WorldWideScience

Sample records for superconducting power transmission

  1. Energy losses of superconducting power transmission cables in the grid

    DEFF Research Database (Denmark)

    Østergaard, Jacob; Okholm, Jan; Lomholt, Karin

    2001-01-01

    One of the obvious motives for development of superconducting power transmission cables is reduction of transmission losses. Loss components in superconducting cables as well as in conventional cables have been examined. These losses are used for calculating the total energy losses of conventional...... as well as superconducting cables when they are placed in the electric power transmission network. It is concluded that high load connections are necessary to obtain energy saving by the use of HTSC cables. For selected high load connections, an energy saving of 40% is expected. It is shown...

  2. Case study on the US superconducting power transmission program

    Energy Technology Data Exchange (ETDEWEB)

    Hammel, E.F.

    1996-02-01

    After the 1911 discovery of superconductivity (the abrupt loss of electrical resistance in certain materials at very low temperatures), attempts were made to make practical use of this phenomenon. Initially these attempts failed, but in the early 1960s (after 50 years of research) they succeeded. By then, the projected growth in the production and consumption of electrical energy required much higher capacity power transmission capabilities than were available or likely to become available from incremental improvements in existing transmission technology. Since superconductors were capable in principle of transmitting huge amounts of power, research programs to develop and demonstrate superconducting transmission lines were initiated in the US and abroad. The history of the US program, including the participants, their objectives, funding and progress made, is outlined. Since the R&D program was terminated before the technology was completely demonstrated, the reasons for and consequences of this action are discussed in a final section.

  3. Superconducting power transmission: the perils and promise

    Energy Technology Data Exchange (ETDEWEB)

    Forsyth, E B

    1976-06-01

    The development of bulk electricity transmission systems must be considered in the light of changing growth rates, increasing resistances to ehv overhead transmission and the tendency to concentrate generation in fewer sites. Helium-cooled or superconducting cables possess technical characteristics which will make them suitable as utility network components for power transmission over distances of ten to several hundred miles. These properties are illustrated by considering two applications in existing electrical networks. The first is a 43 mile system to transmit 4800 MVA and the second is a potential application under study in Pennsylvania to transmit 10,000 MVA over a distance of 350 miles or so. Helium-cooled versions of these transmission systems were designed to permit technical and economic evaluations. The major groups and institutions throughout the world engaged in the development of helium-cooled cables are listed and aspects of the technical approaches are briefly described.

  4. Performance analysis of a model-sized superconducting DC transmission system based VSC-HVDC transmission technologies using RTDS

    International Nuclear Information System (INIS)

    Dinh, Minh-Chau; Ju, Chang-Hyeon; Kim, Sung-Kyu; Kim, Jin-Geun; Park, Minwon; Yu, In-Keun

    2012-01-01

    The combination of a high temperature superconducting DC power cable and a voltage source converter based HVDC (VSC-HVDC) creates a new option for transmitting power with multiple collection and distribution points for long distance and bulk power transmissions. It offers some greater advantages compared with HVAC or conventional HVDC transmission systems, and it is well suited for the grid integration of renewable energy sources in existing distribution or transmission systems. For this reason, a superconducting DC transmission system based HVDC transmission technologies is planned to be set up in the Jeju power system, Korea. Before applying this system to a real power system on Jeju Island, system analysis should be performed through a real time test. In this paper, a model-sized superconducting VSC-HVDC system, which consists of a small model-sized VSC-HVDC connected to a 2 m YBCO HTS DC model cable, is implemented. The authors have performed the real-time simulation method that incorporates the model-sized superconducting VSC-HVDC system into the simulated Jeju power system using Real Time Digital Simulator (RTDS). The performance analysis of the superconducting VSC-HVDC systems has been verified by the proposed test platform and the results were discussed in detail.

  5. Performance analysis of a model-sized superconducting DC transmission system based VSC-HVDC transmission technologies using RTDS

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, Minh-Chau, E-mail: thanchau7787@gmail.com [Changwon National University, 9 Sarim-Dong, Changwon 641-733 (Korea, Republic of); Ju, Chang-Hyeon; Kim, Sung-Kyu; Kim, Jin-Geun; Park, Minwon [Changwon National University, 9 Sarim-Dong, Changwon 641-733 (Korea, Republic of); Yu, In-Keun, E-mail: yuik@changwon.ac.kr [Changwon National University, 9 Sarim-Dong, Changwon 641-733 (Korea, Republic of)

    2012-08-15

    The combination of a high temperature superconducting DC power cable and a voltage source converter based HVDC (VSC-HVDC) creates a new option for transmitting power with multiple collection and distribution points for long distance and bulk power transmissions. It offers some greater advantages compared with HVAC or conventional HVDC transmission systems, and it is well suited for the grid integration of renewable energy sources in existing distribution or transmission systems. For this reason, a superconducting DC transmission system based HVDC transmission technologies is planned to be set up in the Jeju power system, Korea. Before applying this system to a real power system on Jeju Island, system analysis should be performed through a real time test. In this paper, a model-sized superconducting VSC-HVDC system, which consists of a small model-sized VSC-HVDC connected to a 2 m YBCO HTS DC model cable, is implemented. The authors have performed the real-time simulation method that incorporates the model-sized superconducting VSC-HVDC system into the simulated Jeju power system using Real Time Digital Simulator (RTDS). The performance analysis of the superconducting VSC-HVDC systems has been verified by the proposed test platform and the results were discussed in detail.

  6. University's role in research on superconducting power transmission

    International Nuclear Information System (INIS)

    Forsyth, E.B.

    1974-01-01

    Power transmission by superconducting cables appears to have enormous potential for the utility industry. It has still to be demonstrated that it will become a viable and economically competitive technology, however, development aimed at this goal by major research establishments has already exposed numerous research problems suitable for investigation by well qualified university departments without requiring large expenditures for equipment. What is missing in an organizational structure to relate work to the primary goals, monitor progress and influence the funding decisions of the major agencies. This does not seem difficult to set up, but continued success will require a long-term commitment from the participants

  7. Superconductivity in power engineering

    International Nuclear Information System (INIS)

    1989-01-01

    This proceedings volume presents 24 conference papers and 15 posters dealing with the following aspects: 1) Principles and elementary aspects of high-temperature superconductivity (3 plenary lectures); 2) Preparation, properties and materials requirements of metallic or oxide superconductors (critical current behaviour, soldered joints, structural studies); 3) Magnet technology (large magnets for thermonuclear fusion devices; magnets for particle accelerators and medical devices); 4) Magnetic levitation and superconductivity; 5) Cryogenics; 6) Energy storage systems using superconducting coils (SMES); 7) Superconducting power transmission cables, switches, transformers, and generator systems for power plant; 8) Supporting activities, industrial aspects, patents. There are thirty-eight records in the ENERGY database relating to individual conference papers. (MM) [de

  8. Cryogenic System for a High-Temperature Superconducting Power Transmission Cable

    International Nuclear Information System (INIS)

    Demko, J.A.; Gouge, M.J.; Hughey, R.L.; Lue, J.W.; Martin, R.; Sinha, U.; Stovall, J.P.

    1999-01-01

    High-temperature superconducting (HTS) cable systems for power transmission are under development that will use pressurized liquid nitrogen to provide cooling of the cable and termination hardware. Southwire Company and Oak Ridge National Laboratory have been operating a prototype HTS cable system that contains many of the typical components needed for a commercial power transmission application. It is being used to conduct research in the development of components and systems for eventual commercial deployment. The cryogenic system was built by Air Products and Chemicals, Allentown, Pennsylvania, and can circulate up to 0.35 kg/s of liquid nitrogen at temperatures as low as 67 K at pressures of 1 to 10 bars. Sufficient cooling is provided for testing a 5-m-long HTS transmission cable system that includes the terminations required for room temperature electrical connections. Testing of the 5-m HTS transmission cable has been conducted at the design ac conditions of 1250 A and 7.5 kV line to ground. This paper contains a description of the essential features of the HTS cable cryogenic system and performance results obtained during operation of the system. The salient features of the operation that are important in large commercial HTS cable applications will be discussed

  9. Superconducting power cables in Denmark - a case study

    DEFF Research Database (Denmark)

    Østergaard, Jacob

    1997-01-01

    A case study of a 450 MVA, 132 kV high temperature superconducting (HTS) power transmission cable has been carried out. In the study, a superconducting cable system is compared to a conventional cable system which is under construction for an actual transmission line in the Danish grid. The study...... that HTS cables will be less expensive for high power ratings, have lower losses for lines with a high load, and have a reduced reactive power production. The use of superconducting cables in Denmark accommodate plans by the Danish utility to make a substantial conversion of overhead lines to underground...

  10. Reprint of “Performance analysis of a model-sized superconducting DC transmission system based VSC-HVDC transmission technologies using RTDS”

    International Nuclear Information System (INIS)

    Dinh, Minh-Chau; Ju, Chang-Hyeon; Kim, Sung-Kyu; Kim, Jin-Geun; Park, Minwon; Yu, In-Keun

    2013-01-01

    Highlights: ► A model-sized superconducting VSC-HVDC system was designed and fabricated. ► A real-time simulation using Real Time Digital Simulator has been performed. ► The AC loss characteristics of HTS DC power cable caused by harmonics were analyzed. ► The AC loss of the HTS DC power cable will be used as a parameter to design the cable cooling system. -- Abstract: The combination of a high temperature superconducting DC power cable and a voltage source converter based HVDC (VSC-HVDC) creates a new option for transmitting power with multiple collection and distribution points for long distance and bulk power transmissions. It offers some greater advantages compared with HVAC or conventional HVDC transmission systems, and it is well suited for the grid integration of renewable energy sources in existing distribution or transmission systems. For this reason, a superconducting DC transmission system based HVDC transmission technologies is planned to be set up in the Jeju power system, Korea. Before applying this system to a real power system on Jeju Island, system analysis should be performed through a real time test. In this paper, a model-sized superconducting VSC-HVDC system, which consists of a small model-sized VSC-HVDC connected to a 2 m YBCO HTS DC model cable, is implemented. The authors have performed the real-time simulation method that incorporates the model-sized superconducting VSC-HVDC system into the simulated Jeju power system using Real Time Digital Simulator (RTDS). The performance analysis of the superconducting VSC-HVDC systems has been verified by the proposed test platform and the results were discussed in detail

  11. Reprint of “Performance analysis of a model-sized superconducting DC transmission system based VSC-HVDC transmission technologies using RTDS”

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, Minh-Chau, E-mail: thanchau7787@gmail.com [Changwon National University, 9 Sarim-Dong, Changwon 641-733 (Korea, Republic of); Ju, Chang-Hyeon; Kim, Sung-Kyu; Kim, Jin-Geun; Park, Minwon [Changwon National University, 9 Sarim-Dong, Changwon 641-733 (Korea, Republic of); Yu, In-Keun, E-mail: yuik@changwon.ac.kr [Changwon National University, 9 Sarim-Dong, Changwon 641-733 (Korea, Republic of)

    2013-01-15

    Highlights: ► A model-sized superconducting VSC-HVDC system was designed and fabricated. ► A real-time simulation using Real Time Digital Simulator has been performed. ► The AC loss characteristics of HTS DC power cable caused by harmonics were analyzed. ► The AC loss of the HTS DC power cable will be used as a parameter to design the cable cooling system. -- Abstract: The combination of a high temperature superconducting DC power cable and a voltage source converter based HVDC (VSC-HVDC) creates a new option for transmitting power with multiple collection and distribution points for long distance and bulk power transmissions. It offers some greater advantages compared with HVAC or conventional HVDC transmission systems, and it is well suited for the grid integration of renewable energy sources in existing distribution or transmission systems. For this reason, a superconducting DC transmission system based HVDC transmission technologies is planned to be set up in the Jeju power system, Korea. Before applying this system to a real power system on Jeju Island, system analysis should be performed through a real time test. In this paper, a model-sized superconducting VSC-HVDC system, which consists of a small model-sized VSC-HVDC connected to a 2 m YBCO HTS DC model cable, is implemented. The authors have performed the real-time simulation method that incorporates the model-sized superconducting VSC-HVDC system into the simulated Jeju power system using Real Time Digital Simulator (RTDS). The performance analysis of the superconducting VSC-HVDC systems has been verified by the proposed test platform and the results were discussed in detail.

  12. Transmission Level High Temperature Superconducting Fault Current Limiter

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Gary [SuperPower, Inc., Schenectady, NY (United States)

    2016-10-05

    The primary objective of this project was to demonstrate the feasibility and reliability of utilizing high-temperature superconducting (HTS) materials in a Transmission Level Superconducting Fault Current Limiter (SFCL) application. During the project, the type of high-temperature superconducting material used evolved from 1st generation (1G) BSCCO-2212 melt cast bulk high-temperature superconductors to 2nd generation (2G) YBCO-based high-temperature superconducting tape. The SFCL employed SuperPower's “Matrix” technology, that offers modular features to enable scale up to transmission voltage levels. The SFCL consists of individual modules that contain elements and parallel inductors that assist in carrying the current during the fault. A number of these modules are arranged in an m x n array to form the current-limiting matrix.

  13. Termination for a superconducting power transmission line including a horizontal cryogenic bushing

    Science.gov (United States)

    Minati, Kurt F.; Morgan, Gerry H.; McNerney, Andrew J.; Schauer, Felix

    1984-01-01

    A termination for a superconducting power transmission line is disclosed which is comprised of a standard air entrance insulated vertical bushing with an elbow, a horizontal cryogenic bushing linking the pressurized cryogenic cable environment to the ambient temperature bushing and a stress cone which terminates the cable outer shield and transforms the large radial voltage gradient in the cable dielectric into a much lower radial voltage gradient in the high density helium coolant at the cold end of the cryogenic bushing.

  14. Technical Challenges and Potential Solutions for Cross-Country Multi-Terminal Superconducting DC Power Cables

    Science.gov (United States)

    Al-Taie, A.; Graber, L.; Pamidi, S. V.

    2017-12-01

    Opportunities for applications of high temperature superconducting (HTS) DC power cables for long distance power transmission in increasing the reliability of the electric power grid and to enable easier integration of distributed renewable sources into the grid are discussed. The gaps in the technology developments both in the superconducting cable designs and cryogenic systems as well as power electronic devices are identified. Various technology components in multi-terminal high voltage DC power transmission networks and the available options are discussed. The potential of ongoing efforts in the development of superconducting DC transmission systems is discussed.

  15. Technical and economic feasibility of superconducting power transmission: a case study

    International Nuclear Information System (INIS)

    Forsyth, E.B.; Mulligan, G.A.; Beck, J.W.; Williams, J.A.

    1975-01-01

    The long-range plans of the Long Island Lighting Company include the installation of 4600 MW of generation capacity at nuclear sites on eastern Long Island by the 1990's. A single site, Shoreham, was chosen for this study which would require transmission facilities to the Ruland Road substation, 43 miles away. Conventional 345 kV overhead and underground circuits are planned for this service. For the case study three superconducting cable schemes have been investigated which reflect various technical options. The superconducting cables have been designed to meet acceptable normal and contingency load flow conditions and to withstand maximum short circuit faults. A cost analysis has been made of the complete installation, providing a valuable comparison of the estimated cost of this new technology with conventional methods. The most favorable cost comparison is a two-circuit 345 kV superconducting system, which appears to be about one-half the cost of an all underground 345 kV high pressure oil-filled cable system. No reactive compensation will be required for the superconducting system, whereas extensive compensation is required for HPOF cables over the same distance. The cost estimate for the two-circuit superconducting system is about twice that of 345 kV overhead transmission, which would consist of two double circuits and one single circuit, assuming right-of-way could be obtained. (U.S.)

  16. Conceptual study of superconducting urban area power systems

    International Nuclear Information System (INIS)

    Noe, Mathias; Gold-acker, Wilfried; Bach, Robert; Prusseit, Werner; Willen, Dag; Poelchau, Juri; Linke, Christian

    2010-01-01

    Efficient transmission, distribution and usage of electricity are fundamental requirements for providing citizens, societies and economies with essential energy resources. It will be a major future challenge to integrate more sustainable generation resources, to meet growing electricity demand and to renew electricity networks. Research and development on superconducting equipment and components have an important role to play in addressing these challenges. Up to now, most studies on superconducting applications in power systems have been concentrated on the application of specific devices like for example cables and current limiters. In contrast to this, the main focus of our study is to show the consequence of a large scale integration of superconducting power equipment in distribution level urban power systems. Specific objectives are to summarize the state-of-the-art of superconducting power equipment including cooling systems and to compare the superconducting power system with respect to energy and economic efficiency with conventional solutions. Several scenarios were considered starting from the replacement of an existing distribution level sub-grid up to a full superconducting urban area distribution level power system. One major result is that a full superconducting urban area distribution level power system could be cost competitive with existing solutions in the future. In addition to that, superconducting power systems offer higher energy efficiency as well as a number of technical advantages like lower voltage drops and improved stability.

  17. High speed data transmission at the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Leskovar, B.

    1990-04-01

    High speed data transmission using fiber optics in the data acquisition system of the Superconducting Super Collider has been investigated. Emphasis is placed on the high speed data transmission system overview, the local data network and on subassemblies, such as optical transmitters and receivers. Also, the performance of candidate subassemblies having a low power dissipation for the data acquisition system is discussed. 14 refs., 5 figs

  18. Analysis of reflection-coefficient by wireless power transmission using superconducting coils

    International Nuclear Information System (INIS)

    Jeong, In Sung; Choi, Hyo Sang; Chung, Dong Chul

    2017-01-01

    The use of electronic devices such as mobile phones and tablet PCs has increased of late. However, the power which is supplied through wires has a limitation of the free use of devices and portability. Magnetic-resonance wireless power transfer (WPT) can achieve increased transfer distance and efficiency compared to the existing electromagnetic inductive coupling. A superconducting coil can be applied to increase the efficiency and distance of magnetic-resonance WPT. As superconducting coils have lower resistance than copper coils, they can increase the quality factor (Q-factor) and can overcome the limitations of magnetic-resonance WPT. In this study, copper coils were made from ordinary copper under the same condition as the superconducting coils for a comparison experiment. Superconducting coils use liquid nitrogen to keep the critical temperature. As there is a difference of medium between liquid nitrogen and air, liquid nitrogen was also used in the normal conductor coil to compare the experiment with under the same condition. It was confirmed that superconducting coils have a lower reflection-coefficient(S11) than the normal conductor coils

  19. Analysis of reflection-coefficient by wireless power transmission using superconducting coils

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, In Sung; Choi, Hyo Sang [Chosun University, Gwangju (Korea, Republic of); Chung, Dong Chul [Korea Institute of Carbon Convergence Technology, Jeonju (Korea, Republic of)

    2017-06-15

    The use of electronic devices such as mobile phones and tablet PCs has increased of late. However, the power which is supplied through wires has a limitation of the free use of devices and portability. Magnetic-resonance wireless power transfer (WPT) can achieve increased transfer distance and efficiency compared to the existing electromagnetic inductive coupling. A superconducting coil can be applied to increase the efficiency and distance of magnetic-resonance WPT. As superconducting coils have lower resistance than copper coils, they can increase the quality factor (Q-factor) and can overcome the limitations of magnetic-resonance WPT. In this study, copper coils were made from ordinary copper under the same condition as the superconducting coils for a comparison experiment. Superconducting coils use liquid nitrogen to keep the critical temperature. As there is a difference of medium between liquid nitrogen and air, liquid nitrogen was also used in the normal conductor coil to compare the experiment with under the same condition. It was confirmed that superconducting coils have a lower reflection-coefficient(S11) than the normal conductor coils.

  20. Semiannual report for the period April 1 to September 30, 1978 of work on: (1) superconducting power transmission system development; (2) cable insulation development. Power Transmission Project technical note No. 83

    Energy Technology Data Exchange (ETDEWEB)

    1978-11-07

    Progress in the development, fabrication and testing of superconductors for HVAC power transmission systems is reported. Information is included on the materials evaluation of superconducting alloys, production of tapes from these alloys, principally Nb/sub 3/Sn cable insulation requirements and development, and the cryogenic equipment used in this research program. (LCL)

  1. A current controlled variable delay superconducting transmission line

    International Nuclear Information System (INIS)

    Anlage, S.M.; Snortland, H.J.; Beasley, M.R.

    1989-01-01

    The authors present a device concept for a current-controlled variable delay for superconducting transmission line. The device makes use of the change in kinetic inductance of a superconducting transmission line under the application of a DC bias current. The relevant materials parameters and several promising superconducting materials have been identified

  2. Cryogenic Fiber Optic Sensors for Superconducting Magnets and Power Transmission Lines in High Energy Physics Applications

    CERN Document Server

    AUTHOR|(CDS)2081689; Bajko, Marta

    In the framework of the Luminosity upgrade of the Large Hadron Collider (HL - LHC), a remarkable R&D effort is now ongoing at the European Organization for Nuclear Research (CERN) in order to develop a new generation of accelerator magnets and superconducting power transmission lines. The magnet technology will be based on Nb$_{3}$Sn enabling to operate in the 11 - 13 T range. In parallel, in order to preserve the power converters from the increasing radiation level, high power transmission lines are foreseen to feed the magnets from free - radiation zones. These will be based on high temperature superconductors cooled down with helium gas in the range 5 - 30 K. The new technologies will require advanced design and fabrication approaches as well as adapted instrumentation for monitoring both the R&D phase and operation. Resistive sensors have been used so far for voltage, temperature and strain monitoring but their integration still suffers from the number of electrical wires and the complex compensat...

  3. High voltage superconducting switch for power application

    International Nuclear Information System (INIS)

    Mawardi, O.; Ferendeci, A.; Gattozzi, A.

    1983-01-01

    This paper reports the development of a novel interrupter which meets the requirements of a high voltage direct current (HVDC) power switch and at the same time doubles as a current limiter. The basic concept of the interrupter makes use of a fast superconducting, high capacity (SHIC) switch that carries the full load current while in the superconducting state and reverts to the normal resistive state when triggered. Typical design parameters are examined for the case of a HVDC transmission line handling 2.5KA at 150KVDC. The result is a power switch with superior performance and smaller size than the ones reported to date

  4. The progresses of superconducting technology for power grid last decade in China

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Liye; Gu, Hong Wei [Applied Superconductivity Laboratory, Chinese Academy of Sciences, Beijing (China)

    2015-03-15

    With the increasing development of renewable energy, it is expected that large-scale renewable power would be transported from the west and north area of China to the east and south area. For this reason, it will be necessary to develop a wide-area power grid in which the renewable energy would be the dominant power source, and the power grid will be faced by some critical challenges such as long-distance large-capacity power transmission, the stability of the wide-area power grid and the land use problem for the power grid. The superconducting technology for power (STP) would be a possible alternative for the development of China’s future power grid. In last decade, STP has been extensively developed in China. In this paper, we present an overview of the R and D of STP last decade in China including: 1) the development of high temperature superconducting (HTS) materials, 2) DC power cables, 3) superconducting power substations, 4) fault current limiters and 5) superconducting magnetic energy storage (SMES)

  5. The progresses of superconducting technology for power grid last decade in China

    International Nuclear Information System (INIS)

    Xiao, Liye; Gu, Hong Wei

    2015-01-01

    With the increasing development of renewable energy, it is expected that large-scale renewable power would be transported from the west and north area of China to the east and south area. For this reason, it will be necessary to develop a wide-area power grid in which the renewable energy would be the dominant power source, and the power grid will be faced by some critical challenges such as long-distance large-capacity power transmission, the stability of the wide-area power grid and the land use problem for the power grid. The superconducting technology for power (STP) would be a possible alternative for the development of China’s future power grid. In last decade, STP has been extensively developed in China. In this paper, we present an overview of the R and D of STP last decade in China including: 1) the development of high temperature superconducting (HTS) materials, 2) DC power cables, 3) superconducting power substations, 4) fault current limiters and 5) superconducting magnetic energy storage (SMES)

  6. Optical data transmission at the superconducting super collider

    International Nuclear Information System (INIS)

    Leskovar, B.

    1989-02-01

    Digital and analog data transmissions via fiber optics for the Superconducting Super Collider have been investigated. The state of the art of optical transmitters, low loss fiber waveguides, receivers and associated electronics components are reviewed and summarized. Emphasis is placed on the effects of the radiation environment on the performance of an optical data transmission system components. Also, the performance of candidate components of the wide band digital and analog transmission systems intended for deployment of the Superconducting Super Collider Detector is discussed. 27 refs., 15 figs

  7. The US market for high-temperature superconducting wire in transmission cable applications

    Energy Technology Data Exchange (ETDEWEB)

    Forbes, D

    1996-04-01

    Telephone interviews were conducted with 23 utility engineers concerning the future prospects for high-temperature superconducting (HTS) transmission cables. All have direct responsibility for transmission in their utility, most of them in a management capacity. The engineers represented their utilities as members of the Electric Power Research Institute`s Underground Transmission Task Force (which has since been disbanded). In that capacity, they followed the superconducting transmission cable program and are aware of the cryogenic implications. Nineteen of the 23 engineers stated the market for underground transmission would grow during the next decade. Twelve of those specified an annual growth rate; the average of these responses was 5.6%. Adjusting that figure downward to incorporate the remaining responses, this study assumes an average growth rate of 3.4%. Factors driving the growth rate include the difficulty in securing rights-of-way for overhead lines, new construction techniques that reduce the costs of underground transmission, deregulation, and the possibility that public utility commissions will allow utilities to include overhead costs in their rate base. Utilities have few plans to replace existing cable as preventive maintenance, even though much of the existing cable has exceeded its 40-year lifetime. Ten of the respondents said the availability of a superconducting cable with the same life-cycle costs as a conventional cable and twice the ampacity would induce them to consider retrofits. The respondents said a cable with those characteristics would capture 73% of their cable retrofits.

  8. Power applications for superconducting cables in Denmark

    DEFF Research Database (Denmark)

    Tønnesen, Ole; Østergaard, Jacob; Olsen, S. Krüger

    1999-01-01

    In Denmark a growing concern for environmental protection has lead to wishes that the open country is kept free of overhead lines as far as possible. New lines under 100 kV and existing 60/50 kV lines should be established as underground cables. Superconducting cables represent an interesting...... in cases such as transmission of energy into cities and through areas of special interest. The planned large groups of windmills in Denmark generating up to 2000 MVA or more both on dry land and off-shore will be an obvious case for the application of superconducting AC or DC cables. These opportunities...... can be combined with other new technologies such as HVDC light transmission using isolated gate bipolar transistors (IGBTs). The network needed in a system with a substantial wind power generation has to be very strong in order to handle energy fluctuations. Such a network will be possible...

  9. Application of superconducting magnet energy storage to improve power system dynamic performance

    International Nuclear Information System (INIS)

    Mitani, Y.; Tsuji, K.; Murakami, Y.

    1988-01-01

    The application of Superconducting Magnet Energy Storage (SMES) to the stabilization of a power system with long distance bulk power transmission lines which has the problem of poorly damped power oscillations, is presented. Control schemes for stabilization using SMES which is capable of controlling active and reactive power simultaneously in four quadrant ranges, is proposed. The effective locations and the necessary capacities of SMES for power system stabilizing control are discussed in detail. Results of numerical analysis and experiments in an artificial power transmission system demonstrate the significant effect of the control by SMES on the improvement of power system oscillatory performance

  10. Feasibility study of superconducting power cables for DC electric railway feeding systems in view of thermal condition at short circuit accident

    Science.gov (United States)

    Kumagai, Daisuke; Ohsaki, Hiroyuki; Tomita, Masaru

    2016-12-01

    A superconducting power cable has merits of a high power transmission capacity, transmission losses reduction, a compactness, etc., therefore, we have been studying the feasibility of applying superconducting power cables to DC electric railway feeding systems. However, a superconducting power cable is required to be cooled down and kept at a very low temperature, so it is important to reveal its thermal and cooling characteristics. In this study, electric circuit analysis models of the system and thermal analysis models of superconducting cables were constructed and the system behaviors were simulated. We analyzed the heat generation by a short circuit accident and transient temperature distribution of the cable to estimate the value of temperature rise and the time required from the accident. From these results, we discussed a feasibility of superconducting cables for DC electric railway feeding systems. The results showed that the short circuit accident had little impact on the thermal condition of a superconducting cable in the installed system.

  11. Transmission Line Analysis of the Superconducting Quadrupole Chains of the LHC Collider at CERN

    CERN Document Server

    Dahlerup-Petersen, K

    2003-01-01

    Key information for determination of fundamental design features of magnet powering and protection circuits can be retrieved from the results of transmission line calculations of the superconducting magnet chains in a particle accelerator. Modelling and simulation of the behaviour of long magnet strings provide important data for the expected electrical behaviour and performances under all operating conditions. The presented results of a transmission line study concerns the sixteen superconducting main quadrupole chains QF/QD of CERN's future LHC collider. The paper details the elaboration of the synthesized electrical model of the individual quadrupoles and the associated lumped transmission line. It presents results on the current ripple for a given converter voltage output characteristics, the magnet excitation, leakage and earth currents during the ramping procedure, the impedance resonance spectrum and the need for individual magnet damping and the propagation, reflection, superposition and damping of th...

  12. Signature of the Collaboration agreement contract between CERN and IASS on High Current, Long Distance Superconducting Power Transmission Lines signed Dr.Steve Myers Director of Acc Tech and Prof. Carlo Rubbia.

    CERN Multimedia

    Maximilien Brice

    2012-01-01

    Signature of the Collaboration agreement contract between CERN and IASS on High Current, Long Distance Superconducting Power Transmission Lines signed Dr.Steve Myers Director of Acc Tech and Prof. Carlo Rubbia.

  13. A test of a 2 Tesla superconducting transmission line magnet system

    International Nuclear Information System (INIS)

    Piekarz, Henryk; Carcagno, Ruben; Claypool, Brad; Foster, George W.; Hays, Steven L.; Huang, Yuenian; Kashikhin, Vladimir; Malamud, Ernest; Mazur, Peter O.; Nehring, Roger; Oleck, Andrew; Rabehl, Roger; Schlabach, Phil; Sylvester, Cosmore; Velev, Gueorgui; Volk, James; Wake, Masayoshi

    2005-01-01

    Superconducting transmission line magnet test system for an injector accelerator of a staged VLHC proton-proton colliding beam accelerator has been built and operated at Fermilab. The 1.5 m long, twin-aperture, combined function dipole magnet of 2 Tesla field is excited by a single turn 100 kA transmission line superconductor. The 100 kA dc current is generated using dc-dc switching converters powered by a bulk 240 kW supply. A pair of horizontally placed conventional leads facilitates transfer of this current to the magnet transmission line superconductor operating at liquid helium temperature. Fabrication of magnet components and magnet assembly work are described. The magnet test system and its operation are presented, and the performance is summarized

  14. A test of a 2 Tesla superconducting transmission line magnet system

    Energy Technology Data Exchange (ETDEWEB)

    Piekarz, Henryk; Carcagno, Ruben; Claypool, Brad; Foster, George W.; Hays, Steven L.; Huang, Yuenian; Kashikhin, Vladimir; Malamud, Ernest; Mazur, Peter O.; Nehring,; Oleck, Andrew; Rabehl, Roger; Schlabach, Phil; Sylvester, Cosmore; Velev, Gueorgui; Volk, James; /Fermilab; Wake, Masayoshi; /KEK, Tsukuba

    2005-09-01

    Superconducting transmission line magnet test system for an injector accelerator of a staged VLHC proton-proton colliding beam accelerator has been built and operated at Fermilab. The 1.5 m long, twin-aperture, combined function dipole magnet of 2 Tesla field is excited by a single turn 100 kA transmission line superconductor. The 100 kA dc current is generated using dc-dc switching converters powered by a bulk 240 kW supply. A pair of horizontally placed conventional leads facilitates transfer of this current to the magnet transmission line superconductor operating at liquid helium temperature. Fabrication of magnet components and magnet assembly work are described. The magnet test system and its operation are presented, and the performance is summarized.

  15. Semiannual report for the period October 1, 1979-March 31, 1980 of work on: (1) superconducting power transmission system development; (2) cable insulation development. Power Transmission Project Technical Note No. 106

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-07

    Progress is reported in a program whose objective is to develop an underground superconducting power transmission system which is economical and technically attractive to the utility industry. The system would be capable of carrying very large blocks of electric power, and would supplant overhead lines in urban and suburban areas and regions of natural beauty. The program consisted initially of work in the laboratory to develop suitable materials, cryostats, and cable concepts. The materials work covers the development and testing of suitable superconductors and dielectric insulation. The laboratory work has now been extended to an outside test facility which represents an intermediate step between the laboratory scale and a full-scale system. The facility will allow cables several hundred feet long to be tested under realistic conditions. In addition, the refrigerator has been designed for optimum service for utility applications.

  16. Superconducting coaxial cable as a large capacity transmission medium for communication

    International Nuclear Information System (INIS)

    Mikoshiba, K.; Simohori, Y.; Ohmori, N.; Sone, F.

    1974-01-01

    In order to survey the feasibility of the superconducting communication system, the electrical performance of superconducting coaxial cable has been investigated experimentally. The results are as follows. The transmission loss can be described as a function of the frequency, a(f) = a 1 f 2 + a 2 f. Dielectric loss is dominant up to a few gigahertz. Improvement of the impedance irregularities due to dimensional imperfections along the cable smoothens the transmission loss versus frequency characteristics. The temperature dependence of the transmission loss agrees well with an approximate expression deduced using the Pippard temperature function. (author)

  17. Microscopic simulation model of superconducting transmission lines for standard microwave CAD programs

    International Nuclear Information System (INIS)

    Hoefer, G.J.; Kratz, H.A.

    1993-01-01

    Superconducting lines are very promising candidates for fast signal transmission in integrated circuits, because of their low losses and dispersion, which result in large usable bandwidths. Coplanar waveguides are of special interest, since only one superconducting layer is needed for their implementation. This requirement fits well the present day capabilities of the high temperature superconductor technology. At present, the major drawback of this type of transmission line is the lack of accurate and fast CAD models including the special properties of superconducting electrodes. In the following we will briefly describe the essentials of a model for the case of superconducting lines. For a complete description the reader is referenced to. The model has been proven to be useful in conjunction with commercially available microwave CAD programs. (orig.)

  18. submitter Superconducting transmission lines – Sustainable electric energy transfer with higher public acceptance?

    CERN Document Server

    Thomas, Heiko; Chervyakov, Alexander; Stückrad, Stefan; Salmieri, Delia; Rubbia, Carlo

    2016-01-01

    Despite the extensive research and development investments into superconducting science and technology, both at the fundamental and at the applied levels, many benefits of superconducting transmission lines (SCTL) remain unknown to the public and decision makers at large. This paper aims at informing about the progress in this important research field. Superconducting transmission lines have a tremendous size advantage and lower total electrical losses for high capacity transmission plus a number of technological advantages compared to solutions based on standard conductors. This leads to a minimized environmental impact and enables an overall more sustainable transmission of electric energy. One of the direct benefits may be an increased public acceptance due to the low visual impact with a subsequent reduction of approval time. The access of remote renewable energy (RE) sources with high-capacity transmission is rendered possible with superior efficiency. That not only translates into further reducing $CO_2...

  19. Status of superconducting power transformer development

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.C.; McConnell, B.W.; Mehta, S.P. [and others

    1996-03-01

    Development of the superconducting transformer is arguably the most difficult of the ac power applications of superconductivity - this is because of the need for very low ac losses, adequate fault and surge performance, and the rigors of the application environment. This paper briefly summarizes the history of superconducting transformer projects, reviews the key issues for superconducting transformers, and examines the status of HTS transformer development. Both 630-kVA, three-phase and 1-MVA single phase demonstration units are expected to operate in late 1996. Both efforts will further progress toward the development of economical and performance competitive superconducting transformers.

  20. Transmission line properties of long strings of superconducting magnets

    International Nuclear Information System (INIS)

    Shafer, R.E.

    1980-09-01

    The purpose of this paper is to discuss the electrical characteristics of a long string of superconducting magnets, such as in a superconducting storage ring or accelerator. As the magnets have a shunt capacitance to ground as well as a series inductance, travelling waves can propagate along the string, as in a transmission line. As the string is of finite length, standing waves can also exist. In accelerator quality superconducting magnets, considerable effort has been devoted to minimizing ac losses, the net result being that the magnet string has a high Q precisely at the frequencies which are important for the standing and travelling waves. The magnitude of these effects are estimated, and the solution to be used at Fermilab will be discussed

  1. Civilian applications for superconducting magnet technology developed for defense

    International Nuclear Information System (INIS)

    Johnson, R.A.; Klein, S.W.; Gurol, H.

    1986-01-01

    Seventy years after its discovery, superconducting technology is beginning to play an important role in the civilian sector. Strategic defense initiative (SDI)-related research in space- and ground-based strategic defense weapons, particularly research efforts utilizing superconducting magnet energy storage, magnetohydrodynamics (MHD), and superconducting pulsed-power devices, have direct applications in the civilian sector as well and are discussed in the paper. Other applications of superconducting magnets, which will be indirectly enhanced by the overall advancement in superconducting technology, include high-energy physics accelerators, magnetic resonance imaging, materials purifying, water purifying, superconducting generators, electric power transmission, magnetically levitated trains, magnetic-fusion power plants, and superconducting computers

  2. Submicron superconducting structures

    International Nuclear Information System (INIS)

    Golovashkin, A.I.; Lykov, A.N.

    1986-01-01

    An overview of works concerning superconducting structures of submicron dimensions and a system of such structures is given. It is noted that usage of the above structures in superconducting microelectronics permits, first, to increase the element packing density, to decrease the signal transmission time, capacity, power dissipated in high-frequency applications. Secondly, negligible coherence length in transition metals, their alloys and high-temperature compounds also restrict the dimensions of superconducting weak couplings when the 'classical' Josephson effect is displayed. The most effective methods for production of submicron superconducting structures are the following: lithography, double scribering. Recently the systems of superconducting submicron elements are extensively studied. It is shown that such systems can be phased by magnetic field

  3. Development of innovative superconducting DC power cable

    Energy Technology Data Exchange (ETDEWEB)

    Matsushita, Teruo; Kiuchi, Masaru [Dept. of Computer Science and Electronics Kyushu Institute of Technology, Iizuka (Japan)

    2017-09-15

    It is required to reduce the cost of superconducting cable to realize a superconducting DC power network that covers a wide area in order to utilize renewable energy. In this paper a new concept of innovative cable is introduced that can enhance the current-carrying capacity even though the same superconducting tape is used. Such a cable can be realized by designing an optimal winding structure in such a way that the angle between the tape and magnetic field becomes small. This idea was confirmed by preliminary experiments for a single layer model cable made of Bi-2223 tapes and REBCO coated conductors. Experiments of three and four layer cables of practical sizes were also done and it was found that the current-carrying capacity increased as theoretically predicted. If the critical current properties of commercial superconducting tapes are further improved in a parallel magnetic field, the enhancement will become pronounced and this technology will surely contribute to realization of superconducting DC power network.

  4. Quantum State Transmission in a Superconducting Charge Qubit-Atom Hybrid

    Science.gov (United States)

    Yu, Deshui; Valado, María Martínez; Hufnagel, Christoph; Kwek, Leong Chuan; Amico, Luigi; Dumke, Rainer

    2016-01-01

    Hybrids consisting of macroscopic superconducting circuits and microscopic components, such as atoms and spins, have the potential of transmitting an arbitrary state between different quantum species, leading to the prospective of high-speed operation and long-time storage of quantum information. Here we propose a novel hybrid structure, where a neutral-atom qubit directly interfaces with a superconducting charge qubit, to implement the qubit-state transmission. The highly-excited Rydberg atom located inside the gate capacitor strongly affects the behavior of Cooper pairs in the box while the atom in the ground state hardly interferes with the superconducting device. In addition, the DC Stark shift of the atomic states significantly depends on the charge-qubit states. By means of the standard spectroscopic techniques and sweeping the gate voltage bias, we show how to transfer an arbitrary quantum state from the superconducting device to the atom and vice versa. PMID:27922087

  5. Superconducting devices at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Dahl, P.F.

    1978-04-01

    The various ongoing programs in applied superconductivity supported by BNL are summarized, including the development of high field ac and dc superconducting magnets for accelerators and other applications, of microwave deflecting cavities for high energy particle beam separators, and of cables for underground power transmission, and materials research on methods of fabricating new superconductors and on metallurgical properties affecting the performance of superconducting devices

  6. Suppression of multipacting in high power RF couplers operating with superconducting cavities

    Energy Technology Data Exchange (ETDEWEB)

    Ostroumov, P.N., E-mail: ostroumov@frib.msu.edu [Facility for Rare Isotope Beams (FRIB), Michigan State University, East Lansing, MI 48824 (United States); Kazakov, S. [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Morris, D.; Larter, T.; Plastun, A.S.; Popielarski, J.; Wei, J.; Xu, T. [Facility for Rare Isotope Beams (FRIB), Michigan State University, East Lansing, MI 48824 (United States)

    2017-06-01

    Capacitive input couplers based on a 50 Ω coaxial transmission line are frequently used to transmit RF power to superconducting (SC) resonators operating in CW mode. It is well known that coaxial transmission lines are prone to multipacting phenomenon in a wide range of RF power level and operating frequency. The Facility for Rare Isotope Beams (FRIB) being constructed at Michigan State University includes two types of quarter wave SC resonators (QWR) operating at 80.5 MHz and two types of half wave SC resonators (HWR) operating at 322 MHz. As was reported in ref. [1] a capacitive input coupler used with HWRs was experiencing strong multipacting that resulted in a long conditioning time prior the cavity testing at design levels of accelerating fields. We have developed an insert into 50 Ω coaxial transmission line that provides opportunity to bias the RF coupler antenna and protect the amplifier from the bias potential in the case of breakdown in DC isolation. Two of such devices have been built and are currently used for the off-line testing of 8 HWRs installed in the cryomodule.

  7. Superconductivity in power engineering

    International Nuclear Information System (INIS)

    Chaddah, P.; Dande, Y.D.; Dasannacharya, B.A.; Malik, M.K.; Raghavan, R.V.

    1987-01-01

    The advantages of low power loss, high magnetic fields and compactness of size of superconducting magnets have generated world-wide interest in using them for MHD generators, Tokamak fusion reactors, energy storage systems etc. With a view to assess the feasibility of using the technology in power engineering in India, the status of the efforts in the country is reviewed and the areas of R and D required are indicated. 13 figures, 15 refs. (author)

  8. The future of superconducting technology

    International Nuclear Information System (INIS)

    Kolm, H.H.

    1974-01-01

    As soon as cryogenic engineering problems are convincingly solved, superconducting technology is destined to play a vital role in mining, pollution control, medicine, power generation and transmission, and metallurgy. (author)

  9. Application of Superconducting Power Cables to DC Electric Railway Systems

    Science.gov (United States)

    Ohsaki, Hiroyuki; Lv, Zhen; Sekino, Masaki; Tomita, Masaru

    For novel design and efficient operation of next-generation DC electric railway systems, especially for their substantial energy saving, we have studied the feasibility of applying superconducting power cables to them. In this paper it is assumed that a superconducting power cable is applied to connect substations supplying electric power to trains. An analysis model line was described by an electric circuit, which was analyzed with MATLAB-Simulink. From the calculated voltages and currents of the circuit, the regenerative brake and the energy losses were estimated. In addition, assuming the heat loads of superconducting power cables and the cryogenic efficiency, the energy saving of the total system was evaluated. The results show that the introduction of superconducting power cables could achieve the improved use of regenerative brake, the loss reduction, the decreased number of substations, the reduced maintenance, etc.

  10. Control of the superconducting magnet power supply for SECRAL

    International Nuclear Information System (INIS)

    Zhou Wenxiong; Wang Yanyu; Zhou Detai; Lu Wang; Feng Yucheng; Su Jianjun

    2014-01-01

    The control of the superconducting magnet power supply (SMPS) is very important for Superconducting Electron Cyclotron Resonance Ion source with Advanced design in Lanzhou (SECRAL). In order to improve the safety and the reliability of the SMPS, a remote control system was designed and implemented. There are four power supplies needed to be controlled with suitable strategy to avoid the quench of the superconducting magnet. These four power supplies are used to supply four superconducting solenoids. Because the value and the changing rates of the current for these four solenoids are different, the power supplies must be operated synchronously to keep the current of the solenoids balanced. In this paper, we provide a detailed description for the control strategy of the four power supplies and the architecture of the hardware and the software. A serial switch is used for protocol conversion between TCP/IP and RS232 in firmware. And the software is implemented using VC++. The system can operate the four power supplies automatically after it is triggered. With the help of the control system, operation of the SMPS gets easier and safer. (authors)

  11. Power charging and discharging characteristics of smes connected to artificial transmission line

    International Nuclear Information System (INIS)

    Nitta, T.; Okada, T.; Shirai, Y.

    1985-01-01

    To consider the characteristics of SMES and to investigate problems on the operations of SMES in power systems, we carried out some experiments on an experimental network. In the network, a small superconducting magnet is connected to a small synchronous generator through a double thyristorized converter and transformers. The generator is connected to the regional power system through artifitial transmission lines, AC power into or out of SMES and reactive power are controlled. Furthermore, a computer simulation program is made for the experimental system. The results of the simulation are compared with those of the experiments. For the experiments and the simulation, the harmonics current-flow, power-flow, characteristics of the generator and so on, are discussed

  12. Transient analysis for alternating over-current characteristics of HTSC power transmission cable

    Science.gov (United States)

    Lim, S. H.; Hwang, S. D.

    2006-10-01

    In this paper, the transient analysis for the alternating over-current distribution in case that the over-current was applied for a high-TC superconducting (HTSC) power transmission cable was performed. The transient analysis for the alternating over-current characteristics of HTSC power transmission cable with multi-layer is required to estimate the redistribution of the over-current between its conducting layers and to protect the cable system from the over-current in case that the quench in one or two layers of the HTSC power cable happens. For its transient analysis, the resistance generation of the conducting layers for the alternating over-current was reflected on its equivalent circuit, based on the resistance equation obtained by applying discrete Fourier transform (DFT) for the voltage and the current waveforms of the HTSC tape, which comprises each layer of the HTSC power transmission cable. It was confirmed through the numerical analysis on its equivalent circuit that after the current redistribution from the outermost layer into the inner layers first happened, the fast current redistribution between the inner layers developed as the amplitude of the alternating over-current increased.

  13. Characterization of superconducting transmission line resonators

    Energy Technology Data Exchange (ETDEWEB)

    Goetz, Jan; Summer, Philipp; Meier, Sebastian; Haeberlein, Max; Wulschner, Karl Friedrich; Eder, Peter; Fischer, Michael; Schwarz, Manuel; Deppe, Frank; Fedorov, Kirill; Huebl, Hans; Menzel, Edwin [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Krawczyk, Marta; Marx, Achim [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Baust, Alexander; Xie, Edwar; Zhong, Ling; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany)

    2015-07-01

    Superconducting transmission line resonators are widely used in circuit quantum electrodynamics experiments as quantum bus or storage devices. For these applications, long coherence times, which can be linked to the internal quality factor of the resonators, are crucial. Here, we show a systematic study of the internal quality factor of niobium thin film resonators. We analyze different cleaning methods and substrate parameters for coplanar waveguide as well as microstrip geometries. In addition, we investigate the impact of a niobium-aluminum interface which is necessary for galvanically coupled flux qubits made from aluminum. This interface can be avoided by fabricating the complete resonator-qubit structure using Al/AlO{sub x}/Al technology during fabrication.

  14. Power and reactive power simultaneous control by 0.5 MJ superconducting magnet energy storage

    International Nuclear Information System (INIS)

    Ise, Toshifumi; Tsuji, Kiichiro; Murakami, Yoshishige

    1984-01-01

    Superconducting magnet energy storage (SMES) is expected to be widely applied to the pulsed sources for fusion reactor research and to the energy storage substituting for pumping-up power stations, because of its fast energy storing and discharging and very high efficiency. Some results have been obtained so far. In this paper, however, the simultaneous control of power and reactive power is considered for an energy storage composed of two sets of thyristorized power conversion system and superconducting magnets in series connection, and a direct digital control system is described on the principle, design and configuration including the compensator, and on the experiment using the 0.5 MJ superconducting magnet energy storage installed in the Superconduction Engineering Experiment Center, Osaka University. The results obtained are as follows: (1) P control priority mode and Q control priority mode (in which power and reactive power control has priority, respectively) were proposed as the countermeasures when the simultaneous control of power and reactive power became impossible; (2) the design method was established, by which power and reactive power control loops can independently be designed as a result of simulation; (3) the achievement of the simultaneous control of power and reactive power was confirmed by using P-control priority mode and Q-control priority mode, in the experiment using the control system designed by simulation. The validity of simulation model was also confirmed by actual response waveforms. (Wakatsuki, Y.)

  15. Prospects for the medium- and long-term development of China`s electric power industry and analysis of the potential market for superconductivity technology

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z. [Bob Lawrence and Associates, Inc., Alexandria, VA (United States)

    1998-05-01

    First of all, overall economic growth objectives in China are concisely and succinctly specified in this report. Secondly, this report presents a forecast of energy supply and demand for China`s economic growth for 2000--2050. In comparison with the capability of energy construction in China in the future, a gap between supply and demand is one of the important factors hindering the sustainable development of Chain`s economy. The electric power industry is one of China`s most important industries. To adopt energy efficiency through high technology and utilizing energy adequately is an important technological policy for the development of China`s electric power industry in the future. After briefly describing the achievements of China`s electric power industry, this report defines the target areas and policies for the development of hydroelectricity and nuclear electricity in the 2000s in China, presents the strategic position of China`s electric power industry as well as objectives and relevant plans of development for 2000--2050. This report finds that with the discovery of superconducting electricity, the discovery of new high-temperature superconducting (HTS) materials, and progress in materials techniques, the 21st century will be an era of superconductivity. Applications of superconductivity in the energy field, such as superconducting storage, superconducting transmission, superconducting transformers, superconducting motors, its application in Magneto-Hydro-Dynamics (MHD), as well as in nuclear fusion, has unique advantages. Its market prospects are quite promising. 12 figs.

  16. Superconducting transformers, rectifiers, and switches. (Review paper)

    International Nuclear Information System (INIS)

    Ignatov, V.E.; Koval'kov, G.A.; Moskvitin, A.I.

    Cryogenic rectifiers using power cryotrons have been fabricated by many foreign firms since 1960. Present-day flux pumps require a low voltage power supply (several tens of millivolts) and a high current (kiloamperes). Increasing the power supply voltage will quadratically increase the flux pump losses and, given the limitations of existing materials, are not economically profitable. Present-day, cryotron-type flux pumps can best be used in power systems as a power supply for superconducting magnets, solenoids, storage devices, and superconducting exciting coils for turbogenerators. To increase the voltage of the next generation of transformers for superconducting dc power transmission, a research program must be set up to improve the cryotrons and to develop systems based on a different principle of operation, for example, semiconductor devices based on the principle of the volume effect in the intermediate environment

  17. Power supply system for the superconducting outsert of the CHMFL hybrid magnet

    Science.gov (United States)

    Fang, Z.; Zhu, J.; Chen, W.; Jiang, D.; Huang, P.; Chen, Z.; Tan, Y.; Kuang, G.

    2017-12-01

    The construction of a new hybrid magnet, consisting of a 11 T superconducting outsert and a 34 T resistive insert magnet, has been finished at the Chinese High Magnetic Field Laboratory (CHMFL) in Hefei. With a room temperature bore of 800 mm in diameter, the hybrid magnet superconducting outsert is composed of four separate Nb3Sn-based Cable-in-Conduit Conductor (CICC) coils electrically connected in series and powered by a single power supply system. The power supply system for the superconducting outsert consists of a 16 kA DC power supply, a quench protection system, a pair of 16 kA High Temperature Superconducting (HTS) current leads, and two Low Temperature Superconducting bus-lines. The design and manufacturing of the power supply system have been completed at the CHMFL. This paper describes the design features of the power supply system as well as the current fabrication condition of its main components.

  18. Power operated contact apparatus for superconductive circuit

    Energy Technology Data Exchange (ETDEWEB)

    Woods, D.C.; Efferson, K.R.

    1989-10-10

    This patent describes a power operated contact apparatus for extending and retracting one or more electrical leads into and out of a cryostat for making and breaking, at a cryogenic temperature, electrical contact with a superconductive circuit. It comprises at least one rigid elongated lead for extending into a cold space of the cryostat which is at or near a cryogenic temperature. The lead having an inner end and a outer end; a connector fixed at the inner end of the lead for making electrical contact in the cold space with a connector of the superconductive circuit; guide means journaling the lead for allowing the lead to move axially relative to the guide means and sealing against the lead; a foundation for sealed attachment to the cryostat and to the guide means so that the connector on the inner end of the lead is extendable into making electrical contact with the connector of the superconductive circuit in the cold space; power operated means mounted on the foundation and fixed to the outer end of the lead for extending and retracting the lead to and from making electrical contact with the superconductive circuit in the cold space; and means for de-icing the exterior of the leads and guide means when the leads are connected to the superconducting circuit.

  19. AC loss in superconducting tapes and cables

    NARCIS (Netherlands)

    Oomen, M.P.

    2000-01-01

    The present study discusses the AC loss in high-temperature superconductors. Superconducting materials with a relatively high critical temperature were discovered in 1986. They are presently developed for use in large-scale power-engineering devices such as power-transmission cables, transformers

  20. Superconduction in limiting-power synchronous generators. State, lines of development, problems

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzen, H W; Sergl, J

    1976-01-01

    The limiting power of conventional 2-pole rotary current synchronous generators is estimated. The limiting power may be raised by using superconducting materials for the field winding. After a short description of superconductive materials, the construction of a synchronous generator with a superconducting field winding is described. Finally, some problems in calculating the magnetic field and the transient behavior are discussed.

  1. The Use of a Solid State Analog Television Transmitter as a Superconducting Electron Gun Power Amplifier

    Energy Technology Data Exchange (ETDEWEB)

    J.G. Kulpin, K.J. Kleman, R.A. Legg

    2012-07-01

    A solid state analog television transmitter designed for 200 MHz operation is being commissioned as a radio frequency power amplifier on the Wisconsin superconducting electron gun cavity. The amplifier consists of three separate radio frequency power combiner cabinets and one monitor and control cabinet. The transmitter employs rugged field effect transistors built into one kilowatt drawers that are individually hot swappable at maximum continuous power output. The total combined power of the transmitter system is 33 kW at 200 MHz, output through a standard coaxial transmission line. A low level radio frequency system is employed to digitally synthesize the 200 MHz signal and precisely control amplitude and phase.

  2. Superconducting magnets in the world of energy, especially in fusion power

    International Nuclear Information System (INIS)

    Komarek, P.

    1976-01-01

    Industrial applications of superconducting magnets are only feasible in the near future for superconducting monopolar machines and possible MHD generators. For superconducting synchronous machines, after the successful operation of machines in the MVA range, a new phase of basic investigations has started. Fundamental problems which could not be studied in the MVA machines, but which influence the design of large turbo-alternators, must now be investigated. Fusion power by magnetic confinement will probably be the largest field of application for superconducting magnets in the long run. The present research programmes require large superconducting magnets by the mid-1980s for the experimental reactors envisaged at that time. In addition to dc windings, pulse-operated superconducting windings are required in some systems, such as Tokamak. The high sensitivity of the overall plant efficiency and the active power demand of the pulsed windings require great efficiency from energy storage and transfer systems. Superconducting energy storage systems would be suitable for this, if transfer between inductances could be provided with sufficient efficiency. Basic experiments gave encouraging results. In power plant systems and electric machines an extremely high level of reliability and availability has been achieved. Less reliability will not be accepted for systems with superconducting magnets. This requires great efforts during the development work. (author)

  3. Superconductivity in technology

    International Nuclear Information System (INIS)

    Komarek, P.

    1976-01-01

    Physics, especially high energy physics and solid state physics was the first area in which superconducting magnets were used but in the long run, the most extensive application of superconductivity will probably be in energy technology. Superconducting power transmission cables, magnets for energy conversion in superconducting electrical machines, MHD-generators and fusion reactors and magnets for energy storage are being investigated. Magnets for fusion reactors will have particularly large physical dimensions, which means that much development effort is still needed, for there is no economic alternative. Superconducting surfaces in radio frequency cavities can give Q-values up to a factor of 10 6 higher than those of conventional resonators. Particle accelerators are the important application. And for telecommunication, simple coaxial superconducting radio frequency cables seem promising. The tunnel effect in superconducting junctions is now being developed commercially for sensitive magnetometers and may soon possibly feature in the memory cells of computer devices. Hence superconductivity can play an important role in the technological world, solving physical and technological problems and showing economic advantages as compared with possible conventional techniques, bearing also in mind the importance of reliability and safety. (author)

  4. Powering and Machine Protection of the Superconducting LHC Accelerator

    OpenAIRE

    Zerlauth, M; Schmidt, R

    2004-01-01

    A very large number of magnets, both superconducting and conventional copper conductor magnets, are installed in the LHC (Large Hadron Collider) for the guidance of the two proton beams around the circumference. In total, the LHC counts 1614 different electrical circuits with 1712 power converters for DC powering of the superconducting and normal conducting magnets. Besides the electrical circuits connecting main magnets for bending and focusing of the two counter-rotating beams, the demandin...

  5. System considerations for airborne, high power superconducting generators

    International Nuclear Information System (INIS)

    Southall, H.L.; Oberly, C.E.

    1979-01-01

    The design of rotating superconducting field windings in high power generators is greatly influenced by system considerations. Experience with two superconducting generators designed to produce 5 and 20 Mw resulted in a number of design restrictions. The design restrictions imposed by system considerations have not prevented low weight and high voltage power generation capability. The application of multifilament Nb;sub 3;Sn has permitted a large thermal margin to be designed into the rotating field winding. This margin permits the field winding to remain superconducting under severe system operational requirements. System considerations include: fast rotational startup, fast ramped magnetic fields, load induced transient fields and airborne cryogen logistics. Preliminary selection of a multifilament Nb;sub 3;Sn cable has resulted from these considerations. The cable will carry 864 amp at 8.5K and 6.8 Tesla. 10 refs

  6. Fiber optic cryogenic sensors for superconducting magnets and superconducting power transmission lines at CERN

    Science.gov (United States)

    Chiuchiolo, A.; Bajko, M.; Perez, J. C.; Bajas, H.; Consales, M.; Giordano, M.; Breglio, G.; Palmieri, L.; Cusano, A.

    2014-08-01

    The design, fabrication and tests of a new generation of superconducting magnets for the upgrade of the LHC require the support of an adequate, robust and reliable sensing technology. The use of Fiber Optic Sensors is becoming particularly challenging for applications in extreme harsh environments such as ultra-low temperatures, high electromagnetic fields and strong mechanical stresses offering perspectives for the development of technological innovations in several applied disciplines.

  7. 100 Years of Superconductivity: Perspective on Energy Applications

    Science.gov (United States)

    Grant, Paul

    2011-11-01

    One hundred years ago this past April, in 1911, traces of superconductivity were first detected near 4.2 K in mercury in the Leiden laboratory of Kammerlingh Onnes, followed seventy-five years later in January, 1986, by the discovery of ``high temperature'' superconductivity above 30 K in layered copper oxide perovskites by Bednorz and Mueller at the IBM Research Laboratory in Rueschlikon. Visions of application to the electric power infrastructure followed each event, and the decades following the 1950s witnessed numerous, successful demonstrations to electricity generation, transmission and end use -- rotating machinery, cables, transformers, storage, current limiters and power conditioning, employing both low and high temperature superconductors in the USA, Japan, Europe, and more recently, China. Despite these accomplishments, there has been to date no substantial insertion of superconducting technology in the electric power infrastructure worldwide, and its eventual deployment remains problematic. We will explore the issues delaying such deployment and suggest future electric power scenarios where superconductivity will play an essential central role.

  8. Space power transmission

    Energy Technology Data Exchange (ETDEWEB)

    Kuribayashi, Shizuma [Mitsubishi Heavy Industries, Ltd., Tokyo, (Japan)

    1989-10-05

    There being a conception to utilize solar energy by use of a space power station (SPS), a method to bring that universal grace to mankind is wireless energy transmission. The wireless energy transmission is regarded to be microwave transmission or laser beam transmission. The microwave transmission is to transmit 2.45GHz band microwave from the SPS to a receiving station on the ground to meet power demand on earth. The microwave, as small in attenuation in atmosphere and resistant against rain and cloud, is made candidate and, however, problematic in influence on organism, necessary large area of receiving antenna and many other points to be studied. While the laser transmission, as more convergent of beam than the microwave transmission, is advantageous with enabling the receiving area to be small and, however, disadvantageous with being not resistant against dust, rain and cloud, if used for the energy transmission between the space and earth. 2 refs., 2 figs.

  9. Superconducting power distribution structure for integrated circuits

    International Nuclear Information System (INIS)

    Ruby, R.C.

    1991-01-01

    This patent describes a superconducting power distribution structure for an integrated circuit. It comprises a first superconducting capacitor plate; a second superconducting capacitor plate provided with electrical isolation means within the second capacitor plate; dielectric means separating the first capacitor plate from the second capacitor plate; first via means coupled at a first end to the first capacitor plate and extending through the dielectric and the electrical isolation means of the second capacitor plate; first contact means coupled to a second end of the first via means; and second contact means coupled to the second capacitor plate such that the first contact means and the second contact means are accessible from the same side of the second capacitor plate

  10. Powering and Machine Protection of the Superconducting LHC Accelerator

    CERN Document Server

    Zerlauth, M

    2004-01-01

    A very large number of magnets, both superconducting and conventional copper conductor magnets, are installed in the LHC (Large Hadron Collider) for the guidance of the two proton beams around the circumference. In total, the LHC counts 1614 different electrical circuits with 1712 power converters for DC powering of the superconducting and normal conducting magnets. Besides the electrical circuits connecting main magnets for bending and focusing of the two counter-rotating beams, the demanding requirements on the quality of the magnetic fields require a large number of circuits for corrector magnets distributed around the circumference. In total, more than 10000 magnets will need to be connected to the power converters via a large inventory of electrical components such as normal conducting cables and tubes, energy extraction systems, current feedthroughs and superconducting busbars. Depending on the complexity and importance of these electrical circuits and their components, various systems will interact for...

  11. towards solving the problem of transmission and distribution of ...

    African Journals Online (AJOL)

    DISTRIBUTION OF ELECTRIC POWER IN NIGERIA VIA. SUPERCONDUCTOR POWER ... that Nigerian power transmission network is characterized by prolonged and .... (a) The design of superconducting cables generally includes flexibility ...

  12. Low-Cost Superconducting Wire for Wind Generators: High Performance, Low Cost Superconducting Wires and Coils for High Power Wind Generators

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-01-01

    REACT Project: The University of Houston will develop a low-cost, high-current superconducting wire that could be used in high-power wind generators. Superconducting wire currently transports 600 times more electric current than a similarly sized copper wire, but is significantly more expensive. The University of Houston’s innovation is based on engineering nanoscale defects in the superconducting film. This could quadruple the current relative to today’s superconducting wires, supporting the same amount of current using 25% of the material. This would make wind generators lighter, more powerful and more efficient. The design could result in a several-fold reduction in wire costs and enable their commercial viability of high-power wind generators for use in offshore applications.

  13. Analysis of transmission efficiency of the superconducting resonance coil according the materials of cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yu Kyeong; Hwang, Jun Won; Choi, Hyo Sang [Chosun University, Gwangju (Korea, Republic of)

    2016-03-15

    The wireless power transfer (WPT) system using a magnetic resonance was based on magnetic resonance coupling of the transmission and the receiver coils. In these system, it is important to maintain a high quality-factor (Q-factor) to increase the transmission efficiency of WPT system. Our research team used a superconducting coil to increase the Q-factor of the magnetic resonance coil in WPT system. When the superconductor is applied in these system, we confirmed that transmission efficiency of WPT system was higher than normal conductor coil through a preceding study. The efficiency of the transmission and the receiver coil is affected by the magnetic shielding effect of materials around the coils. The magnetic shielding effect is dependent on the type, thickness, frequency, distance, shape of materials. Therefore, it is necessary to study the WPT system on the basis of these conditions. In this paper, the magnetic shield properties of the cooling system were analyzed using the High-Frequency Structure Simulation (HFSS, Ansys) program. We have used the shielding materials such as plastic, aluminum and iron, etc. As a result, when we applied the fiber reinforced polymer (FRP), the transmission efficiency of WPT was not affected because electromagnetic waves went through the FRP. On the other hand, in case of a iron and aluminum, transmission efficiency was decreased because of their electromagnetic shielding effect. Based on these results, the research to improve the transmission efficiency and reliability of WPT system is continuously necessary.

  14. Development of a superconducting cable for transmission of high electric power

    International Nuclear Information System (INIS)

    Moisson, F.; Leroux, J.M.

    1971-01-01

    The opportunities opened by the use of cryoresistive and superconducting materials in underground transmission systems have led to a cryocable program. A first set of problems associated with the development of cryogenic cables deals with the cable system, i.e., design, safety, terminal equipment including leads, cryogenic equipment, refrigerators, and problems related to overload capability and reliability. A second set concerns the cable itself, i.e., scientific and technological problems associated with the conductor, the electrical insulation, and the thermal exchange between conductor and helium. Useful experience is gained on the design problems and on the technological problems involved in the construction of a cryoconducting cable. A 20-M aluminum cable cooled down to 25 0 K with pressurized helium flow was built and tested with 3500-A dc under 20 Kv; results are presented. On this model the following types of problems were solved. First, mechanical problems concerning cooling of the cable, thermal contraction of the pipes, electrical insulation and conductors, construction of an invariable cable constituted by elementary helically wound conductors were solved. Second, thermal problems of reduction of heat leaks, conception of thermal insulation, and segmentation of vacuum jackets were solved. Third, electrical problems of design of 300 0 to 25 0 K leads were solved; this problem of losses at both ends is, in proportion, more important for the short model than for long cable. Finally, refrigeration problems of helium and nitrogen flows, thermal shields and design of refrigerators (optimal capacity and spacing) were solved

  15. Protection of Hardware: Powering Systems (Power Converter, Normal Conducting, and Superconducting Magnets)

    Energy Technology Data Exchange (ETDEWEB)

    Pfeffer, H. [Fermilab; Flora, B. [Fermilab; Wolff, D. [Fermilab

    2016-01-01

    Along with the protection of magnets and power converters, we have added a section on personnel protection because this is our highest priority in the design and operation of power systems. Thus, our topics are the protection of people, power converters, and magnet loads (protected from the powering equipment), including normal conducting magnets and superconducting magnets.

  16. Rf superconducting devices

    International Nuclear Information System (INIS)

    Hartwig, W.H.; Passow, C.

    1975-01-01

    Topics discussed include (1) the theory of superconductors in high-frequency fields (London surface impedance, anomalous normal surface resistance, pippard nonlocal theory, quantum mechanical model, superconductor parameters, quantum mechanical calculation techniques for the surface, impedance, and experimental verification of surface impedance theories); (2) residual resistance (separation of losses, magnetic field effects, surface resistance of imperfect and impure conductors, residual loss due to acoustic coupling, losses from nonideal surfaces, high magnetic field losses, field emission, and nonlinear effects); (3) design and performance of superconducting devices (design considerations, materials and fabrication techniques, measurement of performance, and frequency stability); (4) devices for particle acceleration and deflection (advantages and problems of using superconductors, accelerators for fast particles, accelerators for particles with slow velocities, beam optical devices separators, and applications and projects under way); (5) applications of low-power superconducting resonators (superconducting filters and tuners, oscillators and detectors, mixers and amplifiers, antennas and output tanks, superconducting resonators for materials research, and radiation detection with loaded superconducting resonators); and (6) transmission and delay lines

  17. Reducing Conductor Usage in Superconducting Machines by Multiple Power Supplies

    DEFF Research Database (Denmark)

    Jensen, Bogi Bech; Mijatovic, Nenad; Abrahamsen, Asger Bech

    2013-01-01

    This paper presents and applies a method of reducing the needed amount of superconductor in a superconducting machine by supplying the superconductor from multiple power supplies. The method is presented and validated experimentally in a constructed prototype. Thereafter, a superconducting tape...

  18. A new power supply for superconductive magnetic energy storage system

    International Nuclear Information System (INIS)

    Karady, G.G.; Han, B.M.

    1992-01-01

    In this paper a new power supply for a superconductive magnetic energy storage system, which permits a fast independent regulation of the active and reactive power, is presented. The power supply is built with several units connected in parallel. Each unit consists of a 24-pulse bridge converter, thyristor-switched tap-changing transformer, and thyristor-switched capacitor bank. Its system operation is analyzed by computer simulation and a feasible system realization is shown. A superconductive magnetic energy storage system with the proposed power supply has the capability of leveling the load variation, damping the low-frequency oscillation, and improving the transient stability in the power system. This power supply can be built with commercially available components using well-proven technologies

  19. High temperature superconducting Josephson transmission lines for pulse and step sharpening

    International Nuclear Information System (INIS)

    Martens, J.S.; Wendt, J.R.; Hietala, V.M.; Ginley, D.S.; Ashby, C.I.H.; Plut, T.A.; Vawter, G.A.; Tigges, C.P.; Siegal, M.P.; Hou, S.Y.; Phillips, J.M.; Hohenwarter, G.K.G.

    1992-01-01

    An increasing number of high speed digital and other circuit applications require very narrow impulses or rapid pulse edge transitions. Shock wave transmission lines using series or shunt Josephson junctions are one way to generate these signals. Using two different high temperature superconducting Josephson junction processes (step-edge and electron beam defined nanobridges), such transmission lines have been constructed and tested at 77 K. Shock wave lines with approximately 60 YBaCuO nanobridges, have generated steps with fall times of about 10 ps. With step-edge junctions (with higher figures of merit but lower uniformity), step transition times have been reduced to an estimated 1 ps

  20. Economics of superconductive energy storage inductor-converter units in power systems

    International Nuclear Information System (INIS)

    Yadavalli, S.R.

    1975-01-01

    Since the original proposal by Boom and Peterson in 1972, there has been growing interest in superconductive energy storage inductor converter units (IC units) for use in large power systems for peak shaving and load leveling. Different aspects of it are being studied at the University of Wisconsin and elsewhere. An economic study of such IC units shows that large IC units, bigger than about 1000 MWh, are economically competitive with other peaking alternatives, larger units being more economical. External electrical circuit losses in IC units have negligible effect on their storage and power capacities. There are three credits which could be of significant economic value to IC units. These are: (1) transmission credit which varied from about $4 to $60/kW peak power, with a typical value of about $35/kW; (2) pollution credit which varied from about $5 to $160/kW with a typical value of $80/kW; and Spinning Reserve Credit which varied from about $20 to $370/kW with a typical value of $90/kW

  1. HVDC transmission from nuclear power plant

    International Nuclear Information System (INIS)

    Yoshida, Yukio; Takenaka, Kiyoshi; Taniguchi, Haruto; Ueda, Kiyotaka

    1980-01-01

    HVDC transmission directly from a nuclear power plant is expected as one of the bulk power transmission systems from distant power generating area. Successively from the analysis of HVDC transmission from BWR-type nuclear power plant, this report discusses dynamic response characteristics of HVDC transmission (double poles, two circuits) from PWR type nuclear power plant due to dc-line faults (DC-1LG, 2LG) and ac-line faults (3LG) near inverter station. (author)

  2. Long-distance power transmission technology. Microwave power transmission; Denryoku no chokyori yuso gijutsu. Micro ha musen soden

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, N [Kobe University, Kobe (Japan). Faculty of Engineering

    1994-11-05

    This paper explains the principles of microwave power transmission as a long-distance power transmission technology, and the status of its development. Under an assumption of using a wave length of 12 cm (2.45 GHz) and a transmission distance of 1 km, an ideal wireless power transmission can realize transmitting the power at an efficiency of 95% or higher if transmitting and receiving antennas with a radius of 8.8 m are used. What remains as important requirements is raising the efficiency of conversion from power supply into microwaves, and the efficiency of rectification after the power has been received. By using microwave energy sent from a transmission antenna installed on the roof of an automobile, a model airplane with a receiving antenna installed at its rear flew successfully for 40 seconds under the microwave lifted airplane experiment (MILAX). In an experiment of transmitting microwave power in space, power was successfully transmitted to the child rocket as an event under the International Space Year - Microwave Energy Transmission in Space (ISY-METS). The microwave wireless power transmission on the ground would have a possibility of taking over the overhead line transmission into islands. An attempt is scheduled to send power of 5 kW by using transmission and receiving antennas with a diameter of 3 m to investigate effects on transmission efficiency, and communications and electromagnetic environments, and to collect basic data. 3 refs., 3 figs.

  3. WTEC Panel on Power applications of superconductivity in Japan and Germany. Final report

    International Nuclear Information System (INIS)

    Shelton, R.D.; Larbalestier, David; Blaugher, Richard D.; Schwall, Robert E.; Sokolowski, Robert S.; Suenaga, Masaki; Willis, JefFR-ey O.

    1997-01-01

    In early 1996, the U.S. Department of Energy and National Science Foundation asked the World Technology Evaluation Center (WTEC) to assemble a panel to assess, relative to the United States, how Japan and Germany are responding to the challenge of applying superconductivity to power and energy applications. Although the study was focused mostly on the impact of high-temperature superconductors (HTS) on the power applications field, the WTEC panel also looked at many applications for low-temperature superconductors (LTS). The market for low-temperature superconductor applications is well established, as is that for superconducting electronics, for which there is a separate WTEC panel. The panel on power applications of superconductivity was commissioned to identify the roles of public organizations, industry, and academia for advancing power applications of superconductivity, taking both a present and a long-term view

  4. WTEC Panel on Power applications of superconductivity in Japan and Germany. Final report

    CERN Document Server

    Shelton, R D; Larbalestier, D; Schwall, R E; Sokolowski, R S; Suenaga, M; Willis, J E O

    1997-01-01

    In early 1996, the U.S. Department of Energy and National Science Foundation asked the World Technology Evaluation Center (WTEC) to assemble a panel to assess, relative to the United States, how Japan and Germany are responding to the challenge of applying superconductivity to power and energy applications. Although the study was focused mostly on the impact of high-temperature superconductors (HTS) on the power applications field, the WTEC panel also looked at many applications for low-temperature superconductors (LTS). The market for low-temperature superconductor applications is well established, as is that for superconducting electronics, for which there is a separate WTEC panel. The panel on power applications of superconductivity was commissioned to identify the roles of public organizations, industry, and academia for advancing power applications of superconductivity, taking both a present and a long-term view.

  5. High power density superconducting motor for control applications

    International Nuclear Information System (INIS)

    Lopez, J; Granados, X; Lloberas, J; Torres, R; Grau, J; Maynou, R; Bosch, R

    2008-01-01

    A high dynamics superconducting low power motor for control applications has been considered for design. The rotor is cylindrical with machined bulks that generate the field by trapping flux in a four poles configuration. The toothless iron armature is wound by copper, acting iron only as magnetic screen. Details of the magnetic assembling, cryogenics and electrical supply conditioning will be reported. Improvements due to the use of a superconducting set are compared with performances of equivalent conventional motors

  6. A superconducting shield to protect astronauts

    CERN Document Server

    Antonella Del Rosso

    2015-01-01

    The CERN Superconductors team in the Technology department is involved in the European Space Radiation Superconducting Shield (SR2S) project, which aims to demonstrate the feasibility of using superconducting magnetic shielding technology to protect astronauts from cosmic radiation in the space environment. The material that will be used in the superconductor coils on which the project is working is magnesium diboride (MgB2), the same type of conductor developed in the form of wire for CERN for the LHC High Luminosity Cold Powering project.   Image: K. Anthony/CERN. Back in April 2014, the CERN Superconductors team announced a world-record current in an electrical transmission line using cables made of the MgB2 superconductor. This result proved that the technology could be used in the form of wire and could be a viable solution for both electrical transmission for accelerator technology and long-distance power transportation. Now, the MgB2 superconductor has found another application: it wi...

  7. Superconductivity an introduction

    CERN Document Server

    Kleiner, Reinhold

    2016-01-01

    The third edition of this proven text has been developed further in both scope and scale to reflect the potential for superconductivity in power engineering to increase efficiency in electricity transmission or engines. The landmark reference remains a comprehensive introduction to the field, covering every aspect from fundamentals to applications, and presenting the latest developments in organic superconductors, superconducting interfaces, quantum coherence, and applications in medicine and industry. Due to its precise language and numerous explanatory illustrations, it is suitable as an introductory textbook, with the level rising smoothly from chapter to chapter, such that readers can build on their newly acquired knowledge. The authors cover basic properties of superconductors and discuss stability and different material groups with reference to the latest and most promising applications, devoting the last third of the book to applications in power engineering, medicine, and low temperature physics. An e...

  8. Programs on large scale applications of superconductivity in Japan

    International Nuclear Information System (INIS)

    Yasukochi, K.; Ogasawara, T.

    1974-01-01

    History of the large scale application of superconductivity in Japan is reported. Experimental works on superconducting magnet systems for high energy physics have just begun. The programs are described by dividing into five categories: 1) MHD power generation systems, 2) superconducting rotating machines, 3) cryogenic power transmission systems, 4) magnetically levitated transportation, and 5) application to high energy physics experiments. The development of a big superconducting magnet for a 1,000 kW class generator was set up as a target of first seven year plan, which came to end in 1972, and continues for three years with the budget of 900 million yen from 1973 on. In the second phase plan, a prototype MHD generator is argued. A plan is contemplated to develop a synchronous generator with inner rotating field by Fuji Electric Co. The total budget for the future plans of superconducting power transmission system amounts to 20 billion yen for the first period of 8 approximately 9 years. In JNR's research and development efforts, several characteristic points are picked up: 1) linear motor drive with active side on ground, 2) loop track, 3) combined test run of maglev and LSM. The field test at the speed of 500 km/hr on a 7 km track is scheduled to be performed in 1975. The target of operation is in 1985. A 12 GeV proton synchrotron is now under construction for the study on high energy physics. Three ring intersecting storage accelerator is discussed for future plan. (Iwakiri, K.)

  9. Insulation systems for superconducting transmission cables

    DEFF Research Database (Denmark)

    Tønnesen, Ole

    1996-01-01

    the electrical insulation is placed outside both the superconducting tube and the cryostat. The superconducting tube is cooled by liquid nitrogen which is pumped through the hollow part of the tube.2) The cryogenic dielectric design, where the electrical insulation is placed inside the cryostat and thus is kept...

  10. Superconductivity Program for electric power systems: 1994 annual PEER review. Volume 1, Meeting proceedings

    International Nuclear Information System (INIS)

    1994-01-01

    This is Volume I of information presented at the Annual Peer Review of the Superconductivity Program For Electric Power Systems. Topics include: Wire development; powder synthesis; characterization of superconducting materials; electric power applications; magnetic refrigerators; and motor cooling issues. Individual reports were processed separately for the database

  11. Methods of Phase and Power Control in Magnetron Transmitters for Superconducting Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Kazadevich, G. [MUONS Inc., Batavia; Johnson, R. [MUONS Inc., Batavia; Neubauer, M. [MUONS Inc., Batavia; Lebedev, V. [Fermilab; Schappert, W. [Fermilab; Yakovlev, V. [Fermilab

    2017-05-01

    Various methods of phase and power control in magnetron RF sources of superconducting accelerators intended for ADS-class projects were recently developed and studied with conventional 2.45 GHz, 1 kW, CW magnetrons operating in pulsed and CW regimes. Magnetron transmitters excited by a resonant (injection-locking) phasemodulated signal can provide phase and power control with the rates required for precise stabilization of phase and amplitude of the accelerating field in Superconducting RF (SRF) cavities of the intensity-frontier accelerators. An innovative technique that can significantly increase the magnetron transmitter efficiency at the widerange power control required for superconducting accelerators was developed and verified with the 2.45 GHz magnetrons operating in CW and pulsed regimes. High efficiency magnetron transmitters of this type can significantly reduce the capital and operation costs of the ADSclass accelerator projects.

  12. Characteristic Analysis of DC Electric Railway Systems with Superconducting Power Cables Connecting Power Substations

    Science.gov (United States)

    Ohsaki, H.; Matsushita, N.; Koseki, T.; Tomita, M.

    2014-05-01

    The application of superconducting power cables to DC electric railway systems has been studied. It could leads to an effective use of regenerative brake, improved energy efficiency, effective load sharing among the substations, etc. In this study, an electric circuit model of a DC feeding system is built and numerical simulation is carried out using MATLAB-Simulink software. A modified electric circuit model with an AC power grid connection taken into account is also created to simulate the influence of the grid connection. The analyses have proved that a certain amount of energy can be conserved by introducing superconducting cables, and that electric load distribution and concentration among the substations depend on the substation output voltage distribution.

  13. Characteristic analysis of DC electric railway systems with superconducting power cables connecting power substations

    International Nuclear Information System (INIS)

    Ohsaki, H; Matsushita, N; Koseki, T; Tomita, M

    2014-01-01

    The application of superconducting power cables to DC electric railway systems has been studied. It could leads to an effective use of regenerative brake, improved energy efficiency, effective load sharing among the substations, etc. In this study, an electric circuit model of a DC feeding system is built and numerical simulation is carried out using MATLAB-Simulink software. A modified electric circuit model with an AC power grid connection taken into account is also created to simulate the influence of the grid connection. The analyses have proved that a certain amount of energy can be conserved by introducing superconducting cables, and that electric load distribution and concentration among the substations depend on the substation output voltage distribution.

  14. The Application of High Temperature Superconducting Materials to Power Switches

    CERN Document Server

    March, S A; Ballarino, A

    2009-01-01

    Superconducting switches may find application in superconducting magnet systems that require energy extraction. Such superconducting switches could be bypass-switches that are operated in conjunction with a parallel resistor or dump-switches where all of the energy is dissipated in the switch itself. Bypass-switches are more suited to higher energy circuits as a portion of the energy can be dissipated in the external dump resistor. Dump- switches require less material and triggering energy as a lower switch resistance is needed to achieve the required total dump resistance. Both superconducting bypass-switches and superconducting dump-switches can be ther- mally activated. Switching times that are comparable to those obtained with mechanical bypass-switch systems can be achieved using a co-wound heater that is powered by a ca- pacitor discharge. Switches that have fast thermal diffusion times through the insulation can be modelled as a lumped system whereas those with slow thermal diffusion times were modelle...

  15. Detailed modeling of superconducting magnetic energy storage (SMES) system

    NARCIS (Netherlands)

    Chen, L.; Liu, Y.; Arsoy, A.B.; Ribeiro, P.F.; Steurer, M.; Iravani, M.R.

    2006-01-01

    This paper presents a detailed model for simulation of a Superconducting Magnetic Energy Storage (SMES) system. SMES technology has the potential to bring real power storage characteristic to the utility transmission and distribution systems. The principle of SMES system operation is reviewed in

  16. Development of superconducting power devices in Europe

    International Nuclear Information System (INIS)

    Tixador, Pascal

    2010-01-01

    Europe celebrated last year (2008) the 100-year anniversary of the first liquefaction of helium by H. Kammerling Onnes in Leiden. It led to the discovery of superconductivity in 1911. Europe is still active in the development of superconducting (SC) devices. The discovery of high critical temperature materials in 1986, again in Europe, has opened a lot of opportunities for SC devices by broking the 4 K cryogenic bottleneck. Electric networks experience deep changes due to the emergence of dispersed generation (renewable among other) and to the advances in ICT (Information Communication Technologies). The networks of the future will be 'smart grids'. Superconductivity will offer 'smart' devices for these grids like FCL (Fault Current Limiter) or VLI (Very Low Inductance) cable and would certainly play an important part. Superconductivity also will participate to the required sustainable development by lowering the losses and enhancing the mass specific powers. Different SC projects in Europe will be presented (Cable, FCL, SMES, Flywheel and Electrical Machine) but the description is not exhaustive. Nexans has commercialized the first two FCLs without public funds in the European grid (UK and Germany). The Amsterdam HTS cable is an exciting challenge in term of losses for long SC cables. European companies (Nexans, Air Liquide, Siemens, Converteam, ...) are also very active for projects outside Europe (LIPA, DOE FCL, ...).

  17. Fundamental Power Couplers for Superconducting Cavities

    International Nuclear Information System (INIS)

    Isidoro E. Campisi

    2001-01-01

    Fundamental power couplers (FPC's) for superconducting cavities must meet very strict requirements to perform at high power levels (hundreds of kilowatts) and in a variety of conditions (CS, pulsed, travelling wave, standing wave) without adversely affecting the performance of the cavities they are powering. Producing good coupler designs and achieving operational performances in accelerator environments are challenging tasks that have traditionally involved large resources from many laboratories. The designs involve state-of-the-art activities in RF, cryogenic and mechanical engineering, materials science, vacuum technology, and electromagnetic field modeling. Handling, assembly and conditioning procedures have been developed to achieve ever-increasing power levels and more reliable operation. In this paper, the technical issues associated with the design, construction, assembly, processing, and operation of FPC's will be reviewed, together with the progress in FPC activities in several laboratories during the past few years

  18. The creation of high-temperature superconducting cables of megawatt range in Russia

    Science.gov (United States)

    Sytnikov, V. E.; Bemert, S. E.; Krivetsky, I. V.; Romashov, M. A.; Popov, D. A.; Fedotov, E. V.; Komandenko, O. V.

    2015-12-01

    Urgent problems of the power industry in the 21st century require the creation of smart energy systems, providing a high effectiveness of generation, transmission, and consumption of electric power. Simultaneously, the requirements for controllability of power systems and ecological and resource-saving characteristics at all stages of production and distribution of electric power are increased. One of the decision methods of many problems of the power industry is the development of new high-efficiency electrical equipment for smart power systems based on superconducting technologies to ensure a qualitatively new level of functioning of the electric power industry. The intensive research and development of new types of electrical devices based on superconductors are being carried out in many industrialized advanced countries. Interest in such developments has especially increased in recent years owing to the discovery of so-called high-temperature superconductors (HTS) that do not require complicated and expensive cooling devices. Such devices can operate at cooling by inexpensive and easily accessible liquid nitrogen. Taking into account the obvious advantages of superconducting cable lines for the transmission of large power flows through an electrical network, as compared with conventional cables, the Federal Grid Company of Unified Energy System (JSC FGC UES) initiated a research and development program including the creation of superconducting HTS AC and DC cable lines. Two cable lines for the transmitted power of 50 MVA/MW at 20 kV were manufactured and tested within the framework of the program.

  19. The creation of high-temperature superconducting cables of megawatt range in Russia

    Energy Technology Data Exchange (ETDEWEB)

    Sytnikov, V. E., E-mail: vsytnikov@gmail.com; Bemert, S. E.; Krivetsky, I. V.; Romashov, M. A. [JSC NTTs FSC EES (Russian Federation); Popov, D. A.; Fedotov, E. V.; Komandenko, O. V. [JSC Irkutskkabel (Russian Federation)

    2015-12-15

    Urgent problems of the power industry in the 21st century require the creation of smart energy systems, providing a high effectiveness of generation, transmission, and consumption of electric power. Simultaneously, the requirements for controllability of power systems and ecological and resource-saving characteristics at all stages of production and distribution of electric power are increased. One of the decision methods of many problems of the power industry is the development of new high-efficiency electrical equipment for smart power systems based on superconducting technologies to ensure a qualitatively new level of functioning of the electric power industry. The intensive research and development of new types of electrical devices based on superconductors are being carried out in many industrialized advanced countries. Interest in such developments has especially increased in recent years owing to the discovery of so-called high-temperature superconductors (HTS) that do not require complicated and expensive cooling devices. Such devices can operate at cooling by inexpensive and easily accessible liquid nitrogen. Taking into account the obvious advantages of superconducting cable lines for the transmission of large power flows through an electrical network, as compared with conventional cables, the Federal Grid Company of Unified Energy System (JSC FGC UES) initiated a research and development program including the creation of superconducting HTS AC and DC cable lines. Two cable lines for the transmitted power of 50 MVA/MW at 20 kV were manufactured and tested within the framework of the program.

  20. Assessment and study of existing concepts and methods of cryogenic refrigeration for superconducting transmission cables. Final report

    International Nuclear Information System (INIS)

    Kadi, F.J.; Longsworth, R.C.

    1976-02-01

    A review of current programs to develop superconducting power transmission shows that current plans require helium refrigerators operating at 5 to 13 0 K and 3 to 15 atm pressure with compressor power input in the range of 1,300 to 3,500 HP. Future requirements will probably trend toward slightly higher temperatures and larger refrigerators. Present large helium refrigerators and APCI standard nitrogen plants were studied and an average outage frequency of about 18 per year is found to be typical for both. Cost and reliability studies of alternate refrigeration systems based on studies of components shows that the best current system which would have a failure rate of once in 20 years would consist of two full size oil flooded screw compressors in parallel, manifolded to two full size cold boxes and a liquid helium back up dewar. The principal area of development needed to implement this system is in the switch over mechanisms. These include switching to an auxillary power source in the event of power interruption, switching to the standby compressor, and switching to the back up liquid helium dewar. Costs are projected as being only slightly greater than preliminary estimates

  1. Advanced superconducting power cable for MV urban power supply

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Frank [Nexans Deutschland GmbH, Hannover (Germany); Merschel, Frank [RWE Deutschland AG, Essen (Germany); Noe, Mathias [Karlsruhe Institute of Technology, Karlsruhe (Germany)

    2015-07-01

    In recent years the technology of superconducting power cable systems has progressed such that the technical hurdles preparing for commercial applications have been mastered. Several field tests of large scale prototypes for the applications of superconducting cables as well as superconducting fault current limiters have been successfully accomplished and the technology of such systems is ready for commercialization. The presentation will give a detailed overview of the German AmpaCity project. An overview will be given on the development, manufacturing and installation of the 10 kV, 40 MVA HTS system consisting of a fault current limiter and of a 1 km cable in the city of Essen. Since it is the first time that a one kilometer HTS cable system is installed together with an HTS fault current limiter in a real grid application between two substations within a city center area, AmpaCity serves as a lighthouse project. In addition it is worldwide the longest installed HTS cable system so far. It is expected that relatively large technical advances will be made in the future of the comparatively new HTS technology, which in turn will bring associated cost reductions. For this reason, the AmpaCity pilot project in the downtown area of Essen in Germany will be an important step on the way to achieving more widespread application of HTS technology.

  2. Higher-order-mode (HOM) power in elliptical superconducting cavities for intense pulsed proton accelerators

    CERN Document Server

    Sang Ho Kim; Dong O Jeon; Sundeli, R

    2002-01-01

    In linacs for intense pulsed proton accelerators, the beam has a multiple time-structure, and each beam time-structure generates resonance. When a higher-order mode (HOM) is near these resonance frequencies, the induced voltage could be large and accordingly the resulting HOM power, too. In order to understand the effects of a complex beam time-structure on the mode excitations and the resulting HOM powers in elliptical superconducting cavities, analytic expressions are developed, with which the beam-induced voltage and corresponding power are explored, taking into account the properties of HOM frequency behavior in elliptical superconducting cavities. The results and understandings from this analysis are presented with the beam parameters of the Spallation Neutron Source (SNS) superconducting linac.

  3. Optimization of the powering tests of the LHC superconducting circuits

    CERN Document Server

    Bellesia, B; Denz, R; Fernandez-Robles, C; Pojer, M; Saban, R; Schmidt, R; Solfaroli Camillocci, M; Thiesen, H; Vergara Fernández, A

    2010-01-01

    The Large Hadron Collider has (LHC) 1572 superconducting circuits which are distributed along the eight 3.5 km LHC sectors [1]. Time and resources during the commissioning of the LHC technical systems were mostly consumed by the powering tests of each circuit. The tests consisted in carrying out several powering cycles at different current levels for each superconducting circuit. The Hardware Commissioning Coordination was in charge of planning, following up and piloting the execution of the test program. The first powering test campaign was carried out in summer 2007 for sector 7-8 with an expected duration of 12 weeks. The experience gained during these tests was used by the commissioning team for minimising the duration of the following powering campaigns to comply with the stringent LHC project deadlines. Improvements concerned several areas: strategy, procedures, control tools, automatization, and resource allocation led to an average daily test rate increase from 25 to 200 tests per day. This paper desc...

  4. HVDC transmission from isorated nuclear power plant

    International Nuclear Information System (INIS)

    Takenaka, Kiyoshi; Takasaki, Masahiro; Ichikawa, Tatemi; Hayashi, Toshiyuki

    1985-01-01

    HVDC transmission directly from nuclear power plant is considered as one of the patterns of long distance and large capacity transmission system. This reports considers two route HVDC transmission from PWR type nuclear power plant, and analyzes dynamic response characteristics due to bus fault, main protection failure and etc. using the AC-DC Power System Simulator. (author)

  5. Transmission Line Adapted Analytical Power Charts Solution

    Science.gov (United States)

    Sakala, Japhet D.; Daka, James S. J.; Setlhaolo, Ditiro; Malichi, Alec Pulu

    2017-08-01

    The performance of a transmission line has been assessed over the years using power charts. These are graphical representations, drawn to scale, of the equations that describe the performance of transmission lines. Various quantities that describe the performance, such as sending end voltage, sending end power and compensation to give zero voltage regulation, may be deduced from the power charts. Usually required values are read off and then converted using the appropriate scales and known relationships. In this paper, the authors revisit this area of circle diagrams for transmission line performance. The work presented here formulates the mathematical model that analyses the transmission line performance from the power charts relationships and then uses them to calculate the transmission line performance. In this proposed approach, it is not necessary to draw the power charts for the solution. However the power charts may be drawn for the visual presentation. The method is based on applying derived equations and is simple to use since it does not require rigorous derivations.

  6. Parameters optimization for magnetic resonance coupling wireless power transmission.

    Science.gov (United States)

    Li, Changsheng; Zhang, He; Jiang, Xiaohua

    2014-01-01

    Taking maximum power transmission and power stable transmission as research objectives, optimal design for the wireless power transmission system based on magnetic resonance coupling is carried out in this paper. Firstly, based on the mutual coupling model, mathematical expressions of optimal coupling coefficients for the maximum power transmission target are deduced. Whereafter, methods of enhancing power transmission stability based on parameters optimal design are investigated. It is found that the sensitivity of the load power to the transmission parameters can be reduced and the power transmission stability can be enhanced by improving the system resonance frequency or coupling coefficient between the driving/pick-up coil and the transmission/receiving coil. Experiment results are well conformed to the theoretical analysis conclusions.

  7. Optical transmission modules for multi-channel superconducting quantum interference device readouts

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin-Mok, E-mail: jmkim@kriss.re.kr; Kwon, Hyukchan; Yu, Kwon-kyu; Lee, Yong-Ho; Kim, Kiwoong [Brain Cognition Measurement Center, Korea Research Institute of Standards and Science, Daejeon 305-600 (Korea, Republic of)

    2013-12-15

    We developed an optical transmission module consisting of 16-channel analog-to-digital converter (ADC), digital-noise filter, and one-line serial transmitter, which transferred Superconducting Quantum Interference Device (SQUID) readout data to a computer by a single optical cable. A 16-channel ADC sent out SQUID readouts data with 32-bit serial data of 8-bit channel and 24-bit voltage data at a sample rate of 1.5 kSample/s. A digital-noise filter suppressed digital noises generated by digital clocks to obtain SQUID modulation as large as possible. One-line serial transmitter reformed 32-bit serial data to the modulated data that contained data and clock, and sent them through a single optical cable. When the optical transmission modules were applied to 152-channel SQUID magnetoencephalography system, this system maintained a field noise level of 3 fT/√Hz @ 100 Hz.

  8. Wireless transmission of power

    International Nuclear Information System (INIS)

    Grotz, T.

    1991-01-01

    This paper reports that it has been proven by researchers that electrical energy can be propagated around the world between the surface of the Earth and the ionosphere at extremely low frequencies in what is known as the Schumann Cavity. Experiments to data have shown that electromagnetic waves with frequencies in the range of 8 Hz, the fundamental Schumann Resonance frequency, propagate with litter attenuation around the planet within the Schumann Cavity. It is the intent of this research to determine if the Schumann Cavity can be resonated, if the power that is delivered to the cavity propagated with very low losses, and if power can be extracted at other locations within the cavity. Experimental data collected and calculations made in recent years support the hypothesis that wireless power transmission is a viable and practical alternative to the present systems of power transmission

  9. Assessment and study of existing concepts and methods of cryogenic refrigeration for superconducting transmission cables. Final report. Draft

    International Nuclear Information System (INIS)

    Kadi, F.J.; Longsworth, R.C.

    1976-02-01

    A review of current programs to develop superconducting power transmission shows that current plans require helium refrigerators operating at 5 to 13 0 K and 3 to 15 atm pressure with compressor power input in the range of 1300 to 3500 HP. Future requirements will probably trend towards slightly higher temperatures and larger refrigerators. Present large helium refrigerators and APCI standard nitrogen plants were studied and average outage frequency of about 18 per year is found to be typical for both. Cost and reliability studies of alternate refrigeration systems based on studies of components shows that the best current system which would have a failure rate of once in 20 y would consist of two full size oil flooded screw compressors in parallel, manifolded to two full size cold boxes and a liquid helium back up dewar. The principal area of development needed to implement this system is in the switch over mechanisms. These include switching to an auxillary power source in the event of power interruption, switching to the standby compressor, and switching to the back up liquid helium dewar. Costs are projected as being only slightly greater than preliminary estimates

  10. Superconducting synchrotron power supply and quench protection scheme

    International Nuclear Information System (INIS)

    Stiening, R.; Flora, R.; Lauckner, R.; Tool, G.

    1978-01-01

    The power supply and quench protection scheme for the proposed Fermilab 6 km circumference superconducting synchrotron is described. Specifically, the following points are discussed: (1) the 46 MW thyristor power supply; (2) the 3 x 10 8 J emergency energy dump; (3) the distributed microprocessing system for the detection of quenches; (4) the thyristor network for shunting current around quenched magnets; and (5) the heaters internal to the magnets which cause rapid propagation of quenches. Test results on prototype systems are given

  11. COMMERCIALIZATION DEMONSTRATION OF MID-SIZED SUPERCONDUCTING MAGNETIC ENERGY STORAGE TECHNOLOGY FOR ELECTRIC UTILITYAPPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    CHARLES M. WEBER

    2008-06-24

    As an outgrowth of the Technology Reinvestment Program of the 1990’s, an Agreement was formed between BWXT and the DOE to promote the commercialization of Superconducting Magnetic Energy Storage (SMES) technology. Business and marketing studies showed that the performance of electric transmission lines could be improved with this SMES technology by stabilizing the line thereby allowing the reserved stability margin to be used. One main benefit sought was to double the capacity and the amount of energy flow on an existing transmission line by enabling the use of the reserved stability margin, thereby doubling revenue. Also, electrical disturbances, power swings, oscillations, cascading disturbances and brown/black-outs could be mitigated and rendered innocuous; thereby improving power quality and reliability. Additionally, construction of new transmission lines needed for increased capacity could be delayed or perhaps avoided (with significant savings) by enabling the use of the reserved stability margin of the existing lines. Two crucial technical aspects were required; first, a large, powerful, dynamic, economic and reliable superconducting magnet, capable of oscillating power flow was needed; and second, an electrical power interface and control to a transmission line for testing, demonstrating and verifying the benefits and features of the SMES system was needed. A project was formed with the goals of commercializing the technology by demonstrating SMES technology for utility applications and to establish a domestic capability for manufacturing large superconducting magnets for both commercial and defense applications. The magnet had very low AC losses to support the dynamic and oscillating nature of the stabilizing power flow. Moreover, to economically interface to the transmission line, the magnet had the largest operating voltage ever made. The manufacturing of that design was achieved by establishing a factory with newly designed and acquired equipment

  12. High-temperature superconducting conductors and cables

    International Nuclear Information System (INIS)

    Peterson, D.E.; Maley, M.P.; Boulaevskii, L.; Willis, J.O.; Coulter, J.Y.; Ullmann, J.L.; Cho, Jin; Fleshler, S.

    1996-01-01

    This is the final report of a 3-year LDRD project at LANL. High-temperature superconductivity (HTS) promises more efficient and powerful electrical devices such as motors, generators, and power transmission cables; however this depends on developing HTS conductors that sustain high current densities J c in high magnetic fields at temperatures near liq. N2's bp. Our early work concentrated on Cu oxides but at present, long wire and tape conductors can be best made from BSCCO compounds with high J c at low temperatures, but which are degraded severely at temperatures of interest. This problem is associated with thermally activated motion of magnetic flux lines in BSCCO. Reducing these dc losses at higher temperatures will require a high density of microscopic defects that will pin flux lines and inhibit their motion. Recently it was shown that optimum defects can be produced by small tracks formed by passage of energetic heavy ions. Such defects result when Bi is bombarded with high energy protons. The longer range of protons in matter suggests the possibility of application to tape conductors. AC losses are a major limitation in many applications of superconductivity such as power transmission. The improved pinning of flux lines reduces ac losses, but optimization also involves other factors. Measuring and characterizing these losses with respect to material parameters and conductor design is essential to successful development of ac devices

  13. Superconducting high frequency high power resonators

    International Nuclear Information System (INIS)

    Hobbis, C.; Vardiman, R.; Weinman, L.

    1974-01-01

    A niobium superconducting quarter-wave helical resonator has been designed and built. The resonator has been electron-beam welded and electropolished to produce a smooth flaw-free surface. This has been followed by an anodization to produce a 1000 A layer of Nb 2 0 5 . At the resonant frequency of approximately 15 MHz the unloaded Q was approximately equal to 4.6x10 6 with minimal dielectric support. With the resonator open to the helium bath to provide cooling, and rigidly supported by a teflon cylinder, 350 V of power were transferred at a doubly loaded Q of 3500. The extrapolation of the results to a Qsub(DL) of 1000 meet the power handling criteria of one kilowatt for the intended application. (author)

  14. Water-hydraulic power transmission for offshore wind farms

    NARCIS (Netherlands)

    Diepeveen, N.F.B.; Jarquin Laguna, A.; Kempenaar, A.S.

    2012-01-01

    The current state of the art of offshore wind turbine power transmission technology is expensive, heavy and maintenance intensive. The Delft Offshore Turbine project considers a radically new concept for power transmission in an offshore wind farm: using seawater as power transmission medium. For

  15. The power processor of a high temperature superconducting energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Ollila, J. [Power Electronics, Tampere University of Technology, Tampere (Finland)

    1997-12-31

    This report introduces the structure and properties of a power processor unit for a high temperature superconducting magnetic energy storage system which is bused in an UPS demonstration application. The operation is first demonstrated using simulations. The software based operating and control system utilising combined Delta-Sigma and Sliding-Mode control is described shortly. Preliminary test results using a conventional NbTi superconducting energy y storage magnet operating at 4.2 K is shown. (orig.)

  16. Economy of electric power transmission

    International Nuclear Information System (INIS)

    Manzoni, G.; Delfanti, M.

    2008-01-01

    An analysis is presented of the impact of H V and Ehv transmission costs on the final value of the kWh supplied, with reference both to transmission systems of the European type and to long distance point-to-point transmission links. The analysis is extended to A C transmission by underground cables and to Hvdc submarine and aerial links. In the European power system, the impact of transmission costs results to be usually modest, but it may become important in the case of network congestions [it

  17. Summer Course on the Science and Technology of Superconductivity

    CERN Document Server

    Gregory, W D; Mathews, W N; The science and technology of superconductivity

    1973-01-01

    Since the discovery of superconductivity in 1911 by H. Kamerlingh Onnes, of the order of half a billion dollars has been spent on research directed toward understanding and utiliz­ ing this phenomenon. This investment has gained us fundamental understanding in the form of a microscopic theory of superconduc­ tivity. Moreover, superconductivity has been transformed from a laboratory curiosity to the basis of some of the most sensitive and accurate measuring devices known, a whole host of other elec­ tronic devices, a soon-to-be new international standard for the volt, a prototype generation of superconducting motors and gener­ ators, and magnets producing the highest continuous magnetic fields yet produced by man. The promise of more efficient means of power transmission and mass transportation, a new generation of superconducting motors and generators, and computers and other electronic devices with superconducting circuit elements is all too clear. The realization of controlled thermonuclear fu...

  18. Implementation of superconducting fault current limiter for flexible operation in the power substation

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chong Suk, E-mail: chong_suk@korea.ac.kr [School of Electrical Engineering, Korea University, Anam dong, Seonbukgu, Seoul 136-713 (Korea, Republic of); Lee, Hansang [School of Railway and Electrical Engineering, Kyungil University, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 712-701 (Korea, Republic of); Cho, Yoon-sung [Department of Electric and Energy Engineering, Catholic University of Daegu, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 712-702 (Korea, Republic of); Suh, Jaewan [School of Electrical Engineering, Korea University, Anam dong, Seonbukgu, Seoul 136-713 (Korea, Republic of); Jang, Gilsoo, E-mail: gjang@korea.ac.kr [School of Electrical Engineering, Korea University, Anam dong, Seonbukgu, Seoul 136-713 (Korea, Republic of)

    2014-09-15

    Highlights: • The power load concentrated in load centers results in high levels of fault current. • This paper introduces a fault current reduction scheme using SFCLs in substations. • The SFCL is connected in parallel to the bus tie between the two busbars. • The fault current mitigation using SFCLs is verified through PSS/e simulations. - Abstract: The concentration of large-scale power loads located in the metropolitan areas have resulted in high fault current levels during a fault thereby requiring the substation to operate in the double busbar configuration mode. However, the double busbar configuration mode results in deterioration of power system reliability and unbalanced power flow in the adjacent transmission lines which may result in issues such as overloading of lines. This paper proposes the implementation of the superconducting fault current limiter (SFCL) to be installed between the two substation busbars for a more efficient and flexible operation of the substation enabling both single and double busbar configurations depending on the system conditions for guaranteeing power system reliability as well as fault current limitations. Case studies are being performed for the effectiveness of the SFCL installation and results are compared for the cases where the substation is operating in single and double busbar mode and with and without the installation of the SFCL for fault current mitigation.

  19. Microwave transmission system for space power

    Energy Technology Data Exchange (ETDEWEB)

    Dickinson, R M [Jet Propulsion Lab., Pasadena, Calif. (USA)

    1976-09-01

    A small total system model and a large subsystem element similar to those that could be eventually used for wireless power transmission experiments in space have been successfully demonstrated by NASA. The short range, relatively low-power laboratory system achieved a dc-to-dc transmission efficiency of 54%. A separate high-power-level receiving subsystem, tested over a 1.54-km range at Goldstone, California, has achieved the transportation of over 30 kW of dc output power. Both tests used 12-cm wave-length microwaves.

  20. The Electrical Aspects of the choice of Former in a High T-c Superconducting Power Cable

    DEFF Research Database (Denmark)

    Däumling, Manfred; Kühle (fratrådt), Anders Van Der Aa; Olsen, Søren Krüger

    1999-01-01

    Centrally located in a superconducting power cable the former supplies a rigid means onto which to wind the superconducting tapes and enables a continuous supply of cooling power via a flow of liquid cryogen through it. Therefore, the choice of former has a broad impact on the construction and de...

  1. A high-power magnetically switched superconducting rectifier operating at 5 Hz

    NARCIS (Netherlands)

    Mulder, G.B.J.; Krooshoop, Hendrikus J.G.; Nijhuis, Arend; ten Kate, Herman H.J.; van de Klundert, L.J.M.

    1987-01-01

    Above a certain current level, the use of a superconducting rectifier as a cryogenic current source offers advantages compared to the use of a power supply at room temperature which requires large current feed-throughs into the cryostat. In some cases, the power of such a rectifier is immaterial,

  2. HVDC transmission from nuclear power plant

    International Nuclear Information System (INIS)

    Yoshida, Yukio; Takenaka, Kiyoshi; Ichikawa, Takemi; Ueda, Kiyotaka; Machida, Takehiko

    1979-01-01

    The HVDC transmission directly from nuclear power plants is one of the patterns of long distance and large capacity HVDC transmission systems. In this report, the double pole, two-circuit HVDC transmission from a BWR nuclear power plant is considered, and the dynamic response characteristics due to the faults in dc line and ac line of inverter side are analyzed, to clarify the dynamic characteristics of the BWR nuclear power plant and dc system due to system faults and the effects of dc power control to prevent reactor scram. (1) In the instantaneous earthing fault of one dc line, the reactor is not scrammed by start-up within 0.8 sec. (2) When the earthing fault continues, power transmission drops to 75% by suspending the faulty pole, and the reactor is scrammed. (3) In the instantaneous ground fault of 2 dc lines, the reactor is not scrammed if the faulty dc lines are started up within 0.4 sec. (4) In the existing control of dc lines, the reactor is scrammed when the ac voltage at an ac-dc connection point largely drops due to ac failure. (J.P.N.)

  3. Anisotropic behaviour of transmission through thin superconducting NbN film in parallel magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Šindler, M., E-mail: sindler@fzu.cz [Institute of Physics ASCR, v. v. i., Cukrovarnická 10, CZ-162 53 Praha 6 (Czech Republic); Tesař, R. [Institute of Physics ASCR, v. v. i., Cukrovarnická 10, CZ-162 53 Praha 6 (Czech Republic); Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, CZ-121 16 Praha (Czech Republic); Koláček, J. [Institute of Physics ASCR, v. v. i., Cukrovarnická 10, CZ-162 53 Praha 6 (Czech Republic); Skrbek, L. [Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, CZ-121 16 Praha (Czech Republic)

    2017-02-15

    Highlights: • Transmission through thin NbN film in parallel magnetic field exhibits strong anisotropic behaviour in the terahertz range. • Response for a polarisation parallel with the applied field is given as weighted sum of superconducting and normal state contributions. • Effective medium approach fails to describe response for linear polarisation perpendicular to the applied magnetic field. - Abstract: Transmission of terahertz waves through a thin layer of the superconductor NbN deposited on an anisotropic R-cut sapphire substrate is studied as a function of temperature in a magnetic field oriented parallel with the sample. A significant difference is found between transmitted intensities of beams linearly polarised parallel with and perpendicular to the direction of applied magnetic field.

  4. Superconducting Magnetic Energy Storage (SMES). (Latest citations from the NTIS bibliographic database). Published Search

    International Nuclear Information System (INIS)

    1993-11-01

    The bibliography contains citations concerning the technology and use of superconducting magnetic energy storage (SMES). The design, analysis, evaluation, and operation of SMES systems and equipment are discussed. Topics include utility scale SMES plants, SMES for transmission line stabilization, design and protection of superconducting magnets and coils, computer controlled SMES systems, and fusion power reactors. (Contains a minimum of 82 citations and includes a subject term index and title list.)

  5. Superconducting Magnetic Energy Storage (SMES). (Latest citations from the NTIS bibliographic database). Published Search

    International Nuclear Information System (INIS)

    1993-09-01

    The bibliography contains citations concerning the technology and use of superconducting magnetic energy storage (SMES). The design, analysis, evaluation, and operation of SMES systems and equipment are discussed. Topics include utility scale SMES plants, SMES for transmission line stabilization, design and protection of superconducting magnets and coils, computer controlled SMES systems, and fusion power reactors. (Contains a minimum of 82 citations and includes a subject term index and title list.)

  6. Research on DC-RF superconducting photocathode injector for high average power FELs

    International Nuclear Information System (INIS)

    Zhao Kui; Hao Jiankui; Hu Yanle; Zhang Baocheng; Quan Shengwen; Chen Jiaer; Zhuang Jiejia

    2001-01-01

    To obtain high average current electron beams for a high average power Free Electron Laser (FEL), a DC-RF superconducting injector is designed. It consists of a DC extraction gap, a 1+((1)/(2)) superconducting cavity and a coaxial input system. The DC gap, which takes the form of a Pierce configuration, is connected to the 1+((1)/(2)) superconducting cavity. The photocathode is attached to the negative electrode of the DC gap. The anode forms the bottom of the ((1)/(2)) cavity. Simulations are made to model the beam dynamics of the electron beams extracted by the DC gap and accelerated by the superconducting cavity. High quality electron beams with emittance lower than 3 π-mm-mrad can be obtained. The optimization of experiments with the DC gap, as well as the design of experiments with the coaxial coupler have all been completed. An optimized 1+((1)/(2)) superconducting cavity is in the process of being studied and manufactured

  7. Superconducting nanowires as nonlinear inductive elements for qubits

    Science.gov (United States)

    Ku, Jaseung; Manucharyan, Vladimir; Bezryadin, Alexey

    2011-03-01

    We report microwave transmission measurements of superconducting Fabry-Perot resonators, having a superconducting nanowire placed at a supercurrent antinode. As the plasma oscillation is excited, the supercurrent is forced to flow through the nanowire. The microwave transmission of the resonator-nanowire device shows a nonlinear resonance behavior, significantly dependent on the amplitude of the supercurrent oscillation. We show that such amplitude-dependent response is due to the nonlinearity of the current-phase relationship of the nanowire. The results are explained within a nonlinear oscillator model of the Duffing oscillator, in which the nanowire acts as a purely inductive element, in the limit of low temperatures and low amplitudes. The low-quality factor sample exhibits a ``crater'' at the resonance peak at higher driving power, which is due to dissipation. We observe a hysteretic bifurcation behavior of the transmission response to frequency sweep in a sample with a higher quality factor. The Duffing model is used to explain the Duffing bistability diagram. NSF DMR-1005645, DOE DO-FG02-07ER46453.

  8. On test results of the superconducting magnetic energy storage (SMES) system in Ariuragawa Power Station

    International Nuclear Information System (INIS)

    Katahira, Osamu; Fukui, Fumihiko; Karano, Koichi; Irie, Fujio; Takeo, Masakatsu; Okada, Hidehiko; Shimojo, Toshikazu.

    1991-01-01

    SMES system is that for storing electric energy in the form of magnetic energy by flowing DC current through a superconducting coil by utilizing the characteristics of its superconductivity. It comprises a superconducting coil for storing energy, an AC-DC converter, the cooling system for maintaining extremely low temperature and so on. The features of SMES are the high efficiency of storing electric energy (more than 90 % in the large scale system), the fast response to store and release electric power, and effective power and reactive power can be independently and arbitrarily controlled. It is expected that SMES can be applied to the stabilization of electric power system, the adjustment of system voltage, the adjustment of varying load and so on. In order to verify the results of the laboratory research in actual power system, the system test was carried out in Ariuragawa Power Station on November 20-22, 1990. The outline of the test, the method of controlling SMES, the test results and the examination of the results are reported. (K.I.)

  9. An integrated low-voltage rated HTS DC power system with multifunctions to suit smart grids

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Jian Xun, E-mail: jxjin@uestc.edu.cn [Center of Applied Superconductivity, School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China); Center of Applied Superconductivity and Electrical Engineering, School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731 (China); Chen, Xiao Yuan [School of Engineering, Sichuan Normal University, Chengdu 610101 (China); Qu, Ronghai; Fang, Hai Yang [School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Xin, Ying [Center of Applied Superconductivity, School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China)

    2015-03-15

    Highlights: • A novel LVDC HTS power transmission network is presented. • An integrated power system is achieved by using HTS DC cable and SMES. • DC superconducting cable is verified to achieve self-acting fault current limitation. • SMES is verified to achieve fast-response buffering effect under a power fluctuation. • SMES is verified to achieve favorable load voltage protection effect under a fault. - Abstract: A low-voltage rated DC power transmission network integrated with superconducting cables (SCs) and superconducting magnetic energy storage (SMES) devices has been studied with analytic results presented. In addition to the properties of loss-less and high current transportation capacity, the effectively integrated system is formed with a self-acting fault current limitation feature of the SC and a buffering effect of the SMES to power fluctuations. The results obtained show that the integrated system can achieve high-quality power transmission under common power fluctuation conditions with an advanced self-protection feature under short circuit conditions, which is identified to suit especially the smart grid applications.

  10. Superconducting coil design for a tokamak experimental power reactor

    International Nuclear Information System (INIS)

    Turner, L.R.; Wang, S.T.; Smelser, P.

    1977-01-01

    Superconducting toroidal field (TF) and polodial-field (PF) coils have been designed for the proposed Argonne National Laboratory experimental power reactor (EPR). Features of the design include: (1) Peak field of 8 T at 4.2 K or 10 T at 3.0 K. (2) Constant-tension shape for the TF coils, corrected for the finite number (16) of coils. (3) Analysis of errors in coil alignment. (4) Comparison of safety aspects of series-connected and parallel-connected coils. (5) A 60 kA sheet conductor of NbTi with copper stabilizer and stainless steel for support. (6) Superconducting PF coils outside the TF coils. (7) The TF coils shielded from pulsed fields by high-purity aluminum

  11. High Voltage Power Transmission for Wind Energy

    Science.gov (United States)

    Kim, Young il

    The high wind speeds and wide available area at sea have recently increased the interests on offshore wind farms in the U.S.A. As offshore wind farms become larger and are placed further from the shore, the power transmission to the onshore grid becomes a key feature. Power transmission of the offshore wind farm, in which good wind conditions and a larger installation area than an onshore site are available, requires the use of submarine cable systems. Therefore, an underground power cable system requires unique design and installation challenges not found in the overhead power cable environment. This paper presents analysis about the benefit and drawbacks of three different transmission solutions: HVAC, LCC/VSC HVDC in the grid connecting offshore wind farms and also analyzed the electrical characteristics of underground cables. In particular, loss of HV (High Voltage) subsea power of the transmission cables was evaluated by the Brakelmann's theory, taking into account the distributions of current and temperature.

  12. Power deposition in superconducting magnets of the momentum cleaning insertion

    CERN Document Server

    CERN. Geneva; Baishev, I S; Jeanneret, J B; Kourotchkine, I A

    2002-01-01

    This note describes the calculation of power deposition in the superconducting magnets Q6, Q7 and MB8 downstream of the momentum collimators in IR3. To reduce a relatively high power deposition density of 1.8mW/cm^3 in the coils of Q6, we propose to install some fixed shielding collimators upstream of the warm dogleg dipoles D4.

  13. Stationary levitation and vibration transmission characteristic in a superconducting seismic isolation device with a permanent magnet system and a copper plate

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, S., E-mail: s.sasaki@ecei.tohoku.ac.j [Electrical Engineering Department, Graduate School, Tohoku University, 6-6-05 Aoba Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Shimada, K.; Yagai, T.; Tsuda, M.; Hamajima, T. [Electrical Engineering Department, Graduate School, Tohoku University, 6-6-05 Aoba Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Kawai, N.; Yasui, K. [Okumura Corporation, 5-6-1 Shiba, Minato-ku, Tokyo 180-8381 (Japan)

    2010-11-01

    We have devised a magnetic levitation type superconducting seismic isolation device taking advantage of the specific characteristic of HTS bulk that the HTS bulk returns to its original position by restoring force against a horizontal displacement. The superconducting seismic isolation device is composed of HTS bulks and permanent magnets (PM rails). The PMs are fixed on an iron plate to realize the same polarities in the longitudinal direction and the different polarities in the transverse direction. The superconducting seismic isolation device can theoretically remove any horizontal vibrations completely. Therefore, the vibration transmissibility in the longitudinal direction of the PM rail becomes zero in theory. The zero vibration transmissibility and the stationary levitation, however, cannot be achieved in the real device because a uniform magnetic field distribution in the longitudinal direction of PM rail cannot be realized due to the individual difference of the PMs. Therefore, to achieve stationary levitation in the real device we adopted a PM-PM system that the different polarities are faced each other. The stationary levitation could be achieved by the magnetic interaction between the PMs in the PM-PM system, while the vibration transmitted to the seismic isolation object due to the magnetic interaction. We adopted a copper plate between the PMs to reduce the vibration transmissibility. The PM-PM system with the copper plate is very useful for realizing the stationary levitation and reducing the vibration transmissibility.

  14. Stationary levitation and vibration transmission characteristic in a superconducting seismic isolation device with a permanent magnet system and a copper plate

    International Nuclear Information System (INIS)

    Sasaki, S.; Shimada, K.; Yagai, T.; Tsuda, M.; Hamajima, T.; Kawai, N.; Yasui, K.

    2010-01-01

    We have devised a magnetic levitation type superconducting seismic isolation device taking advantage of the specific characteristic of HTS bulk that the HTS bulk returns to its original position by restoring force against a horizontal displacement. The superconducting seismic isolation device is composed of HTS bulks and permanent magnets (PM rails). The PMs are fixed on an iron plate to realize the same polarities in the longitudinal direction and the different polarities in the transverse direction. The superconducting seismic isolation device can theoretically remove any horizontal vibrations completely. Therefore, the vibration transmissibility in the longitudinal direction of the PM rail becomes zero in theory. The zero vibration transmissibility and the stationary levitation, however, cannot be achieved in the real device because a uniform magnetic field distribution in the longitudinal direction of PM rail cannot be realized due to the individual difference of the PMs. Therefore, to achieve stationary levitation in the real device we adopted a PM-PM system that the different polarities are faced each other. The stationary levitation could be achieved by the magnetic interaction between the PMs in the PM-PM system, while the vibration transmitted to the seismic isolation object due to the magnetic interaction. We adopted a copper plate between the PMs to reduce the vibration transmissibility. The PM-PM system with the copper plate is very useful for realizing the stationary levitation and reducing the vibration transmissibility.

  15. Conceptual design of DC power supplies for FFHR superconducting magnet

    International Nuclear Information System (INIS)

    Chikaraishi, Hirotaka

    2012-01-01

    The force-free helical reactor (FFHR) is a helical-type fusion reactor whose design is being studied at the National Institute for Fusion Science. The FFHR will use three sets of superconducting coils to confine the plasma. It is not a fusion plasma experimental device, and the magnetic field configuration will be optimized for burning plasma. This paper introduces a conceptual design for a dc power system to excite the superconducting coils of the FFHR. In this design, the poloidal coils are divided into a main part, which generates a magnetic field for steady-state burning, and a control part, which is used in the ignition process to control the magnetic axis. The feasibility of this configuration was studied using the Large Helical Device coil parameters, and the coil voltages required to sweep the magnetic axis were calculated. It was confirmed that the axis sweep could be performed without a high output voltage from the main power supply. Finally, the power supply ratings for the FFHR were estimated from the stored magnetic energy. (author)

  16. Comparative cost study of the processes for producing niobium--tin (Nb3Sn) superconducting tapes for their application to power transmission lines. Final report

    International Nuclear Information System (INIS)

    1976-10-01

    This report considers the manufacture of superconducting Nb 3 Sn tapes for ac superconducting transmission cables. The 14 product examples studied are produced by processes involving solid-state diffusion of Sn and Nb and/or physical vapor deposition. Production of 80,000 km per year is assumed, sufficient for 100 km of 3 phase ac line. Results are summarized in a table entitled ''Variants of 6 mm wide Nb 3 Sn Superconducting Tapes with Economics of Manufacture.'' The table identifies the 14 product examples by method of manufacture; by the composition of the layers integrated into the tape; and by the final thickness of Nb used in 12 of the product examples. The estimated fixed capital for plant is listed for each product example together with the estimated costs of manufacture in cents per meter of tape. The total manufacturing cost given is the sum of the costs of raw materials, operating labor, depreciation and other overhead. The depreciation is calculated on a 10 year straight line basis. Stainless steel strip (304L) is used in 6 of the product examples. The final line in the table shows the ''selling price'' which will earn the equivalent of 20 percent p.a. on the total capital, fixed and working, employed at any time during an eleven-year plant life where depreciation is sum of year digits for a 10 year period, investment credit is 10 percent, and income tax is 48 percent. 13 tables, 21 figures

  17. Electrodynamic Wireless Power Transmission to Rotating Magnet Receivers

    International Nuclear Information System (INIS)

    Garraud, A; Jimenez, J D; Garraud, N; Arnold, D P

    2014-01-01

    This paper presents an approach for electrodynamic wireless power transmission (EWPT) using a synchronously rotating magnet located in a 3.2 cm 3 receiver. We demonstrate wireless power transmission up to 99 mW (power density equal to 31 mW/cm 3 ) over a 5-cm distance and 5 mW over a 20-cm distance. The maximum operational frequency, and hence maximal output power, is constrained by the magnetic field amplitude. A quadratic relationship is found between the maximal output power and the magnetic field. We also demonstrate simultaneous, power transmission to multiple receivers positioned at different locations

  18. Study for wireless power transmission of nuclear robot system

    International Nuclear Information System (INIS)

    Kim, Jongseog

    2013-01-01

    Gasoline engine or electric motor is generally used for driving power of working. Gasoline tank is uncomfortable to carry. Battery capacity does not sustain long time working. Frequent moving back of robot to power charger or refueling tank is inconvenient. Long power cable connection occur winding problem if there are complex structures in walking way. We need some solution for continuous supply of robot energy at the free moving condition of robot. 'Wireless power transmission' is one of the solutions. Some experiment result to transmit wireless power to moving robot is described herein. To find possible wireless power transmission method for nuclear robot, wireless power transmission tests were performed. As result of these tests, it was confirmed that wireless power transmission by using dipole and mat type magnetic induction were possible. As result of flying robot experiment, it was realized that development of light weight core for receiver and wave reflection device for high directional transmitter are necessary for practical use of the dipole type wireless power transmission. Small size core and high directional transmitter will be next target. Mat type wireless power transmission is regarded as useful for robot power charging station in the inside containment

  19. Study for wireless power transmission of nuclear robot system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongseog [Central Research Institute of Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2013-05-15

    Gasoline engine or electric motor is generally used for driving power of working. Gasoline tank is uncomfortable to carry. Battery capacity does not sustain long time working. Frequent moving back of robot to power charger or refueling tank is inconvenient. Long power cable connection occur winding problem if there are complex structures in walking way. We need some solution for continuous supply of robot energy at the free moving condition of robot. 'Wireless power transmission' is one of the solutions. Some experiment result to transmit wireless power to moving robot is described herein. To find possible wireless power transmission method for nuclear robot, wireless power transmission tests were performed. As result of these tests, it was confirmed that wireless power transmission by using dipole and mat type magnetic induction were possible. As result of flying robot experiment, it was realized that development of light weight core for receiver and wave reflection device for high directional transmitter are necessary for practical use of the dipole type wireless power transmission. Small size core and high directional transmitter will be next target. Mat type wireless power transmission is regarded as useful for robot power charging station in the inside containment.

  20. Electrodynamic wireless power transmission to a torsional receiver

    International Nuclear Information System (INIS)

    McEachern, K M; Arnold, D P

    2013-01-01

    This paper presents a wireless power transmission (WPT) concept that uses electrodynamic coupling and torsional motion of a permanent magnet in the receiver. The system is shown to transfer an average power of 3.09 mW (power density equal to 143 μW/cm 3 ) over a distance of 1 cm, an average power of 1.98 mW over a distance of 2 cm, and an average power of 126 μW over a distance of 7 cm. We also demonstrate unaltered power transmission through conductive media, including a human hand and an aluminum plate, highlighting a key advantage of the electrodynamic wireless power transmission approach

  1. The impact of high temperature superconductivity on the electric power sector

    International Nuclear Information System (INIS)

    Wolsky, A.M.

    1996-01-01

    The progress and prospects for the application of high temperature superconductivity to the Electric Power Sector has been the topic of an IEA Implementing Agreement, begun in 1990. The present Task Members are Canada, Denmark, Finland, Germany, Israel, Italy, Japan, Netherlands, Norway, Sweden, Switzerland, Turkey, United Kingdom and the United States. As a result of the Implementing Agreement, work has been done by the Operating Agent with the full participation of all the member countries. This work has facilitated the exchange of information among experts in all countries and has documented relevant assessments. Further, this work has examined the status of high amperage conductor, fault-current limiters, superconducting magnetic energy storage, cables, rotating machines, refrigeration, and studies of the power system. The Task Members find more progress toward applications than many expected five years ago and the grounds for further international collaboration to hasten the use of superconductors in the power sector, early in the 21st century

  2. Maximal network reliability for a stochastic power transmission network

    International Nuclear Information System (INIS)

    Lin, Yi-Kuei; Yeh, Cheng-Ta

    2011-01-01

    Many studies regarded a power transmission network as a binary-state network and constructed it with several arcs and vertices to evaluate network reliability. In practice, the power transmission network should be stochastic because each arc (transmission line) combined with several physical lines is multistate. Network reliability is the probability that the network can transmit d units of electric power from a power plant (source) to a high voltage substation at a specific area (sink). This study focuses on searching for the optimal transmission line assignment to the power transmission network such that network reliability is maximized. A genetic algorithm based method integrating the minimal paths and the Recursive Sum of Disjoint Products is developed to solve this assignment problem. A real power transmission network is adopted to demonstrate the computational efficiency of the proposed method while comparing with the random solution generation approach.

  3. Electric Power Transmission Lines

    Data.gov (United States)

    Department of Homeland Security — Transmission Lines are the system of structures, wires, insulators and associated hardware that carry electric energy from one point to another in an electric power...

  4. Transient characteristics of parallel running of the 20kVA superconducting synchronous generator and a conventional one

    International Nuclear Information System (INIS)

    Nitta, T.; Okada, T.

    1989-01-01

    This paper describes electrical transient characteristics of parallel running of the 20kVA superconducting synchronous generator and a conventional one. In the experimental power system, the superconducting generator is connected through reactors (artificial transmission lines) to a regional power system (infinite bus) and the conventional generator (20kVA) is connected to the terminal of the superconducting generator. Several tests were performed in order to consider the transient behavior of superconducting generator (SCG) in the power system. The items of the tests are synchronous closing test, loss of synchronism test and disconnecting and reclosing test. From the experimental results, it can be said that by installing SCG in power systems, voltage stability and power system stability can be improved in transient states as well as in steady states and the variation of armature current of SCG during a transient period is extremely larger than that of the conventional one. The transient analysis by a computer simulation was also carried out for the experiments. The simulation results are in good agreement with the experimental ones

  5. Cryogenics Vision Workshop for High-Temperature Superconducting Electric Power Systems Proceedings

    International Nuclear Information System (INIS)

    Energetics, Inc.

    2000-01-01

    The US Department of Energy's Superconductivity Program for Electric Systems sponsored the Cryogenics Vision Workshop, which was held on July 27, 1999 in Washington, D.C. This workshop was held in conjunction with the Program's Annual Peer Review meeting. Of the 175 people attending the peer review meeting, 31 were selected in advance to participate in the Cryogenics Vision Workshops discussions. The participants represented cryogenic equipment manufactures, industrial gas manufacturers and distributors, component suppliers, electric power equipment manufacturers (Superconductivity Partnership Initiative participants), electric utilities, federal agencies, national laboratories, and consulting firms. Critical factors were discussed that need to be considered in describing the successful future commercialization of cryogenic systems. Such systems will enable the widespread deployment of high-temperature superconducting (HTS) electric power equipment. Potential research, development, and demonstration (RD and D) activities and partnership opportunities for advancing suitable cryogenic systems were also discussed. The workshop agenda can be found in the following section of this report. Facilitated sessions were held to discuss the following specific focus topics: identifying Critical Factors that need to be included in a Cryogenics Vision for HTS Electric Power Systems (From the HTS equipment end-user perspective) identifying R and D Needs and Partnership Roles (From the cryogenic industry perspective) The findings of the facilitated Cryogenics Vision Workshop were then presented in a plenary session of the Annual Peer Review Meeting. Approximately 120 attendees participated in the afternoon plenary session. This large group heard summary reports from the workshop session leaders and then held a wrap-up session to discuss the findings, cross-cutting themes, and next steps. These summary reports are presented in this document. The ideas and suggestions raised during

  6. Calorimeters for Precision Power Dissipation Measurements on Controlled-Temperature Superconducting Radiofrequency Samples

    International Nuclear Information System (INIS)

    Xiao, Binping P.; Kelley, Michael J.; Reece, Charles E.; Phillips, H. L.

    2012-01-01

    Two calorimeters, with stainless steel and Cu as the thermal path material for high precision and high power versions, respectively, have been designed and commissioned for the surface impedance characterization (SIC) system at Jefferson Lab to provide low temperature control and measurement for CW power up to 22 W on a 5 cm dia. disk sample which is thermally isolated from the RF portion of the system. A power compensation method has been developed to measure the RF induced power on the sample. Simulation and experimental results show that with these two calorimeters, the whole thermal range of interest for superconducting radiofrequency (SRF) materials has been covered. The power measurement error in the interested power range is within 1.2% and 2.7% for the high precision and high power versions, respectively. Temperature distributions on the sample surface for both versions have been simulated and the accuracy of sample temperature measurements have been analysed. Both versions have the ability to accept bulk superconductors and thin film superconducting samples with a variety of substrate materials such as Al, Al 2 O 3 , Cu, MgO, Nb and Si

  7. Wireless power transmission for battery charging

    Science.gov (United States)

    Mi, Chris; Li, Siqi; Nguyen, Trong-Duy; Wang, Junhua; Li, Jiangui; Li, Weihan; Xu, Jun

    2016-11-15

    A wireless power transmission system is provided for high power applications. The power transmission system is comprised generally of a charging unit configured to generate an alternating electromagnetic field and a receive unit configured to receive the alternating electromagnetic field from the charging unit. The charging unit includes a power source; an input rectifier; an inverter; and a transmit coil. The transmit coil has a spirangle arrangement segmented into n coil segments with capacitors interconnecting adjacent coil segments. The receive unit includes a receive coil and an output rectifier. The receive coil also has a spirangle arrangement segmented into m coil segments with capacitors interconnecting adjacent coil segments.

  8. Line Capacity Expansion and Transmission Switching in Power Systems With Large-Scale Wind Power

    DEFF Research Database (Denmark)

    Villumsen, Jonas Christoffer; Bronmo, Geir; Philpott, Andy B.

    2013-01-01

    In 2020 electricity production from wind power should constitute nearly 50% of electricity demand in Denmark. In this paper we look at optimal expansion of the transmission network in order to integrate 50% wind power in the system, while minimizing total fixed investment cost and expected cost...... of power generation. We allow for active switching of transmission elements to reduce congestion effects caused by Kirchhoff's voltage law. Results show that actively switching transmission lines may yield a better utilization of transmission networks with large-scale wind power and increase wind power...

  9. Optimization of the cooling power distribution in a superconducting linac

    International Nuclear Information System (INIS)

    Wendl, C.M.; Noe, J.W.

    1996-01-01

    The benefits of setting the resonators in a superconducting heavy-ion linac to a certain optimum distribution of cooling power have been evaluated in terms of the total acceleration such a distribution may produce, compared to a distribution in which each resonator dissipates power equally. The optimum power distribution can be expressed in closed form in certain simplified cases, but the general case is solved by equalizing the 'marginal power cost' of the resonators by iteration in a computer simulation. For the Stony Brook linac an additional possible acceleration of several percent is thus predicted for typical beams. (author)

  10. Fundamental study of bulk power HVDC transmission

    International Nuclear Information System (INIS)

    1981-01-01

    Study on the HVDC power transmission have been conducted since 1956. Shinshinano-Frequency Changer had been operated at first on 1977, as our home product, and Hokkaido-Honshu DC transmission also realized at 1979. Research and Development of the bulk power HVDC have been promoted by the UHV transmission special committee in our Institute from 1980. This paper is a comprehensive report published in the parts of operating control, insulation of DC line and countermeasure of fault current, and interferences in order to contribute for planning, design and operating of the UHV DC transmission in future. (author)

  11. Quantum heat engine with coupled superconducting resonators

    DEFF Research Database (Denmark)

    Hardal, Ali Ümit Cemal; Aslan, Nur; Wilson, C. M.

    2017-01-01

    We propose a quantum heat engine composed of two superconducting transmission line resonators interacting with each other via an optomechanical-like coupling. One resonator is periodically excited by a thermal pump. The incoherently driven resonator induces coherent oscillations in the other one...... the signatures of quantum behavior in the statistical and thermodynamic properties of the system. We find evidence of a quantum enhancement in the power output of the engine at low temperatures....

  12. Peak power reduction and energy efficiency improvement with the superconducting flywheel energy storage in electric railway system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hansang, E-mail: hslee80@kiu.ac.kr [School of Railway and Electrical Engineering, Kyungil University, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 712-701 (Korea, Republic of); Jung, Seungmin [School of Electrical Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-712 (Korea, Republic of); Cho, Yoonsung [Department of Electric and Energy Engineering, Catholic University of Daegu, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 712-702 (Korea, Republic of); Yoon, Donghee [Department of New and Renewable Energy, Kyungil University, Hayang-eup, Gyeongsangbuk-do 712-701 (Korea, Republic of); Jang, Gilsoo, E-mail: gjang@korea.ac.kr [School of Electrical Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-712 (Korea, Republic of)

    2013-11-15

    Highlights: •It is important to develop power and energy management system to save operating cost. •An 100 kWh of SFES is effective to decrease peak power and energy consumption. •Operation cost saving can be achieved using superconducting flywheel energy storage. -- Abstract: This paper proposes an application of the 100 kWh superconducting flywheel energy storage systems to reduce the peak power of the electric railway system. The electric railway systems have high-power characteristics and large amount of regenerative energy during vehicles’ braking. The high-power characteristic makes operating cost high as the system should guarantee the secure capacity of electrical equipment and the low utilization rate of regenerative energy limits the significant energy efficiency improvement. In this paper, it had been proved that the peak power reduction and energy efficiency improvement can be achieved by using 100 kWh superconducting flywheel energy storage systems with the optimally controlled charging or discharging operations. Also, economic benefits had been assessed.

  13. Peak power reduction and energy efficiency improvement with the superconducting flywheel energy storage in electric railway system

    International Nuclear Information System (INIS)

    Lee, Hansang; Jung, Seungmin; Cho, Yoonsung; Yoon, Donghee; Jang, Gilsoo

    2013-01-01

    Highlights: •It is important to develop power and energy management system to save operating cost. •An 100 kWh of SFES is effective to decrease peak power and energy consumption. •Operation cost saving can be achieved using superconducting flywheel energy storage. -- Abstract: This paper proposes an application of the 100 kWh superconducting flywheel energy storage systems to reduce the peak power of the electric railway system. The electric railway systems have high-power characteristics and large amount of regenerative energy during vehicles’ braking. The high-power characteristic makes operating cost high as the system should guarantee the secure capacity of electrical equipment and the low utilization rate of regenerative energy limits the significant energy efficiency improvement. In this paper, it had been proved that the peak power reduction and energy efficiency improvement can be achieved by using 100 kWh superconducting flywheel energy storage systems with the optimally controlled charging or discharging operations. Also, economic benefits had been assessed

  14. Development of new-concept superconducting power equipment; Shinkino chodendo denryoku kiki no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Hamajima, T.; Tsurunaga, K.; Urata, M. [Toshiba Corp., Tokyo (Japan)

    1998-01-01

    The superconducting magnet energy storage (SMES) system has a function by which magnetic energy is stored in a superconducting coil without loss and discharged very rapidly into the power line when needed. The fault current limiter has a function by which transport current is passed without impedance and excessive fault current is restricted by generating large impedance in an emergency. These are the functions of new power equipment, which can not be realized by the conventional equipment. In the small-scale SMES project, Toshiba has fabricated 100 kWh-class element coils and 1 kWh/1 MW modules as the first step of practical application for power system control. For the superconducting fault current limiter, Toshiba has developed a 6.6 kV-1 kA class fault current limiter without supplying cooling medium such as helium, and limiting tests of fault current have been successfully conducted. Through the long-term tests of element coils for SMES and the system interconnection tests of module-type SMES, it is expected that the technological development for practical application is accelerated. 4 refs., 7 figs., 3 tabs.

  15. EHV/HV Underground Cable Systems for Power Transmission

    DEFF Research Database (Denmark)

    Bak, Claus Leth

    of the transmission system must be re‐thought in order to accommodate the transmission needs for the future. New lines have to be constructed. Transmission lines are usually laid out as overhead lines, which are large structures, i.e. a 400 kV power pylon is 50 meters high. According to public opinion, such power...

  16. Study on a Highly Stabilized Power Supply for Hybrid-Magnet Superconducting Outsert

    International Nuclear Information System (INIS)

    Wu Jinglin; Long Jiaojiao; Liu Xiaoning

    2014-01-01

    The superconducting outsert of the 40 T hybrid-magnet in High Magnetic Field Laboratory (HMFL) of Chinese Academy of Sciences (CAS) requires a highly stabilized power supply. In this paper, two kinds of power supply design are briefly presented and both advantages and disadvantages are analyzed. In order to overcome the drawbacks of switching power supply, a series regulated active filter is adopted and a new design is proposed which ensures cooperative relationship between the feedback control loops of the switching converter and the series regulated active filter. Besides, unlike the traditional switching power supply, which can generate positive voltage only, this new design can also generate negative voltage which is needed in the quench protection for the superconducting magnet. In order to demonstrate the effectiveness of the methodology, a low-power prototype has been accomplished. The simulation and experiment results show that the power supply achieves high precision under the combined action of two feedback control loops. The peak-to-peak amplitude of the output ripple voltage of the prototype is 0.063%, while the peak-to-peak amplitude of the output ripple current is 120 ppm. (fusion engineering)

  17. Power system stabilization by superconducting magnetic energystorage connected to rotating exciter

    OpenAIRE

    Mitani, Yasunori; Tsuji, K

    1993-01-01

    The authors describe a combination of a rotating exciter and a superconducting magnetic energy storage (SMES) system for efficient power system stabilization. A SMES system connected to an exciter rotating with a turbine-rotor shaft is proposed. The exciter is installed exclusively to supply current for the SMES. Since electrical power output from the SMES is converted into a mechanical torque of the generator directly by the exciter, it is expected that power swings of the generator will be ...

  18. Transmission rights and market power on electric power networks. 2. Physical rights

    International Nuclear Information System (INIS)

    Joskow, Paul; Tirole, Jean

    1999-01-01

    This discussion paper examines physical transmission rights where the capacity of each potentially congested interface is defined and the rights to use the congested interfaces are created and allocated in some way for suppliers and consumers. The way in which the allocation of physical rights affects competition or increases the buyers or sellers market power in the power generation market when a transmission interface is congested, and how rights markets with different microstructures allocate physical rights and determine rights prices are explored. An electricity market with physical transmission rights in the absence of capacity release rules, and physical transmission rights and market power are addressed. Loop flows, and capacity release rules are discussed. (UK)

  19. Superconducting accelerator technology

    International Nuclear Information System (INIS)

    Grunder, H.A.; Hartline, B.K.

    1986-01-01

    Modern and future accelerators for high energy and nuclear physics rely increasingly on superconducting components to achieve the required magnetic fields and accelerating fields. This paper presents a practical overview of the phenomenon of superconductivity, and describes the design issues and solutions associated with superconducting magnets and superconducting rf acceleration structures. Further development and application of superconducting components promises increased accelerator performance at reduced electric power cost

  20. Lattice parameters guide superconductivity in iron-arsenides

    Science.gov (United States)

    Konzen, Lance M. N.; Sefat, Athena S.

    2017-03-01

    The discovery of superconducting materials has led to their use in technological marvels such as magnetic-field sensors in MRI machines, powerful research magnets, short transmission cables, and high-speed trains. Despite such applications, the uses of superconductors are not widespread because they function much below room-temperature, hence the costly cooling. Since the discovery of Cu- and Fe-based high-temperature superconductors (HTS), much intense effort has tried to explain and understand the superconducting phenomenon. While no exact explanations are given, several trends are reported in relation to the materials basis in magnetism and spin excitations. In fact, most HTS have antiferromagnetic undoped ‘parent’ materials that undergo a superconducting transition upon small chemical substitutions in them. As it is currently unclear which ‘dopants’ can favor superconductivity, this manuscript investigates crystal structure changes upon chemical substitutions, to find clues in lattice parameters for the superconducting occurrence. We review the chemical substitution effects on the crystal lattice of iron-arsenide-based crystals (2008 to present). We note that (a) HTS compounds have nearly tetragonal structures with a-lattice parameter close to 4 Å, and (b) superconductivity can depend strongly on the c-lattice parameter changes with chemical substitution. For example, a decrease in c-lattice parameter is required to induce ‘in-plane’ superconductivity. The review of lattice parameter trends in iron-arsenides presented here should guide synthesis of new materials and provoke theoretical input, giving clues for HTS.

  1. Superconductivity and fusion energy—the inseparable companions

    Science.gov (United States)

    Bruzzone, Pierluigi

    2015-02-01

    Although superconductivity will never produce energy by itself, it plays an important role in energy-related applications both because of its saving potential (e.g., power transmission lines and generators), and its role as an enabling technology (e.g., for nuclear fusion energy). The superconducting magnet’s need for plasma confinement has been recognized since the early development of fusion devices. As long as the research and development of plasma burning was carried out on pulsed devices, the technology of superconducting fusion magnets was aimed at demonstrations of feasibility. In the latest generation of plasma devices, which are larger and have longer confinement times, the superconducting coils are a key enabling technology. The cost of a superconducting magnet system is a major portion of the overall cost of a fusion plant and deserves significant attention in the long-term planning of electricity supply; only cheap superconducting magnets will help fusion get to the energy market. In this paper, the technology challenges and design approaches for fusion magnets are briefly reviewed for past, present, and future projects, from the early superconducting tokamaks in the 1970s, to the current ITER (International Thermonuclear Experimental Reactor) and W7-X projects and future DEMO (Demonstration Reactor) projects. The associated cryogenic technology is also reviewed: 4.2 K helium baths, superfluid baths, forced-flow supercritical helium, and helium-free designs. Open issues and risk mitigation are discussed in terms of reliability, technology, and cost.

  2. Analysis of superconducting microstrip resonator at various microwave power levels

    International Nuclear Information System (INIS)

    Srivastava, G.P.; Jacob, M.V.; Jayakumar, M.; Bhatnagar, P.K.; Kataria, N.D.

    1997-01-01

    The real and imaginary parts of the surface impedance of YBCO superconductors have been studied at different microwave power levels. Using the relations for the critical current density and the grain boundary resistance, a relation for calculating the power dependence of the surface resistance has been obtained. Also, a relation to find the resonant frequency of a superconducting microstrip resonator at various input power levels has been derived. Measurements have been carried out on various microstrip resonators to study the variation of surface resistance and resonant frequency at different rf power levels. The experimental results are in good agreement with theoretical results. copyright 1997 American Institute of Physics

  3. Applications of Superconductivity and Impact on U.S. Economy

    Science.gov (United States)

    Selvamanickam, Venkat

    2014-03-01

    In the past few decades, low temperature superconducting wires (niobium-titanium) have enabled multibillion dollar industries such as magnetic resonance imaging and nuclear magnetic resonance spectroscopy which otherwise would not have been possible. High temperature superconductors (HTS) hold the promise of impacting even a larger market in diverse applications such as energy, health, military, telecommunication, transportation and research. HTS tapes are now being manufactured in quantities of few hundred kilometers annually with current carrying capacity of about 300 times that of copper wire of the same cross section. Power transmission cables up to few kilometers in length made with HTS tapes have already been inserted in the power grid world-wide. In the past few of years, tremendous advancements have occurred in nanoscale defect engineering in these thin film superconducting tapes that has led to a doubling of critical current performance in high magnetic fields and operating temperatures of interest for various applications. Technologies developed in this area have been successfully inserted in production HTS tapes by industry. With the availability of such high performance HTS tapes, a number of coil-based applications are now being aggressively pursued by several institutions. HTS coils enable power devices with high power density with significant weight, size and power benefits. Energy storage, generation, use, transformation and transmission applications as well as magnetic applications such as magnetic shields, plasma confinement, and ultra-high field magnets are becoming possible with the availability of high-performance HTS tapes. An overview of the development and use of superconductors in electric power and magnetic applications will be provided in this presentation.

  4. Adiabatic superconducting cells for ultra-low-power artificial neural networks

    Directory of Open Access Journals (Sweden)

    Andrey E. Schegolev

    2016-10-01

    Full Text Available We propose the concept of using superconducting quantum interferometers for the implementation of neural network algorithms with extremely low power dissipation. These adiabatic elements are Josephson cells with sigmoid- and Gaussian-like activation functions. We optimize their parameters for application in three-layer perceptron and radial basis function networks.

  5. Optimized use of superconducting magnetic energy storage for electromagnetic rail launcher powering

    Science.gov (United States)

    Badel, Arnaud; Tixador, Pascal; Arniet, Michel

    2012-01-01

    Electromagnetic rail launchers (EMRLs) require very high currents, from hundreds of kA to several MA. They are usually powered by capacitors. The use of superconducting magnetic energy storage (SMES) in the supply chain of an EMRL is investigated, as an energy buffer and as direct powering source. Simulations of direct powering are conducted to quantify the benefits of this method in terms of required primary energy. In order to enhance further the benefits of SMES powering, a novel integration concept is proposed, the superconducting self-supplied electromagnetic launcher (S3EL). In the S3EL, the SMES is used as a power supply for the EMRL but its coil serves also as an additional source of magnetic flux density, in order to increase the thrust (or reduce the required current for a given thrust). Optimization principles for this new concept are presented. Simulations based on the characteristics of an existing launcher demonstrate that the required current could be reduced by a factor of seven. Realizing such devices with HTS cables should be possible in the near future, especially if the S3EL concept is used in combination with the XRAM principle, allowing current multiplication.

  6. Optimized use of superconducting magnetic energy storage for electromagnetic rail launcher powering

    International Nuclear Information System (INIS)

    Badel, Arnaud; Tixador, Pascal; Arniet, Michel

    2012-01-01

    Electromagnetic rail launchers (EMRLs) require very high currents, from hundreds of kA to several MA. They are usually powered by capacitors. The use of superconducting magnetic energy storage (SMES) in the supply chain of an EMRL is investigated, as an energy buffer and as direct powering source. Simulations of direct powering are conducted to quantify the benefits of this method in terms of required primary energy. In order to enhance further the benefits of SMES powering, a novel integration concept is proposed, the superconducting self-supplied electromagnetic launcher (S 3 EL). In the S 3 EL, the SMES is used as a power supply for the EMRL but its coil serves also as an additional source of magnetic flux density, in order to increase the thrust (or reduce the required current for a given thrust). Optimization principles for this new concept are presented. Simulations based on the characteristics of an existing launcher demonstrate that the required current could be reduced by a factor of seven. Realizing such devices with HTS cables should be possible in the near future, especially if the S 3 EL concept is used in combination with the XRAM principle, allowing current multiplication.

  7. Analysis of main dynamic parameters of split power transmission

    Directory of Open Access Journals (Sweden)

    A. Janulevičius

    2008-06-01

    Full Text Available The review carried out had shown one basic approach of split power transmission to the organization of drive which is applied to stepless transmissions of tractors and parallel hybrid cars. In the split power transmission the power split device uses a planetary gear. Tractor engine power in the split power transmission is transmitted to the drive shaft via a mechanical and hydraulic path. The theoretical analysis of main parameters of the split power transmission of the tractor is presented. The angular velocity of sun and coronary gears of the differential set is estimated by solution of the system of equations in which one equation is made for planetary differential gear, and another – for hydrostatic drive. The analysis of the transmission gear-ratio dependencies on the ratio of hydraulic machines capacities is carried out. Dependence of the variation of angular velocity of the coronary and the sun gears on the ground speed of the tractor is presented. Dependence of sum shaft torque and its constituents, carried by mechanical and hydraulic lines, on sum shaft angular velocity and ground speed of tractor and engine speed is also presented.

  8. 4th International Conference on Power Transmissions

    CERN Document Server

    2013-01-01

    This books contains the Proceedings of the 4th International Conference on Power Transmissions, that was held in Sinaia, Romania from June 20 -23, 2012. Power Transmissions is a very complex and multi-disciplinary scientific field of Mechanical Engineering that covers the different types of transmissions (mechanical, hydraulic, pneumatic) as well as all the machine elements involved, such as gears, bearings, shafts, couplings and a lot more. It concerns not only their basic theory but also their design, analysis, testing, application and maintenance. The requirements set to modern power transmissions are really tough to meet: They need to be more efficient, stronger, smaller, noiseless, easier to produce and to cost less. There is a strong demand to become easier in operation and maintenance, or even automatic and in maintenance-free. Last but not least, they should be easily recycled and respect the environment. Joint efforts of specialists from both academia and industry can significantly contribute to fulf...

  9. High-current applications of superconductivity

    International Nuclear Information System (INIS)

    Komarek, P.

    1995-01-01

    The following topics were dealt with: superconducting materials, design principles of superconducting magnets, magnets for research and engineering, superconductivity for power engineering, superconductivity in nuclear fusion technology, economical considerations

  10. Insulation design of cryogenic bushing for superconducting electric power applications

    Energy Technology Data Exchange (ETDEWEB)

    Koo, J.Y., E-mail: koojy@hanyang.ac.kr [Department of Electronics, Electrical, Control and Instrumentation Engineering, Hanyang University, Ansan 426-791 (Korea, Republic of); Lee, Y.J.; Shin, W.J.; Kim, Y.H. [Department of Electronics, Electrical, Control and Instrumentation Engineering, Hanyang University, Ansan 426-791 (Korea, Republic of); Kim, J.T. [Department of Electrical Engineering, Daejin University, Pocheon 487-711 (Korea, Republic of); Lee, B.W. [Department of Electronics, Electrical, Control and Instrumentation Engineering, Hanyang University, Ansan 426-791 (Korea, Republic of); Lee, S.H., E-mail: k720lsh@kins.re.kr [Expert Group Electric and Control Department, Korea Institute of Nuclear Safety, Daejeon 305-600 (Korea, Republic of)

    2013-01-15

    Highlights: ► In this paper, design factors of cryogenic bushings were discussed and test results of specimen were introduced in detail. ► We focused on the comparative study of breakdown characteristics of different electrode materials. ► Puncture and creepage breakdown characteristics were analyzed based on the withstand voltage. ► We obtained the basic design factors of extra high voltage condenser bushing. ► We obtained the basic design factors of extra high voltage condenser bushing, which could be used in cryogenic environment. -- Abstract: Recently, the superconductivity projects to develop commercial superconducting devices for extra high voltage transmission lines have been undergoing in many countries. One of the critical components to be developed for high voltage superconducting devices, including superconducting transformers, cables, and fault current limiters, is a high voltage bushing, to supply high current to devices without insulating difficulties, that is designed for cryogenic environments. Unfortunately, suitable bushings for HTS equipment were not fully developed for some cryogenic insulation issues. Such high voltage bushings would need to provide electrical insulation capabilities from room temperature to cryogenic temperatures. In this paper, design factors of cryogenic bushings were discussed and test results of specimen were introduced in detail. First, the dielectric strength of three kinds of metals has been measured with uniform and non-uniform electrodes by withstand voltage of impulse and AC breakdown test in LN{sub 2}. Second, puncture breakdown voltage of glass fiber reinforced plastics (GFRPs) plates has been analyzed with non-uniform electrodes. Finally, creepage discharge voltages were measured according to the configuration of non-uniform and uniform electrode on the FRP plate. From the test results, we obtained the basic design factors of extra high voltage condenser bushing, which could be used in cryogenic

  11. The optimization of wireless power transmission: design and realization.

    Science.gov (United States)

    Jia, Zhiwei; Yan, Guozheng; Liu, Hua; Wang, Zhiwu; Jiang, Pingping; Shi, Yu

    2012-09-01

    A wireless power transmission system is regarded as a practical way of solving power-shortage problems in multifunctional active capsule endoscopes. The uniformity of magnetic flux density, frequency stability and orientation stability are used to evaluate power transmission stability, taking into consideration size and safety constraints. Magnetic field safety and temperature rise are also considered. Test benches are designed to measure the relevent parameters. Finally, a mathematical programming model in which these constraints are considered is proposed to improve transmission efficiency. To verify the feasibility of the proposed method, various systems for a wireless active capsule endoscope are designed and evaluated. The optimal power transmission system has the capability to supply continuously at least 500 mW of power with a transmission efficiency of 4.08%. The example validates the feasibility of the proposed method. Introduction of novel designs enables further improvement of this method. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Novel approach to assess local market power considering transmission constraints

    International Nuclear Information System (INIS)

    Li, Canbing; Xia, Qing; Kang, Chongqing; Jiang, Jianjian

    2008-01-01

    Market power (MP) assessment and mitigation affect the efficiency of the generation market. The traditional indices such as HHI and Lerner index can not express local market power, which caused by transmission constraints. Transmission constraints divide the market into some smaller parts. Some generators can abuse their MP in one part but not in the whole market. This paper describes a new approach to assess market power. The main contributions of the new method can be summarized as following. First, the concept of local market is developed, and the whole power system is divided into several local markets, as transmission congestions dividing the market. In the local markets, there are no transmission constraints so local market power does not exist. Then the local market power index (LMPI) is calculated according to market concentration, transmission constraints, and demand-supply ratio. Based on LMPI, the integrated local market power index which describes the whole picture of market can be obtained. It has been proved that the new approach can assess market power exactly, and identify the critical factor that results in market power and where generators are easy to exercise market power. The finding in this paper is helpful for market monitoring and mitigating market power. Moreover, the new index can be used to evaluate the power grid availability to generation competition and the power transmission expansion planning. (author)

  13. Superconductivity and the environment: a Roadmap

    International Nuclear Information System (INIS)

    Nishijima, Shigehiro; Eckroad, Steven; Marian, Adela; Choi, Kyeongdal; Kim, Woo Seok; Terai, Motoaki; Deng, Zigang; Zheng, Jun; Wang, Jiasu; Umemoto, Katsuya; Du, Jia; Keenan, Shane; Foley, Cathy P; Febvre, Pascal; Mukhanov, Oleg; Cooley, Lance D; Hassenzahl, William V; Izumi, Mitsuru

    2013-01-01

    There is universal agreement between the United Nations and governments from the richest to the poorest nations that humanity faces unprecedented global challenges relating to sustainable energy, clean water, low-emission transportation, coping with climate change and natural disasters, and reclaiming use of land. We have invited researchers from a range of eclectic research areas to provide a Roadmap of how superconducting technologies could address these major challenges confronting humanity. Superconductivity has, over the century since its discovery by Kamerlingh Onnes in 1911, promised to provide solutions to many challenges. So far, most superconducting technologies are esoteric systems that are used in laboratories and hospitals. Large science projects have long appreciated the ability of superconductivity to efficiently create high magnetic fields that are otherwise very costly to achieve with ordinary materials. The most successful applications outside of large science are high-field magnets for magnetic resonance imaging, laboratory magnetometers for mineral and materials characterization, filters for mobile communications, and magnetoencephalography for understanding the human brain. The stage is now set for superconductivity to make more general contributions. Humanity uses practically unthinkable amounts of energy to drive our modern way of life. Overall, global power usage has been predicted to almost double from 16.5 to 30 TW in the next four decades (2011 Equinox Summit: Energy 2030 http://wgsi.org/publications-resources). The economy with which electrons carry energy compels the continued quest for efficient superconducting power generation, energy storage, and power transmission. The growing global population requires new arable land and treatment of water, especially in remote areas, and superconductivity offers unique solutions to these problems. Exquisite detectors give warning of changes that are otherwise invisible. Prediction of climate and

  14. Superconductivity and the environment: a Roadmap

    Science.gov (United States)

    Nishijima, Shigehiro; Eckroad, Steven; Marian, Adela; Choi, Kyeongdal; Kim, Woo Seok; Terai, Motoaki; Deng, Zigang; Zheng, Jun; Wang, Jiasu; Umemoto, Katsuya; Du, Jia; Febvre, Pascal; Keenan, Shane; Mukhanov, Oleg; Cooley, Lance D.; Foley, Cathy P.; Hassenzahl, William V.; Izumi, Mitsuru

    2013-11-01

    There is universal agreement between the United Nations and governments from the richest to the poorest nations that humanity faces unprecedented global challenges relating to sustainable energy, clean water, low-emission transportation, coping with climate change and natural disasters, and reclaiming use of land. We have invited researchers from a range of eclectic research areas to provide a Roadmap of how superconducting technologies could address these major challenges confronting humanity. Superconductivity has, over the century since its discovery by Kamerlingh Onnes in 1911, promised to provide solutions to many challenges. So far, most superconducting technologies are esoteric systems that are used in laboratories and hospitals. Large science projects have long appreciated the ability of superconductivity to efficiently create high magnetic fields that are otherwise very costly to achieve with ordinary materials. The most successful applications outside of large science are high-field magnets for magnetic resonance imaging, laboratory magnetometers for mineral and materials characterization, filters for mobile communications, and magnetoencephalography for understanding the human brain. The stage is now set for superconductivity to make more general contributions. Humanity uses practically unthinkable amounts of energy to drive our modern way of life. Overall, global power usage has been predicted to almost double from 16.5 to 30 TW in the next four decades (2011 Equinox Summit: Energy 2030 http://wgsi.org/publications-resources). The economy with which electrons carry energy compels the continued quest for efficient superconducting power generation, energy storage, and power transmission. The growing global population requires new arable land and treatment of water, especially in remote areas, and superconductivity offers unique solutions to these problems. Exquisite detectors give warning of changes that are otherwise invisible. Prediction of climate and

  15. Power Transmission by Optical Fibers for Component Inherent Communication

    Directory of Open Access Journals (Sweden)

    Michael Dumke

    2010-02-01

    Full Text Available The use of optical fibers for power transmission has been investigated intensely. An optically powered device combined with optical data transfer offers several advantages compared to systems using electrical connections. Optical transmission systems consist of a light source, a transmission medium and a light receiver. The overall system performance depends on the efficiency of opto-electronic converter devices, temperature and illumination dependent losses, attenuation of the transmission medium and coupling between transmitter and fiber. This paper will summarize the state of the art for optically powered systems and will discuss reasons for negative influences on efficiency. Furthermore, an outlook on power transmission by the use of a new technology for creating polymer optical fibers (POF via micro dispensing will be given. This technology is capable to decrease coupling losses by direct contacting of opto-electronic devices.

  16. Transmission rights and market power

    International Nuclear Information System (INIS)

    Bushnell, J.

    1999-01-01

    Most of the concerns about physical transmission rights relate to the ability to implicitly or explicitly remove that transmission capacity from the market-place. Under a very strict form of physical right, owners could simply choose not to sell it if they don't want to use it. Modifications that require the release of spare capacity back into an open market could potentially alleviate this problem but there is concern that such releases would not occur far enough in advance to be of much use to schedulers. Similarly, the transmission capacity that is made available for use by non-rights holders can also be manipulated by the owners of transmission rights. The alternative form, financial transmission rights, provide to their owners congestion payments, but physical control of transmission paths. In electricity markets such as California's, even financial transmission rights could potentially be utilized to effectively withhold transmission capacity from the marketplace. However, methods for withholding transmission capacity are somewhat more convoluted, and probably more difficult, for owners of financial rights than for owners of physical rights. In this article, the author discusses some of the potential concerns over transmission rights and their use for the exercise of various forms of market power

  17. Electrical Insulation of 500-m High-Tc Superconducting Power Cable

    International Nuclear Information System (INIS)

    Takahashi, T; Ichikawa, M; Suzuki, H; Okamoto, T; Akita, S; Mukoyama, S; Yagi, M; Maruyama, S; Kimura, A

    2006-01-01

    Electrical insulation is one of the essential technologies for the electric power apparatus. Determination of testing voltages and design method of the electrical insulation layer are inextricably linked each other, and are critical to developing and realizing a cold dielectric (CD) type high-Tc superconducting (HTS) power cable. The authors had proposed the electrical insulation design method with concepts of partial discharge-free designs for ac voltage condition. This paper discusses the testing voltages for a 77 kV 1000 A HTS power cable with a length of 500 m, and describes results of various voltage withstand test. As a result, it is concluded that the proposed electrical insulation design method is appropriate for the HTS power cable

  18. Transmission Power Control for Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Kuo-Hsien Hsia

    2017-02-01

    Full Text Available Wireless sensor networks can be widely applied for a security system or a smart home system. Since some of the wireless remote sensor nodes may be powered by energy storage devices such as batteries, it is a very important issue to transmit signals at lower power with the consideration of the communication effectiveness. In this paper, we will provide a fuzzy controller with two inputs and one output for received signal strength indicator (RSSI and link quality indicator (LQI to adjust transmission power suitably in order to maintaining a certain communication level with a reduced energy consumption. And we will divide the sampling period of a sensor node into four intervals so that the sensor node radio device does not in receiving or transmission status all the time. Hence the sensor node can adjust transmission power automatically and reduce sensor node power consumption. Experimental results show that the battery life can be extended to about 10 times for the designed sensor node comparing to a normal node.

  19. The development of superconducting equipment

    CERN Document Server

    Ueda, T; Hiue, H

    2003-01-01

    Fuji Electric has been developing various types of superconducting equipment for over a quarter of a century. This paper describes the development results achieved for superconducting equipment and especially focuses on large-capacity current leads and superconducting transmission systems, the development of which is being promoted for application to the field of nuclear fusion. High temperature superconductor (HTS) is becoming the mainstream in the field of superconductivity, and the HTS floating coil and conduction-cooled HTS transformed are also introduced as recent developments for devices that utilize this technology. (author)

  20. Bell-state generation on remote superconducting qubits with dark photons

    Science.gov (United States)

    Hua, Ming; Tao, Ming-Jie; Alsaedi, Ahmed; Hayat, Tasawar; Wei, Hai-Rui; Deng, Fu-Guo

    2018-06-01

    We present a scheme to generate the Bell state deterministically on remote transmon qubits coupled to different 1D superconducting resonators connected by a long superconducting transmission line. Using the coherent evolution of the entire system in the all-resonance regime, the transmission line need not to be populated with microwave photons which can robust against the long transmission line loss. This lets the scheme more applicable to the distributed quantum computing on superconducting quantum circuit. Besides, the influence from the small anharmonicity of the energy levels of the transmon qubits can be ignored safely.

  1. A short model excitation of an asymmetric force free superconducting transmission line magnet

    Energy Technology Data Exchange (ETDEWEB)

    Wake, M.; Sato, H.; /KEK, Tsukuba; Carcagno, R.; Foster, W.; Hays, S.; Kashikhin, V.; Oleck, A.; Piekarz, H.; Rabehl, R,; /Fermilab

    2005-09-01

    A short model of asymmetric force free magnet with single beam aperture was tested at Fermilab together with the excitation test of VLHC transmission line magnet. The design concept of asymmetric force free superconducting magnet was verified by the test. The testing reached up to 104 kA current and no indication of force imbalance was observed. Since the model magnet length was only 10cm, A 0.75m model was constructed and tested at KEK with low current to ensure the validity of the design. The cool down and the excitation at KEK were also successful finding very small thermal contraction of the conductor and reasonable field homogeneity.

  2. Purification of condenser water in thermal power station by superconducting magnetic separation

    International Nuclear Information System (INIS)

    Ha, D.W.; Kwon, J.M.; Baik, S.K.; Lee, Y.J.; Han, K.S.; Ko, R.K.; Sohn, M.H.; Seong, K.C.

    2011-01-01

    Magnetic separation using cryo-cooled Nb-Ti superconducting magnet was applied for the purification of condenser water. Iron oxides in condenser water were effectively removed by superconducting magnetic separation. The effect of magnetic field strength and filter size was determined. Thermal power station is made up of a steam turbine and a steam condenser which need a lot of water. The water of steam condenser should be replaced, since scales consisting of iron oxide mainly are accumulated on the surface of condenser pipes as it goes. Superconducting high gradient magnetic separation (HGMS) system has merits to remove paramagnetic substance like iron oxides because it can generate higher magnetic field strength than electromagnet or permanent magnet. In this paper, cryo-cooled Nb-Ti superconducting magnet that can generate up to 6 T was used for HGMS systems. Magnetic filters were designed by the analysis of magnetic field distribution at superconducting magnets. The result of X-ray analysis showed contaminants were mostly α-Fe 2 O 3 (hematite) and γ-Fe 2 O 3 (maghemite). The higher magnetic field was applied up to 6 T, the more iron oxides were removed. As the wire diameter of magnetic filter decreased, the turbidity removal of the sample was enhanced.

  3. Microwave power - An energy transmission alternative for the year 2000

    Science.gov (United States)

    Nalos, E.; Sperber, R.

    1980-01-01

    Recent technological advances related to the feasibility of efficient RF-dc rectification make it likely that by the year 2000 the transmission of power through space will have become a practical reality. Proposals have been made to power helicopters, aircraft, balloons, and rockets remotely. Other proposals consider the transfer of power from point to point on earth via relay through space or a transmission of power from large power sources in space. Attention has also been given to possibilities regarding the transmission of power between various points in the solar system. An outline is provided of the microwave power transmission system envisaged for the solar power satellite, taking into account the transmitting antenna, the receiver on earth, aspects of beam formation and control, transmitter options, the receiving antenna design, and cost and efficiency considerations.

  4. Conceptual Design of the Low-Power and High-Power SPL A Superconducting H$^-$ Linac at CERN

    CERN Document Server

    Atieh, S; Aviles Santillana, I; Bartmann, W; Borburgh, J; Brunner, O; Calatroni, S; Capatina, O; Chambrillon, J; Ciapala, E; Eshraqi, M; Ferreira, L; Garoby, R; Goddard, B; Hessler, C; Hofle, W; Horvath-Mikulas, S; Junginger, T; Kozlova, E; Lebbos, E; Lettry, J; Liao, K; Lombardi, A M; Macpherson, A; Montesinos, E; Nisbet, D; Otto, T; Paoluzzi, M; Papke, K; Parma, V; Pillon, F; Posocco, P; Ramberger, S; Rossi, C; Schirm, K; Schuh, M; Scrivens, R; Torres Sanchez, R; Valuch, D; Valverde Alonso, N; Wegner, R; Weingarten, W; Weisz, S

    2014-01-01

    The potential for a superconducting proton linac (SPL) at CERN started to be seriously considered at the end of the 1990s. In the first conceptual design report (CDR), published in 2000 [1], most of the 352 MHz RF equipment from LEP was re-used in an 800 m long linac, and the proton beam energy was limited to 2.2 GeV. During the following years, the design was revisited and optimized to better match the needs of a high-power proton driver for neutrino physics. The result was a more compact (470 m long) accelerator capable of delivering 5 MW of beam power at 3.5 GeV, using state-of-the-art superconducting RF cavities at 704 MHz. It was described in a second CDR, published in 2006 [2]. Soon afterwards, when preparation for increasing the luminosity of the LHC by an order of magnitude beyond nominal became an important concern, a low-power SPL (LP-SPL) was studied as a key component in the renovation of the LHC injector complex. The combination of a 4 GeV LP-SPL injecting into a new 50 GeV synchrotron (PS2) was ...

  5. Experimental study on using a high-temperature superconducting inductor for power loss reduction in an active power filter

    International Nuclear Information System (INIS)

    Chao, C; To, H P; Grantham, C; Rahman, M F

    2006-01-01

    An active power filter improves the electric power quality through the compensation of harmonics in the power network. A current-source active power filter using a conventional copper inductor for its energy storage has a significant power loss. The loss in the copper inductor can be substantially reduced by using a high-temperature superconducting (HTS) inductor instead. Experiments have been conducted on a prototype current-source active power filter for studying the power loss reduction effect and harmonics compensation performance of the active power filter using a HTS inductor. Experimental results are analysed and discussed in this paper

  6. Direct measurement of the quantum state of the electromagnetic field in a superconducting transmission line

    International Nuclear Information System (INIS)

    Melo, F. de; Aolita, L.; Davidovich, L.; Toscano, F.

    2006-01-01

    We propose an experimental procedure to directly measure the state of an electromagnetic field inside a resonator, corresponding to a superconducting transmission line, coupled to a Cooper-pair box (CPB). The measurement protocol is based on the use of a dispersive interaction between the field and the CPB, and the coupling to an external classical field that is tuned to resonance with either the field or the CPB. We present a numerical simulation that demonstrates the feasibility of this protocol, which is within reach of present technology

  7. Interpretation of transmission through type II superconducting thin film on dielectric substrate as observed by laser thermal spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Šindler, Michal; Tesař, Roman; Koláček, Jan; Skrbek, L.

    2012-01-01

    Roč. 483, DEC (2012), s. 127-135 ISSN 0921-4534 R&D Projects: GA ČR(CZ) GAP204/11/0015 Grant - others:European Science Foundation(XE) NES, 2007 - 2012 Institutional research plan: CEZ:AV0Z10100521 Keywords : far- infrared transmission * NbN * superconducting film * vortices * terahertz waves Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.718, year: 2012

  8. Conceptual design of superconducting magnet systems for the Argonne Tokamak Experimental Power Reactor

    International Nuclear Information System (INIS)

    Wang, S.T.; Turner, L.R.; Mills, F.E.; DeMichele, D.W.; Smelser, P.; Kim, S.H.

    1976-01-01

    As an integral effort in the Argonne Tokamak Experimental Power Reactor Conceptual Design, the conceptual design of a 10-tesla, pure-tension superconducting toroidal-field (TF) coil system has been developed in sufficient detail to define a realistic design for the TF coil system that could be built based upon the current state of technology with minimum technological extrapolations. A conceptual design study on the superconducting ohmic-heating (OH) coils and the superconducting equilibrium-field (EF) coils were also completed. These conceptual designs are developed in sufficient detail with clear information on high current ac conductor design, cooling, venting provision, coil structural support and zero loss poloidal coil cryostat design. Also investigated is the EF penetration into the blanket and shield

  9. Power system analysis of Hanlim superconducting HVDC system using real time digital simulator

    International Nuclear Information System (INIS)

    Won, Y.J.; Kim, J.G.; Kim, A.R.; Kim, G.H.; Park, M.; Yu, I.K.; Sim, K.D.; Cho, J.; Lee, S.; Jeong, K.W.; Watanabe, K.

    2011-01-01

    KEPCO has planned to construct a test site for renewable energy in Jeju power system. One kilometer length of total 8 km was designed as superconducting DC cable. We have developed a simulation model of the 8 km HVDC system using real time digital simulator. The simulation result shows that the HVDC line was not affected by wind power variation. Jeju island is located approximately 100 km south from the mainland of Korea, and had a peak load of about 553 MW in 2008. The demand increases 7.2% a year over the last 5 years. Since the wind profiles of Jeju island are more favorable than mainland of Korea, many companies have shown interest in the wind power business at the Jeju island. Moreover KEPCO has a plan for renewable energy test too whose power will be delivered by HVDC system. One kilometer length of total 8 km was designed as superconducting DC cable. Rest 7 km will be the conventional overhead line. In this paper, the authors have developed a simulation model of the power network around 8 km HVDC system using real time digital simulator (RTDS).

  10. Matching problems in pulse power radial transmission lines

    International Nuclear Information System (INIS)

    Mittag, K.; Brandelik, A.

    1984-12-01

    In this report we study the power transfer from a generator along a coaxial transmission line followed by a radial transmission line into a load, which in our application is a pseudo-spark plasma of about one millimeter diameter and about 15 cm in length. First the theoretical background based on transmission line theory is described. Then numerical results are presented. The main conclusion is that when matching the pulse power generator to the pseudo-spark plasma, the effect of the impedance transformation caused by the radial transmission line has to be taken into account. The conditions to obtain an optimal match are described. (orig.) [de

  11. FY 1999 report on the results of the superconductive energy application technology development/research on a total system, etc. Survey of potentiality of the commercialization of superconductive technology, effects of the introduction, etc. (Future course of the superconductive technology development in Japan); 1999 nendo chodendo denryoku oryokuyo gijutsu kaihatsu total system nado no kenkyu. Chodendo gijutsu no jitsuyoka kanosei oyobi donyu koka nado no chosa (Nippon ni okeru chodendo gijutsu kaihatsu no kongo no hokosei)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    By the use of superconductive technology, the following are aimed at: marked reduction in power loss of electrical equipment and power transmission path, and size/weight reduction in electrical devices by high current/magnetic flux density. The superconductive technology has advantages such as great energy saving effect, CO2 reduction and global environmental preservation. As an example, concerning the superconductive generator now being developed under the New Sunshine Project, power loss can be reduced by half, and by the use of high magnetic field, size/weight can be reduced such as reduction in rotor diameter and reduction in weight by half. Further, as an innovative system, cited are the superconducting magnetic energy storage system (SMES) and flywheel energy storage system. The superconducting magnetic levitation railway, medical use MRI, etc. have also innovativity which is difficult to get in the conventional technology. Effects are also expected of introducing the process development using superconducting magnet such as magnetic separation, electromagnetic metallurgy, electromagnetic agitation and monocrytal growth convection control. Also cited is Josephson electronic device. High performance SQUID in bio-magnetic/non-destructive inspection is also expected to be developed. (NEDO)

  12. Optimization of output power and transmission efficiency of magnetically coupled resonance wireless power transfer system

    Science.gov (United States)

    Yan, Rongge; Guo, Xiaoting; Cao, Shaoqing; Zhang, Changgeng

    2018-05-01

    Magnetically coupled resonance (MCR) wireless power transfer (WPT) system is a promising technology in electric energy transmission. But, if its system parameters are designed unreasonably, output power and transmission efficiency will be low. Therefore, optimized parameters design of MCR WPT has important research value. In the MCR WPT system with designated coil structure, the main parameters affecting output power and transmission efficiency are the distance between the coils, the resonance frequency and the resistance of the load. Based on the established mathematical model and the differential evolution algorithm, the change of output power and transmission efficiency with parameters can be simulated. From the simulation results, it can be seen that output power and transmission efficiency of the two-coil MCR WPT system and four-coil one with designated coil structure are improved. The simulation results confirm the validity of the optimization method for MCR WPT system with designated coil structure.

  13. Feasibility study of wireless power transmission systems

    Science.gov (United States)

    Robinson, W. J., Jr.

    1968-01-01

    Wireless microwave or laser energy transfers power from a manned earth-orbiting central station to unmanned astronomical substations. More efficient systems are required for the microwave power transmission.

  14. Superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Rogers, J.D.; Boenig, H.J.

    1978-01-01

    Superconducting inductors provide a compact and efficient means of storing electrical energy without an intermediate conversion process. Energy storage inductors are under development for diurnal load leveling and transmission line stabilization in electric utility systems and for driving magnetic confinement and plasma heating coils in fusion energy systems. Fluctuating electric power demands force the electric utility industry to have more installed generating capacity than the average load requires. Energy storage can increase the utilization of base-load fossil and nuclear power plants for electric utilities. Superconducting magnetic energy storage (SMES) systems, which will store and deliver electrical energy for load leveling, peak shaving, and the stabilization of electric utility networks are being developed. In the fusion area, inductive energy transfer and storage is also being developed by LASL. Both 1-ms fast-discharge theta-pinch and 1-to-2-s slow tokamak energy transfer systems have been demonstrated. The major components and the method of operation of an SMES unit are described, and potential applications of different size SMES systems in electric power grids are presented. Results are given for a 1-GWh reference design load-leveling unit, for a 30-MJ coil proposed stabilization unit, and for tests with a small-scale, 100-kJ magnetic energy storage system. The results of the fusion energy storage and transfer tests are also presented. The common technology base for the systems is discussed

  15. Analysis of eddy current loss in high-Tc superconducting power cables with respect to various structure of stabilizer

    International Nuclear Information System (INIS)

    Choi, S. J.; Song, M. K.; Lee, S. J.; Cho, J. W.; Sim, K. D.

    2005-01-01

    The High-Tc superconducting power cable consists of a multi-layer high-Tc superconducting cable core and a stabilizer which is used to bypass the current at fault time. Eddy current loss is generated in the stabilizer in normal operating condition and affects the whole system. In this paper, the eddy current losses are analyzed with respect to various structure of stabilizer by using opera-3d. Moreover, optimal conditions of the stabilizer are derived to minimize the eddy current losses from the analyzed results. The obtained results could be applied to the design and manufacture of the high-Tc superconducting power cable system.

  16. Power system control experiments using 1 MJ SMES

    International Nuclear Information System (INIS)

    Sugimoto, Shigeyuki

    1993-01-01

    Chubu Electric Power Co. Inc., developed a 1 MJ Superconducting Magnetic Energy Storage (SMES) system composed of a pulsive superconducting magnet (1000 A, 2 H) and experimental researches connecting this system to a simulated power system composed of four generators, fluctuating load and some transmission lines were carried out in the laboratory of Chubu Electric Power Co. Inc., since 1989. The purpose of this experimental researches are to investigate the effects of SMES adapting in power system control use. This paper describes the results and confirmed effects of four kinds of experiments as the following, cut-off peak demand, load leveling effect for fluctuating load, improvement of dynamic stability and frequency control effect in isolated power system. (orig.)

  17. Japan. Superconductivity for Smart Grids

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, K.

    2012-11-15

    Currently, many smart grid projects are running or planned worldwide. These aim at controlling the electricity supply more efficiently and more stably in a new power network system. In Japan, especially superconductivity technology development projects are carried out to contribute to the future smart grid. Japanese cable makers such as Sumitomo Electric and Furukawa Electric are leading in the production of high-temperature superconducting (HTS) power cables. The world's largest electric current and highest voltage superconductivity proving tests have been started this year. Big cities such as Tokyo will be expected to introduce the HTS power cables to reduce transport losses and to meet the increased electricity demand in the near future. Superconducting devices, HTS power cables, Superconducting Magnetic Energy Storage (SMES) and flywheels are the focus of new developments in cooperations between companies, universities and research institutes, funded by the Japanese research and development funding organization New Energy and Industrial Technology Development Organization (NEDO)

  18. Modeling particle emission and power flow in pulsed-power driven, nonuniform transmission lines

    Directory of Open Access Journals (Sweden)

    Nichelle Bruner

    2008-04-01

    Full Text Available Pulsed-power driven x-ray radiographic systems are being developed to operate at higher power in an effort to increase source brightness and penetration power. Essential to the design of these systems is a thorough understanding of electron power flow in the transmission line that couples the pulsed-power driver to the load. In this paper, analytic theory and fully relativistic particle-in-cell simulations are used to model power flow in several experimental transmission-line geometries fielded on Sandia National Laboratories’ upgraded Radiographic Integrated Test Stand [IEEE Trans. Plasma Sci. 28, 1653 (2000ITPSBD0093-381310.1109/27.901250]. Good agreement with measured electrical currents is demonstrated on a shot-by-shot basis for simulations which include detailed models accounting for space-charge-limited electron emission, surface heating, and stimulated particle emission. Resonant cavity modes related to the transmission-line impedance transitions are also shown to be excited by electron power flow. These modes can drive oscillations in the output power of the system, degrading radiographic resolution.

  19. LHC Report: superconducting circuit powering tests

    CERN Multimedia

    Mirko Pojer

    2015-01-01

    After the long maintenance and consolidation campaign carried out during LS1, the machine is getting ready to start operation with beam at 6.5 TeV… the physics community can’t wait! Prior to this, all hardware and software systems have to be tested to assess their correct and safe operation.   Most of the cold circuits (those with high current/stored energy) possess a sophisticated magnet protection system that is crucial to detect a transition of the coil from the superconducting to the normal state (a quench) and safely extract the energy stored in the circuits (about 1 GJ per dipole circuit at nominal current). LHC operation relies on 1232 superconducting dipoles with a field of up to 8.33 T operating in superfluid helium at 1.9 K, along with more than 500 superconducting quadrupoles operating at 4.2 or 1.9 K. Besides, many other superconducting and normal resistive magnets are used to guarantee the possibility of correcting all beam parameters, for a total of mo...

  20. Superconductivity in Medicine

    Science.gov (United States)

    Alonso, Jose R.; Antaya, Timothy A.

    2012-01-01

    Superconductivity is playing an increasingly important role in advanced medical technologies. Compact superconducting cyclotrons are emerging as powerful tools for external beam therapy with protons and carbon ions, and offer advantages of cost and size reduction in isotope production as well. Superconducting magnets in isocentric gantries reduce their size and weight to practical proportions. In diagnostic imaging, superconducting magnets have been crucial for the successful clinical implementation of magnetic resonance imaging. This article introduces each of those areas and describes the role which superconductivity is playing in them.

  1. 10-kA pulsed power supply for superconducting coils

    International Nuclear Information System (INIS)

    Ehsani, M.; Fuja, R.E.; Kustom, R.L.

    1981-01-01

    A new 4-MW inductor-converter bridge (ICB) for supplying power to pulsed superconducting magnets is under construction at Argonne National Laoratory. This is a second-generation ICB built at Argonne Lab. The analytical, design, and control techniques developed for the first prototype have been used in the design of the new system. The paper presents the important considerations in the design of the new ICB. A brief description of the operation of the circuit is also given

  2. Static synchronous compensator with superconducting magnetic energy storage for high power utility applications

    International Nuclear Information System (INIS)

    Molina, Marcelo G.; Mercado, Pedro E.; Watanabe, Edson H.

    2007-01-01

    Power systems security in the case of contingencies is ensured by maintaining adequate 'short-term generation reserve'. This reserve must be appropriately activated by means of the primary frequency control (PFC). Because the generation is an electro-mechanical process, the primary control reserve controllability is not as fast as required, especially by modern power systems. Since the new improvements achieved on the conventional control methods have not been enough to satisfy the high requirements established, the necessity of enhancing the performance of the PFC has arisen. At present, the new energy storage systems (ESS) are a feasible alternative to store excess energy for substituting for the primary control reserve. In this way, it is possible to combine this new ESS with power converter based flexible ac transmission systems (FACTS). This allows an effective exchange of active power with the electric grid and, thus, enhances the PFC. This paper presents an improved PFC scheme incorporating a static synchronous compensator (STATCOM) coupled with a superconducting magnetic energy storage (SMES) device. A detailed full model and a control algorithm based on a decoupled current control strategy of the enhanced compensator are proposed. The integrated STATCOM/SMES controller topology includes three level, multi-pulse, voltage source inverters (VSI) with phase control and incorporates a two quadrant, three level, dc-dc chopper as the interface between the STATCOM and the SMES coil. A novel three level control scheme is proposed by using concepts of instantaneous power in the synchronous rotating d-q reference frame. The dynamic performance of the presented control algorithms is evaluated through digital simulation performed by using SimPowerSystems of SIMULINK/MATLAB T M , and technical analysis is performed to obtain conclusions about the benefits of using SMES devices in the PFC of the electric system. Presently, a laboratory scale prototype device based on

  3. Environmental impacts of power plants and transmission lines in power system planning

    International Nuclear Information System (INIS)

    Miracapillo, C.; Moreschini, G.; Rome Univ. 'La Sapienza'

    1992-01-01

    This paper deals with a criterion to assess the environmental impacts of power plants and transmission lines in power system planning. First, the effects of hydro-plants, thermal plants and transmission lines are reviewed. Then, a number of methods for the evaluation of the environmental impacts of civil and industrial plants are described. A new criterion is proposed to introduce the evaluation of the environmental impact and related costs into methods for power system planning. Finally, the criterion is applied to a simple case

  4. Microwave power engineering generation, transmission, rectification

    CERN Document Server

    Okress, Ernest C

    1968-01-01

    Microwave Power Engineering, Volume 1: Generation, Transmission, Rectification considers the components, systems, and applications and the prevailing limitations of the microwave power technology. This book contains four chapters and begins with an introduction to the basic concept and developments of microwave power technology. The second chapter deals with the development of the main classes of high-power microwave and optical frequency power generators, such as magnetrons, crossed-field amplifiers, klystrons, beam plasma amplifiers, crossed-field noise sources, triodes, lasers. The third

  5. Data driven transmission power control for wireless sensor networks

    NARCIS (Netherlands)

    kotian, Roshan; Exarchakos, Georgios; Liotta, Antonio; Di Fatta, G.; Fortino, G.; Li, W.; Pathan, M.; Stahl, F.; Guerrieri, A.

    2015-01-01

    Transmission Power Control (TPC) is employed in the sensor nodes with the main objective of minimizing transmission power consumption. However, major drawbacks with well-known TPC are time consuming and energy inefficient initialization phase. Moreover, they employ Received Signal Strength Indicator

  6. Superconducting technology

    International Nuclear Information System (INIS)

    2010-01-01

    Superconductivity has a long history of about 100 years. Over the past 50 years, progress in superconducting materials has been mainly in metallic superconductors, such as Nb, Nb-Ti and Nb 3 Sn, resulting in the creation of various application fields based on the superconducting technologies. High-T c superconductors, the first of which was discovered in 1986, have been changing the future vision of superconducting technology through the development of new application fields such as power cables. On basis of these trends, future prospects of superconductor technology up to 2040 are discussed. In this article from the viewpoints of material development and the applications of superconducting wires and electronic devices. (author)

  7. Peak power reduction and energy efficiency improvement with the superconducting flywheel energy storage in electric railway system

    Science.gov (United States)

    Lee, Hansang; Jung, Seungmin; Cho, Yoonsung; Yoon, Donghee; Jang, Gilsoo

    2013-11-01

    This paper proposes an application of the 100 kWh superconducting flywheel energy storage systems to reduce the peak power of the electric railway system. The electric railway systems have high-power characteristics and large amount of regenerative energy during vehicles’ braking. The high-power characteristic makes operating cost high as the system should guarantee the secure capacity of electrical equipment and the low utilization rate of regenerative energy limits the significant energy efficiency improvement. In this paper, it had been proved that the peak power reduction and energy efficiency improvement can be achieved by using 100 kWh superconducting flywheel energy storage systems with the optimally controlled charging or discharging operations. Also, economic benefits had been assessed.

  8. Superconducting materials for large scale applications

    International Nuclear Information System (INIS)

    Scanlan, Ronald M.; Malozemoff, Alexis P.; Larbalestier, David C.

    2004-01-01

    Significant improvements in the properties of superconducting materials have occurred recently. These improvements are being incorporated into the latest generation of wires, cables, and tapes that are being used in a broad range of prototype devices. These devices include new, high field accelerator and NMR magnets, magnets for fusion power experiments, motors, generators, and power transmission lines. These prototype magnets are joining a wide array of existing applications that utilize the unique capabilities of superconducting magnets:accelerators such as the Large Hadron Collider, fusion experiments such as ITER, 930 MHz NMR, and 4 Tesla MRI. In addition, promising new materials such as MgB2 have been discovered and are being studied in order to assess their potential for new applications. In this paper, we will review the key developments that are leading to these new applications for superconducting materials. In some cases, the key factor is improved understanding or development of materials with significantly improved properties. An example of the former is the development of Nb3Sn for use in high field magnets for accelerators. In other cases, the development is being driven by the application. The aggressive effort to develop HTS tapes is being driven primarily by the need for materials that can operate at temperatures of 50 K and higher. The implications of these two drivers for further developments will be discussed. Finally, we will discuss the areas where further improvements are needed in order for new applications to be realized

  9. Design and construction of a high temperature superconducting power cable cryostat for use in railway system applications

    International Nuclear Information System (INIS)

    Tomita, M; Muralidhar, M; Suzuki, K; Fukumoto, Y; Ishihara, A; Akasaka, T; Kobayashi, Y

    2013-01-01

    The primary objective of the current effort was to design and test a cryostat using a prototype five-meter long high temperature Bi 2 Sr 2 Ca 2 Cu 3 O y (Bi-2223) superconducting dc power cable for railway systems. To satisfy the safety regulations of the Govt of Japan a mill sheet covered by super-insulation was used inside the walls of the cryostat. The thicknesses of various walls in the cryostat were obtained from a numerical analysis. A non-destructive inspection was utilized to find leaks under vacuum or pressure. The cryostat target temperature range was around 50 K, which is well below liquid nitrogen temperature, the operating temperature of the superconducting cable. The qualification testing was carried out from 77 down to 66 K. When using only the inner sheet wire, the maximum current at 77.3 K was 10 kA. The critical current (I c ) value increased with decreasing temperature and reached 11.79 kA at 73.7 K. This is the largest dc current reported in a Bi 2 Sr 2 Ca 2 Cu 3 O y or YBa 2 Cu 3 O y (Y-123) superconducting prototype cable so far. These results verify that the developed DC superconducting cable is reliable and fulfils all the requirements necessary for successful use in various power applications including railway systems. The key issues for the design of a reliable cryogenic system for superconducting power cables for railway systems are discussed. (paper)

  10. Eco-design of power transmissions systems

    International Nuclear Information System (INIS)

    Wang, W.

    2011-01-01

    The demand to preserve the environment and form a sustainable development is greatly increasing in the recent decades all over the world, and this environmental concern is also merged in electrical power industry, resulting in many eco-design approaches in Transmission and Distribution (T and D) industries. As a method of eco-design, Life Cycle Assessment (LCA) is a systematic tool that enables the assessment of the environmental impacts of a product or service throughout its entire life cycle, i.e. raw material production, manufacture, distribution, use and disposal including all intervening transportation steps necessary or caused by the product's existence. In T and D industries, LCA has been done for a lot of products individually, in order to see one product's environmental impacts and to seek for ways of improving its environmental performance. This eco-design for product approach is a rather well-developed trend, however, as only a single electrical product cannot provide the electrical power to users, electrical system consists of a huge number of components, in order to investigate system's environmental profile, the entire environmental profiles of different composing products has to be integrated systematically, that is to say, a system approach is needed. Under this philosophy, the study 'Eco-design of Power Transmission Systems' is conducted in this thesis, with the purpose of analysing the transmission systems' environmental impacts, locating the major environmental burden sources of transmission systems, selecting and/or developing methodologies of reducing its environmental impacts. (author)

  11. Alternating current loss calculation in a high-TC superconducting transmission cable considering the magnetic field distribution

    International Nuclear Information System (INIS)

    Noji, H; Haji, K; Hamada, T

    2003-01-01

    We have calculated the alternating current (ac) losses of a 114 MVA high-T C superconducting (HTS) transmission cable using an electric-circuit (EC) model. The HTS cable is fabricated by Tokyo Electric Power Company and Sumitomo Electric Industries, Ltd. The EC model is comprised of a resistive part and an inductive part. The resistive part is obtained by the approximated Norris equation for a HTS tape. The Norris equation indicates hysteresis losses due to self-fields. The inductive part has two components, i.e. inductances related to axial fields and those related to circumferential fields. The layer currents and applied fields of each layer were calculated by the EC model. By using both values, the ac losses of the one-phase HTS cable were obtained by calculation considering the self-field, the axial field and the circumferential field of the HTS tape. The measured ac loss transporting 1 kA rms is 0.7 W m -1 ph -1 , which is equal to the calculation. The distribution of each layer loss resembles in shape the distribution of the circumferential field in each layer, which indicates that the circumferential fields strongly influence the ac losses of the HTS cable

  12. Watt-level wireless power transmission to multiple compact receivers

    International Nuclear Information System (INIS)

    Garraud, A; Munzer, D J; Althar, M; Garraud, N; Arnold, D P

    2015-01-01

    This paper reports an electrodynamic wireless power transmission (EWPT) system using a low-frequency (300 Hz) magnetic field to transmit watt-scale power levels to multiple compact receivers. As compared to inductively or resonantly coupled coils, EWPT facilitates transmission to multiple non-interacting receivers with little restriction on their orientation. A single 3.0 cm 3 receiver achieves 1.25 W power transmission with 8% efficiency at a distance of 1 cm (350 mW/cm 3 power density) from the transmitter. The same prototype achieves 9 mW at a distance of 9 cm. Moreover, we demonstrate simultaneous recharge of two wearable devices, using two receivers located in arbitrary positions and orientations. (paper)

  13. Quantum heat engine with coupled superconducting resonators

    DEFF Research Database (Denmark)

    Hardal, Ali Ümit Cemal; Aslan, Nur; Wilson, C. M.

    2017-01-01

    the differences between the quantum and classical descriptions of our system by solving the quantum master equation and classical Langevin equations. Specifically, we calculate the mean number of excitations, second-order coherence, as well as the entropy, temperature, power, and mean energy to reveal......We propose a quantum heat engine composed of two superconducting transmission line resonators interacting with each other via an optomechanical-like coupling. One resonator is periodically excited by a thermal pump. The incoherently driven resonator induces coherent oscillations in the other one...... the signatures of quantum behavior in the statistical and thermodynamic properties of the system. We find evidence of a quantum enhancement in the power output of the engine at low temperatures....

  14. Superconducting Nanowires as Nonlinear Inductive Elements for Qubits

    OpenAIRE

    Ku, Jaseung; Manucharyan, Vladimir; Bezryadin, Alexey

    2010-01-01

    We report microwave transmission measurements of superconducting Fabry-Perot resonators (SFPR), having a superconducting nanowire placed at a supercurrent antinode. As the plasma oscillation is excited, the supercurrent is forced to flow through the nanowire. The microwave transmission of the resonator-nanowire device shows a nonlinear resonance behavior, significantly dependent on the amplitude of the supercurrent oscillation. We show that such amplitude-dependent response is due to the nonl...

  15. Transfer Efficiency and Cooling Cost by Thermal Loss based on Nitrogen Evaporation Method for Superconducting MAGLEV System

    Science.gov (United States)

    Chung, Y. D.; Kim, D. W.; Lee, C. Y.

    2017-07-01

    This paper presents the feasibility of technical fusion between wireless power transfer (WPT) and superconducting technology to improve the transfer efficiency and evaluate operating costs such as refrigerant consumption. Generally, in WPT technology, the various copper wires have been adopted. From this reason, the transfer efficiency is limited since the copper wires of Q value are intrinsically critical point. On the other hand, as superconducting wires keep larger current density and relatively higher Q value, the superconducting resonance coil can be expected as a reasonable option to deliver large transfer power as well as improve the transfer ratio since it exchanges energy at a much higher rate and keeps stronger magnetic fields out. However, since superconducting wires should be cooled indispensably, the cooling cost of consumed refrigerant for resonance HTS wires should be estimated. In this study, the transmission ratios using HTS resonance receiver (Rx) coil and various cooled and noncooled copper resonance Rx coils were presented under non cooled copper antenna within input power of 200 W of 370 kHz respectively. In addition, authors evaluated cooling cost of liquid nitrogen for HTS resonance coil and various cooled copper resonance coils based on nitrogen evaporation method.

  16. Transfer Efficiency and Cooling Cost by Thermal Loss based on Nitrogen Evaporation Method for Superconducting MAGLEV System

    International Nuclear Information System (INIS)

    Chung, Y D; Kim, D W; Lee, C Y

    2017-01-01

    This paper presents the feasibility of technical fusion between wireless power transfer (WPT) and superconducting technology to improve the transfer efficiency and evaluate operating costs such as refrigerant consumption. Generally, in WPT technology, the various copper wires have been adopted. From this reason, the transfer efficiency is limited since the copper wires of Q value are intrinsically critical point. On the other hand, as superconducting wires keep larger current density and relatively higher Q value, the superconducting resonance coil can be expected as a reasonable option to deliver large transfer power as well as improve the transfer ratio since it exchanges energy at a much higher rate and keeps stronger magnetic fields out. However, since superconducting wires should be cooled indispensably, the cooling cost of consumed refrigerant for resonance HTS wires should be estimated. In this study, the transmission ratios using HTS resonance receiver (Rx) coil and various cooled and noncooled copper resonance Rx coils were presented under non cooled copper antenna within input power of 200 W of 370 kHz respectively. In addition, authors evaluated cooling cost of liquid nitrogen for HTS resonance coil and various cooled copper resonance coils based on nitrogen evaporation method. (paper)

  17. High temperature superconductors as a technological discontinuity in the power cable industry

    Energy Technology Data Exchange (ETDEWEB)

    Beales, T.P.; McCormack, J.S. [BICC Cables Ltd., Hebburn (United Kingdom)

    1994-12-31

    The advent of superconductivity above 77 K represents to the power cable industry a technological discontinuity analogous to that seen in the copper telecommunications industry by the arrival of optical fibres. This phenomenon is discussed along with technical criteria and performance targets needed for high temperature superconducting wire to have an economic impact in transmission cables.

  18. High temperature superconductors as a technological discontinuity in the power cable industry

    International Nuclear Information System (INIS)

    Beales, T.P.; McCormack, J.S.

    1994-01-01

    The advent of superconductivity above 77 K represents to the power cable industry a technological discontinuity analogous to that seen in the copper telecommunications industry by the arrival of optical fibres. This phenomenon is discussed along with technical criteria and performance targets needed for high temperature superconducting wire to have an economic impact in transmission cables

  19. HVDC power transmission technology assessment

    Energy Technology Data Exchange (ETDEWEB)

    Hauth, R.L.; Tatro, P.J.; Railing, B.D. [New England Power Service Co., Westborough, MA (United States); Johnson, B.K.; Stewart, J.R. [Power Technologies, Inc., Schenectady, NY (United States); Fink, J.L.

    1997-04-01

    The purpose of this study was to develop an assessment of the national utility system`s needs for electric transmission during the period 1995-2020 that could be met by future reduced-cost HVDC systems. The assessment was to include an economic evaluation of HVDC as a means for meeting those needs as well as a comparison with competing technologies such as ac transmission with and without Flexible AC Transmission System (FACTS) controllers. The role of force commutated dc converters was to be assumed where appropriate. The assessment begins by identifying the general needs for transmission in the U.S. in the context of a future deregulated power industry. The possible roles for direct current transmission are then postulated in terms of representative scenarios. A few of the scenarios are illustrated with the help of actual U.S. system examples. non-traditional applications as well as traditional applications such as long lines and asynchronous interconnections are discussed. The classical ``break-even distance`` concept for comparing HVDC and ac lines is used to assess the selected scenarios. The impact of reduced-cost converters is reflected in terms of the break-even distance. This report presents a comprehensive review of the functional benefits of HVDC transmission and updated cost data for both ac and dc system components. It also provides some provocative thoughts on how direct current transmission might be applied to better utilize and expand our nation`s increasingly stressed transmission assets.

  20. FY 2000 research and development of fundamental technologies for AC superconducting power devices. R and D of fundamental technologies for superconducting power cables and faults current limiters, R and D of superconducting magnets for power applications, and study on the total systems and related subjects; 2000 nendo koryu chodendo denryoku kiki kiban gijutsu kenkyu kaihatsu seika hokokusho. Chodendo soden cable kiban gijutsu no kenkyu kaihatsu, chodendo genryuki kiban gijutsu no kenkyu kaihatsu, denryokuyo chodendo magnet no kenkyu kaihatsu, total system nado no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The project for research and development of fundamental technologies for AC superconducting power devices has been started, and the FY 2000 results are reported. The R and D of fundamental technologies for superconducting power cables include grasping the mechanical characteristics associated with integration necessary for fabrication of large current capacity and long cables; development of barrier cable materials by various methods; and development of short insulated tubes as cooling technology for long superconducting cables, and grasping its thermal/mechanical characteristics. The R and D of faults current limiters include introduction of the unit for superconducting film fabrication, determination of the structures and layouts for large currents, and improvement of performance of each device for high voltages. R and D of superconducting magnets for power applications include grasping the fundamental characteristics of insulation at cryogenic temperature, completion of the insulation designs for high voltage/current lead bushing, and development of prototype sub-cooled nitrogen cooling unit for cooling each AC power device. Study on the total systems and related subjects include analysis for stabilization of the group model systems, to confirm improved voltage stability when the superconducting cable is in service. (NEDO)

  1. Tight aspect ratio tokamak power reactor with superconducting TF coils

    International Nuclear Information System (INIS)

    Nishio, S.; Tobita, K.; Konishi, S.; Ando, T.; Hiroki, S.; Kuroda, T.; Yamauchi, M.; Azumi, M.; Nagata, M.

    2003-01-01

    Tight aspect ratio tokamak power reactor with super-conducting toroidal field (TF) coils has been proposed. A center solenoid coil system and an inboard blanket were discarded. The key point was how to find the engineering design solution of the TF coil system with the high field and high current density. The coil system with the center post radius of less than 1 m can generate the maximum field of ∼ 20 T. This coil system causes a compact reactor concept, where the plasma major and minor radii of 3.75 m and 1.9 m, respectively and the fusion power of 1.8 GW. (author)

  2. Future development of large superconducting generators

    International Nuclear Information System (INIS)

    Singh, S.K.; Mole, C.J.

    1989-01-01

    Large superconducting generators are being developed worldwide. The use of superconductors to reduce the electrical power dissipation in power equipment has been a technological possibility ever since the discovery of superconductivity, even though their use in power equipment remained an impractical dream for a long time. However, scientific and technological progress in superconductivity and cryogenics has brought this dream much closer to reality. Results obtained so far establish the technical feasibility of these machines. Analytical developments have been providing a sound basis for the design of superconducting machines and results of these design studies have shown improvements in power density of up to a factor of 10 higher than the power density for conventional machines. This paper describes the recently completed USA programs, the current foreign and USA programs, and then proposes a USA development program to maintain leadership in the field

  3. The electric power engineering handbook electric power generation, transmission, and distribution

    CERN Document Server

    Grigsby, Leonard L

    2012-01-01

    Featuring contributions from worldwide leaders in the field, the carefully crafted Electric Power Generation, Transmission, and Distribution, Third Edition (part of the five-volume set, The Electric Power Engineering Handbook) provides convenient access to detailed information on a diverse array of power engineering topics. Updates to nearly every chapter keep this book at the forefront of developments in modern power systems, reflecting international standards, practices, and technologies. Topics covered include: * Electric Power Generation: Nonconventional Methods * Electric Power Generation

  4. Microwave energy transmission system for solar power station

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Hiroshi

    1988-05-05

    This paper deals with a microwave wireless energy transmission system which will be required for a solar power station under investigation, particularly, it describes its foundation and future investigation. It is supposed that for realization of microwave wireless transmission techniques, it is most important to investigate the effect of strong microwave beams on a plasma environment, establish control techniques for microwave beams in which a retro-directive system is combined with a computer control system, and develop a semiconductor transmission module. Institute of Space and Astronautical Science (Japan) made an experiment on the effect of microwaves on ionospheric plasma by using an observatory rocket. The institute has planned to make an experiment on a microwave energy transmission system which is to be mounted to a small-scale space flyer unit in order to examine the control of microwave beams and 10 KW power transmission, in addition to investigation on the interaction of microwave energy beams with a plasma environment. (4 figs, 3 tabs, 20 refs)

  5. Phased Array Excitations For Efficient Near Field Wireless Power Transmission

    Science.gov (United States)

    2016-09-01

    channeled to the battery or power plant. Figure 2. WPT System Block Diagram for Battery Charging. Source : [2]. Wireless power transfer has gained...EXCITATIONS FOR EFFICIENT NEAR-FIELD WIRELESS POWER TRANSMISSION by Sean X. Hong September 2016 Thesis Advisor: David Jenn Second Reader...TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE PHASED ARRAY EXCITATIONS FOR EFFICIENT NEAR-FIELD WIRELESS POWER TRANSMISSION 5

  6. Transmission cost allocation based on power flow tracing considering reliability benefit

    International Nuclear Information System (INIS)

    Leepreechanon, N.; Singharerg, S.; Padungwech, W.; Nakawiro, W.; Eua-Arporn, B.; David, A.K.

    2007-01-01

    Power transmission networks must be able to accommodate the continuously growing demand for reliable and economical electricity. This paper presented a method to allocate transmission use and reliability cost to both generators and end-consumers. Although transmission cost allocation methods change depending on the local context of the electric power industry, there is a common principle that transmission line capacity should be properly allocated to accommodate actual power delivery with an adequate reliability margin. The method proposed in this paper allocates transmission embedded cost to both generators and loads in an equitable manner, incorporating probability indices to allocate transmission reliability margin among users in both supply and demand sides. The application of the proposed method was illustrated using Bialek's tracing method on a multiple-circuit, six-bus transmission system. Probabilistic indices known as the transmission internal reliability margin (TIRM) and transmission external reliability margin (TERM) decomposed from the transmission reliability margin (TRM) were introduced, making true cost of using overall transmission facilities. 6 refs., 11 tabs., 5 figs

  7. Enhancing the utilization of photovoltaic power generation by superconductive magnetic energy storage

    International Nuclear Information System (INIS)

    Tam, K.S.; Kumar, P.; Foreman, M.

    1989-01-01

    This paper demonstrates that a superconductive magnetic energy storage (SMES) system can enhance large scale utilization of PV generation. With SMES support, power generated from PV arrays van be fully utilized under different weather conditions and PV penetrations can be increased to significant levels without causing adverse effects to the power system. Coupled with PV generation, a SMES system is even more effective in performing diurnal load leveling. A coordinated PV/SMES operation scheme is proposed and demonstrated under different weather conditions

  8. Wireless electricity (Power) transmission using solar based power satellite technology

    International Nuclear Information System (INIS)

    Maqsood, M; Nasir, M Nauman

    2013-01-01

    In the near future due to extensive use of energy, limited supply of resources and the pollution in environment from present resources e.g. (wood, coal, fossil fuel) etc, alternative sources of energy and new ways to generate energy which are efficient, cost effective and produce minimum losses are of great concern. Wireless electricity (Power) transmission (WET) has become a focal point as research point of view and nowadays lies at top 10 future hot burning technologies that are under research these days. In this paper, we present the concept of transmitting power wirelessly to reduce transmission and distribution losses. The wired distribution losses are 70 – 75% efficient. We cannot imagine the world without electric power which is efficient, cost effective and produce minimum losses is of great concern. This paper tells us the benefits of using WET technology specially by using Solar based Power satellites (SBPS) and also focuses that how we make electric system cost effective, optimized and well organized. Moreover, attempts are made to highlight future issues so as to index some emerging solutions.

  9. Magnetic penetration depth of YBa2Cu3O(7-delta) thin films determined by the power transmission method

    Science.gov (United States)

    Heinen, Vernon O.; Miranda, Felix A.; Bhasin, Kul B.

    1992-01-01

    A power transmission measurement technique was used to determine the magnetic penetration depth (lambda) of YBa2Cu3O(7-delta) superconducting thin films on LaAlO3 within the 26.5 to 40.0 GHz frequency range, and at temperatures from 20 to 300 K. Values of lambda ranging from 1100 to 2500 A were obtained at low temperatures. The anisotropy of lambda was determined from measurements of c-axis and a-axis oriented films. An estimate of the intrinsic value of lambda of 90 +/- 30 nm was obtained from the dependence of lambda on film thickness. The advantage of this technique is that it allows lambda to be determined nondestructively.

  10. [Design and optimization of wireless power and data transmission for visual prosthesis].

    Science.gov (United States)

    Lei, Xuping; Wu, Kaijie; Zhao, Lei; Chai, Xinyu

    2013-11-01

    Boosting spatial resolution of visual prostheses is an effective method to improve implant subjects' visual perception. However, power consumption of visual implants greatly rises with the increasing number of implanted electrodes. In respond to this trend, visual prostheses need to develop high-efficiency wireless power transmission and high-speed data transmission. This paper presents a review of current research progress on wireless power and data transmission for visual prostheses, analyzes relative principles and requirement, and introduces design methods of power and data transmission.

  11. Power transmission charges based on nodal pricing which considers restriction on power transmission; Soden setsuyaku wo koryoshita nodaru pricing ni motozuku soden ryokin

    Energy Technology Data Exchange (ETDEWEB)

    Okada, K.; Asano, H. [Central Research Institute of Electric Power Industry, Tokyo (Japan); Matsukawa, I. [Musashi University, Tokyo (Japan)

    1997-01-30

    Power transmission charges were derived by using nodal pricing, and a discussion was given on what effects are given on system conditions, nodal price and consignment charge by how coordination points of independent power producers (IPP) and power demand are handled. A test model having six nodes (busbars) and eleven branches (transmission lines) was used. Since demands of the same kind are hypothesized to be coordinated in this simulation, the total nodal price becomes an equivalent value if there is no restrictions in transmission line current. If the transmission restrictions are taken into consideration, demand amounts at each node are so adjusted that excess current in a transmission line exceeding the transmission capacity will be eliminated. Thus, the demand-supply balancing amount in the entire system becomes smaller than when restrictions are not considered. As a result of the analysis, the IPP coordination points have possibilities to cause congestion (overload current) in the system, raise nodal price at each point, and sharply raise the consignment charge. It was found that an effect may also occur to a node depending on position of demand generation. 6 refs., 3 figs., 7 tabs.

  12. Combination of AC Transmission Expansion Planning and Reactive Power Planning in the restructured power system

    International Nuclear Information System (INIS)

    Hooshmand, Rahmat-Allah; Hemmati, Reza; Parastegari, Moein

    2012-01-01

    Highlights: ► To overcome the disadvantages of DC model in Transmission Expansion Planning, AC model should be used. ► The Transmission Expansion Planning associated with Reactive Power Planning results in fewer new transmission lines. ► Electricity market concepts should be considered in Transmission Expansion Planning problem. ► Reliability aspects should be considered in Transmission Expansion Planning problem. ► Particle Swarm Optimization is a suitable optimization method to solve Transmission Expansion Planning problem. - Abstract: Transmission Expansion Planning (TEP) is an important issue in power system studies. It involves decisions on location and number of new transmission lines. Before deregulation of the power system, the goal of TEP problem was investment cost minimization. But in the restructured power system, nodal prices, congestion management, congestion surplus and so on, have been considered too. In this paper, an AC model of TEP problem (AC-TEP) associated with Reactive Power Planning (RPP) is presented. The goals of the proposed planning problem are to minimize investment cost and maximize social benefit at the same time. In the proposed planning problem, in order to improve the reliability of the system the Expected Energy Not Supplied (EENS) index of the system is limited by a constraint. For this purpose, Monte Carlo simulation method is used to determine the EENS. Particle Swarm Optimization (PSO) method is used to solve the proposed planning problem which is a nonlinear mixed integer optimization problem. Simulation results on Garver and RTS systems verify the effectiveness of the proposed planning problem for reduction of the total investment cost, EENS index and also increasing social welfare of the system.

  13. A review on fault classification methodologies in power transmission systems: Part-II

    Directory of Open Access Journals (Sweden)

    Avagaddi Prasad

    2018-05-01

    Full Text Available The countless extent of power systems and applications requires the improvement in suitable techniques for the fault classification in power transmission systems, to increase the efficiency of the systems and to avoid major damages. For this purpose, the technical literature proposes a large number of methods. The paper analyzes the technical literature, summarizing the most important methods that can be applied to fault classification methodologies in power transmission systems.The part 2 of the article is named “A review on fault classification methodologies in power transmission systems”. In this part 2 we discussed the advanced technologies developed by various researchers for fault classification in power transmission systems. Keywords: Transmission line protection, Protective relaying, Soft computing techniques

  14. ORNL superconducting technology program for electric power systems

    Science.gov (United States)

    Hawsey, R. A.

    1994-04-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy's Office of Energy Efficiency and Renewable Energy to develop the technology base needed by US industry for commercial development of electric power applications of high-temperature superconductivity. The two major elements of this program are conductor development and applications development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from information prepared for the FY 1993 Annual Program Review held July 28--29, 1993. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to industrial competitiveness projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer to US industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire products.

  15. Experimental transmission electron microscopy studies and phenomenological model of bismuth-based superconducting compounds

    International Nuclear Information System (INIS)

    Elboussiri, Khalid

    1991-01-01

    The main part of this thesis is devoted to an experimental study by transmission electron microscopy of the different phases of the superconducting bismuth cuprates Bi_2Sr_2Ca_n_-_1Cu_nO_2_n_+_4. In high resolution electron microscopy, the two types of incommensurate modulation realized in these compounds have been observed. A model of structure has been proposed from which the simulated images obtained are consistent with observations. The medium resolution images correlated with the electron diffraction data have revealed existence of a multi-soliton regime with latent lock in phases of commensurate periods between 4b and 10b. At last, a description of different phases of these compounds as a result of superstructures from a disordered perovskite type structure is proposed (author) [fr

  16. Performance evaluation of power transmission coils for powering endoscopic wireless capsules.

    Science.gov (United States)

    Basar, Md Rubel; Ahmad, Mohd Yazed; Cho, Jongman; Ibrahim, Fatimah

    2015-01-01

    This paper presents an analysis of H-field generated by a simple solenoid, pair of solenoids, pair of double-layer solenoids, segmented-solenoid, and Helmholtz power transmission coils (PTCs) to power an endoscopic wireless capsule (WC). The H-fields were computed using finite element analysis based on partial differential equations. Three parameters were considered in the analysis: i) the maximum level of H-field (Hmax) to which the patient's body would be exposed, ii) the minimum level of H-field (Hmin) effective for power transmission, and iii) uniformity of H-field. We validated our analysis by comparing the computed data with data measured from a fabricated Helmholtz PTC. This analysis disclosed that at the same excitation power, all the PTCs are able to transfer same amount of minimum usable power since they generated almost equal value of Hmin. The level of electromagnetic exposure and power transfer stability across all the PTCs would vary significantly which is mainly due to the different level of Hmax and H-field uniformity. The segmented solenoid PTC would cause the lowest exposure and this PTC can transfer the maximum amount of power. The Helmholtz PTC would be able to transfer the most stable power with a moderate level of exposure.

  17. Efficiency of Finish power transmission network companies

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    The Finnish Energy Market Authority has investigated the efficiency of power transmissions network companies. The results show that the intensification potential of the branch is 402 million FIM, corresponding to about 15% of the total costs of the branch and 7.3 % of the turnout. Energy Market Authority supervises the reasonableness of the power transmission prices, and it will use the results of the research in supervision. The research was carried out by the Quantitative Methods Research Group of Helsinki School of Economics. The main objective of the research was to create an efficiency estimation method for electric power distribution network business used for Finnish conditions. Data of the year 1998 was used as basic material in the research. Twenty-one of the 102 power distribution network operators was estimated to be totally efficient. Highest possible efficiency rate was 100, and the average of the efficiency rates of all the operators was 76.9, the minimum being 42.6

  18. Assessment of proactive transmission power control for wireless sensor networks

    NARCIS (Netherlands)

    kotian, Roshan; Exarchakos, Georgios; Liotta, Antonio

    2014-01-01

    In order to prolong lifetime of Wireless Sensor Networks (WSN), Transmission Power Control (TPC) techniques are employed. The existing TPC schemes adjust the transmission power mostly reacting to changes at link quality between communicating nodes. Proactive TPC has been proposed in the recent past

  19. High power RF transmission line component development

    International Nuclear Information System (INIS)

    Hong, B. G.; Hwang, C. K.; Bae, Y. D.; Yoon, J. S.; Wang, S. J.; Gu, S. H.; Yang, J. R.; Hahm, Y. S.; Oh, G. S.; Lee, J. R.; Lee, W. I.; Park, S. H.; Kang, M. S.; Oh, S. H.; Lee, W.I.

    1999-12-01

    We developed the liquid stub and phase shifter which are the key high RF power transmission line components. They show reliable operation characteristics and increased insulation capability, and reduced the size by using liquid (silicon oil, dielectric constant ε=2.72) instead of gas for insulating dielectric material. They do not have finger stock for the electric contact so the local temperature rise due to irregular contact and RF breakdown due to scratch in conductor are prevented. They can be utilized in broadcasting, radar facility which require high RF power transmission. Moreover, they are key components in RF heating system for fusion reactor. (author)

  20. High power RF transmission line component development

    Energy Technology Data Exchange (ETDEWEB)

    Hong, B. G.; Hwang, C. K.; Bae, Y. D.; Yoon, J. S.; Wang, S. J.; Gu, S. H.; Yang, J. R.; Hahm, Y. S.; Oh, G. S.; Lee, J. R.; Lee, W. I.; Park, S. H.; Kang, M. S.; Oh, S. H.; Lee, W.I

    1999-12-01

    We developed the liquid stub and phase shifter which are the key high RF power transmission line components. They show reliable operation characteristics and increased insulation capability, and reduced the size by using liquid (silicon oil, dielectric constant {epsilon}=2.72) instead of gas for insulating dielectric material. They do not have finger stock for the electric contact so the local temperature rise due to irregular contact and RF breakdown due to scratch in conductor are prevented. They can be utilized in broadcasting, radar facility which require high RF power transmission. Moreover, they are key components in RF heating system for fusion reactor. (author)

  1. Analysis of Enhancement in Available Power Transfer Capacity by STATCOM Integrated SMES by Numerical Simulation Studies

    DEFF Research Database (Denmark)

    Saraswathi, Ananthavel; Sanjeevikumar, Padmanaban; Shanmugham, Sutha

    2016-01-01

    Power system researches are mainly focused in enhancing the available power capacities of the existing transmission lines. But still, no prominent solutions have been made due to several factors that affect the transmission lines which include the length, aging of the cables and losses...... on generation, transmission and distribution etc. This paper exploited the integration of static synchronous compensator (STATCOM) and superconducting magnetic energy storage (SMES) which is then connected to existing power transmission line for enhancing the available power transfer capacity (ATC). STATCOMis...... power electronic voltage source converter (VSC) which is connected to the transmission system for shunt reactive power and harmonics compensation. SMES is a renowned clean energy storage technology. Feasibility of the proposed power system can control the real as well as reactive power flow...

  2. Wireless Power Transmission Options for Space Solar Power

    Science.gov (United States)

    Potter, Seth; Davis, Dean; Born, Martin; Bayer, Martin; Howell, Joe; Mankins, John

    2008-01-01

    Space Solar Power (SSP), combined with Wireless Power Transmission (WPT), offers the far-term potential to solve major energy problems on Earth. In the long term, we aspire to beam energy to Earth from geostationary Earth orbit (GEO), or even further distances in space. In the near term, we can beam power over more moderate distances, but still stretch the limits of today s technology. In recent studies, a 100 kWe-class "Power Plug" Satellite and a 10 kWe-class Lunar Polar Solar Power outpost have been considered as the first steps in using these WPT options for SSP. Our current assessments include consideration of orbits, wavelengths, and structural designs to meet commercial, civilian government, and military needs. Notional transmitter and receiver sizes are considered for use in supplying 5 to 40 MW of power. In the longer term, lunar or asteroidal material can be used. By using SSP and WPT technology for near-term missions, we gain experience needed for sound decisions in designing and developing larger systems to send power from space to Earth.

  3. Technical and economic considerations of extra high voltage power transmission

    Energy Technology Data Exchange (ETDEWEB)

    Kahnt, R

    1966-09-01

    The reasons for the employment of higher transmission voltages are listed and the points decisive for the selection of three phase ac or dc systems are reviewed. The technical and economic problems arising in three phase extra high voltage transmission are discussed. These include selection of voltage, economical design of power lines, insulation problems, power supply dependability, equipment rating and reactive power and stability problems.

  4. Minimization of power consumption during charging of superconducting accelerating cavities

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, Anirban Krishna, E-mail: anirban.bhattacharyya@physics.uu.se; Ziemann, Volker; Ruber, Roger; Goryashko, Vitaliy

    2015-11-21

    The radio frequency cavities, used to accelerate charged particle beams, need to be charged to their nominal voltage after which the beam can be injected into them. The standard procedure for such cavity filling is to use a step charging profile. However, during initial stages of such a filling process a substantial amount of the total energy is wasted in reflection for superconducting cavities because of their extremely narrow bandwidth. The paper presents a novel strategy to charge cavities, which reduces total energy reflection. We use variational calculus to obtain analytical expression for the optimal charging profile. Energies, reflected and required, and generator peak power are also compared between the charging schemes and practical aspects (saturation, efficiency and gain characteristics) of power sources (tetrodes, IOTs and solid state power amplifiers) are also considered and analysed. The paper presents a methodology to successfully identify the optimal charging scheme for different power sources to minimize total energy requirement.

  5. Minimization of power consumption during charging of superconducting accelerating cavities

    International Nuclear Information System (INIS)

    Bhattacharyya, Anirban Krishna; Ziemann, Volker; Ruber, Roger; Goryashko, Vitaliy

    2015-01-01

    The radio frequency cavities, used to accelerate charged particle beams, need to be charged to their nominal voltage after which the beam can be injected into them. The standard procedure for such cavity filling is to use a step charging profile. However, during initial stages of such a filling process a substantial amount of the total energy is wasted in reflection for superconducting cavities because of their extremely narrow bandwidth. The paper presents a novel strategy to charge cavities, which reduces total energy reflection. We use variational calculus to obtain analytical expression for the optimal charging profile. Energies, reflected and required, and generator peak power are also compared between the charging schemes and practical aspects (saturation, efficiency and gain characteristics) of power sources (tetrodes, IOTs and solid state power amplifiers) are also considered and analysed. The paper presents a methodology to successfully identify the optimal charging scheme for different power sources to minimize total energy requirement.

  6. High power density superconducting rotating machines—development status and technology roadmap

    Science.gov (United States)

    Haran, Kiruba S.; Kalsi, Swarn; Arndt, Tabea; Karmaker, Haran; Badcock, Rod; Buckley, Bob; Haugan, Timothy; Izumi, Mitsuru; Loder, David; Bray, James W.; Masson, Philippe; Stautner, Ernst Wolfgang

    2017-12-01

    Superconducting technology applications in electric machines have long been pursued due to their significant advantages of higher efficiency and power density over conventional technology. However, in spite of many successful technology demonstrations, commercial adoption has been slow, presumably because the threshold for value versus cost and technology risk has not yet been crossed. One likely path for disruptive superconducting technology in commercial products could be in applications where its advantages become key enablers for systems which are not practical with conventional technology. To help systems engineers assess the viability of such future solutions, we present a technology roadmap for superconducting machines. The timeline considered was ten years to attain a Technology Readiness Level of 6+, with systems demonstrated in a relevant environment. Future projections, by definition, are based on the judgment of specialists, and can be subjective. Attempts have been made to obtain input from a broad set of organizations for an inclusive opinion. This document was generated through a series of teleconferences and in-person meetings, including meetings at the 2015 IEEE PES General meeting in Denver, CO, the 2015 ECCE in Montreal, Canada, and a final workshop in April 2016 at the University of Illinois, Urbana-Champaign that brought together a broad group of technical experts spanning the industry, government and academia.

  7. Wildlife and electric power transmission

    Science.gov (United States)

    Ellis, D.H.; Goodwin, J.G.; Hunt, J.R.; Fletcher, John L.; Busnel, R.G.

    1978-01-01

    Hundreds of thousands of miles of transmission lines have been introduced into our natural environment. These lines and their corridors can be damaging or beneficial to wildlife communities depending on how they are designed, where they are placed, and when they are constructed and maintained. With the current trend toward UHV systems, new problems (associated with additional increments in audible noise, electric and magnetic force fields, etc.) must be addressed. We recommend the following areas for careful study: (1) the response of wilderness species to transmission lines and line construction and maintenance activities (2) the magnitude of bird collision and electrocution mortality, (3) the response of power corridor and power tower in habiting wildlife to laboratory and field doses of electro-chemical oxidants, corona noise, electric and magnetic fields, etc., (4) the productivity of tower inhabiting birds compared with nearby non-tower nesters, and (5) the influence of powerline corridors on mammalian and avian migration patterns. It is our hope that the questions identified in this study will help stimulate further research so that we can maximize wildlife benefits and minimize wildlife detriments.

  8. A study of the status and future of superconducting magnetic energy storage in power systems

    International Nuclear Information System (INIS)

    Xue, X D; Cheng, K W E; Sutanto, D

    2006-01-01

    Superconducting magnetic energy storage (SMES) systems offering flexible, reliable, and fast acting power compensation are applicable to power systems to improve power system stabilities and to advance power qualities. The authors have summarized researches on SMES applications to power systems. Furthermore, various SMES applications to power systems have been described briefly and some crucial schematic diagrams and equations are given. In addition, this study presents valuable suggestions for future studies of SMES applications to power systems. Hence, this paper is helpful for co-researchers who want to know about the status of SMES applications to power systems. (topical review)

  9. Draft Environmental Impact Statement: BPA/Puget Power Northwest Washington Transmission Project

    International Nuclear Information System (INIS)

    1993-11-01

    Bonneville Power Administration (BPS) and Puget Sound Power ampersand Light (Puget Power) propose to upgrade the existing high-voltage transmission system in the Whatcom and Skagit County area between the towns of Custer and Sedro Woolley, including within the city of Bellingham starting in 1995. The upgrades of the interconnected 230,000 volt (230-kV) and 115-kV systems are needed to increase the reliability of the local transmission system and to increase the import capacity on a nearby US-Canada 500-kV intertie by about 850 megawatts (MW). The increase in north-south transfer capability would be shared by BPA and Puget Power (about 425 MW each). Other actions would include replacement of an existing BPA 230-kV single-circuit, wood-pole H-frame transmission line with a lattice-steel double-circuit line; an existing Puget Power 115-kV single wood-pole transmission line rebuild, two short 115-kV Puget Power lines added at BPA's Bellingham Substation; and improvements made at existing BPA and Puget Power substations

  10. Control of the Superconducting Magnets current Power Supplies of the TJ-II Gyrotrons

    International Nuclear Information System (INIS)

    Ros, A.; Fernandez, A.; Tolkachev, A.; Catalan, G.

    2006-01-01

    The TJ-II ECRH heating system consists of two gyrotrons, which can deliver a maximum power of 300 kW at a frequency of 53.2 GHz. Another 28 GHz gyrotron is going to be used in the Bernstein waves heating system. In order to get the required frequency, the gyrotrons need and homogeneous magnetic field of several tesla, which is generated by a superconducting coil field by a current source. This document describes the current source control as well as the high precision ammeters control. These ammeters measure the current in the superconducting coils. The user interface and the programming of the control system are described. The communication between devices is also explained. (author) 9 Refs

  11. Electric power transmission pricing regulations and efficiency

    International Nuclear Information System (INIS)

    Goldoni, G.

    1999-01-01

    An efficient-price mechanism for electricity transmission is very hard to find, essentially because of the natural monopoly condition of the grid and its peculiar interactions with generation. The use of Optimal Power Flow Models is difficult to implement and could be easily distorted by strategical behaviour of generators. These models, however, could became a valuable efficiency-test for actual transmission charges and codes [it

  12. Hydropower generation and storage, transmission constraints and market power

    International Nuclear Information System (INIS)

    Johnsen, T.A.

    2001-01-01

    We study hydropower generation and storage in the presence of uncertainty about future inflows, market power and limited transmission capacity to neighboring regions. Within our simple two-period model, market power leads to too little storage. The monopolist finds it profitable to produce more than the competitive amount in the first period and thereby stores little water in the first of two periods in order to become import constrained in the second period. In addition, little storage reduces the probability of becoming export constrained in the second period, even if the second period exhibits large inflow. Empirical findings for an area in the western part of Norway with only hydropower and high ownership concentration at the supply side, fit well to our theoretical model. We apply a numerical model to examine various policies to reduce the inefficiencies created by the local monopoly. Transmission investments have two effects. First, the export possibilities in the first period increase. More export leads to lower storage in the first period. Second, larger import capacity reduces the market power problem in the second period. The two opposite effects of transmission investments in a case with market power may be unique to hydropower systems. Introducing financial transmission rights enhance the market power of the monopolist in our model. Price caps in both or in the second period only, reduce the strategic value of water storage. (Author)

  13. One-phase dual converter for two quadrant power control of superconducting magnets

    International Nuclear Information System (INIS)

    Ehsani, M.; Kustom, R.I.; Boom, R.W.

    1985-01-01

    This paper presents the results of theoretical and experimental development of a new dc-ac-dc converter for superconducting magnet power supplies. The basic operating principles of the circuit are described followed by a theoretical treatment of the dynamics and control of the system. The successful results of the first experimental operation and control of such a circuit are presented and discussed

  14. Technical and economic considerations of extra high voltage power transmission

    Energy Technology Data Exchange (ETDEWEB)

    Kahnt, R

    1966-09-01

    The reasons for the employment of higher transmission voltages are listed and the points decisive for the selection of three phase ac or dc systems are reviewed. This is followed by treatment of the technical and economic problems arising in three phase-extra high voltage transmission. These include selection of voltage, economical design of power lines, insulation problems, power supply dependability, equipment rating, and reactive power and stability problems.

  15. Quantum heat engine with coupled superconducting resonators

    Science.gov (United States)

    Hardal, Ali Ü. C.; Aslan, Nur; Wilson, C. M.; Müstecaplıoǧlu, Özgür E.

    2017-12-01

    We propose a quantum heat engine composed of two superconducting transmission line resonators interacting with each other via an optomechanical-like coupling. One resonator is periodically excited by a thermal pump. The incoherently driven resonator induces coherent oscillations in the other one due to the coupling. A limit cycle, indicating finite power output, emerges in the thermodynamical phase space. The system implements an all-electrical analog of a photonic piston. Instead of mechanical motion, the power output is obtained as a coherent electrical charging in our case. We explore the differences between the quantum and classical descriptions of our system by solving the quantum master equation and classical Langevin equations. Specifically, we calculate the mean number of excitations, second-order coherence, as well as the entropy, temperature, power, and mean energy to reveal the signatures of quantum behavior in the statistical and thermodynamic properties of the system. We find evidence of a quantum enhancement in the power output of the engine at low temperatures.

  16. Report on achievements in fiscal 1999. Research and development of electric power storage using high-temperature super-conductive flywheels (research and development on manufacture of super-conductive magnetic bearings); 1999 nendo koon chodendo flywheel denryoku chozo kenkyu kaihatsu. Chodendo jiki jikuuke no seisaku no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-01

    Introduction of electric power storage equipment is sought, which will be discretely installed in power distribution substations. Therefore, elementary technologies were researched on 'manufacture of super-conductive magnetic bearings' intended for practical application of an electric power storage system of 10-MWh class using high-temperature super-conductive flywheels. Research and development has been performed on different kinds of super-conductive magnetic bearings which combine high-temperature super-conductive materials with permanent magnets. In order to measure the characteristics of the super-conductive magnetic bearings, measurements were executed on rotation loss, loading power and bearing constants. In the measurement of the rotation loss, a {phi} 180 axial type super-conductive magnetic bearing using an Sm-based superconductor ({phi} 180AxSMB2) was given various kinds of tests by using a rotation loss measuring and testing machine. The results were compared with those for the {phi} 180AxSMB1 using the YBCO-based superconductor and other SMBs. In the measurements for the other items, various items were measured on dynamic rotation properties of the {phi} 180AxSMB and {phi} 180RaSMB by using a static bearing constant testing machine. In discussing the loading power characteristics, the dynamic rotation properties of the {phi} 180RaSMB were measured, and the loading power characteristics were discussed on super-conductive magnetic bearings for medium size models and super-conductive magnetic bearings for large system FS. (NEDO)

  17. Superconducting quantum electronics

    International Nuclear Information System (INIS)

    Kose, V.

    1989-01-01

    This book reviews recent accomplishments, presents new results and discusses possible future developments of superconducting quantum electronics and high T c superconductivity. The three main parts of the book deal with fundamentals, sensitive detectors, and precision metrology. New results reported include: correct equivalent circuits modelling superconducting electronic devices; exact solution of the Mattis-Bardeen equations describing various experiments for thin films; complete theoretical description and experimental results for a new broad band spectrum analyzer; a new Josephson junction potentiometer allowing tracing of unknown voltage ratios back to well-known frequency ratios; and fast superconducting SQUID shift registers enabling the production of calculable noise power spectra in the microwave region

  18. Conceptual design study of the moderate size superconducting spherical tokamak power plant

    Science.gov (United States)

    Gi, Keii; Ono, Yasushi; Nakamura, Makoto; Someya, Youji; Utoh, Hiroyasu; Tobita, Kenji; Ono, Masayuki

    2015-06-01

    A new conceptual design of the superconducting spherical tokamak (ST) power plant was proposed as an attractive choice for tokamak fusion reactors. We reassessed a possibility of the ST as a power plant using the conservative reactor engineering constraints often used for the conventional tokamak reactor design. An extensive parameters scan which covers all ranges of feasible superconducting ST reactors was completed, and five constraints which include already achieved plasma magnetohydrodynamic (MHD) and confinement parameters in ST experiments were established for the purpose of choosing the optimum operation point. Based on comparison with the estimated future energy costs of electricity (COEs) in Japan, cost-effective ST reactors can be designed if their COEs are smaller than 120 mills kW-1 h-1 (2013). We selected the optimized design point: A = 2.0 and Rp = 5.4 m after considering the maintenance scheme and TF ripple. A self-consistent free-boundary MHD equilibrium and poloidal field coil configuration of the ST reactor were designed by modifying the neutral beam injection system and plasma profiles. The MHD stability of the equilibrium was analysed and a ramp-up scenario was considered for ensuring the new ST design. The optimized moderate-size ST power plant conceptual design realizes realistic plasma and fusion engineering parameters keeping its economic competitiveness against existing energy sources in Japan.

  19. Characteristics of the joint mini-model high temperature superconducting cable

    International Nuclear Information System (INIS)

    Kim, H.; Sim, K.; Cho, J.; Kim, S.; Kim, J.H.; Jung, H.Y.

    2008-01-01

    To obtain realistic data on the high temperature superconducting (HTS) power cable, 3-phase 100 m long, 22.9 kV class HTS power transmission cable system have been developed by Korea Electrotechnology Research Institute (KERI) and LS cable Ltd. that is one of 21st Century Frontier Project in Korea. This cable was installed at Go-chang testing site of Korea Electric Power Corporation (KEPCO). For the application of the HTS power cable joint is very important to ensure the performance. Therefore, this paper gives some investigation of AC loss, critical current and joint resistance in jointed HTS tape. We experimentally showed that the influence of joint resistance on AC loss by using several joint methods. Finally, we are measured critical current, AC loss and jointed resistance for the manufactured mini-model cable

  20. The future of power transmission and distribution in India

    International Nuclear Information System (INIS)

    Parakh, S.C.

    1995-01-01

    India's growing economy requires considerable investment in the power sector. Though rapid strides have been made, the power sector has been unable to supply quality power and demand is continuously outstripping supply. The future of power transmission and distribution in India is discussed. 2 tabs

  1. Design and operating experience of an ac-dc power converter for a superconducting magnetic energy storage unit

    International Nuclear Information System (INIS)

    Boenig, H.J.; Nielsen, R.G.; Sueker, K.H.

    1984-01-01

    The design philosophy and the operating behavior of a 5.5 kA, +-2.5 kV converter, being the electrical interface between a high voltage transmission system and a 30 MJ superconducting coil, are documented in this paper. Converter short circuit tests, load tests under various control conditions, dc breaker tests for magnet current interruption, and converter failure modes are described

  2. A novel power efficient location-based cooperative routing with transmission power-upper-limit for wireless sensor networks.

    Science.gov (United States)

    Shi, Juanfei; Calveras, Anna; Cheng, Ye; Liu, Kai

    2013-05-15

    The extensive usage of wireless sensor networks (WSNs) has led to the development of many power- and energy-efficient routing protocols. Cooperative routing in WSNs can improve performance in these types of networks. In this paper we discuss the existing proposals and we propose a routing algorithm for wireless sensor networks called Power Efficient Location-based Cooperative Routing with Transmission Power-upper-limit (PELCR-TP). The algorithm is based on the principle of minimum link power and aims to take advantage of nodes cooperation to make the link work well in WSNs with a low transmission power. In the proposed scheme, with a determined transmission power upper limit, nodes find the most appropriate next nodes and single-relay nodes with the proposed algorithm. Moreover, this proposal subtly avoids non-working nodes, because we add a Bad nodes Avoidance Strategy (BAS). Simulation results show that the proposed algorithm with BAS can significantly improve the performance in reducing the overall link power, enhancing the transmission success rate and decreasing the retransmission rate.

  3. A Novel Power Efficient Location-Based Cooperative Routing with Transmission Power-Upper-Limit for Wireless Sensor Networks

    Science.gov (United States)

    Shi, Juanfei; Calveras, Anna; Cheng, Ye; Liu, Kai

    2013-01-01

    The extensive usage of wireless sensor networks (WSNs) has led to the development of many power- and energy-efficient routing protocols. Cooperative routing in WSNs can improve performance in these types of networks. In this paper we discuss the existing proposals and we propose a routing algorithm for wireless sensor networks called Power Efficient Location-based Cooperative Routing with Transmission Power-upper-limit (PELCR-TP). The algorithm is based on the principle of minimum link power and aims to take advantage of nodes cooperation to make the link work well in WSNs with a low transmission power. In the proposed scheme, with a determined transmission power upper limit, nodes find the most appropriate next nodes and single-relay nodes with the proposed algorithm. Moreover, this proposal subtly avoids non-working nodes, because we add a Bad nodes Avoidance Strategy (BAS). Simulation results show that the proposed algorithm with BAS can significantly improve the performance in reducing the overall link power, enhancing the transmission success rate and decreasing the retransmission rate. PMID:23676625

  4. Experiment of Power Supply Method for WLAN Sensor Using Both Energy Harvesting and Microwave Power Transmission

    International Nuclear Information System (INIS)

    Sakaguchi, K; Yamashita, S; Yamamoto, K; Nishio, T; Morikura, M; Huang, Y; Shinohara, N

    2014-01-01

    This paper proposes to improve effectiveness of supplying a sensor with energy using microwave power transmission (MPT) and energy harvesting (EH). The MPT duration should be as short as possible to avoid serious interference between the MPT and wireless local area network data transmission when co-channel operation of both microwave power transmission (MPT) and wireless data transmissions is performed. To shorten the MPT duration, we use multiple power sources such as an MPT source and an EH source to supply a sensor with power. Here, an overcharge or an energy shortage could occur at the sensor if the power supplied by both the MPT and EH sources is not adjusted appropriately. To solve this problem, the power supplied by multiple sources should be estimated precisely. In this paper, we propose a scheme for estimating the power supplied by multiple sources on the basis of an existing MPT scheduling system and then conducted an experiment using the scheme. From the experimental results, it is confirmed to estimate the power supplied by multiple sources successfully. In addition, the required MPT duration when the EH source is used is reduced compared to that when it is not used. Moreover, it is confirmed that the sensor station successfully estimates the power supplied by an MPT source and that by an EH source and adequately configures the MPT duration

  5. Harmonics in Offshore Wind Power Plants Employing Power Electronic Devices in the Transmission System

    DEFF Research Database (Denmark)

    Glasdam, Jakob Bærholm

    Introduction The trend in power generation is to partly replace conventional power plants with renewable energy sources. Offshore wind power has been selected to take up a significant proportion of the renewable energy production. The grid codes have been updated to accommodate the rising share...... of wind power. The onshore as well as offshore wind power plants (OWPPs) therefore have to meet the same stringent requirement as the conventional power plants. This can be accommodated by employment of flexible alternating current transmission system (FACTS) devices, such as the static compensator...... gives rise to a number of challenges to the wind power industry with regard to construction, installation as well as transmission of the generated energy. The STATCOM and the voltage-sourced converter high-voltage direct current (VSC-HVDC) are attractive solutions for grid connection of remotely located...

  6. Concept design of the high voltage transmission system for the collider tunnel

    International Nuclear Information System (INIS)

    Norman, L.S.

    1992-03-01

    In order to provide electrical service to the Superconducting Super Collider Laboratory (SSCL) 54-mile-circumference collider of 125 MVA at 69 kV or 155 MVA at 138 kV of distributed power, it must be demonstrated that the concept design for a high-voltage transmission system can meet the distribution requirements of the collider electrical system with its cryogenic system's large motor loads and its pulsed power technical systems. It is a practical design, safe for operating personnel and cost-effective. The normal high-voltage transmission techniques of overhead and underground around the 54-mile collider tunnel could not be applied because of technical and physical constraints, or was environmentally unacceptable. The approach taken to solve these problems is the installation of 69-kV or 138-kV exposed solid dielectric transmission cable inside the collider tunnel with the superconducting magnets, cryogenic piping, electrical medium, and low-voltage distribution systems, and electronic/instrumentation wiring systems. This mixed-use approach has never been attempted in a collider tunnel. Research into all aspects of the engineering and installation problems and consultation with transmission cable manufacturers, electrical utilities, and European entities with similar installations -- such as the Channel Tunnel -- demonstrate that the concept design is feasible and practical. This paper presents a history of the evolution of the concept design. Design studies are underway to determine the system configuration and voltages. Included in this report are tunnel transmission cable system considerations and evaluation of solid dielectric high-voltage cable design

  7. Concept design of the high-voltage transmission system for the collider tunnel

    International Nuclear Information System (INIS)

    Norman, L.S.

    1992-01-01

    In order to provide electrical service to the Superconducting Super Collider Laboratory (SSCL) 54-mile-circumference collider of 125 MVA at 69 kV or 155 MVA at 138 kV of distributed power, it must be demonstrated that the concept design for a high-voltage transmission system can meet the distribution requirements of the collider electrical system with its cryogenic system's large motor loads and its pulsed power technical systems. It is a practical design, safe for operating personnel and cost-effective. The normal high-voltage transmission techniques of overhead and underground around the 54-mile collider tunnel could not be applied because of technical and physical constraints, or was environmentally unacceptable. The approach taken to solve these problems is the installation of 69-kV or 138-kV exposed solid dielectric transmission cable inside the collider tunnel with the superconducting magnets, cryogenic piping, electrical medium, and low-voltage distribution systems, and electronic/instrumentation wiring systems. This mixed-use approach has never been attempted in a collider tunnel. Research into all aspects of the engineering and installation problems and consultation with transmission cable manufacturers, electrical utilities, and European entities with similar installations-such as the Channel Tunnel-demonstrate that the concept design is feasible and practical. This paper presents a history of the evolution of the concept design. Design studies are underway to determine the system configuration and voltages. Included in this report are tunnel transmission cable system considerations and evaluation of solid dielectric high-voltage cable design

  8. Transmission probability-based dynamic power control for multi-radio mesh networks

    CSIR Research Space (South Africa)

    Olwal, TO

    2008-09-01

    Full Text Available This paper presents an analytical model for the selection of the transmission power based on the bi-directional medium access information. Most of dynamic transmission power control algorithms are based on the single directional channel...

  9. Wireless Power Transmission via Sheet Medium Using Automatic Phase Adjustment of Multiple Inputs

    Science.gov (United States)

    Matsuda, Takashi; Oota, Toshifumi; Kado, Youiti; Zhang, Bing

    The wireless power transmission via sheet medium is a novel physical form of communication that utilizes the surface as a medium to provide both data and power transmission services. To efficiently transmit a relatively-large amount of electric power (several watts), we have developed a wireless power transmission system via sheet medium that concentrates the electric power on a specific spot by using phase control of multiple inputs. However, to find the optimal phases of the multiple inputs making the microwave converge on a specific spot in the sheet medium, the prior knowledge of the device's position, and the pre-experiment measuring the output power, are needed. In wireless communication area, it is known that the retrodirective array scheme can efficiently transmit the power in a self-phasing manner, which uses the pilot signals sent by the client devices. In this paper, we apply the retrodirective array scheme to the wireless power transmission system via sheet medium, and propose a power transmission scheme using the phase-adjustment of multiple inputs. To confirm the effectiveness of the proposal scheme, we evaluate its performance by computer simulation and realistic measurement. Both results show that the proposal scheme can achieve the retrodirectivity over the wireless power transmission via sheet medium.

  10. Superconducting machines. Chapter 4

    International Nuclear Information System (INIS)

    Appleton, A.D.

    1977-01-01

    A brief account is given of the principles of superconductivity and superconductors. The properties of Nb-Ti superconductors and the method of flux stabilization are described. The basic features of superconducting d.c. machines are illustrated by the use of these machines for ship propulsion, steel-mill drives, industrial drives, aluminium production, and other d.c. power supplies. Superconducting a.c. generators and their design parameters are discussed. (U.K.)

  11. High-Power Microwave Transmission and Mode Conversion Program

    Energy Technology Data Exchange (ETDEWEB)

    Vernon, Ronald J. [Univ. of Wisconsin, Madison, WI (United States)

    2015-08-14

    This is a final technical report for a long term project to develop improved designs and design tools for the microwave hardware and components associated with the DOE Plasma Fusion Program. We have developed basic theory, software, fabrication techniques, and low-power measurement techniques for the design of microwave hardware associated gyrotrons, microwave mode converters and high-power microwave transmission lines. Specifically, in this report we discuss our work on designing quasi-optical mode converters for single and multiple frequencies, a new method for the analysis of perturbed-wall waveguide mode converters, perturbed-wall launcher design for TE0n mode gyrotrons, quasi-optical traveling-wave resonator design for high-power testing of microwave components, and possible improvements to the HSX microwave transmission line.

  12. Superconducting versus normal conducting cavities

    CERN Document Server

    Podlech, Holger

    2013-01-01

    One of the most important issues of high-power hadron linacs is the choice of technology with respect to superconducting or room-temperature operation. The favour for a specific technology depends on several parameters such as the beam energy, beam current, beam power and duty factor. This contribution gives an overview of the comparison between superconducting and normal conducting cavities. This includes basic radiofrequency (RF) parameters, design criteria, limitations, required RF and plug power as well as case studies.

  13. An asymmetric resonant coupling wireless power transmission link for Micro-Ball Endoscopy.

    Science.gov (United States)

    Sun, Tianjia; Xie, Xiang; Li, Guolin; Gu, Yingke; Deng, Yangdong; Wang, Ziqiang; Wang, Zhihua

    2010-01-01

    This paper investigates the design and optimization of a wireless power transmission link targeting Micro-Ball Endoscopy applications. A novel asymmetric resonant coupling structure is proposed to deliver power to an endoscopic Micro-Ball system for image read-out after it is excreted. Such a technology enables many key medical applications with stringent requirements for small system volume and high power delivery efficiency. A prototyping power transmission sub-system of the Micro-Ball system was implemented. It consists of primary coil, middle resonant coil, and cube-like full-direction secondary receiving coils. Our experimental results proved that 200mW of power can be successfully delivered. Such a wireless power transmission capability could satisfy the requirements of the Micro-Ball based endoscopy application. The transmission efficiency is in the range of 41% (worst working condition) to 53% (best working condition). Comparing to conventional structures, Asymmetric Resonant Coupling Structure improves power efficiency by 13%.

  14. Reduction of field emission in superconducting cavities with high power pulsed RF

    International Nuclear Information System (INIS)

    Graber, J.; Crawford, C.; Kirchgessner, J.; Padamsee, H.; Rubin, D.; Schmueser, P.

    1994-01-01

    A systematic study is presented of the effects of pulsed high power RF processing (HPP) as a method of reducing field emission (FE) in superconducting radio frequency (SRF) cavities to reach higher accelerating gradients for future particle accelerators. The processing apparatus was built to provide up to 150 kW peak RF power to 3 GHz cavities, for pulse lengths from 200 μs to 1 ms. Single-cell and nine-cell cavities were tested extensively. The thermal conductivity of the niobium for these cavities was made as high as possible to ensure stability against thermal breakdown of superconductivity. HPP proves to be a highly successful method of reducing FE loading in nine-cell SRF cavities. Attainable continuous wave (CW) fields increase by as much as 80% from their pre-HPP limits. The CW accelerating field achieved with nine-cell cavities improved from 8-15 MV/m with HPP to 14-20 MV/m. The benefits are stable with subsequent exposure to dust-free air. More importantly, HPP also proves effective against new field emission subsequently introduced by cold and warm vacuum ''accidents'' which admitted ''dirty'' air into the cavities. Clear correlations are obtained linking FE reduction with the maximum surface electric field attained during processing. In single cells the maximums reached were E peak =72 MV/m and H peak =1660 Oe. Thermal breakdown, initiated by accompanying high surface magnetic fields is the dominant limitation on the attainable fields for pulsed processing, as well as for final CW and long pulse operation. To prove that the surface magnetic field rather than the surface electric fields is the limitation to HPP effectiveness, a special two-cell cavity with a reduced magnetic to electric field ratio is successfully tested. During HPP, pulsed fields reach E peak =113 MV/m (H peak =1600 Oe) and subsequent CW low power measurement reached E peak =100 MV/m, the highest CW field ever measured in a superconducting accelerator cavity. ((orig.))

  15. The interplay of superconducting quantum circuits and propagating microwave states

    International Nuclear Information System (INIS)

    Goetz, Jan

    2017-01-01

    Superconducting circuit quantum electrodynamics (QED) has developed into a powerful platform for studying the interaction between matter and different states of light. In this context, superconducting quantum bits (qubits) act as artificial atoms interacting with quantized modes of the electromagnetic field. The field can be trapped in superconducting microwave resonators or propagating in transmission lines. In this thesis, we particularly study circuit QED systems where microwave fields are coupled with superconducting flux and transmon qubits. We optimize the coherence properties of the resonators, by analyzing loss mechanisms at excitation powers of approximately one photon on average. We find that two-level fluctuators associated with oxide layers at substrate and metal surfaces and metal-metal interfaces represent the predominant loss channel. Furthermore, we show how broadband thermal photon fields influence the relaxation and dephasing properties of a superconducting transmon qubit. To this end, we study several second-order loss channels of the transmon qubit and find that the broadband fields introduce a larger decay rate than expected from the Purcell filter defined by the resonator. Additionally, we show that qubit dephasing at the flux-insensitive point as well as low-frequency parameter fluctuations can be enhanced by thermal fields. Finally, we study how artificial atoms react to changes in inherent properties of the light fields. We perform a detailed analysis of the photon statistics of thermal fields using their relation to the qubits coherence properties. We quantitatively recover the expected n 2 + n-law for the photon number variance and confirm this result by direct correlation measurements. We then show a novel technique for the in-situ conversion of the interaction parity in light-matter interaction. To this end, we couple spatially controlled microwave fields to a flux qubit with two degrees of freedom.

  16. The interplay of superconducting quantum circuits and propagating microwave states

    Energy Technology Data Exchange (ETDEWEB)

    Goetz, Jan

    2017-06-26

    Superconducting circuit quantum electrodynamics (QED) has developed into a powerful platform for studying the interaction between matter and different states of light. In this context, superconducting quantum bits (qubits) act as artificial atoms interacting with quantized modes of the electromagnetic field. The field can be trapped in superconducting microwave resonators or propagating in transmission lines. In this thesis, we particularly study circuit QED systems where microwave fields are coupled with superconducting flux and transmon qubits. We optimize the coherence properties of the resonators, by analyzing loss mechanisms at excitation powers of approximately one photon on average. We find that two-level fluctuators associated with oxide layers at substrate and metal surfaces and metal-metal interfaces represent the predominant loss channel. Furthermore, we show how broadband thermal photon fields influence the relaxation and dephasing properties of a superconducting transmon qubit. To this end, we study several second-order loss channels of the transmon qubit and find that the broadband fields introduce a larger decay rate than expected from the Purcell filter defined by the resonator. Additionally, we show that qubit dephasing at the flux-insensitive point as well as low-frequency parameter fluctuations can be enhanced by thermal fields. Finally, we study how artificial atoms react to changes in inherent properties of the light fields. We perform a detailed analysis of the photon statistics of thermal fields using their relation to the qubits coherence properties. We quantitatively recover the expected n{sup 2} + n-law for the photon number variance and confirm this result by direct correlation measurements. We then show a novel technique for the in-situ conversion of the interaction parity in light-matter interaction. To this end, we couple spatially controlled microwave fields to a flux qubit with two degrees of freedom.

  17. Progress in DOE high temperature superconductivity electric power applications program

    International Nuclear Information System (INIS)

    Daley, J.G.; Sheahn, T.P.

    1992-01-01

    The Department of Energy (DOE) leads national R and D effort to develop US industry's capability to produce a wide range of advanced energy-efficient electric power products. The immediate need is to make high temperature superconductivity (HTS) wire. Wire developers at the DOE National laboratories are working wit industrial partners toward this objective. In this paper, the authors describe the progress to date, citing both the difficulties associated with making wire from these ceramic materials, and achievements at several organizations. Results for progress over the next five years are stated

  18. Interference Cancellation for Coexisting Wireless Data and Power Transmission in the Same Frequency

    International Nuclear Information System (INIS)

    Yamazaki, Keita; Sugiyama, Yusuke; Saruwatari, Shunsuke; Kawahara, Yoshihiro; Watanabe, Takashi

    2014-01-01

    Combining wireless transmission of data and power signals enables wireless sensor networks to drive perpetually without changing batteries. To achieve the simultaneous data and power transmission, the present paper proposes power signal interference cancellation for wireless data and power transmission at the same time in the same frequency. We evaluate the performance of the proposed power signal interference cancellation using Universal Software Radio Peripheral N200 (USRP N200) software defined radio. Evaluations show that the proposed interference cancellation is feasible to receive data while transmitting power

  19. Analysis of enhancement in available power transfer capacity by STATCOM integrated SMES by numerical simulation studies

    Directory of Open Access Journals (Sweden)

    Saraswathi Ananthavel

    2016-06-01

    Full Text Available Power system researches are mainly focused in enhancing the available power capacities of the existing transmission lines. But still, no prominent solutions have been made due to several factors that affect the transmission lines which include the length, aging of the cables and losses on generation, transmission and distribution etc. This paper exploited the integration of static synchronous compensator (STATCOM and superconducting magnetic energy storage (SMES which is then connected to existing power transmission line for enhancing the available power transfer capacity (ATC. STATCOM is power electronic voltage source converter (VSC which is connected to the transmission system for shunt reactive power and harmonics compensation. SMES is a renowned clean energy storage technology. Feasibility of the proposed power system can control the real as well as reactive power flow independently between the transmission lines and STATCOM-(SMES units. Complete proposed power system is implemented in numerical simulation software (Matlab/Simulink and its performance is validated based on obtained investigation results.

  20. Optimal Power Transmission of Offshore Wind Power Using a VSC-HVdc Interconnection

    Directory of Open Access Journals (Sweden)

    Miguel E. Montilla-DJesus

    2017-07-01

    Full Text Available High-voltage dc transmission based on voltage-source converter (VSC-HVdc is quickly increasing its power rating, and it can be the most appropriate link for the connection of offshore wind farms (OWFs to the grid in many locations. This paper presents a steady-state operation model to calculate the optimal power transmission of an OWF connected to the grid through a VSC-HVdc link. The wind turbines are based on doubly fed induction generators (DFIGs, and a detailed model of the internal OWF grid is considered in the model. The objective of the optimization problem is to maximize the active power output of the OWF, i.e., the reduction of losses, by considering the optimal reactive power allocation while taking into account the restrictions imposed by the available wind power, the reactive power capability of the DFIG, the DC link model, and the operating conditions. Realistic simulations are performed to evaluate the proposed model and to execute optimal operation analyses. The results show the effectiveness of the proposed method and demonstrate the advantages of using the reactive control performed by DFIG to achieve the optimal operation of the VSC-HVdc.

  1. Superconductivity and their applications

    OpenAIRE

    Roque, António; Sousa, Duarte M.; Fernão Pires, Vítor; Margato, Elmano

    2017-01-01

    Trabalho apresentado em International Conference on Renewable Energies and Power Quality (ICREPQ’17), 4 a 6 de Abril de 2017, Málaga, Espanha The research in the field of superconductivity has led to the synthesis of superconducting materials with features that allow you to expand the applicability of this kind of materials. Among the superconducting materials characteristics, the critical temperature of the superconductor is framing the range and type of industrial applications that can b...

  2. Superconducting generator technology--an overview

    International Nuclear Information System (INIS)

    Edmonda, J.S.

    1979-01-01

    Application of superconducting technology to field windings of large ac generators provides virtually unlimited field capability without incurring resistive losses in the winding. Several small-scale superconducting generators have been built and tested demonstrating the feasibility of such concepts. For machines of much larger capacity, conceptual designs for 300 Mva and 1200 Mva have been completed. The development of a 300 Mva generator is projected. Designed, engineered and fabricated as a turbo generator, the superconducting machine is to be installed in a power plant, tested and operated in concert with a prime mover, the steam generator and the auxiliary support systems of the power plant. This will provide answers to the viability of operating a superconducting machine and its cryogenic handling systems in a full time, demanding environment. 21 refs

  3. Design study of high-temperature superconducting generators for wind power systems

    Energy Technology Data Exchange (ETDEWEB)

    Maki, N [Technova Inc. 13th Fl. Imperial Hotel Tower, 1-chome, Chiyoda-ku, Tokyo 100-0011 (Japan)], E-mail: naokmaki@technova.co.jp

    2008-02-15

    Design study on high-temperature superconducting machines (HTSM) for wind power systems was carried out using specially developed design program. Outline of the design program was shown and the influence of machine parameters such as pole number, rotor outer diameter and synchronous reactance on the machine performance was clarified. Three kinds of generator structure are considered for wind power systems and the HTSM operated under highly magnetic saturated conditions with conventional rotor and stator has better performance than the other types of HTSM. Furthermore, conceptual structure of 8 MW, 20 pole HTSM adopting salient-pole rotor as in the case of water turbine generators and race-truck shaped HTS field windings like Japanese Maglev was shown.

  4. Design study of high-temperature superconducting generators for wind power systems

    International Nuclear Information System (INIS)

    Maki, N

    2008-01-01

    Design study on high-temperature superconducting machines (HTSM) for wind power systems was carried out using specially developed design program. Outline of the design program was shown and the influence of machine parameters such as pole number, rotor outer diameter and synchronous reactance on the machine performance was clarified. Three kinds of generator structure are considered for wind power systems and the HTSM operated under highly magnetic saturated conditions with conventional rotor and stator has better performance than the other types of HTSM. Furthermore, conceptual structure of 8 MW, 20 pole HTSM adopting salient-pole rotor as in the case of water turbine generators and race-truck shaped HTS field windings like Japanese Maglev was shown

  5. Design and characteristic investigations of superconducting wireless power transfer for electric vehicle charging system via resonance coupling method

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Y. D. [Suwon Science College, Suwon (Korea, Republic of); Yim, Seung Woo [Dept. of Korea Electric Power Corporation Research Institute, Daejeon (Korea, Republic of)

    2014-09-15

    As wireless power transfer (WPT) technology using strongly coupled electromagnetic resonators is a recently explored technique to realize the large power delivery and storage without any cable or wire, this technique is required for diffusion of electric vehicles (EVs) since it makes possible a convenient charging system. Typically, since the normal conducting coils are used as a transmitting coil in the CPT system, there is limited to deliver the large power promptly in the contactless EV charging system. From this reason, we proposed the combination CPT technology with HTS transmitting antenna, it is called as, superconducting contactless power transfer for EV (SUWPT4EV) system. As the HTS coil has an enough current density, it can deliver a mass amount of electric energy in spite of a small scale antenna. The SUCPT4EV system has been expected as a noble option to improve the transfer efficiency of large electric power. Such a system consists of two resonator coils; HTS transmitting antenna (Tx) coil and normal conducting receiver (Rx) coil. Especially, the impedance matching for each resonator is a sensitive and plays an important role to improve transfer efficiency as well as delivery distance. In this study, we examined the improvement of transmission efficiency and properties for HTS and copper antennas, respectively, within 45 cm distance. Thus, we obtained improved transfer efficiency with HTS antenna over 15% compared with copper antenna. In addition, we achieved effective impedance matching conditions between HTS antenna and copper receiver at radio frequency (RF) power of 370 kHz.

  6. Design and characteristic investigations of superconducting wireless power transfer for electric vehicle charging system via resonance coupling method

    International Nuclear Information System (INIS)

    Chung, Y. D.; Yim, Seung Woo

    2014-01-01

    As wireless power transfer (WPT) technology using strongly coupled electromagnetic resonators is a recently explored technique to realize the large power delivery and storage without any cable or wire, this technique is required for diffusion of electric vehicles (EVs) since it makes possible a convenient charging system. Typically, since the normal conducting coils are used as a transmitting coil in the CPT system, there is limited to deliver the large power promptly in the contactless EV charging system. From this reason, we proposed the combination CPT technology with HTS transmitting antenna, it is called as, superconducting contactless power transfer for EV (SUWPT4EV) system. As the HTS coil has an enough current density, it can deliver a mass amount of electric energy in spite of a small scale antenna. The SUCPT4EV system has been expected as a noble option to improve the transfer efficiency of large electric power. Such a system consists of two resonator coils; HTS transmitting antenna (Tx) coil and normal conducting receiver (Rx) coil. Especially, the impedance matching for each resonator is a sensitive and plays an important role to improve transfer efficiency as well as delivery distance. In this study, we examined the improvement of transmission efficiency and properties for HTS and copper antennas, respectively, within 45 cm distance. Thus, we obtained improved transfer efficiency with HTS antenna over 15% compared with copper antenna. In addition, we achieved effective impedance matching conditions between HTS antenna and copper receiver at radio frequency (RF) power of 370 kHz

  7. Superconducting Magnet Power Supply and Hard-Wired Quench Protection at Jefferson Lab for 12 GeV Upgrade

    International Nuclear Information System (INIS)

    Ghoshal, Probir K.; Bachimanchi, Ramakrishna; Fair, Ruben J.; Gelhaar, David; Kumar, Onish

    2017-01-01

    The superconducting magnet system in Hall B being designed and built as part of the Jefferson Lab 12 GeV upgrade requires powering two conduction cooled superconducting magnets - a torus and a solenoid. The torus magnet is designed to operate at 3770 A and solenoid at 2416 A. Failure Modes and Effects Analysis (FMEA) determined that voltage level thresholds and dump switch operation for magnet protection should be tested and analyzed before incorporation into the system. The designs of the quench protection and voltage tap sub-systems were driven by the requirement to use a primary hard-wired quench detection sub-system together with a secondary PLC-based protection. Parallel path voltage taps feed both the primary and secondary quench protection sub-systems. The PLC based secondary protection is deployed as a backup for the hard-wired quench detection sub-system and also acts directly on the dump switch. Here, we describe a series of tests and modifications carried out on the magnet power supply and quench protection system to ensure that the superconducting magnet is protected for all fault scenarios.

  8. Realisation and instrumentation of high current power station for superconducting cables testing

    International Nuclear Information System (INIS)

    Regnaud, S.

    2000-05-01

    This report deals with the designing of a high current station able to test electric properties of superconductors. This test station will be used for testing the superconducting wires of large hadron collider detectors in CERN. The high current test station will have to generate high intensity continuous current in a magnetic field of 0 to 5 tesla and in temperature conditions of 4.2 K. The length of wire samples submitted to the uniform magnetic field is 300 mm and the installation is fitted with equipment able to measure the magnetic field perpendicular to either faces of the wire. The peculiarity of this station is to use a superconducting transformer in order to generate the high current. The first part of this work recalls important notions concerning superconductivity. The second part presents the high current station by describing the superconducting transformer and the sample-holder. We have studied the designing of a transformer able to yield a secondary current whose intensity reaches 100 kA, such intensity generates powerful electromagnetic forces (566 kN/m) in case of defect, so the sample-holder has to be carefully design to bear them. The third part presents the cryogenic component of the station, the instrumentation of the sample-holder and the method used to measure secondary currents. In the last part we present the performance of a prototype transformer, this prototype is able to deliver a 22 kA secondary current for a 160 A primary current, the uncertainty on the measured value of the secondary current is about 3%

  9. HVDC Transmission an Outlook and Significance for Pakistani Power Sector

    Science.gov (United States)

    Ahmad, Muhammad; Wang, Zhixin; Wang, Jinjian; Baloach, Mazhar H.; Longxin, Bao; Hua, Qing

    2018-04-01

    Recently a paradigm shift in the power sector is observed, i.e., countries across the globe have deviated their attention to distributed generation rather than conventional centralized bulk generation. Owing to the above narrative, distributed energy resources e.g., wind and PV have gained the adequate attention of governments and researchers courtesy to their eco-friendly nature. On the contrary, the increased infiltration of distributed generation to the power system has introduced many technical and economical glitches such as long-distance transmission, transmission lines efficiency, control capability and cost etc. To mitigate these complications, the utility of high voltage direct current (HVDC) transmission has emerged as a possible solution. In this context, this paper includes a brief discussion on the fundamentals HVDC and its significance in Pakistani power sector. Furthermore, the potential of distributed energy resources for Pakistan is also the subject matter of this paper, so that significance of HVDC transmission can effectively be deliberated.

  10. Development and Application of Wireless Power Transmission Systems for Wireless ECG Sensors

    Directory of Open Access Journals (Sweden)

    Jin-Chul Heo

    2018-01-01

    Full Text Available We investigated the variations in the magnetic field distribution and power transmission efficiency, resulting from changes in the relative positions of the transmitting and receiving coils, for electromagnetic induction-type wireless power transmission using an elliptical receive coil. Results of simulations using a high-frequency structure simulator were compared to actual measurement results. The simulations showed that the transmission efficiency could be maintained relatively stable even if the alignment between the transmitting and receiving coils was changed to some extent. When the centre of the receiving coil was perfectly aligned with the centre of the transmitting coil, the transmission efficiency was in the maximum; however, the degree of decrease in the transmission efficiency was small even if the centre of the receiving coil moved by ±10 mm from the centre of the transmitting coil. Therefore, it is expected that the performance of the wireless power transmission system will not be degraded significantly even if perfect alignment is not maintained. Animal experiments confirmed good ECG signals for the simulation conditions. The results suggested a standardized application method of wireless transmission in the utilization of wireless power for implantable sensors.

  11. Wireless power transmission using ultrasonic guided waves

    International Nuclear Information System (INIS)

    Kural, A; Pullin, R; Featherston, C; Holford, K; Paget, C

    2011-01-01

    The unavailability of suitable power supply at desired locations is currently an important obstacle in the development of distributed, wireless sensor networks for applications such as structural health monitoring of aircraft. Proposed solutions range from improved batteries to energy harvesting from vibration, temperature gradients and other sources. A novel approach is being investigated at Cardiff University School of Engineering in cooperation with Airbus. It aims to utilise ultrasonic guided Lamb waves to transmit energy through the aircraft skin. A vibration generator is to be placed in a location where electricity supply is readily available. Ultrasonic waves generated by this device will travel through the aircraft structure to a receiver in a remote wireless sensor node. The receiver will convert the mechanical vibration of the ultrasonic waves back to electricity, which will be used to power the sensor node. This paper describes the measurement and modelling of the interference pattern which emerges when Lamb waves are transmitted continuously as in this power transmission application. The discovered features of the pattern, such as a large signal amplitude variation and a relatively high frequency, are presented and their importance for the development of a power transmission system is discussed.

  12. Wireless power transmission using ultrasonic guided waves

    Energy Technology Data Exchange (ETDEWEB)

    Kural, A; Pullin, R; Featherston, C; Holford, K [School of Engineering, Cardiff University, Queens Buildings, The Parade, Cardiff CF24 2AA (United Kingdom); Paget, C, E-mail: kurala@cardiff.ac.uk [Airbus Operations Ltd, New Filton Road, BS99 7AR Bristol (United Kingdom)

    2011-07-19

    The unavailability of suitable power supply at desired locations is currently an important obstacle in the development of distributed, wireless sensor networks for applications such as structural health monitoring of aircraft. Proposed solutions range from improved batteries to energy harvesting from vibration, temperature gradients and other sources. A novel approach is being investigated at Cardiff University School of Engineering in cooperation with Airbus. It aims to utilise ultrasonic guided Lamb waves to transmit energy through the aircraft skin. A vibration generator is to be placed in a location where electricity supply is readily available. Ultrasonic waves generated by this device will travel through the aircraft structure to a receiver in a remote wireless sensor node. The receiver will convert the mechanical vibration of the ultrasonic waves back to electricity, which will be used to power the sensor node. This paper describes the measurement and modelling of the interference pattern which emerges when Lamb waves are transmitted continuously as in this power transmission application. The discovered features of the pattern, such as a large signal amplitude variation and a relatively high frequency, are presented and their importance for the development of a power transmission system is discussed.

  13. A two-phase full-wave superconducting rectifier

    International Nuclear Information System (INIS)

    Ariga, T.; Ishiyama, A.

    1989-01-01

    A two-phase full-wave superconducting rectifier has been developed as a small cryogenic power supply of superconducting magnets for magnetically levitation trains. Those magnets are operated in the persistent current mode. However, small ohmic loss caused at resistive joints and ac loss induced by the vibration of the train cannot be avoided. Therefore, the low-power cryogenic power supply is required to compensate for the reduction in magnet current. The presented superconducting rectifier consists of two identical full-wave rectifiers connected in series. Main components of each rectifier are a troidal shape superconducting set-up transformer and two thermally controlled switches. The test results using a 47.5 mH load magnet at 0.2 Hz and 0.5 Hz operations are described. To estimate the characteristics of the superconducting rectifier, the authors have developed a simulation code. From the experiments and the simulations, the transfer efficiency is examined. Furthermore, the optimal design of thermally controlled switches based on the finite element analysis is also discussed

  14. Enhanced Wireless Power Transmission Using Strong Paramagnetic Response.

    Science.gov (United States)

    Ahn, Dukju; Kiani, Mehdi; Ghovanloo, Maysam

    2014-03-01

    A method of quasi-static magnetic resonant coupling has been presented for improving the power transmission efficiency (PTE) in near-field wireless power transmission, which improves upon the state of the art. The traditional source resonator on the transmitter side is equipped with an additional resonator with a resonance frequency that is tuned substantially higher than the magnetic field excitation frequency. This additional resonator enhances the magnetic dipole moment and the effective permeability of the power transmitter, owing to a phenomenon known as the strong paramagnetic response. Both theoretical calculations and experimental results show increased PTE due to amplification of the effective permeability. In measurements, the PTE was improved from 57.8% to 64.2% at the nominal distance of 15 cm when the effective permeability was 2.6. The power delivered to load was also improved significantly, with the same 10 V excitation voltage, from 0.38 to 5.26 W.

  15. Nonsynchronous vibrations observed in a supercritical power transmission shaft

    Science.gov (United States)

    Darlow, M. S.; Zorzi, E. S.

    1979-01-01

    A flexible shaft is prone to a number of vibration phenomena which occur at frequencies other than synchronous with rotational speed. Nonsynchronous vibrations from several sources were observed while running a test rig designed to simulate the operation of a supercritical power transmission shaft. The test rig was run first with very light external damping and then with a higher level of external damping, for comparison. As a result, the effect of external damping on the nonsynchronous vibrations of the test rig was observed. All of these nonsynchronous vibrations were of significant amplitude. Their presence in the vibrations spectra for a supercritical power transmission shaft at various speeds in the operating range indicates that very careful attention to all of the vibration spectra should be made in any supercritical power transmission shafting. This paper presents a review of the analysis performed and a comparison with experimental data. A thorough discussion of the observed nonsynchronous whirl is also provided.

  16. FY 1998 annual report on the leading fundamental research and development of AC superconducting power apparatuses (New Sunshine Project); 1998 nendo koryu chodendo denryoku kiki kiban sendo kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    In order to propose fundamental research and development of AC superconducting power apparatuses, the FY 1998 efforts were directed to studies on the effects of introducing superconducting apparatuses, making proposals of development programs, literature (including patent publications) surveys on trends of research and development at home and abroad, and making proposals for technological breakthroughs. Results of the studies for evaluating economic efficiency of these apparatuses and the effects of their introduction indicate that the promising apparatuses for eventual commercialization include superconducting cables, current limiters, field power generators, transformers and flywheels. The superconducting cables are expected to greatly reduce losses and hence CO2 emissions. The superconducting current limiters are promising means to control short-circuit current increase in the trunk power systems in which they are used. The superconducting transformers are expected to reduce losses and hence CO2 emissions. The project of fundamental research and development of AC superconducting power apparatuses has proposed the fundamental technological research themes aimed at development of the elementary techniques prerequisite for realizing these 3 types of apparatuses and reflection of the required apparatus specifications in development of the cable materials. (NEDO)

  17. Efficient utilization of wind power: Long-distance transmission or local consumption?

    Science.gov (United States)

    Sun, Yuanzhang; Ma, Xiyuan; Xu, Jian; Bao, Yi; Liao, Siyang

    2017-09-01

    Excess wind power produced in wind-intensive areas is normally delivered to remote load centers via long-distance transmission lines. This paper presents a comparison between long-distance transmission, which has gained popularity, and local energy consumption, in which a fraction of the generated wind power can be locally consumed by energy-intensive industries. First, the challenges and solutions to the long-distance transmission and local consumption of wind power are presented. Then, the two approaches to the utilization of wind power are compared in terms of system security, reliability, cost, and capability to utilize wind energy. Finally, the economic feasibility and technical feasibility of the local consumption of wind power are demonstrated by a large and isolated industrial power system, or supermicrogrid, in China. The coal-fired generators together with the short-term interruptible electrolytic aluminum load in the supermicrogrid are able to compensate for the intermittency of wind power. In the long term, the transfer of high-energy-consumption industries to wind-rich areas and their local consumption of the available wind power are beneficial.

  18. Efficient utilization of wind power: Long-distance transmission or local consumption?

    Institute of Scientific and Technical Information of China (English)

    Yuanzhang SUN; Xiyuan MA; Jian XU; Yi BAO; Siyang LIAO

    2017-01-01

    Excess wind power produced in wind-intensive areas is normally delivered to remote load centers via long-distance transmission lines.This paper presents a comparison between long-distance transmission,which has gained popularity,and local energy consumption,in which a fraction of the generated wind power can be locally consumed by energy-intensive industries.First,the challenges and solutions to the long-distance transmission and local consumption of wind power are presented.Then,the two approaches to the utilization of wind power are compared in terms of system security,reliability,cost,and capability to utilize wind energy.Finally,the economic feasibility and technical feasibility of the local consumption of wind power are demonstrated by a large and isolated industrial power system,or supermicrogrid,in China.The coal-fired generators together with the shortterm interruptible electrolytic aluminum load in the supermicrogrid are able to compensate for the intermittency of wind power.In the long term,the transfer of highenergy-consumption industries to wind-rich areas and their local consumption of the available wind power are beneficial.

  19. Characteristic of wireless power transmission S-Parameter for a superconductor coil

    International Nuclear Information System (INIS)

    Jeong, In Sung; Jung, Byung Ik; Choi, Hyo Sang

    2015-01-01

    Many studies are being conducted to implement wireless charging, for example, for cellular phones or electronic tooth brushes, via wireless power transmission technique. However, the magnetic induction method had a very short transmission distance. To solve this problem, the team of Professor Marin Soljacic proposed a magnetic resonance system that used two resonance coils with the same resonance frequency. It had an approximately 40% efficiency at a 2m distance. The system improved the low efficiency and short distance problems of the existing systems. So it could also widen the application range of wireless power transmission. Many studies on the subject are underway. In this paper, the superconductor coil was used to improve the efficiency of magnetic resonance wireless power transmission. The resonance wireless power transmission system had a source coil, a load coil, and resonance coils (a transmitter and a receiver). The efficiency and distance depended on the characteristics of the transmitter and receiver coils that had the same resonance frequency. Therefore, two resonance coils were fabricated by superconductors. The current density of the superconductor was higher than that of the normal conductor coil. Accordingly, it had a high quality-factor and improved efficiency

  20. Characteristic of wireless power transmission S-Parameter for a superconductor coil

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, In Sung; Jung, Byung Ik; Choi, Hyo Sang [Chosun University, Gwangju (Korea, Republic of)

    2015-03-15

    Many studies are being conducted to implement wireless charging, for example, for cellular phones or electronic tooth brushes, via wireless power transmission technique. However, the magnetic induction method had a very short transmission distance. To solve this problem, the team of Professor Marin Soljacic proposed a magnetic resonance system that used two resonance coils with the same resonance frequency. It had an approximately 40% efficiency at a 2m distance. The system improved the low efficiency and short distance problems of the existing systems. So it could also widen the application range of wireless power transmission. Many studies on the subject are underway. In this paper, the superconductor coil was used to improve the efficiency of magnetic resonance wireless power transmission. The resonance wireless power transmission system had a source coil, a load coil, and resonance coils (a transmitter and a receiver). The efficiency and distance depended on the characteristics of the transmitter and receiver coils that had the same resonance frequency. Therefore, two resonance coils were fabricated by superconductors. The current density of the superconductor was higher than that of the normal conductor coil. Accordingly, it had a high quality-factor and improved efficiency.

  1. Test equipment for a flywheel energy storage system using a magnetic bearing composed of superconducting coils and superconducting bulks

    International Nuclear Information System (INIS)

    Ogata, M; Matsue, H; Yamashita, T; Hasegawa, H; Nagashima, K; Maeda, T; Matsuoka, T; Mukoyama, S; Shimizu, H; Horiuchi, S

    2016-01-01

    Energy storage systems are necessary for renewable energy sources such as solar power in order to stabilize their output power, which fluctuates widely depending on the weather. Since ‘flywheel energy storage systems’ (FWSSs) do not use chemical reactions, they do not deteriorate due to charge or discharge. This is an advantage of FWSSs in applications for renewable energy plants. A conventional FWSS has capacity limitation because of the mechanical bearings used to support the flywheel. Therefore, we have designed a superconducting magnetic bearing composed of a superconducting coil stator and a superconducting bulk rotor in order to solve this problem, and have experimentally manufactured a large scale FWSS with a capacity of 100 kWh and an output power of 300 kW. The superconducting magnetic bearing can levitate 4 tons and enables the flywheel to rotate smoothly. A performance confirmation test will be started soon. An overview of the superconducting FWSS is presented in this paper. (paper)

  2. Fullerides - Superconductivity at the limit

    NARCIS (Netherlands)

    Palstra, Thomas T. M.

    The successful synthesis of highly crystalline Cs3C60, exhibiting superconductivity up to a record temperature for fullerides of 38 K, demonstrates a powerful synthetic route for investigating the origin of superconductivity in this class of materials.

  3. Achievement report for fiscal 1999 on New Sunshine Program. Frontier research and development of basic superconductive AC power generation equipment; 1999 nendo koryu chodendo denryoku kiki kiban sendo kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    As part of the New Sunshine Program of the Agency of Industrial Science and Technology, a 2-year survey and research is conducted beginning in 1998 on the effect of the introduction of superconductive power equipment for the facilitation of the progress of research and development of basic power equipment which utilizes AC (alternating current) superconductivity. Frontier research and development has been started of basic AC superconductive power equipment for clarifying the tasks to solve in the development effort and for preparing an efficient research and development plan. This fiscal year's endeavor covers the survey of the effect of the introduction of superconductive power equipment in addition to the preparation of a basic plan for the research and development of basic AC superconductive power equipment for fiscal 2000 and afterward, continued survey of research and development trends in and outside Japan for the review of the result achieved in the preceding fiscal year, development of AC equipment element technologies utilizing conduit type semiconductors as a basic study for the embodiment of AC superconductive equipment, and a study for elucidating the mechanism of resistance generated in a superconductive current limiter. Furthermore, papers on the superconduction technology released so far are investigated, and technology development trends and efficient research techniques are put together into a technological information database. (NEDO)

  4. Achievement report for fiscal 1999 on New Sunshine Program. Frontier research and development of basic superconductive AC power generation equipment; 1999 nendo koryu chodendo denryoku kiki kiban sendo kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    As part of the New Sunshine Program of the Agency of Industrial Science and Technology, a 2-year survey and research is conducted beginning in 1998 on the effect of the introduction of superconductive power equipment for the facilitation of the progress of research and development of basic power equipment which utilizes AC (alternating current) superconductivity. Frontier research and development has been started of basic AC superconductive power equipment for clarifying the tasks to solve in the development effort and for preparing an efficient research and development plan. This fiscal year's endeavor covers the survey of the effect of the introduction of superconductive power equipment in addition to the preparation of a basic plan for the research and development of basic AC superconductive power equipment for fiscal 2000 and afterward, continued survey of research and development trends in and outside Japan for the review of the result achieved in the preceding fiscal year, development of AC equipment element technologies utilizing conduit type semiconductors as a basic study for the embodiment of AC superconductive equipment, and a study for elucidating the mechanism of resistance generated in a superconductive current limiter. Furthermore, papers on the superconduction technology released so far are investigated, and technology development trends and efficient research techniques are put together into a technological information database. (NEDO)

  5. Development of a coordinated control system for BWR nuclear power plant and HVDC transmission system

    International Nuclear Information System (INIS)

    Ishikawa, M.; Hara, T.; Hirayama, K.; Sekiya, K.

    1986-01-01

    The combined use of dc and ac transmissions or so-called hybrid transmission was under study, employing both dc and ac systems to enable stable transmission of 10,000 MW of electric power generated by the BWR nuclear plant, scheduled to be built about 800 km away from the center of the load. It was thus necessary to develop a hybrid power transmission control system, the hybrid power transmission system consisting of a high voltage dc transmission system (HVDC) and an ultrahigh ac transmission system (UHVAC). It was also necessary to develop a control system for HVDC transmission which protects the BWR nuclear power plant from being influenced by any change in transmission mode that occurs as a result of faults on the UHVAC side when the entire power of the BWR plant is being sent by the HVDC transmission. This paper clarifies the requirements for the HVDC system control during hybrid transmission and also during dc transmission. The control method that satisfies these requirements was studied to develop a control algorithm

  6. Cost and Benefit Analysis of VSC-HVDC Schemes for Offshore Wind Power Transmission

    Institute of Scientific and Technical Information of China (English)

    Sheng WANG; Chunmei FENG; An WEN; Jun LIANG

    2013-01-01

    Due to low load factors of wind power generation,it is possible to reduce transmission capacity to minimize the cost of transmission system construction.Two VSC-HVDC schemes for offshore wind farm,called the point to point (PTP) and DC mesh connections are compared in terms of the utilization of transmission system and its cost.A Weibull distribution is used for estimating offshore wind power generation,besides,the cross correlation between wind farms is considered.The wind energy curtailment is analyzed using the capacity output possibility table (COPT).The system power losses,costs of transmission investment and wind energy curtailment are also computed.A statistic model for the wind generation and transmission is built and simulated in MATLAB to validate the study.It is concluded that a DC mesh transmission can reduce the energy curtailment and power losses.Further benefit is achievable as the wind cross correlation between wind farms decreases.

  7. Electrical Structure of Future Off-shore Wind Power Plant with a High Voltage Direct Current Power Transmission

    DEFF Research Database (Denmark)

    Sharma, Ranjan

    The increasing demand of electric power and the growing consciousness towards the changing climate has led to a rapid development of renewable energy in the recent years. Among all, wind energy has been the fastest growing energy source in the last decade. But the growing size of wind power plants......, better wind conditions at off-shore and the general demand to put them out of sight have all contributed to the installation of large wind power plants in off-shore condition. However, moving wind power plants far out in the off-shore comes with many associated problems. One of the main challenges...... is the transmission of power over long distance. Historically, the power transmission from off-shore wind power plants has been done via HVAC submarine cables. This provides a simple solution, but AC cables cannot be arbitrarily long. It is shown in the report that major issues with HVAC cable transmission system...

  8. A hybrid superconducting fault current limiter for enhancing transient stability in Korean power systems

    Science.gov (United States)

    Seo, Sangsoo; Kim, Seog-Joo; Moon, Young-Hwan; Lee, Byongjun

    2013-11-01

    Additional power generation sites have been limited in Korea, despite the fact load demands are gradually increasing. In order to meet these increasing demands, Korea’s power system company has begun constructing new generators at existing sites. Thus, multi-unit plants can create problems in terms of transient stability when a large disturbance occurs. This paper proposes a hybrid superconducting fault current limiter (SFCL) application to enhance the transient stability of multi-unit power plants. SFCLs reduce fault currents, and limitation currents decrease the imbalance of the mechanical and electrical torque of the generators, resulting in an improvement in transient stability.

  9. Nano-engineered pinning centres in YBCO superconducting films

    Energy Technology Data Exchange (ETDEWEB)

    Crisan, A., E-mail: adrian.crisan@infim.ro [National Institute for Materials Physics Bucharest, 105 bis Atomistilor Str., 077125 Magurele (Romania); School of Metallurgy and Materials, University of Birmingham, Edgbaston, B15 2TT Birmingham (United Kingdom); Dang, V.S. [School of Metallurgy and Materials, University of Birmingham, Edgbaston, B15 2TT Birmingham (United Kingdom); Nano and Energy Center, VNU Hanoi University of Science, 334 Nguyen Trai, Thanh Xuan, Hanoi (Viet Nam); Mikheenko, P. [School of Metallurgy and Materials, University of Birmingham, Edgbaston, B15 2TT Birmingham (United Kingdom); Department of Physics, University of Oslo, P.O. Box 1048 Blindern, N-0316 Oslo (Norway)

    2017-02-15

    Highlights: • Power applications of YBCO films/coated conductors in technological relevant magnetic fields requires nano-engineered pinning centre. • Three approaches have been proposed: substrate decoration, quasi-multilayers, and targets with secondary phase nano-inclusions. • Combination of all three approaches greatly increased critical current in YBCO films. • Bulk pinning force, pinning potential, and critical current density are estimated and discussed in relation with the type and strength of pinning centres related to the defects evidenced by Transmission Electron Microscopy. - Abstract: For practical applications of superconducting materials in applied magnetic fields, artificial pinning centres in addition to natural ones are required to oppose the Lorentz force. These pinning centres are actually various types of defects in the superconductor matrix. The pinning centres can be categorised on their dimension (volume, surface or point) and on their character (normal cores or Δκ cores). Different samples have been produced by Pulsed Laser Deposition, with various thicknesses, temperatures and nanostructured additions to the superconducting matrix. They have been characterized by SQUID Magnetic Properties Measurement System and Physical Properties Measurement System, as well as by Transmission Electron Microscopy (TEM). Correlations between pinning architecture, TEM images, and critical currents at various fields and field orientations will be shown for a large number of YBa{sub 2}Cu{sub 3}O{sub x} films with various types and architectures of artificial pinning centres.

  10. Electrical characteristics of long strings of SSC superconducting dipoles

    International Nuclear Information System (INIS)

    Shafer, R.E.; Smedley, K.M.

    1992-01-01

    Because long strings of series-connected superconducting magnets have no dc resistance and low ac losses, the string behaves like a shorted transmission line. The string is thus resonant at multiple half-wavelengths unless damped by the inclusion of resistors that couple to the LdI/dt voltage across the magnet inductance. Based on the measured ac characteristics of individual magnets, it is possible to predict the electrical properties of long strings of magnets for a variety of damping resistors. These strings can be simulated using an analytic representation in FORTRAN (using complex-number notation) or a discrete-component equivalent-circuit modelling program (e.g., SPICE). Various electrical parameters, including characteristic impedance, signal velocity, induced power-supply ripple current, attenuation lengths, and driving-point impedances, can be predicted, and the damping resistor value can be optimized. Comparisons will be made to measurements on a long string of superconducting Tevatron magnets, and some predictions will be made for the SSC collider magnet system

  11. Analysis of Power Network for Line Reactance Variation to Improve Total Transmission Capacity

    Directory of Open Access Journals (Sweden)

    Ikram Ullah

    2016-11-01

    Full Text Available The increasing growth in power demand and the penetration of renewable distributed generations in competitive electricity market demands large and flexible capacity from the transmission grid to reduce transmission bottlenecks. The bottlenecks cause transmission congestion, reliability problems, restrict competition, and limit the maximum dispatch of low cost generations in the network. The electricity system requires efficient utilization of the current transmission capability to improve the Available Transfer Capability (ATC. To improve the ATC, power flow among the lines can be managed by using Flexible AC Transmission System (FACTS devices as power flow controllers, which alter the parameters of power lines. It is important to place FACTS devices on suitable lines to vary the reactance for improving Total Transmission Capacity (TTC of the network and provide flexibility in the power flow. In this paper a transmission network is analyzed based on line parameters variation to improve TTC of the interconnected system. Lines are selected for placing FACTS devices based on real power flow Performance Index (PI sensitivity factors. TTC is computed using the Repeated Power Flow (RPF method using the constraints of lines thermal limits, bus voltage limits and generator limits. The reactance of suitable lines, selected on the basis of PI sensitivity factors are changed to divert the power flow to other lines with enough transfer capacity available. The improvement of TTC using line reactance variation is demonstrated with three IEEE test systems with multi-area networks. The results show the variation of the selected lines’ reactance in improving TTC for all the test networks with defined contingency cases.

  12. Literature Survey on Operational Voltage Control and Reactive Power Management on Transmission and Sub-Transmission Networks

    Energy Technology Data Exchange (ETDEWEB)

    Elizondo, Marcelo A.; Samaan, Nader A.; Makarov, Yuri V.; Holzer, Jesse T.; Vallem, Mallikarjuna R.; Huang, Renke; Vyakaranam, Bharat GNVSR; Ke, Xinda; Pan, Feng

    2017-10-02

    Voltage and reactive power system control is generally performed following usual patterns of loads, based on off-line studies for daily and seasonal operations. This practice is currently challenged by the inclusion of distributed renewable generation, such as solar. There has been focus on resolving this problem at the distribution level; however, the transmission and sub-transmission levels have received less attention. This paper provides a literature review of proposed methods and solution approaches to coordinate and optimize voltage control and reactive power management, with an emphasis on applications at transmission and sub-transmission level. The conclusion drawn from the survey is that additional research is needed in the areas of optimizing switch shunt actions and coordinating all available resources to deal with uncertain patterns from increasing distributed renewable generation in the operational time frame. These topics are not deeply explored in the literature.

  13. Transmission tariffs based on optimal power flow

    International Nuclear Information System (INIS)

    Wangensteen, Ivar; Gjelsvik, Anders

    1998-01-01

    This report discusses transmission pricing as a means of obtaining optimal scheduling and dispatch in a power system. This optimality includes consumption as well as generation. The report concentrates on how prices can be used as signals towards operational decisions of market participants (generators, consumers). The main focus is on deregulated systems with open access to the network. The optimal power flow theory, with demand side modelling included, is briefly reviewed. It turns out that the marginal costs obtained from the optimal power flow gives the optimal transmission tariff for the particular load flow in case. There is also a correspondence between losses and optimal prices. Emphasis is on simple examples that demonstrate the connection between optimal power flow results and tariffs. Various cases, such as open access and single owner are discussed. A key result is that the location of the ''marketplace'' in the open access case does not influence the net economical result for any of the parties involved (generators, network owner, consumer). The optimal power flow is instantaneous, and in its standard form cannot deal with energy constrained systems that are coupled in time, such as hydropower systems with reservoirs. A simplified example of how the theory can be extended to such a system is discussed. An example of the influence of security constraints on prices is also given. 4 refs., 24 figs., 7 tabs

  14. Effect of a superconducting coil as a fault current limiter on current density distribution in BSCCO tape after an over-current pulse

    International Nuclear Information System (INIS)

    Tallouli, M; Yamaguchi, S.; Shyshkin, O.

    2017-01-01

    The development of power transmission lines based on long-length high temperature superconducting (HTS) tapes is complicated and technically challenging task. A serious problem for transmission line operation could become HTS power cable damage due to over-current pulse conditions. To avoid the cable damage in any urgent case the superconducting coil technology, i.e. superconductor fault current limiter (SFCL) is required. Comprehensive understanding of the current density characteristics of HTS tapes in both cases, either after pure over-current pulse or after over-current pulse limited by SFCL, is needed to restart or to continue the operation of the power transmission line. Moreover, current density distribution along and across the HTS tape provides us with the sufficient information about the quality of the tape performance in different current feeding regimes. In present paper we examine BSCCO HTS tape under two current feeding regimes. The first one is 100A feeding preceded by 900A over-current pulse. In this case none of tape protection was used. The second scenario is similar to the fist one but SFCL is used to limit an over-current value. For both scenarios after the pulse is gone and the current feeding is set up at 100A we scan magnetic field above the tape by means of Hall probe sensor. Then the feeding is turned of and the magnetic field scanning is repeated. Using the inverse problem numerical solver we calculate the corresponding direct and permanent current density distributions during the feeding and after switch off. It is demonstrated that in the absence of SFCL the current distribution is highly peaked at the tape center. At the same time the current distribution in the experiment with SFCL is similar to that observed under normal current feeding condition. The current peaking in the first case is explained by the effect of an opposite electric field induced at the tape edges during the overcurrent pulse decay, and by degradation of

  15. Cooling unit for a superconducting power cable. Two years successful operation

    Energy Technology Data Exchange (ETDEWEB)

    Herzog, Friedhelm [Messer Group GmbH, Krefeld (Germany); Kutz, Thomas [Messer Industriegase GmbH, Bad Soden (Germany); Stemmle, Mark [Nexans Deutschland GmbH, Hannover (Germany); Kugel, Torsten [Westnetz GmbH, Essen (Germany)

    2016-07-01

    High temperature super conductors (HTS) can efficiently be cooled with liquid nitrogen down to a temperature of 64 K (-209 C). Lower temperatures are not practical, because nitrogen becomes solid at 63 K (-210 C). To achieve this temperature level the coolant has to be vaporized below atmospheric pressure. Messer has developed a cooling unit with an adequate vacuum subcooler, a liquid nitrogen circulation system, and a storage vessel for cooling an HTS power cable. The cooling unit was delivered in 2013 for the German AmpaCity project of RWE Deutschland AG, Nexans and Karlsruhe Institute of Technology. Within this project RWE and Nexans installed the worldwide longest superconducting power cable in the city of Essen, Germany. The cable is in operation since March 10th, 2014.

  16. The Prototype Fundamental Power Coupler For The Spallation Neutron Source Superconducting Cavities: Design And Initial Test Results

    International Nuclear Information System (INIS)

    K. M. Wilson; I. E. Campisi; E. F. Daly; G. K. Davis; M. Drury; J. E. Henry; P. Kneisel; G. Myneni; T. Powers; W. J. Schneider; M. Stirbet; Y. Kang; K. Cummings; T. Hardek

    2001-01-01

    Each of the 805 MHz superconducting cavities of the Spallation Neutron Source (SNS) is powered via a coaxial Fundamental Power Coupler (FPC) with a 50 Omega impedance and a warm planar alumina window. The design is derived from the experience of other laboratories; in particular, a number of details are based on the coupler developed for the KEK B-Factory superconducting cavities. However, other design features have been modified to account for the fact that the SNS FPC will transfer a considerably lower average power than the KEK-B coupler. Four prototypes have been manufactured so far, and preliminary tests performed on two of them at Los Alamos National Laboratory (LANL). During these tests, peak powers of over 500 kW were transferred through the couplers in the test stand designed and built for this purpose. This paper gives details of the coupler design and of the results obtained from the RF tests on the test stand during the last few months. A more comprehensive set of tests is planned for the near future

  17. Assessment of potential advantages of high Tc-superconductors for technical application of superconductivity

    International Nuclear Information System (INIS)

    Schauer, F.; Juengst, K.P.; Komarek, P.; Maurer, W.

    1987-09-01

    A first assessment of the technical and economical consequences of liquid nitrogen cooling of new superconductors is given. For the investigation the applications of superconductivity are classified in two categories: First, systems where superconductors are practically indispensable for achieving the system's objectives; second, superconductor applications in competition with highly developed conventional technologies. Further development of those superconducting systems in the first category for which the cost of cryogenic equipment is a smaller fraction of the total system cost (e.g. fusion reactor or MHD generator) will hardly be affected. However, for systems like particle accelerators, research magnets, and NMR spectroscopy and imaging systems, the cryogenic equipment expenditures are significant and LN 2 cooling leads here to a reduction of investment and operating costs, to simplified handling and maintenance, to better reliability and availability, and will thereby improve the acceptance and further spread of these systems. In the second category each application of superconductivity has to be compared with its conventional counterpart, separately. Here, electonic components, power switches, resistive current limiters, and especially the power transmission cables are those applications which look most promising. For magnet applications the main advantageous arguments are less the cost saving aspect but more the higher reliability, simplicity, N 2 -availability, and ease of handling. (orig.) [de

  18. Novel Approach to Linear Accelerator Superconducting Magnet System

    International Nuclear Information System (INIS)

    Kashikhin, Vladimir

    2011-01-01

    Superconducting Linear Accelerators include a superconducting magnet system for particle beam transportation that provides the beam focusing and steering. This system consists of a large number of quadrupole magnets and dipole correctors mounted inside or between cryomodules with SCRF cavities. Each magnet has current leads and powered from its own power supply. The paper proposes a novel approach to magnet powering based on using superconducting persistent current switches. A group of magnets is powered from the same power supply through the common, for the group of cryomodules, electrical bus and pair of current leads. Superconducting switches direct the current to the chosen magnet and close the circuit providing the magnet operation in a persistent current mode. Two persistent current switches were fabricated and tested. In the paper also presented the results of magnetic field simulations, decay time constants analysis, and a way of improving quadrupole magnetic center stability. Such approach substantially reduces the magnet system cost and increases the reliability.

  19. Long distance transmission of bulk power: the EHV-UHV DC challenge

    Energy Technology Data Exchange (ETDEWEB)

    Clerici, A; Valtorta, G

    1994-12-31

    This paper deals with technical and economical analysis of transmission of powers in the range from 1000 to 5000 MW and distances included between 1000 to 4000 km. The advantages of adoption of UHV DC transmission are evident especially for the longest distances and the largest power levels considered. (author) 4 refs., 9 figs.

  20. Use of FACTS for enhanced flexibility and efficiency in power transmission and distribution grids

    Energy Technology Data Exchange (ETDEWEB)

    Grunbaum, Rolf; Wahlberg, Conny; Sannino, Ambra

    2010-09-15

    The paper shows how the use of FACTS increases flexibility in power transmission and distribution, improving capacity of transmission corridors to integrate renewable power production. Examples included are 69 kV directly connected SVCs for grid stabilization in conjunction with a high degree of wind power penetration; series compensation to evacuate power from the largest wind power installation in USA; SVC to increase the reliability and reduce congestion over a heavily loaded power corridor; thyristor controlled series compensation to increase the dynamic stability and power transmission capability of a power inter-connector. Finally, some applications of Dynamic energy storage are highlighted.

  1. Portable wireless power transmission system for video capsule endoscopy.

    Science.gov (United States)

    Zhiwei, Jia; Guozheng, Yan; Bingquan, Zhu

    2014-10-01

    Wireless power transmission is considered a practical way of overcoming the power shortage of wireless capsule endoscopy (VCE). However, most patients cannot tolerate the long hours of lying in a fixed transmitting coil during diagnosis. To develop a portable wireless power transmission system for VCE, a compact transmitting coil and a portable inverter circuit driven by rechargeable batteries are proposed. The couple coils, optimized considering the stability and safety conditions, are 28 turns of transmitting coil and six strands of receiving coil. The driven circuit is designed according to the portable principle. Experiments show that the integrated system could continuously supply power to a dual-head VCE for more than 8 h at a frame rate of 30 frames per second with resolution of 320 × 240. The portable VCE exhibits potential for clinical applications, but requires further improvement and tests.

  2. Optimisation of VSC-HVDC Transmission for Wind Power Plants

    DEFF Research Database (Denmark)

    Silva, Rodrigo Da

    Connection of Wind Power Plants (WPP), typically oshore, using VSCHVDC transmission is an emerging solution with many benefits compared to the traditional AC solution, especially concerning the impact on control architecture of the wind farms and the grid. The VSC-HVDC solution is likely to meet...... more stringent grid codes than a conventional AC transmission connection. The purpose of this project is to analyse how HVDC solution, considering the voltage-source converter based technology, for grid connection of large wind power plants can be designed and optimised. By optimisation, the project...... the robust control technique is applied is compared with the classical proportional-integral (PI) performance, by means of time domain simulation in a point-to-point HVDC connection. The three main parameters in the discussion are the wind power delivered from the offshore wind power plant, the variation...

  3. Superconductivity, energy storage and switching

    International Nuclear Information System (INIS)

    Laquer, H.L.

    1974-01-01

    The phenomenon of superconductivity can contribute to the technology of energy storage and switching in two distinct ways. On one hand the zero resistivity of the superconductor can produce essentially infinite time constants so that an inductive storage system can be charged from very low power sources. On the other hand, the recovery of finite resistivity in a normal-going superconducting switch can take place in extremely short times, so that a system can be made to deliver energy at a very high power level. Topics reviewed include: physics of superconductivity, limits to switching speed of superconductors, physical and engineering properties of superconducting materials and assemblies, switching methods, load impedance considerations, refrigeration economics, limitations imposed by present day and near term technology, performance of existing and planned energy storage systems, and a comparison with some alternative methods of storing and switching energy. (U.S.)

  4. Linking Up : Public-Private Partnerships in Power Transmission in Africa

    OpenAIRE

    World Bank

    2017-01-01

    The 'Linking up: Public-Private Partnerships in Power Transmission in Africa' report examines private sector-led investments in transmission globally and how this approach is applicable in sub-Saharan Africa. The private sector has invested over US$25 billion in the generation sector in Africa, and across other regions, has also participated successfully in transmission networks in many co...

  5. Working on an LHC superconducting cavity

    CERN Multimedia

    Laurent Guiraud

    2000-01-01

    The delicate superconducting equipment for CERN’s LHC collider has to be assembled in ultra-clean conditions to safeguard performance. Here we see the power supply being installed on one of the superconducting cavities.

  6. Challenges facing the European power transmission tariffs: The case of inter-TSO compensation

    International Nuclear Information System (INIS)

    Stoilov, Dimo; Dimitrov, Yulian; Francois, Bruno

    2011-01-01

    This article draws attention to problems important for all EU power consumers-the unfairness in individual payments for power transmission and in the cross-border subsidy element in the mechanism of Inter-Transmission System Operators (TSO) Compensation (ITC). A brief review of power transmission tariffs brings out the structure of the problems. A short retrospection explains their growth. The essence of the ITC mechanism is explained and existing shortcomings are illustrated. The deficiencies of existing regulations for transmission pricing are analyzed. In the light of this analysis, the ITC problem is reconsidered and defined more precisely. The basic prerequisites to an ITC reformulation process are presented. The main principles of a new simple, transparent and equitable approach are suggested, in accordance with the contemporary legal positions and functions of the TSOs. - Highlights: → Investigations in the mechanism known as Inter-TSO Compensation (ITC). → Deficiencies in European regulations for cross-border power transmission payments. → Main principles of a new approach avoiding the existing cross-subsidies. → Appeal for reconsideration and a more precise definition of the ITC problem. → Public welfare enhancement by fairness in payment for power transmission.

  7. Demonstration of superconducting micromachined cavities

    Energy Technology Data Exchange (ETDEWEB)

    Brecht, T., E-mail: teresa.brecht@yale.edu; Reagor, M.; Chu, Y.; Pfaff, W.; Wang, C.; Frunzio, L.; Devoret, M. H.; Schoelkopf, R. J. [Department of Applied Physics, Yale University, New Haven, Connecticut 06511 (United States)

    2015-11-09

    Superconducting enclosures will be key components of scalable quantum computing devices based on circuit quantum electrodynamics. Within a densely integrated device, they can protect qubits from noise and serve as quantum memory units. Whether constructed by machining bulk pieces of metal or microfabricating wafers, 3D enclosures are typically assembled from two or more parts. The resulting seams potentially dissipate crossing currents and limit performance. In this letter, we present measured quality factors of superconducting cavity resonators of several materials, dimensions, and seam locations. We observe that superconducting indium can be a low-loss RF conductor and form low-loss seams. Leveraging this, we create a superconducting micromachined resonator with indium that has a quality factor of two million, despite a greatly reduced mode volume. Inter-layer coupling to this type of resonator is achieved by an aperture located under a planar transmission line. The described techniques demonstrate a proof-of-principle for multilayer microwave integrated quantum circuits for scalable quantum computing.

  8. Self-tuning wireless power transmission scheme based on on-line scattering parameters measurement and two-side power matching.

    Science.gov (United States)

    Luo, Yanting; Yang, Yongmin; Chen, Zhongsheng

    2014-04-10

    Sub-resonances often happen in wireless power transmission (WPT) systems using coupled magnetic resonances (CMR) due to environmental changes, coil movements or component degradations, which is a serious challenge for high efficiency power transmission. Thus self-tuning is very significant to keep WPT systems following strongly magnetic resonant conditions in practice. Traditional coupled-mode ways is difficult to solve this problem. In this paper a two-port power wave model is presented, where power matching and the overall systemic power transmission efficiency are firstly defined by scattering (S) parameters. Then we propose a novel self-tuning scheme based on on-line S parameters measurements and two-side power matching. Experimental results testify the feasibility of the proposed method. These findings suggest that the proposed method is much potential to develop strongly self-adaptive WPT systems with CMR.

  9. Superconductivity at the industrial scale

    International Nuclear Information System (INIS)

    Tixador, P.; Lebrun, Ph.

    2011-01-01

    The discovery of superconductivity is 100 years old but theoretical works are still necessary: the BCS theory does not apply to the new families of high temperature superconducting materials discovered after 1986. In 2001 it was discovered that MgB 2 is superconducting at 39 K, this critical temperature is not the highest but MgB 2 is easy to produce and cheap. Today's highest critical temperature under atmospheric pressure is that of the HgTlBaCaCuO compound: 138 K. The complexity and the cost of cryogenic systems restrain the applications of superconductivity. The author reviews the applications of superconducting in medical imaging, particle detectors, and in the safety systems of power networks. (A.C.)

  10. Risk Evaluation on UHV Power Transmission Construction Project Based on AHP and FCE Method

    OpenAIRE

    Huiru Zhao; Sen Guo

    2014-01-01

    Ultra high voltage (UHV) power transmission construction project is a high-tech power grid construction project which faces many risks and uncertainty. Identifying the risk of UHV power transmission construction project can help mitigate the risk loss and promote the smooth construction. The risk evaluation on “Zhejiang-Fuzhou” UHV power transmission construction project was performed based on analytic hierarchy process (AHP) and fuzzy comprehensive evaluation (FCE) method in this paper. Afte...

  11. Superconducting magnetic energy storage and superconducting self-supplied electromagnetic launcher

    Science.gov (United States)

    Ciceron, Jérémie; Badel, Arnaud; Tixador, Pascal

    2017-10-01

    Superconductors can be used to build energy storage systems called Superconducting Magnetic Energy Storage (SMES), which are promising as inductive pulse power source and suitable for powering electromagnetic launchers. The second generation of high critical temperature superconductors is called coated conductors or REBCO (Rare Earth Barium Copper Oxide) tapes. Their current carrying capability in high magnetic field and their thermal stability are expanding the SMES application field. The BOSSE (Bobine Supraconductrice pour le Stockage d'Energie) project aims to develop and to master the use of these superconducting tapes through two prototypes. The first one is a SMES with high energy density. Thanks to the performances of REBCO tapes, the volume energy and specific energy of existing SMES systems can be surpassed. A study has been undertaken to make the best use of the REBCO tapes and to determine the most adapted topology in order to reach our objective, which is to beat the world record of mass energy density for a superconducting coil. This objective is conflicting with the classical strategies of superconducting coil protection. A different protection approach is proposed. The second prototype of the BOSSE project is a small-scale demonstrator of a Superconducting Self-Supplied Electromagnetic Launcher (S3EL), in which a SMES is integrated around the launcher which benefits from the generated magnetic field to increase the thrust applied to the projectile. The S3EL principle and its design are presented. Contribution to the topical issue "Electrical Engineering Symposium (SGE 2016)", edited by Adel Razek

  12. Lightweight power bus for a baseload nuclear reactor in space

    International Nuclear Information System (INIS)

    Oberly, C.E.; Massie, L.D.; Hoffman, D.J.

    1989-01-01

    Space environmental interactions with the power distribution/power processing subsystem can become a serious problem for power systems rated at 10's to 100's of kilowatts. Utilization of ceramic superconductors at 1000 A/cm/sup 2/, which has already been demonstrated at 77 K in a conductor configuration may eliminate both bus mass and distribution voltage problems in a high power satellite. The analytical results presented here demonstrate that a superconducting coaxial power transmission bus offers significant benefits in reduced distribution voltage and mass

  13. MATL : Canada's first merchant power transmission interconnection : experiences and future outlook

    International Nuclear Information System (INIS)

    Wilson, L.

    2006-01-01

    The current status of the Montana Alberta Tie Ltd. (MATL) merchant transmission project was outlined with reference to the business concept, the advantages of the project and market opportunities. Some of the challenges facing the project were discussed along with lessons learned and accomplishments thus far. MATL is preparing to construct a privately funded transmission line between Lethbridge, Alberta and Great Falls, Montana. The project represents the first direct power transmission inter-connection between Montana and Alberta. The 346 km, 230 kV AC transmission line with phase shifting transformer and 300 MW transfer capacity will be a synchronous interconnection and will improve the reliability of the entire electric systems in both Montana and Alberta. The benefits of the interconnected power system include increased reliability and stability of the existing power grids; better import/export capabilities; more competition and options in the marketplace; greater flexibility in scheduling generator maintenance; and, optimal allocation of generation resources. tabs., figs

  14. Long-term research in Japan: amorphous metals, metal oxide varistors, high-power semiconductors and superconducting generators

    Energy Technology Data Exchange (ETDEWEB)

    Hane, G.J.; Yorozu, M.; Sogabe, T.; Suzuki, S.

    1985-04-01

    The review revealed that significant activity is under way in the research of amorphous metals, but that little fundamental work is being pursued on metal oxide varistors and high-power semiconductors. Also, the investigation of long-term research program plans for superconducting generators reveals that activity is at a low level, pending the recommendations of a study currently being conducted through Japan's Central Electric Power Council.

  15. Hydraulic fluid used for power transmission

    Energy Technology Data Exchange (ETDEWEB)

    Heikkilae, M.; Pikulinsky, K.; Leisio, C.

    1996-11-01

    In early October another 50-kilowatt wind turbine was provided with new power transmission technology at the Kopparnaes Energy Park in Inkoo, Finland, west of Helsinki. The new technology is thought to make this wind turbine located on the south coast of Finland more efficient, lighter, and cheaper. Certain aspects of this new technology can be applied to older wind turbines. (orig.)

  16. State of the art of superconducting fault current limiters and their application to the electric power system

    International Nuclear Information System (INIS)

    Morandi, Antonio

    2013-01-01

    Highlights: ► The state of the art of superconducting fault current limiters is reviewed. ► An innovative concept of FCL is discussed and the potential of MgB 2 is outlined. ► The use of FCL to allow more interconnection of MV bus-bar is discussed. ► The use of FCL to increase the immunity from voltage dips is discussed. ► The use of FCL to integrate more distributed generation is pointed out. -- Abstract: Modern electric power systems are becoming more and more complex in order to meet new needs. Nowadays a high power quality is mandatory and there is the need to integrate increasing amounts of on-site generation. All this translates in more sophisticated electric network with intrinsically high short circuit rate. This network is vulnerable in case of fault and special protection apparatus and procedures needs to be developed in order to avoid costly or even irreversible damage. A superconducting fault current limiter (SFCL) is a device with a negligible impedance in normal operating conditions that reliably switches to a high impedance state in case of extra-current. Such a device is able to increase the short circuit power of an electric network and to contemporarily eliminate the hazard during the fault. It can be regarded as a key component for future electric power systems. In this paper the state of the art of superconducting fault current limiters mature for applications is briefly resumed and the potential impact of this device on the paradigm of design and operation of power systems is analyzed. In particular the use of the FCL as a mean to allow more interconnection of MV bus-bars as well an increased immunity with respect to the voltage disturbances induced by critical customer is discussed. The possibility to integrate more distributed generation in the distribution grid is also considered

  17. Northern States Power Company's open transmission tariff from a customer's perspective

    International Nuclear Information System (INIS)

    Marietta, K.E.; Achinger, S.K.

    1993-01-01

    In October of 1990, Northern States Power Company (NSP or Company), filed a unique open transmission tariff for both captive customers and through-system transactions. This is an important step towards expanding transmission services in the United States. Many individuals in the utility industry, who may be considering Imposing generation costs on transmission services, have been closely monitoring NSP's case which is currently before the Federal Energy Regulatory Commission (FERC). NSP's innovative generation costs include charges for reactive power production, frequency control, load dispatching, and load following. The results of this case may also have an important impact on the future of open transmission tariffs. Rates for these services depend on the customer's classification as either a captive or through-system consumer. The proposed tariff raises critical issues related to the costing of these transmission services. NSP's methodology has caused serious concern because the proposed tariff would increase transmission costs by an average of 53%. This paper will discuss the benefits of transmission, proposed rates, contract terms, and costing methodologies of NSP's plan

  18. Superconductivity

    International Nuclear Information System (INIS)

    Buller, L.; Carrillo, F.; Dietert, R.; Kotziapashis, A.

    1989-01-01

    Superconductors are materials which combine the property of zero electric resistance with the capability to exclude any adjacent magnetic field. This leads to many large scale applications such as the much publicized levitating train, generation of magnetic fields in MHD electric generators, and special medical diagnostic equipment. On a smaller-scale, superconductive materials could replace existing resistive connectors and decrease signal delays by reducing the RLC time constants. Thus, a computer could operate at much higher speeds, and consequently at lower power levels which would reduce the need for heat removal and allow closer spacing of circuitry. Although technical advances and proposed applications are constantly being published, it should be recognized that superconductivity is a slowly developing technology. It has taken scientists almost eighty years to learn what they now know about this material and its function. The present paper provides an overview of the historical development of superconductivity and describes some of the potential applications for this new technology as it pertains to the electronics industry

  19. Superconducting Switch for Fast On-Chip Routing of Quantum Microwave Fields

    Science.gov (United States)

    Pechal, M.; Besse, J.-C.; Mondal, M.; Oppliger, M.; Gasparinetti, S.; Wallraff, A.

    2016-08-01

    A switch capable of routing microwave signals at cryogenic temperatures is a desirable component for state-of-the-art experiments in many fields of applied physics, including but not limited to quantum-information processing, communication, and basic research in engineered quantum systems. Conventional mechanical switches provide low insertion loss but disturb operation of dilution cryostats and the associated experiments by heat dissipation. Switches based on semiconductors or microelectromechanical systems have a lower thermal budget but are not readily integrated with current superconducting circuits. Here we design and test an on-chip switch built by combining tunable transmission-line resonators with microwave beam splitters. The device is superconducting and as such dissipates a negligible amount of heat. It is compatible with current superconducting circuit fabrication techniques, operates with a bandwidth exceeding 100 MHz, is capable of handling photon fluxes on the order of 1 05 μ s-1 , equivalent to powers exceeding -90 dBm , and can be switched within approximately 6-8 ns. We successfully demonstrate operation of the device in the quantum regime by integrating it on a chip with a single-photon source and using it to route nonclassical itinerant microwave fields at the single-photon level.

  20. Research on superconducting generator and materials in Japan

    International Nuclear Information System (INIS)

    Uyeda, K.; Maki, N.; Kurihara, S.; Ueda, A.; Hirose, S.; Itoh, K.

    1988-01-01

    As a first step of application of superconducting technology to electric power equipment, the practical use of superconducting generator is sucessfully developed, enhanced generation efficiency, reduced construction cost, improved stability limit. For the development, it is required to integrated such technical assets as new generator design technology based on detailed analysis of techniques and high strength material for with standing intensive electro-magnetic force. This paper describes history and results of research and development of superconducting generator for experimental machines, the results of feasibility study of pilot generator, and master plan for research and development of superconducting technology for applications to generator and the other power apparatus

  1. Facts controllers in power transmission and distribution

    CERN Document Server

    Padiyar, KR

    2007-01-01

    About the Book: The emerging technology of Flexible AC Transmission System (FACTS) enables planning and operation of power systems at minimum costs, without compromising security. This is based on modern high power electronic systems that provide fast controllability to ensure ''flexible'' operation under changing system conditions. This book presents a comprehensive treatment of the subject by discussing the operating principles, mathematical models, control design and issues that affect the applications. The concepts are explained often with illustrative examples and case studies. In partic

  2. Power and signal transmission for mobile teleoperated systems

    International Nuclear Information System (INIS)

    Morris, A.C. Jr.; Hamel, W.R.

    1986-01-01

    Appropriate means must be furnished for supplying power and for sending controlling commands to mobile teleoperated systems. This paper describes a number of umbilical, onboard, and wireless systems used in transmitting power that are available for mobile teleoperator services. The pros and cons of selecting appropriate methods from a list of possible communication systems (wired, fiber optic, and radio frequency) are also examined. Moreover, hybrid systems combining wireless power transmissions with command-information signals are also possible. 20 refs., 6 figs., 1 tab

  3. Conceptual design of the SPL II A high-power superconducting $H^-$ linac at CERN

    CERN Document Server

    Baylac, M; Benedico-Mora, E; Caspers, Friedhelm; Chel, S; Deconto, J M; Duperrier, R; Froidefond, E; Garoby, R; Hanke, K; Hill, C; Hori, M; Inigo-Golfin, J; Kahle, K; Kroyer, T; Küchler, D; Lallement, J B; Lindroos, M; Lombardi, A M; López Hernández, A; Magistris, M; Meinschad, T; Millich, Antonio; Noah-Messomo, E; Pagani, C; Palladino, V; Paoluzzi, M; Pasini, M; Pierini, P; Rossi, C; Royer, J P; Sanmartí, M; Sargsyan, E; Scrivens, R; Silari, M; Steiner, T; Tückmantel, Joachim; Uriot, D; Vretenar, M

    2006-01-01

    An analysis of the revised physics needs and recent progress in the technology of superconducting RF cavities have led to major changes in the speci cation and in the design for a Superconducting Proton Linac (SPL) at CERN. Compared with the rst conceptual design report (CERN 2000–012) the beam energy is almost doubled (3.5 GeV instead of 2.2 GeV), while the length of the linac is reduced by 40% and the repetition rate is reduced to 50 Hz. The basic beam power is at a level of 4–5MW and the approach chosen offers enough margins for upgrades. With this high beam power, the SPL can be the proton driver for an ISOL-type radioactive ion beam facility of the next generation (`EURISOL'), and for a neutrino facility based on superbeam C beta-beam or on muon decay in a storage ring (`neutrino factory'). The SPL can also replace the Linac2 and PS Booster in the low-energy part of the CERN proton accelerator complex, improving signi cantly the beam performance in terms of brightness and intensity for the bene t of al...

  4. Experimental investigation into the fault response of superconducting hybrid electric propulsion electrical power system to a DC rail to rail fault

    Science.gov (United States)

    Nolan, S.; Jones, C. E.; Munro, R.; Norman, P.; Galloway, S.; Venturumilli, S.; Sheng, J.; Yuan, W.

    2017-12-01

    Hybrid electric propulsion aircraft are proposed to improve overall aircraft efficiency, enabling future rising demands for air travel to be met. The development of appropriate electrical power systems to provide thrust for the aircraft is a significant challenge due to the much higher required power generation capacity levels and complexity of the aero-electrical power systems (AEPS). The efficiency and weight of the AEPS is critical to ensure that the benefits of hybrid propulsion are not mitigated by the electrical power train. Hence it is proposed that for larger aircraft (~200 passengers) superconducting power systems are used to meet target power densities. Central to the design of the hybrid propulsion AEPS is a robust and reliable electrical protection and fault management system. It is known from previous studies that the choice of protection system may have a significant impact on the overall efficiency of the AEPS. Hence an informed design process which considers the key trades between choice of cable and protection requirements is needed. To date the fault response of a voltage source converter interfaced DC link rail to rail fault in a superconducting power system has only been investigated using simulation models validated by theoretical values from the literature. This paper will present the experimentally obtained fault response for a variety of different types of superconducting tape for a rail to rail DC fault. The paper will then use these as a platform to identify key trades between protection requirements and cable design, providing guidelines to enable future informed decisions to optimise hybrid propulsion electrical power system and protection design.

  5. Superconductivity in a copper(II)-based coordination polymer with perfect kagome structure

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xing; Liu, Liyao; Xu, Wei; Zhu, Daoben [Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing (China); University of Chinese Academy of Sciences, Beijing (China); Zhang, Shuai [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing (China); Yu, Lei [Department of Chemistry, University of Kentucky, Lexington, KY (United States); Chen, Genfu [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing (China); University of Chinese Academy of Sciences, Beijing (China); Collaborative Innovation Center of Quantum Matter, Beijing (China)

    2018-01-02

    A highly crystalline copper(II) benzenehexathiolate coordination polymer (Cu-BHT) has been prepared. The two-dimensional kagome structure has been confirmed by powder X-ray diffraction, high-resolution transmission electron microscopy, and high-resolution scanning transmission electron microscopy. The as-prepared sample exhibits bulk superconductivity at about 0.25 K, which is confirmed by the zero resistivity, AC magnetic susceptibility, and specific heat measurements. Another diamagnetic transition at about 3 K suggests that there is a second superconducting phase that may be associated with a single layer or few layers of Cu-BHT. It is the first time that superconductivity has been observed in a coordination polymer. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Potential minimum cost of electricity of superconducting coil tokamak power reactors

    International Nuclear Information System (INIS)

    Reid, R.L.; Peng, Y-K. M.

    1989-01-01

    The potential minimum cost of electricity (COE) for superconducting tokamak power reactors is estimated by increasing the physics (confinement, beta limit, bootstrap current fraction) and technology [neutral beam energy, toroidal field (TF) coil allowable stresses, divertor heat flux, superconducting coil critical field, critical temperature, and quench temperature rise] constraints far beyond those assumed for ITER until the point of diminishing returns is reached. A version of the TETRA systems code, calibrated with the ITER design and modified for power reactors, is used for this analysis, limiting this study to reactors with the same basic device configuration and costing algorithms as ITER. A minimum COE is reduced from >200 to about 80 mill/kWh when the allowable design constraints are raised to 2 times those of ITER. At 4 times the ITER allowables, a minimum COE of about 60 mill/kWh is obtained. The corresponding tokamak has a major radius of approximately 4 m, a plasma current close to 10 MA, an aspect ratio of 4, a confinement H- factor ≤3, a beta limit of approximately 2 times the first stability regime, a divertor heat flux of about 20 MW/m 2 , a Β max ≤ 18 T, and a TF coil average current density about 3 times that of ITER. The design constraints that bound the minimum COE are the allowable stresses in the TF coil, the neutral beam energy, and the 99% bootstrap current (essentially free current drive). 14 refs., 4 figs., 2 tabs

  7. Calculation and application of energy transaction allocation factors in electric power transmission systems

    Science.gov (United States)

    Fradi, Aniss

    The ability to allocate the active power (MW) loading on transmission lines and transformers, is the basis of the "flow based" transmission allocation system developed by the North American Electric Reliability Council. In such a system, the active power flows must be allocated to each line or transformer in proportion to the active power being transmitted by each transaction imposed on the system. Currently, this is accomplished through the use of the linear Power Transfer Distribution Factors (PTDFs). Unfortunately, no linear allocation models exist for other energy transmission quantities, such as MW and MVAR losses, MVAR and MVA flows, etc. Early allocation schemes were developed to allocate MW losses due to transactions to branches in a transmission system, however they exhibited diminished accuracy, since most of them are based on linear power flow modeling of the transmission system. This thesis presents a new methodology to calculate Energy Transaction Allocation factors (ETA factors, or eta factors), using the well-known process of integration of a first derivative function, as well as consistent and well-established mathematical and AC power flow models. The factors give a highly accurate allocation of any non-linear system quantity to transactions placed on the transmission system. The thesis also extends the new ETA factors calculation procedure to restructure a new economic dispatch scheme where multiple sets of generators are economically dispatched to meet their corresponding load and their share of the losses.

  8. A Novel Oscillating Rectenna for Wireless Microwave Power Transmission

    Science.gov (United States)

    McSpadden, J. O.; Dickinson, R. M.; Fan, L.; Chang, K.

    1998-01-01

    A new concept for solid state wireless microwave power transmission is presented. A 2.45 GHz rectenna element that was designed for over 85% RF to dc power conversion efficiency has been used to oscillate at 3.3 GHz with an approximate 1% dc to RF conversion efficiency.

  9. Acoustic Power Transmission Through a Ducted Fan

    Science.gov (United States)

    Envia, Ed

    2016-01-01

    For high-speed ducted fans, when the rotor flowfield is shock-free, the main contribution to the inlet radiated acoustic power comes from the portion of the rotor stator interaction sound field that is transmitted upstream through the rotor. As such, inclusion of the acoustic transmission is an essential ingredient in the prediction of the fan inlet noise when the fan tip relative speed is subsonic. This paper describes a linearized Euler based approach to computing the acoustic transmission of fan tones through the rotor. The approach is embodied in a code called LINFLUX was applied to a candidate subsonic fan called the Advanced Ducted Propulsor (ADP). The results from this study suggest that it is possible to make such prediction with sufficient fidelity to provide an indication of the acoustic transmission trends with the fan tip speed.

  10. Acoustic wave spread in superconducting-normal-superconducting sandwich

    International Nuclear Information System (INIS)

    Urushadze, G.I.

    2004-01-01

    The acoustic wave spread, perpendicular to the boundaries between superconducting and normal metals in superconducting-normal-superconducting (SNS) sandwich has been considered. The alternate current flow sound induced by the Green function method has been found and the coefficient of the acoustic wave transmission through the junction γ=(S 1 -S 2 )/S 1 , (where S 1 and S 2 are average energy flows formed on the first and second boundaries) as a function of the phase difference between superconductors has been investigated. It is shown that while the SNS sandwich is almost transparent for acoustic waves (γ 0 /τ), n=0,1,2, ... (where τ 0 /τ is the ratio of the broadening of the quasiparticle energy levels in impurity normal metal as a result of scattering of the carriers by impurities 1/τ to the spacing between energy levels 1/τ 0 ), γ=2, (S 2 =-S 1 ), which corresponds to the full reflection of the acoustic wave from SNS sandwich. This result is valid for the limit of a pure normal metal but in the main impurity case there are two amplification and reflection regions for acoustic waves. The result obtained shows promise for the SNS sandwich as an ideal mirror for acoustic wave reflection

  11. The effect of electric transmission constraints on how power generation companies bid in the Colombian electrical power market

    Directory of Open Access Journals (Sweden)

    Luis Eduardo Gallego Vega

    2010-05-01

    Full Text Available This paper presents the results of research about the effect of transmission constraints on both expected electrical energy to be dispatched and power generation companies’ bidding strategies in the Colombian electrical power market. The proposed model simulates the national transmission grid and economic dispatch by means of optimal power flows. The proposed methodology allows structural problems in the power market to be analyzed due to the exclusive effect of trans- mission constraints and the mixed effect of bidding strategies and transmission networks. A new set of variables is proposed for quantifying the impact of each generation company on system operating costs and the change in expected dispatched energy. A correlation analysis of these new variables is presented, revealing some interesting linearities in some generation companies’ bidding patterns.

  12. The Evaluation Method of the Lightning Strike on Transmission Lines Aiming at Power Grid Reliability

    Science.gov (United States)

    Wen, Jianfeng; Wu, Jianwei; Huang, Liandong; Geng, Yinan; Yu, zhanqing

    2018-01-01

    Lightning protection of power system focuses on reducing the flashover rate, only distinguishing by the voltage level, without considering the functional differences between the transmission lines, and being lack of analysis the effect on the reliability of power grid. This will lead lightning protection design of general transmission lines is surplus but insufficient for key lines. In order to solve this problem, the analysis method of lightning striking on transmission lines for power grid reliability is given. Full wave process theory is used to analyze the lightning back striking; the leader propagation model is used to describe the process of shielding failure of transmission lines. The index of power grid reliability is introduced and the effect of transmission line fault on the reliability of power system is discussed in detail.

  13. Design of a termination for a high temperature superconduction power cable

    DEFF Research Database (Denmark)

    Rasmussen, Carsten; Kühle (fratrådt), Anders Van Der Aa; Tønnesen, Ole

    1999-01-01

    ). This assembly is electrically insulated with an extruded polymer dielectric kept at room temperature. Cooling is provided by a flow of liquid nitrogen inside the former. The purpose of the termination is to connect the superconducting cable conductor at cryogenic temperature to the existing power grid at room...... temperatures, the transfer of liquid nitrogen over a high voltage drop and that of providing a well defined atmosphere inside the termination and around the cable conductor. Designs based on calculations and experiments will be presented. The solutions are optimized with respect to a low heat in-leak....

  14. Observation of voltage fluctuations in a superconducting magnet during MHD power generation

    International Nuclear Information System (INIS)

    Smith, R.P.; Niemann, R.C.; Kraimer, M.R.; Zinneman, T.E.

    1978-01-01

    Fluctuating voltage signals on the potential taps of the ANL 5.0 T MHD Superconducting Dipole Magnet have been observed during MHD power generation at the U-25B Facility at the High Temperature Institute (IVTAN) Moscow, USSR. Various other thermodynamic and electrical parameters of the U-25B flow train have been recorded, and statistical analysis concerning correlations between the phenomena with a view of discerning causal interdependence is in progress. Voltage fluctuations observed at the magnet terminals are analyzed with special emphasis on magnet stability

  15. LLNL superconducting magnets test facility

    Energy Technology Data Exchange (ETDEWEB)

    Manahan, R; Martovetsky, N; Moller, J; Zbasnik, J

    1999-09-16

    The FENIX facility at Lawrence Livermore National Laboratory was upgraded and refurbished in 1996-1998 for testing CICC superconducting magnets. The FENIX facility was used for superconducting high current, short sample tests for fusion programs in the late 1980s--early 1990s. The new facility includes a 4-m diameter vacuum vessel, two refrigerators, a 40 kA, 42 V computer controlled power supply, a new switchyard with a dump resistor, a new helium distribution valve box, several sets of power leads, data acquisition system and other auxiliary systems, which provide a lot of flexibility in testing of a wide variety of superconducting magnets in a wide range of parameters. The detailed parameters and capabilities of this test facility and its systems are described in the paper.

  16. Dynamic modeling of fluid power transmissions for wind turbines

    NARCIS (Netherlands)

    Diepeveen, N.F.B.; Jarquin Laguna, A.

    2011-01-01

    Fluid power transmission for wind turbines is quietly gaining more ground/interest. The principle of the various concepts presented so far is to convert aerodynamic torque of the rotor blades into a pressurized fluid flow by means of a positive displacement pump. At the other end of the fluid power

  17. Radiation considerations for superconducting fusion magnets

    International Nuclear Information System (INIS)

    Abdou, M.A.

    1977-01-01

    Radiation environment for the magnets is characterized for various conditions expected for tokamak power reactor operation. The radiation levels are translated into radiation effects using available experimental data. The impact of the tradeoffs in radiation shielding and the change in the properties of the superconducting magnets on reactor performance and economics is examined. It is shown that (1) superconducting magnets in fusion reactors will operate at much higher radiation level than was previously anticipated; (2) additional data on radiation damage is required to better accuracy than is presently available in order to accurately quantify the change in properties in the superconducting magnet components; and (3) there is a substantial penalty for increasing (or overestimating) the shielding requirements. A perspective of future tokamak power reactors is presented and questions relating to desirable magnetic field strength and selection of materials for superconducting magnets are briefly examined

  18. Link-state-estimation-based transmission power control in wireless body area networks.

    Science.gov (United States)

    Kim, Seungku; Eom, Doo-Seop

    2014-07-01

    This paper presents a novel transmission power control protocol to extend the lifetime of sensor nodes and to increase the link reliability in wireless body area networks (WBANs). We first experimentally investigate the properties of the link states using the received signal strength indicator (RSSI). We then propose a practical transmission power control protocol based on both short- and long-term link-state estimations. Both the short- and long-term link-state estimations enable the transceiver to adapt the transmission power level and target the RSSI threshold range, respectively, to simultaneously satisfy the requirements of energy efficiency and link reliability. Finally, the performance of the proposed protocol is experimentally evaluated in two experimental scenarios-body posture change and dynamic body motion-and compared with the typical WBAN transmission power control protocols, a real-time reactive scheme, and a dynamic postural position inference mechanism. From the experimental results, it is found that the proposed protocol increases the lifetime of the sensor nodes by a maximum of 9.86% and enhances the link reliability by reducing the packet loss by a maximum of 3.02%.

  19. Point-to-point microwave power transmission experiment; Maikuroha ni yoru denryoku yuso no kiso kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Shimokura, N.; Kirihara, T. [Kansai Electric Power Co. Inc., Osaka (Japan)

    1997-09-30

    In order to demonstrate the power transmission using microwave and arrange advantages and problems in the wireless power transmission, field tests of point-to-point power transmission were conducted. Microwave frequency of 2.45 GHz was used, which is assigned as the industrial, scientific and medical frequency. The transmission system is composed of generator, director tube, primary radiator, and transmission antenna. The maximum 5 kW of microwave power can be transmitted by combining a 3 m-diameter parabolic antenna and a magnetron. The receiving system is composed of devices called as RECTENNA (rectifying antenna). A large capacity and high efficiency RECTENNA was developed, by which the maximum 2.5 W of input power per single device can be provided. As a result of the experiments, efficiency at the transmission side was over 70%, and RF-DC efficiency at the receiving side was about 51%. At the open-air test site, however, the total efficiency of only 14.8% could be obtained. 8 refs., 12 figs.

  20. Power system analysis of Hanlim superconducting HVDC system using real time digital simulator

    Science.gov (United States)

    Won, Y. J.; Kim, J. G.; Kim, A. R.; Kim, G. H.; Park, M.; Yu, I. K.; Sim, K. D.; Cho, J.; Lee, S.; Jeong, K. W.; Watanabe, K.

    2011-11-01

    Jeju island is located approximately 100 km south from the mainland of Korea, and had a peak load of about 553 MW in 2008. The demand increases 7.2% a year over the last 5 years. Since the wind profiles of Jeju island are more favorable than mainland of Korea, many companies have shown interest in the wind power business at the Jeju island. Moreover KEPCO has a plan for renewable energy test too whose power will be delivered by HVDC system. One kilometer length of total 8 km was designed as superconducting DC cable. Rest 7 km will be the conventional overhead line. In this paper, the authors have developed a simulation model of the power network around 8 km HVDC system using real time digital simulator (RTDS).

  1. Analysis of mechanical characteristics of superconducting field coil for 17 MW class high temperature superconducting synchronous motor

    International Nuclear Information System (INIS)

    Kim, J. H.; Park, S. I.; Im, S. H.; Kim, H. M.

    2013-01-01

    Superconducting field coils using a high-temperature superconducting (HTS) wires with high current density generate high magnetic field of 2 to 5 [T] and electromagnetic force (Lorentz force) acting on the superconducting field coils also become a very strong from the point of view of a mechanical characteristics. Because mechanical stress caused by these powerful electromagnetic force is one of the factors which worsens the critical current performance and structural characteristics of HTS wire, the mechanical stress analysis should be performed when designing the superconducting field coils. In this paper, as part of structural design of superconducting field coils for 17 MW class superconducting ship propulsion motor, mechanical stress acting on the superconducting field coils was analyzed and structural safety was also determined by the coupling analysis system that is consists of commercial electromagnetic field analysis program and structural analysis program.

  2. Feasible approach of contactless power transfer technology combined with HTS coils based on electromagnetic resonance coupling

    International Nuclear Information System (INIS)

    Chang, Yoon Do; Yim, Seong Woo; Hwang, Si Dole

    2013-01-01

    The contactless power transfer (CPT) systems have been recently gaining popularity widely since it is an available option to realize the power delivery and storage with connector-free devices across a large air gap. Especially, the CPT with electromagnetic resonance coupling method is possible to exchange energy within 2 m efficiently. However, the power transfer efficiency of CPT in commercialized products has been limited because the impedance matching of coupled coils is sensitive. As a reasonable approach, we combined the CPT system with HTS wire technology and called as, superconducting contactless power transfer (SUCPT) system. Since the superconducting coils have an enough current density, the superconducting antenna and receiver coils at CPT system have a merit to deliver and receive a mass amount of electric energy. In this paper, we present the feasibility of the SUCPT system and examine the transmission properties of SUCPT phenomenon between room temperature and very low temperature at 77 K as long as the receiver is within 1.0 m distance.

  3. Wireless (Power Transfer Transmission of Electrical Energy (Electricity Intended for Consumer Purposes up to 50 W

    Directory of Open Access Journals (Sweden)

    Marek Piri

    2016-01-01

    Full Text Available This project deals with Power Semiconductor Systems PSS for wireless transmission of electricity to the power of 50~W with regard to the distance and transmission efficiency. We decided to use electromagnetic resonance for electrical energy transmission. For experimental verification, we have wound two coils of identical dimensions. At a given power transmission solutions, we obtain the highest efficiency η = 70% at a distance of 5 cm, where the transmitted power was 48 W.

  4. Superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Mijatovic, Nenad; Seiler, Eugen

    2010-01-01

    , the main challenge of the superconducting direct drive technology is to prove that the reliability is superior to the alternative drive trains based on gearboxes or permanent magnets. A strategy of successive testing of superconducting direct drive trains in real wind turbines of 10 kW, 100 kW, 1 MW and 10......We have examined the potential of 10 MW superconducting direct drive generators to enter the European offshore wind power market and estimated that the production of about 1200 superconducting turbines until 2030 would correspond to 10% of the EU offshore market. The expected properties of future...... offshore turbines of 8 and 10 MW have been determined from an up-scaling of an existing 5 MW turbine and the necessary properties of the superconducting drive train are discussed. We have found that the absence of the gear box is the main benefit and the reduced weight and size is secondary. However...

  5. Three-terminal superconducting devices

    International Nuclear Information System (INIS)

    Gallagher, W.J.

    1985-01-01

    The transistor has a number of properties that make it so useful. The authors discuss these and the additional properties a transistor would need to have for high performance applications at temperatures where superconductivity could contribute advantages to system-level performance. These properties then serve as criteria by which to evaluate three-terminal devices that have been proposed for applications at superconducting temperatures. FETs can retain their transistor properties at low temperatures, but their power consumption is too large for high-speed, high-density cryogenic applications. They discuss in detail why demonstrated superconducting devices with three terminals -Josephson effect based devices, injection controlled weak links, and stacked tunnel junction devices such as the superconducting transistor proposed by K. Gray and the quiteron -- each fail to have true transistor-like properties. They conclude that the potentially very rewarding search for a transistor compatible with superconductivity in high performance applications must be in new directions

  6. Modular VSC converter based HVDC power transmission from offshore wind power plant: Compared to the conventional HVAC system

    DEFF Research Database (Denmark)

    Sharma, Ranjan; Rasmussen, Tonny Wederberg; Jensen, Kim Høj

    2010-01-01

    power transmission options with HVDC systems are under consideration. In this paper, a comparison between a conventional HVAC transmission system and a HVDC system equipped with modular voltage source converters is provided. The comparison is based on the total energy transmission capability...

  7. Design and operation of the 30-MJ superconducting magnetic-storage system on the Bonneville Power Administration bus

    International Nuclear Information System (INIS)

    Schermer, R.I.; Barron, M.H.; Boenig, H.J.

    1983-01-01

    A superconducting magnetic-energy-storage (SMES) unit is suitable for power-system stabilization because it can provide positive damping by absorbing or releasing energy with a relatively fast response time, 10 ms. In the fall of 1982, an SMES unit was installed at the Tacoma Substation of the Bonneville Power Administration as an experiment in monitoring, predicting and improving system stability. This paper reports principally on the system testing

  8. Far-infrared transmission of a superconducting NbN film

    Czech Academy of Sciences Publication Activity Database

    Šindler, M.; Tesař, Roman; Koláček, Jan; Skrbek, L.; Šimša, Zdeněk

    2010-01-01

    Roč. 81, č. 18 (2010), 184529/1-184529/5 ISSN 1098-0121 R&D Projects: GA ČR GA202/08/0326 Institutional research plan: CEZ:AV0Z10100521 Keywords : superconductivity * BCS theory * terahertz radiation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.772, year: 2010

  9. Solar-pumped lasers for space power transmission

    Science.gov (United States)

    Taussig, R.; Bruzzone, C.; Nelson, L.; Quimby, D.; Christiansen, W.

    1979-01-01

    Multi-Megawatt CW solar-pumped lasers appear to be technologically feasible for space power transmission in the 1990s time frame. A new concept for a solar-pumped laser is presented which utilizes an intermediate black body cavity to provide a uniform optical pumping environment for the lasant, either CO or CO2. Reradiation losses are minimized with resulting high efficiency operation. A 1 MW output laser may weigh as little as 8000 kg including solar collector, black body cavity, laser cavity and ducts, pumps, power systems and waste heat radiator. The efficiency of such a system will be on the order of 10 to 20%. Details of the new concept, laser design, comparison to competing solar-powered lasers and applications to a laser solar power satellite (SPS) concept are presented.

  10. Micro-size antenna structure with vertical nanowires for wireless power transmission and communication.

    Science.gov (United States)

    Kang, Jong-Gu; Jeong, Yeri; Shin, Jeong Hee; Choi, Ji-Woong; Sohn, Jung Inn; Cha, Seung Nam; Jang, Jae Eun

    2014-11-01

    For biomedical implanted devices, a wireless power or a signal transmission is essential to protect an infection and to enhance durability. In this study, we present a magnetic induction technique for a power transmission without any wire connection between transmitter (Tx) and receiver (Rx) in a micro scale. Due to a micro size effect of a flat spiral coil, a magnetic inductance is not high. To enhance the magnetic inductance, a three dimensional magnetic core is added to an antenna structure, which is consisted of ZnO nano wires coated by a nickel (Ni) layer. ZnO nano wires easily supply a large effective surface area with a vertical structural effect to the magnetic core structure, which induces a higher magnetic inductance with a ferro-magnetic material Ni. The magnetic induction antenna with the magnetic core shows a high inductance value, a low reflection power and a strong power transmission. The power transmission efficiencies are tested under the air and the water medium are almost the same values, so that the magnetic induction technique is quite proper to body implanted systems.

  11. Through-Metal-Wall Power Delivery and Data Transmission for Enclosed Sensors: A Review

    Directory of Open Access Journals (Sweden)

    Ding-Xin Yang

    2015-12-01

    Full Text Available The aim of this review was to assess the current viable technologies for wireless power delivery and data transmission through metal barriers. Using such technologies sensors enclosed in hermetical metal containers can be powered and communicate through exterior power sources without penetration of the metal wall for wire feed-throughs. In this review, we first discuss the significant and essential requirements for through-metal-wall power delivery and data transmission and then we: (1 describe three electromagnetic coupling based techniques reported in the literature, which include inductive coupling, capacitive coupling, and magnetic resonance coupling; (2 present a detailed review of wireless ultrasonic through-metal-wall power delivery and/or data transmission methods; (3 compare various ultrasonic through-metal-wall systems in modeling, transducer configuration and communication mode with sensors; (4 summarize the characteristics of electromagnetic-based and ultrasound-based systems, evaluate the challenges and development trends. We conclude that electromagnetic coupling methods are suitable for through thin non-ferromagnetic metal wall power delivery and data transmission at a relatively low data rate; piezoelectric transducer-based ultrasonic systems are particularly advantageous in achieving high power transfer efficiency and high data rates; the combination of more than one single technique may provide a more practical and reliable solution for long term operation.

  12. Power transmission cable development for the Space Station Freedom electrical power system

    Science.gov (United States)

    Schmitz, Gregory V.; Biess, John J.

    1989-01-01

    Power transmission cable is presently being evaluated under a NASA Lewis Research Center advanced development contract for application in the Space Station Freedom (SSF) electrical power system (EPS). Evaluation testing has been performed by TRW and NASA Lewis Research Center. The results of this development contract are presented. The primary cable design goals are to provide (1) a low characteristic inductance to minimize line voltage drop at 20 kHz, (2) electromagnetic compatibility control of the 20-kHz ac power current, (3) a physical configuration that minimizes ac resistance and (4) release of trapped air for corona-free operation.

  13. A literature survey on asset management in electrical power [transmission and distribution] system

    OpenAIRE

    Khuntia, S.R.; Rueda Torres, José L.; Bouwman, S.; van der Meijden, M.A.M.M.

    2016-01-01

    Asset management is one of the key components in a transforming electric power industry. Electric power industry is undergoing significant changes because of technical, socio-economical and environmental developments. Also, because of restructuring and deregulation, the focus has been on transmission and distribution assets that include transmission lines, power transformers, protection devices, substation equipment and support structures. This study aims to provide a detailed exposure to ass...

  14. Impacts on investments, and transmission/distribution loss through power sector reforms

    International Nuclear Information System (INIS)

    Nagayama, Hiroaki

    2010-01-01

    This study analyses original panel data from 86 countries between 1985 and 2006. Econometric methods were used to identify the effects of different policy devices of power sector reforms on performance indicators (installed capacity per capita, transmission and distribution loss) in the countries analyzed. The research findings suggest that reform variables such as the entry of independent power producers (IPPs), unbundling of generation and transmission, establishment of regulatory agencies, and the introduction of a wholesale spot market are the driving forces of increasing generation capacity, as well as reducing transmission and distribution loss in the respective regions. In this study, we can assume that, firstly, different electric industry's reform policies/measures have different impacts on geographically and economically diverse countries. Secondly, a country's state of economic development has a different impact on policy effects of reforms. Thirdly, coexistent with independent regulatory agencies, reform policy becomes more powerful in realizing sector performances.

  15. Evaluation of a microwave high-power reception-conversion array for wireless power transmission

    Science.gov (United States)

    Dickinson, R. M.

    1975-01-01

    Initial performance tests of a 24-sq m area array of rectenna elements are presented. The array is used as the receiving portion of a wireless microwave power transmission engineering verification test system. The transmitting antenna was located at a range of 1.54 km. Output dc voltage and power, input RF power, efficiency, and operating temperatures were obtained for a variety of dc load and RF incident power levels at 2388 MHz. Incident peak RF intensities of up to 170 mW/sq cm yielded up to 30.4 kW of dc output power. The highest derived collection-conversion efficiency of the array was greater than 80 percent.

  16. Superconducting magnetic energy storage for asynchronous electrical systems

    Science.gov (United States)

    Boenig, Heinrich J.

    1986-01-01

    A superconducting magnetic energy storage coil connected in parallel between converters of two or more ac power systems provides load leveling and stability improvement to any or all of the ac systems. Control is provided to direct the charging and independently the discharging of the superconducting coil to at least a selected one of the ac power systems.

  17. Test of a cryogenic set-up for a 10 meter long liquid nitrogen cooled superconducting power cable

    DEFF Research Database (Denmark)

    Træholt, Chresten; Rasmussen, Carsten; Kühle (fratrådt), Anders Van Der Aa

    2000-01-01

    High temperature superconducting power cables may be cooled by a forced flow of sub-cooled liquid nitrogen. One way to do this is to circulate the liquid nitrogen (LN2) by means of a mechanical pump through the core of the cable and through a sub-cooler.Besides the cooling station, the cryogenics...... cable. We report on our experimental set-up for testing a 10 meter long high temperature superconducting cable with a critical current of 3.2 kA at 77K. The set-up consists of a custom designed cable end termination, current lead, coolant feed-through, liquid nitrogen closed loop circulation system...

  18. Study on frequency characteristics of wireless power transmission system based on magnetic coupling resonance

    Science.gov (United States)

    Liang, L. H.; Liu, Z. Z.; Hou, Y. J.; Zeng, H.; Yue, Z. K.; Cui, S.

    2017-11-01

    In order to study the frequency characteristics of the wireless energy transmission system based on the magnetic coupling resonance, a circuit model based on the magnetic coupling resonant wireless energy transmission system is established. The influence of the load on the frequency characteristics of the wireless power transmission system is analysed. The circuit coupling theory is used to derive the minimum load required to suppress frequency splitting. Simulation and experimental results verify that when the load size is lower than a certain value, the system will appear frequency splitting, increasing the load size can effectively suppress the frequency splitting phenomenon. The power regulation scheme of the wireless charging system based on magnetic coupling resonance is given. This study provides a theoretical basis for load selection and power regulation of wireless power transmission systems.

  19. A wireless power transmission system for an active capsule endoscope for colon inspection.

    Science.gov (United States)

    Jia, Zhiwei; Yan, Guozheng; Shi, Yu; Zhu, Bingquan

    2012-07-01

    Multipurpose active capsule endoscopes (ACE) have drawn considerable attention in recent years, but these devices continue to suffer from energy limitations. In order to deliver stable and sufficient energy safely, a wireless power transmission system based on inductive coupling is presented. The system consists of a double-layer solenoid pair primary coil outside and a multiple secondary coils inside the body. At least 500 mW usable power can be transmitted under the worst geometrical conditions and the safety restraints in a volume of Φ13 × 13 mm. The wireless power transmission system is integrated to an ACE and applied in animal experiments. The designed wireless power transmission is proved to be feasible and potentially safe in a future application.

  20. Lightweight superconducting alternators

    International Nuclear Information System (INIS)

    Keim, T.A.

    1988-01-01

    One of the most efficient and most lightweight means of converting high-temperature heat energy to electricity is a turboalternator set. Turboalternators are potentially important components of burst-mode power systems, either chemical or nuclear powered. Also, they are probable key components in future electric propulsion systems. Existing examples of multimegawatt turbomachines have been optimized for a variety of aerospace uses, ranging from aircraft propulsion to rocket engine fuel pump drives. There is no corresponding history of multimegawatt alternators built to aerospace standards of mass, performance, and reliability. This paper discusses one of the few such development efforts presently in progress, and gives an indication of possible future potential. In large power ratings, superconducting generators offer substantial power density, specific weight, and efficiency advantages over competing technologies. A program at GE has led to the construction of a lightweight high-voltage 20-MW generator with a superconducting field winding. The first part of this paper describes the design of the generator. The second projects the capabilities of the generator to other ratings

  1. Magnet Lattice Design for the Transmission of Power Using Particle Beams

    Energy Technology Data Exchange (ETDEWEB)

    Marley, Daniel; /North Carolina State U. /SLAC

    2012-08-24

    As the amount of electricity generated by renewable energy sources continues to increase, the current method of power transmission will not serve as an adequate method for transmitting power over very long distances. A new method for transmitting power is proposed using particle beams in a storage ring. Particle beams offer an incredibly energy efficient alternative to transmission lines in transmitting power over very long distances. A thorough investigation of the magnet lattice design for this storage ring is presented. The design demonstrates the ability to design a ring with stable orbits over a 381.733 km circumference. Double bend achromats and FODO cells are implemented to achieve appropriate {beta} functions and dispersion functions for 9-11 GeV electron beams.

  2. Operational experiences of the spallation neutron source superconducting linac and power ramp-up

    International Nuclear Information System (INIS)

    Kim, Sang-Ho

    2009-01-01

    The spallation neutron source (SNS) is a second generation pulsed neutron source and designed to provide a 1-GeV, 1.44-MW proton beam to a mercury target for neutron production. Since the commissioning of the accelerator complex in 2006, the SNS has started its operation for neutron production and beam power ramp-up has been in progress toward the design goal. All subsystems of the SNS were designed and developed for substantial improvements compared to existing accelerators because the design beam power is almost an order of magnitude higher compared to existing neutron facilities and the achievable neutron scattering performance will exceed present sources by more than a factor of 20 to 100. In this paper, the operational experiences with the SNS Superconducting Linac (SCL), Power Ramp-up Plan to reach the design goal and the Power Upgrade Plan (PUP) will be presented including machine, subsystem and beam related issues.

  3. [A wireless power transmission system for capsule endoscope].

    Science.gov (United States)

    Xin, Wenhui; Yan, Guozheng; Wang, Wenxing

    2010-06-01

    In order to deliver power to the capsule endoscope, whose position and orientation are always changing when traveling along the alimentary tract, a wireless power transmission system based on electromagnetic coupling was proposed. The system is composed of Helmholtz transmitting coil and three-dimensional receiving coil. Helmholtz coil outside the body generates a uniform magnetic field covering the whole alimentary tract; three-dimensional coil inside retrieves stable power regardless of its position and orientation. The transmitter and receiver were designed and implemented, and the experiments validated the feasibility of the system. The results show that at least 320 mW of usable power can be transmitted to capsule endoscope when its position and orientation are changing at random and the transmitting power is 25W.

  4. A superconducting isochronous cyclotron stack as a driver for a thorium-cycle power reactor

    International Nuclear Information System (INIS)

    Kim, G.; May, D.; McIntyre, P.; Sattarov, A.

    2001-01-01

    Designs for thorium-cycle power reactors require a proton driver capable of 1 GeV energy and 10 MW total power. For this purpose we have prepared a preliminary design for the magnetic structure for a stack of 5 super-conducting isochronous cyclotrons, each delivering 2 MW beam power. By achieving the required power with multiple independent apertures rather than pushing beyond currently achieved limits, we hope to arrive at a design that is cost-minimum and reliable. Each sector magnet consists of a flux-coupled stack of cold-iron inserts supported within a single warm-iron, in a fashion inspired by the new Riken heavy-ion cyclotron. We have developed a preliminary field design in which in-plane fields are cancelled in all 5 apertures and the field-map is appropriate for the focusing optics of the sector cyclotron

  5. LSコイルを用いたWireless Power Transmission

    OpenAIRE

    吉川, 隆; 更谷, 翔太

    2014-01-01

    The wireless power transmission is widely studied for many kinds of application, for example, power supply for cell phone or power source of EV. The supplying power of those applications is always over mW. But it is impossible to transmit for longer distance under the index of regulation of protection from radiofrequency electromagnetic field. Then many of such applications are considered with restriction of narrow area. Then we have surveyed low power demanding application the suitable appl...

  6. Development of quench detection/protection system based on active power method for superconducting magnet by using capacitor circuit

    International Nuclear Information System (INIS)

    Nanato, N.; Otsuka, T.; Hesaka, S.; Murase, S.

    2013-01-01

    Highlights: ► The authors have presented an active power method for quench detection. ► A method for improving its characteristics using a capacitor circuit was proposed. ► Quench detection/protection test for a Bi2223 superconducting coil was carried out. ► The proposed method was more useful than the conventional one. -- Abstract: When a quench occurs in a superconducting magnet, excessive joule heating in normal region may damage the magnet. It is necessary to detect the quench as soon as possible and discharge magnetic energy stored in the magnet. The authors have presented a quench detection/protection system based on an active power method which detects the quench regardless of a self-inductive and mutual-inductive voltages and electromagnetic noise. In the conventional active power method, the inductive voltages are removed by cancel coils. In this paper, the authors propose a method to cancel an inductive voltage using a capacitor circuit. The quench detection/protection system becomes more precise and smaller than the conventional system through the capacitor circuit

  7. Transmission capacity and market power: the effect on a dominant generation firm

    International Nuclear Information System (INIS)

    Quick, David M.; Carey, Janis M.

    2002-01-01

    We examine the effect of transmission on a firm's market power by analyzing the optimal dispatch for a dominant firm in a short-run regional electricity generation market. Application of our research to Colorado shows that the dominant firm can strategically congest transmission into the region to receive a maximum price 54.9% of the time. When it does not get the maximum price, the dominant firm can receive an 11.6% average markup over the competitive price. We show how the threat of entry across an enhanced transmission grid can increase competition and limit market power in Colorado. (Author)

  8. Real option valuation of power transmission investments by stochastic simulation

    International Nuclear Information System (INIS)

    Pringles, Rolando; Olsina, Fernando; Garcés, Francisco

    2015-01-01

    Network expansions in power markets usually lead to investment decisions subject to substantial irreversibility and uncertainty. Hence, investors need valuing the flexibility to change decisions as uncertainty unfolds progressively. Real option analysis is an advanced valuation technique that enables planners to take advantage of market opportunities while preventing or mitigating losses if future conditions evolve unfavorably. In the past, many approaches for valuing real options have been developed. However, applying these methods to value transmission projects is often inappropriate as revenue cash flows are path-dependent and affected by a myriad of uncertain variables. In this work, a valuation technique based on stochastic simulation and recursive dynamic programming, called Least-Square Monte Carlo, is applied to properly value the deferral option in a transmission investment. The effect of option's maturity, the initial outlay and the capital cost upon the value of the postponement option is investigated. Finally, sensitivity analysis determines optimal decision regions to execute, postpone or reject the investment projects. - Highlights: • A modern investment appraisal method is applied to value power transmission projects. • The value of the option to postpone decision to invest in transmission projects is assessed. • Simulation methods are best suited for valuing real options in transmission investments

  9. Application of a combined superconducting fault current limiter and STATCOM to enhancement of power system transient stability

    Energy Technology Data Exchange (ETDEWEB)

    Mahdad, Belkacem, E-mail: bemahdad@mselab.org; Srairi, K.

    2013-12-15

    Highlights: •A simple interactive model SFCL–STATCOM Controller is proposed to enhance the transient stability. •The STATCOM controller is integrated in coordination with the SFCL to support the excessive reactive power during fault. •Voltage stability index based continuation power flow is used to locate the STATCOM and the SFCL. •The clearing time improved compared to other cases (with only SFCL, with only STATCOM). •The choice of the STATCOM parameters is very important to exploit efficiently the integration of STATCOM Controller. -- Abstract: Stable and reliable operation of the power system network is dependent on the dynamic equilibrium between energy production and power demand under large disturbance such as short circuit or important line tripping. This paper investigates the use of combined model based superconducting fault current limiter (SFCL) and shunt FACTS Controller (STATCOM) for assessing the transient stability of a power system considering the automatic voltage regulator. The combined model located at a specified branch based on voltage stability index using continuation power flow. The main role of the proposed combined model is to achieve simultaneously a flexible control of reactive power using STATCOM Controller and to reduce fault current using superconducting technology based SFCL. The proposed combined model has been successfully adapted within the transient stability program and applied to enhance the transient power system stability of the WSCC9-Bus system. Critical clearing time (CCT) has been used as an index to evaluate and validate the contribution of the proposed coordinated Controller. Simulation results confirm the effectiveness and perspective of this combined Controller to enhance the dynamic power system performances.

  10. Normalized power transmission between ABP and ICP in TBI.

    Science.gov (United States)

    Shahsavari, S; Hallen, T; McKelvey, T; Ritzen, C; Rydenhag, B

    2009-01-01

    A new approach to study the pulse transmission between the cerebrovascular bed and the intracranial space is presented. In the proposed approach, the normalized power transmission between ABP and ICP has got the main attention rather than the actual power transmission. Evaluating the gain of the proposed transfer function at any single frequency can reveal how the percentage of contribution of that specific frequency component has been changed through the cerebrospinal system. The gain of the new transfer function at the fundamental cardiac frequency was utilized to evaluate the state of the brain in three TBI patients. Results were assessed using the reference evaluations achieved by a novel CT scan-based scoring scheme. In all three study cases, the gain of the transfer function showed a good capability to follow the trend of the CT scores and describe the brain state. Comparing the new transfer function with the traditional one and also the index of compensatory reserve, the proposed transfer function was found more informative about the state of the brain in the patients under study.

  11. A Study on the Application for Enhancing the Transmission Capability of the KEPCO Power System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Han; Kwon, Tea Won; Whang, Jong Young; Lee, Gun Joon; Kim, Tae Hoon; Chang, Byung Hoon; Min, Wan Ki [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Park, Young Moon; Park, Jong Gun [Seoul National University, Seoul (Korea, Republic of); Kim, Gun Joong [Chungnam National University, Taejon (Korea, Republic of); Oh, Tae Kwu; Choi, Kwu Hyung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-12-31

    Investigation of stability for power system in 2000 year and 2006 year by using the analysis of real power system. Comparative investigation of the conventional transmission line upgrading methods such as HVDC, HOP, new conductor scheme. Investigation of FACTS, the recent transmission line upgrading method, with respect to the aspect of technique and cost and effect analysis when this method is applied to real power system. Development of the evaluation method of transmission type that should be considered when above method is applied to real power system with respect to aspect of technique and cost. Development of a long-range plan for the transmission capacity upgrading and the evaluation method of reliability. (author).

  12. Transmission media appropriate laser-microwave solar power satellite system

    Science.gov (United States)

    Schäfer, C. A.; Gray, D.

    2012-10-01

    As a solution to the most critical problems with Solar power Satellite (SPS) development, a system is proposed which uses laser power transmission in space to a receiver high in the atmosphere that relays the power to Earth by either cable or microwave power transmission. It has been shown in the past that such hybrid systems have the advantages of a reduction in the mass of equipment required in geostationary orbit and avoidance of radio frequency interference with other satellites and terrestrial communications systems. The advantage over a purely laser power beam SPS is that atmospheric absorption is avoided and outages due to clouds and precipitation will not occur, allowing for deployment in the equatorial zone and guaranteeing year round operation. This proposal is supported by brief literature surveys and theoretical calculations to estimate crucial parameters in this paper. In relation to this concept, we build on a recently proposed method to collect solar energy by a tethered balloon at high altitude because it enables a low-cost start for bringing the first Watt of power to Earth giving some quick return on investment, which is desperately missing in the traditional SPS concept. To tackle the significant problem of GW-class SPSs of high launch cost per kg mass brought to space, this paper introduces a concept which aims to achieve a superior power over mass ratio compared to traditional satellite designs by the use of thin-film solar cells combined with optical fibres for power delivery. To minimise the aperture sizes and cost of the transmitting and receiving components of the satellite and high altitude receiver, closed-loop laser beam pointing and target tracking is crucial for pointing a laser beam onto a target area that is of similar size to the beam's diameter. A recently developed technique based on optical phase conjugation is introduced and its applicability for maintaining power transmission between the satellite and high altitude receiver is

  13. Electric power transmission for a Hanford Nuclear Energy Center (HNEC)

    International Nuclear Information System (INIS)

    1975-09-01

    The major issues examined in the comparison of the DIST and HNEC transmission concepts are: (1) type of transmission to be employed and an assessment of its technical feasibility, (2) availability of rights-of-way, (3) economics, (4) environmental impact, and (5) overall reliability of the transmission system. The type of transmission selected for bulk power transfer from an HNEC for the time period studied is overhead AC, 500 kV double or single circuit, a voltage currently used in the PNW system. This type of system can accommodate growth up to at least 23,000 MW of thermal capacity at an HNEC. Significant additional transmountain capacity needs would require 1100 kV transmission, which should be technologically proved by the end of the 1970s. (auth)

  14. Power and signal transmission for mobile teleoperated systems

    International Nuclear Information System (INIS)

    Morris, A.C. Jr.; Hamel, W.R.

    1985-01-01

    Appropriate means must be furnished for supplying power and for sending controlling commands to mobile teleoperated systems. Because a sizable number of possibilities are available for such applications, methods used in designing both the power and communications systems built into mobile vehicles that serve in radiological emergencies must be carefully selected. This paper describes a number of umbilical, on-board, and wireless systems used in tranmitting power that are available for mobile teleoperator services. The pros and cons of selecting appropriate methods from a list of possible communication systems (wired, fiber optic, and radio frequency) are also examined. Moreover, hybrid systems combining wireless power transmissions with command-information signals are also possible

  15. Wireless Power Transmission to Organic Light Emitting Diode Lighting Panel with Magnetically Coupled Resonator

    Science.gov (United States)

    Kim, Yong-Hae; Han, Jun-Han; Kang, Seung-Youl; Cheon, Sanghoon; Lee, Myung-Lae; Ahn, Seong-Deok; Zyung, Taehyoung; Lee, Jeong-Ik; Moon, Jaehyun; Chu, Hye Yong

    2012-09-01

    We are successful to lit the organic light emitting diode (OLED) lighting panel through the magnetically coupled wireless power transmission technology. For the wireless power transmission, we used the operation frequency 932 kHz, specially designed double spiral type transmitter, small and thin receiver on the four layered printed circuit board, and schottky diodes for the full bridge rectifier. Our white OLED is a hybrid type, in which phosphorescent and fluorescent organics are used together to generate stable white color. The total efficiency of power transmission is around 72%.

  16. Superconducting magnetic energy storage for electric utilities and fusion systems

    International Nuclear Information System (INIS)

    Rogers, J.D.; Boenig, H.J.; Hassenzahl, W.V.

    1978-01-01

    Superconducting inductors provide a compact and efficient means of storing electrical energy without an intermediate conversion process. Energy storage inductors are under development for load leveling and transmission line stabilization in electric utility systems and for driving magnetic confinement and plasma heating coils in fusion energy systems. Fluctuating electric power demands force the electric utility industry to have more installed generating capacity than the average load requires. Energy storage can increase the utilization of base-load fossil and nuclear power plants for electric utilities. The Los Alamos Scientific Laboratory and the University of Wisconsin are developing superconducting magnetic energy storage (SMES) systems, which will store and deliver electrical energy for load leveling, peak shaving, and the stabilization of electric utility networks. In the fusion area, inductive energy transfer and storage is being developed. Both 1-ms fast-discharge theta-pinch systems and 1-to-2-s slow energy transfer tokamak systems have been demonstrated. The major components and the method of operation of a SMES unit are described, and potential applications of different size SMES systems in electric power grids are presented. Results are given of a reference design for a 10-GWh unit for load leveling, of a 30-MJ coil proposed for system stabilization, and of tests with a small-scale, 100-kJ magnetic energy storage system. The results of the fusion energy storage and transfer tests are presented. The common technology base for the various storage systems is discussed

  17. Solving LFC problem in an interconnected power system using superconducting magnetic energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Farahani, Mohsen, E-mail: mhs.farahani@gmail.com [Sama Technical and Vocational Training College, Islamic Azad University, Karaj Branch, Karaj (Iran, Islamic Republic of); Ganjefar, Soheil [Department of Electrical Engineering, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of)

    2013-04-15

    Highlights: ► Load frequency control of PID type is combined with a SMES. ► Damping speed of frequency and tie-line power flow deviations are considerably increased. ► Optimal parameters of PID and SMES control loop are obtained by PS optimization. -- Abstract: This paper proposes the combination of a load frequency control (LFC) with superconducting magnetic energy storage (SMES) to solve the LFC problem in interconnected power systems. By using this combination, the speed damping of frequency and tie-line power flow deviations is considerably increased. A new control strategy of SMES is proposed in this paper. The problem of determining optimal parameters of PID and SMES control loop is considered as an optimization problem and a pattern search algorithm (PS) optimization is employed to solve it. The simulation results show that if an SMES unit is installed in an interconnected power system, in addition to eliminating oscillations and deviations, the settling time in the frequency and tie-line power flow responses is considerably reduced.

  18. Solving LFC problem in an interconnected power system using superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Farahani, Mohsen; Ganjefar, Soheil

    2013-01-01

    Highlights: ► Load frequency control of PID type is combined with a SMES. ► Damping speed of frequency and tie-line power flow deviations are considerably increased. ► Optimal parameters of PID and SMES control loop are obtained by PS optimization. -- Abstract: This paper proposes the combination of a load frequency control (LFC) with superconducting magnetic energy storage (SMES) to solve the LFC problem in interconnected power systems. By using this combination, the speed damping of frequency and tie-line power flow deviations is considerably increased. A new control strategy of SMES is proposed in this paper. The problem of determining optimal parameters of PID and SMES control loop is considered as an optimization problem and a pattern search algorithm (PS) optimization is employed to solve it. The simulation results show that if an SMES unit is installed in an interconnected power system, in addition to eliminating oscillations and deviations, the settling time in the frequency and tie-line power flow responses is considerably reduced

  19. A Hybrid Single-Carrier/Multicarrier Transmission Scheme with Power Allocation

    Directory of Open Access Journals (Sweden)

    Luc Féty

    2007-11-01

    Full Text Available We propose a flexible transmission scheme which easily allows to switch between cyclic-prefixed single-carrier (CP-SC and cyclic-prefixed multicarrier (CP-MC transmissions. This scheme takes advantage of the best characteristic of each scheme, namely, the low peak-to-average power ratio (PAPR of the CP-SC scheme and the robustness to channel selectivity of the CP-MC scheme. Moreover, we derive the optimum power allocation for the CP-SC transmission considering a zero-forcing (ZF and a minimum mean-square error (MMSE receiver. By taking the PAPR into account, we are able to make a better analysis of the overall system and the results show the advantage of the CP-SC-MMSE scheme for flat and mild selective channels due to their low PAPR and that the CP-MC scheme is more advantageous for a narrow range of channels with severe selectivity.

  20. Financial transmission rights meet Cournot: How TCCs curb market power

    International Nuclear Information System (INIS)

    Stoft, S.

    1999-01-01

    This paper reconsiders the problem of market power when generators face a demand curve limited by a transmission constraint. After demonstrating that the problem's importance originates in an inherent ambiguity in Cournot-Nash theory, the author reviews Oren's argument that generators in this situation capture all congestion rents. In the one-line case, this argument depends on an untested hypothesis while in the three-line case, the Nash equilibrium was misidentified. Finally, the argument that financial transmission rights (and TCCs in particular) will have zero market value is refuted by modeling the possibility of their purchase by generators. This allows transmission owners, who initially own the TCCs, to capture some of the congestion rent. In fact when total capacity exceeds line capacity by more than the capacity of the largest generator, TCCs should attain their perfectly competitive value, thereby curbing the market power of generators

  1. SimWIND: A geospatial infrastructure model for optimizing wind power generation and transmission

    International Nuclear Information System (INIS)

    Phillips, Benjamin R.; Middleton, Richard S.

    2012-01-01

    Wind is a clean, enduring energy resource with the capacity to satisfy 20% or more of U.S. electricity demand. Presently, wind potential is limited by a paucity of electrical transmission lines and/or capacity between promising wind resources and primary load centers. We present the model SimWIND to address this shortfall. SimWIND is an integrated optimization model for the geospatial arrangement and cost minimization of wind-power generation–transmission–delivery infrastructure. Given a set of possible wind-farm sites, the model simultaneously determines (1) where and how much power to generate and (2) where to build new transmission infrastructure and with what capacity in order to minimize the cost for delivering a targeted amount of power to load. Costs and routing of transmission lines consider geographic and social constraints as well as electricity losses. We apply our model to the Electric Reliability Council of Texas (ERCOT) Interconnection, considering scenarios that deliver up to 20 GW of new wind power. We show that SimWIND could potentially reduce ERCOT's projected ∼$5B transmission network upgrade line length and associated costs by 50%. These results suggest that SimWIND's coupled generation–transmission–delivery modeling approach could play a critical role in enhancing planning efforts and reducing costs for wind energy integration. - Highlights: ► Wind power is limited by transmission capacity between resources and demands. ► SimWIND is a coupled generation-transmission-delivery model for wind infrastructure. ► The model minimizes costs considering realistic transmission routing and networking. ► We show that SimWIND could save 50% of $5B costs for expanding the Texas grid. ► Results suggest SimWIND may play a critical role in enhancings wind planning efforts.

  2. Environmental concerns regarding electric power transmission in North America

    International Nuclear Information System (INIS)

    DeCicco, J.M.; Bernow, S.S.; Beyea, J.

    1992-01-01

    The electric utilities of North America have become ever more interconnected via transmission facilities, largely to insure reliability. Current policy discussions regarding transmission include calls for improved access, increased capacity, and deregulation to facilitate trade in electric power. From an environmental perspective, two issues have been notably absent in much of the debate: (1) a recognition of the full range of environmental impacts related to electricity transmission; and (2) the potential for end-use efficiency to address the reliability and economy requirements that motivate attention to transmission. This paper broaches these issues, starting with an elaboration of the environmental impacts, which range from global and regional effects to local concerns, including the potential health risks associated with electric and magnetic fields. We emphasize that transmission planning should occur as part of an integrated planning process, in which the environmental and social costs of various options are fully considered. We discuss the potential for end-use efficiency to lessen environmental impacts of both transmission and generation. We conclude that there is a need to ensure that environmental externalities and demand-side alternatives are adequately considered when transmission network expansions are proposed. (Author)

  3. Inter-regional transmission and power trading opportunities : making operating agreements work

    International Nuclear Information System (INIS)

    DesRosiers, D.

    2001-01-01

    International electric power transmission issues were the focus of this power point presentation which included a corporate profile of the Detroit Edison and International Transmission Company (ITC) and an overview of the midwest U.S. market and the Michigan-Ontario interconnections. ITC owns the transmission assets of its parent company Detroit Edison. It has a commitment with the Federal Energy Regulatory Commission (FERC) to be independent of all market participants within 18 months. ITC's peak load is 11,000 MW with 3 interconnections with Hydro One in Ontario, Consumers Energy in Michigan and First Energy in Ohio. The Ontario-Michigan interface includes four tie lines, 3 near Sarnia and 1 near Windsor, with a total capacity of 1,400 MW into Ontario and 2,000 MW out of Ontario. However, the amount of commercially available power is significantly inhibited by a phenomenon called loopflow, which is the difference between the scheduled and actual power flow. The problems and solutions to loopflow were also outlined. This presentation also briefly discussed the agreement reached between the Alliance RTO and the Midwest ISO that will allow the two to co-exist in the Midwest. tabs., figs

  4. Interplay between superconductivity and Coulomb blockade

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Thomas; Sprenger, Susanne; Scheer, Elke [Universitaet Konstanz (Germany)

    2016-07-01

    Studying the interplay between superconductivity and Coulomb blockade (CB) can be achieved by investigating an all superconducting single electron transistor (SSET) consisting of an island coupled to the leads by two tunneling contacts. The majority of experiments performed so far were using superconducting tunnel contacts made from oxide layers, in which multiple Andreev reflections (MAR) can be excluded. Using a mechanically controlled break junction (MCBJ) made of aluminum enables tuning the contributions of MAR in one junction continuously and thereby addressing different transport regimes within the same sample. Our results offer the possibility to attribute particular features in the transport characteristics to the transmission probabilities of individual modes in the MCBJ contact. We discuss our findings in terms of dynamical CB, SSET behaviour and MAR when continuously opening the MCBJ from the fully closed state to a tunneling contact.

  5. Active Power Flow Optimization of Industrial Power Supply with Regard to the Transmission Line Conductor Heating

    Directory of Open Access Journals (Sweden)

    Leyzgold D.Yu.

    2015-04-01

    Full Text Available This article studies the problem of the transmission line conductor heating effect on the active power flows optimization in the local segment of industrial power supply. The purpose is to determine the optimal generation rating of the distributed power sources, in which the power flow values will correspond to the minimum active power losses in the power supply. The timeliness is the need to define the most appropriate rated power values of distributed sources which will be connected to current industrial power supply. Basing on the model of active power flow optimization, authors formulate the description of the nonlinear transportation problem considering the active power losses depending on the transmission line conductor heating. Authors proposed a new approach to the heating model parameters definition based on allowable current loads and nominal parameters of conductors as part of the optimization problem. Analysis of study results showed that, despite the relatively small active power losses reduction to the tune 0,45% due to accounting of the conductors heating effect for the present configuration of power supply, there are significant fluctuations in the required generation rating in nodes of the network to 9,32% within seasonal changes in the outer air temperature. This fact should be taken into account when selecting the optimum power of distributed generation systems, as exemplified by an arbitrary network configuration.

  6. Development of superconducting equipment for fusion device

    International Nuclear Information System (INIS)

    Konno, Masayuki; Ueda, Toshio; Hiue, Hisaaki; Ohgushi, Kouzou

    1993-01-01

    At Fuji Electric Co., Ltd., the development of superconductivity was started from 1960, and superconducting equipment for fusion device has been developed for ten years. The superconducting equipment, which is developed for fusion by Fuji Electric Co., Ltd., are able to be grouped in three categories which are current lead, superconducting coil and superconducting bus-line. The current lead is an electrical feeder between a superconducting coil and an electrical power supply. The rated current of developed current lead is 30kA at continuous use and 100kA at short time use respectively. The advanced disk type coil is developed for the toroidal field coil and some coils are developed for critical current measurement. Superconductor is applied to the superconducting bus-line between the superconducting coils and the current leads, and the bus-line is being developed for the Large Helical Device. This report describes an abstract of these equipment. (author)

  7. A Case Study of Wind-PV-Thermal-Bundled AC/DC Power Transmission from a Weak AC Network

    Science.gov (United States)

    Xiao, H. W.; Du, W. J.; Wang, H. F.; Song, Y. T.; Wang, Q.; Ding, J.; Chen, D. Z.; Wei, W.

    2017-05-01

    Wind power generation and photovoltaic (PV) power generation bundled with the support by conventional thermal generation enables the generation controllable and more suitable for being sent over to remote load centre which are beneficial for the stability of weak sending end systems. Meanwhile, HVDC for long-distance power transmission is of many significant technique advantages. Hence the effects of wind-PV-thermal-bundled power transmission by AC/DC on power system have become an actively pursued research subject recently. Firstly, this paper introduces the technical merits and difficulties of wind-photovoltaic-thermal bundled power transmission by AC/DC systems in terms of meeting the requirement of large-scale renewable power transmission. Secondly, a system model which contains a weak wind-PV-thermal-bundled sending end system and a receiving end system in together with a parallel AC/DC interconnection transmission system is established. Finally, the significant impacts of several factors which includes the power transmission ratio between the DC and AC line, the distance between the sending end system and receiving end system, the penetration rate of wind power and the sending end system structure on system stability are studied.

  8. AC Loss Analysis of MgB2-Based Fully Superconducting Machines

    Science.gov (United States)

    Feddersen, M.; Haran, K. S.; Berg, F.

    2017-12-01

    Superconducting electric machines have shown potential for significant increase in power density, making them attractive for size and weight sensitive applications such as offshore wind generation, marine propulsion, and hybrid-electric aircraft propulsion. Superconductors exhibit no loss under dc conditions, though ac current and field produce considerable losses due to hysteresis, eddy currents, and coupling mechanisms. For this reason, many present machines are designed to be partially superconducting, meaning that the dc field components are superconducting while the ac armature coils are conventional conductors. Fully superconducting designs can provide increases in power density with significantly higher armature current; however, a good estimate of ac losses is required to determine the feasibility under the machines intended operating conditions. This paper aims to characterize the expected losses in a fully superconducting machine targeted towards aircraft, based on an actively-shielded, partially superconducting machine from prior work. Various factors are examined such as magnet strength, operating frequency, and machine load to produce a model for the loss in the superconducting components of the machine. This model is then used to optimize the design of the machine for minimal ac loss while maximizing power density. Important observations from the study are discussed.

  9. Superconducting kinetic inductance detectors for astrophysics

    International Nuclear Information System (INIS)

    Vardulakis, G; Withington, S; Goldie, D J; Glowacka, D M

    2008-01-01

    The kinetic inductance detector (KID) is an exciting new device that promises high-sensitivity, large-format, submillimetre to x-ray imaging arrays for astrophysics. KIDs comprise a superconducting thin-film microwave resonator capacitively coupled to a probe transmission line. By exciting the electrical resonance with a microwave probe signal, the transmission phase of the resonator can be monitored, allowing the deposition of energy or power to be detected. We describe the fabrication and low-temperature testing, down to 26 mK, of a number of devices, and confirm the basic principles of operation. The KIDs were fabricated on r-plane sapphire using superconducting niobium and aluminium as the resonator material, and tantalum as the x-ray absorber. KID quality factors of up to Q = (741 ± 15) × 10 3 were measured for niobium at 1 K, and quasiparticle effective recombination times of τ* R = 30 µs after x-ray absorption. Al/Ta quasiparticle traps were combined with resonators to make complete detectors. These devices were operated at 26 mK with quality factors of up Q = (187.7 ± 3.5) × 10 3 and a phase-shift responsivity of ∂θ/∂N qp = (5.06 ± 0.23) × 10 −6 degrees per quasiparticle. Devices were characterized both at thermal equilibrium and as x-ray detectors. A range of different x-ray pulse types was observed. Low phase-noise readout measurements on Al/Ta KIDs gave a minimum NEP = 1.27 × 10 −16 W Hz −1/2 at a readout frequency of 550 Hz and NEP = 4.60 × 10 −17 W Hz −1/2 at 95 Hz, for effective recombination times τ* R = 100 µs and τ* R = 350 µs respectively. This work demonstrates that high-sensitivity detectors are possible, encouraging further development and research into KIDs

  10. Thermal optimum analyses and mechanical design of 10-kA, vapor-cooled power leads for SSC superconducting magnet tests at MTL

    International Nuclear Information System (INIS)

    Shu, Q.S.; Demko, J.; Dorman, R.; Finan, D.; Hatfield, D.; Syromyatnikov, I.; Zolotov, A.; Mazur, P.; Peterson, T.

    1992-08-01

    The spiral-fin, 10-kA, helium vapor-cooled power leads have been designed for Superconducting Super Collider superconducting magnet tests at the Magnet Test Laboratory. In order to thermally optimize the parameters of the power leads, the lead diameters-which minimize the Carnot work for several different lengths, two different fin geometries, and two RRR values of the lead materials-were determined. The cryogenic refrigeration and liquefaction loads for supporting the leads have also been calculated. The optimum operational condition with different currents is discussed. An improved mechanical design of the 10-kA power leads was undertaken, with careful consideration of the cryogenic and mechanical performance. In the design, a new thermal barrier device to reduce heat conduction from the vacuum and gas seal area was employed. Therefore, the electric insulation assembly, which isolates the ground potential parts of the lead from the high-power parts, was moved into a warm region in order to prevent vacuum and helium leakage in the 0-ring seals due to transient cold temperature. The instrumentation for testing the power leads is also discussed

  11. Transmission Characteristics of an OFDM signal for Power Line Communication System with High Bit Rate

    Science.gov (United States)

    Mori, Akira; Watanabe, Yosuke; Tokuda, Masamitsu; Kawamoto, Koji

    In this paper, we measured what influence the sinusoidal transmission characteristics of the electric power line with various forms gave to the transmission characteristic of OFDM (Orthogonal Frequency Division Multiplexing) signal through PLC (power line communication system) modem. We classified the electric power line transmission line with various forms in a real environment into two basic elements, which are an outlet type branch and a switch type branch. Next, PHY rate (Physical rate) is measured for each basic element connected with the PLC modem. At this time, the transmission characteristics of the electric power line are simulated from measured data. OFDM sending and receiving systems are composed on the computer, and the PHY rate is simulated. By comparing with measured and calculated values, it is revealed that PHY rate of PLC modem is most affected in the case of the power line transmission characteristics having broad band and high level attenuation and group delay variation, and is not affected in the case of that having narrow band attenuation and group delay variation.

  12. ARMAX, OE and SSIF model predictors for power transmission and ...

    African Journals Online (AJOL)

    Three mathematical model structures, namely: ARMAX, OE and a SSIF are first formulated followed by the formulation of their respective model predictors for the model identification and prediction of power transmission and distribution within Akure and its environs. A total of 51,350 data samples from the Power Holding ...

  13. How coupling affects closely packed rectenna arrays used for wireless power transmission

    Science.gov (United States)

    Walls, Deidra; Choi, Sang H.; Yoon, Hargsoon; Geddis, Demetris; Song, Kyo D.

    2017-04-01

    The development of power transmission by microwave beam power harvesting attracts manufactures for use of wireless power transmission. Optimizing maximum conversion efficiency is affected by many design parameters, and has been mainly focused previously. Combining several rectennas in one array potentially aides in the amount of microwave energy that can be harvested for energy conversion. Closely packed rectenna arrays is the result of the demand to minimize size and weight for flexibility. This paper specifically focuses on the coupling effects on power; mutual coupling, comparing sparameters and gain total while varying effective parameters. This paper investigates how coupling between each dipole positively and negatively affects the microwave energy, harvesting, and the design limitations.

  14. The Quantum Socket: Wiring for Superconducting Qubits - Part 2

    Science.gov (United States)

    Bejanin, J. H.; McConkey, T. G.; Rinehart, J. R.; Bateman, J. D.; Earnest, C. T.; McRae, C. H.; Rohanizadegan, Y.; Shiri, D.; Mariantoni, M.; Penava, B.; Breul, P.; Royak, S.; Zapatka, M.; Fowler, A. G.

    Quantum computing research has reached a level of maturity where quantum error correction (QEC) codes can be executed on linear arrays of superconducting quantum bits (qubits). A truly scalable quantum computing architecture, however, based on practical QEC algorithms, requires nearest neighbor interaction between qubits on a two-dimensional array. Such an arrangement is not possible with techniques that rely on wire bonding. To address this issue, we have developed the quantum socket, a device based on three-dimensional wires that enables the control of superconducting qubits on a two-dimensional grid. In this talk, we present experimental results characterizing this type of wiring. We will show that the quantum socket performs exceptionally well for the transmission and reflection of microwave signals up to 10 GHz, while minimizing crosstalk between adjacent wires. Under realistic conditions, we measured an S21 of -5 dB at 6 GHz and an average crosstalk of -60 dB. We also describe time domain reflectometry results and arbitrary pulse transmission tests, showing that the quantum socket can be used to control superconducting qubits.

  15. High power coupler issues in normal conducting and superconducting accelerator applications

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, H. [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    2001-02-01

    The ceramic material (Al{sub 2}O{sub 3}) commonly used for the klystron output coupler in normal conducting, and for an input coupler to superconducting cavities is one of the most troublesome parts in accelerator applications. But the performance can be improved very much by starting with high purity (>99.9%) alumina powder of controlled grain-size (0.1-0.5-{mu}m), and reducing the magnesium (Mg) sintering-binder to lower the dielectric loss to the order of 10{sup -4} at S-band frequencies. It has been confirmed that the new ceramic can stand a peak S-band frequency rf power of up to 300 MW and 2.5 {mu}sec pulse width. (author)

  16. Microwave dynamics of high aspect ratio superconducting nanowires studied using self-resonance

    Science.gov (United States)

    Santavicca, Daniel F.; Adams, Jesse K.; Grant, Lierd E.; McCaughan, Adam N.; Berggren, Karl K.

    2016-06-01

    We study the microwave impedance of extremely high aspect ratio (length/width ≈ 5000) superconducting niobium nitride nanowires. The nanowires are fabricated in a compact meander geometry that is in series with the center conductor of a 50 Ω coplanar waveguide transmission line. The transmission coefficient of the sample is measured up to 20 GHz. At high frequency, a peak in the transmission coefficient is seen. Numerical simulations show that this is a half-wave resonance along the length of the nanowire, where the nanowire acts as a high impedance, slow wave transmission line. This resonance sets the upper frequency limit for these nanowires as inductive elements. Fitting simulations to the measured resonance enables a precise determination of the nanowire's complex sheet impedance at the resonance frequency. The real part is a measure of dissipation, while the imaginary part is dominated by kinetic inductance. We characterize the dependence of the sheet resistance and sheet inductance on both temperature and current and compare the results to recent theoretical predictions for disordered superconductors. These results can aid in the understanding of high frequency devices based on superconducting nanowires. They may also lead to the development of novel superconducting devices such as ultra-compact resonators and slow-wave structures.

  17. Power flow control and damping enhancement of a large wind farm using a superconducting magnetic energy storage unit

    DEFF Research Database (Denmark)

    Chen, S. S.; Wang, L.; Lee, W. J.

    2009-01-01

    A novel scheme using a superconducting magnetic energy storage (SMES) unit to perform both power flow control and damping enhancement of a large wind farm (WF) feeding to a utility grid is presented. The studied WF consisting of forty 2 MW wind induction generators (IGs) is simulated...

  18. MILP Approach for Bilevel Transmission and Reactive Power Planning Considering Wind Curtailment

    DEFF Research Database (Denmark)

    Ugranli, Faruk; Karatepe, Engin; Nielsen, Arne Hejde

    2017-01-01

    In this study, two important planning problems in power systems that are transmission expansion and reactive power are formulated as a mixed-integer linear programming taking into account the bilevel structure due to the consideration of market clearing under several load-wind scenarios....... The objective of the proposed method is to minimize the installation cost of transmission lines, reactive power sources, and the annual operation costs of conventional generators corresponding to the curtailed wind energy while maintaining the reliable system operation. Lower level problems of the bilevel...... structure are designated for the market clearing which is formulated by using the linearized optimal power flow equations. In order to obtain mixed-integer linear programming formulation, the so-called lower level problems are represented by using primal-dual formulation. By using the proposed method, power...

  19. Application of superconductivity to pulse fields

    International Nuclear Information System (INIS)

    Saito, Shigeo; Suzawa, Chizuru; Ohkura, Kengo; Nagata, Masayuki; Kawashima, Masao

    1984-01-01

    Numerous attempts to apply the superconductive phenomena of zero electrical resistivity to AC (pulsed) magnets in addition to conventional DC magnet fields are being made in the areas of poloidal coils of nuclear fusion, energy storage, rotary machines, and induction for stabilization of electric power systems. In pulsed superconductive magnets, the stability of the superconductivity and the generation of heat due to AC loss are serious problems. Based on the knowledge obtained through the development of various types of superconductors, magnets, cryostats, and other superconductive-related products, Cu-Ni/Cu/Nb-Ti mixed-matrix fine multifilamentary superconductor wire and the stable, low AC loss superconductors used therein, magnets, and FRP cryostats are developed and manufactured. (author)

  20. Superconducting coil system and methods of assembling the same

    Science.gov (United States)

    Rajput-Ghoshal, Renuka; Rochford, James H.; Ghoshal, Probir K.

    2016-01-19

    A superconducting magnet apparatus is provided. The superconducting magnet apparatus includes a power source configured to generate a current; a first switch coupled in parallel to the power source; a second switch coupled in series to the power source; a coil coupled in parallel to the first switch and the second switch; and a passive quench protection device coupled to the coil and configured to by-pass the current around the coil and to decouple the coil from the power source when the coil experiences a quench.

  1. Superconducting materials for large scale applications

    Energy Technology Data Exchange (ETDEWEB)

    Scanlan, Ronald M.; Malozemoff, Alexis P.; Larbalestier, David C.

    2004-05-06

    Significant improvements in the properties ofsuperconducting materials have occurred recently. These improvements arebeing incorporated into the latest generation of wires, cables, and tapesthat are being used in a broad range of prototype devices. These devicesinclude new, high field accelerator and NMR magnets, magnets for fusionpower experiments, motors, generators, and power transmission lines.These prototype magnets are joining a wide array of existing applicationsthat utilize the unique capabilities of superconducting magnets:accelerators such as the Large Hadron Collider, fusion experiments suchas ITER, 930 MHz NMR, and 4 Tesla MRI. In addition, promising newmaterials such as MgB2 have been discovered and are being studied inorder to assess their potential for new applications. In this paper, wewill review the key developments that are leading to these newapplications for superconducting materials. In some cases, the key factoris improved understanding or development of materials with significantlyimproved properties. An example of the former is the development of Nb3Snfor use in high field magnets for accelerators. In other cases, thedevelopment is being driven by the application. The aggressive effort todevelop HTS tapes is being driven primarily by the need for materialsthat can operate at temperatures of 50 K and higher. The implications ofthese two drivers for further developments will be discussed. Finally, wewill discuss the areas where further improvements are needed in order fornew applications to be realized.

  2. High current and high power superconducting rectifiers

    International Nuclear Information System (INIS)

    Kate, H.H.J. ten; Bunk, P.B.; Klundert, L.J.M. van de; Britton, R.B.

    1981-01-01

    Results on three experimental superconducting rectifiers are reported. Two of them are 1 kA low frequency flux pumps, one thermally and magnetically switched. The third is a low-current high-frequency magnetically switched rectifier which can use the mains directly. (author)

  3. Three-phase receiving coil of wireless power transmission system for gastrointestinal robot

    Science.gov (United States)

    Jia, Z. W.; Jiang, T.; Liu, Y.

    2017-11-01

    Power shortage is the bottleneck for the wide application of gastrointestinal (GI) robot. Owing to the limited volume and free change of orientation of the receiving set in GI trace, the optimal of receiving set is the key point to promote the transmission efficiency of wireless power transmission system. A new type of receiving set, similar to the winding of three-phase asynchronous motor, is presented and compared with the original three-dimensional orthogonal coil. Considering the given volume and the space utilization ratio, the three-phase and the three-orthogonal ones are the parameters which are optimized and compared. Both the transmission efficiency and stability are analyzed and verified by in vitro experiments. Animal experiments show that the new one could provide at least 420 mW power in volume of Φ11 × 13mm with a uniformity of 78.3% for the GI robot.

  4. European roadmap on superconductive electronics - status and perspectives

    International Nuclear Information System (INIS)

    Anders, S.; Blamire, M.G.; Buchholz, F.-Im.; Crete, D.-G.; Cristiano, R.; Febvre, P.; Fritzsch, L.; Herr, A.; Il'ichev, E.; Kohlmann, J.; Kunert, J.; Meyer, H.-G.; Niemeyer, J.; Ortlepp, T.; Rogalla, H.; Schurig, T.

    2010-01-01

    Executive Summary: For four decades semiconductor electronics has followed Moore's law: with each generation of integration the circuit features became smaller, more complex and faster. This development is now reaching a wall so that smaller is no longer any faster. The clock rate has saturated at about 3-5 GHz and the parallel processor approach will soon reach its limit. The prime reason for the limitation the semiconductor electronics experiences is not the switching speed of the individual transistor, but its power dissipation and thus heat. Digital superconductive electronics is a circuit- and device-technology that is inherently faster at much less power dissipation than semiconductor electronics. It makes use of superconductors and Josephson junctions as circuit elements, which can provide extremely fast digital devices in a frequency range - dependent on the material - of hundreds of GHz: for example a flip-flop has been demonstrated that operated at 750 GHz. This digital technique is scalable and follows similar design rules as semiconductor devices. Its very low power dissipation of only 0.1 μW per gate at 100 GHz opens the possibility of three-dimensional integration. Circuits like microprocessors and analogue-to-digital converters for commercial and military applications have been demonstrated. In contrast to semiconductor circuits, the operation of superconducting circuits is based on naturally standardized digital pulses the area of which is exactly the flux quantum Φ 0 . The flux quantum is also the natural quantization unit for digital-to-analogue and analogue-to-digital converters. The latter application is so precise, that it is being used as voltage standard and that the physical unit 'Volt' is defined by means of this standard. Apart from its outstanding features for digital electronics, superconductive electronics provides also the most sensitive sensor for magnetic fields: the Superconducting Quantum Interference Device (SQUID). Amongst many

  5. Quantum Devices Bonded Beneath a Superconducting Shield: Part 2

    Science.gov (United States)

    McRae, Corey Rae; Abdallah, Adel; Bejanin, Jeremy; Earnest, Carolyn; McConkey, Thomas; Pagel, Zachary; Mariantoni, Matteo

    The next-generation quantum computer will rely on physical quantum bits (qubits) organized into arrays to form error-robust logical qubits. In the superconducting quantum circuit implementation, this architecture will require the use of larger and larger chip sizes. In order for on-chip superconducting quantum computers to be scalable, various issues found in large chips must be addressed, including the suppression of box modes (due to the sample holder) and the suppression of slot modes (due to fractured ground planes). By bonding a metallized shield layer over a superconducting circuit using thin-film indium as a bonding agent, we have demonstrated proof of concept of an extensible circuit architecture that holds the key to the suppression of spurious modes. Microwave characterization of shielded transmission lines and measurement of superconducting resonators were compared to identical unshielded devices. The elimination of box modes was investigated, as well as bond characteristics including bond homogeneity and the presence of a superconducting connection.

  6. Superconducting magnetic energy storage (SMES) program, January 1-December 31, 1981

    International Nuclear Information System (INIS)

    Rogers, J.D.

    1982-02-01

    Work reported is on the development of a 30 MJ superconducting magnetic energy storage (SMES) unit for use by the Bonneville Power Administration (BPA) to stabilize power oscillations on their Pacific AC Intertie. The 30 MJ superconducting coil manufacture was completed. Design of the seismic mounting of the coil to the nonconducting dewar lid and a concrete foundation is complete. The superconducting application VAR (SAVAR) control study indicated a low economic advantage and the SAVAR program was terminated. An economic and technological evaluation of superconducting fault current limiter (SFCL) was completed and the results are reported

  7. Improved thermal isolation for superconducting magnet systems

    Science.gov (United States)

    Wiebe, E. R.

    1974-01-01

    Closed-cycle refrigerating system for superconductive magnet and maser is operated in vacuum environment. Each wire leading from external power source passes through cooling station which blocks heat conduction. In connection with these stations, switch with small incandescent light bulb, which generates heat, is used to stop superconduction.

  8. Superconducting current generators

    International Nuclear Information System (INIS)

    Genevey, P.

    1970-01-01

    After a brief summary of the principle of energy storage and liberation with superconducting coils,two current generators are described that create currents in the range 600 to 1400 A, used for two storage experiments of 25 kJ and 50 kJ respectively. The two current generators are: a) a flux pump and b) a superconducting transformer. Both could be developed into more powerful units. The study shows the advantage of the transformer over the flux pump in order to create large currents. The efficiencies of the two generators are 95 per cent and 40 to 60 per cent respectively. (author) [fr

  9. Electric Power Research Institute's role in applying superconductivity to future utility systems

    International Nuclear Information System (INIS)

    Rabinowitz, M.

    1975-01-01

    Economics has been the single most important factor in determining the future of any new commercial technology in the United States. This criterion is in need of serious examination in view of the projected sharply increasing consumption of energy in the next few decades, particularly in the form of electricity. In order to make a smooth and meaningful transition from conventional methods of generating and transmitting electricity, a coordinated effort between all segments of the private and public domains will be required. The Electric Power Research Institute (EPRI) should play a vital role in planning for both the imminent short term, and long term national electrical energy needs; and in coordinating efforts to achieve these vital goals. If, as predicted, the U. S. power consumption increases by more than a factor of six in the next 30 years, it should be clear that it is necessary to develop high power density methods of producing and transmitting electricity. Superconductivity is the natural prime candidate for a new feasible technology that can take on this responsibility

  10. Pantechnik new superconducting ion source: PantechniK Indian Superconducting Ion Source

    International Nuclear Information System (INIS)

    Gaubert, G.; Bieth, C.; Bougy, W.; Brionne, N.; Donzel, X.; Leroy, R.; Sineau, A.; Vallerand, C.; Villari, A. C. C.; Thuillier, T.

    2012-01-01

    The new ECR ion source PantechniK Indian Superconducting Ion Source (PKISIS) was recently commissioned at Pantechnik. Three superconducting coils generate the axial magnetic field configuration, while the radial magnetic field is done with the multi-layer permanent magnets. Special care was devoted to the design of the hexapolar structure, allowing a maximum magnetic field of 1.32 T at the wall of the 82 mm diameter plasma chamber. The three superconducting coils using low temperature superconducting wires are cooled by a single double stage cryo-cooler (4.2 K). Cryogen-free technology is used, providing reliability and easy maintenance at low cost. The maximum installed RF power (18.0 GHz) is of 2 kW. Metallic beams can be produced with an oven (T max = 1400 deg. C) installed with an angle of 5 deg. with respect to the source axis or a sputtering system, mounted on the axis of the source. The beam extraction system is constituted of three electrodes in accel-decel configuration. The new source of Pantechnik is conceived for reaching optimum performances at 18 GHz RF frequencies. PKISIS magnetic fields are 2.1 T axial B inj and 1.32 T radial field in the wall, variable B min with an independent coil and a large and opened extraction region. Moreover, PKISIS integrates modern design concepts, like RF direct injection (2 kW availability), dc-bias moving disk, out-of-axis oven and axial sputtering facility for metal beams. Finally, PKISIS is also conceived in order to operate in a high-voltage platform with minor power consumption.

  11. Superconductivity in Spain. Midas program

    International Nuclear Information System (INIS)

    Yndurain, F.

    1996-01-01

    The different activities in the field of applied superconductivity carried out in Spain under the auspices of the MIDAS program are reported. Applications using both low- and high-temperature superconductors are considered. In the low temperature superconductors case, the design and construction of a 1 mega joule SMES (Superconducting Magnetic Energy Storage) unit, as well as the fabrication of voltage and resistance standards, are reviewed. Developments involving the design and fabrication of an inductive current fault limited and mono- and multi-filamentary wires and tapes using high-temperature superconductors are discussed. Finally, the prospects for the application of superconductivity technology to electric power systems for the electric utilities is considered. (author)

  12. Basic Research Needs for Superconductivity. Report of the Basic Energy Sciences Workshop on Superconductivity, May 8-11, 2006

    Energy Technology Data Exchange (ETDEWEB)

    Sarrao, J.; Kwok, W-K; Bozovic, I.; Mazin, I.; Seamus, J. C.; Civale, L.; Christen, D.; Horwitz, J.; Kellogg, G.; Finnemore, D.; Crabtree, G.; Welp, U.; Ashton, C.; Herndon, B.; Shapard, L.; Nault, R. M.

    2006-05-11

    As an energy carrier, electricity has no rival with regard to its environmental cleanliness, flexibility in interfacing with multiple production sources and end uses, and efficiency of delivery. In fact, the electric power grid was named ?the greatest engineering achievement of the 20th century? by the National Academy of Engineering. This grid, a technological marvel ingeniously knitted together from local networks growing out from cities and rural centers, may be the biggest and most complex artificial system ever built. However, the growing demand for electricity will soon challenge the grid beyond its capability, compromising its reliability through voltage fluctuations that crash digital electronics, brownouts that disable industrial processes and harm electrical equipment, and power failures like the North American blackout in 2003 and subsequent blackouts in London, Scandinavia, and Italy in the same year. The North American blackout affected 50 million people and caused approximately $6 billion in economic damage over the four days of its duration. Superconductivity offers powerful new opportunities for restoring the reliability of the power grid and increasing its capacity and efficiency. Superconductors are capable of carrying current without loss, making the parts of the grid they replace dramatically more efficient. Superconducting wires carry up to five times the current carried by copper wires that have the same cross section, thereby providing ample capacity for future expansion while requiring no increase in the number of overhead access lines or underground conduits. Their use is especially attractive in urban areas, where replacing copper with superconductors in power-saturated underground conduits avoids expensive new underground construction. Superconducting transformers cut the volume, weight, and losses of conventional transformers by a factor of two and do not require the contaminating and flammable transformer oils that violate urban safety

  13. Basic Research Needs for Superconductivity. Report of the Basic Energy Sciences Workshop on Superconductivity, May 8-11, 2006

    International Nuclear Information System (INIS)

    Sarrao, J.; Kwok, W-K; Bozovic, I.; Mazin, I.; Seamus, J. C.; Civale, L.; Christen, D.; Horwitz, J.; Kellogg, G.; Finnemore, D.; Crabtree, G.; Welp, U.; Ashton, C.; Herndon, B.; Shapard, L.; Nault, R. M.

    2006-01-01

    As an energy carrier, electricity has no rival with regard to its environmental cleanliness, flexibility in interfacing with multiple production sources and end uses, and efficiency of delivery. In fact, the electric power grid was named ?the greatest engineering achievement of the 20th century? by the National Academy of Engineering. This grid, a technological marvel ingeniously knitted together from local networks growing out from cities and rural centers, may be the biggest and most complex artificial system ever built. However, the growing demand for electricity will soon challenge the grid beyond its capability, compromising its reliability through voltage fluctuations that crash digital electronics, brownouts that disable industrial processes and harm electrical equipment, and power failures like the North American blackout in 2003 and subsequent blackouts in London, Scandinavia, and Italy in the same year. The North American blackout affected 50 million people and caused approximately $6 billion in economic damage over the four days of its duration. Superconductivity offers powerful new opportunities for restoring the reliability of the power grid and increasing its capacity and efficiency. Superconductors are capable of carrying current without loss, making the parts of the grid they replace dramatically more efficient. Superconducting wires carry up to five times the current carried by copper wires that have the same cross section, thereby providing ample capacity for future expansion while requiring no increase in the number of overhead access lines or underground conduits. Their use is especially attractive in urban areas, where replacing copper with superconductors in power-saturated underground conduits avoids expensive new underground construction. Superconducting transformers cut the volume, weight, and losses of conventional transformers by a factor of two and do not require the contaminating and flammable transformer oils that violate urban safety

  14. Development and Evaluation of cooperative control system for an HVDC transmission system connected with an isolated BWR power plant

    International Nuclear Information System (INIS)

    Horiuchi, Susumu; Hara, Tsukusi; Matori, Iwao; Hirayama, Kaiichirou.

    1987-01-01

    In the cooperative control system developed for an HVDC transmission system connected with an isolated BWR power plant, the equilibrium state between power plant output and DC transmission power is examined by way of the detection of the generator frequency. And, thereby start-up and shutdown of the DC system and controlling of the transmission power are made, so that the signal transmission with the power plant becomes unnecessary, enabling the easy cooperative operation. In order to investigate validity of this control system, various digital simulation and simulator test with the control system were carried out. In this way, behavior of the power plant and stability of the DC transmission system were evaluated in the connection to the DC system at power plant start-up, follow of the transmission power in change of the power plant output and in various system failures. (Mori, K.)

  15. Applied superconductivity. Handbook on devices and applications. Vol. 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, Paul (ed.) [Jena Univ. (Germany). Inst. fuer Festkoerperphysik, AG Tieftemperaturphysik

    2015-07-01

    The both volumes contain the following 12 chapters: 1. Fundamentals; 2. Superconducting Materials; 3. Technology, Preparation, and Characterization (bulk materials, thin films, multilayers, wires, tapes; cooling); 4, Superconducting Magnets; 5. Power Applications (superconducting cables, superconducting current leads, fault current limiters, transformers, SMES and flywheels; rotating machines; SmartGrids); 6. Superconductive Passive Devices (superconducting microwave components; cavities for accelerators; superconducting pickup coils; magnetic shields); 7. Applications in Quantum Metrology (superconducting hot electron bolometers; transition edge sensors; SIS Mixers; superconducting photon detectors; applications at Terahertz frequency; detector readout); 8. Superconducting Radiation and Particle Detectors; 9. Superconducting Quantum Interference (SQUIDs); 10. Superconductor Digital Electronics; 11. Other Applications (Josephson arrays as radiation sources. Tunable microwave devices) and 12. Summary and Outlook (of the superconducting devices).

  16. Applied superconductivity. Handbook on devices and applications. Vol. 1 and 2

    International Nuclear Information System (INIS)

    Seidel, Paul

    2015-01-01

    The both volumes contain the following 12 chapters: 1. Fundamentals; 2. Superconducting Materials; 3. Technology, Preparation, and Characterization (bulk materials, thin films, multilayers, wires, tapes; cooling); 4, Superconducting Magnets; 5. Power Applications (superconducting cables, superconducting current leads, fault current limiters, transformers, SMES and flywheels; rotating machines; SmartGrids); 6. Superconductive Passive Devices (superconducting microwave components; cavities for accelerators; superconducting pickup coils; magnetic shields); 7. Applications in Quantum Metrology (superconducting hot electron bolometers; transition edge sensors; SIS Mixers; superconducting photon detectors; applications at Terahertz frequency; detector readout); 8. Superconducting Radiation and Particle Detectors; 9. Superconducting Quantum Interference (SQUIDs); 10. Superconductor Digital Electronics; 11. Other Applications (Josephson arrays as radiation sources. Tunable microwave devices) and 12. Summary and Outlook (of the superconducting devices).

  17. Power Transmission Scheduling for Generators in a Deregulated Environment Based on a Game-Theoretic Approach

    Directory of Open Access Journals (Sweden)

    Bingtuan Gao

    2015-12-01

    Full Text Available In a deregulated environment of the power market, in order to lower their energy price and guarantee the stability of the power network, appropriate transmission lines have to be considered for electricity generators to sell their energy to the end users. This paper proposes a game-theoretic power transmission scheduling for multiple generators to lower their wheeling cost. Based on the embedded cost method, a wheeling cost model consisting of congestion cost, cost of losses and cost of transmission capacity is presented. By assuming each generator behaves in a selfish and rational way, the competition among the multiple generators is formulated as a non-cooperative game, where the players are the generators and the strategies are their daily schedules of power transmission. We will prove that there exists at least one pure-strategy Nash equilibrium of the formulated power transmission game. Moreover, a distributed algorithm will be provided to realize the optimization in terms of minimizing the wheeling cost. Finally, simulations were performed and discussed to verify the feasibility and effectiveness of the proposed non-cooperative game approach for the generators in a deregulated environment.

  18. Voltage control in the future power transmission systems

    DEFF Research Database (Denmark)

    Qin, Nan

    Wind energy in Denmark covers 42% of the total power consumption in 2015, and will share up to 50% by 2020. Consequently, the conventional power plants are decommissioning. Under the progress of the green transition, the national decision leads to underground many overhead lines in the future...... stages. The voltage uncertainty caused by the wind power forecasting errors is estimated, which is applied as a voltage security margin to further constrain the voltage magnitude in the optimization problem. The problem under the uncertainty is therefore converted to a deterministic problem, which...... to ensure a highly reliable transmission, e.g. balancing the generation and the consumption in large geographic regions, the exchange capacities will be enlarged by upgrading the interconnections. The Danish power system, the electricity transportation hub between the Nordic and continental European systems...

  19. Development of 70 MW class superconducting generator with quick-response excitation

    Science.gov (United States)

    Miyaike, Kiyoshi; Kitajima, Toshio; Ito, Tetsuo

    2002-03-01

    The development of a superconducting generator had been carried out for 12 years under the first stage of a Super GM project. The 70 MW class model machine with quick response excitation was manufactured and evaluated in the project. This type of superconducting generator improves power system stability against rapid load fluctuations at the power system faults. This model machine achieved all development targets including high stability during rapid excitation control. It was also connected to the actual 77 kV electrical power grid as a synchronous condenser and proved advantages and high-operation reliability of the superconducting generator.

  20. Architecture Analysis of Wireless Power Transmission for Lunar Outposts

    Science.gov (United States)

    2015-09-01

    continuous supply of electrical power would be required. The primary research was to determine if it is feasible to provide power to a lunar polar...space exploration business wish to go beyond the Moon, to Mars and to the asteroids , the technology for these ventures is not yet adequate for the task...klystron, both 16 developed during World War II, that the use of microwaves became available for effective transmission of energy. However, the

  1. Superconducting Materials Applied to EP Systems: Applications of Superconductivity to Hall Thrusters Propulsion

    National Research Council Canada - National Science Library

    Bruno, Claudio

    2001-01-01

    This report results from a contract tasking University of Rome as follows: The contractor will investigate the use of superconducting materials for use in high power hall effect type electric propulsion motors...

  2. Induction of Inflammation In Vivo by Electrocardiogram Sensor Operation Using Wireless Power Transmission.

    Science.gov (United States)

    Heo, Jin-Chul; Kim, Beomjoon; Kim, Yoon-Nyun; Kim, Dae-Kwang; Lee, Jong-Ha

    2017-12-14

    Prolonged monitoring by cardiac electrocardiogram (ECG) sensors is useful for patients with emergency heart conditions. However, implant monitoring systems are limited by lack of tissue biocompatibility. Here, we developed an implantable ECG sensor for real-time monitoring of ventricular fibrillation and evaluated its biocompatibility using an animal model. The implantable sensor comprised transplant sensors with two electrodes, a wireless power transmission system, and a monitoring system. The sensor was inserted into the subcutaneous tissue of the abdominal area and operated for 1 h/day for 5 days using a wireless power system. Importantly, the sensor was encapsulated by subcutaneous tissue and induced angiogenesis, inflammation, and phagocytosis. In addition, we observed that the levels of inflammation-related markers increased with wireless-powered transmission via the ECG sensor; in particular, levels of the Th-1 cytokine interleukin-12 were significantly increased. The results showed that induced tissue damage was associated with the use of wireless-powered sensors. We also investigated research strategies for the prevention of adverse effects caused by lack of tissue biocompatibility of a wireless-powered ECG monitoring system and provided information on the clinical applications of inflammatory reactions in implant treatment using the wireless-powered transmission system.

  3. Development of the power supplies of the prototype ion source for the EAST

    International Nuclear Information System (INIS)

    Liu Zhimin; Hu Chundong; Liu Sheng; Jiang Caichao; Song Shihua; Xie Yahong; Sheng Peng

    2011-01-01

    For the neutral beam injector (NBI) of the Experimental Advanced Superconducting Tokamak (EAST), a test stand of a high-current ion source has been in construction. The NBI power supply system includes the plasma generator power supply, plasma electrode power supply, high voltage power divider, negative high voltage power supply, and the transmission lines and the snubber. A multi-megawatt prototype ion source was developed. The arc discharge of the prototype ion source was obtained in the test. The test results for the ion source power supplies and the arc discharge of the ion source are presented. (authors)

  4. An efficient transmission power control scheme for temperature variation in wireless sensor networks.

    Science.gov (United States)

    Lee, Jungwook; Chung, Kwangsue

    2011-01-01

    Wireless sensor networks collect data from several nodes dispersed at remote sites. Sensor nodes can be installed in harsh environments such as deserts, cities, and indoors, where the link quality changes considerably over time. Particularly, changes in transmission power may be caused by temperature, humidity, and other factors. In order to compensate for link quality changes, existing schemes detect the link quality changes between nodes and control transmission power through a series of feedback processes, but these approaches can cause heavy overhead with the additional control packets needed. In this paper, the change of the link quality according to temperature is examined through empirical experimentation. A new power control scheme combining both temperature-aware link quality compensation and a closed-loop feedback process to adapt to link quality changes is proposed. We prove that the proposed scheme effectively adapts the transmission power to the changing link quality with less control overhead and energy consumption.

  5. An Efficient Transmission Power Control Scheme for Temperature Variation in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jungwook Lee

    2011-03-01

    Full Text Available Wireless sensor networks collect data from several nodes dispersed at remote sites. Sensor nodes can be installed in harsh environments such as deserts, cities, and indoors, where the link quality changes considerably over time. Particularly, changes in transmission power may be caused by temperature, humidity, and other factors. In order to compensate for link quality changes, existing schemes detect the link quality changes between nodes and control transmission power through a series of feedback processes, but these approaches can cause heavy overhead with the additional control packets needed. In this paper, the change of the link quality according to temperature is examined through empirical experimentation. A new power control scheme combining both temperature-aware link quality compensation and a closed-loop feedback process to adapt to link quality changes is proposed. We prove that the proposed scheme effectively adapts the transmission power to the changing link quality with less control overhead and energy consumption.

  6. Improvement of wireless power transmission efficiency of implantable subcutaneous devices by closed magnetic circuit mechanism.

    Science.gov (United States)

    Jo, Sung-Eun; Joung, Sanghoon; Suh, Jun-Kyo Francis; Kim, Yong-Jun

    2012-09-01

    Induction coils were fabricated based on flexible printed circuit board for inductive transcutaneous power transmission. The coil had closed magnetic circuit (CMC) structure consisting of inner and outer magnetic core. The power transmission efficiency of the fabricated device was measured in the air and in vivo condition. It was confirmed that the CMC coil had higher transmission efficiency than typical air-core coil. The power transmission efficiency during a misalignment between primary coil and implanted secondary coil was also evaluated. The decrease of mutual inductance between the two coils caused by the misalignment led to a low efficiency of the inductive link. Therefore, it is important to properly align the primary coil and implanted secondary coil for effective power transmission. To align the coils, a feedback coil was proposed. This was integrated on the backside of the primary coil and enabled the detection of a misalignment of the primary and secondary coils. As a result of using the feedback coil, the primary and secondary coils could be aligned without knowledge of the position of the implanted secondary coil.

  7. Transmission Reinforcements in the Central American Regional Power System

    Energy Technology Data Exchange (ETDEWEB)

    Elizondo, Marcelo A.; Vallem, Mallikarjuna R.; Samaan, Nader A.; Makarov, Yuri V.; Vyakaranam, Bharat; Nguyen, Tony B.; Munoz, Christian; Herrera, Ricardo; Midence, Diego; Shpitsberg, Anna

    2016-07-25

    The Central American regional interconnected power system (SER) connects the countries members of the Central American regional electricity market (MER): Guatemala, El Salvador, Honduras, Nicaragua, Costa Rica, and Panama. The SER was a result of a long term regional effort, and was initially conceived to transfer 300 MW between countries. However, the current transfer limits between countries range from 70 MW to 300 MW. Regional entities, like CRIE (Regional Commission of Electrical Interconnection), EOR (Central American Regional System Operator), and CDMER (Board of Directors of the Central American Market) are working on coordinating the national transmission expansion plans with regional transmission planning efforts. This paper presents experience in Central America region to recommend transmission reinforcements to achieve 300 MW transfer capacity between any pair of member countries of the Central American regional electricity market (MER). This paper also provides a methodology for technical analysis and for coordination among the regional and national entities. This methodology is unique for transmission systems of these characteristics.

  8. Large-scale applications of superconductivity in the United States: an overview. Metallurgy, fabrication, and applications

    International Nuclear Information System (INIS)

    Hein, R.A.; Gubser, D.U.

    1981-01-01

    This report presents an overview of ongoing development efforts in the USA concerned with large-scale applications of superconductivity. These applications are grouped according to magnetic field regime, as low field regime, intermediate field regime, and high field regime. In the low field regime two diverse areas of large application are identified, superconducting power transmission lines for electric utilities, and RF cavities for particle accelerators for high energy physics research. Activity in the intermediate regime has been significantly increased due to Fermilab's energy doubler or Tevatron project, and BNL's ISABELLE project. Rotating electrical machines, such as DC acyclic (homopolar) motors, generators, and energy storage magnets are also studied. In the high field regime magnetohydrodynamics (MHD) and magnetically confined fusion in tokamaks are examined. In each regime all current work is summarized according to key person, research topic, type of program, funding, status, and future outlook

  9. Incorporating energy efficiency into electric power transmission planning: A western United States case study

    International Nuclear Information System (INIS)

    Barbose, Galen L.; Sanstad, Alan H.; Goldman, Charles A.

    2014-01-01

    Driven by system reliability goals and the need to integrate significantly increased renewable power generation, long-range, bulk-power transmission planning processes in the United States are undergoing major changes. At the same time, energy efficiency is an increasing share of the electricity resource mix in many regions, and has become a centerpiece of many utility resource plans and state policies as a means of meeting electricity demand, complementing supply-side sources, and reducing carbon dioxide emissions from the electric power system. The paper describes an innovative project in the western United States to explicitly incorporate end-use efficiency into load forecasts – projections of electricity consumption and demand – that are a critical input into transmission planning and transmission planning studies. Institutional and regulatory background and context are reviewed, along with a detailed discussion of data sources and analytical procedures used to integrate efficiency into load forecasts. The analysis is intended as a practical example to illustrate the kinds of technical and institutional issues that must be addressed in order to incorporate energy efficiency into regional transmission planning activities. - Highlights: • Incorporating energy efficiency into electric power transmission planning is an emergent analytical and policy priority. • A new methodology for this purpose was developed and applied in the western U.S. transmission system. • Efficiency scenarios were created and incorporated into multiple load forecasts. • Aggressive deployment of efficiency policies and programs can significantly reduce projected load. • The approach is broadly applicable in long-range transmission planning

  10. Korea's developmental program for superconductivity

    Science.gov (United States)

    Hong, Gye-Won; Won, Dong-Yeon; Kuk, Il-Hyun; Park, Jong-Chul

    1995-04-01

    Superconductivity research in Korea was firstly carried out in the late 70's by a research group in Seoul National University (SNU), who fabricated a small scale superconducting magnetic energy storage system under the financial support from Korea Electric Power Company (KEPCO). But a few researchers were involved in superconductivity research until the oxide high Tc superconductor was discovered by Bednorz and Mueller. After the discovery of YBaCuO superconductor operating above the boiling point of liquid nitrogen (77 K)(exp 2), Korean Ministry of Science and Technology (MOST) sponsored a special fund for the high Tc superconductivity research to universities and national research institutes by recognizing its importance. Scientists engaged in this project organized 'High Temperature Superconductivity Research Association (HITSRA)' for effective conducting of research. Its major functions are to coordinate research activities on high Tc superconductivity and organize the workshop for active exchange of information. During last seven years the major superconductivity research has been carried out through the coordination of HITSRA. The major parts of the Korea's superconductivity research program were related to high temperature superconductor and only a few groups were carrying out research on conventional superconductor technology, and Korea Atomic Energy Research Institute (KAERI) and Korea Electrotechnology Research Institute (KERI) have led this research. In this talk, the current status and future plans of superconductivity research in Korea will be reviewed based on the results presented in interim meeting of HITSRA, April 1-2, 1994. Taejeon, as well as the research activity of KAERI.

  11. Power transmission study for a wave energy scheme based on Lancaster Flexible Bag devices. Supervisory and telecontrol system

    Energy Technology Data Exchange (ETDEWEB)

    1981-11-01

    Various options are considered for power data transmission associated with the power collection and transmission system of a postulated wave energy conversion scheme off the Outer Hebrides. For data transmission between the off-shore and on-shore power collector stations a Power Line Carrier (PLC) system is judged to be most suitable. In the case of data transmission between power collector stations and the main control centre, a microwave/radio link is proposed as the amount of data does not lend itself to a PLC system. Cost estimates, in the main for equipment supply only, are given.

  12. [An implantable micro-device using wireless power transmission for measuring aortic aneurysm sac pressure].

    Science.gov (United States)

    Guo, Xudong; Ge, Bin; Wang, Wenxing

    2013-08-01

    In order to detect endoleaks after endovascular aneurysm repair (EVAR), we developed an implantable micro-device based on wireless power transmission to measure aortic aneurysm sac pressure. The implantable micro-device is composed of a miniature wireless pressure sensor, an energy transmitting coil, a data recorder and a data processing platform. Power transmission without interconnecting wires is performed by a transmitting coil and a receiving coil. The coupling efficiency of wireless power transmission depends on the coupling coefficient between the transmitting coil and the receiving coil. With theoretical analysis and experimental study, we optimized the geometry of the receiving coil to increase the coupling coefficient. In order to keep efficiency balance and satisfy the maximizing conditions, we designed a closed loop power transmission circuit, including a receiving voltage feedback module based on wireless communication. The closed loop improved the stability and reliability of transmission energy. The prototype of the micro-device has been developed and the experiment has been performed. The experiments showed that the micro-device was feasible and valid. For normal operation, the distance between the transmitting coil and the receiving coil is smaller than 8cm. Besides, the distance between the micro-device and the data recorder is within 50cm.

  13. Superconductivity in high energy particle accelerators

    International Nuclear Information System (INIS)

    Schmueser, P.

    2002-08-01

    The basics of superconductivity are outlined with special emphasis on the features which are relevant for the application in magnets and radio frequency cavities for high energy particle accelerators. The special properties of superconducting accelerator magnets are described in detail: design principles, magnetic field calculations, magnetic forces, quench performance, persistent magnetization currents and eddy currents. The design principles and basic properties of superconducting cavities are explained as well as the observed performance limitations and the countermeasures. The ongoing research efforts towards maximum accelerating fields are addressed and the coupling of radio frequency power to the particle beam is treated. (orig.)

  14. Evaluating the capacity value of wind power considering transmission and operational constraints

    International Nuclear Information System (INIS)

    Gil, Esteban; Aravena, Ignacio

    2014-01-01

    Highlights: • Discussion of power system adequacy and the capacity value of wind power. • Method for estimating capacity value of wind power is proposed. • Monte Carlo simulation used to consider transmission and operational constraints. • Application of the method to the Chilean Northern Interconnected System (SING). - Abstract: This paper presents a method for estimating the capacity value of wind considering transmission and operational constraints. The method starts by calculating a metric for system adequacy by repeatedly simulating market operations in a Monte Carlo scheme that accounts for forced generator outages, wind resource variability, and operational conditions. Then, a capacity value calculation that uses the simulation results is proposed, and its application to the Chilean Northern Interconnected System (SING) is discussed. A comparison of the capacity value for two different types of wind farms is performed using the proposed method, and the results are compared with the method currently used in Chile and the method recommended by the IEEE. The method proposed in the paper captures the contribution of the variable generation resources to power system adequacy more accurately than the method currently employed in the SING, and showed capable of taking into account transmission and operational constraints

  15. NORPAS - NORdic program of applied superconductivity. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mikkonen, R. [ed.

    1995-12-31

    High temperature superconducting (HTS) wire is rapidly maturing into a working material being produced in ever larger quantities and being used in more significant demonstrations and prototypes. Conductor is now produced routinely in several hundred meter lengths with reproducible results. Current density has progressed to a level suitable for demonstration on many applications. As with any technology trying to find a niche, widespread commercialization can only occur if the new technology can match the performance of an existing technology at a lower cost, or the new technology represents a breakthrough in capabilities, irrespective of cost, in turn enabling functionality previously thought impossible. There are two obvious areas where HTS will have significant benefit. The first is all applications which will notably benefit from a reduction in refrigeration power. The second area is the market of very high field magnets where there is no viable alternative. Applications under consideration for HTS include: (1) Rotating electrical machines (synchronous ac and homopolar dc motors), (2) Underground transmission cables, (3) Superconducting Magnetic Energy Storage (SMES), (4) Utility distribution equipment such as transformers and current limiters, (5) Commercial processing applications such as magnetic separation. (6) Military applications such as mine clearing, (7) Specialty magnets such as high field inserts

  16. Experimental study on an S-band near-field microwave magnetron power transmission system on hundred-watt level

    Science.gov (United States)

    Zhang, Biao; Jiang, Wan; Yang, Yang; Yu, Chengyang; Huang, Kama; Liu, Changjun

    2015-11-01

    A multi-magnetron microwave source, a metamaterial transmitting antenna, and a large power rectenna array are presented to build a near-field 2.45 GHz microwave power transmission system. The square 1 m2 rectenna array consists of sixteen rectennas with 2048 Schottky diodes for large power microwave rectifying. It receives microwave power and converts them into DC power. The design, structure, and measured performance of a unit rectenna as well as the entail rectenna array are presented in detail. The multi-magnetron microwave power source switches between half and full output power levels, i.e. the half-wave and full-wave modes. The transmission antenna is formed by a double-layer metallic hole array, which is applied to combine the output power of each magnetron. The rectenna array DC output power reaches 67.3 W on a 1.2 Ω DC load at a distance of 5.5 m from the transmission antenna. DC output power is affected by the distance, DC load, and the mode of microwave power source. It shows that conventional low power Schottky diodes can be applied to a microwave power transmission system with simple magnetrons to realise large power microwave rectifying.

  17. A cooperative game theory approach to transmission planning in power systems

    Science.gov (United States)

    Contreras, Javier

    The rapid restructuring of the electric power industry from a vertically integrated entity into a decentralized industry has given rise to complex problems. In particular, the transmission component of the electric power system requires new methodologies to fully capture this emerging competitive industry. Game theory models are used to model strategic interactions in a competitive environment. This thesis presents a new decentralized framework to study the transmission network expansion problem using cooperative game theory. First, the players and the rules of the game are defined. Second, a coalition formation scheme is developed. Finally, the optimized cost of expansion is allocated based on the history of the coalition formation.

  18. Choice of antenna geometry for microwave power transmission from solar power satellites

    Science.gov (United States)

    Potter, Seth D.

    1992-01-01

    A comparison is made between square and circular transmitting antennas for solar power satellite microwave power transmission. It is seen that the exclusion zone around the rectenna needed to protect populations from microwaves is smaller for a circular antenna operating at 2.45 GHz than it is for a square antenna at that frequency. If the frequency is increased, the exclusion zone size remains the same for a square antenna, but becomes even smaller for a circular antenna. Peak beam intensity is the same for both antennas if the frequency and antenna area are equal. The circular antenna puts a somewhat greater amount of power in the main lobe and somewhat less in the side lobes. Since rain attenuation and atmospheric heating remain problems above 10 GHz, it is recommended that future solar power satellite work concentrate on circular transmitting antennas at frequencies of roughly 10 GHz.

  19. Batteryless wireless transmission system for electronic drum uses piezoelectric generator for play signal and power source

    International Nuclear Information System (INIS)

    Nishikawa, H; Yoshimi, A; Takemura, K; Tanaka, A; Douseki, T

    2015-01-01

    A batteryless self-powered wireless transmission system has been developed that sends a signal from a drum pad to a synthesizer. The power generated by a piezoelectric generator functions both as the “Play” signal for the synthesizer and as the power source for the transmitter. An FM transmitter, which theoretically operates with zero latency, and a receiver with quick-response squelch of the received signal were developed for wireless transmission with a minimum system delay. Experimental results for an electronic drum without any connecting wires fully demonstrated the feasibility of self-powered wireless transmission with a latency of 900 μs. (paper)

  20. Space Solar Power Technology Demonstration for Lunar Polar Applications: Laser-Photovoltaic Wireless Power Transmission

    Science.gov (United States)

    Henley, M. W.; Fikes, J. C.; Howell, J.; Mankins, J. C.; Howell, Joe T. (Technical Monitor)

    2002-01-01

    Space Solar Power technology offers unique benefits for near-term NASA space science missions, which can mature this technology for other future applications. "Laser-Photo-Voltaic Wireless Power Transmission" (Laser-PV WPT) is a technology that uses a laser to beam power to a photovoltaic receiver, which converts the laser's light into electricity. Future Laser-PV WPT systems may beam power from Earth to satellites or large Space Solar Power satellites may beam power to Earth, perhaps supplementing terrestrial solar photo-voltaic receivers. In a near-term scientific mission to the moon, Laser-PV WPT can enable robotic operations in permanently shadowed lunar polar craters, which may contain ice. Ground-based technology demonstrations are proceeding, to mature the technology for this initial application, in the moon's polar regions.

  1. Superconducting wind turbine generators

    International Nuclear Information System (INIS)

    Abrahamsen, A B; Seiler, E; Zirngibl, T; Andersen, N H; Mijatovic, N; Traeholt, C; Pedersen, N F; Oestergaard, J; Noergaard, P B

    2010-01-01

    We have examined the potential of 10 MW superconducting direct drive generators to enter the European offshore wind power market and estimated that the production of about 1200 superconducting turbines until 2030 would correspond to 10% of the EU offshore market. The expected properties of future offshore turbines of 8 and 10 MW have been determined from an up-scaling of an existing 5 MW turbine and the necessary properties of the superconducting drive train are discussed. We have found that the absence of the gear box is the main benefit and the reduced weight and size is secondary. However, the main challenge of the superconducting direct drive technology is to prove that the reliability is superior to the alternative drive trains based on gearboxes or permanent magnets. A strategy of successive testing of superconducting direct drive trains in real wind turbines of 10 kW, 100 kW, 1 MW and 10 MW is suggested to secure the accumulation of reliability experience. Finally, the quantities of high temperature superconducting tape needed for a 10 kW and an extreme high field 10 MW generator are found to be 7.5 km and 1500 km, respectively. A more realistic estimate is 200-300 km of tape per 10 MW generator and it is concluded that the present production capacity of coated conductors must be increased by a factor of 36 by 2020, resulting in a ten times lower price of the tape in order to reach a realistic price level for the superconducting drive train.

  2. Location matters: The impact of renewable power on transmission congestion and emissions

    International Nuclear Information System (INIS)

    Hitaj, Claudia

    2015-01-01

    Many governments offer subsidies for renewable power to reduce greenhouse gas emissions in the power sector. However, most support schemes for renewable power do not take into account that emissions depend on the location of renewable and conventional power plants within an electricity grid. I simulate optimal power flow in a test grid when 4 renewable power plants connect to the grid across 24 potential sites, amounting to over 10,000 configurations. Each configuration is associated with different levels of emissions and renewable power output. I find that emission reductions vary by a factor of 7 and that curtailment due to transmission congestion is more likely when renewable power plants are concentrated in an area of the grid with low demand. Large cost savings could be obtained by allowing subsidies for renewable power to vary across locations according to abatement potential or by replacing subsidies with a price on emissions. - Highlights: • Analyze the impact of renewable power plant location on congestion and emissions. • Simulate optimal power flow in a test grid for over 10,000 configurations. • Determine that emission reductions vary by a factor of 7. • Find that renewable power is curtailed due to transmission congestion. • Pricing emissions is most efficient since abatement potential varies across locations.

  3. Characterization of superconducting thin films by infrared reflection

    International Nuclear Information System (INIS)

    Gervais, F.

    1988-01-01

    Infrared reflectivity spectroscopy is shown to be a powerful tool to characterize the new high-Tc oxide superconductors since it gives information about the superconducting gap, phonons, plasmon and possibly low-energy electronic excitations such as excitons, information relevant to understand the mechanism of superconductivity [fr

  4. Determination of copper oxidizing power in superconducting yttrium ceramics

    International Nuclear Information System (INIS)

    Pontaler, R.P.; Lebed', N.B.

    1989-01-01

    A new photometric method for determining the formal copper degree of oxidation and oxygen deficiency in superconducting high-temperature oxides containing yttrium, barium and copper is developed. The method is based on oxidation of Co(2) complex with EDTA by Cu(3) ions in acetrate buffer solution with pH 4.2-4.7 and allows one to determine 1-10% of Cu(3). Relative standard deviation when determining Cu(3) makes up 0.03-0.05. Using a qualitative reaction with the application of sodium vanadate hydrochloride solution the absence of peroxide compound in superconducting yttrium ceramics is ascertained

  5. An optimization of robust SMES with specified structure H∞ controller for power system stabilization considering superconducting magnetic coil size

    International Nuclear Information System (INIS)

    Ngamroo, Issarachai

    2011-01-01

    Even the superconducting magnetic energy storage (SMES) is the smart stabilizing device in electric power systems, the installation cost of SMES is very high. Especially, the superconducting magnetic coil size which is the critical part of SMES, must be well designed. On the contrary, various system operating conditions result in system uncertainties. The power controller of SMES designed without taking such uncertainties into account, may fail to stabilize the system. By considering both coil size and system uncertainties, this paper copes with the optimization of robust SMES controller. No need of exact mathematic equations, the normalized coprime factorization is applied to model system uncertainties. Based on the normalized integral square error index of inter-area rotor angle difference and specified structured H ∞ loop shaping optimization, the robust SMES controller with the smallest coil size, can be achieved by the genetic algorithm. The robustness of the proposed SMES with the smallest coil size can be confirmed by simulation study.

  6. Optimal Capacity Proportion and Distribution Planning of Wind, Photovoltaic and Hydro Power in Bundled Transmission System

    Science.gov (United States)

    Ye, X.; Tang, Q.; Li, T.; Wang, Y. L.; Zhang, X.; Ye, S. Y.

    2017-05-01

    The wind, photovoltaic and hydro power bundled transmission system attends to become common in Northwest and Southwest of China. To make better use of the power complementary characteristic of different power sources, the installed capacity proportion of wind, photovoltaic and hydro power, and their capacity distribution for each integration node is a significant issue to be solved in power system planning stage. An optimal capacity proportion and capacity distribution model for wind, photovoltaic and hydro power bundled transmission system is proposed here, which considers the power out characteristic of power resources with different type and in different area based on real operation data. The transmission capacity limit of power grid is also considered in this paper. Simulation cases are tested referring to one real regional system in Southwest China for planning level year 2020. The results verify the effectiveness of the model in this paper.

  7. Shifting and power sharing control of a novel dual input clutchless transmission for electric vehicles

    Science.gov (United States)

    Liang, Jiejunyi; Yang, Haitao; Wu, Jinglai; Zhang, Nong; Walker, Paul D.

    2018-05-01

    To improve the overall efficiency of electric vehicles and guarantee the driving comfort and vehicle drivability under the concept of simplifying mechanism complexity and minimizing manufacturing cost, this paper proposes a novel clutchless power-shifting transmission system with shifting control strategy and power sharing control strategy. The proposed shifting strategy takes advantage of the transmission architecture to achieve power-on shifting, which greatly improves the driving comfort compared with conventional automated manual transmission, with a bump function based shifting control method. To maximize the overall efficiency, a real-time power sharing control strategy is designed to solve the power distribution problem between the two motors. Detailed mathematical model is built to verify the effectiveness of the proposed methods. The results demonstrate the proposed strategies considerably improve the overall efficiency while achieve non-interrupted power-on shifting and maintain the vehicle jerk during shifting under an acceptable threshold.

  8. Superconducting qubit in a nonstationary transmission line cavity: Parametric excitation, periodic pumping, and energy dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Zhukov, A.A. [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); National Research Nuclear University (MEPhI), 115409 Moscow (Russian Federation); Shapiro, D.S., E-mail: shapiro.dima@gmail.com [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); V.A. Kotel' nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 125009 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700 (Russian Federation); National University of Science and Technology MISIS, 119049 Moscow (Russian Federation); Remizov, S.V. [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); V.A. Kotel' nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 125009 Moscow (Russian Federation); Pogosov, W.V. [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700 (Russian Federation); Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412 Moscow (Russian Federation); Lozovik, Yu.E. [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); National Research Nuclear University (MEPhI), 115409 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700 (Russian Federation); Institute of Spectroscopy, Russian Academy of Sciences, 142190 Moscow Region, Troitsk (Russian Federation)

    2017-02-12

    We consider a superconducting qubit coupled to the nonstationary transmission line cavity with modulated frequency taking into account energy dissipation. Previously, it was demonstrated that in the case of a single nonadiabatical modulation of a cavity frequency there are two channels of a two-level system excitation which are due to the absorption of Casimir photons and due to the counterrotating wave processes responsible for the dynamical Lamb effect. We show that the parametric periodical modulation of the resonator frequency can increase dramatically the excitation probability. Remarkably, counterrotating wave processes under such a modulation start to play an important role even in the resonant regime. Our predictions can be used to control qubit-resonator quantum states as well as to study experimentally different channels of a parametric qubit excitation. - Highlights: • Coupled qubit-resonator system under the modulation of a resonator frequency is considered. • Counterrotating terms of the Hamiltonian are of importance even in the resonance. • Qubit excited state population is highest if driving frequency matches dressed-state energy.

  9. Superconductivity observed in platinum-silicon interface

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Pai-Chia, E-mail: paichia@phys.sinica.edu.tw [Research Program on Nanoscience and Nanotechnology, Academia Sinica, Taipei 11529, Taiwan (China); Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Chen, Chun-Wei [Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Lee, Ku-Pin; Shiue, Jessie, E-mail: yshiue@phys.sinica.edu.tw [Research Program on Nanoscience and Nanotechnology, Academia Sinica, Taipei 11529, Taiwan (China); Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China)

    2014-05-26

    We report the discovery of superconductivity with an onset temperature of ∼0.6 K in a platinum-silicon interface. The interface was formed by using a unique focused ion beam sputtering micro-deposition method in which the energies of most sputtered Pt atoms are ∼2.5 eV. Structural and elemental analysis by transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy reveal a ∼ 7 nm interface layer with abundant Pt, which is the layer likely responsible for the superconducting transport behavior. Similar transport behavior was also observed in a gold-silicon interface prepared by the same technique, indicating the possible generality of this phenomenon.

  10. Controllable quantum information network with a superconducting system

    International Nuclear Information System (INIS)

    Zhang, Feng-yang; Liu, Bao; Chen, Zi-hong; Wu, Song-lin; Song, He-shan

    2014-01-01

    We propose a controllable and scalable architecture for quantum information processing using a superconducting system network, which is composed of current-biased Josephson junctions (CBJJs) as tunable couplers between the two superconducting transmission line resonators (TLRs), each coupling to multiple superconducting qubits (SQs). We explicitly demonstrate that the entangled state, the phase gate, and the information transfer between any two selected SQs can be implemented, respectively. Lastly, numerical simulation shows that our scheme is robust against the decoherence of the system. -- Highlights: •An architecture for quantum information processing is proposed. •The quantum information transfer between any two selected SQs is implemented. •This proposal is robust against the decoherence of the system. •This architecture can be fabricated on a chip down to the micrometer scale

  11. A GIS-based Power Transmission Management Information System

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>Based on analyzing the shortcomings of electric power enterprise in traditional operation pattern,this paper combines components GIS with the application of management information system,and uses the structure which unifies three layers C/S and B/S.Also,proposed using the GPS intellectualization patrol.This may be useful to guarantees the transmission line’s operation to be safe and stable.

  12. Induction of Inflammation In Vivo by Electrocardiogram Sensor Operation Using Wireless Power Transmission

    Directory of Open Access Journals (Sweden)

    Jin-Chul Heo

    2017-12-01

    Full Text Available Prolonged monitoring by cardiac electrocardiogram (ECG sensors is useful for patients with emergency heart conditions. However, implant monitoring systems are limited by lack of tissue biocompatibility. Here, we developed an implantable ECG sensor for real-time monitoring of ventricular fibrillation and evaluated its biocompatibility using an animal model. The implantable sensor comprised transplant sensors with two electrodes, a wireless power transmission system, and a monitoring system. The sensor was inserted into the subcutaneous tissue of the abdominal area and operated for 1 h/day for 5 days using a wireless power system. Importantly, the sensor was encapsulated by subcutaneous tissue and induced angiogenesis, inflammation, and phagocytosis. In addition, we observed that the levels of inflammation-related markers increased with wireless-powered transmission via the ECG sensor; in particular, levels of the Th-1 cytokine interleukin-12 were significantly increased. The results showed that induced tissue damage was associated with the use of wireless-powered sensors. We also investigated research strategies for the prevention of adverse effects caused by lack of tissue biocompatibility of a wireless-powered ECG monitoring system and provided information on the clinical applications of inflammatory reactions in implant treatment using the wireless-powered transmission system.

  13. Sensor Transmission Power Schedule for Smart Grids

    Science.gov (United States)

    Gao, C.; Huang, Y. H.; Li, J.; Liu, X. D.

    2017-11-01

    Smart grid has attracted much attention by the requirement of new generation renewable energy. Nowadays, the real-time state estimation, with the help of phasor measurement unit, plays an important role to keep smart grid stable and efficient. However, the limitation of the communication channel is not considered by related work. Considering the familiar limited on-board batteries wireless sensor in smart grid, transmission power schedule is designed in this paper, which minimizes energy consumption with proper EKF filtering performance requirement constrain. Based on the event-triggered estimation theory, the filtering algorithm is also provided to utilize the information contained in the power schedule. Finally, its feasibility and performance is demonstrated using the standard IEEE 39-bus system with phasor measurement units (PMUs).

  14. Single-Wire Electric-Field Coupling Power Transmission Using Nonlinear Parity-Time-Symmetric Model with Coupled-Mode Theory

    Directory of Open Access Journals (Sweden)

    Xujian Shu

    2018-03-01

    Full Text Available The output power and transmission efficiency of the traditional single-wire electric-field coupling power transmission (ECPT system will drop sharply with the increase of the distance between transmitter and receiver, thus, in order to solve the above problem, in this paper, a new nonlinear parity-time (PT-symmetric model for single-wire ECPT system based on coupled-mode theory (CMT is proposed. The proposed model for single-wire ECPT system not only achieves constant output power but also obtains a high constant transmission efficiency against variable distance, and the steady-state characteristics of the single-wire ECPT system are analyzed. Based on the theoretical analysis and circuit simulation, it shows that the transmission efficiency with constant output power remains 60% over a transmission distance of approximately 34 m without the need for any tuning. Furthermore, the application of a nonlinear PT-symmetric circuit based on CMT enables robust electric power transfer to moving devices or vehicles.

  15. HF power couplers for pulsed superconducting cavity resonators; Coupleurs de puissance HF pour cavites supraconductrices en mode pulse

    Energy Technology Data Exchange (ETDEWEB)

    Jenhani, Hassen [Laboratoire de l' Accelerateur Lineaire, IN2P3-CNRS et Universite de Paris-Sud, BP 34, F-91898 Orsay Cedex (France)

    2006-11-15

    Recent years have seen an impressive improvement in the accelerating gradients obtained in superconducting cavities. Consequently, such cavities have become attractive candidates for large superconducting linear accelerator projects such as the European XFEL and the International Linear Collider (ILC). As a result, there is a strong interest in reducing RF conditioning time and improving the performance of the input power couplers for these cavities. The so-called TTF-III input power coupler, adopted for the XFEL superconducting RF cavities are complex components. In order to better understand the behavior of this component we have performed a series of experiments on a number of such couplers. Initially, we developed a fully automated RF high power test stand for coupler conditioning procedure. Following this, we performed a series of coupler conditioning tests. This has allowed the study of the coupler behavior during processing. A number of experiments were carried out to evaluate the in-situ baking effect on the conditioning time. Some of the conditioned couplers were sent to DESY in order to be tested on 9-cells TESLA cavities under cryogenic conditions. These tests have shown that the couplers in no way limit the cavity performance, even up to gradients of 35 MV/m. The main objective of our coupler studies was the reduction of their conditioning time, which represents one of the most important criteria in the choice of coupler for high energy linacs. Excellent progress in reducing the conditioning time has been demonstrated by making appropriate modifications to the conditioning procedure. Furthermore, special attention was paid to electron generation processes in the couplers, via multipacting. Simulations of this process were made on both the TTF-III coupler and on a new coupler prototype, TTF-V. Experiments aimed at suppressing multipacting were also successfully achieved by using a DC bias on the inner conductor of the co-axial coupler. (author)

  16. The Influence of Grain Boundaries on the Properties of Superconducting Radio Frequency Cavity Niobium

    Science.gov (United States)

    Sung, Zu Hawn

    Grain boundaries (GBs) in niobium are multiply connected defects that may be responsible for significant performance degradation in superconducting radio frequency (RF) cavities. Magneto optical (MO) studies show that early flux penetration often occurs at GBs. One possible mechanism is that a locally reduced superconducting gap (Delta) at the GB reduces the depairing current density (Jb) and thus leads to a local reduction of the critical field. Alternatively vortices may penetrate the GB preferentially because of field enhancement at a GB groove, or for other reasons. In all these cases, the effect of high RF fields is to produce additional power dissipation, which in turn produces a reduction in quality factor (Q 0) and leads to a premature quench of the cavity. To further our understanding of the superconducting properties of SRF-quality Nb, we made extensive superconducting characterizations by magneto-optical imaging, which allowed assessment of the uniformity of properties on scales down to about 5 microm and by direct transport voltage-current methods in single and bi-crystals treated by standard cavity optimization treatments of BCP (buffered chemical treatment) and EP (electropolishing). We correlated these superconducting characterizations to microstructural properties using scanning laser and scanning electron microscopy and then thinned some samples to examine them at the nanometer scale using analytical transmission electron microscopy (TEM). We also developed special metallographic sample preparation techniques that allowed us to apply these experimental approaches to very soft superconducting RF niobium in the polished conditions characteristics of a real inner cavity surface. Using MO imaging, we found that GBs can preferentially admit flux penetration when the plane of a GB is aligned parallel to the vector of the external magnetic field. In DC transport in the superconducting state, we found preferential flux flow at the GB and could detect the

  17. A parasitic magnetic refrigerator for cooling superconducting magnet

    International Nuclear Information System (INIS)

    Nakagome, H.; Takahashi, M.; Ogiwara, H.

    1988-01-01

    The application of magnetic refrigeration principle at a liquid helium temperature (4.2K) is very useful for cooling a superconducting magnet for its potential of high efficiency. The magnetic refrigerator equipped with 14 pieces of GGG (gadolinium-gallium-garnet) single crystal unit (30mm in diameter 10mm in length) in the rotating disk operates along the gradient of the magnetic field produced by a racetrack superconducting magnet, whose maximum magnetic field is 4.5 Tesla and the minimum field is 1.1 Tesla. The final goal of their program is to liquefy gaseous helium evaporated from a liquid helium vessel of the racetrack superconducting magnet by the rotating magnetic refrigerator which operates by using the magnetic field of the superconducting magnet. A 0.12W refrigeration power in the 0.72rpm operation has been achieved under condition of 4.2K to 11.5K operation. The helium evaporation rate of this magnet system is estimated as the order of 10mW, and the achieved refrigeration power of 0.12W at 4.2K is sufficient for cooling the superconducting magnet

  18. The Transfer efficiency analysis and modeling technology of new non - contact power transmission equipment

    Directory of Open Access Journals (Sweden)

    Cao Shi

    2017-01-01

    Full Text Available Due to the shortcomings of current power transmission which is used in ultrasound - assisted machining and the different transfer efficiency caused by the related parameters of the electromagnetic converter, this paper proposes an analysis model of the new non-contact power transmission device with more stable output and higher transmission efficiency. Then By utilizing Maxwell finite element analysis software, this paper studies the law of the transfer efficiency of the new non-contact transformer and compares new type with traditional type with the method of setting the boundary conditions of non-contact power supply device. At last, combining with the practical application, the relevant requirements which have a certain reference value in the application are put forward in the actual processing.

  19. In-Containment Signal Acquisition and Data Transmission via Power Lines within High Dose Areas of Nuclear Power Plants

    International Nuclear Information System (INIS)

    Mueller Steffen; Wibbing Sascha; Weigel Robert; Koelpin Alexander; Dennerlein, Juergen; Janke, Iryna; Weber, Johannes

    2015-01-01

    Signal acquisition and data transmission for innovative sensor systems and networks inside the containment of nuclear power plants (NPPs) is still a challenge with respect to safety, performance, reliability, availability, and costs. This especially applies to equipment upgrades for existing plants, special measurements, but also for new builds. This paper presents a novel method for efficient and cost-effective sensor signal acquisition and data transmission via power lines, in order to cope with the disadvantages of common system architectures that often suffer from poor signal integrity due to raw data transmissions via long cables, huge efforts and costs for installation, and low flexibility with respect to maintenance and upgrades. A transmitter-receiver architecture is proposed that allows multiplexing of multiple sensor inputs for unidirectional point-to-point transmission by superimposing information signals on existing AC or DC supply lines, but also on active and inactive sensor wires, or spare cables, using power line communication (PLC) technology. Based on commercial off-the-shelf (COTS) electronic parts, a radiation hard transmitter hardware is designed to operate in harsh environment within the containment during full plant operation. The system's modular approach allows application specific trade-offs between redundancy and throughput regarding data transmission, as well as various sensor input front-ends which are compatible with state of the art systems. PLC technology eliminates the need for costly installation of additional cables and wall penetrations, while providing a complementary and diverse communication technology for upgrades of existing systems. At the receiver side in low dose areas, signals are extracted from the power line, demodulated, and de-multiplexed, in order to regain the original sensor signal information and provide it either in analog or digital output format. Successful laboratory qualification tests, field trails

  20. In-Containment Signal Acquisition and Data Transmission via Power Lines within High Dose Areas of Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Mueller Steffen; Wibbing Sascha; Weigel Robert; Koelpin Alexander [Institute for Electronics Engineering, University of Erlangen-Nuremberg (Germany); Dennerlein, Juergen; Janke, Iryna; Weber, Johannes [AREVA GmbH, Paul-Gossen-Str. 100, 91052 Erlangen (Germany)

    2015-07-01

    Signal acquisition and data transmission for innovative sensor systems and networks inside the containment of nuclear power plants (NPPs) is still a challenge with respect to safety, performance, reliability, availability, and costs. This especially applies to equipment upgrades for existing plants, special measurements, but also for new builds. This paper presents a novel method for efficient and cost-effective sensor signal acquisition and data transmission via power lines, in order to cope with the disadvantages of common system architectures that often suffer from poor signal integrity due to raw data transmissions via long cables, huge efforts and costs for installation, and low flexibility with respect to maintenance and upgrades. A transmitter-receiver architecture is proposed that allows multiplexing of multiple sensor inputs for unidirectional point-to-point transmission by superimposing information signals on existing AC or DC supply lines, but also on active and inactive sensor wires, or spare cables, using power line communication (PLC) technology. Based on commercial off-the-shelf (COTS) electronic parts, a radiation hard transmitter hardware is designed to operate in harsh environment within the containment during full plant operation. The system's modular approach allows application specific trade-offs between redundancy and throughput regarding data transmission, as well as various sensor input front-ends which are compatible with state of the art systems. PLC technology eliminates the need for costly installation of additional cables and wall penetrations, while providing a complementary and diverse communication technology for upgrades of existing systems. At the receiver side in low dose areas, signals are extracted from the power line, demodulated, and de-multiplexed, in order to regain the original sensor signal information and provide it either in analog or digital output format. Successful laboratory qualification tests, field trails

  1. Topographic power spectral density study of the effect of surface treatment processes on niobium for superconducting radio frequency accelerator cavities

    Science.gov (United States)

    Xu, Chen; Tian, Hui; Reece, Charles E.; Kelley, Michael J.

    2012-04-01

    Microroughness is viewed as a critical issue for attaining optimum performance of superconducting radio frequency accelerator cavities. The principal surface smoothing methods are buffered chemical polish (BCP) and electropolish (EP). The resulting topography is characterized by atomic force microscopy (AFM). The power spectral density (PSD) of AFM data provides a more thorough description of the topography than a single-value roughness measurement. In this work, one dimensional average PSD functions derived from topography of BCP and EP with different controlled starting conditions and durations have been fitted with a combination of power law, K correlation, and shifted Gaussian models to extract characteristic parameters at different spatial harmonic scales. While the simplest characterizations of these data are not new, the systematic tracking of scale-specific roughness as a function of processing is new and offers feedback for tighter process prescriptions more knowledgably targeted at beneficial niobium topography for superconducting radio frequency applications.

  2. Topographic power spectral density study of the effect of surface treatment processes on niobium for superconducting radio frequency accelerator cavities

    International Nuclear Information System (INIS)

    Reece, Charles; Tian, Hui; Kelley, Michael; Xu, Chen

    2012-01-01

    Microroughness is viewed as a critical issue for attaining optimum performance of superconducting radio frequency accelerator cavities. The principal surface smoothing methods are buffered chemical polish (BCP) and electropolish (EP). The resulting topography is characterized by atomic force microscopy (AFM). The power spectral density (PSD) of AFM data provides a more thorough description of the topography than a single-value roughness measurement. In this work, one dimensional average PSD functions derived from topography of BCP and EP with different controlled starting conditions and durations have been fitted with a combination of power law, K correlation, and shifted Gaussian models to extract characteristic parameters at different spatial harmonic scales. While the simplest characterizations of these data are not new, the systematic tracking of scale-specific roughness as a function of processing is new and offers feedback for tighter process prescriptions more knowledgably targeted at beneficial niobium topography for superconducting radio frequency applications.

  3. Superconductivity

    International Nuclear Information System (INIS)

    Palmieri, V.

    1990-01-01

    This paper reports on superconductivity the absence of electrical resistance has always fascinated the mind of researchers with a promise of applications unachievable by conventional technologies. Since its discovery superconductivity has been posing many questions and challenges to solid state physics, quantum mechanics, chemistry and material science. Simulations arrived to superconductivity from particle physics, astrophysic, electronics, electrical engineering and so on. In seventy-five years the original promises of superconductivity were going to become reality: a microscopical theory gave to superconductivity the cloth of the science and the level of technological advances was getting higher and higher. High field superconducting magnets became commercially available, superconducting electronic devices were invented, high field accelerating gradients were obtained in superconductive cavities and superconducting particle detectors were under study. Other improvements came in a quiet progression when a tornado brought a revolution in the field: new materials had been discovered and superconductivity, from being a phenomenon relegated to the liquid Helium temperatures, became achievable over the liquid Nitrogen temperature. All the physics and the technological implications under superconductivity have to be considered ab initio

  4. Integration of wind power in Germany's transmission grid by using HVDC links

    Energy Technology Data Exchange (ETDEWEB)

    Wasserrab, Andreas; Fleckenstein, Marco; Balzer, Gerd [Technische Univ. Darmstadt (Germany). Inst. of Electrical Power and Energy

    2012-07-01

    This paper deals with the challenges for the integration of wind power in Germany's transmission grid. Several options for the expansion of transmission grids are discussed. The consideration focuses on HVDC technologies, which are used for further analyses. The basis of the analysis is the transmission grid of a German transmission system operator, which is implemented in a simulation tool. The model consists of the 110-kV-, 220-kV- and the 380-kV-system. In different scenarios the integration of wind power is analysed by applying HVDC links to connect the northern part of the grid with the load centres in the South. The results of load flow calculations are discussed focusing on transmission line loading and voltage stability. The paper concludes with future prospects of HVDC applications in Germany. (orig.)

  5. An applicable 5.8 GHz wireless power transmission system with rough beamforming to Project Loon

    Directory of Open Access Journals (Sweden)

    Chang-Jun Ahn

    2016-06-01

    Full Text Available In recent, Google proposed the Project Loon being developed with the mission of providing internet access to rural and remote areas using high-altitude balloons. In this paper, we describe an applicable prototype of 5.8 GHz wireless power transmission system with rough beamforming method to Project Loon. From the measurement results, transmit beamforming phased array antenna can transmit power more efficiently compared to a horn antenna and array antenna without beamforming with increasing the transmission distance. For the transmission distance of 1000 mm, transmit beamforming phased array antenna can obtain higher received power about 1.46 times compared to array antenna without transmit beamforming.

  6. Autonomous transmission power adaptation for multi-radio multi-channel wireless mesh networks

    CSIR Research Space (South Africa)

    Olwal, TO

    2009-09-01

    Full Text Available Multi-Radio Multi-Channel (MRMC) systems are key to power control problems in WMNs. Previous studies have emphasized through- put maximization in such systems as the main design challenge and transmission power control treated as a secondary issue...

  7. Autonomous transmission power adaptation for multi-radio multi-channel wireless mesh networks

    CSIR Research Space (South Africa)

    Olwal, TO

    2008-09-01

    Full Text Available Multi-Radio Multi-Channel (MRMC) systems are key to power control problems in WMNs. Previous studies have emphasized throughput maximization in such systems as the main design challenge and transmission power control treated as a secondary issue...

  8. Impedance matching wireless power transmission system for biomedical devices.

    Science.gov (United States)

    Lum, Kin Yun; Lindén, Maria; Tan, Tian Swee

    2015-01-01

    For medical application, the efficiency and transmission distance of the wireless power transfer (WPT) are always the main concern. Research has been showing that the impedance matching is one of the critical factors for dealing with the problem. However, there is not much work performed taking both the source and load sides into consideration. Both sides matching is crucial in achieving an optimum overall performance, and the present work proposes a circuit model analysis for design and implementation. The proposed technique was validated against experiment and software simulation. Result was showing an improvement in transmission distance up to 6 times, and efficiency at this transmission distance had been improved up to 7 times as compared to the impedance mismatch system. The system had demonstrated a near-constant transfer efficiency for an operating range of 2cm-12cm.

  9. An RFID-Based Closed-Loop Wireless Power Transmission System for Biomedical Applications.

    Science.gov (United States)

    Kiani, Mehdi; Ghovanloo, Maysam

    2010-04-01

    This brief presents a standalone closed-loop wireless power transmission system that is built around a commercial off-the-shelf (COTS) radio-frequency identification (RFID) reader (TRF7960) operating at 13.56 MHz. It can be used for inductively powering implantable biomedical devices in a closed loop. Any changes in the distance and misalignment between transmitter and receiver coils in near-field wireless power transmission can cause a significant change in the received power, which can cause either a malfunction or excessive heat dissipation. RFID circuits are often used in an open loop. However, their back telemetry capability can be utilized to stabilize the received voltage on the implant. Our measurements showed that the delivered power to the transponder was maintained at 11.2 mW over a range of 0.5 to 2 cm, while the transmitter power consumption changed from 78 mW to 1.1 W. The closed-loop system can also oppose voltage variations as a result of sudden changes in the load current.

  10. European roadmap on superconductive electronics - status and perspectives

    Science.gov (United States)

    Anders, S.; Blamire, M. G.; Buchholz, F.-Im.; Crété, D.-G.; Cristiano, R.; Febvre, P.; Fritzsch, L.; Herr, A.; Il'ichev, E.; Kohlmann, J.; Kunert, J.; Meyer, H.-G.; Niemeyer, J.; Ortlepp, T.; Rogalla, H.; Schurig, T.; Siegel, M.; Stolz, R.; Tarte, E.; ter Brake, H. J. M.; Toepfer, H.; Villegier, J.-C.; Zagoskin, A. M.; Zorin, A. B.

    2010-12-01

    Executive SummaryFor four decades semiconductor electronics has followed Moore’s law: with each generation of integration the circuit features became smaller, more complex and faster. This development is now reaching a wall so that smaller is no longer any faster. The clock rate has saturated at about 3-5 GHz and the parallel processor approach will soon reach its limit. The prime reason for the limitation the semiconductor electronics experiences is not the switching speed of the individual transistor, but its power dissipation and thus heat. Digital superconductive electronics is a circuit- and device-technology that is inherently faster at much less power dissipation than semiconductor electronics. It makes use of superconductors and Josephson junctions as circuit elements, which can provide extremely fast digital devices in a frequency range - dependent on the material - of hundreds of GHz: for example a flip-flop has been demonstrated that operated at 750 GHz. This digital technique is scalable and follows similar design rules as semiconductor devices. Its very low power dissipation of only 0.1 μW per gate at 100 GHz opens the possibility of three-dimensional integration. Circuits like microprocessors and analogue-to-digital converters for commercial and military applications have been demonstrated. In contrast to semiconductor circuits, the operation of superconducting circuits is based on naturally standardized digital pulses the area of which is exactly the flux quantum Φ0. The flux quantum is also the natural quantization unit for digital-to-analogue and analogue-to-digital converters. The latter application is so precise, that it is being used as voltage standard and that the physical unit ‘Volt’ is defined by means of this standard. Apart from its outstanding features for digital electronics, superconductive electronics provides also the most sensitive sensor for magnetic fields: the Superconducting Quantum Interference Device (SQUID). Amongst

  11. Proximity effects of high voltage electric power transmission lines on ...

    African Journals Online (AJOL)

    Yomi

    2010-08-18

    Aug 18, 2010 ... transmission lines on ornamental plant growth. Zeki Demir ... The effects of proximity to power-line on specific leaf area and seedling dbh were tested .... during vegetation season is about 72% and common wind blow.

  12. Marine High Voltage Power Conditioning and Transmission System with Integrated Storage DE-EE0003640 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Frank Hoffmann, PhD; Aspinall, Rik

    2012-12-10

    Design, Development, and test of the three-port power converter for marine hydrokinetic power transmission. Converter provides ports for AC/DC conversion of hydrokinetic power, battery storage, and a low voltage to high voltage DC port for HVDC transmission to shore. The report covers the design, development, implementation, and testing of a prototype built by PPS.

  13. Development of 50 MVA superconducting generator

    International Nuclear Information System (INIS)

    Ueda, Kiyotaka; Maki, Naoki; Takahashi, Noriyoshi; Ogata, Hisanao; Sanematsu, Toshihiro.

    1984-01-01

    Superconducting synchronous generators are expected to be the large capacity turbogenerators of next generation, but they have the structural features considerably different from conventional generators, such as low temperature multiple cylinder rotors and air gap armature winding. For the purpose of grasping the performance of superconducting generators and establishing the fundamental technology for their practical use, Hitachi Ltd. manufactured a 50 MVA superconducting generator. As the results of test, the precooling operation was smoothly finished for about 40 hours, and the superconducting rotor rotated stably at 3000 rpm. The steady and transient electrical characteristics were able to be grasped. It is intended to reflect these results to the development of a practical generator of 500 MVA class expected as the next step. When the superconducting exciting winding cooled by liquid helium is used, the reduction of weight, the improvement of efficiency and the improvement of the stability of power system can be expected. The structural features and the function of superconducting generators, the present state of the development in the world, the outline of the 50 MVA generator, the test results and the problems and the prospect hereafter are reported. The superconducting winding was made of NbTiZr alloy multicore wires. (Kako, I.)

  14. Subwavelength elastic joints connecting torsional waveguides to maximize the power transmission coefficient

    Science.gov (United States)

    Lee, Joong Seok; Lee, Il Kyu; Seung, Hong Min; Lee, Jun Kyu; Kim, Yoon Young

    2017-03-01

    Joints with slowly varying tapered shapes, such as linear or exponential profiles, are known to transmit incident wave power efficiently between two waveguides with dissimilar impedances. This statement is valid only when the considered joint length is longer than the wavelengths of the incident waves. When the joint length is shorter than the wavelengths, however, appropriate shapes of such subwavelength joints for efficient power transmission have not been explored much. In this work, considering one-dimensional torsional wave motion in a cylindrical elastic waveguide system, optimal shapes or radial profiles of a subwavelength joint maximizing the power transmission coefficient are designed by a gradient-based optimization formulation. The joint is divided into a number of thin disk elements using the transfer matrix approach and optimal radii of the disks are determined by iterative shape optimization processes for several single or bands of wavenumbers. Due to the subwavelength constraint, the optimized joint profiles were found to be considerably different from the slowly varying tapered shapes. Specifically, for bands of wavenumbers, peculiar gourd-like shapes were obtained as optimal shapes to maximize the power transmission coefficient. Numerical results from the proposed optimization formulation were also experimentally realized to verify the validity of the present designs.

  15. Gait-Cycle-Driven Transmission Power Control Scheme for a Wireless Body Area Network.

    Science.gov (United States)

    Zang, Weilin; Li, Ye

    2018-05-01

    In a wireless body area network (WBAN), walking movements can result in rapid channel fluctuations, which severely degrade the performance of transmission power control (TPC) schemes. On the other hand, these channel fluctuations are often periodic and are time-synchronized with the user's gait cycle, since they are all driven from the walking movements. In this paper, we propose a novel gait-cycle-driven transmission power control (G-TPC) for a WBAN. The proposed G-TPC scheme reinforces the existing TPC scheme by exploiting the periodic channel fluctuation in the walking scenario. In the proposed scheme, the user's gait cycle information acquired by an accelerometer is used as beacons for arranging the transmissions at the time points with the ideal channel state. The specific transmission power is then determined by using received signal strength indication (RSSI). An experiment was conducted to evaluate the energy efficiency and reliability of the proposed G-TPC based on a CC2420 platform. The results reveal that compared to the original RSSI/link-quality-indication-based TPC, G-TPC reduces energy consumption by 25% on the sensor node and reduce the packet loss rate by 65%.

  16. Study and realization of a power circuit of a superconducting dipole generator of a magnetic field

    International Nuclear Information System (INIS)

    Rouanet, E.

    1993-01-01

    The project of experimental reactor building on controlled fusion (I.T.E.R) needed the development of a superconducting cable made of niobium-tin. Tested with a current of fifty kilo amperes under a twelve tesla constant field, this cable has to be tested under a variable field. The installation of the power circuit of the dipole field generator, consisted to the study and realization of the four following points: an important power cable; a tension protection organ of the dipole, under a seventeen milli Henrys inductance and four kilo amperes; a current regulating system given by the generator; a complete pilot system of the test station

  17. Induced voltages in metallic pipelines near power transmission lines

    International Nuclear Information System (INIS)

    Grcev, Leonid; Jankov, Voislav; Filiposki, Velimir

    2002-01-01

    With the continuous development of the electric power system and the pipeline networks used to convey oil or natural gas, cases of close proximity of high voltage structures and metallic pipelines become more and more frequent. Accordingly there is a growing concern about possible hazards resulting from voltages induced in the metallic pipelines by magnetic coupling with nearby power transmission lines. This paper presents a methodology for computation of the induced voltages in buried isolated metallic pipelines. A practical example of computation is also presented. (Author)

  18. Relay selection in underlay cognitive networks with fixed transmission power nodes

    KAUST Repository

    Hussain, Syed Imtiaz

    2013-07-31

    Underlay cognitive networks operate simultaneously with primary networks satisfying stringent interference constraints, which reduces their transmission power and coverage area. To reach remote destinations, secondary sources use relaying techniques. Selecting the best relay among the available ones is a well known technique. Recently, selective cooperation is investigated in cognitive networks where the secondary nodes can adapt their transmission power to always satisfy the interference threshold. In this paper, we investigate a situation where the secondary nodes have a fixed transmission power and may violate the interference threshold. We present two relay selection schemes; the first one excludes the relays not satisfying the interference constraint and then picks up a relay from the remaining ones that can provide the maximum signal-to-noise ratio (SNR). The other scheme uses a quotient of the relay link SNR and the interference from the relay to the primary user and optimizes it to maximise the relay link SNR. We derive closed form expressions for outage probability, bit error rate, channel capacity and diversity of the system for both schemes by using tight approximations. We also study mutual effects of interference. Simulation results confirm the analytical results and reveal that the relay selection is feasible at low SNRs. Copyright © 2013 John Wiley & Sons, Ltd.

  19. Wireless power and data transmission strategies for next-generation capsule endoscopes

    International Nuclear Information System (INIS)

    Puers, R; Carta, R; Thoné, J

    2011-01-01

    Capsular endoscopy is becoming increasingly popular as an alternative to traditional gastro-intestinal (GI) examination techniques. However, the breakthrough of these devices is hindered by the limited amount of power that can be stored in a tiny pill. Most commercial devices use two watch batteries that can only provide an average power of 25 mW for about 6 h, certainly not sufficient for advanced robotic features. A dedicated inductive powering system, operating at 1 MHz to limit the human body absorption, has been developed which was proven to support the transfer of over 300 mW. The system relies on a condensed set of orthogonal ferrite coils, embedded in the capsule, and an external unit based on a Helmholtz coil driven by a class E amplifier. Control data can be sent through the inductive link by modulating the power carrier, whereas a dedicated high data rate RF link is used to transfer the images from the capsule to the base station. Besides evaluating the compatibility with radio transmission, several demonstrators were assembled combining the wireless powering system with various locomotion strategies and LED illumination. This paper describes the design and implementation of the inductive powering system, its combination with data transmission techniques and the testing activity with other capsule-dedicated modules

  20. Highly efficient solutions for smart and bulk power transmission of 'green energy'

    Energy Technology Data Exchange (ETDEWEB)

    Breuer, Wilfried; Retzmann, Dietmar; Uecker, Karl

    2010-09-15

    Environmental constraints, loss minimization and CO2 reduction will play an increasingly more important role in future. Security and sustainability of power supply as well as economic efficiency needs application of advanced technologies. Innovative solutions with HVDC (High Voltage Direct Current) and FACTS (Flexible AC Transmission Systems) have the potential to cope with these challenges. They provide the features which are necessary to avoid technical problems in power systems, they increase the transmission capacity and system stability very efficiently and help prevent cascading outages. Furthermore, they are essential for Grid Access of Renewable Energy Sources such as Hydro, Wind and Solar-Energy.