magnet system will be shown. It handles about a 1:3 scale MRI magnet of which one of the six coils has been successfully tested at temperatures between 10 and 14 K.

  4. Heat Transfer in the LHC Main Superconducting Bus Bars

    CERN Document Server

    Granieri, P P; Richter, D

    2011-01-01

    CERN is performing a systematic analysis of the interconnecting bus bars of the Large Hadron Collider (LHC) main magnets. Their thermal, electrical, mechanical and hydraulic performances are addressed. In the frame of these studies, the heat transfer between the main superconducting (SC) bus bars and the surrounding He bath is investigated. It represents a key parameter in the comprehension of the bus bars stability and quench propagation mechanisms, thus crucial for the analysis of the 2008 incident which was triggered by a defective bus bars joint. This paper reports on the experimental tests and relative analysis aiming at describing the thermal behavior of the LHC main bus bars.

  5. AC/RF Superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, Gianluigi [JLAB

    2015-02-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  6. Superconducting Technology Assessment

    Science.gov (United States)

    2005-08-01

    of Nb/Al- Nx /NbTiN junctions for SIS mixer applications,” IEEE Trans. Appl. Superconduct., vol. 11, pp. 76–79, Mar. 2001. [48] M. Gurvitch, W. A...Another connector developed by IBM for commercial applications using a dendritic interposer technology. A “beam-on-pad” approach developed by Siemens

  7. Hybrid superconducting neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Merlo, V.; Lucci, M.; Ottaviani, I. [Dipartimento di Fisica, Università Tor Vergata, Via della Ricerca Scientifica, I-00133 Roma (Italy); Salvato, M.; Cirillo, M. [Dipartimento di Fisica, Università Tor Vergata, Via della Ricerca Scientifica, I-00133 Roma (Italy); CNR SPIN Salerno, Università di Salerno, Via Giovanni Paolo II, n.132, 84084 Fisciano (Italy); Scherillo, A. [Science and Technology Facility Council, ISIS Facility Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Celentano, G. [ENEA Frascati Research Centre, Via. E. Fermi 45, 00044 Frascati (Italy); Pietropaolo, A., E-mail: antonino.pietropaolo@enea.it [ENEA Frascati Research Centre, Via. E. Fermi 45, 00044 Frascati (Italy); Mediterranean Institute of Fundamental Physics, Via Appia Nuova 31, 00040 Marino, Roma (Italy)

    2015-03-16

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, {sup 10}B + n → α + {sup 7}Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current I{sub c}, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  8. Levitation Kits Demonstrate Superconductivity.

    Science.gov (United States)

    Worthy, Ward

    1987-01-01

    Describes the "Project 1-2-3" levitation kit used to demonstrate superconductivity. Summarizes the materials included in the kit. Discusses the effect demonstrated and gives details on how to obtain kits. Gives an overview of the documentation that is included. (CW)

  9. LEP superconducting cavity

    CERN Multimedia

    1995-01-01

    Engineers work in a clean room on one of the superconducting cavities for the upgrade to the LEP accelerator, known as LEP-2. The use of superconductors allow higher electric fields to be produced so that higher beam energies can be reached.

  10. Niobium superconducting cavity

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    This 5-cell superconducting cavity, made from bulk-Nb, stems from the period of general studies, not all directed towards direct use at LEP. This one is dimensioned for 1.5 GHz, the frequency used at CEBAF and also studied at Saclay (LEP RF was 352.2 MHz). See also 7908227, 8007354, 8209255, 8210054, 8312339.

  11. LHC Superconducting Magnets

    CERN Document Server

    Jean Leyder

    2000-01-01

    The LHC is the next step in CERN's quest to unravel the mysteries of the Universe. It will accelerate protons to energies never before achieved in laboratories, and to hold them on course it will use powerful superconducting magnets on an unprecedented scale.

  12. Coupled superconducting flux qubits

    NARCIS (Netherlands)

    Plantenberg, J.H.

    2007-01-01

    This thesis presents results of theoretical and experimental work on superconducting persistent-current quantum bits. These qubits offer an attractive route towards scalable solid-state quantum computing. The focus of this work is on the gradiometer flux qubit which has a special geometric design, t

  13. Superconducting Quantum Circuits

    NARCIS (Netherlands)

    Majer, J.B.

    2002-01-01

    This thesis describes a number of experiments with superconducting cir- cuits containing small Josephson junctions. The circuits are made out of aluminum islands which are interconnected with a very thin insulating alu- minum oxide layer. The connections form a Josephson junction. The current trough

  14. Checking BEBC superconducting magnet

    CERN Multimedia

    1974-01-01

    The superconducting coils of the magnet for the 3.7 m Big European Bubble Chamber (BEBC) had to be checked, see Annual Report 1974, p. 60. The photo shows a dismantled pancake. By December 1974 the magnet reached again the field design value of 3.5 T.

  15. Nonequilibrium superconducting detectors

    Science.gov (United States)

    Cristiano, R.; Ejrnaes, M.; Esposito, E.; Lisitskyi, M. P.; Nappi, C.; Pagano, S.; Perez de Lara, D.

    2006-03-01

    Nonequilibrium superconducting detectors exploit the early stages of the energy down cascade which occur after the absorption of radiation. They operate on a short temporal scale ranging from few microseconds down to tens of picoseconds. In such a way they provide fast counting capability, high time discrimination and also, for some devices, energy sensitivity. Nonequilibrium superconducting detectors are developed for their use both in basic science and in practical applications for detection of single photons or single ionized macromolecules. In this paper we consider two devices: distributed readout imaging detectors (DROIDs) based on superconducting tunnel junctions (STJs), which are typically used for high-speed energy spectroscopy applications, and hot-electron superconductive detectors (HESDs), which are typically used as fast counters and time discriminators. Implementation of the DROID geometry to use a single superconductor is discussed. Progress in the fabrication technology of NbN nanostructured HESDs is presented. The two detectors share the high sensitivity that makes them able to efficiently detect even single photons down to infrared energy.

  16. Nonequilibrium superconducting detectors

    Energy Technology Data Exchange (ETDEWEB)

    Cristiano, R [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Ejrnaes, M [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); INFN Sezione di Napoli, 80126 Naples (Italy); Esposito, E [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Lisitskyi, M P [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Nappi, C [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Pagano, S [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Dipartimento di Fisica, Universita di Salerno, 84081 Baronissi (Saudi Arabia) (Italy); Perez de Lara, D [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy)

    2006-03-15

    Nonequilibrium superconducting detectors exploit the early stages of the energy down cascade which occur after the absorption of radiation. They operate on a short temporal scale ranging from few microseconds down to tens of picoseconds. In such a way they provide fast counting capability, high time discrimination and also, for some devices, energy sensitivity. Nonequilibrium superconducting detectors are developed for their use both in basic science and in practical applications for detection of single photons or single ionized macromolecules. In this paper we consider two devices: distributed readout imaging detectors (DROIDs) based on superconducting tunnel junctions (STJs), which are typically used for high-speed energy spectroscopy applications, and hot-electron superconductive detectors (HESDs), which are typically used as fast counters and time discriminators. Implementation of the DROID geometry to use a single superconductor is discussed. Progress in the fabrication technology of NbN nanostructured HESDs is presented. The two detectors share the high sensitivity that makes them able to efficiently detect even single photons down to infrared energy.

  17. LHC superconducting strand

    CERN Multimedia

    Patrice Loiez

    1999-01-01

    This cross-section through a strand of superconducting matieral as used in the LHC shows the 8000 Niobium-Titanium filaments embedded like a honeycomb in copper. When cooled to 1.9 degrees above absolute zero in the LHC accelerator, these filaments will have zero resistance and so will carry a high electric current with no energy loss.

  18. Nonlinearities in Microwave Superconductivity

    OpenAIRE

    Ledenyov, Dimitri O.; Ledenyov, Viktor O.

    2012-01-01

    The research is focused on the modeling of nonlinear properties of High Temperature Superconducting (HTS) thin films, using Bardeen, Cooper, Schrieffer and Lumped Element Circuit theories, with purpose to enhance microwave power handling capabilities of microwave filters and optimize design of microwave circuits in micro- and nano- electronics.

  19. Coupled superconducting flux qubits

    NARCIS (Netherlands)

    Plantenberg, J.H.

    2007-01-01

    This thesis presents results of theoretical and experimental work on superconducting persistent-current quantum bits. These qubits offer an attractive route towards scalable solid-state quantum computing. The focus of this work is on the gradiometer flux qubit which has a special geometric design, t

  20. Applications of Superconductivity

    Science.gov (United States)

    Goodkind, John M.

    1971-01-01

    Presents a general review of current practical applications of the properties of superconducters. The devices are classified into groups according to the property that is of primary importance. The article is inteded as a first introduction for students and professionals. (Author/DS)

  1. Levitation Kits Demonstrate Superconductivity.

    Science.gov (United States)

    Worthy, Ward

    1987-01-01

    Describes the "Project 1-2-3" levitation kit used to demonstrate superconductivity. Summarizes the materials included in the kit. Discusses the effect demonstrated and gives details on how to obtain kits. Gives an overview of the documentation that is included. (CW)

  2. ISR Superconducting Quadrupoles

    CERN Multimedia

    1977-01-01

    Michel Bouvier is preparing for curing the 6-pole superconducting windings inbedded in the cylindrical wall separating liquid helium from vacuum in the quadrupole aperture. The heat for curing the epoxy glue was provided by a ramp of infrared lamps which can be seen above the slowly rotating cylinder. See also 7703512X, 7702690X.

  3. High temperature interface superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Gozar, A., E-mail: adrian.gozar@yale.edu [Yale University, New Haven, CT 06511 (United States); Bozovic, I. [Yale University, New Haven, CT 06511 (United States); Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2016-02-15

    Highlight: • This review article covers the topic of high temperature interface superconductivity. • New materials and techniques used for achieving interface superconductivity are discussed. • We emphasize the role played by the differences in structure and electronic properties at the interface with respect to the bulk of the constituents. - Abstract: High-T{sub c} superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-T{sub c} Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed. We conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.

  4. Thermal Analysis of the Fair SIS300 Model Dipole

    Science.gov (United States)

    Sorbi, M.; Alessandria, F.; Bellomo, G.; Fabbricatore, P.; Farinon, S.; Gambardella, U.; Musenich, R.; Volpini, G.

    2010-04-01

    Design activities, conductor R&D and model coil construction are under way for the development of a curved superconducting dipole for the fast cycled SIS300 synchrotron at FAIR at GSI. The main target is the construction within 2009 of a half-length model magnet (cold mass fully integrated in a horizontal cryostat). This magnet is designed for a maximum central field of 4.5 T in a bore of 100 mm, with a ramp rate of 1 T/s. The magnetic length of the model is 3.9 m with a curvature radius of 66.67 m (27 mm of sagitta). This paper describes the thermal analysis of the magnet, based on the estimated values of the losses in the cold mass. The study has been performed with 2-D finite element codes, both in steady state and transient analysis. The study has been completed with measurements of overall thermal exchange coefficient between the kapton-insulated cables and the supercritical helium, in order to validate the adopted assumptions about the material thermal properties.

  5. Universal limiting pressure for a three-flavor color superconducting PNJL model phase diagram

    CERN Document Server

    Ayriyan, A; Blaschke, D; Lastowiecki, R

    2016-01-01

    The phase diagram of a three-flavor Polyakov-loop Nambu-Jona-Lasinio model is analyzed for the case of isospin symmetric matter with color superconducting phases. The coexistence of chiral symmetry breaking and two-flavor color superconductivity (2SC phase) and a thermodynamic instability due to the implementation of a color neutrality constraint is observed. It is suggested to use a universal hadronization pressure to estimate the phase border between hadronic and quark-gluon plasma phases. Trajectories of constant entropy per baryon are analyzed for conditions appropriate for heavy-ion collisions in the NICA-FAIR energy range.

  6. Recrystallization and Morphology of Microstructure in Al-Sc Alloys

    Institute of Scientific and Technical Information of China (English)

    Zhang Jun; Zhang Zonghua

    2007-01-01

    Minor addition of Sc to aluminum results in the rapid precipitation of homogeneously distributed Al3Sc dispersoids. The presence of Al3Sc dispersoids is more effective recrystallization inhibitors. Our work established the precipitation of homogeneously distributed Al3Sc dispersoids, which are coherent with the matrix, have the L12 structure. It was also established that the addition of Sc was effective in improving the recrystallization resistance.

  7. K2SC: K2 Systematics Correction

    Science.gov (United States)

    Aigrain, Suzanne; Parviainen, Hannu; Pope, Benjamin

    2016-05-01

    K2SC (K2 Systematics Correction) models instrumental systematics and astrophysical variability in light curves from the K2 mission. It enables the user to remove both position-dependent systematics and time-dependent variability (e.g., for transit searches) or to remove systematics while preserving variability (for variability studies). K2SC automatically computes estimates of the period, amplitude and evolution timescale of the variability for periodic variables and can be run on ASCII and FITS light curve files. Written in Python, this pipeline requires NumPy, SciPy, MPI4Py, Astropy (ascl:1304.002), and George (ascl:1511.015).

  8. Norma Audio Revo SC-/PA-150

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Norma audio是意大利一间顶级HI-Fi音响器材生产商。这款IRevo SC-2/PA-150为正是公司旗下的一款高端型号产品。其中,Revo SC-2前置放大器的放大电路以低噪音、高速和宽频作为设计重点,能反映出音频信号中的每一个细节。

  9. Fabrication of a superconducting cable for construction of Hi-Lumi Magnet

    CERN Multimedia

    2016-01-01

    A Rutherford cabling machine is operated in the superconducting laboratory in building 163. The machine was used for the production of the Nb-Ti cables in the LHC magnets. Today, it is operated for the assembly of the high-performance cables made from state-of-the-art Nb3Sn conductor. The video shows the production of a long length Nb3Sn cable that will be use in a 11 T High Luminosity LHC dipole magnet.

  10. CaFeAs2: A staggered intercalation of quantum spin Hall and high-temperature superconductivity

    Science.gov (United States)

    Wu, Xianxin; Qin, Shengshan; Liang, Yi; Le, Congcong; Fan, Heng; Hu, Jiangping

    2015-02-01

    We predict that CaFeAs2, a newly discovered iron-based high-temperature (Tc) superconductor, is a staggered intercalation compound that integrates topological quantum spin Hall (QSH) and superconductivity (SC). CaFeAs2 has a structure with staggered CaAs and FeAs layers. While the FeAs layers are known to be responsible for high Tc superconductivity, we show that with spin orbital coupling each CaAs layer is a Z2 topologically nontrivial two-dimensional QSH insulator and the bulk is a three-dimensional weak topological insulator. In the superconducting state, the edge states in the CaAs layer are natural one-dimensional topological superconductors. The staggered intercalation of QSH and SC provides us a unique opportunity to realize and explore physics, such as Majorana modes and Majorana fermion chains.

  11. Cryogenic, superconducting and rf results of the SRFQ2 of PIAVE

    Indian Academy of Sciences (India)

    A M Porcellato; G Bisoffi; V Andreev; G Bassato; G Bezzon; S Canella; F Chiurlotto; A Lombardi; L Bertazzo; D Conventi; G Galeazzi; S Marigo; V Palmieri; F Poletto; T Shirai; S Y Stark; F Stivanello

    2002-12-01

    SRFQ2 is the second RFQ superconducting (SC) structure of PIAVE, the positive ion injector of the SC LINAC for heavy ions ALPI, in operation at Legnaro. During 2001, SRFQ2 was extensively tested at cryogenic temperature reaching its design performance, i.e., 280 kV inter-electrode voltage (equivalent to 25 MV/m peak surface electrical field) at 7 W dissipated power. This paper describes the treatments, the main difficulties arisen during the tests, the way they were overcome and the measurement sequences that allowed the characterization of SRFQ2 behavior. A brief description of future programs is also given.

  12. Superconductivity and non-Fermi liquid behavior on the border of itinerant ferromagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Ritz, Robert

    2013-10-04

    When magnetic order is suppressed under pressure, a superconducting (SC) phase emerges in the ferromagnet UGe{sub 2} and an extended non-Fermi liquid (NFL) regime is observed in the helimagnet MnSi. We report thermal expansion measurements of UGe{sub 2} under pressure by means of neutron Larmor diffraction. We find a new, putatively non-magnetic transition at the temperature TL at pressures close to the SC phase. In MnSi we report Hall effect measurements under pressure. We find a topological Hall effect, as the signature of a topologically non-trivial spin texture, above the critical pressure in the NFL regime.

  13. Dynamic dipole-dipole interactions between excitons in quantum dots of different sizes

    DEFF Research Database (Denmark)

    Matsueda, Hideaki; Leosson, Kristjan; Xu, Zhangcheng;

    2004-01-01

    A model of the resonance dynamic dipole-dipole interaction between excitons confined in quantum dots (QDs) of different sizes at close enough distance is given in terms of parity inheritance and exchange of virtual photons. Microphotoluminescence spectra of GaAs-AlGaAs coupled QDs are proposed to...

  14. The FERRUM Project: experimental and theoretical transition rates of forbidden [Sc II] lines and radiative lifetimes of metastable Sc II levels

    CERN Document Server

    Hartman, H; Lundin, P; Schef, P; Hibbert, A; Lundberg, H; Mannervik, S; Norlin, L -O; Royen, P

    2008-01-01

    Context. In many plasmas, long-lived metastable atomic levels are depopulated by collisions (quenched) before they decay radiatively. In low-density regions, however, the low collision rate may allow depopulation by electric dipole (E1) forbidden radiative transitions, so-called forbidden lines (mainly M1 and E2 transitions). If the atomic transition data are known, these lines are indicators of physical plasma conditions and used for abundance determination. Aims. Transition rates can be derived by combining relative intensities between the decay channels, so-called branching fractions (BFs), and the radiative lifetime of the common upper level. We use this approach for forbidden [Sc ii] lines, along with new calculations. Methods. Neither BFs for forbidden lines, nor lifetimes of metastable levels, are easily measured in a laboratory. Therefore, astrophysical BFs measured in Space Telescope Imaging Spectrograph (STIS) spectra of the strontium filament of Eta Carinae are combined with lifetime measurements u...

  15. Competing ferromagnetism and superconductivity on FeAs layers in EuFe2(As0.73P0.27)2.

    Science.gov (United States)

    Ahmed, Aamir; Itou, M; Xu, Shenggao; Xu, Zhu'an; Cao, Guanghan; Sakurai, Y; Penner-Hahn, James; Deb, Aniruddha

    2010-11-12

    We have measured the spin-polarized electron momentum density distributions of EuFe2(As0.73P0.27)2 by magnetic Compton scattering (MCS) measurements. For the first time, we show direct evidence of competing ferromagnetism and superconductivity (SC) on FeAs layers in this iron pnictide system. The MCS orbitalwise decomposition of the density distributions reveals that between 16 and 19 K, the spin-polarized Fe-3d character is enhanced (as the ferromagnetic character supersedes superconducting character), where the resistivity shows a maximum, reentrant SC-like peak, at 18 K. The spin polarization of the Fe-3d orbital, enhanced by ferromagnetic Eu ions, suppresses the SC around 18 K, while at other temperatures the system indeed exhibits SC where the Fe-3d spin polarization is suppressed or collapses.

  16. Novel superconductivity in CeIr(In{sub 1-x}Cd{sub x}){sub 5} studied by In-NQR measurements

    Energy Technology Data Exchange (ETDEWEB)

    Yashima, M; Taniguchi, S; Tagami, N; Mukuda, H; Kitaoka, Y [Department of Materials Engineering Science, Osaka University, Osaka 560-8531 (Japan); Ota, Y; Shishido, H; Settai, R; Onuki, Y, E-mail: yashima@nmr.mp.es.osaka-u.ac.j [Department of Physics, Osaka University, Osaka 560-0043 (Japan)

    2010-01-15

    We report the superconducting characters in CeIrIns studied by In-NQR measurements under pressure (P). In CeCoIn{sub 5} and CeRhIn{sub 5}, the occurrence of superconductivity (SC) is related with the antiferrmagnetic spin fluctuations (AFM-SFs) originating from the antiferromagntic quantum-critical point (AFM-QCP). The high-T{sub c} SC (T{sub cmax} > 2 K) is realized in both compounds. However, in CeIrIn{sub 5} which is apart from the AFM-QCP, SC occurs even without AFM-SFs and the quite small value of T{sub cmax} ({approx} 1 K) is observed around P = 3 GPa. The mechanism of SC in CeIrIn{sub 5} may be different from that in CeCoIn{sub 5} and CeRhIn{sub 5}.

  17. Plasmon-Induced Resonant Energy Transfer: a coherent dipole-dipole coupling mechanism

    Science.gov (United States)

    Bristow, Alan D.; Cushing, Scott K.; Li, Jiangtian; Wu, Nianqiang

    Metal-insulator-semiconductor core-shell nanoparticles have been used to demonstrate a dipole-dipole coupling mechanism that is entirely dependent on the dephasing time of the localized plasmonic resonance. Consequently, the short-time scale of the plasmons leads to broad energy uncertainty that allows for excitation of charge carriers in the semiconductor via stimulation of photons with energies below the energy band gap. In addition, this coherent energy transfer process overcomes interfacial losses often associated with direct charge transfer. This work explores the efficiency of the energy transfer process, the dipole-dipole coupling strength with dipole separation, shell thickness and plasmonic resonance overlap. We demonstrate limits where the coherent nature of the coupling is switched off and charge transfer processes can dominate. Experiments are performed using transient absorption spectroscopy. Results are compared to calculations using a quantum master equation. These nanostructures show strong potential for improving solar light-harvesting for power and fuel generation.

  18. Artificial abelian gauge potentials induced by dipole-dipole interactions between Rydberg atoms

    CERN Document Server

    Cesa, A

    2013-01-01

    We analyze the influence of dipole-dipole interactions between Rydberg atoms on the generation of abelian artificial gauge potentials and fields. When two Rydberg atoms are driven by a uniform laser field, we show that the combined atom-atom and atom-field interactions give rise to new, non-uniform, artificial gauge potentials. We identify the mechanism responsible for the emergence of these gauge potentials. Analytical expressions for the latter indicate that the strongest artificial magnetic fields are reached in the regime intermediate between the dipole blockade regime and the regime in which the atoms are sufficiently far apart such that atom-light interaction dominates over atom-atom interactions. We discuss the differences and similarities of artificial gauge fields originating from resonant dipole-dipole and van der Waals interactions. We also give an estimation of experimentally attainable artificial magnetic fields resulting from this mechanism.

  19. Optical force on toroidal nanostructures: toroidal dipole versus renormalized electric dipole

    CERN Document Server

    Zhang, Xu-Lin; Lin, Zhifang; Sun, Hong-Bo; Chan, C T

    2015-01-01

    We study the optical forces acting on toroidal nanostructures. A great enhancement of optical force is unambiguously identified as originating from the toroidal dipole resonance based on the source-representation, where the distribution of the induced charges and currents is characterized by the three families of electric, magnetic, and toroidal multipoles. On the other hand, the resonant optical force can also be completely attributed to an electric dipole resonance in the alternative field-representation, where the electromagnetic fields in the source-free region are expressed by two sets of electric and magnetic multipole fields based on symmetry. The confusion is resolved by conceptually introducing the irreducible electric dipole, toroidal dipole, and renormalized electric dipole. We demonstrate that the optical force is a powerful tool to identify toroidal response even when its scattering intensity is dwarfed by the conventional electric and magnetic multipoles.

  20. LHC dipoles: the countdown has begun

    CERN Multimedia

    Patrice Loiez

    2002-01-01

    At the entrance to the fourth floor corridor of the LHC-MMS (Main Magnets and Superconductors) Group in building 30, the Director-General has unveiled an electronic information panel indicating the number of LHC dipoles still to be delivered and the days remaining to the deadline (30 June 2006). The panel was the idea of Lucio Rossi, leader of the MMS Group, which is responsible for the construction of the dipole magnets. The unveiling ceremony took place on the morning of Friday 11 October 2002, at the end of a drink held to celebrate with MMS group and the LHC top management the exceptional performance of the latest dipoles, built by the French consortium Alstom-Jeumont. They are the first dipoles to achieve a magnetic field of 9 tesla in one go without quenching, thus exceeding the nominal operating field of 8.3 tesla. The challenge is now to increase the production rate from 2 to 35 dipoles per month by 2004 in order to meet the deadline, while maintaining this quality. Photo 01: The Director-General Luci...

  1. Diagrammatic description of superconductivity in elements and A{sub n}B (n = 1, 2, 3) compounds based on pseudopotential radii

    Energy Technology Data Exchange (ETDEWEB)

    Makino, Yukio, E-mail: ymak@kuchem.kyoto-u.ac.jp [Graduate School of Science, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-Ku, Kyoto 606-8502 (Japan); Yoshimura, Kazuyoshi [Graduate School of Science, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-Ku, Kyoto 606-8502 (Japan)

    2013-02-14

    Highlights: ► Various superconducting materials can be two-dimensionally mapped. ► The orbital electronegativity and pseudopotential radii difference are taken as coordinates. ► The generation of superconductivity is closely related to the threshold for metal-semiconductor transition. ► The diagrammatic expression is available for the search of new superconducting materials. -- Abstract: Two dimensional diagrams for superconducting elements and A{sub n}B(n = 1, 2, 3) compounds have been constructed using the difference (Δr{sub ENav}) between Zunger’s pseudopotential radii and the orbital electronegativity ([(Z/r(s{sup n}p{sup m})){sup 1/2}]{sub ENav}) derived from the pseudopotential radii. It is found that both superconducting elements and A{sub n}B compounds are well placed in the same domain surrounded by four boundary lines in the Δr{sub ENav}-[(Z/r(s{sup n}p{sup m})){sup 1/2}]{sub ENav} diagram. For sp-bonded elements, the boundary for superconducting/non-superconducting (SC/non-SC) is determined by a constant orbital electronegativity of [(Z/r(s{sup n}p{sup m})){sup 1/2}]{sub ENav}≅2.3, which is close to the boundary ([(Z/r(s{sup n}p{sup m})){sup 1/2}]{sub ENav}=2.046) for the metal–semiconductor transition. Superconducting elements and compounds with relatively high T{sub c} values have an orbital electronegativity close to the value ranging between SC/non-SC and metal–semiconductor transition boundaries. It is suggested that arithmetically averaging of electronegativity is inadequate in AB-type transition metal nitrides and carbides.

  2. Field Quality and Mechanical Analysis of the Beam Separation Dipole for HL-LHC Upgrade

    CERN Document Server

    AUTHOR|(CDS)2086334; Nakamoto, Tatsushi; Xu, Q; Kawamata, H; Todesco, Ezio

    2015-01-01

    High luminosity upgrade of the Large Hadron Collider (HL-LHC) project has been launched to attain a ten times higher integrated luminosity than the current LHC that has been in operation for over ten years. For this goal, the quadruple and dipole magnets around two interaction points, the ATLAS and the CMS, will be upgraded. High Energy Accelerator Research Organization (KEK) is in charge of developing the new superconducting beam separation dipole magnet (D1). The main dipole field of 5.6 T in a large aperture of 150 mm is generated using a cos-theta coil wound with Nb-Ti cables at nominal operating current of 12.0 kA at 1.9 K corresponding to 75% of the load line ratio. The main challenges for the D1 are larger aperture, a high level of iron saturation, radiation resistance, and tight constraints on field quality. This article summarizes the results of a detailed analysis on field error. Electromagnetic simulation with ROXIE was carried out for the 2-D model of the new D1. As possible design changes, a diam...

  3. Twin Rotating Coils for Cold Magnetic Measurements of 15 m Long LHC Dipoles

    CERN Document Server

    Billan, J; Buzio, M; D'Angelo, G; Deferne, G; Dunkel, O; Legrand, P; Rijllart, A; Siemko, A; Sievers, P; Schloss, S; Walckiers, L

    2000-01-01

    We describe here a new harmonic coil system for the field measurement of the superconducting, twin aperture LHC dipoles and the associated corrector magnets. Besides field measurements the system can be used as an antenna to localize the quench origin. The main component is a 16 m long rotating shaft, made up of 13 ceramic segments, each carrying two tangential coils plus a central radial coil, all working in parallel. The segments are connected with flexible Ti-alloy bellows, allowing the piecewise straight shaft to follow the curvature of the dipole while maintaining high torsional rigidity. At each interconnection the structure is supported by rollers and ball bearings, necessary for the axial movement for installation and for the rotation of the coil during measurement. Two such shafts are simultaneously driven by a twin-rotating unit, thus measuring both apertures of a dipole at the same time. This arrangement allows very short measurement times (typically 10 s) and is essential to perform cold magnetic ...

  4. The Development of the Inner Triplet Dipole Corrector (MCBX) for LHC

    CERN Document Server

    Karppinen, M; Hauge, N; Nielsen, B R

    1999-01-01

    A prototype of the MCBX correction dipole magnet is being built in industry. It features a horizontal dipole nested inside a vertical dipole The coils of the 0.6 m long single-bore magnet are wound with 7 or 9 rectangular superconducting wires pre-assembled as flat cables. As the end fields contribute for more than 50 % to the field integral an optimisation in 3D was required. The impregnated coils containing CNC-machined end spacers are pre-compressed with an aluminium shrinking cylinder. The yoke consists of scissor-laminations to back up the coil rigidity and to centre the coil assembly. These laminations move inward during the cooldown and the movement is blocked at a pre-defined temperature building-up a circumferential stress in the stainless steel outer shell. This paper describes the magnetic and mechanical design of this magnet. The expected performance from the calculations is presented. The assembly procedure is reviewed and the experience with the 250 mm long mechanical model is reported.

  5. Design of a Large Single-Aperture Dipole Magnet for HL-LHC Upgrade

    CERN Document Server

    Qingjin, Xu; Iio, Masami; Ogitsu, Toru; Sasaki, Kenichi; Yamamoto, Akira; Todesco, Ezio

    2013-01-01

    An upgrade of the low-beta insertion system for the ATLAS and Compact Muon Solenoid experiments is proposed in the high luminosity Large Hadron Collider upgrade project. It includes final beam focusing quadrupoles, beam separation and recombination dipoles, and larger aperture matching section quadrupoles. KEK is in charge of the conceptual design of the large aperture separation dipole D1. The latest design parameters are a main field of ~ 5 T at 1.9 K with Nb-Ti superconducting technology, a coil aperture of 160 mm, and a cos-theta one-layer coil with Large Hadron Collider dipole cable. Because the new D1 is expected to be operated in a very high radiation environment, radiation resistance and a cooling scheme are being carefully considered. The collaring-yoke structure is adopted to provide the mechanical support for the single-layer Nb-Ti coil. We summarize the design study of this magnet, including i) the very large iron saturation effect on field quality due to the large aperture and limited size of the...

  6. Measurement of the SC magnetic field

    CERN Multimedia

    CERN PhotoLab

    1973-01-01

    The 3.5-metre-arm carrying 100 Hall plates used for the measurmeent of the SC magnetic field. The arm rotates in a horizontal plane, its positioning and the data read-out are controlled by an on-line computer.

  7. Magnet measuring equipment of SC2

    CERN Multimedia

    CERN PhotoLab

    1974-01-01

    Checking the positioning of the magnet measuring equipment installed between the poles of SC2. The steel structure in front of the magnet is designed to house the rotary condenser and to shield it from the stray magnetic field of the accelerator.

  8. Magnet measuring equipment of SC2

    CERN Multimedia

    1974-01-01

    Checking the positioning of the magnet measuring equipment installed between the poles of SC2. The steel structure in front of the magnet is designed to house the rotary condenser and to shield it from the stray magnetic field of the accelerator. On the left, Marinus van Gulik. (See Photo Archive 7402005 and Annual Report 1974, p. 44.)

  9. The Synchrocyclotron (SC) in building 300

    CERN Multimedia

    Maximilien Brice

    2012-01-01

    The red magnet of CERN's first accelerator, the Synchrocyclotron (SC), has occupied a large part of Hall 300 since it was installed in the late 1950s. The remaining part of the 300-square-metre building has been used as a storage room since the accelerator was shut down in 1990. Now a public exhibition will breathe new life into the hall.

  10. Running characteristics of the superconducting magnetically levitated train in the case of the superconducting coil quenching; Chodendo jiki fujo ressha no chodendo coil quenching ji no soko tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, H. [Kansai University, Osaka (Japan); Osaki, H.; Masada, E. [The University of Tokyo, Tokyo (Japan)

    1998-07-01

    A superconducting (SC) magnetically levitated (Maglev) transportation system has been developed in Japan and various experiments have been done in the new test line at Yamanashi prefecture. Although the superconducting electrodynamic suspension (EDS) system has the advantage of stable levitation without active control, various electromagnetic or mechanical disturbances can cause the change of gap length and the displacement or oscillation of the bogie. In this system, the severest disturbance is SC coil quenching. Therefore it is important to show the running characteristics of the Maglev train and to increase the stability in this case. We developed three dimensional numerical simulation program for the Maglev train. Using this program, running simulation of the train for Yamanashi new test track was undertaken in the case of SC coil quenching. Because of the damping characteristics of the EDS system, influence of the coil quenching is smaller at a higher speed. In the train model, electromagnetic spring strength of the EDS system is larger than mechanical spring of the secondary suspension system connecting a bogie and cabins. Therefore influence of the quenching is only seen in the cabins connected to the quenched bogie. Demagnetization of the SC coil quenching is considered to increase the stability of the train. Although this method is useful to decrease large guidance force, lateral displacement, yaw and roll angle of the bogie, vertical displacement and pitch angle become large. 10 refs., 17 figs., 2 tabs.

  11. Knowledge insufficient: the management of haemoglobin SC disease.

    Science.gov (United States)

    Pecker, Lydia H; Schaefer, Beverly A; Luchtman-Jones, Lori

    2017-02-01

    Although haemoglobin SC (HbSC) accounts for 30% of sickle cell disease (SCD) in the United States and United Kingdom, evidence-based guidelines for genotype specific management are lacking. The unique pathology of HbSC disease is complex, characterized by erythrocyte dehydration, intracellular sickling and increased blood viscosity. The evaluation and treatment of patients with HbSC is largely inferred from studies of SCD consisting mostly of haemoglobin SS (HbSS) patients. These studies are underpowered to allow definitive conclusions about HbSC. We review the pathophysiology of HbSC disease, including known and potential differences between HbSS and HbSC, and highlight knowledge gaps in HbSC disease management. Clinical and translational research is needed to develop targeted treatments and to validate management recommendations for efficacy, safety and impact on quality of life for people with HbSC. © 2016 John Wiley & Sons Ltd.

  12. What is the dual of a dipole?

    Energy Technology Data Exchange (ETDEWEB)

    Alday, Luis F. [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, 3508 TD Utrecht (Netherlands)]. E-mail: l.f.alday@phys.uu.nl; Boer, Jan de [Instituut voor Theoretische Fysica, Valckenierstraat 65, 1018 XE Amsterdam (Netherlands)]. E-mail: jdeboer@science.uva.nl; Messamah, Ilies [Instituut voor Theoretische Fysica, Valckenierstraat 65, 1018 XE Amsterdam (Netherlands)]. E-mail: imessama@science.uva.nl

    2006-07-03

    We study gravitational solutions that admit a dual CFT description and carry non-zero dipole charge. We focus on the black ring solution in AdS{sub 3}xS{sup 3} and extract from it the one-point functions of all CFT operators dual to scalar excitations of the six-dimensional metric. In the case of small black rings, characterized by the level N, angular momentum J and dipole charge q{sub 3}, we show how the large N and J dependence of the one-point functions can be reproduced, under certain assumptions, directly from a suitable ensemble in the dual CFT. Finally we present a simple toy model that describes the thermodynamics of the small black ring for arbitrary values of the dipole charge.

  13. Theory of Dipole Induced Electromagnetic Transparency

    CERN Document Server

    Puthumpally-Joseph, Raiju; Sukharev, Maxim; Charron, Eric

    2015-01-01

    A detailed theory describing linear optics of vapors comprised of interacting multi-level quantum emitters is proposed. It is shown both by direct integration of Maxwell-Bloch equations and using a simple analytical model that at large densities narrow transparency windows appear in otherwise completely opaque spectra. The existence of such windows is attributed to overlapping resonances. This effect, first introduced for three-level systems in [R. Puthumpally-Joseph, M. Sukharev, O. Atabek and E. Charron, Phys. Rev. Lett. 113, 163603 (2014)], is due to strongly enhanced dipole-dipole interactions at high emitters' densities. The presented theory extends this effect to the case of multilevel systems. The theory is applied to the D1 transitions of interacting Rb-85 atoms. It is shown that at high atomic densities, Rb-85 atoms can behave as three-level emitters exhibiting all the properties of dipole induced electromagnetic transparency. Applications including slow light and laser pulse shaping are also propose...

  14. Dipole hearing measurements in elasmobranch fishes.

    Science.gov (United States)

    Casper, Brandon M; Mann, David A

    2007-01-01

    The hearing thresholds of the horn shark Heterodontus francisci and the white-spotted bamboo shark Chiloscyllium plagiosum were measured using auditory evoked potentials (AEP) in response to a dipole sound stimulus. The audiograms were similar between the two species with lower frequencies yielding lower particle acceleration thresholds. The particle acceleration audiograms showed more sensitive hearing at low frequencies than previous elasmobranch audiograms, except for the lemon shark Negaprion brevirsotris. Auditory evoked potential signals were also recorded while the dipole stimulus was moved to different locations above the head and body. The strongest AEP signals were recorded from the area around the parietal fossa, supporting previous experiments that suggested this region is important for elasmobranch hearing. This is the first time that hearing experiments have been conducted using a dipole stimulus with elasmobranchs, which more closely mimics the natural sounds of swimming prey.

  15. What is the dual of a dipole?

    CERN Document Server

    Alday, L F; Messamah, I; Alday, Luis F.; Boer, Jan de; Messamah, Ilies

    2006-01-01

    We study gravitational solutions that admit a dual CFT description and carry non zero dipole charge. We focus on the black ring solution in AdS_3 x S^3 and extract from it the one-point functions of all CFT operators dual to scalar excitations of the six-dimensional metric. In the case of small black rings, characterized by the level N, angular momentum J and dipole charge q_3, we show how the large N and J dependence of the one-point functions can be reproduced, under certain assumptions, directly from a suitable ensemble in the dual CFT. Finally we present a simple toy model that describes the thermodynamics of the small black ring for arbitrary values of the dipole charge.

  16. Pursuit and Synchronization in Hydrodynamic Dipoles

    CERN Document Server

    Kanso, Eva

    2015-01-01

    We study theoretically the behavior of a class of hydrodynamic dipoles. This study is motivated by recent experiments on synthetic and biological swimmers in microfluidic \\textit{Hele-Shaw} type geometries. Under such confinement, a swimmer's hydrodynamic signature is that of a potential source dipole, and the long-range interactions among swimmers are obtained from the superposition of dipole singularities. Here, we recall the equations governing the positions and orientations of interacting asymmetric swimmers in doubly-periodic domains, and focus on the dynamics of swimmer pairs. We obtain two families of `relative equilibria'-type solutions that correspond to pursuit and synchronization of the two swimmers, respectively. Interestingly, the pursuit mode is stable for large tail swimmers whereas the synchronization mode is stable for large head swimmers. These results have profound implications on the collective behavior reported in several recent studies on populations of confined microswimmers.

  17. Photoelectron spectroscopy and the dipole approximation

    Energy Technology Data Exchange (ETDEWEB)

    Hemmers, O.; Hansen, D.L.; Wang, H. [Univ. of Nevada, Las Vegas, NV (United States)] [and others

    1997-04-01

    Photoelectron spectroscopy is a powerful technique because it directly probes, via the measurement of photoelectron kinetic energies, orbital and band structure in valence and core levels in a wide variety of samples. The technique becomes even more powerful when it is performed in an angle-resolved mode, where photoelectrons are distinguished not only by their kinetic energy, but by their direction of emission as well. Determining the probability of electron ejection as a function of angle probes the different quantum-mechanical channels available to a photoemission process, because it is sensitive to phase differences among the channels. As a result, angle-resolved photoemission has been used successfully for many years to provide stringent tests of the understanding of basic physical processes underlying gas-phase and solid-state interactions with radiation. One mainstay in the application of angle-resolved photoelectron spectroscopy is the well-known electric-dipole approximation for photon interactions. In this simplification, all higher-order terms, such as those due to electric-quadrupole and magnetic-dipole interactions, are neglected. As the photon energy increases, however, effects beyond the dipole approximation become important. To best determine the range of validity of the dipole approximation, photoemission measurements on a simple atomic system, neon, where extra-atomic effects cannot play a role, were performed at BL 8.0. The measurements show that deviations from {open_quotes}dipole{close_quotes} expectations in angle-resolved valence photoemission are observable for photon energies down to at least 0.25 keV, and are quite significant at energies around 1 keV. From these results, it is clear that non-dipole angular-distribution effects may need to be considered in any application of angle-resolved photoelectron spectroscopy that uses x-ray photons of energies as low as a few hundred eV.

  18. Superconductivity an introduction

    CERN Document Server

    Kleiner, Reinhold

    2016-01-01

    The third edition of this proven text has been developed further in both scope and scale to reflect the potential for superconductivity in power engineering to increase efficiency in electricity transmission or engines. The landmark reference remains a comprehensive introduction to the field, covering every aspect from fundamentals to applications, and presenting the latest developments in organic superconductors, superconducting interfaces, quantum coherence, and applications in medicine and industry. Due to its precise language and numerous explanatory illustrations, it is suitable as an introductory textbook, with the level rising smoothly from chapter to chapter, such that readers can build on their newly acquired knowledge. The authors cover basic properties of superconductors and discuss stability and different material groups with reference to the latest and most promising applications, devoting the last third of the book to applications in power engineering, medicine, and low temperature physics. An e...

  19. Statistical mechanics of superconductivity

    CERN Document Server

    Kita, Takafumi

    2015-01-01

    This book provides a theoretical, step-by-step comprehensive explanation of superconductivity for undergraduate and graduate students who have completed elementary courses on thermodynamics and quantum mechanics. To this end, it adopts the unique approach of starting with the statistical mechanics of quantum ideal gases and successively adding and clarifying elements and techniques indispensible for understanding it. They include the spin-statistics theorem, second quantization, density matrices, the Bloch–De Dominicis theorem, the variational principle in statistical mechanics, attractive interaction, and bound states. Ample examples of their usage are also provided in terms of topics from advanced statistical mechanics such as two-particle correlations of quantum ideal gases, derivation of the Hartree–Fock equations, and Landau’s Fermi-liquid theory, among others. With these preliminaries, the fundamental mean-field equations of superconductivity are derived with maximum mathematical clarity based on ...

  20. Superconducting switch pack

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, V.C.; Wollan, J.J.

    1990-07-24

    This patent describes a superconducting switch pack at least one switch element. The switch element including a length of superconductive wire having a switching portion and two lead portions, the switching portion being between the lead portions; means for supporting the switching portion in a plane in a common mold; hardened resin means encapsulating the switching portion in the plane in a solid body; wherein the solid body has an exterior surface which is planar and substantially parallel with and spaced apart from the plane in which the switching portion is positioned. The exterior surface being exposed to the exterior of the switch pack and the resin means filling the space between the exterior surface and the plane of the switching portion so as to provide uninterrupted thermal communication between the plane of the switching portion and the exterior of the switch pack; and a heater element in thermal contact with the switching portion.

  1. Tunable superconducting nanoinductors

    Energy Technology Data Exchange (ETDEWEB)

    Annunziata, Anthony J; Santavicca, Daniel F; Frunzio, Luigi; Rooks, Michael J; Prober, Daniel E [Department of Applied Physics, Yale University, New Haven, CT 06511 (United States); Catelani, Gianluigi [Department of Physics, Yale University, New Haven, CT 06511 (United States); Frydman, Aviad, E-mail: anthony.annunziata@yale.edu, E-mail: daniel.prober@yale.edu [Department of Physics, Bar-Ilan University, Ramat Gan 52900 (Israel)

    2010-11-05

    We characterize inductors fabricated from ultra-thin, approximately 100 nm wide strips of niobium (Nb) and niobium nitride (NbN). These nanowires have a large kinetic inductance in the superconducting state. The kinetic inductance scales linearly with the nanowire length, with a typical value of 1 nH {mu}m{sup -1} for NbN and 44 pH {mu}m{sup -1} for Nb at a temperature of 2.5 K. We measure the temperature and current dependence of the kinetic inductance and compare our results to theoretical predictions. We also simulate the self-resonant frequencies of these nanowires in a compact meander geometry. These nanowire inductive elements have applications in a variety of microwave frequency superconducting circuits.

  2. Time ripe for superconductivity?

    Directory of Open Access Journals (Sweden)

    George Marsh

    2002-04-01

    But there is a crucial deadline and failure to meet it could send superconductivity back to the commercial shadows (at least outside the medical and scientific niches where it is a key enabler in analytical instruments, magnetic resonance imaging, and particle accelerators for another 30 years. Later this decade, the vintage infrastructure of dense copper conductors that supports power distribution in developed countries, in particular in the US, will become due for renewal. (Recent power problems in California were largely those of distribution infrastructure. At the same time, boosting capacity to serve the needs of increasingly affluent populations will pose a challenge. Superconductivity could provide the answer — if the technology matures in time and cost targets are met.

  3. Cooperative Ordering in Lattices of Interacting Dipoles

    CERN Document Server

    Bettles, Robert J; Adams, Charles S

    2014-01-01

    Using classical electrodynamics simulations we investigate the cooperative behavior of regular monolayers of induced two-level dipoles, including their cooperative decays and shifts. For the particular case of the kagome lattice we observe behavior akin to EIT for lattice spacings less than the probe wavelength. Within this region the dipoles exhibit ferroelectric and anti-ferroelectric ordering. We also model how the cooperative response is manifested in the optical transmission through the kagome lattice, with sharp changes in transmission from 10% to 80% for small changes in lattice spacing.

  4. Complete electric dipole response in 208Pb

    CERN Document Server

    Tamii, A; von Neumann-Cosel, P; Fujita, Y; Adachi, T; Bertulani, C A; Carter, J; Dozono, M; Fujita, H; Fujita, K; Hatanaka, K; Heilmann, A M; Ishikawa, D; Itoh, M; Ong, H J; Kawabata, T; Kalmykov, Y; Litvinova, E; Matsubara, H; Nakanishi, K; Neveling, R; Okamura, H; Özel-Tashenov, B; Ponomarev, V Yu; Richter, A; Rubio, B; Sakaguchi, H; Sakemi, Y; Sasamoto, Y; Shimbara, Y; Shimizu, Y; Smit, F D; Suzuki, T; Tameshige, Y; Wambach, J; Yamada, R; Yosoi, M; Zenihiro, J

    2011-01-01

    A benchmark experiment on 208Pb shows that polarized proton inelastic scattering at very forward angles including 0{\\deg} is a powerful tool for high-resolution studies of electric dipole (E1) and spin magnetic dipole (M1) modes in nuclei over a broad excitation energy range testing up-to-date nuclear model calculations. The E1 polarizability extracted from the data provides a constraint on the neutron skin thickness in 208Pb and the poorly known density dependence of the symmetry energy, relevant to the description of neutron stars.

  5. A HTS dipole insert coil constructed

    CERN Document Server

    Ballarino, A; Rey, J M; Stenvall, A; Sorbi, M; Tixador, P

    2013-01-01

    This report is the deliverable report 7.4.1 “A HTS dipole insert coil constructed“. The report has three parts: “Design report for the HTS dipole insert”, “One insert pancake prototype coil constructed with the setup for a high field test”, and “All insert components ordered”. The three report parts show that, although the insert construction will be only completed by end 2013, all elements are present for a successful completion and that, given the important investments done by the participants, there is a full commitment of all of them to finish the project

  6. Relativistic Model for two-band Superconductivity

    OpenAIRE

    Ohsaku, Tadafumi

    2003-01-01

    To understand the superconductivity in MgB2, several two-band models of superconductivity were proposed. In this paper, by using the relativistic fermion model, we clearize the effect of the lower band in the superconductivity.

  7. Performance of Superconducting Magnet Prototypes for LCLS-II Linear Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kashikhin, Vladimir [Fermilab; Andreev, Nikolai [Fermilab; DiMarco, Joseph [Fermilab; Makarov, Alexander [Fermilab; Tartaglia, Michael [Fermilab; Velev, George [Fermilab

    2016-12-30

    The new LCLS-II Linear Superconducting Accelerator at SLAC needs superconducting magnet packages installed inside SCRF Cryomodules to focus and steer an electron beam. Two magnet prototypes were built and successfully tested at Fermilab. Magnets have an iron dominated configuration, quadrupole and dipole NbTi superconducting coils, and splittable in the vertical plane configuration. Magnets inside the Cryomodule are conductively cooled through pure Al heat sinks. Both magnets performance was verified by magnetic measurements at room temperature, and during cold tests in liquid helium. Test results including magnetic measurements are discussed. Special attention was given to the magnet performance at low currents where the iron yoke and the superconductor hysteresis effects have large influence. Both magnet prototypes were accepted for the installation in FNAL and JLAB prototype Cryomodules.

  8. Topological confinement and superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Al-hassanieh, Dhaled A [Los Alamos National Laboratory; Batista, Cristian D [Los Alamos National Laboratory

    2008-01-01

    We derive a Kondo Lattice model with a correlated conduction band from a two-band Hubbard Hamiltonian. This mapping allows us to describe the emergence of a robust pairing mechanism in a model that only contains repulsive interactions. The mechanism is due to topological confinement and results from the interplay between antiferromagnetism and delocalization. By using Density-Matrix-Renormalization-Group (DMRG) we demonstrate that this mechanism leads to dominant superconducting correlations in aID-system.

  9. Unconventional superconductivity near inhomogeneities

    Energy Technology Data Exchange (ETDEWEB)

    Poenicke, A.F.

    2008-01-25

    After the presentation of a quasi-classical theory the specific heat of Sr{sub 2}RuO{sub 4} is considered. Then tunneling spectroscopy on cuprate superconductors is discussed. Thereafter the subharmonic gap structure in d-wave superconductors is considered. Finally the application of the S-matrix in superconductivity is discussed with spin mixing, CrO{sub 2} as example, and an interface model. (HSI)

  10. Helical superconducting black holes.

    Science.gov (United States)

    Donos, Aristomenis; Gauntlett, Jerome P

    2012-05-25

    We construct novel static, asymptotically five-dimensional anti-de Sitter black hole solutions with Bianchi type-VII(0) symmetry that are holographically dual to superconducting phases in four spacetime dimensions with a helical p-wave order. We calculate the precise temperature dependence of the pitch of the helical order. At zero temperature the black holes have a vanishing entropy and approach domain wall solutions that reveal homogenous, nonisotropic dual ground states with an emergent scaling symmetry.

  11. Silicon superconducting quantum interference device

    Energy Technology Data Exchange (ETDEWEB)

    Duvauchelle, J. E.; Francheteau, A.; Marcenat, C.; Lefloch, F., E-mail: francois.lefloch@cea.fr [Université Grenoble Alpes, CEA - INAC - SPSMS, F-38000 Grenoble (France); Chiodi, F.; Débarre, D. [Université Paris-sud, CNRS - IEF, F-91405 Orsay - France (France); Hasselbach, K. [Université Grenoble Alpes, CNRS - Inst. Néel, F-38000 Grenoble (France); Kirtley, J. R. [Center for probing at nanoscale, Stanford University, Palo Alto, California 94305-4045 (United States)

    2015-08-17

    We have studied a Superconducting Quantum Interference Device (SQUID) made from a single layer thin film of superconducting silicon. The superconducting layer is obtained by heavily doping a silicon wafer with boron atoms using the gas immersion laser doping technique. The SQUID is composed of two nano-bridges (Dayem bridges) in a loop and shows magnetic flux modulation at low temperature and low magnetic field. The overall behavior shows very good agreement with numerical simulations based on the Ginzburg-Landau equations.

  12. Superconducting Qubit Optical Transducer (SQOT)

    Science.gov (United States)

    2015-08-05

    SECURITY CLASSIFICATION OF: The SQOT (Superconducting Qubit Optical Transducer ) project proposes to build a novel electro-optic system which can...Apr-2015 Approved for Public Release; Distribution Unlimited Final Report: "Superconducting Qubit Optical Transducer " (SQOT) The views, opinions and...journals: Number of Papers published in non peer-reviewed journals: Final Report: "Superconducting Qubit Optical Transducer " (SQOT) Report Title The

  13. Anomalous magnetic fluctuations in superconducting Sr2RuO4 revealed by 101Ru nuclear spin-spin relaxation

    Science.gov (United States)

    Manago, Masahiro; Yamanaka, Takayoshi; Ishida, Kenji; Mao, Zhiqiang; Maeno, Yoshiteru

    2016-10-01

    We carried out 101Ru nuclear quadrupole resonance (NQR) measurement on superconducting (SC) Sr2RuO4 under zero magnetic field (H =0 ) and found that the nuclear spin-spin relaxation rate 1 /T2 is enhanced in the SC state. The 1 /T2 measurement in the SC state under H =0 is effective for detecting slow magnetic fluctuations parallel to the quantized axis of the nuclear spin. Our results indicate that low-energy magnetic fluctuations perpendicular to the RuO2 plane emerge when the superconductivity sets in, which is consistent with the previous 17O-NQR result that the nuclear spin-lattice relaxation rate 1 /T1 of the in-plane O site exhibits anomalous behavior in the SC state. The enhancement of the magnetic fluctuations in the SC state is unusual and suggests that the fluctuations are related to the unconventional SC pairing. We suggest that this phenomenon is a consequence of the spin degrees of freedom of the spin-triplet pairing.

  14. Hybrid Superconducting Neutron Detectors

    CERN Document Server

    Merlo, V; Cirillo, M; Lucci, M; Ottaviani, I; Scherillo, A; Celentano, G; Pietropaolo, A

    2014-01-01

    A new neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction 10B+n $\\rightarrow$ $\\alpha$+ 7Li , with $\\alpha$ and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current Ic, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the supercond...

  15. Navy superconductivity efforts

    Science.gov (United States)

    Gubser, D. U.

    1990-04-01

    Both the new high temperature superconductors (HTS) and the low temperature superconductors (LTS) are important components of Navy's total plan to integrate superconductivity into field operational systems. Fundamental research is an important component of the total Navy program and focuses on the HTS materials. Power applications (ship propulsion, etc.) use LTS materials while space applications (MMW electronics, etc.) use HTS materials. The Space Experiment being conducted at NRL will involve space flight testing of HTS devices built by industry and will demonstrate the ability to engineer and space qualify these devices for systems use. Another important component of the Navy's effort is the development of Superconducting Quantum Interference Device (SQUID) magnetometers. This program will use LTS materials initially, but plans to implement HTS materials as soon as possible. Hybrid HTS/LTS systems are probable in many applications. A review of the status of the Navy's HTS materials research is given as well as an update on the Navy's development efforts in superconductivity, with particular emphasis on the related SDIO sponsored program on HTS applications.

  16. US Navy superconductivity program

    Science.gov (United States)

    Gubser, Donald U.

    1991-01-01

    Both the new high temperature superconductors (HTS) and the low temperature superconductors (LTS) are important components of the Navy's total plan to integrate superconductivity into field operational systems. Fundamental research is an important component of the total Navy program and focuses on the HTS materials. Power applications (ship propulsion) use LTS materials while space applications (millimeter wave electronics) use HTS materials. The Space Experiment to be conducted at NRL will involve space flight testing of HTS devices built by industry and will demonstrate the ability to engineer and space qualify these devices for systems use. Another important component of the Navy's effort is the development of Superconducting Quantum Interference Device (SQUID) magnetometers. This program will use LTS materials initially, but plans to implement HTS materials as soon as possible. Hybrid HTS/LTS systems are probable in many applications. A review of the status of the Navy's HTS materials research is given as well as an update on the Navy's development efforts in superconductivity.

  17. Navy superconductivity efforts

    Science.gov (United States)

    Gubser, D. U.

    1990-01-01

    Both the new high temperature superconductors (HTS) and the low temperature superconductors (LTS) are important components of Navy's total plan to integrate superconductivity into field operational systems. Fundamental research is an important component of the total Navy program and focuses on the HTS materials. Power applications (ship propulsion, etc.) use LTS materials while space applications (MMW electronics, etc.) use HTS materials. The Space Experiment being conducted at NRL will involve space flight testing of HTS devices built by industry and will demonstrate the ability to engineer and space qualify these devices for systems use. Another important component of the Navy's effort is the development of Superconducting Quantum Interference Device (SQUID) magnetometers. This program will use LTS materials initially, but plans to implement HTS materials as soon as possible. Hybrid HTS/LTS systems are probable in many applications. A review of the status of the Navy's HTS materials research is given as well as an update on the Navy's development efforts in superconductivity, with particular emphasis on the related SDIO sponsored program on HTS applications.

  18. Superconductivity in CVD diamond films.

    Science.gov (United States)

    Takano, Yoshihiko

    2009-06-24

    A beautiful jewel of diamond is insulator. However, boron doping can induce semiconductive, metallic and superconducting properties in diamond. When the boron concentration is tuned over 3 × 10(20) cm(-3), diamonds enter the metallic region and show superconductivity at low temperatures. The metal-insulator transition and superconductivity are analyzed using ARPES, XAS, NMR, IXS, transport and magnetic measurements and so on. This review elucidates the physical properties and mechanism of diamond superconductor as a special superconductivity that occurs in semiconductors.

  19. Unconventional superconductivity in honeycomb lattice

    Directory of Open Access Journals (Sweden)

    P Sahebsara

    2013-03-01

    Full Text Available   ‎ The possibility of symmetrical s-wave superconductivity in the honeycomb lattice is studied within a strongly correlated regime, using the Hubbard model. The superconducting order parameter is defined by introducing the Green function, which is obtained by calculating the density of the electrons ‎ . In this study showed that the superconducting order parameter appears in doping interval between 0 and 0.5, and x=0.25 is the optimum doping for the s-wave superconductivity in honeycomb lattice.

  20. Superconductivity in graphite intercalation compounds

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Robert P. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Weller, Thomas E.; Howard, Christopher A. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Dean, Mark P.M. [Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973 (United States); Rahnejat, Kaveh C. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Saxena, Siddharth S. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Ellerby, Mark, E-mail: mark.ellerby@ucl.ac.uk [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom)

    2015-07-15

    Highlights: • Historical background of graphite intercalates. • Superconductivity in graphite intercalates and its place in the field of superconductivity. • Recent developments. • Relevant modeling of superconductivity in graphite intercalates. • Interpretations that pertain and questions that remain. - Abstract: The field of superconductivity in the class of materials known as graphite intercalation compounds has a history dating back to the 1960s (Dresselhaus and Dresselhaus, 1981; Enoki et al., 2003). This paper recontextualizes the field in light of the discovery of superconductivity in CaC{sub 6} and YbC{sub 6} in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how these relate to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity, and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.

  1. Korea's developmental program for superconductivity

    Science.gov (United States)

    Hong, Gye-Won; Won, Dong-Yeon; Kuk, Il-Hyun; Park, Jong-Chul

    1995-01-01

    Superconductivity research in Korea was firstly carried out in the late 70's by a research group in Seoul National University (SNU), who fabricated a small scale superconducting magnetic energy storage system under the financial support from Korea Electric Power Company (KEPCO). But a few researchers were involved in superconductivity research until the oxide high Tc superconductor was discovered by Bednorz and Mueller. After the discovery of YBaCuO superconductor operating above the boiling point of liquid nitrogen (77 K)(exp 2), Korean Ministry of Science and Technology (MOST) sponsored a special fund for the high Tc superconductivity research to universities and national research institutes by recognizing its importance. Scientists engaged in this project organized 'High Temperature Superconductivity Research Association (HITSRA)' for effective conducting of research. Its major functions are to coordinate research activities on high Tc superconductivity and organize the workshop for active exchange of information. During last seven years the major superconductivity research has been carried out through the coordination of HITSRA. The major parts of the Korea's superconductivity research program were related to high temperature superconductor and only a few groups were carrying out research on conventional superconductor technology, and Korea Atomic Energy Research Institute (KAERI) and Korea Electrotechnology Research Institute (KERI) have led this research. In this talk, the current status and future plans of superconductivity research in Korea will be reviewed based on the results presented in interim meeting of HITSRA, April 1-2, 1994. Taejeon, as well as the research activity of KAERI.

  2. Correlation of critical temperature with the vibrational spectra of high-temperature superconducters

    Energy Technology Data Exchange (ETDEWEB)

    Bush, A.A.; Dubenko, I.S.; Limonov, M.F.; Markov, IU.F.; Panfilov, A.G. (Moskovskii Institut Radiotekhniki, Elektroniki i Avtomatiki, Moscow (USSR) Fiziko-Tekhnicheskii Institut, Moscow (USSR))

    1989-09-01

    An empirical relation between an increase in Tc and an increase in the frequencies of the vibrational spectra of different high-temperature superconducters of perovskite type is established. Taking this relation into account, a new system (Y{sub 1-x}Sc{sub x})(Ba{sub 1-y}Sr{sub y})2 Cu{sub 3}O(delta) is proposed, in which an increase in Tc is observed at intermediate concentrations. 13 refs.

  3. Asymmetry of Neoclassical Transport by Dipole Electric Field

    Institute of Scientific and Technical Information of China (English)

    王中天; 王龙

    2004-01-01

    Effects of dipole electric fields on neoclassical transport are studied. Large asymmetry in transport is created. The dipole fields, which are in a negative R-direction, reduce the ion drift, increase electron drift, and change the steps of excursion due to collisions. It is found that different levels of dipole field intensities have different types of transport. For the lowest level of the dipole field, the transport returns to the neoclassical one. For the highest level of the dipole field, the transport is turned to be the turbulence transport similar to the pseudo-classical transport. Experimental data may be corresponded to a large level of the dipole field intensity.

  4. Theoretical Study of Interplay Between Superconductivity and Itinerant Ferromagnetism

    Directory of Open Access Journals (Sweden)

    Subhra Kakani

    2014-08-01

    Full Text Available Following Green’s function technique and equation of motion method, the coexistence of superconductivity (SC and itinerant ferromagnetism (FM is investigated in a single band homogenous system. Self consistent equations for SC and FM order parameters, Δ and m or I respectively are derived. It is shown that there generally exists a coexistent (Δ ≠ 0, and m or I ≠ 0 solutions to the coupled equations of the order parameter in the, temperature range 0 < T < min(TC, TFM, where TC and TFM are respectively the superconducting and ferromagnetic transition temperatures. Expressions for specific heat, density of states, free energy and critical field are derived. The specific heat has linear temperature dependence as opposed to the exponential decrease in the BCS theory. The density of states for a finite m increases as opposed to that of a ferromagnetic metal. Free energy study reveals that FMSC state has lowest energy than the normal FM state and therefore realized at low enough temperature .Effect of small external field is also studied. The theory is applied to explain the observations in uranium based intermetallics systems UCoGe and UIr. The agreement between theory and experiments is quite encouraging.

  5. Final Report: MATERIALS, STRANDS, AND CABLES FOR SUPERCONDUCTING ACCELERATOR MAGNETS [Grant Number DE-SC0010312

    Energy Technology Data Exchange (ETDEWEB)

    Sumption, Mike D. [The Ohio State Univ., Columbus, OH (United States). Center for Superconducting and Magnetic Materials (CSMM); Collings, Edward W. [The Ohio State Univ., Columbus, OH (United States). Center for Superconducting and Magnetic Materials (CSMM)

    2014-10-29

    Our program consisted of the two components: Strand Research and Cable Research, with a focus on Nb3Sn, Bi2212, and YBCO for accelerator magnet applications. We demonstrated a method to refine the grains in Nb3Sn by a factor of two, reaching 45 nm grain sizes, and layer Jcs of 6 kA/mm2 at 12 T. W also measured conductor magnetization for field quality. This has been done both with Nb3Sn conductor, as well as Bi:2212 strand. Work in support of quench studies of YBCO coils was also performed. Cable loss studies in Nb3Sn focused on connecting and comparing persistent magnetization and coupling magnetization for considering their relative impact on HEP machines. In the area of HTS cables, we have investigated both the quench in multistrand YBCO CORC cables, as well as the magnetization of these cables for use in high field magnets. In addition, we examined the magnetic and thermal properties of large (50 T) solenoids.

  6. Precipitation hardening in ternary alloys of the Al-Sc-Cu and Al-Sc-Si systems

    Energy Technology Data Exchange (ETDEWEB)

    Kharakterova, M.L.; Eskin, D.G.; Toropova, L.S. (Russian Academy of Sciences, Moscow (Russian Federation). A.A. Baikov Inst. of Metallurgy)

    1994-07-01

    The processes of precipitation hardening in cast ternary alloys of the Al-Sc-Cu and Al-Sc-Si systems were studied in the temperature range of aging from 100 to 450 C and at exposures to 200 h. It was shown that the CuAl[sub 2] and ScAl[sub 3] phases were involved in the process of aging in ternary Al-Sc-Cu alloys, and the Si and V (AlSiSc) phases, in ternary Al-Sc-Si alloys with excess silicon in a supersaturated solid solution. The V phase was for the first time revealed as the hardening phase in aluminum alloys.

  7. Current limiting level-time characteristic of a superconducting fault current limiter

    Science.gov (United States)

    Tang, Y. J.; Yokomizu, Y.; Hayakawa, N.; Matsumura, T.; Okubo, H.; Kito, Y.

    A model superconducting fault current limiter (SE-FCL) has been developed. The adopted superconducting cable is composed of six strands insulated from each other. The current limiting level of the SC-FCL is measured under two types of overcurrent, a sinusoidal and an inrush current. The results show that the current limiting level of the SC-FCL Iq increases with an increase in the rate of rise of the overcurrent. By introducing a new parameter of time-to-quench tf, it is found that Iq increases with decreasing tf. This feature is taken as a current limiting level-time characteristic i.e. the Iq- tf characteristic. The existence of the Iq- tf characteristic found in the SC-FCL is qualitatively explained by measuring current distribution among the six strands. The superconducting cable is driven to the normal state strand by strand. Some delay in time is found from the quench of the first strand to that of the last and this is recognized as an Iq- tf characteristic in its current limiting performance.

  8. Optimization of superconducting tiling pattern for superconducting bearings

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Hinsdale, IL)

    1996-01-01

    An apparatus and method for reducing magnetic field inhomogeneities which produce rotational loss mechanisms in high temperature superconducting magnetic bearings. Magnetic field inhomogeneities are reduced by dividing high temperature superconducting structures into smaller structures, and arranging the smaller structures into tiers which stagger the magnetic field maximum locations of the smaller structures.

  9. LHC Dipoles: The countdown has begun

    CERN Multimedia

    2002-01-01

    One of the LHC dipole magnets has just achieved a record magnetic field of 9 Tesla in one go without quenching. The challenge now is to increase the production rate to 35 magnets a month by 2004. As a new information panel in Building 30 shows, the countdown has begun.

  10. The isotopic dipole moment of HDO

    Energy Technology Data Exchange (ETDEWEB)

    Assafrao, Denise; Mohallem, Jose R [Laboratorio de Atomos e Moleculas Especiais, Departamento de Fisica, ICEx, Universidade Federal de Minas Gerais, CP 702, 30123-970, Belo Horizonte, MG (Brazil)

    2007-03-14

    An adiabatic variational approximation is used to study the monodeuterated water molecule, HDO, accounting for the isotopic effect. The isotopic dipole moment, pointing from D to H, is then calculated for the first time, yielding (1.5 {+-} 0.1) x 10{sup -3} Debye, being helpful in the interpretation of experiments. (fast track communication)

  11. Reorientation of Defect Dipoles in Ferroelectric Ceramics

    Institute of Scientific and Technical Information of China (English)

    LI Bao-Shan; LI Guo-Rong; ZHAO Su-Chuan; ZHU Zhi-Gang; DING Ai-Li

    2005-01-01

    @@ We investigate the frequency, temperature, tetragonality and quenched temperature dependences of the hysteresis loops in Pb[(Zr0.52 Ti0.48)0.95 (Mn1/3Nb2/3)0.05]O3 (PMnN-PZT) ceramics. It has been demonstrated that the polarization-field hysteresis curves show "pinched" shapes when tested at room temperature, higher frequency or using the large-tetragonality specimen. While normal square-like loops are observed at 200 ℃ and 0.01 Hz or using the small-tetragonality one. Meanwhile, close relations between the P-E loops and the applied frequency,temperature or tetragonality reveal that there exists a typical relaxation time corresponding to the reorientation of the defect dipoles. It can be seen further from the quenched temperature dependences of the loops that the reorientation of the defect dipoles may influence the pinching. Compared to the intrinsic depinning procedure induced by changes of the distribution of defect dipoles, we provide new evidence for extrinsic depinning mechanism of the defect dipoles in the ferroelectric ceramics.

  12. Zeroes in continuum - continuum dipole matrix elements

    Science.gov (United States)

    Obolensky, Oleg I.; Pratt, R. H.; Korol, Andrei

    2003-05-01

    It is well known that Cooper minima in photoeffect cross sections are due to zeroes in corresponding bound-free dipole matrix elements. As was discussed before(C. D. Shaffer, R. H. Pratt, and S. D. Oh, Phys. Rev. A. 57), 227 (1998)., free-free dipole matrix elements in screened (atomic or ionic) potentials can also have zeroes. Such zeroes (existing at energies of the order of 1-100 eV) result in structures in the energy dependence of bremsstrahlung cross sections and angular distributions(A. Florescu, O. I. Obolensky, C. D. Shaffer, and R. H. Pratt, AIP Conference Proceedings, 576), 60 (2001).. In the soft photon limit, zeroes of radiative free-free matrix elements are related to Ramsauer-Townsend minima in elastic scattering of electrons by atoms. Here we study properties of the trajectories of dipole matrix element zeroes in the plane of initial and final electron energies. We show how the trajectories in this plane evolve with ionicity for several low ℓ dipole transitions ℓ → ℓ ± 1.

  13. Scattering properties of point dipole interactions

    DEFF Research Database (Denmark)

    Zolotaryuk, Alexander; Christiansen, Peter Leth; Iermakova, S.V.

    2006-01-01

    dipole interactions with a renormalized coupling constant are analysed. Depending on the parameter values, all these interactions being self-adjoint extensions of the one-dimensional Schrodinger operator are shown to be divided into four types: (i) interactions will full transparency, (ii) non...

  14. Installation of the ALICE dipole magnet

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    The large dipole magnet is installed on the ALICE detector at CERN. This magnet, which is cooled by demineralised water, will bend the path of muons that leave the huge rectangular solenoid (in the background). These muons are heavy electrons that interact less with matter, allowing them to traverse the main section of the detector.

  15. A Microstrip Reflect Array Using Crossed Dipoles

    Science.gov (United States)

    Pozar, David M.; Targonski, Stephen D.

    1998-01-01

    Microstrip reflect arrays offer a flat profile and light weight, combined with many of the electrical characteristics of reflector antennas. Previous work [1]-[7] has demonstrated a variety of microstrip reflect arrays, using different elements at a range of frequencies. In this paper we describe the use of crossed dipoles as reflecting elements in a microstrip reflectarray. Theory of the solution will be described, with experimental results for a 6" square reflectarray operating at 28 GHz. The performance of crossed dipoles will be directly compared with microstrip patches, in terms of bandwidth and loss. We also comment on the principle of operation of reflectarray elements, including crossed dipoles, patches of variable length, and patch elements with tuning stubs. This research was prompted by the proposed concept of overlaying a flat printed reflectarray on the surface of a spacecraft solar panel. Combining solar panel and antenna apertures in this way would lead to a reduction in weight and simpler deployment, with some loss of flexibility in independently pointing the solar panel and the antenna. Using crossed dipoles as reflectarray elements will minimize the aperture blockage of the solar cells, in contrast to the use of elements such as microstrip patches.

  16. Anharmonic effects and double giant dipole resonances

    CERN Document Server

    Voronov, V V

    2001-01-01

    A brief review of recent results of the microscopic calculations to describe characteristics of the double giant dipole resonances (DGDR) is presented. A special attention is paid to a microscopic study of the anharmonic properties of the DGDR. It is found that the deviation of the energy centroid of the DGDR from the harmonic limit follows A sup - sup 1 dependence

  17. Conceptual design of Dipole Research Experiment (DREX)

    Science.gov (United States)

    Qingmei, XIAO; Zhibin, WANG; Xiaogang, WANG; Chijie, XIAO; Xiaoyi, YANG; Jinxing, ZHENG

    2017-03-01

    A new terrella-like device for laboratory simulation of inner magnetosphere plasmas, Dipole Research Experiment, is scheduled to be built at the Harbin Institute of Technology (HIT), China, as a major state scientific research facility for space physics studies. It is designed to provide a ground experimental platform to reproduce the inner magnetosphere to simulate the processes of trapping, acceleration, and transport of energetic charged particles restrained in a dipole magnetic field configuration. The scaling relation of hydromagnetism between the laboratory plasma of the device and the geomagnetosphere plasma is applied to resemble geospace processes in the Dipole Research Experiment plasma. Multiple plasma sources, different kinds of coils with specific functions, and advanced diagnostics are designed to be equipped in the facility for multi-functions. The motivation, design criteria for the Dipole Research Experiment experiments and the means applied to generate the plasma of desired parameters in the laboratory are also described. Supported by National Natural Science Foundation of China (Nos. 11505040, 11261140326 and 11405038), China Postdoctoral Science Foundation (Nos. 2016M591518, 2015M570283) and Project Supported by Natural Scientific Research Innovation Foundation in Harbin Institute of Technology (No. 2017008).

  18. Gravitational Radiation from Oscillating Gravitational Dipole

    OpenAIRE

    De Aquino, Fran

    2002-01-01

    The concept of Gravitational Dipole is introduced starting from the recent discovery of negative gravitational mass (gr-qc/0005107 and physics/0205089). A simple experiment, a gravitational wave transmitter, to test this new concept of gravitational radiation source is presented.

  19. The SPS tunnel with a dipole magnet

    CERN Multimedia

    1976-01-01

    The SPS uses about 800 6-m long dipole magnets to bend the beam around its path. Particle beams come into the SPS from the smaller PS accelerator at 26 GeV. The SPS then accelerates the beam further up to 450 GeV when the beam is extracted and transferred to the LHC or CERN Neutrinos to Gran Sasso (CNGS).

  20. LHCb Data Replication During SC3

    CERN Multimedia

    Smith, A

    2006-01-01

    LHCb's participation in LCG's Service Challenge 3 involves testing the bulk data transfer infrastructure developed to allow high bandwidth distribution of data across the grid in accordance with the computing model. To enable reliable bulk replication of data, LHCb's DIRAC system has been integrated with gLite's File Transfer Service middleware component to make use of dedicated network links between LHCb computing centres. DIRAC's Data Management tools previously allowed the replication, registration and deletion of files on the grid. For SC3 supplementary functionality has been added to allow bulk replication of data (using FTS) and efficient mass registration to the LFC replica catalog.Provisional performance results have shown that the system developed can meet the expected data replication rate required by the computing model in 2007. This paper details the experience and results of integration and utilisation of DIRAC with the SC3 transfer machinery.

  1. Reduced-Latency SC Polar Decoder Architectures

    CERN Document Server

    Zhang, Chuan; Parhi, Keshab K

    2011-01-01

    Polar codes have become one of the most favorable capacity achieving error correction codes (ECC) along with their simple encoding method. However, among the very few prior successive cancellation (SC) polar decoder designs, the required long code length makes the decoding latency high. In this paper, conventional decoding algorithm is transformed with look-ahead techniques. This reduces the decoding latency by 50%. With pipelining and parallel processing schemes, a parallel SC polar decoder is proposed. Sub-structure sharing approach is employed to design the merged processing element (PE). Moreover, inspired by the real FFT architecture, this paper presents a novel input generating circuit (ICG) block that can generate additional input signals for merged PEs on-the-fly. Gate-level analysis has demonstrated that the proposed design shows advantages of 50% decoding latency and twice throughput over the conventional one with similar hardware cost.

  2. Observation of pseudogap in the normal state of superconducting Mo{sub 3}Sb{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Tran, V.H. [Polish Academy of Sciences, Institute of Low Temperature and Structure Research, 50-422 Wroclaw (Poland); Batkova, M.; Batko, I.; Pribulova, Z. [Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice (Slovakia); Bukowski, Z. [Laboratory for Solid State Physics, ETH Zuerich, 8093 Zuerich (Switzerland)

    2010-03-15

    Using electron tunneling spectroscopy, we investigated density of states of Mo{sub 3}Sb{sub 7} in the temperature range 1.7-60 K. The differential conductance dI/dV vs. V curve at 4.2 K shows that an energy pseudogap of 2{delta}{proportional_to} 15(2) meV is formed in the density of states. In the superconducting state, the tunneling spectra exhibit the presence of a BCS-type superconducting gap of {delta}{sub sc} (0) {proportional_to} 0.24 meV. Future investigations of the interplay between superconductivity and possible SDW ordering, and the anisotropic nature of the nesting of the Fermi surface in Mo{sub 3}Sb{sub 7} are highly desired. Tunneling spectra of Mo{sub 3}Sb{sub 7} measured in the normal state (a) and in the superconducting state (b). (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  3. Single chain Fab (scFab fragment

    Directory of Open Access Journals (Sweden)

    Brenneis Mariam

    2007-03-01

    Full Text Available Abstract Background The connection of the variable part of the heavy chain (VH and and the variable part of the light chain (VL by a peptide linker to form a consecutive polypeptide chain (single chain antibody, scFv was a breakthrough for the functional production of antibody fragments in Escherichia coli. Being double the size of fragment variable (Fv fragments and requiring assembly of two independent polypeptide chains, functional Fab fragments are usually produced with significantly lower yields in E. coli. An antibody design combining stability and assay compatibility of the fragment antigen binding (Fab with high level bacterial expression of single chain Fv fragments would be desirable. The desired antibody fragment should be both suitable for expression as soluble antibody in E. coli and antibody phage display. Results Here, we demonstrate that the introduction of a polypeptide linker between the fragment difficult (Fd and the light chain (LC, resulting in the formation of a single chain Fab fragment (scFab, can lead to improved production of functional molecules. We tested the impact of various linker designs and modifications of the constant regions on both phage display efficiency and the yield of soluble antibody fragments. A scFab variant without cysteins (scFabΔC connecting the constant part 1 of the heavy chain (CH1 and the constant part of the light chain (CL were best suited for phage display and production of soluble antibody fragments. Beside the expression system E. coli, the new antibody format was also expressed in Pichia pastoris. Monovalent and divalent fragments (DiFabodies as well as multimers were characterised. Conclusion A new antibody design offers the generation of bivalent Fab derivates for antibody phage display and production of soluble antibody fragments. This antibody format is of particular value for high throughput proteome binder generation projects, due to the avidity effect and the possible use of

  4. The SC gets ready for visitors

    CERN Multimedia

    Antonella Del Rosso

    2012-01-01

    Hall 300, which houses the Synchrocyclotron (SC), CERN’s first accelerator, is getting ready to host a brand-new exhibition. The site will be one of the stops on the new visit itineraries that will be inaugurated for the 2013 CERN Open Day.   The Synchrocyclotron through the years. Just as it did in the late 1950s, when the accelerator was first installed, the gigantic red structure of the Synchrocyclotron's magnet occupies a large part of the 300-square-metre hall. “We have completed the first phase of the project that will give the SC a new lease of life,” says Marco Silari, the project leader and a member of CERN’s Radiation Protection Group. “We have removed all the equipment that was not an integral part of the accelerator. The hall is now ready for the civil-engineering work that will precede the installation of the exhibition.” The SC was witness to a big part of the history of CERN. The accelerator produced ...

  5. Master equation with quantized atomic motion including dipole-dipole interactions

    Science.gov (United States)

    Damanet, François; Braun, Daniel; Martin, John

    2016-05-01

    We derive a markovian master equation for the internal dynamics of an ensemble of two-level atoms including all effects related to the quantization of their motion. Our equation provides a unifying picture of the consequences of recoil and indistinguishability of atoms beyond the Lamb-Dicke regime on both their dissipative and conservative dynamics, and is relevant for experiments with ultracold trapped atoms. We give general expressions for the decay rates and the dipole-dipole shifts for any motional states, and we find analytical formulas for a number of relevant states (Gaussian states, Fock states and thermal states). In particular, we show that the dipole-dipole interactions and cooperative photon emission can be modulated through the external state of motion. The effects predicted should be experimentally observable with Rydberg atoms. FD would like to thank the F.R.S.-FNRS for financial support. FD is a FRIA Grant holder of the Fonds de la Recherche Scientifique-FNRS.

  6. First-order superconducting transition in the inter-band model

    Energy Technology Data Exchange (ETDEWEB)

    Gomes da Silva, M. [Universidade Federal do Amazonas, Departamento de Física, 3000, Japiim, 69077-00 Manaus, AM (Brazil); Instituto Federal de Educação Ciência e Tecnologia do Amazonas, Av. 7 de Setembro, 1975 - Centro, Manaus, AM 69020-120 (Brazil); Dinóla Neto, F., E-mail: dinola@ufam.edu.br [Universidade Federal do Amazonas, Departamento de Física, 3000, Japiim, 69077-00 Manaus, AM (Brazil); Padilha, I.T. [Universidade Federal do Amazonas, Departamento de Física, 3000, Japiim, 69077-00 Manaus, AM (Brazil); Ricardo de Sousa, J. [Universidade Federal do Amazonas, Departamento de Física, 3000, Japiim, 69077-00 Manaus, AM (Brazil); National Institute of Science and Technology for Complex Systems, Universidade Federal do Amazonas, 3000, Japiim, 69077-000 Manaus, AM (Brazil); Continentino, M.A. [Centro Brasileiro de Pesquisas Físicas, 22290-180 Rio de Janeiro, RJ (Brazil)

    2014-04-01

    The comprehension about the theoretical features of superconductivity is an interesting and fundamental topic in condensed matter physics. Several theoretical proposals were considered to describe the new classes of superconducting compounds and alloys. In this work we propose to study a non-conventional superconducting system where the Cooper pairs are formed by fermions from different bands described via two band model with hybridization. In this inter-band scenario we find a first-order phase transition at low temperatures and we observe a tricritical point in the phase diagram. In our description, the control parameter is the hybridization that can be tuned by external pressure. This fact indicates the possibility to observe discontinuities in the SC gap amplitude through applying pressure on the system.

  7. Dyson-Schwinger Approach to Color-Superconductivity: Effects of Selfconsistent Gluon Dressing

    CERN Document Server

    Müller, Daniel; Wambach, Jochen

    2016-01-01

    The phase diagram of dense QCD at nonvanishing temperatures and large quark chemical potentials is studied with Dyson-Schwinger equations for 2+1 quark flavors, focusing on color-superconducting phases with 2SC and CFL-like pairing. The truncation scheme of our previous investigations is extended to include the dressing of gluons with selfconsistently determined quarks, i.e., taking into account the dynamical masses and superconducting gaps of the quarks in the gluon polarization. As a consequence the gluon screening is reduced, leading to an enhancement of the critical temperatures of the color-superconducting phases by about a factor of 2 as compared to the case where the gluons are dressed with bare quarks. We also calculate the Debye and Meissner masses of the gluons and show that they are consistent with weak-coupling results.

  8. Pressure induced superconductivity on the border of magnetic order in MnP.

    Science.gov (United States)

    Cheng, J-G; Matsubayashi, K; Wu, W; Sun, J P; Lin, F K; Luo, J L; Uwatoko, Y

    2015-03-20

    We report the discovery of superconductivity on the border of long-range magnetic order in the itinerant-electron helimagnet MnP via the application of high pressure. Superconductivity with T(sc)≈1  K emerges and exists merely near the critical pressure P(c)≈8  GPa, where the long-range magnetic order just vanishes. The present finding makes MnP the first Mn-based superconductor. The close proximity of superconductivity to a magnetic instability suggests an unconventional pairing mechanism. Moreover, the detailed analysis of the normal-state transport properties evidenced non-Fermi-liquid behavior and the dramatic enhancement of the quasiparticle effective mass near P(c) associated with the magnetic quantum fluctuations.

  9. Magnet tests and status of the superconducting electron cyclotron resonance source SERSE

    Energy Technology Data Exchange (ETDEWEB)

    Ciavola, G.; Gammino, S.; Cafici, M.; Castro, M.; Chines, F.; Marletta, S. [INFN-Laboratorio Nazionale del Sud, Via S. Sofia 44, 95123 Catania (Italy); Alessandria, F. [INFN-LASA, Via F.lli Cervi 201, 20090 Segrate (Midway Islands) (Italy); Bourg, F.; Briand, P.; Melin, G.; Lagnier, R.; Seyfert, P. [CEA-Departement de Recherche Fondamentale sur la Matiere Condensee, Centre detudes Nucleaires de Grenoble, 38054 Grenoble Cedex 9 (France); Gaggero, G.; Losasso, M.; Penco, R. [ANSALDO-GIE, Via N. Lorenzi 8, 16152 Genova (Italy)

    1996-03-01

    At Laboratorio Nazionale del Sud a superconducting 14.5 GHz electron cyclotron resonance (ECR) source will be used as injector for the K-800 superconducting cyclotron. The original project of its magnetic system has been upgraded by taking into account the results of the high B mode operation of the 6.4 GHz SC-ECRIS at MSU-NSCL and now the mirror field may achieve 2.7 T, which is much higher than the confining field of any other ECR source. The magnet design will allow us to operate in a wide range of magnetic configurations making it easy to tune the source. The status of the project will be outlined and the preliminary results of the tests of the superconducting magnets will be described. A brief description of the tests to be carried out on the source during the first period of operation on the test bench in Grenoble follows. {copyright} {ital 1996 American Institute of Physics.}

  10. The last LHC dipole magnet is lowered

    CERN Multimedia

    Claudia Marcelloni

    2007-01-01

    A ceremony is held as the last of 1746 superconducting magnets is lowered into the 27-km circumference tunnel that houses the LHC. The LHC project leader, Lyn Evans, changes a banner reading ‘first magnet for the LHC’ to ‘last magnet for the LHC’ in his native Welsh.

  11. Dipole-Dipole Interaction and the Directional Motion of Brownian Motors

    Institute of Scientific and Technical Information of China (English)

    YU Hui; ZHAO TongJun; JI Qing; SONG YanLi; WANG YongHong; ZHAN Yong

    2002-01-01

    The electric field of the microtubule is calculated according to its dipole distribution. The conformationalchange of a molecular motor is described by the rotation ofa dipole which interacts with the microtubulc. The mricalsimulation for the particle current shows that this interaction helps to produce a directional motion along the microtubule.And tte average displacement executes step changes that resemble the experimental result for kinesin motors.

  12. Initial studies of Bremsstrahlung energy deposition in small-bore superconducting undulator structures in linac environments

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, T.; Tatchyn, R. [Stanford Univ., CA (United States)

    1995-12-31

    One of the more promising technologies for developing minimal-length insertion devices for linac-driven, single-pass Free Electron Lasers (FELs) operating in the x-ray range is based on the use of superconducting (SC) materials. In recent FEL simulations, for example, a bifilar helical SC device with a 2 cm period and 1.8 T field was found to require a 30 m saturation length for operation at 1.5{Angstrom} on a 15 GeV linac, more than 40% shorter than an alternative hybrid/permanent magnet (hybrid/PM) undulator. AT the same time, however, SC technology is known to present characteristic difficulties for insertion device design, both in engineering detail and in operation. Perhaps the most critical problem, as observed, e.g., by Madey and co-workers in their initial FEL experiments, was the frequent quenching induced by scattered electrons upstream of their (bifilar) device. Postulating that this quenching was precipitated by directly-scattered or bremsstrahlung-induced particle energy deposited into the SC material or into material contiguous with it, the importance of numerical and experimental characterizations of this phenomenon for linac-based, user-facility SC undulator design becomes evident. In this paper we discuss selected prior experimental results and report on initial EGS4 code studies of scattered and bremsstrahlung induced particle energy deposition into SC structures with geometries comparable to a small-bore bifilar helical undulator.

  13. The Danish Superconducting Cable Project

    DEFF Research Database (Denmark)

    Tønnesen, Ole

    1997-01-01

    The design and construction of a superconducting cable is described. The cable has a room temperature dielectric design with the cryostat placed inside the electrical insulation.BSCCO 2223 superconducting tapes wound in helix form around a former are used as the cable conductor. Results from...

  14. Superconducting bearings for flywheel applications

    DEFF Research Database (Denmark)

    Abrahamsen, A.B.

    2001-01-01

    A literature study on the application of superconducting bearings in energy storage flywheel systems. The physics of magnetic levitation and superconductors are presented in the first part of the report, followed by a discussion of the literature found onthe applications of superconducting bearings...

  15. Coexistence of superconductivity and complex 4 f magnetism in Eu0.5Ce0.5BiS2F.

    Science.gov (United States)

    Zhai, Hui-Fei; Zhang, Pan; Tang, Zhang-Tu; Bao, Jin-Ke; Jiang, Hao; Feng, Chun-Mu; Xu, Zhu-An; Cao, Guang-Han

    2015-09-30

    EuBiS2F is a self-doped superconductor due to the mixed valence of Eu. Here we report that, with the Ce substitution for Eu by 50 at.%, the material exhibits ferromagnetic ordering at 8 K for the Ce-4 f moment, superconductivity at 2.2 K in the BiS2 layers and possibly antiferromagnetic ordering at 2.1 K for the Eu-4 f spins. The Eu valence is essentially divalent with the Ce incorporation. We tentatively interpret the coexistence of ferromagnetism and superconductivity by considering different Bi-6p orbitals that are responsible for the superconductivity itself and for mediating the ferromagnetic interaction, respectively. We argue that the antiferromagnetic ordering of the Eu-4 f spins is most likely due to a magnetic dipole-dipole interaction.

  16. On the integrability of halo dipoles in gravity

    OpenAIRE

    Vieira, Werner M.; Letelier, Patricio S.

    1997-01-01

    We stress that halo dipole components are nontrivial in core-halo systems in both Newton's gravity and General Relativity. To this end, we extend a recent exact relativistic model to include also a halo dipole component. Next, we consider orbits evolving in the inner vacuum between a monopolar core and a pure halo dipole and find that, while the Newtonian dynamics is integrable, its relativistic counterpart is chaotic. This shows that chaoticity due only to halo dipoles is an intrinsic relati...

  17. Color dipole chain and its hadronization in pp collision

    Institute of Scientific and Technical Information of China (English)

    赵晋全; 王群; 谢去病

    1995-01-01

    High energy pp collision is dealt with by double-string model. Each string corresponds to one initial color dipole which will radiate gluons to form color dipole chain. Such gluon radiation process is described by color dipole model. According to the quark combination rule, the total multiplicity formulae for calculating primary meson and baryon of one dipole chain are presented- The calculated yields of various final hadrons in energy range =53- 1 800GeV agree well with available data.

  18. Absolute absorption on rubidium D1 line: including resonant dipole-dipole interactions

    CERN Document Server

    Weller, Lee; Siddons, Paul; Adams, Charles S; Hughes, Ifan G

    2011-01-01

    Here we report on measurements of the absolute absorption spectra of dense rubidium vapour on the D1 line in the weak-probe regime for temperatures up to 170 C and number densities up to 3 \\times 10^14 cm^-3. In such vapours, modifications to the homogeneous linewidth of optical transitions arise due to dipole-dipole interactions between identical atoms, in superpositions of the ground and excited states. Absolute absorption spectra were recorded with deviation of 0.1% between experiment and a theory incorporating resonant dipole-dipole interactions. The manifestation of dipole-dipole interactions is a self-broadening contribution to the homogeneous linewidth, which grows linearly with number density of atoms. Analysis of the absolute absorption spectra allow us to ascertain the value of the self-broadening coefficient for the rubidium D1 line: \\beta/2\\pi = (0.69 \\pm 0.04) \\times 10^-7 Hz cm^3, in excellent agreement with the theoretical prediction.

  19. Effects of hydrophobic and dipole-dipole interactions on the conformational transitions of a model polypeptide

    Science.gov (United States)

    Mu, Yan; Gao, Yi Qin

    2007-09-01

    We studied the effects of hydrophobicity and dipole-dipole interactions between the nearest-neighbor amide planes on the secondary structures of a model polypeptide by calculating the free energy differences between different peptide structures. The free energy calculations were performed with low computational costs using the accelerated Monte Carlo simulation (umbrella sampling) method, with a bias-potential method used earlier in our accelerated molecular dynamics simulations. It was found that the hydrophobic interaction enhances the stability of α helices at both low and high temperatures but stabilizes β structures only at high temperatures at which α helices are not stable. The nearest-neighbor dipole-dipole interaction stabilizes β structures under all conditions, especially in the low temperature region where α helices are the stable structures. Our results indicate clearly that the dipole-dipole interaction between the nearest neighboring amide planes plays an important role in determining the peptide structures. Current research provides a more unified and quantitative picture for understanding the effects of different forms of interactions on polypeptide structures. In addition, the present model can be extended to describe DNA/RNA, polymer, copolymer, and other chain systems.

  20. Competition between finite-size effects and dipole-dipole interactions in few-atom systems

    Science.gov (United States)

    Damanet, François; Martin, John

    2016-11-01

    In this paper, we study the competition between finite-size effects (i.e. discernibility of particles) and dipole-dipole interactions in few-atom systems coupled to the electromagnetic field in vacuum. We consider two hallmarks of cooperative effects, superradiance and subradiance, and compute for each the rate of energy radiated by the atoms and the coherence of the atomic state during the time evolution. We adopt a statistical approach in order to extract the typical behaviour of the atomic dynamics and average over random atomic distributions in spherical containers with prescribed {k}0R with k 0 the radiation wavenumber and R the average interatomic distance. Our approach allows us to highlight the tradeoff between finite-size effects and dipole-dipole interactions in superradiance/subradiance. In particular, we show the existence of an optimal value of {k}0R for which the superradiant intensity and coherence pulses are the less affected by dephasing effects induced by dipole-dipole interactions and finite-size effects.