Sample records for superconducting quark star

  1. Cooling of Compact Stars with Nucleon Superfluidity and Quark Superconductivity (United States)

    Noda, Tsuneo; Hashimoto, Masa-aki; Yasutake, Nobutoshi; Maruyama, Toshiki; Tatsumi, Toshitaka

    We show a cooling scenario of compact stars to satisfy recent observations of compact stars. The central density of compact stars can exceed the nuclear density, and it is considered that many hadronic phases appear at such a density. It is discussed that neutron superfluidity (1S0 for lower density, and 3P2 for higher density) and proton superfluidity/superconductivity (1S0) appears in all compact stars. And some "Exotic" states are considered to appear in compact stars, such as meson condensation, hyperon mixing, deconfinement of quarks and quark colour superconductivity. These exotic states appear at the density region above the threshold densities of each state. We demonstrate the thermal evolution of isolated compact stars, adopting the effects of nucleon superfluidity and quark colour superconductivity. We assume large gap energy (Δ > 10 MeV) for colour superconducting quark phase, and include the effects of nucleon superfluidity with parametrised models. We simulate the cooling history of compact stars, and shows that the heavier star does not always cool faster than lighter one, which is determined by the parameters of neutron 3P2 superfluidity.

  2. Quark matter in compact stars

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, H., E-mail: harg@cefet-rj.b [Centro Federal de Educacao Tecnologica do Rio de Janeiro, Av. Maracana 249, 20271-110, Rio de Janeiro, RJ (Brazil); Duarte, S.B., E-mail: sbd@cbpf.b [Centro Brasileiro de Pesquisas Fisicas, Rua Dr. Xavier Sigaud 150, 22290-180, Rio de Janeiro, RJ (Brazil); Oliveira, J.C.T., E-mail: jcto@cbpf.b [Departamento de Fisica, Universidade Federal de Roraima, Campus do Paricarana s/n, 69310-270, Boa Vista, RR (Brazil)


    Recently reported massive compact stars (Mapprox2M{sub o}) have provided strong constraints on the properties of the ultradense matter beyond the saturation nuclear density. Therefore, realistic quark or hybrid star models must be compatible with these observational data. Some used equations of state (EoS) describing quark matter are in general too soft and hence are not suitable to explain the stability of high compact star masses. In this work, we present the calculations of static spherically symmetric quark star structure by using an equation of state which takes into account the superconducting colour-flavour locked phase of the strange quark matter. In addition, some fundamental aspects of QCD (asymptotic freedom and confinement) are considered by means of a phenomenological description of the deconfined quark phase, the density-dependent quark mass model. We discuss the influence of the obtained quark matter equation of state on the mass-radius relationship of quark stars. Massive quark stars are found due to the stiffness of the equation of state, when reasonable values of the superconducting gap, taken as a free parameter, are used.

  3. Magnetized color superconducting quark matter under compact star conditions: Phase structure within the SU(2 ) f NJL model (United States)

    Coppola, M.; Allen, P.; Grunfeld, A. G.; Scoccola, N. N.


    The properties of magnetized color superconducting cold dense quark matter under compact star conditions are investigated using an S U (2 )f Nambu Jona-Lasinio (NJL)-type model in which the divergences are treated using a magnetic field independent regularization scheme in order to avoid unphysical oscillations. We study the phase diagram for several model parametrizations. The features of each phase are analyzed through the behavior of the chiral and superconducting condensates together with the different particle densities for increasing chemical potential or magnetic field. While confirming previous results derived for the zero magnetic field or isospin symmetric matter case, we show how the phases are modified in the presence of β -equilibrium as well as color and electric charge neutrality conditions.

  4. Cold quark matter in compact stars

    Energy Technology Data Exchange (ETDEWEB)

    Franzon, B.; Fogaca, D. A.; Navarra, F. S. [Instituto de Fisica, Universidade de Sao Paulo Rua do Matao, Travessa R, 187, 05508-090 Sao Paulo, SP (Brazil); Horvath, J. E. [Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Rua do Matao, 1226, 05508-090, Sao Paulo, SP (Brazil)


    We used an equation of state for the cold quark matter to the study of properties of quark stars. We also discuss the absolute stability of quark matter and compute the mass-radius relation for self-bound stars.

  5. Quark stars: their influence on Astroparticle Physics


    Ghosh, Sanjay K.


    We discuss some of the recent developments in the quark star physics along with the consequences of possible hadron to quark phase transition at high density scenario of neutron stars and their implications on the Astroparticle Physics.

  6. Strange-quark-matter stars

    Energy Technology Data Exchange (ETDEWEB)

    Glendenning, N.K.


    We investigate the implications of rapid rotation corresponding to the frequency of the new pulsar reported in the supernovae remnant SN1987A. It places very stringent conditions on the equation of state if the star is assumed to be bound by gravity alone. We find that the central energy density of the star must be greater than 13 times that of nuclear density to be stable against the most optimistic estimate of general relativistic instabilities. This is too high for the matter to consist of individual hadrons. We conclude that it is implausible that the newly discovered pulsar, if its half-millisecond signals are attributable to rotation, is a neutron star. We show that it can be a strange quark star, and that the entire family of strange stars can sustain high rotation if strange matter is stable at an energy density exceeding about 5.4 times that of nuclear matter. We discuss the conversion of a neutron star to strange star, the possible existence of a crust of heavy ions held in suspension by centrifugal and electric forces, the cooling and other features. 34 refs., 10 figs., 1 tab.

  7. Strange quark matter and quark stars with the Dyson-Schwinger quark model

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.; Wei, J.B. [China University of Geosciences, School of Mathematics and Physics, Wuhan (China); Schulze, H.J. [Universita di Catania, Dipartimento di Fisica, Catania (Italy); INFN, Sezione di Catania (Italy)


    We calculate the equation of state of strange quark matter and the interior structure of strange quark stars in a Dyson-Schwinger quark model within rainbow or Ball-Chiu vertex approximation. We emphasize constraints on the parameter space of the model due to stability conditions of ordinary nuclear matter. Respecting these constraints, we find that the maximum mass of strange quark stars is about 1.9 solar masses, and typical radii are 9-11 km. We obtain an energy release as large as 3.6 x 10{sup 53} erg from conversion of neutron stars into strange quark stars. (orig.)

  8. Quark Deconfinement in Rotating Neutron Stars

    Directory of Open Access Journals (Sweden)

    Richard D. Mellinger


    Full Text Available In this paper, we use a three flavor non-local Nambu–Jona-Lasinio (NJL model, an improved effective model of Quantum Chromodynamics (QCD at low energies, to investigate the existence of deconfined quarks in the cores of neutron stars. Particular emphasis is put on the possible existence of quark matter in the cores of rotating neutron stars (pulsars. In contrast to non-rotating neutron stars, whose particle compositions do not change with time (are frozen in, the type and structure of the matter in the cores of rotating neutron stars depends on the spin frequencies of these stars, which opens up a possible new window on the nature of matter deep in the cores of neutron stars. Our study shows that, depending on mass and rotational frequency, up to around 8% of the mass of a massive neutron star may be in the mixed quark-hadron phase, if the phase transition is treated as a Gibbs transition. We also find that the gravitational mass at which quark deconfinement occurs in rotating neutron stars varies quadratically with spin frequency, which can be fitted by a simple formula.

  9. Shear viscosity of two-flavor inhomogenous color superconducting quark matter (United States)

    Sarkar, Sreemoyee; Sharma, Rishi


    We present the first calculation of the shear viscosity for two-flavor plane wave (FF) color superconducting quark matter. This is a member of the family of crystalline color superconducting phases of dense quark matter that may be present in the cores of neutron stars. The paired quarks in the FF phase feature gapless excitations on surfaces of crescent-shaped blocking regions in momentum space and participate in transport. We calculate their contribution to the shear viscosity. We also note that the transverse t1 , t2, t3 gluons which are undamped in the 2SC lead to dynamic screening in the FF phase. The exchange of these gluons is the most important mechanism of the scattering of the paired quarks. We find that the shear viscosity of the paired quarks is roughly a factor of 100 smaller compared to the shear viscosity of unpaired quark matter even though their spectrum is ungapped. Therefore in the two-flavor FF phase, the unpaired quarks and the electrons give the shear viscosity of the two-flavor FF phase to a very good approximation. Our results may have implications for the damping of r -modes in rapidly rotating, cold neutron stars.

  10. Properties of relativistically rotating quark stars (United States)

    Zhou, Enping


    In this work, quasi-equilibrium models of rapidly rotating triaxially deformed quark stars are computed in general relativistic gravity, assuming a conformally flat spatial geometry (Isenberg-Wilson-Mathews formulation) and a polynomial equation of state. Especially, since we are using a full 3-D numerical relativity initial data code, we are able to consider the triaxially deformed rotating quark stars at very high spins. Such triaxially deformed stars are possible gravitational radiation sources detectable by ground based gravitational wave observatories. Additionally, the bifurcation from axisymmetric rotating sequence to triaxially rotating sequence hints a more realistic spin up limit for rotating compact stars compared with the mass-shedding limit. With future observations such as sub-millisecond pulsars, we could possibly distinguish between equation of states of compact stars, thus better understanding strong interaction in the low energy regime.

  11. Probing strange stars and color superconductivity by r-mode instabilities in millisecond pulsars (United States)



    r-mode instabilities in rapidly rotating quark matter stars (strange stars) lead to specific signatures in the evolution of pulsars with periods below 2.5 msec, and may explain the apparent lack of very rapid pulsars. Existing data seem consistent with pulsars being strange stars with a normal quark matter phase surrounded by an insulating nuclear crust. In contrast, quark stars in a color-flavor-locked phase are ruled out. Two-flavor color superconductivity is marginally inconsistent with pulsar data.

  12. Holographic Quark Matter and Neutron Stars. (United States)

    Hoyos, Carlos; Jokela, Niko; Rodríguez Fernández, David; Vuorinen, Aleksi


    We use a top-down holographic model for strongly interacting quark matter to study the properties of neutron stars. When the corresponding equation of state (EOS) is matched with state-of-the-art results for dense nuclear matter, we consistently observe a first-order phase transition at densities between 2 and 7 times the nuclear saturation density. Solving the Tolman-Oppenheimer-Volkov equations with the resulting hybrid EOSs, we find maximal stellar masses in excess of two solar masses, albeit somewhat smaller than those obtained with simple extrapolations of the nuclear matter EOSs. Our calculation predicts that no quark matter exists inside neutron stars.

  13. Color symmetrical superconductivity in a schematic nuclear quark model

    DEFF Research Database (Denmark)

    Bohr, Henrik; Providencia, C.; da Providencia, J.


    In this letter, a novel BCS-type formalism is constructed in the framework of a schematic QCD inspired quark model, having in mind the description of color symmetrical superconducting states. In the usual approach to color superconductivity, the pairing correlations affect only the quasi-particle......In this letter, a novel BCS-type formalism is constructed in the framework of a schematic QCD inspired quark model, having in mind the description of color symmetrical superconducting states. In the usual approach to color superconductivity, the pairing correlations affect only the quasi...... charge is automatically insured. We stress that the present note is concerned with the description of quark matter in terms of effective models, such as the NJL model, which are solely expressed in terms of fermion operators, so that in them the gluonic gauge fields are not present....

  14. On the conversion of neutron stars into quark stars

    Directory of Open Access Journals (Sweden)

    Pagliara Giuseppe


    Full Text Available The possible existence of two families of compact stars, neutron stars and quark stars, naturally leads to a scenario in which a conversion process between the two stellar objects occurs with a consequent release of energy of the order of 1053 erg. We discuss recent hydrodynamical simulations of the burning process and neutrino diffusion simulations of cooling of a newly formed strange star. We also briefly discuss this scenario in connection with recent measurements of masses and radii of compact stars.

  15. Neutron stars and quark stars: Two coexisting families of compact stars?


    Schaffner-Bielich, J.


    The mass-radius relation of compact stars is discussed with relation to the presence of quark matter in the core. The existence of a new family of compact stars with quark matter besides white dwarfs and ordinary neutron stars is outlined.

  16. Quark matter droplets in neutron stars (United States)

    Heiselberg, H.; Pethick, C. J.; Staubo, E. F.


    We show that, for physically reasonable bulk and surface properties, the lowest energy state of dense matter consists of quark matter coexisting with nuclear matter in the presence of an essentially uniform background of electrons. We estimate the size and nature of spatial structure in this phase, and show that at the lowest densities the quark matter forms droplets embedded in nuclear matter, whereas at higher densities it can exhibit a variety of different topologies. A finite fraction of the interior of neutron stars could consist of matter in this new phase, which would provide new mechanisms for glitches and cooling.

  17. Jetted GRBs, afterglows and SGRs from quark stars birth

    CERN Document Server

    Dar, Arnon


    Recent studies suggest that when cold nuclear matter is compressed to high nuclear densities, diquarks with spin zero and antisymmetric color wave function Bose condensate into a superfluid/superconducting state that is several times as dense. Various astrophysical phenomena may be explained by gravitational collapse of neutron stars (NSs) to (di)quark stars (QSs) as a result of a first order phase transition in NSs within $\\sim 10^{4}$ years after their birth in supernova explosions, when they cooled and spun down sufficiently (by magnetic braking ?). The gravitational energy release drives an explosion which may eject both highly relativistic narrowly collimated jets and a mildly relativistic ``spherical'' shell. The slow contraction/cooling of the remnant QSs can power soft gamma ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs), without invoking a huge magnetic energy storage. The jets can produce the observed gamma ray bursts (GRBs) in distant galaxies when they happen to point in our direction and...

  18. Magnetic fields in superconducting neutron stars. (United States)

    Lander, S K


    The interior of a neutron star is likely to be predominantly a mixture of superfluid neutrons and superconducting protons. This results in the quantization of the star's magnetic field into an array of thin flux tubes, producing a macroscopic force very different from the Lorentz force of normal matter. We show that in an axisymmetric superconducting equilibrium the behavior of a magnetic field is governed by a single differential equation. Solving this, we present the first self-consistent superconducting neutron star equilibria with poloidal and mixed poloidal-toroidal fields and also give the first quantitative results for the corresponding magnetically induced distortions to the star. The poloidal component is dominant in all our configurations. We suggest that the transition from normal to superconducting matter in a young neutron star may cause a large-scale field rearrangement.

  19. Dense hadron star in quark degree of freedom

    Directory of Open Access Journals (Sweden)

    Tzeng Yiharn


    Full Text Available The quark degree of freedom may play an important role as one studies dense hadron stars which can help to understand the universe origin. We add a temperature dependence to the effective quark mass adopted from a quark-quark interaction on the QCD basis to probe properties of the star in the quark degree of freedom. Based on this interaction, the quark matter’s equation of state is obtained and its thermodynamic characteristics is investigated in detail. Stability of a star made of such matter is examined with and without strange quarks. The Tolman-Oppenheimer-Volkov equation along with the condition that dm=dr = 4πr2E are used to calculate mass and radius of such a star. Exact computations are made to calculate the star’s radius and mass at several temperatures. Comparisons of results from these temperatures are made and the significance is carefully investigated and discussed.

  20. Approximate universal relations for neutron stars and quark stars (United States)

    Yagi, Kent; Yunes, Nicolás


    Neutron stars and quark stars are ideal laboratories to study fundamental physics at supra nuclear densities and strong gravitational fields. Astrophysical observables, however, depend strongly on the star's internal structure, which is currently unknown due to uncertainties in the equation of state. Universal relations, however, exist among certain stellar observables that do not depend sensitively on the star's internal structure. One such set of relations is between the star's moment of inertia (I), its tidal Love number (Love) and its quadrupole moment (Q), the so-called I-Love-Q relations. Similar relations hold among the star's multipole moments, which resemble the well-known black hole no-hair theorems. Universal relations break degeneracies among astrophysical observables, leading to a variety of applications: (i) X-ray measurements of the nuclear matter equation of state, (ii) gravitational wave measurements of the intrinsic spin of inspiraling compact objects, and (iii) gravitational and astrophysical tests of General Relativity that are independent of the equation of state. We here review how the universal relations come about and all the applications that have been devised to date.

  1. Quark matter and quark stars at finite temperature in Nambu-Jona-Lasinio model

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Peng-Cheng; Wang, Bin; Dong, Yu-Min; Jia, Yu-Yue; Wang, Shu-Mei; Ma, Hong-Yang [Qingdao Technological University, School of Science, Qingdao (China); Li, Xiao-Hua [University of South China, School of Nuclear Science and Technology, Hengyang (China); University of South China, Cooperative Innovation Center for Nuclear Fuel Cycle Technology and Equipment, Hengyang (China)


    We extend the SU(3) Nambu-Jona-Lasinio (NJL) model to include two types of vector interaction. Using these two types of vector interaction in NJL model, we study the quark symmetry free energy in asymmetric quark matter, the constituent quark mass, the quark fraction, the equation of state (EOS) for β-equilibrium quark matter, the maximum mass of QSs at finite temperature, the maximum mass of proto-quark stars (PQSs) along the star evolution, and the effects of the vector interaction on the QCD phase diagram. We find that comparing zero temperature case, the values of quark matter symmetry free energy get larger with temperature increasing, which will reduce the difference between the fraction of u, d and s quarks and stiffen the EoS for β-equilibrium quark matter. In particular, our results indicate that the maximum masses of the quark stars increase with temperature because of the effects of the quark matter symmetry free energy, and we find that the heating(cooling) process for PQSs will increase (decrease) the maximum mass within NJL model. (orig.)

  2. Modelling hybrid stars in quark-hadron approaches

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, S. [FIAS, Frankfurt am Main (Germany); Dexheimer, V. [Kent State University, Department of Physics, Kent, OH (United States); Negreiros, R. [Federal Fluminense University, Gragoata, Niteroi (Brazil)


    The density in the core of neutron stars can reach values of about 5 to 10 times nuclear matter saturation density. It is, therefore, a natural assumption that hadrons may have dissolved into quarks under such conditions, forming a hybrid star. This star will have an outer region of hadronic matter and a core of quark matter or even a mixed state of hadrons and quarks. In order to investigate such phases, we discuss different model approaches that can be used in the study of compact stars as well as being applicable to a wider range of temperatures and densities. One major model ingredient, the role of quark interactions in the stability of massive hybrid stars is discussed. In this context, possible conflicts with lattice QCD simulations are investigated. (orig.)

  3. From hadrons to quarks in neutron stars: a review. (United States)

    Baym, Gordon; Hatsuda, Tetsuo; Takatsuka, Tatsuyuki


    In recent years our understanding of neutron stars has advanced remarkably, thanks to research converging from many directions. The importance of understanding neutron star behavior and structure has been underlined by the recent direct detection of gravitational radiation from merging neutron stars. The clean identification of several heavy neutron stars, of order two solar masses, challenges our current understanding of how dense matter can be sufficiently stiff to support such a mass against gravitational collapse. Programs underway to determine simultaneously the mass and radius of neutron stars will continue to constrain and inform theories of neutron star interiors. At the same time, an emerging understanding in quantum chromodynamics (QCD) of how nuclear matter can evolve into deconfined quark matter at high baryon densities is leading to advances in understanding the equation of state of the matter under the extreme conditions in neutron star interiors. We review here the equation of state of matter in neutron stars from the solid crust through the liquid nuclear matter interior to the quark regime at higher densities. We focus in detail on the question of how quark matter appears in neutron stars, and how it affects the equation of state. After discussing the crust and liquid nuclear matter in the core we briefly review aspects of microscopic quark physics relevant to neutron stars, and quark models of dense matter based on the Nambu- Jona-Lasinio framework, in which gluonic processes are replaced by effective quark interactions. We turn then to describing equations of state useful for interpretation of both electromagnetic and gravitational observations, reviewing the emerging picture of hadron-quark continuity in which hadronic matter turns relatively smoothly, with at most only a weak first order transition, into quark matter with increasing density... © 2018 IOP Publishing Ltd.

  4. Surface structure of quark stars with magnetic fields

    Indian Academy of Sciences (India)

    We investigate the impact of magnetic fields on the electron distribution of the electrosphere of quark stars. For moderately strong magnetic fields of ∼ 1013 G, quantization effects are generally weak due to the large number density of electrons at surface, but can nevertheless affect the photon emission properties of quark ...

  5. Dark matter admixed strange quark stars in the Starobinsky model (United States)

    Lopes, Ilídio; Panotopoulos, Grigoris


    We compute the mass-to-radius profiles for dark matter admixed strange quark stars in the Starobinsky model of modified gravity. For quark matter, we assume the MIT bag model, while self-interacting dark matter inside the star is modeled as a Bose-Einstein condensate with a polytropic equation of state. We numerically integrate the structure equations in the Einstein frame, adopting the two-fluid formalism, and we treat the curvature correction term nonperturbatively. The effects on the properties of the stars of the amount of dark matter as well as the higher curvature term are investigated. We find that strange quark stars (in agreement with current observational constraints) with the highest masses are equally affected by dark matter and modified gravity.

  6. Gamma-ray bursts generated from phase transition of neutron stars to quark stars (United States)

    Shu, Xiao-Yu; Huang, Yong-Feng; Zong, Hong-Shi


    The evolution of compact stars is believed to be able to produce various violent phenomena in our universe. In this paper, we discuss the possibility that gamma-ray bursts (GRBs) might result from the phase transition of a neutron star to a quark star and calculate the energy released from the conversion. In our study, we utilize the relativistic mean field (RMF) theory to describe the hadronic phase of neutron stars, while an improved quasi-particle model is adopted to describe the quark phase of quark stars. With quark matter equation-of-state (EOS) more reliable than models used before, it is found that the energy released is of the order of 1052 erg, which confirms the validity of the phase transition model.

  7. Spontaneous magnetization of solid quark-cluster stars (United States)

    Lai, Xiao-Yu; Xu, Ren-Xin


    Pulsar-like compact stars usually have strong magnetic fields, with strengths from ˜ 108 to ˜ 1012 G on the surface. How such strong magnetic fields can be generated and maintained is still an unsolved problem, which is, in principle, related to the interior structure of compact stars, i.e., the equation of state of cold matter at supra-nuclear density. In this paper we are trying to solve the problem in the regime of solid quark-cluster stars. Inside quark-cluster stars, the extremely low ratio of number density of electrons to that of baryons ne/nb and the screening effect from quark-clusters could reduce the long-range Coulomb interaction between electrons to short-range interaction. In this case, Stoner’s model could apply, and we find that the condition for ferromagnetism is consistent with that for the validity of Stoner’s model. Under the screened Coulomb repulsion, the electrons inside the stars could be spontaneously magnetized and become ferromagnetic, and hence would contribute non-zero net magnetic momentum to the whole star. We conclude that, for most cases in solid quark-cluster stars, the amount of net magnetic momentum, which is proportional to the amount of unbalanced spins ξ = (n+ - n-)/ne and depends on the number density of electrons ne = n+ + n-, could be significant with non-zero ξ. The net magnetic moments of electron system in solid quark-cluster stars could be large enough to induce the observed magnetic fields for pulsars with B ˜ 1011 to ˜ 1013 G. Supported by 973 Program (2012CB821801), West Light Foundation (XBBS-2014-23), National Natural Science Foundation of China (11203018, 11225314, 11365022), Science Project of Universities in Xinjiang (XJEDU2012S02) and Doctoral Science Foundation of Xinjiang University (BS120107)

  8. I-Love-Q: unexpected universal relations for neutron stars and quark stars. (United States)

    Yagi, Kent; Yunes, Nicolás


    Neutron stars and quark stars are not only characterized by their mass and radius but also by how fast they spin, through their moment of inertia, and how much they can be deformed, through their Love number and quadrupole moment. These depend sensitively on the star's internal structure and thus on unknown nuclear physics. We find universal relations between the moment of inertia, the Love number, and the quadrupole moment that are independent of the neutron and quark star's internal structure. These can be used to learn about neutron star deformability through observations of the moment of inertia, break degeneracies in gravitational wave detection to measure spin in binary inspirals, distinguish neutron stars from quark stars, and test general relativity in a nuclear structure-independent fashion.

  9. Hot Neutron Stars with Hadron-Quark Crossover (United States)

    Masuda, Kota; Hatsuda, Tetsuo; Takatsuka, Tatsuyuki


    The effects of the hadron-quark crossover on the bulk properties of cold and hot neutron stars (NSs) are studied. We suggested a new phenomenological equation of state (EOS), which interpolates the two phases at around 3 times the nuclear matter density (ρ0), and found that the cold NSs with the gravitational mass larger than 2M⊙ can be sustained. This is in sharp contrast to the case of the first-order hadron-quark transition where the quark matter inevitably leads to soft EOS. The interpolated EOS is also generalized to the supernova matter at finite temperature to describe the hot NSs at birth. The hadron-quark crossover is found to decrease the central temperature of the hot NSs under isentropic condition due to the color degrees of freedom.

  10. A quark-antiquark potential from a superconducting model of confinement

    Directory of Open Access Journals (Sweden)

    J.W. Alcock


    Full Text Available The Landau-Ginzburg phenomenological theory of superconductivity is used as a model of flux confinement. A monopole pair of sources is included to simulate a quark-antiquark system. The interaction energy is found in the static approximation appropriate for heavy quark systems, and equated with the interquark potential. This potential is compared with other suggested phenomenological potentials and succeeds in reproducing heavy quark spectra.

  11. Warm asymmetric quark matter and protoquark stars within the confined isospin-density-dependent mass model (United States)

    Chu, Peng-Cheng; Chen, Lie-Wen


    We extend the confined isospin-density-dependent mass (CIDDM) model to include temperature dependence of the equivalent mass for quarks. Within the CIDDM model, we study the equation of state for β -equilibrium quark matter, quark symmetry energy, quark symmetry free energy, and the properties of quark stars at finite temperatures. We find that including the temperature dependence of the equivalent mass can significantly influence the properties of the strange quark matter as well as the quark symmetry energy, the quark symmetry free energy, and the maximum mass of quark stars at finite temperatures. The mass-radius relations for different stages of the protoquark stars (PQSs) along the star evolution are analyzed. Our results indicate that the heating (cooling) process for PQSs will increase (decrease) the maximum mass within the CIDDM model by including temperature dependence of the equivalent mass for quarks.

  12. A class of exact strange quark star model

    Indian Academy of Sciences (India)

    Static spherically symmetric space-time is studied to describe dense compact star with quark matter within the framework of MIT Bag Model. The system of Einstein's field equations for anisotropic matter is expressed as a new system of differential equations using transformations and it is solved for a particular general form ...

  13. Surface structure of quark stars with magnetic fields

    Indian Academy of Sciences (India)

    Abstract. We investigate the impact of magnetic fields on the electron distribution of the electrosphere of quark stars. For moderately strong magnetic fields of B ~ 1013. G, quantization effects are generally weak due to the large number density of electrons at surface, but can nevertheless affect the photon emission properties ...

  14. Stability of charged strange quark stars

    Energy Technology Data Exchange (ETDEWEB)

    Arbañil, José D. V.; Malheiro, Manuel [Departamento de Física, Instituto Tecnológico de Aeronáutica, Centro Técnico Aeroespacial, 12228-900 São José dos Campos, SP (Brazil)


    We investigate the hydrostatic equilibrium and the stability of charged stars made of a charged perfect fluid. The matter contained in the star follows the MIT bag model equation of state and the charge distribution to a power-law of the radial coordinate. The hydrostatic equilibrium and the stability of charged strange stars are analyzed using the Tolman-Oppenheimer-Volkoff equation and the Chandrasekhar’s equation pulsation, respectively. These two equation are modified from their original form to the inclusion of the electric charge. We found that the stability of the star decreases with the increment of the central energy density and with the increment of the amount of charge.

  15. Interplay between spin polarization and color superconductivity in high density quark matter

    DEFF Research Database (Denmark)

    Tsue, Yasuhiko; da Providência, João; Providência, Constança


    Here, it is suggested that a four-point interaction of the tensor type may lead to spin polarization in quark matter at high density. It is found that the two-flavor superconducting phase and the spin polarized phase correspond to distinct local minima of a certain generalized thermodynamical...... potential. It follows that a transition from one to the other phase occurs, passing through true minima with both a spin polarization and a color superconducting gap. It is shown that the quark spin polarized phase is realized at rather high density, while the two-flavor color superconducting phase...

  16. Dark matter, neutron stars, and strange quark matter. (United States)

    Perez-Garcia, M Angeles; Silk, Joseph; Stone, Jirina R


    We show that self-annihilating weakly interacting massive particle (WIMP) dark matter accreted onto neutron stars may provide a mechanism to seed compact objects with long-lived lumps of strange quark matter, or strangelets, for WIMP masses above a few GeV. This effect may trigger a conversion of most of the star into a strange star. We use an energy estimate for the long-lived strangelet based on the Fermi-gas model combined with the MIT bag model to set a new limit on the possible values of the WIMP mass that can be especially relevant for subdominant species of massive neutralinos.

  17. Models of quark-hadron matter and compact stars

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, S.; Steinheimer, J. [FIAS, Ruth-Moufang-Str. 1, D-60438 Frankfurt (Germany); Dexheimer, V. [Department of Physics, Kent State University, Kent OH 44242 (United States); Negreiros, R. [Instituto de Fisica, Universidade Federal Fluminense, Niteroi (Brazil)


    Phenomenological approaches to Quantum Chromodynamics covering the whole region of low and high temperatures and/or densities must address the problem that the effective degrees of freedom change from hadrons to quarks and gluons. We approach this task with a unified description of hadronic and quark matter allowing for cross-over as well as first or second-order phase transitions. As a further benefit of such an approach, a quantitatively satisfactory description of nuclear ground state matter as well as nuclear and hypernuclear properties can be achieved. We apply this model to neutron stars and consider potential constraints on star properties arising from lattice gauge results in relation with the observation of 2 solar mass stars.

  18. Uniformly rotating, axisymmetric, and triaxial quark stars in general relativity (United States)

    Zhou, Enping; Tsokaros, Antonios; Rezzolla, Luciano; Xu, Renxin; Uryū, Kōji


    Quasiequilibrium models of uniformly rotating axisymmetric and triaxial quark stars are computed in a general-relativistic gravity scenario. The Isenberg-Wilson-Mathews (IWM) formulation is employed and the Compact Object Calculator (cocal) code is extended to treat rotating stars with finite surface density and new equations of state (EOSs). Besides the MIT bag model for quark matter which is composed of deconfined quarks, we examine a new EOS proposed by Lai and Xu that is based on quark clustering and results in a stiff EOS that can support masses up to 3.3 M⊙ in the case we considered. We perform convergence tests for our new code to evaluate the effect of finite surface density in the accuracy of our solutions and construct sequences of solutions for both small and high compactness. The onset of secular instability due to viscous dissipation is identified and possible implications are discussed. An estimate of the gravitational wave amplitude and luminosity based on quadrupole formulas is presented and comparison with neutron stars is discussed.

  19. From hot lattice QCD to cold quark stars

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, Robert


    A thermodynamic model of the quark-gluon plasma using quasiparticle degrees of freedom based on the hard thermal loop self-energies is introduced. It provides a connection between an established phenomenological quasiparticle model - following from the former using a series of approximations - and QCD - from which the former is derived using the Cornwall-Jackiw-Tomboulis formalism and a special parametrization of the running coupling. Both models allow for an extrapolation of first-principle QCD results available at small chemical potentials using Monte-Carlo methods on the lattice to large net baryon densities with remarkably similar results. They are used to construct equations of state for heavy-ion collider experiments at SPS and FAIR as well as quark and neutron star interiors. A mixed-phase construction allows for a connection of the SPS equation of state to the hadron resonance gas. An extension to the weak sector is presented as well as general stability and binding arguments for compact stellar objects are developed. From the extrapolation of the most recent lattice results the existence of bound pure quark stars is not suggested. However, quark matter might exist in a hybrid phase in cores of neutron stars. (orig.)

  20. Nonperturbative models of quark stars in f(R gravity

    Directory of Open Access Journals (Sweden)

    Artyom V. Astashenok


    Full Text Available Quark star models with realistic equation of state in nonperturbative f(R gravity are considered. The mass-radius relation for f(R=R+αR2 model is obtained. Considering scalar curvature R as an independent function, one can find out, for each value of central density, the unique value of central curvature for which one has solutions with the required asymptotic R→0 for r→∞. In other words, one needs a fine-tuning for R to achieve quark stars in f(R gravity. We consider also the analogue description in corresponding scalar-tensor gravity. The fine-tuning on R is equivalent to the fine-tuning on the scalar field ϕ in this description. For distant observers, the gravitational mass of the star increases with increasing α (α>0 but the interpretation of this fact depends on frame where we work. Considering directly f(R gravity, one can say that increasing of mass occurs by the “gravitational sphere” outside the star with some “effective mass”. On the other hand, in conformal scalar-tensor theory, we also have a dilaton sphere (or “disphere” outside the star but its contribution to gravitational mass for distant observer is negligible. We show that it is possible to discriminate modified theories of gravity from General Relativity due to the gravitational redshift of the thermal spectrum emerging from the surface of the star.

  1. Quark stars in f(T, T)-gravity

    Energy Technology Data Exchange (ETDEWEB)

    Pace, Mark; Said, Jackson Levi [University of Malta, Department of Physics, Msida (Malta); University of Malta, Institute of Space Sciences and Astronomy, Msida (Malta)


    We derive a working model for the Tolman-Oppenheimer-Volkoff equation for quark star systems within the modified f(T, T)-gravity class of models. We consider f(T, T)-gravity for a static spherically symmetric space-time. In this instance the metric is built from a more fundamental tetrad vierbein from which the metric tensor can be derived. We impose a linear f(T) parameter, namely taking f = αT(r) + βT(r) + φ and investigate the behaviour of a linear energy-momentum tensor trace, T. We also outline the restrictions which modified f(T, T)-gravity imposes upon the coupling parameters. Finally we incorporate the MIT bag model in order to derive the mass-radius and mass-central density relations of the quark star within f(T, T)-gravity. (orig.)

  2. Rotating hybrid stars with the Dyson-Schwinger quark model (United States)

    Wei, J.-B.; Chen, H.; Burgio, G. F.; Schulze, H.-J.


    We study rapidly rotating hybrid stars with the Dyson-Schwinger model for quark matter and the Brueckner-Hartree-Fock many-body theory with realistic two-body and three-body forces for nuclear matter. We determine the maximum gravitational mass, equatorial radius, and rotation frequency of stable stellar configurations by considering the constraints of the Keplerian limit and the secular axisymmetric instability, and compare with observational data. We also discuss the rotational evolution for constant baryonic mass and find a spin-up phenomenon for supramassive stars before they collapse to black holes.

  3. RX J1856: astrophysical evidence for quark stars

    Energy Technology Data Exchange (ETDEWEB)

    Walter, Frederick M [Department of Physics and Astronomy, SUNY, Stony Brook, NY 11794-3800 (United States)


    On 10 April 2002 NASA announced that Chandra observations of the compact object RX J185635-3754 implied that it was smaller than allowed by models of neutron stars, and that this was evidence for the existence of quark stars. If true, this is a very important observation. But the bulk of the evidence does not support this assertion. I shall review the extant data, and show that neither the data nor theory supports this interpretation. On the other hand, the data show that compact objects may be far stranger than we thought.

  4. Internal Plateau in Short GRBs and Quark Stars (United States)

    Li, Ang

    I summarize our recent calculations on quark stars (QSs), for the purpose of explaining some short gamma-ray bursts characterized by internal plateau in their early X-ray afterglow. According to the present plateau sample, the QS central engine model is demonstrated to more preferred than the original neutron star (NS) one. New QS equation of states (PMQS1, PMQS2, PMQS3) are then proposed, respecting fully the observed burst data and the mass distribution of the Galactic NS-NS systems.

  5. The missing compact star of SN1987A: a solid quark star? (United States)

    Liu, X. W.; Liang, J. D.; Xu, R. X.; Han, J. L.; Qiao, G. J.


    To investigate the missing compact star of Supernova 1987A, we analyzed the cooling and heating processes of a possible compact star based on the upper limit of observational X-ray luminosity. From the cooling process, we found that a solid quark-cluster star (SQS), having a stiffer equation of state than that of a conventional liquid quark star, has a heat capacity much smaller than a neutron star. The SQS can cool down quickly, naturally explaining the non-detection of a point source in X-ray wavelengths. On the other hand, we considered the heating processes due to magnetospheric activity and possible accretion and obtained some constraints on the parameters of a possible pulsar. Therefore, we concluded that a SQS can explain the observational limit in a confident parameter space. As a possible central compact object, the pulsar parameter constraints can be tested for SN1987A with advanced, future facilities.

  6. Nonperturbative models of quark stars in $f(R)$ gravity

    CERN Document Server

    Astashenok, A V; Odintsov, S D


    Quark star models with realistic equation of state in nonperturbative $f(R)$ gravity are considered. The mass-radius relation for $f(R)=R+\\alpha R^2$ model is obtained. Considering scalar curvature $R$ as an independent function, one can find out, for each value of central density, the unique value of central curvature for which one has solutions with the required asymptotic $R\\rightarrow 0$ for $r\\rightarrow\\infty$. In another words, one needs a fine-tuning for $R$ to achieve quark stars in $f(R)$ gravity. We consider also the analogue description in corresponding scalar-tensor gravity. The fine-tuning on $R$ is equivalent to the fine-tuning on the scalar field $\\phi$ in this description. For distant observers, the gravitational mass of the star increases with increasing $\\alpha$ ($\\alpha>0$) but the interpretation of this fact depends on frame where we work. Considering directly $f(R)$ gravity, one can say that increasing of mass occurs by the "gravitational sphere" outside the star with some "effective mas...

  7. Are neutron stars with crystalline color-superconducting cores relevant for the LIGO experiment? (United States)

    Haskell, B; Andersson, N; Jones, D I; Samuelsson, L


    We estimate the maximal deformation that can be sustained by a rotating neutron star with a crystalline color-superconducting quark core. Our results suggest that current gravitational-wave data from the Laser Interferometer Gravitational-Wave Observatory have already reached the level where a detection would have been possible over a wide range of the poorly constrained QCD parameters. This leads to the nontrivial conclusion that compact objects do not contain maximally strained color crystalline cores drawn from this range of parameter space. We discuss the uncertainties associated with our simple model and how it can be improved in the future.

  8. Neutron star in the presence of strong magnetic field

    Indian Academy of Sciences (India)

    Abstract. Compact stars such as neutron stars (NS) can have either hadronic or exotic states like strange quark or colour superconducting matter. Stars can also have a quark core surrounded by hadronic matter, known as hybrid stars (HS). The HS is likely to have a mixed phase in between the hadron and the quark phases ...

  9. Superfluidity and Superconductivity in Neutron Stars

    Indian Academy of Sciences (India)

    N. Chamel


    2012). However, a recent study shows that general relativity could significantly affect the dynamical evolution of neutron stars (Sourie et al. 2017). 4.2 Thermal relaxation of transiently accreting neutron stars during quiescence.

  10. Viscous damping of r-mode oscillations in compact stars with quark matter.

    Energy Technology Data Exchange (ETDEWEB)

    Jaikumar, P.; Rupak, G.; Steiner, A. W.; Physics; Inst. of Mathematical Sciences; North Carolina State Univ.; Michigan State Univ.


    We determine characteristic time scales for the viscous damping of r-mode oscillations in rapidly rotating compact stars that contain quark matter. We present results for the color-flavor-locked (CFL) phase of dense quark matter, in which the up, down, and strange quarks are gapped, as well as the normal (ungapped) quark phase. While the ungapped quark phase supports a temperature window 10{sup 8} K < = T < = 5 x 10{sup 9} K where the r mode is damped even for rapid rotation, the r mode in a rapidly rotating pure CFL star is not damped in the temperature range 10{sup 10} K < = T < = 10{sup 11} K. Rotating hybrid stars with quark matter cores display an instability window whose width is determined by the amount of quark matter present, and they can have large spin frequencies outside this window. Except at high temperatures T > = 10{sup 10} K, the presence of a quark phase allows for larger critical frequencies and smaller spin periods compared to rotating neutron stars. If low-mass x-ray binaries contain a large amount of ungapped or CFL quark matter, then our estimates of the r-mode instability suggest that there should be a population of rapidly rotating binaries at nu > {approx} 1000 Hz which have not yet been observed.

  11. Direct URCA-processes in neutron star quark core with strong magnetic field.

    Directory of Open Access Journals (Sweden)

    Belyaev Vasily


    In evaluations, the strength of magnetic field corresponds to the case, where the quarks of medium occupy a lot of Landau levels, while the electrons are in ground Landau level. The analytical dependence of neutrino emissivity on chemical potentials of quarks and electrons, temperature and magnetic field strength is obtained and briefly discussed. The result could be important in application to a massive strongly magnetized neutron star with quark core.

  12. Quark phases in neutron stars and a "third family" of compact stars as a signature for phase transitions

    CERN Document Server

    Schertler, K; Schaffner-Bielich, J; Thoma, M H


    The appearance of quark phases in the dense interior of neutron stars provides one possibility to soften the equation of state (EOS) of neutron star matter at high densities. This softening leads to more compact equilibrium configurations of neutron stars compared to pure hadronic stars of the same mass. We investigate the question to which amount the compactness of a neutron star can be attributed to the presence of a quark phase. For this purpose we employ several hadronic EOS in the framework of the relativistic mean-field (RMF) model and an extended MIT bag model to describe the quark phase. We find that - almost independent of the model parameters - the radius of a pure hadronic neutron star gets typically reduced by 20-30% if a pure quark phase in the center of the star does exist. For some EOS we furthermore find the possibility of a "third family" of compact stars which may exist besides the two known families of white dwarfs and neutron stars. We show how an experimental proof of the existence of a t...

  13. Ferromagnetism in quark matter and origin of the magnetic field in compact stars


    Tatsumi, T.; Maruyama, T; Nakano, E.; Nawa, K.


    Two magnetic aspects of quark matter, ferromagnetism and spin density wave, are discussed in the temperature-density plane. Some implications of ferromagnetism are suggested on relativistic heavy-ion collisions and compact stars.

  14. Superspinning Quark Stars Limited by Twin High-Frequency Quasiperiodic Oscillations (United States)

    Stuchlìk, A.; Schee, J.; Šràmkovà, E.; Török, G.


    We study properties of Keplerian disks and their high-frequency quasi-periodic oscillations (HF QPOs) in the field of quark stars with dimensionless spin a breaking the black-hole spin limit of a=1 up to a≍1.3. Using the external geometry of the superspinning quark stars approximated by the Kerr geometry, we show that the Keplerian disks have to touch the surface of such quark stars and their accretion efficiency η≍18% significantly exceeds the efficiency related to the Schwarzschild black holes. Using the geodesic oscillation models, we test possible existence of the superspinning quark stars in atoll sources demonstrating the twin HF QPOs with resonant frequency ratios 3:2, 4:3, 5:4. For explanation of the twin HF QPOs we consider the standard relativistic precession model and its modifications, the tidal distortion model, the resonance epicyclic and the warped disk model. In a given model, we assume occurrence of the twin oscillatory modes at a common resonant dimensionless radius x=r/M determined by the frequency ratio and the quark star spin a. The theoretical limit R>3M on the quark star surface radius puts strong restrictions on the relations between the resonant radii x and the quark star spin a. These restrictions imply that all the considered geodesic oscillation models can be excluded, except for one variant of the relativistic precession model, or alternatively the tidal distortion and warped disk models, that allow for appearance of the twin HF QPOs with frequency ratio 3:2 at radii slightly above the theoretical limit on the radius of the quark star surface, but exclude the smaller frequency ratios (4:3, 5:4).

  15. Superfluidity and Superconductivity in Neutron Stars

    Indian Academy of Sciences (India)


    the heaviest atomic nuclei (for a general review about neutron stars ..... been identified in the form of soft-gamma ray repeaters. (SGRs) and .... Electrons scattering off the mag- netic field of ... consistent treatment of the elasticity of the crust, su-.

  16. Twin stars within the SU(3) chiral quark-meson model (United States)

    Zacchi, Andreas; Tolos, Laura; Schaffner-Bielich, Jürgen


    We present new stable solutions of the Tolman-Oppenheimer-Volkoff equations for quark stars using a quark matter equation of state based on the SU(3) quark-meson model that exhibits the onset of the chiral phase transition. These new solutions appear as two stable branches in the mass-radius relation allowing for so-called twin stars, i.e., two stable quark star solutions with the same mass, but distinctly different radii. We find solutions which are compatible with causality, the stability conditions of dense matter, the astrophysical constraints of the rotation of the millisecond pulsar PSR J1748-2446ad and the 2 M⊙ pulsar mass constraint.

  17. RX J1856.5-3754: A Strange Star with Solid Quark Surface? (United States)

    Zhang, Xiaoling; Xu, Renxin; Zhang, Shuangnan


    The featureless spectra of isolated 'neutron stars' may indicate that they are actually bare strange stars but a definitive conclusion on the nature of the compact objects cannot be reached until accurate and theoretically calculated spectra of the bare quark surface are known. However due to the complex nonlinearity of quantum chromodynamics it is almost impossible to present a definitive and accurate calculation of the density-dominated quark-gluon plasma from the first principles. Nevertheless it was suggested that cold quark matter with extremely high baryon density could be in a solid state. Within the realms of this possibility we have fitted the 500ks Chandra LETG/HRC data for the brightest isolated neutron star RX 51856.5-3754 with a phenomenological spectral model and found that electric conductivity of quark matter on the stellar surface is about 1.5 x 10(exp 16)/s.

  18. Instability of quark matter core in a compact newborn neutron star ...

    Indian Academy of Sciences (India)

    Instability of quark matter core in a compact newborn neutron star with moderately strong magnetic field. SUTAPA GHOSH and SOMENATH CHAKRABARTY. Department of Physics, University of Kalyani, Kalyani 741 235, India. Abstract. It is explicitly shown that if phase transition occurs at the core of a newborn neutron star.

  19. Neutrino emissivity in the quark-hadron mixed phase of neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Spinella, William M. [Computational Science Research Center San Diego State University, San Diego, CA (United States); San Diego State University, Department of Physics, San Diego, CA (United States); Weber, Fridolin [San Diego State University, Department of Physics, San Diego, CA (United States); University of California San Diego, Center for Astrophysics and Space Sciences, La Jolla, CA (United States); Contrera, Gustavo A. [CONICET, Buenos Aires (Argentina); CONICET - Dept. de Fisica, UNLP, IFLP, La Plata (Argentina); Universidad Nacional de La Plata, Grupo de Gravitacion, Astrofisica y Cosmologia, Facultad de Ciencias Astronomicas y Geofisicas, La Plata (Argentina); Orsaria, Milva G. [CONICET, Buenos Aires (Argentina); Universidad Nacional de La Plata, Grupo de Gravitacion, Astrofisica y Cosmologia, Facultad de Ciencias Astronomicas y Geofisicas, La Plata (Argentina)


    Numerous theoretical studies using various equation of state models have shown that quark matter may exist at the extreme densities in the cores of high-mass neutron stars. It has also been shown that a phase transition from hadronic matter to quark matter would result in an extended mixed phase region that would segregate phases by net charge to minimize the total energy of the phase, leading to the formation of a crystalline lattice. The existence of quark matter in the core of a neutron star may have significant consequences for its thermal evolution, which for thousands of years is facilitated primarily by neutrino emission. In this work we investigate the effect a crystalline quark-hadron mixed phase can have on the neutrino emissivity from the core. To this end we calculate the equation of state using the relativistic mean-field approximation to model hadronic matter and a nonlocal extension of the three-flavor Nambu-Jona-Lasinio model for quark matter. Next we determine the extent of the quark-hadron mixed phase and its crystalline structure using the Glendenning construction, allowing for the formation of spherical blob, rod, and slab rare phase geometries. Finally we calculate the neutrino emissivity due to electron-lattice interactions utilizing the formalism developed for the analogous process in neutron star crusts. We find that the contribution to the neutrino emissivity due to the presence of a crystalline quark-hadron mixed phase is substantial compared to other mechanisms at fairly low temperatures (quark fractions (

  20. Constraining the Sea Quark Distributions Through W+/- Cross Section Ratio Measurements at STAR (United States)

    Posik, Matthew; STAR Collaboration


    Over the years, extractions of parton distribution functions (PDFs) have become more precise, however there are still regions where more data are needed to improve constraints. One such distribution is the sea quark distribution near the valence region, in particular the d / u distribution. Currently, measurements in the high-x region still have large uncertainties and suggest different trends for this distribution. The charged W cross section ratio is sensitive to the unpolarized sea quark distributions and could be used to help constrain the d / u distribution. Through pp collisions, the STAR experiment at RHIC, is well equipped to measure the e+/- leptonic decays of W+/- bosons in the mid-rapidity range | η | at √{ s} = 500/510 GeV. At these kinematics STAR is sensitive to quark distributions near Bjorken-x of 0.16. STAR can also extend the sea quark sensitivity to higher x by measuring the leptonic decays in the forward rapidity range 1.1 < η < 2.0. STAR runs from 2011 through 2013 have collected about 350 pb-1 of data. Presented here are preliminary results for the 2011-2012 W cross section ratios ( 100 pb-1), and an update on the 2013 W cross section analysis ( 250 pb-1).

  1. Hot and dense matter in compact stars - from nuclei to quarks

    Energy Technology Data Exchange (ETDEWEB)

    Hempel, Matthias


    This dissertation deals with the equation of state of hot and dense matter in compact stars, with special focus on first order phase transitions. A general classification of first order phase transitions is given and the properties of mixed phases are discussed. Aspects of nucleation and the role of local constraints are investigated. The derived theoretical concepts are applied to matter in neutron stars and supernovae, in the hadron-quark and the liquid-gas phase transition. For the detailed description of the liquid-gas phase transition a new nuclear statistical equilibrium model is developed. It is based on a thermodynamic consistent implementation of relativistic mean-field interactions and excluded volume effects. With this model different equation of state tables are calculated and the composition and thermodynamic properties of supernova matter are analyzed. As a first application numerical simulations of core-collapse supernovae are presented. For the hadron-quark phase transition two possible scenarios are studied in more detail. First the appearance of a new mixed phase in a proto neutron star and the implications on its evolution. In the second scenario the consequences of the hadron-quark transition in corecollapse supernovae are investigated. Simulations show that the appearance of quark matter has clear observable signatures and can even lead to the generation of an explosion. (orig.)

  2. Cold Uniform Matter and Neutron Stars in the Quark-Meson-Coupling Model

    Energy Technology Data Exchange (ETDEWEB)

    J.R. Stone; P.A.M. Guichon; H.H. Matevosyan; A.W. Thomas


    A new density dependent effective baryon-baryon interaction has been recently derived from the quark-meson-coupling (QMC) model, offering impressive results in application to finite nuclei and dense baryon matter. This self-consistent, relativistic quark-level approach is used to construct the Equation of State (EoS) and to calculate key properties of high density matter and cold, slowly rotating neutron stars. The results include predictions for the maximum mass of neutron star models, together with the corresponding radius and central density, as well the properties of neutron stars with mass of order 1.4 M{sub {circle_dot}}. The cooling mechanism allowed by the QMC EoS is explored and the parameters relevant to slow rotation, namely the moment of inertia and the period of rotation investigated. The results of the calculation, which are found to be in good agreement with available observational data, are compared with the predictions of more traditional EoS, based on the A18+{delta}v+UIX* and modified Reid soft core potentials, the Skyrme SkM* interaction and two relativistic mean field (RMF) models for a hybrid stars including quark matter. The QMC EoS provides cold neutron star models with maximum mass 1.9-2.1 M{sub {circle_dot}}, with central density less than 6 times nuclear saturation density (n{sub 0} = 0.16 fm{sup -3}) and offers a consistent description of the stellar mass up to this density limit. In contrast with other models, QMC predicts no hyperon contribution at densities lower than 3n{sub 0}, for matter in {beta}-equilibrium. At higher densities, {Xi}{sup -,0} and {Lambda} hyperons are present. The absence of lighter {Sigma}{sup {+-},0} hyperons is understood as a consequence of antisymmetrization, together with the implementation of the color hyperfine interaction in the response of the quark bag to the nuclear scalar field.

  3. A class of exact strange quark star model

    Indian Academy of Sciences (India)

    the Einstein–Maxwell system of equations in the static spherical symmetry, utilizing a quadratic equation of state relating the radial pressure to the energy density. However, as densities within SQS are normally beyond nuclear matter density, one expects anisotropy to play a crucial role in the modelling of ultracompact stars ...


    Energy Technology Data Exchange (ETDEWEB)

    Dai, Z. G.; Wang, S. Q.; Wang, J. S. [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Wang, L. J. [Key Laboratory of Space Astronomy and Technology, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Yu, Y. W., E-mail: [Institute of Astrophysics, Central China Normal University, Wuhan 430079 (China)


    In this paper we show that the most luminous supernova discovered very recently, ASASSN-15lh, could have been powered by a newborn ultra-strongly magnetized pulsar, which initially rotates near the Kepler limit. We find that if this pulsar is a neutron star, its rotational energy could be quickly lost as a result of gravitational-radiation-driven r-mode instability; if it is a strange quark star (SQS), however, this instability is highly suppressed due to a large bulk viscosity associated with the nonleptonic weak interaction among quarks and thus most of its rotational energy could be extracted to drive ASASSN-15lh. Therefore, we conclude that such an ultra-energetic supernova provides a possible signature for the birth of an SQS.

  5. The scenario of two families of compact stars. Pt. 2. Transition from hadronic to quark matter and explosive phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Drago, Alessandro; Pagliara, Giuseppe [Ferrara Univ. (Italy). Dipt. di Fisica e Scienze della Terra; INFN, Ferrara (Italy)


    We will follow the two-families scenario described in the accompanying paper, in which compact stars having a very small radius and masses not exceeding about 1.5M {sub CircleDot} are made of hadrons, while more massive compact stars are quark stars. In the present paper we discuss the dynamics of the transition of a hadronic star into a quark star. We will show that the transition takes place in two phases: a very rapid one, lasting a few milliseconds, during which the central region of the star converts into quark matter and the process of conversion is accelerated by the existence of strong hydrodynamical instabilities, and a second phase, lasting about ten seconds, during which the process of conversion proceeds as far as the surface of the star via production and diffusion of strangeness. We will show that these two steps play a crucial role in the phenomenological implications of the model. We will discuss the possible implications of this scenario both for long and for short Gamma Ray Bursts (GRBs), using the proto-magnetar model as the reference frame of our discussion. We will show that the process of quark deconfinement can be connected to specific observed features of the GRBs. In the case of long GRBs we will discuss the possibility that quark deconfinement is at the origin of the second peak present in quite a large fraction of bursts. Also we will discuss the possibility that long GRBs can take place in binary systems without being associated with a SN explosion. Concerning short GRBs, quark deconfinement can play the crucial role in limiting their duration. Finally we will shortly revisit the possible relevance of quark deconfinement in some specific type of Supernova explosions, in particular in the case of very massive progenitors. (orig.)

  6. Neutron star structure from a quark-model baryon-baryon interaction

    Directory of Open Access Journals (Sweden)

    Fukukawa K.


    Full Text Available We derive the equation of state (EOS of nuclear matter from are alistic constituent quark model for the nucleon-nucleon interaction. We use the Brueckner-Bethe-Goldstone approach with the inclusion of the three hole-line contribution. We find that the resulting EOS reproduces correctly the saturation point, moreover the symmetry energy at low density, its slope, and the incompressibility turn out to be compatible with phenomenology. We calculate the mass-radius relation for neutron stars, and find maximum values close to two solar masses, in agreement with recent observational data.

  7. Strange Quark Stars in Binaries: Formation Rates, Mergers, and Explosive Phenomena (United States)

    Wiktorowicz, G.; Drago, A.; Pagliara, G.; Popov, S. B.


    Recently, the possible coexistence of a first family composed of “normal” neutron stars (NSs) with a second family of strange quark stars (QSs) has been proposed as a solution of problems related to the maximum mass and to the minimal radius of these compact stellar objects. In this paper, we study the mass distribution of compact objects formed in binary systems and the relative fractions of quark and NSs in different subpopulations. We incorporate the strange QS formation model provided by the two-families scenario, and we perform a large-scale population synthesis study in order to obtain the population characteristics. According to our results, the main channel for strange QS formation in binary systems is accretion from a secondary companion on an NS. Therefore, a rather large number of strange QSs form by accretion in low-mass X-ray binaries and this opens the possibility of having explosive GRB-like phenomena not related to supernovae and not due to the merger of two NSs. The number of double strange QS systems is rather small, with only a tiny fraction that merge within a Hubble time. This drastically limits the flux of strangelets produced by the merger, which turns out to be compatible with all limits stemming from Earth and lunar experiments. Moreover, this value of the flux rules out at least one relevant channel for the transformation of all NSs into strange QSs by strangelets’ absorption.


    Directory of Open Access Journals (Sweden)

    Zdenek Stuchlík


    Full Text Available The mass and spin estimates of the 4U 1636−53 neutron star obtained by the Resonant Switch (RS model of high-frequency quasi-periodic oscillations (HF QPOs are tested by a large variety of equations of state (EoS governing the structure of neutron stars. Neutron star models are constructed under the Hartle–Thorne theory of slowly rotating neutron stars calculated using the observationally given rotational frequency frot = 580 Hz (or alternatively frot = 290 Hz of the neutron star at 4U 1636−53. It is demonstrated that only two variants of the RS model are compatible with the parameters obtained by modelling neutron stars for the rotational frequency frot = 580 Hz. The variant giving the best fit with parameters M ~ 2.20Mʘ and a ~ 0.27 agrees with high precision with the prediction of one of the Skyrme EoS [1]. The variant giving the second best fit with parameters M ~ 2.12Mʘ and a ~ 0.20 agrees with lower precision with the prediction of the Gandolfi EoS [2].

  9. Exact solutions to a schematic nuclear quark model and colorless superconductivity

    DEFF Research Database (Denmark)

    Bohr, Henrik; da Providencia, Joao


    Exact solutions are found to the equations of a standard nuclear quark model exemplified by the Bonn model which is defined in terms of an effective pairing force. We show, by symmetry arguments, that, in general, the ground state of this model is not color neutral. In particular, color-neutral s......Exact solutions are found to the equations of a standard nuclear quark model exemplified by the Bonn model which is defined in terms of an effective pairing force. We show, by symmetry arguments, that, in general, the ground state of this model is not color neutral. In particular, color...

  10. The X-Ray Light Curve in GRB 170714A: Evidence for a Quark Star? (United States)

    Hou, Shu-Jin; Liu, Tong; Xu, Ren-Xin; Mu, Hui-Jun; Song, Cui-Ying; Lin, Da-Bin; Gu, Wei-Min


    Two plateaus and a following bump in the X-ray light curve of GRB 170714A have been detected by the Swift/X-ray Telescope, which could be very significant for the central engine of gamma-ray bursts (GRBs), implying that the origin of this burst might be different from those of other ultra-long GRBs. We propose that merging two neutron stars into a hyper-massive quark star (QS) and then collapsing into a black hole (BH), with a delay time around 104 s, could be responsible for these X-ray components. The hyper-massive QS is initially in a fluid state, being turbulent and differentially rotating, but would solidify and release its latent heat, injecting it into the GRB fireball (lasting about 103 s during the liquid–solid phase transition). A magnetic field as high as ∼1015 G can be created by dynamo action of the newborn liquid QS, and a magnetar-like central engine (after solidification) supplies significant energy for the second plateau. More energy could be released during a fall-back accretion after the post-merger QS collapses to a BH, and the X-ray bump forms. This post-merger QS model could be tested by future observations, with either advanced gravitational wave detectors (e.g., advanced LIGO and VIRGO) or X-ray/optical telescopes.

  11. Superconductivity

    CERN Document Server

    Thomas, D B


    A short general review is presented of the progress made in applied superconductivity as a result of work performed in connection with the high-energy physics program in Europe. The phenomenon of superconductivity and properties of superconductors of Types I and II are outlined. The main body of the paper deals with the development of niobium-titanium superconducting magnets and of radio-frequency superconducting cavities and accelerating structures. Examples of applications in and for high-energy physics experiments are given, including the large superconducting magnet for the Big European Bubble Chamber, prototype synchrotron magnets for the Super Proton Synchrotron, superconducting d.c. beam line magnets, and superconducting RF cavities for use in various laboratories. (0 refs).

  12. Effects of neutron-star superconductivity on magnetic monopoles and core field decay

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, J.A.; Ruderman, M.A.; Shaham, J.


    From the magnetic properties of old neutron stars we propose that an observation of a sufficiently old pulsar limits any ''grand unified theory'' heavy magnetic monopole flux in the pulsar neighborhood to below 5 x 10/sup -24/tau/sub 10/ /sup -2/cm/sup -/ /sup 2/sr/sup -1/sec/sup -1/, where tau/sub 10/ is the age (in 10/sup 10/ yr) of the pulsar's present magnetic field and monopole speeds are approx.10/sup -3/ c. For the millisecond pulsar PSR 1937+214 a major improvement over the Parker limit is obtained, which is also better than various limits from monopole catalysis of baryon decay, provided tau/sub 10/> or approx. =10/sup -1/. The consideration of monopole dynamics inside superconducting neutron-star cores leads to this conclusion.

  13. General relativistic ray-tracing algorithm for the determination of the electron-positron energy deposition rate from neutrino pair annihilation around rotating neutron and quark stars (United States)

    Kovács, Z.; Harko, T.


    We present a full general relativistic numerical code for estimating the energy-momentum deposition rate (EMDR) from neutrino pair annihilation (?). The source of the neutrinos is assumed to be a neutrino-cooled accretion disc around neutron and quark stars. We calculate the neutrino trajectories by using a ray-tracing algorithm with the general relativistic Hamilton's equations for neutrinos and derive the spatial distribution of the EMDR due to the annihilations of neutrinos and antineutrinos around rotating neutron and quark stars. We obtain the EMDR for several classes of rotating neutron stars, described by different equations of state of the neutron matter, and for quark stars, described by the Massachusetts Institute of Technology (MIT) bag model equation of state and in the colour-flavour-locked (CFL) phase. The distribution of the total annihilation rate of the neutrino-antineutrino pairs around rotating neutron and quark stars is studied for isothermal discs and accretion discs in thermodynamical equilibrium. We demonstrate both the differences in the equations of state for neutron and quark matter and rotation with the general relativistic effects significantly modify the EMDR of the electrons and positrons generated by the neutrino-antineutrino pair annihilation around compact stellar objects, as measured at infinity.

  14. Superconductivity (United States)

    Yeo, Yung K.

    Many potential high-temperature superconductivity (HTS) military applications have been demonstrated by low-temperature superconductivity systems; they encompass high efficiency electric drives for naval vessels, airborne electric generators, energy storage systems for directed-energy weapons, electromechanical launchers, magnetic and electromagnetic shields, and cavity resonators for microwave and mm-wave generation. Further HST applications in militarily relevant fields include EM sensors, IR focal plane arrays, SQUIDs, magnetic gradiometers, high-power sonar sources, and superconducting antennas and inertial navigation systems. The development of SQUID sensors will furnish novel magnetic anomaly detection methods for ASW.

  15. Superconductivity

    CERN Document Server

    Ketterson, John B


    Conceived as the definitive reference in a classic and important field of modern physics, this extensive and comprehensive handbook systematically reviews the basic physics, theory and recent advances in the field of superconductivity. Leading researchers, including Nobel laureates, describe the state-of-the-art in conventional and unconventional superconductors at a particularly opportune time, as new experimental techniques and field-theoretical methods have emerged. In addition to full-coverage of novel materials and underlying mechanisms, the handbook reflects continued intense research into electron-phone based superconductivity. Considerable attention is devoted to high-Tc superconductivity, novel superconductivity, including triplet pairing in the ruthenates, novel superconductors, such as heavy-Fermion metals and organic materials, and also granular superconductors. What’s more, several contributions address superconductors with impurities and nanostructured superconductors. Important new results on...

  16. Superconductivity

    CERN Document Server

    Poole, Charles P; Creswick, Richard J; Prozorov, Ruslan


    Superconductivity, Third Edition is an encyclopedic treatment of all aspects of the subject, from classic materials to fullerenes. Emphasis is on balanced coverage, with a comprehensive reference list and significant graphics from all areas of the published literature. Widely used theoretical approaches are explained in detail. Topics of special interest include high temperature superconductors, spectroscopy, critical states, transport properties, and tunneling. This book covers the whole field of superconductivity from both the theoretical and the experimental point of view. This third edition features extensive revisions throughout, and new chapters on second critical field and iron based superconductors.

  17. Superconductivity: (United States)

    Sacchetti, N.

    In this paper a short historical account of the discovery of superconductivity and of its gradual development is given. The physical interpretation of its various aspects took about forty years (from 1911 to 1957) to reach a successful description of this phenomenon in terms of a microscopic theory At the very end it seemed that more or less everything could be reasonably interpreted even if modifications and refinements of the original theory were necessary. In 1986 the situation changed abruptly when a cautious but revolutionary paper appeared showing that superconductivity was found in certain ceramic oxides at temperatures above those up to then known. A rush of frantic experimental activity started world-wide and in less than one year it was shown that superconductivity is a much more widespread phenomenon than deemed before and can be found at temperatures well above the liquid air boiling point. The complexity and the number of the substances (mainly ceramic oxides) involved call for a sort of modern alchemy if compounds with the best superconducting properties are to be manufactured. We don't use the word alchemy in a deprecatory sense but just to emphasise that till now nobody can say why these compounds are what they are: superconductors.

  18. An advanced course in computational nuclear physics bridging the scales from quarks to neutron stars

    CERN Document Server

    Lombardo, Maria; Kolck, Ubirajara


    This graduate-level text collects and synthesizes a series of ten lectures on the nuclear quantum many-body problem. Starting from our current understanding of the underlying forces, it presents recent advances within the field of lattice quantum chromodynamics before going on to discuss effective field theories, central many-body methods like Monte Carlo methods, coupled cluster theories, the similarity renormalization group approach, Green’s function methods and large-scale diagonalization approaches. Algorithmic and computational advances show particular promise for breakthroughs in predictive power, including proper error estimates, a better understanding of the underlying effective degrees of freedom and of the respective forces at play. Enabled by recent improvements in theoretical, experimental and numerical techniques, the state-of-the art applications considered in this volume span the entire range, from our smallest components – quarks and gluons as the mediators of the strong force – to the c...

  19. The physics of neutron stars. (United States)

    Lattimer, J M; Prakash, M


    Neutron stars are some of the densest manifestations of massive objects in the universe. They are ideal astrophysical laboratories for testing theories of dense matter physics and provide connections among nuclear physics, particle physics, and astrophysics. Neutron stars may exhibit conditions and phenomena not observed elsewhere, such as hyperon-dominated matter, deconfined quark matter, superfluidity and superconductivity with critical temperatures near 10(10) kelvin, opaqueness to neutrinos, and magnetic fields in excess of 10(13) Gauss. Here, we describe the formation, structure, internal composition, and evolution of neutron stars. Observations that include studies of pulsars in binary systems, thermal emission from isolated neutron stars, glitches from pulsars, and quasi-periodic oscillations from accreting neutron stars provide information about neutron star masses, radii, temperatures, ages, and internal compositions.

  20. Spin clustering of accreting X-ray neutron stars as possible evidence of quark matter

    Energy Technology Data Exchange (ETDEWEB)

    Glendenning, Norman K.; Weber, Fridolin


    A neutron star in binary orbit with a low-mass non-degenerate companion becomes a source of x-rays with millisecond variability when mass accretion spins it up. Centrifugally driven changes in density profile may initiate a phase transition in a growing region of the core parallel to what may take place in an isolated millisecond pulsar, but in reverse. Such a star will spend a longer time in the spin frequency range over which the transition occurs than elsewhere because the change of phase, paced by the spinup rate, is accompanied by a growth in the moment of inertia. The population of accreters will exhibit a clustering in the critical frequency range. A phase change triggered by changing spin and the accompanying adjustment of moment of inertia has its analogue in rotating nuclei.

  1. Cold Quark Matter

    CERN Document Server

    Kurkela, Aleksi; Vuorinen, Aleksi


    We perform an O(alpha_s^2) perturbative calculation of the equation of state of cold but dense QCD matter with two massless and one massive quark flavor, finding that perturbation theory converges reasonably well for quark chemical potentials above 1 GeV. Using a running coupling constant and strange quark mass, and allowing for further non-perturbative effects, our results point to a narrow range where absolutely stable strange quark matter may exist. Absent stable strange quark matter, our findings suggest that quark matter in compact star cores becomes confined to hadrons only slightly above the density of atomic nuclei. Finally, we show that equations of state including quark matter lead to hybrid star masses up to M~2M_solar, in agreement with current observations. For strange stars, we find maximal masses of M~2.75M_solar and conclude that confirmed observations of compact stars with M>2M_solar would strongly favor the existence of stable strange quark matter.

  2. Compact Stars with Sequential QCD Phase Transitions. (United States)

    Alford, Mark; Sedrakian, Armen


    Compact stars may contain quark matter in their interiors at densities exceeding several times the nuclear saturation density. We explore models of such compact stars where there are two first-order phase transitions: the first from nuclear matter to a quark-matter phase, followed at a higher density by another first-order transition to a different quark-matter phase [e.g., from the two-flavor color-superconducting (2SC) to the color-flavor-locked (CFL) phase]. We show that this can give rise to two separate branches of hybrid stars, separated from each other and from the nuclear branch by instability regions, and, therefore, to a new family of compact stars, denser than the ordinary hybrid stars. In a range of parameters, one may obtain twin hybrid stars (hybrid stars with the same masses but different radii) and even triplets where three stars, with inner cores of nuclear matter, 2SC matter, and CFL matter, respectively, all have the same mass but different radii.

  3. The Structure and Signals of Neutron Stars, from Birth to Death

    CERN Document Server


    This conference aims at bringing together people working in astrophysics of neutron stars, both on the theoretical and observational aspects. The following topics will be discussed : - Equation of state of dense matter, including hyperon, kaon and quark degrees of freedom - Neutrino emission and cooling of compact stars - Superconductivity-superfluidity - Constraints from EM observations - Transients - Gravitational wave emission - Models for Supernovae and for Gamma Ray Bursts - Magnetars. This conference is supported in part by the European network CompStar (MPNS COST Action MP1304 - Exploring fundamental physics with compact stars)

  4. Concluding Remarks: Connecting Relativistic Heavy Ion Collisions and Neutron Star Mergers by the Equation of State of Dense Hadron- and Quark Matter as signalled by Gravitational Waves (United States)

    Hanauske, Matthias; Steinheimer, Jan; Bovard, Luke; Mukherjee, Ayon; Schramm, Stefan; Takami, Kentaro; Papenfort, Jens; Wechselberger, Natascha; Rezzolla, Luciano; Stöcker, Horst


    The underlying open questions in the fields of general relativistic astrophysics and elementary particle and nuclear physics are strongly connected and their results are interdependent. Although the physical systems are quite different, the 4D-simulation of a merger of a binary system of two neutron stars and the properties of the hot and dense matter created in high energy heavy ion collisions, strongly depend on the equation of state of fundamental elementary matter. Neutron star mergers represent optimal astrophysical laboratories to investigate the QCD phase structure using a spectrogram of the post-merger phase of the emitted gravitational waves. These studies can be supplemented by observations from heavy ion collisions to possibly reach a conclusive picture on the QCD phase structure at high density and temperature. As gravitational waves (GWs) emitted from merging neutron star binaries are on the verge of their first detection, it is important to understand the main characteristics of the underlying merging system in order to predict the expected GW signal. Based on numerical-relativity simulations of merging neutron star binaries, the emitted GW and the interior structure of the generated hypermassive neutron stars (HMNS) have been analyzed in detail. This article will focus on the internal and rotational HMNS properties and their connection with the emitted GW signal. Especially, the appearance of the hadon-quark phase transition in the interior region of the HMNS and its conjunction with the spectral properties of the emitted GW will be addressed and confronted with the simulation results of high energy heavy ion collisions.

  5. The CSS parametrization for Hybrid Stars with the Field Correlator Method (United States)

    Burgio, G. F.


    We explore the structure of hybrid stars based on a nuclear matter equation of state (EoS) built with the microscopic Brueckner-Hartree-Fock many-body theory, and a quark matter EoS derived with the Field Correlator Method (FCM), which can be accurately represented by the CSS (constant speed of sound) parametrization. We find that the main features of the hadron-quark phase transition are directly related to the FCM parameters, i.e. the quark-antiquark potential V 1, the gluon condensate G 2 and the color-flavour superconducting gap ∆, whose values range can be determined by the observational data on neutron star (NS) masses.

  6. Characterisation of a dense state of quarks and gluons by the multi-strange hyperons excitation functions as measured with the Star experiment at RHIC; Caracterisation d'un etat dense de quarks et de gluons grace aux fonctions d'excitation des hyperons multi-etranges mesurees avec l'experience STAR au RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Speltz, J


    In this work, we characterize the production of the multi-strange baryons Xi and Omega in Au+Au collisions at RHIC, where the possible formation of a matter of deconfined quarks and gluons (QGP) is expected. We analyze with the STAR experiment, the collisions obtained at an energy of 62 GeV, intermediate between the one reached at the SPS (17 GeV) and the nominal energy of RHIC (200 GeV). Transverse momentum spectra, yields and elliptic flow are measured with different methods allowing for a relevant estimation of systematic errors. The results are compared to statistical and hydrodynamic models that we have adapted for their use at 62 GeV. The so obtained chemical and dynamic properties of the created medium indicate the formation of a thermalized, at least partially, medium and suggests the formation of a comparable matter at 62 GeV and at 200 GeV. (author)

  7. The reconstructed final state of Au + Au collisions from PHENIX and STAR data at sq root s = 130 AGeV - indication for quark deconfinement at RHIC

    CERN Document Server

    Csoergoe, T


    The final state of Au+Au collisions at sq root s = 130 AGeV at RHIC has been reconstructed within the framework of the Buda-Lund hydrodynamical model, by performing a simultaneous fit to final data on two-particle Bose-Einstein correlations of the STAR and PHENIX Collaborations, and final identified single-particle spectra as measured by the PHENIX Collaboration. The results indicate a strongly three dimensional expansion, with a four-velocity field that is almost a spherically symmetric Hubble flow. Large transverse geometrical source sizes, R sub G = 9.8 +- 1.2 fm, relatively short mean freeze-out time, tau sub 0 = 6.1 +- 0.3 fm/c and a short duration of particle emission, DELTA tau = 0.02 +- 1.5 fm/c was found. Most strikingly, an indication for a hot central part of the hydrodynamically evolving core was found, characterized by a central temperature of T sub 0 = 202 +- 13 MeV that is close to (or even above) the deconfinement temperature of the quark-hadron phase transition. The best fit indicates a cold ...

  8. Gravitational waves from color-magnetic "mountains" in neutron stars. (United States)

    Glampedakis, K; Jones, D I; Samuelsson, L


    Neutron stars may harbor the true ground state of matter in the form of strange quark matter. If present, this type of matter is expected to be a color superconductor, a consequence of quark pairing with respect to the color and flavor degrees of freedom. The stellar magnetic field threading the quark core becomes a color-magnetic admixture and, in the event that superconductivity is of type II, leads to the formation of color-magnetic vortices. In this Letter, we show that the volume-averaged color-magnetic vortex tension force should naturally lead to a significant degree of nonaxisymmetry in systems such as radio pulsars. We show that gravitational radiation from such color-magnetic "mountains" in young pulsars, such as the Crab and Vela, could be observable by the future Einstein Telescope, thus, becoming a probe of paired quark matter in neutron stars. The detectability threshold can be pushed up toward the sensitivity level of Advanced LIGO if we invoke an interior magnetic field about a factor ten stronger than the surface polar field.

  9. Spontaneous magnetization in high-density quark matter

    DEFF Research Database (Denmark)

    Tsue, Yasuhiko; da Providência, João; Providência, Constanca


    It is shown that spontaneous magnetization occurs due to the anomalous magnetic moments of quarks in high-density quark matter under the tensor-type four-point interaction. The spin polarized condensate for each flavor of quark appears at high baryon density, which leads to the spontaneous...... magnetization due to the anomalous magnetic moments of quarks. The implications for the strong magnetic field in compact stars is discussed....

  10. Cool quark matter

    CERN Document Server

    Kurkela, Aleksi


    We generalize the state-of-the-art perturbative Equation of State of cold quark matter to nonzero temperatures, needed in the description of neutron star mergers and core collapse processes. The new result is accurate to order g^5 in the gauge coupling, and is based on a novel framework for dealing with the infrared sensitive soft field modes of the theory. The zero Matsubara mode sector is treated using a dimensionally reduced effective theory, while the soft non-zero modes are resummed using the Hard Thermal Loop approximation. This combination of known effective descriptions offers unprecedented access to small but nonzero temperatures, both in and out of beta equilibrium.

  11. Applied superconductivity

    CERN Document Server

    Newhouse, Vernon L


    Applied Superconductivity, Volume II, is part of a two-volume series on applied superconductivity. The first volume dealt with electronic applications and radiation detection, and contains a chapter on liquid helium refrigeration. The present volume discusses magnets, electromechanical applications, accelerators, and microwave and rf devices. The book opens with a chapter on high-field superconducting magnets, covering applications and magnet design. Subsequent chapters discuss superconductive machinery such as superconductive bearings and motors; rf superconducting devices; and future prospec

  12. Glitches as probes of neutron star internal structure and dynamics: Effects of the superfluid-superconducting core (United States)

    Gügercinoğlu, Erbil


    Glitches, sudden spin-up of pulsars with subsequent recovery, provide us with a unique opportunity to investigate various physical processes, including the crust-core coupling, distribution of reservoir angular momentum within different internal layers, spin-up in neutral and charged superfluids and constraining the equation of state of the neutron star (NS) matter. In this work, depending on the dynamic interaction between the vortex lines and the nuclei in the inner crust, and between the vortex lines and the magnetic flux tubes in the outer core, various types of relaxation behavior are obtained and confronted with the observations. It is shown that the glitches have strong potential to deduce information about the cooling behavior and interior magnetic field configuration of NSs. Some implications of the relative importance of the external spin-down torques and the superfluid internal torques for recently observed unusual glitches are also discussed.

  13. Comparing P-stars with Observations


    Cea, Paolo


    P-stars are compact stars made of up and down quarks in $\\beta$-equilibrium with electrons in a chromomagnetic condensate. P-stars are able to account for compact stars as well as stars with radius comparable with canonical neutron stars. We compare p-stars with different available observations. Our results indicate that p-stars are able to reproduce in a natural manner several observations from isolated and binary pulsars.

  14. Color-charged Quark Matter in Astrophysics?


    Qiu, Congxin; Xu, Renxin


    Color confinement is only a supposition, which has not been proved in QCD yet. It is proposed here that macroscopic quark gluon plasma in astrophysics could hardly maintain colorless because of causality. The authors expected that the existence of chromatic strange quark stars as well as chromatic strangelets preserved from the QCD phase transition in the early universe could be unavoidable if their colorless correspondents do exist.


    Energy Technology Data Exchange (ETDEWEB)

    Fukushima, Kenji [Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Kojo, Toru, E-mail:, E-mail: [Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green Street, Urbana, IL 61801 (United States)


    We discuss theoretical scenarios on crossover between nuclear matter (NM) and quark matter (QM). We classify various possibilities into three major scenarios according to the onset of diquark degrees of freedom that characterizes color-superconducting (CSC) states. In the conventional scenario NM occurs at the liquid–gas (or liquid–vacuum at zero temperature) phase transition and QM occurs next, after which CSC eventually appears. With the effect of strong correlation, the BEC–BCS (Bose Einstein Condensation–Bardeen Cooper Schrieffer) scenario implies that CSC occurs next to NM and QM comes last in the BCS regime. We adopt the quarkyonic scenario in which NM, QM, and CSC are theoretically indistinguishable and thus these names refer to not distinct states but relevant descriptions of the same physical system. Based on this idea, we propose a natural scheme to interpolate NM near normal nuclear density and CSC with vector coupling at high baryon density. We finally discuss the mass–radius relation of the neutron star and constraints on parameters in the proposed scheme.

  16. Strange star surface: a crust with nuggets. (United States)

    Jaikumar, Prashanth; Reddy, Sanjay; Steiner, Andrew W


    We reexamine the surface composition of strange stars. Strange quark stars are hypothetical compact stars which could exist if strange quark matter was absolutely stable. It is widely accepted that they are characterized by an enormous density gradient (10(26) g/cm4) and large electric fields at the surface. By investigating the possibility of realizing a heterogeneous crust, comprised of nuggets of strange quark matter embedded in an uniform electron background, we find that the strange star surface has a much reduced density gradient and negligible electric field. We comment on how our findings will impact various proposed observable signatures for strange stars.

  17. Color superconductivity. Phase diagrams and Goldstone bosons in the color-flavor locked phase

    Energy Technology Data Exchange (ETDEWEB)

    Kleinhaus, Verena


    The phase diagram of strongly interacting matter is studied with great experimental and theoretical effort and is one of the most fascinating research areas in modern particle physics. It is believed that color superconducting phases, in which quarks form Cooper pairs, appear at very high densities and low temperatures. Such phases could appear in the cores of neutron stars. In this work color superconducting phases are studied within the Nambu-Jona-Lasinio model. First of all, the phase diagram of neutral matter in beta equilibrium is calculated for two different diquark couplings. To this end, we determine the dynamical quark masses self-consistently together with the order parameters of color superconductivity. The interplay between neutrality and quark masses results in an interesting phase structure, in particular for the smaller diquark coupling. In the following, we additionally include a conserved lepton number to map the situation in the first few seconds of the evolution of a protoneutron star when neutrinos are trapped. This has a huge influence on the phase structure and favors the 2SC phase compared to the CFL phase. In the second part of this work we concentrate on the CFL phase which is characterized by a special symmetry breaking pattern. The properties of the resulting nine pseudoscalar Goldstone bosons (GB) are studied by solving the Bethe-Salpeter equation for quark-quark scattering. The GB are the lowest-lying excitations in the CFL phase and therefore play an important role for the thermodynamics of the system. The properties of the GB can also be described by the low-energy effective theory (LEET) for the CFL phase. There the respective low-energy constants are derived for asymptotically high densities where the strong force is weak and can be treated perturbatively. Our aim is the comparison of our results with these predictions, on the one hand to check our model in the weak-coupling limit and on the other hand to derive information about

  18. The role of gauge fields in cold and dense quark matter

    Energy Technology Data Exchange (ETDEWEB)

    Noronha, J.


    In this thesis we investigate the role played by gauge fields in providing new observable signatures that can attest to the presence of color superconductivity in neutron stars. We show that thermal gluon fluctuations in color-flavor locked superconductors can substantially increase their critical temperature and also change the order of the transition, which becomes a strong first-order phase transition. Moreover, we explore the effects of strong magnetic fields on the properties of color-flavor locked superconducting matter. We find that both the energy gaps as well as the magnetization are oscillating functions of the magnetic field. Also, it is shown that the magnetization can be so strong that homogeneous quark matter becomes metastable for a range of parameters. This points towards the existence of magnetic domains or other types of magnetic inhomogeneities in the hypothesized quark cores of magnetars. Obviously, our results only apply if the strong magnetic fields observed on the surface of magnetars can be transmitted to their inner core. This can occur if the superconducting protons expected to exist in the outer core form a type-II superconductor. However, it has been argued that the observed long periodic oscillations in isolated pulsars can only be explained if the outer core is a type-I superconductor rather than type-II. We show that this is not the only solution for the precession puzzle by demonstrating that the long-term variation in the spin of PSR 1828-11 can be explained in terms of Tkachenko oscillations within superfluid shells. (orig.)

  19. Color-symmetric superconductivity in a phenomenological QCD model

    DEFF Research Database (Denmark)

    Bohr, Henrik; Providencia, C.; Providencia, J. da


    In this paper, we construct a theory of the NJL type where superconductivity is present, and yet the superconducting state remains, in the average, color symmetric. This shows that the present approach to color superconductivity is consistent with color singletness. Indeed, quarks are free...... in the deconfined phase, but the deconfined phase itself is believed to be a color singlet. The usual description of the color superconducting state violates color singletness. On the other hand, the color superconducting state here proposed is color symmetric in the sense that an arbitrary color rotation leads...

  20. and density-dependent quark mass model

    Indian Academy of Sciences (India)

    659–668. Radial oscillations of magnetized proto strange stars in temperature- and density-dependent quark mass model. V K GUPTA£, ASHA GUPTA, ..... D58, 083001 (1998). [13] O G Benvenuto and G Lugones, Mon. Not. R. Astron. Soc. 304, L25 (1999). [14] V K Gupta, Asha Gupta, S Singh and J D Anand, Int. J. Mod.

  1. Top quark properties

    Indian Academy of Sciences (India)

    Since the top quark was discovered at Tevatron in 1995, many top quark properties have been measured. However, the top quark is still interesting due to unique features which originate from the extremely heavy mass, and providing various test grounds on the Standard Model as well as searches for a new physics.

  2. Top quark measurements

    CERN Document Server

    Iorio, Alberto Orso Maria


    Measurements of top quarks from Run-I and Run-II of the LHC are presented. Results on dif- ferential and inclusive top quark production cross sections, measured by the ATLAS, CMS and LHCb experiments, and measurements of top quark properties and mass are reported.

  3. Color superconductivity in compact stellar hybrid configurations (United States)

    Ranea-Sandoval, Ignacio F.; Orsaria, Milva G.; Han, Sophia; Weber, Fridolin; Spinella, William M.


    The discovery of pulsars PSR J1614-2230 and PSR J0348+0432 with masses of around 2 M⊙ imposes strong constraints on the equations of state of cold, ultradense matter. If a phase transition from hadronic matter to quark matter were to occur in the inner cores of such massive neutron stars, the energetically favorable state of quark matter would be a color superconductor. In this study, we analyze the stability and maximum mass of such neutron stars. The hadronic phase is described by nonlinear relativistic mean-field models, and the local Nambu-Jona Lasinio model is used to describe quark matter in the 2SC+s quark phase. The phase transition is treated as a Maxwell transition, assuming a sharp hadron-quark interface, and the "constant-sound-speed" (CSS) parametrization is employed to discuss the existence of stellar twin configurations. We find that massive neutron stars such as J1614-2230 and J0348+0432 can only exist on the connected stellar branch but not on the disconnected twin-star branch. The latter can only support stars with masses that are strictly below 2 M⊙ .

  4. Cooling of Neutron Stars

    Directory of Open Access Journals (Sweden)

    Grigorian H.


    Full Text Available We introduce the theoretical basis for modeling the cooling evolution of compact stars starting from Boltzmann equations in curved space-time. We open a discussion on observational verification of different neutron star models by consistent statistics. Particular interest has the question of existence of quark matter deep inside of compact object, which has to have a specific influence on the cooling history of the star. Besides of consideration of several constraints and features of cooling evolution, which are susceptible of being critical for internal structure of hot compact stars we have introduced a method of extraction of the mass distribution of the neutron stars from temperature and age data. The resulting mass distribution has been compared with the one suggested by supernove simulations. This method can be considered as an additional checking tool for the consistency of theoretical modeling of neutron stars. We conclude that the cooling data allowed existence of neutron stars with quark cores even with one-flavor quark matter.

  5. Quark nova model for fast radio bursts (United States)

    Shand, Zachary; Ouyed, Amir; Koning, Nico; Ouyed, Rachid


    Fast radio bursts (FRBs) are puzzling, millisecond, energetic radio transients with no discernible source; observations show no counterparts in other frequency bands. The birth of a quark star from a parent neutron star experiencing a quark nova - previously thought undetectable when born in isolation - provides a natural explanation for the emission characteristics of FRBs. The generation of unstable r-process elements in the quark nova ejecta provides millisecond exponential injection of electrons into the surrounding strong magnetic field at the parent neutron star's light cylinder via β-decay. This radio synchrotron emission has a total duration of hundreds of milliseconds and matches the observed spectrum while reducing the inferred dispersion measure by approximately 200 cm-3 pc. The model allows indirect measurement of neutron star magnetic fields and periods in addition to providing astronomical measurements of β-decay chains of unstable neutron rich nuclei. Using this model, we can calculate expected FRB average energies (˜ 1041 erg) and spectral shapes, and provide a theoretical framework for determining distances.

  6. Magnetic fields in turbulent quark matter and magnetar bursts (United States)

    Dvornikov, Maxim

    We analyze the magnetic field evolution in dense quark matter with unbroken chiral symmetry, which can be found inside quark and hybrid stars. The magnetic field evolves owing to the chiral magnetic effect in the presence of the electroweak interaction between quarks. In our study, we also take into account the magnetohydrodynamic turbulence effects in dense quark matter. We derive the kinetic equations for the spectra of the magnetic helicity density and the magnetic energy density as well as for the chiral imbalances. On the basis of the numerical solution of these equations, we find that turbulence effects are important for the behavior of small scale magnetic fields. It is revealed that, under certain initial conditions, these magnetic fields behave similarly to the electromagnetic flashes of some magnetars. We suggest that fluctuations of magnetic fields, described in frames of our model, which are created in the central regions of a magnetized compact star, can initiate magnetar bursts.

  7. Quark Nova Signatures in Super-luminous Supernovae (United States)

    Kostka, M.; Koning, N.; Leahy, D.; Ouyed, R.; Steffen, W.


    Recent observational surveys have uncovered the existence of super-luminous supernovae (SLSNe). In this work we study the light curves of eight SLSNe in the context of dual-shock quark novae. We find that progenitor stars in the range of 25 - 35 M⊙ provide ample energy to power each light curve. An examination into the effects of varying the physical properties of a dual-shock quark nova on light curve composition is undertaken. We conclude that the wide variety of SLSN light curve morphologies can be explained predominantly by variations in the length of time between supernova and quark nova. Our analysis shows that a singular H alpha spectral profile found in three SLSNe can be naturally described in the dual-shock quark nova scenario. Predictions of spectral signatures unique to the dual-shock quark nova are presented.

  8. Quark matter revisited with non-extensive MIT bag model

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Pedro H.G.; Nunes da Silva, Tiago; Menezes, Debora P. [Universidade Federal de Santa Catarina, Departamento de Fisica, CFM, Florianopolis (Brazil); Deppman, Airton [Instituto de Fisica da Universidade de Sao Paulo, Sao Paulo (Brazil)


    In this work we revisit the MIT bag model to describe quark matter within both the usual Fermi-Dirac and the Tsallis statistics. We verify the effects of the non-additivity of the latter by analysing two different pictures: the first order phase transition of the QCD phase diagram and stellar matter properties. While the QCD phase diagram is visually affected by the Tsallis statistics, the resulting effects on quark star macroscopic properties are barely noticed. (orig.)

  9. Top quark physics

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadov, A.; Azuelos, G.; Bauer, U.; Belyaev, A.; Berger, E. L.; Sullivan, Z.; Tait, T. M. P.


    The top quark, when it was finally discovered at Fermilab in 1995 completed the three-generation structure of the Standard Model (SM) and opened up the new field of top quark physics. Viewed as just another SM quark, the top quark appears to be a rather uninteresting species. Produced predominantly, in hadron-hadron collisions, through strong interactions, it decays rapidly without forming hadrons, and almost exclusively through the single mode t {r_arrow} Wb. The relevant CKM coupling V{sub tb} is already determined by the (three-generation) unitarity of the CKM matrix. Rare decays and CP violation are unmeasurable small in the SM. Yet the top quark is distinguished by its large mass, about 35 times larger than the mass of the next heavy quark, and intriguingly close to the scale of electroweak (EW) symmetry breaking. This unique property raises a number of interesting questions. Is the top quark mass generated by the Higgs mechanism as the SM predicts and is its mass related to the top-Higgs-Yukawa coupling? Or does it play an even more fundamental role in the EW symmetry breaking mechanism? If there are new particles lighter than the top quark, does the top quark decay into them? Could non-SM physics first manifest itself in non-standard couplings of the top quark which show up as anomalies in top quark production and decays? Top quark physics tries to answer these questions. Several properties of the top quark have already been examined at the Tevatron. These include studies of the kinematical properties of top production, the measurements of the top mass, of the top production cross-section, the reconstruction of t{bar t}pairs in the fully hadronic final states, the study of {tau} decays of the top quark, the reconstruction of hadronic decays of the W boson from top decays, the search for flavor changing neutral current decays, the measurement of the W helicity in top decays, and bounds on t{bar t} spin correlations. Most of these measurements are limited by

  10. Seismic Search for Strange Quark Matter (United States)

    Teplitz, Vigdor


    Two decades ago, Witten suggested that the ground state of matter might be material of nuclear density made from up, down and strange quarks. Since then, much effort has gone into exploring astrophysical and other implications of this possibility. For example, neutron stars would almost certainly be strange quark stars; dark matter might be strange quark matter. Searches for stable strange quark matter have been made in various mass ranges, with negative, but not conclusive results. Recently, we [D. Anderson, E. Herrin, V. Teplitz, and I. Tibuleac, Bull. Seis. Soc. of Am. 93, 2363 (2003)] reported a positive result for passage through the Earth of a multi-ton "nugget" of nuclear density in a search of about a million seismic reports, to the U.S. Geological Survey for the years 1990-93, not associated with known Earthquakes. I will present the evidence (timing of first signals to the 9 stations involved, first signal directions, and unique waveform characteristics) for our conclusion and discuss potential improvements that could be obtained from exploiting the seismologically quieter environments of the moon and Mars.

  11. Heavy quark masses (United States)

    Testa, Massimo


    In the large quark mass limit, an argument which identifies the mass of the heavy-light pseudoscalar or scalar bound state with the renormalized mass of the heavy quark is given. The following equation is discussed: m(sub Q) = m(sub B), where m(sub Q) and m(sub B) are respectively the mass of the heavy quark and the mass of the pseudoscalar bound state.

  12. The Quark - A Decade Later (United States)

    Dakin, James T.


    Reviews theoretical principles underlying the quark model. Indicates that the agreement with experimental results and the understanding of the quark-quark force are two hurdles for the model to survive in the future. (CC)

  13. Neutron Star Interiors and Topology Change

    Directory of Open Access Journals (Sweden)

    Peter K. F. Kuhfittig


    Full Text Available Quark matter is believed to exist in the center of neutron stars. A combined model consisting of quark matter and ordinary matter is used to show that the extreme conditions existing in the center could result in a topology change, that is, in the formation of wormholes.

  14. Astrophysical Aspects of Neutrino Dynamics in Ultradegenerate Quark Gluon Plasma

    Directory of Open Access Journals (Sweden)

    Souvik Priyam Adhya


    Full Text Available The cardinal focus of the present review is to explore the role of neutrinos originating from the ultradense core of neutron stars composed of quark gluon plasma in the astrophysical scenario. The collective excitations of the quarks involving the neutrinos through the different kinematical processes have been studied. The cooling of the neutron stars as well as pulsar kicks due to asymmetric neutrino emission has been discussed in detail. Results involving calculation of relevant physical quantities like neutrino mean free path and emissivity have been presented in the framework of non-Fermi liquid behavior as applicable to ultradegenerate plasma.

  15. High energy cosmic ray signature of quark nuggets (United States)

    Audouze, J.; Schaeffer, R.; Silk, J.


    It has been recently proposed that dark matter in the Universe might consist of nuggets of quarks which populate the nuclear desert between nucleons and neutron star matter. It is further suggested that the Centauro events which could be the signature of particles with atomic mass A approx. 100 and energy E approx. 10 to 15th power eV might also be related to debris produced in the encounter of two neutron stars. A further consequence of the former proposal is examined, and it is shown that the production of relativistic quark nuggets is accompanied by a substantial flux of potentially observable high energy neutrinos.

  16. On quark molecules

    CERN Document Server

    Dolgov, A D; Okun, Lev Borisovich


    A nonrelativistic quark model with three triplets and an octet of coloured gluons is considered. The interaction energy is calculated for some quark molecules. It is shown that states of the type qqqq and qqqqq are bounded more tightly than qq and qqq, respectively. This may indicate an existence of exotic particles in the nature or, perhaps, that the model is invalid. (11 refs).

  17. Chiral quark model

    Indian Academy of Sciences (India)

    In this talk I review studies of hadron properties in bosonized chiral quark models for the quark flavor dynamics. Mesons are constructed from Bethe–Salpeter equations and baryons emerge as chiral solitons. Such models require regularization and I show that the two-fold Pauli–Villars regularization scheme not only fully ...

  18. Top quark theory

    NARCIS (Netherlands)

    Laenen, E.


    The theoretical aspects of a number of top quark properties such as its mass and its couplings are reviewed. Essential aspects in the theoretical description of top quark production, singly, in pairs and in association, as well as its decay related to spin and angular correlations are discussed.

  19. Top quark theory

    Indian Academy of Sciences (India)

    Abstract. The theoretical aspects of a number of top quark properties such as its mass and its couplings are reviewed. Essential aspects in the theoretical description of top quark production, singly, in pairs and in association, as well as its decay related to spin and angular correlations are discussed.

  20. Constraining neutron star matter with Quantum Chromodynamics

    CERN Document Server

    Kurkela, Aleksi; Schaffner-Bielich, Jurgen; Vuorinen, Aleksi


    In recent years, there have been several successful attempts to constrain the equation of state of neutron star matter using input from low-energy nuclear physics and observational data. We demonstrate that significant further restrictions can be placed by additionally requiring the pressure to approach that of deconfined quark matter at high densities. Remarkably, the new constraints turn out to be highly insensitive to the amount --- or even presence --- of quark matter inside the stars.

  1. Three-flavor color superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Malekzadeh, H.


    I investigate some of the inert phases in three-flavor, spin-zero color-superconducting quark matter: the CFL phase (the analogue of the B phase in superfluid {sup 3}He), the A and A{sup *} phases, and the 2SC and sSC phases. I compute the pressure of these phases with and without the neutrality condition. Without the neutrality condition, after the CFL phase the sSC phase is the dominant phase. However, including the neutrality condition, the CFL phase is again the energetically favored phase except for a small region of intermediate densities where the 2SC/A{sup *} phase is favored. It is shown that the 2SC phase is identical to the A{sup *} phase up to a color rotation. In addition, I calculate the self-energies and the spectral densities of longitudinal and transverse gluons at zero temperature in color-superconducting quark matter in the CFL phase. I find a collective excitation, a plasmon, at energies smaller than two times the gap parameter and momenta smaller than about eight times the gap. The dispersion relation of this mode exhibits a minimum at some nonzero value of momentum, indicating a van Hove singularity. (orig.)

  2. PREFACE: Superconducting materials Superconducting materials (United States)

    Charfi Kaddour, Samia; Singleton, John; Haddad, Sonia


    The discovery of superconductivity in 1911 was a great milestone in condensed matter physics. This discovery has resulted in an enormous amount of research activity. Collaboration among chemists and physicists, as well as experimentalists and theoreticians has given rise to very rich physics with significant potential applications ranging from electric power transmission to quantum information. Several superconducting materials have been synthesized. Crucial progress was made in 1987 with the discovery of high temperature superconductivity in copper-based compounds (cuprates) which have revealed new fascinating properties. Innovative theoretical tools have been developed to understand the striking features of cuprates which have remained for three decades the 'blue-eyed boy' for researchers in superconductor physics. The history of superconducting materials has been notably marked by the discovery of other compounds, particularly organic superconductors which despite their low critical temperature continue to attract great interest regarding their exotic properties. Last but not least, the recent observation of superconductivity in iron-based materials (pnictides) has renewed hope in reaching room temperature superconductivity. However, despite intense worldwide studies, several features related to this phenomenon remain unveiled. One of the fundamental key questions is the mechanism by which superconductivity takes place. Superconductors continue to hide their 'secret garden'. The new trends in the physics of superconductivity have been one of the two basic topics of the International Conference on Conducting Materials (ICoCoM2010) held in Sousse,Tunisia on 3-7 November 2010 and organized by the Tunisian Physical Society. The conference was a nice opportunity to bring together participants from multidisciplinary domains in the physics of superconductivity. This special section contains papers submitted by participants who gave an oral contribution at ICoCoM2010

  3. Quark i mattoni del mondo

    CERN Document Server

    Fritzsch, Harald


    Quark rossi, verdi e blu ; quark dotati di stranezza e di incanto ; quark 'su' e 'giù' : sembra che i fisici delle particelle giochino a confondere la curiosità del profano, con queste denominazioni fantasiose. Che cosa significano ? e, soprattutto, i quark sono i costituenti davvero elementari della materia ?

  4. Quark masses from quark-gluon condensates in a modified perturbative QCD

    CERN Document Server

    Cabo-Montes de Oca, Alejandro


    In this note, it is argued that the mass matrix for the six quarks can be generated in first approximation by introducing fermion condensates on the same lines as was done before for gluons, within the modified perturbative expansion for QCD proposed in former works. Thus, the results point in the direction of the conjectured link of the approximate `Democratic' symmetry of the quark mass matrix and `gap' effects similar to the ones occuring in superconductivity. The condensates are introduced here non-dynamically and therefore the question of the possibility for their spontaneous generation remains open. However, possible ways out of the predicted lack of the `Democratic' symmetry of the condensates resulting from the spontaneous breaking of the flavour symmetry are suggested. They come from an analysis based on the Cornwall--Jackiw--Tomboulis (CJT) effective potential for composite operators

  5. Top quark measurements at ATLAS

    CERN Document Server

    Grancagnolo, Sergio; The ATLAS collaboration


    The top quark is the heaviest known fundamental particle. As it is the only quark that decays before it hadronizes, this gives us the unique opportunity to probe the properties of bare quarks at the Large Hadron Collider. Highlights of a few recent precision measurements by the ATLAS Collaboration of the top quark using 13 TeV and 8 TeV collision data will be presented: top-quark pair and single top production cross sections including differential distributions will be presented alongside top quark properties measurements. These measurements, including results using boosted top quarks, probe our understanding of top quark production in the TeV regime. Measurements of the top quark mass and searches for rare top quark decays are also presented.

  6. Top quark measurements at ATLAS

    CERN Document Server

    Grancagnolo, Sergio; The ATLAS collaboration


    The top quark is the heaviest known fundamental particle. As it is the only quark that decays before it hadronizes, this gives us the unique opportunity to probe the properties of bare quarks at the Large Hadron Collider. This talk will present highlights of a few recent precision measurements by the ATLAS Collaboration of the top quark using 13 TeV and 8 TeV collision data: top-quark pair and single top production cross sections including differential distributions will be presented alongside top quark properties measurements. These measurements, including results using boosted top quarks, probe our understanding of top quark production in the TeV regime. Measurements of the top quark mass and searches for rare top quark decays are also presented.

  7. Do Quarks Propagate?

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Taylor, John C.


    Processes with coloured particles in the initial state are generally infrared divergent. We investigate the effect of this on processes with colourless particles in the initial state, when the amplitude is near an intermediate quark pole. The result is a characteristic logarithmic depedence...... on the 'binding energy'(even though spectator interactions are taken into account), and the result is gauge-invariant. Summed to all orders the logarithms could perhaps suppress the quark pole....

  8. Relativistic simulations of compact object mergers for nucleonic matter and strange quark matter

    Energy Technology Data Exchange (ETDEWEB)

    Bauswein, Andreas Ottmar


    Under the assumption that the energy of the ground state of 3-flavor quark matter is lower than the one of nucleonic matter, the compact stellar remnants of supernova explosions are composed of this quark matter. Because of the appearance of strange quarks, such objects are called strange stars. Considering their observational features, strange stars are very similar to neutron stars made of nucleonic matter, and therefore observations cannot exclude the existence of strange stars. This thesis introduces a new method for simulating mergers of compact stars and black holes within a general relativistic framework. The main goal of the present work is the investigation of the question, whether the coalescence of two strange stars in a binary system yields observational signatures that allow one to distinguish them from colliding neutron stars. In this context the gravitational-wave signals are analyzed. It is found that in general the characteristic frequencies in the gravitational-wave spectra are higher for strange stars. Moreover, the amount of matter that becomes gravitationally unbound during the merging is determined. The detection of ejecta of strange star mergers as potential component of cosmic ray flux could serve as a proof of the existence of strange quark matter. (orig.)

  9. Color superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Wilczek, F. [Institute for Advanced Study, Princeton, NJ (United States)


    The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken.

  10. Reviews Book: Nucleus Book: The Wonderful World of Relativity Book: Head Shot Book: Cosmos Close-Up Places to Visit: Physics DemoLab Book: Quarks, Leptons and the Big Bang EBook: Shooting Stars Equipment: Victor 70C USB Digital Multimeter Web Watch (United States)


    WE RECOMMEND Nucleus: A Trip into the Heart of Matter A coffee-table book for everyone to dip into and learn from The Wonderful World of Relativity A charming, stand-out introduction to relativity The Physics DemoLab, National University of Singapore A treasure trove of physics for hands-on science experiences Quarks, Leptons and the Big Bang Perfect to polish up on particle physics for older students Victor 70C USB Digital Multimeter Equipment impresses for usability and value WORTH A LOOK Cosmos Close-Up Weighty tour of the galaxy that would make a good display Shooting Stars Encourage students to try astrophotography with this ebook HANDLE WITH CARE Head Shot: The Science Behind the JKF Assassination Exploration of the science behind the crime fails to impress WEB WATCH App-lied science for education: a selection of free Android apps are reviewed and iPhone app options are listed

  11. On Surface Tension for Compact Stars

    Indian Academy of Sciences (India)

    In an earlier analysis it was demonstrated that general relativity gives higher values of surface tension in strange stars with quark matter than neutron stars. We generate the modified Tolman–Oppenheimer–Volkoff equation to incorporate anisotropic matter and use this to show that pressure anisotropy provides for a wide ...

  12. A superconducting tunnel junction receiver for submillimeter astronomy, and analysis of observations of post-AGB star molecular envelopes. [AGB (asymptotic giant branch)

    Energy Technology Data Exchange (ETDEWEB)

    Jaminet, P.A.


    A heterodyne receiver designed for astronomical use between 450 and 520 GHz has been constructed. Very low capacitance (C [approximately] 5-10 fF) Superconductor-Insulator-Superconductor (SIS) junctions have been fabricated as the detectors; these junctions lie on the edges of niobium thin films and form Nb-Al-Al[sub 2]O[sub 3]-Al-Nb sandwiches. The double sideband (DSB) receiver noise temperature is between 400 K and 800 K throughout the 70 GHz band. In addition, detailed modelling and analysis of astronomical observations of two post-AGB (Asymptotic Giant Branch) stars was performed. The observations were made with an SIS receiver designed for 345 GHz. CO observations and modelling of the young planetary nebula NGC 7027 provided the best determination yet of its AGB mass loss rate, the first direct evidence for bipolarity in its AGB mass loss, evidence for close hydrodynamic coupling between the planetary nebula and the relic AGB wind, and evidence for evolution in the metallicity of the stellar wind. Observations of the proto-planetary nebula CRL 2688 found evidence for spatially extended fast wind emission with a non-bipolar morphology, and evidence for evolution is elemental abundances in the stellar wind.

  13. Critical fields of liquid superconducting metallic hydrogen (United States)

    Jaffe, J.; Ashcroft, N. W.


    Liquid metallic hydrogen, in a fully dissociated state, is predicted at certain densities to pass from dirty to clean and from type II to type I superconducting behavior as temperature is lowered. Previously announced in STAR as N82-29374

  14. Bootstrapping quarks and gluons

    Energy Technology Data Exchange (ETDEWEB)

    Chew, G.F.


    Dual topological unitarization (DTU) - the approach to S-matrix causality and unitarity through combinatorial topology - is reviewed. Amplitudes associated with triangulated spheres are shown to constitute the core of particle physics. Each sphere is covered by triangulated disc faces corresponding to hadrons. The leading current candidate for the hadron-face triangulation pattern employs 3-triangle basic subdiscs whose orientations correspond to baryon number and topological color. Additional peripheral triangles lie along the hadron-face perimeter. Certain combinations of peripheral triangles with a basic-disc triangle can be identified as quarks, the flavor of a quark corresponding to the orientation of its edges that lie on the hadron-face perimeter. Both baryon number and flavor are additively conserved. Quark helicity, which can be associated with triangle-interior orientation, is not uniformly conserved and interacts with particle momentum, whereas flavor does not. Three different colors attach to the 3 quarks associated with a single basic subdisc, but there is no additive physical conservation law associated with color. There is interplay between color and quark helicity. In hadron faces with more than one basic subdisc, there may occur pairs of adjacent flavorless but colored triangles with net helicity +-1 that are identifiable as gluons. Broken symmetry is an automatic feature of the bootstrap. T, C and P symmetries, as well as up-down flavor symmetry, persist on all orientable surfaces.

  15. Light Quark Mass Reweighting

    CERN Document Server

    Liu, Qi; Jung, Chulwoo


    We present a systematic study of the effectiveness of light quark mass reweighting. This method allows a single lattice QCD ensemble, generated with a specific value of the dynamical light quark mass, to be used to determine results for other, nearby light dynamical quark masses. We study two gauge field ensembles generated with 2+1 flavors of dynamical domain wall fermions with light quark masses m_l=0.02 (m_\\pi=620 MeV) and m_l=0.01 (m_\\pi=420 MeV). We reweight each ensemble to determine results which could be computed directly from the other and check the consistency of the reweighted results with the direct results. The large difference between the 0.02 and 0.01 light quark masses suggests that this is an aggressive application of reweighting as can be seen from fluctuations in the magnitude of the reweighting factor by four orders of magnitude. Never-the-less, a comparison of the reweighed topological charge, average plaquette, residual mass, pion mass, pion decay constant, and scalar correlator between ...

  16. The quark-hadron transition in cosmology and astrophysics. (United States)

    Olive, K A


    A transition from normal hadronic matter (such as protons and neutrons) to quark-gluon matter is expected at both high temperatures and densities. In physical situations, this transition may occur in heavy ion collisions, the early universe, and in the cores of neutron stars. Astrophysics and cosmology can be greatly affected by such a phase transition. With regard to the early universe, big bang nucleosynthesis, the theory describing the primordial origin of the light elements, can be affected by inhomogeneities produced during the transition. A transition to quark matter in the interior by neutron stars further enhances our uncertainties regarding the equation of state of dense nuclear matter and neutron star properties such as the maximum mass and rotation frequencies.

  17. Quark structure of chiral solitons

    Energy Technology Data Exchange (ETDEWEB)

    Dmitri Diakonov


    There is a prejudice that the chiral soliton model of baryons is something orthogonal to the good old constituent quark models. In fact, it is the opposite: the spontaneous chiral symmetry breaking in strong interactions explains the appearance of massive constituent quarks of small size thus justifying the constituent quark models, in the first place. Chiral symmetry ensures that constituent quarks interact very strongly with the pseudoscalar fields. The ''chiral soliton'' is another word for the chiral field binding constituent quarks. We show how the old SU(6) quark wave functions follow from the ''soliton'', however, with computable relativistic corrections and additional quark-antiquark pairs. We also find the 5-quark wave function of the exotic baryon Theta+.

  18. The Quark's Model and Confinement (United States)

    Novozhilov, Yuri V.


    Quarks are elementary particles considered to be components of the proton, the neutron, and others. This article presents the quark model as a mathematical concept. Also discussed are gluons and bag models. A bibliography is included. (MA)


    Energy Technology Data Exchange (ETDEWEB)



    The U.S. Department of Energy's Relativistic Heavy Ion Collider (RHIC) construction project was completed at BNL in 1999, with the first data-taking runs in the summer of 2000. Since then the early measurements at RHIC have yielded a wealth of data, from four independent detectors, each with its international collaboration of scientists: BRAHMS, PHENIX, PHOBOS, and STAR [1]. For the first time, collisions of heavy nuclei have been carried out at colliding-beam energies that have previously been accessible only for high-energy physics experiments with collisions of ''elementary'' particles such as protons and electrons. It is at these high energies that the predictions of quantum chromodynamics (QCD), the fundamental theory that describes the role of quarks and gluons in nuclear matter, come into play, and new phenomena are sought that may illuminate our view of the basic structure of matter on the sub-atomic scale, with important implications for the origins of matter on the cosmic scale. The RHIC experiments have recorded data from collisions of gold nuclei at the highest energies ever achieved in man-made particle accelerators. These collisions, of which hundreds of millions have now been examined, result in final states of unprecedented complexity, with thousands of produced particles radiating from the nuclear collision. All four of the RHIC experiments have moved quickly to analyze these data, and have begun to understand the phenomena that unfold from the moment of collision as these particles are produced. In order to provide benchmarks of simpler interactions against which to compare the gold-gold collisions, the experiments have gathered comparable samples of data from collisions of a very light nucleus (deuterium) with gold nuclei, as well as proton-proton collisions, all with identical beam energies and experimental apparatus. The early measurements have revealed compelling evidence for the existence of a new form of nuclear

  20. Detecting heavy quarks

    Energy Technology Data Exchange (ETDEWEB)

    Benenson, G.; Chau, L.L.; Ludlam, T.; Paige, F.E.; Platner, E.D.; Protopopescu, S.D.; Rehak, P.


    In this exercise we examine the performance of a detector specifically configured to tag heavy quark (HQ) jets through direct observations of D-meson decays with a high resolution vertex detector. To optimize the performance of such a detector, we assume the small diamond beam crossing configuration as described in the 1978 ISABELLE proposal, giving a luminosity of 10/sup 32/ cm/sup -2/ sec/sup -1/. Because of the very large backgrounds from light quark (LQ) jets, most triggering schemes at this luminosity require high P/sub perpendicular to/ leptons and inevitably give missing neutrinos. If alternative triggering schemes could be found, then one can hope to find and calculate the mass of objects decaying to heavy quarks. A scheme using the high resolution detector will also be discussed in detail. The study was carried out with events generated by the ISAJET Monte Carlo and a computer simulation of the described detector system. (WHK)

  1. Top Quark Mass

    CERN Document Server

    Mulders, Martijn


    Ever since the discovery of the top quark at the Tevatron collider in 1995 the measurement of its mass has been a high priority. As one of the fundamental parameters of the Standard Theory of particle physics, the precise value of the top quark mass together with other inputs provides a test for the self-consistency of the theory, and has consequences for the stability of the Higgs field that permeates the Universe. In this review I will briefly summarize the experimental techniques used at the Tevatron and the LHC experiments throughout the years to measure the top quark mass with ever improving accuracy, and highlight the recent progress in combining all measurements in a single world average combination. As experimental measurements became more precise, the question of their theoretical interpretation has become important. The difficulty of relating the measured quantity to the fundamental top mass parameter has inspired alternative measurement methods that extract the top mass in complementary ways. I wil...

  2. Heavy Quarks: Summary Report

    CERN Document Server

    Baines, J.; Behnke, O.; Bracinik, J.; Cacciari, M.; Corradi, M.; Dainese, A.; Diglio, S.; Eskola, K.J.; Eynck, T.O.; Geiser, A.; Grindhammer, G.; Jung, H.; Kniehl, B.A.; Kolhinen, V.J.; Kretzer, S.; Kutak, K.; Laenen, Eric; Lagouri, Th.; Lipatov, A.V.; Maltoni, F.; Martin, A.D.; Meyer, A.; Morsch, A.; Motyka, L.; Peters, K.; Petrucci, F.; Piskounova, O.I.; Ranieri, R.; Ruiz, H.; Ryskin, M.G.; Schienbein, I.; Smith, J.; Smizanska, M.; Spiesberger, H.; Tonazzo, A.; Uwer, U.; Verducci, M.; Vogt, R.; Weiser, C.; Zotov, N.P.; Lagouri, Th.


    The present status of the heavy-quark production theory is critically reviewed in the first contribution. The second contribution summarises the present heavy flavour data from HERA and gives an outlook of what can be expected from HERA-II. The potential of the LHC experiments for charm and beauty physics is reviewed in the 3rd contribution. Then the relevance of saturation and small-x effects to heavy quark production at HERA and at the LHC are discussed. The non-perturbative aspects of heavy-quark fragmentation and their relevance to HERA and LHC are discussed in the next contribution. Finally, a comparison of different theoretical predictions for HERA and LHC based on different approaches is presented.

  3. Superconducting gravimeter (United States)

    Goodkind, J. M.


    The superconducting gravimeter was developed and applied to field measurements. The stability of the instrument yielded the highest precision measurements of the Earth tides ever attained. It revealed unprecedented details about the effect of the atmosphere on gravity. Secular variations in gravity and the stability of the instruments were measured by comparing records from co-located instruments. These efforts have resulted in substantial reductions in the noise level at very low frequencies so that the peak differences between two instruments at the same location can be reduced to 0.1 micron gal.

  4. Top quark physics: Future measurements

    Energy Technology Data Exchange (ETDEWEB)

    Frey, R. [Univ. of Oregon, Eugene, OR (United States). Dept. of Physics; Vejcik, S. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Physics; Berger, E.L. [Argonne National Lab., IL (United States)] [and others


    The authors discuss the study of the top quark at future experiments and machines. Top`s large mass makes it a unique probe of physics at the natural electroweak scale. They emphasize measurements of the top quark`s mass, width, and couplings, as well as searches for rare or nonstandard decays, and discuss the complementary roles played by hadron and lepton colliders.

  5. Quark Orbital Angular Momentum

    Directory of Open Access Journals (Sweden)

    Burkardt Matthias


    Full Text Available Definitions of orbital angular momentum based on Wigner distributions are used as a framework to discuss the connection between the Ji definition of the quark orbital angular momentum and that of Jaffe and Manohar. We find that the difference between these two definitions can be interpreted as the change in the quark orbital angular momentum as it leaves the target in a DIS experiment. The mechanism responsible for that change is similar to the mechanism that causes transverse single-spin asymmetries in semi-inclusive deep-inelastic scattering.

  6. Nonperturbative fragmentation of the top quark

    Energy Technology Data Exchange (ETDEWEB)

    Dobado, A. (Departamento de Fisica Teorica and Instituto de Fisica Fundamental, Universidad Complutense de Madrid, 28040 Madrid (Spain)); Urdiales, M. (Departamento de Fisica Teorica, Universidad Autonoma de Madrid, 28049 Madrid (Spain))


    By the use of a simple phenomenological string model, the energy lost by the top quark through nonperturbative fragmentation effects before its weak decay is computed. This energy lost is in first approximation proportional to the rate between the decay time and the hadronization time of the top as measured in the center-of-mass frame of the top and its color partner. Precise computations of the energy lost by the top in terms of its mass when produced in colliders such as the Fermilab Tevatron, CERN Large Hadron Collider, Superconducting Super Collider, and CERN Linear Collider are presented. As expected, this effect decreases quickly with the top mass but it could be relevant for a top mass below 100 GeV.

  7. Hermitian quark matrices

    Indian Academy of Sciences (India)

    Abstract. Assuming a relation between the quark mass matrices of the two sectors a unique solution can be obtained for the CKM flavor mixing matrix. A numerical example is worked out which is in excellent agreement with experimental data.

  8. Chiral quark model

    Indian Academy of Sciences (India)

    ingful. In particular, it is interesting to analyze the hadronic tensor that parametrizes the deep inelastic scattering (DIS) and confront the model predictions with empirical data. This picture has led to interesting studies of hadron structure functions in bosonized chiral quark models. Here I will present the results of refs [5–7].

  9. Quark gluon plasma

    Indian Academy of Sciences (India)

    Intense experimental and theoretical activity has been continuing at present to explore the mechanisms of quark confinement as well as the properties of the vacuum state of quantum chromodynamics (QCD). Novel experimental tool employing relativistic heavy- ion collisions has been developed in the past decade to form ...

  10. 100 years of superconductivity

    CERN Document Server

    Rogalla, Horst


    Even a hundred years after its discovery, superconductivity continues to bring us new surprises, from superconducting magnets used in MRI to quantum detectors in electronics. 100 Years of Superconductivity presents a comprehensive collection of topics on nearly all the subdisciplines of superconductivity. Tracing the historical developments in superconductivity, the book includes contributions from many pioneers who are responsible for important steps forward in the field.The text first discusses interesting stories of the discovery and gradual progress of theory and experimentation. Emphasizi

  11. Merging strangeon stars (United States)

    Lai, Xiao-Yu; Yu, Yun-Wei; Zhou, En-Ping; Li, Yun-Yang; Xu, Ren-Xin


    The state of supranuclear matter in compact stars remains puzzling, and it is argued that pulsars could be strangeon stars. What would happen if binary strangeon stars merge? This kind of merger could result in the formation of a hyper-massive strangeon star, accompanied by bursts of gravitational waves and electromagnetic radiation (and even a strangeon kilonova explained in the paper). The tidal polarizability of binary strangeon stars is different from that of binary neutron stars, because a strangeon star is self-bound on the surface by the fundamental strong force while a neutron star by the gravity, and their equations of state are different. Our calculation shows that the tidal polarizability of merging binary strangeon stars is favored by GW170817. Three kinds of kilonovae (i.e., of neutron, quark and strangeon) are discussed, and the light curve of the kilonova AT 2017 gfo following GW170817 could be explained by considering the decaying strangeon nuggets and remnant star spin-down. Additionally, the energy ejected to the fireball around the nascent remnant strangeon star, being manifested as a gamma-ray burst, is calculated. It is found that, after a prompt burst, an X-ray plateau could follow in a timescale of 102 ‑ 103 s. Certainly, the results could be tested also by further observational synergies between gravitational wave detectors (e.g., Advanced LIGO) and X-ray telescopes (e.g., the Chinese HXMT satellite and eXTP mission), and especially if the detected gravitational wave form is checked by peculiar equations of state provided by the numerical relativistical simulation.

  12. General Relativity&Compact Stars

    Energy Technology Data Exchange (ETDEWEB)

    Glendenning, Norman K.


    Compact stars--broadly grouped as neutron stars and white dwarfs--are the ashes of luminous stars. One or the other is the fate that awaits the cores of most stars after a lifetime of tens to thousands of millions of years. Whichever of these objects is formed at the end of the life of a particular luminous star, the compact object will live in many respects unchanged from the state in which it was formed. Neutron stars themselves can take several forms--hyperon, hybrid, or strange quark star. Likewise white dwarfs take different forms though only in the dominant nuclear species. A black hole is probably the fate of the most massive stars, an inaccessible region of spacetime into which the entire star, ashes and all, falls at the end of the luminous phase. Neutron stars are the smallest, densest stars known. Like all stars, neutron stars rotate--some as many as a few hundred times a second. A star rotating at such a rate will experience an enormous centrifugal force that must be balanced by gravity or else it will be ripped apart. The balance of the two forces informs us of the lower limit on the stellar density. Neutron stars are 10{sup 14} times denser than Earth. Some neutron stars are in binary orbit with a companion. Application of orbital mechanics allows an assessment of masses in some cases. The mass of a neutron star is typically 1.5 solar masses. They can therefore infer their radii: about ten kilometers. Into such a small object, the entire mass of our sun and more, is compressed.

  13. Nonradial oscillation modes of compact stars with a crust (United States)

    Flores, Cesar Vásquez; Hall, Zack B.; Jaikumar, Prashanth


    Oscillation modes of isolated compact stars can, in principle, be a fingerprint of the equation of state (EoS) of dense matter. We study the non-radial high-frequency l =2 spheroidal modes of neutron stars and strange quark stars, adopting a two-component model (core and crust) for these two types of stars. Using perturbed fluid equations in the relativistic Cowling approximation, we explore the effect of a strangelet or hadronic crust on the oscillation modes of strange stars. The results differ from the case of neutron stars with a crust. In comparison to fluid-only configurations, we find that a solid crust on top of a neutron star increases the p -mode frequency slightly with little effect on the f -mode frequency, whereas for strange stars, a strangelet crust on top of a quark core significantly increases the f -mode frequency with little effect on the p -mode frequency.

  14. Thermalization of Heavy Quarks in the Quark-Gluon Plasma


    van Hees, H.; Rapp, R.


    Charm- and bottom-quark rescattering in a Quark-Gluon Plasma (QGP) is investigated with the objective of assessing the approach towards thermalization. Employing a Fokker-Planck equation to approximate the collision integral of the Boltzmann equation we augment earlier studies based on perturbative parton cross sections by introducing resonant heavy-light quark interactions. The latter are motivated by recent QCD lattice calculations which indicate the presence of "hadronic" states in the QGP...

  15. Theory of superconductivity

    CERN Document Server

    Crisan, Mircea


    This book discusses the most important aspects of the theory. The phenomenological model is followed by the microscopic theory of superconductivity, in which modern formalism of the many-body theory is used to treat most important problems such as superconducting alloys, coexistence of superconductivity with the magnetic order, and superconductivity in quasi-one-dimensional systems. It concludes with a discussion on models for exotic and high temperature superconductivity. Its main aim is to review, as complete as possible, the theory of superconductivity from classical models and methods up t

  16. Top quark pair production and top quark properties at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Chang-Seong [INFN, Pisa


    We present the most recent measurements of top quark pairs production and top quark properties in proton-antiproton collisions with center-of-mass energy of 1.96 TeV using CDF II detector at the Tevatron. The combination of top pair production cross section measurements and the direct measurement of top quark width are reported. The test of Standard Model predictions for top quark decaying into $b$-quarks, performed by measuring the ratio $R$ between the top quark branching fraction to $b$-quark and the branching fraction to any type of down quark is shown. The extraction of the CKM matrix element $|V_{tb}|$ from the ratio $R$ is discussed. We also present the latest measurements on the forward-backward asymmetry ($A_{FB}$) in top anti-top quark production. With the full CDF Run II data set, the measurements are performed in top anti-top decaying to final states that contain one or two charged leptons (electrons or muons). In addition, we combine the results of the leptonic forward-backward asymmetry in $t\\bar t$ system between the two final states. All the results show deviations from the next-to-leading order (NLO) standard model (SM) calculation.

  17. Light quark spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Toernqvist, N.A.


    We review recent work done for the light 1S and 1P qq-bar mesons, especially within the unitarized quark model (UQM). In particular we discuss the 0/sup + +/ mesons and compare qq-bar v. s. qqq-barq-bar models. A comment on the A/sub 1/ shape due to the energy dependent mass shift (running mass shift) is made.

  18. The quark-gluon-plasma phase transition diagram, Hagedorn matter and quark-gluon liquid


    Zakout, Ismail; Greiner, Carsten


    In order to study the nuclear matter in the relativistic heavy ion collisions and the compact stars, we need the hadronic density of states for the entire ($\\mu_B-T$) phase transition diagram. We present a model for the continuous high-lying mass (and volume) spectrum density of states that fits the Hagedorn mass spectrum. This model explains the origin of the tri-critical point besides various phenomena such as the quarkyonic matter and the quark-gluon liquid. The Hagedorn mass spectrum is d...

  19. Heavy-Quark Fragmentation

    CERN Document Server

    Cacciari, M; Cacciari, Matteo; Gardi, Einan


    We study perturbative and non-perturbative aspects of heavy-quark fragmentation into hadrons, emphasizing the large-x region, where x is the energy fraction of the detected hadron. We first prove that when the moment index N and the quark mass m get large simultaneously with the ratio (N Lambda/m) fixed, the fragmentation function depends on this ratio alone. This opens up the way to formulate the non-perturbative contribution to the fragmentation function at large N as a shape function of m(1-x) which is convoluted with the Sudakov-resummed perturbative result. We implement this resummation and the parametrization of the corresponding shape function using Dressed Gluon Exponentiation. The Sudakov exponent is calculated in a process independent way from a generalized splitting function which describes the emission probability of an off-shell gluon off a heavy quark. Non-perturbative corrections are parametrized based on the renormalon structure of the Sudakov exponent. They appear in moment space as an expone...

  20. Quark gluon plasma

    CERN Document Server

    Nayak, Tapan; Sarkar, Sourav


    At extremely high temperatures and densities, protons and neutrons may dissolve into a "soup" of quarks and gluons, called the Quark-Gluon Plasma (QGP). For a few microseconds, shortly after the Big Bang, the Universe was filled with the QGP matter. The search and study of Quark-Gluon Plasma (QGP) is one of the most fundamental research topics of our times. The QGP matter has been probed by colliding heavy ions at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory, New York and the Large Hadron Collider at CERN, Geneva. By colliding heavy-ions at a speed close to that of light, scientists aim to obtain - albeit over a tiny volume of the size of a nucleus and for an infinitesimally short instant - a QGP state. This QGP state can be observed by dedicated experiments, as it reverts to hadronic matter through expansion and cooling. This volume presents some of the current theoretical and experimental understandings in the field of QGP.

  1. Nuclear pasta phases within the quark-meson coupling model (United States)

    Grams, Guilherme; Santos, Alexandre M.; Panda, Prafulla K.; Providência, Constança; Menezes, Débora P.


    In this work, the low-density regions of nuclear and neutron star matter are studied. The search for the existence of nuclear pasta phases in this region is performed within the context of the quark-meson coupling (QMC) model, which incorporates quark degrees of freedom. Fixed proton fractions are considered, as well as nuclear matter in β equilibrium at zero temperature. We discuss the recent attempts to better understand the surface energy in the coexistence phases regime and we present results that show the existence of the pasta phases subject to some choices of the surface energy coefficient. We also analyze the influence of the nuclear pasta on some neutron star properties. The equation of state containing the pasta phase will be part of a complete grid for future use in supernova simulations.

  2. Exotic Signals of Vectorlike Quarks

    Energy Technology Data Exchange (ETDEWEB)

    Dobrescu, Bogdan A. [Fermilab; Yu, Felix [U. Mainz, PRISMA


    Vectorlike fermions are an important target for hadron collider searches. We show that the vectorlike quarks may predominantly decay via higher-dimensional operators into a quark plus a couple of other Standard Model fermions. Pair production of vectorlike quarks of charge 2/3 at the LHC would then lead to a variety of possible final states, including $t\\bar t + 4\\tau$, $t\\bar b\

  3. Quark matter or new particles? (United States)

    Michel, F. Curtis


    It has been argued that compression of nuclear matter to somewhat higher densities may lead to the formation of stable quark matter. A plausible alternative, which leads to radically new astrophysical scenarios, is that the stability of quark matter simply represents the stability of new particles compounded of quarks. A specific example is the SU(3)-symmetric version of the alpha particle, composed of spin-zero pairs of each of the baryon octet (an 'octet' particle).

  4. Delta isobars in neutron stars

    Directory of Open Access Journals (Sweden)

    Pagliara Giuseppe


    Full Text Available The appearance of delta isobars in beta-stable matter is regulated by the behavior of the symmetry energy at densities larger than saturation density. We show that by taking into account recent constraints on the density derivative of the symmetry energy and the theoretical and experimental results on the excitations of delta isobars in nuclei, delta isobars are necessary ingredients for the equations of state used for studying neutron stars. We analyze the effect of the appearance of deltas on the structure of neutron stars: as in the case of hyperons, matter containing delta is too soft for allowing the existence of 2M⊙ neutron stars. Quark stars on the other hand, could reach very massive configurations and they could form from a process of conversion of hadronic stars in which an initial seed of strangeness appears through hyperons.

  5. Superfluidity and Superconductivity in Neutron Stars

    Indian Academy of Sciences (India)

    Since January 2016, the Journal of Astrophysics and Astronomy has moved to Continuous Article Publishing (CAP) mode. This means that each accepted article is being published immediately online with DOI and article citation ID with starting page number 1. Articles are also visible in Web of Science immediately.

  6. The Discovery of the Top Quark (United States)

    Sinervo, P.K.


    The top quark and the Higgs boson are the heaviest elementary particles predicted by the standard model. The four lightest quark flavours, the up, down, strange and charm quarks, were well-established by the mid-1970's. The discovery in 1977 of the {Tau} resonances, a new family of massive hadrons, required the introduction of the fifth quark flavour. Experimental and theoretical studies have indicated that this quark also has a heavier partner, the top quark.

  7. Simple Superconducting "Permanent" Electromagnet (United States)

    Israelson, Ulf E.; Strayer, Donald M.


    Proposed short tube of high-temperature-superconducting material like YBa2Cu3O7 acts as strong electromagnet that flows as long as magnetic field remains below critical value and temperature of cylinder maintained sufficiently below superconducting-transition temperature. Design exploits maximally anisotropy of high-temperature-superconducting material.

  8. Radial modes of slowly rotating compact stars in the presence of magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Panda, N.R. [Institute of Physics, Bhubaneswar (India); Siksha ' O' Anusandhan University, Bhubaneswar (India); Mohanta, K.K. [Rairangpur College, Rairangpur, Odisha (India); Sahu, P.K. [Institute of Physics, Bhubaneswar (India)


    Compact stars are composed of very high-density hadron matter. When the matter is above nuclear matter density, then there is a chance of different phases of matter such as hadron matter to quark matter. There is a possible phase which, having the quark core surrounded by a mixed phase followed by hadronic matter, may be considered as a hybrid phase inside the stars called hybrid star (HS). The star which consists of only u, d and s quarks is called quark star (QS) and the star which has only hadronic matter is called neutron star (NS). For the equation of state (EOS) of hadronic matter, we have considered the Relativistic Mean Field (RMF) theory and we incorporated the effect of strong magnetic fields. For the EOS of the quark phase we use the simple MIT bag model. We have assumed Gaussian parametrization to make the density dependent for both bag pressure in quark matter and magnetic field. We have constructed the intermediate mixed phase by using the Glendenning conjecture. Eigenfrequencies of radial pulsations of slowly rotating magnetized compact stars (NS, QS, HS) are calculated in a general relativistic formalism given by Chandrasekhar and Friedman. We have studied the effect of central density on the square of the frequencies of the compact stars in the presence of zero and strong magnetic field. (orig.)

  9. Bulk viscosity of strange quark matter in density dependent quark ...

    Indian Academy of Sciences (India)

    Abstract. We have studied the bulk viscosity of strange quark matter in the density dependent quark mass model (DDQM) and compared results with calculations done earlier in the MIT bag model where u, d masses were neglected and first order interactions were taken into account. We find that at low temperatures and ...

  10. Quark and Gluon Relaxation in Quark-Gluon Plasmas (United States)

    Heiselberg, H.; Pethick, C. J.


    The quasiparticle decay rates for quarks and gluons in quark-gluon plasmas are calculated by solving the kinetic equation. Introducing an infrared cutoff to allow for nonperturbative effects, we evaluate the quasiparticle lifetime at momenta greater than the inverse Debye screening length to leading order in the coupling constant.

  11. Development of Planar and 3D Silicon Sensor Technologies for the ATLAS Experiment Upgrades and Measurements of Heavy Quark Production Fractions with Fully Reconstructed D-star Mesons with ATLAS

    CERN Document Server

    Metcalfe, Jessica; Allahverdi, Rouzbeh; Bean, Alice; Gorelov, Igor

    Several particle detector technologies were studied. These include measurements of the leakage current and capacitance of irradiated planar and 3D sensors. The inter-electrode capacitance of proton irradiated 3D sensors was measured using two methods and compared to simulation. Planar n-type MCz diodes were exposed to neutron and gamma radiation and the effects on defects characterized. A set of n- and p-type Fz and MCz diodes were irradiated with protons and their annealing properties extracted using the Hamburg Model. A measurement of the fraction of D^{*+} mesons originating from a b-quark compared to those directly produced from a charm is presented. The charm mesons were fully reconstructed in the mode D^{*+} -> D^{0}pi^{+} where D^{0} -> K^{-}pi^{+}. The analysis was based on data collected from the minimum bias trigger of the ATLAS detector at sqrt{s}=7 TeV proton-proton collisions produced by the LHC. The distribution of the impact parameter of the D^{0} meson with respect to the primar...

  12. Enhanced superconductivity of fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Washington, II, Aaron L.; Teprovich, Joseph A.; Zidan, Ragaiy


    Methods for enhancing characteristics of superconductive fullerenes and devices incorporating the fullerenes are disclosed. Enhancements can include increase in the critical transition temperature at a constant magnetic field; the existence of a superconducting hysteresis over a changing magnetic field; a decrease in the stabilizing magnetic field required for the onset of superconductivity; and/or an increase in the stability of superconductivity over a large magnetic field. The enhancements can be brought about by transmitting electromagnetic radiation to the superconductive fullerene such that the electromagnetic radiation impinges on the fullerene with an energy that is greater than the band gap of the fullerene.

  13. Superconducting material development (United States)


    A superconducting compound was developed that showed a transition to a zero-resistance state at 65 C, or 338 K. The superconducting material, which is an oxide based on strontium, barium, yttrium, and copper, continued in the zero-resistance state similar to superconductivity for 10 days at room temperature in the air. It was also noted that measurements of the material allowed it to observe a nonlinear characteristic curve between current and voltage at 65 C, which is another indication of superconductivity. The research results of the laboratory experiment with the superconducting material will be published in the August edition of the Japanese Journal of Applied Physics.

  14. Quark mass density- and temperature- dependent model for bulk strange quark matter


    al, Yun Zhang et.


    It is shown that the quark mass density-dependent model can not be used to explain the process of the quark deconfinement phase transition because the quark confinement is permanent in this model. A quark mass density- and temperature-dependent model in which the quark confinement is impermanent has been suggested. We argue that the vacuum energy density B is a function of temperature. The dynamical and thermodynamical properties of bulk strange quark matter for quark mass density- and temper...

  15. Vortices and other topological solitons in dense quark matter (United States)

    Eto, Minoru; Hirono, Yuji; Nitta, Muneto; Yasui, Shigehiro


    Dense quantum chromodynamic matter accommodates various kind of topological solitons such as vortices, domain walls, monopoles, kinks, boojums, and so on. In this review, we discuss various properties of topological solitons in dense quantum chromodynamics (QCD) and their phenomenological implications. Particular emphasis is placed on the topological solitons in the color-flavor-locked (CFL) phase, which exhibits both superfluidity and superconductivity. The properties of topological solitons are discussed in terms of effective field theories such as the Ginzburg-Landau theory, the chiral Lagrangian, or the Bogoliubov-de Gennes equation. The most fundamental string-like topological excitations in the CFL phase are non-Abelian vortices, which are 1/3 quantized superfluid vortices and color magnetic flux tubes. These vortices are created at a phase transition by the Kibble-Zurek mechanism or when the CFL phase is realized in compact stars, which rotate rapidly. The interaction between vortices is found to be repulsive and consequently a vortex lattice is formed in rotating CFL matter. Bosonic and fermionic zero-energy modes are trapped in the core of a non-Abelian vortex and propagate along it as gapless excitations. The former consists of translational zero modes (a Kelvin mode) with a quadratic dispersion and {mathbb {C}}P^2 Nambu-Goldstone gapless modes with a linear dispersion, associated with the CFL symmetry spontaneously broken in the core of a vortex, while the latter is Majorana fermion zero modes belonging to the triplet of the symmetry remaining in the core of a vortex. The low-energy effective theory of the bosonic zero modes is constructed as a non-relativistic free complex scalar field and a relativistic {mathbb {C}}P^2 model in 1+1 dimensions. The effects of strange quark mass, electromagnetic interactions, and non-perturbative quantum corrections are taken into account in the {mathbb {C}}P^2 effective theory. Various topological objects associated

  16. Top quark mass in ATLAS

    CERN Document Server

    Pearson, Benjamin; The ATLAS collaboration


    ATLAS has made several measurements of the top quark mass using proton-proton collision data recorded in 2012 at the LHC with a centre-of-mass energy of 8 TeV. Those summarised here include an indirect determination of the top quark pole mass from lepton differential cross-sections; previous direct measurements of the top quark mass in the $t\\bar{t}\\to\\textrm{dilepton}$ and $t\\bar{t}\\to\\textrm{all-jets}$ decay channels as well as in the $t$-channel of single-top-quark production; and lastly, the new direct measurement of the top quark mass in the $t\\bar{t}\\to\\textrm{lepton+jets}$ decay channel and its combination with previous measurements.

  17. Final Report for Project. Quark matter under extreme conditions

    Energy Technology Data Exchange (ETDEWEB)

    Incera, Vivian [Univ. of Texas, El Paso, TX (United States); Ferrer, Efrain [Univ. of Texas, El Paso, TX (United States)


    The results obtained in the two years of the grant have served to shine new light on several important questions about the phases of quantum chromodynamics (QCD) under extreme conditions that include quark matter at high density, as well quark-gluon plasma at high temperatures, both in the presence of strong magnetic fields. The interest in including an external magnetic field on these studies is motivated by the generation of large magnetic fields in off-central heavy-ion collisions and by their common presence in astrophysical compact objects, the two scenarios where the physics of quark matter becomes relevant. The tasks carried out in this DOE project led us, among other things, to discover the first connection between the physics of very dense quark matter and novel materials as for instance topological insulators and Weyl semimetals; they allowed us to find a physical explanation for and a solution to a standing puzzle in the apparent effect of a magnetic field on the critical temperature of the QCD chiral transition; and they led us to establish by the first time that the core of the observed two-solar-mass neutron stars could be made up of quark matter in certain inhomogeneous chiral phases in a magnetic field and that this was consistent with current astrophysical observations. A major goal established by the Nuclear Science Advisory committee in its most recent report “Reaching for the Horizon” has been “to truly understand how nuclei and strongly interacting matter in all its forms behave and can predict their behavior in new settings.” The results found in this DOE project have all contributed to address this goal, and thus they are important for advancing fundamental knowledge in the area of nuclear physics and for enhancing our understanding of the role of strong magnetic fields in the two settings where they are most relevant, neutron stars and heavy-ion collisions.


    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Nobuya; Thielemann, Friedrich-Karl; Hempel, Matthias; Kaeppeli, Roger; Rauscher, Thomas; Winteler, Christian [Department of Physics, University of Basel, CH-4056 Basel (Switzerland); Fischer, Tobias; Martinez-Pinedo, Gabriel [GSI, Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Froehlich, Carla [Department of Physics, North Carolina State University, NC 27695 (United States); Sagert, Irina, E-mail: [Department of Physics and Astronomy, Michigan State University, MI 48824 (United States)


    We explore heavy-element nucleosynthesis in the explosion of massive stars that are triggered by a quark-hadron phase transition during the early post-bounce phase of core-collapse supernovae. The present study is based on general-relativistic radiation hydrodynamics simulations with three-flavor Boltzmann neutrino transport in spherical symmetry, which utilize a quark-hadron hybrid equation of state based on the MIT bag model for strange quark matter. The quark-hadron phase transition inside the stellar core forms a shock wave propagating toward the surface of the proto-neutron star. This shock wave results in an explosion and ejects neutron-rich matter from the outer accreted layers of the proto-neutron star. Later, during the cooling phase, the proto-neutron star develops a proton-rich neutrino-driven wind. We present a detailed analysis of the nucleosynthesis outcome in both neutron-rich and proton-rich ejecta and compare our integrated nucleosynthesis with observations of the solar system and metal-poor stars. For our standard scenario, we find that a 'weak' r-process occurs and elements up to the second peak (A {approx} 130) are successfully synthesized. Furthermore, uncertainties in the explosion dynamics could barely allow us to obtain the strong r-process which produces heavier isotopes, including the third peak (A {approx} 195) and actinide elements.

  19. Model of an exotic chiral superconducting phase in a graphene bilayer. (United States)

    Hosseini, Mir Vahid; Zareyan, Malek


    We theoretically demonstrate the formation of a new type of unconventional superconductivity in graphene materials, which exhibits a gapless property. The studied superconductivity is based on an interlayer pairing of chiral electrons in bilayer graphene, which results in an exotic s-wave spin-triplet condensate order with anomalous thermodynamic properties. These include the possibility of a temperature-induced condensation causing an increase of the pairing gap with increasing temperature and an entropy of the stable superconducting state which can be higher than its value in the normal state. Our study reveals the analogy of the interlayer superconductivity in graphene materials to the color superconductivity in dense quark matter and the gapless pairing states in nuclear matter and ultracold atomic gases. © 2012 American Physical Society

  20. Color-superconductivity from a Dyson-Schwinger perspective

    Energy Technology Data Exchange (ETDEWEB)

    Nickel, M.D.J.


    Color-superconducting phases of quantum chromodynamics at vanishing temperatures and high densities are investigated. The central object is the one-particle Green's function of the fermions, the so-called quark propagator. It is determined by its equation of motion, the Dyson-Schwinger equation. To handle Dyson-Schwinger equations a successfully applied truncation scheme in the vacuum is extended to finite densities and gradually improved. It is thereby guaranteed that analytical results at asymptotically large densities are reproduced. This way an approach that is capable to describe known results in the vacuum as well as at high densities is applied to densities of astrophysical relevance for the first time. In the first part of the thesis the framework of the investigations with focus on the extension to finite densities is outlined. Physical observables are introduced which can be extracted from the propagator. In the following a minimal truncation scheme is presented. To point out the complexity of our approach in comparison to phenomenological models of quantum chromodynamics the chirally unbroken phase is discussed first. Subsequently color-superconducting phases for massless quarks are investigated. Furthermore the role of finite quark masses and neutrality constraints at moderate densities is studied. In contrast to phenomenological models the so-called CFL phase is found to be the ground state for all relevant densities. In the following part the applicability of the maximum entropy method for the extraction of spectral functions from numerical results in Euclidean space-time is demonstrated. As an example the spectral functions of quarks in the chirally unbroken and color-superconducting phases are determined. Hereby the results of our approach are presented in a new light. For instance the finite width of the quasiparticles in the color-superconducting phase becomes apparent. In the final chapter of this work extensions of our truncation scheme in

  1. PREFACE: Quark Matter 2008 (United States)

    Jan-e~Alam; Subhasis~Chattopadhyay; Tapan~Nayak


    Quark Matter 2008—the 20th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions was held in Jaipur, the Pink City of India, from 4-10 February, 2008. Organizing Quark Matter 2008 in India itself indicates the international recognition of the Indian contribution to the field of heavy-ion physics, which was initiated and nurtured by Bikash Sinha, Chair of the conference. The conference was inaugurated by the Honourable Chief Minister of Rajasthan, Smt. Vasundhara Raje followed by the key note address by Professor Carlo Rubbia. The scientific programme started with the theoretical overview, `SPS to RHIC and onwards to LHC' by Larry McLerran followed by several theoretical and experimental overview talks on the ongoing experiments at SPS and RHIC. The future experiments at the LHC, FAIR and J-PARC, along with the theoretical predictions, were discussed in great depth. Lattice QCD predictions on the nature of the phase transition and critical point were vigorously debated during several plenary and parallel session presentations. The conference was enriched by the presence of an unprecedented number of participants; about 600 participants representing 31 countries across the globe. This issue contains papers based on plenary talks and oral presentations presented at the conference. Besides invited and contributed talks, there were also a large number of poster presentations. Members of the International Advisory Committee played a pivotal role in the selection of speakers, both for plenary and parallel session talks. The contributions of the Organizing Committee in all aspects, from helping to prepare the academic programme down to arranging local hospitality, were much appreciated. We thank the members of both the committees for making Quark Matter 2008 a very effective and interesting platform for scientific deliberations. Quark Matter 2008 was financially supported by: Air Liquide (New Delhi) Board of Research Nuclear Sciences (Mumbai) Bose

  2. Congeniality bounds on quark masses from nucleosynthesis (United States)

    Ali, M. Hossain; Hossain, M. Jakir; Tariq, Abdullah Shams Bin


    The work of Jaffe, Jenkins and Kimchi [Phys. Rev. D 79, 065014 (2009)] is revisited to see if indeed the region of congeniality found in their analysis survives further restrictions from nucleosynthesis. It is observed that much of their congenial region disappears when imposing conditions required to produce the correct and required abundances of the primordial elements as well as ensure that stars can continue to burn hydrogen nuclei to form helium as the first step in forming heavier elements in stellar nucleosynthesis. The remaining region is a very narrow slit reduced in width from around 29 MeV found by Jaffe et al. to only about 2.2 MeV in the difference of the nucleon/quark masses. Further bounds on δmq/mq seem to reduce even this narrow slit to the physical point itself.

  3. Physics of the quark - gluon plasma

    Energy Technology Data Exchange (ETDEWEB)



    This document gathers 31 contributions to the workshop on the physics of quark-gluon plasma that took place in Palaiseau in september 2001: 1) gamma production in heavy collisions, 2) BRAHMS, 3) experimental conference summary, 4) modelling relativistic nuclear collisions, 5) microscopic reaction dynamics at SPS and RHIC, 6) direct gamma and hard scattering at SPS, 7) soft physics at RHIC, 8) results from the STAR experiment, 9) quarkonia: experimental possibilities, 10) elliptic flow measurements with PHENIX, 11) charmonium production in p-A collisions, 12) anisotropic flow at the SPS and RHIC, 13) deciphering the space-time evolution of heavy ion collisions with correlation measurements, 14) 2-particle correlation at RHIC, 15) particle spectra at AGS, SPS and RHIC, 16) strangeness production in STAR, 17) strangeness production in Pb-Pb collisions at SPS, 18) heavy ion physics at CERN after 2000 and before LHC, 19) NEXUS guideline and theoretical consistency, 20) introduction to high p{sub T} physics at RHIC, 21) a novel quasiparticle description of the quark-gluon plasma, 22) dissociation of excited quarkonia states, 23) high-mass dimuon and B {yields} J/{psi} production in ultrarelativistic heavy ion collisions, 24) strange hyperon production in p + p and p + Pb interactions from NA49, 25) heavy quarkonium hadron cross-section, 26) a new method of flow analysis, 27) low mass dilepton production and chiral symmetry restoration, 28) classical initial conditions for nucleus-nucleus collisions, 29) numerical calculation of quenching weights, 30) strangeness enhancement energy dependence, and 31) heavy quarkonium dissociation.

  4. Baryons in the unquenched quark model

    Energy Technology Data Exchange (ETDEWEB)

    Bijker, R.; Díaz-Gómez, S. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, AP 70-543, 04510 Mexico DF (Mexico); Lopez-Ruiz, M. A. [Physics Department and Center for Exploration of Energy and Matter, Indiana University, Bloomington, IN 47408 (United States); Santopinto, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Genova, via Dodecaneso 33, I-16146 Italy (Italy)


    In this contribution, we present the unquenched quark model as an extension of the constituent quark model that includes the effects of sea quarks via a {sup 3}P{sub 0} quark-antiquark pair-creation mechanism. Particular attention is paid to the spin and flavor content of the proton, magnetic moments and β decays of octet baryons.

  5. Generalization of exotic quark searches

    CERN Document Server

    Garberson, F


    General limits on exotic heavy quarks T, B and X with masses above 300 GeV are presented for arbitrary branching fractions of T=>Wb, T=>Zt, T=>Ht, B=>Wt, B=>Zb, B=>Hb and X=>Wt. The results are based on a CMS search in final states with three isolated leptons (electron or muon) or two isolated leptons with the same electric charge. Exotic heavy quark pair production through the strong interaction is considered. In the context of vector-like quark models, T quarks with a mass mT < 480 GeV and mT < 550 GeV are excluded for weak isospin singlets and doublets, respectively, and B quarks with a mass mB < 480 GeV are excluded for singlets, all at 95% confidence level. Mass limits at 95% confidence level for T and B singlets, (T,B) doublets and (X,T) doublets are presented as a function of the corresponding heavy quark masses. For equal mass mT = mB and mX = mT vector-like quarks are excluded at 95% confidence level with masses below 550 GeV for T and B singlets, 640 GeV for a (T,B) doublet and 640 GeV for ...

  6. Top quark studies at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Sinervo, P.K. [Univ. of Toronto, Ontario (Canada)


    The techniques used to study top quarks at hadron colliders are presented. The analyses that discovered the top quark are described, with emphasis on the techniques used to tag b quark jets in candidate events. The most recent measurements of top quark properties by the CDF and DO Collaborations are reviewed, including the top quark cross section, mass, branching fractions, and production properties. Future top quark studies at hadron colliders are discussed, and predictions for event yields and uncertainties in the measurements of top quark properties are presented.

  7. Physics of light quarks

    Energy Technology Data Exchange (ETDEWEB)

    Peters, K. [Bochum Univ. (Germany). Inst. fuer Experimentalphysik


    Light quark spectroscopy is an exciting field with a lot of new information in the past decade from running experiments addressing the structure of the QCD mass spectrum. The main topics are the search for non-q-barq-states like glueballs, hybrids or multiquarks as well as the test of chiral theories and the low energy QCD. The first item, the search for exotic matter is discussed which is still going on. Many of them exhibit exotic features, like unusual quantum numbers or peculiar production and/or decay patterns. New high statistics experiments are able to disentangle complex structures which may lead us to a better understanding of the QCD mass spectrum. (author). 40 refs., 12 figs., 2 tabs.

  8. Properties of the Top Quark

    Energy Technology Data Exchange (ETDEWEB)

    Wicke, Daniel; /Wuppertal U., Dept. Math.


    The aim of particle physics is the understanding of elementary particles and their interactions. The current theory of elementary particle physics, the Standard Model, contains twelve different types of fermions which (neglecting gravity) interact through the gauge bosons of three forces. In addition a scalar particle, the Higgs boson, is needed for theoretical consistency. These few building blocks explain all experimental results found in the context of particle physics, so far. Nevertheless, it is believed that the Standard Model is only an approximation to a more complete theory. First of all the fourth known force, gravity, has withstood all attempts to be included until now. Furthermore, the Standard Model describes several features of the elementary particles like the existence of three families of fermions or the quantisation of charges, but does not explain these properties from underlying principles. Finally, the lightness of the Higgs boson needed to explain the symmetry breaking is difficult to maintain in the presence of expected corrections from gravity at high scales. This is the so called hierarchy problem. In addition astrophysical results indicate that the universe consists only to a very small fraction of matter described by the Standard Model. Large fractions of dark energy and dark matter are needed to describe the observations. Both do not have any correspondence in the Standard Model. Also the very small asymmetry between matter and anti-matter that results in the observed universe built of matter (and not of anti-matter) cannot be explained until now. It is thus an important task of experimental particle physics to test the predictions of the Standard Model to the best possible accuracy and to search for deviations pointing to necessary extensions or modifications of our current theoretical understanding. The top quark was predicted to exist by the Standard Model as the partner of the bottom quark. It was first observed in 1995 by the

  9. Holographic quark-gluon plasmas at finite quark density

    Energy Technology Data Exchange (ETDEWEB)

    Bigazzi, F. [Dipartimento di Fisica e Astronomia, Universita di Firenze, Sesto Fiorentino (Firenze), Pisa (Italy); INFN, Sezione di Torino (Italy); Cotrone, A. [Dipartimento di Fisica, Universita di Torino (Italy); Mas, J. [Departamento de Fisica de Particulas, Universidade de Santiago de Compostela (Spain); Instituto Galego de Fisica de Altas Enerxias (IGFAE), Santiago de Compostela (Spain); Tarrio, J. [Institute for Theoretical Physics and Spinoza Institute, Universiteit Utrecht, 3584 CE, Utrecht (Netherlands); Mayerson, D. [Institute for Theoretical Physics, University of Amsterdam (Netherlands)


    Gravity solutions holographically dual to strongly coupled quark-gluon plasmas with non-zero quark density are reviewed. They are motivated by the urgency of finding novel tools to explore the phase diagram of QCD-like theories at finite chemical potential. After presenting the solutions and their regime of validity, some of their physical properties are discussed. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Frontiers in Superconducting Materials

    CERN Document Server

    Narlikar, Anant V


    Frontiers in Superconducting Materials gives a state-of-the-art report of the most important topics of the current research in superconductive materials and related phenomena. It comprises 30 chapters written by renowned international experts in the field. It is of central interest to researchers and specialists in Physics and Materials Science, both in academic and industrial research, as well as advanced students. It also addresses electronic and electrical engineers. Even non-specialists interested in superconductivity might find some useful answers.

  11. Fundamentals of Superconducting Nanoelectronics

    CERN Document Server

    Sidorenko, Anatolie


    This book demonstrates how the new phenomena in superconductivity on the nanometer scale (FFLO state, triplet superconductivity, Crossed Andreev Reflection, synchronized generation etc.) serve as the basis for the invention and development of novel nanoelectronic devices and systems. It demonstrates how rather complex ideas and theoretical models, like odd-pairing, non-uniform superconducting state, pi-shift etc., adequately describe the processes in real superconducting nanostructues and novel devices based on them. The book is useful for a broad audience of readers, researchers, engineers, P

  12. Tests of quark mass textures

    Energy Technology Data Exchange (ETDEWEB)



    The classic hints on the structure of the quark mass matrices are shortly reviewed and the possibility of obtaining further information through precise texture analysis is discussed with the aid of a specific example.

  13. Lab cooks up quark soup

    CERN Multimedia

    Dumé, Belle


    "Physicists working at the Relativistic Heavy Ion Collider (RHIC) at the Brookhaven National Laboratory in the US say that they have come closer than ever before to creating a quark-gluon plasma" (0.5 page)

  14. Top Quark Physics with CMS

    CERN Multimedia

    CERN. Geneva


    Higgs mechanism. There are various hints at deviations from the Standard Model expectation which have been observed recently by Tevatron experiments in top final states. Several signatures of new physics accessible at the LHC either suffer from top-quark production as a significant background or contain top quarks themselves. In this talk, we present results on top quark physics obtained from the first LHC data collected by the CMS experiment.They include measurements of the top pair production cross section in various channels and their combination, measurements of the top quark mass, the single top cross section, a search for new particles decaying into top pairs, and a first look at the charge asymmetry.

  15. Role of strangeness to the neutron star mass and cooling (United States)

    Lee, Chang-Hwan; Lim, Yeunhwan; Hyun, Chang Ho; Kwak, Kyujin


    Neutron star provides unique environments for the investigation of the physics of extreme dense matter beyond normal nuclear saturation density. In such high density environments, hadrons with strange quarks are expected to play very important role in stabilizing the system. Kaons and hyperons are the lowest mass states with strangeness among meson and bayron families, respectively. In this work, we investigate the role of kaons and hyperons to the neutron star mass, and discuss their role in the neutron star cooling.

  16. Top Quark Physics: Future Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Jaros, John A


    We discuss the study of the top quark at future experiments and machines. Top's large mass makes it a unique probe of physics at the natural electroweak scale. We emphasize measurements of the top quark's mass, width, and couplings, as well as searches for rare or nonstandard decays, and discuss the complementary roles played by hadron and lepton colliders.

  17. Top quark physics: Future Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Frey, Raymond; Gerdes, David; Jaros, John; Vejcik, Steve; Berger, Edmond L.; Chivukula, R. Sekhar; Cuypers, Frank; Drell, Persis S.; Fero, Michael; Hadley, Nicholas; Han, Tao; Heinson, Ann P.; Knuteson, Bruce; Larios, Francisco; Miettinen, Hannu; Orr, Lynne H.; Peskin, Michael E.; Rizzo, Thomas; Sarid, Uri; Schmidt, Carl; Stelzer, Tim; Sullivan, Zack


    We discuss the study of the top quark at future experiments and machines. Top's large mass makes it a unique probe of physics at the natural electroweak scale. We emphasize measurements of the top quark's mass, width, and couplings, as well as searches for rare or nonstandard decays, and discuss the complementary roles played by hadron and lepton colliders.

  18. Light quark fragmentations into pions (United States)

    Edemskaya, A. K.; Naumov, D. V.; Samoylov, O. B.


    We discuss a process of hadronization of light quarks into charged pions in e + e - annihilations and in deep inelastic scatering of charged leptons and neutrino off nucleons. The corresponding semi-inclusive cross-sections of pions production we write in terms of quark fragmentation functions and fracture functions. We suggest a new method of measurements of fragmentation and fracture functions based on analysis of semiinclusive data.

  19. Heavy quark production and spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Appel, J.A.


    This review covers many new experimental results on heavy flavor production and spectroscopy. It also shows some of the increasingly improved theoretical understanding of results in light of basic perturbative QCD and heavy quark symmetry. At the same time, there are some remaining discrepancies among experiments as well as significant missing information on some of the anticipated lowest lying heavy quark states. Most interesting, perhaps, are some clearly measured production effects awaiting full explanation.

  20. Polarization in heavy quark decays

    Energy Technology Data Exchange (ETDEWEB)

    Alimujiang, K.


    In this thesis I concentrate on the angular correlations in top quark decays and their order (NLO) QCD corrections. I also discuss the leading.order (LO) angular correlations in unpolarized and polarized hyperon decays. In the first part of the thesis I calculate the angular correlation between the top quark spin and the momentum of decay products in the rest frame decay of a polarized top quark into a charged Higgs boson and a bottom quark in Two-Higgs-Doublet-Models: t({up_arrow}) {yields} b + H{sup +}. I provide closed form formulae for the O({alpha}{sub s}) radiative corrections to the unpolarized and the polar correlation functions for m{sub b}{ne}0 and m{sub b}=0. In the second part I concentrate on the semileptonic rest frame decay of a polarized top quark into a bottom quark and a lepton pair: t({up_arrow}){yields}X{sub b}+l{sup +}+{nu}{sub l}. I present closed form expressions for the O({alpha}{sub s}) radiative corrections to the unpolarized part and the polar and azimuthal correlations for m{sub b}{ne}0 and m{sub b}=0. In the last part I turn to the angular distribution in semileptonic hyperon decays. Using the helicity method I derive complete formulas for the leading order joint angular decay distributions occurring in semileptonic hyperon decays including lepton mass and polarization effects. (orig.)

  1. Properties of the top quark

    Energy Technology Data Exchange (ETDEWEB)

    Jung, A. W. [Fermilab


    Recent measurements of top-quark properties at the LHC and the Tevatron are presented. Most recent measurements of the top quark mass have been carried out by CMS using $19.7/$fb of $\\sqrt{s} = 8$ TeV data including the study of the dependence on event kinematics. ATLAS uses the full Run I data at $\\sqrt{s} = 7$ TeV for a "3D" measurement that significantly reduces systematic uncertainties. D0 employs the full Run II data using the matrix element method to measure the top quark mass with significantly reduced systematic uncertainties. Many different measurements of the top quark exist to date and the most precise ones per decay channel per experiment have been combined into the first world combination with a relative precision of 0.44%. Latest updates of measurements of production asymmetries include the measurement of the \\ttbar production asymmetry by D0 employing the full Run II data set, by CMS and ATLAS (including the polarization of the top quark) employing both the full data set at $\\sqrt{s} = 7$ TeV. CMS uses the full $\\sqrt{s} = 8$ TeV data to measure the top quark polarization in single top production, the ratio ${\\cal R}$ of the branching fractions ${\\cal B}(t \\rightarrow Wb) / {\\cal B}(t \\rightarrow Wq)$ and to search for flavor changing neutral currents. The results from all these measurements agree well with their respective Standard Model expectation.

  2. Torsional oscillations of strange stars

    Directory of Open Access Journals (Sweden)

    Mannarelli Massimo


    Full Text Available Strange stars are one of the hypothetical compact stellar objects that can be formed after a supernova explosion. The existence of these objects relies on the absolute stability of strange collapsed quark matter with respect to standard nuclear matter. We discuss simple models of strange stars with a bare quark matter surface, thus standard nuclear matter is completely absent. In these models an electric dipole layer a few hundreds Fermi thick should exist close to the star surface. Studying the torsional oscillations of the electrically charged layer we estimate the emitted power, finding that it is of the order of 1045 erg/s, meaning that these objects would be among the brightest compact sources in the heavens. The associated relaxation times are very uncertain, with values ranging between microseconds and minutes, depending on the crust thickness. Although part of the radiated power should be absorbed by the electrosphere surrounding the strange star, a sizable fraction of photons should escape and be detectable.

  3. Superconducting cavities for LEP

    CERN Multimedia

    CERN PhotoLab


    Above: a 350 MHz superconducting accelerating cavity in niobium of the type envisaged for accelerating electrons and positrons in later phases of LEP. Below: a small 1 GHz cavity used for investigating the surface problems of superconducting niobium. Albert Insomby stays on the right. See Annual Report 1983 p. 51.

  4. Academic training: Applied superconductivity

    CERN Multimedia


    LECTURE SERIES 17, 18, 19 January from 11.00 to 12.00 hrs Council Room, Bldg 503 Applied Superconductivity : Theory, superconducting Materials and applications E. PALMIERI/INFN, Padova, Italy When hearing about persistent currents recirculating for several years in a superconducting loop without any appreciable decay, one realizes that we are dealing with a phenomenon which in nature is the closest known to the perpetual motion. Zero resistivity and perfect diamagnetism in Mercury at 4.2 K, the breakthrough during 75 years of several hundreds of superconducting materials, the revolution of the "liquid Nitrogen superconductivity"; the discovery of still a binary compound becoming superconducting at 40 K and the subsequent re-exploration of the already known superconducting materials: Nature discloses drop by drop its intimate secrets and nobody can exclude that the last final surprise must still come. After an overview of phenomenology and basic theory of superconductivity, the lectures for this a...

  5. Superconducting RF cavities

    CERN Document Server

    Bernard, Philippe


    It was 20 years ago when the research and development programme for LEP superconducting cavities was initiated. It lasted about 10 years. Today, my aim is not to tell you in great detail about the many innovations made thanks to our research, but I would like to point out some milestones in the development of superconducting cavities where Emilio's influence was particularly important.

  6. Large superconducting magnets

    CERN Document Server

    Pérot, J


    Discusses the use of large superconducting magnets in the areas of particle physics, thermonuclear fusion, and magnetohydrodynamics. In addition to considering the physics of the superconducting state, the article considers machines such as BEBC (Big European Bubble Chamber) at CERN, the LINAC at SLAC and possible Tokamak applications. The future application of superconductors to high speed trains is discussed. (0 refs).

  7. Hard Probes and Spin Physics at STAR

    CERN Document Server

    Tokarev, M V


    Spin is one of the most enigmatic and least understandable properties of elementary particles. The study of the proton spin puzzle is an important part of the physics program at the Relativistic Heavy Ion Collider (RHIC) accelerating both nuclei and polarized protons. STAR is one of the two large detectors at RHIC. It has an excellent capability for spin physics. In the present work the overview of the STAR spin physics program is given. It includes the highest priority measurements of single- and double-spin asymmetries allowing one to determine gluon contribution to proton spin, to separate sea and valence quark flavor polarizations, to measure quark transversity. A brief description of the RHIC accelerator complex, some detail of the STAR detector and its perfomance are presented.

  8. Heavy quarks in proton

    CERN Document Server


    The measurement of prompt photon associated with a b jet in proton-proton interactions can provide us insight into the inner structure of proton. This is because precision of determination of parton distribution functions of b quark and gluon can be increased by such a measurement. The measurement of cross-section of prompt photon associated with a b jet (process $pp\\longrightarrow \\gamma + b + X$) at $\\sqrt{s}$= 8 TeV with the ATLAS detector is presented. Full 8 TeV dataset collected by ATLAS during the year 2012 was used in this analysis. Corresponding integrated luminosity is 20.3 $fb^{-1}$. Fiducial differential cross-section as a function of photon transverse momentum at particle level was extracted from data and compared with the prediction of leading order event generator Pythia 8. Cross-section extracted from data is normalised independently on the Monte Carlo prediction. Values of data distribution lie above Monte Carlo values. The difference can be explained by presence of higher order effects not ...

  9. Strange Quark Matter Status and Prospects (United States)

    Sandweiss, J.


    The existence of quark states with more than three quarks is allowed in QCD. The stability of such quark matter states has been studied with lattice QCD and phenomenological bag models, but is not well constrained by theory. The addition of strange quarks to the system allows the quarks to be in lower energy states despite the additional mass penalty. There is additional stability from reduced Coulomb repulsion. SQM is expected to have a low Z/A. Stable or metastable massive multiquark states contain u, d, and s quarks.

  10. Superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Mijatovic, Nenad; Seiler, Eugen


    We have examined the potential of 10 MW superconducting direct drive generators to enter the European offshore wind power market and estimated that the production of about 1200 superconducting turbines until 2030 would correspond to 10% of the EU offshore market. The expected properties of future......, the main challenge of the superconducting direct drive technology is to prove that the reliability is superior to the alternative drive trains based on gearboxes or permanent magnets. A strategy of successive testing of superconducting direct drive trains in real wind turbines of 10 kW, 100 kW, 1 MW and 10...... offshore turbines of 8 and 10 MW have been determined from an up-scaling of an existing 5 MW turbine and the necessary properties of the superconducting drive train are discussed. We have found that the absence of the gear box is the main benefit and the reduced weight and size is secondary. However...

  11. Mutual friction in a cold color-flavor-locked superfluid and r-mode instabilities in compact stars. (United States)

    Mannarelli, Massimo; Manuel, Cristina; Sa'd, Basil A


    Dissipative processes acting in rotating neutron stars are essential in preventing the growth of the r-mode instability. We estimate the damping time of r modes of a hypothetical compact quark star made up by color-flavor-locked quark matter at a temperature T star. We find that r-mode oscillations are efficiently damped by this mechanism for pulsars rotating at frequencies of the order of 1 Hz at most. Our analysis rules out the possibility that cold pulsars rotating at higher frequencies are entirely made up by color-flavor-locked quark matter.

  12. Nuclear matter from effective quark-quark interaction. (United States)

    Baldo, M; Fukukawa, K


    We study neutron matter and symmetric nuclear matter with the quark-meson model for the two-nucleon interaction. The Bethe-Bruckner-Goldstone many-body theory is used to describe the correlations up to the three hole-line approximation with no extra parameters. At variance with other nonrelativistic realistic interactions, the three hole-line contribution turns out to be non-negligible and to have a substantial saturation effect. The saturation point of nuclear matter, the compressibility, the symmetry energy, and its slope are within the phenomenological constraints. Since the interaction also reproduces fairly well the properties of the three-nucleon system, these results indicate that the explicit introduction of the quark degrees of freedom within the considered constituent quark model is expected to reduce the role of three-body forces.

  13. Stars and Star Myths. (United States)

    Eason, Oliver

    Myths and tales from around the world about constellations and facts about stars in the constellations are presented. Most of the stories are from Greek and Roman mythology; however, a few Chinese, Japanese, Polynesian, Arabian, Jewish, and American Indian tales are also included. Following an introduction, myths are presented for the following 32…

  14. Hints of a second explosion (a quark nova) in Cassiopeia A supernova (United States)

    Ouyed, Rachid; Leahy, Denis; Koning, Nico


    We show that the explosive transition of the neutron star (NS) to a quark star (QS) (a Quark Nova) in Cassiopeia A (Cas A) a few days following the supernova (SN) proper can account for several of the puzzling kinematic and nucleosynthetic features that are observed. The observed decoupling between Fe and 44Ti and the lack of Fe emission within 44Ti regions is expected in the QN model owing to the spallation of the inner SN ejecta by relativistic QN neutrons. Our model predicts the 44Ti to be more prominent to the NW of the central compact object (CCO) than in the SE and little of it along the NE-SW jets, in agreement with NuStar observations. Other intriguing features of Cas A are addressed, such as the lack of a pulsar wind nebula and the reported few percent drop in the CCO temperature over a period of 10 yr.

  15. Nucleation rate of the quark-gluon plasma droplet at finite quark ...

    Indian Academy of Sciences (India)

    The nucleation rate of quark-gluon plasma (QGP) droplet is computed at finite quark chemical potential. In the course of computing the nucleation rate, the finite size effects of the QGP droplet are taken into account. We consider the phenomenological flow parameter of quarks and gluons, which is dependent on quark ...

  16. Heavy quark spectroscopy and decay

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, R.H.


    The understanding of q anti q systems containing heavy, charmed, and bottom quarks has progressed rapidly in recent years, through steady improvements in experimental techniques for production and detection of their decays. These lectures are meant to be an experimentalist's review of the subject. In the first of two lectures, the existing data on the spectroscopy of the bound c anti c and b anti b systems will be discussed. Emphasis is placed on comparisons with the theoretical models. The second lecture covers the rapidly changing subject of the decays of heavy mesons (c anti q and b anti q), and their excited states. In combination, the spectroscopy and decays of heavy quarks are shown to provide interesting insights into both the strong and electroweak interactions of the heavy quarks. 103 refs., 39 figs.

  17. Neutron Star masses from the Field Correlator Method Equation of State

    Directory of Open Access Journals (Sweden)

    Zappalà D.


    Full Text Available We analyse the hadron-quark phase transition in neutron stars by confronting the hadronic Equation of State (EoS obtained according to the microscopic Brueckner-Hartree-Fock many body theory, with the quark matter EoS derived within the Field Correlator Method. In particular, the latter EoS is only parametrized in terms of the gluon condensate and the large distance quark-antiquark potential, so that the comparison of the results of this analysis with the most recent measurements of heavy neutron star masses provides some physical constraints on these two parameters.

  18. Interplay between superconductivity and magnetism in iron-based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Chubukov, Andrey V [University of Wisconsin


    fermions, understand what sets the upper scale for attractive interaction, compute T_c, and then obtain and solve matrix non-linear gap equation for spin-mediated pairing and study various feedbacks from the pairing on fermions on ARPES spectra, optical and thermal conductivity, and other observables, The problems I have chosen are quite generic, and the understanding of magnetically-mediated superconductivity in the strong-coupling regime will not only advance the theory of superconductivity in FeSCs, but will contribute to a generic understanding of the pairing of fermions near quantum-critical points -- the problems ranging from s-wave pairing by soft optical phonons to to color superconductivity of quarks mediated by a gluon exchange.

  19. Top quarks in searches for supersymmetry

    CERN Document Server

    ATLAS Collaboration; The ATLAS collaboration


    Top quarks enjoy special relationship with supersymmetry, as their scalar partners influence the mass of the Higgs boson and could be next-to-lightest supersymmetric particles. Top quarks appear thus naturally in SUSY events. Standard Model top production emerges as important background. Latest results of ATLAS and CMS experiments on supersymmetric searches involving top quarks are discussed.

  20. Quark-gluon plasma 5

    CERN Document Server


    This is the fifth volume in the series on the subject of quark-gluon plasma, a unique phase created in heavy-ion collisions at high energy. It contains review articles by the world experts on various aspects of quark-gluon plasma taking into account the advances driven by the latest experimental data collected at both the Relativistic Heavy-Ion Collider (RHIC) and the Large Hadron Collider (LHC). The articles are pedagogical and comprehensive which can be helpful for both new researchers entering the field as well as the experienced physicists working on the subject.

  1. Quarks, baryons and chiral symmetry

    CERN Document Server

    Hosaka, Atsushi


    This book describes baryon models constructed from quarks, mesons and chiral symmetry. The role of chiral symmetry and of quark model structure with SU(6) spin-flavor symmetry are discussed in detail, starting from a pedagogic introduction. Emphasis is placed on symmetry aspects of the theories. As an application, the chiral bag model is studied for nucleon structure, where important methods of theoretical physics, mostly related to the semiclassical approach for a system of strong interactions, are demonstrated. The text is more practical than formal; tools and ideas are explained in detail w

  2. Quarks, Gluons and Frustrated Antiferromagnets

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, Marvin


    The Contractor Renormalization Group method (CORE) is used to establish the equivalence of various Hamiltonian free fermion theories and a class of generalized frustrated antiferromagnets. In particular, after a detailed discussion of a simple example, it is argued that a generalized frustrated SU(3) antiferromagnet whose single-site states have the quantum numbers of mesons and baryons is equivalent to a theory of free massless quarks. Furthermore, it is argued that for slight modification of the couplings which define the frustrated antiferromagnet Hamiltonian, the theory becomes a theory of quarks interacting with color gauge-fields.

  3. Scalarization of neutron stars with realistic equations of state (United States)

    Altaha Motahar, Zahra; Blázquez-Salcedo, Jose Luis; Kleihaus, Burkhard; Kunz, Jutta


    We consider the effect of scalarization on static and slowly rotating neutron stars for a wide variety of realistic equations of state, including pure nuclear matter, nuclear matter with hyperons, hybrid nuclear and quark matter, and pure quark matter. We analyze the onset of scalarization, presenting a universal relation for the critical coupling parameter versus compactness. We find that the onset and the magnitude of the scalarization are strongly correlated with the value of the gravitational potential (the metric component gt t) at the center of the star. We also consider the moment-of-inertia-compactness relations and confirm universality for the nuclear matter, hyperon and hybrid equations of state.

  4. Current quarks, constituent quarks, and symmetries of resonance decays

    CERN Document Server

    Hey, A J G; Weyers, J


    The transformation between 'current' quarks and 'constituent' quarks recently suggested by Melosh is examined with respect to its predictions for pionic decays of resonances. It implies the use of SU (6)/sub W/ for classifying particle states but not for describing decay processes. Instead, pion emission proceeds via Delta L/sub Z/=0, +or-1, where L is the internal ('quark') orbital angular momentum. This decay symmetry is called SU(6)/sub W/( Delta L/sub z/=0, +or-1). It is proven equivalent for any decay A to B+ pi (where A, B are arbitrary qq or qqq hadrons) to the /sup 3/P/sub 0/ quark-pair creation model for such decays, as formulated by Micu, Colglazier, Petersen and Rosner. The roles of final orbital angular momenta l and of SU(3)*SU(3) subgroups of SU(6)/sub W/ are also discussed, and some new predictions are made for decays of meson resonances below 1700 Me V. (32 refs).

  5. Superconductivity fundamentals and applications

    CERN Document Server

    Buckel, Werner


    This is the second English edition of what has become one of the definitive works on superconductivity in German -- currently in its sixth edition. Comprehensive and easy to understand, this introductory text is written especially with the non-specialist in mind. The authors, both long-term experts in this field, present the fundamental considerations without the need for extensive mathematics, describing the various phenomena connected with the superconducting state, with liberal insertion of experimental facts and examples for modern applications. While all fields of superconducting phenomena are dealt with in detail, this new edition pays particular attention to the groundbreaking discovery of magnesium diboride and the current developments in this field. In addition, a new chapter provides an overview of the elements, alloys and compounds where superconductivity has been observed in experiments, together with their major characteristics. The chapter on technical applications has been considerably expanded...

  6. Superconducting detectors in astronomy (United States)

    Rahman, F.


    Radiation detectors based on superconducting phenomena are becoming increasingly important for observational astronomy. Recent developments in this important field, together with relevant background, are described here. After a general introduction to superconductivity and the field of superconductor-based radiation sensors, the main detector types are examined with regard to their physical form, operating principles and principal advantages. All major forms of superconducting detectors used in contemporary research such as tunnelling detectors, mixers, hot-electron bolometers and transition edge sensitive devices are discussed with an emphasis on how more recent developments are overcoming the shortcomings of the previous device generations. Also, discussed are new ideas in superconducting detector technology that may find applications in the coming years.

  7. Superconducting metamaterial transmission line (United States)

    Rouxinol, Francisco; Wang, Haozhi; Plourde, B. L. T.


    Left-handed metamaterials are artificial composite structures with unusual properties. Such systems have a wide range of potential applications in photonics. We are developing transmission lines composed of superconducting metamaterials using thin-film lumped circuit elements. Such structures allow for the possibility of generating novel transmission spectra with a high density of modes in some frequency ranges and stop-bands in others. We discuss possible couplings of these lines to superconducting qubits in circuit QED architectures.

  8. Superconducting Wind Turbine Generators


    Yunying Pan; Danhzen Gu


    Wind energy is well known as a renewable energy because its clean and less polluted characteristic, which is the foundation of development modern wind electricity. To find more efficient wind turbine is the focus of scientists around the world. Compared from conventional wind turbines, superconducting wind turbine generators have advantages at zero resistance, smaller size and lighter weight. Superconducting wind turbine will inevitably become the main trends in this area. This paper intends ...

  9. Superconducting transmission line particle detector (United States)

    Gray, Kenneth E.


    A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non-superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slow electromagnetic wave propogating in a superconducting transmission line are used to resolve N.sup.2 ambiguity of charged particle events.

  10. Short-range correlations in quark and nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Froemel, Frank


    In the first part of this thesis, the role of short-range correlations in quark matter is explored within the framework of the Nambu-Jona-Lasinio model. Starting from a next-to-leading order expansion in the inverse number of the quark colors, a fully self-consistent model constructed that employs the close relations between spectral functions and self-energies. In contrast to the usual quasiparticle approximations, this approach allows the investigation of the collisional broadening of the quark spectral function. Numerical calculations at various chemical potentials and zero temperature show that the short-range correlations do not only induce a finite width of the spectral function but also have some influence on the structure of the chiral phase transition. In the second part of this thesis, the temperature and density dependence of the nucleon spectral function in symmetric nuclear matter is investigated. The short-range correlations can be well described by a simple, self-consistent model on the one-particle-two-hole and two-particle-one-hole level (1p2h, 2p1h). The thermodynamically consistent description of the mean-field properties of the nucleons is ensured by incorporating a Skyrme-type potential. Calculations at temperatures and densities that can also be found in heavy-ion collisions or supernova explosions and the formation of neutron stars show that the correlations saturate at high temperatures and densities. (orig.)

  11. Vortex structure in superfluid color-flavor locked quark matter

    Directory of Open Access Journals (Sweden)

    Alford Mark G.


    Full Text Available The core region of a neutron star may feature quark matter in the color-flavor-locked (CFL phase. The CFL condensate breaks the baryon number symmetry, such that the phenomenon of superfluidity arises. If the core of the star is rotating, vortices will form in the superfluid, carrying the quanta of angular momentum. In a previous study we have solved the question of stability of these vortices, where we found numerical proof of a conjectured instability, according to which superfluid vortices will decay into an arrangement of so-called semi-superfluid fluxtubes. Here we report first results of an extension of our framework that allows us to study multi-vortex dynamics. This will in turn enable us to investigate the structure of semi-superfluid string lattices, which could be relevant to study pinning phenomena at the boundary of the core.

  12. Superconducting Fullerene Nanowhiskers

    Directory of Open Access Journals (Sweden)

    Yoshihiko Takano


    Full Text Available We synthesized superconducting fullerene nanowhiskers (C60NWs by potassium (K intercalation. They showed large superconducting volume fractions, as high as 80%. The superconducting transition temperature at 17 K was independent of the K content (x in the range between 1.6 and 6.0 in K-doped C60 nanowhiskers (KxC60NWs, while the superconducting volume fractions changed with x. The highest shielding fraction of a full shielding volume was observed in the material of K3.3C60NW by heating at 200 °C. On the other hand, that of a K-doped fullerene (K-C60 crystal was less than 1%. We report the superconducting behaviors of our newly synthesized KxC60NWs in comparison to those of KxC60 crystals, which show superconductivity at 19 K in K3C60. The lattice structures are also discussed, based on the x-ray diffraction (XRD analyses.

  13. Emergent Higgsless Superconductivity

    Directory of Open Access Journals (Sweden)

    Cristina Diamantini M.


    Full Text Available We present a new Higgsless model of superconductivity, inspired from anyon superconductivity but P- and T-invariant and generalizable to any dimension. While the original anyon superconductivity mechanism was based on incompressible quantum Hall fluids as average field states, our mechanism involves topological insulators as average field states. In D space dimensions it involves a (D-1-form fictitious pseudovector gauge field which originates from the condensation of topological defects in compact lowenergy effective BF theories. There is no massive Higgs scalar as there is no local order parameter. When electromagnetism is switched on, the photon acquires mass by the topological BF mechanism. Although the charge of the gapless mode (2 and the topological order (4 are the same as those of the standard Higgs model, the two models of superconductivity are clearly different since the origins of the gap, reflected in the high-energy sectors are totally different. In 2D thi! s type of superconductivity is explicitly realized as global superconductivity in Josephson junction arrays. In 3D this model predicts a possible phase transition from topological insulators to Higgsless superconductors.

  14. Confining quark condensate model of the nucleon.

    Energy Technology Data Exchange (ETDEWEB)

    Frank, Michael; Tandy, Peter


    We obtain a mean-field solution for the nucleon as a quark-meson soliton obtained from the action of the global color-symmetry model of QCD. All dynamics is generated from an effective interaction of quark currents. At the quark-meson level there are two novel features: (1) absolute confinement is produced from the space-time structure of the dynamical self-energy in the vacuum quark propagator; and (2) the related scalar meson field is an extended q-barq composite that couples nonlocally to quarks. The influence of these features upon the nucleon mass contributions and other nucleon properties is presented.

  15. Top Quark Studies at D0

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Reinhild Yvonne [DESY


    Years after its discovery in 1995 by CDF and D0, the top quark still undergoes intense investigations at the Tevatron. Using up to the full Run II data sample, new measurements of top quark production and properties by the D0 Collaboration are presented. In particular, the first observation of single top quark s-channel production, the measurement of differential tbar t distributions, forward-backward tbar t asymmetry, a new measurement of the top quark mass, and a measurement of the top quark charge are discussed.

  16. Measurements of top quark properties at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Kraan, Aafke C.; /Pennsylvania U.


    The top quark with its mass of about 172 GeV/c{sup 2} is the most massive fundamental particle observed by experiment. In this talk they highlight the most recent measurements of several top quark properties performed with the CDF detector based on data samples corresponding to integrated luminosities up to 1 fb{sup -1}. These results include a search for top quark pair production via new massive resonances, measurements of the helicity of the W boson from top-quark decay, and a direct limit on the lifetime of the top quark.

  17. Gapless Color-Flavor-Locked Quark Matter

    DEFF Research Database (Denmark)

    Alford, Mark; Kouvaris, Christoforos; Rajagopal, Krishna


    In neutral cold quark matter that is sufficiently dense that the strange quark mass M_s is unimportant, all nine quarks (three colors; three flavors) pair in a color-flavor locked (CFL) pattern, and all fermionic quasiparticles have a gap. We argue that as a function of decreasing quark chemical...... a linear combination Qtilde of electric and color charges, but it is a Qtilde-conductor with a nonzero electron density. These electrons and the gapless quark quasiparticles make the low energy effective theory of the gapless CFL phase and, consequently, its astrophysical properties are qualitatively...

  18. Top-Quark Physics Results From LHC

    CERN Document Server



    The top-quark is a fundamental element of the physics program at the Large Hadron Collider (LHC). We review the current status of the top-quark measurements performed by ATLAS and CMS experiments in pp collisions at sqrt(s)=7 TeV with a focus on the recent results of the top-quark production rates and the measurements of the mass and other properties of the top-quark. We will also describe the recent searches for physics beyond the Standard Model in the top-quark sector.

  19. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Brorsen, Michael; Frigaard, Peter

    Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star.......Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star....

  20. Top quark mass and kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Barberis, Emanuela; /Northeastern U.


    A summary of the results on the measurement of the Top Quark mass and the study of the kinematics of the t{bar t} system at the Tevatron collider is presented here. Results from both the CDF and D0 collaborations are reported.

  1. Quark-gluon plasma 2

    CERN Document Server


    This is a sequel to the review volume Quark-Gluon Plasma. There are 13 articles contributed by leading investigators in the field, covering a wide range of topics about the theoretical approach to the subject. These contributions are timely reviews of nearly all the actively pursued problems, written in a pedagogical style suitable for beginners as well as experienced researchers.

  2. NA60 frees the quarks

    CERN Multimedia


    Fitted with new state-of-the-art silicon detectors, NA60 is prepared to study the phase transition from confined hadronic matter to a deconfined (free) quark-gluon plasma, a state of matter which probably existed an instant after the Big Bang.

  3. Discovery of the Top Quark

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 1. Discovery of the Top Quark. R Ramachandran. Research News Volume 1 Issue 1 January 1996 pp 104-107. Fulltext. Click here to view fulltext PDF. Permanent link: Author Affiliations.

  4. Observation of the Top Quark (United States)

    Kim, S. B.


    Top quark production is observed in{bar p}p collisions at{radical}s= 1.8 TeV at the Fermilab Tevatron. The Collider Detector at Fermilab (CDF) and D{O} observe signals consistent with t{bar t} to WWb{bar b}, but inconsistent with the background prediction by 4.8{sigma} (CDF), 4.6a (D{O}). Additional evidence for the top quark Is provided by a peak in the reconstructed mass distribution. The kinematic properties of the excess events are consistent with the top quark decay. They measure the top quark mass to be 176{plus_minus}8(stat.){plus_minus}10(sys.) GeV/c{sup 2} (CDF), 199{sub -21}{sup+19}(stat.){plus_minus}22(sys.) GeV/c{sup 2} (D{O}), and the t{bar t} production cross section to be 6.8{sub -2.4}{sup+3.6}pb (CDF), 6.4{plus_minus}2.2 pb (D{O}).

  5. Physics of the Quark Model (United States)

    Young, Robert D.


    Discusses the charge independence, wavefunctions, magnetic moments, and high-energy scattering of hadrons on the basis of group theory and nonrelativistic quark model with mass spectrum calculated by first-order perturbation theory. The presentation is explainable to advanced undergraduate students. (CC)

  6. Hydrodynamics of a quark droplet

    DEFF Research Database (Denmark)

    Bjerrum-Bohr, Johan J.; Mishustin, Igor N.; Døssing, Thomas


    We present a simple model of a multi-quark droplet evolution based on the hydrodynamical description. This model includes collective expansion of the droplet, effects of the vacuum pressure and surface tension. The hadron emission from the droplet is described following Weisskopf's statistical...

  7. Star clusters

    NARCIS (Netherlands)

    Gieles, M.


    Star clusters are observed in almost every galaxy. In this thesis we address several fundamental problems concerning the formation, evolution and disruption of star clusters. From observations of (young) star clusters in the interacting galaxy M51, we found that clusters are formed in complexes of

  8. Hybrid stars

    Indian Academy of Sciences (India)

    from two classes of EOS's and discuss their implications. Keywords. Neutron stars; phase transition. It is generally believed that the evolutionary journey of a star after it has exhausted all its fuel culminates into the formation of a compact object in the form of a white dwarf, a neutron star or a black hole depending on its mass.

  9. Massive Stars (United States)

    Livio, Mario; Villaver, Eva


    Participants; Preface Mario Livio and Eva Villaver; 1. High-mass star formation by gravitational collapse of massive cores M. R. Krumholz; 2. Observations of massive star formation N. A. Patel; 3. Massive star formation in the Galactic center D. F. Figer; 4. An X-ray tour of massive star-forming regions with Chandra L. K. Townsley; 5. Massive stars: feedback effects in the local universe M. S. Oey and C. J. Clarke; 6. The initial mass function in clusters B. G. Elmegreen; 7. Massive stars and star clusters in the Antennae galaxies B. C. Whitmore; 8. On the binarity of Eta Carinae T. R. Gull; 9. Parameters and winds of hot massive stars R. P. Kudritzki and M. A. Urbaneja; 10. Unraveling the Galaxy to find the first stars J. Tumlinson; 11. Optically observable zero-age main-sequence O stars N. R. Walborn; 12. Metallicity-dependent Wolf-Raynet winds P. A. Crowther; 13. Eruptive mass loss in very massive stars and Population III stars N. Smith; 14. From progenitor to afterlife R. A. Chevalier; 15. Pair-production supernovae: theory and observation E. Scannapieco; 16. Cosmic infrared background and Population III: an overview A. Kashlinsky.

  10. On the Stability of Strange Dwarf Hybrid Stars (United States)

    Alford, Mark G.; Harris, Steven P.; Sachdeva, Pratik S.


    We investigate the stability of “strange dwarfs”: white-dwarf-sized stars with a density discontinuity between a small dense core of quark matter and a thick low-density mantle of degenerate electrons. Previous work on strange dwarfs suggested that such a discontinuity could stabilize stars that would have been classified as unstable by the conventional criteria based on extrema in the mass-radius relation. We investigate the stability of such stars by numerically solving the Sturm-Liouville equations for the lowest-energy modes of the star. We find that the conventional criteria are correct, and strange dwarfs are not stable.

  11. Results on top-quark physics and top-quark-like signatures by CMS

    CERN Document Server

    Chabert, Eric Christian


    This report reviews the results obtained by the CMS Collaboration on top quark physics, focusing on the latest ones based on p--p collisions provided by the LHC at $\\sqrt{s}$=13 TeV during Run II. It covers measurements of single-top, top quark pairs and associated productions as well as measurements of top quark properties.Finally several beyond the standard model searches involving top quark in the final states are presented such as searches for supersymmetry in the third generation, heavy resonances decaying into a top quark pair, or dark matter produced in association to a single-top or a top quark pair.

  12. Influence of broken flavor and C and P symmetry on the quark propagator

    Energy Technology Data Exchange (ETDEWEB)

    Maas, Axel; Mian, Walid Ahmed [University of Graz, Institute of Physics, NAWI Graz, Graz (Austria)


    Embedding QCD into the standard model breaks various symmetries of QCD explicitly, especially C and P. While these effects are usually perturbatively small, they can be amplified in extreme environments like merging neutron stars or by the interplay with new physics. To correctly treat these cases requires fully backcoupled calculations. To pave the way for later investigations of hadronic physics, we study the QCD quark propagator coupled to an explicit breaking. This substantially increases the tensor structure even for this simplest correlation function. To cope with the symmetry structure, and covering all possible quark masses, from the top quark mass to the chiral limit, we employ Dyson-Schwinger equations. While at weak breaking the qualitative effects have similar trends as in perturbation theory, even moderately strong breakings lead to qualitatively different effects, non-linearly amplified by the strong interactions. (orig.)

  13. What if pulsars are born as strange stars? (United States)

    Xu, R. X.; Zhang, B.; Qiao, G. J.


    The possibility and the implications of the idea, that pulsars are born as strange stars, are explored. Strange stars are very likely to have atmospheres with typical mass of ˜5×10 -15M⊙ but bare polar caps almost throughout their lifetimes, if they are produced during supernova explosions. A direct consequence of the bare polar cap is that the binding energies of both positively and negatively charged particles at the bare quark surface are nearly infinity, so that the vacuum polar gap sparking scenario as proposed by Ruderman and Sutherland should operate above the cap, regardless of the sense of the magnetic pole with respect to the rotational pole. Heat cannot accumulate on the polar cap region due to the large thermal conductivity on the bare quark surface. We test this "bare polar cap strange star" (BPCSS) idea with the present broad band emission data of pulsars, and propose several possible criteria to distinguish BPCSSs from neutron stars.

  14. Fullerides - Superconductivity at the limit

    NARCIS (Netherlands)

    Palstra, Thomas T. M.

    The successful synthesis of highly crystalline Cs3C60, exhibiting superconductivity up to a record temperature for fullerides of 38 K, demonstrates a powerful synthetic route for investigating the origin of superconductivity in this class of materials.

  15. Superconductivity in Dirac semimetals

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Tatsuki; Kobayashi, Shingo [Nagoya University, Nagoya (Japan); Sato, Masatoshi [Kyoto University, Kyoto (Japan)


    In this presentation, we would like to discuss the superconductivity in Dirac semimetals. Dirac semimetal is a material that hosts topologically protected bulk Dirac cones and surface Fermi loop. It has been revealed that the unique spin-orbit interaction in the Dirac semimetals stabilize the unconventional superconductivity. Experimentally, the zero-bias conductance peak that suggests the realization of topological superconductivity has been observed in Cd{sub 3}As{sub 2}. We use a k . p Hamiltonian around Γ point with spin and orbital degrees of freedom to describe the Dirac semimetal. For the model, we propose six types of k-independent pair potentials, where two of them are trivial pairings and others are topological ones. By introducing a single band description of the pair potentials, it is found that the superconducting gap and d-vector have the characteristic structure in each pair potential. To see these, we calculate the electronic specific heat and spin susceptibility and confirm that we can distinguish these superconducting states experimentally. In addition to the bulk physical properties, we also calculate the surface state by using the recursive Green's function method. It is find that either arc or flat shape Andreev bound states appear on the surface depending on the parity of mirror reflection symmetry.

  16. QCD phase transition with chiral quarks and physical quark masses. (United States)

    Bhattacharya, Tanmoy; Buchoff, Michael I; Christ, Norman H; Ding, H-T; Gupta, Rajan; Jung, Chulwoo; Karsch, F; Lin, Zhongjie; Mawhinney, R D; McGlynn, Greg; Mukherjee, Swagato; Murphy, David; Petreczky, P; Renfrew, Dwight; Schroeder, Chris; Soltz, R A; Vranas, P M; Yin, Hantao


    We report on the first lattice calculation of the QCD phase transition using chiral fermions with physical quark masses. This calculation uses 2+1 quark flavors, spatial volumes between (4 fm)(3) and (11 fm)(3) and temperatures between 139 and 196 MeV. Each temperature is calculated at a single lattice spacing corresponding to a temporal Euclidean extent of N(t) = 8. The disconnected chiral susceptibility, χ(disc) shows a pronounced peak whose position and height depend sensitively on the quark mass. We find no metastability near the peak and a peak height which does not change when a 5 fm spatial extent is increased to 10 fm. Each result is strong evidence that the QCD "phase transition" is not first order but a continuous crossover for m(π) = 135 MeV. The peak location determines a pseudocritical temperature T(c) = 155(1)(8) MeV, in agreement with earlier staggered fermion results. However, the peak height is 50% greater than that suggested by previous staggered results. Chiral SU(2)(L) × SU(2)(R) symmetry is fully restored above 164 MeV, but anomalous U(1)(A) symmetry breaking is nonzero above T(c) and vanishes as T is increased to 196 MeV.

  17. Top quark physics in hadron collisions

    CERN Document Server

    Wagner, W


    The top quark is the heaviest elementary particle observed to date. Its large mass makes the top quark an ideal laboratory to test predictions of perturbation theory concerning heavy quark production at hadron colliders. The top quark is also a powerful probe for new phenomena beyond the Standard Model of particle physics. In addition, the top quark mass is a crucial parameter for scrutinizing the Standard Model in electroweak precision tests and for predicting the mass of the yet unobserved Higgs boson. Ten years after the discovery of the top quark at the Fermilab Tevatron top quark physics has entered an era where detailed measurements of top quark properties are undertaken. In this review article an introduction to the phenomenology of top quark production in hadron collisions is given, the lessons learned in Tevatron Run I are summarized, and first Run II results are discussed. A brief outlook to the possibilities of top quark research a the Large Hadron Collider, currently under construction at CERN, is...

  18. Many-body theory of nuclear and neutron star matter

    Energy Technology Data Exchange (ETDEWEB)

    Pandharipande, V.R.; Akmal, A.; Ravenhall, D.G. [Dept. of Physics, Univ. of Illinois at Urbana-Champaign, Urbana, IL (United States)


    We present results obtained for nuclei, nuclear and neutron star matter, and neutron star structure obtained with the recent Argonne v{sub 18} two- nucleon and Urbana IX three-nucleon interactions including relativistic boost corrections. These interactions predict that matter will undergo a transition to a spin layered phase with neutral pion condensation. We also consider the possibility of a transition to quark matter. (orig.)

  19. Millimeter-wave Signature of Strange Matter Stars


    Broderick, J. J.; Herrin, E. T.; Krisher, T. P.; Morgan, D L; Rosenbaum, D. C.; Sher, M.; Teplitz, V. L.


    One of the most important questions in the study of compact objects is the nature of pulsars, including whether they consist of neutron star matter or strange quark matter (SQM). However, few mechanisms for distinguishing between these two possibilities have been proposed. The purpose of this Letter is to show that a strange star (one made of SQM) will have a vibratory mode with an oscillation frequency of approximately 250 GHz (millimeter wave). This mode corresponds to motion of the center ...

  20. Role of magnetic interactions in neutron stars

    Directory of Open Access Journals (Sweden)

    Adhya Souvik Priyam


    Full Text Available In this work, we present a calculation of the non-Fermi liquid correction to the specific heat of magnetized degenerate quark matter present at the core of the neutron star. The role of non-Fermi liquid corrections to the neutrino emissivity has been calculated beyond leading order. We extend our result to the evaluation of the pulsar kick velocity and cooling of the star due to such anomalous corrections and present a comparison with the simple Fermi liquid case.

  1. Constraints on the braneworld from compact stars

    Energy Technology Data Exchange (ETDEWEB)

    Felipe, R.G. [Instituto Politecnico de Lisboa, ISEL, Instituto Superior de Engenharia de Lisboa, Lisboa (Portugal); Instituto Superior Tecnico, Universidade de Lisboa, Departamento de Fisica, Centro de Fisica Teorica de Particulas, CFTP, Lisboa (Portugal); Paret, D.M. [Universidad de la Habana, Departamento de Fisica General, Facultad de Fisica, La Habana (Cuba); Martinez, A.P. [Instituto de Cibernetica, Matematica y Fisica (ICIMAF), La Habana (Cuba); Universidad Nacional Autonoma de Mexico, Instituto de Ciencias Nucleares, Mexico, Distrito Federal (Mexico)


    According to the braneworld idea, ordinary matter is confined on a three-dimensional space (brane) that is embedded in a higher-dimensional space-time where gravity propagates. In this work, after reviewing the limits coming from general relativity, finiteness of pressure and causality on the brane, we derive observational constraints on the braneworld parameters from the existence of stable compact stars. The analysis is carried out by solving numerically the brane-modified Tolman-Oppenheimer-Volkoff equations, using different representative equations of state to describe matter in the star interior. The cases of normal dense matter, pure quark matter and hybrid matter are considered. (orig.)

  2. Quark Confinement and Force Unification

    Directory of Open Access Journals (Sweden)

    Stone R. A. Jr.


    Full Text Available String theory had to adopt a bi-scale approach in order to produce the weakness of gravity. Taking a bi-scale approach to particle physics along with a spin connection produces 1 the measured proton radius, 2 a resolution of the multiplicity of measured weak angle values 3 a correct theoretical value for the Z 0 4 a reason that h is a constant and 5 a “neutral current” source. The source of the “neutral current” provides 6 an alternate solution to quark confinement, 7 produces an effective r like potential, and 8 gives a reason for the observed but unexplained Regge trajectory like J M 2 behavior seen in quark composite particle spin families.

  3. Connectivity and superconductivity

    CERN Document Server

    Rubinstein, Jacob


    The motto of connectivity and superconductivity is that the solutions of the Ginzburg--Landau equations are qualitatively influenced by the topology of the boundaries, as in multiply-connected samples. Special attention is paid to the "zero set", the set of the positions (also known as "quantum vortices") where the order parameter vanishes. The effects considered here usually become important in the regime where the coherence length is of the order of the dimensions of the sample. It takes the intuition of physicists and the awareness of mathematicians to find these new effects. In connectivity and superconductivity, theoretical and experimental physicists are brought together with pure and applied mathematicians to review these surprising results. This volume is intended to serve as a reference book for graduate students and researchers in physics or mathematics interested in superconductivity, or in the Schrödinger equation as a limiting case of the Ginzburg--Landau equations.

  4. Applied Superconductivity Conference 2014

    CERN Document Server


    Energy Efficiency is a worldwide imperative driven by an increasing awareness of the need to conserve valuable natural resources. Superconductivity, the technology which revolutionized non-invasive medical imaging through MRI starting in the 1980’s, is one of the most promising enablers of energy efficiency in the 21st century. From energy efficient supercomputers to power generation, transmission, and storage, the spectrum of applications of superconductivity is broad in its reach and potential. As ASC comes to Charlotte, site of the hall of fame of NASCAR, our theme, “Race to Energy Efficiency,” is intended to inspire the world experts in superconductivity who will converge to Charlotte to present their latest results, exchange information, network, and plan and project the future breakthroughs.

  5. Quark condensation in quantum chromodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Finger, J.; Horn, D.; Mandula, J.E.


    Working within a limited Fock-space approximation (LFSA), we argue that if the running coupling constant of quantum chromodynamics (QCD) exceeds a critical value of order 1 the vacuum becomes a condensate of quark-antiquark pairs. To evaluate the critical coupling constant we use a Mellin-transform technique which is first illustrated with a Schroedinger equation problem. We then apply it to scalar and spinor QED, as well as to QCD, using the LFSA.

  6. Cooking Up Hot Quark Soup (United States)

    Walsh, Karen McNulty


    Near-light-speed collisions of gold ions provide a recipe for in-depth explorations of matter and fundamental forces. The Relativistic Heavy Ion Collider (RHIC) has produced the most massive antimatter nucleus ever discovered—and the first containing an anti-strange quark. The presence of strange antimatter makes this antinucleus the first to be entered below the plane of the classic Periodic Table of Elements, marking a new frontier in physics.

  7. Quark-Novae Ia in the Hubble diagram: implications for dark energy (United States)

    Ouyed, Rachid; Koning, Nico; Leahy, Denis; Staff, Jan E.; Cassidy, Daniel T.


    The accelerated expansion of the Universe was proposed through the use of Type-Ia supernovae (SNe) as standard candles. The standardization depends on an empirical correlation between the stretch/color and peak luminosity of the light curves. The use of Type-Ia SNe as standard candles rests on the assumption that their properties (and this correlation) do not vary with redshift. We consider the possibility that the majority of Type-Ia SNe are in fact caused by a Quark-Nova detonation in a tight neutron-star-CO-white-dwarf binary system, which forms a Quark-Nova Ia (QN-Ia). The spin-down energy injected by the Quark-Nova remnant (the quark star) contributes to the post-peak light curve and neatly explains the observed correlation between peak luminosity and light curve shape. We demonstrate that the parameters describing QN-Ia are NOT constant in redshift. Simulated QN-Ia light curves provide a test of the stretch/color correlation by comparing the true distance modulus with that determined using SN light curve fitters. We determine a correction between the true and fitted distance moduli, which when applied to Type-Ia SNe in the Hubble diagram recovers the ΩM = 1 cosmology. We conclude that Type-Ia SNe observations do not necessitate the need for an accelerating expansion of the Universe (if the observed SNe Ia are dominated by QNe Ia) and by association the need for dark energy.

  8. Quark-Nova Explosion inside a Collapsar: Application to Gamma Ray Bursts

    Directory of Open Access Journals (Sweden)

    Rachid Ouyed


    Full Text Available If a quark-nova occurs inside a collapsar, the interaction between the quark-nova ejecta (relativistic iron-rich chunks and the collapsar envelope leads to features indicative of those observed in Gamma Ray Bursts. The quark-nova ejecta collides with the stellar envelope creating an outward moving cap (Γ∼ 1–10 above the polar funnel. Prompt gamma-ray burst emission from internal shocks in relativistic jets (following accretion onto the quark star becomes visible after the cap becomes optically thin. Model features include (i precursor activity (optical, X-ray, γ-ray, (ii prompt γ-ray emission, and (iii afterglow emission. We discuss SN-less long duration GRBs, short hard GRBs (including association and nonassociation with star forming regions, dark GRBs, the energetic X-ray flares detected in Swift GRBs, and the near-simultaneous optical and γ-ray prompt emission observed in GRBs in the context of our model.

  9. High pressure induced superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Amaya, K.; Shimizu, K


    We have developed complex extreme condition of very low temperature down to 30 mK and ultra high pressure exceeding 200 GPa by assembling compact diamond anvil cell (DAC) on a powerful {sup 3}He/{sup 4}He dilution refrigerator. We have also developed measuring techniques of electrical resistance, magnetization and optical measurement for the sample confined in the sample space of the DAC. Using the newly developed apparatus and techniques, we have searched for superconductivity in various materials under pressure. In this paper, we will shortly review our newly developed experimental apparatus and techniques and discuss a few examples of pressure induced superconductivity which were observed recently.

  10. Superconducting metamaterials and qubits (United States)

    Plourde, B. L. T.; Wang, Haozhi; Rouxinol, Francisco; LaHaye, M. D.


    Superconducting thin-film metamaterial resonators can provide a dense microwave mode spectrum with potential applications in quantum information science. We report on the fabrication and low-temperature measurement of metamaterial transmission-line resonators patterned from Al thin films. We also describe multiple approaches for numerical simulations of the microwave properties of these structures, along with comparisons with the measured transmission spectra. The ability to predict the mode spectrum based on the chip layout provides a path towards future designs integrating metamaterial resonators with superconducting qubits.

  11. Superconducting magnetic quadrupole

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.W.; Shepard, K.W.; Nolen, J.A.


    A design was developed for a 350 T/m, 2.6-cm clear aperture superconducting quadrupole focussing element for use in a very low q/m superconducting linac as discussed below. The quadrupole incorporates holmium pole tips, and a rectangular-section winding using standard commercially-available Nb-Ti wire. The magnet was modeled numerically using both 2D and 3D codes, as a basis for numerical ray tracing using the quadrupole as a linac element. Components for a prototype singlet are being procured during FY 1995.

  12. Gambling with Superconducting Fluctuations (United States)

    Foltyn, Marek; Zgirski, Maciej


    Josephson junctions and superconducting nanowires, when biased close to superconducting critical current, can switch to a nonzero voltage state by thermal or quantum fluctuations. The process is understood as an escape of a Brownian particle from a metastable state. Since this effect is fully stochastic, we propose to use it for generating random numbers. We present protocol for obtaining random numbers and test the experimentally harvested data for their fidelity. Our work is prerequisite for using the Josephson junction as a tool for stochastic (probabilistic) determination of physical parameters such as magnetic flux, temperature, and current.

  13. Overview of top quark measurements at ATLAS

    CERN Document Server

    Lucotte, Arnaud; The ATLAS collaboration


    Measurements of the QCD and EW top quark production cross sections and properties in proton-proton collisions with the ATLAS detector at the Large Hadron Collider are presented. The main focus are measurements of differential spectra of top quark pair final states, in particular fully fiducial measurements will be presented, measuring a cross section in a phase-space close to the observable region. Measurements of the top-quark mass and polarisation, as well as of the polarization of W bosons in top quark decays to probe the Wtb-vertex are presented. In addition, measurements of the spin correlation between top and anti-top quarks as well as of the top-quark charge asymmetry, which constitute important tests of QCD and are sensitive to new physics, are discussed.

  14. Top Quark Production at Hadron Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Phaf, Lukas Kaj [Univ. of Amsterdam (Netherlands)


    This thesis describes both theoretical and experimental research into top quark production. The theoretical part contains a calculation of the single-top quark production cross section at hadron colliders, at Next to Leading Order (NLO) accuracy. The experimental part describes a measurement of the top quark pair production cross section in proton-antiproton collisions, at a center of mass energy of 1.96 TeV.

  15. Recent Top Quark Mass Measurements from CMS

    CERN Document Server

    Castro, Andrea


    A variety of top quark mass measurements has been made in the recent years by the CMS Collaboration. The most recent measurements performed at 8 TeV are reported here, along with a new measurement based on data collected in 2016 at 13 TeV. The current combination of these measurements has a relative uncertainty smaller than 0.3 percent, making the top quark the most accurately measured quark.

  16. Effective Quark Interactions and QCD-Propagators


    Bergerhoff, Bastian; Wetterich, Christof


    We compute the momentum dependence of the effective four quark interaction in QCD after integrating out the gluons. Our method is based on a truncation of exact renormalization group equations which should give reasonable results for momenta above the confinement scale. The difference between the four quark interaction and the heavy quark potential can be minimized for an optimal renormalization scheme in Landau gauge. Within the momentum range relevant for quarkonia our results agree with ph...

  17. Star Wreck

    CERN Document Server

    Kusenko, A; Tinyakov, Peter G; Tkachev, Igor I; Kusenko, Alexander; Shaposhnikov, Mikhail; Tkachev, Igor I.


    Electroweak models with low-energy supersymmetry breaking predict the existence of stable non-topological solitons, Q-balls, that can be produced in the early universe. The relic Q-balls can accumulate inside a neutron star and gradually absorb the baryons into the scalar condensate. This causes a slow reduction in the mass of the star. When the mass reaches a critical value, the neutron star becomes unstable and explodes. The cataclysmic destruction of the distant neutron stars may be the origin of the gamma-ray bursts.

  18. Neutron Stars (United States)

    Cottam, J.


    Neutron stars were discovered almost 40 years ago, and yet many of their most fundamental properties remain mysteries. There have been many attempts to measure the mass and radius of a neutron star and thereby constrain the equation of state of the dense nuclear matter at their cores. These have been complicated by unknown parameters such as the source distance and burning fractions. A clean, straightforward way to access the neutron star parameters is with high-resolution spectroscopy. I will present the results of searches for gravitationally red-shifted absorption lines from the neutron star atmosphere using XMM-Newton and Chandra.

  19. The quark revolution and the ZGS - new quarks physics since the ZGS

    Energy Technology Data Exchange (ETDEWEB)

    Lipkin, H.J. [Weizmann Institute of Science, Rehovot (Israel)]|[Tel Aviv Univ. (Israel)


    Overwhelming experimental evidence for quarks as real physical constituents of hadrons along with the QCD analogs of the Balmer Formula, Bohr Atom and Schroedinger Equation already existed in 1966 but was dismissed as heresy. ZGS experiments played an important role in the quark revolution. This role is briefly reviewed and subsequent progress in quark physics is described.

  20. Quark Physics without Quarks: A Review of Recent Developments in S-Matrix Theory. (United States)

    Capra, Fritjof


    Reviews the developments in S-matrix theory over the past five years which have made it possible to derive results characteristic of quark models without any need to postulate the existence of physical quarks. In the new approach, the quark patterns emerge as a consequence of combining the general S-matrix principles with the concept of order.…

  1. Dissipationless Hall current in dense quark matter in a magnetic field

    Directory of Open Access Journals (Sweden)

    E.J. Ferrer


    Full Text Available We show the realization of axion electrodynamics within the Dual Chiral Density Wave phase of dense quark matter in the presence of a magnetic field. The system exhibits an anomalous dissipationless Hall current perpendicular to the magnetic field and an anomalous electric charge density. Connection to topological insulators and 3D optical lattices, as well as possible implications for heavy-ion collisions and neutron stars are outlined.

  2. Dissipationless Hall current in dense quark matter in a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Ferrer, E.J., E-mail:; Incera, V. de la


    We show the realization of axion electrodynamics within the Dual Chiral Density Wave phase of dense quark matter in the presence of a magnetic field. The system exhibits an anomalous dissipationless Hall current perpendicular to the magnetic field and an anomalous electric charge density. Connection to topological insulators and 3D optical lattices, as well as possible implications for heavy-ion collisions and neutron stars are outlined.

  3. A mean field theory for the cold quark gluon plasma applied to stellar structure

    Energy Technology Data Exchange (ETDEWEB)

    Fogaca, D. A.; Navarra, F. S.; Franzon, B. [Instituto de Fisica, Universidade de Sao Paulo Rua do Matao, Travessa R, 187, 05508-090 Sao Paulo, SP (Brazil); Horvath, J. E. [Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Rua do Matao, 1226, 05508-090, Sao Paulo, SP (Brazil)


    An equation of state based on a mean-field approximation of QCD is used to describe the cold quark gluon plasma and also to study the structure of compact stars. We obtain stellar masses compatible with the pulsar PSR J1614-2230 that was determined to have a mass of (1.97 {+-} 0.04 M{sub Circled-Dot-Operator }), and the corresponding radius around 10-11 km.

  4. Properties of gluon and quark jets

    CERN Document Server

    Langefeld, P


    This is a summary of the latest results of the DELPHI collaboration on the properties of quark and identified gluon jets. It covers the measurement of the quark and gluon splitting kernels, the fragmentation functions of gluon and quark jets and their scaling violation behavior as well as an analysis of the scale dependence of the multiplicities of gluon and quark jets. Further, a precision measurement of C/sub A//C/sub F/ from the multiplicities in symmetric three jet events is discussed. (20 refs).

  5. Measurements and searches with top quarks

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Reinhild Yvonne [Univ. of Wuppertal (Germany)


    In 1995 the last missing member of the known families of quarks, the top quark, was discovered by the CDF and D0 experiments at the Tevatron, a proton-antiproton collider at Fermilab near Chicago. Until today, the Tevatron is the only place where top quarks can be produced. The determination of top quark production and properties is crucial to understand the Standard Model of particle physics and beyond. The most striking property of the top quark is its mass--of the order of the mass of a gold atom and close to the electroweak scale--making the top quark not only interesting in itself but also as a window to new physics. Due to the high mass, much higher than of any other known fermion, it is expected that the top quark plays an important role in electroweak symmetry breaking, which is the most prominent candidate to explain the mass of particles. In the Standard Model, electroweak symmetry breaking is induced by one Higgs field, producing one additional physical particle, the Higgs boson. Although various searches have been performed, for example at the Large Electron Positron Collider (LEP), no evidence for the Higgs boson could yet be found in any experiment. At the Tevatron, multiple searches for the last missing particle of the Standard Model are ongoing with ever higher statistics and improved analysis techniques. The exclusion or verification of the Higgs boson can only be achieved by combining many techniques and many final states and production mechanisms. As part of this thesis, the search for Higgs bosons produced in association with a top quark pair (t$\\bar{t}$H) has been performed. This channel is especially interesting for the understanding of the coupling between Higgs and the top quark. Even though the Standard Model Higgs boson is an attractive candidate, there is no reason to believe that the electroweak symmetry breaking is induced by only one Higgs field. In many models more than one Higgs boson are expected to exist, opening even more

  6. Pseudoscalar meson physics with four dynamical quarks

    CERN Document Server

    Bazavov, A; Bouchard, C; DeTar, C; Du, D; El-Khadra, A X; Foley, J; Freeland, E D; Gamiz, E; Gottlieb, Steven; Heller, U M; Hetrick, J E; Kim, J; Kronfeld, A S; Laiho, J; Levkova, L; Lightman, M; Mackenzie, P B; Neil, E T; Oktay, M; Simone, J N; Sugar, R L; Toussaint, D; Van de Water, R S; Zhou, R


    We present preliminary results for light, strange and charmed pseudoscalar meson physics from simulations using four flavors of dynamical quarks with the highly improved staggered quark (HISQ) action. These simulations include lattice spacings ranging from 0.15 to 0.06 fm, and sea-quark masses both above and at their physical value. The major results are charm meson decay constants f_D, f_{D_s} and f_{D_s}/f_D and ratios of quark masses. This talk will focus on our procedures for finding the decay constants on each ensemble, the continuum extrapolation, and estimates of systematic error.

  7. Single Top Quarks at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Heinson, Ann P.; /UC, Riverside


    After many years searching for electroweak production of top quarks, the Tevatron collider experiments have now moved from obtaining first evidence for single top quark production to an impressive array of measurements that test the standard model in several directions. This paper describes measurements of the single top quark cross sections, limits set on the CKM matrix element |Vtb|, searches for production of single top quarks produced via flavor-changing neutral currents and from heavy W-prime and H+ boson resonances, and studies of anomalous Wtb couplings. It concludes with projections for future expected significance as the analyzed datasets grow.

  8. CP Violation in Single Top Quark Production

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Weigang [Michigan State Univ., East Lansing, MI (United States)


    We present a search for CP violation in single top quark production with the DØ experiment at the Tevatron proton-antiproton collider. CP violation in the top electroweak interaction results in different single top quark production cross sections for top and antitop quarks. We perform the search in the single top quark final state using 5.4 fb-1 of data, in the s-channel, t-channel, and for both combined. At this time, we do not see an observable CP asymmetry.

  9. Single top quark production with CMS

    Directory of Open Access Journals (Sweden)

    Piccolo Davide


    Full Text Available Measurements of single top quark production performed using the CMS experiment [1] data collected in 2011 at centre-of-mass energies of 7 TeV and in 2012 at 8 TeV, are presented. The cross sections for the electroweak production of single top quarks in the t-channel and in association with W-bosons is measured and the results are used to place constraints on the CKM matrix element Vtb. Measurements of top quark properties in single top quark production are also presented. The results include the measurement of the charge ratio in the single top t-channel.

  10. Top quark measurements in the CMS experiment

    CERN Document Server

    Lista, Luca


    Experimental results on top-quark physics obtained at the CMS experiment are reported based on the data recorded at centre-of-mass energy up to 13 TeV. Inclusive and differential cross sections for both top-quark pair and single top-quark production are presented, as well as measurements of top-quark properties in production and decay, and searches for anomalous couplings. The presented measurements test theoretical predictions, including recent perturbative QCD calculations, provide constraints of fundamental standard model parameters, and set limits on physics beyond the standard model.

  11. Review of meson spectroscopy: quark states and glueballs

    Energy Technology Data Exchange (ETDEWEB)

    Chanowitz, M.S.


    A group of three lectures on hadron spectroscopy are presented. Topics covered include: light L = 0 mesons, light L = 1 mesons, antiquark antiquark quark quark exotics, a catalogue of higher quark antiquark excitations, heavy quarkonium, and glueballs. (GHT)

  12. Superconducting Magnets for Particle Accelerators

    CERN Document Server

    Rossi, L


    Superconductivity has been the most influential technology in the field of accelerators in the last 30 years. Since the commissioning of the Tevatron, which demonstrated the use and operability of superconductivity on a large scale, superconducting magnets and rf cavities have been at the heart of all new large accelerators. Superconducting magnets have been the invariable choice for large colliders, as well as cyclotrons and large synchrotrons. In spite of the long history of success, superconductivity remains a difficult technology, requires adequate R&D and suitable preparation, and has a relatively high cost. Hence, it is not surprising that the development has also been marked by a few setbacks. This article is a review of the main superconducting accelerator magnet projects; it highlights the main characteristics and main achievements, and gives a perspective on the development of superconducting magnets for the future generation of very high energy colliders.

  13. Superconductors for superconducting magnets (United States)

    Larbalestier, David


    Even in 1913 Kamerlingh Onnes envisioned the use of superconductors to create powerful magnetic fields well beyond the capability provided by cooling normal metals with liquid helium. Only some ``bad places'' in his Hg and Pb wires seemed to impede his first attempts at this dream, one that he imagined would be resolved in a few weeks of effort. In fact, of course, resolution required another 50 years and development of both a true understanding of the difference between type I and type II superconductors and the discovery of compounds such as Nb 3 Sn that could remain superconducting to fields as high as 30 T. And then indeed, starting in the 1960s, Onnes's dreams were comfortably surpassed. In the last 45 years virtually all superconducting magnets have been made from just two Nb-base materials, Nb-Ti and Nb 3 Sn. Now it seems that a new generation of magnets based on cuprate high temperature superconductors with fields well above 30 T are possible using Bi-Sr-Ca-Cu-O and the RE-Ba-Cu-O compounds. We hope that a first demonstration of this possibility will be an all-superconducting 32 T magnet with RE-Ba-Cu-O insert that we are building for NHMFL users. The magnet application potential of this new generation of superconducting conductors will be discussed.

  14. Nonlinearities in Microwave Superconductivity


    Ledenyov, Dimitri O.; Ledenyov, Viktor O.


    The research is focused on the modeling of nonlinear properties of High Temperature Superconducting (HTS) thin films, using Bardeen, Cooper, Schrieffer and Lumped Element Circuit theories, with purpose to enhance microwave power handling capabilities of microwave filters and optimize design of microwave circuits in micro- and nano- electronics.

  15. High temperature superconducting materials

    Energy Technology Data Exchange (ETDEWEB)

    Alario-Franco, M.A. [Universidad Complutense de Madrid (Spain). Facultad de Ciencias Quimicas


    The perovskite structure is the basis of all known high-temperature superconducting materials. Many of the most successful (highest T{sub c}) materials are based on mercury and thallium phases but, due to the high toxicity of the component compounds effort has been invested in the substitution of these elements with silver. Progress is reviewed. (orig.)

  16. Superconductivity committee planning report

    Energy Technology Data Exchange (ETDEWEB)


    The recent discovery of superconductors that operate at relatively high temperatures has generated a large amount of research which promises to have applications in almost all branches of high technology, notably those in which high electric current densities are used. After a background description of the properties of superconductors, the market for superconductor technology is described from the Canadian perspective. Worldwide markets are growing rapidly and are estimated to total $920 million by 1990, considering only conventional low-temperature superconductors. Applications for superconductivity include the use of thin films and microelectronics, low loss signal transmission, tunnel injections, and sensitive magnetic detectors. Superconducting magnets find application in magnetic separation, magnetic levitation and propulsion, and for energy storage and transmission by power utilities. Research in superconductivity in British Columbia, reviewed in this report, has been under way at 3 universities and 4 or 5 compaines, where a small group of qualified researchers and some high-technology laboratories are focusing on thin-film and electonic applications. The potential market for superconductivity is felt to warrant more effort in British Columbia, and a number of recommendations are made for coordinating and promoting research, funding joint university-industry projects for innovative applications, and facilitating technology transfer.

  17. Checking BEBC superconducting magnet

    CERN Multimedia

    CERN PhotoLab


    The superconducting coils of the magnet for the 3.7 m Big European Bubble Chamber (BEBC) had to be checked, see Annual Report 1974, p. 60. The photo shows a dismantled pancake. By December 1974 the magnet reached again the field design value of 3.5 T.

  18. Superconducting Quantum Circuits

    NARCIS (Netherlands)

    Majer, J.B.


    This thesis describes a number of experiments with superconducting cir- cuits containing small Josephson junctions. The circuits are made out of aluminum islands which are interconnected with a very thin insulating alu- minum oxide layer. The connections form a Josephson junction. The current trough

  19. AC/RF Superconductivity

    CERN Document Server

    Ciovati, G.


    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  20. Niobium superconducting cavity

    CERN Multimedia

    CERN PhotoLab


    This 5-cell superconducting cavity, made from bulk-Nb, stems from the period of general studies, not all directed towards direct use at LEP. This one is dimensioned for 1.5 GHz, the frequency used at CEBAF and also studied at Saclay (LEP RF was 352.2 MHz). See also 7908227, 8007354, 8209255, 8210054, 8312339.

  1. ISR Superconducting Quadrupoles

    CERN Multimedia


    Michel Bouvier is preparing for curing the 6-pole superconducting windings inbedded in the cylindrical wall separating liquid helium from vacuum in the quadrupole aperture. The heat for curing the epoxy glue was provided by a ramp of infrared lamps which can be seen above the slowly rotating cylinder. See also 7703512X, 7702690X.

  2. Superconducting doped topological materials

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Satoshi, E-mail: [Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Mizushima, Takeshi, E-mail: [Department of Materials Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Department of Physics, Okayama University, Okayama 700-8530 (Japan)


    Highlights: • Studies on both normal- and SC-state properties of doped topological materials. • Odd-parity pairing systems with the time-reversal-invariance. • Robust superconductivity in the presence of nonmagnetic impurity scattering. • We propose experiments to identify the existence of Majorana fermions in these SCs. - Abstract: Recently, the search for Majorana fermions (MFs) has become one of the most important and exciting issues in condensed matter physics since such an exotic quasiparticle is expected to potentially give rise to unprecedented quantum phenomena whose functional properties will be used to develop future quantum technology. Theoretically, the MFs may reside in various types of topological superconductor materials that is characterized by the topologically protected gapless surface state which are essentially an Andreev bound state. Superconducting doped topological insulators and topological crystalline insulators are promising candidates to harbor the MFs. In this review, we discuss recent progress and understanding on the research of MFs based on time-reversal-invariant superconducting topological materials to deepen our understanding and have a better outlook on both the search for and realization of MFs in these systems. We also discuss some advantages of these bulk systems to realize MFs including remarkable superconducting robustness against nonmagnetic impurities.

  3. AC/RF Superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, Gianluigi [JLAB


    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  4. High temperature superconductivity: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Bedell, K.S.; Coffey, D. (Los Alamos National Lab., NM (USA)); Meltzer, D.E. (Florida Univ., Gainesville, FL (USA)); Pines, D. (Illinois Univ., Urbana, IL (USA)); Schrieffer, J.R. (California Univ., Santa Barbara, CA (USA)) (eds.)


    This book is the result of a symposium at Los Alamos in 1989 on High Temperature Superconductivity. The topics covered include: phenomenology, quantum spin liquids, spin space fluctuations in the insulating and metallic phases, normal state properties, and numerical studies and simulations. (JF)

  5. LEP superconducting cavity

    CERN Multimedia


    Engineers work in a clean room on one of the superconducting cavities for the upgrade to the LEP accelerator, known as LEP-2. The use of superconductors allow higher electric fields to be produced so that higher beam energies can be reached.

  6. LHC superconducting strand

    CERN Multimedia

    Patrice Loiez


    This cross-section through a strand of superconducting matieral as used in the LHC shows the 8000 Niobium-Titanium filaments embedded like a honeycomb in copper. When cooled to 1.9 degrees above absolute zero in the LHC accelerator, these filaments will have zero resistance and so will carry a high electric current with no energy loss.

  7. Electrical Conduction and Superconductivity

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 9. Electrical Conduction and Superconductivity. Suresh V Vettoor. General Article Volume 8 Issue 9 September 2003 pp 41-48. Fulltext. Click here to view fulltext PDF. Permanent link: ...

  8. Highlights of top quark properties measurements at ATLAS

    CERN Document Server

    Barranco Navarro, Laura; The ATLAS collaboration


    The top quark is the heaviest known fundamental particle. As it is the only quark that decays before it hadronizes, this gives the unique opportunity to probe the properties of bare quarks. This talk focuses on a few recent precision measurements of top quark properties in production and decay by the ATLAS Collaboration. Measurements of the top quark mass and searches for rare top quark decays are also presented.

  9. Simulating Hadronic-to-Quark-Matter with Burn-UD: Recent work and astrophysical applications (United States)

    Welbanks, Luis; Ouyed, Amir; Koning, Nico; Ouyed, Rachid


    We present the new developments in Burn-UD, our in-house hydrodynamic combustion code used to model the phase transition of hadronic-to-quark matter. Our two new modules add neutrino transport and the time evolution of a (u, d, s) quark star (QS). Preliminary simulations show that the inclusion of neutrino transport points towards new hydrodynamic instabilities that increase the burning speed. A higher burning speed could elicit the deflagration to detonation of a neutron star (NS) into a QS. We propose that a Quark-Nova (QN: the explosive transition of a NS to a QS) could help us explain the most energetic astronomical events to this day: superluminous supernovae (SLSNe). Our models consider a QN occurring in a massive binary, experiencing two common envelope stages and a QN occurring after the supernova explosion of a Wolf-Rayet (WO) star. Both models have been successful in explaining the double humped light curves of over half a dozen SLSNe. We also introduce SiRop our r-process simulation code and propose that a QN site has the hot temperatures and neutron densities required to make it an ideal site for the r-process.

  10. Neutron stars interiors: Theory and reality

    Energy Technology Data Exchange (ETDEWEB)

    Stone, J.R. [University of Oxford, Department of Physics, Oxford (United Kingdom); University of Tennessee, Department of Physics and Astronomy, Knoxville, TN (United States)


    There are many fascinating processes in the universe which we observe in more detail thanks to increasingly sophisticated technology. One of the most interesting phenomena is the life cycle of stars, their birth, evolution and death. If the stars are massive enough, they end their lives in a core-collapse supernova explosion, one of the most violent events in the universe. As a result, the densest objects in the universe, neutron stars and/or black holes, are created. The physical basis of these events should be understood in line with observation. Unfortunately, available data do not provide adequate constraints for many theoretical models of dense matter. One of the most open areas of research is the composition of matter in the cores of neutron stars. Unambiguous fingerprints for the appearance and evolution of particular components, such as strange baryons and mesons, with increasing density, have not been identified. In particular, the hadron-quark phase transition remains a subject of intensive research. In this contribution we briefly survey the most promising observational and theoretical directions leading to progress in understanding high density matter in neutron stars. A possible way forward in modeling high-density matter is outlined, exemplified by the quark-meson-coupling model (QMC). This model makes connection between hadronic structure and the underlying quark make-up. It offers a natural explanation for the saturation of nuclear force and treats high-density matter, containing the full baryon octet, in terms of four uniquely defined parameters adjusted to properties of symmetric nuclear matter at saturation. (orig.)

  11. Star Imager

    DEFF Research Database (Denmark)

    Madsen, Peter Buch; Jørgensen, John Leif; Thuesen, Gøsta


    The version of the star imager developed for Astrid II is described. All functions and features are described as well as the operations and the software protocol.......The version of the star imager developed for Astrid II is described. All functions and features are described as well as the operations and the software protocol....

  12. Star Polymers. (United States)

    Ren, Jing M; McKenzie, Thomas G; Fu, Qiang; Wong, Edgar H H; Xu, Jiangtao; An, Zesheng; Shanmugam, Sivaprakash; Davis, Thomas P; Boyer, Cyrille; Qiao, Greg G


    Recent advances in controlled/living polymerization techniques and highly efficient coupling chemistries have enabled the facile synthesis of complex polymer architectures with controlled dimensions and functionality. As an example, star polymers consist of many linear polymers fused at a central point with a large number of chain end functionalities. Owing to this exclusive structure, star polymers exhibit some remarkable characteristics and properties unattainable by simple linear polymers. Hence, they constitute a unique class of technologically important nanomaterials that have been utilized or are currently under audition for many applications in life sciences and nanotechnologies. This article first provides a comprehensive summary of synthetic strategies towards star polymers, then reviews the latest developments in the synthesis and characterization methods of star macromolecules, and lastly outlines emerging applications and current commercial use of star-shaped polymers. The aim of this work is to promote star polymer research, generate new avenues of scientific investigation, and provide contemporary perspectives on chemical innovation that may expedite the commercialization of new star nanomaterials. We envision in the not-too-distant future star polymers will play an increasingly important role in materials science and nanotechnology in both academic and industrial settings.

  13. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Brorsen, Michael; Frigaard, Peter

    Nærværende rapport beskriver numeriske beregninger af den hydrodynamiske interaktion mellem 5 flydere i bølgeenergianlægget Wave Star.......Nærværende rapport beskriver numeriske beregninger af den hydrodynamiske interaktion mellem 5 flydere i bølgeenergianlægget Wave Star....

  14. Study of excited quark propagator contributions in perturbative chiral quark model (United States)

    Liu, X. Y.; Liu, Z. J.; Limphirat, A.; Khosonthongkee, K.; Yan, Y.


    In this work, masses of octet baryons are evaluated in the framework of the perturbative chiral quark model (PCQM) with considering both the ground and excited states in the quark propagator, in which a Cornell-like potential is first constructed by letting the predetermined ground state quark wavefunction satisfy Dirac equation, and the excited quark states are derived by resolving Dirac equation with the extracted PCQM potential numerically employing Generalized Eigenvalue & Eigenstate Problem method. The results on the octet baryon masses are found in good agreement with the experimental data, and the study reveals that the contributions of the excited quark states are considerably influential in the octet baryon masses as expected.

  15. Nucleosynthesis in Strange Star Mergers (United States)

    Paulucci, Laura; Horvath, Jorge E.; Benvenuto, Omar

    The possible existence of deconfined matter in the cores of neutron stars has been studied for over three decades without a firm indication either for or against this proposition. Analysis mostly rely on the comparison of mass-radius curves obtained for different compositions with observational data on the mass of the most massive objects of this kind accurately determined. Nevertheless, there are other possibilities for indirectly studying the internal composition of this class of compact objects, e.g, analyzing cooling behavior, X-ray bursts, supernova’s neutrinos. We present calculations on the expected nucleosynthesis spectra for the strange star-strange star merger scenario as means to test the strange quark matter hypothesis and its realization inside such objects. This would result very different from the typical r-process nucleosynthesis expected in neutron star mergers since the high temperature deconfinement of strange matter would produce large amounts of neutrons and protons and the mass buildup would proceed in a Big-Bang nucleosynthesis like scenario. The neutron to proton ratio would allow to reach the iron peak only, a very different prediction from the standard scenario. The resultant light curve indicate it may be compatible with that of a kilonova depending on the specific details of the ejecta.

  16. PREFACE: Quark Matter 2006 Conference Quark Matter 2006 Conference (United States)

    Ma, Yu-Gang; Wang, En-Ke; Cai, Xu; Huang, Huan-Zhong; Wang, Xin-Nian; Zhu, Zhi-Yuan


    The Quark Matter 2006 conference was held on 14-20 November 2006 at the Shanghai Science Hall of the Shanghai Association of Sciences and Technology in Shanghai, China. It was the 19th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions. The conference was organized jointly by SINAP (Shanghai Institute of Applied Physics, Chinese Academy of Sciences (CAS)) and CCNU (Central China Normal University, Wuhan). Over 600 scientists from 32 countries in five continents attended the conference. This is the first time that China has hosted such a premier conference in the field of relativistic heavy-ion collisions, an important event for the Chinese high energy nuclear physics community. About one half of the conference participants are junior scientists—a clear indication of the vigor and momentum for this field, in search of the fundamental nature of the nuclear matter at extreme conditions. Professor T D Lee, honorary chair of the conference and one of the founders of the quark matter research, delivered an opening address with his profound and philosophical remarks on the recent discovery of the nature of strongly-interacting quark-gluon-plasma (sQGP). Professor Hongjie Xu, director of SINAP, gave a welcome address to all participants on behalf of the two hosting institutions. Dr Peiwen Ji, deputy director of the Mathematics and Physics Division of the Natural Science Foundation of China (NSFC), also addressed the conference participants and congratulated them on the opening of the conference. Professor Mianheng Jiang, vice president of the Chinese Academy of Sciences (CAS), gave a concise introduction about the CAS as the premier research institution in China. He highlighted continued efforts at CAS to foster international collaborations between China and other nations. The Quark Matter 2006 conference is an example of such a successful collaboration between high energy nuclear physicists in China and other nations all over the world. The

  17. Neutron stars as type-I superconductors. (United States)

    Buckley, Kirk B W; Metlitski, Max A; Zhitnitsky, Ariel R


    In a recent paper by Link, it was pointed out that the standard picture of the neutron star core composed of a mixture of a neutron superfluid and a proton type-II superconductor is inconsistent with observations of a long period precession in isolated pulsars. In the following we will show that an appropriate treatment of the interacting two-component superfluid (made of neutron and proton Cooper pairs), when the structure of proton vortices is strongly modified, may dramatically change the standard picture, resulting in a type-I superconductor. In this case the magnetic field is expelled from the superconducting regions of the neutron star, leading to the formation of the intermediate state when alternating domains of superconducting matter and normal matter coexist.

  18. Chromomagnetic catalysis of colour superconductivity

    CERN Document Server

    Zhukovskij, V C; Klimenko, K G; Ehbert, D


    The effect of the chromomagnetic field on the phase structure of the Namby - Jona-Lasinio expanded model with two quarks aromas is studied. It is shown that certain types of the chromomagnetic fields induce spontaneous violation of the colour, chiral or both symmetries simultaneously, depending on the ratio between the quarks interaction constants in the q-barq- and qq-channels

  19. Longitudinal heavy quark structure function

    Energy Technology Data Exchange (ETDEWEB)

    Khorramian, Ali N. [Physics Department, Semnan University, Semnan (Iran, Islamic Republic of); School of Particles and Accelerators, IPM - Institute for Studies in Theoretical Physics and Mathematics, P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)], E-mail:; Atashbar Tehrani, S. [Physics Department, Semnan University, Semnan (Iran, Islamic Republic of); School of Particles and Accelerators, IPM - Institute for Studies in Theoretical Physics and Mathematics, P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)], E-mail:; Mirjalili, A. [Physics Department, Yazd University, Yazd (Iran, Islamic Republic of); School of Particles and Accelerators, IPM - Institute for Studies in Theoretical Physics and Mathematics, P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)], E-mail:


    In this paper we study the heavy-quark contribution to the proton non-singlet structure functions F{sub L}{sup NS}(x,Q{sup 2}). In this way we use very recently results for massive operator matrix elements, which contribute to the heavy flavor Wilson coefficients in unpolarized deeply inelastic scattering in the region Q{sup 2}>>m{sup 2}. The method of QCD analysis of non-singlet structure function, based on their Jacobi polynomials reconstruction from perturbative QCD predictions for the Mellin moments, is also described.

  20. Quark-gluon plasma 4

    CERN Document Server

    Wang, Xin-Nian


    This is a review volume containing articles written by experts on current theoretical topics in the subject of Quark-Gluon Plasma created in heavy-ion collisions at high energy. It is the fourth volume in the series with the same title sequenced numerically. The articles are written in a pedagogical style so that they can be helpful to a wide range of researchers from graduate students to mature physicists who have not worked previously on the subject. A reader should be able to learn from the reviews without having extensive knowledge of the background literature.

  1. Getting familiar with the top quark

    Energy Technology Data Exchange (ETDEWEB)

    Glanz, J.


    Until last year, physics textbooks still had a conspicuous blank in their tables of fundamental particles. That blank finally got filled when to collaborations at the Fermi National Accelerator Laboratory glimpsed a massive building block of nature called the top quark. Now observation of the top quark is becoming routine. This article describes the discovery and the research which still remains. 1 fig.

  2. Heavy quark production in pp collisions

    Energy Technology Data Exchange (ETDEWEB)

    McGaughey, P.L. [Los Alamos National Lab., NM (United States); Quack, E. [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany); Ruuskanen, P.V. [Univ. of Helsinki (Finland)]|[Univ. of Jyvaeskylae (Finland)] [and others


    A systematic study of the inclusive single heavy quark and heavy-quark pair production cross sections in pp collisions is presented for RHIC and LHC energies. We compare with existing data when possible. The dependence of the rates on the renormalization and factorization scales is discussed. Predictions of the cross sections are given for two different sets of parton distribution functions.

  3. Recent advances in heavy quark theory

    Energy Technology Data Exchange (ETDEWEB)

    Wise, M. [California Institute of Technology, Pasadena, CA (United States)


    Some recent developments in heavy quark theory are reviewed. Particular emphasis is given to inclusive weak decays of hadrons containing a b quark. The isospin violating hadronic decay D{sub s}* {yields} D{sub s}{sup pi}{sup 0} is also discussed.


    Energy Technology Data Exchange (ETDEWEB)



    The role of the top quark in completing the Standard Model quark sector is reviewed, along with a discussion of production, decay, and theoretical restrictions on the top quark properties. Particular attention is paid to the top quark as a laboratory for perturbative QCD. As examples of the relevance of QCD corrections in the top quark sector, the calculation of e{sup +}e{sup -} + t{bar t} at next-to-leading-order QCD using the phase space slicing algorithm and the implications of a precision measurement of the top quark mass are discussed in detail. The associated production of a t{bar t} pair and a Higgs boson in either e{sup +}e{sup -} or hadronic collisions is presented at next-to-leading-order QCD and its importance for a measurement of the top quark Yulrawa coupling emphasized. Implications of the heavy top quark mass for model builders are briefly examined, with the minimal supersymmetric Standard Model and topcolor discussed as specific examples.

  5. Quark interchange model of baryon interactions

    Energy Technology Data Exchange (ETDEWEB)

    Maslow, J.N.


    The strong interactions at low energy are traditionally described by meson field theories treating hadrons as point-like particles. Here a mesonic quark interchange model (QIM) is presented which takes into account the finite size of the baryons and the internal quark structure of hadrons. The model incorporates the basic quark-gluon coupling of quantum chromodynamics (QCD) and the MIT bag model for color confinement. Because the quark-gluon coupling constant is large and it is assumed that confinement excludes overlap of hadronic quark bags except at high momenta, a non-perturbative method of nuclear interactions is presented. The QIM allows for exchange of quark quantum numbers at the bag boundary between colliding hadrons mediated at short distances by a gluon exchange between two quarks within the hadronic interior. This generates, via a Fierz transformation, an effective space-like t channel exchange of color singlet (q anti-q) states that can be identified with the low lying meson multiplets. Thus, a one boson exchange (OBE) model is obtained that allows for comparison with traditional phenomenological models of nuclear scattering. Inclusion of strange quarks enables calculation of YN scattering. The NN and YN coupling constants and the nucleon form factors show good agreement with experimental values as do the deuteron low energy data and the NN low energy phase shifts. Thus, the QIM provides a simple model of strong interactions that is chirally invariant, includes confinement and allows for an OBE form of hadronic interaction at low energies and momentum transfers.

  6. Top Quark Production at the LHC

    CERN Document Server

    Aoki, M


    Measurements of the production cross section for top quark pairs and the single top quark by the ATLAS and CMS collaborations at the LHC are presented. Improved measurements at sqrt(s)=7 TeV as well as new measurements at sqrt(s)=8 TeV are highlighted. All the measurements are in good agreement with the standard model predictions.

  7. Top quark physics expectations at the LHC

    CERN Document Server

    Gaponenko, Andrei


    The top quark will be produced copiously at the LHC. This will make possible detailed physics studies, and also the use of top quark decays for detector calibration. This talk reviews plans and prospects for top physics activities in ATLAS and CMS experiments.

  8. Top quark physics expectations at the LHC

    CERN Document Server

    Gaponenko, Andrei


    The top quark will be produced copiously at the LHC. This will make both detailed physics studies and the use of top quark decays for detector calibration possible. This talk reviews plans and prospects for top physics activities in the ATLAS and CMS experiments.

  9. Transversity of quarks in a nucleon

    Indian Academy of Sciences (India)

    The transversity distribution of quarks in a nucleon is one of the three fundamental distributions, that characterize nucleon's properties in hard scattering processes at leading twist (twist 2). It measures the distribution of quark transverse spin in a nucleon polarized transverse to its (infinite) momentum. It is a chiral-odd ...

  10. The Top Quark, QCD, And New Physics. (United States)

    Dawson, S.


    The role of the top quark in completing the Standard Model quark sector is reviewed, along with a discussion of production, decay, and theoretical restrictions on the top quark properties. Particular attention is paid to the top quark as a laboratory for perturbative QCD. As examples of the relevance of QCD corrections in the top quark sector, the calculation of e{sup+}e{sup -}+ t{bar t} at next-to-leading-order QCD using the phase space slicing algorithm and the implications of a precision measurement of the top quark mass are discussed in detail. The associated production of a t{bar t} pair and a Higgs boson in either e{sup+}e{sup -} or hadronic collisions is presented at next-to-leading-order QCD and its importance for a measurement of the top quark Yulrawa coupling emphasized. Implications of the heavy top quark mass for model builders are briefly examined, with the minimal supersymmetric Standard Model and topcolor discussed as specific examples.

  11. Quark Model in the Quantum Mechanics Curriculum. (United States)

    Hussar, P. E.; And Others


    This article discusses in detail the totally symmetric three-quark karyonic wave functions. The two-body mesonic states are also discussed. A brief review of the experimental efforts to identify the quark model multiplets is given. (Author/SK)

  12. Electromagnetic signals of quark gluon plasma

    Indian Academy of Sciences (India)

    Successive equilibration of quark degrees of freedom and its effects on electromagnetic signals of quark gluon plasma are discussed. The effects of the variation of vector meson masses and decay widths on photon production from hot strongly interacting matter formed after Pb + Pb and S + Au collisions at CERN SPS ...

  13. The heavy quark expansion of QCD

    Energy Technology Data Exchange (ETDEWEB)

    Falk, A.F. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Physics and Astronomy


    These lectures contain an elementary introduction to heavy quark symmetry and the heavy quark expansion. Applications such as the expansion of heavy meson decay constants and the treatment of inclusive and exclusive semileptonic B decays are included. Heavy hadron production via nonperturbative fragmentation processes is also discussed. 54 refs., 7 figs.

  14. Soft equations of state for neutron-star matter ruled out by EXO 0748 - 676. (United States)

    Ozel, F


    The interiors of neutron stars contain matter at very high densities, in a state that differs greatly from those found in the early Universe or achieved in terrestrial experiments. Matter in these conditions can only be probed through astrophysical observations that measure the mass and radius of neutron stars with sufficient precision. Here I report a determination of the mass and radius of the neutron star EXO 0748 - 676 that appears to rule out all the soft equations of state of neutron-star matter. If this object is typical, then condensates and unconfined quarks do not exist in the centres of neutron stars.


    Energy Technology Data Exchange (ETDEWEB)

    Staff, Jan E. [Department of Physics and Astronomy, Louisiana State University, 202 Nicholson Hall, Tower Drive, Baton Rouge, LA 70803-4001 (United States); Jaikumar, Prashanth; Chan, Vincent [Department of Physics and Astronomy, California State University Long Beach, 1250 Bellflower Boulevard, Long Beach, CA 90840 (United States); Ouyed, Rachid [Department of Physics and Astronomy, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4 (Canada)


    We study the spindown of isolated neutron stars from initially rapid rotation rates, driven by two factors: (1) gravitational wave emission due to r-modes and (2) magnetic braking. In the context of isolated neutron stars, we present the first study including self-consistently the magnetic damping of r-modes in the spin evolution. We track the spin evolution employing the RNS code, which accounts for the rotating structure of neutron stars for various equations of state. We find that, despite the strong damping due to the magnetic field, r-modes alter the braking rate from pure magnetic braking for B {<=} 10{sup 13} G. For realistic values of the saturation amplitude {alpha}{sub sat}, the r-mode can also decrease the time to reach the threshold central density for quark deconfinement. Within a phenomenological model, we assess the gravitational waveform that would result from r-mode-driven spindown of a magnetized neutron star. To contrast with the persistent signal during the spindown phase, we also present a preliminary estimate of the transient gravitational wave signal from an explosive quark-hadron phase transition, which can be a signal for the deconfinement of quarks inside neutron stars.

  16. Distinguishing newly born strange stars from neutron stars with g-mode oscillations. (United States)

    Fu, Wei-Jie; Wei, Hai-Qing; Liu, Yu-Xin


    The gravity-mode (g-mode) eigenfrequencies of newly born strange quark stars (SQSs) and neutron stars (NSs) are studied. It is found that the eigenfrequencies in SQSs are much lower than those in NSs by almost 1 order of magnitude, since the components of a SQS are all extremely relativistic particles while nucleons in a NS are nonrelativistic. We therefore propose that newly born SQSs can be distinguished from the NSs by detecting the eigenfrequencies of the g-mode pulsations of supernovae cores through gravitational radiation by LIGO-class detectors.

  17. Quarks and gluons in hadrons and nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Close, F.E. (Oak Ridge National Lab., TN (USA) Tennessee Univ., Knoxville, TN (USA))


    These lectures discuss the particle-nuclear interface -- a general introduction to the ideas and application of colored quarks in nuclear physics, color, the Pauli principle, and spin flavor correlations -- this lecture shows how the magnetic moments of hadrons relate to the underlying color degree of freedom, and the proton's spin -- a quark model perspective. This lecture reviews recent excitement which has led some to claim that in deep inelastic polarized lepton scattering very little of the spin of a polarized proton is due to its quarks. This lecture discusses the distribution functions of quarks and gluons in nucleons and nuclei, and how knowledge of these is necessary before some quark-gluon plasma searches can be analyzed. 56 refs., 2 figs.

  18. Relativistic model for anisotropic strange stars (United States)

    Deb, Debabrata; Chowdhury, Sourav Roy; Ray, Saibal; Rahaman, Farook; Guha, B. K.


    In this article, we attempt to find a singularity free solution of Einstein's field equations for compact stellar objects, precisely strange (quark) stars, considering Schwarzschild metric as the exterior spacetime. To this end, we consider that the stellar object is spherically symmetric, static and anisotropic in nature and follows the density profile given by Mak and Harko (2002) , which satisfies all the physical conditions. To investigate different properties of the ultra-dense strange stars we have employed the MIT bag model for the quark matter. Our investigation displays an interesting feature that the anisotropy of compact stars increases with the radial coordinate and attains its maximum value at the surface which seems an inherent property for the singularity free anisotropic compact stellar objects. In this connection we also perform several tests for physical features of the proposed model and show that these are reasonably acceptable within certain range. Further, we find that the model is consistent with the energy conditions and the compact stellar structure is stable with the validity of the TOV equation and Herrera cracking concept. For the masses below the maximum mass point in mass vs radius curve the typical behavior achieved within the framework of general relativity. We have calculated the maximum mass and radius of the strange stars for the three finite values of bag constant Bg.

  19. Production and decay of heavy top quarks

    Energy Technology Data Exchange (ETDEWEB)

    Kauffman, R.P.


    Experimental evidence indicates that the top quark exists and has a mass between 50 and 200 GeV/c{sup 2}. The decays of a top quark with a mass in this range are studied with emphasis placed on the mass region near the threshold for production of real W bosons. Topics discussed are: (1) possible enhancement of strange quark production when M{sub W} + m{sub s} < m{sub t} < M{sub W} + m{sub b}; (2) exclusive decays of T mesons to B and B{asterisk} mesons using the non-relativistic quark model; (3) polarization of intermediate W's in top quark decay as a source of information on the top quark mass. The production of heavy top quarks in an e{sup +}e{sup {minus}} collider with a center-of-mass energy of 2 TeV is studied. The effective-boson approximation for photons, Z{sup 0}'s and W's is reviewed and an analogous approximation for interfaces between photons and Z{sup 0}'s is developed. The cross sections for top quark pair production from photon-photon, photon-Z{sup 0}, Z{sup 0}Z{sup 0}, and W{sup +}W{sup {minus}} fusion are calculated using the effective-boson approximation. Production of top quarks along with anti-bottom quarks via {gamma}W{sup +} and Z{sup 0}W{sup +} fusion is studied. An exact calculation of {gamma}e{sup +} {yields} {bar {nu}}t{bar b} is made and compared with the effective-W approximation. 31 refs., 46 figs.

  20. 2017 Gordon Conference on Superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Chubukov, Andrey [Univ. of Minnesota, Twin Cities, MN (United States)


    The DOE award was for a 2017 Gordon Research conference on Superconductivity (GRC). The objective of GRC is to interchange the information about the latest theoretical and experimental developments in the area of superconductivity and to select most perspective directions for future research in this area.The goal of the Gordon Conference on Superconductivity is to present and discuss the latest results in the field of modern superconductivity, discuss new ideas and new directions of research in the area. It is a long-standing tradition of the Gordon conference on Superconductivity that the vast majority of participants are junior scientists. Funding for the conference would primarily be used to support junior researchers, particularly from under-represented groups. We had more 10 female speakers, some of them junior researchers, and some funding was used to support these speakers. The conference was held together with Gordon Research Seminar on Superconductivity, where almost all speakers and participants were junior scientists.

  1. PREFACE: Quark Matter 2006 Conference (United States)

    Ma, Yu-Gang; Wang, En-Ke; Cai, Xu; Huang, Huan-Zhong; Wang, Xin-Nian; Zhu, Zhi-Yuan


    The Quark Matter 2006 conference was held on 14 20 November 2006 at the Shanghai Science Hall of the Shanghai Association of Sciences and Technology in Shanghai, China. It was the 19th International Conference on Ultra-Relativistic Nucleus Nucleus Collisions. The conference was organized jointly by SINAP (Shanghai Institute of Applied Physics, Chinese Academy of Sciences (CAS)) and CCNU (Central China Normal University, Wuhan). Over 600 scientists from 32 countries in five continents attended the conference. This is the first time that China has hosted such a premier conference in the field of relativistic heavy-ion collisions, an important event for the Chinese high energy nuclear physics community. About one half of the conference participants are junior scientists—a clear indication of the vigor and momentum for this field, in search of the fundamental nature of the nuclear matter at extreme conditions. Professor T D Lee, honorary chair of the conference and one of the founders of the quark matter research, delivered an opening address with his profound and philosophical remarks on the recent discovery of the nature of strongly-interacting quark-gluon-plasma (sQGP). Professor Hongjie Xu, director of SINAP, gave a welcome address to all participants on behalf of the two hosting institutions. Dr Peiwen Ji, deputy director of the Mathematics and Physics Division of the Natural Science Foundation of China (NSFC), also addressed the conference participants and congratulated them on the opening of the conference. Professor Mianheng Jiang, vice president of the Chinese Academy of Sciences (CAS), gave a concise introduction about the CAS as the premier research institution in China. He highlighted continued efforts at CAS to foster international collaborations between China and other nations. The Quark Matter 2006 conference is an example of such a successful collaboration between high energy nuclear physicists in China and other nations all over the world. The

  2. Statistical mechanics of superconductivity

    CERN Document Server

    Kita, Takafumi


    This book provides a theoretical, step-by-step comprehensive explanation of superconductivity for undergraduate and graduate students who have completed elementary courses on thermodynamics and quantum mechanics. To this end, it adopts the unique approach of starting with the statistical mechanics of quantum ideal gases and successively adding and clarifying elements and techniques indispensible for understanding it. They include the spin-statistics theorem, second quantization, density matrices, the Bloch–De Dominicis theorem, the variational principle in statistical mechanics, attractive interaction, and bound states. Ample examples of their usage are also provided in terms of topics from advanced statistical mechanics such as two-particle correlations of quantum ideal gases, derivation of the Hartree–Fock equations, and Landau’s Fermi-liquid theory, among others. With these preliminaries, the fundamental mean-field equations of superconductivity are derived with maximum mathematical clarity based on ...

  3. Superconducting Accelerator Magnets

    CERN Document Server

    Mess, K H; Wolff, S


    The main topic of the book are the superconducting dipole and quadrupole magnets needed in high-energy accelerators and storage rings for protons, antiprotons or heavy ions. The basic principles of low-temperature superconductivity are outlined with special emphasis on the effects which are relevant for accelerator magnets. Properties and fabrication methods of practical superconductors are described. Analytical methods for field calculation and multipole expansion are presented for coils without and with iron yoke. The effect of yoke saturation and geometric distortions on field quality is studied. Persistent magnetization currents in the superconductor and eddy currents the copper part of the cable are analyzed in detail and their influence on field quality and magnet performance is investigated. Superconductor stability, quench origins and propagation and magnet protection are addressed. Some important concepts of accelerator physics are introduced which are needed to appreciate the demanding requirements ...

  4. Hard superconducting nitrides (United States)

    Chen, Xiao-Jia; Struzhkin, Viktor V.; Wu, Zhigang; Somayazulu, Maddury; Qian, Jiang; Kung, Simon; Christensen, Axel Nørlund; Zhao, Yusheng; Cohen, Ronald E.; Mao, Ho-kwang; Hemley, Russell J.


    Detailed study of the equation of state, elasticity, and hardness of selected superconducting transition-metal nitrides reveals interesting correlations among their physical properties. Both the bulk modulus and Vickers hardness are found to decrease with increasing zero-pressure volume in NbN, HfN, and ZrN. The computed elastic constants from first principles satisfy c11 > c12 > c44 for NbN, but c11 > c44 > c12 for HfN and ZrN, which are in good agreement with the neutron scattering data. The cubic δ-NbN superconducting phase possesses a bulk modulus of 348 GPa, comparable to that of cubic boron nitride, and a Vickers hardness of 20 GPa, which is close to sapphire. Theoretical calculations for NbN show that all elastic moduli increase monotonically with increasing pressure. These results suggest technological applications of such materials in extreme environments. PMID:15728352

  5. Superconductivity an introduction

    CERN Document Server

    Kleiner, Reinhold


    The third edition of this proven text has been developed further in both scope and scale to reflect the potential for superconductivity in power engineering to increase efficiency in electricity transmission or engines. The landmark reference remains a comprehensive introduction to the field, covering every aspect from fundamentals to applications, and presenting the latest developments in organic superconductors, superconducting interfaces, quantum coherence, and applications in medicine and industry. Due to its precise language and numerous explanatory illustrations, it is suitable as an introductory textbook, with the level rising smoothly from chapter to chapter, such that readers can build on their newly acquired knowledge. The authors cover basic properties of superconductors and discuss stability and different material groups with reference to the latest and most promising applications, devoting the last third of the book to applications in power engineering, medicine, and low temperature physics. An e...

  6. Two-color lattice QCD with staggered quarks

    Energy Technology Data Exchange (ETDEWEB)

    Scheffler, David


    The study of quantum chromodynamics (QCD) at finite temperature and density provides important contributions to the understanding of strong-interaction matter as it is present e.g. in nuclear matter and in neutron stars or as produced in heavy-ion collision experiments. Lattice QCD is a non-perturbative approach, where equations of motion for quarks and gluons are discretized on a finite space-time lattice. The method successfully describes the behavior of QCD in the vacuum and at finite temperature, however it cannot be applied to finite baryon density due to the fermion sign problem. Various QCD-like theories, that offer to draw conclusions about QCD, allow simulations also at finite densities. In this work we investigate two-color QCD as a popular example of a QCD-like theory free from the sign problem with methods from lattice gauge theory. For the generation of gauge configurations with two dynamical quark flavors in the staggered formalism with the ''rooting trick'' we apply the Rational Hybrid Monte Carlo (RHMC) algorithm. We carry out essential preparatory work for future simulations at finite density. As a start, we concentrate on the calculation of the effective potential for the Polyakov loop, which is an order parameter for the confinement-deconfinement transition, in dependence of the temperature and quark mass. It serves as an important input for effective models of QCD. We obtain the effective potential via the histogram method from local distributions of the Polyakov loop. To study the influence of dynamical quarks on gluonic observables, the simulations are performed with large quark masses and are compared to calculations in the pure gauge theory. In the second part of the thesis we examine aspects of the chiral phase transition along the temperature axis. The symmetry group of chiral symmetry in two-color QCD is enlarged to SU(2N{sub f}). Discretized two-color QCD in the staggered formalism exhibits a chiral symmetry breaking

  7. How to make graphene superconducting


    Profeta, Gianni; Calandra, Matteo; Mauri, Francesco


    Graphene is the physical realization of many fundamental concepts and phenomena in solid state-physics, but in the long list of graphene remarkable properties, a fundamental block is missing: superconductivity. Making graphene superconducting is relevant as the easy manipulation of this material by nanolytographic techniques paves the way to nanosquids, one-electron superconductor-quantum dot devices, superconducting transistors at the nano-scale and cryogenic solid-state coolers. Here we exp...

  8. Superconducting metamaterials and qubits


    Plourde, B. L. T.; Wang, Haozhi; Rouxinol, Francisco; LaHaye, M. D.


    Superconducting thin-film metamaterial resonators can provide a dense microwave mode spectrum with potential applications in quantum information science. We report on the fabrication and low-temperature measurement of metamaterial transmission-line resonators patterned from Al thin films. We also describe multiple approaches for numerical simulations of the microwave properties of these structures, along with comparisons with the measured transmission spectra. The ability to predict the mode ...

  9. Unconventional superconductivity near inhomogeneities

    Energy Technology Data Exchange (ETDEWEB)

    Poenicke, A.F.


    After the presentation of a quasi-classical theory the specific heat of Sr{sub 2}RuO{sub 4} is considered. Then tunneling spectroscopy on cuprate superconductors is discussed. Thereafter the subharmonic gap structure in d-wave superconductors is considered. Finally the application of the S-matrix in superconductivity is discussed with spin mixing, CrO{sub 2} as example, and an interface model. (HSI)

  10. Superconducting magnetic energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, J.D.; Boenig, H.J.; Hassenzahl, W.V.; Schermer, R.I.


    Long-time varying-daily, weekly, and seasonal-power demands require the electric utility industry to have installed generating capacity in excess of the average load. Energy storage can reduce the requirement for less efficient excess generating capacity used to meet peak load demands. Short-time fluctuations in electric power can occur as negatively damped oscillations in complex power systems with generators connected by long transmission lines. Superconducting inductors with their associated converter systems are under development for both load leveling and transmission line stabilization in electric utility systems. Superconducting magnetic energy storage (SMES) is based upon the phenomenon of the nearly lossless behavior of superconductors. Application is, in principal, efficient since the electromagnetic energy can be transferred to and from the storage coils without any intermediate conversion to other energy forms. Results from a reference design for a 10-GWh SMES unit for load leveling are presented. The conceptual engineering design of a 30-MJ, 10-MW energy storage coil is discussed with regard to system stabilization, and tests of a small scale, 100-KJ SMES system are presented. Some results of experiments are provided from a related technology based program which uses superconducting inductive energy storage to drive fusion plasmas.

  11. The mass-radius relationship of massive compact stars

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Partha Roy, E-mail: [Department of Physics, Govt. Degree College Kamalpur, Tripura University, Tripura-799285 (India)


    The properties of pure hadronic and hybrid compact stars are reviewed using nuclear equation of state (EoS) for β-equilibrated neutron star (NS) matter obtained using a density-dependent M3Y (DDM3Y) effective nucleon-nucleon interaction. Depending on the model, the energy density of quark matter can be lower than that of this nuclear EoS at higher densities, implying the possibility of transition to quark matter inside the core and the transition density depends on the particular quark matter model used. The recent observations of the binary millisecond pulsar J1614–2230 by P.B. Demorest et al. [1] and PSR J0348+0432 by J. Antoniadis et al. [2] suggest that the masses lie within 1.97 ± 0.04 M{sub ⊙} and 2.01 ± 0.04 M{sub ⊙}, respectively, where M{sub ⊙} is the solar mass. In conformity with recent observations, a pure nucleonic EoS determines that the maximum mass of NS rotating with frequency ν∼ 667 Hz below r-mode instability is ∼ 1.95 M{sub ⊙} with radius ∼ 10 km. Compact stars with quark cores rotating with same frequency have the maximum mass of ∼ 1.72 M{sub ⊙} turns out to be lower than the observed masses.

  12. Superconducting linacs: some recent developments

    Energy Technology Data Exchange (ETDEWEB)

    Bollinger, L.M.


    The paper is a review of superconducting linacs that are of interest for heavy-ion acceleration. Most of the paper is concerned with energy boosters for projectiles from tandem electrostatic accelerators, the only application for which superconducting linacs are now used for heavy-ion acceleration. There is also a brief discussion of the concept of a superconducting injector linac being developed as a replacement of the tandem in a multi-stage acceleration system. Throughout, the emphasis is on the technology of the superconducting linac, including some attention to the relationships between resonator design parameters and accelerator performance characteristics. 21 refs., 14 figs., 3 tabs.

  13. Topological Superconductivity in Dirac Semimetals. (United States)

    Kobayashi, Shingo; Sato, Masatoshi


    Dirac semimetals host bulk band-touching Dirac points and a surface Fermi loop. We develop a theory of superconducting Dirac semimetals. Establishing a relation between the Dirac points and the surface Fermi loop, we clarify how the nontrivial topology of Dirac semimetals affects their superconducting state. We note that the unique orbital texture of Dirac points and a structural phase transition of the crystal favor symmetry-protected topological superconductivity with a quartet of surface Majorana fermions. We suggest the possible application of our theory to recently discovered superconducting states in Cd_{3}As_{2}.

  14. Unconventional superconductivity in honeycomb lattice

    Directory of Open Access Journals (Sweden)

    P Sahebsara


    Full Text Available   ‎ The possibility of symmetrical s-wave superconductivity in the honeycomb lattice is studied within a strongly correlated regime, using the Hubbard model. The superconducting order parameter is defined by introducing the Green function, which is obtained by calculating the density of the electrons ‎ . In this study showed that the superconducting order parameter appears in doping interval between 0 and 0.5, and x=0.25 is the optimum doping for the s-wave superconductivity in honeycomb lattice.

  15. Carbon Stars

    Indian Academy of Sciences (India)

    Abstract. In this paper, the present state of knowledge of the carbon stars is discussed. Particular attention is given to issues of classification, evolution, variability, populations in our own and other galaxies, and circumstellar material.

  16. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Andersen, Thomas Lykke

    Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star.......Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star....

  17. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter

    Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Byggeri og Anlæg med bølgeenergianlæget Wave Star.......Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Byggeri og Anlæg med bølgeenergianlæget Wave Star....

  18. Generalized Boltzmann equation for neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Kaniadakis, G. [Politecnico di Torino (Italy). Dipt. di Fisica]|[Istituto Nazionale di Fisica Nucleare, Sezione di Torino (Italy)]|[INFM, Torino (Italy); Lavagno, A. [Politecnico di Torino (Italy). Dipt. di Fisica]|[Istituto Nazionale di Fisica Nucleare, Sezione di Torino (Italy)]|[INFM, Torino (Italy); Quarati, P. [Politecnico di Torino (Italy). Dipt. di Fisica]|[Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari (Italy)]|[INFM, Torino (Italy)


    Baryon pairing and neutron superfluidity are believed to play an important role in the evolution of neutron stars. The pairing interaction provides a partial antisymmetrization of the nucleons in the stars with the evidence that fractional statistics must hold. By using a kinetic approach recently proposed [G. Kaniadakis, A. Lavagno and P. Quarati, Nucl. Phys. B 466 (1996) 527], we derive a non-linear Boltzmann equation which takes into account collective effects introduced by an exclusion-inclusion principle. This equation describes the dynamics of particles ruled by a fractional statistics. In addition, we extend this Boltzmann equation to the relativistic case and discuss the relevance of the quark matter in the star core. (orig.).

  19. Generalized Boltzmann Equation for Neutron Stars (United States)

    Kaniadakis, G.; Lavagno, A.; Quarati, P.


    Baryon pairing and neutron superfluidity are believed to play an important role in the evolution of neutron stars. The pairing interaction provides a partial antisymmetrization of the nucleons in the stars with the evidence that fractional statistics must hold. By using a kinetic approach recently proposed [G. Kaniadakis, A. Lavagno and P. Quarati, Nucl. Phys. B 466 (1996) 527], we derive a non-linear boltzmann equation which takes into account collective effects introduced by an exclusion-inclusion principle. This equation describes the dynamics of particles ruled by a fractional statistics. In addition, we extend this Boltzmann equation to the relativistic case and discuss the relevance of the quark matter in the star core.

  20. Modified Fragmentation Function from Quark Recombination

    Energy Technology Data Exchange (ETDEWEB)

    Majumder, A.; Wang, Enke; Wang, Xin-Nian


    Within the framework of the constituent quark model, it isshown that the single hadron fragmentation function of a parton can beexpressed as a convolution of shower diquark or triquark distributionfunction and quark recombination probability, if the interference betweenamplitudes of quark recombination with different momenta is neglected.Therecombination probability is determined by the hadron's wavefunction inthe constituent quark model. The shower diquark or triquark distributionfunctions of a fragmenting jet are defined in terms of overlappingmatrices of constituent quarks and parton field operators. They aresimilar in form to dihadron or trihadron fragmentation functions in termsof parton operator and hadron states. Extending the formalism to thefield theory at finite temperature, we automatically derive contributionsto the effective single hadron fragmentation function from therecombination of shower and thermal constituent quarks. Suchcontributions involve single or diquark distribution functions which inturn can be related to diquark or triquark distribution functions via sumrules. We also derive QCD evolution equations for quark distributionfunctions that in turn determine the evolution of the effective jetfragmentation functions in a thermal medium.

  1. Latest ATLAS measurements on top quark properties

    CERN Document Server

    Derue, Frederic; The ATLAS collaboration


    The top quark is unique among the known quarks in that it decays before it has an opportunity to form hadronic bound states. This makes measurements of its properties particularly interesting as one can access directly the properties of a bare quark. The latest measurements of these properties with the ATLAS detector at the LHC are presented using 8 TeV and 13 TeV data, excluding results from single top production. Measurements of top quark spin observables in top-antitop events, each sensitive to a different coefficient of the spin density matrix, are presented and compared to the Standard Model predictions. The helicity of the W boson from the top decays and the production angles of the top quark are further discussed. New results on the measurment of color flow effects in $t{\\bar t}$ events are presented. Limits on the rate of flavour changing neutral currents in the production or decay of the top quark are reported. The cross-section measurement of photons produced in association with top-quark pairs is a...

  2. Optimization of superconducting tiling pattern for superconducting bearings

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Hinsdale, IL)


    An apparatus and method for reducing magnetic field inhomogeneities which produce rotational loss mechanisms in high temperature superconducting magnetic bearings. Magnetic field inhomogeneities are reduced by dividing high temperature superconducting structures into smaller structures, and arranging the smaller structures into tiers which stagger the magnetic field maximum locations of the smaller structures.

  3. Revisiting the equation of state of hybrid stars in the Dyson-Schwinger equation approach to QCD (United States)

    Bai, Zhan; Chen, Huan; Liu, Yu-xin


    We investigate the equation of state (EoS) and the effect of the hadron-quark phase transition of strong interaction matter in compact stars. The hadron matter is described with the relativistic mean field theory, and the quark matter is described with the Dyson-Schwinger equation approach of QCD. The complete EoS of the hybrid star matter is constructed with not only the Gibbs construction but also the 3-window interpolation. The mass-radius relation of hybrid stars is also investigated. We find that, although the EoS of both the hadron matter with hyperon and Δ -baryon and the quark matter are generally softer than that of the nucleon matter, the 3-window interpolation construction may provide an EoS stiff enough for a hybrid star with mass exceeding 2 M⊙ and, in turn, solve the so-called "hyperon puzzle."

  4. The scenario of two families of compact stars. Pt. 1. Equations of state, mass-radius relations and binary systems

    Energy Technology Data Exchange (ETDEWEB)

    Drago, Alessandro; Pagliara, Giuseppe [Ferrara Univ. (Italy). Dipt. di Fisica e Scienze della Terra; INFN, Ferrara (Italy); Lavagno, Andrea; Pigato, Daniele [Politecnico di Torino (Italy). Dept. of Applied Science and Technology; INFN, Torino (Italy)


    We present several arguments which favor the scenario of two coexisting families of compact stars: hadronic stars and quark stars. Besides the well-known hyperon puzzle of the physics of compact stars, a similar puzzle exists also when considering delta resonances. We show that these particles appear at densities close to twice saturation density and must be therefore included in the calculations of the hadronic equation of state. Such an early appearance is strictly related to the value of the L parameter of the symmetry energy that has been found, in recent phenomenological studies, to lie in the range 40 < L < 62 MeV. We discuss also the threshold for the formation of deltas and hyperons for hot and lepton-rich hadronic matter. Similarly to the case of hyperons, also delta resonances cause a softening of the equation of state, which makes it difficult to obtain massive hadronic stars. Quark stars, on the other hand, can reach masses up to 2.75M {sub CircleDot} as predicted by perturbative QCD calculations. We then discuss the observational constraints on the masses and the radii of compact stars. The tension between the precise measurements of high masses and the indications of the existence of very compact stellar objects (with radii of the order of 10 km) is relieved when assuming that very massive compact stars are quark stars and very compact stars are hadronic stars. Finally, we discuss recent interesting measurements of the eccentricities of the orbits of millisecond pulsars in low mass X-ray binaries. The high values of the eccentricities found in some cases could be explained by assuming that the hadronic star, initially present in the binary system, converts to a quark star due to the increase of its central density. (orig.)

  5. Measurement of top quark polarisation in $t$-channel single top quark production

    CERN Document Server

    Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Aşılar, Ece; Bergauer, Thomas; Brandstetter, Johannes; Brondolin, Erica; Dragicevic, Marko; Erö, Janos; Flechl, Martin; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Knünz, Valentin; König, Axel; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Matsushita, Takashi; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schieck, Jochen; Schöfbeck, Robert; Strauss, Josef; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Lauwers, Jasper; Luyckx, Sten; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Abu Zeid, Shimaa; Blekman, Freya; D'Hondt, Jorgen; Daci, Nadir; De Bruyn, Isabelle; Deroover, Kevin; Heracleous, Natalie; Keaveney, James; Lowette, Steven; Moreels, Lieselotte; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Van Parijs, Isis; Barria, Patrizia; Brun, Hugues; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Fasanella, Giuseppe; Favart, Laurent; Grebenyuk, Anastasia; Karapostoli, Georgia; Lenzi, Thomas; Léonard, Alexandre; Maerschalk, Thierry; Marinov, Andrey; Perniè, Luca; Randle-conde, Aidan; Seva, Tomislav; Vander Velde, Catherine; Vanlaer, Pascal; Yonamine, Ryo; Zenoni, Florian; Zhang, Fengwangdong; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Crucy, Shannon; Dobur, Didar; Fagot, Alexis; Garcia, Guillaume; Gul, Muhammad; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Poyraz, Deniz; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Tytgat, Michael; Van Driessche, Ward; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bondu, Olivier; Brochet, Sébastien; Bruno, Giacomo; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Mertens, Alexandre; Musich, Marco; Nuttens, Claude; Perrini, Lucia; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Beliy, Nikita; Hammad, Gregory Habib; Aldá Júnior, Walter Luiz; Alves, Fábio Lúcio; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Hamer, Matthias; Hensel, Carsten; Mora Herrera, Clemencia; Moraes, Arthur; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Huertas Guativa, Lina Milena; Malbouisson, Helena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Ahuja, Sudha; Bernardes, Cesar Augusto; De Souza Santos, Angelo; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Moon, Chang-Seong; Novaes, Sergio F; Padula, Sandra; Romero Abad, David; Ruiz Vargas, José Cupertino; Aleksandrov, Aleksandar; Hadjiiska, Roumyana; Iaydjiev, Plamen; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Ahmad, Muhammad; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Cheng, Tongguang; Du, Ran; Jiang, Chun-Hua; Plestina, Roko; Romeo, Francesco; Shaheen, Sarmad Masood; Spiezia, Aniello; Tao, Junquan; Wang, Chunjie; Wang, Zheng; Zhang, Huaqiao; Asawatangtrakuldee, Chayanit; Ban, Yong; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Puljak, Ivica; Ribeiro Cipriano, Pedro M; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Micanovic, Sasa; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Bodlak, Martin; Finger, Miroslav; Finger Jr, Michael; Abdelalim, Ahmed Ali; Awad, Adel; El Sawy, Mai; Mahrous, Ayman; Radi, Amr; Calpas, Betty; Kadastik, Mario; Murumaa, Marion; Raidal, Martti; Tiko, Andres; Veelken, Christian; Eerola, Paula; Pekkanen, Juska; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Machet, Martina; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Zghiche, Amina; Antropov, Iurii; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Cadamuro, Luca; Chapon, Emilien; Charlot, Claude; Dahms, Torsten; Davignon, Olivier; Filipovic, Nicolas; Florent, Alice; Granier de Cassagnac, Raphael; Jo, Mihee; Lisniak, Stanislav; Mastrolorenzo, Luca; Miné, Philippe; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Ortona, Giacomo; Paganini, Pascal; Pigard, Philipp; Regnard, Simon; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Strebler, Thomas; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Buttignol, Michael; Chabert, Eric Christian; Chanon, Nicolas; Collard, Caroline; Conte, Eric; Coubez, Xavier; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Le Bihan, Anne-Catherine; Merlin, Jeremie Alexandre; Skovpen, Kirill; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Bernet, Colin; Boudoul, Gaelle; Bouvier, Elvire; Carrillo Montoya, Camilo Andres; Chierici, Roberto; Contardo, Didier; Courbon, Benoit; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Lagarde, Francois; Laktineh, Imad Baptiste; Lethuillier, Morgan; Mirabito, Laurent; Pequegnot, Anne-Laure; Perries, Stephane; Ruiz Alvarez, José David; Sabes, David; Sgandurra, Louis; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Toriashvili, Tengizi; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Edelhoff, Matthias; Feld, Lutz; Heister, Arno; Kiesel, Maximilian Knut; Klein, Katja; Lipinski, Martin; Ostapchuk, Andrey; Preuten, Marius; Raupach, Frank; Schael, Stefan; Schulte, Jan-Frederik; Verlage, Tobias; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Brodski, Michael; Dietz-Laursonn, Erik; Duchardt, Deborah; Endres, Matthias; Erdmann, Martin; Erdweg, Sören; Esch, Thomas; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Knutzen, Simon; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Pook, Tobias; Radziej, Markus; Reithler, Hans; Rieger, Marcel; Scheuch, Florian; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Künsken, Andreas; Lingemann, Joschka; Nehrkorn, Alexander; Nowack, Andreas; Nugent, Ian Michael; Pistone, Claudia; Pooth, Oliver; Stahl, Achim; Aldaya Martin, Maria; Asin, Ivan; Bartosik, Nazar; Behnke, Olaf; Behrens, Ulf; Bell, Alan James; Borras, Kerstin; Burgmeier, Armin; Campbell, Alan; Choudhury, Somnath; Costanza, Francesco; Diez Pardos, Carmen; Dolinska, Ganna; Dooling, Samantha; Dorland, Tyler; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Flucke, Gero; Gallo, Elisabetta; Garay Garcia, Jasone; Geiser, Achim; Gizhko, Andrii; Gunnellini, Paolo; Hauk, Johannes; Hempel, Maria; Jung, Hannes; Kalogeropoulos, Alexis; Karacheban, Olena; Kasemann, Matthias; Katsas, Panagiotis; Kieseler, Jan; Kleinwort, Claus; Korol, Ievgen; Lange, Wolfgang; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Mankel, Rainer; Marfin, Ihar; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Nayak, Aruna; Ntomari, Eleni; Perrey, Hanno; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Roland, Benoit; Sahin, Mehmet Özgür; Saxena, Pooja; Schoerner-Sadenius, Thomas; Schröder, Matthias; Seitz, Claudia; Spannagel, Simon; Trippkewitz, Karim Damun; Walsh, Roberval; Wissing, Christoph; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Erfle, Joachim; Garutti, Erika; Goebel, Kristin; Gonzalez, Daniel; Görner, Martin; Haller, Johannes; Hoffmann, Malte; Höing, Rebekka Sophie; Junkes, Alexandra; Klanner, Robert; Kogler, Roman; Kovalchuk, Nataliia; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Marconi, Daniele; Meyer, Mareike; Nowatschin, Dominik; Ott, Jochen; Pantaleo, Felice; Peiffer, Thomas; Perieanu, Adrian; Pietsch, Niklas; Poehlsen, Jennifer; Rathjens, Denis; Sander, Christian; Scharf, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Schwandt, Joern; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Tholen, Heiner; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Vormwald, Benedikt; Akbiyik, Melike; Barth, Christian; Baus, Colin; Berger, Joram; Böser, Christian; Butz, Erik; Chwalek, Thorsten; Colombo, Fabio; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Fink, Simon; Frensch, Felix; Friese, Raphael; Giffels, Manuel; Gilbert, Andrew; Haitz, Dominik; Hartmann, Frank; Heindl, Stefan Michael; Husemann, Ulrich; Katkov, Igor; Kornmayer, Andreas; Lobelle Pardo, Patricia; Maier, Benedikt; Mildner, Hannes; Mozer, Matthias Ulrich; Müller, Thomas; Müller, Thomas; Plagge, Michael; Quast, Gunter; Rabbertz, Klaus; Röcker, Steffen; Roscher, Frank; Sieber, Georg; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weber, Marc; Weiler, Thomas; Wöhrmann, Clemens; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Psallidas, Andreas; Topsis-Giotis, Iasonas; Agapitos, Antonis; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Tziaferi, Eirini; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Loukas, Nikitas; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Strologas, John; Bencze, Gyorgy; Hajdu, Csaba; Hazi, Andras; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Molnar, Jozsef; Szillasi, Zoltan; Bartók, Márton; Makovec, Alajos; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Mal, Prolay; Mandal, Koushik; Sahoo, Deepak Kumar; Sahoo, Niladribihari; Swain, Sanjay Kumar; Bansal, Sunil; Beri, Suman Bala; Bhatnagar, Vipin; Chawla, Ridhi; Gupta, Ruchi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Anterpreet; Kaur, Manjit; Kumar, Ramandeep; Mehta, Ankita; Mittal, Monika; Singh, Jasbir; Walia, Genius; Kumar, Ashok; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Garg, Rocky Bala; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Nishu, Nishu; Ranjan, Kirti; Sharma, Ramkrishna; Sharma, Varun; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dey, Sourav; Dutta, Suchandra; Jain, Sandhya; Majumdar, Nayana; Modak, Atanu; Mondal, Kuntal; Mukherjee, Swagata; Mukhopadhyay, Supratik; Roy, Ashim; Roy, Debarati; Roy Chowdhury, Suvankar; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Chudasama, Ruchi; Dutta, Dipanwita; Jha, Vishwajeet; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Banerjee, Sudeshna; Bhowmik, Sandeep; Chatterjee, Rajdeep Mohan; Dewanjee, Ram Krishna; Dugad, Shashikant; Ganguly, Sanmay; Ghosh, Saranya; Guchait, Monoranjan; Gurtu, Atul; Kole, Gouranga; Kumar, Sanjeev; Mahakud, Bibhuprasad; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mitra, Soureek; Mohanty, Gagan Bihari; Parida, Bibhuti; Sarkar, Tanmay; Sur, Nairit; Sutar, Bajrang; Wickramage, Nadeesha; Chauhan, Shubhanshu; Dube, Sourabh; Kothekar, Kunal; Sharma, Seema; Bakhshiansohi, Hamed; Behnamian, Hadi; Etesami, Seyed Mohsen; Fahim, Ali; Goldouzian, Reza; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Caputo, Claudio; Colaleo, Anna; Creanza, Donato; Cristella, Leonardo; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; Miniello, Giorgia; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Ranieri, Antonio; Selvaggi, Giovanna; Silvestris, Lucia; Venditti, Rosamaria; Verwilligen, Piet; Abbiendi, Giovanni; Battilana, Carlo; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Chhibra, Simranjit Singh; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Di Mattia, Alessandro; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gonzi, Sandro; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Viliani, Lorenzo; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Primavera, Federica; Calvelli, Valerio; Ferro, Fabrizio; Lo Vetere, Maurizio; Monge, Maria Roberta; Robutti, Enrico; Tosi, Silvano; Brianza, Luca; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Gerosa, Raffaele; Ghezzi, Alessio; Govoni, Pietro; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Marzocchi, Badder; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Esposito, Marco; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lanza, Giuseppe; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Sciacca, Crisostomo; Thyssen, Filip; Azzi, Patrizia; Bacchetta, Nicola; Benato, Lisa; Bisello, Dario; Boletti, Alessio; Carlin, Roberto; Checchia, Paolo; Dall'Osso, Martino; Dorigo, Tommaso; Dosselli, Umberto; Fanzago, Federica; Gasparini, Fabrizio; Gasparini, Ugo; Gonella, Franco; Gozzelino, Andrea; Lacaprara, Stefano; Margoni, Martino; Meneguzzo, Anna Teresa; Montecassiano, Fabio; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Zanetti, Marco; Zotto, Pierluigi; Zucchetta, Alberto; Zumerle, Gianni; Braghieri, Alessandro; Magnani, Alice; Montagna, Paolo; Ratti, Sergio P; Re, Valerio; Riccardi, Cristina; Salvini, Paola; Vai, Ilaria; Vitulo, Paolo; Alunni Solestizi, Luisa; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Saha, Anirban; Santocchia, Attilio; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fedi, Giacomo; Foà, Lorenzo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Serban, Alin Titus; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; D'imperio, Giulia; Del Re, Daniele; Diemoz, Marcella; Gelli, Simone; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Organtini, Giovanni; Paramatti, Riccardo; Preiato, Federico; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Traczyk, Piotr; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Costa, Marco; Covarelli, Roberto; Degano, Alessandro; Demaria, Natale; Finco, Linda; Kiani, Bilal; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Monteil, Ennio; Obertino, Maria Margherita; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Ravera, Fabio; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; La Licata, Chiara; Marone, Matteo; Schizzi, Andrea; Zanetti, Anna; Kropivnitskaya, Anna; Nam, Soon-Kwon; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Kong, Dae Jung; Lee, Sangeun; Oh, Young Do; Sakharov, Alexandre; Son, Dong-Chul; Brochero Cifuentes, Javier Andres; Kim, Hyunsoo; Kim, Tae Jeong; Song, Sanghyeon; Choi, Suyong; Go, Yeonju; Gyun, Dooyeon; Hong, Byung-Sik; Kim, Hyunchul; Kim, Yongsun; Lee, Byounghoon; Lee, Kisoo; Lee, Kyong Sei; Lee, Songkyo; Park, Sung Keun; Roh, Youn; Yoo, Hwi Dong; Choi, Minkyoo; Kim, Hyunyong; Kim, Ji Hyun; Lee, Jason Sang Hun; Park, Inkyu; Ryu, Geonmo; Ryu, Min Sang; Choi, Young-Il; Goh, Junghwan; Kim, Donghyun; Kwon, Eunhyang; Lee, Jongseok; Yu, Intae; Dudenas, Vytautas; Juodagalvis, Andrius; Vaitkus, Juozas; Ahmed, Ijaz; Ibrahim, Zainol Abidin; Komaragiri, Jyothsna Rani; Md Ali, Mohd Adli Bin; Mohamad Idris, Faridah; Wan Abdullah, Wan Ahmad Tajuddin; Yusli, Mohd Nizam; Casimiro Linares, Edgar; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-De La Cruz, Ivan; Hernandez-Almada, Alberto; Lopez-Fernandez, Ricardo; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khan, Wajid Ali; Khurshid, Taimoor; Shoaib, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Byszuk, Adrian; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michal; Walczak, Marek; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Di Francesco, Agostino; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Leonardo, Nuno; Lloret Iglesias, Lara; Nguyen, Federico; Rodrigues Antunes, Joao; Seixas, Joao; Toldaiev, Oleksii; Vadruccio, Daniele; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Konoplyanikov, Viktor; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Shulha, Siarhei; Skatchkov, Nikolai; Smirnov, Vitaly; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Kuznetsova, Ekaterina; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Karneyeu, Anton; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Spiridonov, Alexander; Vlasov, Evgueni; Zhokin, Alexander; Bylinkin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Baskakov, Alexey; Belyaev, Andrey; Boos, Edouard; Bunichev, Viacheslav; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Klyukhin, Vyacheslav; Kodolova, Olga; Korneeva, Natalia; Lokhtin, Igor; Miagkov, Igor; Obraztsov, Stepan; Perfilov, Maxim; Savrin, Viktor; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Cirkovic, Predrag; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Navarro De Martino, Eduardo; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Santaolalla, Javier; Senghi Soares, Mara; Albajar, Carmen; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Palencia Cortezon, Enrique; Vizan Garcia, Jesus Manuel; Cabrillo, Iban Jose; Calderon, Alicia; Castiñeiras De Saa, Juan Ramon; De Castro Manzano, Pablo; Fernandez, Marcos; Garcia-Ferrero, Juan; Gomez, Gervasio; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Trevisani, Nicolò; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benaglia, Andrea; Bendavid, Joshua; Benhabib, Lamia; Benitez, Jose F; Berruti, Gaia Maria; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Castello, Roberto; Cerminara, Gianluca; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; Daponte, Vincenzo; David Tinoco Mendes, Andre; De Gruttola, Michele; De Guio, Federico; De Roeck, Albert; De Visscher, Simon; Di Marco, Emanuele; Dobson, Marc; Dordevic, Milos; Dorney, Brian; Du Pree, Tristan; Duggan, Daniel; Dünser, Marc; Dupont, Niels; Elliott-Peisert, Anna; Franzoni, Giovanni; Fulcher, Jonathan; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Glege, Frank; Guida, Roberto; Gundacker, Stefan; Guthoff, Moritz; Hammer, Josef; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kirschenmann, Henning; Kortelainen, Matti J; Kousouris, Konstantinos; Krajczar, Krisztian; Lecoq, Paul; Lourenco, Carlos; Lucchini, Marco Toliman; Magini, Nicolo; Malgeri, Luca; Mannelli, Marcello; Martelli, Arabella; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Nemallapudi, Mythra Varun; Neugebauer, Hannes; Orfanelli, Styliani; Orsini, Luciano; Pape, Luc; Perez, Emmanuelle; Peruzzi, Marco; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Piparo, Danilo; Racz, Attila; Reis, Thomas; Rolandi, Gigi; Rovere, Marco; Ruan, Manqi; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Seidel, Markus; Sharma, Archana; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Steggemann, Jan; Stieger, Benjamin; Stoye, Markus; Takahashi, Yuta; Treille, Daniel; Triossi, Andrea; Tsirou, Andromachi; Veres, Gabor Istvan; Wardle, Nicholas; Wöhri, Hermine Katharina; Zagoździńska, Agnieszka; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Renker, Dieter; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Casal, Bruno; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Eller, Philipp; Grab, Christoph; Heidegger, Constantin; Hits, Dmitry; Hoss, Jan; Kasieczka, Gregor; Lustermann, Werner; Mangano, Boris; Marionneau, Matthieu; Martinez Ruiz del Arbol, Pablo; Masciovecchio, Mario; Meister, Daniel; Micheli, Francesco; Musella, Pasquale; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pata, Joosep; Pauss, Felicitas; Perrozzi, Luca; Quittnat, Milena; Rossini, Marco; Starodumov, Andrei; Takahashi, Maiko; Tavolaro, Vittorio Raoul; Theofilatos, Konstantinos; Wallny, Rainer; Aarrestad, Thea Klaeboe; Amsler, Claude; Caminada, Lea; Canelli, Maria Florencia; Chiochia, Vincenzo; De Cosa, Annapaola; Galloni, Camilla; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Lange, Clemens; Ngadiuba, Jennifer; Pinna, Deborah; Robmann, Peter; Ronga, Frederic Jean; Salerno, Daniel; Yang, Yong; Cardaci, Marco; Chen, Kuan-Hsin; Doan, Thi Hien; Jain, Shilpi; Khurana, Raman; Konyushikhin, Maxim; Kuo, Chia-Ming; Lin, Willis; Lu, Yun-Ju; Yu, Shin-Shan; Kumar, Arun; Bartek, Rachel; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Fiori, Francesco; Grundler, Ulysses; Hou, George Wei-Shu; Hsiung, Yee; Liu, Yueh-Feng; Lu, Rong-Shyang; Miñano Moya, Mercedes; Petrakou, Eleni; Tsai, Jui-fa; Tzeng, Yeng-Ming; Asavapibhop, Burin; Kovitanggoon, Kittikul; Singh, Gurpreet; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Demiroglu, Zuhal Seyma; Dozen, Candan; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Onengut, Gulsen; Ozdemir, Kadri; Polatoz, Ayse; Sunar Cerci, Deniz; Topakli, Huseyin; Vergili, Mehmet; Zorbilmez, Caglar; Akin, Ilina Vasileva; Bilin, Bugra; Bilmis, Selcuk; Isildak, Bora; Karapinar, Guler; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Yetkin, Elif Asli; Yetkin, Taylan; Cakir, Altan; Cankocak, Kerem; Sen, Sercan; Vardarlı, Fuat Ilkehan; Grynyov, Boris; Levchuk, Leonid; Sorokin, Pavel; Aggleton, Robin; Ball, Fionn; Beck, Lana; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Meng, Zhaoxia; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Sakuma, Tai; Seif El Nasr-storey, Sarah; Senkin, Sergey; Smith, Dominic; Smith, Vincent J; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Calligaris, Luigi; Cieri, Davide; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Williams, Thomas; Worm, Steven; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Bundock, Aaron; Burton, Darren; Casasso, Stefano; Citron, Matthew; Colling, David; Corpe, Louie; Cripps, Nicholas; Dauncey, Paul; Davies, Gavin; De Wit, Adinda; Della Negra, Michel; Dunne, Patrick; Elwood, Adam; Ferguson, William; Futyan, David; Hall, Geoffrey; Iles, Gregory; Kenzie, Matthew; Lane, Rebecca; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Raymond, David Mark; Richards, Alexander; Rose, Andrew; Seez, Christopher; Tapper, Alexander; Uchida, Kirika; Vazquez Acosta, Monica; Virdee, Tejinder; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Borzou, Ahmad; Call, Kenneth; Dittmann, Jay; Hatakeyama, Kenichi; Liu, Hongxuan; Pastika, Nathaniel; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Arcaro, Daniel; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Gastler, Daniel; Lawson, Philip; Rankin, Dylan; Richardson, Clint; Rohlf, James; St John, Jason; Sulak, Lawrence; Zou, David; Alimena, Juliette; Berry, Edmund; Bhattacharya, Saptaparna; Cutts, David; Dhingra, Nitish; Ferapontov, Alexey; Garabedian, Alex; Hakala, John; Heintz, Ulrich; Laird, Edward; Landsberg, Greg; Mao, Zaixing; Narain, Meenakshi; Piperov, Stefan; Sagir, Sinan; Syarif, Rizki; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Gardner, Michael; Ko, Winston; Lander, Richard; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Shalhout, Shalhout; Smith, John; Squires, Michael; Stolp, Dustin; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Cousins, Robert; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Saltzberg, David; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Ivova PANEVA, Mirena; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Luthra, Arun; Malberti, Martina; Olmedo Negrete, Manuel; Shrinivas, Amithabh; Wei, Hua; Wimpenny, Stephen; Yates, Brent; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; D'Agnolo, Raffaele Tito; Derdzinski, Mark; Holzner, André; Kelley, Ryan; Klein, Daniel; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tadel, Matevz; Vartak, Adish; Wasserbaech, Steven; Welke, Charles; Würthwein, Frank; Yagil, Avraham; Zevi Della Porta, Giovanni; Bradmiller-Feld, John; Campagnari, Claudio; Dishaw, Adam; Dutta, Valentina; Flowers, Kristen; Franco Sevilla, Manuel; Geffert, Paul; George, Christopher; Golf, Frank; Gouskos, Loukas; Gran, Jason; Incandela, Joe; Mccoll, Nickolas; Mullin, Sam Daniel; Richman, Jeffrey; Stuart, David; Suarez, Indara; West, Christopher; Yoo, Jaehyeok; Anderson, Dustin; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Duarte, Javier; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Pierini, Maurizio; Spiropulu, Maria; Vlimant, Jean-Roch; Xie, Si; Zhu, Ren-Yuan; Andrews, Michael Benjamin; Azzolini, Virginia; Calamba, Aristotle; Carlson, Benjamin; Ferguson, Thomas; Paulini, Manfred; Russ, James; Sun, Menglei; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Ford, William T; Gaz, Alessandro; Jensen, Frank; Johnson, Andrew; Krohn, Michael; Mulholland, Troy; Nauenberg, Uriel; Stenson, Kevin; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Chaves, Jorge; Chu, Jennifer; Dittmer, Susan; Eggert, Nicholas; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Rinkevicius, Aurelijus; Ryd, Anders; Skinnari, Louise; Soffi, Livia; Sun, Werner; Tan, Shao Min; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Wittich, Peter; Abdullin, Salavat; Albrow, Michael; Apollinari, Giorgio; Banerjee, Sunanda; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hanlon, Jim; Hare, Daryl; Harris, Robert M; Hasegawa, Satoshi; Hirschauer, James; Hu, Zhen; Jayatilaka, Bodhitha; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Jung, Andreas Werner; Klima, Boaz; Kreis, Benjamin; Lammel, Stephan; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Lopes De Sá, Rafael; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Martinez Outschoorn, Verena Ingrid; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mishra, Kalanand; Mrenna, Stephen; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Pedro, Kevin; Prokofyev, Oleg; Rakness, Gregory; Sexton-Kennedy, Elizabeth; Soha, Aron; Spalding, William J; Spiegel, Leonard; Strobbe, Nadja; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vernieri, Caterina; Verzocchi, Marco; Vidal, Richard; Weber, Hannsjoerg Artur; Whitbeck, Andrew; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Carnes, Andrew; Carver, Matthew; Curry, David; Das, Souvik; Field, Richard D; Furic, Ivan-Kresimir; Gleyzer, Sergei V; Hugon, Justin; Konigsberg, Jacobo; Korytov, Andrey; Low, Jia Fu; Ma, Peisen; Matchev, Konstantin; Mei, Hualin; Milenovic, Predrag; Mitselmakher, Guenakh; Rank, Douglas; Rossin, Roberto; Shchutska, Lesya; Snowball, Matthew; Sperka, David; Terentyev, Nikolay; Thomas, Laurent; Wang, Jian; Wang, Sean-Jiun; Yelton, John; Hewamanage, Samantha; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Ackert, Andrew; Adams, Jordon Rowe; Adams, Todd; Askew, Andrew; Bein, Samuel; Bochenek, Joseph; Diamond, Brendan; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Khatiwada, Ajeeta; Prosper, Harrison; Weinberg, Marc; Baarmand, Marc M; Bhopatkar, Vallary; Colafranceschi, Stefano; Hohlmann, Marcus; Kalakhety, Himali; Noonan, Daniel; Roy, Titas; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Kurt, Pelin; O'Brien, Christine; Sandoval Gonzalez, Irving Daniel; Silkworth, Christopher; Turner, Paul; Varelas, Nikos; Wu, Zhenbin; Zakaria, Mohammed; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Durgut, Süleyman; Gandrajula, Reddy Pratap; Haytmyradov, Maksat; Khristenko, Viktor; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Snyder, Christina; Tiras, Emrah; Wetzel, James; Yi, Kai; Anderson, Ian; Barnett, Bruce Arnold; Blumenfeld, Barry; Eminizer, Nicholas; Fehling, David; Feng, Lei; Gritsan, Andrei; Maksimovic, Petar; Martin, Christopher; Osherson, Marc; Roskes, Jeffrey; Cocoros, Alice; Sarica, Ulascan; Swartz, Morris; Xiao, Meng; Xin, Yongjie; You, Can; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Bruner, Christopher; Kenny III, Raymond Patrick; Majumder, Devdatta; Malek, Magdalena; Murray, Michael; Sanders, Stephen; Stringer, Robert; Wang, Quan; Ivanov, Andrew; Kaadze, Ketino; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Mohammadi, Abdollah; Saini, Lovedeep Kaur; Skhirtladze, Nikoloz; Toda, Sachiko; Lange, David; Rebassoo, Finn; Wright, Douglas; Anelli, Christopher; Baden, Drew; Baron, Owen; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Ferraioli, Charles; Gomez, Jaime; Hadley, Nicholas John; Jabeen, Shabnam; Kellogg, Richard G; Kolberg, Ted; Kunkle, Joshua; Lu, Ying; Mignerey, Alice; Shin, Young Ho; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Barbieri, Richard; Baty, Austin; Bierwagen, Katharina; Brandt, Stephanie; Busza, Wit; Cali, Ivan Amos; Demiragli, Zeynep; Di Matteo, Leonardo; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Gulhan, Doga; Iiyama, Yutaro; Innocenti, Gian Michele; Klute, Markus; Kovalskyi, Dmytro; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Marini, Andrea Carlo; Mcginn, Christopher; Mironov, Camelia; Narayanan, Siddharth; Niu, Xinmei; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Salfeld-Nebgen, Jakob; Stephans, George; Sumorok, Konstanty; Varma, Mukund; Velicanu, Dragos; Veverka, Jan; Wang, Jing; Wang, Ta-Wei; Wyslouch, Bolek; Yang, Mingming; Zhukova, Victoria; Dahmes, Bryan; Evans, Andrew; Finkel, Alexey; Gude, Alexander; Hansen, Peter; Kalafut, Sean; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Lesko, Zachary; Mans, Jeremy; Nourbakhsh, Shervin; Ruckstuhl, Nicole; Rusack, Roger; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Fangmeier, Caleb; Gonzalez Suarez, Rebeca; Kamalieddin, Rami; Keller, Jason; Knowlton, Dan; Kravchenko, Ilya; Meier, Frank; Monroy, Jose; Ratnikov, Fedor; Siado, Joaquin Emilo; Snow, Gregory R; Alyari, Maral; Dolen, James; George, Jimin; Godshalk, Andrew; Harrington, Charles; Iashvili, Ia; Kaisen, Josh; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Roozbahani, Bahareh; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Hortiangtham, Apichart; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Teixeira De Lima, Rafael; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Zhang, Jinzhong; Hahn, Kristan Allan; Kubik, Andrew; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Sung, Kevin; Trovato, Marco; Velasco, Mayda; Brinkerhoff, Andrew; Dev, Nabarun; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Marinelli, Nancy; Meng, Fanbo; Mueller, Charles; Musienko, Yuri; Planer, Michael; Reinsvold, Allison; Ruchti, Randy; Smith, Geoffrey; Taroni, Silvia; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Antonelli, Louis; Brinson, Jessica; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Hart, Andrew; Hill, Christopher; Hughes, Richard; Ji, Weifeng; Kotov, Khristian; Ling, Ta-Yung; Liu, Bingxuan; Luo, Wuming; Puigh, Darren; Rodenburg, Marissa; Winer, Brian L; Wulsin, Howard Wells; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Koay, Sue Ann; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Palmer, Christopher; Piroué, Pierre; Saka, Halil; Stickland, David; Tully, Christopher; Zuranski, Andrzej; Malik, Sudhir; Barnes, Virgil E; Benedetti, Daniele; Bortoletto, Daniela; Gutay, Laszlo; Jha, Manoj; Jones, Matthew; Jung, Kurt; Miller, David Harry; Neumeister, Norbert; Radburn-Smith, Benjamin Charles; Shi, Xin; Shipsey, Ian; Silvers, David; Sun, Jian; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Chen, Zhenyu; Ecklund, Karl Matthew; Geurts, Frank JM; Guilbaud, Maxime; Li, Wei; Michlin, Benjamin; Northup, Michael; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Rorie, Jamal; Tu, Zhoudunming; Zabel, James; Betchart, Burton; Bodek, Arie; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Galanti, Mario; Garcia-Bellido, Aran; Han, Jiyeon; Harel, Amnon; Hindrichs, Otto; Khukhunaishvili, Aleko; Petrillo, Gianluca; Tan, Ping; Verzetti, Mauro; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Hughes, Elliot; Kaplan, Steven; Kunnawalkam Elayavalli, Raghav; Lath, Amitabh; Nash, Kevin; Panwalkar, Shruti; Park, Michael; Salur, Sevil; Schnetzer, Steve; Sheffield, David; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Foerster, Mark; Riley, Grant; Rose, Keith; Spanier, Stefan; York, Andrew; Bouhali, Othmane; Castaneda Hernandez, Alfredo; Celik, Ali; Dalchenko, Mykhailo; De Mattia, Marco; Delgado, Andrea; Dildick, Sven; Eusebi, Ricardo; Gilmore, Jason; Huang, Tao; Kamon, Teruki; Krutelyov, Vyacheslav; Mueller, Ryan; Osipenkov, Ilya; Pakhotin, Yuriy; Patel, Rishi; Perloff, Alexx; Rose, Anthony; Safonov, Alexei; Tatarinov, Aysen; Ulmer, Keith; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Kunori, Shuichi; Lamichhane, Kamal; Lee, Sung Won; Libeiro, Terence; Undleeb, Sonaina; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Janjam, Ravi; Johns, Willard; Maguire, Charles; Mao, Yaxian; Melo, Andrew; Ni, Hong; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Xu, Qiao; Arenton, Michael Wayne; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Lin, Chuanzhe; Neu, Christopher; Sinthuprasith, Tutanon; Sun, Xin; Wang, Yanchu; Wolfe, Evan; Wood, John; Xia, Fan; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sturdy, Jared; Belknap, Donald; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Gomber, Bhawna; Grothe, Monika; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Levine, Aaron; Long, Kenneth; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ruggles, Tyler; Sarangi, Tapas; Savin, Alexander; Sharma, Archana; Smith, Nicholas; Smith, Wesley H; Taylor, Devin; Woods, Nathaniel


    A first measurement of the top quark spin asymmetry, sensitive to the top quark polarisation, in $t$-channel single top quark production is presented. It is based on a sample of pp collisions at a centre-of-mass energy of 8 TeV corresponding to an integrated luminosity of 19.7 fb$^{-1}$. A high-purity sample of $t$-channel single top quark events with an isolated muon is selected. Signal and background components are estimated using a fit to data. A differential cross section measurement, corrected for detector effects, of an angular observable sensitive to the top quark polarisation is performed. The differential distribution is used to extract a top quark spin asymmetry of 0.26 $\\pm$ 0.03 (stat) $\\pm$ 0.10 (syst), which is compatible with a $p$-value of 4.6% with the standard model prediction of 0.44.

  6. Quark Model Contributions to Parton Flavor Asymmetry (United States)

    Benesh, C. J.; Olivares, V.; Londergan, J. T.


    Simple Quark model calculations of the nucleon sea yield an excess of baru over bard anti-quarks, exactly opposite to what is observed. By calculating the effects of flavor-dependent corrections to the energies of the lowest lying four 4Q-barQ states in the sea, we investigate the extent to which the sign of the flavor asymmetry can be reversed in these models without the explicit introduction of mesonic degrees of freedom. Sea quark polarizations and charge asymmetries are also calculated.

  7. Zero temperature quark matter equation of state

    Energy Technology Data Exchange (ETDEWEB)

    Grassi, F.


    An equation of state is computed for a plasma of one flavor quarks interacting through some phenomenological potential, in the Hartree approximation, at zero temperature. Assuming that the confining potential is scalar and color-independent, it is shown that the quarks undergo a first-order mass phase transition. In addition, due to the way screening is introduced, all the thermodynamic quantities computed are independent of the actual shape of the interquark potential. This equation of state is then generalized to a potential with scalar and vector components, Fock corrections are discussed and the case of a several quark flavor plasma is studied. 19 refs., 2 figs.

  8. Global constraints on top quark anomalous couplings (United States)

    Déliot, Frédéric; Faria, Ricardo; Fiolhais, Miguel C. N.; Lagarelhos, Pedro; Onofre, António; Pease, Christopher M.; Vasconcelos, Ana


    The latest results on top quark physics, namely single top quark production cross sections, W -boson helicity and asymmetry measurements are used to probe the Lorentz structure of the W t b vertex. The increase of sensitivity to new anomalous physics contributions to the top quark sector of the standard model is quantified by combining the relevant results from Tevatron and the Large Hadron Collider. The results show that combining an increasing set of available precision measurements in the search for new physics phenomena beyond the standard model leads to significant sensitivity improvements, especially when compared with the current expectation for the High Luminosity run at the LHC.

  9. Discovery of single top quark production

    Energy Technology Data Exchange (ETDEWEB)

    Gillberg, Dag [Simon Fraser Univ., Burnaby, BC (Canada)


    The top quark is by far the heaviest known fundamental particle with a mass nearing that of a gold atom. Because of this strikingly high mass, the top quark has several unique properties and might play an important role in electroweak symmetry breaking - the mechanism that gives all elementary particles mass. Creating top quarks requires access to very high energy collisions, and at present only the Tevatron collider at Fermilab is capable of reaching these energies. Until now, top quarks have only been observed produced in pairs via the strong interaction. At hadron colliders, it should also be possible to produce single top quarks via the electroweak interaction. Studies of single top quark production provide opportunities to measure the top quark spin, how top quarks mix with other quarks, and to look for new physics beyond the standard model. Because of these interesting properties, scientists have been looking for single top quarks for more than 15 years. This thesis presents the first discovery of single top quark production. An analysis is performed using 2.3 fb-1 of data recorded by the D0 detector at the Fermilab Tevatron Collider at centre-of-mass energy √s = 1.96 TeV. Boosted decision trees are used to isolate the single top signal from background, and the single top cross section is measured to be σ(p$\\bar{p}$ → tb + X, tqb + X) = 3.74-0.74+0.95 pb. Using the same analysis, a measurement of the amplitude of the CKM matrix element Vtb, governing how top and b quarks mix, is also performed. The measurement yields: |V{sub tb}|f1L| = 1.05 -0.12+0.13, where f1L is the left-handed Wtb coupling. The separation of signal from background is improved by combining the boosted decision trees with two other multivariate techniques. A new cross section measurement is performed, and the significance for the excess over the predicted background exceeds 5

  10. Top quark physics at hadron colliders

    CERN Document Server

    Margaroli, F


    The top quark is the heaviest fundamental particle known so far. As such, it is expected to play a crucial role in the study of the electroweak symmetry breaking mechanism and the generation of mass, as well as to serve as an ideal window into new physics. The discovery of a Higgs boson provides us additional experimental opportunities to test our current understanding of top quarks physics. In this contribution I will discuss the status of top quark physics as of 2014, and present a few recent highlights.

  11. Top quark properties measurements at the LHC

    CERN Document Server

    Owen, Mark; The ATLAS collaboration


    Highlights of measurements of the properties of the top quark at the LHC are presented. The measurements probe a range of the properties of the top quark, including the structure of the $Wtb$~vertex, the top-$Z$~coupling and the top-quark mass. The results are compared to Standard Model predictions and in some cases limits on physics beyond the Standard Model are also extracted in the context of effective field theory models. The measurements use data collected by the ATLAS and CMS experiments during $pp$~collisions at a centre-of-mass energy of $8$~or $13$~TeV.

  12. Heavy quark physics from SLD

    Energy Technology Data Exchange (ETDEWEB)

    Messner, R. [Stanford Univ., CA (United States)


    This report covers preliminary measurements from SLD on heavy quark production at the Z{sup 0}, using 150,000 hadronic Z{sup 0} decays accumulated during the 1993-1995 runs. A measurement of R{sub b} with a lifetime double tag is presented. The high electron beam polarization of the SLC is employed in the direct measurement of the parity-violating parameters A{sub b} and A{sub c} by use of the left-right forward-backward asymmetry. The lifetimes of B{sup +} and B{sup 0} mesons have been measured by two analyses. The first identifies semileptonic decays of B mesons with high (p,p{sub t}) leptons; the second analysis isolates a sample of B meson decays with a two-dimensional impact parameter tag and reconstructs the decay length and charge using a topological vertex reconstruction method.

  13. Formation of the seed black holes: a role of quark nuggets?

    Energy Technology Data Exchange (ETDEWEB)

    Lai, X.Y.; Xu, R.X., E-mail:, E-mail: [School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China)


    Strange quark nuggets (SQNs) could be the relics of the cosmological QCD phase transition, and they could very likely be the candidate of cold quark matter if survived the cooling of the later Universe, although the formation and evolution of these SQNs depend on the physical state of the hot QGP (quark-gluon plasma) phase and the state of cold quark matter. We reconsider the possibility of SQNs as cold dark matter, and find that the formation of black holes in primordial halos could be significantly different from the standard scenario. In a primordial halo, the collision between gas and SQNs could be frequent enough, and thus the viscosity acting on each SQN would decrease its angular momentum and make it to sink into the center of the halo, as well as heat the gas. The SQNs with baryon numbers less than 10{sup 35} could assemble in the center of the halo before the formation of primordial stars. A black hole could form by merger of these SQNs, and then its mass could quickly become about 10{sup 3}M{sub s}un or higher, by accreting the surrounding SQNs or gas. The black holes formed in this way could be the seeds for the supermassive black holes at redshift as high as z ∼ 6.

  14. Superconducting bearings for flywheel applications

    DEFF Research Database (Denmark)

    Abrahamsen, A.B.


    A literature study on the application of superconducting bearings in energy storage flywheel systems. The physics of magnetic levitation and superconductors are presented in the first part of the report, followed by a discussion of the literature found onthe applications of superconducting bearings...

  15. The Danish Superconducting Cable Project

    DEFF Research Database (Denmark)

    Tønnesen, Ole


    The design and construction of a superconducting cable is described. The cable has a room temperature dielectric design with the cryostat placed inside the electrical insulation.BSCCO 2223 superconducting tapes wound in helix form around a former are used as the cable conductor. Results from...

  16. Superconductivity in a chiral nanotube (United States)

    Qin, F.; Shi, W.; Ideue, T.; Yoshida, M.; Zak, A.; Tenne, R.; Kikitsu, T.; Inoue, D.; Hashizume, D.; Iwasa, Y.


    Chirality of materials are known to affect optical, magnetic and electric properties, causing a variety of nontrivial phenomena such as circular dichiroism for chiral molecules, magnetic Skyrmions in chiral magnets and nonreciprocal carrier transport in chiral conductors. On the other hand, effect of chirality on superconducting transport has not been known. Here we report the nonreciprocity of superconductivity--unambiguous evidence of superconductivity reflecting chiral structure in which the forward and backward supercurrent flows are not equivalent because of inversion symmetry breaking. Such superconductivity is realized via ionic gating in individual chiral nanotubes of tungsten disulfide. The nonreciprocal signal is significantly enhanced in the superconducting state, being associated with unprecedented quantum Little-Parks oscillations originating from the interference of supercurrent along the circumference of the nanotube. The present results indicate that the nonreciprocity is a viable approach toward the superconductors with chiral or noncentrosymmetric structures.

  17. Looking for extra dimensions in compact stars (United States)

    Lugones, Germán; Arbañil, José D. V.


    The properties of spherically symmetric static compact stars are studied in the Randall-Sundrum II type braneworld model assuming that the spacetime outside the star is described by a Schwarzschild metric. The integration of the stellar structure equations employing the so called causal limit equation of state (EoS) shows that the equilibrium solutions can violate the general relativistic causal limit. An analysis of the properties of hadronic and strange quark stars using standard EoSs confirm the same result: there is a branch in the mass-radius diagram that shows the typical behaviour found within the frame of General Relativity and another branch of stars that are supported against collapse by the nonlocal effects of the bulk on the brane. Stars belonging to the new branch can violate the general relativistic causal limit, may have an arbitrarily large mass, and are stable under small radial perturbations. If they exist in Nature, these objects could be hidden among the population of black hole candidates. The future observation of compact stars with masses and radii falling above the causal limit of General Relativity but below the Schwarzschild limit maybe a promising astrophysical evidence for the existence of extra dimensions.

  18. Superconducting notch filter

    Energy Technology Data Exchange (ETDEWEB)

    Pang, C S; Falco, C M; Kampwirth, R T; Schuller, I K; Hudak, J J; Anastasio, T A


    Results of a preliminary investigation of a superconducting notch filter for possible application in the 2 to 30 MHz high frequency (HF) communication band are presented. The circuit was successfully implemented using planar geometry so that closed cycle refrigeration could be used to cool circuits fabricated from high T/sub c/ Nb/sub 3/Sn or Nb/sub 3/Ge thin films. In the present design, circuit Q's of about 2 x 10/sup 3/ were obtained with 50-ohm source and output impedance. (TFD)

  19. Superconductivity in nanowires

    CERN Document Server

    Bezryadin, Alexey


    The importance and actuality of nanotechnology is unabated and will be for years to come. A main challenge is to understand the various properties of certain nanostructures, and how to generate structures with specific properties for use in actual applications in Electrical Engineering and Medicine.One of the most important structures are nanowires, in particular superconducting ones. They are highly promising for future electronics, transporting current without resistance and at scales of a few nanometers. To fabricate wires to certain defined standards however, is a major challenge, and so i

  20. 100 years of superconductivity

    CERN Multimedia

    Globe Info


    Public lecture by Philippe Lebrun, who works at CERN on applications of superconductivity and cryogenics for particle accelerators. He was head of CERN’s Accelerator Technology Department during the LHC construction period. Centre culturel Jean Monnet, route de Gex Tuesday 11 October from 8.30 p.m. to 10.00 p.m. » Suitable for all – Admission free - Lecture in French » Number of places limited For further information: +33 (0)4 50 42 29 37

  1. Superconducting gravimeter. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Goodkind, J.M.


    The superconducting gravimeter was developed and applied to field measurements. The stability of the instrument yielded the highest precision measurements of the Earth tides ever attained. It revealed unprecedented details about the effect of the atmosphere on gravity. Secular variations in gravity and the stability of the instruments were measured by comparing records from co-located instruments. These efforts have resulted in substantial reductions in the noise level at very low frequencies so that the peak differences between two instruments at the same location can be reduced to 0.1 micron gal.

  2. Superconductivity under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Amaya, K.; Shimizu, K.; Takeda, K.; Tateiwa, N.; Muramatsu, T.; Ishizuka, M.; Kobayashi, T.C


    In part 1, we review techniques developed in our laboratory for producing the complex extreme condition of very low temperature and ultra-high pressure and those for measuring electrical resistance and magnetization of the sample confined in the extremely small space of the used pressure cell. In part 2, we review our experimental results in search for pressure-induced superconductivity, which have been obtained by the use of developed techniques. Typical examples are shown in the case of simple inorganic and organic molecular crystals, ionic crystals, and magnetic metals.

  3. Introduction to superconductivity

    CERN Document Server

    Rose-Innes, A C


    Introduction to Superconductivity differs from the first edition chiefly in Chapter 11, which has been almost completely rewritten to give a more physically-based picture of the effects arising from the long-range coherence of the electron-waves in superconductors and the operation of quantum interference devices. In this revised second edition, some further modifications have been made to the text and an extra chapter dealing with """"high-temperature"""" superconductors has been added. A vast amount of research has been carried out on these since their discovery in 1986 but the results, both

  4. Top Quark Physics at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Andreas W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States). Particle Physics Division


    An overview of recent top quark measurements using the full Run II data set of CDF or D0 at the Tevatron is presented. Results are complementary to the ones at the LHC. Recent measurements of the production cross section of top quarks in strong and electroweak production and of top quark production asymmetries are presented. The latter includes the measurement of the tt-bar production asymmetry by D0 in the dilepton decay channel. Within their uncertainties the results from all these measurements agree with their respective Standard Model expectation. Finally latest updates on measurements of the top quark mass are discussed, which at the time of the conference are the most precise determinations.

  5. Measuring the running top-quark mass

    Energy Technology Data Exchange (ETDEWEB)

    Langenfeld, U.; Moch, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Uwer, P. [Berlin Univ. (Germany). Inst. fuer Physik


    We present the first direct determination of the running top-quark mass based on the total cross section of top-quark pair-production as measured at the Tevatron. Our theory prediction for the cross section includes various next-to-next-to-leading order QCD contributions, in particular all logarithmically enhanced terms near threshold, the Coulomb corrections at two loops and all explicitly scale dependent terms at NNLO accuracy. The result allows for an exact and independent variation of the renormalization and factorization scales. For Tevatron and LHC we study its dependence on all scales, on the parton luminosity and on the top-quark mass using both the conventional pole mass definition as well as the running mass in the MS scheme. We extract for the top-quark an MS mass of m({mu}=m) =160.0{sup +3.3}{sub -3.2} GeV. (orig.)

  6. Nuclear interaction and quark structure of nucleons

    Energy Technology Data Exchange (ETDEWEB)

    Catara, F. (Ist. Nazionale di Fisica Nucleare, Catania (Italy) Dipt. di Fisica, Univ. Catania (Italy)); Sambataro, M. (Ist. Nazionale di Fisica Nucleare, Catania (Italy))


    We discuss a procedure to construct the nucleon image of a quark operator in a non-relativistic approach. The procedure is based on the concept of mapping and establishes a correspondence between a space of three-quark clusters and a space of elementary nucleons. As an example, we search for the nucleon image of a quark hamiltonian proposed by Oka and Yazaki. The nucleon hamiltonian is hermitian, non-local and N-body (if N is the number of clusters under consideration). We construct the two-body term of this hamiltonian and search for a local effective-interaction equivalent in a harmonic-oscillator basis to the quark-derived hamiltonian. (orig.).

  7. Theoretical physics: Quarks fuse to release energy (United States)

    Miller, Gerald A.


    In nuclear fusion, energy is produced by the rearrangement of protons and neutrons. The discovery of an analogue of this process involving particles called quarks has implications for both nuclear and particle physics. See Letter p.89

  8. Exotic quarks in Twin Higgs models

    National Research Council Canada - National Science Library

    Cheng, Hsin-Chia; Jung, Sunghoon; Salvioni, Ennio; Tsai, Yuhsin


    .... In non-supersymmetric completions, new exotic fermions charged under both the standard model and twin gauge symmetries have to be present to accompany the top quark, thus providing a high energy probe of the model...

  9. Top quark mass measurements with CMS

    CERN Document Server

    Kovalchuk, Nataliia


    Measurements of the top quark mass are presented, obtained from CMS data collected in proton-proton collisions at the LHC at centre-of-mass energies of 7 TeV and 8 TeV. The mass of the top quark is measured using several methods and channels, including the reconstructed invariant mass distribution of the top quark, an analysis of endpoint spectra as well as measurements from shapes of top quark decay distributions. The dependence of the mass measurement on the kinematic phase space is investigated. The results of the various channels are combined and compared to the world average. The top mass and also $\\alpha_{\\textnormal S}$ are extracted from the top pair cross section measured at CMS.

  10. Commissioning ATLAS and CMS with top quarks

    CERN Document Server

    Acharya, B S; Corcella, G; Di Sipio, R; Petrucciani, G


    The large ttbar production cross-section at the LHC suggests the use of top quark decays to calibrate several critical parts of the detectors, such as the trigger system, the jet energy scale and b-tagging.

  11. Heavy quark threshold dynamics in higher order

    Energy Technology Data Exchange (ETDEWEB)

    Piclum, J.H.


    In this work we discuss an important building block for the next-to-next-to-next-to leading order corrections to the pair production of top quarks at threshold. Specifically, we explain the calculation of the third order strong corrections to the matching coefficient of the vector current in non-relativistic Quantum Chromodynamics and provide the result for the fermionic part, containing at least one loop of massless quarks. As a byproduct, we obtain the matching coefficients of the axial-vector, pseudo-scalar and scalar current at the same order. Furthermore, we calculate the three-loop corrections to the quark renormalisation constants in the on-shell scheme in the framework of dimensional regularisation and dimensional reduction. Finally, we compute the third order strong corrections to the chromomagnetic interaction in Heavy Quark Effective Theory. The calculational methods are discussed in detail and results for the master integrals are given. (orig.)

  12. Heavy quark production in Color Glass Condensate


    Tuchin, Kirill


    We discuss heavy quark production in High Parton Density QCD in quasi-classical approximation and including low-$x$ quantum evolution. We also consider an alternative approach based on the effect of pair production in external fields.

  13. Evidence for production of single top quarks

    Energy Technology Data Exchange (ETDEWEB)

    Abazov, V.M.; /Dubna, JINR; Abbott, B.; /Oklahoma U.; Abolins, M.; /Michigan State U.; Acharya, B.S.; /Tata Inst.; Adams, M.; /Illinois U., Chicago; Adams, T.; /Florida State U.; Aguilo, E.; /Simon Fraser U.; Ahn, S.H.; /Korea U., KODEL; Ahsan, M.; /Kansas State U.; Alexeev, G.D.; /Dubna, JINR; Alkhazov, G.; /St. Petersburg, INP /Michigan U.


    We present first evidence for the production of single top quarks in the D0 detector at the Fermilab Tevatron p{bar p} collider. The standard model predicts that the electroweak interaction can produce a top quark together with an antibottom quark or light quark, without the antiparticle top quark partner that is always produced from strong coupling processes. Top quarks were first observed in pair production in 1995, and since then, single top quark production has been searched for in ever larger datasets. In this analysis, we select events from a 0.9 fb{sup -1} dataset that have an electron or muon and missing transverse energy from the decay of a W boson from the top quark decay, and two, three, or four jets, with one or two of the jets identified as originating from a b hadron decay. The selected events are mostly backgrounds such as W+jets and t{bar t} events, which we separate from the expected signals using three multivariate analysis techniques: boosted decision trees, Bayesian neural networks, and matrix element calculations. A binned likelihood fit of the signal cross section plus background to the data from the combination of the results from the three analysis methods gives a cross section for single top quark production of {sigma}(p{bar p} {yields} tb + X, tqb + X) = 4.7 {+-} 1.3 pb. The probability to measure a cross section at this value or higher in the absence of signal is 0.014%, corresponding to a 3.6 standard deviation significance. The measured cross section value is compatible at the 10% level with the standard model prediction for electroweak top quark production. We use the cross section measurement to directly determine the Cabibbo-Kobayashi-Maskawa quark mixing matrix element that describes the Wtb coupling and find |V{sub tb}f{sub 1}{sup L}| = 1.31{sub -0.21}{sup +0.25}, where f{sub 1}{sup L} is a generic vector coupling. This model-independent measurement translates into 0.68 < |V{sub tb}| {le} 1 at the 95% C.L. in the standard model.

  14. Free Quarks and Antiquarks versus Hadronic Matter


    Xu, Xiao-Ming; Peng, Ru


    Meson-meson reactions A(q_1 \\bar{q}_1) + B(q_2 \\bar{q}_2) to q_1 + \\bar{q}_1 + q_2 + \\bar{q}_2 in high-temperature hadronic matter are found to produce an appreciable amount of quarks and antiquarks freely moving in hadronic matter and to establish a new mechanism for deconfinement of quarks and antiquarks in hadronic matter.

  15. Quark family mixing and reduction of couplings (United States)

    Sibold, Klaus; Zimmermann, Wolfhart


    The principle of reduction is applied to quark mixing in the standard model with three families. In case of the non-trivial reduction for which the top quark and the Higgs mass are determined it is found that the Cabibbo angle is arbitrary, while mixing between the third and the first two families is excluded. On leave of absence from Werner-Heisenberg-Institut für Physik, D-8000 Munich, Fed. Rep. Germany

  16. Heavy Quark Production at High Energy

    CERN Document Server

    Ball, R D


    We report on QCD radiative corrections to heavy quark production valid at high energy. The formulae presented will allow a matched calculation of the total cross section which is correct at $O(\\as^3)$ and includes resummation of all terms of order $\\as^3 [\\as \\ln (s/m^2)]^n$. We also include asymptotic estimates of the effect of the high energy resummation. A complete description of the calculation of the heavy quark impact factor is included in an appendix.

  17. Excited quark production at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Baur, U.; Hinchliffe, I.; Zeppenfeld, D.


    Composite models generally predict the existence of excited quark and lepton states. We consider the production and experimental signatures of excited quarks Q* of spin and isospin 1/2 at hadron colliders and estimate the background for those channels which are most promising for Q* identification. Multi-TeV pp-colliders will give access to such particles with masses up to several TeV.

  18. Shear viscosity of the quark matter


    Iwasaki, Masaharu; Ohnishi, Hiromasa; Fukutome, Takahiko


    We discuss shear viscosity of the quark matter by using Kubo formula. The shear viscosity is calculated in the framework of the quasi-particle RPA for the Nambu-Jona-Lasinio model. We obtain a formula that the shear viscosity is expressed by the quadratic form of the quark spectral function in the chiral symmetric phase. The magnitude of the shear viscosity is discussed assuming the Breit-Wigner type for the spectral function.

  19. Top Quark Mass Measurement in Dilepton Channel

    Energy Technology Data Exchange (ETDEWEB)

    Lysak, Roman [Inst. of Experimental Physics, Kosice (Slovak Republic)


    We present a measurement of the top quark mass from events produced in p$\\bar{p}$ collisions at a center-of-mass energy of 1.96 TeV, using the Collider Detector at Fermilab. We identify t$\\bar{t}$ candidates where both W bosons from the top quarks decay into leptons (eν, µν, τν) from a data sample of 340 pb-1. The top quark mass is reconstructed in each event separately by the method which draw upon simulated distribution of t$\\bar{t}$ longitudinal momentum in order to extract probability distribution for the top quark mass. Representative distributions, or templates, are constructed from simulated samples of signal and background events, and parametrized to form continuous probability density functions. A likelihood fit incorporating these parametrized templates is then performed on the data sample masses in order to derive a final top quark mass. Measured top quark mass is Mtop = 169.5$+7.7\\atop{-7.2}$(stat.) ± 4.0(syst.) GeV/c2.

  20. Chiral magnetic superconductivity

    Directory of Open Access Journals (Sweden)

    Kharzeev Dmitri E.


    Full Text Available Materials with charged chiral quasiparticles in external parallel electric and magnetic fields can support an electric current that grows linearly in time, corresponding to diverging DC conductivity. From experimental viewpoint, this “Chiral Magnetic Superconductivity” (CMS is thus analogous to conventional superconductivity. However the underlying physics is entirely different – the CMS does not require a condensate of Cooper pairs breaking the gauge degeneracy, and is thus not accompanied by Meissner effect. Instead, it owes its existence to the (temperature-independent quantum chiral anomaly and the conservation of chirality. As a result, this phenomenon can be expected to survive to much higher temperatures. Even though the chirality of quasiparticles is not strictly conserved in real materials, the chiral magnetic superconductivity should still exhibit itself in AC measurements at frequencies larger than the chirality-flipping rate, and in microstructures of Dirac and Weyl semimetals with thickness below the mean chirality-flipping length that is about 1 – 100 μm. In nuclear physics, the CMS should contribute to the charge-dependent elliptic flow in heavy ion collisions.

  1. Overview on superconducting photoinjectors

    CERN Document Server

    Arnold, A


    The success of most of the proposed energy recovery linac (ERL) based electron accelerator projects for future storage ring replacements (SRR) and high power IR–free-electron lasers (FELs) largely depends on the development of an appropriate source. For example, to meet the FEL specifications [J.W. Lewellen, Proc. SPIE Int. Soc. Opt. Eng. 5534, 22 (2004)] electron beams with an unprecedented combination of high brightness, low emittance (0.1 µmrad), and high average current (hundreds of mA) are required. An elegant way to create a beam of such quality is to combine the high beam quality of a normal conducting rf photoinjector with the superconducting technology, i.e., to build a superconducting rf photoinjector (SRF gun). SRF gun R&D programs based on different approaches have been launched at a growing number of institutes and companies (AES, Beijing University, BESSY, BNL, DESY, FZD, TJNAF, Niowave, NPS, Wisconsin University). Substantial progress was achieved in recent years and the first long term ...

  2. Overview on superconducting photoinjectors (United States)

    Arnold, A.; Teichert, J.


    The success of most of the proposed energy recovery linac (ERL) based electron accelerator projects for future storage ring replacements (SRR) and high power IR-free-electron lasers (FELs) largely depends on the development of an appropriate source. For example, to meet the FEL specifications [J. W. Lewellen, Proc. SPIE Int. Soc. Opt. Eng.PSISDG0277-786X 5534, 22 (2004)10.1117/12.557378] electron beams with an unprecedented combination of high brightness, low emittance (0.1μmrad), and high average current (hundreds of mA) are required. An elegant way to create a beam of such quality is to combine the high beam quality of a normal conducting rf photoinjector with the superconducting technology, i.e., to build a superconducting rf photoinjector (SRF gun). SRF gun R&D programs based on different approaches have been launched at a growing number of institutes and companies (AES, Beijing University, BESSY, BNL, DESY, FZD, TJNAF, Niowave, NPS, Wisconsin University). Substantial progress was achieved in recent years and the first long term operation was demonstrated at FZD [R. Xiang , in Proceedings of the 31st International Free Electron Laser Conference (FEL 09), Liverpool, UK (STFC Daresbury Laboratory, Warrington, 2009), p. 488]. In the near future SRF guns are expected to play an important role for linac-driven FEL facilities. In this paper we will review the concepts, the design parameters, and the status of the major SRF gun projects.

  3. Superconducting Bolometer Array Architectures (United States)

    Benford, Dominic J.; Chervenak, James A.; Irwin, Kent D.; Moseley, S. H., Jr.; Shafer, Richard A.; Staguhn, Johannes G.; Wollack, Ed


    The next generation of far-infrared and submillimeter instruments require large arrays of detectors containing thousands of elements. These arrays will necessarily be multiplexed, and superconducting bolometer arrays are the most promising present prospect for these detectors. We discuss our current research into superconducting bolometer array technologies, which has recently resulted in the first multiplexed detections of submillimeter light and the first multiplexed astronomical observations. Prototype arrays containing 512 pixels are in production using the Pop-Up Detector (PUD) architecture, which can be extended easily to 1000 pixel arrays. Planar arrays of close-packed bolometers are being developed for the GBT and for future space missions. For certain applications, such as a slewed far-infrared sky survey, feedhorn-coupling of a large sparsely-filled array of bolometers is desirable, and is being developed using photolithographic feedhorn arrays. Individual detectors have achieved a Noise Equivalent Power (NEP) of ~10-17 W/√Hz at 300mK, but several orders of magnitude improvement are required and can be reached with existing technology. The testing of such ultralow-background detectors will prove difficult, as this requires optical loading of below 1fW. Antenna-coupled bolometer designs have advantages for large format array designs at low powers due to their mode selectivity. We also present a design and preliminary results for an enhanced-dynamic-range transition edge sensor suitable for broadband ultralow-background detectors.

  4. Additive Manufactured Superconducting Cavities (United States)

    Holland, Eric; Rosen, Yaniv; Woolleet, Nathan; Materise, Nicholas; Voisin, Thomas; Wang, Morris; Mireles, Jorge; Carosi, Gianpaolo; Dubois, Jonathan

    Superconducting radio frequency cavities provide an ultra-low dissipative environment, which has enabled fundamental investigations in quantum mechanics, materials properties, and the search for new particles in and beyond the standard model. However, resonator designs are constrained by limitations in conventional machining techniques. For example, current through a seam is a limiting factor in performance for many waveguide cavities. Development of highly reproducible methods for metallic parts through additive manufacturing, referred to colloquially as 3D printing\\x9D, opens the possibility for novel cavity designs which cannot be implemented through conventional methods. We present preliminary investigations of superconducting cavities made through a selective laser melting process, which compacts a granular powder via a high-power laser according to a digitally defined geometry. Initial work suggests that assuming a loss model and numerically optimizing a geometry to minimize dissipation results in modest improvements in device performance. Furthermore, a subset of titanium alloys, particularly, a titanium, aluminum, vanadium alloy (Ti - 6Al - 4V) exhibits properties indicative of a high kinetic inductance material. This work is supported by LDRD 16-SI-004.

  5. Development of the composite superconducting magnetic bearing for superconducting flywheel

    Energy Technology Data Exchange (ETDEWEB)

    Nagaya, S.; Komura, K.; Kashima, N.; Kawashima, H.; Unisuga, S.; Kakiuchi, Y


    Superconducting magnetic bearing for flywheel requires the characteristics such as higher stiffness, lower loss and higher stability. There are two types of superconducting magnetic bearings, one is axial gap type and another is radial gap type and the characteristics of these types are quite different. We think that the supporting system of superconducting flywheel should support the rotor at one position near the center of gravity to minimize the cooling energy loss. We propose that the bearing composed of axial gap type and radial gap type is necessary from the result of this investigation, because the characteristics about both types of bearings should be compensated each other.

  6. "Anti-glitches" in the Quark-Nova model for AXPs I (United States)

    Ouyed, R.; Leahy, D.; Koning, N.


    In the Quark-Nova model, Anomalous X-ray Pulsars (AXPs) are quark stars surrounded by a degenerate iron-rich Keplerian ring (a few stellar radii away). AXP bursts are caused by accretion of chunks from the inner edge of the ring following magnetic field penetration. For bright bursts, the inner disk is prone to radiation induced warping which can tilt it into counter-rotation (i.e. retrograde). For AXP 1E2259+586, the 2002 burst satisfies the condition for the formation of a retrograde inner ring. We hypothesize the 2002 burst reversed the inner ring setting the scene for the 2012 outburst and "anti-glitch" when the retrograde inner ring was suddenly accreted leading to the basic observed properties of the 2012 event.

  7. Interplay of mesonic and baryonic degrees of freedom in quark matter

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Naseemuddin


    In this work we study the influence of mesonic and baryonic fluctuations on the phase diagram of quark matter with two flavors. By examining the hadronization process and related techniques, we derive effective low-energy models, where the gluons are integrated out. To be able to compare our model calculations with lattice results at finite chemical potential, we investigate a QCD-like theory with two colors, where the sign-problem is absent. To this end we introduce a quark-meson-diquark model, where the bosonic diquarks play the role of colorless, baryonic degrees of freedom competing with the mesons. To access the phase diagram and determine the phases of chiral and diquark condensation, we employ a functional renormalization group approach allowing for a systematic non-perturbative truncation scheme. Interesting phenomena arise that are known from condensed matter physics, as the BEC-BSC crossover and a phase of condensation within domains. We explore the impact of running wave function renormalizations and Yukawa couplings for the quarks and the boson fields on top of the scale dependence of the effective potential. In the course of this we discuss the Silver Blaze property and its realization within a functional approach. In parallel, we formulate a quark-meson-diquark-baryon model for physical QCD as a low-energy effective theory for baryonic matter at high density, and discuss the relevance of the diquark and baryon degrees of freedom. In this sense, we compute a phase diagram for QCD from functional methods, including a color superconducting phase.

  8. Meissner effect in superconducting microtraps

    Energy Technology Data Exchange (ETDEWEB)

    Cano, Daniel


    This thesis investigates the impact of the Meissner effect on magnetic microtraps for ultracold atoms near superconducting microstructures. This task has been accomplished both theoretically and experimentally. The Meissner effect distorts the magnetic fields near superconducting surfaces, thus altering the parameters of magnetic microtraps. Both computer simulations and experimental measurements demonstrate that the Meissner effect shortens the distance between the magnetic microtrap and the superconducting surface, reduces the magnetic-field gradients and dramatically lowers the trap depth. A novel numerical method for calculating magnetic fields in atom chips with superconducting microstructures has been developed. This numerical method overcomes the geometrical limitations of other calculation techniques and can solve superconducting microstructures of arbitrary geometry. The numerical method has been used to calculate the parameters of magnetic microtraps in computer-simulated chips containing thin-film wires. Simulations were carried out for both the superconducting and the normal-conducting state, and the differences between the two cases were analyzed. Computer simulations have been contrasted with experimental measurements. The experimental apparatus generates a magnetic microtrap for ultracold Rubidium atoms near a superconducting Niobium wire of circular cross section. The design and construction of the apparatus has met the challenge of integrating the techniques for producing atomic quantum gases with the techniques for cooling solid bodies to cryogenic temperatures. By monitoring the position of the atom cloud, one can observe how the Meissner effect influences the magnetic microtrap. (orig.)

  9. Pulsating stars

    CERN Document Server

    Catelan, M?rcio


    The most recent and comprehensive book on pulsating stars which ties the observations to our present understanding of stellar pulsation and evolution theory.  Written by experienced researchers and authors in the field, this book includes the latest observational results and is valuable reading for astronomers, graduate students, nuclear physicists and high energy physicists.

  10. Stars Underground

    CERN Multimedia

    Jean Leyder


    An imaginary voyage in time where we were witness of the birth of the universe itself, the time of the Big-Bang 15 billion years ago. Particules from the very first moments of time : protons, neutrons and electrons, and also much more energetic one. These particules are preparing to interact collider and generating others which will be the birth to the stars ........

  11. Operational Merits of Maritime Superconductivity (United States)

    Ross, R.; Bosklopper, J. J.; van der Meij, K. H.

    The perspective of superconductivity to transfer currents without loss is very appealing in high power applications. In the maritime sector many machines and systems exist in the roughly 1-100 MW range and the losses are well over 50%, which calls for dramatic efficiency improvements. This paper reports on three studies that aimed at the perspectives of superconductivity in the maritime sector. It is important to realize that the introduction of superconductivity comprises two technology transitions namely firstly electrification i.e. the transition from mechanical drives to electric drives and secondly the transition from normal to superconductive electrical machinery. It is concluded that superconductivity does reduce losses, but its impact on the total energy chain is of little significance compared to the investments and the risk of introducing a very promising but as yet not proven technology in the harsh maritime environment. The main reason of the little impact is that the largest losses are imposed on the system by the fossil fueled generators as prime movers that generate the electricity through mechanical torque. Unless electric power is supplied by an efficient and reliable technology that does not involve mechanical torque with the present losses both normal as well as superconductive electrification of the propulsion will hardly improve energy efficiency or may even reduce it. One exception may be the application of degaussing coils. Still appealing merits of superconductivity do exist, but they are rather related to the behavior of superconductive machines and strong magnetic fields and consequently reduction in volume and mass of machinery or (sometimes radically) better performance. The merits are rather convenience, design flexibility as well as novel applications and capabilities which together yield more adequate systems. These may yield lower operational costs in the long run, but at present the added value of superconductivity rather seems more

  12. The Quark Puzzle: A Novel Approach to Visualizing the Color Symmetries of Quarks (United States)

    Gettrust, Eric


    This paper describes a simple hands-on and visual-method designed to introduce physics students of many age groups to the topic of quarks and their role in forming composite particles (baryons and mesons). A set of puzzle pieces representing individual quarks that fit together in ways consistent with known restrictions of flavor, color, and charge…

  13. Numerical simulation of the hydrodynamical combustion to strange quark matter in the trapped neutrino regime (United States)

    Ouyed, Amir; Ouyed, Rachid; Jaikumar, Prashanth


    We simulate and study the microphysics of combustion (flame burning) of two flavored quark matter (u,d) to three flavored quark matter (u,d,s) in a trapped neutrino regime applicable to conditions prevailing in a hot proto-neutron star. The reaction-diffusion-advection equations for (u,d) to (u,d,s) combustion are coupled with neutrino transport, which is modeled through a flux-limited diffusion scheme. The flame speed is proportional to initial lepton fraction because of the release of electron chemical potential as heat, and reaches a steady-state burning speed of (0.001-0.008)c. We find that the burning speed is ultimately driven by the neutrino pressure gradient, given that the pressure gradient induced by quarks is opposed by the pressure gradients induced by electrons. This suggests, somewhat counter-intuitively, that the pressure gradients that drive the interface are controlled primarily by leptonic weak decays rather than by the quark Equation of State (EOS). In other words, the effects of the leptonic weak interaction, including the corresponding weak decay rates and the EOS of electrons and neutrinos, are at least as important as the uncertainties related to the EOS of high density matter. We find that for baryon number densities nB ≤ 0.35 fm-3, strong pressure gradients induced by leptonic weak decays drastically slow down the burning speed, which is thereafter controlled by the much slower burning process driven by backflowing downstream matter. We discuss the implications of our findings to proto-neutron stars.

  14. Star Products and Applications


    Iida, Mari; Yoshioka, Akira


    Star products parametrized by complex matrices are defined. Especially commutative associative star products are treated, and star exponentials with respect to these star products are considered. Jacobi's theta functions are given as infinite sums of star exponentials. As application, several concrete identities are obtained by properties of the star exponentials.

  15. Examination whether heavy quarks carry information on the early-time coupling of the quark-gluon plasma (United States)

    Adare, A. M.; McCumber, M. P.; Nagle, J. L.; Romatschke, P.


    The redistribution in momentum space of heavy quarks via their interactions in the quark-gluon plasma is an excellent probe of the heavy quark coupling strength to the medium. We utilize a Monte Carlo Langevin calculation for tracking heavy quark-antiquark pairs embedded in a viscous hydrodynamic space-time evolution. We find that the nuclear modification factor (RAA) for charm quarks is relatively insensitive to the coupling to the quark-gluon plasma at early times where the highest temperatures are achieved. In contrast the azimuthal angular correlation of charm and anticharm quarks is extremely sensitive to the early time evolution. For beauty quarks the situation is reversed in terms of sensitivity. This work identifies the kinematic distributions of the heavy quarks with the greatest sensitivity, and must be followed by tests of whether they survive hadronization, in particular if recombination is dominant.

  16. Studies of top quark properties and search for electroweak single top quark production at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Mousumi; /Fermilab


    The top quark was discovered in 1995 by the CDF and D0 experiments at the Fermilab Tevatron during the Run I operation. Since the start of the Tevatron Run II in 2001, both experiments have collected {approx}2 fb{sup -1} data samples, which are over twenty times larger than that used in the Run 1 discovery. This larger data sample allows more precise studies of top-quark properties; differences between observed top-quark properties and the Standard Model (SM) prediction may give hints to possible physics beyond the SM. Here we present the latest results on the measurements of top-quark properties and the search for electroweak (EW) single top quark production from the CDF and D0 collaborations. The integrated luminosity used for the measurements corresponds to about 1 fb{sup -1}.

  17. Vector-like quarks at the origin of light quark masses and mixing

    Energy Technology Data Exchange (ETDEWEB)

    Botella, Francisco J. [Universitat de Valencia-CSIC, Departament de Fisica Teorica and IFIC, Burjassot (Spain); Branco, G.C.; Nebot, Miguel; Rebelo, M.N.; Silva-Marcos, J.I. [Universidade de Lisboa, Departamento de Fisica and Centro de Fisica Teorica de Particulas (CFTP), Instituto Superior Tecnico (IST), Lisbon (Portugal)


    We show how a novel fine-tuning problem present in the Standard Model can be solved through the introduction of a Z{sub 6} flavour symmetry, together with three Q = -1/3 quarks, three Q = 2/3 quarks, as well as a complex singlet scalar. The Z{sub 6} symmetry is extended to the additional fields and it is an exact symmetry of the Lagrangian, only softly broken in the scalar potential, in order to avoid the domain-wall problem. Specific examples are given and a phenomenological analysis of the main features of the model is presented. It is shown that even for vector-like quarks with masses accessible at the LHC, one can have realistic quark masses and mixing, while respecting the strict constraints on processes arising from flavour changing neutral currents. The vector-like quark decay channels are also described. (orig.)

  18. Measurement of top quark properties in single-top quark production at CMS

    CERN Document Server



    Single top-quark t-channel production is exploited for studies of top quark properties. The analyses include the measurement of the CKM matrix element, $V_{tb}$, search for anomalous couplings of the top quark using a Bayesian neural network analysis, measurement of single top-quark polarization which directly confirms the V-A nature of the $tWb$ production vertex, and the measurement of W-helicity fractions in the phase space sampled by a selection optimized for t-channel single top-quark production, orthogonal to the $t\\overline{t}$ final states used in traditional measurements of these properties. All measurements are found to be consistent with the standard model predictions.

  19. Doubly Heavy Baryons, Heavy Quark-DiQuark Symmetry and NRQCD

    Energy Technology Data Exchange (ETDEWEB)

    Sean Fleming; Thomas Mehen


    In the heavy quark limit, properties of heavy mesons and doubly heavy baryons are related by heavy quark-diquark symmetry. This problem is reanalyzed in the framework of Non-Relativistic QCD (NRQCD). We introduce a novel method for deriving Potential NRQCD (pNRQCD) Lagrangians for composite fields from vNRQCD, which contains quarks and antiquarks as explicit degrees of freedom and maintains manifest power counting in the velocity via a label formalism. A Hubbard-Stratonovich transformation is used to eliminate four quark interactions in vNRQCD and then quarks and antiquarks are integrated out to get effective Lagrangians for composite fields. This method is used to rederive Lagrangians for the Q\\bar Q and QQ sectors of pNRQCD and give a correct derivation of the O(1/m_Q) prediction for the hyperfine splitting of doubly heavy baryons.

  20. Vector-like quarks at the origin of light quark masses and mixing (United States)

    Botella, Francisco J.; Branco, G. C.; Nebot, Miguel; Rebelo, M. N.; Silva-Marcos, J. I.


    We show how a novel fine-tuning problem present in the Standard Model can be solved through the introduction of a Z_6 flavour symmetry, together with three Q = - 1/3 quarks, three Q = 2/3 quarks, as well as a complex singlet scalar. The Z_6 symmetry is extended to the additional fields and it is an exact symmetry of the Lagrangian, only softly broken in the scalar potential, in order to avoid the domain-wall problem. Specific examples are given and a phenomenological analysis of the main features of the model is presented. It is shown that even for vector-like quarks with masses accessible at the LHC, one can have realistic quark masses and mixing, while respecting the strict constraints on processes arising from flavour changing neutral currents. The vector-like quark decay channels are also described.

  1. Highlights of top quark cross-section measurements at ATLAS

    CERN Document Server

    Bielski, Rafal; The ATLAS collaboration


    Measurements of inclusive and differential top-quark production cross sections in proton-proton collisions with the ATLAS detector at the Large Hadron Collider are presented at a center of mass energy of 8 TeV and 13 TeV. The inclusive measurements of top quark pair and single top quark production reach high precision and are compared to the best available theoretical calculations. Differential measurements of the kinematic properties of top quark events are also discussed. These measurements, including results using boosted top quarks, probe our understanding of top quark production in the TeV regime.

  2. Encounters of planet earth with quark-matter Festschrift Sakharov (Andrej Dmitrievich) on his 63rd birthday

    CERN Document Server

    Glashow, Sheldon Lee


    The invisible mass of our galaxy or our universe may be in the form of 'nucleorites', nuggets of hadronic matter containing similar numbers of up, down and strange quarks. The mass of a nucleorite may range from a few Gev/c*c to the mass of a nucleon star. The speaker, S. L. GLASHOW, describes what happens when nucleorites of different masses hit detectors of different sizes.

  3. Signatures of topological superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Yang


    The prediction and experimental discovery of topological insulators brought the importance of topology in condensed matter physics into the limelight. Topology hence acts as a new dimension along which more and more new states of matter start to emerge. One of these topological states of matter, namely topological superconductors, comes into the focus because of their gapless excitations. These gapless excitations, especially in one dimensional topological superconductors, are Majorana zero modes localized at the ends of the superconductor and exhibit exotic nonabelian statistics, which can be potentially applied to fault-tolerant quantum computation. Given their highly interesting physical properties and potential applications to quantum computation, both theorists and experimentalists spend great efforts to realize topological supercondoctors and to detect Majoranas. In two projects within this thesis, we investigate the properties of Majorana zero modes in realistic materials which are absent in simple theoretical models. We find that the superconducting proximity effect, an essential ingredient in all existing platforms for topological superconductors, plays a significant role in determining the localization property of the Majoranas. Strong proximity coupling between the normal system and the superconducting substrate can lead to strongly localized Majoranas, which can explain the observation in a recent experiment. Motivated by experiments in Molenkamp's group, we also look at realistic quantum spin Hall Josephson junctions, in which charge puddles acting as magnetic impurities are coupled to the helical edge states. We find that with this setup, the junction generically realizes an exotic 8π periodic Josephson effect, which is absent in a pristine Josephson junction. In another two projects, we propose more pronounced signatures of Majoranas that are accessible with current experimental techniques. The first one is a transport measurement, which uses

  4. Single-Ξ- hypernuclei within a quark mean-field model (United States)

    Hu, Jinniu; Shen, Hong


    The single-Ξ- hypernuclei are studied using a quark mean-field model. At the quark level, the Ξ- hyperon is composed of one d quark and two s quarks, which are confined by the harmonic oscillator potentials. In the case of hadrons, the baryons interact with each other by exchanging σ ,ω , and ρ mesons between quarks in different baryons. The single-Ξ- binding energies of Ξ hypernuclei are investigated from Be to Tl using different parameter sets, which are determined by the ground-state properties of several stable nuclei and the empirical values of the single-Λ and single-Ξ potentials at the nuclear saturation density. For the bound states of Ξ-+14N (i.e., C ) system named as KISO event in the KEK-E373 experiment, it is found that the Ξ- binding energies are around 5.61 -5.89 MeV for 1 s state and 0.94 -1.21 MeV for 1 p state with QMF-NK1S, QMF-NK2S, and QMF-NK3S parameter sets, whose single-Ξ potentials are -12 MeV. These results and those from cluster models with the Gaussian expansion method concerning on the Ξ-+12Be show that in the KISO event, the Ξ- hyperon may occupy the 1 p state. Furthermore, the Ξ- binding energies are achieved around 27 MeV for the Ξ-+207Pb (i.e., Tl ) system. The energies were nearly comparable to the single-Λ binding energy of Pb observed by experiments. It demonstrates that the Λ and Ξ- hyperons seem to appear simultaneously in a neutron star.

  5. Thermal evolution of massive strange compact objects in a SU(3) chiral Quark Meson model

    Energy Technology Data Exchange (ETDEWEB)

    Zacchi, Andreas


    In this work, thermodynamical properties of strongly interacting matter within a chiral SU(2)- and SU(3) chiral Quark Meson model have been analysed. Both effective models describe the development of the quark masses in media via the corresponding fields through chiral symmetry, which is expected to be restored at high temperatures and/or high densities, and spontaneously broken at low temperatures and/or densities. Spontaneous and explicit chiral symmetry breaking patterns give rise to massive Goldstone bosons, which are associated with the pions. Their chiral partners, the sigma mesons, are expected to be degenerate in mass, which was what we studied and observed at large temperatures/densities. The derivation and computation of thermodynamical quantities and properties in both cases can for instance be used to study relativistic and hydrodynamic Heavy Ion Collisions and the early universe for vanishing baryon number (SU(2)-case). They are also interesting for extreme astrophysical scenarios, such as Supernova explosions and the thermal evolution of their remnants, which has been among the topics of this thesis (SU(3)-case). Inclusion of the zero point energy in the SU(2) model has been carried out separately for the meson sector and for the quark sector as well as in a combined approach, where we learned, that the quark sector is quite dominant and that the vacuum fluctuations of the meson fields have little influence on the order parameter, but affect the relativistic degrees of freedom. In the SU(3) case, the inclusion of the zero point energy in the quark sector is much more computationally complex, but, as in the SU(2) case, is also not negliable, as its influence also changes the thermodynamical quantities at finite temperatures in a nontrivial manner. Here some features of the Supernova equation of state have been studied, which look promising for further investigations for Supernovae (proto neutron stars) and also for compact star mergers. The final

  6. Superconductivity papers database

    CERN Document Server

    International Superconductivity Technology Center. Tokyo

    This database covers mostly the articles on superconductivity appeared after the advent (1987) of the high Tc in 20 - 50 scientific journals including review papers. In the field of organic conductors, literatures are traced back to the era of TTF-TC 1970s). It contains 1)High Tc, 2) C60 related, 3) Organic Conductors, 4) Non-Oxide Superconductors including the conventional superconductors, 5) Oxide Conductors, and 6) Theory (new field since September 1997). Total number of articles at present amounts to 39,000 (December, 1998). Although the proceedings are out of the list in principle, necessary and important papers by the organizer's view are collected even from the proceedings, since some important proceedings.

  7. The LHC superconducting cavities

    CERN Document Server

    Boussard, Daniel; Häbel, E; Kindermann, H P; Losito, R; Marque, S; Rödel, V; Stirbet, M


    The LHC RF system, which must handle high intensity (0.5 A d.c.) beams, makes use of superconducting single-cell cavities, best suited to minimizing the effects of periodic transient beam loading. There will be eight cavities per beam, each capable of delivering 2 MV (5 MV/m accelerating field) at 400 MHz. The cavities themselves are now being manufactured by industry, using niobium-on-copper technology which gives full satisfaction at LEP. A cavity unit includes a helium tank (4.5 K operating temperature) built around a cavity cell, RF and HOM couplers and a mechanical tuner, all housed in a modular cryostat. Four-unit modules are ultimately foreseen for the LHC (two per beam), while at present a prototype version with two complete units is being extensively tested. In addition to a detailed description of the cavity and its ancillary equipment, the first test results of the prototype will be reported.

  8. Superconducting pulsed magnets

    CERN Multimedia

    CERN. Geneva


    Lecture 1. Introduction to Superconducting Materials Type 1,2 and high temperature superconductors; their critical temperature, field & current density. Persistent screening currents and the critical state model. Lecture 2. Magnetization and AC Loss How screening currents cause irreversible magnetization and hysteresis loops. Field errors caused by screening currents. Flux jumping. The general formulation of ac loss in terms of magnetization. AC losses caused by screening currents. Lecture 3. Twisted Wires and Cables Filamentary composite wires and the losses caused by coupling currents between filaments, the need for twisting. Why we need cables and how the coupling currents in cables contribute more ac loss. Field errors caused by coupling currents. Lecture 4. AC Losses in Magnets, Cooling and Measurement Summary of all loss mechanisms and calculation of total losses in the magnet. The need for cooling to minimize temperature rise in a magnet. Measuring ac losses in wires and in magnets. Lecture 5. Stab...

  9. Superconducting Hadron Linacs

    CERN Document Server

    Ostroumov, Peter


    This article discusses the main building blocks of a superconducting (SC) linac, the choice of SC resonators, their frequencies, accelerating gradients and apertures, focusing structures, practical aspects of cryomodule design, and concepts to minimize the heat load into the cryogenic system. It starts with an overview of design concepts for all types of hadron linacs differentiated by duty cycle (pulsed or continuous wave) or by the type of ion species (protons, H-, and ions) being accelerated. Design concepts are detailed for SC linacs in application to both light ion (proton, deuteron) and heavy ion linacs. The physics design of SC linacs, including transverse and longitudinal lattice designs, matching between different accelerating–focusing lattices, and transition from NC to SC sections, is detailed. Design of high-intensity SC linacs for light ions, methods for the reduction of beam losses, preventing beam halo formation, and the effect of HOMs and errors on beam quality are discussed. Examples are ta...

  10. Superconducting energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Giese, R.F.


    This report describes the status of energy storage involving superconductors and assesses what impact the recently discovered ceramic superconductors may have on the design of these devices. Our description is intended for R&D managers in government, electric utilities, firms, and national laboratories who wish an overview of what has been done and what remains to be done. It is assumed that the reader is acquainted with superconductivity, but not an expert on the topics discussed here. Indeed, it is the author`s aim to enable the reader to better understand the experts who may ask for the reader`s attention, support, or funding. This report may also inform scientists and engineers who, though expert in related areas, wish to have an introduction to our topic.

  11. Quark-novae Occurring in Massive Binaries : A Universal Energy Source in Superluminous Supernovae with Double-peaked Light Curves (United States)

    Ouyed, Rachid; Leahy, Denis; Koning, Nico


    A quark-nova (QN; the sudden transition from a neutron star into a quark star), which occurs in the second common envelope (CE) phase of a massive binary, gives excellent fits to superluminous, hydrogen-poor, supernovae (SLSNe) with double-peaked light curves, including DES13S2cmm, SN 2006oz, and LSQ14bdq ( In our model, the H envelope of the less massive companion is ejected during the first CE phase, while the QN occurs deep inside the second, He-rich, CE phase after the CE has expanded in size to a radius of a few tens to a few thousands of solar radii; this yields the first peak in our model. The ensuing merging of the quark star with the CO core leads to black hole formation and accretion, explaining the second long-lasting peak. We study a sample of eight SLSNe Ic with double-humped light curves. Our model provides good fits to all of these, with a universal explosive energy of 2 × 1052 erg (which is the kinetic energy of the QN ejecta) for the first hump. The late-time emissions seen in iPTF13ehe and LSQ14bdq are fit with a shock interaction between the outgoing He-rich (I.e., second) CE and the previously ejected H-rich (I.e., first) CE.


    Energy Technology Data Exchange (ETDEWEB)

    Ouyed, Rachid; Leahy, Denis; Koning, Nico, E-mail: [Department of Physics and Astronomy, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4 (Canada)


    A quark-nova (QN; the sudden transition from a neutron star into a quark star), which occurs in the second common envelope (CE) phase of a massive binary, gives excellent fits to superluminous, hydrogen-poor, supernovae (SLSNe) with double-peaked light curves, including DES13S2cmm, SN 2006oz, and LSQ14bdq ( In our model, the H envelope of the less massive companion is ejected during the first CE phase, while the QN occurs deep inside the second, He-rich, CE phase after the CE has expanded in size to a radius of a few tens to a few thousands of solar radii; this yields the first peak in our model. The ensuing merging of the quark star with the CO core leads to black hole formation and accretion, explaining the second long-lasting peak. We study a sample of eight SLSNe Ic with double-humped light curves. Our model provides good fits to all of these, with a universal explosive energy of 2 × 10{sup 52} erg (which is the kinetic energy of the QN ejecta) for the first hump. The late-time emissions seen in iPTF13ehe and LSQ14bdq are fit with a shock interaction between the outgoing He-rich (i.e., second) CE and the previously ejected H-rich (i.e., first) CE.

  13. Overview on superconducting photoinjectors

    Directory of Open Access Journals (Sweden)

    A. Arnold


    Full Text Available The success of most of the proposed energy recovery linac (ERL based electron accelerator projects for future storage ring replacements (SRR and high power IR–free-electron lasers (FELs largely depends on the development of an appropriate source. For example, to meet the FEL specifications [J. W. Lewellen, Proc. SPIE Int. Soc. Opt. Eng. 5534, 22 (2004PSISDG0277-786X10.1117/12.557378] electron beams with an unprecedented combination of high brightness, low emittance (0.1  μmrad, and high average current (hundreds of mA are required. An elegant way to create a beam of such quality is to combine the high beam quality of a normal conducting rf photoinjector with the superconducting technology, i.e., to build a superconducting rf photoinjector (SRF gun. SRF gun R&D programs based on different approaches have been launched at a growing number of institutes and companies (AES, Beijing University, BESSY, BNL, DESY, FZD, TJNAF, Niowave, NPS, Wisconsin University. Substantial progress was achieved in recent years and the first long term operation was demonstrated at FZD [R. Xiang et al., in Proceedings of the 31st International Free Electron Laser Conference (FEL 09, Liverpool, UK (STFC Daresbury Laboratory, Warrington, 2009, p. 488]. In the near future SRF guns are expected to play an important role for linac-driven FEL facilities. In this paper we will review the concepts, the design parameters, and the status of the major SRF gun projects.

  14. Superconducting Aero Propulsion Motor Project (United States)

    National Aeronautics and Space Administration — Superconducting electric propulsion systems will yield improvements in total ownership costs due to the simplicity of electric drive when compared with gas turbine...

  15. Recent advances in fullerene superconductivity

    CERN Document Server

    Margadonna, S


    Superconducting transition temperatures in bulk chemically intercalated fulleride salts reach 33 K at ambient pressure and in hole-doped C sub 6 sub 0 derivatives in field-effect-transistor (FET) configurations, they reach 117 K. These advances pose important challenges for our understanding of high-temperature superconductivity in these highly correlated organic metals. Here we review the structures and properties of intercalated fullerides, paying particular attention to the correlation between superconductivity and interfullerene separation, orientational order/disorder, valence state, orbital degeneracy, low-symmetry distortions, and metal-C sub 6 sub 0 interactions. The metal-insulator transition at large interfullerene separations is discussed in detail. An overview is also given of the exploding field of gate-induced superconductivity of fullerenes in FET electronic devices.

  16. Mixed-mu superconducting bearings (United States)

    Hull, John R.; Mulcahy, Thomas M.


    A mixed-mu superconducting bearing including a ferrite structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet structure. The ferrite structure is levitated by said stationary permanent magnet structure.

  17. The central question in superconductivity (United States)

    Hirsch, J. E.

    I will argue that the most basic and fundamental question in superconductivity is: when a superconductor in a magnetic field goes normal, how does the supercurrent stop? The supercurrent has to stop before the material becomes resistive because the transition is reversible in an ideal situation, with no Joule heat dissipated. I will argue that the conventional BCS-London theory of superconductivity cannot answer this question. I will propose an answer to this question that requires that there is flow and counterflow of charge across the normal-superconductor phase boundary, and requires that the normal state current carriers have hole-like character. The conventional BCS-London theory of superconductivity does not have these physical elements, the theory of hole superconductivity does.

  18. Superconductivity in all its states

    CERN Multimedia

    Globe Info


    Temporary exhibition at the Saint-Genis-Pouilly Tourist Office. For the 100th anniversary of its discovery, take a plunge into the amazing world of superconductivity. Some materials, when cooled down to extreme temperatures, acquire a remarkable property -  they become superconducting. Superconductivity is a rare example of a quantum effect that can be witnessed on the macroscopic scale and is today at the heart of much research. In laboratories, researchers try to gain a better understanding of its origins, study new superconducting materials, explore the phenomenon at the nanometric scale and pursue their indefatigable search for new applications. Monday to Friday: 09:00 a.m. to 12:00 and 2:30 p.m. to 6:30 p.m. Saturday: 10:00 a.m. to 12:00 noon » Open to all – Admission free For further information: +33 (0)4 50 42 29 37

  19. Positron annihilation in superconductive metals

    Energy Technology Data Exchange (ETDEWEB)

    Dekhtjar, I.J.


    A correlation is shown between the parameters of superconductive metals and those of positron annihilation. Particular attention is paid to the density states obtained from the electron specific heat.

  20. Ballistic superconductivity in semiconductor nanowires

    NARCIS (Netherlands)

    Zhang, H.; Gül, Ö.; Conesa-Boj, S.; Nowak, M.P.; Wimmer, M.; Zuo, K.; Mourik, V.; Vries, F.K. de; Veen, J. van; Moor, M.W.A. de; Bommer, J.D.S.; Woerkom, D.J. van; Car, D.; Plissard, S.R.; Bakkers, E.P.A.M.; Quintero Pérez, M.; Cassidy, M.C.; Koelling, S.; Goswami, S.; Watanabe, K.; Taniguchi, T.; Kouwenhoven, L.P.


    Semiconductor nanowires have opened new research avenues in quantum transport owing to their confined geometry and electrostatic tunability. They have offered an exceptional testbed for superconductivity, leading to the realization of hybrid systems combining the macroscopic quantum properties of

  1. International Conference on Organic Superconductivity

    CERN Document Server

    Little, William A; Organic superconductivity


    This book contains papers presented at the International Conference on Organic Superconductivity which was held May 20-24, 1990, at the Stanford Sierra Conference Center, South Lake Tahoe, California. In the twenty years since the First Conference on Organic Superconductivity was held (Hawaii, 1969), there has been remarkable progress in the field. At present, development is accelerating with contributions from many groups in many countries worldwide. The discovery of high Tc superconductivity by G. Bednorz and K. Muller in 1986 and subsequent developments in the ceramic superconductors have had an enormous impact on the field of superconductivity as a whole. This discovery occurred in an area entirely different from that of conventional superconduc­ tivity, underscoring the importance of the search for and study of novel materials of all kinds. We believe that the organics, with their wide range of structural, chemical, and physical properties, belong in this category of novel materials. This book r...

  2. Advanced Superconducting Test Accelerator (ASTA) (United States)

    Federal Laboratory Consortium — The Advanced Superconducting Test Accelerator (ASTA) facility will be based on upgrades to the existing NML pulsed SRF facility. ASTA is envisioned to contain 3 to 6...

  3. Superconductivity in Layered Organic Metals

    Directory of Open Access Journals (Sweden)

    Jochen Wosnitza


    Full Text Available In this short review, I will give an overview on the current understanding of the superconductivity in quasi-two-dimensional organic metals. Thereby, I will focus on charge-transfer salts based on bis(ethylenedithiotetrathiafulvalene (BEDT-TTF or ET for short. In these materials, strong electronic correlations are clearly evident, resulting in unique phase diagrams. The layered crystallographic structure leads to highly anisotropic electronic as well as superconducting properties. The corresponding very high orbital critical field for in-plane magnetic-field alignment allows for the occurrence of the Fulde–Ferrell– Larkin–Ovchinnikov state as evidenced by thermodynamic measurements. The experimental picture on the nature of the superconducting state is still controversial with evidence both for unconventional as well as for BCS-like superconductivity.

  4. Electromagnetic superconductivity of vacuum induced by strong magnetic field: numerical evidence in lattice gauge theory

    CERN Document Server

    Braguta, V V; Chernodub, M N; Polikarpov, M I


    Using numerical simulations of SU(2) lattice gauge theory we demonstrate from first principles that an external magnetic field leads to spontaneous generation of quark condensates with quantum numbers of electrically charged rho mesons if the strength of the magnetic field exceeds the critical value eB_c = 0.927(77) GeV^2 or B_c =(1.56 \\pm 0.13) 10^{16} Tesla. The condensation of the charged $\\rho$ mesons in strong magnetic field is a key feature of the recently proposed electromagnetic superconductivity of the vacuum.

  5. Electromagnetic superconductivity of vacuum induced by strong magnetic field: Numerical evidence in lattice gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Braguta, V.V. [IHEP, Protvino, Moscow region, 142284 (Russian Federation); ITEP, B. Cheremushkinskaya str. 25, Moscow, 117218 (Russian Federation); Buividovich, P.V. [ITEP, B. Cheremushkinskaya str. 25, Moscow, 117218 (Russian Federation); JINR, Joliot-Curie str. 6, Dubna, Moscow region, 141980 (Russian Federation); Institute of Theoretical Physics, University of Regensburg, Universitaetsstrasse 31, D-93053 Regensburg (Germany); Chernodub, M.N., E-mail: [CNRS, Laboratoire de Mathematiques et Physique Theorique, Universite Francois-Rabelais Tours, Parc de Grandmont, 37200 Tours (France); Department of Physics and Astronomy, University of Gent, Krijgslaan 281, S9, B-9000 Gent (Belgium); Kotov, A.Yu.; Polikarpov, M.I. [ITEP, B. Cheremushkinskaya str. 25, Moscow, 117218 (Russian Federation); MIPT, Institutskii per. 9, Dolgoprudny, Moscow region, 141700 (Russian Federation)


    Using numerical simulations of quenched SU(2) gauge theory we demonstrate that an external magnetic field leads to spontaneous generation of quark condensates with quantum numbers of electrically charged {rho} mesons if the strength of the magnetic field exceeds the critical value eB{sub c}=0.927(77) GeV{sup 2} or B{sub c}=(1.56{+-}0.13) Dot-Operator 10{sup 16} Tesla. The condensation of the charged {rho} mesons in strong magnetic field is a key feature of the magnetic-field-induced electromagnetic superconductivity of the vacuum.

  6. Meson Spectroscopy in the Light Quark Sector

    Energy Technology Data Exchange (ETDEWEB)

    De Vita, R.; Lunardi, S.; Bizzeti, P. G.; Bucci, C.; Chiari, M.; Dainese, A.; Di Nezza, P.; Menegazzo, R.; Nannini, A.; Signorini, C.; Valiente-Dobon, J. J.


    Understanding the hadron spectrum is one of the fundamental issues in modern particle physics. We know that existing hadron configurations include baryons, made of three quarks, and mesons, made of quark-antiquark pairs. However most of the mass of the hadrons is not due to the mass of these elementary constituents but to their binding force. Studying the hadron spectrum is therefore a tool to understand one of the fundamental forces in nature, the strong force, and Quantum Chromo Dynamics (QCD), the theory that describes it. This investigation can provide an answer to fundamental questions as what is the origin of the mass of hadrons, what is the origin of quark confinement, what are the relevant degrees of freedom to describe these complex systems and how the transition between the elementary constituents, quarks and gluons, and baryons and mesons occurs. In this field a key tool is given by meson spectroscopy. Mesons, being made by a quark and an anti-quark, are the simplest quark bound system and therefore the ideal benchmark to study the interaction between quarks and understand what the role of gluons is. In this investigation, it is fundamental to precisely determine the spectrum and properties of mesons but also to search for possible unconventional states beyond the configuration q{anti q} as tetraquarks (qq{anti qq}), hybrids (q{anti q}g) and glueballs. These states can be distinguished unambiguously from regular mesons when they have exotic quantum numbers, i.e. combinations of total angular momentum, spin and parity that are not allowed for q{anti q} states. These are called exotic quantum numbers and the corresponding states are referred to as exotics. The study of the meson spectrum and the search for exotics is among the goals of several experiments in the world that exploit different reaction processes, as e{sup +}e{sup -} annihilation, p{anti p} annihilation, pion scattering, proton-proton scattering and photo-production, to produce meson states

  7. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter; Brorsen, Michael

    Nærværende rapport beskriver foreløbige hovedkonklusioner på modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star i perioden 13/9 2004 til 12/11 2004.......Nærværende rapport beskriver foreløbige hovedkonklusioner på modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star i perioden 13/9 2004 til 12/11 2004....

  8. X(3872): an exotic combination of quarks?

    CERN Multimedia

    Antonella Del Rosso


    According to the Standard Model of particles, quarks are the smallest building blocks of matter. So far, only quark-antiquark pairs (mesons) and quark triplets (baryons) have been observed. However, over the last few decades, some not-yet-understood states have started to appear in the particle zoo. Their nature is still unclear but the LHCb experiment has now made a big step towards understanding one of them: the X(3872).   A proton-lead ion collision, as observed by the LHCb detector during the 2013 data-taking period. The X(3872) has not yet made headlines, but its existence is an intriguing mystery that scientists have been trying to elucidate over the past ten years since the particle was first observed by the Belle experiment. So far, its inner nature has remained unknown because of theoretical difficulties in cataloguing it as a quark-antiquark state in the so-called "charmonium" spectrum (as charm quarks are involved) and because of the experimental difficulties inv...

  9. Superconducting Vortex with Antiferromagnetic Core

    Energy Technology Data Exchange (ETDEWEB)

    Arovas, D.P. [Department of Physics, University of California at San Diego, La Jolla, California 92093 (United States); Berlinsky, A.J.; Kallin, C.; Zhang, S. [Department of Physics, Stanford University, Stanford, California 94305 (United States)


    We show that a superconducting vortex in underdoped high T{sub c} superconductors could have an antiferromagnetic core. This type of vortex configuration arises as a topological solution in the recently constructed SO(5) nonlinear {sigma} model and in Landau-Ginzburg theory with competing antiferromagnetic and superconducting order parameters. Experimental detection of this type of vortex by muon spin resonance and neutron scattering is proposed. {copyright} {ital 1997} {ital The American Physical Society}

  10. Superconductivity in domains with corners

    DEFF Research Database (Denmark)

    Bonnaillie-Noel, Virginie; Fournais, Søren


    We study the two-dimensional Ginzburg-Landau functional in a domain with corners for exterior magnetic field strengths near the critical field where the transition from the superconducting to the normal state occurs. We discuss and clarify the definition of this field and obtain a complete...... asymptotic expansion for it in the large $\\kappa$ regime. Furthermore, we discuss nucleation of superconductivity at the boundary....

  11. Rainbow's Stars


    Garattini, Remo; Mandanici, Gianluca


    In recent years, a growing interest in the equilibrium of compact astrophysical objects like white dwarf and neutron stars has been manifested. In particular, various modifications due to Planck-scale energy effects have been considered. In this paper we analyze the modification induced by gravity’s rainbow on the equilibrium configurations described by the Tolman–Oppenheimer–Volkoff (TOV) equation. Our purpose is to explore the possibility that the rainbow Planck-scale deformation of space-t...

  12. Review of recent heavy flavor measurements in STAR

    Directory of Open Access Journals (Sweden)

    Lomnitz Michael R.


    Full Text Available Heavy-ion collisions at RHIC provide a unique environment to study the behavior of nuclear matter under extreme conditions. In particular, heavy quarks, which are produced during the early stages of a collision, provide an exceptional probe in understanding the hot and dense medium created in such collisions. The Heavy Flavor Tracker and Muon Telescope Detector at the STAR experiment at RHIC have been successfully installed since early 2014 and have significantly improved the experimental capabilities in measuring both open and hidden heavy flavor hadrons in heavy-ion collisions. We present an overview of recent heavy flavor results obtained at STAR using these two dedicated detectors.

  13. The heavy top quark and supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Hall, L.J. [Lawrence Berkeley Lab., CA (United States)]|[Univ. of California, Berkeley, CA (United States)


    Three aspects of supersymmetric theories are discussed: electroweak symmetry breaking, the issues of flavor, and gauge unification. The heavy top quark plays an important, sometimes dominant, role in each case. Additional symmetries lead to extensions of the Standard Model which can provide an understanding for many of the outstanding problems of particle physics. A broken supersymmetric extension of spacetime allows electroweak symmetry breaking to follow from the dynamics of the heavy top quark; an extension of isospin provides a constrained framework for understanding the pattern of quark and lepton masses; and a grand unified extension of the Standard Model gauge group provides an elegant understanding of the gauge quantum numbers of the components of a generation. Experimental signatures for each of these additional symmetries are discussed.

  14. Quark Matter 2017: Young Scientist Support

    Energy Technology Data Exchange (ETDEWEB)

    Evdokimov, Olga [University of Illinois at Chicago


    Quark Matter conference series are amongst the major scientific events for the Relativistic Heavy Ion community. With over 30 year long history, the meetings are held about every 1½ years to showcase the progress made in theoretical and experimental studies of nuclear matter under extreme conditions. The 26th International Conference on Ultra-relativistic Nucleus-Nucleus Collisions (Quark Matter 2017) was held at the Hyatt Regency Hotel in downtown Chicago from Sunday, February 5th through Saturday, February 11th, 2017. The conference featured about 180 plenary and parallel presentations of the most significant recent results in the field, a poster session for additional presentations, and an evening public lecture. Following the tradition of previous Quark Matter meetings, the first day of the conference was dedicated entirely to a special program for young scientists (graduate students and postdoctoral researchers). This grant will provided financial support for 235 young physicists facilitating their attendance of the conference.

  15. Top quark pair production at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Baernreuther, Peter


    One of the most interesting and manifold processes in the Standard Model of elementary particle physics is the top quark pair production. It enabled the discovery of the top quark at the Tevatron in 1995 and the determination of many of its properties. By means of a precise measurement and calculation of the cross section of top quark pair production it is possible to extract the top quark mass. Improvements in the gluon parton distribution functions (important for the Higgs boson production) or improvements in the prediction of the Higgs mass are also closely linked with the top quark pair production. Furthermore, the production process plays an important role in the discovery of new physics. On the one hand the top quark pair decays form the largest part of the background in many BSM models, on the other hand BSM physics can be detected directly in the decay process by investigating the charge symmetry or the invariant mass spectrum. At the LHC it will be possible for the first time to produce a large amount of top quarks; thereby the statistical errors of the observables will be strongly reduced. The enormous increase in the production rate has two reasons. On the one hand, the acceleration energy of the LHC (14 TeV and 7 TeV) is significantly greater than that of the Tevatron (1.96 Tev). This leads to an increase of the cross section by a factor of 100 ({proportional_to}7.3 pb at the Tevatron to {proportional_to}800 pb at 14 TeV LHC). On the other hand, the luminosity of the LHC outperforms the Tevatron by a factor of 10-100. The reduced experimental errors for the observables demand an improvement of the theoretical error. The experimental accuracy of the LHC and the great relevance of the process led to an intensive activity of different research groups in order to improve the calculation of the cross section of top quark pair production. This work presents for the first time a complete numerical result for the full NNLO correction for the top quark pair

  16. The NJL Model for Quark Fragmentation Functions

    Energy Technology Data Exchange (ETDEWEB)

    T. Ito, W. Bentz, I. Cloet, A W Thomas, K. Yazaki


    A description of fragmentation functions which satisfy the momentum and isospin sum rules is presented in an effective quark theory. Concentrating on the pion fragmentation function, we first explain the reason why the elementary (lowest order) fragmentation process q → qπ is completely inadequate to describe the empirical data, although the “crossed” process π → qq describes the quark distribution functions in the pion reasonably well. Then, taking into account cascade-like processes in a modified jet-model approach, we show that the momentum and isospin sum rules can be satisfied naturally without introducing any ad-hoc parameters. We present numerical results for the Nambu-Jona-Lasinio model in the invariant mass regularization scheme, and compare the results with the empirical parametrizations. We argue that this NJL-jet model provides a very useful framework to calculate the fragmentation functions in an effective chiral quark theory.

  17. Supersymmetric color superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Harnik, Roni; Larson, Daniel T.; Murayama, Hitoshi


    Recent interest in novel phases in high density QCD motivates the study of high density supersymmetric QCD (SQCD), where powerful exact results for supersymmetric gauge theories can be brought to bear in the strongly coupled regime. We begin by describing how a chemical potential can be incorporated into a supersymmetric theory as a spurion vector superfield. We then study supersymmetric SU(N{sub c}) gauge theories with N{sub f} flavors of quarks in the presence of a baryon chemical potential {mu}, and describe the global symmetry breaking patterns at low energy. Our analysis requires {mu} < {Lambda} and is thus complementary to the variational approach that has been successful for {mu} >> {Lambda}. We find that for N{sub F} < N{sub c} a modified U(1){sub B} symmetry is preserved, analogous to the non-supersymmetric 2SC phase, whereas for N{sub f} = N{sub c} there is a critical chemical potential above which the U(1){sub B} is broken, as it is in the non-supersymmetric CFL phase. We further analyze the cases with N{sub c} + 1 {le} N{sub f} < 3/2 N{sub c} and find that baryon number is broken dynamically for {mu} > {mu}{sub c}. We also give a qualitative description of the phases in the ''conformal window'', 3/2 N{sub c} < N{sub f} < 3N{sub c}, at finite density.

  18. Two Coexisting Families of Compact Stars: Observational Implications for Millisecond Pulsars (United States)

    Bhattacharyya, Sudip; Bombaci, Ignazio; Logoteta, Domenico; Thampan, Arun V.


    It is usually thought that a single equation of state (EoS) model “correctly” represents cores of all compact stars. Here we emphasize that two families of compact stars, viz., neutron stars and strange stars, can coexist in nature, and that neutron stars can get converted to strange stars through the nucleation process of quark matter in the stellar center. From our fully general relativistic numerical computations of the structures of fast-spinning compact stars, known as millisecond pulsars, we find that such a stellar conversion causes a simultaneous spin-up and decrease in gravitational mass of these stars. This is a new type of millisecond pulsar evolution through a new mechanism, which gives rise to relatively lower mass compact stars with higher spin rates. This could have an implication for the observed mass and spin distributions of millisecond pulsars. Such a stellar conversion can also rescue some massive, spin-supported millisecond pulsars from collapsing into black holes. Besides, we extend the concept of critical mass {M}{cr} for the neutron star sequence to the case of fast-spinning neutron stars, and point out that neutron star EoS models cannot be ruled out by the stellar mass measurement alone. Finally, we emphasize the additional complexity for constraining EoS models, for example, by stellar radius measurements using X-ray observations, if two families of compact stars coexist.

  19. Search for scalar top and scalar bottom quarks at LEP

    CERN Document Server

    Abbiendi, G.; Akesson, P.F.; Alexander, G.; Allison, John; Amaral, P.; Anagnostou, G.; Anderson, K.J.; Arcelli, S.; Asai, S.; Axen, D.; Azuelos, G.; Bailey, I.; Barberio, E.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Bloodworth, I.J.; Boeriu, O.; Bock, P.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Buesser, K.; Burckhart, H.J.; Campana, S.; Carnegie, R.K.; Caron, B.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Csilling, A.; Cuffiani, M.; Dado, S.; Dallavalle, G.Marco; Dallison, S.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Elfgren, E.; Etzion, E.; Fabbri, F.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Furtjes, A.; Gagnon, P.; Gary, John William; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, Marina; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harder, K.; Harel, A.; Harin-Dirac, M.; Hauschild, M.; Hauschildt, J.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Hensel, C.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hoffman, Kara Dion; Homer, R.J.; Horvath, D.; Howard, R.; Huntemeyer, P.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klein, K.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kormos, Laura L.; Kowalewski, Robert V.; Kramer, T.; Kress, T.; Krieger, P.; von Krogh, J.; Krop, D.; Kruger, K.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Layter, J.G.; Leins, A.; Lellouch, D.; Letts, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, J.; Macpherson, A.; Mader, W.; Marcellini, S.; Marchant, T.E.; Martin, A.J.; Martin, J.P.; Masetti, G.; Mashimo, T.; Mattig, Peter; McDonald, W.J.; McKenna, J.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Mendez-Lorenzo, P.; Menges, W.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Moed, S.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Polok, J.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Rick, H.; Roney, J.M.; Rosati, S.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sahr, O.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schoerner-Sadenius, Thomas; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spagnolo, S.; Spano, F.; Stahl, A.; Stephens, K.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Taylor, R.J.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Trefzger, T.; Tricoli, A.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vachon, B.; Vollmer, C.F.; Vannerem, P.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija


    Searches for a scalar top quark and a scalar bottom quark have been performed using a data sample of 438 pb-1 at centre-of-mass energies of sqrt(s) = 192 - 209 GeV collected with the OPAL detector at LEP. No evidence for a signal was found. The 95% confidence level lower limit on the scalar top quark mass is 97.6 GeV if the mixing angle between the supersymmetric partners of the left- and right-handed states of the top quark is zero. When the scalar top quark decouples from the Z0 boson, the lower limit is 95.7 GeV. These limits were obtained assuming that the scalar top quark decays into a charm quark and the lightest neutralino, and that the mass difference between the scalar top quark and the lightest neutralino is larger than 10 GeV. The complementary decay mode of the scalar top quark decaying into a bottom quark, a charged lepton and a scalar neutrino has also been studied. The lower limit on the scalar top quark mass is 93.0 GeV for this decay mode, if the mass difference between the scalar top quark a...

  20. Determination of Top Quark charge in CDF experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bednar, Peter [Comenius Univ., Bratislava (Slovakia)


    This thesis deals with the problematic of top quark charge measurement in CDF experiment at Fermilab. The goal is to determine if the top quark observed on Tevatron experiments is the Standard Model particle with the predicted charge 2/3 or it is some exotic 4th generation quark with the charge of -4/3 as suggested by some alternative theories.

  1. Chromopolarizabilities of a heavy quark at weak coupling (United States)

    Moreno, Daniel; Pineda, Antonio


    We obtain the renormalization group improved expressions of the Wilson coefficients of the heavy quark effective theory Lagrangian with leading logarithmic approximation to O (1 /m3) for the spin-independent sector, which includes the heavy quark chromopolarizabilities. Our analysis includes the effects induced by spectator quarks. We observe that the numerical impact of these logarithms is very large in most cases.

  2. The quark fraction of the proton spin (United States)

    Mandula, Jeffrey E.

    We report on a lattice QCD estimate of the fraction of the proton spin that the quark spin is responsible for. The estimate is arrived at by means of a lattice QCD simulation of the polarized proton matrix element of the anomaly, F μνoverlineFμν. The preliminary result of the simulation is that this fraction is rather small. This is in accord with the interpretation of the EMC experiment that the quark spins are responsible for very little, if any, of the proton spin.

  3. Quark Hadron Duality - Recent Jefferson Lab Results

    Energy Technology Data Exchange (ETDEWEB)

    Niculescu, Maria Ioana [James Madison Univ., Harrisonburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)


    The duality between the partonic and hadronic descriptions of electron--nucleon scattering is a remarkable feature of nuclear interactions. When averaged over appropriate energy intervals the cross section at low energy which is dominated by nucleon resonances resembles the smooth behavior expected from perturbative QCD. Recent Jefferson Lab results indicate that quark-hadron duality is present in a variety of observables, not just the proton F2 structure function. An overview of recent results, especially local quark-hadron duality on the neutron, are presented here.

  4. New lattice action for heavy quarks

    Energy Technology Data Exchange (ETDEWEB)

    Oktay, Mehmet B.; Kronfeld, Andreas S.


    We extend the Fermilab method for heavy quarks to include interactions of dimension six and seven in the action. There are, in general, many new interactions, but we carry out the calculations needed to match the lattice action to continuum QCD at the tree level, finding six non-zero couplings. Using the heavy-quark theory of cutoff effects, we estimate how large the remaining discretization errors are. We find that our tree-level matching, augmented with one-loop matching of the dimension-five interactions, can bring these errors below 1%, at currently available lattice spacings.

  5. Precision Determination of the Top Quark Mass

    Energy Technology Data Exchange (ETDEWEB)

    Movilla Fernandez, Pedro A.; /LBL, Berkeley


    The CDF and D0 collaborations have updated their measurements of the mass of the top quark using proton-antiproton collisions at {radical}s = 1.96 TeV produced at the Tevatron. The uncertainties in each of the top-antitop decay channels have been reduced. The new Tevatron average for the mass of the top quark based on about 1 fb{sup -1} of data per experiment is 170.9 {+-} 1.8 GeV/c{sup 2}.

  6. Chiral Lagrangians and quark condensate in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Delorme, J.; Chanfray, G.; Ericson, M.


    The evolution of density of quark condensate in nuclear medium with interacting nucleons, including the short range correlations is examined. Two chiral models are used, the linear sigma model and the non-linear one. It is shown that the quark condensate, as other observables, is independent on the variant selected. The application to physical pions excludes the linear sigma model as a credible one. The non-linear models restricted to pure s-wave pion-nucleon scattering are examined. (author). 28 refs.; Submitted to nuclear Physics, A (NL).

  7. Quark Spectra, Topology, and Random Matrix Theory

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, R.G.; Heller, U.M. [SCRI, Florida State University, Tallahassee, Florida 32306-4130 (United States); Kiskis, J. [Department of Physics, University of California, Davis, California 95616 (United States); Narayanan, R. [Department of Physics, Building 510A, Brookhaven National Laboratory, P.O. Box 5000, Upton, New York 11973 (United States)


    Quark spectra in QCD are linked to fundamental properties of the theory including the identification of pions as the Goldstone bosons of spontaneously broken chiral symmetry. The lattice overlap Dirac operator provides a nonperturbative, ultraviolet-regularized description of quarks with the correct chiral symmetry. Properties of the spectrum of this operator and their relation to random matrix theory are studied here. In particular, the predictions from chiral random matrix theory in topologically nontrivial gauge field sectors are tested for the first time. {copyright} {ital 1999} {ital The American Physical Society}

  8. The Theory of Quark and Gluon Interactions

    CERN Document Server

    Ynduráin, Francisco J


    F. J. Ynduráin's book on Quantum Chromodynamics has become a classic among advanced textbooks. First published in 1983, and translated into Russian in 1986, it now sees its fourth edition. It addresses readers with basic knowledge of field theory and particle phenomenology. The author presents the basic facts of quark and gluon physics in pedagogical form. Theory is always confronted with experimental findings. The reader will learn enough to be able to follow modern research articles. This fourth edition presents a new section on heavy quark effective theories, more material on lattice QCD and on chiral perturbation theory.

  9. arXiv Top Quark Decay Properties

    CERN Document Server

    Mal, Prolay Kumar


    Due to the large production cross-section, many of the top quark properties can be measured very precisely at the LHC. A very few recent results, probed only through the top quark decay vertices are presented here. These results are based on proton-proton collision datasets recorded by the ATLAS and CMS experiments at sqrt(s)=7, 8 and 13 TeV. All the measurements and observed limits are consistent with the Standard Model (SM) predictions, while strong bounds on anomalous Wtb couplings are established.

  10. Turbulent meson condensation in quark deconfinement

    Directory of Open Access Journals (Sweden)

    Koji Hashimoto


    Full Text Available In a QCD-like strongly coupled gauge theory at large Nc, using the AdS/CFT correspondence, we find that heavy quark deconfinement is accompanied by a coherent condensation of higher meson resonances. This is revealed in non-equilibrium deconfinement transitions triggered by static, as well as quenched electric fields even below the Schwinger limit. There, we observe a “turbulent” energy flow to higher meson modes, which finally results in the quark deconfinement. Our observation is consistent with seeing deconfinement as a condensation of long QCD strings.

  11. Quark model and high energy collisions

    CERN Document Server

    Anisovich, V V; Nyíri, J; Shabelski, Yu M


    This is an updated version of the book published in 1985. QCD-motivated, it gives a detailed description of hadron structure and soft interactions in the additive quark model, where hadrons are regarded as composite systems of dressed quarks. In the past decade it has become clear that nonperturbative QCD, responsible for soft hadronic processes, may differ rather drastically from perturbative QCD. The understanding of nonperturbative QCD requires a detailed investigation of the experiments and the theoretical approaches. Bearing this in mind, the book has been rewritten paying special attenti

  12. When stars collide

    NARCIS (Netherlands)

    Glebbeek, E.; Pols, O.R.


    When two stars collide and merge they form a new star that can stand out against the background population in a star cluster as a blue straggler. In so called collision runaways many stars can merge and may form a very massive star that eventually forms an intermediate mass blackhole. We have

  13. Superconducting permanent magnets

    Energy Technology Data Exchange (ETDEWEB)

    Wipf, S.L.; Laquer, H.L.


    The concept of superconducting permanent magnets with fields trapped in shells or cylinders of Type II superconductors is an old one. Unfortunately, the low values of 0.5 to 1T for the first flux jump field, which is independent of the actual current density, have frustrated its implementation with classical Type II superconductors. The fact that the flux jump fields for high temperature superconductors should be an order of magnitude larger at liquid nitrogen temperatures allows us to reconsider these options. Analysis of the hysteresis patterns, based on the critical state model, shows that, if the dimensions are chosen so that the sample is penetrated at a field B/sub p/, which is equal to or just less than the first flux jump field, B/sub fj/, a temporarily applied field of 2B/sub fj/ will trap 0.5 B/sub fj/. Thus for a 90 K superconductor with a B/sub fj/ of 6T, a permanent field of 3 T should be trapped, with an energy product of 1.8 MJ/m/sup 3/ (225 MG . Oe). This is five times as large as for the best permanent magnet materials. The authors discuss means to verify the analysis and the limitations imposed by the low critical current densities in presently available high temperature superconductors.

  14. The Superconducting TESLA Cavities

    CERN Document Server

    Aune, B.; Bloess, D.; Bonin, B.; Bosotti, A.; Champion, M.; Crawford, C.; Deppe, G.; Dwersteg, B.; Edwards, D.A.; Edwards, H.T.; Ferrario, M.; Fouaidy, M.; Gall, P-D.; Gamp, A.; Gössel, A.; Graber, J.; Hubert, D.; Hüning, M.; Juillard, M.; Junquera, T.; Kaiser, H.; Kreps, G.; Kuchnir, M.; Lange, R.; Leenen, M.; Liepe, M.; Lilje, L.; Matheisen, A.; Möller, W-D.; Mosnier, A.; Padamsee, H.; Pagani, C.; Pekeler, M.; Peters, H-B.; Peters, O.; Proch, D.; Rehlich, K.; Reschke, D.; Safa, H.; Schilcher, T.; Schmüser, P.; Sekutowicz, J.; Simrock, S.; Singer, W.; Tigner, M.; Trines, D.; Twarowski, K.; Weichert, G.; Weisend, J.; Wojtkiewicz, J.; Wolff, S.; Zapfe, K.


    The conceptional design of the proposed linear electron-positron colliderTESLA is based on 9-cell 1.3 GHz superconducting niobium cavities with anaccelerating gradient of Eacc >= 25 MV/m at a quality factor Q0 > 5E+9. Thedesign goal for the cavities of the TESLA Test Facility (TTF) linac was set tothe more moderate value of Eacc >= 15 MV/m. In a first series of 27industrially produced TTF cavities the average gradient at Q0 = 5E+9 wasmeasured to be 20.1 +- 6.2 MV/m, excluding a few cavities suffering fromserious fabrication or material defects. In the second production of 24 TTFcavities additional quality control measures were introduced, in particular aneddy-current scan to eliminate niobium sheets with foreign material inclusionsand stringent prescriptions for carrying out the electron-beam welds. Theaverage gradient of these cavities at Q0 = 5E+9 amounts to 25.0 +- 3.2 MV/mwith the exception of one cavity suffering from a weld defect. Hence only amoderate improvement in production and preparation technique...

  15. Tunability of Superconducting Metamaterials (United States)

    Ricci, Michael C.; Xu, Hua; Prozorov, Ruslan; Zhuravel, Alexander P.; Ustinov, Alexey V.; Anlage, Steven M.


    Metamaterials are artificial structures with unique electromagnetic properties, such as relative dielectric permittivity and magnetic permeability with values less than 1, or even negative. Because these properties are so sensitive to loss, we have developed metamaterials comprised of superconducting waveguides, wires, and split-ring resonators. An important requirement for applications of these metamaterials is the ability to tune the frequency at which the unique electromagnetic response occurs. In this paper we present three methods (unique to superconductors) to accomplish this tuning: temperature, dc magnetic field, and rf magnetic field. Data are shown for dc and rf magnetic field tuning of a single Nb split-ring resonator (SRR). It was found that the dc field tuning was hysteritic in the resonant frequency data, while the quality factor, $Q$, was less hystertic. The rf power tuning showed no hysteresis, but did show supression of the $Q$ at high power. Magneto-optical images reveal inhomogeneous magnetic vortex entry in the dc field tuning, and laser scanning photoresponse images for a YBa$_2$Cu$_3$O$_{7-\\delta}$ SRR reveals the current distribution in the rings.

  16. Beauty-quark and charm-quark pair production asymmetries at LHCb

    CERN Document Server

    Gauld, Rhorry; Pecjak, Ben D.; Re, Emanuele


    The LHCb collaboration has recently performed a first measurement of the angular production asymmetry in the distribution of beauty quarks and anti-quarks at a hadron collider. We calculate the corresponding standard model prediction for this asymmetry at fixed-order in perturbation theory. Our results show good agreement with the data, which is provided differentially for three bins in the invariant mass of the $b \\bar b$ system. We also present similar predictions for both beauty-quark and charm-quark final states within the LHCb acceptance for a collision energy of $\\sqrt{s} = 13 \\, {\\rm TeV}$. We finally point out that a measurement of the ratio of the $b \\bar b$ and $c \\bar c$ cross sections may be useful for experimentally validating charm-tagging efficiencies.

  17. Latest Results on Top Quark Properties: Deciphering the DNA of the heaviest quark arXiv

    CERN Document Server


    The top quark, the heaviest known elementary particle discovered at the Fermilab Tevatron more than twenty years ago, has taken a central role in the study of fundamental interactions. Due to its large mass, the top quark provides a unique environment for tests of the standard model. With a cumulative luminosity of more than 100~fb$^{-1}$ collected at $\\sqrt{s}=7,8,13$ TeV by each of the ATLAS and CMS experiments at the Large Hadron Collider in the first ten years of operation, top quark physics is probing uncharted territories in precision and rare measurements with sensitivity to New Physics processes. This document summarizes the latest experimental measurements and studies of top quark properties.

  18. Search for vector like quarks and heavy resonances decaying to top quarks

    CERN Document Server

    Camincher, Clement; The ATLAS collaboration


    Vector like quarks appear in many theories beyond the Standard Model as a way to cancel the mass divergence for the Higgs boson. The current status of the ATLAS searches for the production of vector like quarks will be reviewed for proton-proton collisions at 13 TeV. This presentation will address the analysis techniques, in particular the selection criteria, the background modeling and the related experimental uncertainties. The phenomenological implications of the obtained results will also be discussed. Searches for new resonances that decay either to pairs of top quarks or a top and a b-quark will be presented. The searches are performed with the ATLAS experiment at the LHC using proton-proton collision data collected in 2015 and 2016 with a centre-of-mass energy of 13 TeV. The invariant mass spectrum of hypothetical resonances are examined for local excesses or deficits that are inconsistent with the Standard Model prediction.

  19. Latest Results on Top Quark Properties: \\\\ Deciphering the DNA of the heaviest quark

    CERN Document Server

    Gallinaro, Michele


    The top quark, the heaviest known elementary particle discovered at the Fermilab Tevatron more than twenty years ago, has taken a central role in the study of fundamental interactions. Due to its large mass, the top quark provides a unique environment for tests of the standard model. With a cumulative luminosity of more than 100~fb$^{-1}$ collected at $\\sqrt{s}=7,8,13$~TeV by each of the ATLAS and CMS experiments at the Large Hadron Collider in the first ten years of operation, top quark physics is probing uncharted territories in precision and rare measurements with sensitivity to New Physics processes. This document summarizes the latest experimental measurements and studies of top quark properties.

  20. Superconductivity from magnetic elements under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Katsuya [KYOKUGEN, Research Center for Materials Science at Extreme Conditions, Osaka University, Osaka 560-8531 (Japan)]. E-mail:; Amaya, Kiichi [Toyota Physical and Chemical Research Institute, Aichi 480-1192 (Japan); Suzuki, Naoshi [Graduate School of Engineering Science, Osaka University, Osaka 560-8531 (Japan); Onuki, Yoshichika [Graduate School of Science, Osaka University, Osaka 560-0043 (Japan)


    Can we expect the appearance of superconductivity from magnetic elements? In general, superconductivity occurs in nonmagnetic metal at low temperature and magnetic impurities destroy superconductivity; magnetism and superconductivity are as incompatible as oil and water. Here, we present our experimental example of superconducting elements, iron and oxygen. They are magnetic at ambient pressure, however, they become nonmagnetic under high pressure, then superconductor at low temperature. What is the driving force of the superconductivity? Our understanding in the early stages was a simple scenario that the superconductive state was obtained as a consequence of an emergence of the nonmagnetic states. In both cases, we may consider another scenario for the appearance of superconductivity; the magnetic fluctuation mechanism in the same way as unconventional superconductors.

  1. Coexistence of Superconductivity and Ferromagnetism in ...

    African Journals Online (AJOL)


    Coexistence of Superconductivity and Ferromagnetism in Superconducting. Tsadik Kidanemariam. 1 and Gebregziabher Kahsay. 2*. 1. Department of Physics, Adigrat University, Adigrat, Ethiopia. 2. Department of Physics, College of Science, Bahir Dar University, Bahir Dar, Ethiopia. (*

  2. Inducing spin triplet superconductivity in a ferromagnet

    NARCIS (Netherlands)

    Voltan, S.


    Combining ferromagnetism and superconductivity can lead to the development of a completely new generation of technology, with unique and powerful characteristics, called superconducting spintronics. The task of developing this, however, is challenging because at the microscopic level the

  3. Last LEP superconducting module travels to surface

    CERN Multimedia

    Patrice Loïez


    The last superconducting module is raised from the Large Electron-Positron (LEP) collider tunnel, through the main shaft, to the surface. Superconducting modules were only used in the LEP-2 phase of the accelerator, from 1996 to 2000.

  4. String Electron and Three-ring Quarked Nucleons' Transverse Interlocks Build Atoms, Vindicate Schr"odinger (United States)

    McLeod, David; McLeod, Roger David


    Flatland electron loop strings have transversely vibrating neutrino strings. Traveling waves TWs alternately become upwardly deflecting standing waves SWs along each half-wave segment between non-vibrating node pairs. Descending SWs revert to TWs at flatland, proceeding to the next adjacent nodal pair; folding continues. New SWs descend, then ascend; repetition follows to a three dimensional object. Broken ``linear'' electron string and spring constant compress within stars so linear mass density allows incorporation into stable three-ring proton string, creating neutron of two down quarks, one up. It is unstable; it lacks overpass-underpass interlocks of proton that merged linear charge density of two up quarks and one down quark with the electron, becoming neutral. Any transversely aligned neutron notch pushed into acceptor notch of proton is ionized deuterium; tritium follows. Alpha particle is a stable ``tic-tac-toe'' grid. Atom building proceeds routinely, nucleon attachment follows chemical and physical property requirements. Models require vindication of Schr"odinger's actual, but incomplete, wave model of electron with physical extent over his wave, and question Heisenberg's uncertainty proposal.

  5. The static three-quark SU(3) and four-quark SU(4) potentials

    CERN Document Server

    Alexandrou, C; Tsapalis, A; Forcrand, Ph. de


    We present results on the static three- and four-quark potentials in SU(3) and SU(4) respectively within quenched lattice QCD. We use an analytic multi-hit procedure for the time links and a variational approach to determine the ground state. The three- and four-quark potentials extracted are consistent with a sum of two-body potentials, possibly with a weak many-body component. The results give support to the $\\Delta$ ansatz for the baryonic area law.

  6. Density fluctuations at the quark-hadron phase transition epoch and quark nugget formation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hee Il [Kunsan National Univ., Kunsan (Korea, Republic of)


    We propose that the vanishing sound velocity effect during the cosmological quark-hadron phase transition leads to the formation of quark nuggets (QNs). Assuming a power-law spectrum of density fluctuations, we investigate the parameter ranges for the QNs to play the role of baryonic dark matter and give inhomogeneities that could affect big-bang nucleosynthesis within the observational bounds of CMBR anisotropy.

  7. Low-Energy QCD: Chiral Coefficients, UA(1)-Breaking and the Quark-Quark Interaction


    Meissner, Thomas; Frank, Michael


    A detailed investigation of the low-energy chiral expansion is presented within a model truncation of QCD. The model dependence of the chiral coefficients is tested for several forms of the quark-quark interaction by varying the form of the running coupling in the infrared region. Furthermore we demonstrate how the UA(1)$ anomaly and a mass for the eta' can arise in this approach.

  8. Inclusive particle spectra in the quark recombination model

    Energy Technology Data Exchange (ETDEWEB)

    Rulison, M.K.


    The present status of the simple and valon versions of the quark recombination model is reviewed. The model has previously been applied primarily to hadron-hadron collisions in which the fragmenting and produced particles share a single common valence quark. The application of the model is extended to two additional classes of hadron-hadron collisions. (1) Collisions in which no valence quarks are common to the fragmenting and produced particles. (2) Collisions in which all valence quarks of the fragmenting particle are also valence quarks of the produced particle.

  9. Exploring quark transverse momentum distributions with lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Bernhard U. Musch, Philipp Hagler, John W. Negele, Andreas Schafer


    We discuss in detail a method to study transverse momentum dependent parton distribution functions (TMDs) using lattice QCD. To develop the formalism and to obtain first numerical results, we directly implement a bi-local quark-quark operator connected by a straight Wilson line, allowing us to study T-even, "process-independent" TMDs. Beyond results for x-integrated TMDs and quark densities, we present a study of correlations in x and transverse momentum. Our calculations are based on domain wall valence quark propagators by the LHP collaboration calculated on top of gauge configurations provided by MILC with 2+1 flavors of asqtad-improved staggered sea quarks.

  10. Search for Single Top Quark Production at HERA

    CERN Document Server

    Aaron, F D; Alexa, C; Alimujiang, K; Andreev, V; Antunovic, B; Asmone, A; Backovic, S; Baghdasaryan, A; Barrelet, E; Bartel, W; Begzsuren, K; Belousov, A; Bizot, J C; Boudry, V; Bozovic-Jelisavcic, I; Bracinik, J; Brandt, G; Brinkmann, M; Brisson, V; Bruncko, D; Bunyatyan, A; Buschhorn, G; Bystritskaya, L; Campbell, A J; Cantun Avila, K B; Cassol-Brunner, F; Cerny, K; Cerny, V; Chekelian, V; Cholewa, A; Contreras, J G; Coughlan, J A; Cozzika, G; Cvach, J; Dainton, J B; Daum, K; Deak, M; de Boer, Y; Delcourt, B; Del Degan, M; Delvax, J; De Roeck, A; De Wolf, E A; Diaconu, C; Dodonov, V; Dossanov, A; Dubak, A; Eckerlin, G; Efremenko, V; Egli, S; Eliseev, A; Elsen, E; Falkiewicz, A; Favart, L; Fedotov, A; Felst, R; Feltesse, J; Ferencei, J; Fischer, D J; Fleischer, M; Fomenko, A; Gabathuler, E; Gayler, J; Ghazaryan, S; Glazov, A; Glushkov, I; Goerlich, L; Gogitidze, N; Gouzevitch, M; Grab, C; Greenshaw, T; Grell, B R; Grindhammer, G; Habib, S; Haidt, D; Helebrant, C; Henderson, R C W; Hennekemper, E; Henschel, H; Herbst, M; Herrera, G; Hildebrandt, M; Hiller, K H; Hoffmann, D; Horisberger, R; Hreus, T; Jacquet, M; Janssen, M E; Janssen, X; Jonsson, L; Jung, Andreas Werner; Jung, H; Kapichine, M; Katzy, J; Kenyon, I R; Kiesling, C; Klein, M; Kleinwort, C; Kluge, T; Knutsson, A; Kogler, R; Kostka, P; Kraemer, M; Krastev, K; Kretzschmar, J; Kropivnitskaya, A; Kruger, K; Kutak, K; Landon, M P J; Lange, W; Lastovicka-Medin, G; Laycock, P; Lebedev, A; Leibenguth, G; Lendermann, V; Levonian, S; Li, G; Lipka, K; Liptaj, A; List, B; List, J; Loktionova, N; Lopez-Fernandez, R; Lubimov, V; Lytkin, L; Makankine, A; Malinovski, E; Marage, P; Marti, Ll; Martyn, H U.; Maxfield, S J; Mehta, A; Meyer, A B; Meyer, H; Meyer, H; Meyer, J; Michels, V; Mikocki, S; Milcewicz-Mika, I; Moreau, F; Morozov, A; Morris, J V; Mozer, Matthias Ulrich; Mudrinic, M; Muller, K; Murin, P; Naumann, Th; Newman, P R; Niebuhr, C; Nikiforov, A; Nowak, G; Nowak, K; Nozicka, M; Olivier, B; Olsson, J E; Osman, S; Ozerov, D; Palichik, V; Panagoulias, I; Pandurovic, M; Papadopoulou, Th; Pascaud, C; Patel, G D; Pejchal, O; Perez, E; Petrukhin, A; Picuric, I; Piec, S; Pitzl, D; Placakyte, R; Pokorny, B; Polifka, R; Povh, B; Preda, T; Radescu, V; Rahmat, A J; Raicevic, N; Raspiareza, A; Ravdandorj, T; Reimer, P; Rizvi, E; Robmann, P; Roland, B; Roosen, R; Rostovtsev, A; Rotaru, M; Ruiz Tabasco, J E; Rurikova, Z; Rusakov, S; Salek, D; Sankey, D P C; Sauter, M; Sauvan, E; Schmitt, S; Schmitz, C; Schoeffel, L; Schoning, A; Schultz-Coulon, H C; Sefkow, F; Shaw-West, R N; Shtarkov, L N; Shushkevich, S; Sloan, T; Smiljanic, Ivan; Soloviev, Y; Sopicki, P; South, D; Spaskov, V; Specka, Arnd E; Staykova, Z; Steder, M; Stella, B; Stoicea, G; Straumann, U.; Sunar, D; Sykora, T; Tchoulakov, V; Thompson, G; Thompson, P D; Toll, T; Tomasz, F; Tran, T H; Traynor, D; Trinh, T N; Truol, P; Tsakov, I; Tseepeldorj, B; Turnau, J; Urban, K; Valkarova, A; Vallee, C; Van Mechelen, P; Vargas Trevino, A; Vazdik, Y; Vinokurova, S; Volchinski, V; von den Driesch, M; Wegener, D; Wissing, Ch; Wunsch, E; Zacek, J; Zalesak, J; Zhang, Z; Zhokin, A; Zimmermann, T; Zohrabyan, H; Zomer, F; Zus, R


    A search for single top quark production is performed in the full ep data sample collected by the H1 experiment at HERA, corresponding to an integrated luminosity of 474 pb^-1. Decays of top quarks into a b quark and a W boson with subsequent leptonic or hadronic decay of the W are investigated. A multivariate analysis is performed to discriminate top quark production from Standard Model background processes. An upper limit on the top quark production cross section via flavour changing neutral current processes sigma (ep -> etX) < 0.25 pb is established at 95% CL. Limits on the anomalous coupling kappa_{tu gamma} are derived.

  11. Low-Temperature Thermodynamic Properties of Superconducting Antiperovskite CdCNi_3 (United States)

    Szczȩśniak, R.; Durajski, A. P.; Skoczylas, K. M.; Herok, Ł.


    We investigate the thermodynamic parameters of the superconducting antiperovskite CdCNi_3 using the Eliashberg approach which is an excellent tool to the exact characterization of the conventional superconductors. In particular, we reproduce the measured superconducting transition temperature (T_C=3.2 K) for a high value of the Coulomb pseudopotential (μ ^{star }C=0.22). Then we determine the energy gap, the thermodynamic critical field and the specific heat for the superconducting and normal state. On this basis, we show that the thermodynamic properties of CdCNi_3 differ slightly from the prediction of the Bardeen-Cooper-Schrieffer theory, which means that CdCNi_3 is a medium-coupling superconductor in contrast to related strong-coupling MgCNi_3.

  12. Constituent quark masses from modified perturbative QCD

    Energy Technology Data Exchange (ETDEWEB)

    Cabo Montes de Oca, A. [Instituto de Cibernetica, Matematica y Fisica, La Habana (Cuba); International Institute for Theoretical and Applied Physics (IITAP), UNESCO and Iowa State University, Ames, IA (United States); Rigol Madrazo, M. [Centro de Estudios Aplicados al Desarrollo Nuclear, La Habana (Cuba)


    A recently proposed modified perturbative expansion for QCD incorporating gluon condensation is employed to evaluate the quark and gluon self-energy corrections in first approximation. The results predict mass values of 1/3 of the nucleon mass for the light quarks u, d, and s and a monotonously growing variation with the current mass. The only phenomenological input is that left angle G{sup 2} right angle is evaluated up to order g{sup 2} as a function of the unique parameter C defining the modified propagator, and then C is fixed to give a current estimate of left angle g{sup 2}G{sup 2} right angle. The light quarks u and d as a result are found to be confined and the s, c, b and t ones show damped propagation modes, suggesting a model for the large differences in stability between the nucleons and the higher resonances. The above properties of quark modes diverge from the fully confinement result following from the similar gluon propagator previously considered by Munczek and Nemirovski. On the other hand, the condensate effects on the gluon self-energy furnish a tachyonic mass shell as predicted by the Fukuda analysis of gluon condensation in QCD. (orig.)

  13. Renormalization group improvement and constituent quark model

    Energy Technology Data Exchange (ETDEWEB)

    Mirjalili, A. [Physics Department, Yazd University, Yazd (Iran, Islamic Republic of); School of Particles and Accelerators, IPM - Institute for Studies in Theoretical Physics and Mathematics, P.O.Box 19395-5531, Tehran (Iran, Islamic Republic of)], E-mail:; Khorramian, Ali N. [Physics Department, Semnan University, Semnan (Iran, Islamic Republic of); School of Particles and Accelerators, IPM - Institute for Studies in Theoretical Physics and Mathematics, P.O.Box 19395-5531, Tehran (Iran, Islamic Republic of)], E-mail:; Atashbar Tehrani, S. [Physics Department, Semnan University, Semnan (Iran, Islamic Republic of); School of Particles and Accelerators, IPM - Institute for Studies in Theoretical Physics and Mathematics, P.O.Box 19395-5531, Tehran (Iran, Islamic Republic of)], E-mail:


    The scale dependence in perturbative QCD remains on obstacle to making precise tests of the theory. To over come the scale ambiguity while people are usually using the standard MS-bar approach with a physical choice of renormalization scale, we try to employ the approach of complete RG-improvement. In this approach all ultraviolet logarithms involving the dimensionful parameter, Q, on which the observable depends are resummed, thereby building the correct Q-dependence. Based on these two approaches, sea quark densities in the nucleon are analyzed. To achieve the asymmetry of these densities, chiral quark model is used. To avoid from the unaccepted Q{sup 2} behavior of sea densities inside the constituent quark, we assume that the free parameter which exists in the vertex function of boson-quark splitting function, is Q{sup 2}-dependence. Using un-symmetrized sea densities of the nucleon, the Gottfried sum rule is calculated in these two approaches. The result of the latter one is very close to the reported experimental value.

  14. The quark fraction of the proton spin

    Energy Technology Data Exchange (ETDEWEB)

    Mandula, J.E. (Department of Energy, Washington, DC (United States). Div. of High Energy Physics)


    We report on a lattice QCD estimate of the fraction of the proton spin that the quark spin is responsible for. The estimate is arrived at by means of a lattice QCD simulation of the polarized proton matrix element of the anomaly, F[sub [mu][nu

  15. Scalar resonances as two-quark systems

    Energy Technology Data Exchange (ETDEWEB)

    Shabalin, E.P.


    On the basis of a theory with an effective U(3)xU(3)-symmetric chiral Lagrangian it is possible to determine the properties of two-quark scalar mesons and to show that the scalar resonances delta(980) and k(1240) can be treated as P-wave states of the q-barq system.

  16. Quark search in high energy experiments

    Energy Technology Data Exchange (ETDEWEB)

    Valenti, G.


    Results on free quark searches, in cosmic rays (Vertical BarQ<1), proton-nucleon interactions (Vertical BarQVertical Bar 1/3, 4/3) and neutrino (antineutrino)-nucleon interactions (Vertical BarQVertical Bar 1/3) presented to this conference are reviewed.

  17. Top quark production cross-section measurements

    CERN Document Server

    Massa, Lorenzo; The ATLAS collaboration


    Measurements of the inclusive and differential cross-sections for top-quark pair and single top production cross sections in proton-proton collisions with the ATLAS detector at the Large Hadron Collider are presented at centre-of-mass energies of 8 TeV and 13 TeV. The inclusive measurements reach high precision and are compared to the best available theoretical calculations. These measurements, including results using boosted tops, probe our understanding of top-pair production in the TeV regime. The results are compared to Monte Carlo generators implementing LO and NLO matrix elements matched with parton showers and NLO QCD calculations. For the t-channel single top measurement, the single top-quark and anti-top-quark total production cross-sections, their ratio, as well as differential cross sections are also presented. A measurement of the production crosssection of a single top quark in association with a W boson, the second largest single-top production mode, is also presented. Finally, measurements of t...

  18. Searches for Heavy Quark States at ATLAS

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00357007; The ATLAS collaboration


    This talk highlights the latest results of heavy quark searches from the ATLAS collaboration, mainly on resonance searches and vector-like quarks (VLQs) searches. Searches for $t\\bar{t}$ resonances using lepton-plus-jets events in proton-proton collisions at center-of-mass energy at 8 and 13 TeV are presented. Limits are set for BSM particles such as topcolor-assisted technicolor $Z'$ , Kaluza-Klein (K-K) gluons $g_{KK}$ and K-K excitations of graviton $G_{KK}$ in the TC Randall-Sundrum (R-S) model of extra dimensions. VLQs arise naturally in many models such as Little Higgs and Composite Higgs and typically couple preferably to the third generation SM quarks and weak bosons. Limits are set for vector-like bottom (B) and top (T) quarks decay to lepton-plus-jets final states via Hb+X and Ht+X channels in two analyses using 8 and 13 TeV datasets from ATLAS.

  19. Searches for Heavy Quark States at ATLAS

    CERN Document Server

    Cheng, Hok Chuen; The ATLAS collaboration


    This talk highlights the latest results of heavy quark searches from the ATLAS collaboration, mainly on resonance searches and vector-like quarks (VLQs) searches. Searches for t\\bar{t} resonances using lepton-plus-jets events in proton-proton collisions at center-of-mass energy at 8 and 13 TeV are presented. Limits are set for BSM particles such as topcolor-assisted technicolor Z'_{TC} , Kaluza-Klein(K-K) gluons g_{KK} and K-K excitations of graviton G_{KK} in the Randall-Sundrum model of extra dimensions. VLQs arise naturally in many models such as Little Higgs and Composite Higgs and typically couple preferably to the third generation SM quarks and weak bosons. Limits are set for vector-like bottom (B) and top (T) quarks decay to lepton-plus-jets final states via Hb+X and Ht+X channels in two analyses using 8 and 13 TeV datasets from ATLAS.



    Rosner, J.


    Qualitative understanding of hyperfine, spin-orbit, and tensor forces in systems of both light and heavy quarks is now available. The experimental situation leading to this understanding is reviewed, theoretical perspectives are given, and some suggestions for further study are made.