WorldWideScience

Sample records for superconducting qubit system

  1. Superconducting qubit-resonator-atom hybrid system

    Science.gov (United States)

    Yu, Deshui; Kwek, Leong Chuan; Amico, Luigi; Dumke, Rainer

    2017-09-01

    We propose a hybrid quantum system where an LC resonator inductively interacts with a flux qubit and is capacitively coupled to a Rydberg atom. Varying the external magnetic flux bias controls the flux qubit flipping and the flux qubit-resonator interface. The atomic spectrum is tuned via an electrostatic field, manipulating the qubit-state transition of atom and the atom-resonator coupling. Different types of entanglement of superconducting, photonic and atomic qubits can be prepared via simply tuning the flux bias and electrostatic field, leading to the implementation of three-qubit Toffoli logic gate.

  2. Dissipative dynamics of superconducting hybrid qubit systems

    Energy Technology Data Exchange (ETDEWEB)

    Montes, Enrique; Calero, Jesus M; Reina, John H, E-mail: enriquem@univalle.edu.c, E-mail: j.reina-estupinan@physics.ox.ac.u [Departamento de Fisica, Universidad del Valle, A.A. 25360, Cali (Colombia)

    2009-05-01

    We perform a theoretical study of composed superconducting qubit systems for the case of a coupled qubit configuration based on a hybrid qubit circuit made of both charge and phase qubits, which are coupled via a sigma{sub x} x sigma{sub z} interaction. We compute the system's eigen-energies in terms of the qubit transition frequencies and the strength of the inter-qubit coupling, and describe the sensitivity of the energy crossing/anti-crossing features to such coupling. We compute the hybrid system's dissipative dynamics for the cases of i) collective and ii) independent decoherence, whereby the system interacts with one common and two different baths of harmonic oscillators, respectively. The calculations have been performed within the Bloch-Redfield formalism and we report the solutions for the populations and the coherences of the system's reduced density matrix. The dephasing and relaxation rates are explicitly calculated as a function of the heat bath temperature.

  3. Using Superconducting Qubit Circuits to Engineer Exotic Lattice Systems

    Science.gov (United States)

    Tsomokos, Dimitris; Ashhab, Sahel; Nori, Franco

    2011-03-01

    We propose an architecture based on superconducting qubits and resonators for the implementation of a variety of exotic lattice systems, such as spin and Hubbard models in higher or fractal dimensions and higher-genus topologies. Spin systems are realized naturally using qubits, while superconducting resonators can be used for the realization of Bose-Hubbard models. Fundamental requirements for these designs, such as controllable interactions between arbitrary qubit pairs, have recently been implemented in the laboratory, rendering our proposals feasible with current technology.

  4. Superconducting Qubit Optical Transducer (SQOT)

    Science.gov (United States)

    2015-08-05

    SECURITY CLASSIFICATION OF: The SQOT (Superconducting Qubit Optical Transducer ) project proposes to build a novel electro-optic system which can...Apr-2015 Approved for Public Release; Distribution Unlimited Final Report: "Superconducting Qubit Optical Transducer " (SQOT) The views, opinions and...journals: Number of Papers published in non peer-reviewed journals: Final Report: "Superconducting Qubit Optical Transducer " (SQOT) Report Title The

  5. Non-Markovian entanglement dynamics in coupled superconducting qubit systems

    CERN Document Server

    Cui, Wei; Pan, Yu

    2010-01-01

    We theoretically analyze the entanglement generation and dynamics by coupled Josephson junction qubits. Considering a current-biased Josephson junction (CBJJ), we generate maximally entangled states. In particular, the entanglement dynamics is considered as a function of the decoherence parameters, such as the temperature, the ratio $r\\equiv\\omega_c/\\omega_0$ between the reservoir cutoff frequency $\\omega_c$ and the system oscillator frequency $\\omega_0$, % between $\\omega_0$ the characteristic frequency of the %quantum system of interest, and $\\omega_c$ the cut-off frequency of %Ohmic reservoir and the energy levels split of the superconducting circuits in the non-Markovian master equation. We analyzed the entanglement sudden death (ESD) and entanglement sudden birth (ESB) by the non-Markovian master equation. Furthermore, we find that the larger the ratio $r$ and the thermal energy $k_BT$, the shorter the decoherence. In this superconducting qubit system we find that the entanglement can be controlled and t...

  6. Emulation of complex open quantum systems using superconducting qubits

    Science.gov (United States)

    Mostame, Sarah; Huh, Joonsuk; Kreisbeck, Christoph; Kerman, Andrew J.; Fujita, Takatoshi; Eisfeld, Alexander; Aspuru-Guzik, Alán

    2017-02-01

    With quantum computers being out of reach for now, quantum simulators are alternative devices for efficient and accurate simulation of problems that are challenging to tackle using conventional computers. Quantum simulators are classified into analog and digital, with the possibility of constructing "hybrid" simulators by combining both techniques. Here we focus on analog quantum simulators of open quantum systems and address the limit that they can beat classical computers. In particular, as an example, we discuss simulation of the chlorosome light-harvesting antenna from green sulfur bacteria with over 250 phonon modes coupled to each electronic state. Furthermore, we propose physical setups that can be used to reproduce the quantum dynamics of a standard and multiple-mode Holstein model. The proposed scheme is based on currently available technology of superconducting circuits consist of flux qubits and quantum oscillators.

  7. Coupled superconducting flux qubits

    NARCIS (Netherlands)

    Plantenberg, J.H.

    2007-01-01

    This thesis presents results of theoretical and experimental work on superconducting persistent-current quantum bits. These qubits offer an attractive route towards scalable solid-state quantum computing. The focus of this work is on the gradiometer flux qubit which has a special geometric design, t

  8. Coupled superconducting flux qubits

    NARCIS (Netherlands)

    Plantenberg, J.H.

    2007-01-01

    This thesis presents results of theoretical and experimental work on superconducting persistent-current quantum bits. These qubits offer an attractive route towards scalable solid-state quantum computing. The focus of this work is on the gradiometer flux qubit which has a special geometric design, t

  9. Experimental system design for the integration of trapped-ion and superconducting qubit systems

    Science.gov (United States)

    De Motte, D.; Grounds, A. R.; Rehák, M.; Rodriguez Blanco, A.; Lekitsch, B.; Giri, G. S.; Neilinger, P.; Oelsner, G.; Il'ichev, E.; Grajcar, M.; Hensinger, W. K.

    2016-12-01

    We present a design for the experimental integration of ion trapping and superconducting qubit systems as a step towards the realization of a quantum hybrid system. The scheme addresses two key difficulties in realizing such a system: a combined microfabricated ion trap and superconducting qubit architecture, and the experimental infrastructure to facilitate both technologies. Developing upon work by Kielpinski et al. (Phys Rev Lett 108(13):130504, 2012. doi: 10.1103/PhysRevLett.108.130504), we describe the design, simulation and fabrication process for a microfabricated ion trap capable of coupling an ion to a superconducting microwave LC circuit with a coupling strength in the tens of kHz. We also describe existing difficulties in combining the experimental infrastructure of an ion trapping set-up into a dilution refrigerator with superconducting qubits and present solutions that can be immediately implemented using current technology.

  10. Rapid characterization of microscopic two-level systems using Landau-Zener transitions in a superconducting qubit

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Xinsheng [National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093 (China); Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045 (United States); Yu, Haifeng, E-mail: hfyu@nju.edu.cn; Yu, Yang, E-mail: yuyang@nju.edu.cn [National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Han, Siyuan [Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045 (United States)

    2015-09-07

    We demonstrate a fast method to detect microscopic two-level systems in a superconducting phase qubit. By monitoring the population leak after sweeping the qubit bias flux, we are able to measure the two-level systems that are coupled with the qubit. Compared with the traditional method that detects two-level systems by energy spectroscopy, our method is faster and more sensitive. This method supplies a useful tool to investigate two-level systems in solid-state qubits.

  11. Study of decoherence in a system of superconducting flux-qubits interacting with an ensemble of electrons

    Energy Technology Data Exchange (ETDEWEB)

    Reboiro, M., E-mail: reboiro@fisica.unlp.edu.ar [IFLP, CONICET-Department of Physics, University of La Plata, c.c. 67 1900, La Plata (Argentina); Civitarese, O., E-mail: osvaldo.civitarese@fisica.unlp.edu.ar [IFLP, CONICET-Department of Physics, University of La Plata, c.c. 67 1900, La Plata (Argentina); Ramírez, R. [IFLP, CONICET-Department of Mathematics, University of La Plata (Argentina)

    2017-03-15

    The degree of coherence in a hybrid system composed of superconducting flux-qubits and an electron ensemble is analysed. Both, the interactions among the electrons and among the superconducting flux-qubits are taken into account. The time evolution of the hybrid system is solved exactly, and discussed in terms of the reduced density matrix of each subsystem. It is seen that the inclusion of a line width, for the electrons and for the superconducting flux-qubits, influences the pattern of spin-squeezing and the coherence of the superconducting flux qubits. - Highlights: • The degree of coherence in a hybrid system, composed of superconducting flux qubits and an electron ensemble, is analysed. • The time evolution of the hybrid system is solved exactly and discussed in terms of the reduced density matrix of each subsystem. • It is shown that the initial state of the system evolves to a stationary squeezed state.

  12. Quantum dynamics of a microwave driven superconducting phase qubit coupled to a two-level system

    Science.gov (United States)

    Sun, Guozhu; Wen, Xueda; Mao, Bo; Zhou, Zhongyuan; Yu, Yang; Wu, Peiheng; Han, Siyuan

    2010-10-01

    We present an analytical and comprehensive description of the quantum dynamics of a microwave resonantly driven superconducting phase qubit coupled to a microscopic two-level system (TLS), covering a wide range of the external microwave field strength. Our model predicts several interesting phenomena in such an ac driven four-level bipartite system including anomalous Rabi oscillations, high-contrast beatings of Rabi oscillations, and extraordinary two-photon transitions. Our experimental results in a coupled qubit-TLS system agree quantitatively very well with the predictions of the theoretical model.

  13. Superconducting Qubits and Quantum Resonators

    NARCIS (Netherlands)

    Forn-Díaz, P.

    2010-01-01

    Superconducting qubits are fabricated "loss-free" electrical circuits on a chip with size features of tens of nanometers. If cooled to cryogenic temperatures below -273 °C they behave as quantum elements, similar to atoms and molecules. Such a qubit can be manipulated by fast-oscillating magnetic fi

  14. Coherence properties in superconducting flux qubits

    Energy Technology Data Exchange (ETDEWEB)

    Spilla, Samuele

    2015-02-16

    The research work discussed in this thesis deals with the study of superconducting Josephson qubits. Superconducting qubits are solid-state artificial atoms which are based on lithographically defined Josephson tunnel junctions properties. When sufficiently cooled, these superconducting devices exhibit quantized states of charge, flux or junction phase depending on their design parameters. This allows to observe coherent evolutions of their states. The results presented can be divided into two parts. In a first part we investigate operations of superconducting qubits based on the quantum coherence in superconducting quantum interference devices (SQUID). We explain experimental data which has been observed in a SQUID subjected to fast, large-amplitude modifications of its effective potential shape. The motivations for this work come from the fact that in the past few years there have been attempts to interpret the supposed quantum behavior of physical systems, such as Josephson devices, within a classical framework. Moreover, we analyze the possibility of generating GHZ states, namely maximally entangled states, in a quantum system made out of three Josephson qubits. In particular, we investigate the possible limitations of the GHZ state generation due to coupling to bosonic baths. In the second part of the thesis we address a particular cause of decoherence of flux qubits which has been disregarded until now: thermal gradients, which can arise due to accidental non equilibrium quasiparticle distributions. The reason for these detrimental effects is that heat currents flowing through Josephson tunnel junctions in response to a temperature gradient are periodic functions of the phase difference between the electrodes. The phase dependence of the heat current comes from Andreev reflection, namely an interplay between the quasiparticles which carry heat and the superconducting condensate which is sensitive to the superconducting phase difference. Generally speaking

  15. Hamiltonian Dynamics and Adiabatic Invariants for Time-Dependent Superconducting Qubit-Oscillators and Resonators in Quantum Computing Systems

    Directory of Open Access Journals (Sweden)

    Jeong Ryeol Choi

    2015-01-01

    Full Text Available An adiabatic invariant, which is a conserved quantity, is useful for studying quantum and classical properties of dynamical systems. Adiabatic invariants for time-dependent superconducting qubit-oscillator systems and resonators are investigated using the Liouville-von Neumann equation. At first, we derive an invariant for a simple superconducting qubit-oscillator through the introduction of its reduced Hamiltonian. Afterwards, an adiabatic invariant for a nanomechanical resonator linearly interfaced with a superconducting circuit, via a coupling with a time-dependent strength, is evaluated using the technique of unitary transformation. The accuracy of conservation for such invariant quantities is represented in detail. Based on the results of our developments in this paper, perturbation theory is applicable to the research of quantum characteristics of more complicated qubit systems that are described by a time-dependent Hamiltonian involving nonlinear terms.

  16. Coherent controlization using superconducting qubits.

    Science.gov (United States)

    Friis, Nicolai; Melnikov, Alexey A; Kirchmair, Gerhard; Briegel, Hans J

    2015-01-01

    Coherent controlization, i.e., coherent conditioning of arbitrary single- or multi-qubit operations on the state of one or more control qubits, is an important ingredient for the flexible implementation of many algorithms in quantum computation. This is of particular significance when certain subroutines are changing over time or when they are frequently modified, such as in decision-making algorithms for learning agents. We propose a scheme to realize coherent controlization for any number of superconducting qubits coupled to a microwave resonator. For two and three qubits, we present an explicit construction that is of high relevance for quantum learning agents. We demonstrate the feasibility of our proposal, taking into account loss, dephasing, and the cavity self-Kerr effect.

  17. Superconducting Qubits: A Short Review

    OpenAIRE

    Devoret, M. H.; Wallraff, A.; Martinis, J. M.

    2004-01-01

    Superconducting qubits are solid state electrical circuits fabricated using techniques borrowed from conventional integrated circuits. They are based on the Josephson tunnel junction, the only non-dissipative, strongly non-linear circuit element available at low temperature. In contrast to microscopic entities such as spins or atoms, they tend to be well coupled to other circuits, which make them appealling from the point of view of readout and gate implementation. Very recently, new designs ...

  18. Interfacing superconducting qubits and single optical photons

    CERN Document Server

    Das, Sumanta; Sørensen, Anders S

    2016-01-01

    We propose an efficient light-matter interface at optical frequencies between a superconducting qubit and a single photon. The desired interface is based on a hybrid architecture composed of an organic molecule embedded inside an optical waveguide and electrically coupled to a superconducting qubit far from the optical axis. We show that high fidelity, photon-mediated, entanglement between distant superconducting qubits can be achieved with incident pulses at the single photon level. Such low light level is highly sought for to overcome the decoherence of the superconducting qubit caused by absorption of optical photons.

  19. Quantum simulator of an open quantum system using superconducting qubits: exciton transport in photosynthetic complexes

    CERN Document Server

    Mostame, Sarah; Tsomokos, Dimitris I; Aspuru-Guzik, Alán

    2011-01-01

    In the initial stage of photosynthesis, light-harvested energy is transferred with remarkably high efficiency to a reaction center, with the vibrational environment assisting the transport mechanism. It is of great interest to mimic this process with present-day technologies. Here we propose an analog quantum simulator of open system dynamics, where noise engineering of the environment has a central role. In particular, we propose the use of superconducting qubits for the simulation of exciton transport in the Fenna-Matthew-Olson protein, a prototypical photosynthetic complex. Our method allows for a single-molecule implementation and the investigation of energy transfer pathways as well as non-Markovian and spatiotemporal noise-correlation effects.

  20. Quantum simulator of an open quantum system using superconducting qubits: exciton transport in photosynthetic complexes

    Science.gov (United States)

    Mostame, Sarah; Rebentrost, Patrick; Eisfeld, Alexander; Kerman, Andrew J.; Tsomokos, Dimitris I.; Aspuru-Guzik, Alan

    2012-02-01

    In the initial stage of photosynthesis, light-harvested energy is transferred with remarkably high efficiency to a reaction center, with the vibrational environment assisting the transport mechanism. It is of great interest to mimic this process with present-day technologies. Here we propose an analog quantum simulator of open system dynamics, where noise engineering of the environment has a central role. In particular, we propose the use of superconducting qubits for the simulation of exciton transport in the Fenna-Matthew-Olson protein, a prototypical photosynthetic complex. Our method allows for a single-molecule implementation and the investigation of energy transfer pathways as well as non-Markovian and spatiotemporal noise-correlation effects.

  1. Interfacing superconducting qubits and single optical photons

    NARCIS (Netherlands)

    Das, Sumanta; Faez, Sanli; Sørensen, Anders S.

    2016-01-01

    We propose an efficient light-matter interface at optical frequencies between a superconducting qubit and a single photon. The desired interface is based on a hybrid architecture composed of an organic molecule embedded inside an optical waveguide and electrically coupled to a superconducting qubit

  2. Superconducting Qubits as Mechanical Quantum Engines

    Science.gov (United States)

    Sachtleben, Kewin; Mazon, Kahio T.; Rego, Luis G. C.

    2017-09-01

    We propose the equivalence of superconducting qubits with a pistonlike mechanical quantum engine. The work reports a study on the nature of the nonequilibrium work exchanged with the quantum-nonadiabatic working medium, which is modeled as a multilevel coupled quantum well system subject to an external control parameter. The quantum dynamics is solved for arbitrary control protocols. It is shown that the work output has two components: one that depends instantaneously on the level populations and another that is due to the quantum coherences built in the system. The nonadiabatic coherent dynamics of the quantum engine gives rise to a resistance (friction) force that decreases the work output. We consider the functional equivalence of such a device and a rf-SQUID flux qubit.

  3. Crystalline Silicon Dielectrics for Superconducting Qubit Circuits

    Science.gov (United States)

    Hover, David; Peng, Weina; Sendelbach, Steven; Eriksson, Mark; McDermott, Robert

    2009-03-01

    Superconducting qubit energy relaxation times are limited by microwave loss induced by a continuum of two-level state (TLS) defects in the dielectric materials of the circuit. State-of-the-art phase qubit circuits employ a micron-scale Josephson junction shunted by an external capacitor. In this case, the qubit T1 time is directly proportional to the quality factor (Q) of the capacitor dielectric. The amorphous capacitor dielectrics that have been used to date display intrinsic Q of order 10^3 to 10^4. Shunt capacitors with a Q of 10^6 are required to extend qubit T1 times well into the microsecond range. Crystalline dielectric materials are an attractive candidate for qubit capacitor dielectrics, due to the extremely low density of TLS defects. However, the robust integration of crystalline dielectrics with superconducting qubit circuits remains a challenge. Here we describe a novel approach to the realization of high-Q crystalline capacitor dielectrics for superconducting qubit circuits. The capacitor dielectric is a crystalline silicon nanomembrane. We discuss characterization of crystalline silicon capacitors with low-power microwave transport measurements at millikelvin temperatures. In addition, we report progress on integrating the crystalline capacitor process with Josephson qubit fabrication.

  4. Suppression of dephasing by qubit motion in superconducting circuits

    Science.gov (United States)

    Averin, D. V.; Hu, K.; Zhong, Y. P.; Song, C.; Wang, H.; Han, S.

    We suggest and demonstrate a protocol which suppresses dephasing due to the low-frequency noise by qubit motion, i.e., transfer of the logical qubit of information in a system of n >= 2 physical qubits. The protocol requires only the nearest-neighbor coupling and is applicable to different qubit structures. Motion of a logical qubit limits the correlation time of the effective noise seen by this qubit and suppresses its decoherence rate. This effect is qualitatively similar to the dynamic decoupling, but relies on the different resource: additional physical qubits, not extra control pulses. In this respect, suggested protocol can serve as the basis for an alternative approach to scalable quantum circuits. We further analyze its effectiveness against noises with arbitrary correlations. Our analysis, together with experiments using up to three superconducting qubits, shows that for the realistic uncorrelated noises, qubit motion increases the dephasing time of the logical qubit as √{ n}. In general, the protocol provides a diagnostic tool for measurements of the noise correlations. This work was supported by the National Basic Research Program of China (2014CB921200, 2012CB927404), US NSF Grants PHY-1314758 and PHY-1314861, the National Natural Science Foundation of China, and Zhejiang Provincial Natural Science Foundation.

  5. Probing quantum coherence in arrays of superconducting qubits

    Energy Technology Data Exchange (ETDEWEB)

    Liguori, Alexandra; Rivas, Angel; Huelga, Susana; Plenio, Martin [Institut fuer Theoretische Physik, Universitaet Ulm, D-89069 Ulm (Germany)

    2011-07-01

    In the mid-80's the so-called phenomenon of dynamic localization was shown for a charged particle moving under the influence of a sinusoidally-varying time-dependent electric field, and more recently similar resonances in the conduction were found to be present also in ion channels. In this work we study the conditions under which this dynamic localization can be found in arrays of superconducting qubits. This phenomenon can serve as a signature of quantum coherence in such systems and moreover could be checked experimentally by various groups constructing arrays of superconducting flux qubits.

  6. Superradiance with an ensemble of superconducting flux qubits

    Science.gov (United States)

    Lambert, Neill; Matsuzaki, Yuichiro; Kakuyanagi, Kosuke; Ishida, Natsuko; Saito, Shiro; Nori, Franco

    2016-12-01

    Superconducting flux qubits are a promising candidate for realizing quantum information processing and quantum simulations. Such devices behave like artificial atoms, with the advantage that one can easily tune the "atoms" internal properties. Here, by harnessing this flexibility, we propose a technique to minimize the inhomogeneous broadening of a large ensemble of flux qubits by tuning only the external flux. In addition, as an example of many-body physics in such an ensemble, we show how to observe superradiance, and its quadratic scaling with ensemble size, using a tailored microwave control pulse that takes advantage of the inhomogeneous broadening itself to excite only a subensemble of the qubits. Our scheme opens up an approach to using superconducting circuits to explore the properties of quantum many-body systems.

  7. Information quantifiers, entropy squeezing and entanglement properties of superconducting qubit-deformed bosonic field system under dephasing effect

    Science.gov (United States)

    Berrada, K.; Al-Rajhi, M. A.

    2017-10-01

    In this paper, we present a detailed study on the evolution of some measures of nonclassicality and entanglement in the framework of the interaction between a superconducting qubit and deformed bosonic fields under decoherence effect. We compare the dynamical behavior of the different quantum quantifiers by exploiting a large set of nonlinear bosonic fields that are characterized by the deformation parameter. Additionally, we demonstrate how the connection between the appearance of the nonlinearity in the deformed field and the quantum information quantifiers. The time correlation between entropy squeezing, purity, and entanglement is examined in terms of the physical parameters involved in the whole system. Lastly, we explore the exact ranges of the physical parameters in order to combat the decoherence effect and maintain high amount of entanglement during the time evolution.

  8. Effect of the time-dependent coupling on a superconducting qubit-field system under decoherence: Entanglement and Wehrl entropy

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Khalek, S., E-mail: sayedquantum@yahoo.co.uk [Mathematics Department, Faculty of Science, Sohag University, 82524 Sohag (Egypt); The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, Miramare-Trieste (Italy); Berrada, K. [The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, Miramare-Trieste (Italy); Al Imam Mohammad Ibn Saud Islamic University (IMSIU), College of Science, Department of Physics, Riyadh (Saudi Arabia); Eleuch, H. [Department of Physics, McGill University, 3600 rue University, Montreal, QC, H3A 2T8 (Canada); Department of Physics, Université de Montréal, 2900 boul. douard-Montpetit, Montreal, QC, H3T 1J4 (Canada)

    2015-10-15

    The dynamics of a superconducting (SC) qubit interacting with a field under decoherence with and without time-dependent coupling effect is analyzed. Quantum features like the collapse–revivals for the dynamics of population inversion, sudden birth and sudden death of entanglement, and statistical properties are investigated under the phase damping effect. Analytic results for certain parametric conditions are obtained. We analyze the influence of decoherence on the negativity and Wehrl entropy for different values of the physical parameters. We also explore an interesting relation between the SC-field entanglement and Wehrl entropy behavior during the time evolution. We show that the amount of SC-field entanglement can be enhanced as the field tends to be more classical. The studied model of SC-field system with the time-dependent coupling has high practical importance due to their experimental accessibility which may open new perspectives in different tasks of quantum formation processing.

  9. Deterministic entanglement of superconducting qubits by parity measurement and feedback.

    Science.gov (United States)

    Ristè, D; Dukalski, M; Watson, C A; de Lange, G; Tiggelman, M J; Blanter, Ya M; Lehnert, K W; Schouten, R N; DiCarlo, L

    2013-10-17

    The stochastic evolution of quantum systems during measurement is arguably the most enigmatic feature of quantum mechanics. Measuring a quantum system typically steers it towards a classical state, destroying the coherence of an initial quantum superposition and the entanglement with other quantum systems. Remarkably, the measurement of a shared property between non-interacting quantum systems can generate entanglement, starting from an uncorrelated state. Of special interest in quantum computing is the parity measurement, which projects the state of multiple qubits (quantum bits) to a state with an even or odd number of excited qubits. A parity meter must discern the two qubit-excitation parities with high fidelity while preserving coherence between same-parity states. Despite numerous proposals for atomic, semiconducting and superconducting qubits, realizing a parity meter that creates entanglement for both even and odd measurement results has remained an outstanding challenge. Here we perform a time-resolved, continuous parity measurement of two superconducting qubits using the cavity in a three-dimensional circuit quantum electrodynamics architecture and phase-sensitive parametric amplification. Using postselection, we produce entanglement by parity measurement reaching 88 per cent fidelity to the closest Bell state. Incorporating the parity meter in a feedback-control loop, we transform the entanglement generation from probabilistic to fully deterministic, achieving 66 per cent fidelity to a target Bell state on demand. These realizations of a parity meter and a feedback-enabled deterministic measurement protocol provide key ingredients for active quantum error correction in the solid state.

  10. Nonlinearities in the quantum measurement process of superconducting qubits

    Energy Technology Data Exchange (ETDEWEB)

    Serban, Ioana

    2008-05-15

    The work described in this thesis focuses on the investigation of decoherence and measurement backaction, on the theoretical description of measurement schemes and their improvement. The study presented here is centered around quantum computing implementations using superconducting devices and most important, the Josephson effect. The measured system is invariantly a qubit, i. e. a two-level system. The objective is to study detectors with increasing nonlinearity, e. g. coupling of the qubit to the frequency a driven oscillator, or to the bifurcation amplifier, to determine the performance and backaction of the detector on the measured system and to investigate the importance of a strong qubit-detector coupling for the achievement of a quantum non-demolition type of detection. The first part gives a very basic introduction to quantum information, briefly reviews some of the most promising physical implementations of a quantum computer before focusing on the superconducting devices. The second part presents a series of studies of different qubit measurements, describing the backaction of the measurement onto the measured system and the internal dynamics of the detector. Methodology adapted from quantum optics and chemical physics (master equations, phase-space analysis etc.) combined with the representation of a complex environment yielded a tool capable of describing a nonlinear, non-Markovian environment, which couples arbitrarily strongly to the measured system. This is described in chapter 3. Chapter 4 focuses on the backaction on the qubit and presents novel insights into the qubit dephasing in the strong coupling regime. Chapter 5 uses basically the same system and technical tools to explore the potential of a fast, strong, indirect measurement, and determine how close such a detection would ideally come to the quantum non-demolition regime. Chapter 6 focuses on the internal dynamics of a strongly driven Josephson junction. The analytical results are based on

  11. RF Control and Measurement of Superconducting Qubits

    Science.gov (United States)

    2015-02-14

    208047 New Haven, CT 06520 -8047 14-Sep-2014 ABSTRACT Final Report: RF Control and Measurement of Superconducting Qubits Report Title This is the final...project duration, to the generation a new architecture which, while taking into account the limitations discovered in the other research line of the...materials properties. Third, spurious electromagnetic modes, not accounted for in the Hamiltonian (1), can spuriously couple to the atoms or the

  12. Measurement of geometric dephasing using a superconducting qubit

    Science.gov (United States)

    Berger, S.; Pechal, M.; Kurpiers, P.; Abdumalikov, A. A.; Eichler, C.; Mlynek, J. A.; Shnirman, A.; Gefen, Yuval; Wallraff, A.; Filipp, S.

    2015-01-01

    A quantum system interacting with its environment is subject to dephasing, which ultimately destroys the information it holds. Here we use a superconducting qubit to experimentally show that this dephasing has both dynamic and geometric origins. It is found that geometric dephasing, which is present even in the adiabatic limit and when no geometric phase is acquired, can either reduce or restore coherence depending on the orientation of the path the qubit traces out in its projective Hilbert space. It accompanies the evolution of any system in Hilbert space subjected to noise. PMID:26515812

  13. Theory, modeling and simulation of superconducting qubits

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Gennady P [Los Alamos National Laboratory; Kamenev, Dmitry I [Los Alamos National Laboratory; Chumak, Alexander [INSTIT OF PHYSICS, KIEV; Kinion, Carin [LLNL; Tsifrinovich, Vladimir [POLYTECHNIC INSTIT OF NYU

    2011-01-13

    We analyze the dynamics of a qubit-resonator system coupled with a thermal bath and external electromagnetic fields. Using the evolution equations for the set of Heisenberg operators that describe the whole system, we derive an expression for the resonator field, that includes the resonator-drive, the resonator-bath, and resonator-qubit interactions. The renormalization of the resonator frequency, caused by the qubit-resonator interaction, is accounted for. Using the solutions for the resonator field, we derive the equation that describes the qubit dynamics. The dependence of the qubit evolution during the measurement time on the fidelity of a single-shot measurement is studied. The relation between the fidelity and measurement time is shown explicitly. We proposed a novel adiabatic method for the phase qubit measurement. The method utilizes a low-frequency, quasi-classical resonator inductively coupled to the qubit. The resonator modulates the qubit energy, and the back reaction of the qubit causes a shift in the phase of the resonator. The resonator phase shift can be used to determine the qubit state. We have simulated this measurement taking into the account the energy levels outside the phase qubit manifold. We have shown that, for qubit frequencies in the range of 8-12GHZ, a resonator frequency of 500 MHz and a measurement time of 100 ns, the phase difference between the two qubit states is greater than 0.2 rad. This phase difference exceeds the measurement uncertainty, and can be detected using a classical phase-meter. A fidelity of 0.9999 can be achieved for a relaxation time of 0.5 ms. We also model and simulate a microstrip-SQUID amplifier of frequency about 500 MHz, which could be used to amplify the resonator oscillations in the phase qubit adiabatic measurement. The voltage gain and the amplifier noise temperature are calculated. We simulate the preparation of a generalized Bell state and compute the relaxation times required for achieving high

  14. Theory, modeling and simulation of superconducting qubits

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Gennady P [Los Alamos National Laboratory; Kamenev, Dmitry I [Los Alamos National Laboratory; Chumak, Alexander [INSTIT OF PHYSICS, KIEV; Kinion, Carin [LLNL; Tsifrinovich, Vladimir [POLYTECHNIC INSTIT OF NYU

    2011-01-13

    We analyze the dynamics of a qubit-resonator system coupled with a thermal bath and external electromagnetic fields. Using the evolution equations for the set of Heisenberg operators that describe the whole system, we derive an expression for the resonator field, that includes the resonator-drive, the resonator-bath, and resonator-qubit interactions. The renormalization of the resonator frequency, caused by the qubit-resonator interaction, is accounted for. Using the solutions for the resonator field, we derive the equation that describes the qubit dynamics. The dependence of the qubit evolution during the measurement time on the fidelity of a single-shot measurement is studied. The relation between the fidelity and measurement time is shown explicitly. We proposed a novel adiabatic method for the phase qubit measurement. The method utilizes a low-frequency, quasi-classical resonator inductively coupled to the qubit. The resonator modulates the qubit energy, and the back reaction of the qubit causes a shift in the phase of the resonator. The resonator phase shift can be used to determine the qubit state. We have simulated this measurement taking into the account the energy levels outside the phase qubit manifold. We have shown that, for qubit frequencies in the range of 8-12GHZ, a resonator frequency of 500 MHz and a measurement time of 100 ns, the phase difference between the two qubit states is greater than 0.2 rad. This phase difference exceeds the measurement uncertainty, and can be detected using a classical phase-meter. A fidelity of 0.9999 can be achieved for a relaxation time of 0.5 ms. We also model and simulate a microstrip-SQUID amplifier of frequency about 500 MHz, which could be used to amplify the resonator oscillations in the phase qubit adiabatic measurement. The voltage gain and the amplifier noise temperature are calculated. We simulate the preparation of a generalized Bell state and compute the relaxation times required for achieving high

  15. Quantum magnonics: The magnon meets the superconducting qubit

    Science.gov (United States)

    Tabuchi, Yutaka; Ishino, Seiichiro; Noguchi, Atsushi; Ishikawa, Toyofumi; Yamazaki, Rekishu; Usami, Koji; Nakamura, Yasunobu

    2016-08-01

    The techniques of microwave quantum optics are applied to collective spin excitations in a macroscopic sphere of a ferromagnetic insulator. We demonstrate, in the single-magnon limit, strong coupling between a magnetostatic mode in the sphere and a microwave cavity mode. Moreover, we introduce a superconducting qubit in the cavity and couple the qubit with the magnon excitation via the virtual photon excitation. We observe the magnon-vacuum-induced Rabi splitting. The hybrid quantum system enables generation and characterization of non-classical quantum states of magnons. xml:lang="fr"

  16. Superconducting qubits can be coupled and addressed as trapped ions

    Science.gov (United States)

    Liu, Y. X.; Wei, L. F.; Johansson, J. R.; Tsai, J. S.; Nori, F.

    2009-03-01

    Exploiting the intrinsic nonlinearity of superconducting Josephson junctions, we propose a scalable circuit with superconducting qubits (SCQs) which is very similar to the successful one now being used for trapped ions. The SCQs are coupled to the ``vibrational'' mode provided by a superconducting LC circuit or its equivalent (e.g., a superconducting quantum interference device). Both single-qubit rotations and qubit-LC-circuit couplings and/or decouplings can be controlled by the frequencies of the time-dependent magnetic fluxes. The circuit is scalable since the qubit-qubit interactions, mediated by the LC circuit, can be selectively performed, and the information transfer can be realized in a controllable way. [4pt] Y.X. Liu, L.F. Wei, J.R. Johansson, J.S. Tsai, F. Nori, Superconducting qubits can be coupled and addressed as trapped ions, Phys. Rev. B 76, 144518 (2007). URL: http://link.aps.org/abstract/PRB/v76/e144518

  17. Multipartite entanglement in the interaction system between a single-mode microwave cavity field and superconducting charge qubits

    Institute of Scientific and Technical Information of China (English)

    Shi Zhen-Gang; Chen Xiong-Wen; Zhu Xi-Xiang; Song Ke-Hui

    2007-01-01

    This paper proposes a method of generating multipartite entanglement through using d. c. superconducting quantum interference devices (SQUID) inside a standing wave cavity. In this scheme, the d. c. SQUID works in the charge region. It is shown that, a large number of important multipartite entangled states can be generated by a controllable interaction between a cavity field and qubits. It is even possible to produce entangled states involving different cavity modes based on the measurement of charge qubits states. After such superpositions states are created, the interaction can be switched off by the classical magnetic field through the SQUID, and there is no information transfer between the cavity field and the charge qubits.

  18. Experimental Quantum Randomness Processing Using Superconducting Qubits

    Science.gov (United States)

    Yuan, Xiao; Liu, Ke; Xu, Yuan; Wang, Weiting; Ma, Yuwei; Zhang, Fang; Yan, Zhaopeng; Vijay, R.; Sun, Luyan; Ma, Xiongfeng

    2016-07-01

    Coherently manipulating multipartite quantum correlations leads to remarkable advantages in quantum information processing. A fundamental question is whether such quantum advantages persist only by exploiting multipartite correlations, such as entanglement. Recently, Dale, Jennings, and Rudolph negated the question by showing that a randomness processing, quantum Bernoulli factory, using quantum coherence, is strictly more powerful than the one with classical mechanics. In this Letter, focusing on the same scenario, we propose a theoretical protocol that is classically impossible but can be implemented solely using quantum coherence without entanglement. We demonstrate the protocol by exploiting the high-fidelity quantum state preparation and measurement with a superconducting qubit in the circuit quantum electrodynamics architecture and a nearly quantum-limited parametric amplifier. Our experiment shows the advantage of using quantum coherence of a single qubit for information processing even when multipartite correlation is not present.

  19. Experimental Quantum Randomness Processing Using Superconducting Qubits.

    Science.gov (United States)

    Yuan, Xiao; Liu, Ke; Xu, Yuan; Wang, Weiting; Ma, Yuwei; Zhang, Fang; Yan, Zhaopeng; Vijay, R; Sun, Luyan; Ma, Xiongfeng

    2016-07-01

    Coherently manipulating multipartite quantum correlations leads to remarkable advantages in quantum information processing. A fundamental question is whether such quantum advantages persist only by exploiting multipartite correlations, such as entanglement. Recently, Dale, Jennings, and Rudolph negated the question by showing that a randomness processing, quantum Bernoulli factory, using quantum coherence, is strictly more powerful than the one with classical mechanics. In this Letter, focusing on the same scenario, we propose a theoretical protocol that is classically impossible but can be implemented solely using quantum coherence without entanglement. We demonstrate the protocol by exploiting the high-fidelity quantum state preparation and measurement with a superconducting qubit in the circuit quantum electrodynamics architecture and a nearly quantum-limited parametric amplifier. Our experiment shows the advantage of using quantum coherence of a single qubit for information processing even when multipartite correlation is not present.

  20. Qubit lattice coherence induced by electromagnetic pulses in superconducting metamaterials.

    Science.gov (United States)

    Ivić, Z; Lazarides, N; Tsironis, G P

    2016-07-12

    Quantum bits (qubits) are at the heart of quantum information processing schemes. Currently, solid-state qubits, and in particular the superconducting ones, seem to satisfy the requirements for being the building blocks of viable quantum computers, since they exhibit relatively long coherence times, extremely low dissipation, and scalability. The possibility of achieving quantum coherence in macroscopic circuits comprising Josephson junctions, envisioned by Legett in the 1980's, was demonstrated for the first time in a charge qubit; since then, the exploitation of macroscopic quantum effects in low-capacitance Josephson junction circuits allowed for the realization of several kinds of superconducting qubits. Furthermore, coupling between qubits has been successfully achieved that was followed by the construction of multiple-qubit logic gates and the implementation of several algorithms. Here it is demonstrated that induced qubit lattice coherence as well as two remarkable quantum coherent optical phenomena, i.e., self-induced transparency and Dicke-type superradiance, may occur during light-pulse propagation in quantum metamaterials comprising superconducting charge qubits. The generated qubit lattice pulse forms a compound "quantum breather" that propagates in synchrony with the electromagnetic pulse. The experimental confirmation of such effects in superconducting quantum metamaterials may open a new pathway to potentially powerful quantum computing.

  1. Qubit lattice coherence induced by electromagnetic pulses in superconducting metamaterials

    Science.gov (United States)

    Ivić, Z.; Lazarides, N.; Tsironis, G. P.

    2016-07-01

    Quantum bits (qubits) are at the heart of quantum information processing schemes. Currently, solid-state qubits, and in particular the superconducting ones, seem to satisfy the requirements for being the building blocks of viable quantum computers, since they exhibit relatively long coherence times, extremely low dissipation, and scalability. The possibility of achieving quantum coherence in macroscopic circuits comprising Josephson junctions, envisioned by Legett in the 1980’s, was demonstrated for the first time in a charge qubit; since then, the exploitation of macroscopic quantum effects in low-capacitance Josephson junction circuits allowed for the realization of several kinds of superconducting qubits. Furthermore, coupling between qubits has been successfully achieved that was followed by the construction of multiple-qubit logic gates and the implementation of several algorithms. Here it is demonstrated that induced qubit lattice coherence as well as two remarkable quantum coherent optical phenomena, i.e., self-induced transparency and Dicke-type superradiance, may occur during light-pulse propagation in quantum metamaterials comprising superconducting charge qubits. The generated qubit lattice pulse forms a compound ”quantum breather” that propagates in synchrony with the electromagnetic pulse. The experimental confirmation of such effects in superconducting quantum metamaterials may open a new pathway to potentially powerful quantum computing.

  2. Qubit lattice coherence induced by electromagnetic pulses in superconducting metamaterials

    Science.gov (United States)

    Ivić, Z.; Lazarides, N.; Tsironis, G. P.

    2016-01-01

    Quantum bits (qubits) are at the heart of quantum information processing schemes. Currently, solid-state qubits, and in particular the superconducting ones, seem to satisfy the requirements for being the building blocks of viable quantum computers, since they exhibit relatively long coherence times, extremely low dissipation, and scalability. The possibility of achieving quantum coherence in macroscopic circuits comprising Josephson junctions, envisioned by Legett in the 1980’s, was demonstrated for the first time in a charge qubit; since then, the exploitation of macroscopic quantum effects in low-capacitance Josephson junction circuits allowed for the realization of several kinds of superconducting qubits. Furthermore, coupling between qubits has been successfully achieved that was followed by the construction of multiple-qubit logic gates and the implementation of several algorithms. Here it is demonstrated that induced qubit lattice coherence as well as two remarkable quantum coherent optical phenomena, i.e., self-induced transparency and Dicke-type superradiance, may occur during light-pulse propagation in quantum metamaterials comprising superconducting charge qubits. The generated qubit lattice pulse forms a compound ”quantum breather” that propagates in synchrony with the electromagnetic pulse. The experimental confirmation of such effects in superconducting quantum metamaterials may open a new pathway to potentially powerful quantum computing. PMID:27403780

  3. Robust Concurrent Remote Entanglement Between Two Superconducting Qubits

    Directory of Open Access Journals (Sweden)

    A. Narla

    2016-09-01

    Full Text Available Entangling two remote quantum systems that never interact directly is an essential primitive in quantum information science and forms the basis for the modular architecture of quantum computing. When protocols to generate these remote entangled pairs rely on using traveling single-photon states as carriers of quantum information, they can be made robust to photon losses, unlike schemes that rely on continuous variable states. However, efficiently detecting single photons is challenging in the domain of superconducting quantum circuits because of the low energy of microwave quanta. Here, we report the realization of a robust form of concurrent remote entanglement based on a novel microwave photon detector implemented in the superconducting circuit quantum electrodynamics platform of quantum information. Remote entangled pairs with a fidelity of 0.57±0.01 are generated at 200 Hz. Our experiment opens the way for the implementation of the modular architecture of quantum computation with superconducting qubits.

  4. Robust Concurrent Remote Entanglement Between Two Superconducting Qubits

    Science.gov (United States)

    Narla, A.; Shankar, S.; Hatridge, M.; Leghtas, Z.; Sliwa, K. M.; Zalys-Geller, E.; Mundhada, S. O.; Pfaff, W.; Frunzio, L.; Schoelkopf, R. J.; Devoret, M. H.

    2016-07-01

    Entangling two remote quantum systems that never interact directly is an essential primitive in quantum information science and forms the basis for the modular architecture of quantum computing. When protocols to generate these remote entangled pairs rely on using traveling single-photon states as carriers of quantum information, they can be made robust to photon losses, unlike schemes that rely on continuous variable states. However, efficiently detecting single photons is challenging in the domain of superconducting quantum circuits because of the low energy of microwave quanta. Here, we report the realization of a robust form of concurrent remote entanglement based on a novel microwave photon detector implemented in the superconducting circuit quantum electrodynamics platform of quantum information. Remote entangled pairs with a fidelity of 0.57 ±0.01 are generated at 200 Hz. Our experiment opens the way for the implementation of the modular architecture of quantum computation with superconducting qubits.

  5. Readout of a superconducting qubit. A problem of quantum escape processes for driven systems

    Energy Technology Data Exchange (ETDEWEB)

    Verso, Alvise

    2010-10-27

    We started this work with a description of two devices that were recently developed in the context of quantum information processing. These devices are used as read-out for superconducting quantum bits based on Josephson junctions. The classical description has to be extended to the quantum regime. As the main result we calculate the leading order corrections in {Dirac_h} on the escape rate. We took into account a standard metastable potential with a static energy barrier and showed how to derive an extension of the classical diffusion equation. We did this within a systematic semiclassical formalism starting from a quantum mechanical master equation. This master equation contains an extra term for the loss of population due to tunneling through the barrier and, in contrast to previous approaches, finite barrier transmission which also affects the transition probabilities between the states. The escape rate is obtained from the stationary non-equilibrium solution of the diffusion equation. The quantum corrections on the escape rate are captured by two factors, the first one describes zero-point fluctuations in the well, while the second one describes the impact of finite barrier transmission close to the top. Interestingly, for weak friction there exists a temperature range, where the latter one can actually prevail and lead to a reduction of the escape compared to the classical situation due to finite reflection from the barrier even for energies above the barrier. Only for lower temperatures does the quantum result exceed the classical one. The approach can not strictly be used for the Duffing oscillator because of the time dependent term in its Hamiltonian. But it is possible to move in a frame rotating with a frequency equal to the response frequency of the Duffing oscillator in order to obtain a time-independent Hamiltonian. Therefore a system plus reservoir model was applied to consistently derive in the weak coupling limit the master equation for the reduced

  6. Quantum Gate Operations in Decoherence-Free Subspace with Superconducting Charge Qubits inside a Cavity

    Institute of Scientific and Technical Information of China (English)

    WANG Yi-Min; ZHOU Yan-Li; LIANG Lin-Mei; LI Cheng-Zu

    2009-01-01

    We propose a feasible scheme to achieve universal quantum gate operations in decoherence-free subspace with superconducting charge qubits placed in a microwave cavity.Single-logic-qubit gates can be realized with cavity assisted interaction, which possesses the advantages of unconventional geometric gate operation.The two-logic-qubit controlled-phase gate between subsystems can be constructed with the help of a variable electrostatic transformer, The collective decoherence can be successfully avoided in our well-designed system.Moreover, GHZ state for logical qubits can also be easily produced in this system.

  7. Tunable coupling in circuit quantum electrodynamics using a superconducting charge qubit with a V-shaped energy level diagram.

    Science.gov (United States)

    Srinivasan, S J; Hoffman, A J; Gambetta, J M; Houck, A A

    2011-02-25

    We introduce a new type of superconducting charge qubit that has a V-shaped energy spectrum and uses quantum interference to provide independently tunable qubit energy and coherent coupling to a superconducting cavity. Dynamic access to the strong coupling regime is demonstrated by tuning the coupling strength from less than 200 kHz to greater than 40 MHz. This tunable coupling can be used to protect the qubit from cavity-induced relaxation and avoid unwanted qubit-qubit interactions in a multiqubit system.

  8. Towards realizing a quantum memory for a superconducting qubit: storage and retrieval of quantum states.

    Science.gov (United States)

    Saito, Shiro; Zhu, Xiaobo; Amsüss, Robert; Matsuzaki, Yuichiro; Kakuyanagi, Kosuke; Shimo-Oka, Takaaki; Mizuochi, Norikazu; Nemoto, Kae; Munro, William J; Semba, Kouichi

    2013-09-06

    We have built a hybrid system composed of a superconducting flux qubit (the processor) and an ensemble of nitrogen-vacancy centers in diamond (the memory) that can be directly coupled to one another, and demonstrated how information can be transferred from the flux qubit to the memory, stored, and subsequently retrieved. We have established the coherence properties of the memory and succeeded in creating an entangled state between the processor and memory, demonstrating how the entangled state's coherence is preserved. Our results are a significant step towards using an electron spin ensemble as a quantum memory for superconducting qubits.

  9. Investigating the Materials Limits on Coherence in Superconducting Charge Qubits

    Science.gov (United States)

    2014-12-04

    mesoscopic effects in superconductors on the coherence of qubits and on losses in superconducting films , and comparing these to experiment. This...on the superconducting films themselves, or at the metal-substrate interfaces) was the main limitation on qubit lifetimes, which were then in the...quality. We also developed and tested the “vertical transmon” design, where the transmon capacitors are formed through the bulk thickness of the

  10. Engineering interactions between superconducting qubits and phononic nanostructures

    Science.gov (United States)

    Arrangoiz-Arriola, Patricio; Safavi-Naeini, Amir H.

    2016-12-01

    Nanomechanical systems can support highly coherent microwave-frequency excitations at cryogenic temperatures. However, generating sufficient coupling between these devices and superconducting quantum circuits is challenging due to the vastly different length scales of acoustic and electromagnetic excitations. Here we demonstrate a general method for calculating piezoelectric interactions between quantum circuits and arbitrary phononic nanostructures. We illustrate our technique by studying the coupling between a transmon qubit and bulk acoustic-wave, Lamb-wave, and phononic crystal resonators, and show that very large coupling rates are possible in all three cases. Our results suggest a route to phononic circuits and systems that are nonlinear at the single-phonon level.

  11. Demonstrating a driven reset protocol for a superconducting qubit.

    Science.gov (United States)

    Geerlings, K; Leghtas, Z; Pop, I M; Shankar, S; Frunzio, L; Schoelkopf, R J; Mirrahimi, M; Devoret, M H

    2013-03-22

    Qubit reset is crucial at the start of and during quantum information algorithms. We present the experimental demonstration of a practical method to force qubits into their ground state, based on driving appropriate qubit and cavity transitions. Our protocol, called the double drive reset of population, is tested on a superconducting transmon qubit in a three-dimensional cavity. Using a new method for measuring population, we show that we can prepare the ground state with a fidelity of at least 99.5% in less than 3 μs; faster times and higher fidelity are predicted upon parameter optimization.

  12. Entanglement and Quantum Error Correction with Superconducting Qubits

    Science.gov (United States)

    Reed, Matthew

    2015-03-01

    Quantum information science seeks to take advantage of the properties of quantum mechanics to manipulate information in ways that are not otherwise possible. Quantum computation, for example, promises to solve certain problems in days that would take a conventional supercomputer the age of the universe to decipher. This power does not come without a cost however, as quantum bits are inherently more susceptible to errors than their classical counterparts. Fortunately, it is possible to redundantly encode information in several entangled qubits, making it robust to decoherence and control imprecision with quantum error correction. I studied one possible physical implementation for quantum computing, employing the ground and first excited quantum states of a superconducting electrical circuit as a quantum bit. These ``transmon'' qubits are dispersively coupled to a superconducting resonator used for readout, control, and qubit-qubit coupling in the cavity quantum electrodynamics (cQED) architecture. In this talk I will give an general introduction to quantum computation and the superconducting technology that seeks to achieve it before explaining some of the specific results reported in my thesis. One major component is that of the first realization of three-qubit quantum error correction in a solid state device, where we encode one logical quantum bit in three entangled physical qubits and detect and correct phase- or bit-flip errors using a three-qubit Toffoli gate. My thesis is available at arXiv:1311.6759.

  13. Entropy Exchange in Coupled Field-Superconducting Charge Qubit System with Intrinsic Decoherence

    Institute of Scientific and Technical Information of China (English)

    SHAO Bin; ZHANG Jian; ZOU Jian

    2006-01-01

    Based on the intrinsic decoherence effect, partial entropy properties of a super conducting charge qubitinside a single-mode cavity field is investigated, and entropy exchange which is recently regarded as a kind of anti-correlated behavior of the entropy between subsystems is explored. Our results show that although the intrinsic decoherenceleads to an effective irreversible evolution of the interacting system due to a suppression of coherent quantum features through the decay of off-diagonal matrix elements of the density operator and has an apparently influence on the partial entropy of two individual subsystems, it does not effect the entropy exchange between the two subsystems.

  14. Simulating Quantum Chemical Dynamics with Improved Superconducting Qubits

    Science.gov (United States)

    Megrant, Anthony E.

    A quantum computer will potentially solve far-reaching problems which are currently intractable on any classical computer. Many technological obstacles have prevented the realization of a quantum computer, the main obstacle being decoherence, which is the loss of quantum information. Decoherence arises from the undesired interaction between qubits and their environment. Isolated qubits have better coherence but are more difficult to control. Superconducting qubits are a promising platform since their macroscopic size allows for easy control and coupling to other qubits. While the coherence of superconducting qubits has substantially improved over the past two decades, further improvements in coherence are required. We have repeatedly and reliably increased the coherence times of superconducting qubits. Currently decoherence in these devices is dominated by coupling to material defects. These defects are present in the dielectrics used to fabricate these devices or introduced during fabrication. Using simpler resonators as a testbed, we individually isolate, characterize, and then improve each step of the more complicated fabrication of superconducting qubits. We increased the quality factor of resonators by a factor of four by first identifying the surfaces and interfaces as a major source of loss and then by optimizing the substrate preparation. Furthermore, we measure and subsequently mitigate additional defect loss, which is dependent on the position of ground plane holes used to limit the loss from magnetic vortices. Implementing these improvements led to an increase of our qubit coherence times by more than an order of magnitude. The progress made in coherence while maintaining a high degree of connectivity and controllability has been directly used in more complex circuits. One such device is a fully connected three qubit ring with both tunable qubit frequencies and adjustable qubit-qubit couplings. The considerable level of control allows us to generate the

  15. Decoherence in Superconducting Qubits from Surface Magnetic States

    Science.gov (United States)

    Hover, David; Sendelbach, Steven; Kittel, Achim; Mueck, Michael; McDermott, Robert

    2008-03-01

    Unpaired spins in amorphous surface oxides can act as a source of decoherence in superconducting and other solid-state qubits. A density of surface spins can give rise to low-frequency magnetic flux noise, which in turn leads to dephasing of the qubit state. In addition, magnetic surface states can couple to high-frequency resonant magnetic fields, and thereby contribute to energy relaxation of the qubit. We present the results of low-frequency measurements of the nonlinear and imaginary spin susceptibility of surface magnetic states in superconducting devices at millikelvin temperatures. In addition, we describe high-frequency magnetic resonance measurements that directly probe the surface spin density of states. We present calculations that connect the measurement results to qubit energy relaxation and dephasing times.

  16. Low-frequency Flux Noise in SQUIDs and Superconducting Qubits

    Science.gov (United States)

    Sendelbach, Steven; Hover, David; Kittel, Achim; Mueck, Michael; McDermott, Robert

    2008-03-01

    Superconducting qubits are a leading candidate for scalable quantum information processing. In order to realize the full potential of these qubits, it is necessary to develop a more complete understanding of the microscopic physics that governs dissipation and dephasing of the quantum state. In the case of the Josephson phase and flux qubits, the dominant dephasing mechanism is an apparent low-frequency magnetic flux noise with a 1/f spectrum. The origin of this excess noise is not understood. We report the results of SQUID measurements that explore the dependence of the excess low-frequency flux noise on SQUID inductance, geometry, materials, and temperature. We discuss contributions to the measured noise from temperature fluctuations, trapped vortices in the superconducting films, and surface magnetic states in the native oxides of the superconductors. We discuss implications of our measurements for qubit dephasing.

  17. Demonstration of a Tuneable Coupler for Superconducting Qubits Using Coherent, Time Domain, Two-Qubit Operations

    CERN Document Server

    Bialczak, R C; Hofheinz, M; Lenander, M; Lucero, E; Neeley, M; O'Connell, A D; Sank, D; Wang, H; Weides, M; Wenner, J; Yamamoto, T; Cleland, A N; Martinis, J M

    2010-01-01

    A major challenge in the field of quantum computing is the construction of scalable qubit coupling architectures. Here, we demonstrate a novel tuneable coupling circuit that allows superconducting qubits to be coupled over long distances. We show that the inter-qubit coupling strength can be arbitrarily tuned over nanosecond timescales within a sequence that mimics actual use in an algorithm. The coupler has a measured on/off ratio of 1000. The design is self-contained and physically separate from the qubits, allowing the coupler to be used as a module to connect a variety of elements such as qubits, resonators, amplifiers, and readout circuitry over long distances. Such design flexibility is likely to be essential for a scalable quantum computer.

  18. A scheme to implement the Deutsch-Josza algorithm on a superconducting charge-qubit quantum computer

    Institute of Scientific and Technical Information of China (English)

    HUO Wenyi; LONG Guilu

    2006-01-01

    We have studied the implementation of the Deutsch-Josza quantum algorithm in a superconducting charge-qubit quantum computer. Different from previous studies, we have used the inductance coupled system of You et al. The detailed pulse sequences have been designed for the four possible functions in a 2-qubit system. The result is generalized to an arbitrary n-qubit system. This scheme will be useful for practical implementation of the algorithm.

  19. Observing single quantum trajectories of a superconducting qubit

    CERN Document Server

    Murch, K W; Macklin, C; Siddiqi, I

    2013-01-01

    The length of time that a quantum system can exist in a superposition state is determined by how strongly it interacts with its environment. This interaction entangles the quantum state with the inherent fluctuations of the environment. If these fluctuations are not measured, the environment can be viewed as a source of noise, causing random evolution of the quantum system from an initially pure state into a statistical mixture-a process known as decoherence. However, by accurately measuring the environment in real time, the quantum system can be maintained in a pure state and its time evolution described by a quantum trajectory conditioned on the measurement outcome. We employ weak measurements to monitor a microwave cavity embedding a superconducting qubit and track the individual quantum trajectories of the system. In this architecture, the environment is dominated by the fluctuations of a single electromagnetic mode of the cavity. Using a near-quantum-limited parametric amplifier, we selectively measure e...

  20. Absence of State Collapse and Revival in a Superconducting Charge Qubit

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The Hamiltonian of a superconducting charge qubit with a configuration of dc SQUID contains an interaction between the LC oscillator part and charge qubit. This interaction may leads to quantum state collapse and revival which degrades the charge qubits and leads to serious decoherence. An analysis shows that the existing charge qubit parameters do not lead to this phenomenon, which is very good for the superconducting charge qubit.

  1. Microstrip filters for measurement and control of superconducting qubits.

    Science.gov (United States)

    Longobardi, Luigi; Bennett, Douglas A; Patel, Vijay; Chen, Wei; Lukens, James E

    2013-01-01

    Careful filtering is necessary for observations of quantum phenomena in superconducting circuits at low temperatures. Measurements of coherence between quantum states require extensive filtering to protect against noise coupled from room temperature electronics. We demonstrate distributed transmission line filters which cut off exponentially at GHz frequencies and can be anchored at the base temperature of a dilution refrigerator. The compact design makes them suitable to filter many different bias lines in the same setup, necessary for the control and measurement of superconducting qubits.

  2. Tuning the Gap of a Superconducting Flux Qubit

    NARCIS (Netherlands)

    Paauw, F.G.; Fedorov, A.; Harmans, C.J.P.M.; Mooij, J.E.

    2009-01-01

    We experimentally demonstrate the in situ tunability of the minimum energy splitting (gap) of a superconducting flux qubit by means of an additional flux loop. Pulses applied via a local control line allow us to tune the gap over a range of several GHz on a nanosecond time scale. The strong flux sen

  3. Dynamics of entanglement in realistic chains of superconducting qubits

    CERN Document Server

    Tsomokos, D I; Huelga, S F; Plenio, M B

    2006-01-01

    The quantum dynamics of chains of superconducting qubits is analyzed under realistic experimental conditions. Electromagnetic fluctuations due to the background circuitry, finite temperature in the external environment, and disorder in the initial preparation and the control parameters are taken into account. It is shown that the amount of disorder that is typically present in current experiments does not affect the entanglement dynamics significantly. However, the effect of the environmental noise can modify entanglement generation and propagation across the chain. We study the persistence of coherent effects in the presence of noise and possible ways to efficiently detect the presence of quantum entanglement. We also discuss under which circumstances the system exhibits steady state entanglement for both short (N30) chains and show that there are parameter regimes where the steady state entanglement is strictly non-monotonic as a function of the noise strength. We present optimized schemes for entanglement ...

  4. Exploring the physics of superconducting qubits strongly coupled to microwave frequency photons

    Energy Technology Data Exchange (ETDEWEB)

    Wallraff, Andreas [ETH Zurich (Switzerland)

    2013-07-01

    Using modern micro and nano-fabrication techniques combined with superconducting materials we realize electronic circuits the properties of which are governed by the laws of quantum mechanics. In such circuits the strong interaction of photons with superconducting quantum two-level systems allows us to probe fundamental quantum properties of light and to develop components for applications in quantum information technology. Here, I present experiments in which we have created and probed entanglement between stationary qubits and microwave photons freely propagating down a transmission line. In these experiments we use superconducting parametric amplifiers realized in our lab to detect both qubit and photon states efficiently. Using similar techniques we aim at demonstrating a deterministic scheme for teleportation of quantum states in a macroscopic system based on superconducting circuits.

  5. Fabrication and Characterization of Aluminum Airbridges for Superconducting Qubit Circuits

    Science.gov (United States)

    Chen, Zijun; Megrant, Anthony; Kelly, Julian; Barends, Rami; Bochmann, Joerg; Chen, Yu; Chiaro, Benjamin; Dunsworth, Andrew; Jeffrey, Evan; Mutus, Joshua; O'Malley, Peter; Neill, Charles; Roushan, Pedram; Sank, Daniel; Vainsencher, Amit; Wenner, James; White, Theodore; Cleland, Andrew; Martinis, John

    2014-03-01

    Superconducting circuits based on coplanar waveguides (CPWs) are susceptible to parasitic slotline modes which can lead to loss and decoherence. We motivate the use of superconducting airbridges as a reliable method for preventing the propagation of these modes. We describe the fabrication of these airbridges on superconducting resonators, which we use to measure the loss due to placing airbridges over CPW lines. We find that the additional loss at single photon levels is small, and decreases at higher drive powers. These results pave the way for building airbridge crossovers on more complex qubit circuits.

  6. Broadband sample holder for microwave spectroscopy of superconducting qubits.

    Science.gov (United States)

    Averkin, A S; Karpov, A; Shulga, K; Glushkov, E; Abramov, N; Huebner, U; Il'ichev, E; Ustinov, A V

    2014-10-01

    We present a practical design and implementation of a broadband sample holder suitable for microwave experiments with superconducting integrated circuits at millikelvin temperatures. Proposed design can be easily integrated in standard dilution cryostats, has flat pass band response in a frequency range from 0 to 32 GHz, allowing the RF testing of the samples with substrate size up to 4 × 4 mm(2). The parasitic higher modes interference in the holder structure is analyzed and prevented via design considerations. The developed setup can be used for characterization of superconducting parametric amplifiers, bolometers, and qubits. We tested the designed sample holder by characterizing of a superconducting flux qubit at 20 mK temperature.

  7. Measurement-induced long-distance entanglement of superconducting qubits using optomechanical transducers

    Science.gov (United States)

    Černotík, Ondřej; Hammerer, Klemens

    2016-07-01

    Although superconducting systems provide a promising platform for quantum computing, their networking poses a challenge because they cannot be interfaced to light, the medium used to send quantum signals through channels at room temperature. We show that mechanical oscillators can mediate such coupling and light can be used to measure the joint state of two distant qubits. The measurement provides information on the total spin of the two qubits such that entangled qubit states can be postselected. Entanglement generation is possible without ground-state cooling of the mechanical oscillators for systems with optomechanical cooperativity moderately larger than unity; in addition, our setup tolerates a substantial transmission loss. The approach is scalable to the generation of multipartite entanglement and represents a crucial step towards quantum networks with superconducting circuits.

  8. Controllable coherent population transfers in superconducting qubits for quantum computing.

    Science.gov (United States)

    Wei, L F; Johansson, J R; Cen, L X; Ashhab, S; Nori, Franco

    2008-03-21

    We propose an approach to coherently transfer populations between selected quantum states in one- and two-qubit systems by using controllable Stark-chirped rapid adiabatic passages. These evolution-time insensitive transfers, assisted by easily implementable single-qubit phase-shift operations, could serve as elementary logic gates for quantum computing. Specifically, this proposal could be conveniently demonstrated with existing Josephson phase qubits. Our proposal can find an immediate application in the readout of these qubits. Indeed, the broken parity symmetries of the bound states in these artificial atoms provide an efficient approach to design the required adiabatic pulses.

  9. The Quantum Socket: Wiring for Superconducting Qubits - Part 2

    Science.gov (United States)

    Bejanin, J. H.; McConkey, T. G.; Rinehart, J. R.; Bateman, J. D.; Earnest, C. T.; McRae, C. H.; Rohanizadegan, Y.; Shiri, D.; Mariantoni, M.; Penava, B.; Breul, P.; Royak, S.; Zapatka, M.; Fowler, A. G.

    Quantum computing research has reached a level of maturity where quantum error correction (QEC) codes can be executed on linear arrays of superconducting quantum bits (qubits). A truly scalable quantum computing architecture, however, based on practical QEC algorithms, requires nearest neighbor interaction between qubits on a two-dimensional array. Such an arrangement is not possible with techniques that rely on wire bonding. To address this issue, we have developed the quantum socket, a device based on three-dimensional wires that enables the control of superconducting qubits on a two-dimensional grid. In this talk, we present experimental results characterizing this type of wiring. We will show that the quantum socket performs exceptionally well for the transmission and reflection of microwave signals up to 10 GHz, while minimizing crosstalk between adjacent wires. Under realistic conditions, we measured an S21 of -5 dB at 6 GHz and an average crosstalk of -60 dB. We also describe time domain reflectometry results and arbitrary pulse transmission tests, showing that the quantum socket can be used to control superconducting qubits.

  10. Probing the quantum coherence of a nanomechanical resonator using a superconducting qubit: I. Echo scheme

    Energy Technology Data Exchange (ETDEWEB)

    Armour, A D [School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD (United Kingdom); Blencowe, M P [Department of Physics and Astronomy, 6127 Wilder Laboratory, Dartmouth College, Hanover, NH 03755 (United States)], E-mail: andrew.armour@nottingham.ac.uk, E-mail: miles.p.blencowe@dartmouth.edu

    2008-09-15

    We propose a scheme in which the quantum coherence of a nanomechanical resonator can be probed using a superconducting qubit. We consider a mechanical resonator coupled capacitively to a Cooper pair box and assume that the superconducting qubit is tuned to the degeneracy point so that its coherence time is maximized and the electro-mechanical coupling can be approximated by a dispersive Hamiltonian. When the qubit is prepared in a superposition of states, this drives the mechanical resonator progressively into a superposition which in turn leads to apparent decoherence of the qubit. Applying a suitable control pulse to the qubit allows its population to be inverted resulting in a reversal of the resonator dynamics. However, the resonator's interactions with its environment mean that the dynamics is not completely reversible. We show that this irreversibility is largely due to the decoherence of the mechanical resonator and can be inferred from appropriate measurements on the qubit alone. Using estimates for the parameters involved based on a specific realization of the system, we show that it should be possible to carry out this scheme with existing device technology.

  11. Quantum acousto-optic transducer for superconducting qubits

    CERN Document Server

    Shumeiko, V S

    2015-01-01

    We propose theory for reversible quantum transducer connecting superconducting qubits and optical photons using acoustic waves in piezoelectrics. The proposed device consists of integrated acousto-optic resonator that utilizes stimulated Brillouin scattering for phonon-photon conversion, and piezoelectric e?ect for coupling of phonons to qubits. We evaluate the phonon-photon coupling rate, and show that the required power of optical pump as well as the other device parameters providing full and faithful quantum conversion are feasible for implementation with the state of the art integrated acousto-optics.

  12. Electron spin resonance detected by a superconducting qubit

    CERN Document Server

    Kubo, Y; Grezes, C; Umeda, T; Isoya, J; Sumiya, H; Yamamoto, T; Abe, H; Onoda, S; Ohshima, T; Jacques, V; Dréau, A; Roch, J -F; Auffeves, A; Vion, D; Esteve, D; Bertet, P

    2012-01-01

    A new method for detecting the magnetic resonance of electronic spins at low temperature is demonstrated. It consists in measuring the signal emitted by the spins with a superconducting qubit that acts as a single-microwave-photon detector, resulting in an enhanced sensitivity. We implement this new type of electron-spin resonance spectroscopy using a hybrid quantum circuit in which a transmon qubit is coupled to a spin ensemble consisting of NV centers in diamond. With this setup we measure the NV center absorption spectrum at 30mK at an excitation level of \\thicksim15\\,\\mu_{B} out of an ensemble of 10^{11} spins.

  13. Noise and Directionality in a SLUG Microwave Amplifier for Superconducting Qubit Readout

    Science.gov (United States)

    Thorbeck, Ted; Zhu, Shaojiang; Leonard, Edward; McDermott, Robert

    2015-03-01

    Josephson parametric amplifiers have been widely used for low-noise dispersive readout of superconducting qubits. However, multiple stages of cryogenic isolation are required to protect the qubit from the strong microwave pump tone and from the high temperature noise of downstream gain stages. We want to remove circulators and isolators from the measurement chain because they are bulky, expensive, and magnetic. The SLUG (superconducting low-inductance undulatory galvanometer) is a microwave amplifier that achieves broad bandwidth, low added noise, and high gain. In this talk we discuss measurements of the SLUG added noise (less than photon system added noise). We describe theoretical and experimental investigations of the SLUG reverse isolation. Finally, we discuss backaction of the SLUG on the measured qubit, and we present strategies for the suppression of SLUG backaction.

  14. Analog approaches to quantum computation using highly-controllable superconducting qubits

    Science.gov (United States)

    Neill, C.; Roushan, P.; Barends, R.; Campbell, B.; Chen, Y.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Fowler, A.; Jeffrey, E.; Kelly, J.; Lucero, E.; Megrant, A.; Mutus, J.; Neeley, M.; O'Malley, P.; Quintana, C.; Sank, D.; Wenner, J.; White, T.; Martinis, J.

    The first generation of quantum hardware that outperforms classical computers will likely be analog in nature. In an effort to realize such a platform, we have built a one-dimensional chain of 9 superconducting gmon qubits. This device provides individual time-dependent control over all nearest-neighbor couplings and local fields (X, Y, Z) in the multi-qubit Hamiltonian. In this talk, I will focus on open problems in non-equilibrium statistical mechanics where dynamical properties become impossible to compute for only a few 10s of qubits. In particular, I will review device performance and the scaling of analog errors with system size. By studying how errors scale during practical applications, we aim to predict if otherwise-intractable computations could be carried out with 30 to 40 qubits.

  15. Stabilizing Entanglement via Symmetry-Selective Bath Engineering in Superconducting Qubits

    Science.gov (United States)

    Kimchi-Schwartz, M. E.; Martin, L.; Flurin, E.; Aron, C.; Kulkarni, M.; Tureci, H. E.; Siddiqi, I.

    2016-06-01

    Bath engineering, which utilizes coupling to lossy modes in a quantum system to generate nontrivial steady states, is a tantalizing alternative to gate- and measurement-based quantum science. Here, we demonstrate dissipative stabilization of entanglement between two superconducting transmon qubits in a symmetry-selective manner. We utilize the engineered symmetries of the dissipative environment to stabilize a target Bell state; we further demonstrate suppression of the Bell state of opposite symmetry due to parity selection rules. This implementation is resource efficient, achieves a steady-state fidelity F =0.70 , and is scalable to multiple qubits.

  16. Demonstration of two-qubit algorithms with a superconducting quantum processor.

    Science.gov (United States)

    DiCarlo, L; Chow, J M; Gambetta, J M; Bishop, Lev S; Johnson, B R; Schuster, D I; Majer, J; Blais, A; Frunzio, L; Girvin, S M; Schoelkopf, R J

    2009-07-09

    Quantum computers, which harness the superposition and entanglement of physical states, could outperform their classical counterparts in solving problems with technological impact-such as factoring large numbers and searching databases. A quantum processor executes algorithms by applying a programmable sequence of gates to an initialized register of qubits, which coherently evolves into a final state containing the result of the computation. Building a quantum processor is challenging because of the need to meet simultaneously requirements that are in conflict: state preparation, long coherence times, universal gate operations and qubit readout. Processors based on a few qubits have been demonstrated using nuclear magnetic resonance, cold ion trap and optical systems, but a solid-state realization has remained an outstanding challenge. Here we demonstrate a two-qubit superconducting processor and the implementation of the Grover search and Deutsch-Jozsa quantum algorithms. We use a two-qubit interaction, tunable in strength by two orders of magnitude on nanosecond timescales, which is mediated by a cavity bus in a circuit quantum electrodynamics architecture. This interaction allows the generation of highly entangled states with concurrence up to 94 per cent. Although this processor constitutes an important step in quantum computing with integrated circuits, continuing efforts to increase qubit coherence times, gate performance and register size will be required to fulfil the promise of a scalable technology.

  17. Preparation and measurement of three-qubit entanglement in a superconducting circuit.

    Science.gov (United States)

    Dicarlo, L; Reed, M D; Sun, L; Johnson, B R; Chow, J M; Gambetta, J M; Frunzio, L; Girvin, S M; Devoret, M H; Schoelkopf, R J

    2010-09-30

    Traditionally, quantum entanglement has been central to foundational discussions of quantum mechanics. The measurement of correlations between entangled particles can have results at odds with classical behaviour. These discrepancies grow exponentially with the number of entangled particles. With the ample experimental confirmation of quantum mechanical predictions, entanglement has evolved from a philosophical conundrum into a key resource for technologies such as quantum communication and computation. Although entanglement in superconducting circuits has been limited so far to two qubits, the extension of entanglement to three, eight and ten qubits has been achieved among spins, ions and photons, respectively. A key question for solid-state quantum information processing is whether an engineered system could display the multi-qubit entanglement necessary for quantum error correction, which starts with tripartite entanglement. Here, using a circuit quantum electrodynamics architecture, we demonstrate deterministic production of three-qubit Greenberger-Horne-Zeilinger (GHZ) states with fidelity of 88 per cent, measured with quantum state tomography. Several entanglement witnesses detect genuine three-qubit entanglement by violating biseparable bounds by 830 ± 80 per cent. We demonstrate the first step of basic quantum error correction, namely the encoding of a logical qubit into a manifold of GHZ-like states using a repetition code. The integration of this encoding with decoding and error-correcting steps in a feedback loop will be the next step for quantum computing with integrated circuits.

  18. Coherent oscillations in a superconducting flux qubit without microwave pulses

    Energy Technology Data Exchange (ETDEWEB)

    Poletto, Stefano; Lisenfeld, Juergen; Lukashenko, Alexander; Ustinov, Alexey V. [Physikalisches Institut III, Universitaet Erlangen-Nuernberg (Germany); Castellano, Maria Gabriella; Chiarello, Fabio [Istituto di Fotonica e Nanotecnologie del CNR, Roma (Italy); Cosmelli, Carlo [Dipartimento di Fisica and INFN, Universita' di Roma La Sapienza (Italy); Carelli, Pasquale [Universita' degli Studi dell' Acquila (Italy)

    2008-07-01

    We report on observation of coherent oscillations in a superconducting flux qubit by using no microwave excitation but only nanosecond-long dc flux pulses. The investigated circuit is a double-SQUID consisting of a superconducting loop interrupted by a small dc-SQUID, which we control via two bias fluxes {phi}{sub c} and {phi}{sub x}. The potential energy profile of the qubit has the shape of a double well, where the flux {phi}{sub c} controls the height of the barrier between the two minima and the flux {phi}{sub x} changes the potential symmetry. The two computational states of the qubit are identified with the two energy minima and physically correspond to clockwise or anticlockwise circulating currents in the double-SQUID main loop. We observed coherent oscillations, in the frequency range between 8 and 20 GHz, induced by fast pulses of the control flux {phi}{sub c} modulating the barrier between the two potential wells. The quantum dynamics that leads to this kind of oscillations is composed of a non-adiabatic and adiabatic evolution of the two lowest energy states.

  19. Towards Quantum Simulation of Chemical Dynamics with Prethreshold Superconducting Qubits

    CERN Document Server

    Stancil, P C; Cook, A; Sornborger, A T; Geller, M R

    2016-01-01

    The single excitation subspace (SES) method for universal quantum simulation is investigated for a number of diatomic molecular collision complexes. Assuming a system of $n$ tunably-coupled, and fully-connected superconducting qubits, computations are performed in the $n$-dimensional SES which maps directly to an $n$-channel collision problem within a diabatic molecular wave function representation. Here we outline the approach on a classical computer to solve the time-dependent Schr\\"odinger equation in an $n$-dimensional molecular basis - the so-called semiclassical molecular-orbital close-coupling (SCMOCC) method - and extend the treatment beyond the straight-line, constant-velocity approximation which is restricted to large kinetic energies ($\\gtrsim 0.1$ keV/u). We explore various multichannel potential averaging schemes and an Ehrenfest symmetrization approach to allow for the application of the SCMOCC method to much lower collision energies (approaching 1 eV/u). In addition, a computational efficiency ...

  20. Surface participation and dielectric loss in superconducting qubits

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.; Axline, C.; Gao, Y. Y.; Brecht, T.; Chu, Y.; Frunzio, L.; Devoret, M. H.; Schoelkopf, R. J. [Department of Applied Physics and Physics, Yale University, New Haven, Connecticut 06520 (United States)

    2015-10-19

    We study the energy relaxation times (T{sub 1}) of superconducting transmon qubits in 3D cavities as a function of dielectric participation ratios of material surfaces. This surface participation ratio, representing the fraction of electric field energy stored in a dissipative surface layer, is computed by a two-step finite-element simulation and experimentally varied by qubit geometry. With a clean electromagnetic environment and suppressed non-equilibrium quasiparticle density, we find an approximately proportional relation between the transmon relaxation rates and surface participation ratios. These results suggest dielectric dissipation arising from material interfaces is the major limiting factor for the T{sub 1} of transmons in 3D circuit quantum electrodynamics architecture. Our analysis also supports the notion of spatial discreteness of surface dielectric dissipation.

  1. Superconducting qubit in a nonstationary transmission line cavity: Parametric excitation, periodic pumping, and energy dissipation

    Science.gov (United States)

    Zhukov, A. A.; Shapiro, D. S.; Remizov, S. V.; Pogosov, W. V.; Lozovik, Yu. E.

    2017-02-01

    We consider a superconducting qubit coupled to the nonstationary transmission line cavity with modulated frequency taking into account energy dissipation. Previously, it was demonstrated that in the case of a single nonadiabatical modulation of a cavity frequency there are two channels of a two-level system excitation which are due to the absorption of Casimir photons and due to the counterrotating wave processes responsible for the dynamical Lamb effect. We show that the parametric periodical modulation of the resonator frequency can increase dramatically the excitation probability. Remarkably, counterrotating wave processes under such a modulation start to play an important role even in the resonant regime. Our predictions can be used to control qubit-resonator quantum states as well as to study experimentally different channels of a parametric qubit excitation.

  2. Play building blocks on population distribution of multilevel superconducting flux qubit with quantum interference

    CERN Document Server

    Wen, Xueda; Yu, Yang

    2009-01-01

    Recent experiments on Landau-Zener interference in multilevel superconducting flux qubits revealed various interesting characteristics, which have been studied theoretically in our recent work by simply using rate equation method [PRB 79, 094529, (2009)]. In this note we extend this method to the same system but with larger driving amplitude and higher driving frequency. The results show various anomalous characteristics, some of which have been observed in a recent work.

  3. Effect of mutual inductance coupling on superconducting flux qubit decoherence

    Institute of Scientific and Technical Information of China (English)

    Yanyan Jiang; Hualan Xu; Yinghua Ji

    2009-01-01

    In the Born-Markov approximation and two-level approximation, and using the Bloch-Redfield equation, the decoherence property of superconducting quantum circuit with a flux qubit is investigated. The influence on decoherence of the mutual inductance coupling between the circuit components is complicated. The mutual inductance coupling between different loops will decrease the decoherence time. However, the mutual inductance coupling of the same loop, in a certain interval, will increase the decoherence time. Therefore, we can control the decoherence time by changing the mutual inductance parameters such as the strength and direction of coupling.

  4. Entanglement structures in qubit systems

    Science.gov (United States)

    Rangamani, Mukund; Rota, Massimiliano

    2015-09-01

    Using measures of entanglement such as negativity and tangles we provide a detailed analysis of entanglement structures in pure states of non-interacting qubits. The motivation for this exercise primarily comes from holographic considerations, where entanglement is inextricably linked with the emergence of geometry. We use the qubit systems as toy models to probe the internal structure, and introduce some useful measures involving entanglement negativity to quantify general features of entanglement. In particular, our analysis focuses on various constraints on the pattern of entanglement which are known to be satisfied by holographic sates, such as the saturation of Araki-Lieb inequality (in certain circumstances), and the monogamy of mutual information. We argue that even systems as simple as few non-interacting qubits can be useful laboratories to explore how the emergence of the bulk geometry may be related to quantum information principles.

  5. Entanglement structures in qubit systems

    CERN Document Server

    Rangamani, Mukund

    2015-01-01

    Using measures of entanglement such as negativity and tangles we provide a detailed analysis of entanglement structures in pure states of non-interacting qubits. The motivation for this exercise primarily comes from holographic considerations, where entanglement is inextricably linked with the emergence of geometry. We use the qubit systems as toy models to probe the internal structure, and introduce some useful measures involving entanglement negativity to quantify general features of entanglement. In particular, our analysis focuses on various constraints on the pattern of entanglement which are known to be satisfied by holographic sates, such as the saturation of Araki-Lieb inequality (in certain circumstances), and the monogamy of mutual information. We argue that even systems as simple as few non-interacting qubits can be useful laboratories to explore how the emergence of the bulk geometry may be related to quantum information principles.

  6. Entangled microwaves as a resource for entangling spatially separate solid-state qubits: Superconducting qubits, nitrogen-vacancy centers, and magnetic molecules

    Science.gov (United States)

    Gómez, Angela Viviana; Rodríguez, Ferney Javier; Quiroga, Luis; García-Ripoll, Juan José

    2016-06-01

    Quantum correlations present in a broadband two-line squeezed microwave state can induce entanglement in a spatially separated bipartite system consisting of either two single qubits or two-qubit ensembles. By using an appropriate master equation for a bipartite quantum system in contact with two separate but entangled baths, the generating entanglement process in spatially separated quantum systems is thoroughly characterized. Decoherence thermal effects on the entanglement transfer are also discussed. Our results provide evidence that this entanglement transfer by dissipation is feasible, yielding to a steady-state amount of entanglement in the bipartite quantum system which can be optimized for a wide range of realistic physical systems that include state-of-the-art experiments with nitrogen-vacancy centers in diamond, superconducting qubits, or even magnetic molecules embedded in a crystalline matrix.

  7. Entangled States in a Single-Qubit Structure with SQUID Coupled with a Super-conducting Resonator

    Institute of Scientific and Technical Information of China (English)

    SONG Jian-Wen; LIANG Bao-Long; HAI Wen-Hua; WANG Ji-Suo; ZHONG Hong-Hua; MENG Xiang-Guo; LUO Xiao-Bing

    2008-01-01

    In this paper, the number-phase quantization scheme of the mesoscopic circuit, which consists of a single-qubit structure with superconducting quantum interference device coupled with a super-conducting resonator, is given. By introducing a unitary matrix and by means of spectral decomposition, the Hamiltonian operator of the system is exactly formulated in compact forms in spin-1/2 notation. The eigenvalues and the eigenstates of the system are investigated. It is found that using this system the entangled states can not only be prepared, but also be manipulated by tuning the magnetic flux through the super-conducting loop.

  8. Quantum computing in decoherence-free subspaces with superconducting charge qubits

    Energy Technology Data Exchange (ETDEWEB)

    Feng Zhibo [National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093 (China); Institute for Condensed Matter Physics, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510631 (China); Zhang Xinding [Institute for Condensed Matter Physics, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510631 (China)], E-mail: xdzhang2000@gmail.com

    2007-12-10

    Taking into account the main noises in superconducting charge qubits (SCQs), we propose a feasible scheme to realize quantum computing (QC) in a specially-designed decoherence-free subspace (DFS). In our scheme two physical qubits are connected with a common inductance to form a strong coupling subsystem, which acts as a logical qubit. Benefiting from the well-designed DFS, our scheme is helpful to suppress certain decoherence effects.

  9. Quantum State Transmission in a Superconducting Charge Qubit-Atom Hybrid.

    Science.gov (United States)

    Yu, Deshui; Valado, María Martínez; Hufnagel, Christoph; Kwek, Leong Chuan; Amico, Luigi; Dumke, Rainer

    2016-12-06

    Hybrids consisting of macroscopic superconducting circuits and microscopic components, such as atoms and spins, have the potential of transmitting an arbitrary state between different quantum species, leading to the prospective of high-speed operation and long-time storage of quantum information. Here we propose a novel hybrid structure, where a neutral-atom qubit directly interfaces with a superconducting charge qubit, to implement the qubit-state transmission. The highly-excited Rydberg atom located inside the gate capacitor strongly affects the behavior of Cooper pairs in the box while the atom in the ground state hardly interferes with the superconducting device. In addition, the DC Stark shift of the atomic states significantly depends on the charge-qubit states. By means of the standard spectroscopic techniques and sweeping the gate voltage bias, we show how to transfer an arbitrary quantum state from the superconducting device to the atom and vice versa.

  10. Quantum State Transmission in a Superconducting Charge Qubit-Atom Hybrid

    CERN Document Server

    Yu, Deshui; Hufnagel, Christoph; Kwek, Leong Chuan; Amico, Luigi; Dumke, Rainer

    2016-01-01

    Hybrids consisting of macroscopic superconducting circuits and microscopic components, such as atoms and spins, have the potential of transmitting an arbitrary state between different quantum species, leading to the prospective of high-speed operation and long-time storage of quantum information. Here we propose a novel hybrid structure, where a neutral-atom qubit directly interfaces with a superconducting charge qubit, to implement the qubit-state transmission. The highly-excited Rydberg atom located inside the gate capacitor strongly affects the behavior of Cooper pairs in the box while the atom in the ground state hardly interferes with the superconducting device. In addition, the DC Stark shift of the atomic states significantly depends on the charge-qubit states. By means of the standard spectroscopic techniques and sweeping the gate voltage bias, we show how to transfer an arbitrary quantum state from the superconducting device to the atom and vice versa.

  11. Coupling nitrogen-vacancy centers in diamond to superconducting flux qubits

    DEFF Research Database (Denmark)

    Marcos, D.; Wubs, Martijn; Taylor, J.M.;

    2010-01-01

    We propose a method to achieve coherent coupling between nitrogen-vacancy (NV) centers in diamond and superconducting (SC) flux qubits. The resulting coupling can be used to create a coherent interaction between the spin states of distant NV centers mediated by the flux qubit. Furthermore, the ma...

  12. Coherent oscillations in a superconducting tunable flux qubit manipulated without microwaves

    Energy Technology Data Exchange (ETDEWEB)

    Poletto, S; Lisenfeld, J; Lukashenko, A; Ustinov, A V [Physikalisches Institut, Universitaet Karlsruhe (Thailand), D-76131 Karlsruhe (Germany); Chiarello, F; Castellano, M G; Torrioli, G [Istituto di Fotonica e Nanotecnologie, CNR, 00156 Roma (Italy); Cosmelli, C [Dipartimento Fisica, Universita di Roma La Sapienza, 00185 Roma (Italy); Carelli, P [Dipartimento Ingegneria Elettrica, Universita dell' Aquila, 67040 Monteluco di Roio (Italy)], E-mail: ustinov@physik.uni-karlsruhe.de

    2009-01-15

    We experimentally demonstrate coherent oscillations of a tunable superconducting flux qubit by manipulating its energy potential with a nanosecond-long pulse of magnetic flux. The occupation probabilities of two persistent current states oscillate at a frequency ranging from 6 GHz to 21 GHz, tunable by changing the amplitude of the flux pulse. The demonstrated operation mode could allow quantum gates to be realized in less than 100 ps, which is much shorter than gate times attainable in other superconducting qubits. Another advantage of this type of qubit is its immunity to both thermal and magnetic field fluctuations.

  13. Coupling nitrogen-vacancy centers in diamond to superconducting flux qubits.

    Science.gov (United States)

    Marcos, D; Wubs, M; Taylor, J M; Aguado, R; Lukin, M D; Sørensen, A S

    2010-11-19

    We propose a method to achieve coherent coupling between nitrogen-vacancy (NV) centers in diamond and superconducting (SC) flux qubits. The resulting coupling can be used to create a coherent interaction between the spin states of distant NV centers mediated by the flux qubit. Furthermore, the magnetic coupling can be used to achieve a coherent transfer of quantum information between the flux qubit and an ensemble of NV centers. This enables a long-term memory for a SC quantum processor and possibly an interface between SC qubits and light.

  14. Coupling nitrogen-vacancy centers in diamond to superconducting flux qubits

    DEFF Research Database (Denmark)

    Marcos, D.; Wubs, Martijn; Taylor, J.M.

    2010-01-01

    We propose a method to achieve coherent coupling between nitrogen-vacancy (NV) centers in diamond and superconducting (SC) flux qubits. The resulting coupling can be used to create a coherent interaction between the spin states of distant NV centers mediated by the flux qubit. Furthermore, the ma......, the magnetic coupling can be used to achieve a coherent transfer of quantum information between the flux qubit and an ensemble of NV centers. This enables a long-term memory for a SC quantum processor and possibly an interface between SC qubits and light....

  15. Quantum control of finite-time disentanglement in qubit-qubit and qubit-qutrit systems

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Mazhar

    2009-07-13

    This thesis is a theoretical study of entanglement dynamics and its control of qubit-qubit and qubit-qutrit systems. In particular, we focus on the decay of entanglement of quantum states interacting with dissipative environments. Qubit-qubit entanglement may vanish suddenly while interacting with statistically independent vacuum reservoirs. Such finite- time disentanglement is called sudden death of entanglement (ESD). We investigate entanglement sudden death of qubit-qubit and qubit-qutrit systems interacting with statistically independent reservoirs at zero- and finite-temperature. It is shown that for zero-temperature reservoirs, some entangled states exhibit sudden death while others lose their entanglement only after infinite time. Thus, there are two possible routes of entanglement decay, namely sudden death and asymptotic decay. We demonstrate that starting with an initial condition which leads to finite-time disentanglement, we can alter the future course of entanglement by local unitary actions. In other words, it is possible to put the quantum states on other track of decay once they are on a particular route of decay. We show that one can accelerate or delay sudden death. However, there is a critical time such that if local actions are taken before that critical time then sudden death can be delayed to infinity. Any local unitary action taken after that critical time can only accelerate or delay sudden death. In finite-temperature reservoirs, we demonstrate that a whole class of entangled states exhibit sudden death. This conclusion is valid if at least one of the reservoirs is at finite-temperature. However, we show that we can still hasten or delay sudden death by local unitary transformations up to some finite time. We also study sudden death for qubit-qutrit systems. Similar to qubit-qubit systems, some states exhibit sudden death while others do not. However, the process of disentanglement can be effected due to existence of quantum interference

  16. Hybrid quantum circuit with a superconducting qubit coupled to an electron spin ensemble

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Yuimaru; Grezes, Cecile; Vion, Denis; Esteve, Daniel; Bertet, Patrice [Quantronics Group, SPEC (CNRS URA 2464), CEA-Saclay, 91191 Gif-sur-Yvette (France); Diniz, Igor; Auffeves, Alexia [Institut Neel, CNRS, BP 166, 38042 Grenoble (France); Isoya, Jun-ichi [Research Center for Knowledge Communities, University of Tsukuba, 305-8550 Tsukuba (Japan); Jacques, Vincent; Dreau, Anais; Roch, Jean-Francois [LPQM (CNRS, UMR 8537), Ecole Normale Superieure de Cachan, 94235 Cachan (France)

    2013-07-01

    We report the experimental realization of a hybrid quantum circuit combining a superconducting qubit and an ensemble of electronic spins. The qubit, of the transmon type, is coherently coupled to the spin ensemble consisting of nitrogen-vacancy (NV) centers in a diamond crystal via a frequency-tunable superconducting resonator acting as a quantum bus. Using this circuit, we prepare arbitrary superpositions of the qubit states that we store into collective excitations of the spin ensemble and retrieve back into the qubit. We also report a new method for detecting the magnetic resonance of electronic spins at low temperature with a qubit using the hybrid quantum circuit, as well as our recent progress on spin echo experiments.

  17. Adiabatic passage for one-step generation of n-qubit Greenberger-Horne-Zeilinger states of superconducting qubits via quantum Zeno dynamics

    Science.gov (United States)

    Wu, Jin-Lei; Song, Chong; Xu, Jing; Yu, Lin; Ji, Xin; Zhang, Shou

    2016-09-01

    An efficient scheme is proposed for generating n-qubit Greenberger-Horne-Zeilinger states of n superconducting qubits separated by (n-1) coplanar waveguide resonators capacitively via adiabatic passage with the help of quantum Zeno dynamics in one step. In the scheme, it is not necessary to precisely control the time of the whole operation and the Rabi frequencies of classical fields because of the introduction of adiabatic passage. The numerical simulations for three-qubit Greenberger-Horne-Zeilinger state show that the scheme is insensitive to the dissipation of the resonators and the energy relaxation of the superconducting qubits. The three-qubit Greenberger-Horne-Zeilinger state can be deterministically generated with comparatively high fidelity in the current experimental conditions, though the scheme is somewhat sensitive to the dephasing of superconducting qubits.

  18. Detection of qubit-oscillator entanglement in nanoelectromechanical systems.

    Science.gov (United States)

    Schmidt, Thomas L; Børkje, Kjetil; Bruder, Christoph; Trauzettel, Björn

    2010-04-30

    Experiments over the past years have demonstrated that it is possible to bring nanomechanical resonators and superconducting qubits close to the quantum regime and to measure their properties with an accuracy close to the Heisenberg uncertainty limit. Therefore, it is just a question of time before we will routinely see true quantum effects in nanomechanical systems. One of the hallmarks of quantum mechanics is the existence of entangled states. We propose a realistic scenario making it possible to detect entanglement of a mechanical resonator and a qubit in a nanoelectromechanical setup. The detection scheme involves only standard current and noise measurements of an atomic point contact coupled to an oscillator and a qubit. This setup could allow for the first observation of entanglement between a continuous and a discrete quantum system in the solid state.

  19. Measurements of nanoresonator-qubit interactions in a hybrid quantum electromechanical system

    Science.gov (United States)

    Rouxinol, F.; Hao, Y.; Brito, F.; Caldeira, A. O.; Irish, E. K.; LaHaye, M. D.

    2016-09-01

    Experiments to probe the basic quantum properties of motional degrees of freedom of mechanical systems have developed rapidly over the last decade. One promising approach is to use hybrid electromechanical systems incorporating superconducting qubits and microwave circuitry. However, a critical challenge facing the development of these systems is to achieve strong coupling between mechanics and qubits while simultaneously reducing coupling of both the qubit and mechanical mode to the environment. Here we report measurements of a qubit-coupled mechanical resonator system consisting of an ultra-high-frequency nanoresonator and a long coherence-time superconducting transmon qubit, embedded in a superconducting coplanar waveguide cavity. It is demonstrated that the nanoresonator and transmon have commensurate energies and transmon coherence times are one order of magnitude larger than for all previously reported qubit-coupled nanoresonators. Moreover, we show that numerical simulations of this new hybrid quantum system are in good agreement with spectroscopic measurements and suggest that the nanoresonator in our device resides at low thermal occupation number, near its ground state, acting as a dissipative bath seen by the qubit. We also outline how this system could soon be developed as a platform for implementing more advanced experiments with direct relevance to quantum information processing and quantum thermodynamics, including the study of nanoresonator quantum noise properties, reservoir engineering, and nanomechanical quantum state generation and detection.

  20. Increasing energy relaxation time of superconducting qubits with nonmagnetic infrared filter and shield

    Science.gov (United States)

    Yuhao, Liu; Mengmeng, Li; Dong, Lan; Guangming, Xue; Xinsheng, Tan; Haifeng, Yu; Yang, Yu

    2016-05-01

    One of the primary origins of the energy relaxation in superconducting qubits is the quasiparticle loss. The quasiparticles can be excited remarkably by infrared radiation. In order to minimize the density of quasiparticle and increase the qubit relaxation time, we design and fabricate the infrared filter and shield for superconducting qubits. In comparison with previous filters and shields, a nonmagnetic dielectric is used as the infrared absorbing material, greatly suppressing the background magnetic fluctuations. The filters can be made to impedance-match with other microwave devices. Using the as-fabricated infrared filter and shield, we increased the relaxation time of a transmon qubit from 519 ns to 1125 ns. Project supported by the National Natural Science Foundation of China (Grant Nos. 91321310, 11274156, 11474152, 11474153, 61521001, and 11504165) and the State Key Program for Basic Research of China (Grant Nos. 2011CB922104 and 2011CBA00205).

  1. Distributed quantum computation with superconducting qubit via LC circuit using dressed states

    Institute of Scientific and Technical Information of China (English)

    Wu Chao; Fang Mao-Fa; Xiao Xing; Li Yan-Ling; Cao Shuai

    2011-01-01

    A scheme is proposed where two superconducting qubits driven by a classical field interacting separately with two distant LC circuits connected by another LC circuit through mutual inductance, are used for implementing quantum gates. By using dressed states, quantum state transfer and quantum entangling gate can be implemented. With the help of the time-dependent electromagnetic field, any two dressed qubits can be selectively coupled to the data bus (the last LC circuit), then quantum state can be transferred from one dressed qubit to another and multi-mode entangled state can also be formed. As a result, the promising perspectives for quantum information processing of mesoscopic superconducting qubits are obtained and the distributed and scalable quantum computation can be implemented in this scheme.

  2. Probing the quantum coherence of a nanomechanical resonator using a superconducting qubit: II. Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Blencowe, M P [Department of Physics and Astronomy, 6127 Wilder Laboratory, Dartmouth College, Hanover, NH 03755 (United States); Armour, A D [School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD (United Kingdom)], E-mail: miles.p.blencowe@dartmouth.edu, E-mail: andrew.armour@nottingham.ac.uk

    2008-09-15

    We describe a possible implementation of the nanomechanical quantum superposition generation and detection scheme described in the preceding, companion paper (Armour A D and Blencowe M P 2008 New. J. Phys. 10 095004). The implementation is based on the circuit quantum electrodynamics (QED) set-up, with the addition of a mechanical degree of freedom formed out of a suspended, doubly-clamped segment of the superconducting loop of a dc SQUID located directly opposite the centre conductor of a coplanar waveguide (CPW). The relative merits of two SQUID based qubit realizations are addressed, in particular a capacitively coupled charge qubit and inductively coupled flux qubit. It is found that both realizations are equally promising, with comparable qubit-mechanical resonator mode as well as qubit-microwave resonator mode coupling strengths.

  3. Non-Demolition Dispersive Measurement of a Superconducting Qubit with a Microstrip SQUID Amplifier

    CERN Document Server

    Berman, G P; Kinion, D; Tsifrinovich, V I

    2011-01-01

    We have studied the possibility of a single-shot non-demolition measurement of a superconducting qubit using a microstrip SQUID amplifier (MSA). The Johnson noise generated by all resistors in the MSA is taken into consideration. We show that a single-shot non-demolition measurement is possible with six photons in the measurement resonator. For a phase qubit inductively coupled to a measurement resonator we have obtained the expression for the mutual inductance required for measurement of the qubit state.

  4. Measurement of quality factor and losses in superconducting microwave resonator integrated with NbN/AlN/NbN qubit circuit

    Science.gov (United States)

    Qiu, W.; Makise, K.; Terai, H.; Nakamura, Y.; Wang, Z.

    2014-05-01

    Dielectric loss from two-level systems (TLSs) formed by local defects have shown a significant impact on the qubit coherence time. These defects can originate in the insulation material for superconducting wires isolation or in the Josephson junction tunnel barrier material. Due to the complexity of the qubit circuit fabrication process, identifying the contribution from each decoherence source is challenging. In an effort to address this issue, we have developed superconducting qubit that consists of full epitaxially-grown NbN/AlN/NbN Josephson junctions in NbN coplanar waveguide (CPW) resonator circuit. The dielectric loss introduced from TLFs in tunnel junction barrier has been largely reduced due to the unique epitaxial feature of the tunnel junction. The quality factor Qi of the CPW resonator was measured and the dielectric loss tanδ is 3×10-4. The relaxation time inferred from the measured resonator quality factor was comparable to the qubit relaxation time.

  5. Influence of Intrinsic Decoherence on Entanglement of Superconducting Charge Qubit in a Resonant Cavity

    Institute of Scientific and Technical Information of China (English)

    LIU Xiao-Nan; SHAO Bin; ZOU Jian

    2005-01-01

    @@ Taking the intrinsic decoherence effect into account, we investigate the entanglement dynamics of a superconducting charge qubit in a single-mode optical cavity. Concurrence, as the measure of entanglement of the coupled field-junction system, is calculated. In comparison, we also consider the entanglement of the system by using the entanglement parameter based on the ratio between mutual entropy and partial Von-Neumann entropy to investigate how the intrinsic decoherence affects the entanglement of the coupling system. Our results show that the evolution of the entanglement parameter has the behaviour similar to the concurrence and it is thus the well measure of entanglement for the mixed state in such a coupling system.

  6. Entropy Squeezing in Coupled Field-Superconducting Charge Qubit with Intrinsic Decoherence

    Institute of Scientific and Technical Information of China (English)

    YAN Xue-Qun; SHAO Bin; ZOU Jian

    2007-01-01

    We investigate the entropy squeezing in the system of a superconducting charge qubit coupled to a single mode field. We find an exact solution of the Milburn equation for the system and discuss the influence of intrinsic decoherence on entropy squeezing. As a comparison, we also consider the variance squeezing. Our results show that in the absence of the intrinsic decoherence both entropy and variance squeezings have the same periodic properties of time,and occur at the same range of time. However, when the intrinsic decoherence is considered, we find that as the time going on the entropy squeezing disappears fast than the variance squeezing, there exists a range of time where entropy squeezing can occur but variance squeezing cannot.

  7. Reduced phase error through optimized control of a superconducting qubit

    CERN Document Server

    Lucero, Erik; Bialczak, Radoslaw C; Lenander, Mike; Mariantoni, Matteo; Neeley, Matthew; O'Connell, A D; Sank, Daniel; Wang, H; Weides, Martin; Wenner, James; Yamamoto, Tsuyoshi; Cleland, A N; Martinis, John

    2010-01-01

    Minimizing phase and other errors in experimental quantum gates allows higher fidelity quantum processing. To quantify and correct for phase errors in particular, we have developed a new experimental metrology --- amplified phase error (APE) pulses --- that amplifies and helps identify phase errors in general multi-level qubit architectures. In order to correct for both phase and amplitude errors specific to virtual transitions and leakage outside of the qubit manifold, we implement "half derivative" an experimental simplification of derivative reduction by adiabatic gate (DRAG) control theory. The phase errors are lowered by about a factor of five using this method to $\\sim 1.6^{\\circ}$ per gate, and can be tuned to zero. Leakage outside the qubit manifold, to the qubit $|2\\rangle$ state, is also reduced to $\\sim 10^{-4}$ for $20\\%$ faster gates.

  8. Circuit QED with transmon qubits

    Energy Technology Data Exchange (ETDEWEB)

    Wulschner, Karl Friedrich; Puertas, Javier; Baust, Alexander; Eder, Peter; Fischer, Michael; Goetz, Jan; Haeberlein, Max; Schwarz, Manuel; Xie, Edwar; Zhong, Ling; Deppe, Frank; Fedorov, Kirill; Marx, Achim; Menzel, Edwin; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany); Huebl, Hans [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany); Weides, Martin [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany)

    2015-07-01

    Superconducting quantum bits are basic building blocks for circuit QED systems. Applications in the fields of quantum computation and quantum simulation require long coherence times. We have fabricated and characterized superconducting transmon qubits which are designed to operate at a high ratio of Josephson energy and charging energy. Due to their low sensitivity to charge noise transmon qubits show good coherence properties. We couple transmon qubits to coplanar waveguide resonators and coplanar slotline resonators and characterize the devices at mK-temperatures. From the experimental data we derive the qubit-resonator coupling strength, the qubit relaxation time and calibrate the photon number in the resonator via Stark shifts.

  9. Quantum computation with prethreshold superconducting qubits: Single-excitation subspace approach

    CERN Document Server

    Galiautdinov, Andrei

    2011-01-01

    We describe an alternative approach to quantum computation that is ideally suited for today's sub-threshold-fidelity qubits, and which can be applied to a family of hardware models that includes superconducting qubits with tunable coupling. In this approach, the computation on an n-qubit processor is carried out in the n-dimensional single-excitation subspace (SES) of the full 2^n-dimensional Hilbert space. Because any real Hamiltonian can be directly generated in the SES [E. J. Pritchett et al., arXiv:1008.0701], high-dimensional unitary operations can be carried out in a single step, bypassing the need to decompose into single- and two-qubit gates. Although technically nonscalable and unsuitable for applications (including Shor's) requiring enormous Hilbert spaces, this approach would make practical a first-generation quantum computer capable of achieving significant quantum speedup.

  10. Superconducting qubit-oscillator circuit beyond the ultrastrong-coupling regime

    Science.gov (United States)

    Yoshihara, Fumiki; Fuse, Tomoko; Ashhab, Sahel; Kakuyanagi, Kosuke; Saito, Shiro; Semba, Kouichi

    2017-01-01

    The interaction between an atom and the electromagnetic field inside a cavity has played a crucial role in developing our understanding of light-matter interaction, and is central to various quantum technologies, including lasers and many quantum computing architectures. Superconducting qubits have allowed the realization of strong and ultrastrong coupling between artificial atoms and cavities. If the coupling strength g becomes as large as the atomic and cavity frequencies (Δ and ωo, respectively), the energy eigenstates including the ground state are predicted to be highly entangled. There has been an ongoing debate over whether it is fundamentally possible to realize this regime in realistic physical systems. By inductively coupling a flux qubit and an LC oscillator via Josephson junctions, we have realized circuits with g/ωo ranging from 0.72 to 1.34 and g/Δ >> 1. Using spectroscopy measurements, we have observed unconventional transition spectra that are characteristic of this new regime. Our results provide a basis for ground-state-based entangled pair generation and open a new direction of research on strongly correlated light-matter states in circuit quantum electrodynamics.

  11. Josephson quartic oscillator as a superconducting phase qubit

    Energy Technology Data Exchange (ETDEWEB)

    Zorin, Alexander [Physikalisch-Technische Bundesanstalt, 38116 Braunschweig (Germany); Chiarello, Fabio [Istituto di Fotonica e Nanotecnologie, CNR, 00156 Rome (Italy)

    2010-07-01

    Due to interplay between the cosine Josephson potential and parabolic magnetic-energy potential the radio-frequency SQUID with the screening parameter value {beta}{sub L} {identical_to}(2{pi}/{phi}{sub 0})LI{sub c} {approx}1 presents an oscillator circuit which energy well can dramatically change its shape. Ultimately, the magnetic flux bias of half flux quantum {phi}{sub e}={phi}{sub 0}/2 leads to the quartic polynomial shape of the well and, therefore, to significant anharmonicity of oscillations (> 30%). We show that the two lowest eigenstates in this symmetric global minimum perfectly suit for designing the qubit which is inherently insensitive to the charge variable, always biased in the optimal point and allows efficient dispersive and bifurcation-based readouts. Moreover, in the case of a double-SQUID configuration (dc SQUID instead of a single junction) the transition frequency in this Josephson phase qubit can be easy tuned within an appreciable range allowing variable qubit-qubit and qubit-resonator couplings.

  12. STU Black Holes as Four Qubit Systems

    CERN Document Server

    Lévay, Péter

    2010-01-01

    In this paper we describe the structure of extremal stationary spherically symmetric black hole solutions in the STU model of D=4, N=2 supergravity in terms of four-qubit systems. Our analysis extends the results of previous investigations based on three qubits. The basic idea facilitating this four-qubit interpretation is the fact that stationary solutions in D=4 supergravity can be described by dimensional reduction along the time direction. In this D=3 picture the global symmetry group $SL(2,R)^{\\times 3}$ of the model is extended by the Ehlers SL(2,R) accounting for the fourth qubit. We introduce a four qubit state depending on the charges (electric, magnetic and NUT) the moduli and the warp factor. We relate the entanglement properties of this state to different classes of black hole solutions in the STU model. In the terminology of four qubit entanglement extremal black hole solutions correspond to nilpotent, and nonextremal ones to semisimple states. In arriving at this entanglement based scenario the ...

  13. Emulating the 1-Dimensional Fermi-Hubbard Model with Superconducting Qubits

    Science.gov (United States)

    Reiner, Jan-Michael; Marthaler, Michael; Schön, Gerd

    A chain of qubits with both ZZ and XX couplings is described by a Hamiltonian which coincides with the Fermi-Hubbard model in one dimension. The qubit system can thus be used to study the quantum properties of this model. We investigate the specific implementation of such an analog quantum simulator by a chain of tunable Transmon qubits, where the ZZ interaction arises due to an inductive coupling and the XX interaction due to a capacitive coupling.

  14. Single-artificial-atom lasing using a voltage-biased superconducting charge qubit

    Energy Technology Data Exchange (ETDEWEB)

    Ashhab, S; Johansson, J R; Zagoskin, A M; Nori, Franco [Frontier Research System, Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama 351-0198 (Japan)], E-mail: ashhab@riken.jp

    2009-02-15

    We consider a system composed of a single artificial atom coupled to a cavity mode. The artificial atom is biased such that the most dominant relaxation process in the system takes the atom from its ground state to its excited state, thus ensuring population inversion. A recent experimental manifestation of this situation was achieved using a voltage-biased superconducting charge qubit. Even under the condition of 'inverted relaxation', lasing action can be suppressed if the 'relaxation' rate is larger than a certain threshold value. Using simple transition-rate arguments and a semiclassical calculation, we derive analytic expressions for the lasing suppression condition and the state of the cavity in both the lasing and suppressed-lasing regimes. The results of numerical calculations agree very well with the analytically derived results. We start by analyzing a simplified two-level-atom model, and we then analyze a three-level-atom model that should describe accurately the recently realized superconducting artificial-atom laser.

  15. Demonstrating quantum speed-up in a superconducting two-qubit processor

    CERN Document Server

    Dewes, A; Ong, F R; Schmitt, V; Milman, P; Bertet, P; Vion, D; Esteve, D

    2011-01-01

    We operate a superconducting quantum processor consisting of two tunable transmon qubits coupled by a swapping interaction, and equipped with non destructive single-shot readout of the two qubits. With this processor, we run the Grover search algorithm among four objects and find that the correct answer is retrieved after a single run with a success probability between 0.52 and 0.67, significantly larger than the 0.25 achieved with a classical algorithm. This constitutes a proof-of-concept for the quantum speed-up of electrical quantum processors.

  16. Non-Markovian dynamics of a superconducting qubit in an open multimode resonator

    Science.gov (United States)

    Malekakhlagh, Moein; Petrescu, Alexandru; Türeci, Hakan E.

    2016-12-01

    We study the dynamics of a transmon qubit that is capacitively coupled to an open multimode superconducting resonator. Our effective equations are derived by eliminating resonator degrees of freedom while encoding their effect in the Green's function of the electromagnetic background. We account for the dissipation of the resonator exactly by employing a spectral representation for the Green's function in terms of a set of non-Hermitian modes and show that it is possible to derive effective Heisenberg-Langevin equations without resorting to the rotating-wave, two-level, Born, or Markov approximations. A well-behaved time-domain perturbation theory is derived to systematically account for the nonlinearity of the transmon. We apply this method to the problem of spontaneous emission, capturing accurately the non-Markovian features of the qubit dynamics, valid for any qubit-resonator coupling strength.

  17. High-Fidelity Qubit Measurement using a Superconducting Low-Inductance Undulatory Galvanometer Microwave Amplifier

    Science.gov (United States)

    Thorbeck, Ted; Hover, David; Zhu, Shaojiang; Ribeill, Guilhem; Sank, Daniel; Barends, Rami; Martinis, John; McDermott, Robert

    2014-03-01

    We describe a high-fidelity dispersive measurement of a superconducting Xmon qubit using a microwave amplifier based on the Superconducting Low-inductance Undulatory Galvanometer (SLUG). We will show a qubit measurement fidelity of 99% in 700 ns with the SLUG, compared to 60% without the SLUG. The SLUG amplifier has a gain of 19 dB at 6.6 GHZ. It also improves the signal-to-noise ratio by 9 dB, compared the same circuit without the SLUG. Also, the SLUG amplifier has a large dynamic range, with an input saturation power corresponding to around 600 photons in the readout cavity. All of these properties make the SLUG a promising microwave amplifier for more complex quantum circuits.

  18. Single-shot read-out of a superconducting qubit using a Josephson parametric oscillator

    Science.gov (United States)

    Krantz, Philip; Bengtsson, Andreas; Simoen, Michaël; Gustavsson, Simon; Shumeiko, Vitaly; Oliver, W. D.; Wilson, C. M.; Delsing, Per; Bylander, Jonas

    2016-05-01

    We propose and demonstrate a read-out technique for a superconducting qubit by dispersively coupling it with a Josephson parametric oscillator. We employ a tunable quarter wavelength superconducting resonator and modulate its resonant frequency at twice its value with an amplitude surpassing the threshold for parametric instability. We map the qubit states onto two distinct states of classical parametric oscillation: one oscillating state, with 185+/-15 photons in the resonator, and one with zero oscillation amplitude. This high contrast obviates a following quantum-limited amplifier. We demonstrate proof-of-principle, single-shot read-out performance, and present an error budget indicating that this method can surpass the fidelity threshold required for quantum computing.

  19. Single-shot read-out of a superconducting qubit using a Josephson parametric oscillator

    Science.gov (United States)

    Krantz, Philip; Bengtsson, Andreas; Simoen, Michaël; Gustavsson, Simon; Shumeiko, Vitaly; Oliver, W. D.; Wilson, C. M.; Delsing, Per; Bylander, Jonas

    2016-01-01

    We propose and demonstrate a read-out technique for a superconducting qubit by dispersively coupling it with a Josephson parametric oscillator. We employ a tunable quarter wavelength superconducting resonator and modulate its resonant frequency at twice its value with an amplitude surpassing the threshold for parametric instability. We map the qubit states onto two distinct states of classical parametric oscillation: one oscillating state, with 185±15 photons in the resonator, and one with zero oscillation amplitude. This high contrast obviates a following quantum-limited amplifier. We demonstrate proof-of-principle, single-shot read-out performance, and present an error budget indicating that this method can surpass the fidelity threshold required for quantum computing. PMID:27156732

  20. Quantum information transfer with superconducting flux qubits coupled to a resonator

    CERN Document Server

    Yang, Chui-Ping

    2010-01-01

    We propose a way for implementing quantum information transfer with two superconducting flux qubits, by coupling them to a resonator. This proposal does not require adjustment of the level spacings or uniformity in the device parameters. Moreover, neither adiabatic passage nor a second-order detuning is needed by this proposal, thus the operation can be performed much faster when compared with the previous proposals.

  1. High fidelity qubit readout with the superconducting low-inductance undulatory galvanometer microwave amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Hover, D.; Zhu, S.; Thorbeck, T.; Ribeill, G. J.; McDermott, R., E-mail: rfmcdermott@wisc.edu [Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States); Sank, D.; Kelly, J.; Barends, R.; Martinis, John M. [Department of Physics, University of California, Santa Barbara, California 93106 (United States)

    2014-04-14

    We describe the high fidelity dispersive measurement of a superconducting qubit using a microwave amplifier based on the Superconducting Low-inductance Undulatory Galvanometer (SLUG). The SLUG preamplifier achieves gain of 19 dB and yields a signal-to-noise ratio improvement of 9 dB over a state-of-the-art HEMT amplifier. We demonstrate a separation fidelity of 99% at 700 ns compared to 59% with the HEMT alone. The SLUG displays a large dynamic range, with an input saturation power corresponding to 700 photons in the readout cavity.

  2. High fidelity qubit readout with the superconducting low-inductance undulatory galvanometer microwave amplifier

    Science.gov (United States)

    Hover, D.; Zhu, S.; Thorbeck, T.; Ribeill, G. J.; Sank, D.; Kelly, J.; Barends, R.; Martinis, John M.; McDermott, R.

    2014-04-01

    We describe the high fidelity dispersive measurement of a superconducting qubit using a microwave amplifier based on the Superconducting Low-inductance Undulatory Galvanometer (SLUG). The SLUG preamplifier achieves gain of 19 dB and yields a signal-to-noise ratio improvement of 9 dB over a state-of-the-art HEMT amplifier. We demonstrate a separation fidelity of 99% at 700 ns compared to 59% with the HEMT alone. The SLUG displays a large dynamic range, with an input saturation power corresponding to 700 photons in the readout cavity.

  3. High Fidelity Qubit Readout with the Superconducting Low-Inductance Undulatory Galvanometer Microwave Amplifier

    OpenAIRE

    Hover, D.; Zhu, S; Thorbeck, T.; Ribeill, G. J.; Sank, D.; Kelly, J; Barends, R.; Martinis, John M.; McDermott, R.

    2013-01-01

    We describe the high fidelity dispersive measurement of a superconducting qubit using a microwave amplifier based on the Superconducting Low-inductance Undulatory Galvanometer (SLUG). The SLUG preamplifier achieves gain of 19 dB and yields a signal-to-noise ratio improvement of 9 dB over a state-of-the-art HEMT amplifier. We demonstrate a separation fidelity of 99% at 700 ns compared to 59% with the HEMT alone. The SLUG displays a large dynamic range, with an input saturation power correspond...

  4. Characterization of a fabrication process for the integration of superconducting qubits and rapid-single-flux-quantum circuits

    Science.gov (United States)

    Castellano, Maria Gabriella; Grönberg, Leif; Carelli, Pasquale; Chiarello, Fabio; Cosmelli, Carlo; Leoni, Roberto; Poletto, Stefano; Torrioli, Guido; Hassel, Juha; Helistö, Panu

    2006-08-01

    In order to integrate superconducting qubits with rapid-single-flux-quantum (RSFQ) control circuitry, it is necessary to develop a fabrication process that simultaneously fulfils the requirements of both elements: low critical current density, very low operating temperature (tens of millikelvin) and reduced dissipation on the qubit side; high operation frequency, large stability margins, low dissipated power on the RSFQ side. For this purpose, VTT has developed a fabrication process based on Nb trilayer technology, which allows the on-chip integration of superconducting qubits and RSFQ circuits even at very low temperature. Here we present the characterization (at 4.2 K) of the process from the point of view of the Josephson devices and show that they are suitable to build integrated superconducting qubits.

  5. Characterization and reduction of capacitive loss induced by sub-micron Josephson junction fabrication in superconducting qubits

    Science.gov (United States)

    Dunsworth, A.; Megrant, A.; Quintana, C.; Chen, Zijun; Barends, R.; Burkett, B.; Foxen, B.; Chen, Yu; Chiaro, B.; Fowler, A.; Graff, R.; Jeffrey, E.; Kelly, J.; Lucero, E.; Mutus, J. Y.; Neeley, M.; Neill, C.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Martinis, John M.

    2017-07-01

    Josephson junctions form the essential non-linearity for almost all superconducting qubits. The junction is formed when two superconducting electrodes come within ˜1 nm of each other. Although the capacitance of these electrodes is a small fraction of the total qubit capacitance, the nearby electric fields are more concentrated in dielectric surfaces and can contribute substantially to the total dissipation. We have developed a technique to experimentally investigate the effect of these electrodes on the quality of superconducting devices. We use λ/4 coplanar waveguide resonators to emulate lumped qubit capacitors. We add a variable number of these electrodes to the capacitive end of these resonators and measure how the additional loss scales with the number of electrodes. We then reduce this loss with fabrication techniques that limit the amount of lossy dielectrics. We then use these techniques for the fabrication of Xmon qubits on a silicon substrate to improve their energy relaxation times by a factor of 5.

  6. High fidelity readout of a transmon qubit using a superconducting low-inductance undulatory galvanometer microwave amplifier

    Science.gov (United States)

    Liu, Yanbing; Srinivasan, Srikanth J.; Hover, D.; Zhu, Shaojiang; McDermott, R.; Houck, A. A.

    2014-11-01

    We report high-fidelity, quantum non-demolition, single-shot readout of a superconducting transmon qubit using a dc-biased superconducting low-inductance undulatory galvanometer (SLUG) amplifier. The SLUG improves the system signal-to-noise ratio by 6.5 dB in a 20 MHz window compared with a bare high electron mobility transistor amplifier. An optimal cavity drive pulse is chosen using a genetic search algorithm, leading to a maximum combined readout and preparation fidelity of 91.9% with a measurement time of {{T}meas}=200 ns. Using post-selection to remove preparation errors caused by heating, we realize a combined preparation and readout fidelity of 94.3%.

  7. Low-frequency noise in Josephson junctions for superconducting qubits

    Science.gov (United States)

    Eroms, J.; van Schaarenburg, L. C.; Driessen, E. F. C.; Plantenberg, J. H.; Huizinga, C. M.; Schouten, R. N.; Verbruggen, A. H.; Harmans, C. J. P. M.; Mooij, J. E.

    2006-09-01

    The authors have studied low-frequency resistance fluctuations in shadow-evaporated Al /AlOx/Al tunnel junctions. Between 300 and 5K the spectral density follows a 1/f law. Below 5K, individual defects distort the 1/f shape of the spectrum. The spectral density decreases linearly with temperature between 150 and 1K and saturates below 0.8K. At 4.2K, it is about two orders of magnitude lower than expected from a recent survey [D. J. Van Harlingen et al., Phys. Rev. B 70, 064510 (2004)]. Due to saturation below 0.8K the estimated qubit dephasing times at 100mK are only about two times longer than calculated by Van Harlingen et al.

  8. Rotating-frame relaxation as a noise spectrum analyser of a superconducting qubit undergoing driven evolution.

    Science.gov (United States)

    Yan, Fei; Gustavsson, Simon; Bylander, Jonas; Jin, Xiaoyue; Yoshihara, Fumiki; Cory, David G; Nakamura, Yasunobu; Orlando, Terry P; Oliver, William D

    2013-01-01

    Gate operations in a quantum information processor are generally realized by tailoring specific periods of free and driven evolution of a quantum system. Unwanted environmental noise, which may in principle be distinct during these two periods, acts to decohere the system and increase the gate error rate. Although there has been significant progress characterizing noise processes during free evolution, the corresponding driven-evolution case is more challenging as the noise being probed is also extant during the characterization protocol. Here we demonstrate the noise spectroscopy (0.1-200 MHz) of a superconducting flux qubit during driven evolution by using a robust spin-locking pulse sequence to measure relaxation (T(1ρ)) in the rotating frame. In the case of flux noise, we resolve spectral features due to coherent fluctuators, and further identify a signature of the 1 MHz defect in a time-domain spin-echo experiment. The driven-evolution noise spectroscopy complements free-evolution methods, enabling the means to characterize and distinguish various noise processes relevant for universal quantum control.

  9. Holonomic quantum computation with superconducting charge-phase qubits in a cavity

    Energy Technology Data Exchange (ETDEWEB)

    Feng Zhibo [National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093 (China) and Institute for Condensed Matter Physics, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510631 (China)], E-mail: zbfeng010@163.com; Zhang Xinding [Institute for Condensed Matter Physics, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510631 (China)

    2008-03-03

    We theoretically propose a feasible scheme to realize holonomic quantum computation with charge-phase qubits placed in a microwave cavity. By appropriately adjusting the controllable parameters, each charge-phase qubit is set as an effective four-level subsystem, based on which a universal set of holonomic quantum gates can be realized. Further analysis shows that our system is robust to the first-order fluctuation of the gate charges, and the intrinsic leakages between energy levels can be ignored.

  10. QUBIT DATA STRUCTURES FOR ANALYZING COMPUTING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Vladimir Hahanov

    2014-11-01

    Full Text Available Qubit models and methods for improving the performance of software and hardware for analyzing digital devices through increasing the dimension of the data structures and memory are proposed. The basic concepts, terminology and definitions necessary for the implementation of quantum computing when analyzing virtual computers are introduced. The investigation results concerning design and modeling computer systems in a cyberspace based on the use of two-component structure are presented.

  11. Realization of quantum gates with multiple control qubits or multiple target qubits in a cavity

    Science.gov (United States)

    Waseem, Muhammad; Irfan, Muhammad; Qamar, Shahid

    2015-06-01

    We propose a scheme to realize a three-qubit controlled phase gate and a multi-qubit controlled NOT gate of one qubit simultaneously controlling n-target qubits with a four-level quantum system in a cavity. The implementation time for multi-qubit controlled NOT gate is independent of the number of qubit. Three-qubit phase gate is generalized to n-qubit phase gate with multiple control qubits. The number of steps reduces linearly as compared to conventional gate decomposition method. Our scheme can be applied to various types of physical systems such as superconducting qubits coupled to a resonator and trapped atoms in a cavity. Our scheme does not require adjustment of level spacing during the gate implementation. We also show the implementation of Deutsch-Joza algorithm. Finally, we discuss the imperfections due to cavity decay and the possibility of physical implementation of our scheme.

  12. Quantum heat transport of a two-qubit system: Interplay between system-bath coherence and qubit-qubit coherence

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Akihito, E-mail: kato@kuchem.kyoto-u.ac.jp; Tanimura, Yoshitaka, E-mail: tanimura@kuchem.kyoto-u.ac.jp [Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan)

    2015-08-14

    We consider a system consisting of two interacting qubits that are individually coupled to separate heat baths at different temperatures. The quantum effects in heat transport are investigated in a numerically rigorous manner with a hierarchial equations of motion (HEOM) approach for non-perturbative and non-Markovian system-bath coupling cases under non-equilibrium steady-state conditions. For a weak interqubit interaction, the total system is regarded as two individually thermostatted systems, whereas for a strong interqubit interaction, the two-qubit system is regarded as a single system coupled to two baths. The roles of quantum coherence (or entanglement) between the two qubits (q-q coherence) and between the qubit and bath (q-b coherence) are studied through the heat current calculated for various strengths of the system-bath coupling and interqubit coupling for high and low temperatures. The same current is also studied using the time convolutionless (TCL) Redfield equation and using an expression derived from the Fermi golden rule (FGR). We find that the HEOM results exhibit turnover behavior of the heat current as a function of the system-bath coupling strength for all values of the interqubit coupling strength, while the results obtained with the TCL and FGR approaches do not exhibit such behavior, because they do not possess the capability of treating the q-b and q-q coherences. The maximum current is obtained in the case that the q-q coherence and q-b coherence are balanced in such a manner that coherence of the entire heat transport process is realized. We also find that the heat current does not follow Fourier’s law when the temperature difference is very large, due to the non-perturbative system-bath interactions.

  13. Quantum State Transfer between Charge and Flux Qubits in Circuit-QED

    Institute of Scientific and Technical Information of China (English)

    WU Qin-Qin; LIAO Jie-Qiao; KUANG Le-Man

    2008-01-01

    @@ We propose a scheme to implement quantum state transfer in a hybrid circuit quantum electrodynamics (QED)system which consists of a superconducting charge qubit, a flux qubit, and a transmission line resonator (TLR).It is shown that quantum state transfer between the charge qubit and the flux qubit can be realized by using the TLR as the data bus.

  14. Charge Qubit-Atom Hybrid

    CERN Document Server

    Yu, Deshui; Hufnagel, C; Kwek, L C; Amico, Luigi; Dumke, R

    2016-01-01

    We investigate a novel hybrid system of a superconducting charge qubit interacting directly with a single neutral atom via electric dipole coupling. Interfacing of the macroscopic superconducting circuit with the microscopic atomic system is accomplished by varying the gate capacitance of the charge qubit. To achieve strong interaction, we employ two Rydberg states with an electric-dipole-allowed transition, which alters the polarizability of the dielectric medium of the gate capacitor. Sweeping the gate voltage with different rates leads to a precise control of hybrid quantum states. Furthermore, we show a possible implementation of a universal two-qubit gate.

  15. Implementation of a Controlled-Phase Gate and Deutsch-Jozsa Algorithm with Superconducting Charge Qubits in a Cavity

    Institute of Scientific and Technical Information of China (English)

    SONG Ke-Hui; ZHOU Zheng-Wei; GUO Guang-Can

    2007-01-01

    Based on superconducting quantum interference devices (SQUIDs) coupled to a cavity, we propose a scheme for implementing a quantum controlled-phase gate (QPG) and Deutsch-Jozsa (DJ) algorithm by a controllable interaction. In the present scheme, the SQUID works in the charge regime, and the cavity field is ultilized as quantum data-bus, which is sequentially coupled to only one qubit at a time. The interaction between the selected qubit and the data bus, such as resonant and dispersive interaction, can be realized by turning the gate capacitance of each SQUID.Especially, the busis not excited and thus the cavity decay is suppressed during the implementation of DJ algorithm.For the QPG operation, the mode of the bus is unchanged in the end of the operation, although its mode is really excited during the operations. Finally, for typical experiment data, we analyze simply the experimental feasibility of the proposed scheme. Based on the simple operation, our scheme may be realized in this solid-state system, and our idea may be realized in other systems.

  16. Qubit Systems from Colored Toric Geometry and Hypercube Graph Theory*

    Science.gov (United States)

    Aadel, Y.; Belhaj, A.; Bensed, M.; Benslimane, Z.; Sedra, M. B.; Segui, A.

    2017-09-01

    We develop a new geometric approach to deal with qubit information systems using colored graph theory. More precisely, we present a one to one correspondence between graph theory, and qubit systems, which may be explored to attack qubit information problems using toric geometry considered as a powerful tool to understand modern physics including string theory. Concretely, we examine in some details the cases of one, two, and three qubits, and we find that they are associated with CP 1, CP 1 × CP 1 and CP 1 × CP 1 × CP 1 toric varieties respectively. Using a geometric procedure referred to as a colored toric geometry, we show that the qubit physics can be converted into a scenario handling toric data of such manifolds by help of hypercube graph theory. Operations on toric information can produce universal quantum gates.

  17. Interfacing Superconducting Qubits and Telecom Photons via a Rare-Earth Doped Crystal

    Science.gov (United States)

    Lauk, Nikolai; O'Brien, Christopher; Blum, Susanne; Morigi, Giovanna; Fleischhauer, Michael

    2014-05-01

    Superconducting qubits (SCQ) are promising candidates for scalable quantum computation. However, they are essentially stationary, which makes them less suitable for quantum information transport. Interfacing short telecom photons with SCQ's would enable the combination of SCQ with low loss optical fiber networks and a fast, reliable quantum network could be realized. To this end, we propose and theoretically analyze a scheme for coupling optical photons to a SCQ, using a rare earth doped crystal (REDC) coupled to the microwave cavity as an interface. The idea is first to store an optical photon by mapping it to a spin excitation in a REDC and then transfer this excitation to a SCQ via a microwave cavity. Due to intrinsic and engineered inhomogeneous broadening of the optical and spin transitions employed in REDC for the storage of short optical photon pulses, we suggest and optimize a special transfer protocol using staggered π-pulses.

  18. A strict experimental test of macroscopic realism in a superconducting flux qubit.

    Science.gov (United States)

    Knee, George C; Kakuyanagi, Kosuke; Yeh, Mao-Chuang; Matsuzaki, Yuichiro; Toida, Hiraku; Yamaguchi, Hiroshi; Saito, Shiro; Leggett, Anthony J; Munro, William J

    2016-11-04

    Macroscopic realism is the name for a class of modifications to quantum theory that allow macroscopic objects to be described in a measurement-independent manner, while largely preserving a fully quantum mechanical description of the microscopic world. Objective collapse theories are examples which aim to solve the quantum measurement problem through modified dynamical laws. Whether such theories describe nature, however, is not known. Here we describe and implement an experimental protocol capable of constraining theories of this class, that is more noise tolerant and conceptually transparent than the original Leggett-Garg test. We implement the protocol in a superconducting flux qubit, and rule out (by ∼84 s.d.) those theories which would deny coherent superpositions of 170 nA currents over a ∼10 ns timescale. Further, we address the 'clumsiness loophole' by determining classical disturbance with control experiments. Our results constitute strong evidence for the superposition of states of nontrivial macroscopic distinctness.

  19. Otto refrigerator based on a superconducting qubit: Classical and quantum performance

    Science.gov (United States)

    Karimi, B.; Pekola, J. P.

    2016-11-01

    We analyze a quantum Otto refrigerator based on a superconducting qubit coupled to two L C resonators, each including a resistor acting as a reservoir. We find various operation regimes: nearly adiabatic (low driving frequency), ideal Otto cycle (intermediate frequency), and nonadiabatic coherent regime (high frequency). In the nearly adiabatic regime, the cooling power is quadratic in frequency, and we find a substantially enhanced coefficient of performance ɛ , as compared to that of an ideal Otto cycle. Quantum coherent effects lead invariably to a decrease in both cooling power and ɛ as compared to purely classical dynamics. In the nonadiabatic regime we observe strong coherent oscillations of the cooling power as a function of frequency. We investigate various driving wave forms: Compared to the standard sinusoidal drive, a truncated trapezoidal drive with optimized rise and dwell times yields higher cooling power and efficiency.

  20. Maintaining Qubit Coherence in the face of Increased Superconducting Circuit Complexity

    Science.gov (United States)

    Hover, David; Weber, Steve; Rosenberg, Danna; Samach, Gabriel; Sears, Adam; Birenbaum, Jeffrey; Woods, Wayne; Yoder, Jonilyn; Racz, Livia; Kerman, Jamie; Oliver, William D.

    Maintaining qubit coherence in the face of increased superconducting circuit complexity is a challenge when designing an extensible quantum computing architecture. We consider this challenge in the context of inductively coupled, long-lived, capacitively-shunted flux qubits. Specifically, we discuss our efforts to mitigate the effects of radiation loss, parasitic chip-modes, cross-coupling, and Purcell decay. Our approach employs numerical modeling of the ideal Hamiltonian and electromagnetic analysis of the circuit, both of which are independently shown to be consistent with experimental results. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) and by the Assistant Secretary of Defense for Research & Engineering under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.

  1. An Efficient Scheme for Implementing an N-Qubit Toffoli Gate with Superconducting Quantum-Interference Devices in Cavity QED

    Institute of Scientific and Technical Information of China (English)

    ZHENG An-Shou; LIU Ji-Bing; XIANG Dong; LIU Cui-Lan; YUAN Hong

    2007-01-01

    An alternative approach is proposed to realize an n-qubit Toffoli gate with superconducting quantum-interference devices (SQUIDs) in cavity quantum electrodynamics (QED). In the proposal, we represent two logical gates of a qubit with the two lowest levels of a SQUID while a higher-energy intermediate level of each SQUID is utilized for the gate manipulation. During the operating process, because the cavity field is always in vacuum state, the requirement on the cavity is greatly loosened and there is no transfer of quantum information between the cavity and SQUIDs.

  2. Tunable quantum beam splitters for coherent manipulation of a solid-state tripartite qubit system

    Science.gov (United States)

    Sun, Guozhu; Wen, Xueda; Mao, Bo; Chen, Jian; Yu, Yang; Wu, Peiheng; Han, Siyuan

    2010-01-01

    Coherent control of quantum states is at the heart of implementing solid-state quantum processors and testing quantum mechanics at the macroscopic level. Despite significant progress made in recent years in controlling single- and bi-partite quantum systems, coherent control of quantum wave function in multipartite systems involving artificial solid-state qubits has been hampered due to the relatively short decoherence time and lack of precise control methods. Here we report the creation and coherent manipulation of quantum states in a tripartite quantum system, which is formed by a superconducting qubit coupled to two microscopic two-level systems (TLSs). The avoided crossings in the system's energy-level spectrum due to the qubit–TLS interaction act as tunable quantum beam splitters of wave functions. Our result shows that the Landau–Zener–Stückelberg interference has great potential in precise control of the quantum states in the tripartite system. PMID:20975719

  3. Quantum hysteresis in coupled qubit-radiation systems

    Science.gov (United States)

    Acevedo, O. L.; Rodriguez, F. J.; Quiroga, L.; Johnson, N. F.

    2012-02-01

    We study theoretically the dynamical response of a set of solid-state qubits arbitrarily coupled to a radiation field which is confined in a cavity. Driving the coupling strength in round trips, between weak and strong values, we quantify the hysteresis or irreversible quantum dynamics. The matter-radiation system is modeled as a finite-size Dicke model which has previously been used to describe equilibrium (including quantum phase transition) properties of systems such as quantum dots in a microcavity, and superconducting circuit QED. Here we extend this model to address non-equilibrium situations. Analyzing the system's quantum fidelity, we find that the near-adiabatic regime exhibits the richest phenomena, with a strong asymmetry in the internal collective dynamics depending on which phase is chosen as the starting point. We identify significant deviations from the conventional Landau-Zener-Stuckelberg formulae, in particular from cycles starting in the superradiant phase. In the diabatic or impulsive regime, the system remains quenched and there is little hysteresis. By contrast, depending on the specifications of the cycle, the radiation subsystem can exhibit the emergence of non-classicality, complexity and sub-Planckian structures as evidenced by its Wigner function.

  4. Large Superconducting Magnet Systems

    CERN Document Server

    Védrine, P.

    2014-07-17

    The increase of energy in accelerators over the past decades has led to the design of superconducting magnets for both accelerators and the associated detectors. The use of Nb−Ti superconducting materials allows an increase in the dipole field by up to 10 T compared with the maximum field of 2 T in a conventional magnet. The field bending of the particles in the detectors and generated by the magnets can also be increased. New materials, such as Nb3Sn and high temperature superconductor (HTS) conductors, can open the way to higher fields, in the range 13–20 T. The latest generations of fusion machines producing hot plasma also use large superconducting magnet systems.

  5. Tsallis entropy and entanglement constraints in multi-qubit systems

    CERN Document Server

    Kim, Jeong San

    2009-01-01

    We show that the restricted sharability and distribution of multi-qubit entanglement can be characterized by Tsallis-$q$ entropy. We first provide a class of bipartite entanglement measures named Tsallis-$q$ entanglement, and provide its analytic formula in two-qubit systems for $1 \\leq q \\leq 4$. For $2 \\leq q \\leq 3$, we show a monogamy inequality of multi-qubit entanglement in terms of Tsallis-$q$ entanglement, and we also provide a polygamy inequality using Tsallis-$q$ entropy for $1 \\leq q \\leq 2$ and $3 \\leq q \\leq 4$.

  6. Preparation of Schrödinger cat states of a cavity field via coupling to a superconducting charge qubit

    Science.gov (United States)

    Freitas, Dagoberto S.; Nemes, M. C.

    2014-05-01

    We extend the approach in Ref. 5 [Y.-X. Liu, L. F. Wei and F. Nori, Phys. Rev. A 71 (2005) 063820] for preparing superposition states of a cavity field interacting with a superconducting charge qubit. We study effects of the nonlinearity on the creation of such states. We show that the main contribution of nonlinear effects is to shorten the time necessary to build the superposition.

  7. A two-qubit photonic quantum processor and its application to solving systems of linear equations

    OpenAIRE

    Stefanie Barz; Ivan Kassal; Martin Ringbauer; Yannick Ole Lipp; Borivoje Dakić; Alán Aspuru-Guzik; Philip Walther

    2014-01-01

    Large-scale quantum computers will require the ability to apply long sequences of entangling gates to many qubits. In a photonic architecture, where single-qubit gates can be performed easily and precisely, the application of consecutive two-qubit entangling gates has been a significant obstacle. Here, we demonstrate a two-qubit photonic quantum processor that implements two consecutive CNOT gates on the same pair of polarisation-encoded qubits. To demonstrate the flexibility of our system, w...

  8. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime

    Institute of Scientific and Technical Information of China (English)

    CHEN Qing-Hu; LI Lei; LIU Tao; WANG Ke-Lin

    2012-01-01

    Recent measurement on an LC resonator magnetically coupled to a superconducting qubit[Phys. Rev. Lett. 105 (2010) 237001] shows that the system operates in the ultra-strong coupling regime and crosses the limit of validity for the rotating-wave approximation of the Jaynes-Cummings model. By using extended bosonic coherent states, we solve the Jaynes-Cummings model exactly without using the rotating-wave approximation. Our numerically exact results for the spectrum of the flux qubit coupled to the LC resonator are fully consistent with the experimental observations. The smallest Bloch-Siegert shift obtained is consistent with that observed in this experiment. In addition, the Bloch-Siegert shifts in arbitrary level transitions and for arbitrary coupling constants are predicted.%Recent measurement on an LC resonator magnetically coupled to a superconducting qubit [Phys.Rev.Lett.105 (2010)237001] shows that the system operates in the ultra-strong coupling regime and crosses the limit of validity for the rotating-wave approximation of the Jaynes-Cummings model By using extended bosonic coherent states,we solve the Jaynes-Cummings model exactly without using the rotating-wave approximation.Our numerically exact results for the spectrum of the flux qubit coupled to the LC resonator are fully consistent with the experimental observations.The smallest Bloch-Siegert shift obtained is consistent with that observed in this experiment.In addition,the Bloch-Siegert shifts in arbitrary level transitions and for arbitrary coupling constants are predicted.

  9. Graph Theory and Qubit Information Systems of Extremal Black Branes

    CERN Document Server

    Belhaj, Adil; Segui, Antonio

    2014-01-01

    Using graph theory based on Adinkras, we consider once again the study of extremal black branes in the framework of quantum information. More precisely, we propose a one to one correspondence between qubit systems, Adinkras and certain extremal black branes obtained from type IIA superstring compactified on T^n. We accordingly interpret the real Hodge diagram of T^n as the geometry of a class of Adinkras formed by 2^n bosonic nodes representing n qubits. In this graphic representation, each node encodes information on the qubit quantum states and the charges of the extremal black branes built on T^n. The correspondence is generalized to n superqubits associated with odd and even geometries on the real supermanifold T^{n|n}. Using a combinatorial computation, general expressions describing the number of the bosonic and the fermionic states are obtained.

  10. Independent, extensible control of same-frequency superconducting qubits by selective broadcasting

    Science.gov (United States)

    Asaad, Serwan; Dickel, Christian; Langford, Nathan K.; Poletto, Stefano; Bruno, Alessandro; Rol, Michiel Adriaan; Deurloo, Duije; Dicarlo, Leonardo

    2016-08-01

    A critical ingredient for realising large-scale quantum information processors will be the ability to make economical use of qubit control hardware. We demonstrate an extensible strategy for reusing control hardware on same-frequency transmon qubits in a circuit QED chip with surface-code-compatible connectivity. A vector switch matrix enables selective broadcasting of input pulses to multiple transmons with individual tailoring of pulse quadratures for each, as required to minimise the effects of leakage on weakly anharmonic qubits. Using randomised benchmarking, we compare multiple broadcasting strategies that each pass the surface-code error threshold for single-qubit gates. In particular, we introduce a selective broadcasting control strategy using five pulse primitives, which allows independent, simultaneous Clifford gates on arbitrary numbers of qubits.

  11. Designing quantum-information-processing superconducting qubit circuits that exhibit lasing and other atomic-physics-like phenomena on a chip

    Science.gov (United States)

    Nori, Franco

    2008-03-01

    Superconducting (SC) circuits can behave like atoms making transitions between a few energy levels. Such circuits can test quantum mechanics at macroscopic scales and be used to conduct atomic-physics experiments on a silicon chip. This talk overviews a few of our theoretical studies on SC circuits and quantum information processing (QIP) including: SC qubits for single photon generation and for lasing; controllable couplings among qubits; how to increase the coherence time of qubits using a capacitor in parallel to one of the qubit junctions; hybrid circuits involving both charge and flux qubits; testing Bell's inequality in SC circuits; generation of GHZ states; quantum tomography in SC circuits; preparation of macroscopic quantum superposition states of a cavity field via coupling to a SC qubit; generation of nonclassical photon states using a SC qubit in a microcavity; scalable quantum computing with SC qubits; and information processing with SC qubits in a microwave field. Controllable couplings between qubits can be achieved either directly or indirectly. This can be done with and without coupler circuits, and with and without data-buses like EM fields in cavities (e.g., we will describe both the variable-frequency magnetic flux approach and also a generalized double-resonance approach that we introduced). It is also possible to ``turn a quantum bug into a feature'' by using microscopic defects as qubits, and the macroscopic junction as a controller of it. We have also studied ways to implement radically different approaches to QIP by using ``cluster states'' in SC circuits. For a general overview of this field, see, J.Q. You and F. Nori, Phys. Today 58 (11), 42 (2005)

  12. Phase diffusion and locking in single-qubit lasers

    OpenAIRE

    André, Stephan; Brosco, Valentina; Shnirman, Alexander; Schön, Gerd

    2008-01-01

    Motivated by recent experiments, which demonstrated lasing and cooling of the electromagnetic field in an electrical resonator coupled to a superconducting qubit, we study the phase coherence and diffusion of the system in the lasing state. We also discuss phase locking and synchronization induced by an additional {\\sl ac} driving of the resonator. We extend earlier work to account for the strong qubit-resonator coupling and to include the effects of low-frequency qubit's noise. We show that ...

  13. A two-qubit photonic quantum processor and its application to solving systems of linear equations.

    Science.gov (United States)

    Barz, Stefanie; Kassal, Ivan; Ringbauer, Martin; Lipp, Yannick Ole; Dakić, Borivoje; Aspuru-Guzik, Alán; Walther, Philip

    2014-08-19

    Large-scale quantum computers will require the ability to apply long sequences of entangling gates to many qubits. In a photonic architecture, where single-qubit gates can be performed easily and precisely, the application of consecutive two-qubit entangling gates has been a significant obstacle. Here, we demonstrate a two-qubit photonic quantum processor that implements two consecutive CNOT gates on the same pair of polarisation-encoded qubits. To demonstrate the flexibility of our system, we implement various instances of the quantum algorithm for solving of systems of linear equations.

  14. Dissipation, dephasing and quantum Darwinism in qubit systems with random unitary interactions

    Science.gov (United States)

    Balaneskovic, Nenad; Mendler, Marc

    2016-09-01

    We investigate the influence of dissipation and decoherence on quantum Darwinism by generalizing Zurek's original qubit model of decoherence and the establishment of pointer states [W.H. Zurek, Nat. Phys. 5, 181 (2009); see also arXiv: quant-ph/0707.2832v1, pp. 14-19.]. Our model allows for repeated multiple qubit-qubit couplings between system and environment which are described by randomly applied two-qubit quantum operations inducing entanglement, dissipation and dephasing. The resulting stationary qubit states of system and environment are investigated. They exhibit the intricate influence of entanglement generation, dissipation and dephasing on this characteristic quantum phenomenon.

  15. Cryogenic Systems and Superconductive Power

    Science.gov (United States)

    The report defines, investigates, and experimentally evaluates the key elements of a representative crogenic turborefrigerator subsystem suitable for providing reliable long-lived cryogenic refrigeration for a superconductive ship propulsion system.

  16. Coherent quantum state storage and transfer between two phase qubits via a resonant cavity.

    Science.gov (United States)

    Sillanpää, Mika A; Park, Jae I; Simmonds, Raymond W

    2007-09-27

    As with classical information processing, a quantum information processor requires bits (qubits) that can be independently addressed and read out, long-term memory elements to store arbitrary quantum states, and the ability to transfer quantum information through a coherent communication bus accessible to a large number of qubits. Superconducting qubits made with scalable microfabrication techniques are a promising candidate for the realization of a large-scale quantum information processor. Although these systems have successfully passed tests of coherent coupling for up to four qubits, communication of individual quantum states between superconducting qubits via a quantum bus has not yet been realized. Here, we perform an experiment demonstrating the ability to coherently transfer quantum states between two superconducting Josephson phase qubits through a quantum bus. This quantum bus is a resonant cavity formed by an open-ended superconducting transmission line of length 7 mm. After preparing an initial quantum state with the first qubit, this quantum information is transferred and stored as a nonclassical photon state of the resonant cavity, then retrieved later by the second qubit connected to the opposite end of the cavity. Beyond simple state transfer, these results suggest that a high-quality-factor superconducting cavity could also function as a useful short-term memory element. The basic architecture presented here can be expanded, offering the possibility for the coherent interaction of a large number of superconducting qubits.

  17. Generalized entanglement constraints in multi-qubit systems in terms of Tsallis entropy

    Science.gov (United States)

    Kim, Jeong San

    2016-10-01

    We provide generalized entanglement constraints in multi-qubit systems in terms of Tsallis entropy. Using quantum Tsallis entropy of order q, we first provide a generalized monogamy inequality of multi-qubit entanglement for q = 2 or 3. This generalization encapsulates the multi-qubit CKW-type inequality as a special case. We further provide a generalized polygamy inequality of multi-qubit entanglement in terms of Tsallis- q entropy for 1 ≤ q ≤ 2 or 3 ≤ q ≤ 4, which also contains the multi-qubit polygamy inequality as a special case.

  18. Quantum Bayesian rule for weak measurements of qubits in superconducting circuit QED

    Science.gov (United States)

    Wang, Peiyue; Qin, Lupei; Li, Xin-Qi

    2014-12-01

    Compared with the quantum trajectory equation (QTE), the quantum Bayesian approach has the advantage of being more efficient to infer a quantum state under monitoring, based on the integrated output of measurements. For weak measurement of qubits in circuit quantum electrodynamics (cQED), properly accounting for the measurement backaction effects within the Bayesian framework is an important problem of current interest. Elegant work towards this task was carried out by Korotkov in ‘bad-cavity’ and weak-response limits (Korotkov 2011 Quantum Bayesian approach to circuit QED measurement (arXiv:1111.4016)). In the present work, based on insights from the cavity-field states (dynamics) and the help of an effective QTE, we generalize the results of Korotkov to more general system parameters. The obtained Bayesian rule is in full agreement with Korotkov's result in limiting cases and as well holds satisfactory accuracy in non-limiting cases in comparison with the QTE simulations. We expect the proposed Bayesian rule to be useful for future cQED measurement and control experiments.

  19. Noise from Two-Level Systems in Superconducting Resonators

    Science.gov (United States)

    Neill, C.; Barends, R.; Chen, Y.; Chiaro, B.; Jeffrey, E.; Kelly, J.; Mariantoni, M.; Megrant, A.; Mutus, J.; Ohya, S.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T.; Cleland, A. N.; Martinis, J. M.

    2013-03-01

    Two-level systems (TLSs) present in amorphous dielectrics and surface interfaces are a significant source of decoherence in superconducting qubits. Linear microwave resonators offer a valuable instrument for characterizing the strongly power-dependent response of these TLSs. Using quarter-wavelength coplanar waveguide resonators, we monitored the microwave response of the resonator at a single near-resonant frequency versus time at varying microwave drive powers. We observe a time dependent variation of the resonator's internal dissipation and resonance frequency. The amplitude of these variations saturates with power in a manner similar to loss from TLSs. These results provide a means for quantifying the number and distribution of TLSs.

  20. Preparation of Greenberger-Horne-Zeilinger entangled states with multiple superconducting quantum-interference device qubits or atoms in cavity QED

    Science.gov (United States)

    Yang, Chui-Ping; Han, Siyuan

    2004-12-01

    A scheme is proposed for generating Greenberger-Horne-Zeilinger (GHZ) entangled states of multiple superconducting quantum-interference device (SQUID) qubits by the use of a microwave cavity. The scheme operates essentially by creating a single photon through an auxiliary SQUID built in the cavity and performing a joint multiqubit phase shift with assistance of the cavity photon. It is shown that entanglement can be generated using this method, deterministic and independent of the number of SQUID qubits. In addition, we show that the present method can be applied to preparing many atoms in a GHZ entangled state, with tolerance to energy relaxation during the operation.

  1. Semiconductor-inspired design principles for superconducting quantum computing.

    Science.gov (United States)

    Shim, Yun-Pil; Tahan, Charles

    2016-03-17

    Superconducting circuits offer tremendous design flexibility in the quantum regime culminating most recently in the demonstration of few qubit systems supposedly approaching the threshold for fault-tolerant quantum information processing. Competition in the solid-state comes from semiconductor qubits, where nature has bestowed some very useful properties which can be utilized for spin qubit-based quantum computing. Here we begin to explore how selective design principles deduced from spin-based systems could be used to advance superconducting qubit science. We take an initial step along this path proposing an encoded qubit approach realizable with state-of-the-art tunable Josephson junction qubits. Our results show that this design philosophy holds promise, enables microwave-free control, and offers a pathway to future qubit designs with new capabilities such as with higher fidelity or, perhaps, operation at higher temperature. The approach is also especially suited to qubits on the basis of variable super-semi junctions.

  2. Semiconductor-inspired design principles for superconducting quantum computing

    Science.gov (United States)

    Shim, Yun-Pil; Tahan, Charles

    2016-03-01

    Superconducting circuits offer tremendous design flexibility in the quantum regime culminating most recently in the demonstration of few qubit systems supposedly approaching the threshold for fault-tolerant quantum information processing. Competition in the solid-state comes from semiconductor qubits, where nature has bestowed some very useful properties which can be utilized for spin qubit-based quantum computing. Here we begin to explore how selective design principles deduced from spin-based systems could be used to advance superconducting qubit science. We take an initial step along this path proposing an encoded qubit approach realizable with state-of-the-art tunable Josephson junction qubits. Our results show that this design philosophy holds promise, enables microwave-free control, and offers a pathway to future qubit designs with new capabilities such as with higher fidelity or, perhaps, operation at higher temperature. The approach is also especially suited to qubits on the basis of variable super-semi junctions.

  3. Scalable one-way quantum computer using on-chip resonator qubits

    CERN Document Server

    Wu, Chun-Wang; Li, Hong-Yi; Deng, Zhi-Jiao; Dai, Hong-Yi; Chen, Ping-Xing; Li, Cheng-Zu

    2011-01-01

    We propose a scalable and robust architecture for one-way quantum computation using coupled networks of superconducting transmission line resonators. In our protocol, quantum information is encoded into the long-lived photon states of the resonators, which have a much longer coherence time than the usual superconducting qubits. Each resonator contains a charge qubit used for the state initialization and local projective measurement of the photonic qubit. Any pair of neighboring photonic qubits are coupled via a mediator charge qubit, and large photonic cluster states can be created by applying Stark-shifted Rabi pulses to these mediator qubits. The distinct advantage of our architecture is that it combines both the excellent scalability of the solid-state systems and the long coherence time of the photonic qubits. Furthermore, this architecture is very robust against the parameter variations.

  4. Quantum Bayesian rule for weak measurements of qubits in superconducting circuit QED

    OpenAIRE

    Wang, Peiyue; Qin, Lupei; Li, Xin-Qi

    2014-01-01

    Compared with the quantum trajectory equation, the quantum Bayesian approach has the advantage of being more efficient to infer quantum state under monitoring, based on the integrated output of measurement. For weak measurement of qubits in circuit quantum electrodynamics(cQED), properly accounting for the measurement backaction effects within the Bayesian framework is an important problem of current interest.Elegant work towards this task was carried out by Korotkov in "bad-cavity" and weak-...

  5. Simulation of n-qubit quantum systems. III. Quantum operations

    Science.gov (United States)

    Radtke, T.; Fritzsche, S.

    2007-05-01

    During the last decade, several quantum information protocols, such as quantum key distribution, teleportation or quantum computation, have attracted a lot of interest. Despite the recent success and research efforts in quantum information processing, however, we are just at the beginning of understanding the role of entanglement and the behavior of quantum systems in noisy environments, i.e. for nonideal implementations. Therefore, in order to facilitate the investigation of entanglement and decoherence in n-qubit quantum registers, here we present a revised version of the FEYNMAN program for working with quantum operations and their associated (Jamiołkowski) dual states. Based on the implementation of several popular decoherence models, we provide tools especially for the quantitative analysis of quantum operations. Apart from the implementation of different noise models, the current program extension may help investigate the fragility of many quantum states, one of the main obstacles in realizing quantum information protocols today. Program summaryTitle of program: Feynman Catalogue identifier: ADWE_v3_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWE_v3_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: None Operating systems: Any system that supports MAPLE; tested under Microsoft Windows XP, SuSe Linux 10 Program language used:MAPLE 10 Typical time and memory requirements: Most commands that act upon quantum registers with five or less qubits take ⩽10 seconds of processor time (on a Pentium 4 processor with ⩾2 GHz or equivalent) and 5-20 MB of memory. Especially when working with symbolic expressions, however, the memory and time requirements critically depend on the number of qubits in the quantum registers, owing to the exponential dimension growth of the associated Hilbert space. For example, complex (symbolic) noise models (with several Kraus operators) for multi-qubit systems

  6. Simulation of n-qubit quantum systems. V. Quantum measurements

    Science.gov (United States)

    Radtke, T.; Fritzsche, S.

    2010-02-01

    The FEYNMAN program has been developed during the last years to support case studies on the dynamics and entanglement of n-qubit quantum registers. Apart from basic transformations and (gate) operations, it currently supports a good number of separability criteria and entanglement measures, quantum channels as well as the parametrizations of various frequently applied objects in quantum information theory, such as (pure and mixed) quantum states, hermitian and unitary matrices or classical probability distributions. With the present update of the FEYNMAN program, we provide a simple access to (the simulation of) quantum measurements. This includes not only the widely-applied projective measurements upon the eigenspaces of some given operator but also single-qubit measurements in various pre- and user-defined bases as well as the support for two-qubit Bell measurements. In addition, we help perform generalized and POVM measurements. Knowing the importance of measurements for many quantum information protocols, e.g., one-way computing, we hope that this update makes the FEYNMAN code an attractive and versatile tool for both, research and education. New version program summaryProgram title: FEYNMAN Catalogue identifier: ADWE_v5_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWE_v5_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 27 210 No. of bytes in distributed program, including test data, etc.: 1 960 471 Distribution format: tar.gz Programming language: Maple 12 Computer: Any computer with Maple software installed Operating system: Any system that supports Maple; the program has been tested under Microsoft Windows XP and Linux Classification: 4.15 Catalogue identifier of previous version: ADWE_v4_0 Journal reference of previous version: Comput. Phys. Commun

  7. Entanglement and discord for qubits and higher spin systems

    Indian Academy of Sciences (India)

    A R P Rau

    2014-08-01

    We discuss aspects of entanglement and quantum discord, two of the quantum correlations that are of much interest in the field of quantum information. Their definitions and handling will be discussed, with simple illustrative examples. A specific example is of entanglement decay resulting from a simple dissipative process and how to alter that decay. An analytical prescription for computing quantum discord when a qubit (spin-1/2 or two-level quantum system) is involved is presented along with applications, and its generalization to higher spins (many levels) indicated.

  8. Entanglement dynamics of two-qubit systems in different quantum noises

    Institute of Scientific and Technical Information of China (English)

    Pan Chang-Ning; Li-Fei; Fang Jian-Shu; Fang Mao-Fa

    2011-01-01

    The entanglement dynamics of two-qubit systems in different quantum noises are investigated by means of the operator-sum representation method. We find that, except for the amplitude damping and phase damping quantum noise, the sudden death of entanglement is always observed in different two-qubit systems with generalized amplitude damping and depolarizing quantum noise.

  9. Entanglement Transfer via Heisenberg Interaction in a Four-Qubit System

    Institute of Scientific and Technical Information of China (English)

    REN Feng-Hua; WANG Zhao-Ming

    2007-01-01

    We investigate the entanglement transfer in a four-qubit system and calculate the concurrence between any two qubits in different initial states.We show that both the pure entangled state and mixed entangled state can be transferred.For some special coupling constants and some evolution time,entanglement can be completely transferred from one pair particles to another.

  10. Quantum dynamics of a two-atom-qubit system

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Van Hieu; Nguyen Bich Ha [Max-Planck Institute for the Physics of Complex Systems, Noethnitzer Str. 38, D-01187 Dresden (Germany); Le Thi Ha Linh [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi (Viet Nam)], E-mail: nvhieu@iop.vast.ac.vn

    2009-09-01

    A physical model of the quantum information exchange between two qubits is studied theoretically. The qubits are two identical two-level atoms, the physical mechanism of the quantum information exchange is the mutual dependence of the reduced density matrices of two qubits generated by their couplings with a multimode radiation field. The Lehmberg-Agarwal master equation is exactly solved. The explicit form of the mutual dependence of two reduced density matrices is established. The application to study the entanglement of two qubits is discussed.

  11. Wirebond crosstalk and cavity modes in large chip mounts for superconducting qubits

    Energy Technology Data Exchange (ETDEWEB)

    Wenner, J; Neeley, M; Bialczak, Radoslaw C; Lenander, M; Lucero, Erik; O' Connell, A D; Sank, D; Wang, H; Weides, M; Cleland, A N; Martinis, John M, E-mail: martinis@physics.ucsb.edu [Department of Physics, University of California, Santa Barbara, CA 93106 (United States)

    2011-06-15

    We analyze the performance of a microwave chip mount that uses wirebonds to connect the chip and mount grounds. A simple impedance ladder model predicts that transmission crosstalk between two feedlines falls off exponentially with distance at low frequencies, but rises to near unity above a resonance frequency set by the chip to ground capacitance. Using SPICE simulations and experimental measurements of a scale model, the basic predictions of the ladder model were verified. In particular, by decreasing the capacitance between the chip and box grounds, the resonance frequency increased and transmission decreased. This model then influenced the design of a new mount that improved the isolation to - 65 dB at 6 GHz, even though the chip dimensions were increased to 1 cm x 1 cm, three times as large as our previous devices. We measured a coplanar resonator in this mount as preparation for larger qubit chips, and were able to identify cavity, slotline, and resonator modes.

  12. Tunable electromagnetically induced transparency in a composite superconducting system

    Science.gov (United States)

    Wang, Xin; Li, Hong-rong; Chen, Dong-xu; Liu, Wen-xiao; Li, Fu-li

    2016-05-01

    We theoretically propose an efficient method to realize electromagnetically induced transparency (EIT) in the microwave regime through a coupled system consisting of a flux qubit and a superconducting LC resonator. Driven by two appropriate microwave fields, the system will be trapped in the dark states. In our proposal, the control field of EIT is played by a second-order transfer rather than by a direct strong-pump field. In particular, we obtained conditions for electromagnetically induced transparency and Autler-Townes splitting in this composite system. Both theoretical and numerical results show that this EIT system benefits from the relatively long coherent time of the resonator. Since this whole system is artificial and tunable, our scheme may have potential applications in various domains.

  13. Remote entanglement of transmon qubits

    Science.gov (United States)

    Hatridge, M.; Sliwa, K.; Narla, A.; Shankar, S.; Leghtas, Z.; Mirrahimi, M.; Girvin, S. M.; Schoelkopf, R. J.; Devoret, M. H.

    2014-03-01

    An open challenge in quantum information processing with superconducting circuits is to entangle distant (non-nearest neighbor) qubits. This can be accomplished by entangling the qubits with flying microwave oscillators (traveling pulses), and then performing joint operations on a pair of these oscillators. Remarkably, such a process is embedded in the act of phase-preserving amplification, which transforms two input modes (termed signal and idler) into a two-mode squeezed output state. For an ideal system, this process generates heralded, perfectly entangled states between remote qubits with a fifty percent success rate. For an imperfect system, the loss of information from the flying states degrades the purity of the entanglement. We show data on such a protocol involving two transmon qubits imbedded in superconducting cavities connected to the signal and idler inputs of a Josephson Parametric Converter (JPC) operated as a nearly-quantum limited phase-preserving amplifier. Strategies for optimizing performance will also be discussed. Work supported by: IARPA, ARO, and NSF.

  14. Probing the density of states of two-level tunneling systems in silicon oxide films using superconducting lumped element resonators

    Energy Technology Data Exchange (ETDEWEB)

    Skacel, S. T. [Physikalisches Institut, Karlsruher Institut für Technologie, Wolfgang-Gaede-Straße 1, D-76131 Karlsruhe (Germany); Institut für Mikro- und Nanoelektronische Systeme, Karlsruher Institut für Technologie, Hertzstraße 16, D-76187 Karlsruhe (Germany); Kaiser, Ch.; Wuensch, S.; Siegel, M. [Institut für Mikro- und Nanoelektronische Systeme, Karlsruher Institut für Technologie, Hertzstraße 16, D-76187 Karlsruhe (Germany); Rotzinger, H.; Lukashenko, A.; Jerger, M.; Weiss, G. [Physikalisches Institut, Karlsruher Institut für Technologie, Wolfgang-Gaede-Straße 1, D-76131 Karlsruhe (Germany); Ustinov, A. V. [Physikalisches Institut, Karlsruher Institut für Technologie, Wolfgang-Gaede-Straße 1, D-76131 Karlsruhe (Germany); Russian Quantum Center, 100 Novaya St., Skolkovo, Moscow Region 143025 (Russian Federation)

    2015-01-12

    We have investigated dielectric losses in amorphous silicon oxide (a-SiO) thin films under operating conditions of superconducting qubits (mK temperatures and low microwave powers). For this purpose, we have developed a broadband measurement setup employing multiplexed lumped element resonators using a broadband power combiner and a low-noise amplifier. The measured temperature and power dependences of the dielectric losses are in good agreement with those predicted for atomic two-level tunneling systems (TLS). By measuring the losses at different frequencies, we found that the TLS density of states is energy dependent. This had not been seen previously in loss measurements. These results contribute to a better understanding of decoherence effects in superconducting qubits and suggest a possibility to minimize TLS-related decoherence by reducing the qubit operation frequency.

  15. Superconducting resonator and Rydberg atom hybrid system in the strong coupling regime

    Science.gov (United States)

    Yu, Deshui; Landra, Alessandro; Valado, María Martínez; Hufnagel, Christoph; Kwek, Leong Chuan; Amico, Luigi; Dumke, Rainer

    2016-12-01

    We propose a promising hybrid quantum system, where a highly excited atom strongly interacts with a superconducting L C oscillator via the electric field of capacitor. An external electrostatic field is applied to tune the energy spectrum of the atom. The atomic qubit is implemented by two eigenstates near an avoided-level crossing in the dc Stark map of a Rydberg atom. Varying the electrostatic field brings the atomic-qubit transition on or off resonance with respect to the microwave resonator, leading to a strong atom-resonator coupling with an extremely large cooperativity. Like the nonlinearity induced by Josephson junctions in superconducting circuits, the large atom-resonator interface disturbs the harmonic potential of the resonator, resulting in an artificial two-level particle. Different universal two-qubit logic gates can also be performed on our hybrid system within the space where an atomic qubit couples to a single photon with an interaction strength much larger than any relaxation rates, opening the door to the cavity-mediated state transmission.

  16. Coherence preservation of a qubit inflicted by classical non-Gaussian charge noise

    Science.gov (United States)

    Ramon, Guy

    2015-03-01

    The efficiency of decoupling pulse sequences in removing noise due to several charge fluctuators is studied. Both numerical simulations and analytics are used to explore the qubit's dephasing and dissipative dynamics. Special emphasis is placed on qubit dynamics at the optimal point, where it is found that fluctuators that are strongly coupled to the qubit induce a non-Gaussian noise. Exact analytical results for this limit reveal a nontrivial scaling of the noise with the number of fluctuators. Furthermore, a crossover between distinct qubit dynamics is demonstrated by increasing the number of control pulses and/or varying the qubit's working position. While we consider as a test case exchange-coupled spin qubits in gate-defined GaAs double dots, our results are relevant to other systems such as superconducting Josephson qubits, and Si/SiGe quantum dots. Supported by NSF Grant DMR-1207298.

  17. Topological quantum buses: coherent quantum information transfer between topological and conventional qubits

    CERN Document Server

    Bonderson, Parsa

    2010-01-01

    We propose computing bus devices that enable quantum information to be coherently transferred between topological and conventional qubits. We describe a concrete realization of such a topological quantum bus acting between a topological qubit in a Majorana wire network and a conventional semiconductor double quantum dot qubit. Specifically, this device measures the joint (fermion) parity of these two different qubits by using the Aharonov-Casher effect in conjunction with an ancilliary superconducting flux qubit that facilitates the measurement. Such a parity measurement, together with the ability to apply Hadamard gates to the two qubits, allows one to produce states in which the topological and conventional qubits are maximally entangled and to teleport quantum states between the topological and conventional quantum systems.

  18. Topological Quantum Buses: Coherent Quantum Information Transfer between Topological and Conventional Qubits

    Science.gov (United States)

    Bonderson, Parsa; Lutchyn, Roman M.

    2011-04-01

    We propose computing bus devices that enable quantum information to be coherently transferred between topological and conventional qubits. We describe a concrete realization of such a topological quantum bus acting between a topological qubit in a Majorana wire network and a conventional semiconductor double quantum dot qubit. Specifically, this device measures the joint (fermion) parity of these two different qubits by using the Aharonov-Casher effect in conjunction with an ancilliary superconducting flux qubit that facilitates the measurement. Such a parity measurement, together with the ability to apply Hadamard gates to the two qubits, allows one to produce states in which the topological and conventional qubits are maximally entangled and to teleport quantum states between the topological and conventional quantum systems.

  19. Benchmarking quantum control methods on a 12-qubit system

    CERN Document Server

    Negrevergne, C; Ryan, C A; Ditty, M; Cyr-Racine, F; Power, W; Boulant, N; Havel, T; Cory, D G; Laflamme, R

    2006-01-01

    In this letter, we present an experimental benchmark of operational control methods in quantum information processors extended up to 12 qubits. We implement universal control of this large Hilbert space using two complementary approaches and discuss their accuracy and scalability. Despite decoherence, we were able to reach a 12-coherence state (or 12-qubits pseudo-pure cat state), and decode it into an 11 qubit plus one qutrit labeled observable pseudo-pure state using liquid state nuclear magnetic resonance quantum information processors.

  20. Quantum metamaterials: Electromagnetic waves in Josephson qubit lines

    Energy Technology Data Exchange (ETDEWEB)

    Zagoskin, A.M. [Frontier Research System, Institute of Physical and Chemical Research (RIKEN),Wako-shi, Saitama (Japan); Department of Physics, Loughborough University, Loughborough (United Kingdom); Physics and Astronomy Department, University of British Columbia, Vancouver, B.C. (Canada); Rakhmanov, A.L. [Frontier Research System, Institute of Physical and Chemical Research (RIKEN),Wako-shi, Saitama (Japan); Institute for Theoretical and Applied Electrodynamics RAS, Moscow (Russian Federation); Savel' ev, Sergey [Frontier Research System, Institute of Physical and Chemical Research (RIKEN),Wako-shi, Saitama (Japan); Department of Physics, Loughborough University, Loughborough (United Kingdom); Nori, Franco [Frontier Research System, Institute of Physical and Chemical Research (RIKEN),Wako-shi, Saitama (Japan); Department of Physics, Center for Theoretical Physics, Applied Physics Program, Center for the Study of Complex Systems, University of Michigan, Ann Arbor, MI (United States)

    2009-05-15

    We consider the propagation of a classical electromagnetic wave through a transmission line, formed by identical superconducting charge qubits inside a superconducting resonator. Since the qubits can be in a coherent superposition of quantum states, we show that such a system demonstrates interesting new effects, such as a ''breathing'' photonic crystal with an oscillating bandgap. Similar behaviour is expected from a transmission line formed by flux qubits. The key ingredient of these effects is that the optical properties of the Josephson transmission line are controlled by the quantum coherent state of the qubits (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Decoherence of two-qubit systems: a random matrix description

    Science.gov (United States)

    Pineda, C.; Gorin, T.; Seligman, T. H.

    2007-04-01

    We study decoherence of two non-interacting qubits. The environment and its interaction with the qubits are modelled by random matrices. Decoherence, measured in terms of purity, is calculated in linear response approximation. Monte Carlo simulations illustrate the validity of this approximation and of its extension by exponentiation. The results up to this point are also used to study one-qubit decoherence. Purity decay of entangled and product states are qualitatively similar though for the latter case it is slower. Numerical studies for a Bell pair as initial state reveal a one to one correspondence between its decoherence and its internal entanglement decay. For strong and intermediate coupling to the environment this correspondence agrees with the one for Werner states. In the limit of a large environment the evolution induces a unital channel in the two qubits, providing a partial explanation for the above relation.

  2. Decoherence of two qubit systems: A random matrix description

    CERN Document Server

    Pineda, C; Seligman, T H

    2007-01-01

    We study decoherence of two non-interacting qubits. The environment and its interaction with the qubits are modelled by random matrices. Decoherence, measured in terms of purity, is calculated in linear response approximation. Monte Carlo simulations illustrate the validity of this approximation and of its extension by exponentiation. The results up to this point are also used to study one qubit decoherence. Purity decay of entangled and product states are qualitatively similar though for the latter case it is slower. Numerical studies for a Bell pair as initial state reveal a one to one correspondence between its decoherence and its internal entanglement decay. For strong and intermediate coupling to the environment this correspondence agrees with the one for Werner states. In the limit of a large environment the evolution induces a unital channel in the two qubits, providing a partial explanation for the relation above.

  3. Inverse Landau-Zener-Stuckelberg interferometry for the measurement of a resonator's state using a qubit

    Science.gov (United States)

    Shevchenko, Sergey; Ashhab, Sahel; Nori, Franco

    2013-03-01

    We consider theoretically a superconducting qubit - nanomechanical resonator system, which was realized recently by LaHaye et al. [Nature 459, 960 (2009)]. We formulate and solve the inverse Landau-Zener-Stuckelberg problem, where we assume the driven qubit's state to be known (i.e. measured by some other device) and aim to find the parameters of the qubit's Hamiltonian. In particular, for our system the qubit's bias is defined by the nanomechanical resonator's displacement. This may provide a tool for monitoring the nanomechanical resonator 's position. [S. N. Shevchenko, S. Ashhab, and F. Nori, Phys. Rev. B 85, 094502 (2012).

  4. Macroscopic Greenberg-Horne-Zeilinger state and W state in charge qubits based on Coulomb blockade

    Science.gov (United States)

    Liang, L. M.; Wang, X. B.

    2010-03-01

    Based on Coulomb blockade, we propose a scheme to generate two types of three-qubit entanglement, known as Greenberg-Horne-Zeilinger (GHZ) state and W state, in a macroscopic quantum system. The qubit is encoded in the charge qubit in the superconducting system, and the scheme can be generalized to generate the GHZ state and W state in multi-partite charge qubits. The GHZ state and W state are the eigenstates of the respective idle Hamiltonian, so they have the long lifetime.

  5. Filter-design perspective applying to dynamical decoupling of a multi-qubit system

    OpenAIRE

    Zhi-Kun, Su; Shao-Ji, Jiang

    2011-01-01

    We employ the filter-design perspective and derive the filter functions according to nested Uhrig dynamical decoupling (NUDD) and Symmetric dynamical decoupling (SDD) in the pure-dephasing spin-boson model with N qubits. The performances of NUDD and SDD are discussed in detail for a two-qubit system. The analysis shows that (i) SDD outperforms NUDD for the bath with a soft cutoff while NUDD approaches SDD as the cutoff becomes harder; (ii) if the qubits are coupled to a common reservoir, SDD ...

  6. System-environment correlations for dephasing two-qubit states coupled to thermal baths

    Science.gov (United States)

    Costa, A. C. S.; Beims, M. W.; Strunz, W. T.

    2016-05-01

    Based on the exact dynamics of a two-qubit system and environment, we investigate system-environment (SE) quantum and classical correlations. The coupling is chosen to represent a dephasing channel for one of the qubits and the environment is a proper thermal bath. First we discuss the general issue of dilation for qubit phase damping. Based on the usual thermal bath of harmonic oscillators, we derive criteria of separability and entanglement between an initial X state and the environment. Applying these criteria to initial Werner states, we find that entanglement between the system and environment is built up in time for temperatures below a certain critical temperature Tcrit. On the other hand, the total state remains separable during those short times that are relevant for decoherence and loss of entanglement in the two-qubit state. Close to Tcrit the SE correlations oscillate between separable and entangled. Even though these oscillations are also observed in the entanglement between the two qubits, no simple relation between the loss of entanglement in the two-qubit system and the build-up of entanglement between the system and environment is found.

  7. A COMPREHENSIVE PROOF OF THE GREENBERGER-HORNE-ZEILINGER THEOREM FOR THE FOUR-QUBIT SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Tang Li; Chen Zeqian; Zhong Jie; Ren Yaofeng; Zhan Mingsheng

    2007-01-01

    Greenberger-Horne-Zeilinger (GHZ) theorem asserts that there is a set of mutually commuting nonlocal observables with a common eigenstate on which those observables assume values that refute the attempt to assign values only required to have them by the local realism of Einstein, Podolsky, and Rosen (EPR). It is known that for a three-qubit system, there is only one form of the GHZ-Mermin-like argument with equivalence up to a local unitary transformation, which is exactly Mermin's version of the GHZ theorem. This article for a four-qubit system, which was originally studied by GHZ, the authors show that there are nine distinct forms of the GHZ-Mermin-like argument. The proof is obtained using certain geometric invariants to characterize the sets of mutually commuting nonlocal spin observables on the four-qubit system. It is proved that there are at most nine elements (except for a different sign) in a set of mutually commuting nonlocal spin observables in the four-qubit system, and each GHZ-Mermin-like argument involves a set of at least fivemutually commuting four-qubit nonlocal spin observables with a GHZ state as a common eigenstate in GHZ's theorem. Therefore, we present a complete construction of the GHZ theorem for the four-qubit system.

  8. Dynamics and protection of entanglement in n -qubit systems within Markovian and non-Markovian environments

    Science.gov (United States)

    Nourmandipour, A.; Tavassoly, M. K.; Rafiee, M.

    2016-02-01

    We provide an analytical investigation of the pairwise entanglement dynamics for a system, consisting of an arbitrary number of qubits dissipating into a common and non-Markovian environment for both weak- and strong-coupling regimes. In the latter case, a revival of pairwise entanglement due to the memory depth of the environment is observed. The leakage of photons into a continuum state is assumed to be the source of dissipation. We show that for an initially Werner state, the environment washes out the pairwise entanglement, but a series of nonselective measurements can protect the relevant entanglement. On the other hand, by limiting the number of qubits initially in the superposition of single excitation, a stationary entanglement can be created between qubits initially in the excited and ground states. Finally, we determine the stationary distribution of the entanglement versus the total number of qubits in the system.

  9. Entanglement reciprocation between two charge qubits and two-cavity field

    Institute of Scientific and Technical Information of China (English)

    Hui-ping CUI; Yan SHAN; Jian ZOU; Bin SHAO

    2008-01-01

    We propose a simple scheme to generate twomode entangled coherent state in two separated cavities and realize the entanglement reciprocation between the superconducting charge qubits and continuous-variable system.By measuring the state of charge qubits,we find that the entanglement of two charge qubits,which are initially prepared in the maximally entangled state,can be transferred to the two-cavity field,and at this time the two-cavity field is in the entangled coherent state.We also find that the entanglement can be retrieved back to the two charge qubits after measuring the state of the two-cavity field.

  10. Exact solution of rate equations for a two-spin-qubit system

    Energy Technology Data Exchange (ETDEWEB)

    Le Thi Ha Linh; Nguyen Bich Ha [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi (Viet Nam)], E-mail: linhlth@ims.vast.ac.vn

    2009-09-01

    The quantum dynamics of a system of two interacting spin-qubits is studied for elaborating the physical mechanism of the quantum information transfer between them. A simple model with their Heisenberg XY exchange interaction is investigated. The rate equations are established. The analytical expressions of their solution are exactly derived. They explicitly demonstrate, how the quantum information encoded into a spin-qubit at the initial time t = 0 is transferred to other one at any time t > 0.

  11. Deviations from reversible dynamics in a qubit-oscillator system coupled to a very small environment

    CERN Document Server

    Vidiella-Barranco, A

    2015-01-01

    In this contribution it is considered a simple and solvable model consisting of a qubit in interaction with an oscillator exposed to a very small "environment" (a second qubit). An isolated qubit-oscillator system having the oscillator initially in one of its energy eigenstates exhibits Rabi oscillations, an evidence of coherent quantum behaviour. It is shown here in which way the coupling to a small "environment" disrupts such regular behaviour, leading to a quasi-periodic dynamics for the qubit linear entropy. In particular, it is found that the linear entropy is very sensitive to the amount of mixedness of the "environment". For completeness, fluctuations in the oscillator energy are also taken into account.

  12. Designing optimal quantum cloning machine for qubit system

    CERN Document Server

    Wu, Xiaohua

    2010-01-01

    Following the work of Niu and Griffiths, in \\emph{Phys.Rev.A 58, 4377(1998)}, we shall investigate the problem, how to design the optimal quantum cloning machines (QCMs) for qubit system, with the help of Bloch-sphere representation. In stead of the quality factor there, the Fiur\\'{a}\\u{s}ek's optimal condition, where the optimal cloning machine should maximize a convex mixture of the average fidelity, is used as the optimality criterion in present protocol. Almost all of the known optimal QCMs in previous works, the cloning for states with fixed polar angle, the phase-covariant cloning, the universal QCMs, the cloning for two arbitrary pure states, and the mirror phase-covariant cloning, should be discussed in a systematic way. The known results, the optimal fidelities for various input ensembles according to different optimality criteria, are recovered here. Our present scheme also offers a general way of constructing the unitary transformation to realize the optimal cloning.

  13. Downsized superconducting magnetic energy storage systems

    Science.gov (United States)

    Palmer, David N.

    Scaled-down superconductive magnetic energy storage systems (DSMES) and superconductive magnetic energy power sources (SMEPS) are proposed for residential, commercial/retail, industrial off-peak and critical services, telephone and other communication systems, computer operations, power back-up/energy storages, power sources for space stations, and in-field military logistics/communication systems. Recent advances in high-Tc superconducting materials technology are analyzed. DSMES/SMEPS concepts are presented, and design, materials, and systems requirements are discussed. Problems ar identified, and possible solutions are offered. Comparisons are made with mechanical and primary and secondary energy storage and conversion systems.

  14. Maximally entangled mixed states for qubit-qutrit systems

    Science.gov (United States)

    Mendonça, Paulo E. M. F.; Marchiolli, Marcelo A.; Hedemann, Samuel R.

    2017-02-01

    We consider the problems of maximizing the entanglement negativity of X-form qubit-qutrit density matrices with (i) a fixed spectrum and (ii) a fixed purity. In the first case, the problem is solved in full generality whereas, in the latter, partial solutions are obtained by imposing extra spectral constraints such as rank deficiency and degeneracy, which enable a semidefinite programming treatment for the optimization problem at hand. Despite the technically motivated assumptions, we provide strong numerical evidence that threefold degenerate X states of purity P reach the highest entanglement negativity accessible to arbitrary qubit-qutrit density matrices of the same purity, hence characterizing a sparse family of likely qubit-qutrit maximally entangled mixed states.

  15. High Temperature Superconducting Maglev Measurement System

    OpenAIRE

    Wang, Jia-Su; Wang, Su-Yu

    2010-01-01

    Three high temperature superconducting (HTS) Maglev measurement systems were successfully developed in the Applied Superconductivity Laboratory (ASCLab) of Southwest Jiaotong University, P. R. China. These systems include liquid nitrogen vessel, Permanent Magnet Guideway (PMG), data collection and processing, mechanical drive and Autocontrol features. This chapter described the three different measuring systems along with their theory of operations and workflow. The SCML-01 HTS Maglev measure...

  16. A scanning transmon qubit for strong coupling circuit quantum electrodynamics.

    Science.gov (United States)

    Shanks, W E; Underwood, D L; Houck, A A

    2013-01-01

    Like a quantum computer designed for a particular class of problems, a quantum simulator enables quantitative modelling of quantum systems that is computationally intractable with a classical computer. Superconducting circuits have recently been investigated as an alternative system in which microwave photons confined to a lattice of coupled resonators act as the particles under study, with qubits coupled to the resonators producing effective photon-photon interactions. Such a system promises insight into the non-equilibrium physics of interacting bosons, but new tools are needed to understand this complex behaviour. Here we demonstrate the operation of a scanning transmon qubit and propose its use as a local probe of photon number within a superconducting resonator lattice. We map the coupling strength of the qubit to a resonator on a separate chip and show that the system reaches the strong coupling regime over a wide scanning area.

  17. Superconducting magnet system for PERC

    Energy Technology Data Exchange (ETDEWEB)

    Drescher, Carmen [Physikalisches Institut, Universitaet Heidelberg (Germany); Collaboration: PERC-Collaboration

    2012-07-01

    The new PERC (Proton Electron Radiation Channel) instrument will be an extremely bright and versatile source of neutron decay products. It will feed several novel precision experiments of spectra and correlation measurements in neutron decay. Its main component is a more than 11 m long superconducting magnet system. The neutron decay volume is located inside an 8 m long neutron guide in a strong longitudinal magnetic field of 1.5 T. A variable magnetic barrier of 3 T to 6 T serves to precisely limit the phase space of the emerging electrons and protons to control systematic errors on the 10{sup -4}level. The instrument is currently under development and will be installed at the neutron-beamline Mephisto at the FRM II, Garching. In this talk we give an overview on the special characteristics and advantages of PERC's field design. We show that with our design we can prevent magnetic traps in magnetic field and achieve a clean separation of neutrons and decay-products.

  18. Scheme for realizing quantum computation and quantum information transfer with superconducting qubits coupling to a 1D transmission line resonator

    Institute of Scientific and Technical Information of China (English)

    Shi Zhen-Gang; Chen Xiong-Wen; Zhu Xi-Xiang; Song Ke-Hui

    2009-01-01

    This paper proposes a simple scheme for realizing one-qubit and two-qubit quantum gates as well as multiqubit entanglement based on dc-SQUID charge qubits through the control of their coupling to a ID transmission line resonator (TLR). The TLR behaves effectively as a quantum data-bus mode of a harmonic oscillator, which has several practical advantages including strong coupling strength, reproducibility, immunity to 1// noise, and suppressed spontaneous emission. In this protocol, the data-bus does not need to stay adiabatically in its ground state, which results in not only fast quantum operation, but also high-fidelity quantum information processing. Also, it elaborates the transfer process with the 1D transmission line.

  19. Relative Entropy of Entanglement of One Class of Two-Qubit System

    Institute of Scientific and Technical Information of China (English)

    LIANG Lin-Mei; CHEN Ping-Xing; LI Cheng-Zu; HUANG Ming-Qiu

    2001-01-01

    The relative entropy of entanglement of a mixed state σ for a bipartite quantum system can be defined as the minimum of the quantum relative entropy over the set of completely disentangled states. Vedral et al. [Phys.Rev. A 57(1998)1619] have recently proposed a numerical method to obtain the relative entropy of entanglement Ere for two-qubit systems. This letter shows that the convex programming method can be applied to calculate Ere of two-qubit systems analytically, and discusses the conditions under which the method can be adopted.

  20. Measurement based controlled not gate for topological qubits in a Majorana fermion and quantum-dot hybrid system

    Science.gov (United States)

    Xue, Zheng-Yuan

    2013-04-01

    We propose a scheme to implement controlled not gate for topological qubits in a quantum-dot and Majorana fermion hybrid system. Quantum information is encoded on pairs of Majorana fermions, which live on the the interface between topologically trivial and nontrivial sections of a quantum nanowire deposited on an s-wave superconductor. A measurement based two-qubit controlled not gate is produced with the help of parity measurements assisted by the quantum-dot and followed by prescribed single-qubit gates. The parity measurement, on the quantum-dot and a topological qubit, is achieved by the Aharonov-Casher effect.

  1. Fully robust qubit in atomic and molecular three-level systems

    Science.gov (United States)

    Aharon, N.; Cohen, I.; Jelezko, F.; Retzker, A.

    2016-12-01

    We present a new method of constructing a fully robust qubit in a three-level system. By the application of continuous driving fields, robustness to both external and controller noise is achieved. Specifically, magnetic noise and power fluctuations do not operate within the robust qubit subspace. Whereas all the continuous driving based constructions of such a fully robust qubit considered so far have required at least four levels, we show that in fact only three levels are necessary. This paves the way for simple constructions of a fully robust qubit in many atomic and solid state systems that are controlled by either microwave or optical fields. We focus on the NV-center in diamond and analyze the implementation of the scheme, by utilizing the electronic spin sub-levels of its ground state. In current state-of-the-art experimental setups the scheme leads to improvement of more than two orders of magnitude in coherence time, pushing it towards the lifetime limit. We show how the fully robust qubit can be used to implement quantum sensing, and in particular, the sensing of high frequency signals.

  2. Superconducting linear accelerator system for NSC

    Indian Academy of Sciences (India)

    P N Prakash; T S Datta; B P Ajith Kumar; J Antony; P Barua; J Chacko; A Choudhury; G K Chadhari; S Ghosh; S Kar; S A Krishnan; Manoj Kumar; Rajesh Kumar; A Mandal; D S Mathuria; R S Meena; R Mehta; K K Mistri; A Pandey; M V Suresh Babu; B K Sahu; A Sarkar; S S K Sonti; A Rai; S Venkatramanan; J Zacharias; R K Bhowmik; A Roy

    2002-11-01

    This paper reports the construction of a superconducting linear accelerator as a booster to the 15 UD Pelletron accelerator at Nuclear Science Centre, New Delhi. The LINAC will use superconducting niobium quarter wave resonators as the accelerating element. Construction of the linear accelerator has progressed sufficiently. Details of the entire accelerator system including the cryogenics facility, RF electronics development, facilities for fabricating niobium resonators indigenously, and present status of the project are presented.

  3. Tunable quantum entanglement of three qubits in a nonstationary cavity

    Science.gov (United States)

    Amico, Mirko; Berman, Oleg L.; Kezerashvili, Roman Ya.

    2017-09-01

    We investigate the tunable quantum entanglement and the probabilities of excitations in a system of three qubits in a nonstationary cavity due to the dynamical Lamb effect, caused by nonadiabatic fast change of the boundary conditions of the cavity. The transition amplitudes and the probabilities of excitation of qubits due to the dynamical Lamb effect have been evaluated. The conditional concurrence and the conditional residual tangle for each fixed amount of created photons are introduced and calculated as measures of the pairwise or three-way dynamical quantum entanglement of the qubits. We also give a prescription on how to increase the values of those quantities by controlling the frequency of the cavity photons. A physical realization of the system with three superconducting qubits, coupled to a coplanar waveguide entangled due to the nonadiabatic fast change of boundary conditions of the cavity is proposed.

  4. Entangling distant resonant exchange qubits via circuit quantum electrodynamics

    Science.gov (United States)

    Srinivasa, V.; Taylor, J. M.; Tahan, Charles

    2016-11-01

    We investigate a hybrid quantum system consisting of spatially separated resonant exchange qubits, defined in three-electron semiconductor triple quantum dots, that are coupled via a superconducting transmission line resonator. Drawing on methods from circuit quantum electrodynamics and Hartmann-Hahn double resonance techniques, we analyze three specific approaches for implementing resonator-mediated two-qubit entangling gates in both dispersive and resonant regimes of interaction. We calculate entangling gate fidelities as well as the rate of relaxation via phonons for resonant exchange qubits in silicon triple dots and show that such an implementation is particularly well suited to achieving the strong coupling regime. Our approach combines the favorable coherence properties of encoded spin qubits in silicon with the rapid and robust long-range entanglement provided by circuit QED systems.

  5. Circuit design for multi-body interactions in superconducting quantum annealing systems with applications to a scalable architecture

    Science.gov (United States)

    Chancellor, N.; Zohren, S.; Warburton, P. A.

    2017-06-01

    Quantum annealing provides a way of solving optimization problems by encoding them as Ising spin models which are implemented using physical qubits. The solution of the optimization problem then corresponds to the ground state of the system. Quantum tunneling is harnessed to enable the system to move to the ground state in a potentially high non-convex energy landscape. A major difficulty in encoding optimization problems in physical quantum annealing devices is the fact that many real world optimization problems require interactions of higher connectivity, as well as multi-body terms beyond the limitations of the physical hardware. In this work we address the question of how to implement multi-body interactions using hardware which natively only provides two-body interactions. The main result is an efficient circuit design of such multi-body terms using superconducting flux qubits in which effective N-body interactions are implemented using N ancilla qubits and only two inductive couplers. It is then shown how this circuit can be used as the unit cell of a scalable architecture by applying it to a recently proposed embedding technique for constructing an architecture of logical qubits with arbitrary connectivity using physical qubits which have nearest-neighbor four-body interactions. It is further shown that this design is robust to non-linear effects in the coupling loops, as well as mismatches in some of the circuit parameters.

  6. Filter-design perspective applying to dynamical decoupling of multi-qubit system

    CERN Document Server

    Zhi-Kun, Su

    2011-01-01

    We employ the filter-design perspective and derive the filter functions according to nested Uhrig dynamical decoupling (NUDD) and Symmetric dynamical decoupling (SDD) in the pure-dephasing spin-boson model with N qubits. The performances of NUDD and SDD are discussed in detail for a two-qubit system. The analysis shows that (i) SDD outperforms NUDD for the bath with a soft cutoff while NUDD approaches SDD as the cutoff becomes harder; (ii) if the qubits are coupled to a common reservoir, SDD helps to protect the decoherence-free subspace while NUDD destroys it; (iii) when the the imperfect control pulses with finite width are considered, NUDD is affected in both the high-fidelity regime and coherence time regime while SDD is obviously affected in the coherence time regime only.

  7. Quantum synchronization in disordered superconducting metamaterials

    Science.gov (United States)

    Fistul, M. V.

    2017-03-01

    I report a theoretical study of collective coherent quantum-mechanical oscillations in disordered superconducting quantum metamaterials (SQMs), i.e. artificial arrays of interacting qubits (two-levels system). An unavoidable disorder in qubits parameters results in a substantial spread of qubits frequencies, and in the absence of electromagnetic interaction between qubits these individual quantum-mechanical oscillations of single qubits manifest themselves by a large number of small resonant dips in the frequency dependent transmission of electromagnetic waves, |S21(ω)|2. We show that even a weak electromagnetic interaction between adjacent qubits can overcome the disorder and establish completely or partially synchronized quantum-mechanical dynamic state in the disordered SQM. In such a state a large amount of qubits displays the collective quantum mechanical oscillations, and this collective behavior manifests itself by a few giant resonant dips in the |S21(ω)|2 dependence. The size of a system r0 showing the collective (synchronized) quantum-mechanical behavior is determined in the one-dimensional SQMs as r0 ≃ a [K/δΔ]2, where K, δΔ, a are the effective energy of nearest-neighbor interaction, the spread of qubits energy splitting, and the distance between qubits, accordingly. We show that this phenomenon is mapped to the Anderson localization of spinon-type excitations arising in the SQM.

  8. Quantum synchronization in disordered superconducting metamaterials

    Science.gov (United States)

    Fistul, M. V.

    2017-01-01

    I report a theoretical study of collective coherent quantum-mechanical oscillations in disordered superconducting quantum metamaterials (SQMs), i.e. artificial arrays of interacting qubits (two-levels system). An unavoidable disorder in qubits parameters results in a substantial spread of qubits frequencies, and in the absence of electromagnetic interaction between qubits these individual quantum-mechanical oscillations of single qubits manifest themselves by a large number of small resonant dips in the frequency dependent transmission of electromagnetic waves, |S21(ω)|2. We show that even a weak electromagnetic interaction between adjacent qubits can overcome the disorder and establish completely or partially synchronized quantum-mechanical dynamic state in the disordered SQM. In such a state a large amount of qubits displays the collective quantum mechanical oscillations, and this collective behavior manifests itself by a few giant resonant dips in the |S21(ω)|2 dependence. The size of a system r0 showing the collective (synchronized) quantum-mechanical behavior is determined in the one-dimensional SQMs as r0 ≃ a [K/δΔ]2, where K, δΔ, a are the effective energy of nearest-neighbor interaction, the spread of qubits energy splitting, and the distance between qubits, accordingly. We show that this phenomenon is mapped to the Anderson localization of spinon-type excitations arising in the SQM.

  9. Topological superconductivity in bilayer Rashba system.

    Science.gov (United States)

    Nakosai, Sho; Tanaka, Yukio; Nagaosa, Naoto

    2012-04-06

    We theoretically study a possible topological superconductivity in the interacting two layers of Rashba systems, which can be fabricated by the heterostructures of semiconductors and oxides. The hybridization, which induces the gap in the single particle dispersion, and the electron-electron interaction between the two layers leads to the novel phase diagram of the superconductivity. It is found that the topological superconductivity without breaking time-reversal symmetry is realized when (i) the Fermi energy is within the hybridization gap, and (ii) the interlayer interaction is repulsive, both of which can be satisfied in realistic systems. Edge channels are studied in a tight-binding model numerically, and the several predictions on experiments are also given.

  10. Superconducting gap anomaly in heavy fermion systems

    Indian Academy of Sciences (India)

    G C Rout; M S Ojha; S N Behera

    2008-04-01

    The heavy fermion system (HFS) is described by the periodic Anderson model (PAM), treating the Coulomb correlation between the -electrons in the mean-field Hartree-Fock approximation. Superconductivity is introduced by a BCS-type pairing term among the conduction electrons. Within this approximation the equation for the superconducting gap is derived, which depends on the effective position of the energy level of the -electrons relative to the Fermi level. The latter in turn depends on the occupation probability f of the -electrons. The gap equation is solved self-consistently with the equation for f; and their temperature dependences are studied for different positions of the bare -electron energy level, with respect to the Fermi level. The dependence of the superconducting gap on the hybridization leads to a re-entrant behaviour with increasing strength. The induced pairing between the -electrons and the pairing of mixed conduction and -electrons due to hybridization are also determined. The temperature dependence of the hybridization parameter, which characterizes the number of electrons with mixed character and represents the number of heavy electrons is studied. This number is shown to be small. The quasi-particle density of states (DOS) shows the existence of a pseudo-gap due to superconductivity and the signature of a hybridization gap at the Fermi level. For the choice of the model parameters, the DOS shows that the HFS is a metal and undergoes a transition to the gap-less superconducting state.

  11. Simplified realization of two-qubit quantum phase gate with four-level systems in cavity QED

    Science.gov (United States)

    Yang, Chui-Ping; Chu, Shih-I.; Han, Siyuan

    2004-10-01

    We propose a method for realizing two-qubit quantum phase gate with 4-level systems in cavity QED. In this proposal, the two logical states of a qubit are represented by the two lowest levels of each system, and two intermediate levels of each system are utilized to facilitate coherent control and manipulation of quantum states of the qubits. The present method does not involve cavity-photon population during the operation. In addition, we show that the gate can be achieved using only two-step operations.

  12. Anisotropic Landau-Lifshitz-Gilbert models of dissipation in qubits

    Science.gov (United States)

    Crowley, Philip J. D.; Green, A. G.

    2016-12-01

    We derive a microscopic model for dissipative dynamics in a system of mutually interacting qubits coupled to a thermal bath that generalizes the dissipative model of Landau-Lifshitz-Gilbert to the case of anisotropic bath couplings. We show that the dissipation acts to bias the quantum trajectories towards a reduced phase space. This model applies to a system of superconducting flux qubits whose coupling to the environment is necessarily anisotropic. We study the model in the context of the D-Wave computing device and show that the form of environmental coupling in this case produces dynamics that are closely related to several models proposed on phenomenological grounds.

  13. Coupling of three-spin qubits to their electric environment

    Science.gov (United States)

    Russ, Maximilian; Ginzel, Florian; Burkard, Guido

    2016-10-01

    We investigate the behavior of qubits consisting of three electron spins in double and triple quantum dots subject to external electric fields. Our model includes two independent bias parameters, ɛ and ɛM, which both couple to external electromagnetic fields and can be controlled by gate voltages applied to the quantum dot structures. By varying these parameters, one can switch the qubit type by shifting the energies in the single quantum dots, thus changing the electron occupancy in each dot. Starting from the asymmetric resonant exchange qubit with a (2,0,1) and (1,0,2) charge admixture, one can smoothly cross over to the resonant exchange qubit with a detuned (1,1,1) charge configuration, and to the exchange-only qubit with the same charge configuration but equal energy levels down to the hybrid qubits with (1,2,0) and (0,2,1) charge configurations. Here, (l ,m ,n ) describes a configuration with l electrons in the left dot, m electrons in the center dot, and n electrons in the right dot. We first focus on random electromagnetic field fluctuations, i.e., "charge noise," at each quantum dot resulting in dephasing of the qubit, and we provide a complete map of the resulting dephasing time as a function of the bias parameters. We pay special attention to the so-called sweet spots and double sweet spots of the system, which are least susceptible to noise. In the second part, we investigate the coupling of the qubit system to the coherent quantized electromagnetic field in a superconducting strip-line cavity, and we also provide a complete map of the coupling strength as a function of the bias parameters. We analyze the asymmetric qubit-cavity coupling via ɛ and the symmetric coupling via ɛM.

  14. Quantum speed limits of a qubit system interacting with a nonequilibrium environment

    Science.gov (United States)

    He, Zhi; Yao, Chun-Mei; Li, Li; Wang, Qiong

    2016-08-01

    The speed of evolution of a qubit undergoing a nonequilibrium environment with spectral density of general ohmic form is investigated. First we reveal non-Markovianity of the model, and find that the non-Markovianity quantified by information backflow of Breuer et al. [Phys. Rev. Lett. 103 210401 (2009)] displays a nonmonotonic behavior for different values of the ohmicity parameter s in fixed other parameters and the maximal non-Markovianity can be achieved at a specified value s. We also find that the non-Markovianity displays a nonmonotonic behavior with the change of a phase control parameter. Then we further discuss the relationship between quantum speed limit (QSL) time and non-Markovianity of the open-qubit system for any initial states including pure and mixed states. By investigation, we find that the QSL time of a qubit with any initial states can be expressed by a simple factorization law: the QSL time of a qubit with any qubit-initial states are equal to the product of the coherence of the initial state and the QSL time of maximally coherent states, where the QSL time of the maximally coherent states are jointly determined by the non-Markovianity, decoherence factor and a given driving time. Moreover, we also find that the speed of quantum evolution can be obviously accelerated in the wide range of the ohmicity parameter, i.e., from sub-Ohmic to Ohmic and super-Ohmic cases, which is different from the thermal equilibrium environment case. Project supported by the National Natural Science Foundation of China (Grants Nos. 61505053 and 61475045), the Natural Science Foundation of Hunan Province, China(Grant No. 2015JJ3092), the School Foundation from the Hunan University of Arts and Science (Grant No. 14ZD01), the Fund from the Key Laboratory of Photoelectric Information Integration and Optical Manufacturing Technology of Hunan Province, China, and the Construction Program of the Key Discipline in Hunan University of Arts and Science (Optics).

  15. Lower bounds of concurrence for N-qubit systems and the detection of k-nonseparability of multipartite quantum systems

    Science.gov (United States)

    Qi, Xianfei; Gao, Ting; Yan, Fengli

    2017-01-01

    Concurrence, as one of the entanglement measures, is a useful tool to characterize quantum entanglement in various quantum systems. However, the computation of the concurrence involves difficult optimizations and only for the case of two qubits, an exact formula was found. We investigate the concurrence of four-qubit quantum states and derive analytical lower bound of concurrence using the multiqubit monogamy inequality. It is shown that this lower bound is able to improve the existing bounds. This approach can be generalized to arbitrary qubit systems. We present an exact formula of concurrence for some mixed quantum states. For even-qubit states, we derive an improved lower bound of concurrence using a monogamy equality for qubit systems. At the same time, we show that a multipartite state is k-nonseparable if the multipartite concurrence is larger than a constant related to the value of k, the qudit number and the dimension of the subsystems. Our results can be applied to detect the multipartite k-nonseparable states.

  16. Optically controlled spin-glasses generated using multi-qubit cavity systems

    CERN Document Server

    Lee, C F; Lee, Chiu Fan; Johnson, Neil F.

    2004-01-01

    Recent advances in nanofabrication and optical control imply that multi-qubit-cavity systems can now be engineered with pre-designed couplings. Here we propose optical realizations of spin-glass systems which exploit these new nanoscale technologies. By contrast with traditional realizations using magnetic solids, phase transition phenomena can now arise in both the matter and radiation subsystems. Moreover the phase transitions are tunable simply by varying the matter-radiation coupling strength.

  17. Superconductivity

    CERN Document Server

    Poole, Charles P; Farach, Horacio A

    1995-01-01

    Superconductivity covers the nature of the phenomenon of superconductivity. The book discusses the fundamental principles of superconductivity; the essential features of the superconducting state-the phenomena of zero resistance and perfect diamagnetism; and the properties of the various classes of superconductors, including the organics, the buckministerfullerenes, and the precursors to the cuprates. The text also describes superconductivity from the viewpoint of thermodynamics and provides expressions for the free energy; the Ginzburg-Landau and BCS theories; and the structures of the high

  18. Superconducting circuits for quantum information: an outlook.

    Science.gov (United States)

    Devoret, M H; Schoelkopf, R J

    2013-03-08

    The performance of superconducting qubits has improved by several orders of magnitude in the past decade. These circuits benefit from the robustness of superconductivity and the Josephson effect, and at present they have not encountered any hard physical limits. However, building an error-corrected information processor with many such qubits will require solving specific architecture problems that constitute a new field of research. For the first time, physicists will have to master quantum error correction to design and operate complex active systems that are dissipative in nature, yet remain coherent indefinitely. We offer a view on some directions for the field and speculate on its future.

  19. Computing prime factors with a Josephson phase qubit quantum processor

    CERN Document Server

    Lucero, Erik; Chen, Yu; Kelly, Julian; Mariantoni, Matteo; Megrant, Anthony; O'Malley, Peter; Sank, Daniel; Vainsencher, Amit; Wenner, James; White, Ted; Yin, Yi; Cleland, Andrew N; Martinis, John M

    2012-01-01

    A quantum processor (QuP) can be used to exploit quantum mechanics to find the prime factors of composite numbers[1]. Compiled versions of Shor's algorithm have been demonstrated on ensemble quantum systems[2] and photonic systems[3-5], however this has yet to be shown using solid state quantum bits (qubits). Two advantages of superconducting qubit architectures are the use of conventional microfabrication techniques, which allow straightforward scaling to large numbers of qubits, and a toolkit of circuit elements that can be used to engineer a variety of qubit types and interactions[6, 7]. Using a number of recent qubit control and hardware advances [7-13], here we demonstrate a nine-quantum-element solid-state QuP and show three experiments to highlight its capabilities. We begin by characterizing the device with spectroscopy. Next, we produces coherent interactions between five qubits and verify bi- and tripartite entanglement via quantum state tomography (QST) [8, 12, 14, 15]. In the final experiment, we ...

  20. Effect of Multiphoton Processes on Geometric Quantum Computation in Superconducting Circuit QED

    Institute of Scientific and Technical Information of China (English)

    CHEN Chang-Yong

    2012-01-01

    We study the influence of multi-photon processes on the geometric quantum computation in the systems of superconducting qubits based on the displacement-like and the general squeezed operator methods. As an example, we focus on the question about how to implement a two-qubit geometric phase gate using superconducting circuit quantum electrodynamics with both single- and two-photon interaction between the qubits and the cavity modes. We find that the multiphoton processes are not only controllable but also improve the gating speed. The comparison with other physical systems and experimental feasibility are discussed in detail.

  1. Manipulating the sudden death of entanglement in two-qubit atomic systems

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Mahmood Irtiza; Tahira, Rabia; Ikram, Manzoor [COMSATS Institute of Information Technology, Islamabad (Pakistan)

    2011-10-15

    We investigate the entanglement dynamics of a general two-qubit system in a noisy environment presenting analytical descriptions of the time evolution of entanglement having some unitary operations after its evolution in dissipative environments. We show that quantum gates (unitary operators) and bath switching can change the subsequent dynamics of entanglement. For this purpose, we consider {sigma}{sub x} and bath switching operations that change the disentanglement time from finite to infinite.

  2. Realization of Multi-qubit GHZ States in Superconducting Quantum-interference Devices via Double Raman Transition%通过双Raman作用在超导量子干涉器件中实现多比特GHZ态

    Institute of Scientific and Technical Information of China (English)

    詹志明; 刘晓东; 张立辉; 石文星; 李星

    2011-01-01

    Propose a scheme to realize multi-qubit GHZ states in superconducting quantum-interference devices(SQUIDs) via double Raman transition.In this scheme,the cavity field is only virtually excited and thus the cavity decay can be ignored.The GHZ states are realized by using only two basic states of the SQUID system and the relaxation of excited state of the system are avoided.Base on the points mentioned above,the scheme should be easily realized on experiment.%在腔中通过双Raman作用,在超导量子干涉器件中实现多比特GHZ(Greenberger-Horne-Zeilinger)态的制备.在制备过程中,由于腔场只是被虚激发的,所以腔模的衰减可以忽略.GHZ态的实现只用到了超导系统的两个基态,有效地避免了超导系统激发态的弛豫.

  3. Monogamy relation of multi-qubit systems for squared Tsallis-q entanglement

    Science.gov (United States)

    Yuan, Guang-Ming; Song, Wei; Yang, Ming; Li, Da-Chuang; Zhao, Jun-Long; Cao, Zhuo-Liang

    2016-06-01

    Tsallis-q entanglement is a bipartite entanglement measure which is the generalization of entanglement of formation for q tending to 1. We first expand the range of q for the analytic formula of Tsallis-q entanglement. For , we prove the monogamy relation in terms of the squared Tsallis-q entanglement for an arbitrary multi-qubit systems. It is shown that the multipartite entanglement indicator based on squared Tsallis-q entanglement still works well even when the indicator based on the squared concurrence loses its efficacy. We also show that the μ-th power of Tsallis-q entanglement satisfies the monogamy or polygamy inequalities for any three-qubit state.

  4. Entanglement and Berry Phase in a Parameterized Three-Qubit System

    Science.gov (United States)

    Shao, Wenyi; Du, Yangyang; Yang, Qi; Wang, Gangcheng; Sun, Chunfang; Xue, Kang

    2017-03-01

    In this paper, we construct a parameterized form of unitary breve {R}_{123}(θ 1,θ 2,φ) matrix through the Yang-Baxterization method. Acting such matrix on three-qubit natural basis as a quantum gate, we can obtain a set of entangled states, which possess the same entanglement value depending on the parameters 𝜃 1 and 𝜃 2. Particularly, such entangled states can produce a set of maximally entangled bases Greenberger-Horne-Zeilinger (GHZ) states with respect to 𝜃 1 = 𝜃 2 = π/2. Choosing a useful Hamiltonian, one can study the evolution of the eigenstates and investigate the result of Berry phase. It is not difficult to find that the Berry phase for this new three-qubit system consistent with the solid angle on the Bloch sphere.

  5. Monogamy relation of multi-qubit systems for squared Tsallis-q entanglement.

    Science.gov (United States)

    Yuan, Guang-Ming; Song, Wei; Yang, Ming; Li, Da-Chuang; Zhao, Jun-Long; Cao, Zhuo-Liang

    2016-06-27

    Tsallis-q entanglement is a bipartite entanglement measure which is the generalization of entanglement of formation for q tending to 1. We first expand the range of q for the analytic formula of Tsallis-q entanglement. For , we prove the monogamy relation in terms of the squared Tsallis-q entanglement for an arbitrary multi-qubit systems. It is shown that the multipartite entanglement indicator based on squared Tsallis-q entanglement still works well even when the indicator based on the squared concurrence loses its efficacy. We also show that the μ-th power of Tsallis-q entanglement satisfies the monogamy or polygamy inequalities for any three-qubit state.

  6. Enhancing non-local correlations in the bipartite partitions of two qubit-system with non-mutual interaction

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, A.-B.A., E-mail: abdelbastm@yahoo.com [College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, Al-Aflaj (Saudi Arabia); Faculty of Science, Assiut University, Assiut (Egypt); Joshi, A., E-mail: mcbamji@gmail.com [Physics Department, Adelphi University Garden City, NY 11530 (United States); Department of Physics and Optical Engineering, RHIT, Terra Haute IN 47803 (United States); Hassan, S.S., E-mail: shoukryhassan@hotmail.com [Department of Mathematics, College of Science, University of Bahrain, P.O. Box 32038 (Bahrain)

    2016-03-15

    Several quantum-mechanical correlations, notably, quantum entanglement, measurement-induced nonlocality and Bell nonlocality are studied for a two qubit-system having no mutual interaction. Analytical expressions for the measures of these quantum-mechanical correlations of different bipartite partitions of the system are obtained, for initially two entangled qubits and the two photons are in their vacuum states. It is found that the qubits-fields interaction leads to the loss and gain of the initial quantum correlations. The lost initial quantum correlations transfer from the qubits to the cavity fields. It is found that the maximal violation of Bell’s inequality is occurring when the quantum correlations of both the logarithmic negativity and measurement-induced nonlocality reach particular values. The maximal violation of Bell’s inequality occurs only for certain bipartite partitions of the system. The frequency detuning leads to quick oscillations of the quantum correlations and inhibits their transfer from the qubits to the cavity modes. It is also found that the dynamical behavior of the quantum correlation clearly depends on the qubit distribution angle.

  7. Superconducting bulk magnets for magnetic levitation systems

    Science.gov (United States)

    Fujimoto, H.; Kamijo, H.

    2000-06-01

    The major applications of high-temperature superconductors have mostly been confined to products in the form of wires and thin films. However, recent developments show that rare-earth REBa 2Cu 3O 7- x and light rare-earth LREBa 2Cu 3O 7- x superconductors prepared by melt processes have a high critical-current density at 77 K and high magnetic fields. These superconductors will promote the application of bulk high-temperature superconductors in high magnetic fields; the superconducting bulk magnet for the Maglev train is one possible application. We investigated the possibility of using bulk magnets in the Maglev system, and examined flux-trapping characteristics of multi-superconducting bulks arranged in array.

  8. Superconducting Quantum Arrays for Broadband RF Systems

    Science.gov (United States)

    Kornev, V.; Sharafiev, A.; Soloviev, I.; Kolotinskiy, N.; Mukhanov, O.

    2014-05-01

    Superconducting Quantum Arrays (SQAs), homogenous arrays of Superconducting Quantum Cells, are developed for implementation of broadband radio frequency (RF) systems capable of providing highly linear magnetic signal to voltage transfer with high dynamic range, including active electrically small antennas (ESAs). Among the proposed quantum cells which are bi-SQUID and Differential Quantum Cell (DQC), the latter delivered better performance for SQAs. A prototype of the transformer-less active ESA based on a 2D SQA with nonsuperconducting electric connection of the DQCs was fabricated using HYPRES niobium process with critical current density 4.5 kA/cm2. The measured voltage response is characterized by a peak-to-peak swing of ~100 mV and steepness of ~6500 μV/μT.

  9. Analysis of entanglement measures and LOCC maximized quantum Fisher information of general two qubit systems.

    Science.gov (United States)

    Erol, Volkan; Ozaydin, Fatih; Altintas, Azmi Ali

    2014-06-24

    Entanglement has been studied extensively for unveiling the mysteries of non-classical correlations between quantum systems. In the bipartite case, there are well known measures for quantifying entanglement such as concurrence, relative entropy of entanglement (REE) and negativity, which cannot be increased via local operations. It was found that for sets of non-maximally entangled states of two qubits, comparing these entanglement measures may lead to different entanglement orderings of the states. On the other hand, although it is not an entanglement measure and not monotonic under local operations, due to its ability of detecting multipartite entanglement, quantum Fisher information (QFI) has recently received an intense attraction generally with entanglement in the focus. In this work, we revisit the state ordering problem of general two qubit states. Generating a thousand random quantum states and performing an optimization based on local general rotations of each qubit, we calculate the maximal QFI for each state. We analyze the maximized QFI in comparison with concurrence, REE and negativity and obtain new state orderings. We show that there are pairs of states having equal maximized QFI but different values for concurrence, REE and negativity and vice versa.

  10. Entanglement of remote transmon qubits by concurrent measurement using Fock states

    Science.gov (United States)

    Narla, A.; Hatridge, M.; Shankar, S.; Leghtas, Z.; Sliwa, K. M.; Vlastakis, B.; Zalys-Geller, E.; Mirrahimi, M.; Devoret, M. H.

    2015-03-01

    A requirement of any modular quantum computer is the ability to maintain individual qubits in isolated environments while also being able to entangle arbitrary distant qubits on demand. For superconducting qubits, such a protocol can be realized by first entangling the qubits with flying microwave coherent states which are then concurrently detected by a parametric amplifier. This protocol has a 50% success probability but is vulnerable to losses between the qubits and the amplifier which reduce the entanglement fidelity. An alternative is to use itinerant Fock states, since losses now tend to reduce the success probability of creating an entangled state but not its fidelity. Such single-photon protocols have been implemented in trapped-ion and NV-center experiments. We present such a protocol tailored for entangling two transmon qubits in the circuit QED architecture. Each qubit is entangled with a Fock state of its cavity using sideband pulses. The Fock states leak out of the cavity, interfere on a beam-splitter which erases their which-path information, and are subsequently detected using a novel photo-detector realized by another qubit-cavity system. Simulations suggest that we can realize a high-fidelity entangled state with a success probability as large as 1%.

  11. Superconductivity

    CERN Document Server

    Thomas, D B

    1974-01-01

    A short general review is presented of the progress made in applied superconductivity as a result of work performed in connection with the high-energy physics program in Europe. The phenomenon of superconductivity and properties of superconductors of Types I and II are outlined. The main body of the paper deals with the development of niobium-titanium superconducting magnets and of radio-frequency superconducting cavities and accelerating structures. Examples of applications in and for high-energy physics experiments are given, including the large superconducting magnet for the Big European Bubble Chamber, prototype synchrotron magnets for the Super Proton Synchrotron, superconducting d.c. beam line magnets, and superconducting RF cavities for use in various laboratories. (0 refs).

  12. Screening Effect in Charge Qubit

    Institute of Scientific and Technical Information of China (English)

    HUA Ming; XIAO Xiao; GAO Yi-Bo

    2011-01-01

    We study the influence of screening effect on quantum decoherence for charge qubit and the process of quantum information storage. When the flux produced by the circulating current in SQUID loop is considered, screening effect is formally characterized by a LC resonator. Using large-detuning condition and Fr(o)hlich transformation in the qubit-cavity-resonator system, we calculate the decoherence factor for charge qubit and the effective qubit-cavity Hamiltonian. The decoherence factor owns a factorized structure, it shows that screening effect is a resource of decoherence for charge qubit. The effective Hamiltonian shows that the screening effect results in a frequency shift for charge qubit and a modified qubit-cavity coupling constant induced by a LC resonator.

  13. Quantum information processing with superconducting circuits: a review

    Science.gov (United States)

    Wendin, G.

    2017-10-01

    During the last ten years, superconducting circuits have passed from being interesting physical devices to becoming contenders for near-future useful and scalable quantum information processing (QIP). Advanced quantum simulation experiments have been shown with up to nine qubits, while a demonstration of quantum supremacy with fifty qubits is anticipated in just a few years. Quantum supremacy means that the quantum system can no longer be simulated by the most powerful classical supercomputers. Integrated classical-quantum computing systems are already emerging that can be used for software development and experimentation, even via web interfaces. Therefore, the time is ripe for describing some of the recent development of superconducting devices, systems and applications. As such, the discussion of superconducting qubits and circuits is limited to devices that are proven useful for current or near future applications. Consequently, the centre of interest is the practical applications of QIP, such as computation and simulation in Physics and Chemistry.

  14. Lyapunov-Based Feedback Preparation of GHZ Entanglement of N-Qubit Systems.

    Science.gov (United States)

    Liu, Yanan; Kuang, Sen; Cong, Shuang

    2016-07-09

    The Greenberger-Horne-Zeilinger (GHZ) entangled states are a typical class of entangled states in multiparticle systems and play an important role in the applications of quantum communication and quantum computation. For a general quantum system of N qubits, degenerate measurement operators are often met, which cause the convergence obstacle in the state preparation or stabilization problem. This paper first generalizes the traditional quantum state continuous reduction theory to the case of a degenerate measurement operator and chooses a measurement operator for an arbitrarily given target GHZ entangled state, then presents a state stabilization control strategy based on the Lyapunov method and achieves the feedback preparation of the target GHZ state. In our stabilization strategy, we separate the target GHZ state and all the other GHZ states that often form the equilibrium points of the closed-loop system by dividing the state space into several different regions; and formally design a switching control law between the regions, which contains the control Hamiltonians to be constructed. By analyzing the stability of the closed-loop system in the different regions, we propose a systematic method for constructing the control Hamiltonians and solve the convergence problem caused by the degenerate measurement operator. The global stability of the whole closed-loop stochastic system is strictly proved. Also, we perform some simulation experiments on a three-qubit system and prepare a three-qubit GHZ entangled state. At the same time, the simulation results show the effectiveness of the switching control law and the construction method for the control Hamiltonians proposed in this paper.

  15. Research in Superconducting Radiofrequency Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hoffstaetter, Georg

    2012-02-01

    The aim of the program is to transfer our successes in single cell high gradient R&D to multi-cell cavities of advanced shapes. We have also developed a new technique for electropolishing (EP) which is much less expensive than the standard EP technique used at other labs. Our aim is to apply this technique to multi-cell cavities of advanced shapes. The scientific program of this grant was concluded in 2010. An extension of this grant al-lowed us to receive ARRA funding, which we used to improve the helium-liquefier system in Cornell's SRF laboratory. Part of this system had been purchased and installed by another grant. The extension to grant DE-FG02-04ER41354 was proposed to extend this system to sufficient power so that helium can be recovered from SRF-cavity test and simultaneously can be liquefied. This significantly increased the number of cavities we can test per week. This upgrade project was finished in the spring of 2010 and has been in regular use ever since.

  16. Dynamics of Genuine Three-Qubit Entanglement in Ising Spin Systems

    Institute of Scientific and Technical Information of China (English)

    PANG Chao-Yang; LI Yu-Liang

    2006-01-01

    We investigate the dynamics of genuine three-qubit entanglement in the Ising model of three spins. A scheme is presented for generating the genuine three-qubit entanglement by the nearest-neighbour couplings. The effect of magnetic fields on the dynamics of genuine three-qubit entanglement is also discussed.

  17. Relaxation of a qubit measured by a driven Duffing oscillator

    CERN Document Server

    Serban, I; Wilhelm, F K

    2009-01-01

    We investigate the relaxation of a superconducting qubit for the case when its detector, the Josephson bifurcation amplifier, remains latched in one of its two (meta)stable states of forced vibrations. The qubit relaxation rates are different in different states. They can display strong dependence on the qubit frequency and resonant enhancement, which is due to {\\em quasienergy resonances}. Coupling to the driven oscillator changes the effective temperature of the qubit.

  18. Optimizing JPC-based remote entanglement of transmon qubits via stochastic master equation simulations

    Science.gov (United States)

    Zalys-Geller, E.; Hatridge, M.; Silveri, M.; Narla, A.; Sliwa, K. M.; Shankar, S.; Girvin, S. M.; Devoret, M. H.

    2015-03-01

    Remote entanglement of two superconducting qubits may be accomplished by first entangling them with flying coherent microwave pulses, and then erasing the which-path information of these pulses by using a non-degenerate parametric amplifier such as the Josephson Parametric Converter (JPC). Crucially, this process requires no direct interaction between the two qubits. The JPC, however, will fail to completely erase the which-path information if the flying microwave pulses encode any difference in dynamics of the two qubit-cavity systems. This which-path information can easily arise from mismatches in the cavity linewidths and the cavity dispersive shifts from their respective qubits. Through analysis of the Stochastic Master Equation for this system, we have found a strategy for shaping the measurement pulses to eliminate the effect of these mismatches on the entangling measurement. We have then confirmed the effectiveness of this strategy by numerical simulation. Work supported by: IARPA, ARO, and NSF.

  19. Superconductivity

    Science.gov (United States)

    1989-07-01

    SUPERCONDUCTIVITY HIGH-POWER APPLICATIONS Electric power generation/transmission Energy storage Acoustic projectors Weapon launchers Catapult Ship propulsion • • • Stabilized...temperature superconductive shields could be substantially enhanced by use of high-Tc materials. 27 28 NRAC SUPERCONDUCTIVITY SHIP PROPULSION APPLICATIONS...motor shown in the photograph. As a next step in the evolution of electric-drive ship propulsion technology, DTRC has proposed to scale up the design

  20. Deep-well ultrafast manipulation of a SQUID flux qubit

    Energy Technology Data Exchange (ETDEWEB)

    Castellano, M G; Chiarello, F; Mattioli, F; Torrioli, G [Istituto Fotonica e Nanotecnologie-CNR, Roma (Italy); Carelli, P [Dip. Ingegneria Elettrica e dell' Informazione, Universita dell' Aquila, L' Aquila (Italy); Cosmelli, C, E-mail: mgcastellano@ifn.cnr.i [Dip. Fisica, Sapienza Universita di Roma (Italy)

    2010-04-15

    Superconducting devices based on the Josephson effect are effectively used for the implementation of qubits and quantum gates. The manipulation of superconducting qubits is generally performed by using microwave pulses with frequencies from 5 to 15 GHz, obtaining a typical operating frequency from 100 MHz to 1 GHz. A manipulation based on simple pulses in the absence of microwaves is also possible. In our system, a magnetic flux pulse modifies the potential of a double SQUID qubit from a symmetric double well to a single deep-well condition. By using this scheme with a Nb/AlO{sub x}/Nb system, we obtained coherent oscillations with sub-nanosecond period (tunable from 50 to 200 ps), very fast with respect to other manipulating procedures, and with a coherence time up to 10 ns, of the order of that obtained with similar devices and technologies but using microwave manipulation. We introduce ultrafast manipulation, presenting experimental results, new issues related to this approach (such as the use of a compensation procedure for canceling the effect of 'slow' fluctuations) and open perspectives, such as the possible use of RSFQ logic for qubit control.

  1. Development of superconducting magnetic bearing with superconducting coil and bulk superconductor for flywheel energy storage system

    Science.gov (United States)

    Arai, Y.; Seino, H.; Yoshizawa, K.; Nagashima, K.

    2013-11-01

    We have been developing superconducting magnetic bearing for flywheel energy storage system to be applied to the railway system. The bearing consists of a superconducting coil as a stator and bulk superconductors as a rotor. A flywheel disk connected to the bulk superconductors is suspended contactless by superconducting magnetic bearings (SMBs). We have manufactured a small scale device equipped with the SMB. The flywheel was rotated contactless over 2000 rpm which was a frequency between its rigid body mode and elastic mode. The feasibility of this SMB structure was demonstrated.

  2. Dynamical Autler-Townes control of a phase qubit.

    Science.gov (United States)

    Li, Jian; Paraoanu, G S; Cicak, Katarina; Altomare, Fabio; Park, Jae I; Simmonds, Raymond W; Sillanpää, Mika A; Hakonen, Pertti J

    2012-01-01

    Routers, switches, and repeaters are essential components of modern information-processing systems. Similar devices will be needed in future superconducting quantum computers. In this work we investigate experimentally the time evolution of Autler-Townes splitting in a superconducting phase qubit under the application of a control tone resonantly coupled to the second transition. A three-level model that includes independently determined parameters for relaxation and dephasing gives excellent agreement with the experiment. The results demonstrate that the qubit can be used as a ON/OFF switch with 100 ns operating time-scale for the reflection/transmission of photons coming from an applied probe microwave tone. The ON state is realized when the control tone is sufficiently strong to generate an Autler-Townes doublet, suppressing the absorption of the probe tone photons and resulting in a maximum of transmission.

  3. Bipartite entanglement of a two-qubit system with anisotropic couplings under nonuniform magnetic fields

    Institute of Scientific and Technical Information of China (English)

    Qin Meng; Tian Dong-Ping

    2009-01-01

    This paper investigates bipartite entanglement of a two-qubit system with anisotropic couplings under all inhomogeneous magnetic field.This work is mainly to investigate the characteristics of a Heisenberg XYZ chain and obtains some meaningful results.By the concept of negativity,it finds that the inhomogeneity of magnetic field may induce entanglement and the critical magnetic field is independent of Jz.The inhomogeneous magnetic field can increase the value of critical magnetic field Bc.It also finds that the magnetic field not only suppresses the entanglement but also can induce it to revival for some time.

  4. Coxeter groups $A_{4}$, $B_{4}$ and $D_{4}$ for two-qubit systems

    Indian Academy of Sciences (India)

    Ramazan Koç; M Yakup Haciibrahimoğlu; Mehmet Koca

    2013-08-01

    The Coxeter–Weyl groups $W(A_{4})$, $W(B_{4})$ and $W(D_{4})$ have proven very useful for two-qubit systems in quantum information theory. A simple technique is employed to construct the unitary matrix representations of the groups, based on quaternionic transformation of the usual reflection matrices. The von Neumann entropy of each reduced density matrix is calculated. It is shown that these unitary matrix representations are naturally related to various universal quantum gates and they lead to entangled states. Canonical decomposition of generators in terms of fundamental gate representations is given to construct the quantum circuits.

  5. Dynamics of Measurement-Induced Disturbance for a Qubit-Qutrit System in Noninertial Frames

    Institute of Scientific and Technical Information of China (English)

    YUAN Hao; WEI Lian-Fu

    2013-01-01

    We investigate the dynamics of measurement-induced disturbance (MID) for a qubit-qutrit system in noninertial frames under various multi-local decoherence channels (i.e.,dephasing,phase-flip,bit-(trit-) flip,bit-(trit-)phase-flip,and depolarizing channels).We find that,for any acceleration,the MID can decay in a monotonic way to zero or to a nonzero steady value (i.e.,residual MID exists).Consequently,no sudden death of the MID occurs,which is different from entanglement.

  6. Geometric phases in qubit-oscillator system beyond conventional rotating-wave approximation

    Institute of Scientific and Technical Information of China (English)

    Wang Yue-Ming; Du Guan; Liang Jiu-Qing

    2012-01-01

    In this work we investigated the geometric phases of a qubit-oscillator system beyond the conventional rotatingwave approximation. We find that in the limiting of weak coupling the results coincide with that obtained under rotating-wave approximation while there exists an increasing difference with the increase of coupling constant.It was shown that the geometric phase is symmetric with respect to the sign of the detuning of the quantized field from the one-photon resonance under the conventional rotating-wave approximation while a red-blue detuning asymmetry occurs beyond the conventional rotating-wave approximation.

  7. Dispersive Response of a Disordered Superconducting Quantum Metamaterial

    Directory of Open Access Journals (Sweden)

    Dmitriy S. Shapiro

    2015-04-01

    Full Text Available We consider a disordered quantum metamaterial formed by an array of superconducting flux qubits coupled to microwave photons in a cavity. We map the system on the Tavis-Cummings model accounting for the disorder in frequencies of the qubits. The complex transmittance is calculated with the parameters taken from state-of-the-art experiments. We demonstrate that photon phase shift measurements allow to distinguish individual resonances in the metamaterial with up to 100 qubits, in spite of the decoherence spectral width being remarkably larger than the effective coupling constant. Our simulations are in agreement with the results of the recently reported experiment.

  8. Entanglement Transfer in a Four-Qubit Dimerized Heisenberg System

    Institute of Scientific and Technical Information of China (English)

    SHAO Bin; HUANG Min; WANG Zhao-ming; ZOU Jian

    2008-01-01

    Entanglement transfer is investigated in a dimerized Heisenberg system.Coneurrence as the measure of entanglement is calculated by the time-evolved state starting from an initially entangled state of spin pair.It is shown that perfect entanglement transfer can be realized at 80me special time and suitable interacting.

  9. Designing High-Fidelity Single-Shot Three-Qubit Gates: A Machine-Learning Approach

    Science.gov (United States)

    Zahedinejad, Ehsan; Ghosh, Joydip; Sanders, Barry C.

    2016-11-01

    Three-qubit quantum gates are key ingredients for quantum error correction and quantum-information processing. We generate quantum-control procedures to design three types of three-qubit gates, namely Toffoli, controlled-not-not, and Fredkin gates. The design procedures are applicable to a system comprising three nearest-neighbor-coupled superconducting artificial atoms. For each three-qubit gate, the numerical simulation of the proposed scheme achieves 99.9% fidelity, which is an accepted threshold fidelity for fault-tolerant quantum computing. We test our procedure in the presence of decoherence-induced noise and show its robustness against random external noise generated by the control electronics. The three-qubit gates are designed via the machine-learning algorithm called subspace-selective self-adaptive differential evolution.

  10. Back-action on the flux-qubit from a driven non-linear detector

    Energy Technology Data Exchange (ETDEWEB)

    Leyton Ortega, Vicente Ancelmo; Peano, Vittorio; Thorwart, Michael [Freiburg Institute for Advanced Studies (FRIAS), Albert-Ludwigs Universitaet Freiburg, 79104 Freiburg (Germany); Reina, John Henrry [Universidad del Valle, Departamento de Fisica, A.A. 25360, Cali (Colombia)

    2010-07-01

    We consider a superconducting flux qubit inductively coupled to a driven SQUID, acting as a detector, in presence of weak dissipation and close to the optimal working point. We study the nonlinear response of the detector to the drive and the population difference of the qubit state. By varying the external magnetic field piercing the SQUID, we access two different regimes: i) For vanishing external flux, the SQUID acts as a Josephson bifurcation amplifier, however, operated here with few energy quanta rather than in its classical regime. In this regime, we show that the back-action of the detector on the qubit is small, rendering the driven SQUID an ideal detector. ii) When the external flux is close to half a flux quantum, the combined qubit-oscillator system implements the two-photon Jaynes-Cummings model. We study multiphoton (anti-)resonances in the two-photon transition regime.

  11. Cryogenic system for a superconducting spectrometer

    Science.gov (United States)

    Porter, J.

    1983-03-01

    The Heavy Ion Spectrometer System (HISS) relies upon superconducting coils of cryostable, pool boiling design to provide a maximum particle bending field of 3 tesla. The cryogenic facility including helium refrigeration, gas management, liquid nitrogen system, and the overall control strategy are described. The system normally operates with a 4 K heat load of 150 watts; the LN2 circuits absorb an additional 4000 watts. The 80K intercept control is by an LSI 11 computer. Total available refrigeration at 4K is 400 watts using reciprocating expanders at the 20K and 4K level. The minicomputer has the capability of optimizing overall utility input cost by varying operating points. A hybrid of pneumatic, analog, and digital control is successful in providing full time unattended operation. The 7m diameter magnet/cryostat assembly is rotatable through 180 degrees to provide a variety of spectrometer orientations.

  12. Flux qubit to a transmission line

    Energy Technology Data Exchange (ETDEWEB)

    Haeberlein, Max; Baust, Alexander; Zhong, Ling; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany); Anderson, Gustav; Wang, Lujun; Eder, Peter; Fischer, Michael; Goetz, Jan; Xie, Edwar; Schwarz, Manuel; Wulschner, Karl Friedrich; Deppe, Frank; Fedorov, Kirill; Huebl, Hans; Menzel, Edwin [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Marx, Achim [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany)

    2015-07-01

    Within the last decade, superconducting qubits coupled to microwave resonators have been extensively studied within the framework of quantum electrodynamics. Ultimately, quantum computing seems within reach in such architectures. However, error correction schemes are necessary to achieve the required fidelity in multi-qubit operations, drastically increasing the number of qubits involved. In this work, we couple a flux qubit to a transmission line where it interacts with itinerant microwave photons granting access to all-optical quantum computing. In this approach, travelling photons generate entanglement between two waveguides, containing the qubit information. In this presentation, we show experimental data on flux qubits coupled to transmission lines. Furthermore, we will discuss entanglement generation between two separate paths.

  13. Conceptual study of superconducting urban area power systems

    Science.gov (United States)

    Noe, Mathias; Bach, Robert; Prusseit, Werner; Willén, Dag; Gold-acker, Wilfried; Poelchau, Juri; Linke, Christian

    2010-06-01

    Efficient transmission, distribution and usage of electricity are fundamental requirements for providing citizens, societies and economies with essential energy resources. It will be a major future challenge to integrate more sustainable generation resources, to meet growing electricity demand and to renew electricity networks. Research and development on superconducting equipment and components have an important role to play in addressing these challenges. Up to now, most studies on superconducting applications in power systems have been concentrated on the application of specific devices like for example cables and current limiters. In contrast to this, the main focus of our study is to show the consequence of a large scale integration of superconducting power equipment in distribution level urban power systems. Specific objectives are to summarize the state-of-the-art of superconducting power equipment including cooling systems and to compare the superconducting power system with respect to energy and economic efficiency with conventional solutions. Several scenarios were considered starting from the replacement of an existing distribution level sub-grid up to a full superconducting urban area distribution level power system. One major result is that a full superconducting urban area distribution level power system could be cost competitive with existing solutions in the future. In addition to that, superconducting power systems offer higher energy efficiency as well as a number of technical advantages like lower voltage drops and improved stability.

  14. Superconducting quantum circuits theory and application

    Science.gov (United States)

    Deng, Xiuhao

    Superconducting quantum circuit models are widely used to understand superconducting devices. This thesis consists of four studies wherein the superconducting quantum circuit is used to illustrate challenges related to quantum information encoding and processing, quantum simulation, quantum signal detection and amplification. The existence of scalar Aharanov-Bohm phase has been a controversial topic for decades. Scalar AB phase, defined as time integral of electric potential, gives rises to an extra phase factor in wavefunction. We proposed a superconducting quantum Faraday cage to detect temporal interference effect as a consequence of scalar AB phase. Using the superconducting quantum circuit model, the physical system is solved and resulting AB effect is predicted. Further discussion in this chapter shows that treating the experimental apparatus quantum mechanically, spatial scalar AB effect, proposed by Aharanov-Bohm, can't be observed. Either a decoherent interference apparatus is used to observe spatial scalar AB effect, or a quantum Faraday cage is used to observe temporal scalar AB effect. The second study involves protecting a quantum system from losing coherence, which is crucial to any practical quantum computation scheme. We present a theory to encode any qubit, especially superconducting qubits, into a universal quantum degeneracy point (UQDP) where low frequency noise is suppressed significantly. Numerical simulations for superconducting charge qubit using experimental parameters show that its coherence time is prolong by two orders of magnitude using our universal degeneracy point approach. With this improvement, a set of universal quantum gates can be performed at high fidelity without losing too much quantum coherence. Starting in 2004, the use of circuit QED has enabled the manipulation of superconducting qubits with photons. We applied quantum optical approach to model coupled resonators and obtained a four-wave mixing toolbox to operate photons

  15. Development of superconducting magnet systems for HIFExperiments

    Energy Technology Data Exchange (ETDEWEB)

    Sabbi, Gian Luca; Faltens, A.; Leitzke, A.; Seidl, P.; Lund, S.; Martovets ky, N.; Chiesa, L.; Gung, C.; Minervini, J.; Schultz, J.; Goodzeit, C.; Hwang, P.; Hinson, W.; Meinke, R.

    2004-07-27

    The U.S. Heavy Ion Fusion program is developing superconducting focusing quadrupoles for near-term experiments and future driver accelerators. Following the fabrication and testing of several models, a baseline quadrupole design was selected and further optimized. The first prototype of the optimized design achieved a conductor-limited gradient of 132 T/m in a 70 mm bore, with measured field harmonics within 10 parts in 10{sup 4}. In parallel, a compact focusing doublet was fabricated and tested using two of the first-generation quadrupoles. After assembly in the cryostat, both magnets reached their conductor-limited quench current. Further optimization steps are currently underway to improve the performance of the magnet system and reduce its cost. They include the fabrication and testing of a new prototype quadrupole with reduced field errors as well as improvements of the cryostat design for the focusing doublet. The prototype units will be installed in the HCX beamline at LBNL, to perform accelerator physics experiments and gain operational experience. Successful results in the present phase will make superconducting magnets a viable option for the next generation of integrated beam experiments.

  16. Damping and support in high-temperature superconducting levitation systems

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Sammamish, WA); McIver, Carl R. (Everett, WA); Mittleider, John A. (Kent, WA)

    2009-12-15

    Methods and apparatuses to provide improved auxiliary damping for superconducting bearings in superconducting levitation systems are disclosed. In a superconducting bearing, a cryostat housing the superconductors is connected to a ground state with a combination of a damping strip of material, a set of linkage arms to provide vertical support, and spring washers to provide stiffness. Alternately, the superconducting bearing may be supported by a cryostat connected to a ground state by posts constructed from a mesh of fibers, with the damping and stiffness controlled by the fiber composition, size, and mesh geometry.

  17. Damping and support in high-temperature superconducting levitation systems

    Science.gov (United States)

    Hull, John R.; McIver, Carl R.; Mittleider, John A.

    2009-12-15

    Methods and apparatuses to provide improved auxiliary damping for superconducting bearings in superconducting levitation systems are disclosed. In a superconducting bearing, a cryostat housing the superconductors is connected to a ground state with a combination of a damping strip of material, a set of linkage arms to provide vertical support, and spring washers to provide stiffness. Alternately, the superconducting bearing may be supported by a cryostat connected to a ground state by posts constructed from a mesh of fibers, with the damping and stiffness controlled by the fiber composition, size, and mesh geometry.

  18. PREFACE: Superconductivity in ultrathin films and nanoscale systems Superconductivity in ultrathin films and nanoscale systems

    Science.gov (United States)

    Bianconi, Antonio; Bose, Sangita; Garcia-Garcia, Antonio Miguel

    2012-12-01

    systems. In addition, the role of thermodynamic fluctuations on superconducting properties has been extensively studied in the context of nanoparticles and nanowires both experimentally and theoretically. In the past decade, a lot of work has been initiated in the area of interface superconductivity where different techniques have been demonstrated to tune Tc. Although the progress in this field has deepened our understanding of nanoscale superconductors, there are several open and key questions which need to be addressed. Some of these are: (1) can superconductivity be enhanced and Tc increased in nanostructures with respect to the bulk limit and if so, how can it be controlled? (2) What are the theoretical and experimental limits for the enhancement and control of superconductivity? (3) Can the phenomena identified in conventional nanostructures shed light on phenomena in high Tc superconductors and vice versa? (4) How will the new fundamental physics of superconductivity at the nanoscale promote advances in nanotechnology applications and vice versa? The papers in this focus section reflect the advances made in this field, in particular in nanowires and nanofilms, but also attempt to answer some of the key open questions outlined above. The theoretical papers explore unconventional quantum phenomena such as the role of confinement in the dynamics of single Cooper pairs in isolated grains [1] and Fano resonances in superconducting gaps in multi-condensate superconductors near a 2.5 Lifshitz transition [2]. Here a new emerging class of quantum phenomena of fundamental physics appear at the Bose-BCS crossover in multi-condensate superconductors [2]. Nanosize effects can now be manipulated by controlling defects in layered oxides [3]. A new approach is provided by controlling the self-organization of oxygen interstitials in layered copper oxides that show an intrinsic nanoscale phase separation [4]. In this case a non-trivial distribution of superconducting nanograins

  19. Classification of patterns representing Apples and Oranges in three-qubit system

    Science.gov (United States)

    Singh, Manu Pratap; Radhey, Kishori; Saraswat, V. K.; Kumar, Sandeep

    2017-01-01

    The study of the classification of Apples and Oranges in a warehouse has been undertaken in a three-qubit system using the method of repeated iterations in Grover's algorithm and Ventura's algorithm separately. Operator describing an inversion about average has been constructed as a square matrix of order eight, the phase inversion operators and corresponding iteration operators for patterns separately representing Apples and Oranges have been derived, and various possible superpositions as the choice for search states for the classification of these patterns have been obtained for starting states consisting of two patterns and a single pattern, respectively. It has been demonstrated that on the second iteration of the exclusion superposition by the corresponding iteration operators, the patterns Apples and Oranges, respectively, are most suitably classified using the Grover's algorithm. The probabilities of classifications of Apples have also been calculated by using Ventura's algorithm (Ventura and Martinez in Inf Sci 124:273-296, 2000; Found Phys Lett 12:547-559, 1999) for all the possible superpositions as the search states, and the results have been compared with those of Grover's algorithm and it has been demonstrated that in general for classification of a given pattern (Apples) in three-qubit system, the Grover's and Ventura's algorithms are effective in the cases where the number of patterns in the stored database is larger or smaller, respectively.

  20. Synthesis of some three-qubit gates and their implementation in a three spins system coupled with Ising interaction

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The synthesis of the Toffoli gate, Fredkin gate, three-qubit Inversion-on-equality gate and D(α) gate, as well as their implementation in a three spins system coupled with Ising interaction are investigated. The sequences of the control pulse and the drift process to implement these gates are given. It is revealed that the implementation of some three-qubit gates in a circular spin chain is much better than in a linear spin chain, and every two measurements of the quantum computation complexity are not always consistent. It is significant to directly study the implementation of the multi-qubit gates and even more complicated components of quantum information processing without resorting to their synthesis.

  1. Superconductivity

    CERN Document Server

    Ketterson, John B

    2008-01-01

    Conceived as the definitive reference in a classic and important field of modern physics, this extensive and comprehensive handbook systematically reviews the basic physics, theory and recent advances in the field of superconductivity. Leading researchers, including Nobel laureates, describe the state-of-the-art in conventional and unconventional superconductors at a particularly opportune time, as new experimental techniques and field-theoretical methods have emerged. In addition to full-coverage of novel materials and underlying mechanisms, the handbook reflects continued intense research into electron-phone based superconductivity. Considerable attention is devoted to high-Tc superconductivity, novel superconductivity, including triplet pairing in the ruthenates, novel superconductors, such as heavy-Fermion metals and organic materials, and also granular superconductors. What’s more, several contributions address superconductors with impurities and nanostructured superconductors. Important new results on...

  2. Hyperentanglement purification for two-photon six-qubit quantum systems

    Science.gov (United States)

    Wang, Guan-Yu; Liu, Qian; Deng, Fu-Guo

    2016-09-01

    Recently, two-photon six-qubit hyperentangled states were produced in experiment and they can improve the channel capacity of quantum communication largely. Here we present a scheme for the hyperentanglement purification of nonlocal two-photon systems in three degrees of freedom (DOFs), including the polarization, the first-longitudinal-momentum, and the second-longitudinal-momentum DOFs. Our hyperentanglement purification protocol (hyper-EPP) is constructed with two steps resorting to parity-check quantum nondemolition measurement on the three DOFs and swap gates, respectively. With these two steps, the bit-flip errors in the three DOFs can be corrected efficiently. Also, we show that using swap gates is a universal method for hyper-EPP in the polarization DOF and multiple-longitudinal-momentum DOFs. The implementation of our hyper-EPP is assisted by nitrogen-vacancy centers in optical microcavities, which could be achieved with current techniques. It is useful for long-distance high-capacity quantum communication with two-photon six-qubit hyperentanglement.

  3. Scheme for on-resonance generation of entanglement in time-dependent asymmetric two-qubit-cavity systems

    Science.gov (United States)

    Olaya-Castro, Alexandra; Johnson, Neil F.; Quiroga, Luis

    2004-08-01

    We present an efficient scheme for the controlled generation of pure two-qubit states possessing any desired degree of entanglement and a prescribed symmetry. This is achieved in two-qubit-cavity QED systems (e.g., cold-trapped ions and flying atoms) via on-resonance ion- or atom-cavity couplings, which are time dependent and asymmetric, yielding a trapping vacuum state condition which does not arise for identical couplings. A duality in the role of the coupling ratio yields states with a given concurrence but opposing symmetries. Both the trapping state condition and the resulting entanglement power are robust against decoherence channels.

  4. Status Of Superconducting Radiofrequency Separator Cryogenic System

    CERN Document Server

    Ageyev, A; Kashtanov, E; Kozub, S; Muraviev, M; Orlov, A; Pimenov, P; Polkovnikov, K; Slabodchikov, P; Sytnik, V V; Zintchenko, S

    2004-01-01

    The OKA experimental complex proposing to use the technique of RF beam separation to produce a Kaon beam is under construction at IHEP. Two deflecting superconducting niobium cavities operating at 1.8 K are the basic elements of the separator. To provide cooling at this temperature commercially available 500 W, 4.5 K helium refrigerator is used to cool liquid helium bath of the satellite refrigerator. The last one is actually a big warm up heat exchanger with flow imbalance and very low pressure drop. Vacuum group consists of two stages of roots blowers and one stage of rotary slide valve pumps. Pump stages are separated by intermediate gas coolers. The schematic, thermodynamics, design capacity and current construction status of the cryogenic system are presented.

  5. Entanglement of four-qubit systems: A geometric atlas with polynomial compass II (the tame world)

    Science.gov (United States)

    Holweck, Frédéric; Luque, Jean-Gabriel; Thibon, Jean-Yves

    2017-02-01

    We propose a new approach to the geometry of the four-qubit entanglement classes depending on parameters. More precisely, we use invariant theory and algebraic geometry to describe various stratifications of the Hilbert space by Stochastic Local Operations with Classical Communication (SLOCC) invariant algebraic varieties. The normal forms of the four-qubit classification of Verstraete et al. are interpreted as dense subsets of components of the dual variety of the set of separable states and an algorithm based on the invariants/covariants of the four-qubit quantum states is proposed to identify a state with a SLOCC equivalent normal form (up to qubits permutation).

  6. Geometric Phase for a Qutrit-Qubit Mixed-Spin System

    Institute of Scientific and Technical Information of China (English)

    WANG Ai-Ping; QIANG Wen-Chao; LING Ya-Wen; XIN Hong; YANG Yong-Ming

    2011-01-01

    @@ We study the geometric phase of a qutrit-qubit mixed-spin system in an external homogeneous magnetic field.Both the spin-spin interaction strength J and the external magnetic field B can affect the geometric phase of the system.In addition,we consider the negativity of the composite system.The relationship between the negativity and the geometric phase is obtained.Finally,we calculate the geometric phase for a thermal mixed state and show how the geometric phase depends on the resealed coupling parameter and temperature.In the limit T→0,we can recover the result of the ground state.This analysis has some implications in realistic implementations of geometric quantum computation.

  7. Insulation systems for superconducting transmission cables

    DEFF Research Database (Denmark)

    Tønnesen, Ole

    1996-01-01

    the electrical insulation is placed outside both the superconducting tube and the cryostat. The superconducting tube is cooled by liquid nitrogen which is pumped through the hollow part of the tube.2) The cryogenic dielectric design, where the electrical insulation is placed inside the cryostat and thus is kept...

  8. Effects of Dzyaloshinski-Moriya Interaction on Entanglement and Teleportation in a Two-Qubit Ising System with Intrinsic Cecoherence

    Institute of Scientific and Technical Information of China (English)

    QIAN Li; FANG Jian-Xing

    2009-01-01

    We study the effects of Dzyaloshinski-Moriya(DM)interaction on entanglement and teleportation in a two-qubit Ising system with intrinsic decoherence taken into account.It is found that for the unentangled state,DM interaction is a benefit for entanglement and teleportation.

  9. Damping in high-temperature superconducting levitation systems

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R.

    2009-12-15

    Methods and apparatuses for improved damping in high-temperature superconducting levitation systems are disclosed. A superconducting element (e.g., a stator) generating a magnetic field and a magnet (e.g. a rotor) supported by the magnetic field are provided such that the superconducting element is supported relative to a ground state with damped motion substantially perpendicular to the support of the magnetic field on the magnet. Applying this, a cryostat housing the superconducting bearing may be coupled to the ground state with high damping but low radial stiffness, such that its resonant frequency is less than that of the superconducting bearing. The damping of the cryostat may be substantially transferred to the levitated magnetic rotor, thus, providing damping without affecting the rotational loss, as can be derived applying coupled harmonic oscillator theory in rotor dynamics. Thus, damping can be provided to a levitated object, without substantially affecting the rotational loss.

  10. Damping in high-temperature superconducting levitation systems

    Science.gov (United States)

    Hull, John R.

    2009-12-15

    Methods and apparatuses for improved damping in high-temperature superconducting levitation systems are disclosed. A superconducting element (e.g., a stator) generating a magnetic field and a magnet (e.g. a rotor) supported by the magnetic field are provided such that the superconducting element is supported relative to a ground state with damped motion substantially perpendicular to the support of the magnetic field on the magnet. Applying this, a cryostat housing the superconducting bearing may be coupled to the ground state with high damping but low radial stiffness, such that its resonant frequency is less than that of the superconducting bearing. The damping of the cryostat may be substantially transferred to the levitated magnetic rotor, thus, providing damping without affecting the rotational loss, as can be derived applying coupled harmonic oscillator theory in rotor dynamics. Thus, damping can be provided to a levitated object, without substantially affecting the rotational loss.

  11. Superconductivity

    CERN Document Server

    Poole, Charles P; Creswick, Richard J; Prozorov, Ruslan

    2014-01-01

    Superconductivity, Third Edition is an encyclopedic treatment of all aspects of the subject, from classic materials to fullerenes. Emphasis is on balanced coverage, with a comprehensive reference list and significant graphics from all areas of the published literature. Widely used theoretical approaches are explained in detail. Topics of special interest include high temperature superconductors, spectroscopy, critical states, transport properties, and tunneling. This book covers the whole field of superconductivity from both the theoretical and the experimental point of view. This third edition features extensive revisions throughout, and new chapters on second critical field and iron based superconductors.

  12. Unconventional superconductivity in low density electron systems and conventional superconductivity in hydrogen metallic alloys

    Science.gov (United States)

    Kagan, M. Yu.

    2016-06-01

    In this short review, we first discuss the results, which are mainly devoted to the generalizations of the famous Kohn-Luttinger mechanism of superconductivity in purely repulsive fermion systems at low electron densities. In the context of repulsive- U Hubbard model and Shubin-Vonsovsky model we consider briefly the superconducting phase diagrams and the symmetries of the order parameter in novel strongly correlated electron systems including idealized monolayer and bilayer graphene. We stress that purely repulsive fermion systems are mainly the subject of unconventional low-temperature superconductivity. To get the high temperature superconductivity in cuprates (with T C of the order of 100 K) we should proceed to the t-J model with the van der Waals interaction potential and the competition between short-range repulsion and long-range attraction. Finally we note that to describe superconductivity in metallic hydrogen alloys under pressure (with T C of the order of 200 K) it is reasonable to reexamine more conventional mechanisms connected with electron-phonon interaction. These mechanisms arise in the attractive- U Hubbard model with static onsite or intersite attractive potential or in more realistic theories (which include retardation effects) such as Migdal-Eliashberg strong coupling theory or even Fermi-Bose mixture theory of Ranninger et al. and its generalizations.

  13. Fabrication of Al/AlOx/Al Josephson junctions and superconducting quantum circuits by shadow evaporation and a dynamic oxidation process

    Institute of Scientific and Technical Information of China (English)

    Wu Yu-Lin; Deng Hui; Yu Hai-Feng; Xue Guang-Ming; Tian Ye; Li Jie; Chen Ying-Fei

    2013-01-01

    Besides serving as promising candidates for realizing quantum computing,superconducting quantum circuits are one of a few macroscopic physical systems in which fundamental quantum phenomena can be directly demonstrated and tested,giving rise to a vast field of intensive research work both theoretically and experimentally.In this paper we report our work on the fabrication of superconducting quantum circuits,starting from its building blocks:Al/AlOx/Al Josephson junctions.By using electron beam lithography patterning and shadow evaporation,we have fabricated aluminum Josephson junctions with a controllable critical current density (jc) and wide range of junction sizes from 0.01 μm2 up to 1 μm2.We have carried out systematical studies on the oxidation process in fabricating Al/AlOx/Al Josephson junctions suitable for superconducting flux qubits.Furthermore,we have also fabricated superconducting quantum circuits such as superconducting flux qubits and charge-flux qubits.

  14. Magnetism and superconductivity in heavy fermion systems

    Energy Technology Data Exchange (ETDEWEB)

    Flouquet, J. (DRFMC, C.E.N.G., 38 - Grenoble (France)); Brison, J.P.; Hasselbach, K.; Taillefer, L. (C.N.R.S., 38 - Grenoble (France)); Behnia, K.; Jaccard, D. (DPMC, Geneva Univ. (Switzerland)); Visser, A. de (Natuurkundig Lab., Univ. van Amsterdam (Netherlands))

    1991-12-01

    The normal and superconducting properties of heavy fermion compounds are reviewed. The discussion is focus on the three uranium compounds: UBe{sub 13}, UPt{sub 3} and URu{sub 2}Si{sub 2}. Special attention is given: 1) to unusual (H.T) superconducting phase diagram as discovered in UPt{sub 3} where two successive superconducting phases seem to occur in zero magnetic field; 2) to the role of long range ordering as found in URu{sub 2}Si{sub 2} and UPt{sub 3}. (orig.).

  15. Yangian algebra in the bi-qubit system and mixed light pseudoscalar meson state

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Li-Guo; Tian, Li-Jun; Yang, Guo-Hong [Shanghai University, Department of Physics, Shanghai (China)

    2012-03-15

    The applications of the general and reduced Yangian Y(sl(2)) and Y(su(3)) algebras are discussed in the bi-qubit system and mixed light pseudoscalar meson state. By taking a special constraint, the representation of Y(sl(2)) and Y(su(3)) can be divided into two 2 x 2 and three 3 x 3 blocks diagonal, respectively. The effects of every generator of Y(sl(2)) and Y(su(3)) on entanglement are represented in detail. We find that the general ones are not able to make the initial states disentangled by acting on the initial states; however, the reduced ones are able to make the initial states disentangled. In addition, we show the effects of Y(su(3)) generators on the decay channel and give some possible the decay channels. (orig.)

  16. Controllable Quantum State Transfer Between a Josephson Charge Qubit and an Electronic Spin Ensemble

    Science.gov (United States)

    Yan, Run-Ying; Wang, Hong-Ling; Feng, Zhi-Bo

    2016-01-01

    We propose a theoretical scheme to implement controllable quantum state transfer between a superconducting charge qubit and an electronic spin ensemble of nitrogen-vacancy centers. By an electro-mechanical resonator acting as a quantum data bus, an effective interaction between the charge qubit and the spin ensemble can be achieved in the dispersive regime, by which state transfers are switchable due to the adjustable electrical coupling. With the accessible experimental parameters, we further numerically analyze the feasibility and robustness. The present scheme could provide a potential approach for transferring quantum states controllably with the hybrid system.

  17. Decoherence in Josephson Qubits from Dielectric Loss

    OpenAIRE

    Martinis, John M.; Cooper, K. B.; McDermott, R.; Steffen, Matthias; Ansmann, Markus; Osborn, K; Cicak, K.; Oh, S.; Pappas, D. P.; Simmonds, R. W.; Yu, Clare C

    2005-01-01

    Dielectric loss from two-level states is shown to be a dominant decoherence source in superconducting quantum bits. Depending on the qubit design, dielectric loss from insulating materials or the tunnel junction can lead to short coherence times. We show that a variety of microwave and qubit measurements are well modeled by loss from resonant absorption of two-level defects. Our results demonstrate that this loss can be significantly reduced by using better dielectrics and fabricating junctio...

  18. Qubits from extra dimensions

    CERN Document Server

    Lévay, Péter

    2011-01-01

    We link the recently discovered black hole-qubit correspondence to the structure of extra dimensions. In particular we show that for toroidal compactifications of type IIB string theory simple qubit systems arise naturally from the geometrical data of the tori parametrized by the moduli. We also generalize the recently suggested idea of the attractor mechanism as a distillation procedure of GHZ-like entangled states on the event horizon, to moduli stabilization for flux attractors in F-theory compactifications on elliptically fibered Calabi-Yau four-folds. Finally using a simple example we show that the natural arena for qubits to show up is an embedded one within the realm of fermionic entanglement of quantum systems with indistinguishable constituents.

  19. Coupling spin qubits via superconductors

    DEFF Research Database (Denmark)

    Leijnse, Martin; Flensberg, Karsten

    2013-01-01

    We show how superconductors can be used to couple, initialize, and read out spatially separated spin qubits. When two single-electron quantum dots are tunnel coupled to the same superconductor, the singlet component of the two-electron state partially leaks into the superconductor via crossed...... Andreev reflection. This induces a gate-controlled singlet-triplet splitting which, with an appropriate superconductor geometry, remains large for dot separations within the superconducting coherence length. Furthermore, we show that when two double-dot singlet-triplet qubits are tunnel coupled...... to a superconductor with finite charging energy, crossed Andreev reflection enables a strong two-qubit coupling over distances much larger than the coherence length....

  20. Quantum Computing Using Superconducting Qubits

    Science.gov (United States)

    2006-04-01

    highlighted in the " Molecular Motors" first feature article of the November, 2002, Physics Today, page 38. http://www.physicstoday.org/vol-5 5/iss-I I...12-2003. the article was in http://www.mosac.com/ fisica /news/leggi.php?codice= 191. News coverage in French include the following three newspapers... molecular vibra- Josephson junction devices have been proposed and experi- tional mode [12], motional quantum states of a trapped - - mentally

  1. Novel Approach to Linear Accelerator Superconducting Magnet System

    Energy Technology Data Exchange (ETDEWEB)

    Kashikhin, Vladimir; /Fermilab

    2011-11-28

    Superconducting Linear Accelerators include a superconducting magnet system for particle beam transportation that provides the beam focusing and steering. This system consists of a large number of quadrupole magnets and dipole correctors mounted inside or between cryomodules with SCRF cavities. Each magnet has current leads and powered from its own power supply. The paper proposes a novel approach to magnet powering based on using superconducting persistent current switches. A group of magnets is powered from the same power supply through the common, for the group of cryomodules, electrical bus and pair of current leads. Superconducting switches direct the current to the chosen magnet and close the circuit providing the magnet operation in a persistent current mode. Two persistent current switches were fabricated and tested. In the paper also presented the results of magnetic field simulations, decay time constants analysis, and a way of improving quadrupole magnetic center stability. Such approach substantially reduces the magnet system cost and increases the reliability.

  2. System and method for cooling a superconducting rotary machine

    Science.gov (United States)

    Ackermann, Robert Adolf; Laskaris, Evangelos Trifon; Huang, Xianrui; Bray, James William

    2011-08-09

    A system for cooling a superconducting rotary machine includes a plurality of sealed siphon tubes disposed in balanced locations around a rotor adjacent to a superconducting coil. Each of the sealed siphon tubes includes a tubular body and a heat transfer medium disposed in the tubular body that undergoes a phase change during operation of the machine to extract heat from the superconducting coil. A siphon heat exchanger is thermally coupled to the siphon tubes for extracting heat from the siphon tubes during operation of the machine.

  3. Unification of multi-qubit polygamy inequalities

    CERN Document Server

    Kim, Jeong San

    2012-01-01

    We establish a unified view of polygamy of multi-qubit entanglement. We first introduce a two-parameter generalization of entanglement of assistance namely unified entanglement of assistance for bipartite quantum states, and provide an analytic lowerbound in two-qubit systems. We show a broad class of polygamy inequalities of multi-qubit entanglement in terms of unified entanglement of assistance that encapsulates all known multi-qubit polygamy inequalities as special cases. We further show that this class of polygamy inequalities can be improved into tighter inequalities for three-qubit systems.

  4. Superconducting and hybrid systems for magnetic field shielding

    Science.gov (United States)

    Gozzelino, L.; Gerbaldo, R.; Ghigo, G.; Laviano, F.; Truccato, M.; Agostino, A.

    2016-03-01

    In this paper we investigate and compare the shielding properties of superconducting and hybrid superconducting/ferromagnetic systems, consisting of cylindrical cups with an aspect ratio of height/radius close to unity. First, we reproduced, by finite-element calculations, the induction magnetic field values measured along the symmetry axis in a superconducting (MgB2) and in a hybrid configuration (MgB2/Fe) as a function of the applied magnetic field and of the position. The calculations are carried out using the vector potential formalism, taking into account simultaneously the non-linear properties of both the superconducting and the ferromagnetic material. On the basis of the good agreement between the experimental and the computed data we apply the same model to study the influence of the geometric parameters of the ferromagnetic cup as well as of the thickness of the lateral gap between the two cups on the shielding properties of the superconducting cup. The results show that in the considered non-ideal geometry, where the edge effect in the flux penetration cannot be disregarded, the superconducting shield is always the most efficient solution at low magnetic fields. However, a partial recovery of the shielding capability of the hybrid configuration occurs if a mismatch in the open edges of the two cups is considered. In contrast, at high magnetic fields the hybrid configurations are always the most effective. In particular, the highest shielding factor was found for solutions with the ferromagnetic cup protruding over the superconducting one.

  5. 基于SQUIDs和腔场相互作用传送量子信息的方案%Quantum information transfer with superconducting quantum interference device qubits in cavity QED

    Institute of Scientific and Technical Information of China (English)

    吴韬; 何娟; 倪致祥

    2009-01-01

    本文提出了一个基于SQUIDs和腔场的大失谐相互作用传送量子信息的方案,此方案可以直接地、百分之百地实现量子信息的传送.该方案中腔场和SQUIDs系统之间没有量子信息的传递,腔场只是虚激发,这样对腔的品质因子的要求大大的降低了.同时也可以在SQUIDs之间建立传送量子信息的量子网络.%We propose a scheme for transferring Quantum information via superconducting quantum interference device (SQUID) qubits and cavity field interaction with a large detuning.In the scheme,no quantum information is transferred between the SQUIDs and the cavities,the cavity-fields are only virtually excited,thus the requirement on the quality factor of the cavities is greatly relaxed.In addition,in the scheme the quantum information can be directly transferred with a successful probability of 100% in a simple manner.And meanwhile we can establish a network for transferring quantum information between SQUID qubits.

  6. Qubit-oscillator systems in the ultrastrong-coupling regime and their potential for preparing nonclassical states

    Science.gov (United States)

    Nori, Franco; Ashhab, Sahel

    2011-03-01

    We consider a system composed of a two-level system (i.e. a qubit) and a harmonic oscillator in the ultrastrong-coupling regime, where the coupling strength is comparable to the qubit and oscillator energy scales. We explore the possibility of preparing nonclassical states in this system, especially in the ground state of the combined system. The nonclassical states that we consider include squeezed states, Schrodinger-cat states and entangled states. We also analyze the nature of the change in the ground state as the coupling strength is increased, going from a separable ground state in the absence of coupling to a highly entangled ground state in the case of very strong coupling. Reference: S. Ashhab and F. Nori, Phys. Rev. A 81, 042311 (2010). We thank support from DARPA, AFOSR, NSA, LPS, ARO, NSF, MEXT, JSPS, FIRST, and JST.

  7. A superconducting transformer system for high current cable testing.

    Science.gov (United States)

    Godeke, A; Dietderich, D R; Joseph, J M; Lizarazo, J; Prestemon, S O; Miller, G; Weijers, H W

    2010-03-01

    This article describes the development of a direct-current (dc) superconducting transformer system for the high current test of superconducting cables. The transformer consists of a core-free 10,464 turn primary solenoid which is enclosed by a 6.5 turn secondary. The transformer is designed to deliver a 50 kA dc secondary current at a dc primary current of about 50 A. The secondary current is measured inductively using two toroidal-wound Rogowski coils. The Rogowski coil signal is digitally integrated, resulting in a voltage signal that is proportional to the secondary current. This voltage signal is used to control the secondary current using a feedback loop which automatically compensates for resistive losses in the splices to the superconducting cable samples that are connected to the secondary. The system has been commissioned up to 28 kA secondary current. The reproducibility in the secondary current measurement is better than 0.05% for the relevant current range up to 25 kA. The drift in the secondary current, which results from drift in the digital integrator, is estimated to be below 0.5 A/min. The system's performance is further demonstrated through a voltage-current measurement on a superconducting cable sample at 11 T background magnetic field. The superconducting transformer system enables fast, high resolution, economic, and safe tests of the critical current of superconducting cable samples.

  8. Circuit quantum electrodynamics with a spin qubit.

    Science.gov (United States)

    Petersson, K D; McFaul, L W; Schroer, M D; Jung, M; Taylor, J M; Houck, A A; Petta, J R

    2012-10-18

    Electron spins trapped in quantum dots have been proposed as basic building blocks of a future quantum processor. Although fast, 180-picosecond, two-quantum-bit (two-qubit) operations can be realized using nearest-neighbour exchange coupling, a scalable, spin-based quantum computing architecture will almost certainly require long-range qubit interactions. Circuit quantum electrodynamics (cQED) allows spatially separated superconducting qubits to interact via a superconducting microwave cavity that acts as a 'quantum bus', making possible two-qubit entanglement and the implementation of simple quantum algorithms. Here we combine the cQED architecture with spin qubits by coupling an indium arsenide nanowire double quantum dot to a superconducting cavity. The architecture allows us to achieve a charge-cavity coupling rate of about 30 megahertz, consistent with coupling rates obtained in gallium arsenide quantum dots. Furthermore, the strong spin-orbit interaction of indium arsenide allows us to drive spin rotations electrically with a local gate electrode, and the charge-cavity interaction provides a measurement of the resulting spin dynamics. Our results demonstrate how the cQED architecture can be used as a sensitive probe of single-spin physics and that a spin-cavity coupling rate of about one megahertz is feasible, presenting the possibility of long-range spin coupling via superconducting microwave cavities.

  9. Quantum entanglement for two qubits in a nonstationary cavity

    Science.gov (United States)

    Berman, Oleg L.; Kezerashvili, Roman Ya.; Lozovik, Yurii E.

    2016-11-01

    The quantum entanglement and the probability of the dynamical Lamb effect for two qubits caused by nonadiabatic fast change of the boundary conditions are studied. The conditional concurrence of the qubits for each fixed number of created photons in a nonstationary cavity is obtained as a measure of the dynamical quantum entanglement due to the dynamical Lamb effect. We discuss the physical realization of the dynamical Lamb effect, based on superconducting qubits.

  10. Quantum entanglement for two qubits in a nonstationary cavity

    CERN Document Server

    Berman, Oleg L; Lozovik, Yurii E

    2016-01-01

    The quantum entanglement and the probability of the dynamical Lamb effect for two qubits caused by non-adiabatic fast change of the boundary conditions are studied. The conditional concurrence of the qubits for each fixed number of created photons in a nonstationary cavity is obtained as a measure of the dynamical quantum entanglement due to the dynamical Lamb effect. We discuss the physical realization of the dynamical Lamb effect, based on superconducting qubits.

  11. Improving Quantum Gate Fidelities by Using a Qubit to Measure Microwave Pulse Distortions

    NARCIS (Netherlands)

    Gustavsson, Simon; Zwier, Olger; Bylander, Jonas; Yan, Fei; Yoshihara, Fumiki; Nakamura, Yasunobu; Orlando, Terry P.; Oliver, William D.

    2013-01-01

    We present a new method for determining pulse imperfections and improving the single-gate fidelity in a superconducting qubit. By applying consecutive positive and negative pi pulses, we amplify the qubit evolution due to microwave pulse distortions, which causes the qubit state to rotate around an

  12. New Maximally Entangled States for Pattern-Association Through Evolutionary Processes in a Two-Qubit System

    Science.gov (United States)

    Singh, Manu Pratap; Rajput, Balwant S.

    2017-04-01

    New set of maximally entangled states (Singh-Rajput MES), constituting orthonormal eigen bases, has been revisited and its superiority and suitability in pattern-association (Quantum Associative Memory, QuAM) have been demonstrated. Using these MES as memory states in the evolutionary process of pattern storage in a two-qubit system, it has been shown that the first two states of Singh-Rajput MES are useful for storing the pattern |11> and the last two of these MES are useful in storing the pattern |10> Recall operations of quantum associate memory (QuAM) have been conducted through evolutionary process in terms of unitary operators by separately choosing Singh-Rajput MES and Bell's MES as memory states and it has been shown that Singh-Rajput MES as valid memory states for recalling the patterns in a two-qubit system are much more suitable than Bell's MES.

  13. Method and system for controlling chemical reactions between superconductors and metals in superconducting cables

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Tengming

    2016-11-15

    A method, system, and apparatus for fabricating a high-strength Superconducting cable comprises pre-oxidizing at least one high-strength alloy wire, coating at least one Superconducting wire with a protective layer, and winding the high-strength alloy wire and the Superconducting wire to form a high-strength Superconducting cable.

  14. Generation of bases with definite factorization for an n-qubit system and mutually unbiased sets construction

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, A; Romero, J L; Klimov, A B, E-mail: klimov@cencar.udg.m [Departamento de Fisica, Universidad de Guadalajara, Revolucion 1500, 44420 Guadalajara, Jal. (Mexico)

    2010-09-24

    We propose a systematic procedure to construct all the possible bases with a definite factorization structure (eigenstates of n commuting monomials constructed as products of Pauli operators) for an n-qubit system, as well as the possibility of collecting them into mutually unbiased sets. We also discuss an algorithm for the determination of basis separability and propose a criteria for complementarity between such bases. The results are applied to generate non-isomorphic complete sets of mutually unbiased bases.

  15. Criteria of partial separability of multipartite qubit mixed-states

    CERN Document Server

    Zhong, Z Z

    2004-01-01

    In this paper, we discuss the partial separability and its criteria problems of multipartite qubit mixed-states. First we strictly define what is the partial separability of a multipartite qubit system. Next we give a reduction way from N-partite qubit density matrixes to bipartite qubit density matrixes, and prove a necessary condition that a N-partite qubit mixed-state to be partially separable is its reduction to satisfy the PPT condition.

  16. Resonator-assisted quantum bath engineering of a flux qubit

    Science.gov (United States)

    Zhang, Xian-Peng; Shen, Li-Tuo; Yin, Zhang-Qi; Wu, Huai-Zhi; Yang, Zhen-Biao

    2015-01-01

    We demonstrate quantum bath engineering for preparation of any orbital state with the controllable phase factor of a superconducting flux qubit assisted by a microwave coplanar waveguide resonator. We investigate the polarization efficiency of the arbitrary direction rotating on the Bloch sphere, and obtain an effective Rabi frequency by using the convergence condition of the Markovian master equation. The processes of polarization can be implemented effectively in a dissipative environment created by resonator photon loss when the spectrum of the microwave resonator matches with the specially tailored Rabi and resonant frequencies of the drive. Our calculations indicate that state-preparation fidelities in excess of 99% and the required time on the order of magnitude of a microsecond are in principle possible for experimentally reasonable sample parameters. Furthermore, our proposal could be applied to other systems with spin-based qubits.

  17. Evidence for quantum annealing with more than one hundred qubits

    Science.gov (United States)

    Boixo, Sergio; Rønnow, Troels F.; Isakov, Sergei V.; Wang, Zhihui; Wecker, David; Lidar, Daniel A.; Martinis, John M.; Troyer, Matthias

    2014-03-01

    Quantum technology is maturing to the point where quantum devices, such as quantum communication systems, quantum random number generators and quantum simulators may be built with capabilities exceeding classical computers. A quantum annealer, in particular, solves optimization problems by evolving a known initial configuration at non-zero temperature towards the ground state of a Hamiltonian encoding a given problem. Here, we present results from tests on a 108 qubit D-Wave One device based on superconducting flux qubits. By studying correlations we find that the device performance is inconsistent with classical annealing or that it is governed by classical spin dynamics. In contrast, we find that the device correlates well with simulated quantum annealing. We find further evidence for quantum annealing in the form of small-gap avoided level crossings characterizing the hard problems. To assess the computational power of the device we compare it against optimized classical algorithms.

  18. The Test of LLRF control system on superconducting cavity

    CERN Document Server

    Zhu, Zhenglong; Wen, Lianghua; Chang, Wei; Zhang, Ruifeng; Gao, Zheng; Chen, Qi

    2014-01-01

    The first generation Low-Level radio frequency(LLRF) control system independently developed by IMPCAS, the operating frequency is 162.5MHz for China ADS, which consists of superconducting cavity amplitude stability control, phase stability control and the cavity resonance frequency control. The LLRF control system is based on four samples IQ quadrature demodulation technique consisting an all-digital closed-loop feedback control. This paper completed the first generation of ADS LLRF control system in the low-temperature superconducting cavities LLRF stability and performance online tests. Through testing, to verify the performance of LLRF control system, to analysis on emerging issues, and in accordance with the experimental data, to summarize LLRF control system performance to accumulate experience for the future control of superconducting cavities.

  19. Tuning an rf-SQUID flux qubit system's potential with magnetic flux bias

    Institute of Scientific and Technical Information of China (English)

    Hua Tao; Xu Wei-Wei; Shi Jian-Xin; An De-Yue; Sun Guo-Zhu; Yu Yang; Wu Pei-Heng

    2012-01-01

    At an extremely low temperature of 20 mK,we measured the loop current in a tunable rf superconducting quantum interference device (SQUID) with a dc-SQUID.By adjusting the magnetic flux applied to the rf-SQUID loop (φf) and the small dc-SQUID (φcjjf),respectively,the potential shape of the system can be fully controlled in situ.Variation in the transition step and overlap size in the switching current with a barrier flux bias are analyzed,from which we can obtain some relevant device parameters and build a model to explain the experimental phenomenon.

  20. Relaxation of coherent states in a two-qubit NMR quadrupole system

    Energy Technology Data Exchange (ETDEWEB)

    Sarthour, R.S.; Guimaraes, A.P.; Oliveira, I.S. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Azevedo, E.R. de; Bonk, F.A.; Vidoto, E.L.G.; Bonagamba, T.J. [Universidade de Sao Paulo (IFSC/USP), Sao Carlos, SP (Brazil). Inst. de Fisica; Freitas, J.C.C. [Universidade Federal do Espirito Santo (UFES), Vitoria, ES (Brazil). Dept. de Fisica

    2003-07-01

    Full text: Pulse Nuclear Magnetic Resonance (NMR) is one of the most serious candidates as an experimental technique for implementing quantum algorithms. To the present date, this technique is in fact the only one where full demonstrations of quantum algorithms implementations have been carried out, in spite of various technical difficulties. On NMR quantum computers, gates and subroutines are encoded as radiofrequency pulse sequences, which must act over coherent states. These sequences usually take tens of milliseconds to be implemented, and during this time the system relax towards equilibrium. Therefore, studies of relaxation times are very important to the realization of quantum algorithms via NMR. In this work we studied the longitudinal relaxation of various coherent states on the NMR quantum computing two-qubit quadrupole system, {sup 23}Na in C{sub 10}H{sub 21}NaO{sub 4}S liquid crystal at room temperature. Relaxation of pseudo-pure states |00>, |01>, |10>, |11>, pseudo-Bell states |01> + |10> and |00> + |11> and Hadamard states |00> + |01> and |10> + |11> were investigated. Experimental curves follow a multi exponential model of relaxation which takes into account mixed, dipolar magnetic and quadrupolar electric interactions. (author)

  1. Testing Evolution Equation for Entanglement of Two-Qubit Systems in Noisy Channels on Ensemble Quantum Computers

    Institute of Scientific and Technical Information of China (English)

    ZHANG Han; LUO Jun; REN Ting-Ting; SUN Xian-Ping

    2010-01-01

    @@ We report the experimental demonstration of decoherence dynamics of entanglement for the four Bell states in two-qubit nuclear-spin systems on ensemble quantum computers.Using artificial error operators to simulate noisy channels,we experimentally investigate the effect of noises on the four Bell states,and furthermore observe the time evolution of entanglement for the four Bell states in different noisy channels by calculating concurrences.Our experimental results show that the concurrences of the different Bell states under the same artificial error operations have the same values within the experimental error,and are independent of the different Bell states.These experimental results verify the theoretical evolution equation developed by Konrad et al.[Nature Phys.4 (2008) 99]for two-qubit entanglement.

  2. submitter Thermal, Hydraulic, and Electromagnetic Modeling of Superconducting Magnet Systems

    CERN Document Server

    Bottura, L

    2016-01-01

    Modeling techniques and tailored computational tools are becoming increasingly relevant to the design and analysis of large-scale superconducting magnet systems. Efficient and reliable tools are useful to provide an optimal forecast of the envelope of operating conditions and margins, which are difficult to test even when a prototype is available. This knowledge can be used to considerably reduce the design margins of the system, and thus the overall cost, or increase reliability during operation. An integrated analysis of a superconducting magnet system is, however, a complex matter, governed by very diverse physics. This paper reviews the wide spectrum of phenomena and provides an estimate of the time scales of thermal, hydraulic, and electromagnetic mechanisms affecting the performance of superconducting magnet systems. The analysis is useful to provide guidelines on how to divide the complex problem into building blocks that can be integrated in a design and analysis framework for a consistent multiphysic...

  3. Multi-qubit circuit quantum electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Viehmann, Oliver

    2013-09-03

    Circuit QED systems are macroscopic, man-made quantum systems in which superconducting artificial atoms, also called Josephson qubits, interact with a quantized electromagnetic field. These systems have been devised to mimic the physics of elementary quantum optical systems with real atoms in a scalable and more flexible framework. This opens up a variety of possible applications of circuit QED systems. For instance, they provide a promising platform for processing quantum information. Recent years have seen rapid experimental progress on these systems, and experiments with multi-component circuit QED architectures are currently starting to come within reach. In this thesis, circuit QED systems with multiple Josephson qubits are studied theoretically. We focus on simple and experimentally realistic extensions of the currently operated circuit QED setups and pursue investigations in two main directions. First, we consider the equilibrium behavior of circuit QED systems containing a large number of mutually noninteracting Josephson charge qubits. The currently accepted standard description of circuit QED predicts the possibility of superradiant phase transitions in such systems. However, a full microscopic treatment shows that a no-go theorem for superradiant phase transitions known from atomic physics applies to circuit QED systems as well. This reveals previously unknown limitations of the applicability of the standard theory of circuit QED to multi-qubit systems. Second, we explore the potential of circuit QED for quantum simulations of interacting quantum many-body systems. We propose and analyze a circuit QED architecture that implements the quantum Ising chain in a time-dependent transverse magnetic field. Our setup can be used to study quench dynamics, the propagation of localized excitations, and other non-equilibrium features in this paradigmatic model in the theory of non-equilibrium thermodynamics and quantumcritical phenomena. The setup is based on a

  4. Novel superconductivity: from bulk to nano systems

    Science.gov (United States)

    Das, M. P.; Wilson, B. J.

    2015-03-01

    We begin with an introduction of superconductivity by giving a brief history of the phenomenon. The phenomenological Ginzburg-Landau theory and the microscopic theory of Bardeen, Cooper and Schrieffer are outlined. In view of recently available multi-band superconductors, relevant theories of both types are discussed. Unlike the traditional GL theory an extended GL theory is developed relevant to temperatures below the critical temperature. Superconductivity in a nanosystem is the highlight of the remaining part of the paper. Theories and experiments are discussed to give an interested reader an updated account and overview of what is new in this active area of research. Keynote talk at the 7th International Workshop on Advanced Materials Science and Nanotechnology IWAMSN2014, 2-6 November, 2014, Ha Long, Vietnam

  5. Quantum state tomography for quadrupole nuclei and its applications on a two-qubit system

    Energy Technology Data Exchange (ETDEWEB)

    Bonk, F.A.; Azevedo, E.R. de; Mantovani, G.L.; Bonagamba, T.J. [Sao Paulo Univ., Sao Carlos, SP (Brazil). Inst. de Fisica]. E-mail: azevedo@if.sc.usp.br; Sarthour, R.S.; Bulnes, J.D.; Guimaraes, A.P.; Oliveira, I.S. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]. E-mails: sarthour@cbpf.br; apguima@cbpf.br; ivan@cbpf.br; Freitas, J.C.C. [Espirito Santo Univ., Vitoria (Brazil). Dept. de Fisica

    2004-05-01

    A method for performing quantum state tomography for quadrupole nuclei is presented in this paper. First, it is shown that upon appropriate phase cycling, the NMR intensities of quadrupole nuclei depend only on diagonal elements of the density matrix. Thus, a method for obtaining the density matrix elements, which consists of dragging off-diagonal elements into the main diagonal using fine phase-controlled selective radiofrequency pulses, was derived. The use of the method is exemplified through {sup 23} Na NMR (nuclear spin I = 3/2) in a lyotropic liquid-crystal at room temperature, in three applications: (a) the tomography of pseudo-pure states; (b) the tomography of the quadrupole free evolution of the density matrix, and (c) the unitary state evolution of each qubit in the system over the Bloch sphere upon the application of a Hadamard gate. Further applications in the context of pure NMR and in the context of quantum information processing, as well as generalizations for higher spins, are discussed. (author)

  6. Cryogenic system for VECC K500 superconducting cyclotron

    CERN Document Server

    Pal, G; Bhattacharyya, T K; Bhandari, R K

    2009-01-01

    VEC Centre, Kolkata in India is at an advanced stage of commissioning a K500 superconducting cyclotron. The superconducting coil of the magnet for cyclotron is cooled by liquid helium. Three liquid helium cooled cryopanels, placed inside the Dees of the radiofrequency system, maintain the vacuum in the acceleration region of the superconducting cyclotron. The cryogenic system for magnet for cyclotron has been tested by cooling the coil and energizing the magnet. The cryogenic system for cryopanels has also been tested. Heater and temperature sensor were placed on the liquid helium cold head for cryopanel. The temperature of the cold head was observed to be below 20 K upto a heat load of 11.7 watt.

  7. Polyoxometalates as spin qubits

    Science.gov (United States)

    Gaita-Ariño, A.; Aldamen, M.; Clemente-Juan, J.-M.; Coronado, E.; Lehmann, J.; Loss, D.; Stamp, P.

    2008-03-01

    Polyoxometalates (POMs) are discrete fragments of metal oxides, clusters of regular MOn polyhedra. POMs show a remarkable flexibility in composition, structure and charge state, and thus can be designed according to specific electric and magnetic needs. The two localized spins with S = 1/2 on the V atoms in [PMo12O40(VO)2]^q- can be coupled through the delocalized electrons of the central core. This system was recently used for a theoretical scheme involving two-qubit gates and readout: the electrical manipulation of the molecular redox potential changes the charge of the core and thus the effective magnetic exchange between the qubits. Polyoxometalates can encapsulate magnetic ions, protecting them by a diamagnetic shell of controlled geometry. A great potential of POMs as spin qubits is that they can be constructed using only even elements, such as O, W, Mo and/or Si. Thus, there is a high abundance of polyoxometalate molecules without any nuclear spin, which could result in unusually low decoherence rates. There is currently an effort involving highly anisotropic, high magnetic moment, lanthanide@polyoxometalate molecules acting as spin qubits.

  8. Fast and robust two- and three-qubit swapping gates on multi-atomic ensembles in quantum electrodynamic cavity

    Directory of Open Access Journals (Sweden)

    Sergey N. Andrianov

    2011-03-01

    Full Text Available Creation of quantum computer is outstanding fundamental and practical problem. The quantum computer could be used for execution of very complicated tasks which are not solvable with the classical computers. The first prototype of solid state quantum computer was created in 2009 with superconducting qubits. However, it suffers from the decoherent processes and it is desirable to find more practical encoding of qubits with long-lived coherence. It could be single impurity or vacancy centers in solids, but their interaction with electromagnetic radiation is rather weak. So, here, ensembles of atoms were proposed for the qubit encoding by using the dipole blockade mechanism in order to turn multilevel systems in two level ones. But dipole-dipole based blockade introduces an additional decoherence that limits its practical significance. Recently, the collective blockade mechanism has been proposed for the system of three-level atoms by using the different frequency shifts for the Raman transitions between the collective atomic states characterized by a different number of the excited atoms. Here, we propose two qubit gate by using another collective blockade mechanism in the system of two level atoms based on exchange interaction via the virtual photons between the multi-atomic ensembles in the resonator. Also we demonstrate the possibility of three qubit gate (Controlled SWAP gate using a suppression of the swap-process between two multi-atomic ensembles due to dynamical shift of the atomic levels controlled by the states of photon encoded qubit.

  9. Superconducting fluctuations in systems with Rashba-spin-orbit coupling

    Energy Technology Data Exchange (ETDEWEB)

    Beyl, Stefan [Institut fuer Theoretische Physik und Astrophysik, Universitaet Wuerzburg (Germany); Orth, Peter P.; Scheurer, Mathias; Schmalian, Joerg [Institut fuer Theorie der Kondensierten Materie, Karlsruher Institut fuer Technologie (Germany)

    2015-07-01

    We investigate the BEC-BCS crossover in a two-dimensional system with Rashba-spin-orbit coupling. To include the effects of phase and amplitude fluctuations of the superconducting order parameter we perform a loop expansion of the effective field theory. We analyze in particular the probability of a low density superconducting quantum phase transition. The theory is relevant to LaAlO{sub 3}/SrTiO{sub 3} interfaces and two-dimensional cold atom systems with synthetic gauge fields.

  10. Purification and switching protocols for dissipatively stabilized entangled qubit states

    Science.gov (United States)

    Hein, Sven M.; Aron, Camille; Türeci, Hakan E.

    2016-06-01

    Pure dephasing processes limit the fidelities achievable in driven-dissipative schemes for stabilization of entangled states of qubits. We propose a scheme which, combined with already existing entangling methods, purifies the desired entangled state by driving out of equilibrium auxiliary dissipative cavity modes coupled to the qubits. We lay out the specifics of our scheme and compute its efficiency in the particular context of two superconducting qubits in a cavity-QED architecture, where the strongly coupled auxiliary modes provided by collective cavity excitations can drive and sustain the qubits in maximally entangled Bell states with fidelities reaching 90% for experimentally accessible parameters.

  11. Decoherence of two-qubit system in a non-Markovian squeezed reservoir

    Institute of Scientific and Technical Information of China (English)

    Wang Fa-Qiang; Zhang Zhi-Ming; Liang Rui-Sheng

    2009-01-01

    The decoherence of two initially entangled qubits coupled with a squeezed vacuum cavity separately is investigated exactly. The results show that, first, in principle, the disentanglement time decreases with the increase of squeeze parameter r, due to the augmenting of average photon number of every mode in the squeezed vacuum cavity. Second, there appear entanglement revivals after the complete disentanglement for the case of even parity initial Bell state, while there occur the entanglement decrcase and the entanglement revival before the complete disentanglement for the case of odd parity initial Bell state. The results are quite different from those for the case of qubits in a vacuum cavity.

  12. The design considerations for a superconducting magnetic bearing system

    Science.gov (United States)

    Cansiz, Ahmet; Yildizer, Irfan

    2014-09-01

    In this paper a high temperature superconducting magnetic bearing is studied with various design considerations. The design of the bearing consists of a rotor with 7.5 kg mass. The stable levitation of the rotor is provided with the Evershed type and superconducting components. The dynamic stability of the rotor is strengthened with the electromagnetic and electrodynamic levitation techniques. The force on the rotor is predicted in terms of semi-analytical frozen image model. The designed driving system sustains stable levitation during the rotation of the rotor and achieves higher rotational speed than that of the torque driver. The results indicate that the designed rotor and driving system have potential solutions for the development of the superconducting flywheel energy storage.

  13. Proposed hybrid superconducting fault current limiter for distribution systems

    Energy Technology Data Exchange (ETDEWEB)

    Elmitwally, A. [Elect. Eng. Dept., Mansoura University, Mansoura 35516 (Egypt)

    2009-11-15

    In this paper, a new hybrid fault current limiter is proposed for primary distribution systems. It incorporates a high temperature superconducting element in parallel with other two branches. The first is an inductive impedance to share the fault current with. The second branch is a gate-turn-off thyristor switch controlled to work in either of two modes. For the main mode, it controls the temperature of the superconducting element and protect it against damaging excessive heating. Instead, it keeps the device applicable without that superconducting element in the auxiliary operation mode. The design, control and operation of the device is addressed. Its performance in 11 kV distribution systems with DG is investigated. The factors affecting the device behavior for different scenarios are explored. (author)

  14. Development of superconducting magnetic bearing for flywheel energy storage system

    Science.gov (United States)

    Miyazaki, Yoshiki; Mizuno, Katsutoshi; Yamashita, Tomohisa; Ogata, Masafumi; Hasegawa, Hitoshi; Nagashima, Ken; Mukoyama, Shinichi; Matsuoka, Taro; Nakao, Kengo; Horiuch, Shinichi; Maeda, Tadakazu; Shimizu, Hideki

    2016-12-01

    We have been developing a superconducting magnetic bearing (SMB) that has high temperature superconducting (HTS) coils and bulks for a flywheel energy storage system (FESS) that have an output capability of 300 kW and a storage capacity of 100 kW h (Nagashima et al., 2008, Hasegawa et al., 2015) [1,2]. The world largest-class FESS with a SMB has been completed and test operation has started. A CFRP flywheel rotor that had a diameter of 2 m and weight of 4000 kg had a capability to be rotated at a maximum speed of 6000 min-1. The SMB using superconducting material both for its rotor and stator is capable of supporting the flywheel that had the heavy weight and the high seed rotation mentioned above. This paper describes the design of the SMB and results of the cooling test of the SMB.

  15. Applications of the superconducting lossless resistor in electric power systems

    Energy Technology Data Exchange (ETDEWEB)

    Qian Ping; Chen Jiyan; Hua Rong; Chen Zhongming

    2003-04-15

    The main features and some very useful applications of the superconducting lossless resistor (LLR) in electric power systems are introduced in this paper. According our opinion, there are two different kinds of LLR, i.e., the time-variant LLR (Tv-LLR) and the time-invariant LLR (Ti-LLR). First, Tv-LLR is well suited for developing new type of the fault-current limiter (FCL) since it has no heat energy dissipated from its superconducting element during current-limiting process. Second, it may be used to produce the high voltage circuit breaker with current limiting ability. While Ti-LLR may be used to manufacture a new type of the superconducting transformer, with compact volume, lightweight and with continuously regulated turn-ratio (so it familiarized as time-variable transformer, TVT)

  16. Test equipment for a flywheel energy storage system using a magnetic bearing composed of superconducting coils and superconducting bulks

    Science.gov (United States)

    Ogata, M.; Matsue, H.; Yamashita, T.; Hasegawa, H.; Nagashima, K.; Maeda, T.; Matsuoka, T.; Mukoyama, S.; Shimizu, H.; Horiuchi, S.

    2016-05-01

    Energy storage systems are necessary for renewable energy sources such as solar power in order to stabilize their output power, which fluctuates widely depending on the weather. Since ‘flywheel energy storage systems’ (FWSSs) do not use chemical reactions, they do not deteriorate due to charge or discharge. This is an advantage of FWSSs in applications for renewable energy plants. A conventional FWSS has capacity limitation because of the mechanical bearings used to support the flywheel. Therefore, we have designed a superconducting magnetic bearing composed of a superconducting coil stator and a superconducting bulk rotor in order to solve this problem, and have experimentally manufactured a large scale FWSS with a capacity of 100 kWh and an output power of 300 kW. The superconducting magnetic bearing can levitate 4 tons and enables the flywheel to rotate smoothly. A performance confirmation test will be started soon. An overview of the superconducting FWSS is presented in this paper.

  17. Mirror Fusion Test Facility: Superconducting magnet system cost analysis

    Energy Technology Data Exchange (ETDEWEB)

    1977-07-01

    At the request of Victor Karpenko, Project manager for LLL`s Mirror Fusion Test Facility, EG&G has prepared this independent cost analysis for the proposed MFTF Superconducting Magnet System. The analysis has attempted to show sufficient detail to provide adequate definition for a basis of estimating costs.

  18. Influence of Multi-Photon Process on Entanglement of Interacting System of the Qubit and Thermal Field

    Institute of Scientific and Technical Information of China (English)

    LI Wei-Jun; LI Shang-Bin; XU Jing-Bo

    2004-01-01

    @@ We study the system of a single qubit couples to a single mode thermal field according to a multi-photon JaynesCummings-type interaction with phase decoherence. Both the time evolving entanglement and the stationary state entanglement are calculated by adopting the log-negativity as a measure. It is found that the multi-photon process can enhance the stationary state entanglement of this system and can enlarge the range of the parameter△/g and the mean photon number of initial thermal field in which the stationary state is distillable.

  19. Development of a cooling system for superconducting wind turbine generator

    Science.gov (United States)

    Furuse, Mitsuho; Fuchino, Shuichiro; Okano, Makoto; Natori, Naotake; Yamasaki, Hirofumi

    2016-12-01

    This paper deals with the cooling system for high-Tc superconducting (HTS) generators for large capacity wind turbines. We have proposed a cooling system with a heat exchanger and circulation pumps to cool HTS field windings designed for 10 MW-class superconducting generators. In the cooling system, the refrigerants in the stationary and rotational systems are completely separated; heat between the two systems exchanges using a rotational-stationary heat exchanger. The refrigerant in rotational system is circulated by highly reliable pumps. We designed the rotational-stationary heat exchanger based on a conventional shell-and tube type heat exchanger. We also demonstrated that heat exchange in cryogenic temperature is possible with a commercially available heat exchanger. We devised a novel and highly reliable cryogenic helium circulation pump with magnetic reciprocating rotation system and verified its underlying principle with a small-scale model.

  20. Quantum chemistry and charge transport in biomolecules with superconducting circuits

    Science.gov (United States)

    García-Álvarez, L.; Las Heras, U.; Mezzacapo, A.; Sanz, M.; Solano, E.; Lamata, L.

    2016-06-01

    We propose an efficient protocol for digital quantum simulation of quantum chemistry problems and enhanced digital-analog quantum simulation of transport phenomena in biomolecules with superconducting circuits. Along these lines, we optimally digitize fermionic models of molecular structure with single-qubit and two-qubit gates, by means of Trotter-Suzuki decomposition and Jordan-Wigner transformation. Furthermore, we address the modelling of system-environment interactions of biomolecules involving bosonic degrees of freedom with a digital-analog approach. Finally, we consider gate-truncated quantum algorithms to allow the study of environmental effects.

  1. Quantum chemistry and charge transport in biomolecules with superconducting circuits

    Science.gov (United States)

    García-Álvarez, L.; Las Heras, U.; Mezzacapo, A.; Sanz, M.; Solano, E.; Lamata, L.

    2016-01-01

    We propose an efficient protocol for digital quantum simulation of quantum chemistry problems and enhanced digital-analog quantum simulation of transport phenomena in biomolecules with superconducting circuits. Along these lines, we optimally digitize fermionic models of molecular structure with single-qubit and two-qubit gates, by means of Trotter-Suzuki decomposition and Jordan-Wigner transformation. Furthermore, we address the modelling of system-environment interactions of biomolecules involving bosonic degrees of freedom with a digital-analog approach. Finally, we consider gate-truncated quantum algorithms to allow the study of environmental effects. PMID:27324814

  2. Quantum chemistry and charge transport in biomolecules with superconducting circuits.

    Science.gov (United States)

    García-Álvarez, L; Las Heras, U; Mezzacapo, A; Sanz, M; Solano, E; Lamata, L

    2016-06-21

    We propose an efficient protocol for digital quantum simulation of quantum chemistry problems and enhanced digital-analog quantum simulation of transport phenomena in biomolecules with superconducting circuits. Along these lines, we optimally digitize fermionic models of molecular structure with single-qubit and two-qubit gates, by means of Trotter-Suzuki decomposition and Jordan-Wigner transformation. Furthermore, we address the modelling of system-environment interactions of biomolecules involving bosonic degrees of freedom with a digital-analog approach. Finally, we consider gate-truncated quantum algorithms to allow the study of environmental effects.

  3. New power-conditioning systems for superconducting magnetic energy storage

    Science.gov (United States)

    Han, Byung Moon

    1992-06-01

    This dissertation presents the development of new power-conditioning systems for superconducting magnetic energy storage (SMES), which can regulate fast and independently the active and reactive powers demanded in the ac network. Three new power-conditioning systems were developed through a systematic approach to match the requirements of the superconducting coil and the ac power network. Each of these new systems is composed of ten 100-MW modules connected in parallel to handle the large current through the superconducting coil. The first system, which was published in the IEEE Transactions on Energy Conversion, consists of line-commutated 24-pulse converter, a thyristor-switched tap-changing transformer, and a thyristor-switched capacitor bank. The second system, which was accepted for publication in the IEEE Transactions on Energy Conversion, consists of a 12-pulse GTO (gate turn-off thyristor) converter and a thyristor-switched tap-changing transformer. The third system, which was submitted to the International Journal of Energy System, consists of a dc chopper and a voltage-source PWM (pulse width modulation) converter. The operational concept of each new system is verified through mathematical analyses and computer simulations. The dynamic interaction of each new system with the ac network and the superconducting coil is analyzed using a simulation model with EMTP (electro-magnetic transients program). The analysis results prove that each new system is feasible and realizable. Each system can regulate the active and reactive powers of the utility network rapidly and independently, and each offer a significant reduction of the system rating by reducing the reactive power demand in the converter. Feasible design for each new system was introduced using a modular design approach based on the 1000 MW/5000 MWH plant, incorporating commercially available components and proven technologies.

  4. Type-1.5 superconductivity in multicomponent systems

    Science.gov (United States)

    Babaev, E.; Carlström, J.; Silaev, M.; Speight, J. M.

    2017-02-01

    In general a superconducting state breaks multiple symmetries and, therefore, is characterized by several different coherence lengths ξi, i = 1 , … , N . Moreover in multiband material even superconducting states that break only a single symmetry are nonetheless described, under certain conditions by multi-component theories with multiple coherence lengths. As a result of that there can appear a state where some coherence lengths are smaller and some are larger than the magnetic field penetration length λ: ξ1 ≤ξ2 … recently termed "type-1.5" superconductivity. This breakdown of type-1/type-2 dichotomy is rather generic near a phase transition between superconducting states with different symmetries. The examples include the transitions between U(1) and U(1) × U(1) states or between U(1) and U(1) × Z2 states. The later example is realized in systems that feature transition between s-wave and s + is states. The extra fundamental length scales have many physical consequences. In particular in these regimes vortices can attract one another at long range but repel at shorter ranges. Such a system can form vortex clusters in low magnetic fields. The vortex clustering in the type-1.5 regime gives rise to many physical effects, ranging from macroscopic phase separation in domains of different broken symmetries, to unusual transport properties. Prepared for the proceedings of Vortex IX conference, Rhodes 12-17 September 2015.

  5. Control and data acquisition systems for high field superconducting wigglers

    CERN Document Server

    Batrakov, A; Karpov, G; Kozak, V; Kuzin, M; Kuper, E; Mamkin, V; Mezentsev, N A; Repkov, V V; Selivanov, A; Shkaruba, V A

    2001-01-01

    This paper describes the control and DAQ system of superconducting wigglers with magnetic field range up to 10.3 T. The first version of the system controls a 7 T superconducting wiggler prepared for installation at Bessy-II (Germany). The second one controls a 10 T wiggler which is under testing now at the SPring-8 site (Japan). Both systems are based on VME apparatus. The set of specialized VME modules is elaborated to arrange wiggler power supply control, full time wiggler monitoring, and magnetic field high accuracy measurement and field stabilization. The software for the control of the wigglers is written in C language for VxWorks operation system for a Motorola-162 VME controller. The task initialization, stops and acquisition of the data can be done from the nearest personal computer (FTP host for VME), or from the remote system as well.

  6. Magnetoelastic instabilities and vibrations of superconducting-magnet systems

    Energy Technology Data Exchange (ETDEWEB)

    Moon, F.C.

    1982-03-01

    This report describes the research accomplished under Depatment of Energy/NSF grants associated with the structural design of superconducting magnets for magnetic fusion reactors. The main results pertain to magnetomechanical instabilities in toroidal and poloidal field magnets for proposed fusion reactors. One major accomplishment was the building and testing of a 1/75th scale superconducting structural model of a 16 coil Tokamak reactor. Using this model the buckling of toroidal and poloidal field coils under different constraints was observed. A series of dynamic tests were performed, including the effect of currents on natural frequencies, poloidal-toroidal coil interaction, and buckling induced superconducting-normal quench of the coils. The stability of poloidal coils in a toroidal magnet field were investigated with the 16 coil torus. A superconducting poloidal coil was observed to become statically unstable or buckle as the current approached a certain value. Magnetoelastic buckling of other magnet systems such as a yin-yang pair of magnets, Ioffe coils, and discrete coil solenoids were also studied.

  7. Semiconductor adiabatic qubits

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, Malcolm S.; Witzel, Wayne; Jacobson, Noah Tobias; Ganti, Anand; Landahl, Andrew J.; Lilly, Michael; Nguyen, Khoi Thi; Bishop, Nathaniel; Carr, Stephen M.; Bussmann, Ezra; Nielsen, Erik; Levy, James Ewers; Blume-Kohout, Robin J.; Rahman, Rajib

    2016-12-27

    A quantum computing device that includes a plurality of semiconductor adiabatic qubits is described herein. The qubits are programmed with local biases and coupling terms between qubits that represent a problem of interest. The qubits are initialized by way of a tuneable parameter, a local tunnel coupling within each qubit, such that the qubits remain in a ground energy state, and that initial state is represented by the qubits being in a superposition of |0> and |1> states. The parameter is altered over time adiabatically or such that relaxation mechanisms maintain a large fraction of ground state occupation through decreasing the tunnel coupling barrier within each qubit with the appropriate schedule. The final state when tunnel coupling is effectively zero represents the solution state to the problem represented in the |0> and |1> basis, which can be accurately read at each qubit location.

  8. Enhanced dynamical entanglement transfer with multiple qubits

    CERN Document Server

    Serafini, A; Kim, M S; Paternostro, M

    2005-01-01

    We present two strategies to enhance the dynamical entanglement transfer from continuous variable (CV) to finite dimensional systems by employing multiple qubits. First, we consider the entanglement transfer to a composite finite dimensional system of many qubits simultaneously interacting with a bipartite CV field. We show that, considering realistic conditions in the generation of CV entanglement, a small (``mesoscopic'') number of qubits resonantly coupled to the CV system is sufficient for an almost complete dynamical transfer of the entanglement. Our analysis also sheds further light on the transition between mesoscopic and macroscopic behaviours of composite finite dimensional systems coupled to bosonic fields (like atomic clouds interacting with light). Furthermore, we present a protocol based on sequential interactions of the CV system with some ancillary qubit systems and on subsequent measurements, allowing to probabilistically convert CV entanglement into `almost perfect' Bell pairs of two qubits. ...

  9. A fully superconducting bearing system for flywheel applications

    Science.gov (United States)

    Xu, Ke-xi; Wu, Dong-jie; Jiao, Y. L.; Zheng, M. H.

    2016-06-01

    A fully superconducting magnetic suspension structure has been designed and constructed for the purpose of superconducting bearing applications in flywheel energy storage systems. A thrust type bearing and two journal type bearings, those that are composed of melt textured high-Tc superconductor YBCO bulks and Nd-Fe-B permanent magnets, are used in the bearing system. The rotor dynamical behaviors, including critical speeds and rotational loss, are studied. Driven by a variable-frequency three-phase induction motor, the rotor shaft attached with a 25 kg flywheel disc can be speeded up to 15 000 rpm without serious resonance occurring. Although the flywheel system runs stably in the supercritical speeds region, very obvious rotational loss is unavoidable. The loss mechanism has been discussed in terms of eddy current loss and hysteresis loss.

  10. A tunable rf SQUID manipulated as flux and phase qubits

    Energy Technology Data Exchange (ETDEWEB)

    Poletto, S; Lisenfeld, J; Lukashenko, A; Ustinov, A V [Physikalisches Institut, Universitaet Karlsruhe (Thailand), D-76131 Karlsruhe (Germany); Chiarello, F; Castellano, M G [Istituto di Fotonica e Nanotecnologie, CNR, 00156 Roma (Italy); Carelli, P [Dipartimento di Ingegneria Elettrica, Universita dell' Aquila, 67040 Monteluco di Roio (Italy)], E-mail: ustinov@physik.uni-karlsruhe.de

    2009-12-15

    We report on two different manipulation procedures of a tunable rf superconducting quantum interference device (SQUID). First, we operate this system as a flux qubit, where the coherent evolution between the two flux states is induced by a rapid change of the energy potential, turning it from a double well into a single well. The measured coherent Larmor-like oscillation of the retrapping probability in one of the wells has a frequency ranging from 6 to 20 GHz, with a theoretically expected upper limit of 40 GHz. Furthermore, here we also report a manipulation of the same device as a phase qubit. In the phase regime, the manipulation of the energy states is realized by applying a resonant microwave drive. In spite of the conceptual difference between these two manipulation procedures, the measured decay times of Larmor oscillation and microwave-driven Rabi oscillation are rather similar. Due to the higher frequency of the Larmor oscillations, the microwave-free qubit manipulation allows for much faster coherent operations.

  11. Universal holonomic quantum gates in decoherence-free subspace on superconducting circuits

    Science.gov (United States)

    Xue, Zheng-Yuan; Zhou, Jian; Wang, Z. D.

    2015-08-01

    To implement a set of universal quantum logic gates based on non-Abelian geometric phases, it is conventional wisdom that quantum systems beyond two levels are required, which is extremely difficult to fulfill for superconducting qubits and appears to be a main reason why only single-qubit gates were implemented in a recent experiment [A. A. Abdumalikov, Jr. et al., Nature (London) 496, 482 (2013), 10.1038/nature12010]. Here we propose to realize nonadiabatic holonomic quantum computation in decoherence-free subspace on circuit QED, where one can use only the two levels in transmon qubits, a usual interaction, and a minimal resource for the decoherence-free subspace encoding. In particular, our scheme not only overcomes the difficulties encountered in previous studies but also can still achieve considerably large effective coupling strength, such that high-fidelity quantum gates can be achieved. Therefore, the present scheme makes realizing robust holonomic quantum computation with superconducting circuits very promising.

  12. Scalable in situ qubit calibration during repetitive error detection

    Science.gov (United States)

    Kelly, J.; Barends, R.; Fowler, A. G.; Megrant, A.; Jeffrey, E.; White, T. C.; Sank, D.; Mutus, J. Y.; Campbell, B.; Chen, Yu; Chen, Z.; Chiaro, B.; Dunsworth, A.; Lucero, E.; Neeley, M.; Neill, C.; O'Malley, P. J. J.; Quintana, C.; Roushan, P.; Vainsencher, A.; Wenner, J.; Martinis, John M.

    2016-09-01

    We present a method to optimize qubit control parameters during error detection which is compatible with large-scale qubit arrays. We demonstrate our method to optimize single or two-qubit gates in parallel on a nine-qubit system. Additionally, we show how parameter drift can be compensated for during computation by inserting a frequency drift and using our method to remove it. We remove both drift on a single qubit and independent drifts on all qubits simultaneously. We believe this method will be useful in keeping error rates low on all physical qubits throughout the course of a computation. Our method is O (1 ) scalable to systems of arbitrary size, providing a path towards controlling the large numbers of qubits needed for a fault-tolerant quantum computer.

  13. Flux qubits in a planar circuit quantum electrodynamics architecture: Quantum control and decoherence

    Science.gov (United States)

    Orgiazzi, J.-L.; Deng, C.; Layden, D.; Marchildon, R.; Kitapli, F.; Shen, F.; Bal, M.; Ong, F. R.; Lupascu, A.

    2016-03-01

    We report experiments on superconducting flux qubits in a circuit quantum electrodynamics (cQED) setup. Two qubits, independently biased and controlled, are coupled to a coplanar waveguide resonator. Dispersive qubit state readout reaches a maximum contrast of 72%. We measure energy relaxation times at the symmetry point of 5 and 10 μ s , corresponding to 7 and 20 μ s when relaxation through the resonator due to Purcell effect is subtracted out, and levels of flux noise of 2.6 and 2.7 μ Φ0/√{Hz} at 1 Hz for the two qubits. We discuss the origin of decoherence in the measured devices. The strong coupling between the qubits and the cavity leads to a large, cavity-mediated, qubit-qubit coupling. This coupling, which is characterized spectroscopically, reaches 38 MHz. These results demonstrate the potential of cQED as a platform for fundamental investigations of decoherence and quantum dynamics of flux qubits.

  14. Detecting bit-flip errors in a logical qubit using stabilizer measurements.

    Science.gov (United States)

    Ristè, D; Poletto, S; Huang, M-Z; Bruno, A; Vesterinen, V; Saira, O-P; DiCarlo, L

    2015-04-29

    Quantum data are susceptible to decoherence induced by the environment and to errors in the hardware processing it. A future fault-tolerant quantum computer will use quantum error correction to actively protect against both. In the smallest error correction codes, the information in one logical qubit is encoded in a two-dimensional subspace of a larger Hilbert space of multiple physical qubits. For each code, a set of non-demolition multi-qubit measurements, termed stabilizers, can discretize and signal physical qubit errors without collapsing the encoded information. Here using a five-qubit superconducting processor, we realize the two parity measurements comprising the stabilizers of the three-qubit repetition code protecting one logical qubit from physical bit-flip errors. While increased physical qubit coherence times and shorter quantum error correction blocks are required to actively safeguard the quantum information, this demonstration is a critical step towards larger codes based on multiple parity measurements.

  15. Contextuality without nonlocality in a superconducting quantum system

    Science.gov (United States)

    Jerger, Markus; Reshitnyk, Yarema; Oppliger, Markus; Potočnik, Anton; Mondal, Mintu; Wallraff, Andreas; Goodenough, Kenneth; Wehner, Stephanie; Juliusson, Kristinn; Langford, Nathan K.; Fedorov, Arkady

    2016-10-01

    Classical realism demands that system properties exist independently of whether they are measured, while noncontextuality demands that the results of measurements do not depend on what other measurements are performed in conjunction with them. The Bell-Kochen-Specker theorem states that noncontextual realism cannot reproduce the measurement statistics of a single three-level quantum system (qutrit). Noncontextual realistic models may thus be tested using a single qutrit without relying on the notion of quantum entanglement in contrast to Bell inequality tests. It is challenging to refute such models experimentally, since imperfections may introduce loopholes that enable a realist interpretation. Here we use a superconducting qutrit with deterministic, binary-outcome readouts to violate a noncontextuality inequality while addressing the detection, individual-existence and compatibility loopholes. This evidence of state-dependent contextuality also demonstrates the fitness of superconducting quantum circuits for fault-tolerant quantum computation in surface-code architectures, currently the most promising route to scalable quantum computing.

  16. Realization of a Cascaded Quantum System: Heralded Absorption of a Single Photon Qubit by a Single-Electron Charged Quantum Dot.

    Science.gov (United States)

    Delteil, Aymeric; Sun, Zhe; Fält, Stefan; Imamoğlu, Atac

    2017-04-28

    Photonic losses pose a major limitation for the implementation of a quantum state transfer between nodes of a quantum network. A measurement that heralds a successful transfer without revealing any information about the qubit may alleviate this limitation. Here, we demonstrate the heralded absorption of a single photonic qubit, generated by a single neutral quantum dot, by a single-electron charged quantum dot that is located 5 m away. The transfer of quantum information to the spin degree of freedom takes place upon the emission of a photon; for a properly chosen or prepared quantum dot, the detection of this photon yields no information about the qubit. We show that this process can be combined with local operations optically performed on the destination node by measuring classical correlations between the absorbed photon color and the final state of the electron spin. Our work suggests alternative avenues for the realization of quantum information protocols based on cascaded quantum systems.

  17. Optimum design of flywheel storage system using superconducting magnetic bearings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Soo Hun; Kim, Jong Soo; Kim, Jung Guen [Ajou University, Suwon (Korea)

    1999-03-01

    The flywheel energy storage system using superconducting magnetic bearings is a device to store electrical energy as rotational kinetic energy by motor and to convert it to electrical energy by generator when it is necessary. An analytical model of the SMB-FESS is necessary to identify the system behavior. At first, we have to model the superconducting magnetic bearings that have different characteristics from mechanical and the electric magnetic bearing. Modeling the SMB is same as estimating the bearing parameter. The theoretical modal parameter is calculated through the equation of motion and the experimental modal parameter is estimated through the impact testing (modal testing). The bearing parameter is searched by using the non-linear least square method until the theoretical result corresponds to the experimental result. The suggested modeling method is verified by comparing experimental and analytical frequency response function. The loss mechanisms associated with the combined effects of magnetic unbalance and hysteretic damping in the superconducting flywheel system have been modeled under the assumption that dynamic characteristics of the bearing can be approximated by a linear, elastic anisotropic spring with complex stiffness. Theoretical energy loss model effected by unbalance is derived from generalized rotational model including gyroscopic effect and generalized response. The validity of suggested energy loss model is confirmed by comparing experimental deceleration curve. (author). 12 refs., 28 figs., 10 tabs.

  18. STIC: Development of a System of Nonlocally Interconnected Spin Qubits for Quantum Computation

    Science.gov (United States)

    2012-09-23

    Taylor, W. Dür, P. Zoller, A. Yacoby, C. Marcus, M. Lukin. Solid-State Circuit for Spin Entanglement Generation and Purification, Physical Review Letters , (06...Triplet Qubit, Physical Review Letters , (10 2009): 160503. doi: 10.1103/PhysRevLett.103.160503 2012/09/04 08:13:52 16 D. J. Reilly, J. M. Taylor, J...Double Quantum Dot, Physical Review Letters , (07 2006): 0. doi: 10.1103/PhysRevLett.97.056801 2012/09/04 02:25:07 7 J. Taylor, J. Petta, A. Johnson, A

  19. Dynamics of Super Quantum Correlations and Quantum Correlations for a System of Three Qubits

    Science.gov (United States)

    Siyouri, F.; El Baz, M.; Rfifi, S.; Hassouni, Y.

    2016-04-01

    The dynamics of quantum discord for two qubits independently interacting with dephasing reservoirs have been studied recently. The authors [Phys. Rev. A 88 (2013) 034304] found that for some Bell-diagonal states (BDS) which interact with their environments the calculation of quantum discord could experience a sudden transition in its dynamics, this phenomenon is known as the sudden change. Here in the present paper, we analyze the dynamics of normal quantum discord and super quantum discord for tripartite Bell-diagonal states independently interacting with dephasing reservoirs. Then, we find that basis change does not necessary mean sudden change of quantum correlations.

  20. Characteristic parameters and dynamics of two-qubit system in self-assembled monolayers

    CERN Document Server

    Rinkevicius, Z; Tsifrinovich, V I; Tretiak, S; Rinkevicius, Zilvinas; Berman, Gennady P.; Tsifrinovich, Vladimir I.; Tretiak, Sergei

    2004-01-01

    We suggest the application of nitronylnitroxide substituted with methyl group and 2,2,6,6-tetramethylpiperidin organic radicals as 1/2-spin qubits for self-assembled monolayer quantum devices. We show that the oscillating cantilever driven adiabatic reversals technique can provide the read-out of the spin states. We compute components of the $g$-tensor and dipole-dipole interaction tensor for these radicals. We show that the delocalization of the spin in the radical may significantly influence the dipole-dipole interaction between the spins.

  1. Entanglement Dynamics of Two-Qubit System in Different Types of Noisy Channels

    Institute of Scientific and Technical Information of China (English)

    SHAN Chuan-Jia; LIU Ji-Bing; CHENG Wei-Wen; LIU Tang-Kun; HUANG Yan-Xia; LI Hong

    2009-01-01

    In this paper, we study entanglement dynamics of a two-qubit extended Werner-like state locally interacting with independent noisy channels, i.e., amplitude damping, phase damping, and depolarizing channels. We show that the purity of initial entangled state has direct impacts on the entanglement robustness in each noisy channel. That is, if the initial entangled state is prepared in mixed instead of pure form, the state may exhibit entanglement sudden death (ESD) and/or be decreased for the critical probability at which the entanglement disappear.

  2. A control system for and a method of controlling a superconductive rotating electrical machine

    DEFF Research Database (Denmark)

    2014-01-01

    This invention relates to a method of controlling and a control system (100) for a superconductive rotating electric machine (200) comprising at least one superconductive winding (102; 103), where the control system (100) is adapted to control a power unit (101) supplying during use the at least...... one superconductive winding (102; 103) with power or receiving during use power from the at least one superconductive winding (102; 103), wherein the control system (100) is further adapted to, for at least one superconductive winding (102; 103), dynamically receive one or more representations of one...... superconductive winding (102; 103) by the power unit (101) where the one or more electrical current values is/are derived taking into account the received one or more actual values (110, 111). In this way,greater flexibility and more precise control of the performance of the superconducting rotating electrical...

  3. Improving the Quality of Heisenberg Back-Action of Qubit Measurements made with Parametric Amplifiers

    Science.gov (United States)

    Sliwa, Katrina

    The quantum back-action of the measurement apparatus arising from the Heisenberg uncertainty principle is both a fascinating phenomenon and a powerful way to apply operations on quantum systems. Unfortunately, there are other effects which may overwhelm the Heisenberg back-action. This thesis focuses on two effects arising in the dispersive measurement of superconducting qubits made with two ultra-low-noise parametric amplifiers, the Josephson bifurcation amplifier (JBA) and the Josephson parametric converter (JPC). The first effect is qubit dephasing due to excess photons in the cavity coming from rogue radiation emitted by the first amplifier stage toward the system under study. This problem arises primarily in measurements made with the JBA, where a strong resonant pump tone is traditionally used to provide the energy for amplification. Replacing the single strong pump tone with two detuned pump tones minimized this dephasing to the point where the Heisenberg back-action of measurements made with the JBA could be observed. The second effect is reduced measurement efficiency arising from losses between the qubit and the parametric amplifier. Most commonly used parametric amplifiers operate in reflection, requiring additional lossy, magnetic elements known as circulators both to separate input from output, and to protect the qubits from dephasing due to the amplified reflected signal. This work presents two alternative directional elements, the Josephson circulator, which is both theoretically loss-less and does not rely upon the strong magnetic fields needed for traditional circulators, and the Josephson directional amplifier which does not send any amplified signal back toward the qubit. Both of these elements achieve directionality by interfering multiple parametric processes inside a single JPC, allowing for in-situ switching between the two modes of operation. This brings valuable experimental flexibility, and also makes these devices strong candidates for

  4. Engineering the quantum-classical interface of solid-state qubits

    Science.gov (United States)

    Reilly, David J.

    2015-10-01

    Spanning a range of hardware platforms, the building-blocks of quantum processors are today sufficiently advanced to begin work on scaling-up these systems into complex quantum machines. A key subsystem of all quantum machinery is the interface between the isolated qubits that encode quantum information and the classical control and readout technology needed to operate them. As few-qubit devices are combined to construct larger, fault-tolerant quantum systems in the near future, the quantum-classical interface will pose new challenges that increasingly require approaches from the engineering disciplines in combination with continued fundamental advances in physics, materials and mathematics. This review describes the subsystems comprising the quantum-classical interface from the viewpoint of an engineer, experimental physicist or student wanting to enter the field of solid-state quantum information technology. The fundamental signalling operations of readout and control are reviewed for a variety of qubit platforms, including spin systems, superconducting implementations and future devices based on topological degrees-of-freedom. New engineering opportunities for technology development at the boundary between qubits and their control hardware are identified, transversing electronics to cryogenics.

  5. Application concepts of small regenerative cryocoolers in superconducting magnet systems

    Science.gov (United States)

    van der Laan, M. T. G.; Tax, R. B.; ten Kate, H. H. J.

    Superconducting magnets are in growing use outside laboratories for example MRI scanners in hospitals. Other applications under development are magnet systems for separation, levitated trains and ship propulsion. The application of cryocoolers can make these systems more practical. Interfacing these cryocoolers to the magnets can be designed in several different ways. The four basic methods will be dealt with. Test results of a realized GM cryocooler-SC magnet system will be shown. It handles about a 1:3 scale MRI magnet of which one of the six coils has been successfully tested at temperatures between 10 and 14 K.

  6. Autonomously stabilized entanglement between two superconducting quantum bits.

    Science.gov (United States)

    Shankar, S; Hatridge, M; Leghtas, Z; Sliwa, K M; Narla, A; Vool, U; Girvin, S M; Frunzio, L; Mirrahimi, M; Devoret, M H

    2013-12-19

    Quantum error correction codes are designed to protect an arbitrary state of a multi-qubit register from decoherence-induced errors, but their implementation is an outstanding challenge in the development of large-scale quantum computers. The first step is to stabilize a non-equilibrium state of a simple quantum system, such as a quantum bit (qubit) or a cavity mode, in the presence of decoherence. This has recently been accomplished using measurement-based feedback schemes. The next step is to prepare and stabilize a state of a composite system. Here we demonstrate the stabilization of an entangled Bell state of a quantum register of two superconducting qubits for an arbitrary time. Our result is achieved using an autonomous feedback scheme that combines continuous drives along with a specifically engineered coupling between the two-qubit register and a dissipative reservoir. Similar autonomous feedback techniques have been used for qubit reset, single-qubit state stabilization, and the creation and stabilization of states of multipartite quantum systems. Unlike conventional, measurement-based schemes, the autonomous approach uses engineered dissipation to counteract decoherence, obviating the need for a complicated external feedback loop to correct errors. Instead, the feedback loop is built into the Hamiltonian such that the steady state of the system in the presence of drives and dissipation is a Bell state, an essential building block for quantum information processing. Such autonomous schemes, which are broadly applicable to a variety of physical systems, as demonstrated by the accompanying paper on trapped ion qubits, will be an essential tool for the implementation of quantum error correction.

  7. Superconducting instability of a non-centrosymmetric system

    Science.gov (United States)

    Grzybowska, Dorota; Harań, Grzegorz

    2017-03-01

    The Fermi gas approach to the weak-coupling superconductivity in the non-centrosymmetric systems lead to a conclusion of an approximately spin-orbit coupling independent critical temperature of the singlet states as well as the triplet states defined by the order parameter aligned with the antisymmetric spin-orbit coupling vector. We indicate that the above results follow from a simplified approximation of a density of states by a constant Fermi surface value. Such a scenario does not properly account for the spin-split quasiparticle energy spectrum and reduces the spin-orbit coupling influence on superconductivity to the bare pair-breaking effect of a lifted spin degeneracy. Applying the tight-binding model, which captures the primary features of the spin-split energy band, i.e., its enhanced width and the spin-orbit coupling induced redistribution of the spectral weights in the density of states, we calculate the critical temperature of a non-centrosymmetric superconductor. We report a general tendency of the critical temperature to be suppressed by the antisymmetric spin-orbit coupling. We indicate that, the monotonic decrease of the critical temperature may be altered by the spin-orbit coupling induced van Hove singularities which, when driven to the Fermi level, generate maxima in the phase diagram. Extending our considerations to the intermediate-coupling superconductivity we point out that the spin-orbit coupling induced change of the critical temperature depends on the structure of the electronic energy band and both - the strength and symmetry of the pair potential. Finally, we discuss the mixed singlet-triplet state superconducting instability and establish conditions concerning the symmetry of the singlet and triplet counterparts as well as the range of the spin-orbit coupling energy which make such a phase transition possible.

  8. Toward a superconducting quantum computer. Harnessing macroscopic quantum coherence.

    Science.gov (United States)

    Tsai, Jaw-Shen

    2010-01-01

    Intensive research on the construction of superconducting quantum computers has produced numerous important achievements. The quantum bit (qubit), based on the Josephson junction, is at the heart of this research. This macroscopic system has the ability to control quantum coherence. This article reviews the current state of quantum computing as well as its history, and discusses its future. Although progress has been rapid, the field remains beset with unsolved issues, and there are still many new research opportunities open to physicists and engineers.

  9. Modular transportable superconducting magnetic Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lieurance, D.; Kimball, F.; Rix, C. [Martin Marietta Space Magnetics, San Diego, CA (United States)

    1994-12-31

    Design and cost studies were performed for the magnet components of mid-size (1-5 MWh), cold supported SMES systems using alternative configurations. The configurations studied included solenoid magnets, which required onsite assembly of the magnet system, and toroid and racetrack configurations which consisted of factory assembled modules. For each configuration, design concepts and cost information were developed for the major features of the magnet system including the conductor, electrical insulation, and structure. These studies showed that for mid-size systems, the costs of solenoid and toroid magnet configurations are comparable and that the specific configuration to be used for a given application should be based upon customer requirements such as limiting stray fields or minimizing risks in development or construction.

  10. Odd-frequency Superconductivity in Driven Systems

    Science.gov (United States)

    Triola, Christopher; Balatsky, Alexander

    We show that Berezinskii's classification of the symmetries of Cooper pair amplitudes in terms of parity under transformations that invert spin, space, time, and orbital degrees of freedom holds for driven systems even in the absence of translation invariance. We then discuss the conditions under which pair amplitudes which are odd in frequency can emerge in driven systems. Considering a model Hamiltonian for a superconductor coupled to an external driving potential, we investigate the influence of the drive on the anomalous Green's function, density of states, and spectral function. We find that the anomalous Green's function develops odd in frequency component in the presence of an external drive. Furthermore we investigate how these odd-frequency terms are related to satellite features in the density of states and spectral function. Supported by US DOE BES E 304.

  11. Vibration-induced field fluctuations in a superconducting magnet

    Science.gov (United States)

    Britton, J. W.; Bohnet, J. G.; Sawyer, B. C.; Uys, H.; Biercuk, M. J.; Bollinger, J. J.

    2016-06-01

    Superconducting magnets enable precise control of nuclear and electron spins, and are used in experiments that explore biological and condensed-matter systems, and fundamental atomic particles. In high-precision applications, a common view is that slow (Be+9 electron-spin qubits in the 4.46 -T field of a superconducting magnet. We measure a spin-echo T2 coherence time of ˜6 ms for the Be+9 electron-spin resonance at 124 GHz , limited by part-per-billion fractional fluctuations in the magnet's homogeneous field. Vibration isolation of the magnet improved T2 to ˜50 ms.

  12. Entanglement dynamics of a two-qubit system coupled individually to Ohmic baths

    CERN Document Server

    Duan, Liwei; Chen, Qinghu; Zhao, Yang

    2013-01-01

    The Davydov D1 ansatz, which assigns an individual bosonic trajectory to each spin state, is an efficient, yet accurate trial state for time-dependent variation of the the spin-boson model [J. Chem. Phys. 138, 084111 (2013)]. In this work, the Dirac-Frenkel time-dependent variational procedure utilizing the Davydov D1 ansatz is implemented to study entanglement dynamics of two qubits under the influence of two independent baths. The Ohmic spectral density is used without the Born-Markov approximation or the rotating-wave approximation. In the strong coupling regime the entanglement sudden death is always found to exist, while at the intermediate coupling regime, the entanglement dynamics calculated by Davydov D1 ansatz displays oscillatory behavior in addition to entanglement sudden death and revival.

  13. Odd-frequency superconductivity in driven systems

    Science.gov (United States)

    Triola, Christopher; Balatsky, Alexander V.

    2016-09-01

    We show that Berezinskii's classification of the symmetries of Cooper pair amplitudes holds for driven systems even in the absence of translation invariance. We then consider a model Hamiltonian for a superconductor coupled to an external driving potential and, treating the drive as a perturbation, we investigate the corrections to the anomalous Green's function, density of states, and spectral function. We find that in the presence of an external drive the anomalous Green's function develops terms that are odd in frequency and that the same mechanism responsible for these odd-frequency terms generates additional features in the density of states and spectral function.

  14. Josephson junction microwave modulators for qubit control

    Science.gov (United States)

    Naaman, O.; Strong, J. A.; Ferguson, D. G.; Egan, J.; Bailey, N.; Hinkey, R. T.

    2017-02-01

    We demonstrate Josephson junction based double-balanced mixer and phase shifter circuits operating at 6-10 GHz and integrate these components to implement both a monolithic amplitude/phase vector modulator and an I/Q quadrature mixer. The devices are actuated by flux signals, dissipate no power on chip, exhibit input saturation powers in excess of 1 nW, and provide cryogenic microwave modulation solutions for integrated control of superconducting qubits.

  15. Qubit readout with the Josephson Photomultiplier

    Science.gov (United States)

    Ribeill, Guilhem

    Recent demonstrations of error correction in many qubit circuits, as well as efforts to build a logical qubit, have shown the need for a simple and scalable superconducting quantum bit (qubit) readout. Current solutions based on heterodyne detection and cryogenic amplification of microwave readout tones may prove difficult to scale, while photon counting presents an attractive alternative. However, the development of counters operating at these frequencies has proved technically challenging. In this thesis, we describe the development of the Josephson Photomultiplier (JPM), a microwave photon counting circuit. We discuss the JPM theoretically, and describe the fabrication of the JPM using standard thin film lithography techniques. We measure its properties as a microwave photon counter using a qubit as an in-situ calibrated source of photons. We measure a JPM quantum efficiency at the few percent level. We then use the JPM to perform readout of a transmon qubit in both the dispersive and bright regimes. We observe raw measurement fidelities of 35% and 62% respectively. We discuss how the JPM and measurement protocol could be further optimized to achieve fidelities in excess of 90%.

  16. Generation of N-qubit W state with rf-SQUID qubits by adiabatic passage

    CERN Document Server

    Deng, Z J; Gao, K L

    2006-01-01

    A simple scheme is presented to generate n-qubit W state with rf-superconducting quantum interference devices (rf-SQUIDs) in cavity QED through adiabatic passage. Because of the achievable strong coupling for rf-SQUID qubits embedded in cavity QED, we can get the desired state with high success probability. Furthermore, the scheme is insensitive to position inaccuracy of the rf-SQUIDs. The numerical simulation shows that, by using present experimental techniques, we can achieve our scheme with very high success probability, and the fidelity could be eventually unity with the help of dissipation.

  17. Couplage variable entre un qubit de charge et un qubit de phase

    OpenAIRE

    Fay, Aurélien

    2008-01-01

    We have studied the quantum dynamics of a superconducting circuit based on a dc-SQUID coupled to a highly asymmetric Cooper pair transistor (ACPT). The dc-SQUID is a phase qubit controlled by a bias current and magnetic field. The ACPT is a charge qubit controlled by a bias current, magnetic flux and gate voltage. We have measured by microwave spectroscopy the lowest quantum levels of the coupled circuit as a function of the bias parameters. Quantum state measurements of the phase and charge ...

  18. Weak measurements with a qubit meter

    DEFF Research Database (Denmark)

    Wu, Shengjun; Mølmer, Klaus

    2009-01-01

    We derive schemes to measure the so-called weak values of quantum system observables by coupling of the system to a qubit meter system. We highlight, in particular, the meaning of the imaginary part of the weak values, and show how it can be measured directly on equal footing with the real part...... of the weak value. We present compact expressions for the weak value of single qubit observables and of product observables on qubit pairs. Experimental studies of the results are suggested with cold trapped ions....

  19. Feedback Control of a Solid-State Qubit Using High-Fidelity Projective Measurement

    NARCIS (Netherlands)

    Riste, D.; Bultink, C.C.; Lehnert, K.W.; DiCarlo, L.

    2012-01-01

    We demonstrate feedback control of a superconducting transmon qubit using discrete, projective measurement and conditional coherent driving. Feedback realizes a fast and deterministic qubit reset to a target state with 2.4% error averaged over input superposition states, and allows concatenating exp

  20. A vertical test system for China-ADS project injector II superconducting cavities

    Science.gov (United States)

    Chang, Wei; He, Yuan; Wen, Liang-Hua; Li, Chun-Long; Xue, Zong-Heng; Song, Yu-Kun; Zhang, Rui; Zhu, Zheng-Long; Gao, Zheng; Zhang, Cong; Sun, Lie-Peng; Yue, Wei-Ming; Zhang, Sheng-Hu; You, Zhi-Ming; Thomas, Joseph Powers(Tom Powers

    2014-05-01

    To test superconducting cavities, a vertical test system has been designed and set up at the Institute of Modern Physics (IMP). The system design is based on VCO-PLL hardware and the NI Labview software. The test of the HWR010#2 superconducting cavity shows that the function of this test system is satisfactory for testing the low frequency cavity.

  1. Kochen-Specker Qubits

    CERN Document Server

    Pavicic, M; McKay, B; Megill, N D; Pavicic, Mladen; Merlet, Jean-Pierre; Kay, Brendan Mc; Megill, Norman D.

    2005-01-01

    We give a constructive and exhaustive definition of Kochen-Specker (KS) qubits in the Hilbert space of any dimension as well as all the remaining vectors of the space. KS qubits are orthonormal states, i.e., vectors in n-dim Hilbert space, H^n, n>2 to which it is impossible to assign 1s and 0s in such a way that no two of mutually orthogonal vectors are both assigned 1. Our constructive definition of such KS vectors is based on the algorithms that generate linear MMP diagrams corresponding to blocks of orthogonal vectors in R^n, on algorithms that filter out diagrams on which algebraic 0-1 states cannot be defined, and on algorithms that solve nonlinear equations describing the orthogonalities of the vectors by means of polynomially complex interval analysis and self-teaching programs. To demonstrate the power of the algorithms, all 4-dim KS vector systems containing up to 24 vectors are generated and described, all 3-dim vector systems containing up to 30 vectors are scanned, and several general properties o...

  2. Extending the lifetime of a quantum bit with error correction in superconducting circuits.

    Science.gov (United States)

    Ofek, Nissim; Petrenko, Andrei; Heeres, Reinier; Reinhold, Philip; Leghtas, Zaki; Vlastakis, Brian; Liu, Yehan; Frunzio, Luigi; Girvin, S M; Jiang, L; Mirrahimi, Mazyar; Devoret, M H; Schoelkopf, R J

    2016-08-25

    Quantum error correction (QEC) can overcome the errors experienced by qubits and is therefore an essential component of a future quantum computer. To implement QEC, a qubit is redundantly encoded in a higher-dimensional space using quantum states with carefully tailored symmetry properties. Projective measurements of these parity-type observables provide error syndrome information, with which errors can be corrected via simple operations. The 'break-even' point of QEC--at which the lifetime of a qubit exceeds the lifetime of the constituents of the system--has so far remained out of reach. Although previous works have demonstrated elements of QEC, they primarily illustrate the signatures or scaling properties of QEC codes rather than test the capacity of the system to preserve a qubit over time. Here we demonstrate a QEC system that reaches the break-even point by suppressing the natural errors due to energy loss for a qubit logically encoded in superpositions of Schrödinger-cat states of a superconducting resonator. We implement a full QEC protocol by using real-time feedback to encode, monitor naturally occurring errors, decode and correct. As measured by full process tomography, without any post-selection, the corrected qubit lifetime is 320 microseconds, which is longer than the lifetime of any of the parts of the system: 20 times longer than the lifetime of the transmon, about 2.2 times longer than the lifetime of an uncorrected logical encoding and about 1.1 longer than the lifetime of the best physical qubit (the |0〉f and |1〉f Fock states of the resonator). Our results illustrate the benefit of using hardware-efficient qubit encodings rather than traditional QEC schemes. Furthermore, they advance the field of experimental error correction from confirming basic concepts to exploring the metrics that drive system performance and the challenges in realizing a fault-tolerant system.

  3. Effective field theories for superconducting systems with multiple Fermi surfaces

    Science.gov (United States)

    Braga, P. R.; Granado, D. R.; Guimaraes, M. S.; Wotzasek, C.

    2016-11-01

    In this work we investigate the description of superconducting systems with multiple Fermi surfaces. For the case of one Fermi surface we re-obtain the result that the superconductor is more precisely described as a topological state of matter. Studying the case of more than one Fermi surface, we obtain the effective theory describing a time reversal symmetric topological superconductor. These results are obtained by employing a general procedure to construct effective low energy actions describing states of electromagnetic systems interacting with charges and defects. The procedure consists in taking into account the proliferation or dilution of these charges and defects and its consequences for the low energy description of the electromagnetic response of the system. We find that the main ingredient entering the low energy characterization of the system with more than one Fermi surface is a non-conservation of the canonical supercurrent triggered by particular vortex configurations.

  4. Effective field theories for superconducting systems with multiple Fermi surfaces

    CERN Document Server

    Braga, P R; Guimaraes, M S; Wotzasek, C

    2016-01-01

    In this work we investigate the description of superconducting systems with multiple Fermi surfaces. For the case of one Fermi surface we re-obtain the result that the superconductor is more precisely described as a topological state of matter. Studying the case of more than one Fermi surface, we obtain the effective theory describing a time reversal symmetric topological superconductor. These results are obtained by employing a general procedure to construct effective low energy actions describing states of electromagnetic systems interacting with charges and defects. The procedure consists in taking into account the proliferation or dilution of these charges and defects and its consequences for the low energy description of the electromagnetic response of the system. We find that the main ingredient entering the low energy characterization of the system with more the one Fermi surface is a non-conservation of the canonical supercurrent triggered by particular vortex configurations.

  5. The superconducting busbar system of Wendelstein 7-X

    Energy Technology Data Exchange (ETDEWEB)

    Stache, Kerstin E-mail: kerstin.stache@ipp.mpg.de; Kerl, F.; Sapper, J.; Sombach, B.; Wegener, L

    2003-09-01

    The superconducting magnet system of the stellarator Wendelstein 7-X (W7-X) consists of 50 non-planar and 20 planar coils grouped in five periodic modules. Ten coils of a given type of non-planar and planar coils will always be connected electrically in series with nominal currents ranging up to 18 kA. Because of the 5-fold symmetry five busbar systems are to be routed. Electrical connection of the busbar system will require 184 disconnectable joints with a resistance below 5 n{omega}. The paper describes the design features of the busbar systems and their installation in the stellarator. Requirements for the design and qualification of the disconnectable joints will be pointed out.

  6. Effective field theories for superconducting systems with multiple Fermi surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Braga, P.R., E-mail: pedro.rangel.braga@gmail.com [Departamento de Física Teórica, Instituto de Física, UERJ - Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, 20550-013 Maracanã, Rio de Janeiro (Brazil); Granado, D.R., E-mail: diegorochagrana@uerj.br [Departamento de Física Teórica, Instituto de Física, UERJ - Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, 20550-013 Maracanã, Rio de Janeiro (Brazil); Department of Physics and Astronomy, Ghent University, Krijgslaan 281-S9, 9000 Gent (Belgium); Guimaraes, M.S., E-mail: msguimaraes@uerj.br [Departamento de Física Teórica, Instituto de Física, UERJ - Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, 20550-013 Maracanã, Rio de Janeiro (Brazil); Wotzasek, C., E-mail: clovis@if.ufrj.br [Instituto de Física, Universidade Federal do Rio de Janeiro, 21941-972, Rio de Janeiro (Brazil)

    2016-11-15

    In this work we investigate the description of superconducting systems with multiple Fermi surfaces. For the case of one Fermi surface we re-obtain the result that the superconductor is more precisely described as a topological state of matter. Studying the case of more than one Fermi surface, we obtain the effective theory describing a time reversal symmetric topological superconductor. These results are obtained by employing a general procedure to construct effective low energy actions describing states of electromagnetic systems interacting with charges and defects. The procedure consists in taking into account the proliferation or dilution of these charges and defects and its consequences for the low energy description of the electromagnetic response of the system. We find that the main ingredient entering the low energy characterization of the system with more than one Fermi surface is a non-conservation of the canonical supercurrent triggered by particular vortex configurations.

  7. Circuit-quantum electrodynamics with direct magnetic coupling to single-atom spin qubits in isotopically enriched {sup 28}Si

    Energy Technology Data Exchange (ETDEWEB)

    Tosi, Guilherme, E-mail: g.tosi@unsw.edu.au; Mohiyaddin, Fahd A.; Morello, Andrea, E-mail: a.morello@unsw.edu.au [Centre for Quantum Computation and Communication Technology, School of Electrical Engineering and Telecommunications, UNSW Australia, Sydney, New South Wales 2052, Australia. (Australia); Huebl, Hans [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, D-85748 Garching (Germany); Nanosystems Initiative Munich (NIM), Schellingstr. 4, D-80799 Munich, Germany. (Germany)

    2014-08-15

    Recent advances in silicon nanofabrication have allowed the manipulation of spin qubits that are extremely isolated from noise sources, being therefore the semiconductor equivalent of single atoms in vacuum. We investigate the possibility of directly coupling an electron spin qubit to a superconducting resonator magnetic vacuum field. By using resonators modified to increase the vacuum magnetic field at the qubit location, and isotopically purified {sup 28}Si substrates, it is possible to achieve coupling rates faster than the single spin dephasing. This opens up new avenues for circuit-quantum electrodynamics with spins, and provides a pathway for dispersive read-out of spin qubits via superconducting resonators.

  8. Circuit-quantum electrodynamics with direct magnetic coupling to single-atom spin qubits in isotopically enriched 28Si

    Directory of Open Access Journals (Sweden)

    Guilherme Tosi

    2014-08-01

    Full Text Available Recent advances in silicon nanofabrication have allowed the manipulation of spin qubits that are extremely isolated from noise sources, being therefore the semiconductor equivalent of single atoms in vacuum. We investigate the possibility of directly coupling an electron spin qubit to a superconducting resonator magnetic vacuum field. By using resonators modified to increase the vacuum magnetic field at the qubit location, and isotopically purified 28Si substrates, it is possible to achieve coupling rates faster than the single spin dephasing. This opens up new avenues for circuit-quantum electrodynamics with spins, and provides a pathway for dispersive read-out of spin qubits via superconducting resonators.

  9. Non-Markovian Entanglement Sudden Death and Rebirth of a Two-Qubit System in the Presence of System-Bath Coherence

    CERN Document Server

    Wang, Hao-Tian; Zou, Yang; Ge, Rong-Chun; Guo, Guang-Can

    2010-01-01

    We present a detailed study of the entanglement dynamics of a two-qubit system coupled to independent non-Markovian environments, employing hierarchy equations. This recently developed theoretical treatment can conveniently solve non-Markovian problems and take into consideration the correlation between the system and bath in an initial state. We concentrate on calculating the death and rebirth time points of the entanglement to obtain a general view of the concurrence curve and explore the behavior of entanglement dynamics with respect to the coupling strength, the characteristic frequency of the noise bath and the environment temperature.

  10. High speed superconducting flywheel system for energy storage

    Science.gov (United States)

    Bornemann, H. J.; Urban, C.; Boegler, P.; Ritter, T.; Zaitsev, O.; Weber, K.; Rietschel, H.

    1994-12-01

    A prototype of a flywheel system with auto stable high temperature superconducting bearings was built and tested. The bearings offered good vertical and lateral stability. A metallic flywheel disk, ø 190 mm x 30 mm, was safely rotated at speeds up to 15000 rpm. The disk was driven by a 3 phase synchronous homopolar motor/generator. Maximum energy capacity was 3.8 Wh, maximum power was 1.5 KW. The dynamic behavior of the prototype was tested, characterized and evaluated with respect to axial and lateral stiffness, decay torques (bearing drag), vibrational modes and critical speeds. The bearings supports a maximum weight of 65 N at zero gap, axial and lateral stiffness at 1 mm gap were 440 N/cm and 130 N/cm, respectively. Spin down experiments were performed to investigate the energy efficiency of the system. The decay rate was found to depend upon background pressure in the vacuum chamber and upon the gap width in the bearing. At a background pressure of 5x10 -4 Torr, the coefficient of friction (drag-to-lift ratio) was measured to be 0.000009 at low speeds for 6 mm gap width in the bearing. Our results indicate that further refinement of this technology will allow operation of higly efficient superconducting flywheels in the kWh range.

  11. Optimal RF Systems for Lightly Loaded Superconducting Structures

    CERN Document Server

    Zwart, Townsend; Graves, William S; Wang, D; Zolfaghari, Abbi

    2004-01-01

    Recent developments in the field of RF accelerators have created a demand for power amplifiers that can support very high accelerating gradients, 15-25 MV/m, in superconducting structures with extremely low losses. Free electron lasers (FEL’s) with modest beam current, I< 10 uA, or based on energy recovery linacs (ERL’s) may have intrinsic power demands of less than 1 kW/m. We present the design of an amplifier and external tuner system that will efficiently meet this requirement. The RF amplifier, an Inductive Output Tube (IOT), offers high AC/RF efficiency, flexible power output and switching capability without the need for external modulation. The tuner circuit makes use of low loss ferrite phase shifters to create a moderate quality standing wave (Q~100-1000) between the amplifier and the superconducting cavity. An alternative design based on a shorter cavity structure and employing solid state amplifiers is also presented. The expected performance characteristics of both systems are described.

  12. Contextuality without nonlocality in a superconducting quantum system

    Science.gov (United States)

    Jerger, Markus; Reshitnyk, Yarema; Oppliger, Markus; Potočnik, Anton; Mondal, Mintu; Wallraff, Andreas; Goodenough, Kenneth; Wehner, Stephanie; Juliusson, Kristinn; Langford, Nathan K.; Fedorov, Arkady

    2016-01-01

    Classical realism demands that system properties exist independently of whether they are measured, while noncontextuality demands that the results of measurements do not depend on what other measurements are performed in conjunction with them. The Bell–Kochen–Specker theorem states that noncontextual realism cannot reproduce the measurement statistics of a single three-level quantum system (qutrit). Noncontextual realistic models may thus be tested using a single qutrit without relying on the notion of quantum entanglement in contrast to Bell inequality tests. It is challenging to refute such models experimentally, since imperfections may introduce loopholes that enable a realist interpretation. Here we use a superconducting qutrit with deterministic, binary-outcome readouts to violate a noncontextuality inequality while addressing the detection, individual-existence and compatibility loopholes. This evidence of state-dependent contextuality also demonstrates the fitness of superconducting quantum circuits for fault-tolerant quantum computation in surface-code architectures, currently the most promising route to scalable quantum computing. PMID:27698351

  13. Thermally assisted quantum annealing of a 16-qubit problem.

    Science.gov (United States)

    Dickson, N G; Johnson, M W; Amin, M H; Harris, R; Altomare, F; Berkley, A J; Bunyk, P; Cai, J; Chapple, E M; Chavez, P; Cioata, F; Cirip, T; Debuen, P; Drew-Brook, M; Enderud, C; Gildert, S; Hamze, F; Hilton, J P; Hoskinson, E; Karimi, K; Ladizinsky, E; Ladizinsky, N; Lanting, T; Mahon, T; Neufeld, R; Oh, T; Perminov, I; Petroff, C; Przybysz, A; Rich, C; Spear, P; Tcaciuc, A; Thom, M C; Tolkacheva, E; Uchaikin, S; Wang, J; Wilson, A B; Merali, Z; Rose, G

    2013-01-01

    Efforts to develop useful quantum computers have been blocked primarily by environmental noise. Quantum annealing is a scheme of quantum computation that is predicted to be more robust against noise, because despite the thermal environment mixing the system's state in the energy basis, the system partially retains coherence in the computational basis, and hence is able to establish well-defined eigenstates. Here we examine the environment's effect on quantum annealing using 16 qubits of a superconducting quantum processor. For a problem instance with an isolated small-gap anticrossing between the lowest two energy levels, we experimentally demonstrate that, even with annealing times eight orders of magnitude longer than the predicted single-qubit decoherence time, the probabilities of performing a successful computation are similar to those expected for a fully coherent system. Moreover, for the problem studied, we show that quantum annealing can take advantage of a thermal environment to achieve a speedup factor of up to 1,000 over a closed system.

  14. Two-circuit cryogenic system for cooling and cryostating a superconductive turbogenerator

    Energy Technology Data Exchange (ETDEWEB)

    Vishnev, I.P.; Kalitin, P.P.; Krauze, A.I.

    1985-01-01

    This paper reports the results of experimentation with a cryogenic system which indicate that the system meets the refrigeration and cryostating requirements of superconductive turbogenerators and the thermal, hydraulic, mechanical and electrical calculation procedures which they have developed and tested and which make it possible to plan similar high-power superconductive electrical devices.

  15. Extending the lifetime of a quantum bit with error correction in superconducting circuits

    Science.gov (United States)

    Ofek, Nissim; Petrenko, Andrei; Heeres, Reinier; Reinhold, Philip; Leghtas, Zaki; Vlastakis, Brian; Liu, Yehan; Frunzio, Luigi; Girvin, S. M.; Jiang, L.; Mirrahimi, Mazyar; Devoret, M. H.; Schoelkopf, R. J.

    2016-08-01

    Quantum error correction (QEC) can overcome the errors experienced by qubits and is therefore an essential component of a future quantum computer. To implement QEC, a qubit is redundantly encoded in a higher-dimensional space using quantum states with carefully tailored symmetry properties. Projective measurements of these parity-type observables provide error syndrome information, with which errors can be corrected via simple operations. The ‘break-even’ point of QEC—at which the lifetime of a qubit exceeds the lifetime of the constituents of the system—has so far remained out of reach. Although previous works have demonstrated elements of QEC, they primarily illustrate the signatures or scaling properties of QEC codes rather than test the capacity of the system to preserve a qubit over time. Here we demonstrate a QEC system that reaches the break-even point by suppressing the natural errors due to energy loss for a qubit logically encoded in superpositions of Schrödinger-cat states of a superconducting resonator. We implement a full QEC protocol by using real-time feedback to encode, monitor naturally occurring errors, decode and correct. As measured by full process tomography, without any post-selection, the corrected qubit lifetime is 320 microseconds, which is longer than the lifetime of any of the parts of the system: 20 times longer than the lifetime of the transmon, about 2.2 times longer than the lifetime of an uncorrected logical encoding and about 1.1 longer than the lifetime of the best physical qubit (the |0>f and |1>f Fock states of the resonator). Our results illustrate the benefit of using hardware-efficient qubit encodings rather than traditional QEC schemes. Furthermore, they advance the field of experimental error correction from confirming basic concepts to exploring the metrics that drive system performance and the challenges in realizing a fault-tolerant system.

  16. Low cost composite structures for superconducting magnetic energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Rix, C. (General Dynamics Space Magnetics, San Diego, CA (United States)); McColskey, D. (National Inst. of Standards and Technology, Boulder, CO (United States)); Acree, R. (Phillips Lab., Edwards Air Force Base, CA (United States))

    1994-07-01

    As part of the Superconducting Magnetic Energy Storage/Engineering Test Model (SMES-ETM) programs, design, analysis, fabrication and test programs were conducted to evaluate the low cost manufacturing of Fiberglass Reinforced Plastic (FRP) beams for usage as major components of the structural and electrical insulation systems. These studies utilized pultrusion process technologies and vinylester resins to produce large net sections at costs significantly below that of conventional materials. Demonstration articles incorporating laminate architectures and design details representative of SMES-ETM components were fabricated using the pultrusion process and epoxy, vinylester, and polyester resin systems. The mechanical and thermal properties of these articles were measured over the temperature range from 4 K to 300 K. The results of these tests showed that the pultruded, vinylester components have properties comparable to those of currently used materials, such as G-10, and are capable of meeting the design requirements for the SMES-ETM system.

  17. The superconducting magnet system for the Wendelstein7-X stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Sapper, J. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Teilinstitut Greifswald, D-17489 Greifswald (Germany)

    2000-05-01

    The superconducting magnet system for the new stellarator Wendelstein7-X, to be located at Greifswald, Germany, consists of 50 non-planar and 20 planar large magnet coils. The conductor used is a cable-in-conduit type, composed of copper stabilized NbTi strands and enveloped by an aluminium alloy jacket (CICC). The individual winding packs are built up from six (three) double layers, glass insulated and resin impregnated. A cast steel casing encapsulates each winding pack to achieve sufficient mechanical stiffness. The toroidal set-up of the coil system weighs 400 tons and has a diameter of 11 metres. Operation will be at 6 T and a coil current of 1.75 MA. Cooling is provided by supercritical helium. A fast de-energizing system protects the magnet from overheating in the case of a quench. (author)

  18. PREFACE: Nobel Symposium 141: Qubits for Future Quantum Information Nobel Symposium 141: Qubits for Future Quantum Information

    Science.gov (United States)

    Claeson, Tord; Delsing, Per; Wendin, Göran

    2009-12-01

    correction, have yet to be solved. It has been predicted that quantum computers will be able to perform certain complicated computations or simulations in minutes or hours instead of years as with present computers. So far there exist very few useful quantum algorithms; however there is hope that the development of these will be stimulated once there is a breakthrough in hardware. Remarkable progress has been made in quantum engineering and quantum measurements, but a large scale quantum computer is still far off. Quantum communication and cryptography are much closer to the market than a quantum computer. The development of quantum information has meant a large push in the field of quantum physics, that previously could only be studied in the microscopic world. Artificial atoms, realized by circuit technology and mimicking the properties of 'natural' atoms, are one example of the new possibilities opened up by quantum engineering. Several different types of qubits have been suggested. Some are based upon microscopic entities, like atoms and ions in traps, or nuclear spins in molecules. They can have long coherence times (i.e. a long period allowing many operations, of the order of 10 000, to be performed before the state needs to be refreshed) but they are difficult to integrate into large systems. Other qubits are based upon solid state components that facilitate integration and coupling between qubits, but they suffer from interactions with the environment and their coherent states have a limited lifetime. Advanced experiments have been performed with superconducting Josephson junctions and many breakthroughs have been reported in the last few years. They have an advantage in the inherent coherence of superconducting Cooper pairs over macroscopic distances. We chose to focus the Nobel Symposium on Qubits for Future Quantum Information on superconducting qubits to allow for depth in discussions, but at the same time to allow comparison with other types of qubits that may

  19. Experience with the LEP Superconducting RF Accelerating System

    CERN Document Server

    Geschonke, Günther

    1998-01-01

    CERN is presently upgrading the large Electron Positron Collider (LEP) to higher energy by installing superconducting RF accelerating cavities. For a total installed circumferential voltage of about 2800 MV, 272 cavities operating at 352 MHz will be needed, representing an active length of 462 m and a cold surface of more than 1600 m2. The series production cavities are made out of copper, sputter-coated with a thin layer of niobium and cooled with liquid He to 4.5 K. The cavities are produced by industry and the acceptance testing is done at CERN. In 1996, 176 cavities had been installed and run successfully at their design gradient of 6 MV/m during physics at a beam energy of 86 GeV. As RF power sources 36 klystrons will finally be installed with a nominal RF output power of 1 MW each. In this paper the superconducting accelerating system in LEP will be described and experience gained during operation for physics as well as new developments will be presented.

  20. ORNL Superconducting Technology Program for Electric Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hawsey, R.A. (comp.)

    1993-02-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy's (DOE's) Office of Conservation and Renewable Energy to develop the technology base needed by US industry for commercial development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and systems development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from information prepared for the FY 1992 Peer Review of Projects, conducted by DOE's Office of Program Analysis, Office of Energy Research. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer to US industry. Working together, the collaborative teams are making tremendous progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire products.

  1. Anisotropic Spin Cluster as a Qubit

    Institute of Scientific and Technical Information of China (English)

    YAN Xiao-Bo; WANG Ming-Ji

    2007-01-01

    We study an anisotropic spin cluster of 3 spin S=1/2 particles with antiferromagnetic exchange interaction with non-uniform coupling constants. A time-dependent magnetic field is applied to control the time evolution of the cluster. It is well known that for an odd number og sites a spin cluster qubit can be defined in terms of the ground state doublet. The universal one-qubit logic gate can be constructed from the time evolution operator of the non-autonomous many-body system, and the six basic one-qubit gates can be realized by adjusting the applied time-dependent magnetic field.

  2. Emulating a mesoscopic system using superconducting quantum circuits

    Science.gov (United States)

    Chen, Yu; Barends, R.; Bochmann, J.; Campbell, B.; Chiaro, B.; Jeffrey, E.; Kelly, J.; Mariantoni, M.; Megrant, A.; Mutus, J.; Neill, C.; O'Malley, P.; Ohya, S.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T.; Cleland, A. N.; Martinis, J. M.

    2013-03-01

    We demonstrate an emulation of a mesoscopic system using superconducting quantum circuits. Taking advantage of our ReZQu-architectured quantum processor, we controllably splitted a microwave photon and manipulated the splitted photons before they recombined for detection. In this way, we were able to simulate the weak localization effect in mesoscopic systems - a coherent backscattering process due to quantum interference. The influence of the phase coherence was investigated by tuning the coherence time of the quantum circuit, which in turn mimics the temperature effect on the weak localization process. At the end, we demonstrated an effect resembling universal conductance fluctuations, which arises from the frequency beating between different coherent backscattering processes. The universality of the observed fluctuation was shown as the independence of the fluctuation amplitude on detailed experimental conditions.

  3. Superconducting on-chip microwave interferometers

    Energy Technology Data Exchange (ETDEWEB)

    Menzel, Edwin P.; Fischer, Michael; Schneider, Christian; Baust, Alexander; Eder, Peter; Goetz, Jan; Haeberlein, Max; Schwarz, Manuel; Wulschner, Karl Friedrich; Xie, Edwar; Zhong, Ling; Deppe, Frank; Fedorov, Kirill; Huebl, Hans; Marx, Achim; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany)

    2015-07-01

    In the realm of all-microwave quantum computation, information is encoded in itinerant microwave photons propagating along transmission lines. In such a system unitary operations are implemented by linear elements such as beam splitters or interferometers. However, for two-qubit operations non-linear gates, e.g., c-phase gates are required. In this work, we investigate superconducting interferometers as a building block of a c-phase gate. We experimentally characterize their scattering properties and compare them to simulation results. Finally, we discuss our progress towards the realization of a c-phase gate.

  4. Characterization of a two-transmon processor with individual single-shot qubit readout.

    Science.gov (United States)

    Dewes, A; Ong, F R; Schmitt, V; Lauro, R; Boulant, N; Bertet, P; Vion, D; Esteve, D

    2012-02-03

    We report the characterization of a two-qubit processor implemented with two capacitively coupled tunable superconducting qubits of the transmon type, each qubit having its own nondestructive single-shot readout. The fixed capacitive coupling yields the sqrt[iSWAP] two-qubit gate for a suitable interaction time. We reconstruct by state tomography the coherent dynamics of the two-bit register as a function of the interaction time, observe a violation of the Bell inequality by 22 standard deviations after correcting readout errors, and measure by quantum process tomography a gate fidelity of 90%.

  5. Dissipative processes in superconducting nanodevices: Nanowire-resonators, shunted nanowires, and graphene proximity junctions

    Science.gov (United States)

    Brenner, Matthew W.

    The topic of superconducting nanowires has recently been an interesting field of research which has included the study of the superconductor to insulator transition (SIT), the observation of macroscopic quantum behavior such as quantum phase slips (QPS), and the potential use of nanowires as qubits. Superconducting coplanar microwave waveguide resonators have also become a popular way of studying superconducting junctions and qubits, as they provide an extremely low noise environment. For example, superconducting two-dimensional Fabry-Perot resonators have been used by other groups to make non-demolition measurements of a qubit. The motivation of this thesis will be the merging of the fields of superconducting nanowires and the technique of using superconducting microwave resonators to study junctions by incorporating a nanowire into the resonator itself at a current anti-node. By doing this, the nonlinear effects of the nanowire can be studied which may find application in single photon detectors, mixers, and the readout of qubits. We also employ the technique of molecular templating to fabricate some of the thinnest superconducting nanowires ever studied (down to ˜ 5 nm in diameter in some cases). In this thesis, we extend the understanding of the nonlinear properties of a nanowire-resonator system and investigate a new type of nonlinearity that involves a pulsing regime between the superconducting and normal phases of the nanowire. We develop a model, which describes the results quantitatively and by modeling the system, we are able to extract information regarding the relaxation time of the nanowire back into the superconducting state. We also study double nanowire-resonator systems where two closely spaced parallel nanowires interrupt the resonator center conductor and form a loop where vortex tunneling processes can occur. Using a double nanowire-resonator we are able to observe the Little-Parks effect at low temperatures (where the resistance of the wires

  6. SCB Quantum Computers Using iSWAP and 1-Qubit Rotations

    Science.gov (United States)

    Williams, Colin; Echtemach, Pierre

    2005-01-01

    Units of superconducting circuitry that exploit the concept of the single- Cooper-pair box (SCB) have been built and are undergoing testing as prototypes of logic gates that could, in principle, constitute building blocks of clocked quantum computers. These units utilize quantized charge states as the quantum information-bearing degrees of freedom. An SCB is an artificial two-level quantum system that comprises a nanoscale superconducting electrode connected to a reservoir of Cooper-pair charges via a Josephson junction. The logical quantum states of the device, .0. and .1., are implemented physically as a pair of charge-number states that differ by 2e (where e is the charge of an electron). Typically, some 109 Cooper pairs are involved. Transitions between the logical states are accomplished by tunneling of Cooper pairs through the Josephson junction. Although the two-level system contains a macroscopic number of charges, in the superconducting regime, they behave collectively, as a Bose-Einstein condensate, making possible a coherent superposition of the two logical states. This possibility makes the SCB a candidate for the physical implementation of a qubit. A set of quantum logic operations and the gates that implement them is characterized as universal if, in principle, one can form combinations of the operations in the set to implement any desired quantum computation. To be able to design a practical quantum computer, one must first specify how to decompose any valid quantum computation into a sequence of elementary 1- and 2-qubit quantum gates that are universal and that can be realized in hardware that is feasible to fabricate. Traditionally, the set of universal gates has been taken to be the set of all 1-qubit quantum gates in conjunction with the controlled-NOT (CNOT) gate, which is a 2-qubit gate. Also, it has been known for some time that the SWAP gate, which implements square root of the simple 2-qubit exchange interaction, is as computationally

  7. Design of RF system for CYCIAE-230 superconducting cyclotron

    Science.gov (United States)

    Yin, Zhiguo; Ji, Bin; Fu, Xiaoliang; Cao, Xuelong; Zhao, Zhenlu; Zhang, Tinajue

    2017-05-01

    The CYCIAE230 is a low-current, compact superconducting cyclotron designed for proton therapy. The Radio Frequency system consists of four RF cavities and applies second harmonic to accelerate beams. The driving power for the cavity system is estimated to be approximately 150 kW. The LLRF controller is a self-made device developed and tested at low power using a small-scale cavity model. In this paper, the resonator systems of an S.C. cyclotron in history are reviewed. Contrary to those RF systems, the cavities of the CYCIAE230 cyclotron connect two opposite dees. Two high-power RF windows are included in the system. Each window carries approximately 75 kW RF power from the driver to the cavities. Thus, the RF system for the CY-CIAE230 cyclotron is operated in driven push-pull mode. The two-way amplifier-coupler-cavity systems are operated with approximately the same amount of RF power but 180° out of phase compared with each other. The design, as well as the technical advantage and limitations of this operating mode, of the CYCIAE230 cyclotron RF system is analyzed.

  8. Quasi-lattices of qubits for generating inequivalent multipartite entanglements

    Science.gov (United States)

    Ian, Hou

    2016-06-01

    The mesoscopic scale of superconducting qubits makes their inter-spacings comparable to the scale of wavelength of a circuit cavity field to which they commonly couple. This comparability results in inhomogeneous coupling strengths for each qubit and hence asynchronous Rabi excitation cycles among the qubits that form a quasi-lattice. We find that such inhomogeneous coupling benefits the formation of multi-photon resonances between the single-mode cavity field and the quasi-lattice. The multi-photon resonances lead, in turn, to the simultaneous generation of inequivalent |\\text{GHZ}> and |W> types of multipartite entanglement states, which are not transformable to each other through local operations with classical communications. Applying the model on the 3-qubit quasi-lattice and using the entanglement measures of both concurrence and 3-tangle, we verify that the inhomogeneous coupling specifically promotes the generation of the totally inseparable |\\text{GHZ}> state.

  9. Environmental noise spectroscopy with qubits subjected to dynamical decoupling

    Science.gov (United States)

    Szańkowski, P.; Ramon, G.; Krzywda, J.; Kwiatkowski, D.; Cywiński, Ł.

    2017-08-01

    A qubit subjected to pure dephasing due to classical Gaussian noise can be turned into a spectrometer of this noise by utilizing its readout under properly chosen dynamical decoupling (DD) sequences to reconstruct the power spectral density of the noise. We review the theory behind this DD-based noise spectroscopy technique, paying special attention to issues that arise when the environmental noise is non-Gaussian and/or it has truly quantum properties. While we focus on the theoretical basis of the method, we connect the discussed concepts with specific experiments, and provide an overview of environmental noise models relevant for solid-state based qubits, including quantum-dot based spin qubits, superconducting qubits, and NV centers in diamond.

  10. Cryogenic System for a High Temperature Superconducting Power Transmission Cable

    Energy Technology Data Exchange (ETDEWEB)

    Demko, J.A.; Gouge, M.J.; Hughey, R.L.; Lue, J.W.; Martin, R.; Sinha, U.; Stovall, J.P.

    1999-07-12

    High-temperature superconducting (HTS) cable systems for power transmission are under development that will use pressurized liquid nitrogen to provide cooling of the cable and termination hardware. Southwire Company and Oak Ridge National Laboratory have been operating a prototype HTS cable system that contains many of the typical components needed for a commercial power transmission application. It is being used to conduct research in the development of components and systems for eventual commercial deployment. The cryogenic system was built by Air Products and Chemicals, Allentown, Pennsylvania, and can circulate up to 0.35 kg/s of liquid nitrogen at temperatures as low as 67 K at pressures of 1 to 10 bars. Sufficient cooling is provided for testing a 5-m-long HTS transmission cable system that includes the terminations required for room temperature electrical connections. Testing of the 5-m HTS transmission cable has been conducted at the design ac conditions of 1250 A and 7.5 kV line to ground. This paper contains a description of the essential features of the HTS cable cryogenic system and performance results obtained during operation of the system. The salient features of the operation that are important in large commercial HTS cable applications will be discussed.

  11. Multimode Strong Coupling in Superconducting Cavity Piezo-electromechanics

    CERN Document Server

    Han, Xu; Tang, Hong X

    2016-01-01

    High frequency mechanical resonators subjected to low thermal phonon occupancy are easier to be prepared to the ground state by direct cryogenic cooling. Their extreme stiffness, however, poses a significant challenge for external interrogations. Here we demonstrate a superconducting cavity piezo-electromechanical system in which multiple modes of a bulk acoustic resonator oscillating at $10\\,\\textrm{GHz}$ are coupled to a planar microwave superconducting resonator with a cooperativity exceeding $2\\times10^{3}$, deep in the strong coupling regime. By implementation of the non-contact coupling scheme to reduce mechanical dissipation, the system exhibits excellent coherence characterized by a frequency-quality factor product of $7.5\\times10^{15}\\,\\textrm{Hz}$. Interesting dynamics of temporal oscillations of the microwave energy is observed, implying the coherent conversion between phonons and photons. The demonstrated high frequency cavity piezo-electromechanics is compatible with superconducting qubits, repre...

  12. Two-qubit correlations via a periodic plasmonic nanostructure

    Energy Technology Data Exchange (ETDEWEB)

    Iliopoulos, Nikos; Terzis, Andreas F. [Department of Physics, School of Natural Sciences, University of Patras, Patras 265 04 (Greece); Yannopapas, Vassilios [Department of Physics, National Technical University of Athens, Athens 157 80 (Greece); Paspalakis, Emmanuel, E-mail: paspalak@upatras.gr [Materials Science Department, School of Natural Sciences, University of Patras, Patras 265 04 (Greece)

    2016-02-15

    We theoretically investigate the generation of quantum correlations by using two distant qubits in free space or mediated by a plasmonic nanostructure. We report both entanglement of formation as well as quantum discord and classical correlations. We have found that for proper initial state of the two-qubit system and distance between the two qubits we can produce quantum correlations taking significant value for a relatively large time interval so that it can be useful in quantum information and computation processes.

  13. Nonclassical correlations in superconducting circuits

    Energy Technology Data Exchange (ETDEWEB)

    Migliore, Rosanna [Dipartimento di Scienze Fisiche ed Astronomiche, Universita di Palermo (Italy); CNR-INFM, UdR CNISM di Palermo, Palermo (Italy); Scala, Matteo [Dipartimento di Scienze Fisiche ed Astronomiche, Universita di Palermo (Italy); Departamento de Optica, Facultad de Fisica, Universidad Complutense, Madrid (Spain); Guccione, Marina; Sanchez-Soto, Luis L. [Dipartimento di Scienze Fisiche ed Astronomiche, Universita di Palermo (Italy); Messina, Antonino [Departamento de Optica, Facultad de Fisica, Universidad Complutense, Madrid (Spain)

    2009-05-15

    A key step on the road map to solid-state quantum information processing (and to a deeper understanding of many counterintuitive aspects of quantum mechanics) is the generation and manipulation of nonclassical correlations between different quantum systems. Within this framework, we analyze the possibility of generating maximally entangled states in a system of two superconducting flux qubits, as well as the effectof their own environments on the entanglement dynamics. The analysis reported here confirms that the phenomena of sudden birth and sudden death of the entanglement do not depend on the particular measure of the entanglement adopted (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Spin superconductivity and ac-Josephson effect in Graphene system under strong magnetic field

    Science.gov (United States)

    Liu, Haiwen; Jiang, Hua; Sun, Qing-Feng; Xie, X. C.; Collaborative Innovation Center of Quantum Matter, Beijing, China Collaboration

    We study the spin superconductivity in Graphene system under strong magnetic field. From the microscopically Gor'kov method combined with the Aharonov-Casher effect, we derive the effective Landau-Ginzburg free energy and analyze the time evolution of order parameter, which is confirmed to be the off-diagonal long range order. Meanwhile, we compare the ground state of spin superconductivity to the canted-antiferromagnetic state, and demonstrate the equivalence between these two states. Moreover, we give out the pseudo-field flux quantization condition of spin supercurrent, and propose an experimental measurable ac-Josephson effect of spin superconductivity in this system.

  15. Analysis of FCL effect caused by superconducting DC cables for railway systems

    Science.gov (United States)

    Nishihara, Taichi; Hoshino, Tsutomu; Tomita, Masaru

    2017-02-01

    DC superconducting cable that is expected for railway system has been developed in the world, since the introduction effects were expected to energy saving. However, behaviour under unsteady states such as a short circuit accident are not entirely clear, and appropriate method of protection has not been established. Therefore, simulation model of the superconducting cable under direct current system was built and analyzed. Analysis result suggests the superconducting cable has the effect of Fault Current Limited (FCL) and critical current rise was effective method for temperature-rise suppression under unsteady states. Trade-off between cable temperature rise and overcurrent was confirmed.

  16. Dynamical Lamb effect versus dissipation in superconducting quantum circuits

    Science.gov (United States)

    Zhukov, A. A.; Shapiro, D. S.; Pogosov, W. V.; Lozovik, Yu. E.

    2016-06-01

    Superconducting circuits provide a new platform for study of nonstationary cavity QED phenomena. An example of such a phenomenon is the dynamical Lamb effect, which is the parametric excitation of an atom due to nonadiabatic modulation of its Lamb shift. This effect was initially introduced for a natural atom in a varying cavity, while we suggest its realization in a superconducting qubit-cavity system with dynamically tunable coupling. In the present paper, we study the interplay between the dynamical Lamb effect and the energy dissipation, which is unavoidable in realistic systems. We find that despite naive expectations, this interplay can lead to unexpected dynamical regimes. One of the most striking results is that photon generation from vacuum can be strongly enhanced due to qubit relaxation, which opens another channel for such a process. We also show that dissipation in the cavity can increase the qubit excited-state population. Our results can be used for experimental observation and investigation of the dynamical Lamb effect and accompanying quantum effects.

  17. Superconductivity in the PbTe/sub 1-x/Se/sub x/:Tl system

    Energy Technology Data Exchange (ETDEWEB)

    Kaidanov, V.I.; Nemov, S.A.; Parfen' ev, R.V.; Shamshur, D.V.

    1985-08-01

    A study of the influence of the replacement of the atoms in the chalco sublattice, carried out by investigating the superconducting transition in the PbTlTeSe system with x = 0.001-0.05 is reported. (AIP)

  18. Cryogenic system for the MYRRHA superconducting linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Chevalier, Nicolas R.; Junquera, Tomas [Accelerators and Cryogenic Systems, 86, rue de Paris, 91400 Orsay (France); Thermeau, Jean-Pierre [Institut de Physique Nucléaire, Université Paris Sud, 91400 Orsay (France); Romão, Luis Medeiros; Vandeplassche, Dirk [SCK-CEN, Boeretang 200, 2400 Mol (Belgium)

    2014-01-29

    SCK⋅CEN, the Belgian Nuclear Research Centre, is designing MYRRHA, a flexible fast spectrum research reactor (80 MW{sub th}), conceived as an accelerator driven system (ADS), able to operate in sub-critical and critical modes. It contains a continuous-wave (CW) superconducting (SC) proton accelerator of 600 MeV, a spallation target and a multiplying core with MOX fuel, cooled by liquid lead-bismuth (Pb-Bi). From 17 MeV onward, the SC accelerator will consist of 48 β=0.36 spoke-loaded cavities (352 MHz), 34 β=0.47 elliptical cavities (704 MHz) and 60 β=0.65 elliptical cavities (704 MHz). We present an analysis of the thermal loads and of the optimal operating temperature of the cryogenic system. In particular, the low operating frequency of spoke cavities makes their operation in CW mode possible both at 4.2 K or at 2 K. Our analysis outlines the main factors that determine at what temperature the spoke cavities should be operated. We then present different cryogenic fluid distribution schemes, important characteristics (storage, transfer line, etc.) and the main challenges offered by MYRRHA in terms of cryogenics.

  19. Extremal Entangled Four-Qubit Pure States with Respect to Multiple Entropy Measures

    Institute of Scientific and Technical Information of China (English)

    GUO Ying; LIU Dan; ZENG Gui-Hua; ZHAO Xin; Moon Ho Lee; LONG Gui-Lu

    2008-01-01

    Four-qubit entanglement has been investigated using a recent proposed entanglement measure, multiple entropy measures (MEMS). We have performed optimization for the nine different families of states of four-qubit system. Some extremal entangled states have been found.

  20. Encrypting Majorana fermion qubits as bound states in the continuum

    Science.gov (United States)

    Guessi, L. H.; Dessotti, F. A.; Marques, Y.; Ricco, L. S.; Pereira, G. M.; Menegasso, P.; de Souza, M.; Seridonio, A. C.

    2017-07-01

    We theoretically investigate a topological Kitaev chain connected to a double quantum-dot (QD) setup hybridized with metallic leads. In this system we observe the emergence of two striking phenomena: (i) a decrypted Majorana fermion (MF) qubit recorded over a single QD, which is detectable by means of conductance measurements due to the asymmetrical MF-qubit leaked state into the QDs; (ii) an encrypted qubit recorded in both QDs when the leakage is symmetrical. In such a regime, we have a cryptographylike manifestation, since the MF qubit becomes bound states in the continuum, which is not detectable in conductance experiments.

  1. Superconducting Resonator-Rydberg Atom Hybrid in the Strong Coupling Regime

    CERN Document Server

    Yu, Deshui; Valado, Maria Martinez; Hufnagel, Christoph; Kwek, Leong Chuan; Amico, Luigi; Dumke, Rainer

    2016-01-01

    We propose a promising hybrid quantum system, where a highly-excited atom strongly interacts with a superconducting LC oscillator via the electric field of capacitor. An external electrostatic field is applied to tune the energy spectrum of atom. The atomic qubit is implemented by two eigenstates near an avoided-level crossing in the DC Stark map of Rydberg atom. Varying the electrostatic field brings the atomic-qubit transition on- or off-resonance to the microwave resonator, leading to a strong atom-resonator coupling with an extremely large cooperativity. Like the nonlinearity induced by Josephson junctions in superconducting circuits, the large atom-resonator interface disturbs the harmonic potential of resonator, resulting in an artificial two-level particle. Different universal two-qubit logic gates can also be performed on our hybrid system within the space where an atomic qubit couples to a single photon with an interaction strength much larger than any relaxation rates, opening the door to the cavity...

  2. PREFACE: Focus section on superconducting power systems Focus section on superconducting power systems

    Science.gov (United States)

    Cardwell, D. A.; Amemiya, N.; Fair, R.

    2012-01-01

    This focus section of Superconductor Science and Technology looks at the properties, technology and applications of (RE)BCO and MgB2 based superconductors for power engineering systems. Both bulk and conductor forms of material are addressed, including elements of materials fabrication and processing, and the measurement of their applied properties for various levels of system application. The areas of research include ac losses in type II materials in power devices, cables and coated conductors, the development of high current dc cables and the application of superconductors in levitation devices, motors and fault current limiters. This focus section presents a broad cross-section of contemporary issues, that represent state-of-the-art for power applications of superconductors, and highlights the areas that require further development if commercial applications of these rapidly emerging materials are to be realised. It contains papers from some of the major groups in the field, including contributions from Europe, the USA and Japan, and describes devices that are relatively close to market.

  3. The power processor of a high temperature superconducting energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Ollila, J. [Power Electronics, Tampere University of Technology, Tampere (Finland)

    1997-12-31

    This report introduces the structure and properties of a power processor unit for a high temperature superconducting magnetic energy storage system which is bused in an UPS demonstration application. The operation is first demonstrated using simulations. The software based operating and control system utilising combined Delta-Sigma and Sliding-Mode control is described shortly. Preliminary test results using a conventional NbTi superconducting energy y storage magnet operating at 4.2 K is shown. (orig.)

  4. A novel protection layer of superconducting microwave circuits toward a hybrid quantum system

    CERN Document Server

    Lee, Jongmin

    2014-01-01

    We propose a novel multilayer structure based on Bragg layers that can protect a superconducting microwave resonator from photons and blackbody radiation and have little effect on its quality factor. We also discuss a hybrid quantum system exploiting a superconducting microwave circuit and a two-color evanescent field atom trap, where surface-scattered photons and absorption-induced broadband blackbody radiation might deteriorate the system.

  5. Upgrade of the protection system for superconducting circuits in the LHC

    CERN Document Server

    Denz, R; Formenti, F; Meß, K H; Siemko, A; Steckert, J; Walckiers, L; Strait, J

    2010-01-01

    Prior to the re-start of the Large Hadron Collider LHC in 2009 the protection system for superconducting magnets and bus-bars QPS will be substantially upgraded. The foreseen modifications will enhance the capability of the system in detecting problems related to the electrical interconnections between superconducting magnets as well as the detection of so-called aperture symmetric quenches in the LHC main magnets.

  6. Optical Barium Ion Qubit

    CERN Document Server

    Yum, Dahyun; Dutta, Tarun; Mukherjee, Manas

    2016-01-01

    We demonstrate an optical single qubit based on 6S1/2 to 5D5/2 quadrupole transition of a single Ba+ ion operated by diode based lasers only. The resonance wavelength of the 6S1/2 to 5D5/2 quadrupole transition is about 1762 nm which suitably falls close to the U-band of the telecommunication wavelength. Thus this qubit is a naturally attractive choice towards implementation of quantum repeater or quantum networks using existing telecommunication networks. We observe continuous bit-flip oscillations at a rate of about 250 kHz which is fast enough for the qubit operation as compared to the measured coherence time of over 3 ms. We also present a technique to quantify the bit-flip error in each qubit NOT gate operation.

  7. Development of a Silicon Metal-Oxide-Semiconductor-Based Qubit Using Spin Exchange Interactions Alone

    Science.gov (United States)

    2016-03-31

    SECURITY CLASSIFICATION OF: The objective of this project is to implement an electron spin qubit system on a silicon metal-oxide- semiconductor ...Distribution Unlimited UU UU UU UU 31-03-2016 1-Nov-2010 30-Apr-2014 Final Report: Development of a Silicon Metal-Oxide- Semiconductor -Based Qubit Using Spin... Semiconductor -Based Qubit Using Spin Exchange Interactions Alone Report Title The objective of this project is to implement an electron spin qubit system on

  8. Performance evaluation of high-temperature superconducting current leads for micro-SMES systems

    Science.gov (United States)

    Niemann, R. C.; Cha, Y. S.; Hull, J. R.; Buckles, W. E.; Weber, B. R.; Yang, S. T.

    As part of the US Department of Energy's Superconductivity Technology Program, Argonne National Laboratory and Superconductivity, Inc., are developing high-temperature superconductor (HTS) current leads for application to micro-superconducting magnetic energy storage systems. Two 1500-A HTS leads have been designed and constructed. The performance of the current lead assemblies is being evaluated in a zero-magnetic-field test program that includes assembly procedures, tooling, and quality assurance; thermal and electrical performance; and flow and mechanical characteristics. Results of evaluations performed to data are presented.

  9. Commissioning of the Cryogenic System for the ATLAS Superconducting Magnets

    CERN Document Server

    Delruelle, N; Bradshaw, T; Haug, F; ten Kate, H H J; Passardi, Giorgio; Pengo, R; Pezzetti, M; Pirotte, O; Rochford, J

    2006-01-01

    The paper describes the test results of the helium cryoplant for the superconducting magnets of the ATLAS particle detector at CERN. It consists of two refrigerators used in common by all the magnets and of two proximity cryogenic systems (PCS) interfacing respectively the toroids and the central solenoid. Emphasis is given to the commissioning of the refrigerators: the main unit of 6 kW equivalent capacity at 4.5 K and the thermal shield refrigerator providing 20 kW between 40 K and 80 K. The first unit is used for refrigeration at 4.5 K and for the cooling of three sets of 20 kA current leads, while the second one provides, in addition to the 20 kW refrigeration of the thermal shields, 60 kW for the cool-down to 100 K of the 660 ton cold mass of the magnets. The tests, carried out with the equipment in the final underground configuration, are extended to the PCS that includes the large liquid helium centrifugal pumps (each providing 1.2 kg/s) for forced-flow cooling of the magnets and the complex distributi...

  10. Eddy damping effect of additional conductors in superconducting levitation systems

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Zhao-Fei; Gou, Xiao-Fan, E-mail: xfgou@hhu.edu.cn

    2015-12-15

    Highlights: • In this article, for the eddy current damper attached to the HTSC, we • quantitatively investigated the damping coefficient c, damping ratio, Joule heating of the copper damper, and the vibration frequency of the PM as well. • presented four different arrangements of the copper damper, and comparatively studied their damping effects and Joule heating, and finally proposed the most advisable arrangement. - Abstract: Passive superconducting levitation systems consisting of a high temperature superconductor (HTSC) and a permanent magnet (PM) have demonstrated several fascinating applications such as the maglev system, flywheel energy storage. Generally, for the HTSC–PM levitation system, the HTSC with higher critical current density J{sub c} can obtain larger magnetic force to make the PM levitate over the HTSC (or suspended below the HTSC), however, the process of the vibration of the levitated PM, provides very limited inherent damping (essentially hysteresis). To improve the dynamic stability of the levitated PM, eddy damping of additional conductors can be considered as the most simple and effective approach. In this article, for the HTSC–PM levitation system with an additional copper damper attached to the HTSC, we numerically and comprehensively investigated the damping coefficient c, damping ratio, Joule heating of the copper damper, and the vibration frequency of the PM as well. Furthermore, we comparatively studied four different arrangements of the copper damper, on the comprehensive analyzed the damping effect, efficiency (defined by c/V{sub Cu}, in which V{sub Cu} is the volume of the damper) and Joule heating, and finally presented the most advisable arrangement.

  11. Entanglement and Metrology with Singlet-Triplet Qubits

    Science.gov (United States)

    Shulman, Michael Dean

    Electron spins confined in semiconductor quantum dots are emerging as a promising system to study quantum information science and to perform sensitive metrology. Their weak interaction with the environment leads to long coherence times and robust storage for quantum information, and the intrinsic tunability of semiconductors allows for controllable operations, initialization, and readout of their quantum state. These spin qubits are also promising candidates for the building block for a scalable quantum information processor due to their prospects for scalability and miniaturization. However, several obstacles limit the performance of quantum information experiments in these systems. For example, the weak coupling to the environment makes inter-qubit operations challenging, and a fluctuating nuclear magnetic field limits the performance of single-qubit operations. The focus of this thesis will be several experiments which address some of the outstanding problems in semiconductor spin qubits, in particular, singlet-triplet (S-T0) qubits. We use these qubits to probe both the electric field and magnetic field noise that limit the performance of these qubits. The magnetic noise bath is probed with high bandwidth and precision using novel techniques borrowed from the field of Hamiltonian learning, which are effective due to the rapid control and readout available in S-T 0 qubits. These findings allow us to effectively undo the undesired effects of the fluctuating nuclear magnetic field by tracking them in real-time, and we demonstrate a 30-fold improvement in the coherence time T2*. We probe the voltage noise environment of the qubit using coherent qubit oscillations, which is partially enabled by control of the nuclear magnetic field. We find that the voltage noise bath is frequency-dependent, even at frequencies as high as 1MHz, and it shows surprising and, as of yet, unexplained temperature dependence. We leverage this knowledge of the voltage noise environment, the

  12. Multiple-output microwave single-photon source using superconducting circuits with longitudinal and transverse couplings

    Science.gov (United States)

    Wang, Xin; Miranowicz, Adam; Li, Hong-Rong; Nori, Franco

    2016-11-01

    Single-photon devices at microwave frequencies are important for applications in quantum information processing and communication in the microwave regime. In this work we describe a proposal of a multioutput single-photon device. We consider two superconducting resonators coupled to a gap-tunable qubit via both its longitudinal and transverse degrees of freedom. Thus, this qubit-resonator coupling differs from the coupling in standard circuit quantum-electrodynamic systems described by the Jaynes-Cummings model. We demonstrate that an effective quadratic coupling between one of the normal modes and the qubit can be induced and this induced second-order nonlinearity is much larger than that for conventional Kerr-type systems exhibiting photon blockade. Assuming that a coupled normal mode is resonantly driven, we observe that the output fields from the resonators exhibit strong sub-Poissonian photon-number statistics and photon antibunching. Contrary to previous studies on resonant photon blockade, the first-excited state of our device is a pure single-photon Fock state rather than a polariton state, i.e., a highly hybridized qubit-photon state. In addition, it is found that the optical state truncation caused by the strong qubit-induced nonlinearity can lead to an entanglement between the two resonators, even in their steady state under the Markov approximation.

  13. Methodology and search for superconductivity in the La-Si-C system

    Energy Technology Data Exchange (ETDEWEB)

    De la Venta, J; Basaran, Ali C; Schuller, Ivan K [Department of Physics, University of California San Diego, La Jolla, CA 92093 (United States); Grant, T; Machado, A J S; Fisk, Z [Department of Physics and Astronomy, University of California Irvine, Irvine, CA 92697 (United States); Suchomel, M R [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Weber, R T, E-mail: jdelaventa@physics.ucsd.edu [EPR Division Bruker BioSpin Corporation, Billerica, MA 01821-3931 (United States)

    2011-07-15

    In this paper we describe a methodology for the search for new superconducting materials. This consists of a parallel synthesis of a highly inhomogeneous alloy which covers large areas of the metallurgical phase diagram combined with a fast, microwave-based method which allows non-superconducting portions of the sample to be discarded. Once an inhomogeneous sample containing a minority phase superconductor is identified, we revert to well-known thorough identification methods which include standard physical and structural methods. We show how a systematic structural study helps in avoiding misidentification of new superconducting materials when there are indications from other methods of new discoveries. These ideas are applied to the La-Si-C system which exhibits promising normal state properties which are sometimes correlated with superconductivity. Although this system shows indications for the presence of a new superconducting compound, the careful analysis described here shows that the superconductivity in this system can be attributed to intermediate binary and single phases of the system.

  14. Methodology and search for superconductivity in the La-Si-C system.

    Energy Technology Data Exchange (ETDEWEB)

    de la Venta, J. de la; Basaran, A. C.; Grant, T.; Machado, A. J. S.; Suchomel, M. R.; Weber, R. T.; Fisk, Z.; Schuller, I. K. (X-Ray Science Division); (Univ. of California at San Diego); (Univ. of Sao Paulo); (Bruker BioSpin Corp.)

    2011-01-01

    In this paper we describe a methodology for the search for new superconducting materials. This consists of a parallel synthesis of a highly inhomogeneous alloy which covers large areas of the metallurgical phase diagram combined with a fast, microwave-based method which allows non-superconducting portions of the sample to be discarded. Once an inhomogeneous sample containing a minority phase superconductor is identified, we revert to well-known thorough identification methods which include standard physical and structural methods. We show how a systematic structural study helps in avoiding misidentification of new superconducting materials when there are indications from other methods of new discoveries. These ideas are applied to the La-Si-C system which exhibits promising normal state properties which are sometimes correlated with superconductivity. Although this system shows indications for the presence of a new superconducting compound, the careful analysis described here shows that the superconductivity in this system can be attributed to intermediate binary and single phases of the system.

  15. Superconductivity, Antiferromagnetism, and Kinetic Correlation in Strongly Correlated Electron Systems

    Directory of Open Access Journals (Sweden)

    Takashi Yanagisawa

    2015-01-01

    Full Text Available We investigate the ground state of two-dimensional Hubbard model on the basis of the variational Monte Carlo method. We use wave functions that include kinetic correlation and doublon-holon correlation beyond the Gutzwiller ansatz. It is still not clear whether the Hubbard model accounts for high-temperature superconductivity. The antiferromagnetic correlation plays a key role in the study of pairing mechanism because the superconductive phase exists usually close to the antiferromagnetic phase. We investigate the stability of the antiferromagnetic state when holes are doped as a function of the Coulomb repulsion U. We show that the antiferromagnetic correlation is suppressed as U is increased exceeding the bandwidth. High-temperature superconductivity is possible in this region with enhanced antiferromagnetic spin fluctuation and pairing interaction.

  16. Protective link for superconducting coil

    Science.gov (United States)

    Umans, Stephen D.

    2009-12-08

    A superconducting coil system includes a superconducting coil and a protective link of superconducting material coupled to the superconducting coil. A rotating machine includes first and second coils and a protective link of superconducting material. The second coil is operable to rotate with respect to the first coil. One of the first and second coils is a superconducting coil. The protective link is coupled to the superconducting coil.

  17. Engineering Dissipation to Generate Entanglement Between Remote Superconducting Quantum Bits

    Science.gov (United States)

    Schwartz, Mollie Elisheva

    Superconducting quantum circuits provide a promising avenue for scalable quantum computation and simulation. Their chief advantage is that, unlike physical atoms or electrons, these ''artificial atoms'' can be designed with nearly-arbitrarily large coupling to one another and to their electromagnetic environment. This strong coupling allows for fast quantum bit (qubit) operations, and for efficient readout. However, strong coupling comes at a price: a qubit that is strongly coupled to its environment is also strongly susceptible to losses and dissipation, as coherent information leaks from the quantum system under study into inaccessible ''bath'' modes. Extensive work in the field is dedicated to engineering away these losses to the extent possible, and to using error correction to undo the effects of losses that are unavoidable. This dissertation explores an alternate approach to dissipation: we study avenues by which dissipation itself can be used to generate, rather than destroy, quantum resources. We do so specifically in the context of quantum entanglement, one of the most important and most counter-intuitive aspects of quantum mechanics. Entanglement generation and stabilization is critical to most non-trivial implementations of quantum computing and quantum simulation, as it is the property that distinguishes a multi-qubit quantum system from a string of classical bits. The ability to harness dissipation to generate, purify, and stabilize entanglement is therefore highly desirable. We begin with an overview of quantum dissipation and measurement, followed by an introduction to entanglement and to the superconducting quantum information architecture. We then discuss three sets of experiments that highlight and explore the powerful uses of dissipation in quantum systems. First, we use an entangling measurement to probabilistically generate entanglement between two qubits separated by more than one meter of ordinary cable. This represents the first achievement

  18. Superconducting coil system and methods of assembling the same

    Science.gov (United States)

    Rajput-Ghoshal, Renuka; Rochford, James H.; Ghoshal, Probir K.

    2016-01-19

    A superconducting magnet apparatus is provided. The superconducting magnet apparatus includes a power source configured to generate a current; a first switch coupled in parallel to the power source; a second switch coupled in series to the power source; a coil coupled in parallel to the first switch and the second switch; and a passive quench protection device coupled to the coil and configured to by-pass the current around the coil and to decouple the coil from the power source when the coil experiences a quench.

  19. Performance of current measurement system in poloidal field power supply for Experimental Advanced Superconducting Tokamak

    Science.gov (United States)

    Liu, D. M.; Li, J.; Wan, B. N.; Lu, Z.; Wang, L. S.; Jiang, L.; Lu, C. H.; Huang, J.

    2016-11-01

    As one of the core subsystems of the Experimental Advanced Superconducting Tokamak (EAST), the poloidal field power system supplies energy to EAST's superconducting coils. To measure the converter current in the poloidal field power system, a current measurement system has been designed. The proposed measurement system is composed of a Rogowski coil and a newly designed integrator. The results of the resistor-inductor-capacitor discharge test and the converter equal current test show that the current measurement system provides good reliability and stability, and the maximum error of the proposed system is less than 1%.

  20. Enhancing coherence in molecular spin qubits via atomic clock transitions

    Science.gov (United States)

    Shiddiq, Muhandis; Komijani, Dorsa; Duan, Yan; Gaita-Ariño, Alejandro; Coronado, Eugenio; Hill, Stephen

    2016-03-01

    Quantum computing is an emerging area within the information sciences revolving around the concept of quantum bits (qubits). A major obstacle is the extreme fragility of these qubits due to interactions with their environment that destroy their quantumness. This phenomenon, known as decoherence, is of fundamental interest. There are many competing candidates for qubits, including superconducting circuits, quantum optical cavities, ultracold atoms and spin qubits, and each has its strengths and weaknesses. When dealing with spin qubits, the strongest source of decoherence is the magnetic dipolar interaction. To minimize it, spins are typically diluted in a diamagnetic matrix. For example, this dilution can be taken to the extreme of a single phosphorus atom in silicon, whereas in molecular matrices a typical ratio is one magnetic molecule per 10,000 matrix molecules. However, there is a fundamental contradiction between reducing decoherence by dilution and allowing quantum operations via the interaction between spin qubits. To resolve this contradiction, the design and engineering of quantum hardware can benefit from a ‘bottom-up’ approach whereby the electronic structure of magnetic molecules is chemically tailored to give the desired physical behaviour. Here we present a way of enhancing coherence in solid-state molecular spin qubits without resorting to extreme dilution. It is based on the design of molecular structures with crystal field ground states possessing large tunnelling gaps that give rise to optimal operating points, or atomic clock transitions, at which the quantum spin dynamics become protected against dipolar decoherence. This approach is illustrated with a holmium molecular nanomagnet in which long coherence times (up to 8.4 microseconds at 5 kelvin) are obtained at unusually high concentrations. This finding opens new avenues for quantum computing based on molecular spin qubits.

  1. Efficient controlled-phase gate for single-spin qubits in quantum dots

    NARCIS (Netherlands)

    Meunier, T.; Calado, V.E.; Vandersypen, L.M.K.

    2011-01-01

    Two-qubit interactions are at the heart of quantum information processing. For single-spin qubits in semiconductor quantum dots, the exchange gate has always been considered the natural two-qubit gate. The recent integration of a magnetic field or g-factor gradients in coupled quantum dot systems

  2. Effect of annealing on superconductivity in Fe1+y(Te1-xSx) system

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We have synthesized polycrystalline samples of Fe1.11(Te1-xSx) and single crystals of Fe1+y(Te0.88S0.12),and characterized their properties.Our results show that the solid solution of S in the Fe1.11Te tetragonal lattice is limited,~10%.We observed superconductivity at ~8 K in both polycrystalline samples and single crystals.Magnetization measurements reveal that the volume fraction is small for this superconducting phase in both polycrystalline samples as-synthesized and single crystals as-grown.It is found that annealing in air enhances the superconducting fraction;the maximum fraction is almost 100% in the single crystals annealed in air at 300°C.We discuss the effect of annealing on superconductivity and transport properties at the normal state in the Fe1+y(Te1-xSx) system in terms of decrease of the excess Fe.

  3. Magnetic and superconducting quantum critical points of heavy-fermion systems

    Energy Technology Data Exchange (ETDEWEB)

    Demuer, A.; Sheikin, I.; Braithwaite, D. E-mail: dbraithwaite@cea.fr; Faak, B.; Huxley, A.; Raymond, S.; Flouquet, J

    2001-05-01

    Two examples of heavy-fermion systems are presented : CePd{sub 2}Si{sub 2}, an antiferromagnet with a quantum critical point at P{sub C}=28 kbar and UGe{sub 2} an itinerant ferromagnet which transits in a paramagnetic phase above P{sub C}=16 kbar. In CePd{sub 2}Si{sub 2} the superconductivity domain is centered on P{sub C}. Special attention was given to the superconducting and magnetic anomalies at their superconducting and Neel temperatures. In UGe{sub 2} superconductivity appears in 9 kbar at a temperature T{sub S}, more than two orders of magnitude lower than the Curie temperature; furthermore, it occurs only on the magnetic border (P

  4. Magnetic and superconducting quantum critical points of heavy-fermion systems

    Science.gov (United States)

    Demuer, A.; Sheikin, I.; Braithwaite, D.; Fåk, B.; Huxley, A.; Raymond, S.; Flouquet, J.

    2001-05-01

    Two examples of heavy-fermion systems are presented : CePd 2Si 2, an antiferromagnet with a quantum critical point at PC=28 kbar and UGe 2 an itinerant ferromagnet which transits in a paramagnetic phase above PC=16 kbar. In CePd 2Si 2 the superconductivity domain is centered on PC. Special attention was given to the superconducting and magnetic anomalies at their superconducting and Néel temperatures. In UGe 2 superconductivity appears in 9 kbar at a temperature TS, more than two orders of magnitude lower than the Curie temperature; furthermore, it occurs only on the magnetic border ( P< PC). Another characteristic temperature TX is detected by resistivity; the zigzag uranium chain of the lattice may favor a supplementary nesting in the majority spin band.

  5. Decoherence-free quantum-information processing using dipole-coupled qubits

    CERN Document Server

    Brooke, P G

    2007-01-01

    We propose a quantum-information processor that consists of decoherence-free logical qubits encoded into arrays of dipole-coupled qubits. High-fidelity single-qubit operations are performed deterministically within a decoherence-free subsystem without leakage via global addressing of bichromatic laser fields. Two-qubit operations are realized locally with four physical qubits, and between separated logical qubits using linear optics. We show how to prepare cluster states using this method. We include all non-nearest-neighbor effects in our calculations, and we assume the qubits are not located in the Dicke limit. Although our proposal is general to any system of dipole-coupled qubits, throughout the paper we use nitrogen-vacancy (NV) centers in diamond as an experimental context for our theoretical results.

  6. Analysis and synthesis of multi-qubit, multi-mode quantum devices

    Energy Technology Data Exchange (ETDEWEB)

    Solgun, Firat

    2015-03-27

    In this thesis we propose new methods in multi-qubit multi-mode circuit quantum electrodynamics (circuit-QED) architectures. First we describe a direct parity measurement method for three qubits, which can be realized in 2D circuit-QED with a possible extension to four qubits in a 3D circuit-QED setup for the implementation of the surface code. In Chapter 3 we show how to derive Hamiltonians and compute relaxation rates of the multi-mode superconducting microwave circuits consisting of single Josephson junctions using an exact impedance synthesis technique (the Brune synthesis) and applying previous formalisms for lumped element circuit quantization. In the rest of the thesis we extend our method to multi-junction (multi-qubit) multi-mode circuits through the use of state-space descriptions which allows us to quantize any multiport microwave superconducting circuit with a reciprocal lossy impedance response.

  7. Evolution of a hybrid micro-macro entangled state of the qubit-oscillator system via the generalized rotating wave approximation

    Science.gov (United States)

    Chakrabarti, R.; Yogesh, V.

    2016-04-01

    We study the evolution of the hybrid entangled states in a bipartite (ultra) strongly coupled qubit-oscillator system. Using the generalized rotating wave approximation the reduced density matrices of the qubit and the oscillator are obtained. The reduced density matrix of the oscillator yields the phase space quasi probability distributions such as the diagonal P-representation, the Wigner W-distribution and the Husimi Q-function. In the strong coupling regime the Q-function evolves to uniformly separated macroscopically distinct Gaussian peaks representing ‘kitten’ states at certain specified times that depend on multiple time scales present in the interacting system. The ultrastrong coupling strength of the interaction triggers appearance of a large number of modes that quickly develop a randomization of their phase relationships. A stochastic averaging of the dynamical quantities sets in, and leads to the decoherence of the system. The delocalization in the phase space of the oscillator is studied by using the Wehrl entropy. The negativity of the W-distribution reflects the departure of the oscillator from the classical states, and allows us to study the underlying differences between various information-theoretic measures such as the Wehrl entropy and the Wigner entropy. Other features of nonclassicality such as the existence of the squeezed states and appearance of negative values of the Mandel parameter are realized during the course of evolution of the bipartite system. In the parametric regime studied here these properties do not survive in the time-averaged limit.

  8. Updating of Optical Inspection System for 6 GHz Superconducting Cavities

    Institute of Scientific and Technical Information of China (English)

    YU; Guo-long

    2013-01-01

    As a validation tool for the material properties and the surface treatment process,6 GHz superconducting cavity needs complex surface treatment process during its manufacture.It is verynecessary to record and monitor the statues of the internal surface of the cavity after each surface treatment,such as ultrasonic washing,mechanical polishing,electronic polishing(EP),buffered chemical

  9. Unconventional Geometric Phase-Shift Gates Based on Superconducting Quantum Interference Devices Coupled to a Single-Mode Cavity

    Institute of Scientific and Technical Information of China (English)

    SONG Ke-Hui; ZHOU Zheng-Wei; GUO Guang-Can

    2006-01-01

    We present a scheme to realize geometric phase-shift gate for two superconducting quantum interference device (SQUID) qubits coupled to a single-mode microwave field. The geometric phase-shift gate operation is performed transitions during the gate operation. Thus, the docoherence due to energy spontaneous emission based on the levels of SQUIDs are suppressed. The gate is insensitive to the cavity decay throughout the operation since the cavity mode is displaced along a circle in the phase space, acquiring a phase conditional upon the two lower flux states of the SQUID qubits, and the cavity mode is still in the original vacuum state. Based on the SQUID qubits interacting with the cavity mode, our proposed approach may open promising prospects for quantum logic in SQUID-system.

  10. Bulk superconductivity at 38 K in a molecular system.

    Science.gov (United States)

    Ganin, Alexey Y; Takabayashi, Yasuhiro; Khimyak, Yaroslav Z; Margadonna, Serena; Tamai, Anna; Rosseinsky, Matthew J; Prassides, Kosmas

    2008-05-01

    C(60)-based solids are archetypal molecular superconductors with transition temperatures (Tc) as high as 33 K (refs 2-4). Tc of face-centred-cubic (f.c.c.) A(3)C(60) (A=alkali metal) increases monotonically with inter C(60) separation, which is controlled by the A(+) cation size. As Cs(+) is the largest such ion, Cs(3)C(60) is a key material in this family. Previous studies revealing trace superconductivity in Cs(x)C(60) materials have not identified the structure or composition of the superconducting phase owing to extremely small shielding fractions and low crystallinity. Here, we show that superconducting Cs(3)C(60) can be reproducibly isolated by solvent-controlled synthesis and has the highest Tc of any molecular material at 38 K. In contrast to other A(3)C(60) materials, two distinct cubic Cs(3)C(60) structures are accessible. Although f.c.c. Cs(3)C(60) can be synthesized, the superconducting phase has the A15 structure based uniquely among fullerides on body-centred-cubic packing. Application of hydrostatic pressure controllably tunes A15 Cs(3)C(60) from insulating at ambient pressure to superconducting without crystal structure change and reveals a broad maximum in Tc at approximately 7 kbar. We attribute the observed Tc maximum as a function of inter C(60)separation--unprecedented in fullerides but reminiscent of the atom-based cuprate superconductors--to the role of strong electronic correlations near the metal-insulator transition onset.

  11. How to implement a quantum algorithm on a large number of qubits by controlling one central qubit

    Science.gov (United States)

    Zagoskin, Alexander; Ashhab, Sahel; Johansson, J. R.; Nori, Franco

    2010-03-01

    It is desirable to minimize the number of control parameters needed to perform a quantum algorithm. We show that, under certain conditions, an entire quantum algorithm can be efficiently implemented by controlling a single central qubit in a quantum computer. We also show that the different system parameters do not need to be designed accurately during fabrication. They can be determined through the response of the central qubit to external driving. Our proposal is well suited for hybrid architectures that combine microscopic and macroscopic qubits. More details can be found in: A.M. Zagoskin, S. Ashhab, J.R. Johansson, F. Nori, Quantum two-level systems in Josephson junctions as naturally formed qubits, Phys. Rev. Lett. 97, 077001 (2006); and S. Ashhab, J.R. Johansson, F. Nori, Rabi oscillations in a qubit coupled to a quantum two-level system, New J. Phys. 8, 103 (2006).

  12. Smart monitoring system based on adaptive current control for superconducting cable test

    Energy Technology Data Exchange (ETDEWEB)

    Arpaia, Pasquale [Department of Electrical Engineering and Information Technology, University of Naples Federico II, 80125 Napoli (Italy); Technology Department, European Organization for Nuclear Research (CERN), 1217 Geneva (Switzerland); Ballarino, Amalia; Montenero, Giuseppe [Technology Department, European Organization for Nuclear Research (CERN), 1217 Geneva (Switzerland); Daponte, Vincenzo [Technology Department, European Organization for Nuclear Research (CERN), 1217 Geneva (Switzerland); Department of Electronics, Information, and Bioengineering, Polytechnic of Milan, 20133 Milano (Italy); Svelto, Cesare [Department of Electronics, Information, and Bioengineering, Polytechnic of Milan, 20133 Milano (Italy)

    2014-12-15

    A smart monitoring system for superconducting cable test is proposed with an adaptive current control of a superconducting transformer secondary. The design, based on Fuzzy Gain Scheduling, allows the controller parameters to adapt continuously, and finely, to the working variations arising from transformer nonlinear dynamics. The control system is integrated in a fully digital control loop, with all the related benefits, i.e., high noise rejection, ease of implementation/modification, and so on. In particular, an accurate model of the system, controlled by a Fuzzy Gain Scheduler of the superconducting transformer, was achieved by an experimental campaign through the working domain at several current ramp rates. The model performance was characterized by simulation, under all the main operating conditions, in order to guide the controller design. Finally, the proposed monitoring system was experimentally validated at European Organization for Nuclear Research (CERN) in comparison to the state-of-the-art control system [P. Arpaia, L. Bottura, G. Montenero, and S. Le Naour, “Performance improvement of a measurement station for superconducting cable test,” Rev. Sci. Instrum.83, 095111 (2012)] of the Facility for the Research on Superconducting Cables, achieving a significant performance improvement: a reduction in the system overshoot by 50%, with a related attenuation of the corresponding dynamic residual error (both absolute and RMS) up to 52%.

  13. Smart monitoring system based on adaptive current control for superconducting cable test.

    Science.gov (United States)

    Arpaia, Pasquale; Ballarino, Amalia; Daponte, Vincenzo; Montenero, Giuseppe; Svelto, Cesare

    2014-12-01

    A smart monitoring system for superconducting cable test is proposed with an adaptive current control of a superconducting transformer secondary. The design, based on Fuzzy Gain Scheduling, allows the controller parameters to adapt continuously, and finely, to the working variations arising from transformer nonlinear dynamics. The control system is integrated in a fully digital control loop, with all the related benefits, i.e., high noise rejection, ease of implementation/modification, and so on. In particular, an accurate model of the system, controlled by a Fuzzy Gain Scheduler of the superconducting transformer, was achieved by an experimental campaign through the working domain at several current ramp rates. The model performance was characterized by simulation, under all the main operating conditions, in order to guide the controller design. Finally, the proposed monitoring system was experimentally validated at European Organization for Nuclear Research (CERN) in comparison to the state-of-the-art control system [P. Arpaia, L. Bottura, G. Montenero, and S. Le Naour, "Performance improvement of a measurement station for superconducting cable test," Rev. Sci. Instrum. 83, 095111 (2012)] of the Facility for the Research on Superconducting Cables, achieving a significant performance improvement: a reduction in the system overshoot by 50%, with a related attenuation of the corresponding dynamic residual error (both absolute and RMS) up to 52%.

  14. Digital base-band rf control system for the superconducting Darmstadt electron linear accelerator

    Directory of Open Access Journals (Sweden)

    M. Konrad

    2012-05-01

    Full Text Available The accelerating field in superconducting cavities has to be stabilized in amplitude and phase by a radio-frequency (rf control system. Because of their high loaded quality factor superconducting cavities are very susceptible for microphonics. To meet the increased requirements with respect to accuracy, availability, and diagnostics, the previous analog rf control system of the superconducting Darmstadt electron linear accelerator S-DALINAC has been replaced by a digital rf control system. The new hardware consists of two components: An rf module that converts the signal from the cavity down to the base-band and a field-programmable gate array board including a soft CPU that carries out the signal processing steps of the control algorithm. Different algorithms are used for normal-conducting and superconducting cavities. To improve the availability of the control system, techniques for automatic firmware and software deployment have been implemented. Extensive diagnostic features provide the operator with additional information. The architecture of the rf control system as well as the functionality of its components will be presented along with measurements that characterize the performance of the system, yielding, e.g., an amplitude stabilization down to (ΔA/A_{rms}=7×10^{-5} and a phase stabilization of (Δϕ_{rms}=0.8° for superconducting cavities.

  15. Modified SQUID Operator Equation for a Single-Qubit Structure Coupled to a Quantum Resonator

    Institute of Scientific and Technical Information of China (English)

    LIANG Bao-Long; WANG Ji-Suo; FAN Hong-Yi; MENG Xiang-Guo

    2008-01-01

    Role of self-inductance in superconducting quantum interference device (SQUID) charge qubit is considered. It is found that when an SQUID charge qubit is coupled to a quantum LC resonator, the SQUID voltage operator equation is modified in accompanying with the modification of operator Faraday equation describing the inductance. It is shown that when the extra energy is applied to the junction, the mean phase will be squeezed according to a damping factor.

  16. Simulating Zeno physics by a quantum quench with superconducting circuits

    Science.gov (United States)

    Tong, Qing-Jun; An, Jun-Hong; Kwek, L. C.; Luo, Hong-Gang; Oh, C. H.

    2014-06-01

    Studying out-of-equilibrium physics in quantum systems under quantum quench is of vast experimental and theoretical interest. Using periodic quantum quenches, we present an experimentally accessible scheme to simulate the quantum Zeno and anti-Zeno effects in an open quantum system of a single superconducting qubit interacting with an array of transmission line resonators. The scheme is based on the following two observations: First, compared with conventional systems, the short-time nonexponential decay in our superconducting circuit system is readily observed; and second, a quench-off process mimics an ideal projective measurement when its time duration is sufficiently long. Our results show the active role of quantum quench in quantum simulation and control.

  17. Optimal Qubit Control Using Single-Flux Quantum Pulses

    Science.gov (United States)

    Liebermann, Per J.; Wilhelm, Frank K.

    2016-08-01

    Single-flux quantum pulses are a natural candidate for on-chip control of superconducting qubits. We show that they can drive high-fidelity single-qubit rotations—even in leaky transmon qubits—if the pulse sequence is suitably optimized. We achieve this objective by showing that, for these restricted all-digital pulses, genetic algorithms can be made to converge to arbitrarily low error, verified up to a reduction in gate error by 2 orders of magnitude compared to an evenly spaced pulse train. Timing jitter of the pulses is taken into account, exploring the robustness of our optimized sequence. This approach takes us one step further towards on-chip qubit controls.

  18. Cryogenic helium gas circulation system for advanced characterization of superconducting cables and other devices

    Science.gov (United States)

    Pamidi, Sastry; Kim, Chul Han; Kim, Jae-Ho; Crook, Danny; Dale, Steinar

    2012-04-01

    A versatile cryogenic test bed, based on circulating cryogenic helium gas, has been designed, fabricated, and installed at the Florida State University Center for Advanced Power Systems (FSU-CAPS). The test bed is being used to understand the benefits of integrating the cryogenic systems of multiple superconducting power devices. The helium circulation system operates with four sets of cryocooler and heat exchanger combinations. The maximum operating pressure of the system is 2.1 MPa. The efficacy of helium circulation systems in cooling superconducting power devices is evaluated using a 30-m-long simulated superconducting cable in a flexible cryostat. Experiments were conducted at various mass flow rates and a variety of heat load profiles. A 1-D thermal model was developed to understand the effect of the gas flow parameters on the thermal gradients along the cable. Experimental results are in close agreement with the results from the thermal model.

  19. Towards Using Molecular States as Qubits

    Science.gov (United States)

    Goswami, Debabrata; Goswami, Tapas; Kumar, S. K. Karthick; Das, Dipak K.

    2013-01-01

    Molecular systems are presented as possible qubit systems by exploring non-resonant molecular fragmentation of n-propyl benzene with femtosecond laser pulses as a model case. We show that such laser fragmentation process is dependent on the phase and polarization characteristics of the laser. The effect of the chirp and polarization of the femtosecond pulse when applied simultaneously is mutually independent of each other, which makes chirp and polarization as useful ‘logic’ implementing parameters for such molecular qubits. PMID:23814323

  20. Fidelity enhancement by logical qubit encoding.

    Science.gov (United States)

    Henry, Michael K; Ramanathan, Chandrasekhar; Hodges, Jonathan S; Ryan, Colm A; Ditty, Michael J; Laflamme, Raymond; Cory, David G

    2007-11-30

    We demonstrate coherent control of two logical qubits encoded in a decoherence free subspace (DFS) of four dipolar-coupled protons in an NMR quantum information processor. A pseudopure fiducial state is created in the DFS, and a unitary logical qubit entangling operator evolves the system to a logical Bell state. The four-spin molecule is partially aligned by a liquid crystal solvent, which introduces strong dipolar couplings among the spins. Although the system Hamiltonian is never fully specified, we demonstrate high fidelity control over the logical degrees of freedom. In fact, the DFS encoding leads to higher fidelity control than is available in the full four-spin Hilbert space.

  1. Protected Flux Pairing Qubit

    Science.gov (United States)

    Bell, Matthew; Zhang, Wenyuan; Ioffe, Lev; Gershenson, Michael

    2014-03-01

    We have studied the coherent flux tunneling in a qubit containing two submicron Josephson junctions shunted by a superinductor (a dissipationless inductor with an impedance much greater than the resistance quantum). The two low energy quantum states of this device, " open="|"> 0 and " open="|"> 1, are represented by even and odd number of fluxes in the loop, respectively. This device is dual to the charge pairing Josephson rhombi qubit. The spectrum of the device, studied by microwave spectroscopy, reflects the interference between coherent quantum phase slips in the two junctions (the Aharonov-Casher effect). The time domain measurements demonstrate the suppression of the qubit's energy relaxation in the protected regime, which illustrates the potential of this flux pairing device as a protected quantum circuit. Templeton Foundation, NSF, and ARO.

  2. Control landscape for ultrafast manipulation by a qubit

    Science.gov (United States)

    Pechen, Alexander; Il'in, Nikolay

    2017-02-01

    In this work we study extrema of objective functionals for ultrafast manipulation by a qubit. Traps are extrema of the objective functionals which are optimal for manipulation by quantum systems only locally, not globally. Prior work has devoted a large amount of effort to the analysis of traps for quantum systems controlled by laser pulses which are long enough, and, for example, manipulation by a qubit with long control pulses was shown to be trap-free. Ultrafast femtosecond and attosecond control has now become widely applicable, which makes the analysis of traps on the ultrafast time scale a necessity. We complete such analysis for a qubit and show that ultrafast state transfer in a qubit remains trap-free for a wide range of the initial and final states of the qubit. We prove that for this range the probability of transition between the initial and the final states has a saddle but no traps.

  3. Numerical Simulation of Leakage Effect for Quantum NOT Operation on Three-Josephson-Junction Flux Qubit

    Institute of Scientific and Technical Information of China (English)

    WU Tao; LIU Jian-She; LI Zheng

    2006-01-01

    @@ Superconducting flux qubits with three Josephson junctions are promising candidates for the building blocks of a quantum computer. We have applied the imaginary time evolution method to study the model of this qubit accurately by calculating its wavefunctions and eigenenergies. Because such qubits are manipulated with magnetic lux microwave pulses, they might be irradiated into non-computational states, which is called the leakage effect.By the evolution of the density matrix of the qubit under either hard-shaped π-pulse or Gaussian-shaped π-pulse to carry out quantum NOT operation, it has been demonstrated that the leakage effect for a flux qubit is very small even for hard-shaped microwave pulses while Gaussian-shaped pulses may suppress the leakage effect to a negligible level.

  4. Separability and entanglement of n-qubit and a qubit and a qudit using Hilbert-Schmidt decompositions

    Science.gov (United States)

    Ben-Aryeh, Y.; Mann, A.

    2016-08-01

    Hilbert-Schmidt (HS) decompositions are employed for analyzing systems of n-qubit, and a qubit with a qudit. Negative eigenvalues, obtained by partial-transpose (PT) plus local unitary (PTU) transformations for one qubit from the whole system, are used for indicating entanglement/separability. A sufficient criterion for full separability of the n-qubit and qubit-qudit systems is given. We use the singular value decomposition (SVD) for improving the criterion for full separability. General properties of entanglement and separability are analyzed for a system of a qubit and a qudit and n-qubit systems, with emphasis on maximally disordered subsystems (MDS) (i.e. density matrices for which tracing over any subsystem gives the unit density matrix). A sufficient condition that ρ (MDS) is not separable is that it has an eigenvalue larger than 1/d for a qubit and a qudit, and larger than 1/2n-1 for n-qubit system. The PTU transformation does not change the eigenvalues of the n-qubit MDS density matrices for odd n. Thus, the Peres-Horodecki (PH) criterion does not give any information about entanglement of these density matrices. The PH criterion may be useful for indicating inseparability for even n. The changes of the entanglement and separability properties of the GHZ state, the Braid entangled state and the W state by mixing them with white noise are analyzed by the use of the present methods. The entanglement and separability properties of the GHZ-diagonal density matrices, composed of mixture of 8GHZ density matrices with probabilities pi(i=1,2,…,8), is analyzed as function of these probabilities. In some cases, we show that the PH criterion is both sufficient and necessary.

  5. SLUG Microwave Amplifier as a Nonreciprocal Gain Element for Scalable Qubit Readout

    Science.gov (United States)

    Thorbeck, Ted; Leonard, Edward; Zhu, Shaojiang; McDermott, Robert

    Josephson parametric amplifiers for superconducting qubits require several stages of cryogenic isolation to protect the qubit from strong microwave pump tones and downstream noise. But isolators and circulators are large, expensive and magnetic, so they are an obstacle to scaling up a superconducting quantum computer. In contrast, the SLUG (Superconducting Low-inductance Undulatory Galvanometer) is a high gain, broadband, low noise microwave amplifier that provides built-in reverse isolation. Here, we describe the dependence of the SLUG reverse isolation on signal frequency and device operating point. We show that the reverse isolation of the SLUG can be as large as or larger than that of a bulk commercial isolator. Finally, we discuss the use of the SLUG to read out a transmon qubit without isolators or circulators.

  6. Scheme for Implementing Refined Deutsch-Jozsa Algorithm via Superconducing Qubits

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ji-Qian; ZHENG Xiao-Hu; CHEN Han-Shuang; YU Ben-Li; WANG Mao-Sheng; ZHANG Gang; CAO Zhuo-Liang

    2008-01-01

    We propose a scheme of implementing the Deutsch-Jozsa algorithm based on superconducing charge qubits, which would be a key step to scale more complex quantum algorithms and very important for constructing a real quantum computer via superconducting charge qubits. The present scheme is simple but fairly efficient, and easily manipulated because arbitrary two-qubit can be selectively and effectively coupled by a common inductance. More manipulations can be carried out before decoherence sets in. The proposed scheme is in line with current technology.

  7. The two-qubit amplitude damping channel: Characterization using quantum stabilizer codes

    Science.gov (United States)

    Omkar, S.; Srikanth, R.; Banerjee, Subhashish; Shaji, Anil

    2016-10-01

    A protocol based on quantum error correction based characterization of quantum dynamics (QECCD) is developed for quantum process tomography on a two-qubit system interacting dissipatively with a vacuum bath. The method uses a 5-qubit quantum error correcting code that corrects arbitrary errors on the first two qubits, and also saturates the quantum Hamming bound. The dissipative interaction with a vacuum bath allows for both correlated and independent noise on the two-qubit system. We study the dependence of the degree of the correlation of the noise on evolution time and inter-qubit separation.

  8. LEVEL STATISTICS AND PARITY EFFECT ON SMALL SUPERCONDUCTING SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    CHEN ZHI-QIAN; ZHENG REN-RONG

    2001-01-01

    In this paper we have calculated the variations of the gap △'(0, d) and transition temperature Tc' in small metallic grains as functions of grain size (or the level spacing d between discrete electronic states) for the cases of odd and even numbers of electrons by applying the random matrix theory to the mean field theory. We find the presence of enhancement of superconductivity and critical dc, where the superconductivity of small grains breaks down. This agrees with Anderson's prediction (1959 J. Phys. Chem. Solids 11 28). We find that in the grains, as the size is lowered,the transition temperature Tc' decreases and A'(O, d)/kBTc' ≤πe-γ in odd numbers of electrons, and for Gaussian orthogonal and unitary ensembles in some regimes △'(0, d)/kBTc' >πe-γ in even numbers of electrons.

  9. Cat-qubits for quantum computation

    Science.gov (United States)

    Mirrahimi, Mazyar

    2016-08-01

    The development of quantum Josephson circuits has created a strong expectation for reliable processing of quantum information. While this progress has already led to various proof-of-principle experiments on small-scale quantum systems, a major scaling step is required towards many-qubit protocols. Fault-tolerant computation with protected logical qubits usually comes at the expense of a significant overhead in the hardware. Each of the involved physical qubits still needs to satisfy the best achieved properties (coherence times, coupling strengths and tunability). Here, and in the aim of addressing alternative approaches to deal with these obstacles, I overview a series of recent theoretical proposals, and the experimental developments following these proposals, to enable a hardware-efficient paradigm for quantum memory protection and universal quantum computation. xml:lang="fr"

  10. Generation of GHZ entangled states of photons in multiple cavities via a superconucting qubit or an atom through resonant interaction

    CERN Document Server

    Yang, Chui-Ping

    2012-01-01

    We propose a method to generate a GHZ entangled state of n photons in n microwave cavities (or resonators) via resonant interaction to a single superconducting qubit. By performing local operations on a qubit (e.g., a solid-state qubit, an atom, etc.) placed in each cavity, the created GHZ states of n photons can be transferred to qubits for storage. The proposed scheme greatly reduces effect of decoherence since only resonant qubit-cavity interaction and resonant qubit-pulse interaction are involved, and no measurement is required. In addition, we show that the method can be applied to create a GHZ state of photons in multiple cavities via an atom through resonant interaction with no measurement needed.

  11. Phase-Tuned Entangled State Generation between Distant Spin Qubits

    Science.gov (United States)

    Stockill, R.; Stanley, M. J.; Huthmacher, L.; Clarke, E.; Hugues, M.; Miller, A. J.; Matthiesen, C.; Le Gall, C.; Atatüre, M.

    2017-07-01

    Quantum entanglement between distant qubits is an important feature of quantum networks. Distribution of entanglement over long distances can be enabled through coherently interfacing qubit pairs via photonic channels. Here, we report the realization of optically generated quantum entanglement between electron spin qubits confined in two distant semiconductor quantum dots. The protocol relies on spin-photon entanglement in the trionic Λ system and quantum erasure of the Raman-photon path information. The measurement of a single Raman photon is used to project the spin qubits into a joint quantum state with an interferometrically stabilized and tunable relative phase. We report an average Bell-state fidelity for |ψ(+)⟩ and |ψ(-)⟩ states of 61.6 ±2.3 % and a record-high entanglement generation rate of 7.3 kHz between distant qubits.

  12. Demonstration of entanglement of electrostatically coupled singlet-triplet qubits.

    Science.gov (United States)

    Shulman, M D; Dial, O E; Harvey, S P; Bluhm, H; Umansky, V; Yacoby, A

    2012-04-13

    Quantum computers have the potential to solve certain problems faster than classical computers. To exploit their power, it is necessary to perform interqubit operations and generate entangled states. Spin qubits are a promising candidate for implementing a quantum processor because of their potential for scalability and miniaturization. However, their weak interactions with the environment, which lead to their long coherence times, make interqubit operations challenging. We performed a controlled two-qubit operation between singlet-triplet qubits using a dynamically decoupled sequence that maintains the two-qubit coupling while decoupling each qubit from its fluctuating environment. Using state tomography, we measured the full density matrix of the system and determined the concurrence and the fidelity of the generated state, providing proof of entanglement.

  13. PREFACE: Focus on superconductivity in Fe-based systems Focus on superconductivity in Fe-based systems

    Science.gov (United States)

    Prozorov, Ruslan; Chubukov, Andrey; Meingast, Christoph; Putti, Marina

    2012-08-01

    The past four years of incredibly intense research into Fe-based superconductors have brought about many unexpected surprises. Our understanding of their behavior and physical properties is constantly evolving. Unlike any other superconductors, those containing iron span diverse groups of materials: pnictides, chalcogenides, intermetallics and oxides. Some major properties of the materials are quite similar, yet each group has its own distinct features. Significant effort has been put into identifying new superconducting compositions, modifying the existing ones with new dopants and treatments, and producing single crystals, thin films, wires and polycrystalline bulk material. A wide array of experimental techniques was applied to study Fe-based superconductors and the result is a tremendous amount of data collected over a period of less than four years. Theoretical debates are still lively, and there is an ongoing search for possible universalities and commonalities with other unconventional superconductors, like high-Tc cuprates or heavy fermion materials. The three-dimensional electronic structures of Fe-based superconductors, as well as their extreme sensitivity to disorder, present serious challenges for both theoretical analysis and the interpretation of experiments. However, some key properties emerge from multiple studies. Unconventional, multiband superconductivity originating from an electronic mechanism has found both experimental and theoretical support. There has been great progress in the understanding of various anisotropies of superconducting gap structures, including the possibility of gap nodes even if the gap symmetry is s-wave. Similar to high-Tc cuprates, the superconducting phase has a dome-like shape on T-doping or T-pressure phase diagrams. The anisotropy of the superconducting gap evolves with doping and is likely to become stronger at the dome's edge. In many Fe-based superconductors there is a range where superconductivity coexists and

  14. A realizable quantum encryption algorithm for qubits

    Institute of Scientific and Technical Information of China (English)

    Zhou Nan-Run; Zeng Gui-Hua

    2005-01-01

    A realizable quantum encryption algorithm for qubits is presented by employing bit-wise quantum computation.System extension and bit-swapping are introduced into the encryption process, which makes the ciphertext space expanded greatly. The security of the proposed algorithm is analysed in detail and the schematic physical implementation is also provided. It is shown that the algorithm, which can prevent quantum attack strategy as well as classical attack strategy, is effective to protect qubits. Finally, we extend our algorithm to encrypt classical binary bits and quantum entanglements.

  15. Robust two-qubit quantum registers.

    Science.gov (United States)

    Grigorenko, I A; Khveshchenko, D V

    2005-02-04

    We carry out a systematic analysis of a pair of coupled qubits, each of which is subject to its own dissipative environment, and argue that a combination of the interqubit couplings which provides for the lowest possible decoherence rates corresponds to the incidence of a double spectral degeneracy in the two-qubit system. We support this general argument by the results of an evolutionary genetic algorithm which can also be used for optimizing time-dependent processes (gates) and their sequences that implement various quantum computing protocols.

  16. Two qubits in the Dirac representation

    Science.gov (United States)

    Rajagopal, A. K.; Rendell, R. W.

    2001-08-01

    The Dirac-matrix representation of a general two-qubit system is shown to exhibit quite interesting features. The relativistic symmetries of time reversal T, charge conjugation C, parity P, and their products are reinterpreted here by examining their action on the Bell states. It is shown that only C does not mix the Bell states whereas all others do. The various logic gates of quantum information theory are also expressed in terms of the Dirac matrices. For example, the NOT gate is related to the product of T and P. A two-qubit density matrix is found to be entangled if it is invariant under C.

  17. Superconductivity at 52.5 K in the lanthanum-barium-copper-oxide system

    Science.gov (United States)

    Chu, C. W.; Hor, P. H.; Meng, R. L.; Gao, L.; Huang, Z. J.

    1987-01-01

    The electrical properties of the (La/0/9/Ba/0.1/)CuO/4-y/ system are examined under ambient and hydrostatic pressures. The resistance, ac magnetic susceptibility, and superconductivity onset, midpoint, and intercept temperatures are measured. It is observed that at ambient pressure the resistance decreases with temperature decreases, and the ac susceptibility shows diamagnetic shifts starting at about 32 K. Under hydrostatic pressure a superconducting transition with an onset temperature of 52.5 K is observed, and the resistance increases at lower temperatures. The data reveal that the electrical properties of the La-Ba-Cu-O system are dependent on samples and preparation conditions. Various causes for the high temperature superconductivity of the system are proposed.

  18. Equilibrium of a system of superconducting rings in a uniform gravitational field

    Science.gov (United States)

    Bishaev, A. M.; Bush, A. A.; Gavrikov, M. B.; Gordeev, I. S.; Denisyuk, A. I.; Kamentsev, K. E.; Kozintseva, M. V.; Savel'ev, V. V.; Sigov, A. S.

    2013-05-01

    To construct a plasma trap with levitating magnetic coils in the thin ring approximation, we derive the expression for the potential energy of a system of several superconducting rings (one of which is fixed) capturing the preset flows in the uniform gravitational field as a function of the coordinates of the free ring (or rings). Calculations performed in the Mathcad system show that the potential energy of such a system has a local minimum for certain values of parameters. Stable levitation of a superconducting ring in the position corresponding to calculations is realized in the field of another superconducting ring, and this leads to the conclusion that a magnetic Galatea trap can be prepared on the basis of a levitating quadrupole.

  19. A cryogen-free ultralow-field superconducting quantum interference device magnetic resonance imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob, E-mail: ihahn@caltech.edu [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 (United States)

    2014-09-15

    Magnetic resonance imaging (MRI) at microtesla fields using superconducting quantum interference device (SQUID) detection has previously been demonstrated, and advantages have been noted. Although the ultralow-field SQUID MRI technique would not need the heavy superconducting magnet of conventional MRI systems, liquid helium required to cool the low-temperature detector still places a significant burden on its operation. We have built a prototype cryocooler-based SQUID MRI system that does not require a cryogen. The SQUID detector and the superconducting gradiometer were cooled down to 3.7 K and 4.3 K, respectively. We describe the prototype design, characterization, a phantom image, and areas of further improvements needed to bring the imaging performance to parity with conventional MRI systems.

  20. A cryogen-free ultralow-field superconducting quantum interference device magnetic resonance imaging system

    Science.gov (United States)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2014-09-01

    Magnetic resonance imaging (MRI) at microtesla fields using superconducting quantum interference device (SQUID) detection has previously been demonstrated, and advantages have been noted. Although the ultralow-field SQUID MRI technique would not need the heavy superconducting magnet of conventional MRI systems, liquid helium required to cool the low-temperature detector still places a significant burden on its operation. We have built a prototype cryocooler-based SQUID MRI system that does not require a cryogen. The SQUID detector and the superconducting gradiometer were cooled down to 3.7 K and 4.3 K, respectively. We describe the prototype design, characterization, a phantom image, and areas of further improvements needed to bring the imaging performance to parity with conventional MRI systems.

  1. The emergence of superconducting systems in Anti-de Sitter space

    Science.gov (United States)

    Wu, W. M.; Pierpoint, M. P.; Forrester, D. M.; Kusmartsev, F. V.

    2016-10-01

    In this article, we investigate the mathematical relationship between a (3+1) dimensional gravity model inside Anti-de Sitter space AdS4, and a (2+1) dimensional superconducting system on the asymptotically flat boundary of AdS4 (in the absence of gravity). We consider a simple case of the Type II superconducting model (in terms of Ginzburg-Landau theory) with an external perpendicular magnetic field H. An interaction potential V ( r, ψ) = α( T)| ψ|2 /r 2 + χ| ψ|2 /L 2 + β| ψ|4 /(2 r k ) is introduced within the Lagrangian system. This provides more flexibility within the model, when the superconducting system is close to the transition temperature T c. Overall, our result demonstrates that the Ginzburg-Landau differential equations can be directly deduced from Einstein's theory of general relativity.

  2. Study on cooling process of cryogenic system for superconducting magnets of BEPCⅡ

    Institute of Scientific and Technical Information of China (English)

    ZONG Zhan-Guo; LIU Li-Qiang; XIONG Lian-You; LI Shao-Peng; XU Qing-Jin; HE Kun; ZHANG Liang; GAO Jie

    2008-01-01

    In the upgrade project of the Beijing Electron Positron Collider(BEPCⅡ),three superconducting magnets are employed to realize the goal of two orders of magnitude higher luminosity.A cryogenic system with a total capacity of 0.5 kW at 4.5 K was built at the Institute of High Energy Physics(IHEP)to support the operations of these superconducting devices.For preparing the commissioning of the system,the refrigeration process Was simulated and analyrzed numerically.The numerical model Was based on the latest engineering progress and focused on the normal operation mode.The pressure and temperature profiles of the cryogenic system are achieved with the simulation.The influence of the helium mass flow rates to cool superconducting magnets on the thermodynamic parameters of their normal operation is also studied and discussed in this paper.

  3. The Emergence of Superconducting Systems in Anti-de Sitter Space

    CERN Document Server

    Wu, W M; Forrester, D M; Kusmartsev, F V

    2016-01-01

    In this article, we investigate the mathematical relationship between a (3+1) dimensional gravity model inside Anti-de Sitter space $\\rm AdS_4$, and a (2+1) dimensional superconducting system on the asymptotically flat boundary of $\\rm AdS_4$ (in the absence of gravity). We consider a simple case of the Type II superconducting model (in terms of Ginzburg-Landau theory) with an external perpendicular magnetic field ${\\bf H}$. An interaction potential $V(r,\\psi) = \\alpha(T)|\\psi|^2/r^2+\\chi|\\psi|^2/L^2+\\beta|\\psi|^4/(2 r^k )$ is introduced within the Lagrangian system. This provides more flexibility within the model, when the superconducting system is close to the transition temperature $T_c$. Overall, our result demonstrates that the two Ginzburg-Landau differential equations can be directly deduced from Einstein's theory of general relativity.

  4. Entanglement Teleportation via a Two-Qubit System with Anisotropic Couplings under a Different Nonuniform Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    QIN Meng

    2013-01-01

    We examine entanglement teleportation,characterized by average fidelity,of two-qubit XY Z spin chain under different nonuniform magnetic field.The entanglement teleportation and the fidelity of entanglement teleportation are investigated separately.We show explicitly that the fidelity of entanglement teleportation can be enhanced by changing the direction of the magnetic field.This means that we can always get optimal fidelity by choosing the directions of magnetic field in the process of quantum teleportation.Moreover,the results show that in some cases the ferromagnetic chain aiso is a quaiified candidate in the process of teleportation protocol.

  5. Entanglement Preserving in Quantum Copying of Three-Qubit Entangled State

    Institute of Scientific and Technical Information of China (English)

    TONGZhao-Yang; KUANGLe-Man

    2002-01-01

    We study the degree to which quantum entanglement survives when a three-qubit entangled state is copied by using local and non-local processes,respectively,and investigate iterating quantum copying for the three-qubit system.There may exist inter-three-qubit entanglement and inter-two-qubit entanglement for the three-qubit system.We show that both local and non-local copying processes degrade quantum entanglement in the three-particle system due to a residual correlation between the copied output and the copying machine.we also show that the inter-two-qubit entanglement is preserved better than the inter-three-qubit entanglement in the local cloning process.We find that non-local cloning is much more efficient than the local copying for broadcasting entanglement,and output state via non-local cloning exhiits the fidelity better than local cloning.

  6. Loss Tolerant Optical Qubits

    CERN Document Server

    Ralph, T C; Gilchrist, A; Gilchrist, Alexei

    2005-01-01

    We present a linear optics quantum computation scheme that employs a new encoding approach that incrementally adds qubits and is tolerant to photon loss errors. The scheme employs a circuit model but uses techniques from cluster state computation and achieves comparable resource usage. To illustrate our techniques we describe a quantum memory which is fault tolerant to photon loss.

  7. Macroscopic quantum oscillator based on a flux qubit

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mandip, E-mail: mandip@iisermohali.ac.in

    2015-09-25

    In this paper a macroscopic quantum oscillator is proposed, which consists of a flux-qubit in the form of a cantilever. The net magnetic flux threading through the flux-qubit and the mechanical degrees of freedom of the cantilever are naturally coupled. The coupling between the cantilever and the magnetic flux is controlled through an external magnetic field. The ground state of the flux-qubit-cantilever turns out to be an entangled quantum state, where the cantilever deflection and the magnetic flux are the entangled degrees of freedom. A variant, which is a special case of the flux-qubit-cantilever without a Josephson junction, is also discussed. - Highlights: • In this paper a flux-qubit-cantilever is proposed. • Coupling can be varied by an external magnetic field. • Ground state is a macroscopic entangled quantum state. • Ground state of the superconducting-loop-oscillator is a macroscopic quantum superposition. • Proposed scheme is based on a generalized quantum approach.

  8. A Simple System to Measure Superconducting Transition Temperature at High Pressure

    Institute of Scientific and Technical Information of China (English)

    YU Yong; ZHAI Guang-Jie; JIN Chang-Qing

    2009-01-01

    A simple hydride system is fabricated to measure the superconducting transition temperature Tc under high pressure using a diamond anvil cell (DAC). The system is designed with centrosymetric coils around the diamond that makes it easy to keep balance between the pick-up coil and the inductance coil, while the superconducting states can be modulated with a low-frequency small external magnetic field. Using the device we successfully obtain the Tc evolution as a function of applied pressure up to 10 GPa for YBa2 Cu3O6+δ superconductor single crystal.

  9. A Conduction-Cooled Superconducting Magnet System-Design, Fabrication and Thermal Tests

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Holbøll, Joachim; Wang, Qiuliang

    2015-01-01

    A conduction-cooled superconducting magnet system with an operating current of 105.5 A was designed, fabricated and tested for material processing applications. The magnet consists of two coaxial NbTi solenoid coils with an identical vertical height of 300 mm and is installed in a high-vacuumed c......A conduction-cooled superconducting magnet system with an operating current of 105.5 A was designed, fabricated and tested for material processing applications. The magnet consists of two coaxial NbTi solenoid coils with an identical vertical height of 300 mm and is installed in a high...

  10. A double-superconducting axial bearing system for an energy storage flywheel model

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Z; Lin, Q; Ma, G; Zheng, J; Zhang, Y; Wang, S; Wang, J [Applied Superconductivity Laboratory, Mail Stop 152, Southwest Jiaotong University, Chengdu, 610031 (China)], E-mail: jsywang@home.swjtu.edu.cn

    2008-02-15

    The bulk high temperature superconductors (HTSCs) with unique flux-pinning property have been applied to fabricate two superconducting axial bearings for an energy storage flywheel model. The two superconducting axial bearings are respectively fixed at two ends of the vertical rotational shaft, whose stator is composed of seven melt-textured YBa{sub 2}Cu{sub 3}O{sub 7-x} (YBCO) bulks with diameter of 30 mm, height of 18 mm and rotor is made of three cylindrical axial-magnetized NdFeB permanent magnets (PM) by superposition with diameter of 63 mm, height of 27 mm. The experimental results show the total levitation and lateral force produced by the two superconducting bearings are enough to levitate and stabilize the 2.4 kg rotational shaft. When the two YBCO stators were both field cooled to the liquid nitrogen temperature at respective axial distances above or below the PM rotor, the shaft could be automatically levitated between the two stators without any contact. In the case of a driving motor, it can be stably rotated along the central axis besides the resonance frequency. This double-superconducting axial bearing system can be used to demonstrate the flux-pinning property of bulk HTSC for stable levitation and suspension and the principle of superconducting flywheel energy storage system to visitors.

  11. Entanglement between qubits induced by a common environment with a gap

    CERN Document Server

    Oh, S; Oh, Sangchul; Kim, Jaewan

    2006-01-01

    We study a system of two qubits interacting with a common environment, described by a two-spin boson model. We demonstrate two competing roles of the environment: inducing entanglement between the two qubits and making them decoherent. For the environment of a single harmonic oscillator, if its frequency is commensurate with the induced two-qubit coupling strength, the two qubits could be maximally entangled and the environment could be separable. In the case of the environment of a bosonic bath, the gap of its spectral density function is essential to generate entanglement between two qubits at equilibrium and for it to be used as a quantum data bus.

  12. Experimental implementation of encoded logical qubit operations in a perfect quantum error correcting code.

    Science.gov (United States)

    Zhang, Jingfu; Laflamme, Raymond; Suter, Dieter

    2012-09-07

    Large-scale universal quantum computing requires the implementation of quantum error correction (QEC). While the implementation of QEC has already been demonstrated for quantum memories, reliable quantum computing requires also the application of nontrivial logical gate operations to the encoded qubits. Here, we present examples of such operations by implementing, in addition to the identity operation, the NOT and the Hadamard gate to a logical qubit encoded in a five qubit system that allows correction of arbitrary single-qubit errors. We perform quantum process tomography of the encoded gate operations, demonstrate the successful correction of all possible single-qubit errors, and measure the fidelity of the encoded logical gate operations.

  13. High-pressure study of the new Y-Ba-Cu-O superconducting compound system

    Science.gov (United States)

    Hor, P. H.; Gao, L.; Meng, R. L.; Huang, Z. J.; Wang, Y. Q.

    1987-01-01

    Hydrostatic effects on the superconducting transition temperature of the Y-Ba-Cu-O compound system, resistively, up to 19 kbar are investigated. It is found that pressure has little effect on the superconducting state of Y-Ba-Cu-O, in marked contrast to the behavior of the K2NiF4-phase La-Ba-Cu-O and La-Sr-Cu-O systems. It is suggested that this effect may be due to chemical pressure associated with the smaller Y atoms already present in Y-Ba-Cu-O. X-ray powder-diffraction studies show that the high-temperature superconductivity in Y-Ba-Cu-O can only be attributed to one or more phases with structures different from the cubic perovskite or tetragonal layered ones.

  14. Conceptual design of superconducting magnet systems for the Argonne Tokamak Experimental Power Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.T.; Turner, L.R.; Mills, F.E.; DeMichele, D.W.; Smelser, P.; Kim, S.H.

    1976-01-01

    As an integral effort in the Argonne Tokamak Experimental Power Reactor Conceptual Design, the conceptual design of a 10-tesla, pure-tension superconducting toroidal-field (TF) coil system has been developed in sufficient detail to define a realistic design for the TF coil system that could be built based upon the current state of technology with minimum technological extrapolations. A conceptual design study on the superconducting ohmic-heating (OH) coils and the superconducting equilibrium-field (EF) coils were also completed. These conceptual designs are developed in sufficient detail with clear information on high current ac conductor design, cooling, venting provision, coil structural support and zero loss poloidal coil cryostat design. Also investigated is the EF penetration into the blanket and shield.

  15. Deterministic entanglement of photons in two superconducting microwave resonators

    CERN Document Server

    Wang, H; Bialczak, Radoslaw C; Lenander, M; Lucero, Erik; Neeley, M; O'Connell, A; Sank, D; Weides, M; Wenner, J; Yamamoto, T; Yin, Y; Zhao, J; Martinis, John M; Cleland, A N

    2010-01-01

    Quantum entanglement, one of the defining features of quantum mechanics, has been demonstrated in a variety of nonlinear spin-like systems. Quantum entanglement in linear systems has proven significantly more challenging, as the intrinsic energy level degeneracy associated with linearity makes quantum control more difficult. Here we demonstrate the quantum entanglement of photon states in two independent linear microwave resonators, creating N-photon NOON states as a benchmark demonstration. We use a superconducting quantum circuit that includes Josephson qubits to control and measure the two resonators, and we completely characterize the entangled states with bipartite Wigner tomography. These results demonstrate a significant advance in the quantum control of linear resonators in superconducting circuits.

  16. Load frequency stabilization of four area hydro thermal system using Superconducting Magnetic Energy Storage system

    Directory of Open Access Journals (Sweden)

    A.Ruby meena

    2014-07-01

    Full Text Available Automatic generation control in electric power system design is a major concern nowadays due to its rising size, varying structure, integration of renewable-energy sources and distributed generators to meet the growing demand. In this paper, automatic generation control of an interconnected four area hydro thermal system examined. Each area equipped with reheat turbine for thermal system and hydro turbine with electric governor for hydro system. Load frequency stabilization gained by including Superconducting Magnetic Energy Storage system (SMES in all areas. A comparative analysis made between Proportional and Integral (PI controller with Fuzzy Logic controller with and without including SMES in the four area power system. The designed Fuzzy Logic Controller can generate best dynamic performance for step load perturbations given in all areas. The system simulation realized by using MATLAB software.

  17. Halo current diagnostic system of experimental advanced superconducting tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D. L.; Shen, B.; Sun, Y.; Qian, J. P., E-mail: jpqian@ipp.ac.cn; Wang, Y.; Xiao, B. J. [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031 (China); Granetz, R. S. [MIT Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States)

    2015-10-15

    The design, calibration, and installation of disruption halo current sensors for the Experimental Advanced Superconducting Tokamak are described in this article. All the sensors are Rogowski coils that surround conducting structures, and all the signals are analog integrated. Coils with two different cross-section sizes have been fabricated, and their mutual inductances are calibrated. Sensors have been installed to measure halo currents in several different parts of both the upper divertor (tungsten) and lower divertor (graphite) at several toroidal locations. Initial measurements from disruptions show that the halo current diagnostics are working well.

  18. Halo current diagnostic system of experimental advanced superconducting tokamak

    Science.gov (United States)

    Chen, D. L.; Shen, B.; Granetz, R. S.; Sun, Y.; Qian, J. P.; Wang, Y.; Xiao, B. J.

    2015-10-01

    The design, calibration, and installation of disruption halo current sensors for the Experimental Advanced Superconducting Tokamak are described in this article. All the sensors are Rogowski coils that surround conducting structures, and all the signals are analog integrated. Coils with two different cross-section sizes have been fabricated, and their mutual inductances are calibrated. Sensors have been installed to measure halo currents in several different parts of both the upper divertor (tungsten) and lower divertor (graphite) at several toroidal locations. Initial measurements from disruptions show that the halo current diagnostics are working well.

  19. Power system stabilization by superconducting magnetic energy storage with solid-state phase shifter

    Energy Technology Data Exchange (ETDEWEB)

    Mitani, Y.; Uranaka, T.; Tsuji, K. [Osaka Univ., Suita, Osaka (Japan). Dept. of Electrical Engineering

    1995-08-01

    In this paper, a new configuration of power system controller with a combination of superconducting magnetic energy storage and phase shifter, is proposed to improve the stability of a long distance bulk power transmission system. A power system stabilizing control scheme is also proposed. A related simulation shows that the proposed controller is effective for enhancement of power system stability independent of the location of controller in a long distance bulk power transmission system.

  20. Multi-Qubit Algorithms in Josephson Phase Qubits

    Science.gov (United States)

    2016-06-14

    improvement from the detection protocol relative to the added errors . At level IV, the focus is measuring Λ > 1, demonstrat- ing how a logical qubit...qubit since any measurement of a bit-flip error will pro- duce a random flip in phase. The key to quantum error correction is measuring qubit parities...1 and n = 2 errors , the repe- tition code is simply increased in size to 5 bits, with 4 parity measurements between them. Order n errors can be

  1. Dynamical Suppression of Decoherence in Two-Qubit Quantum Memory

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In this paper, we have detailedly studied the dynamical suppression of the phase damping for the two-qubit quantum memory of Ising model by the quantum "bang-bang" technique. We find the sequence of periodic radiofrequency pulses repetitively to flip the state of the two-qubit system and quantitatively find that these pulses can be used to effectively suppress the phase damping decoherence of the quantum memory and freeze the system state into its initial state. The general sequence of periodic radio-frequency pulses to suppress the phase damping of multi-qubit of Ising model is also given.

  2. Manipulation of qubits in nonorthogonal collective storage modes

    DEFF Research Database (Denmark)

    Refsgaard, Jonas; Mølmer, Klaus

    2012-01-01

    We present an analysis of transfer of quantum information between the collective spin degrees of freedom of a large ensemble of two-level systems and a single central qubit. The coupling between the central qubit and the individual ensemble members may be varied and thus provides access to more...... than a single storage mode. Means to store and manipulate several independent qubits are derived for the case where the variation in coupling strengths does not allow addressing orthogonal modes of the ensemble. While our procedures and analysis may apply to a number of different physical systems...

  3. Quantum device prospects of superconducting nanodiamond films

    Science.gov (United States)

    Mtsuko, D.; Churochkin, D.; Bhattacharyya, S.

    2016-02-01

    Nanostructured semiconducting carbon system, described by as a superlattice-like structure demonstrated its potential in switching device applications based on the quantum tunneling through the insulating carbon layer. This switching property can be enhanced further with the association of Josephson's tunneling between two superconducting carbon (diamond) grains separated by a very thin layer of carbon which holds the structure of the film firmly. The superconducting nanodiamond heterostructures form qubits which can lead to the development of quantum computers provided the effect of disorder present in these structure can be firmly understood. Presently we concentrate on electrical transport properties of heavily boron-doped nanocrystalline diamond films around the superconducting transition temperature measured as a function of magnetic fields and the applied bias current. Microstructure of these films is described by a two dimensional superlattice system which can also contain paramagnetic impurities. We report observation of anomalous negative Hall resistance in these films close to the superconductor-insulator-normal phase transition in the resistance versus temperature plots at low bias currents at zero and low magnetic field. The negative Hall effect is found to be suppressed as the bias current increase. Magnetoresistance study shows a distinct peak at zero field when measured in the low current regimes which suggest a superconductor-insulator-superconductor structure of films. Current vs. voltage characteristics show signature of π-Josephson like behaviour which can give rise to a characteristic frequency of several hundred of gigahertz. Signature of spin flipping also shows novel spintronic device applications.

  4. Theory of superconductivity

    CERN Document Server

    Crisan, Mircea

    1989-01-01

    This book discusses the most important aspects of the theory. The phenomenological model is followed by the microscopic theory of superconductivity, in which modern formalism of the many-body theory is used to treat most important problems such as superconducting alloys, coexistence of superconductivity with the magnetic order, and superconductivity in quasi-one-dimensional systems. It concludes with a discussion on models for exotic and high temperature superconductivity. Its main aim is to review, as complete as possible, the theory of superconductivity from classical models and methods up t

  5. Compact Superconducting Radio-frequency Accelerators and Innovative RF Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kephart, Robert [Fermilab; Chattopadhyay, Swaapan [Northern Illinois U.; Milton, Stephen [Colorado State U.

    2015-04-10

    We will present several new technical and design breakthroughs that enable the creation of a new class of compact linear electron accelerators for industrial purposes. Use of Superconducting Radio-Frequency (SRF) cavities allow accelerators less than 1.5 M in length to create electron beams beyond 10 MeV and with average beam powers measured in 10’s of KW. These machines can have the capability to vary the output energy dynamically to produce brehmstrahlung x-rays of varying spectral coverage for applications such as rapid scanning of moving cargo for security purposes. Such compact accelerators will also be cost effective for many existing and new industrial applications. Examples include radiation crosslinking of plastics and rubbers, creation of pure materials with surface properties radically altered from the bulk, modification of bulk or surface optical properties of materials, sterilization of medical instruments animal solid or liquid waste, and destruction of organic compounds in industrial waste water effluents. Small enough to be located on a mobile platform, such accelerators will enable new remediation methods for chemical and biological spills and/or in-situ crosslinking of materials. We will describe one current design under development at Fermilab including plans for prototype and value-engineering to reduce costs. We will also describe development of new nano-structured field-emitter arrays as sources of electrons, new methods for fabricating and cooling superconducting RF cavities, and a new novel RF power source based on magnetrons with full phase and amplitude control.

  6. Forward model theoretical basis for a superconducting imaging surface magnetoencephalography system

    Energy Technology Data Exchange (ETDEWEB)

    Maharajh, K [University of New Mexico, Albuquerque, NM (United States); Volegov, P L [Los Alamos National Laboratory, Los Alamos, NM (United States); Kraus, R H [Los Alamos National Laboratory, Los Alamos, NM (United States)

    2004-02-21

    A novel magnetoencephalography (MEG) system was designed at Los Alamos National Laboratory (LANL) that incorporates a helmet-shaped superconductor in order to increase the signal to noise ratio. The magnetic field perturbations caused by the superconducting surface must be included in the forward physics for accurate source localization. In this paper, the theoretical basis for the forward model that calculates the field of any magnetic source in the presence of an arbitrarily shaped superconducting surface is presented. Appropriate magnetic field integral equations are derived that provide a description of the physics of the forward model. These equations are derived starting from Maxwell's equations in the presence of inhomogeneous media, with the appropriate boundary conditions for a superconductor. A discretized version of this equation is then compared with known analytic solutions for simple superconducting surface geometries.

  7. Study on design of superconducting proton linac for accelerator driven subcritical nuclear power system

    CERN Document Server

    Yu Qi; Xu Tao Guang

    2002-01-01

    As a prior option of the next generation of energy source, the accelerator driven subcritical nuclear power system (ADS) can use efficiently the uranium and thorium resource, transmute the high-level long-lived radioactive wastes and raise nuclear safety. The ADS accelerator should provide the proton beam with tens megawatts. The superconducting linac (SCL) is a good selection of ADS accelerator because of its high efficiency and low beam loss rate. It is constitute by a series of the superconducting accelerating cavities. The cavity geometry is determined by means of the electromagnetic field computation. The SCL main parameters are determined by the particle dynamics computation

  8. Charge noise and dynamical decoupling in singlet-triplet spin qubits

    Science.gov (United States)

    Ramon, Guy

    2013-03-01

    We consider theoretically the effects of an ensemble of fluctuating charges on the coherence of a singlet-triplet qubit in gate-defined double quantum dots. We predict a crossover behavior of the system between non-Gaussian noise and 1/f spectrum, going from mesoscopic single-qubit devices to multi-qubit larger devices. With increasing size of the fluctuator ensemble we find a narrowed distribution of qubit dephasing times that result from random sets of fluctuators. At the same time the noise becomes Markovian with a characteristic Gaussian spectrum and it is dominated by a large collection of weakly-coupled fluctuators. The efficiency of dynamical decoupling pulse sequences in restoring coherence is examined as a function of the qubit's working position and the fluctuator ensemble size. Analytical solutions for qubit dephasing in the limits of weak and strong qubit-fluctuator coupling shed light on the distinct dynamics at different parameter regimes. Supported by Research Corporation

  9. On the geometry and invariants of qubits, quartits and octits

    CERN Document Server

    Planat, Michel

    2010-01-01

    Four level quantum systems, known as quartits, and their relation to two- qubit systems are investigated group theoretically. Following the spirit of Klein's lectures on the icosahedron and their relation to Hopf sphere fibrations, invariants of complex reflection groups occurring in the theory of qubits and quartits are displayed. Then, real gates over octits leading to the Weyl group of E8 and its invariants are derived. Even multilevel systems are of interest in the context of solid state nuclear magnetic resonance.

  10. Protection of Hardware: Powering Systems (Power Converter, Normal Conducting, and Superconducting Magnets)

    CERN Document Server

    Pfeffer, H; Wolff, D

    2016-01-01

    Along with the protection of magnets and power converters, we have added a section on personnel protection because this is our highest priority in the design and operation of power systems. Thus, our topics are the protection of people, power converters, and magnet loads (protected from the powering equipment), including normal conducting magnets and superconducting magnets.

  11. New, coupling loss induced, quench protection system for superconducting accelerator magnets

    NARCIS (Netherlands)

    Ravaioli, E.; Datskov, V.I.; Giloux, C.; Kirby, G.; Kate, ten H.H.J.; Verweij, A.P.

    2014-01-01

    A new and promising method for the protection of superconducting high-field magnets is developed and tested on the so-called MQXC quadrupole magnet in the CERN magnet test facility. The method relies on a capacitive discharge system inducing during a few periods an oscillation of the transport curre

  12. Multichannel system based on a high sensitivity superconductive sensor for magnetoencephalography.

    Science.gov (United States)

    Rombetto, Sara; Granata, Carmine; Vettoliere, Antonio; Russo, Maurizio

    2014-07-08

    We developed a multichannel system based on superconducting quantum interference devices (SQUIDs) for magnetoencephalography measurements. Our system consists of 163 fully-integrated SQUID magnetometers, 154 channels and 9 references, and all of the operations are performed inside a magnetically-shielded room. The system exhibits a magnetic field noise spectral density of approximatively 5 fT/Hz(1=2). The presented magnetoencephalography is the first system working in a clinical environment in Italy.

  13. Vibration-induced field fluctuations in a superconducting magnet

    CERN Document Server

    Britton, J W; Bohnet, J G; Uys, H; Biercuk, M J; Bollinger, J J

    2015-01-01

    Superconducting magnets enable precise control of nuclear and electron spins, and are used in experiments that explore biological and condensed matter systems, and fundamental atomic particles. In high-precision applications, a common view is that that slow (<1 Hz) drift of the homogeneous magnetic field limits control and measurement precision. We report on previously undocumented higher-frequency field noise (10 Hz to 200 Hz) that limits the coherence time of 9Be+ electron-spin qubits in the 4.46 T field of a superconducting magnet. We measure a spin-echo T2 coherence time of ~6 ms for the 9Be+ electron-spin resonance at 124 GHz, limited by part-per-billion fractional fluctuations in the magnet's homogeneous field. Vibration isolation of the magnet improved T2 to ~50 ms.

  14. Experiments on two-resonator circuit quantum electrodynamics. A superconducting quantum switch

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Elisabeth Christiane Maria

    2013-05-29

    The field of cavity quantum electrodynamics (QED) studies the interaction between light and matter on a fundamental level. In typical experiments individual natural atoms are interacting with individual photons trapped in three-dimensional cavities. Within the last decade the prospering new field of circuit QED has been developed. Here, the natural atoms are replaced by artificial solid state quantum circuits offering large dipole moments which are coupled to quasi-onedimensional cavities providing a small mode volume and hence a large vacuum field strength. In our experiments Josephson junction based superconducting quantum bits are coupled to superconducting microwave resonators. In circuit QED the number of parameters that can be varied is increased and regimes that are not accessible using natural atoms can be entered and investigated. Apart from design flexibility and tunability of system parameters a particular advantage of circuit QED is the scalability to larger system size enabled by well developed micro- and nanofabrication tools. When scaling up the resonator-qubit systems beyond a few coupled circuits, the rapidly increasing number of interacting subsystems requires an active control and directed transmission of quantum signals. This can, for example, be achieved by implementing switchable coupling between two microwave resonators. To this end, a superconducting flux qubit is used to realize a suitable coupling between two microwave resonators, all working in the Gigahertz regime. The resulting device is called quantum switch. The flux qubit mediates a second order tunable and switchable coupling between the resonators. Depending on the qubit state, this coupling can compensate for the direct geometric coupling of the two resonators. As the qubit may also be in a quantum superposition state, the switch itself can be ''quantum'': it can be a superposition of ''on'' and ''off''. This work

  15. Symmetric two qubit gates

    CERN Document Server

    Sirsi, Swarnamala; Hegde, Subramanya

    2011-01-01

    Quantum computation on qubits can be carried out by an operation generated by a Hamiltonian such as application of a pulse as in NMR, NQR. Quantum circuits form an integral part of quan- tum computation. We investigate the nonlocal operations generated by a given Hamiltonian. We construct and study the properties of perfect entanglers, that is, the two-qubit operations that can generate maximally entangled states from some suitably chosen initial separable states in terms of their entangling power. Our work addresses the problem of analyzing the quantum evolution in the special case of two qubit symmetric states. Such a symmetric space can be considered to be spanned by the angular momentum states {|j = 1,m>;m = +1, 0,-1}. Our technique relies on the decomposition of a Hamiltonian in terms of newly defined Hermitian operators Mk's (k= 0.....8) which are constructed out of angular momentum operators Jx, Jy, Jz. These operators constitute a linearly independent set of traceless matrices (except for M0). Further...

  16. Leggett-Garg inequality violations with a large ensemble of qubits

    Science.gov (United States)

    Lambert, Neill; Debnath, Kamanasish; Kockum, Anton Frisk; Knee, George C.; Munro, William J.; Nori, Franco

    2016-07-01

    We investigate how discrete internal degrees of freedom in a quasimacroscopic system affect the violation of the Leggett-Garg inequality, a test of macroscopic realism based on temporal correlation functions. As a specific example, we focus on an ensemble of qubits subject to collective and individual noise. This generic model can describe a range of physical systems, including atoms in cavities, electron or nuclear spins in nitrogen-vacancy (NV) centers in diamond, erbium in Y2SiO5 , bismuth impurities in silicon, or arrays of superconducting circuits, to indicate but a few. Such large ensembles are potentially more macroscopic than other systems that have been used so far for testing the Leggett-Garg inequality and open a route toward probing the boundaries of quantum mechanics at macroscopic scales. We find that, because of the nontrivial internal structure of such an ensemble, the behavior of different measurement schemes, under the influence of noise, can be surprising. We discuss which measurement schemes are optimal for flux qubits and NV centers, and some of the technological constraints and difficulties for observing such violations with present-day experiments.

  17. Few-Photon Scattering in Dispersive Waveguides with Multiple Qubits

    CERN Document Server

    Kocabaş, Şükrü Ekin

    2016-01-01

    We extend the Krylov subspace based time dependent numerical simulation technique for a qubit interacting with photons in a waveguide to the multiple qubit case. We analyze photon scattering from two qubits analytically and derive expressions for the bound states in the continuum (BIC). We show how the BIC can be excited. We use the BIC in a recent Pauli Z gate proposal involving decoherence free subspaces and obtain the gate fidelity as a function of the gate parameters. The techniques presented in the paper are useful for investigating the time evolution of quantum gates and other many-body systems with multiple quenches in the Hamiltonian.

  18. Integrated optical addressing of an ion qubit.

    Science.gov (United States)

    Mehta, Karan K; Bruzewicz, Colin D; McConnell, Robert; Ram, Rajeev J; Sage, Jeremy M; Chiaverini, John

    2016-12-01

    The long coherence times and strong Coulomb interactions afforded by trapped ion qubits have enabled realizations of the necessary primitives for quantum information processing and the highest-fidelity quantum operations in any qubit to date. Although light delivery to each individual ion in a system is essential for general quantum manipulations and readout, experiments so far have employed optical systems that are cumbersome to scale to even a few tens of qubits. Here we demonstrate lithographically defined nanophotonic waveguide devices for light routing and ion addressing that are fully integrated within a surface-electrode ion trap chip. Ion qubits are addressed at multiple locations via focusing grating couplers emitting through openings in the trap electrodes to ions trapped 50 μm above the chip; using this light, we perform quantum coherent operations on the optical qubit transition in individual (88)Sr(+) ions. The grating focuses the beam to a diffraction-limited spot near the ion position with 2 μm 1/e(2) radius along the trap axis, and we measure crosstalk errors between 10(-2) and 4 × 10(-4) at distances 7.5-15 μm from the beam centre. Owing to the scalability of the planar fabrication technique employed, together with the tight focusing and stable alignment afforded by the integration of the optics within the trap chip, this approach presents a path to creating the optical systems required for large-scale trapped-ion quantum information processing.

  19. Integrated optical addressing of an ion qubit

    Science.gov (United States)

    Mehta, Karan K.; Bruzewicz, Colin D.; McConnell, Robert; Ram, Rajeev J.; Sage, Jeremy M.; Chiaverini, John

    2016-12-01

    The long coherence times and strong Coulomb interactions afforded by trapped ion qubits have enabled realizations of the necessary primitives for quantum information processing and the highest-fidelity quantum operations in any qubit to date. Although light delivery to each individual ion in a system is essential for general quantum manipulations and readout, experiments so far have employed optical systems that are cumbersome to scale to even a few tens of qubits. Here we demonstrate lithographically defined nanophotonic waveguide devices for light routing and ion addressing that are fully integrated within a surface-electrode ion trap chip. Ion qubits are addressed at multiple locations via focusing grating couplers emitting through openings in the trap electrodes to ions trapped 50 μm above the chip; using this light, we perform quantum coherent operations on the optical qubit transition in individual 88Sr+ ions. The grating focuses the beam to a diffraction-limited spot near the ion position with 2 μm 1/e2 radius along the trap axis, and we measure crosstalk errors between 10-2 and 4 × 10-4 at distances 7.5-15 μm from the beam centre. Owing to the scalability of the planar fabrication technique employed, together with the tight focusing and stable alignment afforded by the integration of the optics within the trap chip, this approach presents a path to creating the optical systems required for large-scale trapped-ion quantum information processing.

  20. A Superconducting Levitation Transport Model System for Dynamical and Didactical Studies

    Science.gov (United States)

    Rosenzweig, St.; Reich, E.; Neu, V.; Berger, D.; Peukert, K.; Holzapfel, B.; Schultz, L.; Pospiech, G.

    Superconducting levitation transport systems might become very attractive in the near future due to various reasons. The realisation of contactless systems allows e.g. extended maintenance-free operation with high efficiency since such a system only needs energy for cooling and propulsion. We established a small superconducting levitation transport model system called "SupraTrans Min" consisting of permanent magnetic rails and a levitated vehicle including four YBCO-bulk samples in a cryostat. The rail system consists of an oval shaped loop (2.90 m x 1.44 m), which was build up from individual linear and curved track modules. Inside the vehicle position variations of the superconductors are possible. By means of velocity, acceleration and temperature measurements different dynamical aspects of our complex levitation system can be investigated. We also show the broad applicability of the experimental setup for didactical studies in physics.