WorldWideScience

Sample records for superconducting rf technology

  1. Industrialization of Superconducting RF Accelerator Technology

    Science.gov (United States)

    Peiniger, Michael; Pekeler, Michael; Vogel, Hanspeter

    2012-01-01

    Superconducting RF (SRF) accelerator technology has basically existed for 50 years. It took about 20 years to conduct basic R&D and prototyping at universities and international institutes before the first superconducting accelerators were built, with industry supplying complete accelerator cavities. In parallel, the design of large scale accelerators using SRF was done worldwide. In order to build those accelerators, industry has been involved for 30 years in building the required cavities and/or accelerator modules in time and budget. To enable industry to supply these high tech components, technology transfer was made from the laboratories in the following three regions: the Americas, Asia and Europe. As will be shown, the manufacture of the SRF cavities is normally accomplished in industry whereas the cavity testing and module assembly are not performed in industry in most cases, yet. The story of industrialization is so far a story of customized projects. Therefore a real SRF accelerator product is not yet available in this market. License agreements and technology transfer between leading SRF laboratories and industry is a powerful tool for enabling industry to manufacture SRF components or turnkey superconducting accelerator modules for other laboratories and users with few or no capabilities in SRF technology. Despite all this, the SRF accelerator market today is still a small market. The manufacture and preparation of the components require a range of specialized knowledge, as well as complex and expensive manufacturing installations like for high precision machining, electron beam welding, chemical surface preparation and class ISO4 clean room assembly. Today, the involved industry in the US and Europe comprises medium-sized companies. In Japan, some big enterprises are involved. So far, roughly 2500 SRF cavities have been built by or ordered from industry worldwide. Another substantial step might come from the International Linear Collider (ILC) project

  2. Superconducting RF Technology R&D for Future Accelerator Applications

    CERN Document Server

    Reece, Charles E

    2012-01-01

    Superconducting rf technology (SRF) is evolving rapidly as are its applications. While there is active exploitation of what one may term the current state-of-the-practice, there is also rapid progress expanding in several dimensions the accessible and useful parameter space. While state-of-the-art performance sometimes outpaces thorough understanding, the improving scientific understanding from active SRF research is clarifying routes to obtain optimum performance from present materials and opening avenues beyond the standard bulk niobium. The improving technical basis understanding is enabling process engineering to both improve performance confidence and reliability and also unit implementation costs. Increasing confidence in the technology enables the engineering of new creative application designs. We attempt to survey this landscape to highlight the potential for future accelerator applications.

  3. 17th International Conference on RF Superconductivity

    CERN Document Server

    2015-01-01

    RF superconductivity is the key technology of accelerators for particle physics, nuclear physics and light sources. SRF 2015 covered the latest advances in the science, technology, and applications of superconducting RF. There was also an industrial exhibit during the conference with the key vendors in the community available to discuss their capabilities and products.

  4. 17th International Conference on RF Superconductivity

    CERN Document Server

    Laxdal, Robert E.; Schaa, Volker R.W.

    2015-01-01

    RF superconductivity is the key technology of accelerators for particle physics, nuclear physics and light sources. SRF 2015 covered the latest advances in the science, technology, and applications of superconducting RF. There was also an industrial exhibit during the conference with the key vendors in the community available to discuss their capabilities and products.

  5. AC/RF Superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, Gianluigi [JLAB

    2015-02-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  6. Biased HiPIMS technology for superconducting rf accelerating cavities coating

    CERN Document Server

    G. Rosaz, G.; Sonato, D.; Calatroni, S.; Ehiasarian, A.; Junginger, T.; Taborelli, M.

    2016-01-01

    In the last few years the interest of the thin film science and technology community on High Impulse Power Magnetron Sputtering (HIPIMS) coatings has steadily increased. HIPIMS literature shows that better thin film morphology, denser and smoother films can be achieved when compared with standard dc Magnetron Sputtering (dcMS) coating technology. Furthermore the capability of HIPIMS to produce a high quantity of ionized species can allow conformal coatings also for complex geometries. CERN already studied the possibility to use such a coating method for SRF accelerating cavities. Results are promising but not better from a RF point of view than dcMS coatings. Thanks to these results the next step is to go towards a biased HiPIMS approach. However the geometry of the cavities leads to complex changes in the coating setup in order to apply a bias voltage. Coating system tweaking and first superconducting properties of biased samples are presented.

  7. RF Characterization of Superconducting Samples

    CERN Document Server

    Junginger, T; Welsch, C

    2009-01-01

    At CERN a compact Quadrupole Resonator has been re-commissioned for the RF characterization of superconducting materials at 400 MHz. In addition the resonator can also be excited at multiple integers of this frequency. Besides Rs it enables determination of the maximum RF magnetic field, the thermal conductivity and the penetration depth of the attached samples, at different temperatures. The features of the resonator will be compared with those of similar RF devices and first results will be presented.

  8. Contributions To The 9th Workshop On Rf Superconductivity, Accelerator Technology For The 21st Century (rf Superconductivity Activities At Lal Accelerating Field Measurement In 3 Ghz Pulsed Cavities Design And Test Of A 1.3 Ghz Travelling Wave Window

    CERN Document Server

    Le Duff, J; Thomas, C

    2000-01-01

    Contributions To The 9th Workshop On Rf Superconductivity, Accelerator Technology For The 21st Century (rf Superconductivity Activities At Lal Accelerating Field Measurement In 3 Ghz Pulsed Cavities Design And Test Of A 1.3 Ghz Travelling Wave Window

  9. Status of RF superconductivity at Argonne

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.

    1989-01-01

    Development of a superconducting (SC) slow-wave structures began at Argonne National Laboratory (ANL) in 1971, and led to the first SC heavy-ion linac (ATLAS - the Argonne Tandem-Linac Accelerating System), which began regularly scheduled operation in 1978. To date, more than 40,000 hours of bean-on target operating time has been accumulated with ATLAS. The Physics Division at ANL has continued to develop SC RF technology for accelerating heavy-ions, with the result that the SC linac has, up to the present, has been in an almost continuous process of upgrade and expansion. It should be noted that this has been accomplished while at the same time maintaining a vigorous operating schedule in support of the nuclear and atomic physics research programs of the division. In 1987, the Engineering Physics Division at ANL began development of SC RF components for the acceleration of high-brightness proton and deuterium beams. This work has included the evaluation of RF properties of high-{Tc} oxide superconductors, both for the above and for other applications. The two divisions collaborated while they worked on several applications of RF SC, and also worked to develop the technology generally. 11 refs., 6 figs.

  10. TESLA superconducting RF cavity development

    Energy Technology Data Exchange (ETDEWEB)

    Koepke, K. [Fermi National Accelerator Lab., Batavia, IL (United States); TESLA Collaboration

    1995-05-01

    The TESLA collaboration has made steady progress since its first official meeting at Cornell in 1990. The infrastructure necessary to assemble and test superconducting rf cavities has been installed at the TESLA Test Facility (TTF) at DESY. 5-cell, 1.3 GHz cavities have been fabricated and have reached accelerating fields of 25 MV/m. Full sized 9-cell copper cavities of TESLA geometry have been measured to verify the higher order modes present and to evaluate HOM coupling designs. The design of the TESLA 9-cell cavity has been finalized and industry has started delivery. Two prototype 9-cell niobium cavities in their first tests have reached accelerating fields of 10 MV/m and 15 MV/m in a vertical dewar after high peak power (HPP) conditioning. The first 12 m TESLA cryomodule that will house 8 9-cell cavities is scheduled to be delivered in Spring 1995. A design report for the TTF is in progress. The TTF test linac is scheduled to be commissioned in 1996/1997. (orig.).

  11. Activities on RF superconductivity at DESY

    Energy Technology Data Exchange (ETDEWEB)

    Matheisen, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); TESLA Collaboration

    1996-01-01

    At DESY the HERA electron storage ring is supplied with normal and superconducting cavities. The superconducting system transfers up to 1 MW klystron power to the beam. Experiences are reported on luminosity and machine study runs. Since 1993 one major activity in the field of RF superconducting cavities is the installation of the TESLA Test Facility. Set-up of hardware and first tests of s.c. resonators are presented. (R.P.). 11 refs.

  12. Magnetic shielding for superconducting RF cavities

    Science.gov (United States)

    Masuzawa, M.; Terashima, A.; Tsuchiya, K.; Ueki, R.

    2017-03-01

    Magnetic shielding is a key technology for superconducting radio frequency (RF) cavities. There are basically two approaches for shielding: (1) surround the cavity of interest with high permeability material and divert magnetic flux around it (passive shielding); and (2) create a magnetic field using coils that cancels the ambient magnetic field in the area of interest (active shielding). The choice of approach depends on the magnitude of the ambient magnetic field, residual magnetic field tolerance, shape of the magnetic shield, usage, cost, etc. However, passive shielding is more commonly used for superconducting RF cavities. The issue with passive shielding is that as the volume to be shielded increases, the size of the shielding material increases, thereby leading to cost increase. A recent trend is to place a magnetic shield in a cryogenic environment inside a cryostat, very close to the cavities, reducing the size and volume of the magnetic shield. In this case, the shielding effectiveness at cryogenic temperatures becomes important. We measured the permeabilities of various shielding materials at both room temperature and cryogenic temperature (4 K) and studied shielding degradation at that cryogenic temperature.

  13. RF and Surface Properties of Superconducting Samples

    CERN Document Server

    Junginger, T; Weingarten, W; Welsch, C

    2011-01-01

    At CERN a compact Quadrupole Resonator has been developed for the RF characterization of superconducting samples at different frequencies. In this paper, results from measurements on bulk niobium and niobium filmon copper substrate samples are presented. We show how different contributions to the surface resistance depend on temperature, applied RF magnetic field and frequency. Furthermore, measurements of the maximum RF magnetic field as a function of temperature and frequency in pulsed and CW operation are presented. The study is accompanied by measurements of the surface properties of the samples by various techniques.

  14. Superconducting rf development at ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.; Kedzie, M.; Clifft, B.E. [Argonne National Lab., IL (United States); Roy, A.; Potukuchi, P. [Nuclear Science Centre, New Delhi (India); Givens, J.; Potter, J.; Crandall, K. [AccSys Technology, Inc., Pleasanton, CA (United States); Added, N. [Sao Paulo Univ., SP (Brazil)

    1993-12-31

    The ATLAS superconducting heavy-ion linac began operation in 1978 and has operated nearly continuously since that time, while undergoing a series of upgrades and expansions, the most recent being the ``uranium upgrade`` completed earlier this year and described below. In its present configuration the ATLAS linac consists of an array of 64 resonant cavities operating from 48 to 145 MHz, which match a range of particle velocities .007 < {beta} = v/c < .2. The linac provides approximately 50 MV of effective accelerating potential for ions of q/m > 1/10 over the entire periodic table. Delivered beams include 5 {minus} 7 pnA of {sup 238}U{sup 39+} at 1535 MeV. At present more than 10{sup 6} cavity-hours of operation at surface electric fields of 15 MV/m have been accumulated. Superconducting structure development at ATLAS is aimed at improving the cost/performance of existing low velocity structures both for possible future ATLAS upgrades, and also for heavy-ion linacs at other institutions. An application of particular current interest is to develop structures suitable for accelerating radioactive ion beams. Such structures must accelerate very low charge to mass ratio beams and must also have very large transverse acceptance.

  15. Superconducting RF separator for Omega Spectrometer

    CERN Multimedia

    1977-01-01

    The photo shows an Nb-deflector for the superconducting RF separator ready for installation in its cryostat (visible at the back). Each deflector was about 3 m long. L. Husson and P. Skacel (Karlsruhe) stand on the left, A. Scharding (CERN) stands on the right. This particle separator, the result of a collaboration between the Gesellshaft für Kernforschung, Karlsruhe, and CERN was installed in the S1 beam line to Omega spectrometer. (See Annual Report 1977.)

  16. RF Control and Measurement of Superconducting Qubits

    Science.gov (United States)

    2015-02-14

    208047 New Haven, CT 06520 -8047 14-Sep-2014 ABSTRACT Final Report: RF Control and Measurement of Superconducting Qubits Report Title This is the final...project duration, to the generation a new architecture which, while taking into account the limitations discovered in the other research line of the...materials properties. Third, spurious electromagnetic modes, not accounted for in the Hamiltonian (1), can spuriously couple to the atoms or the

  17. rf superconducting quantum interference device metamaterials

    Science.gov (United States)

    Lazarides, N.; Tsironis, G. P.

    2007-04-01

    A rf superconducting quantum interference device (SQUID) array in an alternating magnetic field is investigated with respect to its effective magnetic permeability, within the effective medium approximation. This system acts as an inherently nonlinear magnetic metamaterial, leading to negative magnetic response, and thus negative permeability above the resonance frequency of the individual SQUIDs. Moreover, the permeability exhibits oscillatory behavior at low field intensities, allowing its tuning by a slight change of the intensity of the applied field.

  18. First prototype Copper-Niobium RF Superconducting Cavity

    CERN Multimedia

    1983-01-01

    This is the first RF superconducting cavity made of copper with a very thin layer of pure niobium deposited on the inner wall by sputtering. This new developpment lead to a considerable increase of performance and stability of superconducting cavities and to non-negligible economy. The work was carried out in the ISR workshop. This technique was adopted for the LEP II accelerating cavities. At the centre is Cristoforo Benvenuti, inventor of this important technology, with his assistants, Nadia Circelli and Max Hauer, carrying the sputtering electrode. See also 8209255, 8312339.

  19. Electron Source based on Superconducting RF

    Science.gov (United States)

    Xin, Tianmu

    High-bunch-charge photoemission electron-sources operating in a Continuous Wave (CW) mode can provide high peak current as well as the high average current which are required for many advanced applications of accelerators facilities, for example, electron coolers for hadron beams, electron-ion colliders, and Free-Electron Lasers (FELs). Superconducting Radio Frequency (SRF) has many advantages over other electron-injector technologies, especially when it is working in CW mode as it offers higher repetition rate. An 112 MHz SRF electron photo-injector (gun) was developed at Brookhaven National Laboratory (BNL) to produce high-brightness and high-bunch-charge bunches for electron cooling experiments. The gun utilizes a Quarter-Wave Resonator (QWR) geometry for a compact structure and improved electron beam dynamics. The detailed RF design of the cavity, fundamental coupler and cathode stalk are presented in this work. A GPU accelerated code was written to improve the speed of simulation of multipacting, an important hurdle the SRF structure has to overcome in various locations. The injector utilizes high Quantum Efficiency (QE) multi-alkali photocathodes (K2CsSb) for generating electrons. The cathode fabrication system and procedure are also included in the thesis. Beam dynamic simulation of the injector was done with the code ASTRA. To find the optimized parameters of the cavities and beam optics, the author wrote a genetic algorithm Python script to search for the best solution in this high-dimensional parameter space. The gun was successfully commissioned and produced world record bunch charge and average current in an SRF photo-injector.

  20. Superconducting Quantum Arrays for Broadband RF Systems

    Science.gov (United States)

    Kornev, V.; Sharafiev, A.; Soloviev, I.; Kolotinskiy, N.; Mukhanov, O.

    2014-05-01

    Superconducting Quantum Arrays (SQAs), homogenous arrays of Superconducting Quantum Cells, are developed for implementation of broadband radio frequency (RF) systems capable of providing highly linear magnetic signal to voltage transfer with high dynamic range, including active electrically small antennas (ESAs). Among the proposed quantum cells which are bi-SQUID and Differential Quantum Cell (DQC), the latter delivered better performance for SQAs. A prototype of the transformer-less active ESA based on a 2D SQA with nonsuperconducting electric connection of the DQCs was fabricated using HYPRES niobium process with critical current density 4.5 kA/cm2. The measured voltage response is characterized by a peak-to-peak swing of ~100 mV and steepness of ~6500 μV/μT.

  1. Superconducting Radio Frequency Technology: An Overview

    Energy Technology Data Exchange (ETDEWEB)

    Peter Kneisel

    2003-06-01

    Superconducting RF cavities are becoming more often the choice for larger scale particle accelerator projects such as linear colliders, energy recovery linacs, free electron lasers or storage rings. Among the many advantages compared to normal conducting copper structures, the superconducting devices dissipate less rf power, permit higher accelerating gradients in CW operation and provide better quality particle beams. In most cases these accelerating cavities are fabricated from high purity bulk niobium, which has superior superconducting properties such as critical temperature and critical magnetic field when compared to other superconducting materials. Research during the last decade has shown, that the metallurgical properties--purity, grain structure, mechanical properties and oxidation behavior--have significant influence on the performance of these accelerating devices. This contribution attempts to give a short overview of the superconducting RF technology with emphasis on the importance of the material properties of the high purity niobium.

  2. Theory of RF superconductivity for resonant cavities

    Science.gov (United States)

    Gurevich, Alex

    2017-03-01

    An overview of a theory of electromagnetic response of superconductors in strong radio-frequency (RF) electromagnetic fields is given with the emphasis on applications to superconducting resonant cavities for particle accelerators. The paper addresses fundamentals of the BCS surface resistance, the effect of subgap states and trapped vortices on the residual surface resistance at low RF fields, and a nonlinear surface resistance at strong fields, particularly the effect of the RF field suppression of the surface resistance. These issues are essential for the understanding of the field dependence of high quality factors Q({B}a)∼ {10}10{--}{10}11 achieved on the Nb cavities at 1.3–2 K in strong RF fields B a close to the depairing limit, and the extended Q({B}a) rise which has been observed on Ti and N-treated Nb cavities. Possible ways of further increase of Q({B}a) and the breakdown field by optimizing impurity concentration at the surface and by multilayer nanostructuring with materials other than Nb are discussed.

  3. Application of Phase Lock Loop in Superconducting RF Technology%锁相环在超导射频技术中的应用

    Institute of Scientific and Technical Information of China (English)

    常玮; 何源; 李春龙; 高郑; 朱正龙; 薛纵横; 宋玉; 张锐

    2014-01-01

    利用压控振荡器锁相环路(VCO-PLL)锁定超导射频谐振腔体的本征频率,使腔体稳定谐振。在原理验证阶段,利用NI-Labview对实验原理做了仿真。得到的仿真结果显示,环路增益选取的不同会直接影响整个系统的锁定状态。在实验测试阶段,根据原理和仿真结果搭建了相应的实验平台,从而得到环路锁定的测试结果。最后在低温超导态测试阶段,用经过验证的实验平台对IMP-HWR010超导腔体进行了频率锁定测试,并得到了腔体频率随氦压变化的实际测量结果,df/dp约为0.73 Hz/Pa。%The main issue of this paper is to introduce the application of phase lock loop (PLL) in supercon-ducting RF technology. The voltage-controlled oscillator phase lock loop (VCO-PLL) can be used for locking the eigen frequency of the superconducting cavity. It can keep superconducting cavity resonant stably. In this paper, the principle of the cavity locking by the VCO-PLL is verified by a simulation, which is done by using NI-Labview software. The simulation result shows that the different gain of the PLL system can impact the locking situation of the whole system. In the test stage, the locking test plant is set up and passed validation. Finally, at the low temperature test stage, the frequency of the IMP-HWR010 superconducting cavity is locked by the test plant. The frequency change with helium pressure of the cavity is about 0.73 Hz/Pa.

  4. Theory and technology for superconducting cavities

    CERN Document Server

    Lengeler, Herbert

    1993-01-01

    The course will address Physicist and Engineers who are newcomers in the field of accelerators and accelerating cavities. The elements of RF-Superconductivity will be presented with special relevance to accelerating cavities. The present ststus of achievable accelerating fields and RF losses will be given and their link to the special technologies for cavity fabrication and surface treatments will be stressed. Cavity auxiliaries like main couplers, higher order mode couplers and frequency tuners will be described.

  5. High field rf superconductivity: to pulse or not to pulse

    Energy Technology Data Exchange (ETDEWEB)

    Campisi, I.E.

    1984-10-01

    Experimental data on the behavior of superconductors under the application of rf fields of amplitude comparable to their critical fields are sporadic and not always consistent. In many cases the field level at which breakdown in superconducting rf cavities should be expected has not been clearly established. Tests conducted with very short (approx. 1 ..mu..s) rf pulses indicate that in this mode of operation fields close to the critical values can be consistently reached in superconducting cavities without breakdown. The advantages and disadvantages of the pulsed method are discussed compared to those of the more standard continuous wave (cw) systems. 60 references.

  6. The ESS Superconducting RF Cavity and Cryomodule Cryogenic Processes

    Science.gov (United States)

    Darve, C.; Elias, N.; Molloy, S.; Bosland, P.; Renard, B.; Bousson, S.; Olivier, G.; Reynet, D.; Thermeau, J. P.

    The European Spallation Source (ESS) is one of Europe's largest research infrastructures, tobring new insights to the grand challenges of science and innovation in fields as diverse as material and life sciences, energy, environmental technology, cultural heritage,solid-state and fundamental physics by the end of the decade. The collaborative project is funded by a collaboration of 17 European countries and is under design and construction in Lund, Sweden. A 5 MW, long pulse proton accelerator is used to reach this goal. The pulsed length is 2.86 ms and the repetition frequency is 14 Hz (4% duty cycle). The choice of SRF technology is a key element in the development of the ESS linear accelerator (linac). The superconducting linacis composed of one section of spoke cavity cryomodules(352.21 MHz) and two sections of elliptical cavity cryomodules (704.42 MHz). These cryomodules contain niobium SRF cavities operating at 2 K, cooled by the accelerator cryoplantthrough the cryogenic distribution system. This paper presents the superconducting RF cavity and cryomodule cryogenic processes, which are developed for the technology demonstrators and to be ultimately integrated for the ESS tunnel operation.

  7. Superconducting Technology Assessment

    Science.gov (United States)

    2005-08-01

    of Nb/Al- Nx /NbTiN junctions for SIS mixer applications,” IEEE Trans. Appl. Superconduct., vol. 11, pp. 76–79, Mar. 2001. [48] M. Gurvitch, W. A...Another connector developed by IBM for commercial applications using a dendritic interposer technology. A “beam-on-pad” approach developed by Siemens

  8. An RF input coupler for a superconducting single cell cavity

    Energy Technology Data Exchange (ETDEWEB)

    Fechner, B.; Ouchi, Nobuo; Kusano, Joichi; Mizumoto, Motoharu; Mukugi, Ken [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Krawczyk, F.

    1999-03-01

    Japan Atomic Energy Research Institute proposes a high intensity proton accelerator for the Neutron Science Project. A superconducting linac is a main option for the high energy part of the accelerator. Design and development work for the superconducting accelerating cavities (resonant frequency of 600 MHz) is in progress. Superconducting cavities have an advantage of very high accelerating efficiency because RF wall loss is very small and much of the RF power fed to the cavity is consumed for the beam acceleration. On the other hand, an RF input coupler for the superconducting cavity has to be matched to the beam loading. Therefore, estimation of coupling coefficient or external quality factor (Qext) of the RF input coupler is important for the design of the couplers. In this work, Qext`s were calculated by the electromagnetic analysis code (MAFIA) and were compared with those by the measurements. A {beta} (ratio of the particle velocity to the light velocity) = 0.5 single-cell cavity with either axial coupler or side coupler was used in this work. In the experiments, a model cavity made by copper is applied. Both 2- and 3-dimensional calculations were performed in the axial coupler geometry and the results were compared. The agreements between calculated and measured values are good and this method for calculation of Qext is confirmed to be proper for the design of the RF input couplers. (author)

  9. Cs2Te normal conducting photocathodes in the superconducting rf gun

    CERN Document Server

    Xiang, R; Buettig, H; Janssen, D; Justus, M; Lehnert, U; Michel, P; Murcek, P; Schamlott, A; Schneider, Ch; Schurig, R; Staufenbiel, F; Teichert, J

    2010-01-01

    The superconducting radio frequency photoinjector (SRF gun) is one of the latest applications of superconducting rf technology in the accelerator field. Since superconducting photocathodes with high quantum efficiency are yet unavailable, normal conducting cathode material is the main choice for SRF photoinjectors. However, the compatibility between the photocathode and the cavity is one of the challenges for this concept. Recently, a SRF gun with Cs2Te cathode has been successfully operated in Forschungszentrum Dresden-Rossendorf. In this paper, we will present the physical properties of Cs2Te photocathodes in the SC cavity, such as the quantum efficiency, the lifetime, the rejuvenation, the charge saturation, and the dark current.

  10. RF Processing of the Couplers for the SNS Superconducting Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Y.Kang; I.E. Campisi; D. Stout; A. Vassioutchenko; M. Stirbet; M. Drury; T. Powers

    2005-07-10

    All eighty-one fundamental power couplers for the 805 MHz superconducting cavities of the SNS linac have been RF conditioned and installed in the cryomodules successfully. The couplers were RF processed at JLAB or at the SNS in ORNL: more than forty couplers have been RF conditioned in the SNS RF Test Facility (RFTF) after the first forty couplers were conditioned at JLAB. The couplers were conditioned up to 650 kW forward power at 8% duty cycle in traveling and standing waves. They were installed on the cavities in the cryomodules and then assembled with the airside waveguide transitions. The couplers have been high power RF tested with satisfactory accelerating field gradients in the cooled cavities.

  11. SUPERCONDUCTING RF-DIPOLE DEFLECTING AND CRABBING CAVITIES

    Energy Technology Data Exchange (ETDEWEB)

    Delayen, Jean [ODU, JLAB; De Silva, Paygalage Subashini [ODU, JLAB

    2013-09-01

    Recent interests in designing compact deflecting and crabbing structures for future accelerators and colliders have initiated the development of novel rf structures. The superconducting rf-dipole cavity is one of the first compact designs with attractive properties such as higher gradients, higher shunt impedance, the absence of lower order modes and widely separated higher order modes. Two rf-dipole designs of 400 MHz and 499 MHz have been designed, fabricated and tested as proof-of-principle designs of compact deflecting and crabbing cavities for the LHC high luminosity upgrade and Jefferson Lab 12 GeV upgrade. The first rf tests have been performed on the rf-dipole geometries at 4.2 K and 2.0 K in a vertical test assembly with excellent results. The cavities have achieved high gradients with high intrinsic quality factors, and multipacting levels were easily processed.

  12. Karlsruhe: En route to a superconducting r.f. separator

    CERN Multimedia

    1973-01-01

    A superconducting r.f. separator is under construction at Karlsruhe for use at the SPS in the beam-line to the Omega spectrometer. Tests on a section of the first 3 m deflector have given results close to the desired parameters.

  13. Investigation of Microscopic Materials Limitations of Superconducting RF Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Anlage, Steven [Univ. of Maryland, College Park, MD (United States)

    2014-07-23

    The high-field performance of SRF cavities is often limited by breakdown events below the intrinsic limiting surface fields of Nb, and there is abundant evidence that these breakdown events are localized in space inside the cavity. Also, there is a lack of detailed understanding of the causal links between surface treatments and ultimate RF performance at low temperatures. An understanding of these links would provide a clear roadmap for improvement of SRF cavity performance, and establish a cause-and-effect ‘RF materials science’ of Nb. We propose two specific microscopic approaches to addressing these issues. First is a spatially-resolved local microwave-microscope probe that operates at SRF frequencies and temperatures to discover the microscopic origins of breakdown, and produce quantitative measurements of RF critical fields of coatings and films. Second, RF Laser Scanning Microscopy (LSM) has allowed visualization of RF current flow and sources of nonlinear RF response in superconducting devices with micro-meter spatial resolution. The LSM will be used in conjunction with surface preparation and characterization techniques to create definitive links between physical and chemical processing steps and ultimate cryogenic microwave performance. We propose to develop RF laser scanning microscopy of small-sample Nb pieces to establish surface-processing / RF performance relations through measurement of RF current distributions on micron-length scales and low temperatures.

  14. RF cavity design for KIRAMS-430 superconducting cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Jung, In Su, E-mail: jis@kirams.re.kr [Korea Institute of Radiological & Medical Sciences (KIRMAS), 75 Nowon-Gil, Nowon-Gu, Seoul 139-706 (Korea, Republic of); Hong, Bong Hwan; Kang, Joonsun; Kim, Hyun Wook; Kim, Chang Hyeuk [Korea Institute of Radiological & Medical Sciences (KIRMAS), 75 Nowon-Gil, Nowon-Gu, Seoul 139-706 (Korea, Republic of); Kwon, Key Ho [School of Information and Communication Engineering, Natural Sciences Campus, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2015-03-21

    The Korea Heavy Ion Medical Accelerator (KHIMA) has developed a superconducting cyclotron for the carbon therapy, which is called KIRAMS-430. The cyclotron is designed to accelerate only {sup 12}C{sup 6+} ions up to the energy of 430 MeV/u. It uses two normal conducting RF cavities. The RF frequency is about 70.76 MHz. The nominal dee voltage is 70 kV at the center and 160 kV at the extraction. The RF cavity was designed with 4 stems by using CST microwave studio (MWS). In this paper, we represent the simulation results and the optimized design of the RF cavity for the KIRAMS-430.

  15. Design of RF system for CYCIAE-230 superconducting cyclotron

    Science.gov (United States)

    Yin, Zhiguo; Ji, Bin; Fu, Xiaoliang; Cao, Xuelong; Zhao, Zhenlu; Zhang, Tinajue

    2017-05-01

    The CYCIAE230 is a low-current, compact superconducting cyclotron designed for proton therapy. The Radio Frequency system consists of four RF cavities and applies second harmonic to accelerate beams. The driving power for the cavity system is estimated to be approximately 150 kW. The LLRF controller is a self-made device developed and tested at low power using a small-scale cavity model. In this paper, the resonator systems of an S.C. cyclotron in history are reviewed. Contrary to those RF systems, the cavities of the CYCIAE230 cyclotron connect two opposite dees. Two high-power RF windows are included in the system. Each window carries approximately 75 kW RF power from the driver to the cavities. Thus, the RF system for the CY-CIAE230 cyclotron is operated in driven push-pull mode. The two-way amplifier-coupler-cavity systems are operated with approximately the same amount of RF power but 180° out of phase compared with each other. The design, as well as the technical advantage and limitations of this operating mode, of the CYCIAE230 cyclotron RF system is analyzed.

  16. Characterization of a superconducting Pb photocathode in a superconducting rf photoinjector cavity

    CERN Document Server

    Barday, R; Jankowiak, A; Kamps, T; Knobloch, J; Kugeler, O; Matveenko, A; Neumann, A; Schmeißer, M; Volker, J; Kneisel, P; Nietubyc, R; Schubert S; Smedley J; Sekutowicz, J; Will, I

    2014-01-01

    Photocathodes are a limiting factor for the next generation of ultrahigh brightness photoinjectors. We studied the behavior of a superconducting Pb cathode in the cryogenic environment of a superconducting rf gun cavity to measure the quantum efficiency, its spatial distribution, and the work function. We will also discuss how the cathode surface contaminants modify the performance of the photocathode as well as the gun cavity and we discuss the possibilities to remove these contaminants.

  17. BNl 703 MHz superconducting RF cavity testing

    Energy Technology Data Exchange (ETDEWEB)

    Sheehy, B.; Altinbas, Z.; Burrill, A.; Ben-Zvi, I.; Gassner, D.; Hahn, H.; Hammons, L.; Jamilkowski, J.; Kayran, D.; Kewisch, J.; Laloudakis, N.; Lederle, D.; Litvinenko, V.; McIntyre, G.; Pate, D.; Phillips, D.; Schultheiss, C.; Seda,T.; Than, R.; Xu, W.; Zaltsman, A.; Schultheiss, T.

    2011-03-28

    The BNL 5-cell, 703 MHz superconducting accelerating cavity has been installed in the high-current ERL experiment. This experiment will function as a proving ground for the development of high-current machines in general and is particularly targeted at beam development for an electron-ion collider (eRHIC). The cavity performed well in vertical tests, demonstrating gradients of 20 MV/m and a Q{sub 0} of 1e10. Here we will present its performance in the horizontal tests, and discuss technical issues involved in its implementation in the ERL.

  18. HOM Dampers or not in Superconducting RF Proton Linacs

    CERN Document Server

    Tückmantel, Joachim

    2009-01-01

    Circular machines are plagued by Coupled Bunch Instabilities, driven by impedance peaks, irrespectively of their frequency relation to machine lines; hence all cavity Higher Order Modes are possible drivers. This is the fundamental reason that all superconducting RF cavities in circular machines are equipped with HOM dampers. This raises the question if HOM damping would not be imperative also in high current proton linacs where a mechanism akin to CBI might exist. To clarify this question we have simulated the longitudinal bunched beam dynamics in linacs, allowing bunch-to-bunch variations in time-of-arrival. Simulations were executed for a generic proton linac with properties close to SNS or the planned SPL at CERN. It was found that for monopole HOMs with high Qext large beam scatter or even beam loss cannot be excluded. Therefore omitting HOM dampers on superconducting RF cavities in high current proton linacs, even pulsed ones, is a very risky decision.

  19. Cryostat for Testing HIE-Isolde Superconducting RF Cavities

    CERN Document Server

    Capatina, O; Cuccuru, G; Pasini, M; Renaglia, T; Therasse, M; Vullierme, B

    2011-01-01

    The High Intensity and Energy ISOLDE (HIE-ISOLDE) project is a major upgrade of the existing ISOLDE and REX-ISOLDE facilities at CERN [1], with the objective of increasing the energy and intensity of the delivered radioactive ion beams (RIB). This project aims to fill the request for a more energetic post-accelerated beam by means of a new superconducting (SC) linac based on Quarter Wave Resonators (QWR). A research and development (R&D) programme looking at all the different aspects of the SC linac started in 2008 and continued throughout 2010. The R&D effort has particularly focused on the development of the high β cavities (β = 10.3%) for which the Nb sputtered on Cu substrate technology has been adopted. Two prototype cavities were manufactured and are undergoing RF cold tests. The pre-series cavity manufacturing is under way using 3D forged Cu billets. A single vacuum cryostat was designed and built to test these cavities at liquid helium temperatures. This paper details the main design concep...

  20. Niobium superconducting rf cavity fabrication by electrohydraulic forming

    CERN Document Server

    Cantergiani, E.; Léaux, F.; Perez Fontenla, A.T.; Prunet, S.; Dufay-Chanat, L.; Koettig, T.; Bertinelli, F.; Capatina, O.; Favre, G.; Gerigk, F.; Jeanson, A. C.; Fuzeau, J.; Avrillaud, G.; Alleman, D.; Bonafe, J.; Marty, P.

    2016-01-01

    Superconducting rf (SRF) cavities are traditionally fabricated from superconducting material sheets or made of copper coated with superconducting material, followed by trim machining and electron-beam welding. An alternative technique to traditional shaping methods, such as deep-drawing and spinning, is electrohydraulicforming (EHF). InEHF, half-cells areobtainedthrough ultrahigh-speed deformation ofblank sheets, using shockwaves induced in water by a pulsed electrical discharge. With respect to traditional methods, such a highly dynamic process can yield interesting results in terms of effectiveness, repeatability, final shape precision, higher formability, and reduced springback. In this paper, the first results of EHFon high purity niobium are presented and discussed. The simulations performed in order to master the multiphysics phenomena of EHF and to adjust its process parameters are presented. The microstructures of niobium half- cells produced by EHFand by spinning have been compared in terms of damage...

  1. MEMS technologies for rf communications

    Science.gov (United States)

    Wu, Qun; Kim, B. K.

    2001-04-01

    Microelectromechanical system (MEMS) represents an exciting new technology derived from the same fabricating processes used to make integrated circuits. The trends of growing importance of the wireless communications market is toward the system with minimal size, cost and power consumption. For the purpose of MEMS R&D used for wireless communications, a history and present situation of MEMS device development are reviewed in this paper, and an overview of MEMS research topics on RF communication applications and the state of the art technologies are also presented here.

  2. Nano-fabricated superconducting radio-frequency composites, method for producing nano-fabricated superconducting rf composites

    Science.gov (United States)

    Norem, James H.; Pellin, Michael J.

    2013-06-11

    Superconducting rf is limited by a wide range of failure mechanisms inherent in the typical manufacture methods. This invention provides a method for fabricating superconducting rf structures comprising coating the structures with single atomic-layer thick films of alternating chemical composition. Also provided is a cavity defining the invented laminate structure.

  3. Experience with the LEP Superconducting RF Accelerating System

    CERN Document Server

    Geschonke, Günther

    1998-01-01

    CERN is presently upgrading the large Electron Positron Collider (LEP) to higher energy by installing superconducting RF accelerating cavities. For a total installed circumferential voltage of about 2800 MV, 272 cavities operating at 352 MHz will be needed, representing an active length of 462 m and a cold surface of more than 1600 m2. The series production cavities are made out of copper, sputter-coated with a thin layer of niobium and cooled with liquid He to 4.5 K. The cavities are produced by industry and the acceptance testing is done at CERN. In 1996, 176 cavities had been installed and run successfully at their design gradient of 6 MV/m during physics at a beam energy of 86 GeV. As RF power sources 36 klystrons will finally be installed with a nominal RF output power of 1 MW each. In this paper the superconducting accelerating system in LEP will be described and experience gained during operation for physics as well as new developments will be presented.

  4. Optimal RF Systems for Lightly Loaded Superconducting Structures

    CERN Document Server

    Zwart, Townsend; Graves, William S; Wang, D; Zolfaghari, Abbi

    2004-01-01

    Recent developments in the field of RF accelerators have created a demand for power amplifiers that can support very high accelerating gradients, 15-25 MV/m, in superconducting structures with extremely low losses. Free electron lasers (FEL’s) with modest beam current, I< 10 uA, or based on energy recovery linacs (ERL’s) may have intrinsic power demands of less than 1 kW/m. We present the design of an amplifier and external tuner system that will efficiently meet this requirement. The RF amplifier, an Inductive Output Tube (IOT), offers high AC/RF efficiency, flexible power output and switching capability without the need for external modulation. The tuner circuit makes use of low loss ferrite phase shifters to create a moderate quality standing wave (Q~100-1000) between the amplifier and the superconducting cavity. An alternative design based on a shorter cavity structure and employing solid state amplifiers is also presented. The expected performance characteristics of both systems are described.

  5. Latest Development in Superconducting RF Structures for beta=1 Particle Acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Peter Kneisel

    2006-06-26

    Superconducting RF technology is since nearly a decade routinely applied to different kinds of accelerating devices: linear accelerators, storage rings, synchrotron light sources and FEL's. With the technology recommendation for the International Linear Collider (ILC) a year ago, new emphasis has been placed on improving the performance of accelerating cavities both in Q-value and in accelerating gradients with the goal to achieve performance levels close to the fundamental limits given by the material parameters of the choice material, niobium. This paper will summarize the challenges to SRF technology and will review the latest developments in superconducting structure design. Additionally, it will give an overview of the newest results and will report on the developments in alternative materials and technologies.

  6. Early prototype of a superconducting RF cavity for LEP

    CERN Multimedia

    1979-01-01

    As early as 1979, before LEP became an approved project, studies were located in the ISR Division. Although Cu-cavities were foreseen, certainly for the 1st energy-stage, superconducting cavities were explored as a possible alternative for the 2nd energy-stage. This began with very basic studies of manufacture and properties of Nb-cavities. This one, held by Mr.Girel, was made from bulk Nb-sheet, 2.5 mm thick. It was dimensioned for tests at 500 MHz (LEP accelerating RF was 352.2 MHz). See also 8004204, 8007354, 8209255, 8210054, 8312339.

  7. Design Topics for Superconducting RF Cavities and Ancillaries

    CERN Document Server

    Padamsee, H

    2014-01-01

    RF superconductivity has become a major subfield of accelerator science. There has been an explosion in the number of accelerator applications and in the number of laboratories engaged. The first lecture at this meeting of the CAS presented a review of fundamental design principles to develop cavity geometries to accelerate velocity-of-light particles (β = v/c ~ 1), moving on to the corresponding design principles for medium-velocity (medium-β) and low-velocity (low-β) structures. The lecture included mechanical design topics. The second lecture dealt with input couplers, higher-order mode extraction couplers with absorbers, and tuners of both the slow and fast varieties.

  8. RF Characterization of Niobium Films for Superconducting Cavities

    CERN Document Server

    Aull† , S; Doebert, S; Junginger, T; Ehiasarian, AP; Knobloch, J; Terenziani, G

    2013-01-01

    The surface resistance RS of superconductors shows a complex dependence on the external parameters such as temperature, frequency or radio-frequency (RF) field. The Quadrupole Resonator modes of 400, 800 and 1200 MHz allow measurements at actual operating frequencies of superconducting cavities. Niobium films on copper substrates have several advantages over bulk niobium cavities. HIPIMS (High-power impulse magnetron sputtering) is a promising technique to increase the quality and therefore the performance of niobium films. This contribution will introduce CERNs recently developed HIPIMS coating apparatus. Moreover, first results of niobium coated copper samples will be presented, revealing the dominant loss mechanisms.

  9. Superconducting RF materials other than bulk niobium: a review

    Science.gov (United States)

    Valente-Feliciano, Anne-Marie

    2016-11-01

    For the past five decades, bulk niobium (Nb) has been the material of choice for superconducting RF (SRF) cavity applications. Alternatives such as Nb thin films and other higher-T c materials, mainly Nb compounds and A15 compounds, have been investigated with moderate effort in the past. In recent years, RF cavity performance has approached the theoretical limit for bulk Nb. For further improvement of RF cavity performance for future accelerator projects, research interest is renewed towards alternatives to bulk Nb. Institutions around the world are now investing renewed efforts in the investigation of Nb thin films and superconductors with higher transition temperature T c for application to SRF cavities. This paper gives an overview of the results obtained so far and challenges encountered for Nb films as well as other materials, such as Nb compounds, A15 compounds, MgB2, and oxypnictides, for SRF cavity applications. An interesting alternative using a superconductor-insulator-superconductor multilayer approach has been recently proposed to delay the vortex penetration in Nb surfaces. This could potentially lead to further improvement in RF cavities performance using the benefit of the higher critical field H c of higher-T c superconductors without being limited with their lower H c1.

  10. Muon spin rotation studies of niobium for superconducting rf applications

    Directory of Open Access Journals (Sweden)

    A. Grassellino

    2013-06-01

    Full Text Available In this work we investigate superconducting properties of niobium samples via application of the muon spin rotation/relaxation (μSR technique. We employ for the first time the μSR technique to study samples that are cut out from large and small grain 1.5 GHz radio frequency (rf single cell niobium cavities. The rf test of these cavities was accompanied by full temperature mapping to characterize the rf losses in each of the samples. Results of the μSR measurements show that standard cavity surface treatments like mild baking and buffered chemical polishing performed on the studied samples affect their surface pinning strength. We find an interesting correlation between high field rf losses and field dependence of the sample magnetic volume fraction measured via μSR. The μSR line width observed in zero-field-μSR measurements matches the behavior of Nb samples doped with minute amounts of Ta or N impurities. A lower and an upper bound for the upper critical field H_{c2} of these cutouts is found.

  11. The elbe accelerator facility starts operation with the superconducting rf gun

    CERN Document Server

    Xiang, R; Buettig, H; Janssen, D; Justus, M; Lehnert, U; Michel, P; Murcek, P; Schneider, C; Schurig, R; Staufenbiel, F; Teichert, J; Kamps, T; Rudolph, J; Schenk, M; Klemz, G; Will, I

    2010-01-01

    As the first superconducting rf photo-injector (SRF gun) in practice, the FZD 3+1/2 cell SRF gun is successfully connected to the superconducting linac ELBE. This setting will improve the beam quality for ELBE users. It is the first example for an accelerator facility fully based on superconducting RF technology. For high average power FEL and ERL sources, the combination of SRF linac and SRF gun provides a new chance to produce beams of high average current and low emittance with relative low power consumption. The main parameters achieved from the present SRF gun are the final electron energy of 3 MeV, 16 μA average current, and rms transverse normalized emittances of 3 mm mrad at 77 pC bunch charge. A modified 3+1/2 cell niobium cavity has been fabricated and tested, which will increase the rf gradient in the gun and thus better the beam parameters further. In this paper the status of the integration of the SRF gun with the ELBE linac will be presented, and the latest results of the beam experiments will ...

  12. Compact Superconducting Radio-frequency Accelerators and Innovative RF Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kephart, Robert [Fermilab; Chattopadhyay, Swaapan [Northern Illinois U.; Milton, Stephen [Colorado State U.

    2015-04-10

    We will present several new technical and design breakthroughs that enable the creation of a new class of compact linear electron accelerators for industrial purposes. Use of Superconducting Radio-Frequency (SRF) cavities allow accelerators less than 1.5 M in length to create electron beams beyond 10 MeV and with average beam powers measured in 10’s of KW. These machines can have the capability to vary the output energy dynamically to produce brehmstrahlung x-rays of varying spectral coverage for applications such as rapid scanning of moving cargo for security purposes. Such compact accelerators will also be cost effective for many existing and new industrial applications. Examples include radiation crosslinking of plastics and rubbers, creation of pure materials with surface properties radically altered from the bulk, modification of bulk or surface optical properties of materials, sterilization of medical instruments animal solid or liquid waste, and destruction of organic compounds in industrial waste water effluents. Small enough to be located on a mobile platform, such accelerators will enable new remediation methods for chemical and biological spills and/or in-situ crosslinking of materials. We will describe one current design under development at Fermilab including plans for prototype and value-engineering to reduce costs. We will also describe development of new nano-structured field-emitter arrays as sources of electrons, new methods for fabricating and cooling superconducting RF cavities, and a new novel RF power source based on magnetrons with full phase and amplitude control.

  13. Development of Low Level RF Control Systems for Superconducting Heavy Ion Linear Accelerators, Electron Synchrotrons and Storage Rings

    CERN Document Server

    Aminov, Bachtior; Kolesov, Sergej; Pekeler, Michael; Piel, Christian; Piel, Helmut

    2005-01-01

    Since 2001 ACCEL Instruments is supplying low level RF control systems together with turn key cavity systems. The early LLRF systems used the well established technology based on discrete analogue amplitude and phase detectors and modulators. Today analogue LLRF systems can make use of advanced vector demodulators and modulators combined with a fast computer controlled analogue feed back loop. Feed forward control is implemented to operate the RF cavity in an open loop mode or to compensate for predictable perturbations. The paper will introduce the general design philosophy and show how it can be adapted to different tasks as controlling a synchrotron booster nc RF system at 500 MHz, or superconducting storage ring RF cavities, as well as a linear accelerator at 176 MHz formed by a chain of individually driven and controlled superconducting λ/2 cavities.

  14. Operation of the superconducting RF photo gun at ELBE

    CERN Document Server

    Teichert, J; Buettig, H; Janssen, D; Justus, M; Lehnert, U; Michel, P; Murcek, P; Schneider, Ch; Schurig, R; Staufenbiel, F; Xiang, R; Kamps, T; Rudolph, J; Schenk, M; Klemz, G; Will, I

    2012-01-01

    As the first superconducting RF photo-injector (SRF gun) in practical operation, the SRF gun has been successfully connected to the superconducting linac ELBE at Forschungzentrum Dresden-Rossendorf. The injection with this new gun will improve the beam quality for the users of the radiation source. The SRF gun contains a 3½ cell superconducting accelerating cavity with a frequency of 1.3 GHz. The design is for use of normal conducting photocathodes. At present, caesium telluride photocathodes are applied which are illuminated by an ultraviolet laser beam. The kinetic energy of the produced electron beam is 3 MeV which belongs to a peak electric field of 16 MV/m in the cavity. The maximum bunch charge which is obtained and measured in a Faraday cup is about 400 pC (20 μA average current at a repetition rate of 50 kHz). The SRF gun injector is connected to the ELBE accelerator via a dogleg with two 45° deflection magnets. This connection beam line was commissioned in January 2010. A first beam injection into...

  15. Operation of the superconducting RF photo gun at ELBE

    CERN Document Server

    Teichert, J; Buettig, H; Janssen, D; Justus, M; Lehnert, U; Michel, P; Murcek, P; Schneider, C; Schurig, R; Staufenbiel, F; Xiang, R; Kamps, T; Rudolph, J; Schenk, M; Klemz, G; Will, I

    2011-01-01

    As the first superconducting RF photo-injector (SRF gun) in practical operation, the SRF gun has been successfully connected to the superconducting linac ELBE at Forschungzentrum Dresden-Rossendorf. The injection with this new gun will improve the beam quality for the users of the radiation source. The SRF gun contains a 3½ cell superconducting accelerating cavity with a frequency of 1.3 GHz. The design is for use of normal conducting photocathodes. At present, caesium telluride photocathodes are applied which are illuminated by an ultraviolet laser beam. The kinetic energy of the produced electron beam is 3 MeV which belongs to a peak electric field of 16 MV/m in the cavity. The maximum bunch charge which is obtained and measured in a Faraday cup is about 400 pC (20 µA average current at a repetition rate of 50 kHz). The SRF gun injector is connected to the ELBE accelerator via a dogleg with two 45° deflection magnets. This connection beam line was commissioned in January 2010. A first beam injection into...

  16. Niobium superconducting rf cavity fabrication by electrohydraulic forming

    Science.gov (United States)

    Cantergiani, E.; Atieh, S.; Léaux, F.; Perez Fontenla, A. T.; Prunet, S.; Dufay-Chanat, L.; Koettig, T.; Bertinelli, F.; Capatina, O.; Favre, G.; Gerigk, F.; Jeanson, A. C.; Fuzeau, J.; Avrillaud, G.; Alleman, D.; Bonafe, J.; Marty, P.

    2016-11-01

    Superconducting rf (SRF) cavities are traditionally fabricated from superconducting material sheets or made of copper coated with superconducting material, followed by trim machining and electron-beam welding. An alternative technique to traditional shaping methods, such as deep-drawing and spinning, is electrohydraulic forming (EHF). In EHF, half-cells are obtained through ultrahigh-speed deformation of blank sheets, using shockwaves induced in water by a pulsed electrical discharge. With respect to traditional methods, such a highly dynamic process can yield interesting results in terms of effectiveness, repeatability, final shape precision, higher formability, and reduced springback. In this paper, the first results of EHF on high purity niobium are presented and discussed. The simulations performed in order to master the multiphysics phenomena of EHF and to adjust its process parameters are presented. The microstructures of niobium half-cells produced by EHF and by spinning have been compared in terms of damage created in the material during the forming operation. The damage was assessed through hardness measurements, residual resistivity ratio (RRR) measurements, and electron backscattered diffraction analyses. It was found that EHF does not worsen the damage of the material during forming and instead, some areas of the half-cell have shown lower damage compared to spinning. Moreover, EHF is particularly advantageous to reduce the forming time, preserve roughness, and to meet the final required shape accuracy.

  17. A 166.6 MHz superconducting rf system for the HEPS storage ring

    Science.gov (United States)

    Zhang, P.; Hao, X.; Huang, T.; Li, Z.; Lin, H.; Meng, F.; Mi, Z.; Sun, Y.; Wang, G.; Wang, Q.; Zhang, X.

    2017-07-01

    A superconducting 166.6 MHz quarter-wave beta=1 cavity was recently proposed for the High Energy Photon Source (HEPS), a 6 GeV kilometer-scale light source. Four 166.6 MHz cavities will be used for main acceleration in the newly planned on-axis beam injection scheme realized by a double-frequency RF system. The fundamental frequency, 166.6 MHz, was dictated by the fast injection kicker technology and the preference of using 499.8 MHz SC RF cavity as the third harmonic. Each 166.6 MHz cavity will be operated at 4.2 K providing 1.2 MV accelerating voltage and 150 kW of power to the electron beam. The input coupler will use single-window coaxial type graded up to 200 kW CW power. Each cavity will be equipped with a 200 kW solid-state amplifier and digital low-level RF system. This paper describes the 166.6 MHz RF system with a focus on the design and optimization of the RF cavity and its ancillaries, the LLRF system and the status of the solid-state amplifiers.

  18. 1.3 GHz superconducting RF cavity program at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Ginsburg, C.M.; Arkan, T.; Barbanotti, S.; Carter, H.; Champion, M.; Cooley, L.; Cooper, C.; Foley, M.; Ge, M.; Grimm, C.; Harms, E.; /Fermilab

    2011-03-01

    At Fermilab, 9-cell 1.3 GHz superconducting RF (SRF) cavities are prepared, qualified, and assembled into cryomodules (CMs) for Project X, an International Linear Collider (ILC), or other future projects. The 1.3 GHz SRF cavity program includes targeted R&D on 1-cell 1.3 GHz cavities for cavity performance improvement. Production cavity qualification includes cavity inspection, surface processing, clean assembly, and one or more cryogenic low-power CW qualification tests which typically include performance diagnostics. Qualified cavities are welded into helium vessels and are cryogenically tested with pulsed high-power. Well performing cavities are assembled into cryomodules for pulsed high-power testing in a cryomodule test facility, and possible installation into a beamline. The overall goals of the 1.3 GHz SRF cavity program, supporting facilities, and accomplishments are described.

  19. The ``Q disease'' in Superconducting Niobium RF Cavities

    Science.gov (United States)

    Knobloch, J.

    2003-07-01

    Superconducting niobium cavities can achieve quality (Q0) factors of 1010-1011, more than six orders of magnitude higher than conventional copper cavities. However, to maintain this performance at high accelerating gradient (20 MV/m) the radio-frequency (rf) surface must be damage and dust free. Cavity preparation techniques therefore routinely include a chemical etch or electropolishing. Under certain conditions, these (and other) treatments can contaminate the niobium with hydrogen. Hydrides may then form when the cavity is cooled through 150 K, even if only a few atomic percent hydrogen are present. If hydrides are formed, the cavity quality can degrade substantially (Q disease). A rapid cooldown often inhibits the hydride formation. Other "cures" include degassing cavities at 900 °C to eliminate the hydrogen. A historical review of the Q disease is provided here, with the emphasis being placed on its discovery, symptoms, mechanism, and cures.

  20. Proc. of the workshop on pushing the limits of RF superconductivity.

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K-J., Eyberger, C., editors

    2005-04-13

    For three days in late September last year, some sixty experts in RF superconductivity from around the world came together at Argonne to discuss how to push the limits of RF superconductivity for particle accelerators. It was an intense workshop with in-depth presentations and ample discussions. There was added excitement due to the fact that, a few days before the workshop, the International Technology Recommendation Panel had decided in favor of superconducting technology for the International Linear Collider (ILC), the next major high-energy physics accelerator project. Superconducting RF technology is also important for other large accelerator projects that are either imminent or under active discussion at this time, such as the Rare Isotope Accelerator (RIA) for nuclear physics, energy recovery linacs (ERLs), and x-ray free-electron lasers. For these accelerators, the capability in maximum accelerating gradient and/or the Q value is essential to limit the length and/or operating cost of the accelerators. The technological progress of superconducting accelerators during the past two decades has been truly remarkable, both in low-frequency structures for acceleration of protons and ions as well as in high-frequency structures for electrons. The requirements of future accelerators demand an even higher level of performance. The topics of this workshop are therefore highly relevant and timely. The presentations given at the workshop contained authoritative reviews of the current state of the art as well as some original materials that previously had not been widely circulated. We therefore felt strongly that these materials should be put together in the form of a workshop proceeding. The outcome is this report, which consists of two parts: first, a collection of the scholarly papers prepared by some of the participants and second, copies of the viewgraphs of all presentations. The presentation viewgraphs, in full color, are also available from the Workshop

  1. Nonlinear RF spurious in a cylindrical cavity with superconducting endplates

    Science.gov (United States)

    Mateu, Jordi; Collado, Carlos; Shaw, Timothy J.; O'Callaghan, Juan M.

    2002-08-01

    We have developed a method to calculate the distribution of fundamental and spurious fields in a metallic cylindrical cavity with superconducting endplates in which signals at two different frequencies are injected. The nonlinearity in the superconductor produces the typical intermodulation effects if the frequencies of the injected signals are sufficiently close to each other and near a resonant mode. Our method uses harmonic balance to match the fields in the cavity with the currents on the endplates. The method can be used for a variety of nonlinear models of the superconducting endplate, and could be the base for a nondestructive procedure to extract the nonlinear parameters of an HTS sample from RF measurements. Our analysis is restricted to the TE0 1 1 mode, but the method can be applied to any propagating mode in the cylindrical cavity. Closed-form equations for the case of square-law nonlinearities in the superconductor are derived and used to check the validity of the harmonic balance calculation.

  2. A coaxial HOM coupler for a superconducting RF cavity and its low-power measurement results

    Institute of Scientific and Technical Information of China (English)

    SUN An; TANG Ya-Zhe; ZHANG Li-Ping; LI Ying-Min; Han-Sung Kim

    2011-01-01

    A resonant buildup of beam-induced fields in a superconducting radio frequency(RF)cavity may make a beam unstable or a superconducting RF cavity quench. Higher-order mode(HOM)couplers are used for damping higher-order modes to avoid such a resonant buildup. A coaxial HOM coupler based on the TTF (TESLA Test Facility)HOM coupler has been designed for the superconducting RF cavities at the Proton Engineering Frontier Project(PEFP)in order to overcome notch frequency shift and feed-through tip melting issues. In order to confirm the HOM coupler design and finalize its structural dimensions, two prototype HOM couplers have been fabricated and tested. Low-power testing and measurement of the HOM couplers has shown that the HOM coupler has good filter properties and can fully meet the damping requirements of the PEFP low-beta superconducting RF linac.

  3. Study of Cavity Imperfection Impact on RF-Parameters and Multipole Components in a Superconducting RF-Dipole Cavity

    CERN Document Server

    Olave, R G; Delayen, Jean Roger; De Silva, S U; Li, Z

    2014-01-01

    The ODU/SLAC superconducting rf-dipole cavity is under consideration for the crab-crossing system in the upcoming LHC luminosity upgrade. While the proposed cavity complies well within the rf-parameters and multipolar component restrictions for the LHC system, cavity imperfections arising from cavity fabrication, welding and frequency tuning may have a significant effect in these parameters. We report on an initial study of the impact of deviation from the ideal shape on the cavity’s performance in terms of rf-parameters and multipolar components.

  4. CW Superconducting RF Photoinjector Development for Energy Recovery Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Neumann A.; Rao T.; Anders, W.; Dirsat, M.; Frahm, A. Jankowiak, A.; Kamps, T.; Knobloch, J.; Kugeler, O.; Quast, T.; Rudolph, J.; Schenk, M.; Schuster, M.; Smedley, J.; Sekutowicz, J.; Kneisel, P.; Nietubyc, R.; Will, I.

    2010-10-31

    ERLs have the powerful potential to provide very high current beams with exceptional and tailored parameters for many applications, from next-generation light sources to electron coolers. However, the demands placed on the electron source are severe. It must operate CW, generating a current of 100 mA or more with a normalized emittance of order 1 {micro}m rad. Beyond these requirements, issues such as dark current and long-term reliability are critical to the success of ERL facilities. As part of the BERLinPro project, Helmholtz Zentrum Berlin (HZB) is developing a CWSRF photoinjector in three stages, the first of which is currently being installed at HZB's HoBiCaT facility. It consists of an SRF-cavity with a Pb cathode and a superconducting solenoid. Subsequent development stages include the integration of a high-quantum-efficiency cathode and RF components for high-current operation. This paper discusses the first stage towards an ERL-suitable SRF photoinjector, the present status of the facility and first cavity tests.

  5. Technical training: RF superconductivity and accelerator cavity applications

    CERN Multimedia

    Technical Training

    2016-01-01

    We are happy to announce a new training course organised by the TE-VSC group in the field of the physics and applications of superconductors. The course provides an overview and update of the theory of radiofrequency and superconductors:   RF Superconductivity and Accelerator Cavity Applications https://cern.ch/course/?164VAC19 One timetable only:  Tuesday, 8 March 2016: from 2 p.m. to 4 p.m. Wednesday, 9 March 2016: from 9.30 a.m to 11.30 a.m. Thursday, 10 March 2016: from 9.30 a.m to 11.30 a.m. Monday, 14 March 2016: from 9.30 a.m to 11.30 a.m. Tuesday, 15 March 2016: from 9.30 a.m to 11.30 a.m. Wednesday, 16 March 2016: from 9.30 a.m to 11.30 a.m. Thursday, 17 March 2016: from 9.30 a.m to 11.30 a.m. Target audience: Experts in radiofrequency or solid state physics (PhD level). Pre-requisites: Basic knowledge of quantum physics and superc...

  6. Sensitivity of Niobium Superconducting RF Cavities to Magnetic Field

    CERN Document Server

    Gonnella, Dan

    2015-01-01

    Future particle accelerators such as the the SLAC "Linac Coherent Light Source-II" (LCLS-II) and the proposed Cornell Energy Recovery Linac (ERL) require hundreds of superconducting RF (SRF) cavities operating in continuous wave (CW) mode. In order to achieve economic feasibility of projects such as these, the cavities must achieve a very high intrinsic quality factor (Q0). In order to reach these high Q0's in the case of LCLS-II, nitrogen-doping has been proposed as a cavity preparation technique. When dealing with Q0's greater than 1x10^10, the effects of ambient magnetic field on Q0 become significant. Here we show that the sensitivity that a cavity has to ambient magnetic field is highly dependent on the cavity preparation. Specifically, standard electropolished and 120C baked cavities show a sensitivity of ~0.8 and ~0.6 nOhm/mG trapped, respectively, while nitrogen-doped cavities show a sensitivity of ~2 to 5 nOhm/mG trapped. Less doping results in weaker sensitivity. This difference in sensitivities is ...

  7. Realization and Modeling of Metamaterials Made of rf Superconducting Quantum-Interference Devices

    Directory of Open Access Journals (Sweden)

    M. Trepanier

    2013-12-01

    Full Text Available We have prepared meta-atoms based on radio-frequency superconducting quantum-interference devices (rf SQUIDs and examined their tunability with dc magnetic field, rf current, and temperature. rf SQUIDs are superconducting split-ring resonators in which the usual capacitance is supplemented with a Josephson junction, which introduces strong nonlinearity in the rf properties. We find excellent agreement between the data and a model that regards the Josephson junction as the resistively and capacitively shunted junction. A magnetic field tunability of 80  THz/G at 12 GHz is observed, a total tunability of 56% is achieved, and a unique electromagnetically induced transparency feature at intermediate excitation powers is demonstrated for the first time. An rf SQUID metamaterial is shown to have qualitatively the same behavior as a single rf SQUID with regard to dc flux and temperature tuning.

  8. Introduction to Superconducting RF Structures and the Effect of High Pressure Rinsing

    Energy Technology Data Exchange (ETDEWEB)

    Tajima, Tsuyoshi [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-30

    This presentation begins by describing RF superconductivity and SRF accelerating structures. Then the use of superconducting RF structures in a number of accelerators around the world is reviewed; for example, the International Linear Collider (ILC) will use ~16,000 SRF cavities with ~2,000 cryomodules to get 500 GeV e⁺/e⁻ colliding energy. Field emission control was (and still is) a very important practical issue for SRF cavity development. It has been found that high-pressure ultrapure water rinsing as a final cleaning step after chemical surface treatment resulted in consistent performance of single- and multicell superconducting cavities.

  9. Performance analysis of superconducting rf cavities for the CERN rare isotope accelerator

    Science.gov (United States)

    Calatroni, S.; Miyazaki, A.; Rosaz, G.; Sublet, A.; Venturini Delsolaro, W.; Vaglio, R.; Palmieri, V.

    2016-09-01

    The first cryomodule of the new HIE-ISOLDE rare isotope accelerator has recently been commissioned with beam at CERN, with the second cryomodule ready for installation. Each cryomodule contains five superconducting low-beta quarter wave cavities, produced with the technology of sputtering a thin niobium film onto the copper substrate (Nb /Cu ). This technology has several benefits compared to the bulk niobium solution, but also drawbacks among which the most relevant is the increase of surface resistance with accelerating field. Recent work has established the possible connection of this phenomenon to local defects in the Nb /Cu interface, which may lead to increased thermal impedance and thus local thermal runaway. We have analyzed the performance of the HIE-ISOLDE cavities series production, as well as of a few prototypes', in terms of this model, and found a strong correlation between the rf properties and one of the model characteristic quantities, namely the total surface having increased interface thermal impedance.

  10. Experimental Studies of Light Emission Phenomena in Superconducting RF Cavitites

    Energy Technology Data Exchange (ETDEWEB)

    Anthony, P.L.; /SLAC; Delayen, J.R.; /Jefferson Lab; Fryberger, D.; /SLAC; Goree, W.S.; Mammosser, J.; /Jefferson Lab /SNS Project, Oak Ridge; Szalata, Z.M.; II, J.G.Weisend /SLAC

    2009-08-04

    Experimental studies of light emission phenomena in superconducting RF cavities, which we categorize under the general heading of cavity lights, are described. The cavity lights data, which were obtained using a small CCD video camera, were collected in a series of nine experimental runs ranging from {approx} 1/2 to {approx} 2 h in duration. The video data were recorded on a standard VHS tape. As the runs progressed, additional instrumentation was added. For the last three runs a LabVIEW controlled data acquisition system was included. These runs furnish evidence for several, possibly related, light emission phenomena. The most intriguing of these is what appear to be small luminous objects {le} 1.5 mm in size, freely moving about in the vacuum space, generally without wall contact, as verified by reflections of the tracks in the cavity walls. In addition, on a number of occasions, these objects were observed to bounce off of the cavity walls. The wall-bounce aspect of most of these events was clearly confirmed by pre-bounce and post-bounce reflections concurrent with the tracks. In one of the later runs, a mode of behavior was observed that was qualitatively different from anything observed in the earlier runs. Perhaps the most perplexing aspect of this new mode was the observation of as many as seven luminous objects arrayed in what might be described as a macromolecular formation, coherently moving about in the interior of the cavity for extended periods of time, evidently without any wall contact. It is suggested that these mobile luminous objects are without explanation within the realm of established physics. Some remarks about more exotic theoretical possibilities are made, and future plans are discussed.

  11. A technique for monitoring fast tuner piezoactuator preload forces for superconducting rf cavities

    Energy Technology Data Exchange (ETDEWEB)

    Pischalnikov, Y.; Branlard, J.; Carcagno, R.; Chase, B.; Edwards, H.; Orris, D.; Makulski, A.; McGee, M.; Nehring, R.; Poloubotko, V.; Sylvester, C.; /Fermilab

    2007-06-01

    The technology for mechanically compensating Lorentz Force detuning in superconducting RF cavities has already been developed at DESY. One technique is based on commercial piezoelectric actuators and was successfully demonstrated on TESLA cavities [1]. Piezo actuators for fast tuners can operate in a frequency range up to several kHz; however, it is very important to maintain a constant static force (preload) on the piezo actuator in the range of 10 to 50% of its specified blocking force. Determining the preload force during cool-down, warm-up, or re-tuning of the cavity is difficult without instrumentation, and exceeding the specified range can permanently damage the piezo stack. A technique based on strain gauge technology for superconducting magnets has been applied to fast tuners for monitoring the preload on the piezoelectric assembly. The design and testing of piezo actuator preload sensor technology is discussed. Results from measurements of preload sensors installed on the tuner of the Capture Cavity II (CCII)[2] tested at FNAL are presented. These results include measurements during cool-down, warmup, and cavity tuning along with dynamic Lorentz force compensation.

  12. Digital base-band rf control system for the superconducting Darmstadt electron linear accelerator

    Directory of Open Access Journals (Sweden)

    M. Konrad

    2012-05-01

    Full Text Available The accelerating field in superconducting cavities has to be stabilized in amplitude and phase by a radio-frequency (rf control system. Because of their high loaded quality factor superconducting cavities are very susceptible for microphonics. To meet the increased requirements with respect to accuracy, availability, and diagnostics, the previous analog rf control system of the superconducting Darmstadt electron linear accelerator S-DALINAC has been replaced by a digital rf control system. The new hardware consists of two components: An rf module that converts the signal from the cavity down to the base-band and a field-programmable gate array board including a soft CPU that carries out the signal processing steps of the control algorithm. Different algorithms are used for normal-conducting and superconducting cavities. To improve the availability of the control system, techniques for automatic firmware and software deployment have been implemented. Extensive diagnostic features provide the operator with additional information. The architecture of the rf control system as well as the functionality of its components will be presented along with measurements that characterize the performance of the system, yielding, e.g., an amplitude stabilization down to (ΔA/A_{rms}=7×10^{-5} and a phase stabilization of (Δϕ_{rms}=0.8° for superconducting cavities.

  13. Design of a high-bunch-charge 112-MHz superconducting RF photoemission electron source

    Science.gov (United States)

    Xin, T.; Brutus, J. C.; Belomestnykh, Sergey A.; Ben-Zvi, I.; Boulware, C. H.; Grimm, T. L.; Hayes, T.; Litvinenko, Vladimir N.; Mernick, K.; Narayan, G.; Orfin, P.; Pinayev, I.; Rao, T.; Severino, F.; Skaritka, J.; Smith, K.; Than, R.; Tuozzolo, J.; Wang, E.; Xiao, B.; Xie, H.; Zaltsman, A.

    2016-09-01

    High-bunch-charge photoemission electron-sources operating in a continuous wave (CW) mode are required for many advanced applications of particle accelerators, such as electron coolers for hadron beams, electron-ion colliders, and free-electron lasers. Superconducting RF (SRF) has several advantages over other electron-gun technologies in CW mode as it offers higher acceleration rate and potentially can generate higher bunch charges and average beam currents. A 112 MHz SRF electron photoinjector (gun) was developed at Brookhaven National Laboratory to produce high-brightness and high-bunch-charge bunches for the coherent electron cooling proof-of-principle experiment. The gun utilizes a quarter-wave resonator geometry for assuring beam dynamics and uses high quantum efficiency multi-alkali photocathodes for generating electrons.

  14. Design of a High-bunch-charge 112-MHz Superconducting RF Photoemission Electron Source

    CERN Document Server

    Xin, T; Belomestnykh, Sergey A; Ben-Zvi, I; Boulware, C H; Grimm, T L; Hayes, T; Litvinenko, Vladimir N; Mernick, K; Narayan, G; Orfin, P; Pinayev, I; Rao, T; Severino, F; Skaritka, J; Smith, K; Than, R; Tuozzolo, J; Wang, E; Xiao, B; Xie, H; Zaltsman, A

    2016-01-01

    High-bunch-charge photoemission electron-sources operating in a continuous wave (CW) mode are required for many advanced applications of particle accelerators, such as electron coolers for hadron beams, electron-ion colliders, and free-electron lasers (FELs). Superconducting RF (SRF) has several advantages over other electron-gun technologies in CW mode as it offers higher acceleration rate and potentially can generate higher bunch charges and average beam currents. A 112 MHz SRF electron photoinjector (gun) was developed at Brookhaven National Laboratory (BNL) to produce high-brightness and high-bunch-charge bunches for the Coherent electron Cooling Proof-of-Principle (CeC PoP) experiment. The gun utilizes a quarter-wave resonator (QWR) geometry for assuring beam dynamics, and uses high quantum efficiency (QE) multi-alkali photocathodes for generating electrons.

  15. Development of Infrastructure Facilities for Superconducting RF Cavity Fabrication, Processing and 2 K Characterization at RRCAT

    Science.gov (United States)

    Joshi, S. C.; Raghavendra, S.; Jain, V. K.; Puntambekar, A.; Khare, P.; Dwivedi, J.; Mundra, G.; Kush, P. K.; Shrivastava, P.; Lad, M.; Gupta, P. D.

    2017-02-01

    An extensive infrastructure facility is being established at Raja Ramanna Centre for Advanced Technology (RRCAT) for a proposed 1 GeV, high intensity superconducting proton linac for Indian Spallation Neutron Source. The proton linac will comprise of a large number of superconducting Radio Frequency (SCRF) cavities ranging from low beta spoke resonators to medium and high beta multi-cell elliptical cavities at different RF frequencies. Infrastructure facilities for SCRF cavity fabrication, processing and performance characterization at 2 K are setup to take-up manufacturing of large number of cavities required for future projects of Department of Atomic Energy (DAE). RRCAT is also participating in a DAE’s approved mega project on “Physics and Advanced technology for High intensity Proton Accelerators” under Indian Institutions-Fermilab Collaboration (IIFC). In the R&D phase of IIFC program, a number of high beta, fully dressed multi-cell elliptical SCRF cavities will be developed in collaboration with Fermilab. A dedicated facility for SCRF cavity fabrication, tuning and processing is set up. SCRF cavities developed will be characterized at 2K using a vertical test stand facility, which is already commissioned. A Horizontal Test Stand facility has also been designed and under development for testing a dressed multi-cell SCRF cavity at 2K. The paper presents the infrastructure facilities setup at RRCAT for SCRF cavity fabrication, processing and testing at 2K.

  16. Photonic technology for switched rf avionics networks

    Science.gov (United States)

    Hamilton, Michael C.; Thaniyavarn, Suwat; Abbas, Gregory L.; LaGasse, Michael J.; Traynor, Timothy; Lin, Jack P.

    1997-10-01

    The application of photonics technology in switched RF networks is discussed with emphasis on the benefits for avionics applications. System requirements and performance issues are addressed. A 16 X 16 photonic switch module prototype is described and results for RF fiber-optic links passing through the module are presented. RF channel isolation measured was at least 75 dB. A demonstration is described in which a photonic network using the switch module passed signals from a dynamic electromagnetic environment simulator to two radar warning systems under test. Demonstration modes included simulation of both aperture sharing and processor sharing. Finally, a novel alternative switch module architecture is described that is strictly non-blocking and has inherently better channel isolation.

  17. Simulation of the RF Coupler for TRIUMF ISAC-II Superconducting Quarter Wave Resonators

    CERN Document Server

    Zvyagintsev, V

    2004-01-01

    The inductive RF coupler for the TRIUMF ISAC-II 106 MHz superconducting accelerating quarter wave resonators was used as a basis for the simulation model of stationary transmission processes of RF power and thermal fluxes. Electromagnetic simulation of the coupler was done with ANSOFT HFSS code. Transmission line theory was used for electromagnetic wave calculations along the drive line to the Coupler. An analogy between electric and thermal processes allows the thermal calculations to be expressed in terms of electrical circuits. The data obtained from the simulation are compared to measured values on the RF coupler.

  18. Mechanical Design and Fabrication Studies for SPL Superconducting RF Cavities

    CERN Document Server

    Atieh, S; Aviles Santillana, I; Capatina, O; Renaglia, T; Tardy, T; Valverde Alonso, N; Weingarten, W

    2011-01-01

    CERN’s R&D programme on the Superconducting Proton Linac’s (SPL) superconducting radio frequency (SRF) elliptical cavities made from niobium sheets explores new mechanical design and consequently new fabrication methods, where several opportunities for improved optimization were identified. A stainless steel helium vessel is under design rather than a titanium helium vessel using an integrated brazed transition between Nb and the SS helium vessel. Different design and fabrication aspects were proposed and the results are discussed hereafter.

  19. RF & wireless technologies know it all

    CERN Document Server

    Fette, Bruce A; Chandra, Praphul; Dobkin, Daniel M; Bensky, Dan; Miron, Douglas B; Lide, David; Dowla, Farid; Olexa, Ron

    2007-01-01

    The Newnes Know It All Series takes the best of what our authors have written to create hard-working desk references that will be an engineer's first port of call for key information, design techniques and rules of thumb. Guaranteed not to gather dust on a shelf!RF (radio frequency) and wireless technologies drive communication today. This technology and its applications enable wireless phones, portable device roaming, and short-range industrial and commercial application communication such as the supply chain management wonder, RFID. Up-to-date information regarding software defined R

  20. The Future of Superconducting Technology for Particle Accelerators

    CERN Document Server

    Yamamoto, Akira

    2015-01-01

    Introduction: - Colliders constructed and operated - Future High Energy Colliders under Study - Superconducting Phases and Applications - Possible Choices among SC Materials Superconducting Magnets and the Future - Advances in SC Magnets for Accelerators - Nb3Sn for realizing Higher Field - NbTi to Nb3Sn for realizing High Field (> 10 T) - HL-LHC as a critical milestone for the Future of Acc. Magnet Technology - Nb3Sn Superconducting Magnets (> 11 T)and MgB2 SC Links for HL-LHC - HL-LHC, 11T Dipole Magnet - Nb3Sn Quadrupole (MQXF) at IR - Future Circular Collider Study - Conductor development (1998-2008) - Nb3Sn conductor program - 16 T Dipole Options and R&D sharing - Design Study and Develoment for SppC in China - High-Field Superconductor and Magnets - HTS Block Coil R&D for 20 T - Canted Cosine Theta (CCT) Coil suitable with Brittle HTS Conductor - A topic at KEK: S-KEKB IRQs just integrated w/ BELLE-II ! Superconducting RF and the Future - Superconducting Phases and Applications - Poss...

  1. Development of superconducting acceleration cavity technology for free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Min; Lee, Byung Cheol; Kim, Sun Kook; Jeong, Young Uk; Cho, Sung Oh

    2000-10-01

    As a result of the cooperative research between the KAERI and Peking University, the key technologies of superconducting acceleration cavity and photoelectron gun have been developed for the application to high power free electron lasers. A 1.5-GHz, 1-cell superconducting RF cavity has been designed and fabricated by using pure Nb sheets. The unloaded Q values of the fabricated superconducting cavity has been measured to be 2x10{sup 9} at 2.5K, and 8x10{sup 9} at 1.8K. The maximum acceleration gradient achieved was 12 MeV/m at 2.5K, and 20MV/m at 1.8 K. A cryostat for the 1-cell superconducting cavity has been designed. As a source of electron beam, a DC photocathode electron gun has been designed and fabricated, which is composed of a photocathode evaporation chamber and a 100-keV acceleration chamber. The efficiency of the Cs2Te photocathode is 3% nominally at room temperature, 10% at 290 deg C. The superconducting photoelectron gun system developed has been estimated to be a good source of high-brightness electron beam for high-power free electron lasers.

  2. Linear beam dynamics and ampere class superconducting RF cavities at RHIC

    Science.gov (United States)

    Calaga, Rama R.

    The Relativistic Heavy Ion Collider (RHIC) is a hadron collider designed to collide a range of ions from protons to gold. RHIC operations began in 2000 and has successfully completed five physics runs with several species including gold, deuteron, copper, and polarized protons. Linear optics and coupling are fundamental issues affecting the collider performance. Measurement and correction of optics and coupling are important to maximize the luminosity and sustain stable operation. A numerical approach, first developed at SLAC, was implemented to measure linear optics from coherent betatron oscillations generated by ac dipoles and recorded at multiple beam position monitors (BPMs) distributed around the collider. The approach is extended to a fully coupled 2D case and equivalence relationships between Hamiltonian and matrix formalisms are derived. Detailed measurements of the transverse coupling terms are carried out at RHIC and correction strategies are applied to compensate coupling both locally and globally. A statistical approach to determine BPM reliability and performance over the past three runs and future improvements also discussed. Aiming at a ten-fold increase in the average heavy-ion luminosity, electron cooling is the enabling technology for the next luminosity upgrade (RHIC II). Cooling gold ion beams at 100 GeV/nucleon requires an electron beam of approximately 54 MeV and a high average current in the range of 50-200 mA. All existing e-Coolers are based on low energy DC accelerators. The only viable option to generate high current, high energy, low emittance CW electron beam is through a superconducting energy-recovery linac (SC-ERL). In this option, an electron beam from a superconducting injector gun is accelerated using a high gradient (˜ 20 MV/m) superconducting RF (SRF) cavity. The electrons are returned back to the cavity with a 180° phase shift to recover the energy back into the cavity before being dumped. A design and development of a half

  3. Multiphysics Analysis of Frequency Detuning in Superconducting RF Cavities for Proton Particle Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Awida, M. H. [Fermilab; Gonin, I. [Fermilab; Passarelli, D. [Fermilab; Sukanov, A. [Fermilab; Khabiboulline, T. [Fermilab; Yakovlev, V. [Fermilab

    2016-01-22

    Multiphysics analyses for superconducting cavities are essential in the course of cavity design to meet stringent requirements on cavity frequency detuning. Superconducting RF cavities are the core accelerating elements in modern particle accelerators whether it is proton or electron machine, as they offer extremely high quality factors thus reducing the RF losses per cavity. However, the superior quality factor comes with the challenge of controlling the resonance frequency of the cavity within few tens of hertz bandwidth. In this paper, we investigate how the multiphysics analysis plays a major role in proactively minimizing sources of frequency detuning, specifically; microphonics and Lorentz Force Detuning (LFD) in the stage of RF design of the cavity and mechanical design of the niobium shell and the helium vessel.

  4. Cryogenic Test of a Proof-of-Principle Superconducting RF-Dipole Deflecting and Crabbing Cavity

    CERN Document Server

    De Silva, S U; Delayen, Jean Roger

    2013-01-01

    Recent applications in need of compact low-frequency deflecting and crabbing cavities have initiated the design and development of new superconducting structures operating at high gradients with low losses. Previously, TM$_{110}$ -type deflecting and crabbing cavities were developed and have also been operated successfully. However, these geometries are not favorable designs for low operating frequencies. The superconducting rf-dipole cavity is the first compact deflecting and crabbing geometry that has demonstrated high gradients and high shunt impedance. Since the fundamental operating mode is the lowest mode and is widely separated from the nearest higher order mode, the rf-dipole design is an attractive geometry for effective damping of the higher order modes in high current applications. A 400 MHz rf-dipole cavity was designed, fabricated, and tested as a proof-of-principle cavity. The cavity achieved high operating gradients, and the multipacting levels were easily processed and did not reoccur.

  5. Superconductivity

    CERN Document Server

    Thomas, D B

    1974-01-01

    A short general review is presented of the progress made in applied superconductivity as a result of work performed in connection with the high-energy physics program in Europe. The phenomenon of superconductivity and properties of superconductors of Types I and II are outlined. The main body of the paper deals with the development of niobium-titanium superconducting magnets and of radio-frequency superconducting cavities and accelerating structures. Examples of applications in and for high-energy physics experiments are given, including the large superconducting magnet for the Big European Bubble Chamber, prototype synchrotron magnets for the Super Proton Synchrotron, superconducting d.c. beam line magnets, and superconducting RF cavities for use in various laboratories. (0 refs).

  6. USING RF TECHNOLOGY FOR PROTECTED ASSET TRACKING

    Energy Technology Data Exchange (ETDEWEB)

    Younkin, James R [ORNL; Pickett, Chris A [ORNL; Richardson, Dave [ORNL; Stinson, Brad J [ORNL

    2008-01-01

    The Oak Ridge National Laboratory (ORNL) is working on systems that use a new radio frequency (RF) technology called Rubee to manage and inventory many types of protected assets, including weapons housed in Department of Energy (DOE) armories, tooling, and nuclear material containers. Rubee is being considered for an IEEE Standard, and is used on several projects at ORNL because of its high performance when used in, on, and around metal-an environment that is typical of that found in an armory vault and that of many other protected assets locations within nuclear facilities. The primary objective using Rubee is to supply sustainable technology that provides timely information on the status and location of protected assets. This paper focuses on the results from a deployment of this technology at a DOE armory and discusses the applicability of Rubee for use with other protected assets within nuclear facilities. Key Words: Rubee , low radio frequency, protected assets

  7. Microscopic Investigation of Materials Limitations of Superconducting RF Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Anlage, Steven [Univ. of Maryland, College Park, MD (United States)

    2017-08-04

    Our overall goal is to contribute to the understanding of defects that limit the high accelerating gradient performance of Nb SRF cavities. Our approach is to develop a microscopic connection between materials defects and SRF performance. We developed a near-field microwave microscope to establish this connection. The microscope is based on magnetic hard drive write heads, which are designed to create very strong rf magnetic fields in very small volumes on a surface.

  8. RF Coupler Design for the TRIUMF ISAC-II Superconducting Quarter Wave Resonator

    CERN Document Server

    Poirier, R L; Harmer, P; Laxdal, R E; Mitra, A K; Sekatchev, I; Waraich, B; Zvyagintsev, V

    2004-01-01

    An RF Coupler for the ISAC-II medium beta (β=0.058 and 0.071) superconducting quarter wave resonators was designed and tested at TRIUMF. The main goal of this development was to achieve stable operation of superconducting cavities at high acceleration gradients and low thermal load to the helium refrigeration system. The cavities will operate at 6 MV/m acceleration gradient in overcoupled mode at a forward power 200 W at 106 MHz. The overcoupling provides ±20 Hz cavity bandwidth, which improves the stability of the RF control system for fast helium pressure fluctuations, microphonics and environmental noise. Choice of materials, cooling with liquid nitrogen, aluminum nitride RF window and thermal shields insure a small thermal load on the helium refrigeration system by the Coupler. An RF finger contact which causedμdust in the coupler housing was eliminated without any degradation of the coupler performance. RF and thermal calculations, design and test results on the coupler are p...

  9. First cold test of TESLA superconducting RF cavity in horizontal cryostat (CHECHIA)

    Energy Technology Data Exchange (ETDEWEB)

    Kuzminski, J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); TESLA Collaboration

    1996-01-01

    In the framework of the TESLA project, the horizontal cryostat (CHECHIA) was built to test a superconducting RF cavity equipped with its helium vessel, magnetic shielding, cold tuner, main coupler and higher order modes couplers under realistic conditions before final assembly of eight cavities into TESLA Test Facility cryo-module. The results of the first cold tests in CHECHIA, performed at DESY with a 9-cell cavity (C19) to be used in the TTF injector are presented. Additional measurements of mechanical stability under RF operation (frequency variation with He pressure, Lorentz detuning) and cryogenic and electric measurements of power dissipation are presented. (author). 3 refs.

  10. Superconducting RF cavity R&D for future accelerators

    CERN Document Server

    Ginsburg, C M

    2009-01-01

    High-beta superconducting radiofrequency (SRF) elliptical cavities are being developed for several accelerator projects including Project X, the European XFEL, and the International Linear Collider (ILC). Fermilab has recently established an extensive infrastructure for SRF cavity R&D for future accelerators, including cavity surface processing and testing and cavity assembly into cryomodules. Some highlights of the global effort in SRF R&D toward improving cavity performance, and Fermilab SRF cavity R&D in the context of global projects are reviewed.

  11. Construction and Test of a Novel Superconducting RF Electron gun

    Energy Technology Data Exchange (ETDEWEB)

    Bisognano, Joseph J. [University of Wisconsin-Madison

    2014-04-16

    The University of Wisconsin-Madison has completed installation of a superconducting electron gun. Its concept was optimized to be the source for a CW free electron laser facility with multiple megahertz repetition rate end stations. This VHF superconducting configuration holds the promise of the highest performance for CW injectors. Initial commissioning efforts show that the cavity can achieve gradients of 35 MV/m at the cathode position. With the cathode inserted CW operation has been achieved at 20 MV/m with good control of microphonics, negligible dark current, and Q0 > 3×109 at 4 K. Bunch charges of ~100 pC have been delivered, and first simple beam measurements made. These preliminary results are very encouraging for production of 100s pC bunches with millimeter-milliradian or smaller normalized emittances. Plans are in place to carry out more definitive studies to establish the full capabilities. However, since the grant was not renewed, the electron gun is currently mothballed, and without supplemental fund the opportunity for further work will be lost.

  12. Cryomodule tests of four Tesla-like cavities in the Superconducting RF Test Facility at KEK

    Directory of Open Access Journals (Sweden)

    Eiji Kako

    2010-04-01

    Full Text Available A 6-m cryomodule including four Tesla-like cavities was developed, and was tested in the Superconducting RF Test Facility phase-I at KEK. The performance as a total superconducting cavity system was checked in the cryomodule tests at 2 K with high rf power. One of the four cavities achieved a stable pulsed operation at 32  MV/m, which is higher than the operating accelerating gradient in the ILC. The maximum accelerating gradient (E_{acc,max⁡} obtained in the vertical cw tests was maintained or slightly improved in the cryomodule tests operating in a pulse mode. Compensation of the Lorentz force detuning at 31  MV/m was successfully demonstrated by a piezo tuner and predetuning.

  13. Capture cavity cryomodule for quantum beam experiment at KEK superconducting RF test facility

    Science.gov (United States)

    Tsuchiya, K.; Hara, K.; Hayano, H.; Kako, E.; Kojima, Y.; Kondo, Y.; Nakai, H.; Noguchi, S.; Ohuchi, N.; Terashima, A.; Horikoshi, A.; Semba, T.

    2014-01-01

    A capture cavity cryomodule was fabricated and used in a beam line for quantum beam experiments at the Superconducting RF Test Facility (STF) of the High Energy Accelerator Research Organization in Japan. The cryomodule is about 4 m long and contains two nine-cell cavities. The cross section is almost the same as that of the STF cryomodules that were fabricated to develop superconducting RF cavities for the International Linear Collider. An attempt was made to reduce the large deflection of the helium gas return pipe (GRP) that was observed in the STF cryomodules during cool-down and warm-up. This paper briefly describes the structure and cryogenic performance of the captures cavity cryomodule, and also reports the measured displacement of the GRP and the cavity-containing helium vessels during regular operation.

  14. Capture cavity cryomodule for quantum beam experiment at KEK superconducting RF test facility

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, K.; Hara, K.; Hayano, H.; Kako, E.; Kojima, Y.; Kondo, Y.; Nakai, H.; Noguchi, S.; Ohuchi, N.; Terashima, A. [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Horikoshi, A.; Semba, T. [Hitachi, Ltd., Hitachi Works, Hitachi, Ibaraki 317-8511 (Japan)

    2014-01-29

    A capture cavity cryomodule was fabricated and used in a beam line for quantum beam experiments at the Superconducting RF Test Facility (STF) of the High Energy Accelerator Research Organization in Japan. The cryomodule is about 4 m long and contains two nine-cell cavities. The cross section is almost the same as that of the STF cryomodules that were fabricated to develop superconducting RF cavities for the International Linear Collider. An attempt was made to reduce the large deflection of the helium gas return pipe (GRP) that was observed in the STF cryomodules during cool-down and warm-up. This paper briefly describes the structure and cryogenic performance of the captures cavity cryomodule, and also reports the measured displacement of the GRP and the cavity-containing helium vessels during regular operation.

  15. Present and next steps of the JAERI superconducting rf linac based FEL program

    Energy Technology Data Exchange (ETDEWEB)

    Minehara, E.J.; Yamauchi, T.; Sugimoto, M. [FEL Laboratory at Tokai, Advanced Photon Research Center, Kansai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (JP)] (and others)

    2000-03-01

    The JAERI superconducting rf linac based FEL has successfully been lased to produce a 0.3 kW FEL light and 100 kW or larger electron beam output in quasi continuous wave operation in 1999. The 1 kW class output as our present program goal will be achieved to improve the optical out coupling method in the FEL optical resonator, the electron gun, and the electron beam optics in the JAERI FEL driver. As our next 5 year program goal is the 100 kW class FEL light and a few tens MW class electron beam output in average, quasi continuous wave operation of the light and electron beam will be planned in the JAERI superconducting rf linac based FEL facility. Conceptual design options needed for such a very high power operation and shorter wavelength light sources will be discussed to improve and to upgrade the exciting facility. (author)

  16. Beam simulations with initial bunch noise in superconducting RF proton linacs

    CERN Document Server

    Tückmantel, J

    2010-01-01

    Circular machines are plagued by coupled bunch instabilities (CBI), driven by impedance peaks, where then all cavity higher order modes (HOMs) are possible drivers. Limiting the CBI growth rate is the fundamental reason that all superconducting rf cavities in circular machines are equipped with HOM dampers. The question arises if for similar reasons HOM damping would not be imperative also in high current superconducting rf proton linacs. Therefore we have simulated the longitudinal bunched beam dynamics in such machines, also including charge and position noise on the injected bunches. Simulations were executed for a generic linac with properties close to the planned SPL at CERN, SNS, or Project X at FNAL. It was found that with strong bunch noise and monopole HOMs with high Qext large beam scatter, possibly exceeding the admittance of a receiving machine, cannot be excluded. A transverse simulation shows similar requirements. Therefore including initial bunch noise in any beam dynamic study on superconducti...

  17. Microphonics detuning compensation in 3.9 GHZ superconducting RF cavities

    Energy Technology Data Exchange (ETDEWEB)

    Ruben Carcagno et al.

    2003-10-20

    Mechanical vibrations can detune superconducting radio frequency (SCRF) cavities unless a tuning mechanism counteracting the vibrations is present. Due to their narrow operating bandwidth and demanding mechanical structure, the 13-cell 3.9GHz SCRF cavities for the Charged Kaons at Main Injector (CKM) experiment at Fermilab are especially susceptible to this microphonic phenomena. We present early results correlating RF frequency detuning with cavity vibration measurements for CKM cavities; initial detuning compensation results with piezoelectric actuators are also presented.

  18. First cold test of TESLA superconducting RF cavity in horizontal cryostat (CHECHIA)

    Energy Technology Data Exchange (ETDEWEB)

    Kuzminski, J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); TESLA Collaboration

    1996-04-01

    In the framework of the TESLA project, the horizontal cryostat (CHECHIA) was built to test a superconducting RF cavity equipped with its helium vessel, magnetic shielding, cold tuner, main coupler and higher order modes couplers under realistic conditions before final assembly of eight cavities into TESLA Test Facility cryo-module. The results of the first cold tests in CHECHIA, performed at DESY with a 9-cell cavity (C19) to be used in the TTF injector are presented. (author). 3 refs.

  19. Future of IT, PT and superconductivity technology

    Science.gov (United States)

    Tanaka, Shoji

    2003-10-01

    Recently the Information Technology is developing very rapidly and the total traffic on the Internet is increasing dramatically. The numerous equipments connected to the Internet must be operated at very high-speed and the electricity consumed in the Internet is also increasing. Superconductivity devices of very high-speed and very low power consumption must be introduced. These superconducting devices will play very important roles in the future information society. Coated conductors will be used to generate extremely high magnetic fields of beyond 20 T at low temperatures. At the liquid nitrogen temperature they can find many applications in a wide range of Power Technology and other industries, since we have already large critical current and brilliant magnetic field dependences in some prototypes of coated conductors. It is becoming certain that the market for the superconductivity technology will be opened between the years of 2005 and 2010.

  20. Accelerator Technology: Magnets, Normal and Superconducting

    CERN Document Server

    Bottura, L

    2013-01-01

    This document is part of Subvolume C 'Accelerators and Colliders' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the the Section '8.1 Magnets, Normal and Superconducting' of the Chapter '8 Accelerator Technology' with the content: 8.1 Magnets, Normal and Superconducting 8.1.1 Introduction 8.1.2 Normal Conducting Magnets 8.1.2.1 Magnetic Design 8.1.2.2 Coils 8.1.2.3 Yoke 8.1.2.4 Costs 8.1.2.5 Undulators, Wigglers, Permanent Magnets 8.1.2.6 Solenoids 8.1.3 Superconducting Magnets 8.1.3.1 Superconducting Materials 8.1.3.2 Superconducting Cables 8.1.3.3 Stability and Margins, Quench and Protection 8.1.3.4 Magnetization, Coupling and AC Loss 8.1.3.5 Magnetic Design of Superconducting Accelerator Magnets 8.1.3.6 Current Leads 8.1.3.7 Mechanics, Insulation, Cooling and Manufacturing Aspects

  1. Technology development of RF MEMS switches on printed circuit boards

    Science.gov (United States)

    Chang, Hung-Pin

    Today, some engineers have shifted their focus on the micro-electro-mechanical system (MEMS) to pursue better technological advancements. Recent development in RF MEMS technologies have lead to superior switch characteristics, i.e., very low insertion loss, very low power requirements, and high isolation comparing to the conventional semiconductor devices. This success has promised the potential of MEMS to revolutionize RF and microwave system implementation for the next generation of communication applications. However, RF MEMS switches integrated monolithically with various RF functional components on the same substrate to create multifunctional and reconfigurable complete communication systems remains to be a challenge research topic due to the concerns of the high cost of packaging process and the high cost of RF matching requirements in module board implementation. Furthermore, the fabrication of most RF MEMS switches requires thickness control and surface planarization of wide metal lines prior to deposition of a metal membrane bridge, which poses a major challenge to manufacturability. To ease the fabrication of RF MEMS switches and to facilitate their integration with other RF components such as antennas, phase delay lines, tunable filters, it is imperative to develop a manufacturable RF MEMS switch technology on a common substrate housing all essential RF components. Development of a novel RF MEMS technology to build a RF MEMS switch and provide a system-level packaging on microwave laminated printed circuit boards (PCBs) are proposed in this dissertation. Two key processes, high-density inductively coupled plasma chemical vapor deposition (HDICP CVD) for low temperature dielectric deposition, and compressive molding planarization (COMP) for the temporary sacrificial polymer planarization have been developed for fabricating RF MEMS switches on PCBs. Several membrane-type capacitive switches have been fabricated showing excellent RF performance and dynamic

  2. Alternative technological development for RF hybridization

    Science.gov (United States)

    Antônio Finardi, Célio; da Fontoura Ponchet, André; Battesini Adamo, Cristina; Flacker, Alexander; Cotrin Teixeira, Ricardo; Panepucci, Roberto Ricardo

    2017-03-01

    The paper presents a technological solution for high frequency packaging platform evaluated up to 40 GHz. The main purpose of this development was to define an alternative hybrid technology that is more flexible and faster to prototype compared with thin film or multi chip module (MCM-D). The alternative technology also shows adequate performance for high bit rate solutions integrating optical and electronics blocks. This approach consists of a soft substrate (laminate material), plating processes (electroless Ni-P/Au, electrolytic Au) and lithography patterning. Ground coplanar waveguide was used for microwave structures with excellent ground planes connections due to easy via holes implementation. We present results of high frequency packaging of important RF blocks, such as integrated broadband bias-T, transimpedance amplifier ICs and silicon photonics optical modulators. The paper demonstrates a solution for high frequency hybridization that can be implemented with standard substrates, designed with any shape and with large numbers of metalized via holes and compatible with usual assembling techniques.

  3. Development of a Solid State RF Amplifier in the kW Regime for Application with Low Beta Superconducting RF Cavities

    CERN Document Server

    Piel, Christian; Borisov, A; Kolesov, Sergej; Piel, Helmut

    2005-01-01

    Projects based on the use of low beta superconducting cavities for ions are under operation or development at several labs worldwide. Often these cavities are individually driven by RF power sources in the kW regime. For an ongoing project a modular 2 kW, 176 MHz unconditionally stable RF amplifier for CW and pulsed operation was designed, built, and tested. Extended thermal analysis was used to develop a water cooling system in order to optimize the performance of the power transistors and other thermally loaded components. The paper will outline the design concept of the amplifier and present first results on the test of the amplifier with a superconducting cavity.

  4. RF photonics technology for phased array antenna applications

    NARCIS (Netherlands)

    Meijerink, A.; Roeloffzen, C.G.H.; Marpaung, D.A.I.; Zhuang, L.; Etten, van W.C.; Leinse, A.; Hoekman, M.; Heideman, R.G.

    2008-01-01

    One of the key research topics of the Telecommunication Engineering (TE) Group at the University of Twente (UT) is RF Photonics. The aim of this field is to develop schemes that utilize the advantages of optical technology for performing RF functions in wireless communication systems. Examples of su

  5. Morphology of superconducting FeSe thin films grown by MBE and RF-sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Kronenberg, Alexander; Venzmer, Eike; Haaf, Sebastian ten; Jourdan, Martin [Institut fuer Physik, Johannes Gutenberg Universitaet Mainz (Germany); Maletz, Janek [Institut fuer Physik, Johannes Gutenberg Universitaet Mainz (Germany); Leibniz-Institut fuer Festkoerper- und Werkstoffforschung, Dresden (Germany)

    2013-07-01

    Tunneling spectroscopy on planar junctions is the most direct approach for the investigation of superconducting coupling mechanisms. However, it requires smooth interfaces at the tunneling barrier. The morphology of superconducting thin films of FeSe grown by MBE and co-sputtering (RF) from an iron and a selenium target are compared. MBE deposited films show an extreme sensitivity to stoichiometry, deposition temperature and choice of substrate. These films exhibit macroscopic crevices and a pronounced roughness, rendering the preparation of tunneling junctions impossible. However, sputter deposited epitaxial FeSe thin films clearly show a more favorable morphology. Optical microscopy, AFM and SEM demonstrate a smooth surface with segregations which are eliminated by proper choice of the deposition parameters.

  6. Operation of the 56 MHz superconducting RF cavity in RHIC during run 14

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Q. [Brookhaven National Lab. (BNL), Upton, NY (United States); Belomestnykh, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); Ben-Zvi, I. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hayes, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Mernick, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Severino, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Smith, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zaltsman, A. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-09-11

    A 56 MHz superconducting RF cavity was designed and installed in the Relativistic Heavy Ion Collider (RHIC). It is the first superconducting quarter wave resonator (QWR) operating in a high-energy storage ring. We discuss herein the cavity operation with Au+Au collisions, and with asymmetrical Au+He3 collisions. The cavity is a storage cavity, meaning that it becomes active only at the energy of experiment, after the acceleration cycle is completed. With the cavity at 300 kV, an improvement in luminosity was detected from direct measurements, and the bunch length has been reduced. The uniqueness of the QWR demands an innovative design of the higher order mode dampers with high-pass filters, and a distinctive fundamental mode damper that enables the cavity to be bypassed during the acceleration stage.

  7. On active disturbance rejection based control design for superconducting RF cavities

    Science.gov (United States)

    Vincent, John; Morris, Dan; Usher, Nathan; Gao, Zhiqiang; Zhao, Shen; Nicoletti, Achille; Zheng, Qinling

    2011-07-01

    Superconducting RF (SRF) cavities are key components of modern linear particle accelerators. The National Superconducting Cyclotron Laboratory (NSCL) is building a 3 MeV/u re-accelerator (ReA3) using SRF cavities. Lightly loaded SRF cavities have very small bandwidths (high Q) making them very sensitive to mechanical perturbations whether external or self-induced. Additionally, some cavity types exhibit mechanical responses to perturbations that lead to high-order non-stationary transfer functions resulting in very complex control problems. A control system that can adapt to the changing perturbing conditions and transfer functions of these systems would be ideal. This paper describes the application of a control technique known as "Active Disturbance Rejection Control" (ARDC) to this problem.

  8. Parameter scaling in the decoherent quantum-classical transition for chaotic rf superconducting quantum interference devices.

    Science.gov (United States)

    Mao, Ting; Yu, Yang

    2010-01-01

    We numerically investigated the quantum-classical transition in rf-superconducting quantum interference device (SQUID) systems coupled to a dissipative environment. It is found that chaos emerges and the degree of chaos, the maximal Lyapunov exponent lambda(m), exhibits nonmonotonic behavior as a function of the coupling strength D. By measuring the proximity of quantum and classical evolution with the uncertainty of dynamics, we show that the uncertainty is a monotonic function of lambda(m)/D. In addition, the scaling holds in SQUID systems to a relatively smaller variant Planck's over [symbol: see text], suggesting the universality for this scaling.

  9. Thermal Emittance Measurement of the Cs2Te Photocathode in FZD Superconducting RF

    CERN Document Server

    Xiang, R; Michel, P; Murcek, P; Teichert, J

    2010-01-01

    The thermal emittance of the photocathode is an interesting physical property for the photoinjector, because it decides the minimum emittance the photoinjector can finally achieve. In this paper we will report the latest results of the thermal emittance of the Cs2Te photocathode in FZD Superconducting RF gun. The measurement is performed with solenoid scan method with very low bunch charge and relative large laser spot on cathode, in order to reduce the space charge effect as much as possible, and meanwhile to eliminate the wake fields and the effect from beam halos.

  10. Fiber Optic Based Thermometry System for Superconducting RF Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Kochergin, Vladimir [Microxact Inc.

    2013-05-06

    Thermometry is recognized as the best technique to identify and characterize losses in SRF cavities. The most widely used and reliable apparatus for temperature mapping at cryogenic temperatures is based on carbon resistors (RTDs). The use of this technology on multi-cell cavities is inconvenient due to the very large number of sensors required to obtain sufficient spatial resolution. Recent developments make feasible the use of multiplexible fiber optic sensors for highly distributed temperature measurements. However, sensitivity of multiplexible cryogenic temperature sensors was found extending only to 12K at best and thus was not sufficient for SRF cavity thermometry. During the course of the project the team of MicroXact, JLab and Virginia Tech developed and demonstrated the multiplexible fiber optic sensor with adequate response below 20K. The demonstrated temperature resolution is by at least a factor of 60 better than that of the best multiplexible fiber optic temperature sensors reported to date. The clear path toward at least 10times better temperature resolution is shown. The first to date temperature distribution measurements with ~2.5mm spatial resolution was done with fiber optic sensors at 2K to4K temperatures. The repeatability and accuracy of the sensors were verified only at 183K, but at this temperature both parameters significantly exceeded the state of the art. The results of this work are expected to find a wide range of applications, since the results are enabling the whole new testing capabilities, not accessible before.

  11. Superconductivity

    Science.gov (United States)

    1989-07-01

    SUPERCONDUCTIVITY HIGH-POWER APPLICATIONS Electric power generation/transmission Energy storage Acoustic projectors Weapon launchers Catapult Ship propulsion • • • Stabilized...temperature superconductive shields could be substantially enhanced by use of high-Tc materials. 27 28 NRAC SUPERCONDUCTIVITY SHIP PROPULSION APPLICATIONS...motor shown in the photograph. As a next step in the evolution of electric-drive ship propulsion technology, DTRC has proposed to scale up the design

  12. Status and Plans for a Superconducting RF Accelerator Test Facility at Fermilab

    CERN Document Server

    Leibfritz, J; Baffes, C M; Carlson, K; Chase, B; Church, M D; Harms, E R; Klebaner, A L; Kucera, M; Martinez, A; Nagaitsev, S; Nobrega, L E; Piot, P; Reid, J; Wendt, M; Wesseln, S J

    2013-01-01

    The Advanced Superconducting Test Acccelerator (ASTA) is being constructed at Fermilab. The existing New Muon Lab (NML) building is being converted for this facility. The accelerator will consist of an electron gun, injector, beam acceleration section consisting of 3 TTF-type or ILC-type cryomodules, multiple downstream beamlines for testing diagnostics and conducting various beam tests, and a high power beam dump. When completed, it is envisioned that this facility will initially be capable of generating a 750-MeV electron beam with ILC beam intensity. An expansion of this facility was recently completed that will provide the capability to upgrade the accelerator to a total beam energy of 1.5-GeV. Two new buildings were also constructed adjacent to the ASTA facility to house a new cryogenic plant and multiple superconducting RF (SRF) cryomodule test stands. In addition to testing accelerator components, this facility will be used to test RF power systems, instrumentation, and control systems for future SRF a...

  13. Status of the 3½ Cell Superconducting RF Gun Project in Rossendorf

    CERN Document Server

    Xiang, R; Evtushenko, Pavel; Janssen, Dietmar; Lehnert, Ulf; Michel, Peter; Möller, Karsten; Schneider, Christof; Schurig, Rico; Staufenbiel, Friedrich; Teichert, Jochen; Kamps, Thorsten; Lipka, Dirk; Volkov, Vladimir; Stephan, J; Lehmann, W D; Will, Ingo

    2005-01-01

    In the paper, we report on the status and progress of the superconducting rf gun project in Rossendorf. The gun is designed for cw operation mode with 1mA current and 10 MeV electron energy. The gun will be installed at the ELBE superconducting electron linear accelerator. It will have a 3½ cell niobium cavity operating at 1.3 GHz. The cavity consists of three cells with TESLA geometry and a specially designed half-cell in which the photocathode will be placed. Two Nb cavities, with RRR 300 and 40 respectively, will be finished at the beginning of 2005. After delivery, the rf tests will be performed and the treatment of the cavities will be started. At the same time, the design of the cryostat is finished and the fabrication of its components is under way. Further activities are the design of the diagnostic beam line, the assembling of the new photocathode preparation system, and the upgrade of the 262 nm driver laser system.

  14. Status and Plans for a Superconducting RF Accelerator Test Facility at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Leibfritz, J.; Andrews, R.; Baffes, C.M.; Carlson, K.; Chase, B.; Church, M.D.; Harms, E.R.; Klebaner, A.L.; Kucera, M.; Martinez, A.; Nagaitsev, S.; /Fermilab

    2012-05-01

    The Advanced Superconducting Test Accelerator (ASTA) is being constructed at Fermilab. The existing New Muon Lab (NML) building is being converted for this facility. The accelerator will consist of an electron gun, injector, beam acceleration section consisting of 3 TTF-type or ILC-type cryomodules, multiple downstream beam lines for testing diagnostics and conducting various beam tests, and a high power beam dump. When completed, it is envisioned that this facility will initially be capable of generating a 750 MeV electron beam with ILC beam intensity. An expansion of this facility was recently completed that will provide the capability to upgrade the accelerator to a total beam energy of 1.5 GeV. Two new buildings were also constructed adjacent to the ASTA facility to house a new cryogenic plant and multiple superconducting RF (SRF) cryomodule test stands. In addition to testing accelerator components, this facility will be used to test RF power systems, instrumentation, and control systems for future SRF accelerators such as the ILC and Project-X. This paper describes the current status and overall plans for this facility.

  15. RF MEMS theory, design, and technology

    CERN Document Server

    Rebeiz, Gabriel M

    2003-01-01

    Ultrasmall Radio Frequency and Micro-wave Microelectromechanical systems (RF MEMs), such as switches, varactors, and phase shifters, exhibit nearly zero power consumption or loss. For this reason, they are being developed intensively by corporations worldwide for use in telecommunications equipment. This book acquaints readers with the basics of RF MEMs and describes how to design practical circuits and devices with them. The author, an acknowledged expert in the field, presents a range of real-world applications and shares many valuable tricks of the trade.

  16. RF to millimeter wave integration and module technologies

    Science.gov (United States)

    Vähä-Heikkilä, T.

    2015-04-01

    Radio Frequency (RF) consumer applications have boosted silicon integrated circuits (IC) and corresponding technologies. More and more functions are integrated to ICs and their performance is also increasing. However, RF front-end modules with filters and switches as well as antennas still need other way of integration. This paper focuses to RF front-end module and antenna developments as well as to the integration of millimeter wave radios. VTT Technical Research Centre of Finland has developed both Low Temperature Co-fired Ceramics (LTCC) and Integrated Passive Devices (IPD) integration platforms for RF and millimeter wave integrated modules. In addition to in-house technologies, VTT is using module and component technologies from other commercial sources.

  17. Dynamic compensation of an rf cavity failure in a superconducting linac

    Directory of Open Access Journals (Sweden)

    Jean-Luc Biarrotte

    2008-07-01

    Full Text Available An accelerator driven system (ADS for transmutation of nuclear waste typically requires a 600 MeV–1 GeV accelerator delivering a proton flux of a few mA for demonstrators, and of a few tens of mA for large industrial systems. Such a machine belongs to the category of the high-power proton accelerators, with an additional requirement for exceptional “reliability”: because of the induced thermal stress to the subcritical core, the number of unwanted “beam trips” should not exceed a few per year, a specification that is several orders of magnitude above usual performance. In order to meet this extremely high reliability, the accelerator needs to implement, to the maximum possible extent, a fault-tolerance strategy that would allow beam operation in the presence of most of the envisaged faults that could occur in its beam line components, and in particular rf systems’ failures. This document describes the results of the simulations performed for the analysis of the fault-tolerance capability of the XT-ADS superconducting linac in the case of an rf cavity failure. A new simulation tool, mixing transient rf behavior of the accelerating cavities with full 6D description of the beam dynamics, has been developed for this purpose. Fast fault-recovery scenarios are proposed, and required research and development is identified.

  18. Suppression of multipacting in high power RF couplers operating with superconducting cavities

    Science.gov (United States)

    Ostroumov, P. N.; Kazakov, S.; Morris, D.; Larter, T.; Plastun, A. S.; Popielarski, J.; Wei, J.; Xu, T.

    2017-06-01

    Capacitive input couplers based on a 50 Ω coaxial transmission line are frequently used to transmit RF power to superconducting (SC) resonators operating in CW mode. It is well known that coaxial transmission lines are prone to multipacting phenomenon in a wide range of RF power level and operating frequency. The Facility for Rare Isotope Beams (FRIB) being constructed at Michigan State University includes two types of quarter wave SC resonators (QWR) operating at 80.5 MHz and two types of half wave SC resonators (HWR) operating at 322 MHz. As was reported in ref. [1] a capacitive input coupler used with HWRs was experiencing strong multipacting that resulted in a long conditioning time prior the cavity testing at design levels of accelerating fields. We have developed an insert into 50 Ω coaxial transmission line that provides opportunity to bias the RF coupler antenna and protect the amplifier from the bias potential in the case of breakdown in DC isolation. Two of such devices have been built and are currently used for the off-line testing of 8 HWRs installed in the cryomodule.

  19. Cryogenic Test of a 750 MHz Superconducting RF Dipole Crabbing Cavity

    Energy Technology Data Exchange (ETDEWEB)

    Castilla, Alejandro [ODU; Delayen, Jean R. [ODU, JLAB; Park, HyeKyoung [JLAB

    2014-07-01

    A superconducting rf dipole cavity has been designed to address the challenges of a high repetition rate (750 MHz), high current for both electron/ion species (0.5/3 A per bunch), and large crossing angle (50 mrad) at the interaction points (IPs) crabbing system for the Medium Energy Electron-Ion Collider (MEIC) proposed by Jefferson Lab. The cavity prototype built at Niowave, Inc. has been tested at the Jefferson Lab facilities. In this work we present a detailed analysis of the prototype cavity performance at 4 K and 2 K, corroborating the absence of hard multipacting barriers that could limit the desired transverse fields, along with the surface resistance (Rs) temperature dependency.

  20. JAERI superconducting RF linac-based free-electron laser-facility

    CERN Document Server

    Minehara, E J; Nagai, R; Kikuzawa, N; Sugimoto, M; Hajima, R; Shizuma, T; Yamauchi, T; Nishimori, N

    2000-01-01

    Recently, the JAERI superconducting RF linac based FEL has been successfully lased to produce 0.36 kW of FEL light using a 100 kW electron beam in quasi-continuous wave operation. A 1 kW class laser is our present program goal, and will be achieved by improving the optical out coupling in the FEL optical resonator, the electron gun, and the electron beam optics in the JAERI FEL driver. Our next 5-year program goal is to produce a 100 kW-class FEL laser and multi-MW class electron beam in average, quasi-continuous wave operation. Conceptual and engineering design options needed for such a very high-power operation will be discussed to improve and to upgrade the existing facility.

  1. RF and microwave integrated circuit development technology, packaging and testing

    CERN Document Server

    Gamand, Patrice; Kelma, Christophe

    2017-01-01

    RF and Microwave Integrated Circuit Development bridges the gap between existing literature, which focus mainly on the 'front-end' part of a product development (system, architecture, design techniques), by providing the reader with an insight into the 'back-end' part of product development. In addition, the authors provide practical answers and solutions regarding the choice of technology, the packaging solutions and the effects on the performance on the circuit and to the industrial testing strategy. It will also discuss future trends and challenges and includes case studies to illustrate examples. * Offers an overview of the challenges in RF/microwave product design * Provides practical answers to packaging issues and evaluates its effect on the performance of the circuit * Includes industrial testing strategies * Examines relevant RF MIC technologies and the factors which affect the choice of technology for a particular application, e.g. technical performance and cost * Discusses future trends and challen...

  2. High-power magnetron transmitter as an RF source for superconducting linear accelerators

    CERN Document Server

    Kazakevich, Grigory; Flanagan, Gene; Marhauser, Frank; Yakovlev, Vyacheslav; Chase, Brian; Lebedev, Valeri; Nagaitsev, Sergei; Pasquinelli, Ralph; Solyak, Nikolay; Quinn, Kenneth; Wolff, Daniel; Pavlov, Viatcheslav

    2014-01-01

    A concept of a high-power magnetron transmitter for operation within a wideband control feedback loop in phase and amplitude is presented. This transmitter is proposed to drive Superconducting RF (SRF) cavities for intensity-frontier GeV-scale proton/ion linacs. The transmitter performance at the dynamic control was verified in experiments with CW, S-Band, 1 kW magnetrons. The wideband control of magnetrons, required for the superconducting linacs, was realized using the magnetrons, injection-locked by the phase-modulated signals. The capabilities of the magnetrons injection-locked by the phase-modulated signals and adequateness for feeding of SRF cavities were verified by measurements of the transfer function magnitude characteristics of single and 2-cascade magnetrons, by measurements the magnetrons phase performance and by measurements of spectra of the carrier frequency. At the ratio of power of locking signal to output power less than -13 dB (in 2-cascade scheme per magnetron, respectively) we demonstrat...

  3. Report on Superconducting RF Activities at CERN from 2001 to 2003

    CERN Document Server

    Losito, R; Chiaveri, Enrico; Montesinos, E; Tückmantel, Joachim; Valuch, D; 11th Workshop on RF Superconductivity

    2003-01-01

    The main project on superconducting RF at CERN in the period from 2001 to 2003 has been the 400 MHz SC system for the LHC. Five modules, each containing four single-cell niobium (Nb) sputtered cavities, have been assembled and low-power tested at room temperature and at 4.5 K. Production of the first four power couplers has been delayed but high-power tests should start on the first module this autumn. A small program of R&D is maintained on the SPL. Both the beta = 0.7 and beta = 0.8 cavities have been high-power tested up to nominal field without particular problems. A detailed characterization of the cavity mechanical resonances is going on and some preliminary results are presented. A computer code has been written to predict the effects of Lorentz detuning and microphonics on the stability of the RF feedback loops in SC linacs where several cavities are driven by a single high power source. Fast ferrite phase shifters are being developed to allow the decoupling of the feedback loops of individual cav...

  4. Exploration of Anomalous Gravity Effects by rf-Pumped Magnetized High-T(c) Superconducting Oxides

    Science.gov (United States)

    Robertson, Tony; Litchford, Ron; Peters, Randall; Thompson, Byran; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    A number of anomalous gravitational effects have been reported in the scientific literature during recent years, but there has been no independent confirmation with regard to any of these claims. Therefore, the NASA Marshall Space Flight Center, in response to the propulsion challenges specified by NASA's Breakthrough Propulsion Physics (BPP) program, proposed to explore the possibility of observing anomalous gravitation behavior through the manipulation of Josephson junction effects in magnetized high-Tc superconducting oxides. The technical goal was to critically test this revolutionary physical claim and provide a rigorous, independent, empirical confirmation (or refutation) of anomalous effects related to the manipulation of gravity by radio frequency (rf)-pumped magnetized type-2 superconductors. Because the current empirical evidence for gravity modification is anecdotal, our objective was to design, construct, and meticulously implement a discriminating experiment, which would put these observations on a more firm footing within the scientific community. Our approach is unique in that we advocate the construction of an extremely sensitive torsion balance with which to measure gravity modification effects by rf-pumped type-2 superconductor test masses. This paper reviews the anecdotal evidence for anomalous gravity effects, describes the design and development of a simplified torsion balance experiment for empirically investigating these claims, and presents the results of preliminary experiments.

  5. Development of a CW Superconducting RF Booster Cryomodule for Future Light Sources

    Energy Technology Data Exchange (ETDEWEB)

    Grimm, Terry L; Bogle, Andrew; Deimling, Brian; Hollister, Jerry; II, Randall Jecks; Kolka, Ahren; Romel, Chandra

    2009-04-13

    Future light sources based on seeded free electron lasers (FEL) have the potential to increase the soft xray flux by several orders of magnitude with short bunch lengths to probe electron structure and dynamics. A low emittance, high rep-rate radio frequency (RF) photocathode electron gun will generate the electron beam that will require very stringent beam control and manipulation through the superconducting linear accelerator to maintain the high brightness required for an x-ray FEL. The initial or booster cavities of the superconducting radio frequency (SRF) linear accelerator will require stringent control of transverse kicks and higher order modes (HOM) during the beam manipulation and conditioning that is needed for emittance exchange and bunch compression. This SBIR proposal will develop, fabricate and test a continuous-wave SRF booster cryomodule specifically for this application. Phase I demonstrated the technical feasibility of the project by completing the preliminary SRF cavity and cryomodule design and its integration into an R&D test stand for beam studies at Lawrence Berkeley National Laboratory (LBNL). The five-cell bulk niobium cavities operate at 750 MHz, and generate 10 MV each with strong HOM damping and special care to eliminate transverse kicks due to couplers. Due to continuous-wave operation at fairly modest beam currents and accelerating gradients the complexity of the two cavity cryomodule is greatly reduced compared to an ILC type system. Phase II will finalize the design, and fabricate and test the booster cryomodule. The cryomodule consists of two five-cell cavities that will accelerate megahertz bunch trains with nano-coulomb charge. The accelerating gradient is a very modest 10 MV/m with peak surface fields of 20 MV/m and 42.6 mT. The cryogenic system operates at 2 K with a design dynamic load of 20 W and total required cryogenic capacity of 45 W. The average beam current of up to 1 mA corresponds to a beam power of 10 kW per 5- cell

  6. RF power upgrade at the superconducting 1.3 GHz CW LINAC “ELBE” with solid state amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Büttig, Hartmut, E-mail: buettig@hzdr.de [Radiation Source ELBE, Helmholtz Zentrum Dresden-Rossendorf (Germany); Arnold, A.; Büchner, A.; Justus, M.; Kuntsch, M.; Lehnert, U.; Michel, P.; Schurig, R.; Staats, G.; Teichert, J. [Radiation Source ELBE, Helmholtz Zentrum Dresden-Rossendorf (Germany)

    2013-03-11

    The RF power for the superconducting 1.3 GHz CW LINAC “ELBE” has been doubled from less than 10 kW to 20 kW per cavity. In January 2012 the four 10 kW klystrons used to drive the four superconducting cavities of the LINAC have been replaced by pairs of 10 kW solid state power amplifiers (SSPA). ELBE is now worldwide the first 1.3 GHz CW LINAC equipped with solid state RF power amplifiers. This technical note details on this project. -- Highlights: ► We report the first installation of 10 kW solid state RF-amplifiers at 1.3 GHz CW LINAC. ► The sc. cavities of “ELBE” are now driven by a pair of 10 kW solid state amplifiers (SSPA). ► The RF-power upgrade allows doubling the electron beam current (CW). ► Advantages of the new RF system are high reliability, easy service and lower costs.

  7. Development of the superconducting rf 2-cell cavity for cERL injector at KEK

    Science.gov (United States)

    Watanabe, K.; Noguchi, S.; Kako, E.; Umemori, K.; Shishido, T.

    2013-06-01

    An injector cryomodule for the compact energy recovery linac (cERL) is under development at KEK. This injector cryomodule has 3 L-band 2-cell superconducting rf cavities. The cERL is required to accelerate a 10-mA CW electron beam to 5 MeV. The required accelerating gradient per cavity is 7.5-12.5 MV/m at ˜30 kW input power to the cavity and the beam. The operational frequency is 1300 MHz at 2 K and the mode of operation is CW. In this application, the critical hardware components are not the cavities, but the rf input couplers and higher-order-mode (HOM) dampers. Initially, a TESLA-style coaxial HOM coupler was chosen for HOM damping of the injector cavities. However, this HOM coupler had a heating problem at low gradients (a few MV/m) in CW operation. The components heated in the accelerating mode were the HOM body and the feedthrough that extracts HOM power from the cavity. To control the heating problem, a new HOM coupler was designed based on a TESLA-style coaxial HOM coupler, and the feedthrough was also modified based on a Kyocera N-R type connector to have better thermal conductivity. A prototype 2-cell cavity and 3 other 2-cell cavities with 5 new HOM couplers for actual operation were fabricated through May 2011. Vertical tests of these cavities were carried out after standard surface preparation at the KEK Superconducting Accelerator Test Facility (KEK-STF) through March 2012. The accelerating gradient achieved exceeded 50 MV/m without quenching during the vertical test using the prototype 2-cell cavity and feedthroughs. The magnetic field at the cell equator was 2127 Oe. Three 2-cell cavities passing the criteria of the High Pressure Gas Safety Institute of Japan exceeded 25 MV/m without field emissions. The cavities with the best performance were prepared in March 2012 for the cERL injector. The designs of the HOM couplers and feedthroughs and the results of the vertical tests to evaluate their performance are reported here.

  8. Applied superconductivity

    CERN Document Server

    Newhouse, Vernon L

    1975-01-01

    Applied Superconductivity, Volume II, is part of a two-volume series on applied superconductivity. The first volume dealt with electronic applications and radiation detection, and contains a chapter on liquid helium refrigeration. The present volume discusses magnets, electromechanical applications, accelerators, and microwave and rf devices. The book opens with a chapter on high-field superconducting magnets, covering applications and magnet design. Subsequent chapters discuss superconductive machinery such as superconductive bearings and motors; rf superconducting devices; and future prospec

  9. Atom-probe tomography analyses of niobium superconducting RF cavity materials

    Energy Technology Data Exchange (ETDEWEB)

    Sebastian, J.T. [Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208-3108 (United States); Seidman, D.N. [Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208-3108 (United States); Yoon, K.E. [Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208-3108 (United States)]. E-mail: megabass@northwestern.edu; Bauer, P. [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Reid, T. [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Boffo, C. [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Norem, J. [Argonne National Laboratory, Argonne, IL 60439 (United States)

    2006-07-15

    We present the first atom-probe tomographic (APT) measurements of niobium superconducting RF (SCRF) cavity materials. APT involves the atom-by-atom dissection of sharply pointed niobium tips, along with their niobium oxide coatings, via the application of a high-pulsed electric field and the measurement of each ion's mass-to-charge state ratio (m/n) with time-of-flight (TOF) mass spectrometry. The resulting atomic reconstructions, typically containing at least 10{sup 5} atoms and with typical dimensions of 10{sup 5} nm{sup 3} (or less), show the detailed, nanoscale chemistry of the niobium oxide coatings, and of the underlying high-purity niobium metal. Our initial results show a nanochemically smooth transition through the oxide layer from near-stoichiometric Nb{sub 2}O{sub 5} at the surface to near-stoichiometric Nb{sub 2}O as the underlying metal is approached (after {approx}10 nm of surface oxide). The underlying metal, in the near-oxide region, contains a significant amount of interstitially dissolved oxygen ({approx}5-10 at.%), as well as a considerable amount of dissolved hydrogen. The experimental results are interpreted in light of current models of oxide and sub-oxide formation in the Nb-O system.

  10. X-ray generation by inverse Compton scattering at the superconducting RF test facility

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Hirotaka, E-mail: hirotaka@post.kek.jp [KEK, 1-1 Oho, Tsukuba 305-0801, Ibaraki (Japan); Akemoto, Mitsuo; Arai, Yasuo; Araki, Sakae; Aryshev, Alexander; Fukuda, Masafumi; Fukuda, Shigeki; Haba, Junji; Hara, Kazufumi; Hayano, Hitoshi; Higashi, Yasuo; Honda, Yosuke; Honma, Teruya; Kako, Eiji; Kojima, Yuji; Kondo, Yoshinari; Lekomtsev, Konstantin; Matsumoto, Toshihiro; Michizono, Shinichiro; Miyoshi, Toshinobu [KEK, 1-1 Oho, Tsukuba 305-0801, Ibaraki (Japan); and others

    2015-02-01

    Quasi-monochromatic X-rays with high brightness have a broad range of applications in fields such as life sciences, bio-, medical applications, and microlithography. One method for generating such X-rays is via inverse Compton scattering (ICS). X-ray generation experiments using ICS were carried out at the superconducting RF test facility (STF) accelerator at KEK. A new beam line, newly developed four-mirror optical cavity system, and new X-ray detector system were prepared for experiments downstream section of the STF electron accelerator. Amplified pulsed photons were accumulated into a four-mirror optical cavity and collided with an incoming 40 MeV electron beam. The generated X-rays were detected using a microchannel plate (MCP) detector for X-ray yield measurements and a new silicon-on-insulator (SOI) detector system for energy measurements. The detected X-ray yield by the MCP detector was 1756.8±272.2 photons/(244 electron bunches). To extrapolate this result to 1 ms train length under 5 Hz operations, 4.60×10{sup 5} photons/1%-bandwidth were obtained. The peak X-ray energy, which was confirmed by the SOI detector, was 29 keV, and this is consistent with ICS X-rays.

  11. An rf separated kaon beam from the Main Injector: Superconducting aspects

    Energy Technology Data Exchange (ETDEWEB)

    D.A. Edwards

    1998-11-01

    ThE report is intended to focus on the superconducting aspects of a potential separated kaon beam facility for the Main Injector, and most of this document reflects that emphasis. However, the RF features cannot be divorced from the overall beam requirements, and so the next section is devoted to the latter subject. The existing optics design that meets the needs of the two proposed experiments is outliied, and its layout at Fermilab is shown. The frequency and deflection gradient choices present implementation dMiculties, and the section closes with some commentary on these issues. Sec. 3 provides an introduction to cavity design considerations, and, in particular carries forward the discussion of resonator shape and frequency selection. The R&D program is the subject of Sec. 4. Provisional parameter choices will be summarized. Initial steps toward cavity fabrication based `on copper models have been taken. The next stages in cavity fabrication will be reviewed in some detail. The infrastructure needs and availability will be discussed. Sec. 5 discusses what maybe characterized as the in~edlents of a point design. At this writing, some aspects are clear and some are not. The basic systems are reasonably clear and are described. The final section presents a cost and schedule estimate for both the Ft&D and production phase. Some supporting material and elaboration is provided in the Appendices.

  12. National rf technology research and development program plan

    Energy Technology Data Exchange (ETDEWEB)

    1983-05-01

    This plan was prepared by the Oak Ridge National Laboratory at the request of the Office of Fusion Energy, Division of Development and Technology, to define the technology development needs and priorities. The US rf research and development community, with a wide representation from universities, laboratories and industries, participated in many discussions, meetings and in a three-day workshop in developing the needs and priorities definition. This very active and effective involvement of the rf leaders from all of these groups was an essential feature of the activity and results in the plan representing a broad consensus from the magnetic fusion energy development community. In addition, a number of scientists from Japan and Europe participated by providing data.

  13. Nano-electromechanical oscillators (NEMOs) for RF technologies.

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Joel Robert; Czaplewski, David A.; Gibson, John Murray (Argonne National Laboratory, Argonne, IL); Webster, James R.; Carton, Andrew James; Keeler, Bianca Elizabeth Nelson; Carr, Dustin Wade; Friedmann, Thomas Aquinas; Tallant, David Robert; Boyce, Brad Lee; Sullivan, John Patrick; Dyck, Christopher William; Chen, Xidong (Cedarville University, Cedarville, OH)

    2004-12-01

    Nano-electromechanical oscillators (NEMOs), capacitively-coupled radio frequency (RF) MEMS switches incorporating dissipative dielectrics, new processing technologies for tetrahedral amorphous carbon (ta-C) films, and scientific understanding of dissipation mechanisms in small mechanical structures were developed in this project. NEMOs are defined as mechanical oscillators with critical dimensions of 50 nm or less and resonance frequencies approaching 1 GHz. Target applications for these devices include simple, inexpensive clocks in electrical circuits, passive RF electrical filters, or platforms for sensor arrays. Ta-C NEMO arrays were used to demonstrate a novel optomechanical structure that shows remarkable sensitivity to small displacements (better than 160 fm/Hz {sup 1/2}) and suitability as an extremely sensitive accelerometer. The RF MEMS capacitively-coupled switches used ta-C as a dissipative dielectric. The devices showed a unipolar switching response to a unipolar stimulus, indicating the absence of significant dielectric charging, which has historically been the major reliability issue with these switches. This technology is promising for the development of reliable, low-power RF switches. An excimer laser annealing process was developed that permits full in-plane stress relaxation in ta-C films in air under ambient conditions, permitting the application of stress-reduced ta-C films in areas where low thermal budget is required, e.g. MEMS integration with pre-existing CMOS electronics. Studies of mechanical dissipation in micro- and nano-scale ta-C mechanical oscillators at room temperature revealed that mechanical losses are limited by dissipation associated with mechanical relaxation in a broad spectrum of defects with activation energies for mechanical relaxation ranging from 0.35 eV to over 0.55 eV. This work has established a foundation for the creation of devices based on nanomechanical structures, and outstanding critical research areas that need

  14. Low power RF circuit design in standard CMOS technology

    CERN Document Server

    Alvarado, Unai; Adín, Iñigo

    2012-01-01

    Low Power Consumption is one of the critical issues in the performance of small battery-powered handheld devices. Mobile terminals feature an ever increasing number of wireless communication alternatives including GPS, Bluetooth, GSM, 3G, WiFi or DVB-H. Considering that the total power available for each terminal is limited by the relatively slow increase in battery performance expected in the near future, the need for efficient circuits is now critical. This book presents the basic techniques available to design low power RF CMOS analogue circuits. It gives circuit designers a complete guide of alternatives to optimize power consumption and explains the application of these rules in the most common RF building blocks: LNA, mixers and PLLs. It is set out using practical examples and offers a unique perspective as it targets designers working within the standard CMOS process and all the limitations inherent in these technologies.

  15. Modelling and Simulation of RF Multilayer Inductors in LTCC Technology

    Directory of Open Access Journals (Sweden)

    A. Čelić

    2009-11-01

    Full Text Available This paper is aimed at presenting the models and characteristics of two types of inductors designed in LTCC (Low Temperature Cofired Ceramic technology. We present the physical model of a 3D planar solenoid-type inductor and of a serial planar solenoid-type inductor for the RF (radio frequency range. To verify the results obtained by using these models, we have compared them with the results obtained by employing the Ansoft HFSS electromagnetic simulator. Very good agreement has been recorded for the effective inductance value, whereas the effective Q factor value has shown a somewhat larger deviation than the inductance.

  16. Study of field-limiting defects in superconducting RF cavities for electron-accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Aderhold, Sebastian

    2015-02-15

    Superconducting radio-frequency resonators made from niobium are an integral part of many accelerator projects. Their main advantage are the low ohmic losses resulting in the possibility for a long pulse structure and high duty cycles up to continous wave (cw) operation. The European X-Ray Free-Electron Laser (XFEL) and the International Linear Collider (ILC) are based on this technology. In some cases the resonators reach accelerating electric fields close to the theoretical limit of bulk niobium. Yet most resonators are limited at lower fields and mass production for large scale accelerator projects suffers from the spread in the achievable gradient per resonator. The main limitations are field emission and the breakdown of superconductivity (quench). While field emission is mostly attributed to the overall surface cleanliness of the resonator, quench is usually associated with local defects. Optical inspection of the inner surface of the resonators with unprecedented resolution, accuracy and a special illumination has been established at DESY and used to study such local surface defects. More than 30 resonators have been inspected. Distinctive features from these inspections have been catalogued and assessed for their potential risk for the performance of the resonator. Several confirmed quenching defects could be extracted for further analysis and could be traced back to likely origins in the production process. A new, automated set-up for optical inspection of large series of resonators, named OBACHT, has been developed and successfully commissioned. Its design includes the minimal need for operator interference, reproducibility, robustness and versatility, in order to fit the requirements for application both in a laboratory and in a production environment. To facilitate the comparison of the results obtained during the global R and D effort on resonators for the ILC, the ILC global yield database has been established. The yield and selection rules for the

  17. Non-fusion applications of RF and microwave technology

    Energy Technology Data Exchange (ETDEWEB)

    Caughman, J.B.O.; Baity, F.W.; Bigelow, T.S.; Gardner, W.L.; Hoffman, D.J.; Forrester, S.C.; White, T.L.

    1995-12-01

    The processing of materials using rf and/or microwave power is a broad area that has grown significantly in the past few years. The authors have applied rf and microwave technology in the areas of ceramic sintering, plasma processing, and waste processing. The sintering of ceramics in the frequency range of 50 MHz-28 GHz has lead to unique material characteristics compared to materials that have been sintered conventionally. It has been demonstrated that sintering can be achieved in a variety of materials, including alumina, zirconia, silicon carbide, and boron carbide. In the area of plasma processing, progress has been made in the development and understanding of high density plasma sources, including inductively coupled plasma (ICP) sources. The effects of processing conditions on the ion energy distribution at the substrate surface (a critical processing issue) have been determined for a variety of process gases. The relationship between modeling and experiment is being established. Microwave technology has also been applied to the treatment of radioactive and chemical waste. The application of microwaves to the removal of contaminated concrete has been demonstrated. Details of these programs and other potential application areas are discussed.

  18. CLIQ. A new quench protection technology for superconducting magnets

    CERN Document Server

    Ravaioli, Emmanuele; ten Kate, H H J

    CLIQ, the Coupling-Loss Induced Quench system, is a new method for protecting superconducting magnets after a sudden transition to the normal state. It offers significant advantages over the conventional technology due to its effective mechanism for heating the superconductor relying on coupling loss and its robust electrical design, which makes it more reliable and less interfering with the coil winding process. The analysis of the electro-magnetic and thermal transients during and after a CLIQ discharge allows identifying the system parameters that affect the system performance and defining guidelines for implementing this technology on coils of various characteristics. Most existing superconducting magnets can be protected by CLIQ as convincingly shown by test results performed on magnets of different sizes, superconductor types, geometries, cables and strand parameters. Experimental results are successfully reproduced by means of a novel technique for modeling non-linear dynamic effects in superconducting...

  19. The Importance of the Electron Mean Free Path for Superconducting RF Cavities

    CERN Document Server

    Maniscalco, J T; Liepe, M

    2016-01-01

    Impurity-doping is an exciting new technology in the field of SRF, producing cavities with record-high quality factor $Q_0$ and BCS surface resistance that decreases with increasing RF field. Recent theoretical work has offered a promising explanation for this anti-Q-slope, but the link between the decreasing surface resistance and the short mean free path of doped cavities has remained elusive. In this work we investigate this link, finding that the magnitude of this decrease varies directly with the mean free path: shorter mean free paths correspond with stronger anti-Q-slopes. We draw a theoretical connection between the mean free path and the overheating of the quasiparticles, which leads to the reduction of the anti-Q-slope towards the normal Q-slope of long-mean-free-path cavities. We also investigate the sensitivity of the residual resistance to trapped magnetic flux, a property which is greatly enhanced for doped cavities, and calculate an optimal doping regime for a given amount of trapped flux. We f...

  20. Experts call for increasing support to superconducting technology studies

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ The Chinese government should launch a major research project on superconducting technology, as it is of significant importance for ensuring national energy security, raising energy efficiency and reducing emissions, urged experts at a workshop held at the CAS Institute of Electronic Engineering on 6 and 7 March in Beijing.

  1. Superconductivity

    CERN Document Server

    Poole, Charles P; Farach, Horacio A

    1995-01-01

    Superconductivity covers the nature of the phenomenon of superconductivity. The book discusses the fundamental principles of superconductivity; the essential features of the superconducting state-the phenomena of zero resistance and perfect diamagnetism; and the properties of the various classes of superconductors, including the organics, the buckministerfullerenes, and the precursors to the cuprates. The text also describes superconductivity from the viewpoint of thermodynamics and provides expressions for the free energy; the Ginzburg-Landau and BCS theories; and the structures of the high

  2. Cold RF test and associated mechanical features correlation of a TESLA-style 9-cell superconducting niobium cavity built in China

    Institute of Scientific and Technical Information of China (English)

    DAIJing; JIN Song; WANG Fang; LIU Ke-Xin; R. L.Geng; ZHAO Kui; LU Xiang-Yang; QUAN Sheng-Wen; ZHANG Bao-Cheng; LIN Lin; HAO Jian-Kui; ZHU Feng; XU Wen-Can; HE Fei-Si

    2012-01-01

    The RF performance of a 1.3 G Hz 9-cell superconducting niobium cavity was evaluated at cryogenic temperatures following surface processing by using the standard ILC-style recipe.The cavity is a TESLA-style 9-ccll superconducting niobium cavity,with complete end group components including a higher order mode coupler,built in China for practical applications.An accelerating gradient of 28.6 MV/m was achieved at an unloaded quality factor of 4 × 109.The morphological property of mechanical features on the RF surface of this cavity was characterized through optical inspection.Correlation between the observed mechanical features and the RF performance of the cavity is attempted.

  3. Superconducting linac beam dynamics with high-order maps for RF resonators

    CERN Document Server

    Geraci, A A; Pardo, R C; 10.1016/j.nima.2003.11.177

    2004-01-01

    The arbitrary-order map beam optics code COSY Infinity has recently been adapted to calculate accurate high-order ion-optical maps for electrostatic and radio-frequency accelerating structures. The beam dynamics of the superconducting low-velocity positive-ion injector linac for the ATLAS accelerator at Argonne National Lab is used to demonstrate some advantages of the new simulation capability. The injector linac involves four different types of superconducting accelerating structures and has a total of 18 resonators. The detailed geometry for each of the accelerating cavities is included, allowing an accurate representation of the on- and off-axis electric fields. The fields are obtained within the code from a Poisson-solver for cylindrically symmetric electrodes of arbitrary geometry. The transverse focusing is done with superconducting solenoids. A detailed comparison of the transverse and longitudinal phase space is made with the conventional ray-tracing code LINRAY. The two codes are evaluated for ease ...

  4. Superconducting Magnets for Particle Accelerators

    CERN Document Server

    Rossi, L

    2012-01-01

    Superconductivity has been the most influential technology in the field of accelerators in the last 30 years. Since the commissioning of the Tevatron, which demonstrated the use and operability of superconductivity on a large scale, superconducting magnets and rf cavities have been at the heart of all new large accelerators. Superconducting magnets have been the invariable choice for large colliders, as well as cyclotrons and large synchrotrons. In spite of the long history of success, superconductivity remains a difficult technology, requires adequate R&D and suitable preparation, and has a relatively high cost. Hence, it is not surprising that the development has also been marked by a few setbacks. This article is a review of the main superconducting accelerator magnet projects; it highlights the main characteristics and main achievements, and gives a perspective on the development of superconducting magnets for the future generation of very high energy colliders.

  5. High-gradient High-charge CW Superconducting RF gun with CsK2Sb photocathode

    CERN Document Server

    Pinayev, Igor; Tuozzolo, Joseph; Brutus, Jean Clifford; Belomestnykh, Sergey; Boulware, Chase; Folz, Charles; Gassner, David; Grimm, Terry; Hao, Yue; Jamilkowski, James; Jing, Yichao; Kayran, Dmitry; Mahler, George; Mapes, Michael; Miller, Toby; Narayan, Geetha; Sheehy, Brian; Rao, Triveni; Skaritka, John; Smith, Kevin; Snydstrup, Louis; Than, Yatming; Wang, Erdong; Wang, Gang; Xiao, Binping; Xin, Tianmu; Zaltsman, Alexander; Altinbas, Z; Ben-Zvi, Ilan; Curcio, Anthony; Di Lieto, Anthony; Meng, Wuzheng; Minty, Michiko; Orfin, Paul; Reich, Jonathan; Roser, Thomas; Smart, Loralie A; Soria, Victor; Theisen, Charles; Xu, Wencan; Wu, Yuan H; Zhao, Zhi

    2015-01-01

    High-gradient CW photo-injectors operating at high accelerating gradients promise to revolutionize many sciences and applications. They can establish the basis for super-bright monochromatic X-ray free-electron lasers, super-bright hadron beams, nuclear- waste transmutation or a new generation of microchip production. In this letter we report on our operation of a superconducting RF electron gun with a record-high accelerating gradient at the CsK2Sb photocathode (i.e. ~ 20 MV/m) generating a record-high bunch charge (i.e., 3 nC). We briefly describe the system and then detail our experimental results. This achievement opens new era in generating high-power electron beams with a very high brightness.

  6. Study of quality and field limitation of superconducting 1.3 GHz 9-Cell RF-cavities at DESY

    Energy Technology Data Exchange (ETDEWEB)

    Schlander, Felix

    2013-01-15

    The European XFEL and the International Linear Collider are based on superconducting rf cavities made of niobium. Their advantages are low ohmic losses which allow high duty cycles and the possibility to use a large beam aperture which is substantial to prevent wake fields at high current accelerators. To reach the theoretical limits of superconducting cavities, it is required to understand the present performance limitations. These are field emission, thermal breakdown (quench) and the ohmic losses dependent on the accelerating field, which are expressed in the quality factor. As the limiting mechanisms themselves are understood in general, the origin of the quench is often unclear. To determine the quench locations, a localisation tool for thermal breakdown using the second sound in superfluid helium has been installed at the cavity test facility at DESY and the results for a sample of about 30 cavities have been examined. The features of the distribution of the quench locations have been analysed and it has been found that the quench locations are in the area of the highest surface magnetic field and not necessarily at the equator of the cells. The data sample has been extended in an attempt to characterise the average behaviour of the quality factor related to the accelerating field. An analysis of the surface resistance of individual cavities shows that a recently developed model for the surface resistance of niobium is not able to describe the measurement in all detail, but the application of an additional mechanism showed promising results.

  7. Status Of The Work On The Base Directions Of The "rf Superconductivity For Accelerators" Program At The Federate Problem Lab At Ihep

    CERN Document Server

    Sevryukova, L

    2004-01-01

    In this report result of the study of electrophysical phenomena on the superconducting cavity surface, including plasma, bifurcation, hysteresis, emission and diffusion phenomena are considered. Science intensive recourse -saving technologies of superconducting cavities are being studied on the base of these phenomena. The superconducting cavities are made of Nb and Nb film, alloy film or HTC ceramics, which cover the working surface of the weldless copper shells using ion-plasma technologies (axial and planar magnetron sputtering). Quality monitoring (optical, emission, electrochemical and high frequency) of the working surface condition of superconducting cavities is developed under the realization of new technologies. The brief review of the experimental equipment is used as training base for individual students, post-graduate students and research staff in the field of technologies that use superconductivity phenomenon and ionic-plasma, electrochemical and high-vacuum technologies as well. For realizat...

  8. New Technological Shape of Basic Branches of RF Industrial Regions

    Directory of Open Access Journals (Sweden)

    Ol’ga Aleksandrovna Romanova

    2015-11-01

    Full Text Available The article emphasizes the increasing importance of industry in the economic development of both developing and developed countries. It highlights the decisive role of basic industries of the RF industrial regions in ensuring the level of their socio-economic development. The work substantiates the possibility to develop basic industries of some industrial regions as the ones that are knowledge-intensive, high-tech and can meet the requirements of new industrialization. The authors propose their understanding of new industrialization in terms of inclusive development. The article introduces a term “repositioning of the regional industrial complex” as a gradual process of interdependent technological, economic, socialinstitutional, environmental and organizational change based on innovation. It proves that this complex should be viewed as a network of competitive and structurally balanced productions, satisfying individualized needs of the high-tech sector in knowledge-intensive goods and services and increased quality needs of traditional industries. The study offers a methodological approach to single out the priority directions for technological development of basic sectors in the industrial regions. Its unique feature is to carry out bibliometric modeling as a preliminary framework disclosing key areas of basic industries development at the first stage; to conduct research in the regional patent activity in the selected development directions at the second stage; to single out the agreed priorities to upgrade basic industries on the basis of the Foresight methodology at the third stage. The case study of the Urals helps substantiate the prerequisites for the formation of a new technological shape of the regional metallurgical complex. The authors develop scenarios for repositioning of metallurgy of the region and describe corresponding stages, characterized by the system of proposed indicators

  9. Superconducting Magnet Technology for the Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Todesco, E. [European Organization for Nuclear Research (CERN), Geneva (Switzerland). TE Dept.; Ambrosio, G. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Ferracin, P. [European Organization for Nuclear Research (CERN), Geneva (Switzerland). TE Dept.; Rifflet, J. M. [European Organization for Nuclear Research (CERN), Geneva (Switzerland). TE Dept.; Sabbi, G. L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Segreti, M. [Alternative Energies and Atomic Energy Commission (CEA), Saclay (France); Nakamoto, T. [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); van Weelderen, R. [European Organization for Nuclear Research (CERN), Geneva (Switzerland). TE Dept.; Xu, Q. [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan)

    2015-10-01

    In this section we present the magnet technology for the High Luminosity LHC. After a short review of the project targets and constraints, we discuss the main guidelines used to determine the technology, the field/gradients, the operational margins, and the choice of the current density for each type of magnet. Then we discuss the peculiar aspects of each class of magnet, with special emphasis on the triplet.

  10. Advanced fusion technologies developed for JT-60 superconducting tokamak

    Science.gov (United States)

    Sakasai, A.; Ishida, S.; Matsukawa, M.; Akino, N.; Ando, T.; Arai, T.; Ezato, K.; Hamada, K.; Ichige, H.; Isono, T.; Kaminaga, A.; Kato, T.; Kawano, K.; Kikuchi, M.; Kizu, K.; Koizumi, N.; Kudo, Y.; Kurita, G.; Masaki, K.; Matsui, K.; Miura, Y. M.; Miya, N.; Miyo, Y.; Morioka, A.; Nakajima, H.; Nunoya, Y.; Oikawa, A.; Okuno, K.; Sakurai, S.; Sasajima, T.; Satoh, K.; Shimizu, K.; Takeji, S.; Takenaga, K.; Tamai, H.; Taniguchi, M.; Tobita, K.; Tsuchiya, K.; Urata, K.; Yagyu, J.

    2004-02-01

    Modification of JT-60 as a full superconducting tokamak (JT-60SC) is planned. The objectives of the JT-60SC programme are to establish scientific and technological bases for steady-state operation of high performance plasmas and utilization of reduced-activation materials in an economically and environmentally attractive DEMO reactor. Advanced fusion technologies relevant to the DEMO reactor have been developed for the superconducting magnet technology and plasma facing components of the JT-60SC design. To achieve a high current density in a superconducting strand, Nb3Al strands with a high copper ratio of 4 have been newly developed for the toroidal field coils (TFCs) of JT-60SC. The R&D to demonstrate the applicability of the Nb3Al conductor to TFCs by a react-and-wind technique has been carried out using a full-size Nb3Al conductor. A full-size NbTi conductor with low ac loss using Ni-coated strands has been successfully developed. A forced cooling divertor component with high heat transfer using screw tubes has been developed for the first time. The heat removal performance of the carbon fibre composite target was successfully demonstrated on an electron beam irradiation stand.

  11. Displacement detection with a vibrating rf superconducting interference device: beating the standard linear limit.

    Science.gov (United States)

    Buks, Eyal; Zaitsev, Stav; Segev, Eran; Abdo, Baleegh; Blencowe, M P

    2007-08-01

    We study a configuration for displacement detection consisting of a nanomechanical resonator coupled to both a radio frequency superconducting interference device and to a superconducting stripline resonator. We employ an adiabatic approximation and rotating wave approximation and calculate the displacement sensitivity. We study the performance of such a displacement detector when the stripline resonator is driven into a region of nonlinear oscillations. In this region the system exhibits noise squeezing in the output signal when homodyne detection is employed for readout. We show that displacement sensitivity of the device in this region may exceed the upper bound imposed upon the sensitivity when operating in the linear region. On the other hand, we find that the high displacement sensitivity is accompanied by a slowing down of the response of the system, resulting in a limited bandwidth.

  12. Towards a 100mA Superconducting RF Photoinjector for BERLinPro

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Axel; Anders, W; Burrill, Andrew; Jankowiak, Andreas; Kamps, T; Knobloch, Jens; Kugeler, Oliver; Lauinger, P; Matveenko, A N; Schmeisser, M; Volker, J; Ciovati, Gianluigi; Kneisel, Peter; Nietubyc, R; Schubert, S G; Smedley, John; Sekutowicz, Jacek; Volkov, V; Will, I; Zaplatin, Evgeny

    2013-09-01

    For BERLinPro, a 100 mA CW-driven SRF energy recovery linac demonstrator facility, HZB needs to develop a photo-injector superconducting cavity which delivers a at least 1mm*mr emittance beam at high average current. To address these challenges of producing a high peak brightness beam at high repetition rate, at first HZB tested a fully superconducting injector with a lead cathode*,followed now by the design of a SC cavity allowing operation up to 4 mA using CW-modified TTF-III couplers and inserting a normal conducting high quantum efficiency cathode using the HZDR-style insert scheme. This talk will present the latest results and an overview of the measurements with the lead cathode cavity and will describe the design and optimization process, the first production results of the current design and an outlook to the further development steps towards the full power version.

  13. Reduction of RF accelerating voltage of Pohang Light Source-II superconducting RF cavity for stable top-up mode operation

    Science.gov (United States)

    Joo, Y.; Yu, I.; Park, I.; Chun, M. H.; Sohn, Y.

    2017-03-01

    The Pohang Light Source-II (PLS-II) is currently providing a top-up mode user-service operation with maximum available beam current of 400 mA and a beam emittance of below 10 nm-rad. The dimension of the beam bunch shortened to accomplish a low beam emittance of below 10 nm-rad from a high beam current of 400 mA increases the bunch charge density. As a result, the electron beam lifetime is significantly degraded and a high gradient of power is lost in the vacuum components of the storage ring. A study on how to reduce the bunch charge density without degrading beam emittance found that reducing the RF accelerating voltage (Vacc) can lower the bunch charge density by lengthening the bunch in the longitudinal direction. In addition, the Vacc required for stable operation with beam current of 400 mA can be reduced by lowering the external cavity quality factors (Qext values) of the superconducting cavities (SCs). To control the Qext values of SCs gradually without accessing the accelerator tunnel, a remote control motorized three-probe-tuner was installed in the transmission line of each SC. The optimum installation position of the three-probe-tuner was determined by using a finite-difference time-domain (FDTD) simulation and by experimenting on various installation positions of the three-probe-tuner. The Qext values of all the SCs were lowered to 1.40 × 105, and then, the Vacc required to store the beam current of 400 mA was decreased from 4.8 MV to 4.2 MV, which corresponds to 10% lengthening of the beam bunches. The stable operation with the reduced Vacc was confirmed during a 400 mA ten-day top-up mode user-service. Currently, the RF system of the PLS-II storage ring delivers the user-service operation with lowered Qext values to reduce the power loss at the vacuum components as well as the cryogenic heat load of SCs, and no significant problems have been found. This method of reducing the Vacc may also be applied in other synchrotron facilities.

  14. A new measurement tool for characterization of superconducting rf accelerator cavities using high-performance LTS SQUIDs

    Energy Technology Data Exchange (ETDEWEB)

    Vodel, W [Friedrich-Schiller-University Jena, Helmholtzweg 5, 07743 Jena (Germany); Neubert, R [Friedrich-Schiller-University Jena, Helmholtzweg 5, 07743 Jena (Germany); Nietzsche, S [Friedrich-Schiller-University Jena, Helmholtzweg 5, 07743 Jena (Germany); Seidel, P [Friedrich-Schiller-University Jena, Helmholtzweg 5, 07743 Jena (Germany); Knaack, K [DESY Hamburg (Germany); Wittenburg, K [DESY Hamburg (Germany); Peters, A [Heidelberger Ionenstrahl-Therapiezentrum, Heidelberg (Germany)

    2007-11-15

    This paper presents a new system to measure very low currents in an accelerator environment, using a cryogenic current comparator (CCC). In principle a CCC is a conventional current transformer using the high-performance SQUID technology to sense the magnetic fields caused by the beam current. Since the system is sensitive on a pA level, it is an optimum device to detect dark currents of superconducting cavities. The system presented here is designed for the test facilities of the superconducting accelerator modules for the European XFEL at the Deutsches Elektronen-Synchrotron (DESY) in Hamburg. Measurements in a quiet environment showed that an intrinsic noise level of the CCC of 40 pA Hz{sup -1/2} could be achieved.

  15. Experience with two large-scale Hell-cryostats for a superconducting RF particle separator working in closed cycle with a 300 W refrigerator

    CERN Document Server

    Barth, W

    1976-01-01

    The contribution of the Karlsruhe Institut fur Experimental Kernphysik to the RF particle separator at the SPS/CERN consists of the two superconducting deflectors and their Hell-cryostats with the cryogenic and vacuum accessories. The cryostats have to fulfil specifications concerning tightness, thermal insulation, adjustment of the cavities to the beam and reliability. Corresponding cryogenic and RF tests are performed in Karlsruhe before a 300 W refrigerator simulating normal and emergency conditions. Following a description of cryostats design the results of these measurements are compared with the specifications. Operating experience with the cryostats in closed circuit with the refrigerator are reported. (5 refs).

  16. Cryogenic, superconducting and rf results of the SRFQ2 of PIAVE

    Indian Academy of Sciences (India)

    A M Porcellato; G Bisoffi; V Andreev; G Bassato; G Bezzon; S Canella; F Chiurlotto; A Lombardi; L Bertazzo; D Conventi; G Galeazzi; S Marigo; V Palmieri; F Poletto; T Shirai; S Y Stark; F Stivanello

    2002-12-01

    SRFQ2 is the second RFQ superconducting (SC) structure of PIAVE, the positive ion injector of the SC LINAC for heavy ions ALPI, in operation at Legnaro. During 2001, SRFQ2 was extensively tested at cryogenic temperature reaching its design performance, i.e., 280 kV inter-electrode voltage (equivalent to 25 MV/m peak surface electrical field) at 7 W dissipated power. This paper describes the treatments, the main difficulties arisen during the tests, the way they were overcome and the measurement sequences that allowed the characterization of SRFQ2 behavior. A brief description of future programs is also given.

  17. Electron Bunch Train Excited Higher-Order Modes in a Superconducting RF Cavity

    CERN Document Server

    Gao, Yongfeng; Wang, Fang; Feng, Liwen; Zhuang, Dehao; Lin, Lin; Zhu, Feng; Hao, Jiankui; Quan, Shengwen; Liu, Kexin

    2016-01-01

    Higher-order mode (HOM) based intra-cavity beam diagnostics has been proved effectively and conveniently in superconducting radio-frequency (SRF) accelerators. Our recent research shows that the beam harmonics in the bunch train excited HOM spectrum, which have much higher signal-to-noise ratio than the intrinsic HOM peaks, may also be useful for beam diagnostics. In this paper, we will present our study on bunch train excited HOMs, including the theoretic model and recent experiments carried out based on the DC-SRF photoinjector and SRF linac at Peking University.

  18. Superconductive technologies for the Large Hadron collider at CERN

    CERN Document Server

    Rossi, L

    2000-01-01

    The Large Hadron Collider (LHC) project is the largest plant based on superconductivity and cryogenics: 27 km of tunnel filled with superconducting magnets and other equipment that will be kept at 1.9 K. The dipole magnets have to generate a minimum magnetic field of 8.3 T to allow collisions of proton beams at an energy of 14 TeV in the centre of mass. The construction of LHC started in 1997 at CERN in Geneva and required 10 years of research and development on fine- filament NbTi superconducting wires and cables, on magnet technology and on He-II refrigerators. In particular the project needs the production of about 1000 tons of high-homogeneity NbTi with current densities of more than 2000 A mm/sup -2/ at 9 T and 1.9 K, with tight control also of all other cable properties such as magnetization, interstrand resistance and copper resistivity. The paper describes the main dipole magnets and reviews the most significant steps in the research and development, focusing on the issues related to the conductor, to...

  19. Hybrid Ground Station Technology for RF and Optical Communication Links

    Science.gov (United States)

    Davarian, Faramaz; Hoppe, D.; Charles, J.; Vilnrotter, V.; Sehic, A.; Hanson, T.; Gam, E.

    2012-01-01

    To support future enhancements of NASA's deep space and planetary communications and tracking services, the Jet Propulsion Laboratory is developing a hybrid ground station that will be capable of simultaneously supporting RF and optical communications. The main reason for adding optical links to the existing RF links is to significantly increase the capacity of deep space communications in support of future solar system exploration. It is envisioned that a mission employing an optical link will also use an RF link for telemetry and emergency purposes, hence the need for a hybrid ground station. A hybrid station may also reduce operations cost by requiring fewer staff than would be required to operate two stations. A number of approaches and techniques have been examined. The most promising ones have been prototyped for field examination and validation.

  20. Design and simulation of a new type of 500 MHz single-cell superconducting RF cavity

    Institute of Scientific and Technical Information of China (English)

    LU Chang-Wang; ZHANG Zhi-Gang; ZHENG Xiang; WEI Ye-Long; YU Hai-Bo; LI Zheng; XU Kai; LIU Jian-Fei; HOU Hong-Tao; MA Zhen-Yu; MAO Dong-Qing; FENG Zi-Qiang; ZHAO Shen-Jie; LUO Chen; ZHAO Yu-Bin

    2012-01-01

    This paper illustrates the design and simulation of a unique 500 MHz single-cell superconducting radio frequency cavity with a fluted beam pipe and a coaxial-type fundamental power coupler.The simulation results show that the cavity has a high r/Q value,a low peak surface field and a large beam aperture,so it can be a candidate cavity for high current accelerators.With the help of a fluted beam tube,almost all the higher order modes can propagate out of the cavity,especially the first two dipole modes,TE111 and TM110,and the first higher monopole mode,TM011.The external quality factor of the coaxial fundamental power coupler is optimized to 1.2× 105,which will be useful when it is applied in the light source storage ring.

  1. The Design of a Five-Cell Superconducting RF Module with a PBG Coupler Cell

    Energy Technology Data Exchange (ETDEWEB)

    Arsenyev, Sergey A [Los Alamos National Laboratory; Simakov, Evgenya I [Los Alamos National Laboratory

    2012-08-29

    We discuss the problem of incorporating a Photonic Band Gap (PBG) cell into a superconducting accelerating module of 5 cells designed for the operational frequency of 2.1 GHz. The reason for using a PBG cell is to provide a good accelerating mode confinement and good Higher Order Mode (HOM) suppression. PBG cell can potentially be used for placing HOM and fundamental mode couplers. However, because of the naturally higher ratio of the peak magnetic field to the accelerating field in the PBG cell, it should be designed to operate at a lower accelerating gradient than the other cells of the module. This ensures that the probability of quench in the PBG cell would be no higher than in other elliptical cells of the structure.

  2. Passive RF component technology materials, techniques, and applications

    CERN Document Server

    Wang, Guoan

    2012-01-01

    Focusing on novel materials and techniques, this pioneering volume provides you with a solid understanding of the design and fabrication of smart RF passive components. You find comprehensive details on LCP, metal materials, ferrite materials, nano materials, high aspect ratio enabled materials, green materials for RFID, and silicon micromachining techniques. Moreover, this practical book offers expert guidance on how to apply these materials and techniques to design a wide range of cutting-edge RF passive components, from MEMS switch based tunable passives and 3D passives, to metamaterial-bas

  3. ORNL Superconducting Technology Program for Electric Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hawsey, R.A. (comp.)

    1993-02-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy's (DOE's) Office of Conservation and Renewable Energy to develop the technology base needed by US industry for commercial development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and systems development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from information prepared for the FY 1992 Peer Review of Projects, conducted by DOE's Office of Program Analysis, Office of Energy Research. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer to US industry. Working together, the collaborative teams are making tremendous progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire products.

  4. Plasma treatment of bulk niobium surface for superconducting rf cavities: Optimization of the experimental conditions on flat samples

    Directory of Open Access Journals (Sweden)

    M. Rašković

    2010-11-01

    Full Text Available Accelerator performance, in particular the average accelerating field and the cavity quality factor, depends on the physical and chemical characteristics of the superconducting radio-frequency (SRF cavity surface. Plasma based surface modification provides an excellent opportunity to eliminate nonsuperconductive pollutants in the penetration depth region and to remove the mechanically damaged surface layer, which improves the surface roughness. Here we show that the plasma treatment of bulk niobium (Nb presents an alternative surface preparation method to the commonly used buffered chemical polishing and electropolishing methods. We have optimized the experimental conditions in the microwave glow discharge system and their influence on the Nb removal rate on flat samples. We have achieved an etching rate of 1.7  μm/min⁡ using only 3% chlorine in the reactive mixture. Combining a fast etching step with a moderate one, we have improved the surface roughness without exposing the sample surface to the environment. We intend to apply the optimized experimental conditions to the preparation of single cell cavities, pursuing the improvement of their rf performance.

  5. A capacitive RF power sensor based on MEMS technology

    NARCIS (Netherlands)

    Fernandez, Luis Jose

    2005-01-01

    Existing power sensors for RF signals are based on thermistors, diodes and thermocouples. These power sensors are used as terminating devices and therefore they dissipate the complete incoming signal. Furthermore, new telecommunication systems require low weight, volume and power consumption and a h

  6. A capacitive rf power sensor based on mems technology

    NARCIS (Netherlands)

    Fernandez, L.J.

    2005-01-01

    Existing power sensors for RF signals are based on thermistors, diodes and thermocouples. These power sensors are used as terminating devices and therefore they dissipate the complete incoming signal. Furthermore, new telecommunication systems require low weight, volume and power consumption and a

  7. Magnet Science and Technology for Basic Research at the High Field Laboratory for Superconducting Materials

    Institute of Scientific and Technical Information of China (English)

    渡辺和雄

    2007-01-01

    Since the first practical cryocooled superconducting magnet using a GM-cryocooler and high temperature superconducting current leads has been demonstrated successfully at the High Field Laboratory for Superconducting Materials (HFLSM), various kinds of cryocooled superconducting magnets in fields up to 15 T have been used to provide access for new research areas in fields of magneto-science. Recently, the HFLSM has succeeded in demonstrating a cryocooed 18 T high temperature superconducting magnet and a high field cryocooled 27.5 T hybrid magnet. Cryocooled magnet technology and basic research using high field magnets at the HFLSM are introduced.

  8. New results of development on high efficiency high gradient superconducting rf cavities

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Rongli [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Li, Z. K. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hao, Z. K. [Peking Univ., Beijing (China); Liu, K. X. [Peking Univ., Beijing (China); Zhao, H. Y. [OTIC, Ningxia (China); Adolphsen, C. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-09-01

    We report on the latest results of development on high-efficiency high-gradient superconducting radio frequency (SRF) cavities. Several 1-cell cavities made of large-grain niobium (Nb) were built, processed and tested. Two of these cavities are of the Low Surface Field (LSF) shape. Series of tests were carried out following controlled thermal cycling. Experiments toward zero-field cooling were carried out. The best experimentally achieved results are Eacc = 41 MV/m at Q0 = 6.5×1010 at 1.4 K by a 1-cell 1.3 GHz large-grain Nb TTF shape cavity and Eacc = 49 MV/m at Q0 = 1.5×1010 at 1.8 K by a 1-cell 1.5 GHz large-grain Nb CEBAF upgrade low-loss shape cavity.

  9. Comparative Simulation Studies of Multipacting in Higher-Order-Mode Couplers of Superconducting RF Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y. M. [Peking University, Beijing (China); Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Liu, Kexin [Peking University, Beijing (China); Geng, Rongli [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2014-02-01

    Multipacting (MP) in higher-order-mode (HOM) couplers of the International Linear Collider (ILC) baseline cavity and the Continuous Electron Beam Accelerator Facility (CEBAF) 12 GeV upgrade cavity is studied by using the ACE3P suites, developed by the Advanced Computations Department at SLAC. For the ILC cavity HOM coupler, the simulation results show that resonant trajectories exist in three zones, corresponding to an accelerating gradient range of 0.6-1.6 MV/m, 21-34 MV/m, 32-35 MV/m, and > 40MV/m, respectively. For the CEBAF 12 GeV upgrade cavity HOM coupler, resonant trajectories exist in one zone, corresponding to an accelerating gradient range of 6-13 MV/m. Potential implications of these MP barriers are discussed in the context of future high energy pulsed as well as medium energy continuous wave (CW) accelerators based on superconducting radio frequency cavities. Frequency scaling of MP's predicted in HOM couplers of the ILC, CBEAF upgrade, SNS and FLASH third harmonic cavity is given and found to be in good agreement with the analytical result based on the parallel plate model.

  10. Thermal design studies in superconducting rf cavities: Phonon peak and Kapitza conductance

    Directory of Open Access Journals (Sweden)

    A. Aizaz

    2010-09-01

    Full Text Available Thermal design studies of superconducting radio frequency (SRF cavities involve two thermal parameters, namely the temperature dependent thermal conductivity of Nb at low temperatures and the heat transfer coefficient at the Nb-He II interface, commonly known as the Kapitza conductance. During the fabrication process of the SRF cavities, Nb sheet is plastically deformed through a deep drawing process to obtain the desired shape. The effect of plastic deformation on low temperature thermal conductivity as well as Kapitza conductance has been studied experimentally. Strain induced during the plastic deformation process reduces the thermal conductivity in its phonon transmission regime (disappearance of phonon peak by 80%, which may explain the performance limitations of the defect-free SRF cavities during their high field operations. Low temperature annealing of the deformed Nb sample could not recover the phonon peak. However, moderate temperature annealing during the titanification process recovered the phonon peak in the thermal conductivity curve. Kapitza conductance measurements for the Nb-He II interface for various surface topologies have also been carried out before and after the annealing. These measurements reveal consistently increased Kapitza conductance after the annealing process was carried out in the two temperature regimes.

  11. RF MEMS的关键技术与器件%Key Technology and Devices of RF MEMS

    Institute of Scientific and Technical Information of China (English)

    夏牟; 郝达兵

    2006-01-01

    文章介绍了RF MEMS的基本概念、基本特征与关键工艺技术.文章在介绍了RF-MEMS元器件的基础上,对RF MEMS与MMIC进行了比较,分析了RF MEMS需解决的重点问题.最后对RF MEMS的发展前景进行了展望.

  12. Superconductivity

    CERN Document Server

    Ketterson, John B

    2008-01-01

    Conceived as the definitive reference in a classic and important field of modern physics, this extensive and comprehensive handbook systematically reviews the basic physics, theory and recent advances in the field of superconductivity. Leading researchers, including Nobel laureates, describe the state-of-the-art in conventional and unconventional superconductors at a particularly opportune time, as new experimental techniques and field-theoretical methods have emerged. In addition to full-coverage of novel materials and underlying mechanisms, the handbook reflects continued intense research into electron-phone based superconductivity. Considerable attention is devoted to high-Tc superconductivity, novel superconductivity, including triplet pairing in the ruthenates, novel superconductors, such as heavy-Fermion metals and organic materials, and also granular superconductors. What’s more, several contributions address superconductors with impurities and nanostructured superconductors. Important new results on...

  13. Summary of the Superconducting RF Linac for Muon Collider and Neutrino Factory

    Energy Technology Data Exchange (ETDEWEB)

    Galambos, J.; /Oak Ridge; Garoby, R.; /CERN; Geer, S.; /Fermilab

    2010-01-01

    Project-X is a proposed project to be built at Fermi National Accelerator Laboratory with several potential missions. A primary part of the Project-X accelerator chain is a Superconducting linac, and In October 2009 a workshop was held to concentrate on the linac parameters. The charge of the workshop was to 'focus only on the SRF linac approaches and how it can be used'. The focus of Working Group 2 of this workshop was to evaluate how the different linac options being considered impact the potential realization of Muon Collider (MC) and Neutrino Factory (NF) applications. In particular the working group charge was, 'to investigate the use of a multi-megawatt proton linac to target, phase rotate and collect muons to support a muon collider and neutrino factory'. To focus the working group discussion, three primary questions were identified early on, to serve as a reference: (1) What are the proton source requirements for muon colliders and neutrino factories? (2) What are the issues with respect to realizing the required muon collider and neutrino factory proton sources - (a) General considerations and (b) Considerations specific to the two linac configurations identified by Project-X? (3) What things need to be done before we can be reasonably confident that ICD1/ICD2 can be upgraded to provide the neutrino factory/muon collider needs? A number of presentations were given, and are available at the workshop web-site. This paper does not summarize the individual presentations, but rather addresses overall findings as related to the three guiding questions listed above.

  14. Physics and technology of silicon RF power devices

    CERN Document Server

    Cao, G

    2000-01-01

    can be increased by optimising the drift and epi-layer design, higher power can be delivered without increasing the input capacitance and feedback capacitance. first time, it is identified that the intrinsic MOSFET is the dominant component in the RF LDMOSFET, which ensures the saturation property in forward I-V characteristics. Detailed results are presented on the transconductance performance of the device. It is clarified that the fall-off of transconductance of a RF LDMOSFET is caused jointly by the high resistance of this region and the reduction in channel resistance at a high gate voltage. Because of these two factors, most of the potential is dropped across the drift region at a high gate bias. As a result, the intrinsic MOSFET is forced into its linear region of operation, which results in a fall-off of the transconductance. To increase the range of gate voltages for a constant transconductance, higher drift doping concentration is preferred. This can be achieved by incorporating a grounded field pla...

  15. Superconductivity

    CERN Document Server

    Poole, Charles P; Creswick, Richard J; Prozorov, Ruslan

    2014-01-01

    Superconductivity, Third Edition is an encyclopedic treatment of all aspects of the subject, from classic materials to fullerenes. Emphasis is on balanced coverage, with a comprehensive reference list and significant graphics from all areas of the published literature. Widely used theoretical approaches are explained in detail. Topics of special interest include high temperature superconductors, spectroscopy, critical states, transport properties, and tunneling. This book covers the whole field of superconductivity from both the theoretical and the experimental point of view. This third edition features extensive revisions throughout, and new chapters on second critical field and iron based superconductors.

  16. Summer Course on the Science and Technology of Superconductivity

    CERN Document Server

    Gregory, W D; Mathews, W N; The science and technology of superconductivity

    1973-01-01

    Since the discovery of superconductivity in 1911 by H. Kamerlingh Onnes, of the order of half a billion dollars has been spent on research directed toward understanding and utiliz­ ing this phenomenon. This investment has gained us fundamental understanding in the form of a microscopic theory of superconduc­ tivity. Moreover, superconductivity has been transformed from a laboratory curiosity to the basis of some of the most sensitive and accurate measuring devices known, a whole host of other elec­ tronic devices, a soon-to-be new international standard for the volt, a prototype generation of superconducting motors and gener­ ators, and magnets producing the highest continuous magnetic fields yet produced by man. The promise of more efficient means of power transmission and mass transportation, a new generation of superconducting motors and generators, and computers and other electronic devices with superconducting circuit elements is all too clear. The realization of controlled thermonuclear fu...

  17. Evolution path of MWS technologies: RF, IR, and UV

    Science.gov (United States)

    Tidhar, Gil; Schlisselberg, Raanan

    2005-05-01

    In recent years some major technological developments in the fields of electro-optics and computer H/W took place, which call for reconsideration of the development paths for missile warning systems (MWS). In this work, we provide a review of the technological developments, and then suggest a framework for the following issues: (a) Prioritization of requirements for MWS, (b) Selection of best candidate technologies for next-generation MWS, (c) Establishing a generic parameter sensitivity model for MWS performance, with which we could quantify the effects of different design choices on system-level performance. Our work shows that (a) Infrared optical H/W remains the leading technology for MWS applications, (b) 3rd generation infrared imaging H/W will make a significant impact on MWS performance, compared with 2nd generation based IR-MWS system's performance. (c) Dual band infrared sensor FPAs now under development will further improve performance, yet the improvement will be offset by the lack of some of the more important features of the 3rd generation imagers-very high resolution and frame rate (d) A combination of 3rd generation and dual band IR imaging, when it becomes available, will provide yet another significant improvement.

  18. High performance superconducting radio frequency ingot niobium technology for continuous wave applications

    Energy Technology Data Exchange (ETDEWEB)

    Dhakal, Pashupati, E-mail: dhakal@jlab.org; Ciovati, Gianluigi, E-mail: gciovati@jlab.org; Myneni, Ganapati R., E-mail: rao@jlab.org [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States)

    2015-12-04

    Future continuous wave (CW) accelerators require the superconducting radio frequency cavities with high quality factor and medium accelerating gradients (≤20 MV/m). Ingot niobium cavities with medium purity fulfill the specifications of both accelerating gradient and high quality factor with simple processing techniques and potential reduction in cost. This contribution reviews the current superconducting radiofrequency research and development and outlines the potential benefits of using ingot niobium technology for CW applications.

  19. High Gain, Very Low Areal Density, Scalable RF Apertures Enabled by Membrane Aperture Shell Technology (MAST) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose that the Membrane Aperture Shell Technology (MAST) approach be expanded with a specific focus on space exploration orbiting comm network RF aperture...

  20. Superconductivity program for electric systems, Superconductivity Technology Center, Los Alamos National Laboratory, annual progress report for fiscal year 1997

    Energy Technology Data Exchange (ETDEWEB)

    Willis, J.O.; Newnam, B.E. [eds.; Peterson, D.E.

    1999-03-01

    Development of high-temperature superconductors (HTS) has undergone tremendous progress during the past year. Kilometer tape lengths and associated magnets based on BSCCO materials are now commercially available from several industrial partners. Superconducting properties in the exciting YBCO coated conductors continue to be improved over longer lengths. The Superconducting Partnership Initiative (SPI) projects to develop HTS fault current limiters and transmission cables have demonstrated that HTS prototype applications can be produced successfully with properties appropriate for commercial applications. Research and development activities at LANL related to the HTS program for Fiscal Year 1997 are collected in this report. LANL continues to support further development of Bi2223 and Bi2212 tapes in collaboration with American Superconductor Corporation (ASC) and Oxford Superconductivity Technology, Inc. (OSTI), respectively. The tape processing studies involving novel thermal treatments and microstructural characterization have assisted these companies in commercializing these materials. The research on second-generation YBCO-coated conductors produced by pulsed-laser deposition (PLD) over buffer template layers produced by ion beam-assisted deposition (IBAD) continues to lead the world. The applied physics studies of magnetic flux pinning by proton and heavy ion bombardment of BSCCO and YBCO tapes have provided many insights into improving the behavior of these materials in magnetic fields. Sections 4 to 7 of this report contain a list of 29 referred publications and 15 conference abstracts, a list of patent and license activities, and a comprehensive list of collaborative agreements in progress and completed.

  1. Software-Defined Ultra-wideband Radio Communications: A New RF Technology for Emergency Response Applications

    Energy Technology Data Exchange (ETDEWEB)

    Nekoogar, F; Dowla, F

    2009-10-19

    Reliable wireless communication links for local-area (short-range) and regional (long-range) reach capabilities are crucial for emergency response to disasters. Lack of a dependable communication system can result in disruptions in the situational awareness between the local responders in the field and the emergency command and control centers. To date, all wireless communications systems such as cell phones and walkie-talkies use narrowband radio frequency (RF) signaling for data communication. However, the hostile radio propagation environment caused by collapsed structures and rubble in various disaster sites results in significant degradation and attenuation of narrowband RF signals, which ends up in frequent communication breakdowns. To address the challenges of reliable radio communication in disaster fields, we propose an approach to use ultra-wideband (UWB) or wideband RF waveforms for implementation on Software Defined Radio (SDR) platforms. Ultra-wideband communications has been proven by many research groups to be effective in addressing many of the limitations faced by conventional narrowband radio technologies. In addition, LLNL's radio and wireless team have shown significant success in field deployment of various UWB communications system for harsh environments based on LLNL's patented UWB modulation and equalization techniques. Furthermore, using software defined radio platform for UWB communications offers a great deal of flexibility in operational parameters and helps the radio system to dynamically adapt itself to its environment for optimal performance.

  2. Technology and materials for the Superconducting Super Collider (SSC) project

    Energy Technology Data Exchange (ETDEWEB)

    Shintomi, Takakazu; Ishimaru, Hajime; Unno, Yoshinobu; Arai, Yasuo; Watase, Yoshiyuki; Amako, Katsuya; Kondo, Takahiko (National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan))

    1992-08-01

    The Superconducting Super Collider (SSC) is the accelerator for the research on elementary particle physics, of which the construction was already begun in Texas, USA. Two proton rings comprising about 10,000 superconducting magnets are installed in an underground tunnel with the circumferential length of 87 km, and the proton-proton collision of superhigh energy is realized. This accelerator becomes the largest machine that mankind makes. In this report, among the high-tech and materials used for the SSC, superconducting magnets, super-high vacuum beam pipes, silicon semiconductor detector, the use of VLSI and superhigh density mounting and high speed, large quantity data processing system are taken up, and the outline of those is described. The SSC was planned for the elucidation of Higg's theory. The incidence accelerator group is composed of a linear accelerator and three booster synchrotrons. The particles generated by proton-proton collision are measured, and the discovery of new particles and the study on high energy physical phenomena are carried out. The construction of the accelerator and experimental equipment is carried out by international cooperation. (K.I.).

  3. A novel compact model for on-chip stacked transformers in RF-CMOS technology

    Institute of Scientific and Technical Information of China (English)

    Liu Jun; Wen Jincai; Zhao Qian; Sun Lingling

    2013-01-01

    A novel compact model for on-chip stacked transformers is presented.The proposed model topology gives a clear distinction to the eddy current,resistive and capacitive losses of the primary and secondary coils in the substrate.A method to analytically determine the non-ideal parasitics between the primary coil and substrate is provided.The model is further verified by the excellent match between the measured and simulated S-parameters on the extracted parameters for a 1 ∶ 1 stacked transformer manufactured in a commercial RF-CMOS technology.

  4. High Temperature Superconducting Magnetic Energy Storage and Its Power Control Technology

    Institute of Scientific and Technical Information of China (English)

    Xiao-Yuan Chen; Jian-Xun Jin; Kai-Meng Ma; Ju Wen; Ying Xin; Wei-Zhi Gong; An-Lin Ren; Jing-Yin Zhang

    2008-01-01

    High temperature superconducting (HTS) power inductor and its control technology have been studied and analyzed in the paper. Based on the results of simulations and practical experiments, a controlled release scheme has been proposed and verified for developing a practical HTS SMES prototype.

  5. Accelerator Science and Technology in Canada -- From the Microtron to TRIUMF, Superconducting Cyclotrons and the Canadian Light Source

    Science.gov (United States)

    Craddock, M. K.; Laxdal, R. E.

    As elsewhere, accelerators in Canada have evolved from modest beginnings to major facilities such as TRIUMF (currently with the highest-power driver for rare isotope beam production) and the third generation Canadian Light Source. Highlights along the way include construction of the first microtron, the first racetrack microtron and the first superconducting cyclotron (to which list might have been added the first pulse stretcher ring, had it been funded sooner). This article will summarize the history of accelerators in Canada, documenting both the successes and the near-misses. Besides the research accelerators, a thriving commercial sector has developed, manufacturing small cyclotrons and linacs, beam line components and superconducting rf cavities.

  6. Accelerator Science and Technology in Canada — From the Microtron to TRIUMF, Superconducting Cyclotrons and the Canadian Light Source

    Science.gov (United States)

    Craddock, M. K.; Laxdal, R. E.

    As elsewhere, accelerators in Canada have evolved from modest beginnings to major facilities such as TRIUMF (currently with the highest-power driver for rare isotope beam production) and the third generation Canadian Light Source. Highlights along the way include construction of the first microtron, the first racetrack microtron and the first superconducting cyclotron (to which list might have been added the first pulse stretcher ring, had it been funded sooner). This article will summarize the history of accelerators in Canada, documenting both the successes and the near-misses. Besides the research accelerators, a thriving commercial sector has developed, manufacturing small cyclotrons and linacs, beam line components and superconducting rf cavities.

  7. Five-cell superconducting RF module with a PBG coupler cell: design and cold testing of the copper prototype

    Energy Technology Data Exchange (ETDEWEB)

    Arsenyev, Sergey Andreyevich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Simakov, Evgenya Ivanovna [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Shchegolkov, Dmitry [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Boulware, Chase [Niowave, Lansing, MI (United States); Grimm, Terry [Niowave, Lansing, MI (United States); Rogacki, Adam [Niowave, Lansing, MI (United States)

    2015-04-29

    We report the design and experimental data for a copper prototype of a superconducting radio-frequency (SRF) accelerator module. The five-cell module has an incorporated photonic band gap (PBG) cell with couplers. The purpose of the PBG cell is to achieve better higher order mode (HOM) damping, which is vital for preserving the quality of high-current electron beams. Better HOM damping raises the current threshold for beam instabilities in novel SRF accelerators. The PBG design also increases the real-estate gradient of the linac because both HOM damping and the fundamental power coupling can be done through the PBG cell instead of on the beam pipe via complicated end assemblies. First, we will discuss the design and accelerating properties of the structure. The five-cell module was optimized to provide good HOM damping while maintaining the same accelerating properties as conventional elliptical-cell modules. We will then discuss the process of tuning the structure to obtain the desired accelerating gradient profile. Finally, we will list measured quality factors for the accelerating mode and the most dangerous HOMs.

  8. Design And Investigation Of 65 Nm Rf Cmos Technology Lc-Vco’s

    OpenAIRE

    Vytautas Mačaitis; Vaidotas Barzdėnas

    2014-01-01

    In this paper, two LC Voltage-Controlled Oscillators (LC-LC-VCO1 and LC-VCO2) are designed using TSMC 65 nm LP/MS/RF CMOS technology. Two arrays, one of which is a 6-bit capacitor array and the other – an array of MOS varactors, provide a wide LC-VCO frequency tuning range. Post-layout simulation results unveiled that at 1.8 V supply voltage the tuning range of LC-VCO1 spans from 5.17 GHz to 6.76 GHz and for LC-VCO2 the range spans from 6.33 GHz to 8.08 GHz. The phase noise at 1 MHz offset fr...

  9. Emerging boom in nano magnetic particle incorporated high-Tc superconducting materials and technologies - A South African perspective

    CSIR Research Space (South Africa)

    Srinivasu, VV

    2009-01-01

    Full Text Available With a strategy to establish and embrace the emerging nano particle incorporated superconductivity technology (based on the HTS materials and nano magnetic particles) in South Africa, the author has initiated the following research activity in South...

  10. Superconducting Technology Assessment (NSA, Office of Corporate Assessments)

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — The government, and particularly NSA, has a continuing need for ever-increasing computational power. The Agency is concerned about projected limitations of...

  11. ORNL Superconducting Technology Program for Electric Power Systems, Annual Report for FY 1998

    Energy Technology Data Exchange (ETDEWEB)

    Hawsey, R.A.; Murphy, A.W.

    1999-04-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by U.S. industry for commercial development of electric power applications of high temperature superconductivity. The two major elements of this program are wire development and applications development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from recent open literature publications, presentations, and information prepared for the FY 1998 Annual Program Review held July 20-22, 1998. Aspects of ORNL's work that were presented at the Applied Superconductivity Conference (September 1998) are included in this report, as well. This ORNL program is highly leveraged by the staff and other resources of U.S. industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to cooperative projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with U.S. industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high temperature superconductor wire and wire-using systems.

  12. Superconducting microfabricated ion traps

    CERN Document Server

    Wang, Shannon X; Labaziewicz, Jaroslaw; Dauler, Eric; Berggren, Karl; Chuang, Isaac L

    2010-01-01

    We fabricate superconducting ion traps with niobium and niobium nitride and trap single 88Sr ions at cryogenic temperatures. The superconducting transition is verified and characterized by measuring the resistance and critical current using a 4-wire measurement on the trap structure, and observing change in the rf reflection. The lowest observed heating rate is 2.1(3) quanta/sec at 800 kHz at 6 K and shows no significant change across the superconducting transition, suggesting that anomalous heating is primarily caused by noise sources on the surface. This demonstration of superconducting ion traps opens up possibilities for integrating trapped ions and molecular ions with superconducting devices.

  13. Superconducting Magnet Technology for Future High Energy Proton Colliders

    Science.gov (United States)

    Gourlay, Stephen

    2017-01-01

    Interest in high field dipoles has been given a boost by new proposals to build a high-energy proton-proton collider to follow the LHC and programs around the world are taking on the task to answer the need. Studies aiming toward future high-energy proton-proton colliders at the 100 TeV scale are now being organized. The LHC and current cost models are based on technology close to four decades old and point to a broad optimum of operation using dipoles with fields between 5 and 12T when site constraints, either geographical or political, are not a factor. Site geography constraints that limit the ring circumference can drive the required dipole field up to 20T, which is more than a factor of two beyond state-of-the-art. After a brief review of current progress, the talk will describe the challenges facing future development and present a roadmap for moving high field accelerator magnet technology forward. This work was supported by the Director, Office of Science, High Energy Physics, US Department of Energy, under contract No. DE-AC02-05CH11231.

  14. COMMERCIALIZATION DEMONSTRATION OF MID-SIZED SUPERCONDUCTING MAGNETIC ENERGY STORAGE TECHNOLOGY FOR ELECTRIC UTILITYAPPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    CHARLES M. WEBER

    2008-06-24

    As an outgrowth of the Technology Reinvestment Program of the 1990’s, an Agreement was formed between BWXT and the DOE to promote the commercialization of Superconducting Magnetic Energy Storage (SMES) technology. Business and marketing studies showed that the performance of electric transmission lines could be improved with this SMES technology by stabilizing the line thereby allowing the reserved stability margin to be used. One main benefit sought was to double the capacity and the amount of energy flow on an existing transmission line by enabling the use of the reserved stability margin, thereby doubling revenue. Also, electrical disturbances, power swings, oscillations, cascading disturbances and brown/black-outs could be mitigated and rendered innocuous; thereby improving power quality and reliability. Additionally, construction of new transmission lines needed for increased capacity could be delayed or perhaps avoided (with significant savings) by enabling the use of the reserved stability margin of the existing lines. Two crucial technical aspects were required; first, a large, powerful, dynamic, economic and reliable superconducting magnet, capable of oscillating power flow was needed; and second, an electrical power interface and control to a transmission line for testing, demonstrating and verifying the benefits and features of the SMES system was needed. A project was formed with the goals of commercializing the technology by demonstrating SMES technology for utility applications and to establish a domestic capability for manufacturing large superconducting magnets for both commercial and defense applications. The magnet had very low AC losses to support the dynamic and oscillating nature of the stabilizing power flow. Moreover, to economically interface to the transmission line, the magnet had the largest operating voltage ever made. The manufacturing of that design was achieved by establishing a factory with newly designed and acquired equipment

  15. Workshop on technology issues of superconducting Maglev transportation systems

    Energy Technology Data Exchange (ETDEWEB)

    Wegrzyn, J.E. (Brookhaven National Lab., Upton, NY (United States)); Shaw, D.T. (New York State Inst. of Superconductivity, Buffalo, NY (United States))

    1991-09-27

    There exists a critical need in the United States to improve its ground transportation system. One suggested system that offers many advantages over the current transportation infrastructure is Maglev. Maglev represents the latest evolution in very high and speed ground transportation, where vehicles are magnetically levitated, guided, and propelled over elevated guideways at speeds of 300 miles per hour. Maglev is not a new concept but is, however, receiving renewed interest. The objective of this workshop was to further promote these interest by bringing together a small group of specialists in Maglev technology to discuss Maglev research needs and to identify key research issues to the development of a successful Maglev system. The workshop was organized into four sessions based on the following technical areas: Materials, Testing, and Shielding; Magnet Design and Cryogenic Systems; Propulsion and Levitation Systems; and, System Control and Integration.

  16. SUPERCONDUCTING PHOTOCATHODES.

    Energy Technology Data Exchange (ETDEWEB)

    SMEDLEY, J.; RAO, T.; WARREN, J.; SEKUTOWICZ, LANGNER, J.; STRZYZEWSKI, P.; LEFFERS, R.; LIPSKI, A.

    2005-10-09

    We present the results of our investigation of lead and niobium as suitable photocathode materials for superconducting RF injectors. Quantum efficiencies (QE) have been measured for a range of incident photon energies and a variety of cathode preparation methods, including various lead plating techniques on a niobium substrate. The effects of operating at ambient and cryogenic temperatures and different vacuum levels on the cathode QE have also been studied.

  17. Cryogenic rf test of the first plasma etched SRF cavity

    CERN Document Server

    Upadhyay, J; Popović, S; Valente-Feliciano, A -M; Im, D; Phillips, L; Vušković, L

    2016-01-01

    Plasma etching has a potential to be an alternative processing technology for superconducting radio frequency (SRF) cavities. An apparatus and a method are developed for plasma etching of the inner surfaces of SRF cavities. To test the effect of the plasma etching on the cavity rf performance, a 1497 MHz single cell SRF cavity is used. The single cell cavity is mechanically polished, buffer chemically etched afterwards and rf tested at cryogenic temperatures for a baseline test. This cavity is then plasma processed. The processing was accomplished by moving axially the inner electrode and the gas flow inlet in a step-wise manner to establish segmented plasma processing. The cavity is rf tested afterwards at cryogenic temperatures. The rf test and surface condition results are presented.

  18. Demonstration of an RF front-end based on GaN HEMT technology

    Science.gov (United States)

    Ture, Erdin; Musser, Markus; Hülsmann, Axel; Quay, Rüdiger; Ambacher, Oliver

    2017-05-01

    The effectiveness of the developed front-end on blocking the communication link of a commercial drone vehicle has been demonstrated in this work. A jamming approach has been taken in a broadband fashion by using GaN HEMT technology. Equipped with a modulated-signal generator, a broadband power amplifier, and an omni-directional antenna, the proposed system is capable of producing jamming signals in a very wide frequency range between 0.1 - 3 GHz. The maximum RF output power of the amplifier module has been software-limited to 27 dBm (500 mW), complying to the legal spectral regulations of the 2.4 GHz ISM band. In order to test the proof of concept, a real-world scenario has been prepared in which a commercially-available quadcopter UAV is flown in a controlled environment while the jammer system has been placed in a distance of about 10 m from the drone. It has been proven that the drone of interest can be neutralized as soon as it falls within the range of coverage (˜3 m) which endorses the promising potential of the broadband jamming approach.

  19. Design And Investigation Of 65 Nm Rf Cmos Technology Lc-Vco’s

    Directory of Open Access Journals (Sweden)

    Vytautas Mačaitis

    2014-05-01

    Full Text Available In this paper, two LC Voltage-Controlled Oscillators (LC-LC-VCO1 and LC-VCO2 are designed using TSMC 65 nm LP/MS/RF CMOS technology. Two arrays, one of which is a 6-bit capacitor array and the other – an array of MOS varactors, provide a wide LC-VCO frequency tuning range. Post-layout simulation results unveiled that at 1.8 V supply voltage the tuning range of LC-VCO1 spans from 5.17 GHz to 6.76 GHz and for LC-VCO2 the range spans from 6.33 GHz to 8.08 GHz. The phase noise at 1 MHz offset frequency is about −123.1 dBc/Hz for LC-VCO1 and −121.6 dBc/Hz for LC-VCO2. The power dissipation at maximum carrier is 30.47 mW for LC-VCO1 and 30.5 mW for LC-VCO2. The layout area is 285×335 μm and 255×305 μm, respectively for LC-VCO1 and LC-VCO2.

  20. Overview on superconducting photoinjectors

    CERN Document Server

    Arnold, A

    2011-01-01

    The success of most of the proposed energy recovery linac (ERL) based electron accelerator projects for future storage ring replacements (SRR) and high power IR–free-electron lasers (FELs) largely depends on the development of an appropriate source. For example, to meet the FEL specifications [J.W. Lewellen, Proc. SPIE Int. Soc. Opt. Eng. 5534, 22 (2004)] electron beams with an unprecedented combination of high brightness, low emittance (0.1 µmrad), and high average current (hundreds of mA) are required. An elegant way to create a beam of such quality is to combine the high beam quality of a normal conducting rf photoinjector with the superconducting technology, i.e., to build a superconducting rf photoinjector (SRF gun). SRF gun R&D programs based on different approaches have been launched at a growing number of institutes and companies (AES, Beijing University, BESSY, BNL, DESY, FZD, TJNAF, Niowave, NPS, Wisconsin University). Substantial progress was achieved in recent years and the first long term ...

  1. Overview of Superconducting Photoinjectors

    CERN Document Server

    Arnold, A

    2009-01-01

    The success of most of the proposed ERL based electron accelerator projects for future storage ring replacements (SRR) and high power IR-FELs is contingent upon the development of an appropriate source. Electron beams with an unprecedented combination of high brightness, low emittance (0.1 µm rad) and high average current (hundreds of mA) are required to meet the FEL specification [1]. An elegant way to create such an unique beam is to combine the high beam quality of a normal conducting RF photo injector with the superconducting technology to get a superconducting RF photo injector (SRF gun). SRF gun R&D programs based on different approaches are under investigation at a growing number of institutes and companies (AES, Beijing University, BESSY, BNL, DESY, FZD, JLab, Niowave, NPS, Wisconsin University). Lot of progress could be achieved during the last years and first long term operation was demonstrated at the FZD [2]. In the near future, this effort will lead to SRF guns, which are indispensab...

  2. Assessment of RF exposures from emerging wireless communication technologies in different environments.

    Science.gov (United States)

    Joseph, Wout; Verloock, Leen; Goeminne, Francis; Vermeeren, Gönter; Martens, Luc

    2012-02-01

    In situ electromagnetic (EM) radio frequency (RF) exposure to base stations of emerging wireless technologies is assessed at 311 locations, 68 indoor and 243 outdoor, spread over 35 areas in three European countries (Belgium, The Netherlands, and Sweden) by performing narrowband spectrum analyzer measurements. The locations are selected to characterize six different environmental categories (rural, residential, urban, suburban, office, and industrial). The maximal total field value was measured in a residential environment and equal to 3.9 V m(-1), mainly due to GSM900 signals. Exposure ratios for maximal electric field values, with respect to ICNIRP reference levels, range from 0.5% (WiMAX) to 9.3% (GSM900) for the 311 measurement locations. Exposure ratios for total field values vary from 3.1% for rural environments to 9.4% for residential environments. Exposures are lognormally distributed and are the lowest in rural environments and the highest in urban environments. Highest median exposures were obtained in urban environments (0.74 V m(-1)), followed by office (0.51 V m(-1)), industrial (0.49 V m(-1)), suburban (0.46 V m(-1)), residential (0.40 V m(-1)), and rural (0.09 V m(-1)) environments. The average contribution to the total electric field is more than 60% for GSM. Except for the rural environment, average contributions of UMTS-HSPA are more than 3%. Contributions of the emerging technologies LTE and WiMAX are on average less than 1%. The dominating outdoor source is GSM900 (95 percentile of 1.9 V m(-1)), indoor DECT dominates (95 percentile of 1.5 V m(-1)).

  3. Superconducting technology for overcurrent limiting in a 25 kA current injection system

    Science.gov (United States)

    Heydari, Hossein; Faghihi, Faramarz; Sharifi, Reza; Poursoltanmohammadi, Amir Hossein

    2008-09-01

    Current injection transformer (CIT) systems are within the major group of the standard type test of high current equipment in the electrical industry, so their performance becomes very important. When designing high current systems, there are many factors to be considered from which their overcurrent protection must be ensured. The output of a CIT is wholly dependent on the impedance of the equipment under test (EUT). Therefore current flow beyond the allowable limit can occur. The present state of the art provides an important guide to developing current limiters not only for the grid application but also in industrial equipment. This paper reports the state of the art in the technology available that could be developed into an application of superconductivity for high current equipment (CIT) protection with no test disruption. This will result in a greater market choice and lower costs for equipment protection solutions, reduced costs and improved system reliability. The paper will also push the state of the art by using two distinctive circuits, closed-core and open-core, for overcurrent protection of a 25 kA CIT system, based on a flux-lock-type superconducting fault current limiter (SFCL) and magnetic properties of high temperature superconducting (HTS) elements. An appropriate location of the HTS element will enhance the rate of limitation with the help of the magnetic field generated by the CIT output busbars. The calculation of the HTS parameters for overcurrent limiting is also performed to suit the required current levels of the CIT.

  4. ORNL Superconducting Technology Program for electric power systems. Annual report for FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    Koncinski, W.S. [ed.; Hawsey, R.A. [comp.

    1997-05-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy`s Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by US industry for commercial development of electric power applications of high temperature superconductivity. The two major elements of this program are wire development and applications development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from recent open literature publications, presentations, and information prepared for the FY 1996 Annual Program Review held July 31 and August 1, 1996. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to cooperative projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with US industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high temperature superconductor wire and wire-using systems.

  5. ORNL superconducting technology program for electric power systems. Annual report for FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    Hawsey, R.A. [comp.

    1994-04-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy`s Office of Energy Efficiency and Renewable Energy to develop the technology base needed by US industry for commercial development of electric power applications of high-temperature superconductivity. The two major elements of this program are conductor development and applications development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from information prepared for the FY 1993 Annual Program Review held July 28--29, 1993. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to industrial competitiveness projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer to US industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire products.

  6. ORNL Superconducting Technology Program for Electric Power Systems--Annual Report for FY 2001

    Energy Technology Data Exchange (ETDEWEB)

    Hawsey, RA

    2002-02-18

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy's Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by US industry for development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and applications development. A new part of the wire research effort was the Accelerated Coated Conductor Initiative. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from recent open literature publications, presentations, and information prepared for the FY 2001 Annual Program Review held August 1-3, 2001. Aspects of ORNL's work that were presented at the International Cryogenic Materials Conference/Cryogenic Engineering Conference (July 2001) are included in this report as well. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. Interlaboratory teams are also in place on a number of industry-driven projects. Working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with US industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire-using systems.

  7. ORNL Superconducting Technology Program for electric power systems. Annual report for FY 1995

    Energy Technology Data Exchange (ETDEWEB)

    Hawsey, R.A. [comp.; Turner, J.W. [ed.

    1996-05-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the U.S. Department of Energy`s Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by U.S. industry for commercial development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and systems development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from information prepared for the FY 1995 Annual Program Review held August 1-2, 1995. This ORNL program is highly leveraged by the staff and other resources of U.S. industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to cooperative projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with U.S. industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire-using systems.

  8. ORNL Superconducting Technology Program for Electric Energy Systems. Annual report for FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    Hawsey, R.A. [comp.

    1993-02-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy`s (DOE`s) Office of Conservation and Renewable Energy to develop the technology base needed by US industry for commercial development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and systems development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from information prepared for the FY 1992 Peer Review of Projects, conducted by DOE`s Office of Program Analysis, Office of Energy Research. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer to US industry. Working together, the collaborative teams are making tremendous progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire products.

  9. ORNL superconducting technology program for electric power systems. Annual report for FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    Hawsey, R.A. [comp.

    1994-04-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy`s Office of Energy Efficiency and Renewable Energy to develop the technology base needed by US industry for commercial development of electric power applications of high-temperature superconductivity. The two major elements of this program are conductor development and applications development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from information prepared for the FY 1993 Annual Program Review held July 28--29, 1993. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to industrial competitiveness projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer to US industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire products.

  10. ORNL Superconducting Technology Program for Electric Power Systems: Annual Report for FY 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hawsey, R.A.

    2000-06-13

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by U.S. industry for development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and applications development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from recent open literature publications, presentations, and information prepared for the FY 1999 Annual Program Review held July 26-28, 1999. Aspects of ORNL's work that were presented at the International Cryogenic Materials Conference and the Cryogenic Engineering Conference (July 1999) are included in this report, as well. This ORNL program is highly leveraged by the staff and other resources of U.S. industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to cooperative projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with U.S. industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire-using systems.

  11. ORNL Superconducting Technology Program for Electric Power Systems, Annual Report for FY 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hawsey, R.A.; Murphy, A.W

    2000-04-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by U.S. industry for development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and applications development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from recent open literature publications, presentations, and information prepared for the FY 1999 Annual Program Review held July 26--28, 1999. Aspects of ORNL's work that were presented at the International Cryogenic Materials Conference and the Cryogenic Engineering Conference (July 1999) are included in this report, as well. This ORNL program is highly leveraged by the staff and other resources of U.S. industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to cooperative projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with U.S. industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire-using systems.

  12. ORNL Superconducting Technology Program for electric power systems: Annual report for FY 1997

    Energy Technology Data Exchange (ETDEWEB)

    Koncinski, W.S.; O`Hara, L.M. [eds.; Hawsey, R.A.; Murphy, A.W. [comps.

    1998-03-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy`s Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by US industry for commercial development of electric power applications of high temperature superconductivity. The two major elements of this program are wire development and applications development. This document describes the major research and developments activities for this program together with related accomplishments. The technical progress reported was summarized from recent open literature publications, presentations, and information prepared for the FY 1997 Annual Program Review held July 21--23, 1997. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to cooperative projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with US industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high temperature superconductor wire and wire-using systems.

  13. Study of a power coupler for superconducting RF cavities used in high intensity proton accelerator; Etude et developpement d'un coupleur de puissance pour les cavites supraconductrices destinees aux accelerateurs de protons de haute intensite

    Energy Technology Data Exchange (ETDEWEB)

    Souli, M

    2007-07-15

    The coaxial power coupler needed for superconducting RF cavities used in the high energy section of the EUROTRANS driver should transmit 150 kW (CW operation) RF power to the protons beam. The calculated RF and dielectric losses in the power coupler (inner and outer conductor, RF window) are relatively high. Consequently, it is necessary to design very carefully the cooling circuits in order to remove the generated heat and to ensure stable and reliable operating conditions for the coupler cavity system. After calculating all type of losses in the power coupler, we have designed and validated the inner conductor cooling circuit using numerical simulations results. We have also designed and optimized the outer conductor cooling circuit by establishing its hydraulic and thermal characteristics. Next, an experiment dedicated to study the thermal interaction between the power coupler and the cavity was successfully performed at CRYOHLAB test facility. The critical heat load Qc for which a strong degradation of the cavity RF performance was measured leading to Q{sub c} in the range 3 W-5 W. The measured heat load will be considered as an upper limit of the residual heat flux at the outer conductor cold extremity. A dedicated test facility was developed and successfully operated for measuring the performance of the outer conductor heat exchanger using supercritical helium as coolant. The test cell used reproduces the realistic thermal boundary conditions of the power coupler mounted on the cavity in the cryo-module. The first experimental results have confirmed the excellent performance of the tested heat exchanger. The maximum residual heat flux measured was 60 mW for a 127 W thermal load. As the RF losses in the coupler are proportional to the incident RF power, we can deduce that the outer conductor heat exchanger performance is continued up to 800 kW RF power. Heat exchanger thermal conductance has been identified using a 2D axisymmetric thermal model by comparing

  14. RF electrodynamics in small particles of oxides - a review

    CSIR Research Space (South Africa)

    Srinivasu, VV

    2008-01-01

    Full Text Available RF electrodynamics, particularly, the low field rf absorption in small superconducting and manganite particles is reviewed and compared with their respective bulk counterparts. Experimental and theoretical aspects of the small particle...

  15. Antenna Technology and other Radio Frequency (RF) Communications Activities at the Glenn Research Center in Support of NASA's Exploration Vision

    Science.gov (United States)

    Miranda, Felix A.

    2007-01-01

    NASA s Vision for Space Exploration outlines a very ambitious program for the next several decades of the Space Agency endeavors. Ahead is the completion of the International Space Station (ISS); safely flight the shuttle (STS) until 2010; develop and fly the Crew Exploration Vehicle (Orion) by no later than 2014; return to the moon by no later than 2020; extend human presence across the solar system and beyond; implement a sustainable and affordable human and robotic program; develop supporting innovative technologies, knowledge and infrastructure; and promote international and commercial participation in exploration. To achieve these goals, a series of enabling technologies must be developed or matured in a timely manner. Some of these technologies are: spacecraft RF technology (e.g., high power sources and large antennas which using surface receive arrays can get up to 1 Gbps from Mars), uplink arraying (reduce reliance on large ground-based antennas and high operation costs; single point of failure; enable greater data-rates or greater effective distance; scalable, evolvable, flexible scheduling), software define radio (i.e., reconfigurable, flexible interoperability allows for in flight updates open architecture; reduces mass, power, volume), and optical communications (high capacity communications with low mass/power required; significantly increases data rates for deep space). This presentation will discuss some of the work being performed at the NASA Glenn Research Center, Cleveland, Ohio, in antenna technology as well as other on-going RF communications efforts.

  16. 超导无线电能传输技术%Superconducting Wireless Power Transfer Technology

    Institute of Scientific and Technical Information of China (English)

    张国民; 余卉; 刘国乐; 林良真; 肖立业

    2015-01-01

    In recent years,wireless power tranfer technology has become a hot technology. Compared with traditional power tranfer mode,wireless power transfer is more convinient and safer,and it has been applied to many fields. Because the efficiency of wireless power transfer system is dominated by the resistive losses of the coils,and the smaller the resistances of the coils,the higher the trans-fer efficiencyis. With the characteristics of zero DC resistance and low AC loss,supercondcuting materials have significant efficiency advantage for use in wireless power transfer. In this paper,the research status on supercondcuting wireless power transfer technology is introduced,especially our complete and ongoing research works in the Key Lab of Applied Superconductivity on superconducting wireless power transfer,and the potential application prospects of superconducting wireless power transfer technology are also presen-ted.%近年来,无线电能传输技术已成为了热点技术。与传统电能传输方式相比,无线电能传输更为方便、安全,并已被应用于多个领域。由于无线电能传输效率取决于发射与接收线圈本身的电阻,线圈电阻越小,传输效率越高。超导体所具有的直流零电阻、交流低损耗的特性,使得超导材料用于无线电能传输具有显著的效率优势。介绍了超导无线电能传输技术的研究现状,中国科学院应用超导重点实验室关于超导无线电能传输方面已经开展和正在进行的研究工作,指出了超导无线电能传输技术潜在的应用前景。

  17. Critical Magnetic Field Determination of Superconducting Materials

    Energy Technology Data Exchange (ETDEWEB)

    Canabal, A.; Tajima, T.; /Los Alamos; Dolgashev, V.A.; Tantawi, S.G.; /SLAC; Yamamoto, T.; /Tsukuba, Natl. Res. Lab. Metrol.

    2011-11-04

    Superconducting RF technology is becoming more and more important. With some recent cavity test results showing close to or even higher than the critical magnetic field of 170-180 mT that had been considered a limit, it is very important to develop a way to correctly measure the critical magnetic field (H{sup RF}{sub c}) of superconductors in the RF regime. Using a 11.4 GHz, 50-MW, <1 {mu}s, pulsed power source and a TE013-like mode copper cavity, we have been measuring critical magnetic fields of superconductors for accelerator cavity applications. This device can eliminate both thermal and field emission effects due to a short pulse and no electric field at the sample surface. A model of the system is presented in this paper along with a discussion of preliminary experimental data.

  18. Application of FPGA technology for control of superconducting TESLA cavities in free electron laser

    Science.gov (United States)

    Pozniak, Krzysztof T.

    2006-10-01

    Contemporary fundamental research in physics, biology, chemistry, pharmacology, material technology and other uses frequently methods basing on collision of high energy particles or penetration of matter with ultra-short electromagnetic waves. Kinetic energy of involved particles, considerably greater than GeV, is generated in accelerators of unique construction. The paper presents a digest of working principles of accelerators. There are characterized research methods which use accelerators. A method to stabilize the accelerating EM field in superconducting (SC) resonant cavity was presented. An example was given of usage of TESLA cavities in linear accelerator propelling the FLASH free electron laser (FEL) in DESY, Hamburg. Electronic and photonic control system was debated. The system bases on advanced FPGA circuits and cooperating fast DSP microprocessor chips. Examples of practical solutions were described. Test results of the debated systems in the real-time conditions were given.

  19. Hidden Correlations in Indivisible Qudits as a Resource for Quantum Technologies on Examples of Superconducting Circuits

    Science.gov (United States)

    Man'ko, M. A.; Man'ko, V. I.

    2016-03-01

    We show that the density-matrix states of noncomposite qudit systems satisfy entropic and information relations like the subadditivity condition, strong subadditivity condition, and Araki-Lieb inequality, which characterize hidden quantum correlations of observables associated with these indivisible systems. We derive these relations employing a specific map of the entropic inequalities known for density matrices of multiqudit systems to the inequalities for density matrices of single-qudit systems. We present the obtained relations in the form of mathematical inequalities for arbitrary Hermitian N × N-matrices. We consider examples of superconducting qubits and qudits. We discuss the hidden correlations in single- qudit states as a new resource for quantum technologies analogous to the known resource in correlations associated with the entanglement in multiqudit systems.

  20. rf SQUID metamaterials

    OpenAIRE

    Lazarides, N.; Tsironis, G. P.

    2007-01-01

    An rf superconducting quantum interference device (SQUID) array in an alternating magnetic field is investigated with respect to its effective magnetic permeability, within the effective medium approximation. This system acts as an inherently nonlinear magnetic metamaterial, leading to negative magnetic response, and thus negative permeability, above the resonance frequency of the individual SQUIDs. Moreover, the permeability exhibits oscillatory behavior at low field intensities, allowing it...

  1. Performance analysis of a model-sized superconducting DC transmission system based VSC-HVDC transmission technologies using RTDS

    Science.gov (United States)

    Dinh, Minh-Chau; Ju, Chang-Hyeon; Kim, Sung-Kyu; Kim, Jin-Geun; Park, Minwon; Yu, In-Keun

    2012-08-01

    The combination of a high temperature superconducting DC power cable and a voltage source converter based HVDC (VSC-HVDC) creates a new option for transmitting power with multiple collection and distribution points for long distance and bulk power transmissions. It offers some greater advantages compared with HVAC or conventional HVDC transmission systems, and it is well suited for the grid integration of renewable energy sources in existing distribution or transmission systems. For this reason, a superconducting DC transmission system based HVDC transmission technologies is planned to be set up in the Jeju power system, Korea. Before applying this system to a real power system on Jeju Island, system analysis should be performed through a real time test. In this paper, a model-sized superconducting VSC-HVDC system, which consists of a small model-sized VSC-HVDC connected to a 2 m YBCO HTS DC model cable, is implemented. The authors have performed the real-time simulation method that incorporates the model-sized superconducting VSC-HVDC system into the simulated Jeju power system using Real Time Digital Simulator (RTDS). The performance analysis of the superconducting VSC-HVDC systems has been verified by the proposed test platform and the results were discussed in detail.

  2. A magnetic levitation rotating plate model based on high-Tc superconducting technology

    Science.gov (United States)

    Zheng, Jun; Li, Jipeng; Sun, Ruixue; Qian, Nan; Deng, Zigang

    2017-09-01

    With the wide requirements of the training aids and display models of science, technology and even industrial products for the public like schools, museums and pleasure grounds, a simple-structure and long-term stable-levitation technology is needed for these exhibitions. Opportunely, high temperature superconducting (HTS) technology using bulk superconductors indeed has prominent advantages on magnetic levitation and suspension for its self-stable characteristic in an applied magnetic field without any external power or control. This paper explores the feasibility of designing a rotatable magnetic levitation (maglev) plate model with HTS bulks placed beneath a permanent magnet (PM) plate. The model is featured with HTS bulks together with their essential cryogenic equipment above and PMs below, therefore it eliminates the unclear visual effects by spray due to the low temperature coolant such as liquid nitrogen (LN2) and additional levitation weight of the cryogenic equipment. Besides that, a matched LN2 automation filling system is adopted to help achieving a long-term working state of the rotatable maglev plate. The key low-temperature working condition for HTS bulks is maintained by repeatedly opening a solenoid valve and automatically filling LN2 under the monitoring of a temperature sensor inside the cryostat. With the support of the cryogenic devices, the HTS maglev system can meet all requirements of the levitating display model for exhibitions, and may enlighten the research work on HTS maglev applications.

  3. SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 8: Aerothermodynamics Automation and Robotics (A/R) systems sensors, high-temperature superconductivity

    Science.gov (United States)

    1991-01-01

    Viewgraphs of briefings presented at the SSTAC/ARTS review of the draft Integrated Technology Plan (ITP) on aerothermodynamics, automation and robotics systems, sensors, and high-temperature superconductivity are included. Topics covered include: aerothermodynamics; aerobraking; aeroassist flight experiment; entry technology for probes and penetrators; automation and robotics; artificial intelligence; NASA telerobotics program; planetary rover program; science sensor technology; direct detector; submillimeter sensors; laser sensors; passive microwave sensing; active microwave sensing; sensor electronics; sensor optics; coolers and cryogenics; and high temperature superconductivity.

  4. Reliability engineering in RF CMOS

    OpenAIRE

    2008-01-01

    In this thesis new developments are presented for reliability engineering in RF CMOS. Given the increase in use of CMOS technology in applications for mobile communication, also the reliability of CMOS for such applications becomes increasingly important. When applied in these applications, CMOS is typically referred to as RF CMOS, where RF stands for radio frequencies.

  5. Overview on superconducting photoinjectors

    Directory of Open Access Journals (Sweden)

    A. Arnold

    2011-02-01

    Full Text Available The success of most of the proposed energy recovery linac (ERL based electron accelerator projects for future storage ring replacements (SRR and high power IR–free-electron lasers (FELs largely depends on the development of an appropriate source. For example, to meet the FEL specifications [J. W. Lewellen, Proc. SPIE Int. Soc. Opt. Eng. 5534, 22 (2004PSISDG0277-786X10.1117/12.557378] electron beams with an unprecedented combination of high brightness, low emittance (0.1  μmrad, and high average current (hundreds of mA are required. An elegant way to create a beam of such quality is to combine the high beam quality of a normal conducting rf photoinjector with the superconducting technology, i.e., to build a superconducting rf photoinjector (SRF gun. SRF gun R&D programs based on different approaches have been launched at a growing number of institutes and companies (AES, Beijing University, BESSY, BNL, DESY, FZD, TJNAF, Niowave, NPS, Wisconsin University. Substantial progress was achieved in recent years and the first long term operation was demonstrated at FZD [R. Xiang et al., in Proceedings of the 31st International Free Electron Laser Conference (FEL 09, Liverpool, UK (STFC Daresbury Laboratory, Warrington, 2009, p. 488]. In the near future SRF guns are expected to play an important role for linac-driven FEL facilities. In this paper we will review the concepts, the design parameters, and the status of the major SRF gun projects.

  6. A computationally assisted spectroscopic technique to measure secondary electron emission coefficients in technological rf plasmas

    Science.gov (United States)

    Berger, Birk; Schulze, Julian; Daksha, Manaswi; Schuengel, Edmund; Koepke, Mark; Korolov, Ihor; Derzsi, Aranka; Donko, Zoltan

    2016-09-01

    A Computationally Assisted Spectroscopic Technique to measure secondary electron emission coefficients (y-CAST) in capacitive rf plasmas is proposed. This non-intrusive, sensitive diagnostic is based on a combination of Phase Resolved Optical Emission Spectroscopy and PIC simulations. Under most conditions in electropositive plasmas the spatio-temporally resolved electron-impact excitation rate features two distinct maxima adjacent to each electrode at different times within one rf period. One maximum is the consequence of an energy gain of the electrons due to sheath expansion. The second maximum is produced by electrons accelerated towards the plasma bulk by the sheath electric field at the time of maximum voltage drop across the sheath. Due to the different excitation mechanisms the ratio of the intensities of these maxima is very sensitive to y, which allows for its determination via comparing the experimentally measured excitation profiles with corresponding simulation data obtained with various y-coefficients. This diagnostic is tested here in a geometrically symmetric reactor, for stainless steel electrodes and argon gas. An effective secondary electron emission coefficient of y = 0.067+-0.010 is obtained, which is in excellent agreement with previous experimental results.

  7. Reconfigurable RF Filters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Space Micro proposes to build upon our existing space microelectronics and hardening technologies and products, to research and develop a novel rad hard/tolerant RF...

  8. Multipacting simulation in accelerating RF structures

    Energy Technology Data Exchange (ETDEWEB)

    Gusarova, M.A.; Kaminsky, V.I. [Moscow Engineering Physics Institute, State University (Russian Federation); Kravchuk, L.V. [Institute for Nuclear Research of Russian Academy of Sciences (Russian Federation); Kutsaev, S.V. [Moscow Engineering Physics Institute, State University (Russian Federation)], E-mail: s_kutsaev@mail.ru; Lalayan, M.V.; Sobenin, N.P. [Moscow Engineering Physics Institute, State University (Russian Federation); Tarasov, S.G. [Institute for Nuclear Research of Russian Academy of Sciences (Russian Federation)

    2009-02-01

    A new computer code for 3D simulation of multipacting phenomenon in axisymmetric and non-axisymmetric radio frequency (RF) structures is presented. The goal of the simulation is to determine resonant electron trajectories and electron multiplication in RF structure. Both SW and TW structures of normal and superconductivity have been studied. Simulation results are compared with theoretical calculations and experimental measurements.

  9. Radio frequency cavity analysis, measurement, and calibration of absolute Dee voltage for K-500 superconducting cyclotron at VECC, Kolkata

    Science.gov (United States)

    Som, Sumit; Seth, Sudeshna; Mandal, Aditya; Paul, Saikat; Duttagupta, Anjan

    2013-02-01

    Variable Energy Cyclotron Centre has commissioned a K-500 superconducting cyclotron for various types of nuclear physics experiments. The 3-phase radio-frequency system of superconducting cyclotron has been developed in the frequency range 9-27 MHz with amplitude and phase stability of 100 ppm and ±0.20, respectively. The analysis of the RF cavity has been carried out using 3D Computer Simulation Technology (CST) Microwave Studio code and various RF parameters and accelerating voltages ("Dee" voltage) are calculated from simulation. During the RF system commissioning, measurement of different RF parameters has been done and absolute Dee voltage has been calibrated using a CdTe X-ray detector along with its accessories and known X-ray source. The present paper discusses about the measured data and the simulation result.

  10. 28 May 2010 - Japanese Ambassador H. Ueda visiting the LHC superconducting magnet test hall with CERN Technology Deputy Department Head L. Rossi.

    CERN Multimedia

    Maximilien Brice

    2010-01-01

    CERN-HI-1005088 02 Japanese Ambassador H. Ueda (right) visiting the LHC superconducting magnet test hall with Technology Deputy Department Head L. Rossi(left). H. Ueda is accompanied by KEK and ATLAS Collaboration T. Kondo (centre).

  11. Beating liquid helium: the technologies of cryogen-free superconducting magnets

    Science.gov (United States)

    Burgoyne, John

    2015-03-01

    Cryogen-free superconducting magnets have been available now for almost 15 years, but have only become standard commercial products in more recent years. In this review we will consider the pros and cons of ``dry'' design including superconducting wire development and selection, thermal budgeting, and the alternative methods for achieving magnet cooling.

  12. Prospects for the medium- and long-term development of China`s electric power industry and analysis of the potential market for superconductivity technology

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z. [Bob Lawrence and Associates, Inc., Alexandria, VA (United States)

    1998-05-01

    First of all, overall economic growth objectives in China are concisely and succinctly specified in this report. Secondly, this report presents a forecast of energy supply and demand for China`s economic growth for 2000--2050. In comparison with the capability of energy construction in China in the future, a gap between supply and demand is one of the important factors hindering the sustainable development of Chain`s economy. The electric power industry is one of China`s most important industries. To adopt energy efficiency through high technology and utilizing energy adequately is an important technological policy for the development of China`s electric power industry in the future. After briefly describing the achievements of China`s electric power industry, this report defines the target areas and policies for the development of hydroelectricity and nuclear electricity in the 2000s in China, presents the strategic position of China`s electric power industry as well as objectives and relevant plans of development for 2000--2050. This report finds that with the discovery of superconducting electricity, the discovery of new high-temperature superconducting (HTS) materials, and progress in materials techniques, the 21st century will be an era of superconductivity. Applications of superconductivity in the energy field, such as superconducting storage, superconducting transmission, superconducting transformers, superconducting motors, its application in Magneto-Hydro-Dynamics (MHD), as well as in nuclear fusion, has unique advantages. Its market prospects are quite promising. 12 figs.

  13. RF Power and HOM Coupler Tutorial

    Energy Technology Data Exchange (ETDEWEB)

    Rusnak, B

    2003-10-28

    Radio frequency (RF) couplers are used on superconducting cavities to deliver RF power for creating accelerating fields and to remove unwanted higher-order mode power for reducing emittance growth and cryogenic load. RF couplers in superconducting applications present a number of interdisciplinary design challenges that need to be addressed, since poor performance in these devices can profoundly impact accelerator operations and the overall success of a major facility. This paper will focus on critical design issues for fundamental and higher order mode (HOM) power couplers, highlight a sampling of reliability-related problems observed in couplers, and discuss some design strategies for improving performance.

  14. Oak Ridge National Laboratory (ORNL) Superconducting Technology Program for electric power systems. Annual report for FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    Koncinski, W.S. [ed.; Hawsey, R.A. [comp.

    1994-12-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy`s Office of Energy Efficiency and Renewable Energy to develop the technology base needed by US industry for commercial development of electric power applications of high-temperature superconductivity. The three major elements of this program are conductor development, applications development, and the Superconductivity Partnership Initiative. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from information prepared for the FY 1994 Annual Program Review held July 19--20, 2994. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to industrial competitiveness projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with US industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire products.

  15. Analysis and Measurement of the Transfer Matrix of a 9-cell 1.3-GHz Superconducting Cavity

    Energy Technology Data Exchange (ETDEWEB)

    Halavanau, A. [Fermilab; Eddy, N. [Fermilab; Edstrom, D. [Fermilab; Harms, E. [Fermilab; Lunin, A. [Fermilab; Piot, P. [Fermilab; Romanov, A. [Fermilab; Ruan, J. [Fermilab; Solyak, N. [Fermilab; Shiltsev, V. [Fermilab

    2017-01-27

    Superconducting linacs are capable of producing intense, stable, high-quality electron beams that have found widespread applications in science and industry. The 9-cell 1.3-GHz superconducting standing-wave accelerating RF cavity originally developed for $e^+/e^-$ linear-collider applications [B. Aunes, {\\em et al.} Phys. Rev. ST Accel. Beams {\\bf 3}, 092001 (2000)] has been broadly employed in various superconducting-linac designs. In this paper we discuss the transfer matrix of such a cavity and present its measurement performed at the Fermilab Accelerator Science and Technology (FAST) facility. The experimental results are found to be in agreement with analytical calculations and numerical simulations.

  16. Niobium superconducting cavity

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    This 5-cell superconducting cavity, made from bulk-Nb, stems from the period of general studies, not all directed towards direct use at LEP. This one is dimensioned for 1.5 GHz, the frequency used at CEBAF and also studied at Saclay (LEP RF was 352.2 MHz). See also 7908227, 8007354, 8209255, 8210054, 8312339.

  17. A 200 MHz SC-RF System for the HL-LHC

    CERN Document Server

    Calaga, Rama

    2016-01-01

    A quarter wave β=1 superconducting cavity at 200 MHz is proposed for the LHC as an alternative to the present 400 MHz RF system. The primary motivation of such a system would be to accelerate higher intensity and longer bunches with improved capture efficiency. Advantages related to minimizing electron cloud effects, intra-beam scattering, heating and the possibility of luminosity levelling with bunch length are described. Some considerations related to cavity optimization, beam loading and technological challenges are addressed.

  18. Design of Antenna-on-Chip, Antenna-on-Package and Detectors from RF, Microwave to THz Frequency Range in SiGe-C Technology

    NARCIS (Netherlands)

    Wane, S; Bardy, S.; Heijster, R.M.E.M. van; Goulet, F.; Gamand, P.

    2011-01-01

    Design solutions for on-chip signal detectors, Antenna-on- Chip and Antenna-on-Package (with Bond Wire elements), from RF, Microwave to THz frequency range, using state-of-theart SiGe BiCMOS technology are presented. Both CML and CMOS detectors are designed, fabricated and compared in terms of their

  19. Numerical Simulation of Plasma-Dynamical Processes in the Technological Inductively Coupled RF Plasmatron with Gas Cooling

    Directory of Open Access Journals (Sweden)

    Yu. M. Grishin

    2016-01-01

    Full Text Available The electrodeless inductively coupled RF plasmatron (ICP torches became widely used in various fields of engineering, science and technology. Presently, owing to development of new technologies to produce very pure substances, nanopowders, etc., there is a steadily increasing interest in the induction plasma. This generates a need for a broad range of theoretical and experimental studies to optimize the design and technological parameters of different ICP equipment.The paper presents a numerical model to calculate parameters of inductively coupled RF plasmatron with gas-cooling flow. A finite volume method is used for a numerical solution of a system of Maxwell's and heat transfer equations in the application package ANSYS CFX (14.5. The pseudo-steady approach to solving problems is used.A numerical simulation has been computed in the application package ANSYS CFX (14.5 for a specific design option of the technological ICP, which has a three-coils inductor and current amplitude in the range J к = 50-170 A (3 MHz. The pure argon flows in the ICP. The paper discusses how the value of discharge current impacts on the thermodynamic parameters (pressure, temperature and the power energy in discharge zone. It shows that the ICP can generate a plasma stream with a maximum temperature of about 10 kK and an output speed of 10-15 m/s. The work determines a length of the plasma stream with a weight average temperature of more than 4 kK. It has been found that in order to keep the quartz walls in normal thermal state, the discharge current amplitude should not exceed 150 A. The paper shows the features of the velocity field distribution in the channel of the plasma torch, namely, the formation of vortex in the position of the first coil. The results obtained are important for calculating the dynamics of heating and evaporation of quartz particles in the manufacturing processes for plasma processing of quartz concentrate into high-purity quartz and

  20. Superconductivity in Medicine

    Science.gov (United States)

    Alonso, Jose R.; Antaya, Timothy A.

    2012-01-01

    Superconductivity is playing an increasingly important role in advanced medical technologies. Compact superconducting cyclotrons are emerging as powerful tools for external beam therapy with protons and carbon ions, and offer advantages of cost and size reduction in isotope production as well. Superconducting magnets in isocentric gantries reduce their size and weight to practical proportions. In diagnostic imaging, superconducting magnets have been crucial for the successful clinical implementation of magnetic resonance imaging. This article introduces each of those areas and describes the role which superconductivity is playing in them.

  1. Precision Membrane Optical Shell (PMOS) Technology for RF/Microwave to Lightweight LIDAR Apertures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Membrane Optical Shell Technology (MOST) is an innovative combination of 1) very low areal density (40 to 200g/m2) optically smooth (<20 nm rms), metallic coated...

  2. WAFER TEST CAVITY -Linking Surface Microstructure to RF Performance: a ‘Short-­Sample Test Facility’ for characterizing superconducting materials for SRF cavities.

    Energy Technology Data Exchange (ETDEWEB)

    Pogue, Nathaniel; Comeaux, Justin; McIntyre, Peter

    2014-05-30

    The Wafer Test cavity was designed to create a short sample test system to determine the properties of the superconducting materials and S-I-S hetero-structures. The project, funded by ARRA, was successful in accomplishing several goals to achieving a high gradient test system for SRF research and development. The project led to the design and construction of the two unique cavities that each severed unique purposes: the Wafer test Cavity and the Sapphire Test cavity. The Sapphire Cavity was constructed first to determine the properties of large single crystal sapphires in an SRF environment. The data obtained from the cavity greatly altered the design of the Wafer Cavity and provided the necessary information to ascertain the Wafer Test cavity’s performance.

  3. Three-dimensional RF SoP technologies: LTCC versus LCP

    KAUST Repository

    Arabi, Eyad A.

    2014-12-18

    The system on package (SoP) is an emerging platform, introduced to provide enhanced functionality, and immense miniaturization through vertically integrated passive components in a multilayer process. This way the package is not a mere holder or cover but is a functional part of the system. The leading multilayer packaging technologies for SoP designs: low temperature co-fired ceramic (LTCC) and liquid crystal polymer (LCP) are compared in this work for the first time. Passive components and filters have been implemented in both technologies to show the advantages of the three-dimensional nature of these technologies. The comparison results show that parallel plate capacitors implemented in the ultra-thin LCP provides the highest capacitance density. For spiral inductors, conversely, LTCC inductors have the highest inductances while LCP inductors offer the highest self-resonant frequencies and the highest quality factors (Q). In a circuit level, simulated and measured results of a bandpass filter at 1.5 GHz show that both LCP and LTCC can provide similar performances with an incredible size reduction for the case of ultra-thin LCP. Also, the thin LCP filter exhibits a large degree of mechanical flexibility which makes this technology suitable for future flexible modules.

  4. A Novel Manufacturing Technology for RF MEMS Devices on Ceramic Substrates

    Directory of Open Access Journals (Sweden)

    V. Schirosi

    2010-01-01

    Full Text Available Microelectromechanical systems are often used for their enormous capability and good qualities in T/R modules especially for space modular applications. High isolation and very low insertion loss are guaranteed by their intrinsic working principle. This is a very robust, flexible, and low-cost technology, and it provides high reliability, good reproducibility, and complete fulfillment of technical requirements.

  5. Muon Ionisation Cooling in Reduced RF

    CERN Document Server

    Prior, G

    2010-01-01

    In Muon Ionisation Cooling, closely packed high-field RF cavities are interspersed with energy-absorbing material in order to reduce particle beam emittance. Transverse focussing of the muon beams is achieved by superconducting magnets. This results in the RF cavities sitting in intense magnetic fields. Recent studies have shown that this may limit the peak gradient that can be achieved in the RF cavities. In this paper, we study the effect that a reduced RF gradient may have on the cooling performance of the Neutrino Factory lattice and examine methods to mitigate the effect.

  6. Microfluidic stretchable RF electronics.

    Science.gov (United States)

    Cheng, Shi; Wu, Zhigang

    2010-12-07

    Stretchable electronics is a revolutionary technology that will potentially create a world of radically different electronic devices and systems that open up an entirely new spectrum of possibilities. This article proposes a microfluidic based solution for stretchable radio frequency (RF) electronics, using hybrid integration of active circuits assembled on flex foils and liquid alloy passive structures embedded in elastic substrates, e.g. polydimethylsiloxane (PDMS). This concept was employed to implement a 900 MHz stretchable RF radiation sensor, consisting of a large area elastic antenna and a cluster of conventional rigid components for RF power detection. The integrated radiation sensor except the power supply was fully embedded in a thin elastomeric substrate. Good electrical performance of the standalone stretchable antenna as well as the RF power detection sub-module was verified by experiments. The sensor successfully detected the RF radiation over 5 m distance in the system demonstration. Experiments on two-dimensional (2D) stretching up to 15%, folding and twisting of the demonstrated sensor were also carried out. Despite the integrated device was severely deformed, no failure in RF radiation sensing was observed in the tests. This technique illuminates a promising route of realizing stretchable and foldable large area integrated RF electronics that are of great interest to a variety of applications like wearable computing, health monitoring, medical diagnostics, and curvilinear electronics.

  7. An overview on recent developments in RF and microwave power H-terminated diamond MESFET technology

    OpenAIRE

    Ghione, Giovanni; Camarchia, Vittorio; Pirola, Marco; Cappelluti, Federica

    2014-01-01

    Thanks to its wide bandgap, exceptionally high thermal conductivity and relatively high carrier velocities, diamond exhibits attractive semiconductor properties that make it an interesting candidate for high power, high frequency and high temperature solid-state microelectronic devices, able to withstand harsh environmental conditions (in terms of temperature and/or radiation). The development of a diamond transistor technology has been restricted for many years due to the difficulty in imple...

  8. Superconducting hot-electron nanobolometer with microwave bias and readout

    CERN Document Server

    Kuzmin, A A; Shitov, S V; Abramov, N N; Ermakov, A B; Arndt, M; Wuensch, S H; Ilin, K S; Ustinov, A V; Siegel, M

    2014-01-01

    We propose a new detection technique based on radio-frequency (RF) bias and readout of an antenna-coupled superconducting nanobolometer. This approach is suitable for Frequency-Division-Multiplexing (FDM) readout of large arrays using broadband low-noise RF amplifier. We call this new detector RFTES. This feasibility study was made on demonstrator devices which are made in all-Nb technology and operate at 4.2 K. The studied RFTES devices consist of an antenna-coupled superconducting nanobolometer made of ultrathin niobium films with transition temperature Tc = 5.2 K. The 0.65-THz antenna and nanobolometer are embedded as a load into a GHz-range coplanar niobium resonator (Tc = 8.9 K, Q = 4000). To heat the superconducting Nb nanobolometer close to the Tc, the RF power at resonator frequency f = 5.8 GHz is applied via a transmission line which is weakly coupled (-11 dB) to the loaded resonator. The THz-antenna of RFTES was placed in the focus of a sapphire immersion lens inside a He4-cryostat equipped with an ...

  9. Cryogenic testing of the 2.1 GHz five-cell superconducting RF cavity with a photonic band gap coupler cell

    Energy Technology Data Exchange (ETDEWEB)

    Arsenyev, Sergey A., E-mail: arsenyev@mit.edu; Temkin, Richard J. [Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, Massachusetts 02139 (United States); Haynes, W. Brian; Shchegolkov, Dmitry Yu.; Simakov, Evgenya I.; Tajima, Tsuyoshi [Los Alamos National Laboratory, PO Box 1663, Los Alamos, New Mexico 87545 (United States); Boulware, Chase H.; Grimm, Terrence L.; Rogacki, Adam R. [Niowave, Inc., 1012 North Walnut Street, Lansing, Michigan 48906 (United States)

    2016-05-30

    We present results from cryogenic tests of the multi-cell superconducting radio frequency (SRF) cavity with a photonic band gap (PBG) coupler cell. Achieving high average beam currents is particularly desirable for future light sources and particle colliders based on SRF energy-recovery-linacs (ERLs). Beam current in ERLs is limited by the beam break-up instability, caused by parasitic higher order modes (HOMs) interacting with the beam in accelerating cavities. A PBG cell incorporated in an accelerating cavity can reduce the negative effect of HOMs by providing a frequency selective damping mechanism, thus allowing significantly higher beam currents. The multi-cell cavity was designed and fabricated of niobium. Two cryogenic (vertical) tests were conducted. The high unloaded Q-factor was demonstrated at a temperature of 4.2 K at accelerating gradients up to 3 MV/m. The measured value of the unloaded Q-factor was 1.55 × 10{sup 8}, in agreement with prediction.

  10. Wireless Transmission System Based on SOPC Technology and nRF24L01%基于SOPC技术和nRF24L01的无线传输系统

    Institute of Scientific and Technical Information of China (English)

    季凯源

    2012-01-01

    On the basis of analyzing and comparing of the advantages and disadvantages of common wireless technology, this paper introduces the design and realization of wireless transmission based on the system on programmable chip (SOPC) technology and nRF24L01, explains in detail the hardware and software design of system and the specific realization method, provides a solution project of short distance wireless transmission with high-speed.%在分析和对比常用无线技术优缺点的基础上,介绍了基于可编程片上系统(SOPC)技术和nRF24L01的无线传输设计与实现,详细讲解了系统的软硬件设计以及具体的实现方法,提供了一种短距离无线高速传输的解决方案。

  11. CMOS工艺射频功率放大器的实现与验证%Realization and verification of the CMOS technology RF power amplifier

    Institute of Scientific and Technical Information of China (English)

    谢君

    2011-01-01

    RF power amplifiers are key components in wireless devices, CaAs technology is widely used in the design and manufacture of RF power amplifier. But the CMOS technology has the very big superiority in the production maturity and the cost, this paper focuses on the problems that using CMOS technology to do the RF power amplifier, introduces the world's first mass product CMOS power amplifier and the special techniques used. Using a mature handset product, it replaces this power amplifier and the peripheral components, and finally carries on the contrast test with the original product.%射频功率放大器是无线设备的关键器件,GaAs工艺被广泛使用在射频功放的设计制造上.而CMOS工艺在生产成熟度和成本上有很大优势,主要关注用CMOS工艺来做射频功放的问题,介绍世界上第一颗量产的CMOS功放及其所使用的特殊技术.利用一款成熟的手机产品,替换这颗功放及外围器件,最后与原产品进行对比测试.

  12. The NASA high temperature superconductivity program

    Science.gov (United States)

    Sokoloski, Martin M.; Romanofsky, Robert R.

    1990-01-01

    It has been recognized from the onset that high temperature superconductivity held great promise for major advances across a broad range of NASA interests. The current effort is organized around four key areas: communications and data, sensors and cryogenics, propulsion and power, and space materials technology. Recently, laser ablated YBa2Cu3O(7-x) films on LaAIO produced far superior RF characteristics when compared to metallic films on the same substrate. This achievement has enabled a number of unique microwave device applications, such as low insertion loss phase shifters and high Q filters. Melt texturing and melt quenched techniques are being used to produce bulk materials with optimized magnetic properties. These yttrium enriched materials possess enhanced flux pinning characteristics and will lead to prototype cryocooler bearings. Significant progress has also occurred in bolometer and current lead technology. Studies are being conducted to evaluate the effect of high temperature superconducting materials on the performance and life of high power magneto-plasma-dynamic thrusters. Extended studies were also performed to evaluate the benefit of superconducting magnetic energy storage for LEO space station, lunar and Mars mission applications. The project direction and level of effort of the program are also described.

  13. Nanoscience and Engineering in Superconductivity

    CERN Document Server

    Moshchalkov, Victor; Lang, Wolfgang

    2010-01-01

    For emerging energy saving technologies, superconducting materials with superior performance are needed. Such materials can be developed by manipulating the 'elementary building blocks' through nanostructuring. For superconductivity the 'elementary blocks' are Cooper pair and fluxon (vortex). This book presents new ways how to modify superconductivity and vortex matter through nanostructuring and the use of nanoscale magnetic templates. The basic nano-effects, vortex and vortex-antivortex patterns, vortex dynamics, Josephson phenomena, critical currents, and interplay between superconductivity

  14. Characterization of Superconducting Cavities for HIE-ISOLDE

    CERN Document Server

    Martinello, Martina

    2013-01-01

    In this report the radiofrequency measurements done for the superconducting cavities developed at CERN for the HIE-ISOLDE project are analyzed. The purpose of this project is improve the energy of the REX-ISOLDE facility by means of a superconducting LINAC. In this way it will be possible to reach higher accelerating gradients, and so higher particle energies (up to 10MeV/u). At this purpose the Niobium thin film technology was preferred to the Niobium bulk technology because of the technical advantages like the higher thermal conductivity of Copper and the higher stiffness of the cavities which are less sentitive to mechanical vibrations. The Niobium coating is being optimized on test prototypes which are qualified by RF measurements at cold.

  15. Design of an L-band normally conducting RF gun cavity for high peak and average RF power

    Science.gov (United States)

    Paramonov, V.; Philipp, S.; Rybakov, I.; Skassyrskaya, A.; Stephan, F.

    2017-05-01

    To provide high quality electron bunches for linear accelerators used in free electron lasers and particle colliders, RF gun cavities operate with extreme electric fields, resulting in a high pulsed RF power. The main L-band superconducting linacs of such facilities also require a long RF pulse length, resulting in a high average dissipated RF power in the gun cavity. The newly developed cavity based on the proven advantages of the existing DESY RF gun cavities, underwent significant changes. The shape of the cells is optimized to reduce the maximal surface electric field and RF loss power. Furthermore, the cavity is equipped with an RF probe to measure the field amplitude and phase. The elaborated cooling circuit design results in a lower temperature rise on the cavity RF surface and permits higher dissipated RF power. The paper presents the main solutions and results of the cavity design.

  16. A high-temperature superconducting delta-sigma modulator based on a multilayer technology with bicrystal Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Ruck, B.; Chong, Y.; Dittmann, R.; Engelhardt, A.; Sodtke, E.; Siegel, M. [Institut fur Schicht- und Ionentechnik (ISI), Forschungszentrum Julich GmbH, 52425 Juelich (Germany)

    1999-11-01

    We have designed, fabricated and successfully tested a first-order delta-sigma modulator using a high-temperature superconducting multilayer technology with bicrystal Josephson junctions. The circuit has been fabricated on a SrTiO{sub 3} bicrystal substrate. The YBa{sub 2}Cu{sub 3}O{sub 7}/SrTiO{sub 3}/YBa{sub 2}Cu{sub 3}O{sub 7} trilayer was fabricated by laser deposition. The bottom layer served as a superconducting ground plane. The Josephson junctions were formed at the bicrystal line in the upper layer. The integrator resistance has been made from a Pd/Au thin film. The circuit consists of a dc-SFQ converter, a Josephson transmission line, a comparator, an L/R integrator and an output stage. The correct operation of the modulatorhas been tested using dc measurements. The linearity of the modulator was studied by measuring the harmonic distortions of a 19.5 kHz sine wave input signal. From the recorded spectrum, a minimum resolution of at least 5 bits can be estimated. This accuracy was limited by the noise of the preamplifier. The correct operation of the current feedback loop was demonstrated by cutting the feedback inductance. (author)

  17. A high-temperature superconducting delta-sigma modulator based on a multilayer technology with bicrystal Josephson junctions

    Science.gov (United States)

    Ruck, B.; Chong, Y.; Dittmann, R.; Engelhardt, A.; Sodtke, E.; Siegel, M.

    1999-11-01

    We have designed, fabricated and successfully tested a first-order delta-sigma modulator using a high-temperature superconducting multilayer technology with bicrystal Josephson junctions. The circuit has been fabricated on a SrTiO3 bicrystal substrate. The YBa2Cu3O7/SrTiO3/YBa2Cu3O7 trilayer was fabricated by laser deposition. The bottom layer served as a superconducting groundplane. The Josephson junctions were formed at the bicrystal line in the upper layer. The integrator resistance has been made from a Pd/Au thin film. The circuit consists of a dc-SFQ converter, a Josephson transmission line, a comparator, an L/R integrator and an output stage. The correct operation of the modulator has been tested using dc measurements. The linearity of the modulator was studied by measuring the harmonic distortions of a 19.5 kHz sine wave input signal. From the recorded spectrum, a minimum resolution of at least 5 bits can be estimated. This accuracy was limited by the noise of the preamplifier. The correct operation of the current feedback loop was demonstrated by cutting the feedback inductance.

  18. Electrodeposition and characterisation of lead tin superconducting films for application in heavy ion booster

    Energy Technology Data Exchange (ETDEWEB)

    Lobanov, Nikolai R., E-mail: Nikolai.Lobanov@anu.edu.au

    2015-12-15

    The ANU has developed experimental systems and procedures for lead–tin (PbSn) film deposition and characterisation. The 12 split loop resonators have been electroplated with 96%Pb4%Sn film to the final thickness of 1.5 micron using methanesulfonic acid (MSA) chemistry. As a result, an average acceleration field of 3.6 MV/m off-line at 6 W rf power was achieved at extremely low technological cost. Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Heavy Ion Elastic Detection Analyses (HIERDA), Rutherford Backscattering Spectroscopy (RBS), Secondary Ion Mass Spectroscopy (SIMS) and Electron Backscattering Diffraction (EBSD) revealed correlation between the substrate and film structure, morphology and the rf performance of the cavity. The PbSn plating, exercised on the existing split loop resonators (SLR), has been extended to the two stub quarter wave resonator (QWR) as a straightforward step to quickly explore the superconducting performance of the new geometry. The oxygen free copper (OHFC) substrate for two stub QWR was prepared by reverse pulse electropolishing. The ultimate superconducting properties and long-term stability of the coatings have been assessed by operation of the ANU superconducting linac over the last few years. - Highlights: • PbSn alloy is investigated as a material for superconducting low and medium velocity rf resonators. • It is easily electrodeposited with MSA chemistry at very low cost, has high T{sub c}, and good performance at high fields. • The optimum substrate preparation and coating conditions are established based on examination of the properties of substrate and superconducting films. • A long term stability of the electroplated resonators has been showing no evidence of degradation of the rf properties over the last decade. • The resonators high field performance limiting factors and their possible elimination have been evaluated.

  19. Fiber Bragg Grating Sensor as Valuable Technological Platform for New Generation of Superconducting Magnets

    CERN Document Server

    Chiuchiolo, A; Cusano, A; Bajko, M; Perez, J C; Bajas, H; Viret, P; Giordano, M; Breglio, G

    2014-01-01

    New generation of superconducting magnets for high energy applications designed, manufactured and tested at the European Organization for Nuclear Research (CERN) require the implementation of reliable sensors able to monitor the mechanical stresses affecting the winding from fabrication to operation in magnetic field of 13 T. This work deals with the embedding of Fiber Bragg Grating sensors in a short model Nb3Sn dipole magnet in order to monitor the strain developed in the coil during the cool down to 1.9 K, the powering up to 15.8 kA and the warm up, offering perspectives for the replacement of standard strain gauges.

  20. Basics of RF electronics

    CERN Document Server

    Gallo, A

    2011-01-01

    RF electronics deals with the generation, acquisition and manipulation of high-frequency signals. In particle accelerators signals of this kind are abundant, especially in the RF and beam diagnostics systems. In modern machines the complexity of the electronics assemblies dedicated to RF manipulation, beam diagnostics, and feedbacks is continuously increasing, following the demands for improvement of accelerator performance. However, these systems, and in particular their front-ends and back-ends, still rely on well-established basic hardware components and techniques, while down-converted and acquired signals are digitally processed exploiting the rapidly growing computational capability offered by the available technology. This lecture reviews the operational principles of the basic building blocks used for the treatment of high-frequency signals. Devices such as mixers, phase and amplitude detectors, modulators, filters, switches, directional couplers, oscillators, amplifiers, attenuators, and others are d...

  1. Wafer-level packaging technology for RF applications based on a rigid low-loss spacer substrate

    NARCIS (Netherlands)

    Polyakov, A.

    2006-01-01

    As mobile portable devices such as cellular system/phones, smart handheld devices and laptop computers acquire wireless connectivity there is a growing demand for greater levels of RF integration. The holy grail of integration is to have a whole set of different components integrated into one chip.

  2. Wafer-level packaging technology for RF applications based on a rigid low-loss spacer substrate

    NARCIS (Netherlands)

    Polyakov, A.

    2006-01-01

    As mobile portable devices such as cellular system/phones, smart handheld devices and laptop computers acquire wireless connectivity there is a growing demand for greater levels of RF integration. The holy grail of integration is to have a whole set of different components integrated into one chip.

  3. Preliminary investigation of force-reduced superconducting magnet configurations for advanced technology applications

    Energy Technology Data Exchange (ETDEWEB)

    Bouillard, J.X.

    1992-12-01

    The feasibility of new high-field low specific weight superconducting magnet designs using force-free fields is being explored analytically and numerically. This report attempts to assess the technical viability of force-free field concepts to produce high-field, low specific weight and large bore volume magnets, which could promote the use of high temperature superconductors. Several force-free/force-reduced magnet configurations are first reviewed, then discussed and assessed. Force-free magnetic fields, fields for which the current flows parallel to the field, have well-known mathematical solutions extending upon infinite domains. These solutions, however, are no longer force-free everywhere for finite geometries. In this preliminary study, force-free solutions such as the Lundquist solutions truncated to a size where the internal field of the coil matches an externally cylindrical magnetic field (also called a Lundquist coil) are numerically modeled and explored. Significant force-reduction for such coils was calculated, which may have some importance for the design of lighter toroidal magnets used in thermonuclear fusion power generation, superconducting magnetic energy storage (SMES), and mobile MHD power generation and propulsion.

  4. Application of superconducting technologies as chemical/biological agent electronic eyes

    Science.gov (United States)

    Savoy, Steven M.; Eames, Sara J.; Jurbergs, David C.; Zhao, Jianai; McDevitt, John T.; Sobel, Annette L.

    1997-01-01

    High temperature superconductors provide enhanced sensitivity capabilities as chemical/biological agent detectors. State-of-the-art advances in ruggedizing superconducting platforms make them much more robust for field applications. In addition, microminiaturization and advances in refrigeration have enabled the systems engineering of portable, durable, survivable, low power requirement devices. This presentation describes a prototype system employing YBCO (yttrium barium copper oxide) superconducting quantum interference devices (SQUIDS) with specific biolayer detection dye coatings. These devices may be deployed as specific stand-off detectors, or potentially reconfigured as point sensors. A library of pattern recognition algorithms provides the reference template for the system. The human-system interface will provide a 'yes/no' agent confirmation for the environment being queried, and associated confidence value. This prototype detection system has great potential for deployment in support of hostage rescue/rapid response teams, DMAT, and urban search and rescue. The preparation and characterization of a new generation of optical sensors fabricated from high-temperature superconductor (HTSC) thin films is reported herein. These new hybrid devices are fashioned using HTSC thin films which are coated with organic dye overlayers. These systems are shown to respond selectively to those wavelengths which are absorbed strongly by the molecular dye. Methods for fabricating the superconductor element and depositing the dye layer are discussed. Moreover, resistivity versus temperature measurements before and after dye deposition are utilized to characterize these hybrid structures. The unique optical response properties of these hybrid sensors are also detailed.

  5. Operation experience with the LHC RF system

    CERN Document Server

    Arnaudon, L; Brunner, O; Butterworth, A

    2010-01-01

    The LHC ACS RF system is composed of 16 superconducting cavities, eight per ring, housed in a total of four cryomodules each containing four cavities. Each cavity is powered by a 300 kW klystron. The ACS RF power control system is based on industrial Programmable Logic Controllers (PLCs), with additional fast RF interlock protection systems. The Low Level RF (LLRF) is implemented in VME crates. Operational performance and reliability are described. A full set of user interfaces, both for experts and operators has been developed, with user feedback and maintenance issues as key points. Operational experience with the full RF chain, including the low level system, the beam control, the synchronization system and optical fibers distribution is presented. Last but not least overall performance and reliability based on experience with first beam are reviewed and perspectives for future improvement outlined.

  6. BSCCO超导带材的工艺要点与应用%Technology Essentials and Application of BSCCO Superconducting Tape

    Institute of Scientific and Technical Information of China (English)

    王醒东

    2014-01-01

    高温超导材料的发现,推进了超导技术的实用化。作为典型的高温超导材料,铋系(BSCCO)超导带材目前已在超导电缆、超导限流器和超导储能等领域实现商用。粉末套管法是制备BSCCO超导带材最常用的方法,主要工艺步骤包括装粉、拉拔、轧制和热处理等。本文介绍了粉末套管法的工艺,重点介绍了各工艺步骤中的关键点,阐述了超导带材在超导限流器和超导储能系统中的应用,提出了BSCCO超导带材未来的发展方向。%The discovery of high temperature superconducting(HTS) materials promotes the practical application of superconducting technology. As typical HTS materials, Bi-superconducting tapes(BSCCO) have achieved the commercialization and been applied in superconducting cables, superconducting fault current limiter(SFCL) and superconducting magnetic energy storage(SMES). Powder in tube(PIT) is the most commonly method, which includes some important processing steps such as powder-filling, drawing, rolling and heat treatment. PIT is introduced in this paper, especially the key point in each process step. The application of superconducting tapes in SFCL and SMES is expounded. Finally, the future development direction of BSCCO superconductor tape is indicated.

  7. Reprint of “Performance analysis of a model-sized superconducting DC transmission system based VSC-HVDC transmission technologies using RTDS”

    Science.gov (United States)

    Dinh, Minh-Chau; Ju, Chang-Hyeon; Kim, Sung-Kyu; Kim, Jin-Geun; Park, Minwon; Yu, In-Keun

    2013-01-01

    The combination of a high temperature superconducting DC power cable and a voltage source converter based HVDC (VSC-HVDC) creates a new option for transmitting power with multiple collection and distribution points for long distance and bulk power transmissions. It offers some greater advantages compared with HVAC or conventional HVDC transmission systems, and it is well suited for the grid integration of renewable energy sources in existing distribution or transmission systems. For this reason, a superconducting DC transmission system based HVDC transmission technologies is planned to be set up in the Jeju power system, Korea. Before applying this system to a real power system on Jeju Island, system analysis should be performed through a real time test. In this paper, a model-sized superconducting VSC-HVDC system, which consists of a small model-sized VSC-HVDC connected to a 2 m YBCO HTS DC model cable, is implemented. The authors have performed the real-time simulation method that incorporates the model-sized superconducting VSC-HVDC system into the simulated Jeju power system using Real Time Digital Simulator (RTDS). The performance analysis of the superconducting VSC-HVDC systems has been verified by the proposed test platform and the results were discussed in detail.

  8. RF Group Annual Report 2011

    CERN Document Server

    Angoletta, M E; Betz, M; Brunner, O; Baudrenghien, P; Calaga, R; Caspers, F; Ciapala, E; Chambrillon, J; Damerau, H; Doebert, S; Federmann, S; Findlay, A; Gerigk, F; Hancock, S; Höfle, W; Jensen, E; Junginger, T; Liao, K; McMonagle, G; Montesinos, E; Mastoridis, T; Paoluzzi, M; Riddone, G; Rossi, C; Schirm, K; Schwerg, N; Shaposhnikova, E; Syratchev, I; Valuch, D; Venturini Delsolaro, W; Völlinger, C; Vretenar, M; Wuensch, W

    2012-01-01

    The highest priority for the RF group in 2011 was to contribute to a successful physics run of the LHC. This comprises operation of the superconducting 400 MHz accelerating system (ACS) and the transverse damper (ADT) of the LHC itself, but also all the individual links of the injector chain upstream of the LHC – Linac2, the PSB, the PS and the SPS – don’t forget that it is RF in all these accelerators that truly accelerates! A large variety of RF systems had to operate reliably, often near their limit. New tricks had to be found and implemented to go beyond limits; not to forget the equally demanding operation with Pb ions using in addition Linac3 and LEIR. But also other physics users required the full attention of the RF group: CNGS required in 2011 beams with very short, intense bunches, AD required reliable deceleration and cooling of anti-protons, Isolde the post-acceleration of radioactive isotopes in Rex, just to name a few. In addition to the supply of beams for physics, the RF group has a num...

  9. Advances of Accelerator Physics and Technologies

    CERN Document Server

    1993-01-01

    This volume, consisting of articles written by experts with international repute and long experience, reviews the state of the art of accelerator physics and technologies and the use of accelerators in research, industry and medicine. It covers a wide range of topics, from basic problems concerning the performance of circular and linear accelerators to technical issues and related fields. Also discussed are recent achievements that are of particular interest (such as RF quadrupole acceleration, ion sources and storage rings) and new technologies (such as superconductivity for magnets and RF ca

  10. ASC 84: applied superconductivity conference. Final program and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    Abstracts are given of presentations covering: superconducting device fabrication; applications of rf superconductivity; conductor stability and losses; detectors and signal processing; fusion magnets; A15 and Nb-Ti conductors; stability, losses, and various conductors; SQUID applications; new applications of superconductivity; advanced conductor materials; high energy physics applications of superconductivity; electronic materials and characterization; general superconducting electronics; ac machinery and new applications; digital devices; fusion and other large scale applications; in-situ and powder process conductors; ac applications; synthesis, properties, and characterization of conductors; superconducting microelectronics. (LEW)

  11. Fundamental Research in Superconducting RF Cavity Design

    Energy Technology Data Exchange (ETDEWEB)

    Georg Hoffstaetter

    2012-11-13

    This is a 3-year SRF R&D proposal with two main goals: 1) to benefit near term high gradient SRF applications by understanding the causes of quench at high fields in present-day niobium cavities 2) to open the long-range prospects for SRF applications by experimentally verifying the recent exciting theoretical predication for new cavity materials such as Nb3Sn and MgB2. These predictions shwo that ultimately gradients of 100Mv/m to 200MV/m may become possible as material imperfections are overcome.

  12. RF transformer

    Science.gov (United States)

    Smith, James L.; Helenberg, Harold W.; Kilsdonk, Dennis J.

    1979-01-01

    There is provided an improved RF transformer having a single-turn secondary of cylindrical shape and a coiled encapsulated primary contained within the secondary. The coil is tapered so that the narrowest separation between the primary and the secondary is at one end of the coil. The encapsulated primary is removable from the secondary so that a variety of different capacity primaries can be utilized with one secondary.

  13. Advances in Fiber Optic Sensors Technology Development for temperature and strain measurements in Superconducting magnets and devices

    CERN Document Server

    Chiuchiolo, A.; Bajko, M.; Bottura, L.; Consales, M.; Cusano, A.; Giordano, M.; Perez, J. C.

    2016-01-01

    The luminosity upgrade of the Large Hadron Collider (HL-LHC) requires the development of a new generation of superconducting magnets based on Nb3Sn technology. In order to monitor the magnet thermo-mechanical behaviour during its service life, from the coil fabrication to the magnet operation, reliable sensing systems need to be implemented. In the framework of the FP7 European project EUCARD, Nb3Sn racetrack coils are developed as test beds for the fabrication validation, the cable characterization and the instrumentation development. Fiber optic sensors (FOS) based on Fiber Bragg Grating (FBG) technology have been embedded in the coils of the Short Model Coil (SMC) magnet. The FBG sensitivity to both temperature and strain required the development of a solution able to separate the mechanical and temperature effects. This work presents the feasibility study of the implementation of embedded FBG sensors for the temperature and strain monitoring of the 11 T type conductor. We aim to monitor and register these...

  14. Microwave and RF engineering

    CERN Document Server

    Sorrentino, Roberto

    2010-01-01

    An essential text for both students and professionals, combining detailed theory with clear practical guidance This outstanding book explores a large spectrum of topics within microwave and radio frequency (RF) engineering, encompassing electromagnetic theory, microwave circuits and components. It provides thorough descriptions of the most common microwave test instruments and advises on semiconductor device modelling. With examples taken from the authors' own experience, this book also covers:network and signal theory;electronic technology with guided electromagnetic pr

  15. RF/optical shared aperture for high availability wideband communication RF/FSO links

    Energy Technology Data Exchange (ETDEWEB)

    Ruggiero, Anthony J; Pao, Hsueh-yuan; Sargis, Paul

    2014-04-29

    An RF/Optical shared aperture is capable of transmitting and receiving optical signals and RF signals simultaneously. This technology enables compact wide bandwidth communications systems with 100% availability in clear air turbulence, rain and fog. The functions of an optical telescope and an RF reflector antenna are combined into a single compact package by installing an RF feed at either of the focal points of a modified Gregorian telescope.

  16. RF/optical shared aperture for high availability wideband communication RF/FSO links

    Energy Technology Data Exchange (ETDEWEB)

    Ruggiero, Anthony J; Pao, Hsueh-yuan; Sargis, Paul

    2015-03-24

    An RF/Optical shared aperture is capable of transmitting and receiving optical signals and RF signals simultaneously. This technology enables compact wide bandwidth communications systems with 100% availability in clear air turbulence, rain and fog. The functions of an optical telescope and an RF reflector antenna are combined into a single compact package by installing an RF feed at either of the focal points of a modified Gregorian telescope.

  17. Upgrade of the Cryogenic CERN RF Test Facility

    CERN Document Server

    Pirotte, O; Brunner, O; Inglese, V; Koettig, T; Maesen, P; Vullierme, B

    2014-01-01

    With the large number of superconducting radiofrequency (RF) cryomodules to be tested for the former LEP and the present LHC accelerator a RF test facility was erected early in the 1990’s in the largest cryogenic test facility at CERN located at Point 18. This facility consisted of four vertical test stands for single cavities and originally one and then two horizontal test benches for RF cryomodules operating at 4.5 K in saturated helium. CERN is presently working on the upgrade of its accelerator infrastructure, which requires new superconducting cavities operating below 2 K in saturated superfluid helium. Consequently, the RF test facility has been renewed in order to allow efficient cavity and cryomodule tests in superfluid helium and to improve its thermal performances. The new RF test facility is described and its performances are presented.

  18. Upgrade of the cryogenic CERN RF test facility

    Science.gov (United States)

    Pirotte, O.; Benda, V.; Brunner, O.; Inglese, V.; Koettig, T.; Maesen, P.; Vullierme, B.

    2014-01-01

    With the large number of superconducting radiofrequency (RF) cryomodules to be tested for the former LEP and the present LHC accelerator a RF test facility was erected early in the 1990's in the largest cryogenic test facility at CERN located at Point 18. This facility consisted of four vertical test stands for single cavities and originally one and then two horizontal test benches for RF cryomodules operating at 4.5 K in saturated helium. CERN is presently working on the upgrade of its accelerator infrastructure, which requires new superconducting cavities operating below 2 K in saturated superfluid helium. Consequently, the RF test facility has been renewed in order to allow efficient cavity and cryomodule tests in superfluid helium and to improve its thermal performances. The new RF test facility is described and its performances are presented.

  19. 9 July 2012 - Academy of Sciences Malaysia (ASM), Chairman, Mathematical and Physical Sciences Discipline Group M. Yahaya FASc and his delegation visiting the LHC superconducting magnet test hall with Technology Department G. De Rijk.

    CERN Document Server

    Maximilien Brice

    2012-01-01

    9 July 2012 - Academy of Sciences Malaysia (ASM), Chairman, Mathematical and Physical Sciences Discipline Group M. Yahaya FASc and his delegation visiting the LHC superconducting magnet test hall with Technology Department G. De Rijk.

  20. 10th December 2010 - German Delegation from the Novartis Foundation for Sustainable Development visiting the LHC superconducting magnet test hall with Technology Department S. Russenschuck and accompanied by Adviser for Life Sciences M. Dosanjh.

    CERN Multimedia

    Maximilien Brice

    2010-01-01

    10th December 2010 - German Delegation from the Novartis Foundation for Sustainable Development visiting the LHC superconducting magnet test hall with Technology Department S. Russenschuck and accompanied by Adviser for Life Sciences M. Dosanjh.

  1. Superconducting transistor

    Science.gov (United States)

    Gray, Kenneth E.

    1979-01-01

    A superconducting transistor is formed by disposing three thin films of superconducting material in a planar parallel arrangement and insulating the films from each other by layers of insulating oxides to form two tunnel junctions. One junction is biased above twice the superconducting energy gap and the other is biased at less than twice the superconducting energy gap. Injection of quasiparticles into the center film by one junction provides a current gain in the second junction.

  2. Superconductivity and superconductive electronics

    Science.gov (United States)

    Beasley, M. R.

    1990-12-01

    The Stanford Center for Research on Superconductivity and Superconductive Electronics is currently focused on developing techniques for producing increasingly improved films and multilayers of the high-temperature superconductors, studying their physical properties and using these films and multilayers in device physics studies. In general the thin film synthesis work leads the way. Once a given film or multilayer structure can be made reasonably routinely, the emphasis shifts to studying the physical properties and device physics of these structures and on to the next level of film quality or multilayer complexity. The most advanced thin films synthesis work in the past year has involved developing techniques to deposit a-axis and c-axis YBCO/PBCO superlattices and related structures. The in-situ feature is desirable because no solid state reactions with accompanying changes in volume, morphology, etc., that degrade the quality of the film involved.

  3. Tunnel-diode resonator and nuclear magnetic resonance studies of low-dimensional magnetic and superconducting systems

    Energy Technology Data Exchange (ETDEWEB)

    Yeninas, Steven Lee [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    This thesis emphasizes two frequency-domain techniques which uniquely employ radio frequency (RF) excitations to investigate the static and dynamic properties of novel magnetic and superconducting materials.

  4. CERN Developments for 704 MHz Superconducting Cavities

    CERN Document Server

    Capatina, O; Aviles Santillana, I; Arnau Izquierdo, G; Bonomi, R; Calatroni, S; Chambrillon, J; Gerigk, F; Garoby, R; Guinchard, M; Junginger, T; Malabaila, M; Marques Antunes Ferreira, L; Mikulas, S; Parma, V; Pillon, F; Renaglia, T; Schirm, K; Tardy, T; Therasse, M; Vacca, A; Valverde Alonso, N; Vande Craen, A

    2013-01-01

    The Superconducting Proton Linac (SPL) is an R&D effort coordinated by CERN in partnership with other international laboratories. It is aiming at developing key technologies for the construction of a multi-megawatt proton linac based on state-of-the-art RF superconducting technology, which would serve as a driver in new physics facilities for neutrinos and/or Radioactive Ion Beam (RIB). Amongst the main objectives of this R&D effort, is the development of 704 MHz bulk niobium beta=1 elliptical cavities, operating at 2 K with a maximum accelerating gradient of 25 MV/m, and the testing of a string of cavities integrated in a machine-type cryomodule. The cavity together with its helium tank had to be carefully designed in coherence with the innovative design of the cryomodule. New fabrication methods have also been explored. Five such niobium cavities and two copper cavities are in fabrication. The key design aspects are discussed, the results of the alternative fabrication methods presented and the stat...

  5. The LHC Low Level RF

    CERN Document Server

    Baudrenghien, Philippe; Molendijk, John Cornelis; Olsen, Ragnar; Rohlev, Anton; Rossi, Vittorio; Stellfeld, Donat; Valuch, Daniel; Wehrle, Urs

    2006-01-01

    The LHC RF consists of eight 400 MHz superconducting cavities per ring, with each cavity independently powered by a 300 kW klystron, via a circulator. The challenge for the Low Level is to cope with very high beam current (more than 1 A RF component) and achieve excellent beam lifetime (emittance growth time in excess of 25 hours). Each cavity has an associated Cavity Controller rack consisting of two VME crates which implement high gain RF Feedback, a Tuner Loop with a new algorithm, a Klystron Ripple Loop and a Conditioning system. In addition each ring has a Beam Control system (four VME crates) which includes a Frequency Program, Phase Loop, Radial Loop and Synchronization Loop. A Longitudinal Damper (dipole and quadrupole mode) acting via the 400 MHz cavities is included to reduce emittance blow-up due to filamentation from phase and energy errors at injection. Finally an RF Synchronization system implements the bunch into bucket transfer from the SPS into each LHC ring. When fully installed in 2007, the...

  6. FERMILAB CRYOMODULE TEST STAND RF INTERLOCK SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Troy [Fermilab; Diamond, J. S. [Fermilab; McDowell, D. [Fermilab; Nicklaus, D. [Fermilab; Prieto, P. S. [Fermilab; Semenov, A. [Fermilab

    2016-10-12

    An interlock system has been designed for the Fermilab Cryo-module Test Stand (CMTS), a test bed for the cryo- modules to be used in the upcoming Linac Coherent Light Source 2 (LCLS-II) project at SLAC. The interlock system features 8 independent subsystems, one per superconducting RF cavity and solid state amplifier (SSA) pair. Each system monitors several devices to detect fault conditions such as arcing in the waveguides or quenching of the SRF system. Additionally each system can detect fault conditions by monitoring the RF power seen at the cavity coupler through a directional coupler. In the event of a fault condition, each system is capable of removing RF signal to the amplifier (via a fast RF switch) as well as turning off the SSA. Additionally, each input signal is available for re- mote viewing and recording via a Fermilab designed digitizer board and MVME 5500 processor.

  7. Research and implementation of RF signal polarization simulation technology%射频信号极化模拟技术研究与实现

    Institute of Scientific and Technical Information of China (English)

    尹彬; 王帅雷; 陈振兴

    2016-01-01

    Polarization information plays a more and more important role in radar target detection and rec‐ognition .Simulation of RF signal polarization technology uses dual‐polarized broadband antenna to produce axial ratio adjustable , rotation adjustable , angle adjustable plane wave which can simulate radar signal polarization characteristics .RF signal polarization simulator can realize local control ,remote control ,data playback and automatic calibration .It can realize the simulation of line polarization ,circular polarization and elliptical polarization in high accuracy and wide band for engineering application .%极化信息在雷达目标检测和识别中起到越来越重要的作用。射频信号极化模拟技术利用正交双极化宽带天线产生轴比可调、旋向可调、倾角可调的平面波,模拟雷达信号极化特性。极化模拟装置具有本地控制、远程控制、外场数据回放和自动化校准等功能,实现了线极化、圆极化和椭圆极化等高精度、大带宽极化状态的快速模拟,可满足工程应用要求。

  8. Superconducting Electronic Film Structures

    Science.gov (United States)

    1991-02-14

    cubic, yttria stabilized, zirconia (YSZ) single crystals with (100) orientation and ao = 0.512 to 0.516 nm. Films were magnetron-sputtered... Crown by Solid-State and Vapor-Phase Epitaxy," IEEE Trans. Uagn. 25(2), 2538 (1989). 6. J. H. Kang, R. T. Kampwirth, and K. E. Gray, "Superconductivity...summarized in Fig. 1, are too high for SrTiO3 or yttria- stabilized zirconia (YSZ) to be used in rf applications. MgO, LaAIO 3 , and LaGaO3 have a tan 6

  9. Superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Mijatovic, Nenad; Seiler, Eugen

    2010-01-01

    , the main challenge of the superconducting direct drive technology is to prove that the reliability is superior to the alternative drive trains based on gearboxes or permanent magnets. A strategy of successive testing of superconducting direct drive trains in real wind turbines of 10 kW, 100 kW, 1 MW and 10...... offshore turbines of 8 and 10 MW have been determined from an up-scaling of an existing 5 MW turbine and the necessary properties of the superconducting drive train are discussed. We have found that the absence of the gear box is the main benefit and the reduced weight and size is secondary. However...... MW generator and it is concluded that the present production capacity of coated conductors must be increased by a factor of 36 by 2020, resulting in a ten times lower price of the tape in order to reach a realistic price level for the superconducting drive train....

  10. RF and structural characterization of new SRF films

    Energy Technology Data Exchange (ETDEWEB)

    A.-M. Valente-Feliciano,H. L. Phillips,C. E. Reece,X. Zhao,D. Gu,R. Lukaszew,B. Xiao,K. Seo

    2009-09-01

    In the past years, energetic vacuum deposition methods have been developed in different laboratories to improve Nb/Cu technology for superconducting cavities. Jefferson Lab is pursuing energetic condensation deposition via Electron Cyclotron Resonance. As part of this study, the influence of the deposition energy on the material and RF properties of the Nb thin film is investigated. The film surface and structure analyses are conducted with various techniques like X-ray diffraction, Transmission Electron Microscopy, Auger Electron Spectroscopy and RHEED. The microwave properties of the films are characterized on 50 mm disk samples with a 7.5 GHz surface impedance characterization system. This paper presents surface impedance measurements in correlation with surface and material characterization for Nb films produced on copper substrates with different bias voltages and also highlights emerging opportunities for developing multilayer SRF films with a new deposition system.

  11. RF and structural characterization of new SRF films

    Energy Technology Data Exchange (ETDEWEB)

    A.-M. Valente-Feliciano,H. L. Phillips,C. E. Reece,X. Zhao,D. Gu,R. Lukaszew,B. Xiao,K. Seo

    2009-09-01

    In the past years, energetic vacuum deposition methods have been developed in different laboratories to improve Nb/Cu technology for superconducting cavities. Jefferson Lab is pursuing energetic condensation deposition via Electron Cyclotron Resonance. As part of this study, the influence of the deposition energy on the material and RF properties of the Nb thin film is investigated. The film surface and structure analyses are conducted with various techniques like X-ray diffraction, Transmission Electron Microscopy, Auger Electron Spectroscopy and RHEED. The microwave properties of the films are characterized on 50 mm disk samples with a 7.5 GHz surface impedance characterization system. This paper presents surface impedance measurements in correlation with surface and material characterization for Nb films produced on copper substrates with different bias voltages and also highlights emerging opportunities for developing multilayer SRF films with a new deposition system.

  12. Superconducting linear accelerator system for NSC

    Indian Academy of Sciences (India)

    P N Prakash; T S Datta; B P Ajith Kumar; J Antony; P Barua; J Chacko; A Choudhury; G K Chadhari; S Ghosh; S Kar; S A Krishnan; Manoj Kumar; Rajesh Kumar; A Mandal; D S Mathuria; R S Meena; R Mehta; K K Mistri; A Pandey; M V Suresh Babu; B K Sahu; A Sarkar; S S K Sonti; A Rai; S Venkatramanan; J Zacharias; R K Bhowmik; A Roy

    2002-11-01

    This paper reports the construction of a superconducting linear accelerator as a booster to the 15 UD Pelletron accelerator at Nuclear Science Centre, New Delhi. The LINAC will use superconducting niobium quarter wave resonators as the accelerating element. Construction of the linear accelerator has progressed sufficiently. Details of the entire accelerator system including the cryogenics facility, RF electronics development, facilities for fabricating niobium resonators indigenously, and present status of the project are presented.

  13. Coherent oscillations of driven rf SQUID metamaterials.

    Science.gov (United States)

    Trepanier, Melissa; Zhang, Daimeng; Mukhanov, Oleg; Koshelets, V P; Jung, Philipp; Butz, Susanne; Ott, Edward; Antonsen, Thomas M; Ustinov, Alexey V; Anlage, Steven M

    2017-05-01

    Through experiments and numerical simulations we explore the behavior of rf SQUID (radio frequency superconducting quantum interference device) metamaterials, which show extreme tunability and nonlinearity. The emergent electromagnetic properties of this metamaterial are sensitive to the degree of coherent response of the driven interacting SQUIDs. Coherence suffers in the presence of disorder, which is experimentally found to be mainly due to a dc flux gradient. We demonstrate methods to recover the coherence, specifically by varying the coupling between the SQUID meta-atoms and increasing the temperature or the amplitude of the applied rf flux.

  14. Korea's developmental program for superconductivity

    Science.gov (United States)

    Hong, Gye-Won; Won, Dong-Yeon; Kuk, Il-Hyun; Park, Jong-Chul

    1995-01-01

    Superconductivity research in Korea was firstly carried out in the late 70's by a research group in Seoul National University (SNU), who fabricated a small scale superconducting magnetic energy storage system under the financial support from Korea Electric Power Company (KEPCO). But a few researchers were involved in superconductivity research until the oxide high Tc superconductor was discovered by Bednorz and Mueller. After the discovery of YBaCuO superconductor operating above the boiling point of liquid nitrogen (77 K)(exp 2), Korean Ministry of Science and Technology (MOST) sponsored a special fund for the high Tc superconductivity research to universities and national research institutes by recognizing its importance. Scientists engaged in this project organized 'High Temperature Superconductivity Research Association (HITSRA)' for effective conducting of research. Its major functions are to coordinate research activities on high Tc superconductivity and organize the workshop for active exchange of information. During last seven years the major superconductivity research has been carried out through the coordination of HITSRA. The major parts of the Korea's superconductivity research program were related to high temperature superconductor and only a few groups were carrying out research on conventional superconductor technology, and Korea Atomic Energy Research Institute (KAERI) and Korea Electrotechnology Research Institute (KERI) have led this research. In this talk, the current status and future plans of superconductivity research in Korea will be reviewed based on the results presented in interim meeting of HITSRA, April 1-2, 1994. Taejeon, as well as the research activity of KAERI.

  15. RF SOI CMOS technology on 1st and 2nd generation trap-rich high resistivity SOI wafers

    Science.gov (United States)

    Kazemi Esfeh, B.; Makovejev, S.; Basso, Didier; Desbonnets, Eric; Kilchytska, V.; Flandre, D.; Raskin, J.-P.

    2017-02-01

    In this work three different types of UNIBOND™ Silicon-on-Insulator (SOI) wafers including one standard HR-SOI and two types of trap-rich high resistivity HR-SOI substrates named enhanced signal integrity high resistivity silicon-on-insulator (eSI HR-SOI) provided by SOITEC are studied and compared. The DC and RF performances of these wafers are compared by means of passive and active devices such as coplanar waveguide (CPW) lines, crosstalk- and noise injection-structures as well as partially-depleted (PD) SOI MOSFETs. It is demonstrated that by employing enhanced signal integrity high resistivity silicon-on-insulator (eSI HR-SOI) compared to HR-SOI wafer, a reduction of 24 dB is measured on both generations of trap-rich HR-SOI for 2nd harmonics. Furthermore, it is shown that in eSI HR-SOI, digital substrate noise is effectively reduced compared with HR-SOI. Purely capacitive behavior of eSI HR-SOI is demonstrated by crosstalk structure. Reduction of self-heating effect in the trap-rich HR-SOI with thinner BOX is finally studied.

  16. Analysis and measurement of the transfer matrix of a 9-cell, 1.3-GHz superconducting cavity

    Science.gov (United States)

    Halavanau, A.; Eddy, N.; Edstrom, D.; Harms, E.; Lunin, A.; Piot, P.; Romanov, A.; Ruan, J.; Solyak, N.; Shiltsev, V.

    2017-04-01

    Superconducting linacs are capable of producing intense, stable, high-quality electron beams that have found widespread applications in science and industry. The 9-cell, 1.3-GHz superconducting standing-wave accelerating rf cavity originally developed for e+/e- linear-collider applications [B. Aunes, et al. Phys. Rev. ST Accel. Beams 3, 092001 (2000), 10.1103/PhysRevSTAB.3.092001] has been broadly employed in various superconducting-linac designs. In this paper we discuss the transfer matrix of such a cavity and present its measurement performed at the Fermilab Accelerator Science and Technology (FAST) facility. The experimental results are found to be in agreement with analytical calculations and numerical simulations.

  17. Mid-infrared Laser-Induced Fluorescence with Nanosecond Time Resolution Using a Superconducting Nanowire Single-Photon Detector: New Technology for Molecular Science.

    Science.gov (United States)

    Chen, Li; Schwarzer, Dirk; Verma, Varun B; Stevens, Martin J; Marsili, Francesco; Mirin, Richard P; Nam, Sae Woo; Wodtke, Alec M

    2017-06-20

    In contrast to UV photomultiplier tubes that are widely used in physical chemistry, mid-infrared detectors are notorious for poor sensitivity and slow time response. This helps explain why, despite the importance of infrared spectroscopy in molecular science, mid-infrared fluorescence is not more widely used. In recent years, several new technologies have been developed that open new experimental possibilities for research in the mid-infrared. In this Account, we present one of the more promising technologies, superconducting nanowire single photon detectors (SNSPDs) by sharing our experience with its use in a typical experiment carried out by physical chemists (laser-induced fluorescence) and comparing the SNSPD to a detector commonly used by physical chemists (InSb at LN Temperature). SNSPDs are fabricated from a thin film of superconducting metal, patterned into a meandering nanowire. The nanowire is cooled below its superconducting temperature, Tc, and held in a constant current circuit below the critical current necessary to destroy superconductivity, Ic. Upon absorption of a photon, the resulting heat is sufficient to destroy superconductivity across the entire width of the nanowire, an event that can be detected as a voltage pulse. In contrast to semiconductor-based detectors, which have a long wavelength cutoff determined by the band gap, the SNSPD exhibits single-photon sensitivity across the entire mid-IR spectrum. As these devices have not been used extensively outside the field of light detection technology research, one important goal of this Account is to provide practical details for the implementation of these devices in a physical chemistry laboratory. We provide extensive Supporting Information describing what is needed. This includes information on a liquid nitrogen cooled monochromator, the optical collection system including mid-infrared fibers, as well as a closed-cycle cryogenic cooler that reaches 0.3 K. We demonstrate the advantages of

  18. RF power generation

    CERN Document Server

    Carter, R G

    2011-01-01

    This paper reviews the main types of r.f. power amplifiers which are, or may be, used for particle accelerators. It covers solid-state devices, tetrodes, inductive output tubes, klystrons, magnetrons, and gyrotrons with power outputs greater than 10 kW c.w. or 100 kW pulsed at frequencies from 50 MHz to 30 GHz. Factors affecting the satisfactory operation of amplifiers include cooling, matching and protection circuits are discussed. The paper concludes with a summary of the state of the art for the different technologies.

  19. NSLS-II RF Cryogenic System

    Energy Technology Data Exchange (ETDEWEB)

    Rose, J.; Dilgen, T.; Gash, B.; Gosman, J.; Mortazavi, P.; Papu, J.; Ravindranath, V.; Sikora, R.; Sitnikov, A.; Wilhelm, H.; Jia, Y.; Monroe, C.

    2015-05-03

    The National Synchrotron Light Source II is a 3 GeV X-ray user facility commissioned in 2014. A new helium refrigerator system has been installed and commissioned to support the superconducting RF cavities in the storage ring. Special care was taken to provide very stable helium and LN2 pressures and flow rates to minimize microphonics and thermal effects at the cavities. Details of the system design along with commissioning and early operations data will be presented.

  20. At the RF Lab, EF Division

    CERN Multimedia

    1980-01-01

    A four-cell superconducting RF cavity ready for installation in its cryostat, the first one at CERN. From bottom to top, on the right, Herbert Lengeler, Jean-François Malo, Enrico Chiaveri and François Grabowski, Albert Insomby. On the left, ..?, Ernst Ullrich Haebel, ..?, Jean-Marie Maugain, Artur Scharding, Hansuli Preis, R. Romjin. The place is the EF hall next to Bld. 13. (see Annual Report 1980 p. 71)

  1. Japan. Superconductivity for Smart Grids

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, K.

    2012-11-15

    Currently, many smart grid projects are running or planned worldwide. These aim at controlling the electricity supply more efficiently and more stably in a new power network system. In Japan, especially superconductivity technology development projects are carried out to contribute to the future smart grid. Japanese cable makers such as Sumitomo Electric and Furukawa Electric are leading in the production of high-temperature superconducting (HTS) power cables. The world's largest electric current and highest voltage superconductivity proving tests have been started this year. Big cities such as Tokyo will be expected to introduce the HTS power cables to reduce transport losses and to meet the increased electricity demand in the near future. Superconducting devices, HTS power cables, Superconducting Magnetic Energy Storage (SMES) and flywheels are the focus of new developments in cooperations between companies, universities and research institutes, funded by the Japanese research and development funding organization New Energy and Industrial Technology Development Organization (NEDO)

  2. High-gradient normal-conducting RF structures for muon cooling channels

    Energy Technology Data Exchange (ETDEWEB)

    Corlett, J.N.; Green, M.A.; Hartman, N.; Ladran, A.; Li, D.; MacGill, R.; Rimmer, R.; Moretti, A.; Jurgens, T.; Holtkamp, N.; Black, E.; Summers, D.; Booke, M.

    2001-06-12

    We present a status report on the research and development of high-gradient normal-conducting RF structures for the ionization cooling of muons in a neutrino factory or muon collider. High-gradient RF structures are required in regions enclosed in strong focusing solenoidal magnets, precluding the application of superconducting RF technology [1]. We propose using linear accelerating structures, with individual cells electromagnetically isolated, to achieve the required gradients of over 15 MV/m at 201 MHz and 30 MV/m at 805 MHz. Each cell will be powered independently, and cell length and drive phase adjusted to optimize shunt impedance of the assembled structure. This efficient design allows for relatively small field enhancement on the structure walls, and an accelerating field approximately 1.7 times greater than the peak surface field. The electromagnetic boundary of each cell may be provided by a thin Be sheet, or an assembly of thin-walled metal tubes. Use of thin, low-Z materials will allow passage of the muon beams without significant deterioration in beam quality due to scattering. R and D in design and analysis of robust structures that will operate under large electric and magnetic fields and RF current heating are discussed, including the experimental program based in a high-power test laboratory developed for this purpose.

  3. Technology and applications of advanced accelerator concepts

    CERN Document Server

    Chou, Weiren

    2016-01-01

    Since its invention in the 1920s, particle accelerators have made tremendous progress in accelerator science, technology and applications. However, the fundamental acceleration principle, namely, to apply an external radiofrequency (RF) electric field to accelerate charged particles, remains unchanged. As this method (either room temperature RF or superconducting RF) is approaching its intrinsic limitation in acceleration gradient (measured in MeV/m), it becomes apparent that new methods with much higher acceleration gradient (measured in GeV/m) must be found for future very high energy accelerators as well as future compact (table-top or room-size) accelerators. This volume introduces a number of advanced accelerator concepts (AAC) — their principles, technologies and potential applications. For the time being, none of them stands out as a definitive direction in which to go. But these novel ideas are in hot pursuit and look promising. Furthermore, some AAC requires a high power laser system. This has the ...

  4. Stress management as an enabling technology for high-field superconducting dipole magnets

    Science.gov (United States)

    Holik, Eddie Frank, III

    This dissertation examines stress management and other construction techniques as means to meet future accelerator requirement demands by planning, fabricating, and analyzing a high-field, Nb3Sn dipole. In order to enable future fundamental research and discovery in high energy accelerator physics, bending magnets must access the highest fields possible. Stress management is a novel, propitious path to attain higher fields and preserve the maximum current capacity of advanced superconductors by managing the Lorentz stress so that strain induced current degradation is mitigated. Stress management is accomplished through several innovative design features. A block-coil geometry enables an Inconel pier and beam matrix to be incorporated in the windings for Lorentz Stress support and reduced AC loss. A laminar spring between windings and mica paper surrounding each winding inhibit any stress transferral through the support structure and has been simulated with ALGORRTM. Wood's metal filled, stainless steel bladders apply isostatic, surface-conforming preload to the pier and beam support structure. Sufficient preload along with mica paper sheer release reduces magnet training by inhibiting stick-slip motion. The effectiveness of stress management is tested with high-precision capacitive stress transducers and strain gauges. In addition to stress management, there are several technologies developed to assist in the successful construction of a high-field dipole. Quench protection has been designed and simulated along with full 3D magnetic simulation with OPERARTM. Rutherford cable was constructed, and cable thermal expansion data was analysed after heat treatment. Pre-impregnation analysis techniques were developed due to elemental tin leakage in varying quantities during heat treatment from each coil. Robust splicing techniques were developed with measured resistivites consistent with nO joints. Stress management has not been incorporated by any other high field dipole

  5. Analysis of superconducting cavity quench events at SSRF

    Institute of Scientific and Technical Information of China (English)

    HOU Hong-Tao; LI Zheng; LIU Jian-Fei; ZHAO Yu-Bin; ZHAO Shen-jie; ZHANG Zhi-Gang; LUO Chen; FENG Zi-Qiang; MAO Dong-Qing; ZHENG Xiang

    2011-01-01

    Quench is important and dangerous to superconducting RF cavities. This paper illustrates the mechanism of quench and how a quench detector works, and analyzes the quench events happening during beam operations and cavity conditioning. We find that the quench protection is mostly triggered by some reasons such as fluctuation of cavity voltage, multipacting or arc, rather than a real cavity thermal breakdown. The results will be beneficial to optimize the operation parameters of superconducting cavities, to discover the real reasons for beam trip by quench interlock, and to improve the operation stability of superconducting RF systems.

  6. RF and microwave microelectronics packaging II

    CERN Document Server

    Sturdivant, Rick

    2017-01-01

    Reviews RF, microwave, and microelectronics assembly process, quality control, and failure analysis Bridges the gap between low cost commercial and hi-res RF/Microwave packaging technologies Engages in an in-depth discussion of challenges in packaging and assembly of advanced high-power amplifiers This book presents the latest developments in packaging for high-frequency electronics. It is a companion volume to “RF and Microwave Microelectronics Packaging” (2010) and covers the latest developments in thermal management, electrical/RF/thermal-mechanical designs and simulations, packaging and processing methods, and other RF and microwave packaging topics. Chapters provide detailed coverage of phased arrays, T/R modules, 3D transitions, high thermal conductivity materials, carbon nanotubes and graphene advanced materials, and chip size packaging for RF MEMS. It appeals to practicing engineers in the electronic packaging and high-frequency electronics domain, and to academic researchers interested in underst...

  7. Superconducting electronics

    NARCIS (Netherlands)

    Rogalla, Horst

    1994-01-01

    During the last decades superconducting electronics has been the most prominent area of research for small scale applications of superconductivity. It has experienced quite a stormy development, from individual low frequency devices to devices with high integration density and pico second switching

  8. A new type of HTc superconducting film comb-shape resonator for radio frequency superconducting quantum interference devices

    Institute of Scientific and Technical Information of China (English)

    MAO Hai-yan; WANG Fu-ren; MENG Shu-chao; MAO Bo; LI Zhuang-zhi; NIE Rui-juan; LIU Xin-yuan; DAI Yuan-dong

    2006-01-01

    A new type of HTc superconducting film combshape resonator for radio frequency superconducting quantum interference devices (RF SQUID) has been designed.This new type of superconducting film comb-shape resonator is formed by a foursquare microstrip line without a flux concentrator.The range of the center frequency of this type of resonator varies from 800 MHz to 1300 MHz by changing the length of the teeth.In this paper,we report on simulating the relationship of the value of the center frequency and the length of the teeth,and testing the noise of HTc RF SQUID coupling this comb-shape resonator.

  9. Reducing Volatile Disinfection By-Products in Treated Drinking Water Using Aeration Technologies (WaterRF Report 4441)

    Science.gov (United States)

    The primary objective of this project was to evaluate cost-effective aeration technology solutions to address TTHM compliance at a water treatment plant clearwell. The project team worked closely with EPA Region 6 and the EPA Office of Research and Development (ORD) to identify a...

  10. Current Sharing Technology in Transmission Conductors of Cold Dielectric High Temperature Superconducting Cables Using Second-generation HTS Wires

    Institute of Scientific and Technical Information of China (English)

    ZHU Jiahui; BAO Xuzheng; QIU Ming

    2012-01-01

    The cold dielectric high temperature superconducting (CD HTS) cable has multilayer conductors. The non-uniform AC current distribution in these multilayer conductors will increase the AC loss and decrease the current transmission efficiency. So it is important to understand the current sharing among layers in order to fully exploit the performance of the HTS cable.

  11. Study of AC/RF properties of SRF ingot niobium

    Energy Technology Data Exchange (ETDEWEB)

    Dhakal, Pashupati; Tsindlekht, Menachem I; Genkin, Valery M; Ciovati, Gianluigi; Myneni, Ganapati Rao

    2013-09-01

    In an attempt to correlate the performance of superconducting radiofrequency cavities made of niobium with the superconducting properties, we present the results of the magnetization and ac susceptibility of the niobium used in the superconducting radiofrequency cavity fabrication. The samples were subjected to buffer chemical polishing (BCP) surface and high temperature heat treatments, typically applied to the cavities fabrications. The analysis of the results show the different surface and bulk ac conductivity for the samples subjected to BCP and heat treatment. Furthermore, the RF surface impedance is measured on the sample using a TE011 microwave cavity for a comparison to the low frequency measurements.

  12. 基于nRF905的智能封锁雷无线通讯技术%Study on Wireless Communication Technology of Intelligent Blockade Land Mine Based on nRF905

    Institute of Scientific and Technical Information of China (English)

    顾强; 李晓晨; 张亚; 安晓红

    2011-01-01

    This article proposed a method to wireless communication of intelligent blockade landmine based on the radio communication of nRF905. It provided the design scheme and the program flow chart of the communication system on intelligent blockade landmine. For advancing the security and the antijamming performance of data transmission, it adopted AT89S52 as control unit which is a kind of high performance MCU, and realized frequency hopping communication among the nRF905 modules. In this article, it successfully designed the prototype instrument, and did the correlative experiment about antijamming performance, send-receive velocity, effective communication distance. It is proved that the system can realize the data transmission of intelligent blockade landmine effectively.%提出了一种基于无线射频模块nRF905的智能封锁雷无线通讯方法,给出了智能封锁雷通讯系统的设计方案和系统程序流程图.为了提高数据传输的保密性及抗干扰性,采用了高性能单片机AT89S52作为控制部件,实现了nRF905模块之间的跳频通讯.制作了原理样机,并且进行了系统抗干扰性、收发速率、有效通讯距离等室内外相关实验,通过实验证明该系统能够有效地实现智能封锁雷的数据传输.

  13. Recycler barrier RF buckets

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, C.M.; /Fermilab

    2011-03-01

    The Recycler Ring at Fermilab uses a barrier rf systems for all of its rf manipulations. In this paper, I will give an overview of historical perspective on barrier rf system, the longitudinal beam dynamics issues, aspects of rf linearization to produce long flat bunches and methods used for emittance measurements of the beam in the RR barrier rf buckets. Current rf manipulation schemes used for antiproton beam stacking and longitudinal momentum mining of the RR beam for the Tevatron collider operation are explained along with their importance in spectacular success of the Tevatron luminosity performance.

  14. Tube drawing technology for seamless pipes. Application to the Cu/Nb/Cu sandwiched pipes

    Energy Technology Data Exchange (ETDEWEB)

    Tsukada, Saburo; Ohnuki, Masao [Hitachi Cable, Ltd., Tsuchiura, Ibaraki (Japan); Fujino, Takeo; Saito, Kenji; Inoue, Hitoshi; Hitomi, Nobuteru; Yamazaki, Yoshishige [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan); Watanabe, Kakuji [Okuda Kinzoku Co. Ltd., Ota, Fukui (Japan)

    2001-02-01

    Tube drawing technology based on copper tubes at the Hitachi Cable Corporation was applied to manufacture Cu/Nb/Cu sandwiched seamless pipes for Nb/Cu clad superconducting RF cavities, which is being developed at KEK. This is the first application in our company. We met several problems but finally succeeded to fabricate 11 pipes needed to hydro-bulge forming for 1300 MHz single cell cavities. Here, we explain this technology and report the problems which happened during the manufacturing. (author)

  15. Coulomb blockade and BLOCH oscillations in superconducting Ti nanowires.

    Science.gov (United States)

    Lehtinen, J S; Zakharov, K; Arutyunov, K Yu

    2012-11-01

    Quantum fluctuations in quasi-one-dimensional superconducting channels leading to spontaneous changes of the phase of the order parameter by 2π, alternatively called quantum phase slips (QPS), manifest themselves as the finite resistance well below the critical temperature of thin superconducting nanowires and the suppression of persistent currents in tiny superconducting nanorings. Here we report the experimental evidence that in a current-biased superconducting nanowire the same QPS process is responsible for the insulating state--the Coulomb blockade. When exposed to rf radiation, the internal Bloch oscillations can be synchronized with the external rf drive leading to formation of quantized current steps on the I-V characteristic. The effects originate from the fundamental quantum duality of a Josephson junction and a superconducting nanowire governed by QPS--the QPS junction.

  16. Commissioning of the 400 MHz LHC RF System

    CERN Document Server

    Ciapala, Edmond; Baudrenghien, P; Brunner, O; Butterworth, A; Linnecar, T; Maesen, P; Molendijk, J; Montesinos, E; Valuch, D; Weierud, F

    2008-01-01

    The installation of the 400 MHz superconducting RF system in LHC is finished and commissioning is under way. The final RF system comprises four cryo-modules each with four cavities in the LHC tunnel straight section round IP4. Also underground in an adjacent cavern shielded from the main tunnel are the sixteen 300 kW klystron RF power sources with their high voltage bunkers, two Faraday cages containing RF feedback and beam control electronics, and racks containing all the slow controls. The system and the experience gained during commissioning will be described. In particular, results from conditioning the cavities and their movable main power couplers and the setting up of the low level RF feedbacks will be presented.

  17. RF multipole implementation

    CERN Document Server

    Latina, A

    2012-01-01

    The electromagnetic radio-frequency (RF) field of accelerating structures and crab-cavities can exhibit transverse field components due to asymmetries in the azimuthal direction of the element geometry. Tracking simulations must be performed to evaluate the impact of such transverse RF deflections on the beam dynamics. In an ultra-relativistic regime where the Panofsky-Wenzel theorem is applicable, these RF deflections can be modeled via a multipolar expansion of the generating RF field similarly to what is done with static magnetic elements. The element implementing such RF multipolar fields has been called RF multipole. In this note we present an analytical formulation of a thin RF multipole Hamiltonian, and we explicitly calculate the RF kick and the elements of its first- and second- order transfer matrices. Also, we present the implementation of the corresponding code in MAD-X, plus some tests of tracking, simplecticity, consistency, and reflected maps that we successfully applied to verify the correctne...

  18. Operational Merits of Maritime Superconductivity

    Science.gov (United States)

    Ross, R.; Bosklopper, J. J.; van der Meij, K. H.

    The perspective of superconductivity to transfer currents without loss is very appealing in high power applications. In the maritime sector many machines and systems exist in the roughly 1-100 MW range and the losses are well over 50%, which calls for dramatic efficiency improvements. This paper reports on three studies that aimed at the perspectives of superconductivity in the maritime sector. It is important to realize that the introduction of superconductivity comprises two technology transitions namely firstly electrification i.e. the transition from mechanical drives to electric drives and secondly the transition from normal to superconductive electrical machinery. It is concluded that superconductivity does reduce losses, but its impact on the total energy chain is of little significance compared to the investments and the risk of introducing a very promising but as yet not proven technology in the harsh maritime environment. The main reason of the little impact is that the largest losses are imposed on the system by the fossil fueled generators as prime movers that generate the electricity through mechanical torque. Unless electric power is supplied by an efficient and reliable technology that does not involve mechanical torque with the present losses both normal as well as superconductive electrification of the propulsion will hardly improve energy efficiency or may even reduce it. One exception may be the application of degaussing coils. Still appealing merits of superconductivity do exist, but they are rather related to the behavior of superconductive machines and strong magnetic fields and consequently reduction in volume and mass of machinery or (sometimes radically) better performance. The merits are rather convenience, design flexibility as well as novel applications and capabilities which together yield more adequate systems. These may yield lower operational costs in the long run, but at present the added value of superconductivity rather seems more

  19. Characterization of superconducting multilayers samples

    CERN Document Server

    Antoine, C Z; Berry, S; Bouat, S; Jacquot, J F; Villegier, J C; Lamura, G; Gurevich, A

    2009-01-01

    Best RF bulk niobium accelerating cavities have nearly reached their ultimate limits at rf equatorial magnetic field H  200 mT close to the thermodynamic critical field Hc. In 2006 Gurevich proposed to use nanoscale layers of superconducting materials with high values of Hc > HcNb for magnetic shielding of bulk niobium to increase the breakdown magnetic field inside SC RF cavities [1]. Depositing good quality layers inside a whole cavity is rather difficult but we have sputtered high quality samples by applying the technique used for the preparation of superconducting electronics circuits and characterized these samples by X-ray reflectivity, dc resistivity (PPMS) and dc magnetization (SQUID). Dc magnetization curves of a 250 nm thick Nb film have been measured, with and without a magnetron sputtered coating of a single or multiple stack of 15 nm MgO and 25 nm NbN layers. The Nb samples with/without the coating clearly exhibit different behaviors. Because SQUID measurements are influenced by edge an...

  20. JLEIC SRF cavity RF Design

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shaoheng [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Guo, Jiquan [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Wang, Haipeng [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Rimmer, Robert A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-05-01

    The initial design of a low higher order modes (HOM) impedance superconducting RF (SRF) cavity is presented in this paper. The design of this SRF cavity is for the proposed Jefferson Lab Electron Ion Collider (JLEIC). The electron ring of JLEIC will operate with electrons of 3 to 10 GeV energy. The ion ring of JLEIC will operate with protons of up to 100 GeV energy. The bunch lengths in both rings are ~12 mm (RMS). In order to maintain the short bunch length in the ion ring, SRF cavities are adopted to provide large enough gradient. In the first phase of JLEIC, the PEP II RF cavities will be reused in the electron ring to lower the initial cost. The frequency of the SRF cavities is chosen to be the second harmonic of PEP II cavities, 952.6 MHz. In the second phase of JLEIC, the same frequency SRF cavities may replace the normal conducting PEP II cavities to achieve higher luminosity at high energy. At low energies, the synchro-tron radiation damping effect is quite weak, to avoid the coupled bunch instability caused by the intense closely-spaced electron bunches, low HOM impedance of the SRF cavities combined with longitudinal feedback sys-tem will be necessary.

  1. 3D multiphysics modeling of superconducting cavities with a massively parallel simulation suite

    Directory of Open Access Journals (Sweden)

    Oleksiy Kononenko

    2017-10-01

    Full Text Available Radiofrequency cavities based on superconducting technology are widely used in particle accelerators for various applications. The cavities usually have high quality factors and hence narrow bandwidths, so the field stability is sensitive to detuning from the Lorentz force and external loads, including vibrations and helium pressure variations. If not properly controlled, the detuning can result in a serious performance degradation of a superconducting accelerator, so an understanding of the underlying detuning mechanisms can be very helpful. Recent advances in the simulation suite ace3p have enabled realistic multiphysics characterization of such complex accelerator systems on supercomputers. In this paper, we present the new capabilities in ace3p for large-scale 3D multiphysics modeling of superconducting cavities, in particular, a parallel eigensolver for determining mechanical resonances, a parallel harmonic response solver to calculate the response of a cavity to external vibrations, and a numerical procedure to decompose mechanical loads, such as from the Lorentz force or piezoactuators, into the corresponding mechanical modes. These capabilities have been used to do an extensive rf-mechanical analysis of dressed TESLA-type superconducting cavities. The simulation results and their implications for the operational stability of the Linac Coherent Light Source-II are discussed.

  2. Plasma processing of superconducting radio frequency cavities

    Science.gov (United States)

    Upadhyay, Janardan

    The development of plasma processing technology of superconducting radio frequency (SRF) cavities not only provides a chemical free and less expensive processing method, but also opens up the possibility for controlled modification of the inner surfaces of the cavity for better superconducting properties. The research was focused on the transition of plasma etching from two dimensional flat surfaces to inner surfaces of three dimensional (3D) structures. The results could be applicable to a variety of inner surfaces of 3D structures other than SRF cavities. Understanding the Ar/Cl2 plasma etching mechanism is crucial for achieving the desired modification of Nb SRF cavities. In the process of developing plasma etching technology, an apparatus was built and a method was developed to plasma etch a single cell Pill Box cavity. The plasma characterization was done with the help of optical emission spectroscopy. The Nb etch rate at various points of this cavity was measured before processing the SRF cavity. Cylindrical ring-type samples of Nb placed on the inner surface of the outer wall were used to measure the dependence of the process parameters on plasma etching. The measured etch rate dependence on the pressure, rf power, dc bias, temperature, Cl2 concentration and diameter of the inner electrode was determined. The etch rate mechanism was studied by varying the temperature of the outer wall, the dc bias on the inner electrode and gas conditions. In a coaxial plasma reactor, uniform plasma etching along the cylindrical structure is a challenging task due to depletion of the active radicals along the gas flow direction. The dependence of etch rate uniformity along the cylindrical axis was determined as a function of process parameters. The formation of dc self-biases due to surface area asymmetry in this type of plasma and its variation on the pressure, rf power and gas composition was measured. Enhancing the surface area of the inner electrode to reduce the

  3. High power RF systems for the BNL ERL project

    Energy Technology Data Exchange (ETDEWEB)

    Zaltsman, A.; Lambiase, R.

    2011-03-28

    The Energy Recovery Linac (ERL) project, now under construction at Brookhaven National Laboratory, requires two high power RF systems. The first RF system is for the 703.75 MHz superconducting electron gun. The RF power from this system is used to drive nearly half an Ampere of beam current to 2 MeV. There is no provision to recover any of this energy so the minimum amplifier power is 1 MW. It consists of 1 MW CW klystron, transmitter and power supplies, 1 MW circulator, 1 MW dummy load and a two-way power splitter. The second RF system is for the 703.75 MHz superconducting cavity. The system accelerates the beam to 54.7 MeV and recovers this energy. It will provide up to 50 kW of CW RF power to the cavity. It consists of 50 kW transmitter, circulator, and dummy load. This paper describes the two high power RF systems and presents the test data for both.

  4. Industrial and scientific technology research and development project in fiscal 1997 commissioned by the New Energy and Industrial Technology Development Organization. Research and development of superconducting materials and transistors (report on overall investigation of superconductive devices); 1997 nendo sangyo kagaku gijutsu kenkyu kaihatsu jigyo Shin energy Sangyo Gijutsu Sogo Kaihatsu Kiko itaku. Chodendo zairyo chodendo soshi no kenkyu kaihatsu (chodendo soshika gijutsu kaihatsu seika hokokusho)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This paper describes development of superconducting new function transistors. Fiscal 1997 as the final year of the project advanced improvement in such transistor-using processes as formation and micro-processing of superconducting thin films to show enhancement in characteristics of high-temperature superconducting transistors and possibility of their application utilizing their high speed motions. Furthermore, fundamental technologies were studied with an aim on junction transistors to be applied as circuits. For field effect transistors, evaluation was performed on critical current distribution of step-type particle boundary junction to make it possible to evaluate characteristics of hundreds of transistors. At the same time, a magnetic flux quantum parametron gate with three-layer structure was fabricated to identify its operation. In superconducting-base transistors, strong reflection was recognized on temperature dependence of permittivity of an Nb-doped strontium titanate substrate used for collectors, by which barrier height was reduced. In the junction transistor and circuit technology, isotropic ramp-edge junctions were fabricated, and so was a frequency divider circuit with single magnetic flux quantum mode operation for evaluating high-speed response characteristics. High time resolution current was observed successfully by using a high-temperature superconducting sampler system. 148 refs., 127 figs., 4 tabs.

  5. Nonequilibrium superconducting detectors

    Science.gov (United States)

    Cristiano, R.; Ejrnaes, M.; Esposito, E.; Lisitskyi, M. P.; Nappi, C.; Pagano, S.; Perez de Lara, D.

    2006-03-01

    Nonequilibrium superconducting detectors exploit the early stages of the energy down cascade which occur after the absorption of radiation. They operate on a short temporal scale ranging from few microseconds down to tens of picoseconds. In such a way they provide fast counting capability, high time discrimination and also, for some devices, energy sensitivity. Nonequilibrium superconducting detectors are developed for their use both in basic science and in practical applications for detection of single photons or single ionized macromolecules. In this paper we consider two devices: distributed readout imaging detectors (DROIDs) based on superconducting tunnel junctions (STJs), which are typically used for high-speed energy spectroscopy applications, and hot-electron superconductive detectors (HESDs), which are typically used as fast counters and time discriminators. Implementation of the DROID geometry to use a single superconductor is discussed. Progress in the fabrication technology of NbN nanostructured HESDs is presented. The two detectors share the high sensitivity that makes them able to efficiently detect even single photons down to infrared energy.

  6. Nonequilibrium superconducting detectors

    Energy Technology Data Exchange (ETDEWEB)

    Cristiano, R [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Ejrnaes, M [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); INFN Sezione di Napoli, 80126 Naples (Italy); Esposito, E [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Lisitskyi, M P [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Nappi, C [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Pagano, S [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Dipartimento di Fisica, Universita di Salerno, 84081 Baronissi (Saudi Arabia) (Italy); Perez de Lara, D [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy)

    2006-03-15

    Nonequilibrium superconducting detectors exploit the early stages of the energy down cascade which occur after the absorption of radiation. They operate on a short temporal scale ranging from few microseconds down to tens of picoseconds. In such a way they provide fast counting capability, high time discrimination and also, for some devices, energy sensitivity. Nonequilibrium superconducting detectors are developed for their use both in basic science and in practical applications for detection of single photons or single ionized macromolecules. In this paper we consider two devices: distributed readout imaging detectors (DROIDs) based on superconducting tunnel junctions (STJs), which are typically used for high-speed energy spectroscopy applications, and hot-electron superconductive detectors (HESDs), which are typically used as fast counters and time discriminators. Implementation of the DROID geometry to use a single superconductor is discussed. Progress in the fabrication technology of NbN nanostructured HESDs is presented. The two detectors share the high sensitivity that makes them able to efficiently detect even single photons down to infrared energy.

  7. Superconducting doped topological materials

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Satoshi, E-mail: sasaki@sanken.osaka-u.ac.jp [Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Mizushima, Takeshi, E-mail: mizushima@mp.es.osaka-u.ac.jp [Department of Materials Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Department of Physics, Okayama University, Okayama 700-8530 (Japan)

    2015-07-15

    Highlights: • Studies on both normal- and SC-state properties of doped topological materials. • Odd-parity pairing systems with the time-reversal-invariance. • Robust superconductivity in the presence of nonmagnetic impurity scattering. • We propose experiments to identify the existence of Majorana fermions in these SCs. - Abstract: Recently, the search for Majorana fermions (MFs) has become one of the most important and exciting issues in condensed matter physics since such an exotic quasiparticle is expected to potentially give rise to unprecedented quantum phenomena whose functional properties will be used to develop future quantum technology. Theoretically, the MFs may reside in various types of topological superconductor materials that is characterized by the topologically protected gapless surface state which are essentially an Andreev bound state. Superconducting doped topological insulators and topological crystalline insulators are promising candidates to harbor the MFs. In this review, we discuss recent progress and understanding on the research of MFs based on time-reversal-invariant superconducting topological materials to deepen our understanding and have a better outlook on both the search for and realization of MFs in these systems. We also discuss some advantages of these bulk systems to realize MFs including remarkable superconducting robustness against nonmagnetic impurities.

  8. Disbursement of $65 million to the State of Texas for construction of a Regional Medical Technology Center at the former Superconducting Super Collider Site, Waxahachie, Texas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    As part of a settlement agreement between the US DOE and the State of Texas, DOE proposes to transfer $65 million of federal funds to the Texas National Research Laboratory Commission (TNLRC) for construction of the Regional Medical Technology Center (RMTC) to be located in Ellis County, Texas. The RMTC would be a state-of-the-art medical facility for proton cancer therapy, operated by the State of Texas in conjunction with the University of Texas Southwestern Medical Center. The RMTC would use the linear accelerator assets of the recently terminated DOE Superconducting Super Collider Project to accelerate protons to high energies for the treatment of cancer patients. The current design provides for treatment areas, examination rooms, support laboratories, diagnostic imaging equipment, and office space as well as the accelerators (linac and synchrotron) and beam steering and shaping components. The potential environmental consequences of the proposed action are expected to be minor.

  9. Investigation of the surface resistance of superconducting materials

    CERN Document Server

    Junginger, T

    2012-01-01

    In particle accelerators superconducting RF cavities are widely used to achieve high accelerating gradients and low losses. Power consumption is proportional to the surface resistance RS which depends on a number of external parameters, including frequency, temperature, magnetic and electric eld. Presently, there is no widely accepted model describing the increase of Rs with applied eld. In the frame of this project the 400MHz Quadrupole Resonator has been extended to 800 and 1200MHz to study surface resistance and intrinsic critical RF magnetic eld of superconducting samples over a wide parameter range, establishing it as a world-wide unique test facility for superconducting materials. Dierent samples were studied and it was shown that RS is mainly caused by the RF electric eld in the case of strongly oxidized surfaces. This can be explained by interface tunnel exchange of electrons between the superconductor and localized states in adjacent oxides. For well prepared surfaces, however, the majority of the di...

  10. Investigations of the surface resistance of superconducting materials

    CERN Document Server

    Junginger, Tobias; Welsch, Carsten

    In particle accelerators superconducting RF cavities are widely used to achieve high accelerating gradients and low losses. Power consumption is proportional to the surface resistance RS which depends on a number of external parameters, including frequency, temperature, magnetic and electric field. Presently, there is no widely accepted model describing the increase of Rs with applied field. In the frame of this project the 400 MHz Quadrupole Resonator has been extended to 800 and 1200 MHz to study surface resistance and intrinsic critical RF magnetic field of superconducting samples over a wide parameter range, establishing it as a world-wide unique test facility for superconducting materials. Different samples were studied and it was shown that Rs is mainly caused by the RF electric field in the case of strongly oxidized surfaces. This can be explained by interface tunnel exchange of electrons between the superconductor and localized states in adjacent oxides. For well prepared surfaces, however, the majori...

  11. Demonstration of superconducting micromachined cavities

    Energy Technology Data Exchange (ETDEWEB)

    Brecht, T., E-mail: teresa.brecht@yale.edu; Reagor, M.; Chu, Y.; Pfaff, W.; Wang, C.; Frunzio, L.; Devoret, M. H.; Schoelkopf, R. J. [Department of Applied Physics, Yale University, New Haven, Connecticut 06511 (United States)

    2015-11-09

    Superconducting enclosures will be key components of scalable quantum computing devices based on circuit quantum electrodynamics. Within a densely integrated device, they can protect qubits from noise and serve as quantum memory units. Whether constructed by machining bulk pieces of metal or microfabricating wafers, 3D enclosures are typically assembled from two or more parts. The resulting seams potentially dissipate crossing currents and limit performance. In this letter, we present measured quality factors of superconducting cavity resonators of several materials, dimensions, and seam locations. We observe that superconducting indium can be a low-loss RF conductor and form low-loss seams. Leveraging this, we create a superconducting micromachined resonator with indium that has a quality factor of two million, despite a greatly reduced mode volume. Inter-layer coupling to this type of resonator is achieved by an aperture located under a planar transmission line. The described techniques demonstrate a proof-of-principle for multilayer microwave integrated quantum circuits for scalable quantum computing.

  12. Superconducting Microelectronics.

    Science.gov (United States)

    Henry, Richard W.

    1984-01-01

    Discusses superconducting microelectronics based on the Josephson effect and its advantages over conventional integrated circuits in speed and sensitivity. Considers present uses in standards laboratories (voltage) and in measuring weak magnetic fields. Also considers future applications in superfast computer circuitry using Superconducting…

  13. RF feedback for KEKB

    Energy Technology Data Exchange (ETDEWEB)

    Ezura, Eizi; Yoshimoto, Shin-ichi; Akai, Kazunori [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1996-08-01

    This paper describes the present status of the RF feedback development for the KEK B-Factory (KEKB). A preliminary experiment concerning the RF feedback using a parallel comb-filter was performed through a choke-mode cavity and a klystron. The RF feedback has been tested using the beam of the TRISTAN Main Ring, and has proved to be effective in damping the beam instability. (author)

  14. Conceptual SPL RF Main Power Coupler design

    CERN Document Server

    Montesinos, Eric

    2011-01-01

    While the upgrade plans of the LHC injectors had to be reduced in scope in 2010, the Superconducting Proton Linac (SPL) remains a fundamental element of plans for a possible future neutrino facility. Prototyping work is therefore continuing at CERN and the current focus is on the test of a first four cavity SPL-like cryomodule with full power. This report summarizes the parameters for the Main Power Coupler design as discussed and approved within the ‘Review of SPL RF power couplers’, held at CERN in March 2010.

  15. Instrumentation for localized superconducting cavity diagnostics

    Science.gov (United States)

    Conway, Z. A.; Ge, M.; Iwashita, Y.

    2017-03-01

    Superconducting accelerator cavities are now routinely operated at levels approaching the theoretical limit of niobium. To achieve these operating levels more information than is available from the RF excitation signal is required to characterize and determine fixes for the sources of performance limitations. This information is obtained using diagnostic techniques which complement the analysis of the RF signal. In this paper we describe the operation and select results from three of these diagnostic techniques: the use of large scale thermometer arrays, second sound wave defect location and high precision cavity imaging with the Kyoto camera.

  16. Instrumentation for localized superconducting cavity diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Conway, Z. A. [Argonne National Lab. (ANL), Argonne, IL (United States). Physics Division; Ge, M. [Cornell Lab. for Accelerator-Based Sciences and Education, Ithaca, NY (United States); Iwashita, Y. [Kyoto Univ. (Japan)

    2017-01-12

    Superconducting accelerator cavities are now routinely operated at levels approaching the theoretical limit of niobium. To achieve these operating levels more information than is available from the RF excitation signal is required to characterize and determine fixes for the sources of performance limitations. This information is obtained using diagnostic techniques which complement the analysis of the RF signal. In this paper we describe the operation and select results from three of these diagnostic techniques: the use of large scale thermometer arrays, second sound wave defect location and high precision cavity imaging with the Kyoto camera.

  17. Development of superconductor application technology - Fabrication of superconducting plate using tape casting and development of directional growth

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Kwang Soo; Yoon, Dae Sung; Lee, Joon Sung; Jun, Byung Hyuk; Woo, Sung Soo; Hong, Seung Bum; Kim, Eun Ah; Song, Han Wook [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1996-05-01

    This study concerns the establishment of the fabrication techniques of the high temperature superconductor tape using tape coating, the heat treatment and directional growth techniques in order to fabricate high temperature superconductor bulks having high current density. This study is important in the development of bulk high temperature superconductors and in the applications in bulk forms. Development of Tape Casting Technique : Fabrication of the high temperature superconductor tape using different processing condition. Fabrication of Y- and Bi- High Temperature Superconductor Tapes : Based on the optimum processing condition, the superconductor tapes were fabricated. Development of Directional Growth Techniques : The tapes were heat-treated at proper condition and directionally growth using different directional growth condition. The superconducting properties were tested on the directionally grown samples. 21 figs. (author)

  18. Hardware and Initial Beam Commissioning of the LHC RF Systems

    CERN Document Server

    Linnecar, T; Arnaudon, L; Baudrenghien, P; Bohl, T; Brunner, O; Butterworth, A; Ciapala, Edmond; Dubouchet, F; Ferreira-Bento, J; Glenat, D; Hagmann, G; Höfle, Wolfgang; Julie, C; Killing, F; Kotzian, G; Landre, D; Louwerse, R; Maesen, P; Martinez-Yanez, P; Molendijk, J; Montesinos, E; Nicou, C; Noirjean, J; Papotti, G; Pashnin, A; Pechaud, G; Pradier, J; Rossi, V; Sanchez-Quesada, J; Schokker, M; Shaposhnikova, E; Sorokoletev, R; Stellfeld, D; Tückmantel, Joachim; Valuch, D; Wehrle, U; Weierud, F

    2008-01-01

    Hardware commissioning of the LHC RF Systems, the ACS Superconducting RF systems, ADT Transverse Dampers and APWL Wideband Longitudinal Monitors, started in late 2007 and was completed in time for the first LHC beams in 2008. The RF inter-machine synchroni-sation systems were in place and operational for the LHC synchronization tests in August 2008. The very first beams through IP4 were observed on the RF monitors and beam 2 was captured on 11th September. Measurements with beam on the damper systems were also pos-sible, preparing the way for closing the damper loop with beam. Major milestones during commissioning the ACS and ADT systems and results obtained during first capture tests are presented. Preparatory work for acceleration and multi-bunch operation is described as are the beam tests foreseen for 2009.

  19. ANALYZING SURFACE ROUGHNESS DEPENDENCE OF LINEAR RF LOSSES

    Energy Technology Data Exchange (ETDEWEB)

    Reece, Charles E. [JLAB; Kelley, Michael J. [JLAB, W& amp; M College; Xu, Chen [JLAB, W& amp; M College

    2012-09-01

    Topographic structure on Superconductivity Radio Frequency (SRF) surfaces can contribute additional cavity RF losses describable in terms of surface RF reflectivity and absorption indices of wave scattering theory. At isotropic homogeneous extent, Power Spectrum Density (PSD) of roughness is introduced and quantifies the random surface topographic structure. PSD obtained from different surface treatments of niobium, such Buffered Chemical Polishing (BCP), Electropolishing (EP), Nano-Mechanical Polishing (NMP) and Barrel Centrifugal Polishing (CBP) are compared. A perturbation model is utilized to calculate the additional rough surface RF losses based on PSD statistical analysis. This model will not consider that superconductor becomes normal conducting at fields higher than transition field. One can calculate the RF power dissipation ratio between rough surface and ideal smooth surface within this field range from linear loss mechanisms.

  20. Using the Research Domain Criteria Framework to Explore Associations Between MMPI-2-RF Constructs and Physiological Variables Assessed by Eye-Tracker Technology.

    Science.gov (United States)

    McCord, David M; Achee, Margaret C; Cannon, Elissa M; Harrop, Tiffany M; Poynter, William D

    2017-01-01

    The National Institute of Mental Health has proposed a paradigm shift in the conceptualization of psychopathology, abandoning the traditional categorical model in favor of one based on hierarchically organized dimensional constructs (Insel et al., 2010 ). One explicit goal of this initiative, the Research Domain Criteria (RDoC) project, is to facilitate the incorporation of newly available neurobiologic variables into research on psychopathology. The Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF; Ben-Porath & Tellegen, 2008/2011 ) represents a similar paradigm shift, also adopting a hierarchical arrangement of dimensional constructs. This study examined associations between MMPI-2-RF measures of psychopathology and eye-movement metrics. Participants were college students (n = 270) who completed the MMPI-2-RF and then viewed a sequence of 30-s video clips. Results show a pattern of positive correlations between pupil size and emotional/internalizing dysfunction scales when viewing video eliciting negative emotional reactions, reflecting greater arousability in individuals with higher scores on these measures. In contrast, when viewing stimuli depicting angry, threatening material, a clear pattern of negative correlations was found between pupil size and behavioral/externalizing trait measures. These data add to the construct validity of the MMPI-2-RF and support the use of the RDoC matrix as a framework for research on psychopathology.

  1. Generation of N-qubit W state with rf-SQUID qubits by adiabatic passage

    CERN Document Server

    Deng, Z J; Gao, K L

    2006-01-01

    A simple scheme is presented to generate n-qubit W state with rf-superconducting quantum interference devices (rf-SQUIDs) in cavity QED through adiabatic passage. Because of the achievable strong coupling for rf-SQUID qubits embedded in cavity QED, we can get the desired state with high success probability. Furthermore, the scheme is insensitive to position inaccuracy of the rf-SQUIDs. The numerical simulation shows that, by using present experimental techniques, we can achieve our scheme with very high success probability, and the fidelity could be eventually unity with the help of dissipation.

  2. 2 March 2012 - US Google Management Team Executive Chairman E. Schmidt visiting the LHC superconducting magnet test hall with Director for Accelerators and Technology S. Myers and Head of Technology Department F. Bordry; signing the guest book with CERN Director-General R. Heuer.

    CERN Multimedia

    Maximilien Brice

    2012-01-01

    2 March 2012 - US Google Management Team Executive Chairman E. Schmidt visiting the LHC superconducting magnet test hall with Director for Accelerators and Technology S. Myers and Head of Technology Department F. Bordry; signing the guest book with CERN Director-General R. Heuer.

  3. 20th May 2010 - Malaysian Minister for Science, Technology and Innovation H. F: B. H. Yusof signing the guest book with Coordinator for External Relations F. Pauss and CMS Collaboration Deputy Spokesperson A. De Roeck; visiting the LHC superconducting magnet test hall with Technology Department Head F. Bordry; throughout accompanied by CERN Advisers J. Ellis and E. Tsesmelis.

    CERN Document Server

    Maximilien brice

    2010-01-01

    20th May 2010 - Malaysian Minister for Science, Technology and Innovation H. F: B. H. Yusof signing the guest book with Coordinator for External Relations F. Pauss and CMS Collaboration Deputy Spokesperson A. De Roeck; visiting the LHC superconducting magnet test hall with Technology Department Head F. Bordry; throughout accompanied by CERN Advisers J. Ellis and E. Tsesmelis.

  4. Linearisation of RF Power Amplifiers

    DEFF Research Database (Denmark)

    Nielsen, Per Asbeck

    2001-01-01

    This thesis deals with linearisation techniques of RF power amplifiers (PA), PA design techniques and integration of the necessary building blocks in a CMOS technology. The opening chapters introduces the theory of transmitter architectures, RF-signal representation and the principles of digital...... modulation. Furthermore different types of power amplifiers, models and measures of non-linearities are presented. A chapter is also devoted to different types of linearisation systems. The work carried out and described in this thesis can be divided into a more theoretical and system oriented treatment...... the polar loop architecture and it’s suitability to modern digital transmitters is discussed. A proposal of an architecture that is suitable for digital transmitters, which means that it has an interface to the digital back-end, defined by low-pass signals in polar form, is presented. Simulation guidelines...

  5. Feasibility of a Frequency-Multiplexed TES Read-Out Using Superconducting Tunnel Junctions

    NARCIS (Netherlands)

    de Lange, G.

    2014-01-01

    We describe a feasibility study of a frequency multiplexed read-out scheme for large number transition edge sensor arrays. The read-out makes use of frequency up- and down-conversion and RF-to-DC conversion with superconducting-isolator-superconducting tunnel junctions operating at GHz frequencies,

  6. Time ripe for superconductivity?

    Directory of Open Access Journals (Sweden)

    George Marsh

    2002-04-01

    But there is a crucial deadline and failure to meet it could send superconductivity back to the commercial shadows (at least outside the medical and scientific niches where it is a key enabler in analytical instruments, magnetic resonance imaging, and particle accelerators for another 30 years. Later this decade, the vintage infrastructure of dense copper conductors that supports power distribution in developed countries, in particular in the US, will become due for renewal. (Recent power problems in California were largely those of distribution infrastructure. At the same time, boosting capacity to serve the needs of increasingly affluent populations will pose a challenge. Superconductivity could provide the answer — if the technology matures in time and cost targets are met.

  7. A Micromechanical RF Channelizer

    Science.gov (United States)

    Akgul, Mehmet

    equivalent circuit matches the measured filter spectrum closely both in-band and out-of-band. The combined 2.7dB passband insertion loss and 50dB stopband rejection of the demonstrated 206-element 0.09% bandwidth 223.4-MHz differential micromechanical disk filter represents a landmark for capacitive-gap transduced micromechanical resonator technology. This demonstration proves that the mere introduction of small gaps, on the order of 39 nm, goes a long way towards moving this technology from a research curiosity to practical performance specs commensurate with the needs of actual RF channel-selecting receiver front-ends. It also emphasizes the need for tuning and defensive stress-relieving structural design when percent bandwidths and gaps shrink, all demonstrated by the work herein. Perhaps most encouraging is that the models presented in dissertation used to design the filter and predict its behavior seem to be all be spot on. This means that predictions using these models foretelling 1-GHz filters with sub-200O impedances enabled by 20nm-gaps might soon come true, bringing this technology ever closer to someday realizing the ultra-low power channel-selecting communication front-ends targeted for autonomous set-and-forget sensor networks. Work towards these goals continues.

  8. Si-based RF MEMS components.

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, James E.; Nordquist, Christopher Daniel; Baker, Michael Sean; Fleming, James Grant; Stewart, Harold D.; Dyck, Christopher William

    2005-01-01

    Radio frequency microelectromechanical systems (RF MEMS) are an enabling technology for next-generation communications and radar systems in both military and commercial sectors. RF MEMS-based reconfigurable circuits outperform solid-state circuits in terms of insertion loss, linearity, and static power consumption and are advantageous in applications where high signal power and nanosecond switching speeds are not required. We have demonstrated a number of RF MEMS switches on high-resistivity silicon (high-R Si) that were fabricated by leveraging the volume manufacturing processes available in the Microelectronics Development Laboratory (MDL), a Class-1, radiation-hardened CMOS manufacturing facility. We describe novel tungsten and aluminum-based processes, and present results of switches developed in each of these processes. Series and shunt ohmic switches and shunt capacitive switches were successfully demonstrated. The implications of fabricating on high-R Si and suggested future directions for developing low-loss RF MEMS-based circuits are also discussed.

  9. Color superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Wilczek, F. [Institute for Advanced Study, Princeton, NJ (United States)

    1997-09-22

    The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken.

  10. Study of multipacting effect in superconducting cavity

    Institute of Scientific and Technical Information of China (English)

    ZHANG Meng; ZHAO Ming-Hua

    2008-01-01

    A number of superconducting cavities of axis-symmetric geometry have been considered to study the effect in order to achieve the desired performance.It is shown that the multipacting effect is strongly dependent on the condition of the RF surface and can be suppressed with reconsideration of the geometry.The simulation result is compared with the result of the semi-analytical model in the end.

  11. PROGRESS ON LEAD PHOTOCATHODES FOR SUPERCONDUCTING INJECTORS.

    Energy Technology Data Exchange (ETDEWEB)

    SMEDLEY, J.; RAO, T.; SEKUTOWICZ, J.; KNEISEL, P.; LANGNER, J.; STRZYZEWSKI, P.; LEFFERTS, R.; LIPSKI, A.

    2005-05-16

    We present the results of our investigation of bulk lead, along with various types of lead films, as suitable photocathode materials for superconducting RF injectors. The quantum efficiency of each sample is presented as a function of the photon energy of the incident light, from 3.9 eV to 6.5 eV. Quantum efficiencies of 0.5% have been obtained. Production of a niobium cavity with a lead-plated cathode is underway.

  12. Progress on lead photocathodes for superconducting injectors

    Energy Technology Data Exchange (ETDEWEB)

    Smedley, John; Rao, Triveni; Sekutowicz, Jacek; Kneisel, Peter; Langner, J; Strzyzewski, P; Lefferts, Richard; Lipski, Andrzej

    2005-05-16

    We present the results of our investigation of bulk lead, along with various types of lead films, as suitable photocathode materials for superconducting RF injectors. The quantum efficiency of each sample is presented as a function of the photon energy of the incident light, from 3.9 eV to 6.5 eV. Quantum efficiencies of 0.5% have been obtained. Production of a niobium cavity with a lead plated cathode is underway.

  13. Developments of RF Coil for P in vivo NMR Spectroscopy .

    Directory of Open Access Journals (Sweden)

    S. Khushu

    1993-07-01

    Full Text Available RF receiver coils are very important parts of an NMR System. The design of these coils is very critical and has a dramatic effect on the SNR of the NMR signal and are generally developed in TRA/REC mode. This paper reports the developments of a 3.5 cm TRA/REC 26 MHz RF coil for P spectroscopy of small organs like thyroid. The coil is small in size, fits well in the neck for thyroid spectroscopy and is successfully working with the 1.5 tesla whole body Superconducting NMR System available at INMAS.

  14. Assessment of 28 nm UTBB FD-SOI technology platform for RF applications: Figures of merit and effect of parasitic elements

    Science.gov (United States)

    Kazemi Esfeh, B.; Kilchytska, V.; Barral, V.; Planes, N.; Haond, M.; Flandre, D.; Raskin, J.-P.

    2016-03-01

    This work provides a detailed study of 28 nm fully-depleted silicon-on-insulator (FD-SOI) planar ultra-thin body and BOX (UTBB) MOSFETs for high frequency applications. All parasitic elements such as the parasitic gate and source/drain series resistances, total capacitances are extracted and their effects on RF performance are analyzed and compared with previous work on similar devices. Two main RF figures of merit (FoM) such as the current gain cut-off frequency (fT) and the maximum oscillation frequency (fmax) are determined. It is shown that fT of ∼280 GHz and fmax of ∼250 GHz are achievable in the shortest devices. Based on the extracted parameters, the validation of the small-signal equivalent circuit used for modeling UTBB MOSFETs is investigated by comparing simulated and measured S-parameters.

  15. Wireless Networks with RF Energy Harvesting: A Contemporary Survey

    OpenAIRE

    Lu, Xiao; Wang,Ping; Niyato, Dusit; Kim, Dong In; Han, Zhu

    2014-01-01

    Radio frequency (RF) energy transfer and harvesting techniques have recently become alternative methods to power the next generation wireless networks. As this emerging technology enables proactive energy replenishment of wireless devices, it is advantageous in supporting applications with quality of service (QoS) requirement. In this paper, we present an extensive literature review on the research progresses in wireless networks with RF energy harvesting capability, referred to as RF energy ...

  16. RF Circuit Design in Nanometer CMOS

    OpenAIRE

    Nauta, Bram

    2007-01-01

    With CMOS technology entering the nanometer regime, the design of analog and RF circuits is complicated by low supply voltages, very non-linear (and nonquadratic) devices and large 1/f noise. At the same time, circuits are required to operate over increasingly wide bandwidths to implement modern multi-band communication systems as these systems move toward software-defined radio. These trends in technology and system design call for a re-thinking of analog and RF circuit design in nanometer C...

  17. Report on the achievements in fiscal 1999. Research and development on a basic technology to apply superconductivity (Development on an ultra high speed signal processing technology with low electric power consumption); 1999 nendo chodendo oyo kiban gijutsu kenkyu kaihatsu seika hokokusho. Teishohi denryoku chokosoku shingo shori gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-01

    The development of a technology to design superconductive circuits has worked on (1) a circuit design technology and (2) fabrication of a small scale demonstration circuit. In Item (1), analog evaluation provided SN characteristics of 11 bits or more by using a primary Sigma-Delta ({sigma}-{delta}) modulator as the element circuit for an AD converter. In addition, a proposal was made on a decimation filter using a secondary {sigma}-{delta} module and a counter, which use a magnetic quantum multiplication element as feedback. In Item (2), fabricating conditions for an NBCO film were established with high Tc reproducibility. In addition to having established a design method for a superconductive filter, a technology was developed to deposit superconductive oxide conductors on both sides of an MgO substrate having a thickness of 0.5 mm. This development provided a prospect of realizing a filter for large electric power of 10 GHz and 10W class. In developing a technology for measuring superconductive circuit characteristics, discussions were given on a measurement and evaluation technology. To explain, with regard to the technology to demonstrate high speed actions, a high-speed action demonstration and measurement system was started up, which can be cooled down to 5K, and has small critical current variation due to magnetic flux trap. Output of SFQ signals up to 4 GHz was successfully detected. (NEDO)

  18. RF gymnastics in synchrotrons

    CERN Document Server

    Garoby, R

    2011-01-01

    The RF systems installed in synchrotrons can be used to change the longitudinal beam characteristics. 'RF gymnastics' designates manipulations of the RF parameters aimed at providing such non-trivial changes. Some keep the number of bunches constant while changing bunch length, energy spread, emittance, or distance between bunches. Others are used to change the number of bunches. After recalling the basics of longitudinal beam dynamics in a hadron synchrotron, this paper deals with the most commonly used gymnastics. Their principle is described as well as their performance and limitations.

  19. RF Gymnastics in Synchrotrons

    CERN Document Server

    Garoby, R

    2005-01-01

    The RF systems installed in synchrotrons can be used to change the longitudinal beam characteristics. "RF gymnastics" designates manipulations of the RF parameters aimed at providing such non-trivial changes. Some keep the number of bunches constant while changing bunch length, energy spread, emittance or distance between bunches. Others are used to change the number of bunches. After recalling the basics of longitudinal beam dynamics in a hadron synchrotron, this paper deals with the most commonly used gymnastics. Their principle is described as well as their performance and limitations.

  20. Geolocation of RF signals

    CERN Document Server

    Progri, Ilir

    2011-01-01

    ""Geolocation of RF Signals - Principles and Simulations"" offers an overview of the best practices and innovative techniques in the art and science of geolocation over the last twenty years. It covers all research and development aspects including theoretical analysis, RF signals, geolocation techniques, key block diagrams, and practical principle simulation examples in the frequency band from 100 MHz to 18 GHz or even 60 GHz. Starting with RF signals, the book progressively examines various signal bands - such as VLF, LF, MF, HF, VHF, UHF, L, S, C, X, Ku, and, K and the corresponding geoloca

  1. Tunable nonlinear superconducting metamaterials: Experiment and simulation

    Science.gov (United States)

    Trepanier, Melissa

    I present experimental and numerical simulation results for two types of nonlinear tunable superconducting metamaterials: 2D arrays of rf SQUIDs (radio frequency superconducting quantum interference devices) as magnetic metamaterials and arrays of Josephson junction-loaded wires as electric metamaterials. The effective inductance of a Josephson junction is sensitive to dc current, temperature, and rf current. I took advantage of this property to design arrays of Josephson junction-loaded wires that present a tunable cutoff frequency and thus a tunable effective permittivity for propagating electromagnetic waves in a one-conductor waveguide. I measured the response of the metamaterial to each tuning parameter and found agreement with numerical simulations that employ the RCSJ (resistively and capacitively shunted junction) model. An rf SQUID is an analogue of an SRR (split ring resonator) with the gap capacitance replaced with a Josephson junction. Like the SRR the SQUID is a resonant structure with a frequency-dependent effective permeability. The difference between the SQUID and the SRR is that the effective inductance and thus effective permeability of the SQUID can be tuned with dc and rf flux, and temperature. Individual rf SQUID meta-atoms and two-dimensional arrays were designed and measured as a function of each tuning parameter and I have found excellent agreement with numerical simulations. There is also an interesting transparency feature that occurs for intermediate rf flux values. The tuning of SQUID arrays has a similar character to the tuning of individual rf SQUID meta-atoms. However, I found that the coupling between the SQUIDs increases the resonant frequency, decreases dc flux tuning, and introduces additional resonant modes. Another feature of arrays is disorder which suppresses the coherence of the response and negatively impacts the emergent properties of the metamaterial. The disorder was experimentally found to be mainly due to a dc flux

  2. Superconducting multiturn flux transformers for radio frequency superconducting quantum interference devices

    OpenAIRE

    Yi, H. R.; Zhang, Y; Schubert, J.; Zander, W.; Zeng, X. H.; Klein, N

    2000-01-01

    This article describes three planar layouts of superconducting multiturn flux transformers integrated with a coplanar resonator for radio frequency (rf) superconducting quantum interference device (SQUID) magnetometers. The best magnetic field noise values of 22 and 11.5 fT/Hz(1/2) in the white noise regime were obtained for the layout with two input coils and the layout with the labyrinth resonator, respectively. Excess low-frequency noise (about 200 fT/Hz(1/2) at 10 Hz) was present. Compute...

  3. Design and simulation of 3½-cell superconducting gun cavity and beam dynamics studies of the SASE-FEL System at the Institute of Accelerator Technologies at Ankara University

    Science.gov (United States)

    Yildiz, H. Duran; Cakir, R.; Porsuk, D.

    2015-06-01

    Design and simulation of a superconducting gun cavity with 3½ cells have been studied in order to give the first push to the electron beam for the linear accelerating system at The Institute of Accelerator Technologies at Ankara University. Electrons are accelerated through the gun cavity with the help of the Radiofrequency power suppliers from cryogenic systems. Accelerating gradient should be as high as possible to accelerate electron beam inside the cavity. In this study, electron beam reaches to 9.17 MeV energy at the end of the gun cavity with the accelerating gradient; Ec=19.21 MV/m. 1.3 GHz gun cavity consists of three TESLA-like shaped cells while the special designed gun-cell includes a cathode plug. Optimized important beam parameters inside the gun cavity, average beam current 3 mA, transverse emittance 2.5 mm mrad, repetition rate 30 MHz and other parameters are obtained for the SASE-FEL System. The Superfish/Poisson program is used to design each cell of the superconducting cavity. Superconducting gun cavity and Radiofrequency properties are studied by utilizing 2D Superfish/Poisson, 3D Computer Simulation Technology Microwave Studio, and 3D Computer Simulation Technology Particle Studio. Superfish/Poisson is also used to optimize the geometry of the cavity cells to get the highest accelerating gradient. The behavior of the particles along the beamline is included in this study. ASTRA Code is used to track the particles.

  4. 100 years of superconductivity

    CERN Multimedia

    Globe Info

    2011-01-01

    Public lecture by Philippe Lebrun, who works at CERN on applications of superconductivity and cryogenics for particle accelerators. He was head of CERN’s Accelerator Technology Department during the LHC construction period. Centre culturel Jean Monnet, route de Gex Tuesday 11 October from 8.30 p.m. to 10.00 p.m. » Suitable for all – Admission free - Lecture in French » Number of places limited For further information: +33 (0)4 50 42 29 37

  5. TOPICAL REVIEW: Superconducting bearings

    Science.gov (United States)

    Hull, John R.

    2000-02-01

    The physics and technology of superconducting bearings is reviewed. Particular attention is given to the use of high-temperature superconductors (HTSs) in rotating bearings. The basic phenomenology of levitational forces is presented, followed by a brief discussion of the theoretical models that can be used for conceptual understanding and calculations. The merits of various HTS bearing designs are presented, and the behaviour of HTS bearings in typical situations is discussed. The article concludes with a brief survey of various proposed applications for HTS bearings.

  6. Conventional and unconventional superconductivity

    Science.gov (United States)

    Fernandes, R. M.

    2012-02-01

    Superconductivity has been one of the most fruitful areas of research in condensed matter physics, bringing together researchers with distinct interests in a collaborative effort to understand from its microscopic basis to its potential for unprecedented technological applications. The concepts, techniques, and methods developed along its centennial history have gone beyond the realm of condensed matter physics and influenced the development of other fascinating areas, such as particle physics and atomic physics. These notes, based on a set of lectures given at the 2011 Advanced Summer School of Cinvestav, aim to motivate the young undergraduate student in getting involved in the exciting world of conventional and unconventional superconductors.

  7. Microbunching and RF Compression

    Energy Technology Data Exchange (ETDEWEB)

    Venturini, M.; Migliorati, M.; Ronsivalle, C.; Ferrario, M.; Vaccarezza, C.

    2010-05-23

    Velocity bunching (or RF compression) represents a promising technique complementary to magnetic compression to achieve the high peak current required in the linac drivers for FELs. Here we report on recent progress aimed at characterizing the RF compression from the point of view of the microbunching instability. We emphasize the development of a linear theory for the gain function of the instability and its validation against macroparticle simulations that represents a useful tool in the evaluation of the compression schemes for FEL sources.

  8. Externally RF Power Supply Control Technology for Fuze%引信体外射频电源供电控制方法

    Institute of Scientific and Technical Information of China (English)

    常悦; 李杰; 周晓东

    2016-01-01

    To control the power supply of the externally RF power for fuze,the supply control method of the externally RF power for fuze based on the launch recoil overload sensor was proposed.The launch recoil over-load sensor could distinguish the difference environment between ammunition service and ammunition launch, and generated the control signal to switch on the circuit of power supply of the externally RF power,when the cutter cut off the wire by the pull of recoil,which was hold upper by spring.To avoid false detonation,the state of wire was checked during fuze setting,and the control and detonate circuit of fuze became short-circuit if the wire was broken before launch.The prototype test results showed that the externally RF power was discharged and the control and detonate circuit of fuze begins to start-up just during muzzle with the supply control method. The sensor and control circuit had advantages of simple and easily miniaturization.%针对引信体外射频电源的供电控制问题,提出了基于发射后坐过载传感器的引信体外射频电源供电控制方法。该方法采用后坐过载传感器,通过弹簧约束切刀并在后坐过载作用下切断导体的方式识别发射环境,并控制供电电路通断,实现引信体外射频电源在出炮口附近对发火控制与起爆电路供电;在引信装定时检测传感器导体的通断,提高引信体外射频电源供电安全性。原理样机验证试验结果表明,该方法能够控制引信体外射频电源仅在出炮口附近对发火控制与起爆电路供电,发射过载传感器与上电控制电路简单、易于小型化。

  9. Advantages of SOP Technology and Its Application in RF Domain%SOP技术的优势以及在射频领域的应用

    Institute of Scientific and Technical Information of China (English)

    张欣欣; 王鲁豫

    2007-01-01

    通过对单芯片系统(SOC)、多芯片组件(MCM)、封装内的系统(SIP)和单封装系统(SOP)几种重要封装技术的分析比较,展示了SOP技术的显著优势,其优势使之更加适用于未来电子系统的发展.SOP在射频领域已有比较成功的应用,文中同时介绍了几种典型的射频S0P(RF-SOP)结构.

  10. RF Measurement Concepts

    CERN Document Server

    Caspers, F

    2014-01-01

    For the characterization of components, systems and signals in the radiofrequency (RF) and microwave ranges, several dedicated instruments are in use. In this article the fundamentals of the RF signal techniques are discussed. The key element in these front ends is the Schottky diode which can be used either as a RF mixer or as a single sampler. The spectrum analyser has become an absolutely indispensable tool for RF signal analysis. Here the front end is the RF mixer as the RF section of modern spectrum analyses has a ra ther complex architecture. The reasons for this complexity and certain working principles as well as limitations are discussed. In addition, an overview of the development of scalar and vector signal analysers is given. For the determination of the noise temperature of a one-port and the noise figure of a two-port, basic concepts and relations are shown as well as a brief discussion of commonly used noise-measurement techniques. In a further part of this article the operating principles of n...

  11. CMOS RF circuit design for reliability and variability

    CERN Document Server

    Yuan, Jiann-Shiun

    2016-01-01

    The subject of this book is CMOS RF circuit design for reliability. The device reliability and process variation issues on RF transmitter and receiver circuits will be particular interest to the readers in the field of semiconductor devices and circuits. This proposed book is unique to explore typical reliability issues in the device and technology level and then to examine their impact on RF wireless transceiver circuit performance. Analytical equations, experimental data, device and circuit simulation results will be given for clear explanation. The main benefit the reader derive from this book will be clear understanding on how device reliability issues affects the RF circuit performance subjected to operation aging and process variations.

  12. High field superconducting magnet: Science, Technology and Applications%高场超导磁体科学技术与应用

    Institute of Scientific and Technical Information of China (English)

    王秋良

    2013-01-01

    科学技术的发展对于磁场强度质量的要求越来越高,极端强磁场条件是人类追求的永远的科学目标,它孕育着许多重大的科学发现和新技术的产生,对人类的科学和技术以及生活产生重大的影响.以磁体为核心与电力电子器件以及相关的软件等结合可以构成各种各样科学仪器和装置,广泛应用在科学研究和工业特种装备中.磁技术对于人类的科学与技术进步起到越来越重要的作用,尤其是极高磁场所带来的诸多优点,使得人类对于物质世界认识不断加深,对于生命的起源以及从事疾病的防治的研究有特别重要的意义.本文介绍磁体基本原理、磁场产生的方法与应用以及相关的发展.%Development of superconducting magnet science and technology requires a magnetic field with high strength and good quality.The pursuit of extremely high magnetic field is an eternal scientific goal forscientists and engineers.It is an exciting cutting-edge technology with full of challenges and has been essential for many significant discoveries in science and technology.Combined with power-electronic devices and related software,a whole magnet system can be built up as the key component of various types of scientific instruments and other equipment,and can be fund widespread applications in scientific research and industry.Magnet technology is currently playing a more and more important role in scientific and technological progress.Ultra-high magnetic fields help to give us much deeper understanding of the world of matter and have special significance for research into the origins of life and disease prevention.In this review article,basic magnet principles,methods of generating magnetic fields,magnetic field applications,and numerical methods for the design of magnet structures are briefly introduced and reviewed.

  13. Electromagnetic Design of New RF Power Couplers for the S-DALINAC

    CERN Document Server

    Kunze, Marco; Brunken, M; Gräf, H D; Richter, Achim

    2004-01-01

    New rf power couplers for the Superconducting Darmstadt Linear Accelerator (S-DALINAC) injector have to be designed to transfer rf power of up to 2 kW to the electron beam. This allows injector operation at beam currents from 0.15 mA to 0.2 mA and electron energies up to 14 MeV. The new couplers should possibly provide a external Q of 5·106

  14. Beam dynamics and expected RHIC performance with 56MHz RF upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Fedotov,A.V.; Ben-Zvi, I.

    2009-05-04

    An upgrade of the RHIC storage RF system with a superconducting 56 MHz cavity was recently proposed. This upgrade will provide a significant increase in the acceptance of the RHIC 197 MHz storage RF bucket. This paper summarizes simulations of beam evolution due to intra-beam scattering (IBS) for beam parameters expected with the 56 MHz SRF cavity upgrade. Expected luminosity improvements are shown for Au ions at 100 GeV/nucleon and protons at 250 GeV.

  15. The road to superconducting spintronics

    Science.gov (United States)

    Eschrig, Matthias

    Energy efficient computing has become a major challenge, with the increasing importance of large data centres across the world, which already today have a power consumption comparable to that of Spain, with steeply increasing trend. Superconducting computing is progressively becoming an alternative for large-scale applications, with the costs for cooling being largely outweighed by the gain in energy efficiency. The combination of superconductivity and spintronics - ``superspintronics'' - has the potential and flexibility to develop into such a green technology. This young field is based on the observation that new phenomena emerge at interfaces between superconducting and other, competing, phases. The past 15 years have seen a series of pivotal predictions and experimental discoveries relating to the interplay between superconductivity and ferromagnetism. The building blocks of superspintronics are equal-spin Cooper pairs, which are generated at the interface between superconducting and a ferromagnetic materials in the presence of non-collinear magnetism. Such novel, spin-polarised Cooper pairs carry spin-supercurrents in ferromagnets and thus contribute to spin-transport and spin-control. Geometric Berry phases appear during the singlet-triplet conversion process in structures with non-coplanar magnetisation, enhancing functionality of devices, and non-locality introduced by superconducting order leads to long-range effects. With the successful generation and control of equal-spin Cooper pairs the hitherto notorious incompatibility of superconductivity and ferromagnetism has been not only overcome, but turned synergistic. I will discuss these developments and their extraordinary potential. I also will present open questions posed by recent experiments and point out implications for theory. This work is supported by the Engineering and Physical Science Research Council (EPSRC Grant No. EP/J010618/1).

  16. Foreword: Focus on Superconductivity in Semiconductors

    Directory of Open Access Journals (Sweden)

    Yoshihiko Takano

    2008-01-01

    Full Text Available Since the discovery of superconductivity in diamond, much attention has been given to the issue of superconductivity in semiconductors. Because diamond has a large band gap of 5.5 eV, it is called a wide-gap semiconductor. Upon heavy boron doping over 3×1020 cm−3, diamond becomes metallic and demonstrates superconductivity at temperatures below 11.4 K. This discovery implies that a semiconductor can become a superconductor upon carrier doping. Recently, superconductivity was also discovered in boron-doped silicon and SiC semiconductors. The number of superconducting semiconductors has increased. In 2008 an Fe-based superconductor was discovered in a research project on carrier doping in a LaCuSeO wide-gap semiconductor. This discovery enhanced research activities in the field of superconductivity, where many scientists place particular importance on superconductivity in semiconductors.This focus issue features a variety of topics on superconductivity in semiconductors selected from the 2nd International Workshop on Superconductivity in Diamond and Related Materials (IWSDRM2008, which was held at the National Institute for Materials Science (NIMS, Tsukuba, Japan in July 2008. The 1st workshop was held in 2005 and was published as a special issue in Science and Technology of Advanced Materials (STAM in 2006 (Takano 2006 Sci. Technol. Adv. Mater. 7 S1.The selection of papers describe many important experimental and theoretical studies on superconductivity in semiconductors. Topics on boron-doped diamond include isotope effects (Ekimov et al and the detailed structure of boron sites, and the relation between superconductivity and disorder induced by boron doping. Regarding other semiconductors, the superconducting properties of silicon and SiC (Kriener et al, Muranaka et al and Yanase et al are discussed, and In2O3 (Makise et al is presented as a new superconducting semiconductor. Iron-based superconductors are presented as a new series of high

  17. Itinerant Ferromagnetism and Superconductivity

    OpenAIRE

    Karchev, Naoum

    2004-01-01

    Superconductivity has again become a challenge following the discovery of unconventional superconductivity. Resistance-free currents have been observed in heavy-fermion materials, organic conductors and copper oxides. The discovery of superconductivity in a single crystal of $UGe_2$, $ZrZn_2$ and $URhGe$ revived the interest in the coexistence of superconductivity and ferromagnetism. The experiments indicate that: i)The superconductivity is confined to the ferromagnetic phase. ii)The ferromag...

  18. 100 years of superconductivity

    CERN Document Server

    Rogalla, Horst

    2011-01-01

    Even a hundred years after its discovery, superconductivity continues to bring us new surprises, from superconducting magnets used in MRI to quantum detectors in electronics. 100 Years of Superconductivity presents a comprehensive collection of topics on nearly all the subdisciplines of superconductivity. Tracing the historical developments in superconductivity, the book includes contributions from many pioneers who are responsible for important steps forward in the field.The text first discusses interesting stories of the discovery and gradual progress of theory and experimentation. Emphasizi

  19. COMPARISON OF RF CAVITY TRANSPORT MODELS FOR BBU SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Ilkyoung Shin,Byung Yunn,Todd Satogata,Shahid Ahmed

    2011-03-01

    The transverse focusing effect in RF cavities plays a considerable role in beam dynamics for low-energy beamline sections and can contribute to beam breakup (BBU) instability. The purpose of this analysis is to examine RF cavity models in simulation codes which will be used for BBU experiments at Jefferson Lab and improve BBU simulation results. We review two RF cavity models in the simulation codes elegant and TDBBU (a BBU simulation code developed at Jefferson Lab). elegant can include the Rosenzweig-Serafini (R-S) model for the RF focusing effect. Whereas TDBBU uses a model from the code TRANSPORT which considers the adiabatic damping effect, but not the RF focusing effect. Quantitative comparisons are discussed for the CEBAF beamline. We also compare the R-S model with the results from numerical simulations for a CEBAF-type 5-cell superconducting cavity to validate the use of the R-S model as an improved low-energy RF cavity transport model in TDBBU. We have implemented the R-S model in TDBBU. It will improve BBU simulation results to be more matched with analytic calculations and experimental results.

  20. RF MEMS Switches for Mobile Communication

    NARCIS (Netherlands)

    Steeneken, Peter; Herfst, Rodolf; Suy, Hilco; Goossens, Martijn; Beek, van Joost; Bielen, Jeroen; Stulemeijer, Jiri; Schmitz, Jurriaan

    2008-01-01

    Switched capacitors based on radio frequency microelectromechanical systems (RF MEMS) can enable a breakthrough in radio technology. Their switching principle is based on the mechanical movement of the plates of a parallel plate capacitor using the electrostatic force. The resulting difference in ca

  1. RF Circuit Design in Nanometer CMOS

    NARCIS (Netherlands)

    Nauta, Bram

    2007-01-01

    With CMOS technology entering the nanometer regime, the design of analog and RF circuits is complicated by low supply voltages, very non-linear (and nonquadratic) devices and large 1/f noise. At the same time, circuits are required to operate over increasingly wide bandwidths to implement modern mul

  2. RF Circuit Design in Nanometer CMOS

    NARCIS (Netherlands)

    Nauta, Bram

    2007-01-01

    With CMOS technology entering the nanometer regime, the design of analog and RF circuits is complicated by low supply voltages, very non-linear (and nonquadratic) devices and large 1/f noise. At the same time, circuits are required to operate over increasingly wide bandwidths to implement modern

  3. Development of a 500 MHz high power RF test stand

    Institute of Scientific and Technical Information of China (English)

    PAN Wei-Min; SHA Peng; HUANG Tong-Ming; MA Qiang; WANG Guang-Wei; LIN Hai-Ying; ZHAO Guang-Yuan; SUN Yi; XU Bo; WANG Qun-Yao

    2012-01-01

    A flexible high power RF test stand has been designed and constructed at IHEP to test a variety of 500 MHz superconducting RF components for the upgrade project of the Beijing Electron Positron Collider (BEPC Ⅱ ),such as the input coupler,the higher order modes (HOMs) absorber and so on.A high power input coupler has been conditioned and tested with the RF power up to 250 kW in continuous wave (CW),traveling wave (TW) mode and 150 kW CW in standing wave (SW) mode.A prototype of the HOMs absorber has been tested to absorb power of 4.4 kW.An introduction of the test stand design,construction and high power tests is presented in this paper.

  4. Control of the LHC 400 MHz RF System (ACS)

    CERN Document Server

    Arnaudon, L; Maesen, P; Prax, M

    2004-01-01

    The LHC ACS RF system is composed of 16 superconducting cavities, eight per ring. Each ring has two cryomodules, each containing four cavities. Each cavity is powered by a 300 kW klystron. The klystrons are grouped in fours, the klystrons in each group sharing a common 58 kV power converter and HV equipment bunker. The ACS RF control system is based on modern industrial programmable controllers (PLCs). A new fast interlock and alarm system with inbuilt diagnostics has been developed. Extensive use of the FIPIO Fieldbus drastically decreases the cabling complexity and brings improved signal quality, increased reliability and easier maintenance. Features of the implementation, such as system layout, communication and the high-level software interface are described. Operational facilities such as the automatic switch on procedure are described, as well as the necessary specialist tools and interfaces. A complete RF chain, including high voltage, cryomodule and klystron is presently being assembled in order to ch...

  5. Superconducting multiturn flux transformers for radio frequency superconducting quantum interference devices

    Science.gov (United States)

    Yi, H. R.; Zhang, Y.; Schubert, J.; Zander, W.; Zeng, X. H.; Klein, N.

    2000-11-01

    This article describes three planar layouts of superconducting multiturn flux transformers integrated with a coplanar resonator for radio frequency (rf) superconducting quantum interference device (SQUID) magnetometers. The best magnetic field noise values of 22 and 11.5 fT/Hz1/2 in the white noise regime were obtained for the layout with two input coils and the layout with the labyrinth resonator, respectively. Excess low-frequency noise (about 200 fT/Hz1/2 at 10 Hz) was present. Computer simulation showed that the loss in this trilayer system was dominated by the high loss tangent of the dielectric film used for the separation of the upper and lower superconducting films. The rf coupling coefficient krf between the resonator and the flip-chip-coupled SQUID was also estimated. The values krf2≈14×10-3 obtained for the layout with two input coils, and krf2≈45×10-3 for the layout with the labyrinth resonator were considerably higher than the typical value of krf2≈7×10-3 for the single-layer coplanar resonator. These high coupling coefficients have compensated the somewhat degraded unloaded quality factor of the resonator, thus securing the optimum operation of the rf SQUID.

  6. A simplified HTc rf SQUID to analyze the human cardiac magnetic field

    Directory of Open Access Journals (Sweden)

    Chen Zhang

    2014-12-01

    Full Text Available We have developed a four-channel high temperature radio-frequency superconducting quantum interference device (HTc rf SQUID in a simple magnetically shielded room (MSR that can be used to analyze the cardiac magnetic field. It is more robust and compact than existing systems. To achieve the high-quality magnetocardiographic signal, we explored new adaptive software gradiometry technology constructed by the first-order axial gradiometer with a baseline of 80mm, which can adjust its performance timely with the surrounding conditions. The magnetic field sensitivity of each channel was less than 100fT/√Hz in the white noise region. Especially, in the analysis of MCG signal data, we proposed the total transient mapping (TTM technique to visualize current density map (CDM, then we focused to observe the time-varying behavior of excitation propagation and estimated the underlying currents at T wave. According to the clear 3D imaging, isomagnetic field and CDM, the position and distribution of a current source in the heart can be visualized. It is believed that our four-channel HTc rf SQUID magnetometer based on biomagnetic system is available to detect MCG signals with sufficient signal-to-noise (SNR ratio. In addition, the CDM showed the macroscopic current activation pattern, in a way, it has established strong underpinnings for researching the cardiac microscopic movement mechanism and opening the way for its use in clinical diagnosis.

  7. Installation and Commissioning of the Super Conducting RF Linac Cryomodules for the Erlp

    Science.gov (United States)

    Goulden, A. R.; Bate, R.; Buckley, R. K.; Pattalwar, S. M.

    2008-03-01

    An Energy Recovery Linac Prototype (ERLP) is currently being constructed at Daresbury Laboratory, (UK) to promote the necessary skills in science & technology, particularly in photocathode electron gun and Superconducting RF (SRF), to enable the construction of a fourth generation light source, based on energy recovery linacs-4GLS [1]. The ERLP uses two identical cryomodules, one as a booster Linac used to accelerate the beam to 8.5 MeV, the other as an Energy Recovery Linac (ERL) module with an energy gain of 26.5 MeV. Each module consists of two 9- cell cavities operating at a frequency of 1.3 GHz and a temperature of 2 K. As there is no energy recovery in the booster it requires a peak power of 53 kW; whereas the linac module only requires 8 kW. The RF power is supplied by Inductive Output Tube (IOT) amplifiers. The maximum heat load (or the cooling power) required in the SRF system is 180 W at 2 K and is achieved in two stages: a LN2 pre-cooled Linde TCF50 liquefier produces liquid helium at 4.5 K, followed by a 2 K cold box consisting of a JT valve, recuperator and an external room temperature vacuum pumping system. This presentation reports the experience gained during, installation, commissioning and the initial operation of the cryomodules.

  8. High field superconducting magnets

    Science.gov (United States)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  9. 6th July 2010 - United Kingdom Science and Technology Facilities Council W. Whitehorn signing the guest book with Head of International relations F. Pauss, visiting the Computing Centre with Information Technology Department Head Deputy D. Foster, the LHC superconducting magnet test hall with Technology Department P. Strubin,the Centre Control Centre with Operation Group Leader M. Lamont and the CLIC/CTF3 facility with Project Leader J.-P. Delahaye.

    CERN Multimedia

    Teams : M. Brice, JC Gadmer

    2010-01-01

    6th July 2010 - United Kingdom Science and Technology Facilities Council W. Whitehorn signing the guest book with Head of International relations F. Pauss, visiting the Computing Centre with Information Technology Department Head Deputy D. Foster, the LHC superconducting magnet test hall with Technology Department P. Strubin,the Centre Control Centre with Operation Group Leader M. Lamont and the CLIC/CTF3 facility with Project Leader J.-P. Delahaye.

  10. Commissioning and Early Operation Experience of the NSLS-II Storage Ring RF System

    Energy Technology Data Exchange (ETDEWEB)

    Gao, F.; Rose, J.; Cupolo, J.; Dilgen, T.; Rose, B.; Gash, W.; Ravindranath, V.; Yeddulla, M.; Papu, J.; Davila, P.; Holub, B.; Tagger, J.; Sikora, R.; Ramirez, G.; Kulpin, J.

    2015-05-03

    The National Synchrotron Light Source II (NSLS-II) is a 3 GeV electron X-ray user facility commissioned in 2014. The storage ring RF system, essential for replenishing energy loss per turn of the electrons, consists of digital low level RF controllers, 310 kW CW klystron transmitters, CESR-B type superconducting cavities, as well as a supporting cryogenic system. Here we will report on RF commissioning and early operation experience of the system for beam current up to 200mA.

  11. ISR RF cavities

    CERN Multimedia

    1983-01-01

    In each ISR ring the radiofrequency cavities were installed in one 9 m long straight section. The RF system of the ISR had the main purpose to stack buckets of particles (most of the time protons)coming from the CPS and also to accelerate the stacked beam. The installed RF power per ring was 18 kW giving a peak accelerating voltage of 20 kV. The system had a very fine regulation feature allowing to lower the voltage down to 75 V in a smooth and well controlled fashion.

  12. Theory of superconductivity

    CERN Document Server

    Crisan, Mircea

    1989-01-01

    This book discusses the most important aspects of the theory. The phenomenological model is followed by the microscopic theory of superconductivity, in which modern formalism of the many-body theory is used to treat most important problems such as superconducting alloys, coexistence of superconductivity with the magnetic order, and superconductivity in quasi-one-dimensional systems. It concludes with a discussion on models for exotic and high temperature superconductivity. Its main aim is to review, as complete as possible, the theory of superconductivity from classical models and methods up t

  13. Rf2a and rf2b transcription factors

    Science.gov (United States)

    Beachy, Roger N.; Petruccelli, Silvana; Dai, Shunhong

    2007-10-02

    A method of activating the rice tungro bacilliform virus (RTBV) promoter in vivo is disclosed. The RTBV promoter is activated by exposure to at least one protein selected from the group consisting of Rf2a and Rf2b.

  14. Resource Allocation in Wireless Networks with RF Energy Harvesting and Transfer

    OpenAIRE

    Lu, Xiao; Wang,Ping; Niyato, Dusit; Han, Zhu

    2014-01-01

    Radio frequency (RF) energy harvesting and transfer techniques have recently become alternative methods to power the next generation of wireless networks. As this emerging technology enables proactive replenishment of wireless devices, it is advantageous in supporting applications with quality-of-service (QoS) requirement. This article focuses on the resource allocation issues in wireless networks with RF energy harvesting capability, referred to as RF energy harvesting networks (RF-EHNs). Fi...

  15. Downsized superconducting magnetic energy storage systems

    Science.gov (United States)

    Palmer, David N.

    Scaled-down superconductive magnetic energy storage systems (DSMES) and superconductive magnetic energy power sources (SMEPS) are proposed for residential, commercial/retail, industrial off-peak and critical services, telephone and other communication systems, computer operations, power back-up/energy storages, power sources for space stations, and in-field military logistics/communication systems. Recent advances in high-Tc superconducting materials technology are analyzed. DSMES/SMEPS concepts are presented, and design, materials, and systems requirements are discussed. Problems ar identified, and possible solutions are offered. Comparisons are made with mechanical and primary and secondary energy storage and conversion systems.

  16. CRADA Final Report, 2011S003, Faraday Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Faraday Technologies

    2012-12-12

    This Phase I SBIR program addressed the need for an improved manufacturing process for electropolishing niobium RF superconducting cavities for the International Linear Collider (ILC). The ILC is a proposed particle accelerator that will be used to gain a deeper understanding of the forces of energy and matter by colliding beams of electrons and positrons at nearly the speed of light. The energy required for this to happen will be achieved through the use of advanced superconducting technology, specifically ~16,000 RF superconducting cavities operating at near absolute zero. The RF superconductor cavities will be fabricated from highly pure Nb, which has an extremely low surface resistance at 2 Kelvin when compared to other materials. To take full advantage of the superconducting properties of the Nb cavities, the inner surface must be a) polished to a microscale roughness < 0.1 µm with removal of at least 100 µm of material, and b) cleaned to be free of impurities that would degrade performance of the ILC. State-of-the-art polishing uses either chemical polishing or electropolishing, both of which require hydrofluoric acid to achieve breakdown of the strong passive film on the surface. In this Phase I program, Faraday worked with its collaborators at the Thomas Jefferson National Accelerator Facility (JLab) to demonstrate the feasibility of an electropolishing process for pure niobium, utilizing an environmentally benign alternative to chemical or electrochemical polishing electrolytes containing hydrofluoric acid. Faraday utilized a 31 wt% aqueous sulfuric acid solution (devoid of hydrofluoric acid) in conjunction with the FARADAYICSM Process, which uses pulse/pulse reverse fields for electropolishing, to demonstrate the ability to electropolish niobium to the desired surface finish. The anticipated benefits of the FARADAYICSM Electropolishing process will be a simpler, safer, and less expensive method capable of surface finishing high purity niobium cavities

  17. A superconducting magnetic gear

    Science.gov (United States)

    Campbell, A. M.

    2016-05-01

    A comparison is made between a magnetic gear using permanent magnets and superconductors. The objective is to see if there are any fundamental reasons why superconducting magnets should not provide higher power densities than permanent magnets. The gear is based on the variable permeability design of Attilah and Howe (2001 IEEE Trans. Magn. 37 2844-46) in which a ring of permanent magnets surrounding a ring of permeable pole pieces with a different spacing gives an internal field component at the beat frequency. Superconductors can provide much larger fields and forces but will saturate the pole pieces. However the gear mechanism still operates, but in a different way. The magnetisation of the pole pieces is now constant but rotates with angle at the beat frequency. The result is a cylindrical Halbach array which produces an internal field with the same symmetry as in the linear regime, but has an analytic solution. In this paper a typical gear system is analysed with finite elements using FlexPDE. It is shown that the gear can work well into the saturation regime and that the Halbach array gives a good approximation to the results. Replacing the permanent magnets with superconducting tapes can give large increases in torque density, and for something like a wind turbine a combined gear and generator is possible. However there are major practical problems. Perhaps the most fundamental is the large high frequency field which is inevitably present and which will cause AC losses. Also large magnetic fields are required, with all the practical problems of high field superconducting magnets in rotating machines. Nevertheless there are ways of mitigating these difficulties and it seems worthwhile to explore the possibilities of this technology further.

  18. A high gradient test of a single-cell superconducting radio frequency cavity with a feedback waveguide

    Science.gov (United States)

    Kostin, Roman; Avrakhov, Pavel; Kanareykin, Alexei; Solyak, Nikolay; Yakovlev, Vyacheslav; Kazakov, Sergey; Wu, Genfa; Khabiboulline, Timergali; Rowe, Allan; Rathke, John

    2015-09-01

    The most severe problem of the international linear collider (ILC-type) is its high cost, resulting in part from the enormous length of the collider. This length is determined mainly by the achievable accelerating gradient in the RF system of the collider. In current technology, the maximum acceleration gradient in superconducting (SC) structures is determined mainly by the value of the surface RF magnetic field. In order to increase the gradient, a superconducting traveling wave accelerating (STWA) structure is suggested. Utilization of STWA structure with small phase advance per cell for future high energy linear colliders such as ILCs may provide an accelerating gradient 1.2-1.4 times larger [1] than a standing wave structure. However, STWA structure requires a feedback waveguide for power redirecting from the end of the structure back to the front end of accelerating structure. Recent tests of a 1.3 GHz model of a single-cell cavity with waveguide feedback demonstrated an accelerating gradient comparable to the gradient of a single-cell ILC-type cavity from the same manufacturer [2]. In the present paper, high gradient test results are presented.

  19. Status of the CERN-Karlsruhe superconducting RF particle separator

    CERN Document Server

    Bauer, W; Dammertz, G; Grundner, M; Husson, L; Lengeler, H; Rathgeber, E

    1975-01-01

    Measurements of single cavity sections and of two joined sections are reported. The problem of storing heat treated sections until final assembly has been investigated. Flooding a cavity at room temperature with nitrogen deteriorates its performance, after the cavity was once excited to a peak electric field of 30 MV/m, corresponding to a peak magnetic field of 850 G and a deflecting field of 5.5 Mv/m. This effect is assumed to be due to a sensibilization of the surface oxides by field emission electrons. The effect is not observed after an electric field of up to 15 MV/m and it also does not appear when the cavity is flooded with argon. (14 refs).

  20. State of the Art Power Couplers for Superconducting RF Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Isidoro Campisi

    2002-08-01

    Simulations are now routinely performed that allow the prediction of electromagnetic, multipacting, thermal, and mechanical properties of couplers. From these studies, better designs have been conceived which can minimize potential problems ahead of construction. Judicious use of materials and the implementation of clean practices and of careful conditioning have gradually increased the power levels at which couplers can safely operate. Machine operation at hundreds of kilowatts has been achieved in CW at KEK and Cornell, and in a pulsed mode at the TESLA Test Facility (TTF). Test stand operations in CW at the megawatt level (Accelerator for the Production of Tritium) and in pulse mode at a peak power of 2 MW (Spallation Neutron Source, TTF version II) have been achieved. The recent progress indicates that the understanding of the behavior of fundamental power couplers is rapidly increasing and that optimal designs are being developed which will allow in the future to attain routine attainment of the megawatt power levels necessary for high-beam-power machines under construction and under study.

  1. Non-destructive testing (NDT) of metal cracks using a high Tc rf-SQUID and eddy current method

    Energy Technology Data Exchange (ETDEWEB)

    Lu, D.F.; Fan, C.; Ruan, J.Z. [Midwest Superconductivity Inc., Lawrence, KS (United States)] [and others

    1994-12-31

    A SQUID is the most sensitive device to detect change in magnetic field. A non-destructive testing (NDT) device using high temperature SQUIDs and eddy current method will be much more sensitive than those currently used eddy current systems, yet much cheaper than one with low temperature SQUIDs. In this paper, we present our study of such a NDT device using a high temperature superconducting rf-SQUID as a gradiometer sensor. The result clearly demonstrates the expected sensitivity of the system, and indicates the feasibility of building a portable HTS SQUID NDT device with the help from cryocooler industry. Such a NDT device will have a significant impact on metal corrosion or crack detection technology.

  2. ZGS roots of superconductivity: People and devices

    Energy Technology Data Exchange (ETDEWEB)

    Pewitt, E.G.

    1994-12-31

    The ZGS community made basic contributions to the applications of superconducting magnets to high energy physics as well as to other technological areas. ZGS personnel pioneered many significant applications until the time the ZGS was shutdown in 1979. After the shutdown, former ZGS personnel developed magnets for new applications in high energy physics, fusion, and industrial uses. The list of superconducting magnet accomplishments of ZGS personnel is impressive.

  3. Case Studies on Superconducting Magnets for Particle Accelerators

    CERN Document Server

    Ferracin, P

    2014-01-01

    During the CERN Accelerator School 'Superconductivity for accelerators', the students were divided into 18 groups, and 6 different exercises (case studies), involving the design and analysis of superconducting magnets and RF cavities, were assigned. The problems covered a broad spectrum of topics, from properties of superconducting materials to operation conditions and general dimensions of components. The work carried out by the students turned out to be an extremely useful opportunity to review the material explained during the lectures, to become familiar with the orders of magnitude of the key parameters, and to understand and compare different design options. We provide in this paper a summary of the activities related to the case studies on superconducting magnets and present the main outcomes.

  4. Remote RF Battery Charging

    NARCIS (Netherlands)

    Visser, H.J.; Pop, V.; Op het Veld, J.H.G.; Vullers, R.J.M.

    2011-01-01

    The design of a remote RF battery charger is discussed through the analysis and design of the subsystems of a rectenna (rectifying antenna): antenna, rectifying circuit and loaded DC-to-DC voltage (buck-boost) converter. Optimum system power generation performance is obtained by adopting a system in

  5. Design of a superconducting beam transport channel and beam dynamics for a strong-focusing cyclotron

    Science.gov (United States)

    Badgley, Karie Elizabeth

    There is an increasing interest in high power proton accelerators for use as neutron and muon sources, accelerator driven systems (ADS) for nuclear waste transmutation, high energy physics, medical physics, nuclear physics, and medical isotope production. Accelerating high current beams has a number of challenges; including avoiding harmful resonance crossing, space charge effects and, specific to cyclotrons, sufficient turn separation at injection and extraction. The Accelerator Research Laboratory at Texas A&M University is developing a high-power strong-focusing cyclotron with two main technologies to overcome these challenges. The first is a superconducting RF cavity to provide the energy gain required for fully separated turns. The second is the use of superconducting beam transport channels within the sectors of the cyclotron to provide strong-focusing with alternating focusing and defocusing quadrupoles. A method has been developed to find the equilibrium spiral orbit through the cyclotron which maintains isochronicity. The isochronous spiral orbit was then used to perform full linear optics calculations. The strengths of the quadrupoles were adjusted to hold the horizontal and vertical betatron tunes constant per turn to avoid resonance crossing. Particle tracking was performed with a modified MAD-X-PTC code and Synergia to provide a framework for future space charge studies. Magnetic modeling was performed on a 2D cross section of the beam transport channel. The wire locations were adjusted to reduce the higher order multipoles and a good field region was obtained at 70% of the beam pipe aperture with multipoles less than 10-4 . The 2D model was also used to determine the required current density needed to produce the quadrupole gradients. MgB2 superconducting wire was chosen as it meets all the field and current requirements and can operate at a reduced cryogenic cost. A winding mandrel was also designed and fabricated which minimized the bend radius for

  6. Dual-frequency eddy-current NDE based on high-T{sub c} rf SQUID

    Energy Technology Data Exchange (ETDEWEB)

    He, D.F.; Yoshizawa, M

    2002-12-15

    We developed a dual-frequency eddy-current NDE system based on High-T{sub c} RF superconducting quantum interference devices. This method could be used to decrease the unwanted signals caused by the variance of lift-off, to estimate the depth of crack flaw or to detect the thickness of metal structures by choosing appropriate excitation frequencies.

  7. A YBCO RF-squid variable temperature susceptometer and its applications

    Science.gov (United States)

    Zhou, Luwei; Qiu, Jinwu; Zhang, Xianfeng; Tang, Zhimin; Cai, Yimin; Qian, Yongjia

    1991-01-01

    The Superconducting QUantum Interference Device (SQUID) susceptibility using a high-temperature radio-frequency (rf) SQUID and a normal metal pick-up coil is employed in testing weak magnetization of the sample. The magnetic moment resolution of the device is 1 x 10(exp -6) emu, and that of the susceptibility is 5 x 10(exp -6) emu/cu cm.

  8. Continuous wave superconducting radio frequency electron linac for nuclear physics research

    Science.gov (United States)

    Reece, Charles E.

    2016-12-01

    CEBAF, the Continuous Electron Beam Accelerator Facility, has been actively serving the nuclear physics research community as a unique forefront international resource since 1995. This cw electron linear accelerator (linac) at the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility (Jefferson Lab) has continued to evolve as a precision tool for discerning the structure and dynamics within nuclei. Superconducting rf (SRF) technology has been the essential foundation for CEBAF, first as a 4 GeV machine, then 6 GeV, and currently capable of 12 GeV. We review the development, implementation, and performance of SRF systems for CEBAF from its early beginnings to the commissioning of the 12 GeV era.

  9. High Power RF Test Facility at the SNS

    CERN Document Server

    Kang, Yoon W; Campisi, Isidoro E; Champion, Mark; Crofford, Mark; Davis, Kirk; Drury, Michael A; Fuja, Ray E; Gurd, Pamela; Kasemir, Kay-Uwe; McCarthy, Michael P; Powers, Tom; Shajedul Hasan, S M; Stirbet, Mircea; Stout, Daniel; Tang, Johnny Y; Vassioutchenko, Alexandre V; Wezensky, Mark

    2005-01-01

    RF Test Facility has been completed in the SNS project at ORNL to support test and conditioning operation of RF subsystems and components. The system consists of two transmitters for two klystrons powered by a common high voltage pulsed converter modulator that can provide power to two independent RF systems. The waveguides are configured with WR2100 and WR1150 sizes for presently used frequencies: 402.5 MHz and 805 MHz. Both 402.5 MHz and 805 MHz systems have circulator protected klystrons that can be powered by the modulator capable of delivering 11 MW peak and 1 MW average power. The facility has been equipped with computer control for various RF processing and complete dual frequency operation. More than forty 805 MHz fundamental power couplers for the SNS superconducting linac (SCL) cavitites have been RF conditioned in this facility. The facility provides more than 1000 ft2 floor area for various test setups. The facility also has a shielded cave area that can support high power tests of normal conducti...

  10. DC SQUID RF magnetometer with 200 MHz bandwidth

    Science.gov (United States)

    Talanov, Vladimir; Lettsome, Nesco; Orozco, Antonio; Cawthorne, Alfred; Borzenets, Valery

    2012-02-01

    Because of periodic flux-to-voltage transfer function, Superconducting QUantum Interference Device (SQUID) magnetometers operate in a closed-loop regime [1], which linearizes the response, and increases the dynamic range and sensitivity. However, a transmission line delay between the SQUID and electronics fundamentally limits the closed-loop bandwidth at 20 MHz [1], although the intrinsic bandwidth of SQUIDs is in gigahertz range. We designed a DC SQUID based RF magnetometer capable of wideband sensing coherent magnetic fields up to 200 MHz. To overcome the closed-loop bandwidth limitation, we utilized a low-frequency flux-modulated closed-loop to simultaneously lock the quasi-static magnetic flux and provide AC bias for the RF flux. The SQUID RF voltage is processed by RF electronics based on a double lock-in technique. This yields a signal proportional to the amplitude and phase of the RF magnetic flux, with more than four decades of a linear response. For YBaCuO SQUID on bi-crystal SrTiO substrate at 77 K we achieved a flux noise density of 4 μφ0/Hz at 190 MHz, which is similar to that measured at kHz frequencies with conventional flux-locked loop. [1] D. Drung, et al., Supercond. Sci. Technol. 19, S235 (2006).

  11. 805 MHz and 201 MHz RF cavity development for MUCOOL

    Energy Technology Data Exchange (ETDEWEB)

    Li, Derun [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Corlett, J [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Ladran, A [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); MacGill, R [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Wallig, J [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Zisman, M [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Moretti, A [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Rowe, A [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Qian, Z B [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Wu, V [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Rimmer, R A [Jefferson Lab, Newport News, VA 23606 (United States); Norem, J [Argonne National Laboratory, Argonne, IL 60439 (United States); Summers, D [University of Mississippi at Oxford, MS 38677 (United States); Torun, Y [Illinois Institute of Technology, Chicago, IL 60616 (United States)

    2003-08-01

    A muon cooling channel calls for very high accelerating gradient RF structures to restore the energy lost by muons in the absorbers. The RF structures have to be operated in a strong magnetic field and thus the use of superconducting RF cavities is excluded. To achieve a high shunt impedance while maintaining a large enough aperture to accommodate a large transverse emittance muon beam, the cavity design adopted is a pillbox-like geometry with thin Be foils to terminate the electromagnetic field at the cavity iris. The possibility of using grids of thin-walled metallic tubes for the termination is also being explored. Many of the RF-related issues for muon cooling channels are being studied both theoretically and experimentally using an 805 MHz cavity that has a pillbox-like geometry with thin Be windows to terminate the cavity aperture. The design and performance of this cavity are reported here. High-power RF tests of the 805 MHz cavity are in progress at Lab G in Fermilab. The cavity has exceeded its design gradient of 30 MV m{sup -1}, reaching 34 MV m{sup -1} without external magnetic field. No surface damage was observed at this gradient. The cavity is currently under conditioning at Lab G with an external magnetic field of 2.5 T. We also present here a 201 MHz cavity design for muon cooling channels. The proposed cavity design is also suitable for use in a proof-of-principle muon ionization cooling experiment.

  12. 805 MHz and 201 MHz RF cavity development for MUCOOL

    Energy Technology Data Exchange (ETDEWEB)

    Li, Derun; Corlett, J.; Ladran, Tony; MacGill, R.; Wallig, J.; S. Zisman, Michael; Moretti, Alfred; Rowe, A; Qian, Zubao; Wu, Vincent; Rimmer, Robert; Norem, J.; Norem, Jim; Summers, Donald; Torun, Yagmur

    2003-08-01

    A muon cooling channel calls for very high accelerating gradient RF structures to restore the energy lost by muons in the absorbers. The RF structures have to be operated in a strong magnetic field and thus the use of superconducting RF cavities is excluded. To achieve a high shunt impedance while maintaining a large enough aperture to accommodate a large transverse emittance muon beam, the cavity design adopted is a pillbox-like geometry with thin Be foils to terminate the electromagnetic field at the cavity iris. The possibility of using grids of thin-walled metallic tubes for the termination is also being explored. Many of the RF-related issues for muon cooling channels are being studied both theoretically and experimentally using an 805 MHz cavity that has a pillbox-like geometry with thin Be windows to terminate the cavity aperture. The design and performance of this cavity are reported here. High-power RF tests of the 805 MHz cavity are in progress at Lab G in Fermilab. The cavit

  13. Sources of Emittance in RF Photocathode Injectors

    Energy Technology Data Exchange (ETDEWEB)

    Dowell, David [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2016-12-11

    Advances in electron beam technology have been central to creating the current generation of x-ray free electron lasers and ultra-fast electron microscopes. These once exotic devices have become essential tools for basic research and applied science. One important beam technology for both is the electron source which, for many of these instruments, is the photocathode RF gun. The invention of the photocathode gun and the concepts of emittance compensation and beam matching in the presence of space charge and RF forces have made these high-quality beams possible. Achieving even brighter beams requires a taking a finer resolution view of the electron dynamics near the cathode during photoemission and the initial acceleration of the beam. In addition, the high brightness beam is more sensitive to degradation by the optical aberrations of the gun’s RF and magnetic lenses. This paper discusses these topics including the beam properties due to fundamental photoemission physics, space charge effects close to the cathode, and optical distortions introduced by the RF and solenoid fields. Analytic relations for these phenomena are derived and compared with numerical simulations.

  14. Simple Superconducting "Permanent" Electromagnet

    Science.gov (United States)

    Israelson, Ulf E.; Strayer, Donald M.

    1992-01-01

    Proposed short tube of high-temperature-superconducting material like YBa2Cu3O7 acts as strong electromagnet that flows as long as magnetic field remains below critical value and temperature of cylinder maintained sufficiently below superconducting-transition temperature. Design exploits maximally anisotropy of high-temperature-superconducting material.

  15. Basic principle of superconductivity

    OpenAIRE

    De Cao, Tian

    2007-01-01

    The basic principle of superconductivity is suggested in this paper. There have been two vital wrong suggestions on the basic principle, one is the relation between superconductivity and the Bose-Einstein condensation (BEC), and another is the relation between superconductivity and pseudogap.

  16. Design of Tunable Superconducting Metamaterials

    Science.gov (United States)

    Trepanier, Melissa; Zhang, Daimeng; Anlage, Steven

    2013-03-01

    Our goal is to create a superconducting metamaterial utilizing deep sub-wavelength meta-atoms with a quickly-tunable index of refraction. To accomplish this we will combine two different materials: an array of rf SQUIDs (with tunable effective permeability) and an array of thin wires interrupted by Josephson junctions (with tunable effective permittivity). These materials have been designed to maximize tunablility in the range easily measured via X-band, Ku-band, and K-band waveguides. Various sizes of rf SQUIDs were designed to be non-hysteretic, be sufficiently insensitive to noise, and to have resonant frequencies ranging from 6.5 - 22 GHz. The wire array was designed so that the inductance of the Josephson junctions can completely cancel the geometric and kinetic inductance of the wires, giving rise to strong tunability. We will present the design considerations and simulation results for this new class of metamaterials. This work is supported by the NSF-GOALI program through grant # ECCS-1158644, and CNAM.

  17. Reconfigurable transceiver architecture for multiband RF-frontends

    CERN Document Server

    Gonzalez Rodriguez, Erick

    2016-01-01

      This book investigates and discusses the hardware design and implementation to achieve smart air interfaces with a reduced number of Radio Frequency (RF) transmitter and receiver chains, or even with a single reconfigurable RF-Frontend in the user terminal. Various hardware challenges are identified and addressed to enable the implementation of autonomous reconfigurable RF-Frontend architectures. Such challenges are (i) the conception of a transceiver with wide tuning range of at least up to 6 GHz, (ii) the system integration of reconfigurable technologies targeting current compact devices that demand voltages up to 100 V for adaptive controlling and (iii) the realization of a multiband and multistandard antenna module employing agile components to provide flexible frequency coverage. A solid design of a reconfigurable frontend is proposed from the RF part to the digital baseband. The system integration of different components in the reconfigurable RF-Frontend of a portable-oriented device architecture is ...

  18. Enhanced superconductivity of fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Washington, II, Aaron L.; Teprovich, Joseph A.; Zidan, Ragaiy

    2017-06-20

    Methods for enhancing characteristics of superconductive fullerenes and devices incorporating the fullerenes are disclosed. Enhancements can include increase in the critical transition temperature at a constant magnetic field; the existence of a superconducting hysteresis over a changing magnetic field; a decrease in the stabilizing magnetic field required for the onset of superconductivity; and/or an increase in the stability of superconductivity over a large magnetic field. The enhancements can be brought about by transmitting electromagnetic radiation to the superconductive fullerene such that the electromagnetic radiation impinges on the fullerene with an energy that is greater than the band gap of the fullerene.

  19. Superconducting material development

    Science.gov (United States)

    1987-09-01

    A superconducting compound was developed that showed a transition to a zero-resistance state at 65 C, or 338 K. The superconducting material, which is an oxide based on strontium, barium, yttrium, and copper, continued in the zero-resistance state similar to superconductivity for 10 days at room temperature in the air. It was also noted that measurements of the material allowed it to observe a nonlinear characteristic curve between current and voltage at 65 C, which is another indication of superconductivity. The research results of the laboratory experiment with the superconducting material will be published in the August edition of the Japanese Journal of Applied Physics.

  20. Protective link for superconducting coil

    Science.gov (United States)

    Umans, Stephen D.

    2009-12-08

    A superconducting coil system includes a superconducting coil and a protective link of superconducting material coupled to the superconducting coil. A rotating machine includes first and second coils and a protective link of superconducting material. The second coil is operable to rotate with respect to the first coil. One of the first and second coils is a superconducting coil. The protective link is coupled to the superconducting coil.

  1. RF Power Amplifier Analysis

    Directory of Open Access Journals (Sweden)

    M. Lokay

    1993-04-01

    Full Text Available The special program is presented for the demonstration of RF power transistor amplifiers for the purposes of the high-school education in courses of radio transmitters. The program is written in Turbo Pascal 6. 0 and enables to study the waveforms in selected points of the amplifier and to draw the trajectories of the working point in a plot of output transistor characteristics.

  2. RF Pulsed Heating

    Energy Technology Data Exchange (ETDEWEB)

    Pritzkau, David P.

    2002-01-03

    RF pulsed heating is a process by which a metal is heated from magnetic fields on its surface due to high-power pulsed RF. When the thermal stresses induced are larger than the elastic limit, microcracks and surface roughening will occur due to cyclic fatigue. Pulsed heating limits the maximum magnetic field on the surface and through it the maximum achievable accelerating gradient in a normal conducting accelerator structure. An experiment using circularly cylindrical cavities operating in the TE{sub 011} mode at a resonant frequency of 11.424 GHz is designed to study pulsed heating on OFE copper, a material commonly used in normal conducting accelerator structures. The high-power pulsed RF is supplied by an X-band klystron capable of outputting 50 MW, 1.5 {micro}s pulses. The test pieces of the cavity are designed to be removable to allow testing of different materials with different surface preparations. A diagnostic tool is developed to measure the temperature rise in the cavity utilizing the dynamic Q change of the resonant mode due to heating. The diagnostic consists of simultaneously exciting a TE{sub 012} mode to steady-state in the cavity at 18 GHz and measuring the change in reflected power as the cavity is heated from high-power pulsed RF. Two experimental runs were completed. One run was executed at a calculated temperature rise of 120 K for 56 x 10{sup 6} pulses. The second run was executed at a calculated temperature rise of 82 K for 86 x 10{sup 6} pulses. Scanning electron microscope pictures show extensive damage occurring in the region of maximum temperature rise on the surface of the test pieces.

  3. Superconductivity in transition metals.

    Science.gov (United States)

    Slocombe, Daniel R; Kuznetsov, Vladimir L; Grochala, Wojciech; Williams, Robert J P; Edwards, Peter P

    2015-03-13

    A qualitative account of the occurrence and magnitude of superconductivity in the transition metals is presented, with a primary emphasis on elements of the first row. Correlations of the important parameters of the Bardeen-Cooper-Schrieffer theory of superconductivity are highlighted with respect to the number of d-shell electrons per atom of the transition elements. The relation between the systematics of superconductivity in the transition metals and the periodic table high-lights the importance of short-range or chemical bonding on the remarkable natural phenomenon of superconductivity in the chemical elements. A relationship between superconductivity and lattice instability appears naturally as a balance and competition between localized covalent bonding and so-called broken covalency, which favours d-electron delocalization and superconductivity. In this manner, the systematics of superconductivity and various other physical properties of the transition elements are related and unified.

  4. RF Based Spy

    Directory of Open Access Journals (Sweden)

    Robot Prerna Jain

    2014-04-01

    Full Text Available The intention of this paper is to reduce human victims in terrorist attack such as 26/11. So this problem can be overcome by designing the RF based spy robot which involves wireless camera. so that from this we can examine rivals when it required. This robot can quietly enter into enemy area and sends us the information via wireless camera. On the other hand one more feature is added in this robot that is colour sensor. Colour sensor senses the colour of surface and according to that robot will change its colour. Because of this feature this robot can’t easily detected by enemies. The movement of this robot is wirelessly controlled by a hand held RF transmitter to send commands to the RF receiver mounted on the moving robot. Since human life is always Valueable, these robots are the substitution of soldiers in war areas. This spy robot can also be used in star hotels, shopping malls, jewelry show rooms, etc where there can be threat from intruders or terrorists.

  5. Cognitive Radio RF: Overview and Challenges

    Directory of Open Access Journals (Sweden)

    Van Tam Nguyen

    2012-01-01

    Full Text Available Cognitive radio system (CRS is a radio system which is aware of its operational and geographical environment, established policies, and its internal state. It is able to dynamically and autonomously adapt its operational parameters and protocols and to learn from its previous experience. Based on software-defined radio (SDR, CRS provides additional flexibility and offers improved efficiency to overall spectrum use. CRS is a disruptive technology targeting very high spectral efficiency. This paper presents an overview and challenges of CRS with focus on radio frequency (RF section. We summarize the status of the related regulation and standardization activities which are very important for the success of any emerging technology. We point out some key research challenges, especially implementation challenges of cognitive radio (CR. A particular focus is on RF front-end, transceiver, and analog-to-digital and digital-to-analog interfaces which are still a key bottleneck in CRS development.

  6. Superconducting tunnel junctions as direct detectors for submillimeter astronomy

    Science.gov (United States)

    Teufel, John Daniel

    This thesis presents measurements on the of performance of superconducting tunnel junctions (STJ) as direct detectors for submillimeter radiation. Over the past several decades, STJ's have been successfully implemented as energy-resolving detectors of X-ray and optical photons. This work extends their application to ultra-sensitive direct detection of photons near 100 GHz. The focus of this research is to integrate the detector with a readout that is sensitive, fast, and able to be scaled for use in large format arrays. We demonstrate the performance of a radio frequency single electron transistor (RF-SET) configured as a transimpedance current amplifier as one such readout. Unlike traditional semiconductor amplifiers, the RF-SET is compatible with cryogenic operation and naturally lends itself to frequency domain multiplexing. This research progressed to the invention of RF-STJ, whereby the same RF reflectometry as used in the RF-SET is applied directly to the detector junction. This results in a greatly simplified design that preserves many of the advantages of the RF-SET while achieving comparable sensitivity. These experiments culminate in calibration of the detector with an on-chip, mesoscopic noise source. Millimeter wave Johnson noise from a gold microbridge illuminates the detector in situ. This allows for direct measurement of the "optical" properties of the detector and its RF readout, including the response time, responsivity and sensitivity.

  7. Technology of superconducting accelerator dipoles

    Energy Technology Data Exchange (ETDEWEB)

    Hassenzahl, W.V.; Meuser, R.B.; Taylor, C.

    1983-06-01

    We discuss accelerator dipoles and their characteristics. Other types of magnets, in particular bubble chamber magnets have been quite successful. Their performance is based on cryogenic stability which is addressed only briefly in this chapter. This type of stability is not available to the accelerator designer because of the large quantities of copper or other stabilizer that would reduce the current density in the windings to an unacceptably low value.

  8. Superconducting Radiofrequency (SRF) Acceleration Technology

    Data.gov (United States)

    Federal Laboratory Consortium — SRF cavities enable accelerators to increase particle beam energy levels while minimizing the use of electrical power by all but eliminating electrical resistance....

  9. Development of 1.3GHz high-Tc rf SQUID

    Institute of Scientific and Technical Information of China (English)

    Liu Xin-Yuan; Xie Fei-Xiang; Meng Shu-Chao; Dai Yuan-Dong; Li Zhuang-Zhi; Ma Ping; Yang Tao; Nie Rui-Juan; Wang Fu-Ren

    2004-01-01

    @@ A new high-Tc (HTc) rf SQUID working at around 1.3GHz has been developed to avoid electromagnetic interference such as growing mobile communication jamming. This new system works in a frequency range from 1.23 to 1.42GHz (centred at 1.3GHz), which is not occupied by commercial communication. The sensor used in the 1.3GHz rf SQUID is made of a HTc coplanar superconducting resonator and a large-area HTc superconducting film concentrator. We have achieved in the 1.3GHz HTc rf SQUID system a minimal flux noise of 2.5×10-5φ0/√Hz and a magnetic field sensitivity of 38fT/√Hz in white noise range, respectively. The effective area of the concentrator fabricated on a 15×15mm2 substrate is 1.35mm2. It is shown that the 1.3GHz rf SQUID system has a high field sensitivity. Design and implementation of 1.3GHz HTc rf SQUID offers a promising direction of rf SQUID development for higher working frequency ranges.

  10. A superconducting large-angle magnetic suspension

    Science.gov (United States)

    Downer, James R.; Anastas, George V., Jr.; Bushko, Dariusz A.; Flynn, Frederick J.; Goldie, James H.; Gondhalekar, Vijay; Hawkey, Timothy J.; Hockney, Richard L.; Torti, Richard P.

    1992-01-01

    SatCon Technology Corporation has completed a Small Business Innovation Research (SBIR) Phase 2 program to develop a Superconducting Large-Angle Magnetic Suspension (LAMS) for the NASA Langley Research Center. The Superconducting LAMS was a hardware demonstration of the control technology required to develop an advanced momentum exchange effector. The Phase 2 research was directed toward the demonstration for the key technology required for the advanced concept CMG, the controller. The Phase 2 hardware consists of a superconducting solenoid ('source coils') suspended within an array of nonsuperconducting coils ('control coils'), a five-degree-of-freedom positioning sensing system, switching power amplifiers, and a digital control system. The results demonstrated the feasibility of suspending the source coil. Gimballing (pointing the axis of the source coil) was demonstrated over a limited range. With further development of the rotation sensing system, enhanced angular freedom should be possible.

  11. 1.5 MW RF Load for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Ives, Robert Lawrence [Calabazas Creek Research, Inc., San Mateo, CA (United States); Marsden, David [Calabazas Creek Research, Inc., San Mateo, CA (United States); Collins, George [Calabazas Creek Research, Inc., San Mateo, CA (United States); Karimov, Rasul [Calabazas Creek Research, Inc., San Mateo, CA (United States); Mizuhara, Max [Calabazas Creek Research, Inc., San Mateo, CA (United States); Neilson, Jeffrey [Lexam Research, Redwood City, CA (United States)

    2016-09-01

    Calabazas Creek Research, Inc. developed a 1.5 MW RF load for the ITER fusion research facility currently under construction in France. This program leveraged technology developed in two previous SBIR programs that successfully developed high power RF loads for fusion research applications. This program specifically focused on modifications required by revised technical performance, materials, and assembly specification for ITER. This program implemented an innovative approach to actively distribute the RF power inside the load to avoid excessive heating or arcing associated with constructive interference. The new design implemented materials and assembly changes required to meet specifications. Critical components were built and successfully tested during the program.

  12. Reconfigurable RF Energy Harvester with Customized Differential PCB Antenna

    Directory of Open Access Journals (Sweden)

    Alessandro Bertacchini

    2015-11-01

    Full Text Available In this work, a Radio Frequency (RF Energy Harvester comprised of a differential Radio Frequency-to-Direct Current (RF-DC converter realized in ST130 nm Complementary Metal-Oxide-Semiconductor (CMOS technology and a customized broadband Printed Circuit Board (PCB antenna with inductive coupling feeding is presented. Experimental results show that the system can work with different carrier frequencies and thanks to its reconfigurable architecture the proposed converter is able to provide a regulated output voltage of 2 V over a 14 dB of RF input power range. The conversion efficiency of the whole system peaks at 18% under normal outdoor working conditions.

  13. Electrodeless lighting RF power source development. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-30

    An efficient, solid state RF power source has been developed on this NICE project for exciting low power electrodeless lamp bulbs. This project takes full advantage of concurrent advances in electrodeless lamp technology. Electrodeless lamp lighting systems utilizing the sulfur based bulb type developed by Fusion Lighting, Inc., is an emerging technology which is based on generating light in a confined plasma created and sustained by RF excitation. The bulb for such a lamp is filled with a particular element and inert gas at low pressure when cold. RF power from the RF source creates a plasma within the bulb which reaches temperatures approaching those of high pressure discharge lamp plasmas. At these temperatures the plasma radiates substantial visible light with a spectrum similar to sunlight.

  14. Cooling Technology of Rotor of High Temperature Superconducting Electrical Machines%高温超导电机转子冷却技术的研究

    Institute of Scientific and Technical Information of China (English)

    陈彪; 顾国彪

    2011-01-01

    Cooling technology of rotor is a key technology for high temperature superconducting electrical machines.Based on the theory of rotating piping flow and pool boiling,the heat transfer principles of cooling methods are proposed,which are including integrated rotating thermosyphon,distributed rotating thermosyphon,immersion cooling,layered open evaporative cooling,and rotating piping evaporative cooling,respectively.The temperature distributions of cooling methods of rotor section are simulated by ANSYS steady state model.An experimentally integrated test platform adaptable to five cooling methods is designed and built up.Experiments on characteristics of heat transfer and flow are investigated.The performances of five cooling methods were contrasted,and the results are that immersion cooling makes the best performance and the others are different with it.Moreover,the experimental results are compared with the simulated ones.It is verified that the simulations could match the experiments well.%本文针对高温超导电机关键技术之一的转子冷却技术,从旋转管道流动和池沸腾的基本理论出发,对现有的集中式旋转热管、浸泡式冷却方式和三种新型的冷却方式即:分布式旋转热管、分层开放式蒸发冷却和旋转管道蒸发冷却,总结并建立了分别适用于这些转子冷却方式的沸腾换热模型;另外对于旋转管道蒸发冷却的流体动力学问题,参照静止两相流流动阻力的计算模型来分析这种冷却方式的流动阻力。在模型计算、载荷和漏热等边界条件基础上,采用ANSYS温度场静态计算模块对各种冷却方式进行了仿真,得到各种工况的温度分布。建立了一台能实现五种高温超导电机冷却方式的综合性实验平台,对五种冷却方式进行了详细的换热和流动的实验研究,从温升和分布均匀度而言,浸泡式冷却的效果最好,其他几种方式次之。同时对比实验数据与仿真结果,

  15. EuCARD 2010 Accelerator Technology in Europe

    CERN Document Server

    Romaniuk, R S

    2010-01-01

    Accelerators are basic tools of the experimental physics of elementary particles, nuclear physics, light sources of the fourth generation. They are also used in myriad other applications in research, industry and medicine. For example, there are intensely developed transmutation techniques for nuclear waste from nuclear power and atomic industries. The European Union invests in the development of accelerator infrastructures inside the framework programs to build the European Research Area. The aim is to build new infrastructure, develop the existing, and generally make the infrastructure available to competent users. The paper summarizes the first year of activities of the EU FP7 Project Capacities EuCARD –European Coordination of Accelerator R&D. Several teams from this country participate actively in this project. The contribution from Polish research teams concerns: photonic and electronic measurement – control systems, RF-gun co-design, thin-film superconducting technology, superconducting transpo...

  16. Commissioning of two RF operation modes for RF negative ion source experimental setup at HUST

    Science.gov (United States)

    Li, D.; Chen, D.; Liu, K.; Zhao, P.; Zuo, C.; Wang, X.; Wang, H.; Zhang, L.

    2017-08-01

    An RF-driven negative ion source experimental setup, without a cesium oven and an extraction system, has been built at Huazhong University of Science and Technology (HUST). The working gas is hydrogen, and the typical operational gas pressure is 0.3 Pa. The RF generator is capable of delivering up to 20 kW at 0.9 - 1.1 MHz, and has two operation modes, the fixed-frequency mode and auto-tuning mode. In the fixed-frequency mode, it outputs a steady RF forward power (Pf) at a fixed frequency. In the auto-tuning mode, it adjusts the operating frequency to seek and track the minimum standing wave ratio (SWR) during plasma discharge. To achieve fast frequency tuning, the RF signal source adopts a direct digital synthesizer (DDS). To withstand high SWR during the discharge, a tetrode amplifier is chosen as the final stage amplifier. The trend of maximum power reflection coefficient |ρ|2 at plasma ignition is presented at the fixed frequency of 1.02 MHz with the Pf increasing from 5 kW to 20 kW, which shows the maximum |ρ|2 tends to be "steady" under high RF power. The experiments in auto-tuning mode fail due to over-current protection of screen grid. The possible reason is the relatively large equivalent anode impedance caused by the frequency tuning. The corresponding analysis and possible solution are presented.

  17. Electrostatic separation of superconducting particles from non-superconducting particles and improvement in fuel atomization by electrorheology

    Science.gov (United States)

    Chhabria, Deepika

    This thesis has two major topics: (1) Electrostatic Separation of Superconducting Particles from a Mixture of Non-Superconducting Particles. (2) Improvement in fuel atomization by Electrorheology. (1) Based on the basic science research, the interactions between electric field and superconductors, we have developed a new technology, which can separate superconducting granular particles from their mixture with non-superconducting particles. The electric-field induced formation of superconducting balls is important aspect of the interaction between superconducting particles and electric field. When the applied electric field exceeds a critical value, the induced positive surface energy on the superconducting particles forces them to aggregate into balls or cling to the electrodes. In fabrication of superconducting materials, especially HTSC materials, it is common to come across materials with multiple phases: some grains are in superconducting state while the others are not. Our technology is proven to be very useful in separating superconducting grains from the rest non-superconducting materials. To separate superconducting particles from normal conducting particles, we apply a suitable strong electric field. The superconducting particles cling to the electrodes, while normal conducting particles bounce between the electrodes. The superconducting particles could then be collected from the electrodes. To separate superconducting particles from insulating ones, we apply a moderate electric field to force insulating particles to the electrodes to form short chains while the superconducting particles are collected from the middle of capacitor. The importance of this technology is evidenced by the unsuccessful efforts to utilize the Meissner effect to separate superconducting particles from nonsuperconducting ones. Because the Meissner effect is proportional to the particle volume, it has been found that the Meissner effect is not useful when the superconducting

  18. Superconducting DC homopolar motors for ship propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Heiberger, M.; Reed, M.R.; Creedon, W.P.; O' Hea, B.J. [General Atomic (United States)

    2000-07-01

    Superconducting DC homopolar motors have undergone recent advances in technology, warranting serious consideration of their use for ship propulsion. Homopolar motor propulsion is now practical because of two key technology developments: cryogen-free superconducting refrigeration and high performance motor fiber brushes. These compact motors are ideal for podded applications, where reduced drag and fuel consumption are predicted. In addition, the simple DC motor controller is more efficient and reliable compared with AC motor controllers. Military ships also benefit from increased stealth implicit in homopolar DC excitation, which also allows the option for direct hull or pod mounting. (authors)

  19. Observation of spatio-temporal pattern in magnetised rf plasmas

    CERN Document Server

    Bandyopadhyay, P; Konopka, U; Morfill, G

    2016-01-01

    We address an experimental observation of pattern formation in a magnetised rf plasma. The experiments are carried out in a electrically grounded aluminium chamber which is housed inside a rotatable superconducting magnetic coil. The plasma is formed by applying a rf voltage in parallel plate electrodes in push-pull mode under the background of argon gas. The time evolution of plasma intensity shows that a homogeneous plasma breaks into several concentric radial spatiotemoral bright and dark rings. These rings propagate radially at considerably low pressure and a constant magnetic field. These patterns are observed to trap small dust particles/grains in their potential. Exploiting this property of the patterns, a novel technique to measure the electric field associated with the patterns is described. The resulting estimates of the corresponding field intensity are presented. At other specific discharge parameters the plasma shows a range of special type of characteristic structures observed in certain other c...

  20. SRF and RF systems for LEReC Linac

    Energy Technology Data Exchange (ETDEWEB)

    Belomestnykh, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); Ben-Zvi, I. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); Brutus, J. C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Fedotov, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); McIntyre, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Polizzo, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Smith, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Than, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tuozzolo, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Veshcherevich, V. [Cornell Univ., Ithaca, NY (United States); Wu, Q. [Brookhaven National Lab. (BNL), Upton, NY (United States); Xiao, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Xu, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zaltsman, A. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    The Low Energy RHIC electron Cooling (LEReC) is under development at BNL to improve RHIC luminosity at low energies. It will consist of a short electron linac and two cooling sections, one for blue and one for yellow rings. For the first stage of the project, LEReC-I, we will install a 704 MHz superconducting RF cavity and three normal conducting cavities operating at 9 MHz, 704 MHz and 2.1 GHz. The SRF cavity will boost the electron beam energy up to 2 MeV. The warm cavities will be used to correct the energy spread introduced in the SRF cavity. The paper describes layouts of the SRF and RF systems, their parameters and status.

  1. TRANSIENT BEAM LOADING EFFECTS IN RF SYSTEMS IN JLEIC

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haipeng [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Guo, Jiquan [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Rimmer, Robert A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Wang, Shaoheng [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-05-01

    The pulsed electron bunch trains generated from the Continuous Electron Beam Accelerator Facility (CEBAF) linac to inject into the proposed Jefferson Lab Electron Ion Collider (JLEIC) e-ring will produce transient beam loading effects in the Superconducting Radio Frequency (SRF) systems that, if not mitigated, could cause unacceptably large beam energy deviation in the injection capture, or exceed the energy acceptance of CEBAF’s recirculating arcs. In the electron storage ring, the beam abort or ion clearing gaps or uneven bucket filling can cause large beam phase transients in the (S)RF cavity control systems and even beam loss due to Robinson instability. We have first analysed the beam stability criteria in steady state and estimated the transient effect in Feedforward and Feedback RF controls. Initial analytical models for these effects are shown for the design of the JLEIC e-ring from 3GeV to 12GeV.

  2. Other RF power sources

    Energy Technology Data Exchange (ETDEWEB)

    Kurkin, G.Ya. [Budker Inst. of Nuclear Physics, Novosibirsk (Russian Federation)

    1999-09-01

    The main subjects discussed in this paper are as follows. Triode tube; main characteristics of the equivalent schematic of the amplifying stage. Requirements for operation of a triode stage loaded with an accelerating cavity. Influence of parameters of the output stage and transmission line length on the output impedance of RF system for the beam. Typical design of the power output stage. Magnetron, travelling-wave tube, principles of operation, main parameters. Magnetron loaded with a microtron cavity, methods of coupling, requirements for stable operation. Magnicon - BHF generator with a circular deflection of the electron beam, principle of operation, results of development. (author)

  3. SPS RF cavity

    CERN Multimedia

    1974-01-01

    The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. A power of up to 790 kW can be supplied to each giving a total accelerating voltage of about 8 MV. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities.

  4. Gradient limitations in room temperature and superconducting acceleration structures

    Energy Technology Data Exchange (ETDEWEB)

    Solyak, N.A.; /Fermilab

    2008-10-01

    Accelerating gradient is a key parameter of the accelerating structure in large linac facilities, like future Linear Collider. In room temperature accelerating structures the gradient is limited mostly by breakdown phenomena, caused by high surface electric fields or pulse surface heating. High power processing is a necessary procedure to clean surface and improve the gradient. In the best tested X-band structures the achieved gradient is exceed 100 MV/m in of {approx}200 ns pulses for breakdown rate of {approx} 10{sup -7}. Gradient limit depends on number of factors and no one theory which can explain all sets of experimental results and predict gradient in new accelerating structure. In paper we briefly overview the recent experimental results of breakdown studies, progress in understanding of gradient limitations and scaling laws. Although superconducting rf technology has been adopted throughout the world for ILC, it has frequently been difficult to reach the predicted performance in these structures due to a number of factors: multipactoring, field emission, Q-slope, thermal breakdown. In paper we are discussing all these phenomena and the ways to increase accelerating gradient in SC cavity, which are a part of worldwide R&D program.

  5. HIE-ISOLDE CRYO-MODULE Assembly - Superconducting Solenoid

    CERN Multimedia

    Leclercq, Yann

    2016-01-01

    Assembly of the cryo-module components in SM18 cleanroom. The superconducting solenoid (housed inside its helium vessel) is cleaned, prepared then installed on the supporting frame of the cryo-module and connected to the helium tank, prior to the assembly of the RF cavities on the structure. The completed first 2 cryo-modules installed inside the HIE-ISOLDE-LINAC ready for beam operation is also shown.

  6. Frontiers in Superconducting Materials

    CERN Document Server

    Narlikar, Anant V

    2005-01-01

    Frontiers in Superconducting Materials gives a state-of-the-art report of the most important topics of the current research in superconductive materials and related phenomena. It comprises 30 chapters written by renowned international experts in the field. It is of central interest to researchers and specialists in Physics and Materials Science, both in academic and industrial research, as well as advanced students. It also addresses electronic and electrical engineers. Even non-specialists interested in superconductivity might find some useful answers.

  7. Superconducting energy recovery linacs

    Science.gov (United States)

    Ben-Zvi, Ilan

    2016-10-01

    High-average-power and high-brightness electron beams from a combination of laser photocathode electron guns and a superconducting energy recovery linac (ERL) is an emerging accelerator science with applications in ERL light sources, high repetition rate free electron lasers , electron cooling, electron ion colliders and more. This paper reviews the accelerator physics issues of superconducting ERLs, discusses major subsystems and provides a few examples of superconducting ERLs.

  8. High-Temperature Superconductivity

    Science.gov (United States)

    Tanaka, Shoji

    2006-12-01

    A general review on high-temperature superconductivity was made. After prehistoric view and the process of discovery were stated, the special features of high-temperature superconductors were explained from the materials side and the physical properties side. The present status on applications of high-temperature superconductors were explained on superconducting tapes, electric power cables, magnets for maglev trains, electric motors, superconducting quantum interference device (SQUID) and single flux quantum (SFQ) devices and circuits.

  9. Meta-Atom Interactions and Coherent Response in rf SQUID Metamaterials

    Science.gov (United States)

    Trepanier, Melissa; Zhang, Daimeng; Mukhanov, Oleg; Jung, Philipp; Butz, Susanne; Koshelets, V. P.; Ustinov, Alexey; Anlage, Steven

    2015-03-01

    An rf SQUID (radio frequency superconducting quantum interference device) metamaterial can be modeled as an array of coupled nonlinear oscillators with resonant frequencies that are extremely tunable with temperature, dc magnetic field, and rf current. The metamaterial is driven by an external rf field and its response to that field defines its metamaterial characteristics. In the presence of disorder (nonuniform applied dc magnetic flux for instance) the SQUIDs may or may not oscillate coherently in response to the external rf field. Since we are interested in metamaterial applications, a strong coherent response is desirable. The coherence is affected by a variety of factors including flux uniformity, array size, degree of coupling, strength of the driving field, and uniformity in SQUID parameters. In this talk we will present experimental and simulation results exploring the effect of these parameters on coherence. This work is supported by the NSF-GOALI and OISE programs through Grant # ECCS-1158644, and CNAM.

  10. A New First-Principles Calculation of Field-Dependent RF Surface Impedance of BCS Superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Binping [Brookhaven National Laboratory, Upton, New York (United States); Reece, Charles E. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2014-02-01

    There is a need to understand the intrinsic limit of radiofrequency (RF) surface impedance that determines the performance of superconducting RF cavities in particle accelerators. Here we present a field-dependent derivation of Mattis-Bardeen theory of the RF surface impedance of BCS superconductors based on the shifted density of states resulting from coherently moving Cooper pairs. Our theoretical prediction of the effective BCS RF surface resistance (Rs) of niobium as a function of peak surface magnetic field amplitude agrees well with recently reported record low loss resonant cavity measurements from JLab and FNAL with carefully, yet differently, prepared niobium material. The surprising reduction in resistance with increasing field is explained to be an intrinsic effect.

  11. Fundamentals of Superconducting Nanoelectronics

    CERN Document Server

    Sidorenko, Anatolie

    2011-01-01

    This book demonstrates how the new phenomena in superconductivity on the nanometer scale (FFLO state, triplet superconductivity, Crossed Andreev Reflection, synchronized generation etc.) serve as the basis for the invention and development of novel nanoelectronic devices and systems. It demonstrates how rather complex ideas and theoretical models, like odd-pairing, non-uniform superconducting state, pi-shift etc., adequately describe the processes in real superconducting nanostructues and novel devices based on them. The book is useful for a broad audience of readers, researchers, engineers, P

  12. Superconductive imaging surface magnetometer

    Science.gov (United States)

    Overton, Jr., William C.; van Hulsteyn, David B.; Flynn, Edward R.

    1991-01-01

    An improved pick-up coil system for use with Superconducting Quantum Interference Device gradiometers and magnetometers involving the use of superconducting plates near conventional pick-up coil arrangements to provide imaging of nearby dipole sources and to deflect environmental magnetic noise away from the pick-up coils. This allows the practice of gradiometry and magnetometry in magnetically unshielded environments. One embodiment uses a hemispherically shaped superconducting plate with interior pick-up coils, allowing brain wave measurements to be made on human patients. another embodiment using flat superconducting plates could be used in non-destructive evaluation of materials.

  13. Superconducting optical modulator

    Science.gov (United States)

    Bunt, Patricia S.; Ference, Thomas G.; Puzey, Kenneth A.; Tanner, David B.; Tache, Nacira; Varhue, Walter J.

    2000-12-01

    An optical modulator based on the physical properties of high temperature superconductors has been fabricated and tested. The modulator was constructed form a film of Yttrium Barium Copper Oxide (YBCO) grown on undoped silicon with a buffer layer of Yttria Stabilized Zirconia. Standard lithographic procedures were used to pattern the superconducting film into a micro bridge. Optical modulation was achieved by passing IR light through the composite structure normal to the micro bridge and switching the superconducting film in the bridge region between the superconducting and non-superconducting states. In the superconducting state, IR light reflects from the superconducting film surface. When a critical current is passed through the micro bridge, it causes the film in this region to switch to the non-superconducting state allowing IR light to pass through it. Superconducting materials have the potential to switch between these two states at speeds up to 1 picosecond using electrical current. Presently, fiber optic transmission capacity is limited by the rate at which optical data can be modulated. The superconducting modulator, when combined with other components, may have the potential to increase the transmission capacity of fiber optic lines.

  14. Basic Study of Superconductive Actuator

    OpenAIRE

    涌井, 和也; 荻原, 宏康

    2000-01-01

    There are two kinds of electromagnetic propulsion ships : a superconductive electromagnetic propulsion ship and a superconductive electricity propulsion ship. A superconductive electromagnetic propulsion ship uses the electromagnetic force (Lorenz force) by the interaction between a magnetic field and a electric current. On the other hand, a superconductive electricity propulsion ship uses screws driven by a superconductive motor. A superconductive propulsion ship technique has the merits of ...

  15. RF microwave circuit design for wireless applications

    CERN Document Server

    Rohde, Ulrich L

    2012-01-01

    Provides researchers and engineers with a complete set of modeling, design, and implementation tools for tackling the newest IC technologies Revised and completely updated, RF/Microwave Circuit Design for Wireless Applications, Second Edition is a unique, state-of-the-art guide to wireless integrated circuit design that provides researchers and engineers with a complete set of modeling, design, and implementation tools for tackling even the newest IC technologies. It emphasizes practical design solutions for high-performance devices and circuitry, incorporating ample exa

  16. LANSCE RF System Refurbishment

    CERN Document Server

    Rees, Daniel; Kwon, Sung-il; Lyles, John T M; Lynch, Michael; Prokop, Mark; Reass, William; Tallerico, Paul J

    2005-01-01

    The Los Alamos Neutron Science Center (LANSCE) is in the planning phase of a refurbishment project that will sustain reliable facility operations well into the next decade. The LANSCE accelerator was constructed in the late 1960s and early 1970s and is a national user facility that provides pulsed protons and spallation neutrons for defense and civilian research and applications. We will be replacing all the 201 MHz RF systems and a substantial fraction of the 805 MHz RF systems and high voltage systems. The current 44 LANSCE 805 MHz, 1.25 MW klystrons have an average in-service time in excess of 110,000 hours. All 44 must be in service to operate the accelerator. There are only 9 spares left. The klystrons receive their DC power from the power system originally installed in 1960. Although this power system has been extremely reliable, gas analysis of the insulating oil is indicating age related degradation that will need attention in the next few years. This paper will provide the design details of the new R...

  17. SPS RF Accelerating Cavity

    CERN Multimedia

    1979-01-01

    This picture shows one of the 2 new cavities installed in 1978-1979. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also increased: to the first 2 MW plant a second 2 MW plant was added and by end 1979 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412016X, 7412017X, 7411048X

  18. SPS RF Cavity

    CERN Multimedia

    1975-01-01

    The picture shows one of the two initially installed cavities. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also gradually increased: by end 1980 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412017X, 7411048X, 7505074.

  19. Evaluations of MgB2 Coatings on 2'' Copper Discs for Superconducting Radio Frequency Applications

    Science.gov (United States)

    Withanage, Wenura; Tan, Teng; Lee, Namhoon; Banjade, Huta; Eremeev, Grigory; Welander, Paul; Valente-Feliciano, Anne-Marie; Kustom, Robert; Wolak, Matthäus; Nassiri, Alireza; Xi, Xiaoxing

    We propose that coating the inner walls of copper RF cavities with superconducting MgB2 (Tc = 39 K) can result in a viable alternative to the already established niobium-based SRF technology. This approach improves the thermal conductivity, allows for operation at higher temperatures, and reduces the need for large helium refrigeration, thereby resulting in lower operational costs. For our studies, we grew MgB2 films via hybrid physical chemical vapor deposition (HPCVD) on 2'' Cu substrates. Since Mg and Cu readily form an alloy at higher temperatures, the HPCVD setup was modified in order to achieve lower deposition temperatures, minimize alloy formation, and provide high quality MgB2 films. This method yielded MgB2 coatings on 2'' Cu discs with transition temperatures around 38 K. The samples were characterized with regards to their RF attributes and showed similar performance in comparison to Nb reference samples. The presented results show that MgB2 coated copper can be a suitable alternative for use in SRF cavities.

  20. Development of microwave-multiplexed superconductive detectors for the HOLMES experiment

    Science.gov (United States)

    Giachero, A.; Becker, D.; Bennett, D. A.; Faverzani, M.; Ferri, E.; Fowler, J. W.; Gard, J. D.; Hays-Wehle, J. P.; Hilton, G. C.; Maino, M.; Mates, J. A. B.; Puiu, A.; Nucciotti, A.; Reintsema, C. D.; Swetz, D. S.; Ullom, J. N.; Vale, L. R.

    2016-05-01

    In recent years, the progress on low temperature detector technologies has allowed design of large scale experiments aiming at pushing down the sensitivity on the neutrino mass below 1 eV. Even with outstanding performances in both energy (~eV on keV) and time resolution (~ 1 μs) on the single channel, a large number of detectors working in parallel is required to reach a sub-eV sensitivity. HOLMES is a new experiment to directly measure the neutrino mass with a sensitivity as low as 2eV. HOLMES will perform a calorimetric measurement of the energy released in the electron capture (EC) decay of 163 Ho. In its final configuration, HOLMES will deploy 1000 detectors of low temperature microcalorimeters with implanted 163 Ho nuclei. The baseline sensors for HOLMES are Mo/Cu TESs (Transition Edge Sensors) on SiNx membrane with gold absorbers. The readout is based on the use of rf-SQUIDs as input devices with flux ramp modulation for linearization purposes; the rf-SQUID is then coupled to a superconducting lambda/4-wave resonator in the GHz range, and the modulated signal is finally read out using the homodyne technique. The TES detectors have been designed with the aim of achieving an energy resolution of a few eV at the spectrum endpoint and a time resolution of a few micro-seconds, in order to minimize pile-up artifacts.

  1. High temperature superconducting compounds

    Science.gov (United States)

    Goldman, Allen M.

    1992-11-01

    The major accomplishment of this grant has been to develop techniques for the in situ preparation of high-Tc superconducting films involving the use of ozone-assisted molecular beam epitaxy. The techniques are generalizable to the growth of trilayer and multilayer structures. Films of both the DyBa2Cu3O(7-x) and YBa2Cu3O(7-x) compounds as well as the La(2-x)Sr(x)CuO4 compound have been grown on the usual substrates, SrTiO3, YSZ, MgO, and LaAlO3, as well as on Si substrates without any buffer layer. A bolometer has been fabricated on a thermally isolated SiN substrate coated with YSZ, an effort carried out in collaboration with Honeywell Inc. The deposition process facilitates the fabrication of very thin and transparent films creating new opportunities for the study of superconductor-insulator transitions and the investigation of photo-doping with carriers of high temperature superconductors. In addition to a thin film technology, a patterning technology has been developed. Trilayer structures have been developed for FET devices and tunneling junctions. Other work includes the measurement of the magnetic properties of bulk single crystal high temperature superconductors, and in collaboration with Argonne National Laboratory, measurement of electric transport properties of T1-based high-Tc films.

  2. Improvement and protection of niobium surface superconductivity by atomic layer deposition and heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Proslier, T.; /IIT, Chicago /Argonne; Zasadzinski, J.; /IIT, Chicago; Moore, J.; Pellin, M.; Elam, J.; /Argonne; Cooley, L.; /Fermilab; Antoine, C.; /Saclay

    2008-11-01

    A method to treat the surface of Nb is described, which potentially can improve the performance of superconducting rf cavities. We present tunneling and x-ray photoemission spectroscopy measurements at the surface of cavity-grade niobium samples coated with a 3 nm alumina overlayer deposited by atomic layer deposition. The coated samples baked in ultrahigh vacuum at low temperature degraded superconducting surface. However, at temperatures above 450 C, the tunneling conductance curves show significant improvements in the superconducting density of states compared with untreated surfaces.

  3. Advances in piezoelectric PZT-based RF MEMS components and systems

    Science.gov (United States)

    Benoit, R. R.; Rudy, R. Q.; Pulskamp, J. S.; Polcawich, R. G.; Bedair, S. S.

    2017-08-01

    There is continuing interest in radio frequency (RF) microelectromechanical system (MEMS) devices due to their ability to offer exceptional RF performance, high linearity and low power consumption. To date, there is an impressive amount of RF MEMS components such as; switches, resonators, varactors, and tunable inductors that have enabled smaller, cheaper and more efficient RF systems. RF MEMS devices contain micromachined components that have the ability to move so that a change in the mechanical state of a device will result in a change to the device’s RF properties. There are many common modes of actuation, including, but not limited to: electrostatic, magnetostatic, piezoelectric, and electrothermal actuation. Although there are attractive aspects and drawbacks to each of these technologies, this paper will focus on advances in the application of piezoelectric actuation, and in particular the use of lead zirconium titanate (PZT), for RF MEMS.

  4. Fiscal 1997 R and D project on industrial science and technology under a consignment from NEDO. R and D of the superconducting material and device (technical development of the Josephson device hybrid system); 1997 nendo sangyo kagaku gijutsu kenkyu kaihatsu jigyo Shin energy Sangyo Gijutsu Sogo Kaihatsu Kiko itaku. Chodendo zairyo chodendo soshi no kenkyu kaihatsu (Josephson soshi hybrid system no gijutsu kaihatsu) seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    In order to establish basic technology for hybrid systems of superconducting and semiconducting devices, study was made on ultrahigh speed and low energy consumption properties of Josephson devices. As Josephson IC technology, a logical circuit, ring network, memory circuit, and oxide superconductor logical circuit were studied. As superconducting hybrid system technology, a Josephson device- semiconductor device interface, formation technology of signal transmission lines, and Josephson-MOS IC technology were developed. In fiscal 1997, as Josephson IC technology, switch motion of 4GHz in clock frequency was achieved by new high-density wiring process. Integration of some semiconducting processor elements, junction of surface- stabilized superconducting thin films, and motion of combination structure of some SQUIDs were also confirmed. On the hybrid system, voltage conversion operation of all interfaces was confirmed. Proper logical operation of the Josephson device hybrid circuit was also confirmed. 95 refs., 90 figs., 5 tabs.

  5. Broadband sample holder for microwave spectroscopy of superconducting qubits.

    Science.gov (United States)

    Averkin, A S; Karpov, A; Shulga, K; Glushkov, E; Abramov, N; Huebner, U; Il'ichev, E; Ustinov, A V

    2014-10-01

    We present a practical design and implementation of a broadband sample holder suitable for microwave experiments with superconducting integrated circuits at millikelvin temperatures. Proposed design can be easily integrated in standard dilution cryostats, has flat pass band response in a frequency range from 0 to 32 GHz, allowing the RF testing of the samples with substrate size up to 4 × 4 mm(2). The parasitic higher modes interference in the holder structure is analyzed and prevented via design considerations. The developed setup can be used for characterization of superconducting parametric amplifiers, bolometers, and qubits. We tested the designed sample holder by characterizing of a superconducting flux qubit at 20 mK temperature.

  6. Heavy-ion acceleration with a superconducting linac

    Energy Technology Data Exchange (ETDEWEB)

    Bollinger, L.M.

    1988-01-01

    This year, 1988, is the tenth anniversary of the first use of RF superconductivity to accelerate heavy ions. In June 1978, the first two superconducting resonators of the Argonne Tandem-Linac Accelerator System (ATLAS) were used to boost the energy of a /sup 19/F beam from the tandem, and by September 1978 a 5-resonator linac provided an /sup 16/O beam for a nuclear-physics experiment. Since then, the superconducting linac has grown steadily in size and capability until now there are 42 accelerating structures and 4 bunchers. Throughout this period, the system was used routinely for physics research, and by now the total time with beam on target is 35,000 hours. Lessons learned from this long running experience and some key technical developments that made it possible are reviewed in this paper. 19 refs., 3 figs., 2 tabs.

  7. Multipole Field Effects for the Superconducting Parallel-Bar Deflecting/Crabbing Cavities

    Energy Technology Data Exchange (ETDEWEB)

    De Silva, Payagalage Subashini Uddika [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States) and Old Dominion University, Norfolk, VA (United States); Delayen, Jean Roger [Old Dominion University, Norfolk, VA (United States)

    2012-09-01

    The superconducting parallel-bar deflecting/crabbing cavity is currently being considered as one of the design options in rf separation for the Jefferson Lab 12 GeV upgrade and for the crabbing cavity for the proposed LHC luminosity upgrade. Knowledge of multipole field effects is important for accurate beam dynamics study of rf structures. The multipole components can be accurately determined numerically using the electromagnetic surface field data in the rf structure. This paper discusses the detailed analysis of those components for the fundamental deflecting/crabbing mode and higher order modes in the parallel-bar deflecting/crabbing cavity.

  8. NSLS-II RF SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Rose, J.; Gash, W.; Holub, B.; Kawashima, Y.; Ma, H.; Towne, N.; Yeddulla, M.

    2011-03-28

    The NSLS-II is a new third generation light source being constructed at Brookhaven Lab. The storage ring is optimized for low emittance by use of damping wigglers to reduce the emittance to below 1 nm-rad. The RF systems are designed to provide stable beam through tight RF phase and amplitude stability requirements.

  9. RF MEMS Based Reconfigurable Antennas

    Science.gov (United States)

    Simons, Rainee N.

    2004-01-01

    The presentation will first of all address the advantages of RF MEMS circuit in antenna applications and also the need for electronically reconfigurable antennas. Next, discuss some of the recent examples of RF MEMS based reconfigurable microstrip antennas. Finally, conclude the talk with a summary of MEMS antenna performance.

  10. DEPOSITION OF NIOBIUM AND OTHER SUPERCONDUCTING MATERIALS WITH HIGH POWER IMPULSE MAGNETRON SPUTTERING: CONCEPT AND FIRST RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    High Current Electronics Institute, Tomsk, Russia; Anders, Andre; Mendelsberg, Rueben J.; Lim, Sunnie; Mentink, Matthijs; Slack, Jonathan L.; Wallig, Joseph G.; Nollau, Alexander V.; Yushkov, Georgy Yu.

    2011-07-24

    Niobium coatings on copper cavities have been considered as a cost-efficient replacement of bulk niobium RF cavities, however, coatings made by magnetron sputtering have not quite lived up to high expectations due to Q-slope and other issues. High power impulse magnetron sputtering (HIPIMS) is a promising emerging coatings technology which combines magnetron sputtering with a pulsed power approach. The magnetron is turned into a metal plasma source by using very high peak power density of ~ 1 kW/cm{sup 2}. In this contribution, the cavity coatings concept with HIPIMS is explained. A system with two cylindrical, movable magnetrons was set up with custom magnetrons small enough to be inserted into 1.3 GHz cavities. Preliminary data on niobium HIPIMS plasma and the resulting coatings are presented. The HIPIMS approach has the potential to be extended to film systems beyond niobium, including other superconducting materials and/or multilayer systems.

  11. Nb3Sn superconducting magnets for electron cyclotron resonance ion sources.

    Science.gov (United States)

    Ferracin, P; Caspi, S; Felice, H; Leitner, D; Lyneis, C M; Prestemon, S; Sabbi, G L; Todd, D S

    2010-02-01

    Electron cyclotron resonance (ECR) ion sources are an essential component of heavy-ion accelerators. Over the past few decades advances in magnet technology and an improved understanding of the ECR ion source plasma physics have led to remarkable performance improvements of ECR ion sources. Currently third generation high field superconducting ECR ion sources operating at frequencies around 28 GHz are the state of the art ion injectors and several devices are either under commissioning or under design around the world. At the same time, the demand for increased intensities of highly charged heavy ions continues to grow, which makes the development of even higher performance ECR ion sources a necessity. To extend ECR ion sources to frequencies well above 28 GHz, new magnet technology will be needed in order to operate at higher field and force levels. The superconducting magnet program at LBNL has been developing high field superconducting magnets for particle accelerators based on Nb(3)Sn superconducting technology for several years. At the moment, Nb(3)Sn is the only practical conductor capable of operating at the 15 T field level in the relevant configurations. Recent design studies have been focused on the possibility of using Nb(3)Sn in the next generation of ECR ion sources. In the past, LBNL has worked on the VENUS ECR, a 28 GHz source with solenoids and a sextupole made with NbTi operating at fields of 6-7 T. VENUS has now been operating since 2004. We present in this paper the design of a Nb(3)Sn ECR ion source optimized to operate at an rf frequency of 56 GHz with conductor peak fields of 13-15 T. Because of the brittleness and strain sensitivity of Nb(3)Sn, particular care is required in the design of the magnet support structure, which must be capable of providing support to the coils without overstressing the conductor. In this paper, we present the main features of the support structure, featuring an external aluminum shell pretensioned with water

  12. Nb3Sn superconducting magnets for electron cyclotron resonance ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Ferracin, P.; Caspi, S.; Felice, H.; Leitner, D.; Lyneis, C. M.; Prestemon, S.; Sabbi, G. L.; Todd, D. S.

    2009-05-04

    Electron cyclotron resonance (ECR) ion sources are an essential component of heavy-ion accelerators. Over the past few decades advances in magnet technology and an improved understanding of the ECR ion source plasma physics have led to remarkable performance improvements of ECR ion sources. Currently third generation high field superconducting ECR ion sources operating at frequencies around 28 GHz are the state of the art ion injectors and several devices are either under commissioning or under design around the world. At the same time, the demand for increased intensities of highly charged heavy ions continues to grow, which makes the development of even higher performance ECR ion sources a necessity. To extend ECR ion sources to frequencies well above 28 GHz, new magnet technology will be needed in order to operate at higher field and force levels. The superconducting magnet program at LBNL has been developing high field superconducting magnets for particle accelerators based on Nb{sub 3}Sn superconducting technology for several years. At the moment, Nb{sub 3}Sn is the only practical conductor capable of operating at the 15 T field level in the relevant configurations. Recent design studies have been focused on the possibility of using Nb{sub 3}Sn in the next generation of ECR ion sources. In the past, LBNL has worked on the VENUS ECR, a 28 GHz source with solenoids and a sextupole made with NbTi operating at fields of 6-7 T. VENUS has now been operating since 2004. We present in this paper the design of a Nb{sub 3}Sn ECR ion source optimized to operate at an rf frequency of 56 GHz with conductor peak fields of 13-15 T. Because of the brittleness and strain sensitivity of Nb{sub 3}Sn- , particular care is required in the design of the magnet support structure, which must be capable of providing support to the coils without overstressing the conductor. In this paper, we present the main features of the support structure, featuring an external aluminum shell

  13. Nb3Sn superconducting magnets for electron cyclotron resonance ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Ferracin, P.; Caspi, S.; Felice, H.; Leitner, D.; Lyneis, C. M.; Prestemon, S.; Sabbi, G. L.; Todd, D. S.

    2009-05-04

    Electron cyclotron resonance (ECR) ion sources are an essential component of heavy-ion accelerators. Over the past few decades advances in magnet technology and an improved understanding of the ECR ion source plasma physics have led to remarkable performance improvements of ECR ion sources. Currently third generation high field superconducting ECR ion sources operating at frequencies around 28 GHz are the state of the art ion injectors and several devices are either under commissioning or under design around the world. At the same time, the demand for increased intensities of highly charged heavy ions continues to grow, which makes the development of even higher performance ECR ion sources a necessity. To extend ECR ion sources to frequencies well above 28 GHz, new magnet technology will be needed in order to operate at higher field and force levels. The superconducting magnet program at LBNL has been developing high field superconducting magnets for particle accelerators based on Nb{sub 3}Sn superconducting technology for several years. At the moment, Nb{sub 3}Sn is the only practical conductor capable of operating at the 15 T field level in the relevant configurations. Recent design studies have been focused on the possibility of using Nb{sub 3}Sn in the next generation of ECR ion sources. In the past, LBNL has worked on the VENUS ECR, a 28 GHz source with solenoids and a sextupole made with NbTi operating at fields of 6-7 T. VENUS has now been operating since 2004. We present in this paper the design of a Nb{sub 3}Sn ECR ion source optimized to operate at an rf frequency of 56 GHz with conductor peak fields of 13-15 T. Because of the brittleness and strain sensitivity of Nb{sub 3}Sn- , particular care is required in the design of the magnet support structure, which must be capable of providing support to the coils without overstressing the conductor. In this paper, we present the main features of the support structure, featuring an external aluminum shell

  14. Overview of Superconductivity and Challenges in Applications

    Science.gov (United States)

    Flükiger, Rene

    2012-01-01

    Considerable progress has been achieved during the last few decades in the various fields of applied superconductivity, while the related low temperature technology has reached a high level. Magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR) are so far the most successful applications, with tens of thousands of units worldwide, but high potential can also be recognized in the energy sector, with high energy cables, transformers, motors, generators for wind turbines, fault current limiters and devices for magnetic energy storage. A large number of magnet and cable prototypes have been constructed, showing in all cases high reliability. Large projects involving the construction of magnets, solenoids as well as dipoles and quadrupoles are described in the present book. A very large project, the LHC, is currently in operation, demonstrating that superconductivity is a reliable technology, even in a device of unprecedented high complexity. A project of similar complexity is ITER, a fusion device that is presently under construction. This article starts with a brief historical introduction to superconductivity as a phenomenon, and some fundamental properties necessary for the understanding of the technical behavior of superconductors are described. The introduction of superconductivity in the industrial cycle faces many challenges, first for the properties of the base elements, e.g. the wires, tapes and thin films, then for the various applied devices, where a number of new difficulties had to be resolved. A variety of industrial applications in energy, medicine and communications are briefly presented, showing how superconductivity is now entering the market.

  15. Superconducting quantum circuits theory and application

    Science.gov (United States)

    Deng, Xiuhao

    states. The model and toolbox are engineered with a superconducting quantum circuit where two superconducting resonators are coupled via the UQDP circuit. Using fourth order perturbation theory one can realize a complete set of quantum operations between these two photon modes. This helps open a new field to treat photon modes as qubits. Additional, a three-wave mixing scheme using phase qubits permits one to engineer the coupling Hamiltonian using a phase qubit as a tunable coupler. Along with Feynman's idea using quantum to simulate quantum, superconducting quantum simulators have been studied intensively recently. Taking the advantage of mesoscopic size of superconducting circuit and local tunability, we came out the idea to simulate quantum phase transition due to disorder. Our first paper was to propose a superconducting quantum simulator of Bose-Hubbard model to do site-wise manipulation and observe Mott-insulator to superfluid phase transition. The side-band cooling of an array of superconducting resonators is solved after the paper was published. In light of the developed technology in manipulating quantum information with superconducting circuit, one can couple other quantum oscillator system to superconducting resonators in order manipulation of its quantum states or parametric amplification of weak quantum signal. A theory that works for different coupling schemes has been studied in chapter 5. This will be a platform for further research.

  16. Radiation Shielding Utilizing A High Temperature Superconducting Magnet Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project aims to leverage near-term high-temperature superconducting technologies to assess applicability of magnetic shielding for protecting against exposure...

  17. Enhanced responsivity resonant RF photodetectors.

    Science.gov (United States)

    Liu, R; Dev, S; Zhong, Y; Lu, R; Streyer, W; Allen, J W; Allen, M S; Wenner, B R; Gong, S; Wasserman, D

    2016-11-14

    The responsivity of room-temperature, semiconductor-based photodetectors consisting of resonant RF circuits coupled to microstrip buslines is investigated. The dependence of the photodetector response on the semiconductor material and RF circuit geometry is presented, as is the detector response as a function of the spatial position of the incident light. We demonstrate significant improvement in detector response by choice of photoconductive material, and for a given material, by positioning our optical signal to overlap with positions of RF field enhancement. Design of RF circuits with strong field enhancement are demonstrated to further improve detector response. The improved detector response demonstrated offers opportunities for applications in RF photonics, materials metrology, or single read-out multiplexed detector arrays.

  18. Modeling rf breakdown arcs

    CERN Document Server

    Insepov, Zeke; Huang, Dazhang; Mahalingam, Sudhakar; Veitzer, Seth

    2010-01-01

    We describe breakdown in 805 MHz rf accelerator cavities in terms of a number of mechanisms. We devide the breakdown process into three stages: (1) we model surface failure using molecular dynamics of fracture caused by electrostatic tensile stress, (2) we model the ionization of neutrals responsible for plasma initiation and plasma growth using a particle in cell code, and (3) we model surface damage by assuming a process similar to unipolar arcing. Although unipolar arcs are strictly defined with equipotential boundaries, we find that the cold, dense plasma in contact with the surface produces very small Debye lengths and very high electric fields over a large area. These high fields produce strong erosion mechanisms, primarily self sputtering, compatible with the crater formation that we see. Results from the plasma simulation are included as a guide to experimental verification of this model.

  19. Superconducting cyclotrons at Michigan State University

    Science.gov (United States)

    Blosser, H. G.

    1987-04-01

    This paper describes the status of the three superconducting cyclotrons which are in operation or under construction at the National Superconducting Cyclotron Laboratory. The oldest of these, the K500, has been in operation since September 1982 supporting a national user program in heavy ion nuclear physics. A second large research cyclotron, the K800, is now nearing completion. This cyclotron will accelerate lighter heavy ions to 200 MeV/nuc and heavier particles up to energies given by 1200 Q2/ A MeV/nucleon. The magnet for this cyclotron came into operation in May 1984 and has performed smoothly and reliably in three extended operating periods. At present, K800 construction activity centers on fabrication and installation of the rf system, the extraction system, and the ECR injection line. The third NSCL superconducting cyclotron is a smaller 50 MeV deuteron cyclotron to be used for neutron therapy in the radiation oncology center of a major Detroit hospital (Harper Hospital). Design features of this small, application oriented, cyclotron are described in some detail.

  20. Graphene: Carbon's superconducting footprint

    Science.gov (United States)

    Vafek, Oskar

    2012-02-01

    Graphene exhibits many extraordinary properties, but superconductivity isn't one of them. Two theoretical studies suggest that by decorating the surface of graphene with the right species of dopant atoms, or by using ionic liquid gating, superconductivity could yet be induced.

  1. Superconducting cavities for LEP

    CERN Multimedia

    1983-01-01

    Above: a 350 MHz superconducting accelerating cavity in niobium of the type envisaged for accelerating electrons and positrons in later phases of LEP. Below: a small 1 GHz cavity used for investigating the surface problems of superconducting niobium. Albert Insomby stays on the right. See Annual Report 1983 p. 51.

  2. Academic training: Applied superconductivity

    CERN Multimedia

    2007-01-01

    LECTURE SERIES 17, 18, 19 January from 11.00 to 12.00 hrs Council Room, Bldg 503 Applied Superconductivity : Theory, superconducting Materials and applications E. PALMIERI/INFN, Padova, Italy When hearing about persistent currents recirculating for several years in a superconducting loop without any appreciable decay, one realizes that we are dealing with a phenomenon which in nature is the closest known to the perpetual motion. Zero resistivity and perfect diamagnetism in Mercury at 4.2 K, the breakthrough during 75 years of several hundreds of superconducting materials, the revolution of the "liquid Nitrogen superconductivity"; the discovery of still a binary compound becoming superconducting at 40 K and the subsequent re-exploration of the already known superconducting materials: Nature discloses drop by drop its intimate secrets and nobody can exclude that the last final surprise must still come. After an overview of phenomenology and basic theory of superconductivity, the lectures for this a...

  3. Oxide-based platform for reconfigurable superconducting nanoelectronics

    Science.gov (United States)

    Veazey, Joshua P.; Cheng, Guanglei; Irvin, Patrick; Cen, Cheng; Bogorin, Daniela F.; Bi, Feng; Huang, Mengchen; Bark, Chung-Wung; Ryu, Sangwoo; Cho, Kwang-Hwan; Eom, Chang-Beom; Levy, Jeremy

    2013-09-01

    We report quasi-1D superconductivity at the interface of LaAlO3 and SrTiO3. The material system and nanostructure fabrication method supply a new platform for superconducting nanoelectronics. Nanostructures having line widths w ˜ 10 nm are formed from the parent two-dimensional electron liquid using conductive atomic force microscope lithography. Nanowire cross-sections are small compared to the superconducting coherence length in LaAlO3/SrTiO3, placing them in the quasi-1D regime. Broad superconducting transitions versus temperature and finite resistances in the superconducting state well below Tc ≈ 200 mK are observed, suggesting the presence of fluctuation- and heating-induced resistance. The superconducting resistances and V-I characteristics are tunable through the use of a back gate. Four-terminal resistances in the superconducting state show an unusual dependence on the current path, varying by as much as an order of magnitude. This new technology, i.e., the ability to ‘write’ gate-tunable superconducting nanostructures on an insulating LaAlO3/SrTiO3 ‘canvas’, opens possibilities for the development of new families of reconfigurable superconducting nanoelectronics.

  4. 19 September 2011 - Japan Science and Technology Agency President K. Kitazawa visiting the LHC superconducting magnet test hall with engineer M. Bajko; the ATLAS visitor centre with Collaboration Former Spokesperson P. Jenni and Senior Scientist T. Kondo; signing the guest book with Adviser R.Voss and Head of International Relations F. Pauss.

    CERN Multimedia

    2011-01-01

    19 September 2011 - Japan Science and Technology Agency President K. Kitazawa visiting the LHC superconducting magnet test hall with engineer M. Bajko; the ATLAS visitor centre with Collaboration Former Spokesperson P. Jenni and Senior Scientist T. Kondo; signing the guest book with Adviser R.Voss and Head of International Relations F. Pauss.

  5. 8 April 2011 - Brazilian Minister of State for Science and Technology A. Mercadante Oliva signing the guest book with CERN Director-General R. Heuer and Head of International Relations F. Pauss; in the ATLAS visitor centre with Collaboration Former Spokesperson P. Jenni; visiting LHC superconducting magnet test hall with J.M. Jimenez.

    CERN Multimedia

    Maximilien Brice

    2011-01-01

    8 April 2011 - Brazilian Minister of State for Science and Technology A. Mercadante Oliva signing the guest book with CERN Director-General R. Heuer and Head of International Relations F. Pauss; in the ATLAS visitor centre with Collaboration Former Spokesperson P. Jenni; visiting LHC superconducting magnet test hall with J.M. Jimenez.

  6. 26th August 2010 - World Meteorological Organization Secretary-General M. Jarraud signing the guest book with CERN Director-General R. Heuer and visiting the LHC superconducting magnet test hall with Technology Department Head F. Bordry; throughout accompanied by M. Bona, CERN Relations with International Organisations

    CERN Multimedia

    Maximilien Brice

    2010-01-01

    26th August 2010 - World Meteorological Organization Secretary-General M. Jarraud signing the guest book with CERN Director-General R. Heuer and visiting the LHC superconducting magnet test hall with Technology Department Head F. Bordry; throughout accompanied by M. Bona, CERN Relations with International Organisations

  7. William Brinkman (centre), Director of the Department of Energy, U.S.A. at the superconducting magnet test hall SM18 with (from left to right) Coordinator for External Relations F. Pauss, Advisor for Non-Member States J. Ellis, J. Strait from Fermilab and Deputy Head of Technology Department L. Rossi on 13 November 2009.

    CERN Multimedia

    Maximilien Brice; SM18

    2009-01-01

    William Brinkman (centre), Director of the Department of Energy, U.S.A. at the superconducting magnet test hall SM18 with (from left to right) Coordinator for External Relations F. Pauss, Advisor for Non-Member States J. Ellis, J. Strait from Fermilab and Deputy Head of Technology Department L. Rossi on 13 November 2009.

  8. 18 January 2011 - The British Royal Academy of Engineering in the LHC tunnel with CMS Collaboration Spokesperson G. Tonelli and Beams Department Head P. Collier; in the CERN Control Centre with P. Collier and LHC superconducting magnet test hall with Technology Department Head F. Bordry.

    CERN Multimedia

    Jean-Claude Gadmer

    2011-01-01

    18 January 2011 - The British Royal Academy of Engineering in the LHC tunnel with CMS Collaboration Spokesperson G. Tonelli and Beams Department Head P. Collier; in the CERN Control Centre with P. Collier and LHC superconducting magnet test hall with Technology Department Head F. Bordry.

  9. High-resolution, on-chip RF photonic signal processor using Brillouin gain shaping and RF interference.

    Science.gov (United States)

    Choudhary, Amol; Liu, Yang; Morrison, Blair; Vu, Khu; Choi, Duk-Yong; Ma, Pan; Madden, Stephen; Marpaung, David; Eggleton, Benjamin J

    2017-07-19

    Integrated microwave photonics has strongly emerged as a next-generation technology to address limitations of conventional RF electronics for wireless communications. High-resolution RF signal processing still remains a challenge due to limitations in technology that offer sub-GHz spectral resolution, in particular at high carrier frequencies. In this paper, we present an on-chip high-resolution RF signal processor, capable of providing high-suppression spectral filtering, large phase shifts and ns-scale time delays. This was achieved through tailoring of the Brillouin gain profiles using Stokes and anti-Stokes resonances combined with RF interferometry on a low-loss photonic chip with strong opto-acoustic interactions. Using an optical power of RF signals we demonstrate, almost an order of magnitude amplification in the phase and delay compared to devices purely based upon the slow-light effect of Brillouin scattering. This concept allows for versatile and power-efficient manipulation of the amplitude and phase of RF signals on a photonic chip for applications in wireless communications including software defined radios and beam forming.

  10. Photoemission studies of high-temperature superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Margaritondo, G. (Inst. de Physique Appliquee, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (CH))

    1990-11-01

    Photoemission spectroscopy has recently emerged as one of the leading techniques in the study of high-temperature superconductors. Relevant successes include the direct detection of the superconductivity gap, tests for departure from Fermi-liquid behavior, and many interface chemical studies with technological interest. The authors present a review of the fundamental and applied aspects of this technique.

  11. Research on high-T sub c rf SQUID and its applications

    CERN Document Server

    Wang, F; Xie, F X; Yang, T; Nie Rui Juan; Liu, L Y; Wang, S Z; Dai, Y D

    2002-01-01

    We report on the research work at Peking University on optimizing high-temperature superconductor (HTS) rf superconducting quantum interference device (SQUID) systems and applying them in geophysical survey and magnetocardiography (MCG). Emphasis is placed on the design of comb-shape resonators for HTS rf SQUID systems and the experimental results of two applications: transient electromagnetics and MCG. The magnetic-field sensitivity of HTS magnetometers is now adequate for MCG applications. However, in order to be commercially used, the system still needs some improvements: development of suitable gradiometers and multi-channel systems.

  12. Basic properties of an rf SQUID involving two Josephson junctions connected in series

    Institute of Scientific and Technical Information of China (English)

    Mao Bo; Tan Zhong-Kui; Meng Shu-Chao; Dai Yuan-Dong; Wang Fu-Ren

    2004-01-01

    We have studied the basic characteristics of a radio frequency superconducting quantum interference device (rf SQUID) involving two Josephson junctions connected in series, the case for the widely used grain boundary junction (GBJ) rf SQUID. It is found that the SQUID properties are determined mainly by the weaker junction when the critical current of the weaker junction is much lower than that of the other junction. Otherwise, the effect of the other junction is not negligible. We also find that only when the hysteresis parameter β is less than 1- α, where α is the critical current ratio of the two junctions, will the SQUID operate in the nonhysteretic mode.

  13. Tuning an rf-SQUID flux qubit system's potential with magnetic flux bias

    Institute of Scientific and Technical Information of China (English)

    Hua Tao; Xu Wei-Wei; Shi Jian-Xin; An De-Yue; Sun Guo-Zhu; Yu Yang; Wu Pei-Heng

    2012-01-01

    At an extremely low temperature of 20 mK,we measured the loop current in a tunable rf superconducting quantum interference device (SQUID) with a dc-SQUID.By adjusting the magnetic flux applied to the rf-SQUID loop (φf) and the small dc-SQUID (φcjjf),respectively,the potential shape of the system can be fully controlled in situ.Variation in the transition step and overlap size in the switching current with a barrier flux bias are analyzed,from which we can obtain some relevant device parameters and build a model to explain the experimental phenomenon.

  14. The quadrupole resonator Construction, RF System Field Calculations and First Applications

    CERN Document Server

    Chiaveri, Enrico; Mahner, E; Tessier, J M

    1998-01-01

    The quadrupole resonator allows measurement of the RF properties of superconducting (sc) films deposited on disk-shaped metallic substrates. We describe the construction of the apparatus, the brazing and electron-beam welding procedures, the arrangements for compensating mechanical tolerances of samples and for assuring reproducible sample illumination. We explain the special features of the RF sy stem and give the results of field calculations with a 3D cavity code. Finally we present first measurements of Nb on Cu film samples and compare them with calibrations done with a bulk Nb sample.

  15. Superconductivity in carbon nanomaterials

    Science.gov (United States)

    Dlugon, Katarzyna

    The purpose of this thesis is to explain the phenomenon of superconductivity in carbon nanomaterials such as graphene, fullerenes and carbon nanotubes. In the introductory chapter, there is a description of superconductivity and how it occurs at critical temperature (Tc) that is characteristic and different to every superconducting material. The discovery of superconductivity in mercury in 1911 by Dutch physicist Heike Kamerlingh Onnes is also mentioned. Different types of superconductors, type I and type II, low and high temperatures superconductors, as well as the BCS theory that was developed in 1957 by Bardeen, Cooper, and Schrieffer, are also described in detail. The BCS theory explains how Cooper's pairs are formed and how they are responsible for the superconducting properties of many materials. The following chapters explain superconductivity in doped fullerenes, graphene and carbon nanotubes, respectively. There is a thorough explanation followed by many examples of different types of carbon nanomaterials in which small changes in chemical structure cause significant changes in superconducting properties. The goal of this research was not only to take into consideration well known carbon based superconductors but also to search for the newest available materials such as the fullerene nanowhiskers discovered quite recently. There is also a presentation of fairly new ideas about inducing superconductivity in a monolayer of graphene which is more challenging than inducing superconductivity in graphite by simply intercalating metal atoms between its graphene sheets. An effort has been taken to look for any available information about carbon nanomaterials that have the potential to superconduct at room temperature, mainly because discovery of such materials would be a real revolution in the modern world, although no such materials have been discovered yet.

  16. RF Localization in Indoor Environment

    Directory of Open Access Journals (Sweden)

    M. Stella

    2012-06-01

    Full Text Available In this paper indoor localization system based on the RF power measurements of the Received Signal Strength (RSS in WLAN environment is presented. Today, the most viable solution for localization is the RSS fingerprinting based approach, where in order to establish a relationship between RSS values and location, different machine learning approaches are used. The advantage of this approach based on WLAN technology is that it does not need new infrastructure (it reuses already and widely deployed equipment, and the RSS measurement is part of the normal operating mode of wireless equipment. We derive the Cramer-Rao Lower Bound (CRLB of localization accuracy for RSS measurements. In analysis of the bound we give insight in localization performance and deployment issues of a localization system, which could help designing an efficient localization system. To compare different machine learning approaches we developed a localization system based on an artificial neural network, k-nearest neighbors, probabilistic method based on the Gaussian kernel and the histogram method. We tested the developed system in real world WLAN indoor environment, where realistic RSS measurements were collected. Experimental comparison of the results has been investigated and average location estimation error of around 2 meters was obtained.

  17. Quantum Memristors with Superconducting Circuits

    Science.gov (United States)

    Salmilehto, J.; Deppe, F.; di Ventra, M.; Sanz, M.; Solano, E.

    2017-02-01

    Memristors are resistive elements retaining information of their past dynamics. They have garnered substantial interest due to their potential for representing a paradigm change in electronics, information processing and unconventional computing. Given the advent of quantum technologies, a design for a quantum memristor with superconducting circuits may be envisaged. Along these lines, we introduce such a quantum device whose memristive behavior arises from quasiparticle-induced tunneling when supercurrents are cancelled. For realistic parameters, we find that the relevant hysteretic behavior may be observed using current state-of-the-art measurements of the phase-driven tunneling current. Finally, we develop suitable methods to quantify memory retention in the system.

  18. Quantum Memristors with Superconducting Circuits

    Science.gov (United States)

    Salmilehto, J.; Deppe, F.; Di Ventra, M.; Sanz, M.; Solano, E.

    2017-01-01

    Memristors are resistive elements retaining information of their past dynamics. They have garnered substantial interest due to their potential for representing a paradigm change in electronics, information processing and unconventional computing. Given the advent of quantum technologies, a design for a quantum memristor with superconducting circuits may be envisaged. Along these lines, we introduce such a quantum device whose memristive behavior arises from quasiparticle-induced tunneling when supercurrents are cancelled. For realistic parameters, we find that the relevant hysteretic behavior may be observed using current state-of-the-art measurements of the phase-driven tunneling current. Finally, we develop suitable methods to quantify memory retention in the system. PMID:28195193

  19. Note: A hand-held high-Tc superconducting quantum interference device operating without shielding.

    Science.gov (United States)

    He, D F

    2011-02-01

    By improving the compensation circuit, a hand-held high-Tc rf superconducting quantum interference devices (SQUID) system was developed. It could operate well when moving in unshielded environment. To check the operation, it was used to do eddy-current testing by hand moving the SQUID, and the artificial defect under 6 mm aluminum plate could be successfully detected in shielded environment.

  20. Observation of light emissions in superconducting cavities; Observation d`emissions lumineuses dans une cavite supraconductrice

    Energy Technology Data Exchange (ETDEWEB)

    Caruette, A.; Fouaidy, M.; Hammoudi, N.; Junquera, T.; Le Goff, A.; Lesrel, J.; Maissa, S. [Services Techniques, Inst. de Physique Nucleaire, Paris-11 Univ., 91 - Orsay (France)

    1999-11-01

    In order to investigate the light emissions associated to the electron emission in a superconducting RF cavity, an optical observation system is mounted on the `mushroom` cavity. After an intentional contamination of the cavity with alumina particles, stable luminous spots are observed around the contaminated area. (authors) 3 refs., 2 figs.