WorldWideScience

Sample records for superconducting permanent magnet

  1. Permanent magnet design for high-speed superconducting bearings

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (5519 S. Bruner, Hinsdale, IL 60521); Uherka, Kenneth L. (830 Ironwood, Frankfort, IL 60423); Abdoud, Robert G. (13 Country Oaks La., Barrington Hills, IL 60010)

    1996-01-01

    A high temperature superconducting bearing including a permanent magnet rotor levitated by a high temperature superconducting structure. The rotor preferably includes one or more concentric permanent magnet rings coupled to permanent magnet ring structures having substantially triangular and quadrangular cross-sections. Both alternating and single direction polarity magnet structures can be used in the bearing.

  2. Comparing superconducting and permanent magnets for magnetic refrigeration

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Nielsen, Kaspar Kirstein; Bahl, C. R. H.

    2016-01-01

    We compare the cost of a high temperature superconducting (SC) tape-based solenoidwith a permanent magnet (PM) Halbach cylinder for magnetic refrigeration.Assuming a five liter active magnetic regenerator volume, the price of each type ofmagnet is determined as a function of aspect ratio of the r......We compare the cost of a high temperature superconducting (SC) tape-based solenoidwith a permanent magnet (PM) Halbach cylinder for magnetic refrigeration.Assuming a five liter active magnetic regenerator volume, the price of each type ofmagnet is determined as a function of aspect ratio...

  3. Permanent superconducting magnets for space applications

    Science.gov (United States)

    Weinstein, Roy

    1994-01-01

    Work has been done to develop superconducting trapped field magnets (TFM's) and to apply them to a bumper-tether device for magnetic docking of spacecraft. The quality parameters for TFM's are J(c), the critical current of the superconductor, and d, the diameter of the superconducting tile. During this year we have doubled d, for production models, from 1 cm to 2 cm. This was done by means of seeding, an improved temperature profile in processing, and the addition of 1 percent Pt to the superconductor chemistry. Using these tiles we have set increasing records for the fields' permanent magnets. Magnets fabricated from old 1 cm tiles trapped 1.52 Tesla at 77K, 4.0T at 65K and 7.0T at 55K. The second of these fields broke a 17 year old record set at Stanford. The third field broke our own record. More recently using 2 cm tiles, we have trapped 2.3T at 77K, and 5.3T at 65K. We expect to trap lOT at 55K in this magnet in the near future. We have also achieved increases in J(c) using a method we developed for seeding U-235, and subsequently bombarding with neutrons. This method doubles J(c). We have not yet fabricated magnets from these tiles. During this year we have increased production yields from 15 percent to 95 percent. We have explored the properties of a magnetic bumper-tether for spacecraft. We have measured the bumper forces, and their dependence on time, distance, and the field of the ordinary ferromagnet (used together with a TFM). We have accounted for 85 percent of the collision energy, and its transformation to magnetic energy and heat energy. We have learned to control the relative bumper and tether forces by controlling TFM and ferromagnetic field strengths.

  4. Comparing superconducting and permanent magnets for magnetic refrigeration

    Directory of Open Access Journals (Sweden)

    R. Bjørk

    2016-05-01

    Full Text Available We compare the cost of a high temperature superconducting (SC tape-based solenoid with a permanent magnet (PM Halbach cylinder for magnetic refrigeration. Assuming a five liter active magnetic regenerator volume, the price of each type of magnet is determined as a function of aspect ratio of the regenerator and desired internal magnetic field. It is shown that to produce a 1 T internal field in the regenerator a permanent magnet of hundreds of kilograms is needed or an area of superconducting tape of tens of square meters. The cost of cooling the SC solenoid is shown to be a small fraction of the cost of the SC tape. Assuming a cost of the SC tape of 6000 $/m2 and a price of the permanent magnet of 100 $/kg, the superconducting solenoid is shown to be a factor of 0.3-3 times more expensive than the permanent magnet, for a desired field from 0.5-1.75 T and the geometrical aspect ratio of the regenerator. This factor decreases for increasing field strength, indicating that the superconducting solenoid could be suitable for high field, large cooling power applications.

  5. Superconducting Solenoid and Press for Permanent Magnet Fabrication

    Science.gov (United States)

    Mulcahy, T. M.; Hull, J. R.

    2002-08-01

    For the first time, a superconducting solenoid (SCM) was used to increase the remnant magnetization of sintered NdFeB permanent magnets (PMs). In particular, improved magnetic alignment of commercial-grade PM powder was achieved, as it was axial die pressed into 12.7-mm diameter cylindrical compacts in the 76.2-mm warm bore of a 9-T SCM. The press used to compact the powder is unique and was specifically designed for use with the SCM. Although the press was operated in the batch mode for this proof of concept study, its design is intended to enable automated production. In operation, a simple die and punch set made of nonmagnetic materials was filled with powder and loaded into a nonmagnetic press tube. The cantilevered press tube was inserted horizontally, on a carrier manually advanced along a track, into the SCM. The robustness of the mechanical components and the SCM, in its liquid helium dewar, were specifically designed to allow for insertion and extraction of the magnetic powder and compacts, while operating at 9 T.

  6. Pure-type superconducting permanent-magnet undulator.

    Science.gov (United States)

    Tanaka, Takashi; Tsuru, Rieko; Kitamura, Hideo

    2005-07-01

    A novel synchrotron radiation source is proposed that utilizes bulk-type high-temperature superconductors (HTSCs) as permanent magnets (PMs) by in situ magnetization. Arrays of HTSC blocks magnetized by external magnetic fields are placed below and above the electron path instead of conventional PMs, generating a periodic magnetic field with an offset. Two methods are presented to magnetize the HTSCs and eliminate the field offset, enabling the HTSC arrays to work as a synchrotron radiation source. An analytical formula to calculate the peak field achieved in a device based on this scheme is derived in a two-dimensional form for comparison with synchrotron radiation sources using conventional PMs. Experiments were performed to demonstrate the principle of the proposed scheme and the results have been found to be very promising.

  7. Quasi permanent superconducting magnet of very high field

    Science.gov (United States)

    Ren, Y.; Liu, J.; Weinstein, R.; Chen, I. G.; Parks, D.; Xu, J.; Obot, V.; Foster, C.

    1993-01-01

    We report on persistent field in a quasi-permanent magnet made of high temperature superconductor. The material has an average of 40 percent molar excess of Y, relative to Y1Ba2Cu3O7 and has been irradiated with high energy light ions at 200 MeV. The magnet, which traps 1.52 T at 77.3 K, traps nearly 4 T at 64.5 K. No evidence of giant flux jump or sample cracking was observed.

  8. Compensation of the magnetization current induced sextupole error at LHC injection field by short lumped permanent sextupole magnets, incorporated into the end configuration of superconducting dipoles

    CERN Document Server

    Asner, A

    1985-01-01

    Compensation of the magnetization current induced sextupole error at LHC injection field by short lumped permanent sextupole magnets, incorporated into the end configuration of superconducting dipoles

  9. Superconducting bulk magnet for maglev vehicle: Stable levitation performance above permanent magnet guideway

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Z.; Zheng, J.; Li, J.; Ma, G.; Lu, Y.; Zhang, Y.; Wang, S. [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China); Wang, J. [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China)], E-mail: jsywang@home.swjtu.edu.cn

    2008-06-15

    High-temperature superconducting (HTS) maglev vehicle is well known as one of the most potential applications of bulk high-temperature superconductors (HTSCs) in transported levitation system. Many efforts have promoted the practice of the HTS maglev vehicle in people's life by enhancing the load capability and stability. Besides improving the material performance of bulk HTSC and optimizing permanent magnet guideway (PMG), magnetization method of bulk HTSC is also very effective for more stable levitation. Up to now, applied onboard bulk HTSCs are directly magnetized by field cooling above the PMG for the present HTS maglev test vehicles or prototypes in China, Germany, Russia, Brazil, and Japan. By the direct-field-cooling-magnetization (DFCM) over PMG, maglev performances of the bulk HTSCs are mainly depended on the PMG's magnetic field. However, introducing HTS bulk magnet into the HTS maglev system breaks this dependence, which is magnetized by other non-PMG magnetic field. The feasibility of this HTS bulk magnet for maglev vehicle is investigated in the paper. The HTS bulk magnet is field-cooling magnetized by a Field Control Electromagnets Workbench (FCEW), which produces a constant magnetic field up to 1 T. The levitation and guidance forces of the HTS bulk magnet over PMG with different trapped flux at 15 mm working height (WH) were measured and compared with that by DFCM in the same applied PMG magnetic field at optimal field-cooling height (FCH) 30 mm, WH 15 mm. It is found that HTS bulk magnet can also realize a stable levitation above PMG. The trapped flux of HTS bulk magnet is easily controllable by the charging current of FCEW, which implies the maglev performances of HTS bulk magnet above PMG will be adjustable according to the practical requirement. The more trapped flux HTS bulk magnet will lead to bigger guidance force and smaller repulsion levitation force above PMG. In the case of saturated trapped flux for experimental HTS bulk

  10. A superconducting conveyer system using multiple bulk Y-Ba-Cu-O superconductors and permanent magnets

    Science.gov (United States)

    Kinoshita, T.; Koshizuka, N.; Nagashima, K.; Murakami, M.

    Developments of non-contact superconducting devices like superconducting magnetic levitation transfer and superconducting flywheel energy storage system have been performed based on the interactions between bulk Y-Ba-Cu-O superconductors and permanent magnets, in that the superconductors can stably be levitated without any active control. The performances of noncontact superconducting devices are dependent on the interaction forces like attractive forces and stiffness. In the present study, we constructed a non-contact conveyer for which the guide rails were prepared by attaching many Fe-Nd-B magnets onto an iron base plate. Along the translational direction, all the magnets were arranged as to face the same pole, and furthermore their inter-distance was made as small as possible. The guide rail has three magnet rows, for which the magnets were glued on the iron plate such that adjacent magnet rows have opposite poles like NSN. At the center row, the magnetic field at zero gap reached 0.61T, while the field strengths of two rows on the side edges were only 0.48T due to magnetic interactions among permanent magnets. We then prepared a cryogenic box made with FRP that can store several bulk Y-Ba-Cu-O superconductors 25 mm in diameter cooled by liquid nitrogen. It was found that the levitation forces and stiffness increased with increasing the number of bulk superconductors installed in the box, although the levitation force per unit bulk were almost the same. We also confirmed that these forces are dependent on the configuration of bulk superconductors.

  11. Simple Superconducting "Permanent" Electromagnet

    Science.gov (United States)

    Israelson, Ulf E.; Strayer, Donald M.

    1992-01-01

    Proposed short tube of high-temperature-superconducting material like YBa2Cu3O7 acts as strong electromagnet that flows as long as magnetic field remains below critical value and temperature of cylinder maintained sufficiently below superconducting-transition temperature. Design exploits maximally anisotropy of high-temperature-superconducting material.

  12. RE-Ba-Cu-O for high functional superconducting permanent magnet

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, S.I.; Higuchi, T. [Railway Technical Research Inst., Tokyo (Japan)]|[Superconductivity Research Laboratory, ISTEC, Minato-ku, Tokyo 185 (Japan); Sakai, N.; Murakami, M. [Superconductivity Research Laboratory, ISTEC, Minato-ku, Tokyo 185 (Japan); Fujimoto, H. [Railway Technical Research Inst., Tokyo (Japan)

    1998-05-01

    Among various potential applications of melt-textured RE-Ba-Cu-O (REBCO, RE: rare earth elements) superconductors, we have examined the bulk application as the superconducting permanent magnet, especially for the magnetically-levitated (MAGLEV) train. Compared with Y-Ba-Cu-O (YBCO), oxygen-controlled melt-growth (OCMG)-processed LREBCO (LRE: light rare earth elements) bulk superconductors are more promising for this application because of larger critical current density (J{sub c}) values in high field and higher irreversibility field (B{sub irr}) within the range of the liquid nitrogen refrigeration (63-77 K), implying that even higher trapped fields (B{sub t}) are achievable in principle. In this paper, material requirements of superconducting bulks for the MAGLEV train are first presented and then processing aspects for the fabrication of good LREBCO bulks are described. (orig.) 19 refs.

  13. Field cooling of a MgB{sub 2} cylinder around a permanent magnet stack: prototype for superconductive magnetic bearing

    Energy Technology Data Exchange (ETDEWEB)

    Perini, E; Giunchi, G [EDISON S.p.A., R and D Division, Foro Buonaparte 31, 20121 Milano (Italy)], E-mail: elena.perini@edison.it, E-mail: giovanni.giunchi@edison.it

    2009-04-15

    The behaviour of bulk superconductors as levitators of permanent magnets (PMs) has been extensively studied for the textured YBCO high-temperature superconductor material, in the temperature range lower than 77 K, obtaining extremely high trapped fields but also experiencing limitations on the mechanical characteristics of the material and on the possibility to produce large objects. Alternatively, bulk MgB{sub 2}, even if it is superconducting at lower temperatures, has fewer mechanical problems, when fully densified, and presents stable magnetization in the temperature range between 10 and 30 K. With the reactive Mg-liquid infiltration technique we have produced dense MgB{sub 2} bulk cylinders of up to 65 mm diameter and 100 mm height. This kind of cylinder can be consider as a prototype of a passive magnetic bearing for flywheels or other rotating electrical machines. We have conductively cooled one of these superconducting cylinders inside a specially constructed cryostat, and the levitation forces and stiffness, with respect to axial movements of various arrangements of the PM, have been measured as a function of the temperature below T{sub c}. We verified the very stable characteristics of the induced magnetization after several cycles of relative movements of the PM and the superconducting cylinder.

  14. Field cooling of a MgB2 cylinder around a permanent magnet stack: prototype for superconductive magnetic bearing

    Science.gov (United States)

    Perini, E.; Giunchi, G.

    2009-04-01

    The behaviour of bulk superconductors as levitators of permanent magnets (PMs) has been extensively studied for the textured YBCO high-temperature superconductor material, in the temperature range lower than 77 K, obtaining extremely high trapped fields but also experiencing limitations on the mechanical characteristics of the material and on the possibility to produce large objects. Alternatively, bulk MgB2, even if it is superconducting at lower temperatures, has fewer mechanical problems, when fully densified, and presents stable magnetization in the temperature range between 10 and 30 K. With the reactive Mg-liquid infiltration technique we have produced dense MgB2 bulk cylinders of up to 65 mm diameter and 100 mm height. This kind of cylinder can be consider as a prototype of a passive magnetic bearing for flywheels or other rotating electrical machines. We have conductively cooled one of these superconducting cylinders inside a specially constructed cryostat, and the levitation forces and stiffness, with respect to axial movements of various arrangements of the PM, have been measured as a function of the temperature below Tc. We verified the very stable characteristics of the induced magnetization after several cycles of relative movements of the PM and the superconducting cylinder.

  15. The Study on the Shape of 2-D Stator with Electromagnets and Permanent Magnets for 3-D Superconducting Actuator

    Science.gov (United States)

    Ozasa, S.; Kim, S. B.; Nakano, H.; Sawae, M.; Kobayashi, H.

    The electric device applications of a high temperature superconducting (HTS) bulk magnet having stable levitation and suspension properties due to their strong flux pinning force have been proposed and developed. We have been investigating the three-dimensional (3-D) superconducting actuator using HTS bulk to develop a non-contact transportation device. Probably, the cost of the manufactory will be increased to install the 2-D arranged electromagnets (EM) in a large area because many EMs are needed to cover the area. Therefore, we have been trying to find the method for reducing the number of EMs. In this study, all the EMs except for rotation were replaced in the 2-D arranged permanent magnets (PM), and gap length between PMs were experimentally investigated to improve the dynamic behavior of the mover and to reduce the cost of the manufacturing. As a result, we have succeeded in conveyance of the bulk and reduce the convergence time and maximum overshoot.

  16. Interaction between an electric charge and a magnetic dipole of any kind (permanent, para- or dia- magnetic or superconducting)

    CERN Document Server

    Coïsson, R

    2015-01-01

    The interaction between point charge and magnetic dipole is usually considered only for the case of a rigid ferromagnetic dipole (constant-current): here the analysis of force, momentum and energy (including the energy provided by the internal current generator) is generalised to any magnetic dipole behaviour: rigid, paramagnetic, diamagnetic or superconducting (perfectly diamagnetic).

  17. Improving sintered NdFeB permanent magnets by powder compaction in a 9 T superconducting solenoid

    Science.gov (United States)

    Mulcahy, T. M.; Hull, J. R.; Rozendaal, E.; Wise, J. H.; Turner, L. R.

    2003-05-01

    Commercial-grade magnet powder (Magnequench UG) was axial die pressed in the 76.2 mm warm bore of a 9 T superconducting solenoid. Otherwise, processing was performed as part of normal factory operations. This pressing was done to improve the alignment of the anisotropic single-crystal particles of the compact and, thus, the remanent magnetization of the sintered cylindrical permanent magnets (12.7 mm diameter). Although the press was operated in batch mode for this proof-of-concept study, its design enables automated production. Improvements of up to 8% in magnetization and 16% in energy products were obtained, as the alignment field H was increased above the 2 T maximum field of electromagnets used in industry. The greatest improvements were obtained for magnets with the smallest length-to-diameter ratios, L/D<0.5. The production of quality magnets in this near-final-shape size range is currently being pursued by industry to eliminate expensive machining steps. To understand the potential for 2-8 T alignment fields to overcome the distortions created in the otherwise uniform field by the self-field of short compacts, electromagnetic code (Opera) calculations were made. A simple material model was used to predict the distortions. The trends in the predicted field-line inclinations, with L/D and H, compare to trends in the improvement of the magnetic properties.

  18. A superconducting magnetic gear

    Science.gov (United States)

    Campbell, A. M.

    2016-05-01

    A comparison is made between a magnetic gear using permanent magnets and superconductors. The objective is to see if there are any fundamental reasons why superconducting magnets should not provide higher power densities than permanent magnets. The gear is based on the variable permeability design of Attilah and Howe (2001 IEEE Trans. Magn. 37 2844-46) in which a ring of permanent magnets surrounding a ring of permeable pole pieces with a different spacing gives an internal field component at the beat frequency. Superconductors can provide much larger fields and forces but will saturate the pole pieces. However the gear mechanism still operates, but in a different way. The magnetisation of the pole pieces is now constant but rotates with angle at the beat frequency. The result is a cylindrical Halbach array which produces an internal field with the same symmetry as in the linear regime, but has an analytic solution. In this paper a typical gear system is analysed with finite elements using FlexPDE. It is shown that the gear can work well into the saturation regime and that the Halbach array gives a good approximation to the results. Replacing the permanent magnets with superconducting tapes can give large increases in torque density, and for something like a wind turbine a combined gear and generator is possible. However there are major practical problems. Perhaps the most fundamental is the large high frequency field which is inevitably present and which will cause AC losses. Also large magnetic fields are required, with all the practical problems of high field superconducting magnets in rotating machines. Nevertheless there are ways of mitigating these difficulties and it seems worthwhile to explore the possibilities of this technology further.

  19. Superconducting magnets for MRI

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J.E.

    1984-08-01

    Three types of magnets are currently used to provide the background field required for magnet resonance imaging (MRI). (i) Permanent magnets produce fields of up to 0.3 T in volumes sufficient for imaging the head or up to 0.15 T for whole body imaging. Cost and simplicity of operation are advantages, but relatively low field, weight (up to 100 tonnes) and, to a small extent, instability are limitations. (ii) Water-cooled magnets provide fields of up to 0.25 T in volumes suitable for whole body imaging, but at the expense of power (up to 150 kW for 0.25 T) and water-cooling. Thermal stability of the field requires the maintenance of constant temperature through periods both of use and of quiescence. (iii) Because of the limitations imposed by permanent and resistive magnets, particularly on field strength, the superconducting magnet is now most widely used to provide background fields of up to 2 T for whole body MRI. It requires very low operating power and that only for refrigeration. Because of the constant low temperature, 4.2 K, at which its stressed structure operates, its field is stable. The following review deals principally with superconducting magnets for MRI. However, the sections on field analysis apply to all types of magnet and the description of the source terms of circular coils and of the principals of design of solenoids apply equally to resistive solenoidal magnets.

  20. Dynamic response characteristics of high temperature superconducting maglev systems: Comparison between Halbach-type and normal permanent magnet guideways

    Energy Technology Data Exchange (ETDEWEB)

    Wang, B. [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, P R China (China); Zheng, J., E-mail: jzheng@swjtu.cn [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, P R China (China); Che, T. [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, P R China (China); Zheng, B.T.; Si, S.S. [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, P R China (China); School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031, P R China (China); Deng, Z.G., E-mail: deng@swjtu.cn [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, P R China (China)

    2015-12-15

    Highlights: • The loading weight affects the RF tremendously. • Reducing the FCH can improve the stability of the maglev vehicle. • The Halbach-type PMG has better loading capacity than the conventional PMG. • Pre-load is an effective way to enhance the dynamic characteristic of the HTS maglev vehicle. - Abstract: The permanent magnet guideway (PMG) is very important for the performance of the high temperature superconducting (HTS) system in terms of electromagnetic force and operational stability. The dynamic response characteristics of a HTS maglev model levitating on two types of PMG, which are the normal PMG with iron flux concentration and Halbach-type PMG, were investigated by experiments. The dynamic signals for different field-cooling heights (FCHs) and loading/unloading processes were acquired and analyzed by a vibration analyzer and laser displacement sensors. The resonant frequency, stiffness and levitation height of the model were discussed. It was found that the maglev model on the Halbach-type PMG has higher resonant frequency and higher vertical stiffness compared with the normal PMG. However, the low lateral stiffness of the model on the Halbach-type PMG indicates poor lateral stability. Besides, the Halbach-type PMG has better loading capacity than the normal PMG. These results are helpful to design a suitable PMG for the HTS system in practical applications.

  1. Comparison of Achievable Magnetic Fields with Superconducting and Cryogenic Permanent Magnet Undulators – A Comprehensive Study of Computed and Measured Values

    Energy Technology Data Exchange (ETDEWEB)

    Moog, E. R. [Argonne National Lab. (ANL), Argonne, IL (United States); Dejus, R. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Sasaki, S. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-01-01

    Magnetic modeling was performed to estimate achievable magnetic field strengths of superconducting undulators (SCUs) and to compare them with those of cryogenically cooled permanent magnet undulators (CPMUs). Starting with vacuum (beam stay-clear) gaps of 4.0 and 6.0 mm, realistic allowances for beam chambers (in the SCU case) and beam liners (in the CPMU case) were added. (A 6.0-mm vacuum gap is planned for the upgraded APS). The CPMU magnetic models consider both CPMUs that use NdFeB magnets at ~150 K and PrFeB magnets at 77 K. Parameters of the magnetic models are presented along with fitted coefficients of a Halbach-type expression for the field dependence on the gap-to-period ratio. Field strengths for SCUs are estimated using a scaling law for planar SCUs; an equation for that is given. The SCUs provide higher magnetic fields than the highest-field CPMUs – those using PrFeB at 77 K – for period lengths longer than ~14 mm for NbTi-based SCUs and ~10 mm for Nb3Sn-based SCUs. To show that the model calculations and scaling law results are realistic, they are compared to CPMUs that have been built and NbTi-based SCUs that have been built. Brightness tuning curves of CPMUs (PrFeB) and SCUs (NbTi) for the upgraded APS lattice are also provided for realistic period lengths.

  2. Oscillating Permanent Magnets.

    Science.gov (United States)

    Michaelis, M. M.; Haines, C. M.

    1989-01-01

    Describes several ways to partially levitate permanent magnets. Computes field line geometries and oscillation frequencies. Provides several diagrams illustrating the mechanism of the oscillation. (YP)

  3. Stationary levitation and vibration transmission characteristic in a superconducting seismic isolation device with a permanent magnet system and a copper plate

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, S., E-mail: s.sasaki@ecei.tohoku.ac.j [Electrical Engineering Department, Graduate School, Tohoku University, 6-6-05 Aoba Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Shimada, K.; Yagai, T.; Tsuda, M.; Hamajima, T. [Electrical Engineering Department, Graduate School, Tohoku University, 6-6-05 Aoba Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Kawai, N.; Yasui, K. [Okumura Corporation, 5-6-1 Shiba, Minato-ku, Tokyo 180-8381 (Japan)

    2010-11-01

    We have devised a magnetic levitation type superconducting seismic isolation device taking advantage of the specific characteristic of HTS bulk that the HTS bulk returns to its original position by restoring force against a horizontal displacement. The superconducting seismic isolation device is composed of HTS bulks and permanent magnets (PM rails). The PMs are fixed on an iron plate to realize the same polarities in the longitudinal direction and the different polarities in the transverse direction. The superconducting seismic isolation device can theoretically remove any horizontal vibrations completely. Therefore, the vibration transmissibility in the longitudinal direction of the PM rail becomes zero in theory. The zero vibration transmissibility and the stationary levitation, however, cannot be achieved in the real device because a uniform magnetic field distribution in the longitudinal direction of PM rail cannot be realized due to the individual difference of the PMs. Therefore, to achieve stationary levitation in the real device we adopted a PM-PM system that the different polarities are faced each other. The stationary levitation could be achieved by the magnetic interaction between the PMs in the PM-PM system, while the vibration transmitted to the seismic isolation object due to the magnetic interaction. We adopted a copper plate between the PMs to reduce the vibration transmissibility. The PM-PM system with the copper plate is very useful for realizing the stationary levitation and reducing the vibration transmissibility.

  4. High field superconducting magnets

    Science.gov (United States)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  5. Permanent magnet design methodology

    Science.gov (United States)

    Leupold, Herbert A.

    1991-01-01

    Design techniques developed for the exploitation of high energy magnetically rigid materials such as Sm-Co and Nd-Fe-B have resulted in a revolution in kind rather than in degree in the design of a variety of electron guidance structures for ballistic and aerospace applications. Salient examples are listed. Several prototype models were developed. These structures are discussed in some detail: permanent magnet solenoids, transverse field sources, periodic structures, and very high field structures.

  6. 1998 Annual Study Report. Research and development of power storage by high-temperature superconducting flywheels (research and development of permanent magnet); 1998 nendo seika hokokusho. Koon chodendo flywheel denryoku chozo kenkyu kaihatsu (eikyu jishaku no kenkyu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    The permanent magnets have been investigated and developed, for eventual commercialization of a 10 MWh power storage system by high-temperature superconducting flywheel. The permanent magnet rotors have been already developed in the previous years using a praseodymium-based magnet (Pr magnet) and neodymium-based sintered magnet (Nd sintered magnet), and the target rotational speed of 30,000 rpm has been attained. For development of the magnetic circuit to produce a stronger and smoother magnetic field, magnetic flux density of the Nd sintered magnet is measured. It shows a lower magnetic flux irregularity than the Pd magnet, but there is still room for further improvement. For development of large-size permanent magnet fabrication techniques, it is confirmed that the large-size Nd sintered magnet can be easily magnetized by partial magnetizing, as is the case with the Pr magnet. In this year, the irregular magnetic flux is three-dimensionally simulated, based on the results obtained in the previous years, to find that the simulated results are in good agreement with the observed ones. The measures to solve the problems are also investigated. It is also confirmed that the large-size ring magnet can be easily magnetized by partial magnetization. (NEDO)

  7. Permanent-Magnet Meissner Bearing

    Science.gov (United States)

    Robertson, Glen A.

    1994-01-01

    Permanent-magnet meissner bearing features inherently stable, self-centering conical configuration. Bearing made stiffer or less stiff by selection of magnets, springs, and spring adjustments. Cylindrical permanent magnets with axial magnetization stacked coaxially on rotor with alternating polarity. Typically, rare-earth magnets used. Magnets machined and fitted together to form conical outer surface.

  8. High-efficiency and low-cost permanent magnet guideway consideration for high-T{sub c} superconducting Maglev vehicle practical application

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Z; Wang, J; Zheng, J; Jing, H; Lu, Y; Ma, G; Liu, L; Liu, W; Zhang, Y; Wang, S [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China)], E-mail: asclab@asclab.cn

    2008-11-15

    In order to improve the cost performance of the present high-T{sub c} superconducting (HTS) Maglev vehicle system for practical application, the multi-pole permanent magnet guideway (PMG) concept was introduced. A well-known double-pole Halbach PMG was chosen as a representative of multi-pole PMGs to compare with traditional monopole PMGs from the point of view of levitation efficiency and cost. Experimental results show that YBCO bulks above the double-pole Halbach PMG can exhibit better load capability and guidance performance as well as dynamics stability at the applied working height between the bulk HTSC and the PMG due to a more reasonable magnetic field distribution at the working range of bulk HTSC. Furthermore, the double-pole PMG configuration can play a more important role in improving guidance performance due to the potential-well field configuration. By comparing with former 'century' PMGs, the double-pole Halbach PMG shows another remarkable advantage in reducing the cost of levitation. As another necessary issue, magnetic field homogeneity and the corresponding magnetic drag force of a double-pole Halbach PMG has been considered by experiment in spite of the above highlights. Synthetically, the multi-pole Halbach PMG design is concluded to be one important choice for future HTS Maglev vehicle applications because of its high efficiency and low cost.

  9. Magnetic and superconducting nanowires

    DEFF Research Database (Denmark)

    Piraux, L.; Encinas, A.; Vila, L.

    2005-01-01

    magnetic and superconducting nanowires. Using different approaches entailing measurements on both single wires and arrays, numerous interesting physical properties have been identified in relation to the nanoscopic dimensions of these materials. Finally, various novel applications of the nanowires are also...

  10. Large Superconducting Magnet Systems

    CERN Document Server

    Védrine, P.

    2014-07-17

    The increase of energy in accelerators over the past decades has led to the design of superconducting magnets for both accelerators and the associated detectors. The use of Nb−Ti superconducting materials allows an increase in the dipole field by up to 10 T compared with the maximum field of 2 T in a conventional magnet. The field bending of the particles in the detectors and generated by the magnets can also be increased. New materials, such as Nb3Sn and high temperature superconductor (HTS) conductors, can open the way to higher fields, in the range 13–20 T. The latest generations of fusion machines producing hot plasma also use large superconducting magnet systems.

  11. Checking BEBC superconducting magnet

    CERN Multimedia

    1974-01-01

    The superconducting coils of the magnet for the 3.7 m Big European Bubble Chamber (BEBC) had to be checked, see Annual Report 1974, p. 60. The photo shows a dismantled pancake. By December 1974 the magnet reached again the field design value of 3.5 T.

  12. Magnetic guns with cylindrical permanent magnets

    DEFF Research Database (Denmark)

    Vokoun, David; Beleggia, Marco; Heller, Luděk

    2012-01-01

    The motion of a cylindrical permanent magnet (projectile) inside a tubular permanent magnet, with both magnets magnetized axially, illustrates nicely the physical principles behind the operation of magnetic guns. The force acting upon the projectile is expressed semi-analytically as derivative...

  13. Superconducting Accelerator Magnets

    CERN Document Server

    Mess, K H; Wolff, S

    1996-01-01

    The main topic of the book are the superconducting dipole and quadrupole magnets needed in high-energy accelerators and storage rings for protons, antiprotons or heavy ions. The basic principles of low-temperature superconductivity are outlined with special emphasis on the effects which are relevant for accelerator magnets. Properties and fabrication methods of practical superconductors are described. Analytical methods for field calculation and multipole expansion are presented for coils without and with iron yoke. The effect of yoke saturation and geometric distortions on field quality is studied. Persistent magnetization currents in the superconductor and eddy currents the copper part of the cable are analyzed in detail and their influence on field quality and magnet performance is investigated. Superconductor stability, quench origins and propagation and magnet protection are addressed. Some important concepts of accelerator physics are introduced which are needed to appreciate the demanding requirements ...

  14. Development and testing of a 2.5 kW synchronous generator with a high temperature superconducting stator and permanent magnet rotor

    Science.gov (United States)

    Qu, Timing; Song, Peng; Yu, Xiaoyu; Gu, Chen; Li, Longnian; Li, Xiaohang; Wang, Dewen; Hu, Boping; Chen, Duxing; Zeng, Pan; Han, Zhenghe

    2014-04-01

    High temperature superconducting (HTS) armature windings have the potential for increasing the electric loading of a synchronous generator due to their high current transport capacity, which could increase the power density of an HTS rotating machine. In this work, a novel synchronous generator prototype with an HTS stator and permanent magnet rotor has been developed. It has a basic structure of four poles and six slots. The armature winding was constructed from six double-pancake race-track coils with 44 turns each. It was designed to deliver 2.5 kW at 300 rpm. A concentrated winding configuration was proposed, to prevent interference at the ends of adjacent HTS coils. The HTS stator was pressure mounted into a hollow Dewar cooled with liquid nitrogen. The whole stator could be cooled down to around 82 K by conduction cooling. In the preliminary testing, the machine worked properly and could deliver 1.8 kW power when the armature current was 14.4 A. Ic for the HTS coils was found to be suppressed due to the influence of the temperature and the leakage field.

  15. Accelerator Technology: Magnets, Normal and Superconducting

    CERN Document Server

    Bottura, L

    2013-01-01

    This document is part of Subvolume C 'Accelerators and Colliders' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the the Section '8.1 Magnets, Normal and Superconducting' of the Chapter '8 Accelerator Technology' with the content: 8.1 Magnets, Normal and Superconducting 8.1.1 Introduction 8.1.2 Normal Conducting Magnets 8.1.2.1 Magnetic Design 8.1.2.2 Coils 8.1.2.3 Yoke 8.1.2.4 Costs 8.1.2.5 Undulators, Wigglers, Permanent Magnets 8.1.2.6 Solenoids 8.1.3 Superconducting Magnets 8.1.3.1 Superconducting Materials 8.1.3.2 Superconducting Cables 8.1.3.3 Stability and Margins, Quench and Protection 8.1.3.4 Magnetization, Coupling and AC Loss 8.1.3.5 Magnetic Design of Superconducting Accelerator Magnets 8.1.3.6 Current Leads 8.1.3.7 Mechanics, Insulation, Cooling and Manufacturing Aspects

  16. LHC Superconducting Magnets

    CERN Document Server

    Jean Leyder

    2000-01-01

    The LHC is the next step in CERN's quest to unravel the mysteries of the Universe. It will accelerate protons to energies never before achieved in laboratories, and to hold them on course it will use powerful superconducting magnets on an unprecedented scale.

  17. Preliminary study of superconducting bulk magnets for Maglev

    Science.gov (United States)

    Fujimoto, Hiroyuki; Kamijo, Hiroki

    Recent development shows that melt-processed YBaCuO (Y123) or Rare Earth (RE)123 superconductors have a high Jc at 77 K and high magnetic field, leading to high field application as a superconducting quasi-permanent bulk magnet with the liquid nitrogen refrigeration. One of the promising applications is a superconducting magnet for the magnetically levitated (Maglev) train. We discuss a superconducting bulk magnet for the Maglev train in the aspect of a preliminary design of the bulk magnet and also processing for (L)REBaCuO bulk superconductors and their characteristic superconducting properties.

  18. Electromagnetic acceleration of permanent magnets

    CERN Document Server

    Dolya, S N

    2015-01-01

    We consider the acceleration of the permanent magnets, consisting of neodymium iron boron by means of the running magnetic field gradient. It is shown that the specific magnetic moment per nucleon in neodymium iron boron is determined by the remained magnetization of the substance. The maximum accessable gradient of the magnetic field accelerating the permanent magnets is determined by the coercive force thirty kilogauss. For the neodymium iron boron magnets this gradient is equal to twenty kilogauss divided by one centimeter. The finite velocity of the magnets six kilometers per second, the length of acceleration is six hundred thirty-seven meters.

  19. Superconducting magnetic quadrupole

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.W.; Shepard, K.W.; Nolen, J.A.

    1995-08-01

    A design was developed for a 350 T/m, 2.6-cm clear aperture superconducting quadrupole focussing element for use in a very low q/m superconducting linac as discussed below. The quadrupole incorporates holmium pole tips, and a rectangular-section winding using standard commercially-available Nb-Ti wire. The magnet was modeled numerically using both 2D and 3D codes, as a basis for numerical ray tracing using the quadrupole as a linac element. Components for a prototype singlet are being procured during FY 1995.

  20. Superconducting pulsed magnets

    CERN Document Server

    CERN. Geneva

    2006-01-01

    Lecture 1. Introduction to Superconducting Materials Type 1,2 and high temperature superconductors; their critical temperature, field & current density. Persistent screening currents and the critical state model. Lecture 2. Magnetization and AC Loss How screening currents cause irreversible magnetization and hysteresis loops. Field errors caused by screening currents. Flux jumping. The general formulation of ac loss in terms of magnetization. AC losses caused by screening currents. Lecture 3. Twisted Wires and Cables Filamentary composite wires and the losses caused by coupling currents between filaments, the need for twisting. Why we need cables and how the coupling currents in cables contribute more ac loss. Field errors caused by coupling currents. Lecture 4. AC Losses in Magnets, Cooling and Measurement Summary of all loss mechanisms and calculation of total losses in the magnet. The need for cooling to minimize temperature rise in a magnet. Measuring ac losses in wires and in magnets. Lecture 5. Stab...

  1. Lodestone: Nature's own permanent magnet

    Science.gov (United States)

    Wasilewski, P.

    1976-01-01

    Magnetic hysteresis and microstructural details are presented which explain why the class of magnetic iron ores defined as proto-lodestones, can behave as permanent magnets, i.e. lodestones. Certain of these proto-lodestones which are not permanent magnets can be made into permanent magnets by charging in a field greater than 1000 oersted. This fact, other experimental observations, and field evidence from antiquity and the middle ages, which seems to indicate that lodestones are found as localized patches within massive ore bodies, suggests that lightning might be responsible for the charging of lodestones. The large remanent magnetization, high values of coercive force, and good time stability for the remanent magnetization are all characteristics of proto-lodestone iron ores which behave magnetically as fine scale ( 10 micrometer) intergrowths when subjected to magnetic hysteresis analysis. The magnetic results are easily understood by analysis of the complex proto lodestone microstructural patterns observable at the micrometer scale and less.

  2. Technical issues of a high-Tc superconducting bulk magnet

    Science.gov (United States)

    Fujimoto, Hiroyuki

    2000-06-01

    Superconducting magnets made of high-Tc superconductors are promising for industrial applications. It is well known that REBa2Cu3O7-x superconductors prepared by melt processes have a high critical current density, Jc, at 77 K and high magnetic fields. The materials are very promising for high magnetic field applications as a superconducting permanent/bulk magnet with liquid-nitrogen refrigeration. Light rare-earth (LRE) BaCuO bulks, compared with REBaCuO bulks, exhibit a larger Jc in high magnetic fields and a much improved irreversibility field, Hirr, at 77 K. In this study, we discuss technical issues of a high-Tc superconducting bulk magnet, namely the aspects of the melt processing for bulk superconductors, their characteristic superconducting properties and mechanical properties, and trapped field properties of a superconducting bulk magnet. One of the possible applications is a superconducting bulk magnet for the magnetically levitated (Maglev) train in the future.

  3. Superconducting Magnets for Particle Accelerators

    CERN Document Server

    Rossi, L

    2012-01-01

    Superconductivity has been the most influential technology in the field of accelerators in the last 30 years. Since the commissioning of the Tevatron, which demonstrated the use and operability of superconductivity on a large scale, superconducting magnets and rf cavities have been at the heart of all new large accelerators. Superconducting magnets have been the invariable choice for large colliders, as well as cyclotrons and large synchrotrons. In spite of the long history of success, superconductivity remains a difficult technology, requires adequate R&D and suitable preparation, and has a relatively high cost. Hence, it is not surprising that the development has also been marked by a few setbacks. This article is a review of the main superconducting accelerator magnet projects; it highlights the main characteristics and main achievements, and gives a perspective on the development of superconducting magnets for the future generation of very high energy colliders.

  4. Magnetic Fields: Visible and Permanent.

    Science.gov (United States)

    Winkeljohn, Dorothy R.; Earl, Robert D.

    1983-01-01

    Children will be able to see the concept of a magnetic field translated into a visible reality using the simple method outlined. Standard shelf paper, magnets, iron filings, and paint in a spray can are used to prepare a permanent and well-detailed picture of the magnetic field. (Author/JN)

  5. Permanent magnet system of alpha magnetic spectrometer

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Alpha magnetic spectrometer (AMS) is the first large magnetic spectrometer in space. Its precursor flight was completed successfully in June 1998. The key part of AMS is the permanent magnet system, which was built by the Institute of Electric Engineering, the Institute of High Energy Physics and the Chinese Academy of Launch Vehicle Technology. This system includes a permanent magnet made of high grade NdFeB and a support structure. The unique design of the permanent magnet based on the magic ring fulfills the severe requirements on the magnetic field leakage and the dipole moment for space experiments. The permanent magnet weighs about 2 tons, and provides a geometric acceptance of 0.6 m2 ·sr and an analyzing power BL2 of 0.135 T·m2. It works up to 40℃ without demagnetization. The main structure is a thin double shell, which undergoes the strong magnetic force and torque of the permanent magnet, as well as the large load during launching and landing. The permanent magnet system fulfills the requirements from AMS, and satisfies the strict safety standards of NASA.

  6. Permanent magnet system of alpha magnetic spectrometer

    Institute of Scientific and Technical Information of China (English)

    陈和生

    2000-01-01

    Alpha magnetic spectrometer (AMS) is the first large magnetic spectrometer in space. Its precursor flight was completed successfully in June 1998. The key part of AMS is the permanent magnet system, which was built by the Institute of Electric Engineering, the Institute of High Energy Physics and the Chinese Academy of Launch Vehicle Technology. This system includes a permanent magnet made of high grade NdFeB and a support structure. The unique design of the permanent magnet based on the magic ring fulfills the severe requirements on the magnetic field leakage and the dipole moment for space experiments. The permanent magnet weighs about 2 tons, and provides a geometric acceptance of 0.6 m2·sr and an analyzing power BL2 of 0.135 T·m2. It works up to 40℃ without demagnetization. The main structure is a thin double shell, which undergoes the strong magnetic force and torque of the permanent magnet, as well as the large load during launching and landing. The permanent magnet system fulfills the requirem

  7. Manganese-based Permanent Magnets

    Directory of Open Access Journals (Sweden)

    Ian Baker

    2015-08-01

    Full Text Available There is a significant gap between the energy product, BH, where B is the magnetic flux density and H is the magnetic field strength, of both the traditional ferrite and AlNiCo permanent magnets of less than 10 MGOe and that of the rare earth magnets of greater than 30 MGOe. This is a gap that Mn-based magnets could potentially, inexpensively, fill. This Special Issue presents work on the development of both types of manganese permanent magnets. Some of the challenges involved in the development of these magnets include improving the compounds’ energy product, increasing the thermal stability of these metastable compounds, and producing them in quantity as a bulk material.[...

  8. Overview on permanent magnetic actuator

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Permanent magnetic actuator (PMA), as a new electronic actuator of vacuum circuit breakers, certainly will be used to replace the traditional mechanical actuator. It has such advantages as simple structure, high reliability, free maintenance, and so on. This paper summarizes the development, structure, magnetic analysis, character analysis, and control strategy of PMA, and also predicts the future trend of PMA development

  9. Topology optimized permanent magnet systems

    CERN Document Server

    Bjørk, R; Insinga, A R

    2016-01-01

    Topology optimization of permanent magnet systems consisting of permanent magnets, high permeability iron and air is presented. An implementation of topology optimization for magnetostatics is discussed and three examples are considered. First, the Halbach cylinder is topology optimized with iron and an increase of 15% in magnetic efficiency is shown, albeit with an increase of 3.8 pp. in field inhomogeneity - a value compared to the inhomogeneity in a 16 segmented Halbach cylinder. Following this a topology optimized structure to concentrate a homogeneous field is shown to increase the magnitude of the field by 111% for the chosen dimensions. Finally, a permanent magnet with alternating high and low field regions is considered. Here a $\\Lambda_\\mathrm{cool}$ figure of merit of 0.472 is reached, which is an increase of 100% compared to a previous optimized design.

  10. The cycloid Permanent Magnetic Gear

    DEFF Research Database (Denmark)

    Rasmussen, Peter Omand; Andersen, Torben Ole; Jørgensen, Frank T.

    2008-01-01

    This paper presents a new permanent-magnet gear based on the cycloid gearing principle. which normally is characterized by an extreme torque density and a very high gearing ratio. An initial design of the proposed magnetic gear was designed, analyzed, and optimized with an analytical model...... regarding torque density. The results were promising as compared to other high-performance magnetic-gear designs. A test model was constructed to verify the analytical model....

  11. Permanent magnets including undulators and wigglers

    OpenAIRE

    Bahrdt, J.

    2011-01-01

    After a few historic remarks on magnetic materials we introduce the basic definitions related to permanent magnets. The magnetic properties of the most common materials are reviewed and the production processes are described. Measurement techniques for the characterization of macroscopic and microscopic properties of permanent magnets are presented. Field simulation techniques for permanent magnet devices are discussed. Today, permanent magnets are used in many fields. This article concentrat...

  12. PERMANENT-MAGNET INDUCTION GENERATORS: AN OVERVIEW

    Directory of Open Access Journals (Sweden)

    K. S. S. RAMAKRISHNAN

    2011-06-01

    Full Text Available The advantage of using a permanent-magnet induction generator (PMIG instead of a conventional induction generator is its ability to suppress inrush current during system linking when synchronous input is performed. Induction machines excited with permanent-magnet (PM are called permanent-magnet induction generators. This paper presents an exhaustive survey of the literature discussing the classification of permanent-magnet machines, process of permanent-magnet excitation and voltage build-up, modelling, steady-state and performance analysis of the permanent-magnet induction generators.

  13. 21 CFR 886.4445 - Permanent magnet.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Permanent magnet. 886.4445 Section 886.4445 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4445 Permanent magnet. (a) Identification. A permanent magnet is a nonelectric device that generates a magnetic field intended to find and remove...

  14. Trans-permanent magnetic actuation

    Science.gov (United States)

    Farmer, Daniel Jay

    The demands for an actuator to deploy, position and shape large spaced-based structures form a unique set of design criteria. In many applications it is desirable to hold displacements or forces between two points to within specified requirements (the regulation problem) and to periodically to change position (the tracking problem). Furthermore, the interest generally lies in satisfying the dynamic performance requirements while expending minimal power, while meeting tight tolerances and while experiencing little wear and fatigue. The actuator must also be able to withstand a variety of operational conditions such as impacts and thermal changes over an extended period of time. Current trends in large-scale structures have addressed the demands by using conventional actuators and motors, along with elaborate linkages or mechanisms to shape, position, protect and deploy. The developed designs use unique characteristics of permanent magnets to create simple direct-acting actuators and motors very suitable for space based structures. The developed trans-permanent magnetic (T-PM) actuators and motors are systems consisting of one or more permanent magnets, some of whose magnetic strengths can be switched on-board by surrounding pulse-coils. The T-PM actuator and motors expend no power during regulation. The T-PM can periodically change or remove the strength of its own magnets thereby enabling both fine-tune adjustments (microsteps) and large-scale adjustments (rotation). The fine (microstep) adjustments are particularly helpful in thermally varying space environments. The large-scale adjustments (rotation) are particularly helpful in deployment where the structure or antenna must experience large-angle rotations and/or large displacements. T-PM concepts are illustrated in direct acting actuators and built into stepper motor and permanent magnet motor applications. Several examples of design, analysis and testing are developed to verify the technology and supporting

  15. Tutorial on Superconducting Accelerator Magnets

    Science.gov (United States)

    Ball, M. J. Penny; Goodzeit, Carl L.

    1997-05-01

    A multimedia CD-ROM tutorial on the physics and engineering concepts of superconducting magnets for particle accelerators is being developed under a U.S. Dept. of Energy SBIR grant. The tutorial, scheduled for distribution this summer, is targeted to undergraduate junior or senior level science students. However, its unified presentation of the broad range of issues involved in the design of superconducting magnets for accelerators and the extensive detail about the construction process (including animations and video clips) will also be of value to staff of research institutes and industrial concerns with an interest in applied superconductivity or magnet development. The source material, which is based on the world-wide R and D programs to develop superconducting accelerator magnets, is organized in five units with the following themes: Introduction to magnets and accelerators; (2) Superconductors for accelerator magnets; (3) Magnetic design methods for accelerator magnets; (4) Electrical, mechanical, and cryogenic considerations for the final magnet package; (5) Performance characteristics and measurement methods. A detailed outline and examples will be shown.

  16. The superconducting bending magnets 'CESAR'

    CERN Document Server

    Pérot, J

    1978-01-01

    In 1975, CERN decided to build two high precision superconducting dipoles for a beam line in the SPS north experimental area. The aim was to determine whether superconducting magnets of the required accuracy and reliability can be built and what their economies and performances in operation will be. Collaboration between CERN and CAE /SACLAY was established in order to make use of the knowledge and experience already acquired in the two laboratories. (0 refs).

  17. Novel Switched Flux Permanent Magnet Machine Topologies

    Institute of Scientific and Technical Information of China (English)

    诸自强

    2012-01-01

    This paper overviews various switched flux permanent magnet machines and their design and performance features,with particular emphasis on machine topologies with reduced magnet usage or without using magnet,as well as with variable flux capability.

  18. New permanent magnets; manganese compounds.

    Science.gov (United States)

    Coey, J M D

    2014-02-12

    The exponential growth of maximum energy product that prevailed in the 20th century has stalled, leaving a market dominated by two permanent magnet materials, Nd2Fe14B and Ba(Sr)Fe12O19, for which the maximum theoretical energy products differ by an order of magnitude (515 kJ m(-3) and 45 kJ m(-3), respectively). Rather than seeking to improve on optimized Nd-Fe-B, it is suggested that some research efforts should be devoted to developing appropriately priced alternatives with energy products in the range 100-300 kJ m(-3). The prospects for Mn-based hard magnetic materials are discussed, based on known Mn-based compounds with the tetragonal L10 or D022 structure or the hexagonal B81 structure.

  19. Finite element modeling of permanent magnet devices

    Science.gov (United States)

    Brauer, J. R.; Larkin, L. A.; Overbye, V. D.

    1984-03-01

    New techniques are presented for finite element modeling of permanent magnets in magnetic devices such as motors and generators. These techniques extend a previous sheet-current permanent magnet model that applies only for straight line B-H loops and rectangular-shaped magnets. Here Maxwell's equations are used to derive the model of a permanent magnet having a general curved B-H loop and any geometric shape. The model enables a nonlinear magnetic finite element program to use Newton-Raphson iteration to solve for saturable magnetic fields in a wide variety of devices containing permanent magnets and steels. The techniques are applied to a brushless dc motor with irregular-shaped permanent magnets. The calculated motor torque agrees well with measured torque.

  20. LLNL superconducting magnets test facility

    Energy Technology Data Exchange (ETDEWEB)

    Manahan, R; Martovetsky, N; Moller, J; Zbasnik, J

    1999-09-16

    The FENIX facility at Lawrence Livermore National Laboratory was upgraded and refurbished in 1996-1998 for testing CICC superconducting magnets. The FENIX facility was used for superconducting high current, short sample tests for fusion programs in the late 1980s--early 1990s. The new facility includes a 4-m diameter vacuum vessel, two refrigerators, a 40 kA, 42 V computer controlled power supply, a new switchyard with a dump resistor, a new helium distribution valve box, several sets of power leads, data acquisition system and other auxiliary systems, which provide a lot of flexibility in testing of a wide variety of superconducting magnets in a wide range of parameters. The detailed parameters and capabilities of this test facility and its systems are described in the paper.

  1. Superconductivity basics and applications to magnets

    CERN Document Server

    Sharma, R G

    2015-01-01

    This book presents the basics and applications of superconducting magnets. It explains the phenomenon of superconductivity, theories of superconductivity, type II superconductors and high-temperature cuprate superconductors. The main focus of the book is on the application to superconducting magnets to accelerators and fusion reactors and other applications of superconducting magnets. The thermal and electromagnetic stability criteria of the conductors and the present status of the fabrication techniques for future magnet applications are addressed. The book is based on the long experience of the author in studying superconducting materials, building magnets and numerous lectures delivered to scholars. A researcher and graduate student will enjoy reading the book to learn various aspects of magnet applications of superconductivity. The book provides the knowledge in the field of applied superconductivity in a comprehensive way.

  2. Quantum Hall effect in epitaxial graphene with permanent magnets

    Science.gov (United States)

    Parmentier, F. D.; Cazimajou, T.; Sekine, Y.; Hibino, H.; Irie, H.; Glattli, D. C.; Kumada, N.; Roulleau, P.

    2016-12-01

    We have observed the well-kown quantum Hall effect (QHE) in epitaxial graphene grown on silicon carbide (SiC) by using, for the first time, only commercial NdFeB permanent magnets at low temperature. The relatively large and homogeneous magnetic field generated by the magnets, together with the high quality of the epitaxial graphene films, enables the formation of well-developed quantum Hall states at Landau level filling factors v = ±2, commonly observed with superconducting electro-magnets. Furthermore, the chirality of the QHE edge channels can be changed by a top gate. These results demonstrate that basic QHE physics are experimentally accessible in graphene for a fraction of the price of conventional setups using superconducting magnets, which greatly increases the potential of the QHE in graphene for research and applications.

  3. Magnetizing of permanent magnets using HTS bulk magnets

    Science.gov (United States)

    Oka, Tetsuo; Muraya, Tomoki; Kawasaki, Nobutaka; Fukui, Satoshi; Ogawa, Jun; Sato, Takao; Terasawa, Toshihisa

    2012-01-01

    A demagnetized Nd-Fe-B permanent magnet was scanned just above the magnetic pole which contains the HTS bulk magnet generating a magnetic field of 3.27 T. The magnet sample was subsequently found to be fully magnetized in the open space of the static magnetic fields. We examined the magnetic field distributions when the magnetic poles were scanned twice to activate the magnet plate inversely with various overlap distances between the tracks of the bulk magnet. The magnetic field of the "rewritten" magnet reached the values of the magnetically saturated region of the material, showing steep gradients at the border of each magnetic pole. As a replacement for conventional pulse field magnetizing methods, this technique is proposed to expand the degree of freedom in the design of electromagnetic devices, and is proposed as a novel practical method for magnetizing rare-earth magnets, which have excellent magnetic performance and require intense fields of more than 3 T to be activated.

  4. Comparison of adjustable permanent magnetic field sources

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Bahl, Christian Robert Haffenden; Smith, Anders

    2010-01-01

    A permanent magnet assembly in which the flux density can be altered by a mechanical operation is often significantly smaller than comparable electromagnets and also requires no electrical power to operate. In this paper five permanent magnet designs in which the magnetic flux density can...

  5. Hybrid Superconducting Magnetic Bearing (HSMB) for high load devices

    Science.gov (United States)

    McMichael, C. K.; Ma, K. B.; Lamb, M. A.; Lin, M. W.; Chow, L.; Meng, R. L.; Hor, P. H.; Chu, W. K.

    1992-05-01

    Lifting capacities greater than 41 N/cm(exp 2) (60 psi) at 77 K have been achieved with a new type of levitation (hybrid) using a combination of permanent magnets and high quality melt-mixtured YBa2Cu3O(7-delta) (YBCO). The key concept of the hybrid superconducting magnetic bearing (HSMB) is the use of strong magnetic repulsion and attraction from permanent magnets for high levitation or suspension forces in conjunction with a superconductor's flux pinning characteristics to counteract the inherent instabilities in a system consisting of magnets only. To illustrate this concept, radial and axial forces between magnet/superconductor, magnet/magnet, and magnet/superconductor/magnet, were measured and compared for the thrust bearing configuration

  6. Results of using permanent magnets to suppress Josephson noise in the KAPPa SIS receiver

    Science.gov (United States)

    Wheeler, Caleb H.; Neric, Marko; Groppi, Christopher E.; Underhill, Matthew; Mani, Hamdi; Weinreb, Sander; Russell, Damon S.; Kooi, Jacob W.; Lichtenberger, Arthur W.; Walker, Christopher K.; Kulesa, Craig

    2016-07-01

    We present the results from the magnetic field generation within the Kilopixel Array Pathfinder Project (KAPPa) instrument. The KAPPa instrument is a terahertz heterodyne receiver using a Superconducting-Insulating- Superconducting (SIS) mixers. To improve performance, SIS mixers require a magnetic field to suppress Josephson noise. The KAPPa test receiver can house a tunable electromagnet used to optimize the applied magnetic field. The receiver is also capable of accommodating a permanent magnet that applies a fixed field. Our permanent magnet design uses off-the-shelf neodymium permanent magnets and then reshapes the magnetic field using machined steel concentrators. These concentrators allow the use of an unmachined permanent magnet in the back of the detector block while two small posts provide the required magnetic field across the SIS junction in the detector cavity. The KAPPa test receiver is uniquely suited to compare the permanent magnet and electromagnet receiver performance. The current work includes our design of a `U' shaped permanent magnet, the testing and calibration procedure for the permanent magnet, and the overall results of the performance comparison between the electromagnet and the permanent magnet counterpart.

  7. Micromachined permanent magnets and their MEMS applications

    Science.gov (United States)

    Cho, Hyoung Jin

    2002-01-01

    In this research, new micromachined permanent magnets have been proposed, developed and characterized for MEMS applications. In realizing micromachined permanent magnets, a new electroplating technique using external magnetic field and a bumper filling technique using a photolithographically defined mold with resin bonded magnetic particles have been developed. The newly developed micromachining techniques allow thick film-type permanent magnet components to be integrated to magnetic MEMS devices with dimensional control and alignment. Permanent magnet arrays with the dimensions ranging from 30 mum to 200 mum have been developed with an energy density up to 2.7 kJ/m3 in precisely defined forms in the micro scale. For the applications of the permanent magnets developed in this work, three novel magnetic MEMS devices such as a bi-directional magnetic actuator, a magnetically driven optical scanner, and a magnetic cell separator have been successfully realized. After design and modeling, each device has been fabricated and fully characterized. The bi-directional actuator with the electroplated permanent magnet array has achieved bi-directional motion clearly and shown good agreement with the analytical and simulated models. The optical scanner has shown linear bi-directional response under static actuation and stable bi-directional scanning performance under dynamic actuation. As a potential BioMEMS application of the developed permanent magnet, the prototype magnetic cell separator using the electroplated permanent magnet strip array has been proposed and demonstrated for magnetic bead patterning. In conclusion, new thick film-type, electroplated CoNiMnP and epoxy resin bonded Sr-ferrite permanent magnets have been developed and characterized, and then, three new magnetic MEMS devices using the permanent magnets such as a bi-directional magnetic actuator, an optical scanner and a magnetic cell separator have been realized in this research. The new micromachined

  8. Superconducting bulk magnets for magnetic levitation systems

    Science.gov (United States)

    Fujimoto, H.; Kamijo, H.

    2000-06-01

    The major applications of high-temperature superconductors have mostly been confined to products in the form of wires and thin films. However, recent developments show that rare-earth REBa 2Cu 3O 7- x and light rare-earth LREBa 2Cu 3O 7- x superconductors prepared by melt processes have a high critical-current density at 77 K and high magnetic fields. These superconductors will promote the application of bulk high-temperature superconductors in high magnetic fields; the superconducting bulk magnet for the Maglev train is one possible application. We investigated the possibility of using bulk magnets in the Maglev system, and examined flux-trapping characteristics of multi-superconducting bulks arranged in array.

  9. Macroscopic Simulation of Isotropic Permanent Magnets

    CERN Document Server

    Bruckner, Florian; Vogler, Christoph; Heinrichs, Frank; Satz, Armin; Ausserlechner, Udo; Binder, Gernot; Koeck, Helmut; Suess, Dieter

    2015-01-01

    Accurate simulations of isotropic permanent magnets require to take the magnetization process into account and consider the anisotropic, nonlinear, and hysteretic material behaviour near the saturation configuration. An efficient method for the solution of the magnetostatic Maxwell equations including the description of isotropic permanent magnets is presented. The algorithm can easily be implemented on top of existing finite element methods and does not require a full characterization of the hysteresis of the magnetic material. Strayfield measurements of an isotropic permanent magnet and simulation results are in good agreement and highlight the importance of a proper description of the isotropic material.

  10. Macroscopic simulation of isotropic permanent magnets

    Science.gov (United States)

    Bruckner, Florian; Abert, Claas; Vogler, Christoph; Heinrichs, Frank; Satz, Armin; Ausserlechner, Udo; Binder, Gernot; Koeck, Helmut; Suess, Dieter

    2016-03-01

    Accurate simulations of isotropic permanent magnets require to take the magnetization process into account and consider the anisotropic, nonlinear, and hysteretic material behaviour near the saturation configuration. An efficient method for the solution of the magnetostatic Maxwell equations including the description of isotropic permanent magnets is presented. The algorithm can easily be implemented on top of existing finite element methods and does not require a full characterization of the hysteresis of the magnetic material. Strayfield measurements of an isotropic permanent magnet and simulation results are in good agreement and highlight the importance of a proper description of the isotropic material.

  11. resonant inverter supplied interior permanent magnet (ipm)

    African Journals Online (AJOL)

    user

    Permanent Magnet (IPM) or Surface Permanent. Magnet ... desired torque is produced to rotate the motor in the desired ... u axis, and the direct-axis of the rotor is at angle θ from the ..... Based Stator Flux Estimator” International. Journal of ...

  12. Superconductivity for Magnets

    CERN Document Server

    Flükiger, R

    2014-01-01

    The present state of development of a series of industrial superconductors is reviewed in consideration of their future applications in high field accelerator magnets, with particular attention on the material aspect. The discussion is centred on Nb3Sn and MgB2, which are industrially available in a round wire configuration in kilometre lengths and are already envisaged for use in the LHC Upgrade (HL-LHC). The two systems Bi-2212 and R.E.123 may be used in magnets with even higher fields in future accelerators: they are briefly described.

  13. Macroscopic Simulation of Isotropic Permanent Magnets

    OpenAIRE

    Bruckner, Florian; Abert, Claas; Vogler, Christoph; Heinrichs, Frank; Satz, Armin; Ausserlechner, Udo; Binder, Gernot; Koeck, Helmut; Suess, Dieter

    2015-01-01

    Accurate simulations of isotropic permanent magnets require to take the magnetization process into account and consider the anisotropic, nonlinear, and hysteretic material behaviour near the saturation configuration. An efficient method for the solution of the magnetostatic Maxwell equations including the description of isotropic permanent magnets is presented. The algorithm can easily be implemented on top of existing finite element methods and does not require a full characterization of the...

  14. Superconducting magnets and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J.E.C. (Massachusetts Inst. of Tech., Cambridge, MA (USA). Francis Bitter National Magnet Lab.)

    1989-08-01

    Superconducting magnets are now being used in applications as diverse as medical imaging, fusion research, and power conditioning. The steady improvement in the understanding of instability and quenching has allowed increases in current density and compactness of winding. The reduction in winding size that has thus followed has allowed the construction of economic magnets for imaging, for acceleration, and for high-resolution spectrometers. Large magnets for fusion and energy applications have been made possible by composite conductors containing large fractions of copper or aluminum. The advent of high-temperature superconductors may hold the promise, eventually, of very-high-field magnets. Meanwhile low-temperature superconductors capable of generating fields up to 30 T have been developed.

  15. Permanent Magnetic Bearing for Spacecraft Applications

    Science.gov (United States)

    Morales, Winfredo; Fusaro, Robert; Kascak, Albert

    2008-01-01

    A permanent, totally passive magnetic bearing rig was designed, constructed, and tested. The suspension of the rotor was provided by two sets of radial permanent magnetic bearings operating in the repulsive mode. The axial support was provided by jewel bearings on both ends of the rotor. The rig was successfully operated to speeds of 5500 rpm using an air impeller. Radial and axial stiffnesses of the permanent magnetic bearings were experimentally measured and then compared to finite element results. The natural damping of the rotor was measured and a damping coefficient was calculated.

  16. Superconducting magnetic energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, J.D.

    1976-01-01

    Fusion power production requires energy storage and transfer on short time scales to create confining magnetic fields and for heating plasmas. The theta-pinch Scyllac Fusion Test Reactor (SFTR) requires 480 MJ of energy to drive the 5-T compression field with a 0.7-ms rise time. Tokamak Experimental Power Reactors (EPR) require 1 to 2 GJ of energy with a 1 to 2-s rise time for plasma ohmic heating. The design, development, and testing of four 300-kJ energy storage coils to satisfy the SFTR needs are described. Potential rotating machinery and homopolar energy systems for both the Reference Theta-Pinch Reactor (RTPR) and tokamak ohmic-heating are presented.

  17. ANALYTIC EXPRESSION OF MAGNETIC FIELD DISTRIBUTION OF RECTANGULAR PERMANENT MAGNETS

    Institute of Scientific and Technical Information of China (English)

    苟晓凡; 杨勇; 郑晓静

    2004-01-01

    From the molecular current viewpoint,an analytic expression exactly describing magnetic field distribution of rectangular permanent magnets magnetized sufficiently in one direction was derived from the Biot-Savart's law. This expression is useful not only for the case of one rectangular permanent magnet bulk, but also for that of several rectangular permanent magnet bulks. By using this expression,the relations between magnetic field distribution and the size of rectangular permanent magnets as well as the magnitude of magnetic field and the distance from the point in the space to the top (or bottom) surface of rectangular permanent magnets were discussed in detail. All the calculating results are consistent with experimental ones. For transverse magnetic field which is a main magnetic field of rectangular permanent magnets,in order to describe its distribution,two quantities,one is the uniformity in magnitude and the other is the uniformity in distribution of magnetic field,were defined. Furthermore, the relations between them and the geometric size of the magnet as well as the distance from the surface of permanent magnets were investigated by these formulas. The numerical results show that the geometric size and the distance have a visible influence on the uniformity in magnitude and the uniformity in distribution of the magnetic field.

  18. Design and construction of permanent magnetic gears

    OpenAIRE

    Jørgensen, Frank Thorleif

    2010-01-01

    This thesis deals with design and development of permanent magnetic gears. The goal of this thesis is to develop knowledge and calculation software for magnetic gears. They use strong NdFeB permanent magnets and a new magnetic gear technology, which will be a serious alternative to classical mechanical gears. The new magnetic gear will have a high torque density1 relationship –high efficiency and are maintenance free. In this project was manufactured two test gears which is tested and verifie...

  19. Permanent Magnet Boosted Modular Switched Reluctance Motor

    Directory of Open Access Journals (Sweden)

    SZABÓ Loránd

    2016-10-01

    Full Text Available This paper deals with the analyses of a novel motor structure obtained by boosting with permanent magnets a formerly studied modular switched reluctance motor. Upon dynamic simulation results the improvements of the proposed motor are emphasized.

  20. Design and construction of permanent magnetic gears

    DEFF Research Database (Denmark)

    Jørgensen, Frank Thorleif

    This thesis deals with design and development of permanent magnetic gears. The goal of this thesis is to develop knowledge and calculation software for magnetic gears. They use strong NdFeB permanent magnets and a new magnetic gear technology, which will be a serious alternative to classical...... calculation models for determination of gear output torque from different magnetic gear types are analysed. These analytical calculations models are used together with optimisation tools in order to improve the performance of investigated magnetic gear types. Experimental test gears are designed to validate...... is searched and only a single reference [74] is found and that is why the combination of a cycloidal gear and a magnetic gear are considered as an innovative supplement to magnetic gear technology. A magnetic cycloidal gear is designed with a gearing of 1:21 and a calculated active torque density of 142 [Nm...

  1. Superconducting magnets. Citations from NTIS data base

    Science.gov (United States)

    Reimherr, G. W.

    1980-10-01

    The cited reports discuss research on materials studies, theory, design and applications of superconducting magnets. Examples of applications include particle accelerators, MHD power generation, superconducting generators, nuclear fusion research devices, energy storage systems, and magnetic levitation. This updated bibliography contains 218 citations, 88 of which are new entries to the previous edition.

  2. Measuring the interaction force between a high temperature superconductor and a permanent magnet

    OpenAIRE

    Valenzuela, S. O.; Jorge, G. A.; Rodriguez, E.

    1999-01-01

    Repulsive and attractive forces are both possible between a superconducting sample and a permanent magnet, and they can give place to magnetic levitation or free-suspension phenomena, respectively. We show experiments to quantify this magnetic interaction which represents a promising field regarding to short-term technological applications of high temperature superconductors. The measuring technique employs an electronic balance and a rare-earth magnet that induces a magnetic moment in a melt...

  3. Superconducting magnets in physics: problems and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Bronca, G.; Parain, J.

    1974-10-01

    The present status of solutions for the construction of magnets using superconducting windings is given. A review is given of achievements and projects using superconductors for the production of magnetic fields.

  4. Forces Between a Permanent Magnet and a Soft Magnetic Plate

    DEFF Research Database (Denmark)

    Beleggia, Marco; Vokoun, David; De Graef, Marc

    2012-01-01

    Forces between a hard/permanent magnet of arbitrary shape and an ideally soft magnetic plate in close proximity are derived analytically from the image method applied to magnetostatics. We found that the contact force, defined as the force required to detach the hard magnet from the plate......, coincides with that between two identical touching permanent magnets. Furthermore, if the hard and the soft magnets are displaced by some amount, their attraction equals that between two identical permanent magnets displaced by twice that amount. Experimental results are presented that validate...

  5. Advanced Manufacturing of Superconducting Magnets

    Science.gov (United States)

    Senti, Mark W.

    1996-01-01

    The development of specialized materials, processes, and robotics technology allows for the rapid prototype and manufacture of superconducting and normal magnets which can be used for magnetic suspension applications. Presented are highlights of the Direct Conductor Placement System (DCPS) which enables automatic design and assembly of 3-dimensional coils and conductor patterns using LTS and HTS conductors. The system enables engineers to place conductors in complex patterns with greater efficiency and accuracy, and without the need for hard tooling. It may also allow researchers to create new types of coils and patterns which were never practical before the development of DCPS. The DCPS includes a custom designed eight-axis robot, patented end effector, CoilCAD(trademark) design software, RoboWire(trademark) control software, and automatic inspection.

  6. Feeding helium to superconducting magnets

    CERN Multimedia

    1979-01-01

    The photo shows two of the 3 superconducting magnets (two MBS dipoles (CESAR) of 150 mm bore and 4.5 T, and one quadrupole (CASTOR) of 90 mm bore and 54 T/m) which were installed in the hall EHN1 (Annual Report 1978 p. 134) and ran until 1985. They formed a section of the beam H6 travelling from target T4 (down the bottom of the photo) towards the NA30 setup followed by the NA11 setup. The two big transversal pipelines are the quench lines of the two magnets (on the right, one quadrupole and one dipole, the other dipole lays down the photo and is not visible). The Jura side of the hall is on the right.

  7. Superconducting magnet system for PERC

    Energy Technology Data Exchange (ETDEWEB)

    Drescher, Carmen [Physikalisches Institut, Universitaet Heidelberg (Germany); Collaboration: PERC-Collaboration

    2012-07-01

    The new PERC (Proton Electron Radiation Channel) instrument will be an extremely bright and versatile source of neutron decay products. It will feed several novel precision experiments of spectra and correlation measurements in neutron decay. Its main component is a more than 11 m long superconducting magnet system. The neutron decay volume is located inside an 8 m long neutron guide in a strong longitudinal magnetic field of 1.5 T. A variable magnetic barrier of 3 T to 6 T serves to precisely limit the phase space of the emerging electrons and protons to control systematic errors on the 10{sup -4}level. The instrument is currently under development and will be installed at the neutron-beamline Mephisto at the FRM II, Garching. In this talk we give an overview on the special characteristics and advantages of PERC's field design. We show that with our design we can prevent magnetic traps in magnetic field and achieve a clean separation of neutrons and decay-products.

  8. Superconducting Materials, Magnets and Electric Power Applications

    Science.gov (United States)

    Crabtree, George

    2011-03-01

    The surprising discovery of superconductivity a century ago launched a chain of convention-shattering innovations and discoveries in superconducting materials and applications that continues to this day. The range of large-scale applications grows with new materials discoveries - low temperature NbTi and Nb3 Sn for liquid helium cooled superconducting magnets, intermediate temperature MgB2 for inexpensive cryocooled applications including MRI magnets, and high temperature YBCO and BSSCO for high current applications cooled with inexpensive liquid nitrogen. Applications based on YBCO address critical emerging challenges for the electricity grid, including high capacity superconducting cables to distribute power in urban areas; transmission of renewable electricity over long distances from source to load; high capacity DC interconnections among the three US grids; fast, self-healing fault current limiters to increase reliability; low-weight, high capacity generators enabling off-shore wind turbines; and superconducting magnetic energy storage for smoothing the variability of renewable sources. In addition to these grid applications, coated conductors based on YBCO deposited on strong Hastelloy substrates enable a new generation of all superconducting high field magnets capable of producing fields above 30 T, approximately 50% higher than the existing all superconducting limit based on Nb3 Sn . The high fields, low power cost and the quiet electromagnetic and mechanical operation of such magnets could change the character of high field basic research on materials, enable a new generation of high-energy colliding beam experiments and extend the reach of high density superconducting magnetic energy storage.

  9. Design of permanent magnetic solenoids for REGAE

    Energy Technology Data Exchange (ETDEWEB)

    Gehrke, Tim; Zeitler, Benno; Gruener, Florian [University of Hamburg and Center for Free-Electron Laser Science, Hamburg (Germany); Floettmann, Klaus [DESY, Hamburg (Germany); Manz, Stephanie [MPSD, University of Hamburg (Germany)

    2013-07-01

    The Relativistic Electron Gun for Atomic Exploration REGAE is a small linear accelerator at DESY in Hamburg, which produces short, low emittance electron bunches. Two future experiments at REGAE, an external injection experiment for Laser Wakefield Acceleration (LWA) and a time resolving Transmission Electron Microscopy (TEM) setup, require strong focusing magnets inside the target chamber. Permanent magnetic solenoids can provide the needed focusing strength due to their enormous surface current density, while having compact dimensions at the same time. Solenoids are fundamentally non-linear focusing elements whose non-linearity is worst for short, strong magnets as required for REGAE. The induced emittance growth is investigated and minimized for different setups with axially and radially magnetized annular magnets. Since permanent magnetic solenoids cannot be switched off but are not needed in every experiment at REGAE, a mechanical lifting-system and a magnetic shielding has to ensure, that the different experiments do not disturb each other.

  10. Safety and reliability in superconducting MHD magnets

    Energy Technology Data Exchange (ETDEWEB)

    Laverick, C.; Powell, J.; Hsieh, S.; Reich, M.; Botts, T.; Prodell, A.

    1979-07-01

    This compilation adapts studies on safety and reliability in fusion magnets to similar problems in superconducting MHD magnets. MHD base load magnet requirements have been identified from recent Francis Bitter National Laboratory reports and that of other contracts. Information relevant to this subject in recent base load magnet design reports for AVCO - Everett Research Laboratories and Magnetic Corporation of America is included together with some viewpoints from a BNL workshop on structural analysis needed for superconducting coils in magnetic fusion energy. A summary of design codes used in large bubble chamber magnet design is also included.

  11. Permanent magnet flux-biased magnetic actuator with flux feedback

    Science.gov (United States)

    Groom, Nelson J. (Inventor)

    1991-01-01

    The invention is a permanent magnet flux-biased magnetic actuator with flux feedback for adjustably suspending an element on a single axis. The magnetic actuator includes a pair of opposing electromagnets and provides bi-directional forces along the single axis to the suspended element. Permanent magnets in flux feedback loops from the opposing electromagnets establish a reference permanent magnet flux-bias to linearize the force characteristics of the electromagnets to extend the linear range of the actuator without the need for continuous bias currents in the electromagnets.

  12. Mean field J{sub C} estimation for levitation device simulations in the bean model using permanent magnets and YBCO superconducting blocks

    Energy Technology Data Exchange (ETDEWEB)

    Neves, Marcelo Azevedo; Andrade Junior, Rubens de [Universidade Federal, Rio de Janeiro, RJ (Brazil). Dept. de Eletrotecnica. Lab. de Aplicacoes de Supercondutores (LASUP); Costa, Giancarlo Cordeiro da [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Lab. de Metodos Computacionais em Engenharia; Pereira, Agnaldo Souza; Nicolsky, Roberto [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Fisica

    2002-09-01

    This work presents a mean field estimation of J{sub C} as a bulk characteristic of YBCO blocks. That average J{sub C} allows a good fitting of the finite-element-method simulation of the levitation forces to experimental results. That agreement is quite enough for levitation requirements of device projects, at short gaps and zero field cooling process, within the Bean model. The physical characterization for that estimation was made measuring the interaction force between the PM and one YBCO block in 1-D and mapping the trapped magnetic field in those blocks in 2-D. (author)

  13. Dovetail spoke internal permanent magnet machine

    Science.gov (United States)

    Alexander, James Pellegrino; EL-Refaie, Ayman Mohamed Fawzi; Lokhandwalla, Murtuza; Shah, Manoj Ramprasad; VanDam, Jeremy Daniel

    2011-08-23

    An internal permanent magnet (IPM) machine is provided. The IPM machine includes a stator assembly and a stator core. The stator core also includes multiple stator teeth. The stator assembly is further configured with stator windings to generate a stator magnetic field when excited with alternating currents and extends along a longitudinal axis with an inner surface defining a cavity. The IPM machine also includes a rotor assembly and a rotor core. The rotor core is disposed inside the cavity and configured to rotate about the longitudinal axis. The rotor assembly further includes a shaft. The shaft further includes multiple protrusions alternately arranged relative to multiple bottom structures provided on the shaft. The rotor assembly also includes multiple stacks of laminations disposed on the protrusions and dovetailed circumferentially around the shaft. The rotor assembly further includes multiple pair of permanent magnets for generating a magnetic field, which magnetic field interacts with the stator magnetic field to produce a torque. The multiple pair of permanent magnets are disposed between the stacks. The rotor assembly also includes multiple middle wedges mounted between each pair of the multiple permanent magnets.

  14. Superconducting materials suitable for magnets

    CERN Document Server

    CERN. Geneva. Audiovisual Unit

    2002-01-01

    The range of materials available for superconducting magnets is steadily expanding, even as the choice of material becomes potentially more complex. When virtually all magnets were cooled by helium at ~2-5 K it was easy to separate the domain of Nb-Ti from those of Nb3Sn applications and very little surprise that more than 90% of all magnets are still made from Nb-Ti. But the development of useful conductors of the Bi-Sr-Ca-Cu-O and YBa2Cu3Ox high temperature superconductors, coupled to the recent discovery of the 39 K superconductor MgB2 and the developing availability of cryocoolers suggests that new classes of higher temperature, medium field magnets based on other than Nb-based conductors could become available in the next 5-10 years. My talks will discuss the essential physics and materials science of these 5 classes of material - Nb-Ti, Nb3Sn, MgB2, Bi-Sr-Ca-Cu-O and YBa2Cu3Ox - in the context of those aspects of their science, properties and fabrication properties, which circumscribe their applications...

  15. Scaling of Superconducting Switches for Extraction of Magnetic Energy

    CERN Document Server

    Ballarino, A

    2010-01-01

    In certain cases it is necessary to extract the energy from a superconducting magnet when it quenches, in order to limit the heat generated by the event and thus prevent irreversible damage. This is usually achieved by opening a contact breaker across a resistor in the circuit feeding the magnet. For the heavy currents used to excite large magnets such switches incorporate sophisticated devices to limit arcing during the operation; besides being quite large and expensive, such switches have a limited lifetime. It is therefore interesting to consider the use of superconducting switches to perform this function, the advantage being that such switches would (i) not require maintenance and (ii) would be housed within the cryogenic environment of the magnet, and thus avoid permanent diversion of the current in and out of that environment to the mechanical switch (which operates at room temperature). However, practical switches for such an application are made up of superconductor in a metal matrix, and it is conve...

  16. Permanent Magnet Eddy Current Loss Analysis of a Novel Motor Integrated Permanent Magnet Gear

    DEFF Research Database (Denmark)

    Zhang, Yuqiu; Lu, Kaiyuan; Ye, Yunyue

    2012-01-01

    In this paper, a new motor integrated permanent magnet gear (MIPMG) is discussed. The focus is on eddy current loss analysis associated to permanent magnets (PMs). A convenient model of MIPMG is provided based on 2-D field-motion coupled time-stepping finite element method for transient eddy...

  17. Model of an LHC superconducting quadrupole magnet

    CERN Multimedia

    Laurent Guiraud

    2000-01-01

    Model of a superconducting quadrupole magnet for the LHC project. These magnets are used to focus the beam by squeezing it into a smaller cross-section, a similar effect to a lens focusing light. However, each magnet only focuses the beam in one direction so alternating magnet arrangements are required to produce a fully focused beam.

  18. Durability Evaluation of Superconducting Magnets

    Science.gov (United States)

    Inoue, Akihiko; Ogata, Masafumi; Nakauchi, Masahiko; Asahara, Tetsuo; Herai, Toshiki; Nishikawa, Yoichi

    2006-06-01

    It is one of the most essential things to verify the durability of devices and components of JR-Maglev system to realize the system into the future inauguration. Since the load requirements were insufficient in terms of the durability under vibrations under mere running tests carried out on Yamanashi Maglev Test Line hereinafter referred to YMTL, we have developed supplemental method with bench tests. Superconducting magnets hereinafter referred to SCM as used in the experimental running for the last seven years on the YMTL were brought to Kunitachi Technical Research Institute; we conducted tests to evaluate the durability of SCM up to a period of the service life in commercial use. The test results have indicated that no irregularity in each part of SCM proving that SCM are sufficiently durable for the practical application.

  19. Optimally segmented permanent magnet structures

    DEFF Research Database (Denmark)

    Insinga, Andrea Roberto; Bjørk, Rasmus; Smith, Anders

    2016-01-01

    We present an optimization approach which can be employed to calculate the globally optimal segmentation of a two-dimensional magnetic system into uniformly magnetized pieces. For each segment the algorithm calculates the optimal shape and the optimal direction of the remanent flux density vector...

  20. Improvement of azimuthal homogeneity in permanent-magnet bearing rotors

    Science.gov (United States)

    Hull, J. R.; Rossing, T. D.; Mulcahy, T. M.; Uherka, K. L.

    1992-10-01

    Permanent magnets that are levitated and rotating over a bulk high-temperature superconductor (HTS) form the basis of many superconducting bearing designs. Experiments have shown that the rotational-loss 'coefficient of friction' for thrust bearings of this type can be as low as 8 x 10(exp -6). While the loss mechanisms of such bearings are not well understood, the azimuthal homogeneity of the rotating permanent magnet is believed to play an important role in determining the loss. One possible loss mechanism is magnetic hysteresis in the HTS, where the energy loss E per cycle is derived from the critical state model and given by E = K (Delta B)(sup 3)/J(sub c) where K is a geometric coefficient, Delta B is the variation in magnetic field at the surface of the HTS experienced during a rotation of the levitated magnet, and J(sub c) is the critical current density of the HTS. It is clear that a small decrease in Delta B (i.e., decreasing the azimuthal inhomogeneity of the rotating magnetic field) could have profound effects on decreasing E and the rotational coefficient of friction. The role of Delta B is also expected to be significant in reducing losses from eddy currents and other mechanisms. Low rotational losses in HTS bearings have been demonstrated only for levitated masses of several grams. For practical bearings, it is important to obtain these low losses with larger levitated masses. There are two main routes toward decreasing Delta B. The first is to improve the alignment of the magnetic particles during fabrication and to maintain close tolerances on grinding angles during manufacture of the permanent magnet. The second, the subject of this paper, is to provide correctional procedures after the magnet is fabricated.

  1. Design Study Of Cyclotron Magnet With Permanent Magnet

    Science.gov (United States)

    Kim, Hyun Wook; Chai, Jong Seo

    2011-06-01

    Low energy cyclotrons for Positron emission tomography (PET) have been wanted for the production of radio-isotopes after 2002. In the low energy cyclotron magnet design, increase of magnetic field between the poles is needed to make a smaller size of magnet and decrease power consumption. The Permanent magnet can support this work without additional electric power consumption in the cyclotron. In this paper the study of cyclotron magnet design using permanent magnet is shown and also the comparison between normal magnet and the magnet which is designed with permanent magnet is shown. Maximum energy of proton is 8 MeV and RF frequency is 79.3 MHz. 3D CAD design was done by CATIA P3 V5 R18 [1] and the All field calculations had been performed by OPERA-3D TOSCA [2]. The self-made beam dynamics program OPTICY [3] is used for making isochronous field and other calculations.

  2. Interaction of bulk superconductors with flywheel rings made of multiple permanent magnets

    Science.gov (United States)

    Ikeda, M.; Wongsatanawarid, A.; Seki, H.; Murakami, M.

    2009-10-01

    Compared to conventional mechanical bearings, superconducting bearings have the advantage that there is no friction loss. Thus the superconducting bearings are employed for a flywheel energy storage device, and thereby one can construct the system that stores the energy for a long duration. Hence, superconducting flywheel energy storage system has attracted worldwide attention. For practical applications of the superconducting energy storage system, the stored energy must be maximized that can be achieved by either increasing the diameter of the levitated flywheel or the rotational velocity. Since the suspended flywheel in the superconducting flywheel energy storage system is made of permanent magnets, its size is limited by the size of permanent magnets. In addition, when the rotational speed is increased, there is possibility for the magnet ring to fracture due to a large centrifugal force. We therefore proposed the construction of the magnetic flywheel ring by simply arranging small permanent magnets pasted into machined grooves in Al disk 650 mm in diameter. Then we measured the force interaction between superconductor sample and a invented flywheel design. We have found that the field is almost uniform when the distance from the flywheel surface exceeded 15 mm, showing that frictionless rotation is possible at the gap larger than 15 mm. Furthermore, the repulsive force density was 0.48 N/cm 2 at 15 mm, which demonstrates that the mass of 161.32 kg can be levitated.

  3. The first LHC superconducting magnet is unloaded

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    The first superconducting magnet is moved into position using a transfer table. This must be performed with great precision so that the LHC ring is correctly aligned, allowing the beams to travel along the correct paths.

  4. Hybrid high gradient permanent magnet quadrupole

    Science.gov (United States)

    N'gotta, P.; Le Bec, G.; Chavanne, J.

    2016-12-01

    This paper presents an innovative compact permanent magnet quadrupole with a strong gradient for potential use in future light source lattices. Its magnetic structure includes simple mechanical parts, rectangular permanent magnet blocks and soft iron poles. It has a wide aperture in the horizontal plane to accommodate an x-ray beam port, a common constraint in storage ring-based light sources. This specificity introduces field quality deterioration because of the resulting truncation of the poles; a suitable field quality can be restored with an optimized pole shape. A 82 T /m prototype with a bore radius of 12 mm and a 10 mm vertical gap between poles has been constructed and magnetically characterized. Gradient inhomogeneities better than 10-3 in the good field region were obtained after the installation of special shims.

  5. Downsized superconducting magnetic energy storage systems

    Science.gov (United States)

    Palmer, David N.

    Scaled-down superconductive magnetic energy storage systems (DSMES) and superconductive magnetic energy power sources (SMEPS) are proposed for residential, commercial/retail, industrial off-peak and critical services, telephone and other communication systems, computer operations, power back-up/energy storages, power sources for space stations, and in-field military logistics/communication systems. Recent advances in high-Tc superconducting materials technology are analyzed. DSMES/SMEPS concepts are presented, and design, materials, and systems requirements are discussed. Problems ar identified, and possible solutions are offered. Comparisons are made with mechanical and primary and secondary energy storage and conversion systems.

  6. Permanent magnet motor technology design and applications

    CERN Document Server

    Gieras, Jacek F

    2009-01-01

    Demonstrates the construction of permanent magnet (PM) motor drives and supplies ready-to-implement solutions to common roadblocks along the way. This book also supplies fundamental equations and calculations for determining and evaluating system performance, efficiency, reliability, and cost. It explores modern computer-aided design of PM motors.

  7. Permanent Magnet Eddy Current Loss Analysis of a Novel Motor Integrated Permanent Magnet Gear

    DEFF Research Database (Denmark)

    Zhang, Yuqiu; Lu, Kaiyuan; Ye, Yunyue

    2012-01-01

    In this paper, a new motor integrated permanent magnet gear (MIPMG) is discussed. The focus is on eddy current loss analysis associated to permanent magnets (PMs). A convenient model of MIPMG is provided based on 2-D field-motion coupled time-stepping finite element method for transient eddy...... current analysis. The model takes the eddy current effect of PMs into account in determination of the magnetic field in the air-gap and in the magnet regions. The eddy current losses generated in the magnets are properly interpreted. Design improvements for reducing the eddy current losses are suggested...

  8. Induced Magnetism in Color-Superconducting Media

    CERN Document Server

    Ferrer, Efrain J

    2009-01-01

    The dense core of compact stars is the natural medium for the realization of color superconductivity. A common characteristic of such astrophysical objects is their strong magnetic fields, especially those of the so called magnetars. In this talk, I discuss how a color superconducting core can generate or/and enhance the stellar magnetic field independently of a magnetohydrodynamic dynamo mechanism. The magnetic field generator is in this case a gluonic current which circulates to stabilize the color superconductor in the presence of a strong magnetic field or under the pairing stress produced in the medium by the neutrality and $\\beta$-equilibrium constraints.

  9. Sensorless Control of Permanent Magnet Synchronous Machines

    DEFF Research Database (Denmark)

    Matzen, Torben N.

    Permanent magnet machines, with either surface mounted or embedded magnets on the rotor, are becoming more common due to the key advantages of higher energy conversion efficiency and higher torque density compared to the classical induction machine. Besides energy efficiency the permanent magnet...... are dependent on the phase currents and rotor position. Based on the flux linkages the differential inductances are determined and used to establish the inductance saliency in terms of ratio and orientation. The orientation and its dependence on the current and rotor position are used to analyse the behaviour...... and establish the suitability of the machine for sensorless control using inductance saliency tracking methods. The same electromagnetic behaviour is used in the implementation of a dynamical simulation model of the machine useful for evaluation of sensorless control methods at the control design stage. Further...

  10. Tunable high-gradient permanent magnet quadrupoles

    CERN Document Server

    Shepherd, B J A; Marks, N; Collomb, N A; Stokes, D G; Modena, M; Struik, M; Bartalesi, A

    2014-01-01

    A novel type of highly tunable permanent magnet (PM) based quadrupole has been designed by the ZEPTO collaboration. A prototype of the design (ZEPTO-Q1), intended to match the specification for the CLIC Drive Beam Decelerator, was built and magnetically measured at Daresbury Laboratory and CERN. The prototype utilises two pairs of PMs which move in opposite directions along a single vertical axis to produce a quadrupole gradient variable between 15 and 60 T/m. The prototype meets CLIC's challenging specification in terms of the strength and tunability of the magnet.

  11. Rare earth elements and permanent magnets (invited)

    Science.gov (United States)

    Dent, Peter C.

    2012-04-01

    Rare earth (RE) magnets have become virtually indispensible in a wide variety of industries such as aerospace, automotive, electronics, medical, and military. RE elements are essential ingredients in these high performance magnets based on intermetallic compounds RECo5, RE2TM17 (TM: transition metal), and RE2TM14B. Rare earth magnets are known for their superior magnetic properties—high induction, and coercive force. These properties arise due to the extremely high magnetocrystalline anisotropy made possible by unique 3d-4f interactions between transition metals and rare earths. For more than 40 years, these magnets remain the number one choice in applications that require high magnetic fields in extreme operating conditions—high demagnetization forces and high temperature. EEC produces and specializes in RECo5 and RE2TM17 type sintered magnets. Samarium and gadolinium are key RE ingredients in the powder metallurgical magnet production processes which include melting, crushing, jet milling, pressing, sintering, and heat treating. The magnetic properties and applications of these magnets will be discussed. We will also briefly discuss the past, current, and future of the permanent magnet business. Currently, over 95% of all pure rare earth oxides are sourced from China, which currently controls the market. We will provide insights regarding current and potential new magnet technologies and designer choices, which may mitigate rare earth supply chain issues now and into the future.

  12. Magnetic forces between arrays of cylindrical permanent magnets

    DEFF Research Database (Denmark)

    Vokoun, D.; Tomassetti, G.; Beleggia, Marco

    2011-01-01

    Permanent magnet arrays are often employed in a broad range of applications: actuators, sensors, drug targeting and delivery systems, fabrication of self-assembled particles, just to name a few. An estimate of the magnetic forces in play between arrays is required to control devices and fabrication...... procedures. Here, we introduce analytical expressions for calculating the attraction force between two arrays of cylindrical permanent magnets and compare the predictions with experimental data obtained from force measurements with NdFeB magnets. We show that the difference between predicted and measured...

  13. Integrated design of superconducting accelerator magnets

    CERN Document Server

    Russenschuck, Stephan; Ramberger, S; Rodríguez-Mateos, F; Wolf, R

    1999-01-01

    This chapter introduces the main features of the ROXIE program which has been developed for the design of the superconducting magnets for the Large Hadron Collider (LHC) at CERN. The program combines numerical field calculation with a reduced vector-potential formulation, the application of vector-optimization methods, and the use of genetic as well as deterministic minimization algorithms. Together with the applied concept of features, the software is used as an approach towards integrated design of superconducting magnets. The main quadrupole magnet for the LHC, was chosen as an example for the integrated design process. (17 refs).

  14. Magnetism and superconductivity in heavy fermion systems

    Energy Technology Data Exchange (ETDEWEB)

    Flouquet, J. (DRFMC, C.E.N.G., 38 - Grenoble (France)); Brison, J.P.; Hasselbach, K.; Taillefer, L. (C.N.R.S., 38 - Grenoble (France)); Behnia, K.; Jaccard, D. (DPMC, Geneva Univ. (Switzerland)); Visser, A. de (Natuurkundig Lab., Univ. van Amsterdam (Netherlands))

    1991-12-01

    The normal and superconducting properties of heavy fermion compounds are reviewed. The discussion is focus on the three uranium compounds: UBe{sub 13}, UPt{sub 3} and URu{sub 2}Si{sub 2}. Special attention is given: 1) to unusual (H.T) superconducting phase diagram as discovered in UPt{sub 3} where two successive superconducting phases seem to occur in zero magnetic field; 2) to the role of long range ordering as found in URu{sub 2}Si{sub 2} and UPt{sub 3}. (orig.).

  15. Permanent magnets composed of high temperature superconductors

    Science.gov (United States)

    Weinstein, Roy; Chen, In-Gann; Liu, Jay; Lau, Kwong

    1991-01-01

    A study of persistent, trapped magnetic field has been pursued with high-temperature superconducting (HTS) materials. The main effort is to study the feasibility of utilization of HTS to fabricate magnets for various devices. The trapped field, when not in saturation, is proportional to the applied field. Thus, it should be possible to replicate complicated field configurations with melt-textured YBa2Cu3O7 (MT-Y123) material, bypassing the need for HTS wires. Presently, materials have been developed from which magnets of 1.5 T, at 77 K, can be fabricated. Much higher field is available at lower operating temperature. Stability of a few percent per year is readily attainable. Results of studies on prototype motors and minimagnets are reported.

  16. Robotized Surface Mounting of Permanent Magnets

    Directory of Open Access Journals (Sweden)

    Erik Hultman

    2014-10-01

    Full Text Available Using permanent magnets on a rotor can both simplify the design and increase the efficiency of electric machines compared to using electromagnets. A drawback, however, is the lack of existing automated assembly methods for large machines. This paper presents and motivates a method for robotized surface mounting of permanent magnets on electric machine rotors. The translator of the Uppsala University Wave Energy Converter generator is used as an example of a rotor. The robot cell layout, equipment design and assembly process are presented and validated through computer simulations and experiments with prototype equipment. A comparison with manual assembly indicates substantial cost savings and an improved work environment. By using the flexibility of industrial robots and a scalable equipment design, it is possible for this assembly method to be adjusted for other rotor geometries and sizes. Finally, there is a discussion on the work that remains to be done on improving and integrating the robot cell into a production line.

  17. A new Maglev. Permanent magnets to make a train levitate; Un nouveau Maglev. Des aimants permanents pour faire leviter un train

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2000-02-01

    A new, more stable and economical magnetic levitation system has been developed at the Lawrence Livermore Laboratory (USA) which uses permanent magnets instead of expensive superconducting or electro-magnets. In this new type of levitated train, the skates of the wagons are made of series of permanent magnets organized as a Hallbach net while the levitating coils are included in the rails. The construction of such a train using this 'indutrack' system would be 3 times less expensive than the German Maglev. Short paper. (J.S.)

  18. A Novel Permanent Magnetic Angular Acceleration Sensor

    OpenAIRE

    Hao Zhao; Hao Feng

    2015-01-01

    Angular acceleration is an important parameter for status monitoring and fault diagnosis of rotary machinery. Therefore, we developed a novel permanent magnetic angular acceleration sensor, which is without rotation angle limitations and could directly measure the instantaneous angular acceleration of the rotating system. The sensor rotor only needs to be coaxially connected with the rotating system, which enables convenient sensor installation. For the cup structure of the sensor rotor, it h...

  19. Axial flux permanent magnet brushless machines

    CERN Document Server

    Gieras, Jacek F; Kamper, Maarten J

    2008-01-01

    Axial Flux Permanent Magnet (AFPM) brushless machines are modern electrical machines with a lot of advantages over their conventional counterparts. They are being increasingly used in consumer electronics, public life, instrumentation and automation system, clinical engineering, industrial electromechanical drives, automobile manufacturing industry, electric and hybrid electric vehicles, marine vessels and toys. They are also used in more electric aircrafts and many other applications on larger scale. New applications have also emerged in distributed generation systems (wind turbine generators

  20. Magnetic and Superconducting Materials at High Pressures

    Energy Technology Data Exchange (ETDEWEB)

    Struzhkin, Viktor V. [Carnegie Inst. of Washington, Washington, DC (United States)

    2015-03-24

    The work concentrates on few important tasks in enabling techniques for search of superconducting compressed hydrogen compounds and pure hydrogen, investigation of mechanisms of high-Tc superconductivity, and exploring new superconducting materials. Along that route we performed several challenging tasks, including discovery of new forms of polyhydrides of alkali metal Na at very high pressures. These experiments help us to establish the experimental environment that will provide important information on the high-pressure properties of hydrogen-rich compounds. Our recent progress in RIXS measurements opens a whole field of strongly correlated 3d materials. We have developed a systematic approach to measure major electronic parameters, like Hubbard energy U, and charge transfer energy Δ, as function of pressure. This technique will enable also RIXS studies of magnetic excitations in iridates and other 5d materials at the L edge, which attract a lot of interest recently. We have developed new magnetic sensing technique based on optically detected magnetic resonance from NV centers in diamond. The technique can be applied to study superconductivity in high-TC materials, to search for magnetic transitions in strongly correlated and itinerant magnetic materials under pressure. Summary of Project Activities; development of high-pressure experimentation platform for exploration of new potential superconductors, metal polyhydrides (including newly discovered alkali metal polyhydrides), and already known superconductors at the limit of static high-pressure techniques; investigation of special classes of superconducting compounds (high-Tc superconductors, new superconducting materials), that may provide new fundamental knowledge and may prove important for application as high-temperature/high-critical parameter superconductors; investigation of the pressure dependence of superconductivity and magnetic/phase transformations in 3d transition metal compounds, including

  1. Didactic Considerations on Magnetic Circuits Excited by Permanent Magnets

    Science.gov (United States)

    Barmada, S.; Rizzo, R.; Sani, L.

    2009-01-01

    In this paper, the authors focus their attention on the way magnetic circuits and permanent magnets are usually treated in most textbooks and electrical engineering courses. This paper demonstrates how this important topic is too often presented simplistically. This simplistic treatment does not allow the students to develop a complete…

  2. Forces between permanent magnets: experiments and model

    Science.gov (United States)

    González, Manuel I.

    2017-03-01

    This work describes a very simple, low-cost experimental setup designed for measuring the force between permanent magnets. The experiment consists of placing one of the magnets on a balance, attaching the other magnet to a vertical height gauge, aligning carefully both magnets and measuring the load on the balance as a function of the gauge reading. A theoretical model is proposed to compute the force, assuming uniform magnetisation and based on laws and techniques accessible to undergraduate students. A comparison between the model and the experimental results is made, and good agreement is found at all distances investigated. In particular, it is also found that the force behaves as r -4 at large distances, as expected.

  3. Dynamics of Permanent-Magnet Biased Active Magnetic Bearings

    Science.gov (United States)

    Fukata, Satoru; Yutani, Kazuyuki

    1996-01-01

    Active magnetic radial bearings are constructed with a combination of permanent magnets to provide bias forces and electromagnets to generate control forces for the reduction of cost and the operating energy consumption. Ring-shaped permanent magnets with axial magnetization are attached to a shaft and share their magnet stators with the electromagnets. The magnet cores are made of solid iron for simplicity. A simplified magnetic circuit of the combined magnet system is analyzed with linear circuit theory by approximating the characteristics of permanent magnets with a linear relation. A linearized dynamical model of the control force is presented with the first-order approximation of the effects of eddy currents. Frequency responses of the rotor motion to disturbance inputs and the motion for impulsive forces are tested in the non-rotating state. The frequency responses are compared with numerical results. The decay of rotor speed due to magnetic braking is examined. The experimental results and the presented linearized model are similar to those of the all-electromagnetic design.

  4. Superconductivity and magnetism: Materials properties and developments

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, N.H.; Bay, N.; Grivel, J.C. (eds.) [and others

    2003-07-01

    The 24th Risoe International Symposium on Materials Science focuses on development of new materials, devices and applications, as well as experimental and theoretical studies of novel and unexplained phenomena in superconductivity and magnetism, e.g. within high.T{sub c} superconductivity, magnetic superconductors, MgB{sub 2}, CMR materials, nanomagnetism and spin-tronics. The aim is to stimulate exchange of ideas and establish new collaborations between leading Danish and international scientists. The topics are addressed by presentations from 24 invited speakers and by 41 contributed papers. (ln)

  5. Experimental validation of field cooling simulations for linear superconducting magnetic bearings

    Energy Technology Data Exchange (ETDEWEB)

    Dias, D H N; Motta, E S; Sotelo, G G; De Andrade Jr, R, E-mail: ddias@coe.ufrj.b [Laboratorio de aplicacao de Supercondutores (LASUP), Universidade Federal do Rio de Janeiro, Rio de Janeiro (Brazil)

    2010-07-15

    For practical stability of a superconducting magnetic bearing the refrigeration process must occur with the superconductor in the presence of the magnetic field (a field cooling (FC) process). This paper presents an experimental validation of a method for simulating this system in the FC case. Measured and simulated results for a vertical force between a high temperature superconductor and a permanent magnet rail are compared. The main purpose of this work is to consolidate a simulation tool that can help in future projects on superconducting magnetic bearings for MagLev vehicles.

  6. Manufacturing and Testing of Accelerator Superconducting Magnets

    CERN Document Server

    Rossi, L

    2014-01-01

    Manufacturing of superconducting magnet for accelerators is a quite complex process that is not yet fully industrialized. In this paper, after a short history of the evolution of the magnet design and construction, we review the main characteristics of the accelerator magnets having an impact on the construction technology. We put in evidence how the design and component quality impact on construction and why the final product calls for a total-quality approach. LHC experience is widely discussed and main lessons are spelled out. Then the new Nb3Sn technology, under development for the next generation magnet construction, is outlined. Finally, we briefly review the testing procedure of accelerator superconducting magnets, underlining the close connection with the design validation and with the manufacturing process.

  7. Magnetic forces produced by rectangular permanent magnets in static microsystems.

    Science.gov (United States)

    Gassner, Anne-Laure; Abonnenc, Mélanie; Chen, Hong-Xu; Morandini, Jacques; Josserand, Jacques; Rossier, Joel S; Busnel, Jean-Marc; Girault, Hubert H

    2009-08-21

    Finite element numerical simulations were carried out in 2D geometries to map the magnetic field and force distribution produced by rectangular permanent magnets as a function of their size and position with respect to a microchannel. A single magnet, two magnets placed in attraction and in repulsion have been considered. The goal of this work is to show where magnetic beads are preferentially captured in a microchannel. These simulations were qualitatively corroborated, in one geometrical case, by microscopic visualizations of magnetic bead plug formation in a capillary. The results show that the number of plugs is configuration dependent with: in attraction, one plug in the middle of the magnets; in repulsion, two plugs near the edges of the magnets; and with a single magnet, a plug close to the center of the magnet. The geometry of the magnets (h and l are the height and length of the magnets respectively) and their relative spacing s has a significant impact on the magnetic flux density. Its value inside a magnet increases with the h/l ratio. Consequently, bar magnets produce larger and more uniform values than flat magnets. The l/s ratio also influences the magnetic force value in the microchannel, both increasing concomitantly for all the configurations. In addition, a zero force zone in the middle appears in the attraction configuration as the l/s ratio increases, while with a single magnet, the number of maxima and minima goes from one to two, producing two focusing zones instead of only one.

  8. Mixed-mu superconducting bearings

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Hinsdale, IL); Mulcahy, Thomas M. (Western Springs, IL)

    1998-01-01

    A mixed-mu superconducting bearing including a ferrite structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet structure. The ferrite structure is levitated by said stationary permanent magnet structure.

  9. Design of magnet arrays for permanent magnetic linear motor

    Institute of Scientific and Technical Information of China (English)

    Junhong MAO; Junhang LUO; Qiang JIANG; Youbai XIE

    2008-01-01

    An iron-less single side permanent magnetic linear motor structure is presented,and two-dimensional analytical formulae for its magnetic field are deduced to design the types of magnetic arrays,the thickness of permanent magnet,and the duty ratio of magnet arrays,etc.With certain design parameters,conventional arrays are used instead of a piecewise Halbach arrays,and the machining and assembling of the motor are greatly simplified.Calculation results coincide with that of ANSYS.The analytical formulae can be used in designing cored linear motors by modifying boundary conditions.A linear motor driven bench with a single degree of freedom is realized,where the travel reaches 27 mm,the mass of the moving parts is 1.4 kg,and the maximum acceleration iS 11.5 m/s2.

  10. TEM observation of sintered permanent magnetic strontium ferrite

    Institute of Scientific and Technical Information of China (English)

    YU Hongya; LIU Zhengyi; ZENG Dechang

    2006-01-01

    Sintered permanent magnetic strontium ferrites were studied using transmission electron microscopy to investigate the microstructure morphology and its correlation with the magnetic properties. The present study shows that the microstructure of sintered permanent magnetic strontium ferrites is an important parameter in determining their magnetic properties. The microstructure morphology in low-performance ferrite magnet is obviously different from high-performance one. Themagnetic properties of sintered permanent strontium ferrite depend strongly on the orientation degree of strong magnetic crystals. The presence of ferric oxidephase in ferrite magnet can deteriorate the magnetic properties. Moreover, proper quantities of crystal defects are beneficial to high coercive force due to the fixing of magnetic domain.

  11. Performance of repulsive type magnetic bearing system under nonuniform magnetization of permanent magnet

    OpenAIRE

    Ohji, T.; Mukhopadhyay, S. C.; Iwahara, Masayoshi; Yamada, Sotoshi

    2000-01-01

    Permanent magnet bearing system utilizes the repulsive forces between the stator and rotor permanent magnets (PM) for the levitation of the system and it results a simplified axial control scheme. A repulsive type magnetic bearing system based on the above principle was fabricated in our laboratory. Material characteristics and the configuration of the permanent magnets are the central component for this type of bearing system. Due to aging or as both the magnets are repelling each other, the...

  12. Technical issues of a high-T{sub c} superconducting bulk magnet

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Hiroyuki [Railway Technical Research Institute, 2-8-38 Hikari-cho, Kokubunji-shi, Tokyo 185-8540 (Japan). E-mail: fujimoto at rtri.or.jp

    2000-06-01

    Superconducting magnets made of high-T{sub c} superconductors are promising for industrial applications. It is well known that REBa{sub 2}Cu{sub 3}O{sub 7-}x superconductors prepared by melt processes have a high critical current density, J{sub c}, at 77 K and hig{sub h} magnetic fields. The materials are very promising for high magnetic field applications as a superconducting permanent/bulk magnet with liquid-nitrogen refrigeration. Light rare-earth (LRE) BaCuO bulks, compared with REBaCuO bulks, exhibit a larger J{sub c} in high magnetic fields and a much improved irreversibility field, H{sub irr}, at 77 K. In this study, we discuss technical issues of a high-T{sub c} superconducting bulk magnet, namely the aspects of the melt processing for bulk superconductors, their characteristic superconducting properties and mechanical properties, and trapped field properties of a superconducting bulk magnet. One of the possible applications is a superconducting bulk magnet for the magnetically levitated (Maglev) train in the future. (author)

  13. Design of permanent magnetic solenoids for REGAE

    Energy Technology Data Exchange (ETDEWEB)

    Gehrke, Tim

    2013-10-15

    The Relativistic Electron Gun for Atomic Exploration (REGAE) is a small linear accelerator at DESY in Hamburg, which produces short, low emittance electron bunches. It is originally designed and built for ultrafast electron diffraction (UED) within the framework of the Center for Free-Electron Laser Science (CFEL). Additionally, two future experiments are planned at REGAE. First, an external injection experiment for Laser Wakefield Acceleration (LWA) will be performed in the framework of the LAOLA collaboration (LAboratory fOr Laser- and beam-driven plasma Acceleration). This experiment will provide a method for the reconstruction of the electric field distribution within a linear plasma wakefield. Second, a time resolving high energy Transmission Electron Microscope (TEM) will be implemented. Among others it is designed to allow for living cell imaging. Both experiments require strong focusing magnets inside the new target chamber at REGAE. Permanent magnetic solenoids (PMSs) can provide the needed focusing strength due to their enormous surface current density, while having compact dimensions at the same time. The present thesis deals with the design of such strong focusing PMSs. Since short and strong solenoids, as required for REGAE, exhibit a distinct non-linearity, the induced emittance growth is relatively large. This emittance growth is investigated and minimized for different set-ups with axially and radially magnetized annular magnets. Furthermore a magnetic shielding is developed. Together with a mechanical lifting system it assures that magnetic leakage fields do not disturb experiments, where the PMSs are removed from the beamline.

  14. Effect of the magnet insertion on the performance of a superconducting pump

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, M., E-mail: mb12021@shibaura-it.ac.jp [Shibaura institute of Technology, Toyosu 3-7-5, Koto-ku, Tokyo 135-8548 (Japan); Inoue, K.; Koshizuka, N. [Shibaura institute of Technology, Toyosu 3-7-5, Koto-ku, Tokyo 135-8548 (Japan); Seki, H. [Awaji Materia, Kanda ogawacho 2-3-13, Chiyoda-ku, Tokyo 101-0045 (Japan); Murakami, M. [Shibaura institute of Technology, Toyosu 3-7-5, Koto-ku, Tokyo 135-8548 (Japan); Hiragushi, M. [Seikow Chemical Engineering and Machinery Ltd., Mizudocho 4-1-31, Amagasaki, Hyogo 661-0026 (Japan); Akiyama, S. [MAG-NEO, Suwa 1-4-23, Saitama Iwatsuki-ku, Saitama 339-0007 (Japan)

    2014-09-15

    Highlights: • Non-contact rotation is possible by using permanent magnets and superconductors. • It is necessary to rotate a superconducting pump stably for practical applications. • We placed a permanent magnet at the bottom to increase the stiffness. • Inserting permanent magnets was effective in increasing the rotational stability. - Abstract: For medical and semiconductor fabrication lines, an ultra-clean and impurity-free environment is often required. In order to realize such a contaminant-free environment, it is desirable to employ a completely non-contact rotating mechanism. Such a non-contact rotation is possible by using a combination of permanent magnets and bulk superconductors. Furthermore, it is necessary to rotate a superconducting pump stably for practical applications. With the aim of increasing the stiffness of rotational parts, we placed a permanent magnet at the bottom such that the superconductors are sandwiched by top and bottom magnets. It was confirmed that the stiffness could surely be improved by arranging lower permanent magnets.

  15. CERN tests largest superconducting solenoid magnet

    CERN Multimedia

    2006-01-01

    "CERN's Compacts Muon Solenoid (CMS) - the world's largest superconducting solenoid magnet - has reached full field in testing. The instrument is part of the proton-proton Large Hadron Collider (LHC) project, located in a giant subterranean chamber at Cessy on the Franco-Swiss border." (1 page)

  16. Permanent magnetic toroidal drive with half stator

    Directory of Open Access Journals (Sweden)

    Lizhong Xu

    2017-01-01

    Full Text Available A permanent magnetic toroidal drive with a half stator is proposed that avoids noise and mechanical vibrations. The effects of the system parameters on the output torque of the drive were investigated. A model machine was designed and produced. The output torque and speed fluctuation of the drive system were measured, and the calculated and measured output torque were compared. The tests demonstrated that the drive system could operate continuously without noise, and the system achieved a given speed ratio. The drive system had high load-carrying ability and a maximum output torque of 0.15 N m when certain parameter values were used.

  17. Recent Advances on Permanent Magnet Machines

    Institute of Scientific and Technical Information of China (English)

    诸自强

    2012-01-01

    This paper overviews advances on permanent magnet(PM) brushless machines over last 30 years,with particular reference to new and novel machine topologies.These include current states and trends for surface-mounted and interior PM machines,electrically and mechanically adjusted variable flux PM machines including memory machine,hybrid PM machines which uniquely integrate PM technology into induction machines,switched and synchronous reluctance machines and wound field machines,Halbach PM machines,dual-rotor PM machines,and magnetically geared PM machines,etc.The paper highlights their features and applications to various market sectors.

  18. Strong permanent magnet-assisted electromagnetic undulator

    Science.gov (United States)

    Halbach, Klaus

    1988-01-01

    This invention discloses an improved undulator comprising a plurality of electromagnet poles located along opposite sides of a particle beam axis with alternate north and south poles on each side of the beam to cause the beam to wiggle or undulate as it travels generally along the beam axis and permanent magnets spaced adjacent the electromagnetic poles on each side of the axis of said particle beam in an orientation sufficient to reduce the saturation of the electromagnet poles whereby the field strength of the electromagnet poles can be increased beyond the normal saturation levels of the electromagnetic poles.

  19. Superconductivity

    CERN Document Server

    Thomas, D B

    1974-01-01

    A short general review is presented of the progress made in applied superconductivity as a result of work performed in connection with the high-energy physics program in Europe. The phenomenon of superconductivity and properties of superconductors of Types I and II are outlined. The main body of the paper deals with the development of niobium-titanium superconducting magnets and of radio-frequency superconducting cavities and accelerating structures. Examples of applications in and for high-energy physics experiments are given, including the large superconducting magnet for the Big European Bubble Chamber, prototype synchrotron magnets for the Super Proton Synchrotron, superconducting d.c. beam line magnets, and superconducting RF cavities for use in various laboratories. (0 refs).

  20. Superconducting vortex pinning with artificial magnetic nanostructures.

    Energy Technology Data Exchange (ETDEWEB)

    Velez, M.; Martin, J. I.; Villegas, J. E.; Hoffmann, A.; Gonzalez, E. M.; Vicent, J. L.; Schuller, I. K.; Univ. de Oviedo-CINN; Unite Mixte de Physique CNRS/Thales; Univ. Paris-Sud; Univ.Complutense de Madrid; Univ. California at San Diego

    2008-11-01

    This review is dedicated to summarizing the recent research on vortex dynamics and pinning effects in superconducting films with artificial magnetic structures. The fabrication of hybrid superconducting/magnetic systems is presented together with the wide variety of properties that arise from the interaction between the superconducting vortex lattice and the artificial magnetic nanostructures. Specifically, we review the role that the most important parameters in the vortex dynamics of films with regular array of dots play. In particular, we discuss the phenomena that appear when the symmetry of a regular dot array is distorted from regularity towards complete disorder including rectangular, asymmetric, and aperiodic arrays. The interesting phenomena that appear include vortex-lattice reconfigurations, anisotropic dynamics, channeling, and guided motion as well as ratchet effects. The different regimes are summarized in a phase diagram indicating the transitions that take place as the characteristic distances of the array are modified respect to the superconducting coherence length. Future directions are sketched out indicating the vast open area of research in this field.

  1. Magnetic shielding for superconducting RF cavities

    Science.gov (United States)

    Masuzawa, M.; Terashima, A.; Tsuchiya, K.; Ueki, R.

    2017-03-01

    Magnetic shielding is a key technology for superconducting radio frequency (RF) cavities. There are basically two approaches for shielding: (1) surround the cavity of interest with high permeability material and divert magnetic flux around it (passive shielding); and (2) create a magnetic field using coils that cancels the ambient magnetic field in the area of interest (active shielding). The choice of approach depends on the magnitude of the ambient magnetic field, residual magnetic field tolerance, shape of the magnetic shield, usage, cost, etc. However, passive shielding is more commonly used for superconducting RF cavities. The issue with passive shielding is that as the volume to be shielded increases, the size of the shielding material increases, thereby leading to cost increase. A recent trend is to place a magnetic shield in a cryogenic environment inside a cryostat, very close to the cavities, reducing the size and volume of the magnetic shield. In this case, the shielding effectiveness at cryogenic temperatures becomes important. We measured the permeabilities of various shielding materials at both room temperature and cryogenic temperature (4 K) and studied shielding degradation at that cryogenic temperature.

  2. The advantages and challenges of superconducting magnets in particle therapy

    Science.gov (United States)

    Gerbershagen, Alexander; Calzolaio, Ciro; Meer, David; Sanfilippo, Stéphane; Schippers, Marco

    2016-08-01

    This paper provides an overview of the current developments in superconducting magnets for applications in proton and ion therapy. It summarizes the benefits and challenges regarding the utilization of these magnets in accelerating systems (e.g. superconducting cyclotrons) and gantries. The paper also provides examples of currently used superconducting particle therapy systems and proposed designs.

  3. Design of a superconducting magnet for CADS

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao-Liang; MA Li-Zhen; WU Vei; ZHENG Shi-Jun; DU Jun-Jie; HAN Shao-Fei; GUAN Ming-Zhi; HE Yuan

    2012-01-01

    This paper describes a superconducting magnet system for the China Accelerator Driven System (CADS).The magnetic field is provided hy one main,two bucking and four racetrack coils.The main coil produces a central field of up to 7 T and the effective length is more than 140 mm,the two bucking coils can shield most of the fringe field,and the four racetrack superconducting coils produce the steering magnetic field.Its leakage field in the cavity zone is about 5 × 10-5 T when the shielding material Niobium and cryogenic permalloy are used as the Meissner shielding and passive shielding respectively.The quench calculations and protection system are also discussed.

  4. A current limiter with superconducting coil for magnetic field shielding

    Science.gov (United States)

    Kaiho, K.; Yamaguchi, H.; Arai, K.; Umeda, M.; Yamaguchi, M.; Kataoka, T.

    2001-05-01

    The magnetic shield type superconducting fault current limiter have been built and successfully tested in ABB corporate research and so on. The device is essentially a transformer in which the secondary winding is the superconducting tube. However, due to the large AC losses and brittleness of the superconducting bulk tube, they have not yet entered market. A current limiter with superconducting coil for the magnetic field shielding is considered. By using the superconducting coil made by the multi-filamentary high Tc superconductor instead of the superconducting bulk tube, the AC losses can be reduced due to the reduced superconductor thickness and the brittleness of the bulk tube can be avoidable. This paper presents a preliminary consideration of the magnetic shield type superconducting fault current limiter with superconducting coil as secondary winding and their AC losses in comparison to that of superconducting bulk in 50 Hz operation.

  5. A superconducting large-angle magnetic suspension

    Science.gov (United States)

    Downer, James R.; Anastas, George V., Jr.; Bushko, Dariusz A.; Flynn, Frederick J.; Goldie, James H.; Gondhalekar, Vijay; Hawkey, Timothy J.; Hockney, Richard L.; Torti, Richard P.

    1992-01-01

    SatCon Technology Corporation has completed a Small Business Innovation Research (SBIR) Phase 2 program to develop a Superconducting Large-Angle Magnetic Suspension (LAMS) for the NASA Langley Research Center. The Superconducting LAMS was a hardware demonstration of the control technology required to develop an advanced momentum exchange effector. The Phase 2 research was directed toward the demonstration for the key technology required for the advanced concept CMG, the controller. The Phase 2 hardware consists of a superconducting solenoid ('source coils') suspended within an array of nonsuperconducting coils ('control coils'), a five-degree-of-freedom positioning sensing system, switching power amplifiers, and a digital control system. The results demonstrated the feasibility of suspending the source coil. Gimballing (pointing the axis of the source coil) was demonstrated over a limited range. With further development of the rotation sensing system, enhanced angular freedom should be possible.

  6. Correlations Between Magnetic Flux and Levitation Force of HTS Bulk Above a Permanent Magnet Guideway

    Science.gov (United States)

    Huang, Huan; Zheng, Jun; Zheng, Botian; Qian, Nan; Li, Haitao; Li, Jipeng; Deng, Zigang

    2017-06-01

    In order to clarify the correlations between magnetic flux and levitation force of the high-temperature superconducting (HTS) bulk, we measured the magnetic flux density on bottom and top surfaces of a bulk superconductor while vertically moving above a permanent magnet guideway (PMG). The levitation force of the bulk superconductor was measured simultaneously. In this study, the HTS bulk was moved down and up for three times between field-cooling position and working position above the PMG, followed by a relaxation measurement of 300 s at the minimum height position. During the whole processes, the magnetic flux density and levitation force of the bulk superconductor were recorded and collected by a multipoint magnetic field measurement platform and a self-developed maglev measurement system, respectively. The magnetic flux density on the bottom surface reflected the induced field in the superconductor bulk, while on the top, it reveals the penetrated magnetic flux. The results show that the magnetic flux density and levitation force of the bulk superconductor are in direct correlation from the viewpoint of inner supercurrent. In general, this work is instructive for understanding the connection of the magnetic flux density, the inner current density and the levitation behavior of HTS bulk employed in a maglev system. Meanwhile, this magnetic flux density measurement method has enriched present experimental evaluation methods of maglev system.

  7. Stability considerations of permanent magnet quadrupoles for CESR phase-III upgrade

    Directory of Open Access Journals (Sweden)

    W. Lou

    1998-06-01

    Full Text Available The Cornell electron storage ring (CESR phase-III upgrade plan includes very strong permanent magnet quadrupoles in front of the cryostat for the superconducting quadrupoles and physically as close as possible to the interaction point. Together with the superconducting quadrupoles, they provide tighter vertical focusing at the interaction point. The quadrupoles are built with neodymium iron boron (NdFeB material and operate inside the 15 kG solenoid field. Requirements on the field quality and stability of these quadrupoles are discussed and test results are presented.

  8. Adjustable permanent magnet assembly for NMR and MRI

    Science.gov (United States)

    Pines, Alexander; Paulsen, Jeffrey; Bouchard, Louis S; Blumich, Bernhard

    2013-10-29

    System and methods for designing and using single-sided magnet assemblies for magnetic resonance imaging (MRI) are disclosed. The single-sided magnet assemblies can include an array of permanent magnets disposed at selected positions. At least one of the permanent magnets can be configured to rotate about an axis of rotation in the range of at least +/-10 degrees and can include a magnetization having a vector component perpendicular to the axis of rotation. The single-sided magnet assemblies can further include a magnet frame that is configured to hold the permanent magnets in place while allowing the at least one of the permanent magnets to rotate about the axis of rotation.

  9. Magnetic Field Reentrant Superconductivity in Aluminum Nanowires

    Science.gov (United States)

    Bretz-Sullivan, Terence; Goldman, Allen

    Reentrance to the superconducting state through the application of a magnetic field to quasi-one dimensional superconductors driven resistive by current, is counter to the expected properties of superconductors. It was not until recently that a microscopic mechanism explaining the phenomenon was proposed in which superconductivity and phase slip driven dissipation coexist in a non-equilibrium state. Here we present additional results of magnetic field induced reentrance into the superconducting state in quasi-one-dimensional aluminum nanowires with an in-plane magnetic field both transverse to, and along the wire axis. The reentrant behavior is seen in the magnetic field dependence of the I-V characteristic and resistance vs. temperature, and in the wire's magnetoresistance at 450mK. This work was supported by DOE Basic Energy Sciences Grant DE-FG02-02ER46004. Samples were fabricated at the Minnesota Nanofabrication Center. Parts of this work were carried out in the University of Minnesota Characterization Facility, a member of the Materials Research Facilities Network (www.mrfn.org) funded via the NSF MRSEC program.

  10. Simulation on Magnetic Field Characteristics of Permanent-Magnet Seed-Metering Device

    OpenAIRE

    Wang, Jing; Hu, Jianping; Wang, Qirui; Wang, Xun

    2011-01-01

    Part 1: Simulation, Optimization, Monitoring and Control Technology; International audience; The cylindrical permanent magnet is the core part of the permanent-magnet seed-metering device, it can absorb single magnetic powder coated seed. The first, the magnetic induction intensity model of any point in the cylindrical permanent magnet external was established based on the equivalent current model of permanent magnet. The second, the mathematical formula was derived using the Biot-Savart law ...

  11. Forces between arrays of permanent magnets of basic geometric shapes

    DEFF Research Database (Denmark)

    Vokoun, D.; Beleggia, Marco

    2014-01-01

    We provide formulas for evaluating the magnetic force between two permanent magnet arrays, regularly spaced over a square lattice. We focus on three basic shapes of magnets constituting the arrays: cylinder, sphere and rectangular prism. When the lattice parameter is large, the expressions can...... be used to calculate the force between two single magnets in a computationally efficient way. The calculations are validated experimentally by measuring the attraction force between two single permanent magnets, where we demonstrate a fair agreement within about 15%....

  12. Advanced optimization of permanent magnet wigglers using a genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Hajima, Ryoichi [Univ. of Tokyo (Japan)

    1995-12-31

    In permanent magnet wigglers, magnetic imperfection of each magnet piece causes field error. This field error can be reduced or compensated by sorting magnet pieces in proper order. We showed a genetic algorithm has good property for this sorting scheme. In this paper, this optimization scheme is applied to the case of permanent magnets which have errors in the direction of field. The result shows the genetic algorithm is superior to other algorithms.

  13. Main Problems Faced by Chinese RE Permanent Magnetic Industry

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Under over 50 years' development, Chinese rare earth magnetic industry developed into the global AINiCo, ferrite permanent magnets and NdFeB magnets manufacturing center, and average consumption of magnets per person in China increased to 1.026 tons in 2003 from 0.217 ton in 1990. Although China has been the large producing country of rare earth permanent magnetic materials, to be the strongest one, there are many problems to solve. Main Problems Faced By Chinese Permanent Magnet Industry

  14. Application of permanent magnets in accelerators and electron storage rings

    Science.gov (United States)

    Halbach, K.

    1985-04-01

    The use of permanent-magnet systems in high-energy accelerators and as sources of synchrotron radiation in electron-storage rings is discussed in a review of recent experimental investigations. Consideration is given to the generic advantages of permanent magnets over electromagnets (higher field strength per magnet size) in small-scale configurations; the magnetic properties of some charge-sheet-equivalent-permanent-magnet materials (CSEMs); and the design of pure-CSEM and CSEM-Fe-hybrid multipole magnetic lenses, dipoles, and undulator/wiggler systems for use in free-electron lasers and the production of elliptically polarized synchrotron light. Drawings and diagrams are provided.

  15. Magnetostatic interactions and forces between cylindrical permanent magnets

    Energy Technology Data Exchange (ETDEWEB)

    Vokoun, David [Institute of Physics ASCR, v.v.i., Prague (Czech Republic)], E-mail: vokoun@fzu.cz; Beleggia, Marco [Institute for Materials Research, University of Leeds, Leeds LS2 9JT (United Kingdom); Heller, Ludek; Sittner, Petr [Institute of Physics ASCR, v.v.i., Prague (Czech Republic)

    2009-11-15

    Permanent magnets of various shapes are often utilized in magnetic actuators, sensors or releasable magnetic fasteners. Knowledge of the magnetic force is required to control devices reliably. Here, we introduce an analytical expression for calculating the attraction force between two cylindrical permanent magnets on the assumption of uniform magnetization. Although the assumption is not fulfilled exactly in cylindrical magnets, we obtain a very good agreement between the calculated and measured forces between two identical cylindrical magnets and within an array of NdFeB cylindrical magnets.

  16. Magnetostatic interactions and forces between cylindrical permanent magnets

    Science.gov (United States)

    Vokoun, David; Beleggia, Marco; Heller, Luděk; Šittner, Petr

    2009-11-01

    Permanent magnets of various shapes are often utilized in magnetic actuators, sensors or releasable magnetic fasteners. Knowledge of the magnetic force is required to control devices reliably. Here, we introduce an analytical expression for calculating the attraction force between two cylindrical permanent magnets on the assumption of uniform magnetization. Although the assumption is not fulfilled exactly in cylindrical magnets, we obtain a very good agreement between the calculated and measured forces between two identical cylindrical magnets and within an array of NdFeB cylindrical magnets.

  17. Magnetic Performance of a Nanocomposite Permanent Material

    Institute of Scientific and Technical Information of China (English)

    LIU Min; HAN Guang-Bing; GAO Ru-Wei

    2011-01-01

    @@ We build a sandwiched structure model in which the intergranular phase(IP) is homogeneously distributed between soft and hard magnetic grains, and gives a continuously anisotropic expression of the coupling part under the assumption that the IP weakens the intergrain exchange-coupling interaction.Based on the idea that the hardening mechanism is of the pinning type, we calculate the effect of the IP's thickness d and its anisotropy constant K1(0) on the intrinsic coercivity of a nanocomposite permanent material.The calculated results indicate that the domain wall goes twice through irreversible domain wall displacement during the process of moving from soft to hard magnetic grains, and the intrinsic coercivity increases with increasing d, but decreases with increasing K1(0).When d and K1(0) take 2nm and 0.7Kh, respectively, with Kh being the anisotropy constant in the inner part of the hard magnetic grain, the calculated intrinsic coercivity is in good agreement with the experimental data.

  18. Distributed generation induction and permanent magnet generators

    CERN Document Server

    Lai, L

    2007-01-01

    Distributed power generation is a technology that could help to enable efficient, renewable energy production both in the developed and developing world. It includes all use of small electric power generators, whether located on the utility system, at the site of a utility customer, or at an isolated site not connected to the power grid. Induction generators (IGs) are the cheapest and most commonly used technology, compatible with renewable energy resources. Permanent magnet (PM) generators have traditionally been avoided due to high fabrication costs; however, compared with IGs they are more reliable and productive. Distributed Generation thoroughly examines the principles, possibilities and limitations of creating energy with both IGs and PM generators. It takes an electrical engineering approach in the analysis and testing of these generators, and includes diagrams and extensive case study examples o better demonstrate how the integration of energy sources can be accomplished. The book also provides the ...

  19. Rotor for a line start permanent magnet machine

    Energy Technology Data Exchange (ETDEWEB)

    Melfi, Mike; Schiferl, Rich; Umans, Stephen

    2017-07-11

    A rotor comprises laminations with a plurality of rotor bar slots with an asymmetric arrangement about the rotor. The laminations also have magnet slots equiangularly spaced about the rotor. The magnet slots extend near to the rotor outer diameter and have permanent magnets disposed in the magnet slots creating magnetic poles. The magnet slots may be formed longer than the permanent magnets disposed in the magnets slots and define one or more magnet slot apertures. The permanent magnets define a number of poles and a pole pitch. The rotor bar slots are spaced from adjacent magnet slots by a distance that is at least 4% of the pole pitch. Conductive material is disposed in the rotor bar slots, and in some embodiments, may be disposed in the magnet slot apertures.

  20. Trapped magnetic field of a superconducting bulk magnet in high- T sub c RE-Ba-Cu-O

    CERN Document Server

    Fujimoto, H; Higuchi, T; Nakamura, Y; Kamijo, H; Nagashima, K; Murakami, M

    1999-01-01

    Superconducting magnets made of high-T sub c superconductors are promising for industrial applications. It is well known that REBa sub 2 Cu sub 3 O sub 7 sub - sub x and LRE (light rare-earth) Ba sub 2 Cu sub 3 O sub 7 sub - sub x superconductors prepared by melt processes have a high critical current density, J sub c , at 77 K and high magnetic fields. Therefore, the materials are very prospective for high magnetic field application as a superconducting permanent/bulk magnet with liquid-nitrogen refrigeration. LREBaCuO bulks, compared with REBaCuO bulks, exhibit a larger J sub c in high magnetic fields and a much improved irreversibility field, H sub i sub r sub r , at 77 K. In this study, we discuss the possibility and trapped field properties of a superconducting bulk magnet, as well as the melt processing for bulk superconductors and their characteristic superconducting properties. One of the applications is a superconducting magnet for the future magnetically levitated (Maglev) train.

  1. Trapped magnetic field of a superconducting bulk magnet in high- T{sub c} RE-Ba-Cu-O

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Hiroyuki; Yoo, Sang Im; Higuchi, Takamitsu; Nakamura, Yuichi; Kamijo, Hiroki; Nagashima, Ken [Railway Technical Research Institute, Tokyo (Japan); Murakami, Masato [International Superconductivity Technology Center, Tokyo (Japan)

    1999-07-01

    Superconducting magnets made of high-T{sub c} superconductors are promising for industrial applications. It is well known that REBa{sub 2}Cu{sub 3}O{sub 7-x} and LRE (light rare-earth) Ba{sub 2}Cu{sub 3}O{sub 7-x} superconductors prepared by melt processes have a high critical current density, J{sub c}, at 77 K and high magnetic fields. Therefore, the materials are very prospective for high magnetic field application as a superconducting permanent/bulk magnet with liquid-nitrogen refrigeration. LREBaCuO bulks, compared with REBaCuO bulks, exhibit a larger J{sub c} in high magnetic fields and a much improved irreversibility field, H{sub irr}, at 77 K. In this study, we discuss the possibility and trapped field properties of a superconducting bulk magnet, as well as the melt processing for bulk superconductors and their characteristic superconducting properties. One of the applications is a superconducting magnet for the future magnetically levitated (Maglev) train.

  2. High-temperature superconducting undulator magnets

    Science.gov (United States)

    Kesgin, Ibrahim; Kasa, Matthew; Ivanyushenkov, Yury; Welp, Ulrich

    2017-04-01

    This paper presents test results on a prototype superconducting undulator magnet fabricated using 15% Zr-doped rare-earth barium copper oxide high temperature superconducting (HTS) tapes. On an 11-pole magnet we demonstrate an engineering current density, J e, of more than 2.1 kA mm‑2 at 4.2 K, a value that is 40% higher than reached in comparable devices wound with NbTi-wire, which is used in all currently operating superconducting undulators. A novel winding scheme enabling the continuous winding of tape-shaped conductors into the intricate undulator magnets as well as a partial interlayer insulation procedure were essential in reaching this advance in performance. Currently, there are rapid advances in the performance of HTS; therefore, achieving even higher current densities in an undulator structure or/and operating it at temperatures higher than 4.2 K will be possible, which would substantially simplify the cryogenic design and reduce overall costs.

  3. Superior homogeneity of trapped magnetic field in superconducting MgB2 bulk magnets

    Science.gov (United States)

    Ishihara, A.; Akasaka, T.; Tomita, M.; Kishio, K.

    2017-03-01

    Homogeneity of trapped magnetic field in radial and circumferential directions of high temperature superconducting bulk magnets, MgB2 (T c ˜38.3 K) and YBa2Cu3O y (T c ˜91.5 K), have been measured. In polycrystalline MgB2 bulks, the circularity of trapped magnetic field in a cylindrical disk is over 97% at 20-32.5 K, while that of YBa2Cu3O y was ˜87% at 77 K. Magnetic field distribution of MgB2 bulk was satisfactorily homogeneous and these measurements suggest MgB2 bulks with highly efficient cryocoolers should be very useful for novel high field permanent magnet applications.

  4. Analysis of Permanent Magnets Bearings in Flywheel Rotor Designs

    Directory of Open Access Journals (Sweden)

    Prince Owusu-Ansah

    2016-04-01

    Full Text Available This paper discusses analysis of permanent magnet bearing in flywheel rotor designs. This work focuses on the advantages of using permanent magnets in flywheel rotor design as compared to that of the convectional mode of levitating the rotor position. The use of permanent magnet in magnetic bearing design to generate the steady state position of the magnetic field results in less variation of the force exerted on the rotor when it deviates from the nominal position than when an electrical coil is used for the same purpose. Theresults of the analysis shows that the magnetic bearing dynamics as well as its load carryingcapacity improves when the rotor is offset from its central position. The use of permanent magnet compared to current-carrying coils results in smaller overall size of magnetic bearing leading to a more compact system design resulting in improved rotordynamic performance

  5. Concepts of flywheels for energy storage using autostable high-T(sub c) superconducting magnetic bearings

    Science.gov (United States)

    Bornemann, Hans J.; Zabka, R.; Boegler, P.; Urban, C.; Rietschel, H.

    1994-01-01

    A flywheel for energy storage using autostable high-T(sub c) superconducting magnetic bearings has been built. The rotating disk has a total weight of 2.8 kg. The maximum speed is 9240 rpm. A process that allows accelerated, reliable and reproducible production of melt-textured superconducting material used for the bearings has been developed. In order to define optimum configurations for radial and axial bearings, interaction forces in three dimensions and vertical and horizontal stiffness have been measured between superconductors and permanent magnets in different geometries and various shapes. Static as well as dynamic measurements have been performed. Results are being reported and compared to theoretical models.

  6. Levitation performance of the magnetized bulk high- Tc superconducting magnet with different trapped fields

    Science.gov (United States)

    Liu, W.; Wang, J. S.; Liao, X. L.; Zheng, S. J.; Ma, G. T.; Zheng, J.; Wang, S. Y.

    2011-03-01

    To a high- Tc superconducting (HTS) maglev system which needs large levitation force density, the magnetized bulk high- Tc superconductor (HTSC) magnet is a good candidate because it can supply additional repulsive or attractive force above a permanent magnet guideway (PMG). Because the induced supercurrent within a magnetized bulk HTSC is the key parameter for the levitation performance, and it is sensitive to the magnetizing process and field, so the magnetized bulk HTSC magnets with different magnetizing processes had various levitation performances, not only the force magnitude, but also its force relaxation characteristics. Furthermore, the distribution and configuration of the induced supercurrent are also important factor to decide the levitation performance, especially the force relaxation characteristics. This article experimentally investigates the influences of different magnetizing processes and trapped fields on the levitation performance of a magnetized bulk HTSC magnet with smaller size than the magnetic inter-pole distance of PMG, and the obtained results are qualitatively analyzed by the Critical State Model. The test results and analyses of this article are useful for the suitable choice and optimal design of magnetized bulk HTSC magnets.

  7. Permanent magnet system to guide superparamagnetic particles

    Science.gov (United States)

    Baun, Olga; Blümler, Peter

    2017-10-01

    A new concept of using permanent magnet systems for guiding superparamagnetic nano-particles on arbitrary trajectories over a large volume is proposed. The basic idea is to use one magnet system which provides a strong, homogeneous, dipolar magnetic field to magnetize and orient the particles, and a second constantly graded, quadrupolar field, superimposed on the first, to generate a force on the oriented particles. In this configuration the motion of the particles is driven predominantly by the component of the gradient field which is parallel to the direction of the homogeneous field. As a result, particles are guided with constant force and in a single direction over the entire volume. The direction is simply adjusted by varying the angle between quadrupole and dipole. Since a single gradient is impossible due to Gauß' law, the other gradient component of the quadrupole determines the angular deviation of the force. However, the latter can be neglected if the homogeneous field is stronger than the local contribution of the quadrupole field. A possible realization of this idea is a coaxial arrangement of two Halbach cylinders. A dipole to evenly magnetize and orient the particles, and a quadrupole to generate the force. The local force was calculated analytically for this particular geometry and the directional limits were analyzed and discussed. A simple prototype was constructed to demonstrate the principle in two dimensions on several nano-particles of different size, which were moved along a rough square by manual adjustment of the force angle. The observed velocities of superparamagnetic particles in this prototype were always several orders of magnitude higher than the theoretically expected value. This discrepancy is attributed to the observed formation of long particle chains as a result of their polarization by the homogeneous field. The magnetic moment of such a chain is then the combination of that of its constituents, while its hydrodynamic radius

  8. SMES: Superconducting Magnetic Energy Storage

    Science.gov (United States)

    1993-01-01

    power to magnetically levitated trains . A very small size SMES can poten- tially be part of a hybrid propul- sion system on large transit buses...potentially lead to the increased use of urban transit, maglev and electric vehicles, thereby re- ducing air pollution. Illustration courtesy of

  9. Permanent magnet quadrupoles for the CLIC Drive Beam decelerator

    CERN Document Server

    Shepherd, Ben; Collomb, Norbert

    2012-01-01

    STFC in collaboration with CERN has developed a new type of adjustable permanent magnet based quadrupole for the CLIC Drive Beam Decelerator. It uses vertical movement of the permanent magnets to achieve an integrated gradient range of 3.6-14.6T, which will allow it to be used for the first 60% of the decelerator line. Construction of a prototype of this magnet has begun; following this, it will be measured magnetically at CERN and Daresbury Laboratory.

  10. A Novel Open-winding Permanent Magnetic Starter-generator

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In order to overcome the difficulties of voltage regulation, narrow speed range and low power factor of the traditional permanent magnetic generator applied in the vehicles, a novel open-winding permanent magnetic starter-generator (see Fig.l) is used to widen the speed range and improve the efficiency in the generation mode.

  11. Superconducting Sphere in an External Magnetic Field Revisited

    Science.gov (United States)

    Sazonov, Sergey N.

    2013-01-01

    The purpose of this article is to give the intelligible procedure for undergraduate students to grasp proof of the fact that the magnetic field outside the hollow superconducting sphere (superconducting shell) coincides with the field of a point magnetic dipole both when an uniform external magnetic field is applied as when a ferromagnetic sphere…

  12. Torus CLAS12-Superconducting Magnet Quench Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kashikhin, V S; Elouadhiri, L; Ghoshal, P K; Kashy, D; Makarov, A; Pastor, O; Quettier, L; Velev, G; Wiseman, M

    2014-06-01

    The JLAB Torus magnet system consists of six superconducting trapezoidal racetrack-type coils assembled in a toroidal configuration. These coils are wound with SSC-36 Nb-Ti superconductor and have the peak magnetic field of 3.6 T. The first coil manufacturing based on the JLAB design began at FNAL. The large magnet system dimensions (8 m diameter and 14 MJ of stored energy) dictate the need for quench protection. Each coil is placed in an aluminum case mounted inside a cryostat and cooled by 4.6 K supercritical helium gas flowing through a copper tube attached to the coil ID. The large coil dimensions and small cryostat thickness drove the design to challenging technical solutions, suggesting that Lorentz forces due to transport currents and eddy currents during quench and various failure scenarios are analyzed. The paper covers the magnet system quench analysis using the OPERA3d Quench code.

  13. Superconducting magnets for the LHC main lattice

    CERN Document Server

    Rossi, L

    2004-01-01

    The main lattice of the Large Hadron Collider (LHC) will employ about 1600 main magnets and more than 4000 corrector magnets. All superconducting and working in pressurized superfluid helium bath, these impressive line of magnets will fill more than 20 km of the underground tunnel. With almost 70 main dipoles already delivered and 10 main quadrupoles almost completed, we passed the 5% of the production and now all manufacturers have fully entered into series production. In this paper the most critical issues encountered in the ramping up in such a real large scale fabrication will be addressed: uniformity of the coil size and of prestress, special welding technique, tolerances on curvature (dipoles) or straightness (quadrupoles) and of the cold mass extremities, harmonic content and, most important, the integrated field uniformity among magnets. The actual limits and the solution for improvements will be discussed. Finally a realistic schedule based on actual achievements is presented.

  14. Permanent magnets in accelerators can save energy, space and cost

    DEFF Research Database (Denmark)

    Bødker, F.; Baandrup, L.O.; Hauge, N.

    2013-01-01

    Green Magnet® technology with close to zero electrical power consumption without the need for cooling water saves costs, space and natural resources. A compact dipole based on permanent magnets has been developed at Danfysik in collaboration with Sintex and Aarhus University. Our first Green Magnet...... coils permit fine tuning of the magnetic field. Magnetic field measurements and thermal stability tests show that the Green Magnet fully meets the magnetic requirements of the previously used electromagnet. A permanent 30° bending dipole is currently being development to demonstrate the use of Green...

  15. Anisotropy Effect on Levitation Performance of Bulk High-Tc Superconductors Above a Permanent Magnet Guideway

    Science.gov (United States)

    Zheng, Jun; Liao, Xinglin; Jing, Hailian; Lin, Qunxu; Ma, Guangtong; Yen, Fei; Wang, Suyu; Wang, Jiasu

    The anisotropy properties of bulk high-temperature superconductors (HTSCs) are taken into consideration for the application of high-temperature superconducting (HTS) Maglev systems, which are especially based on the different flux-trapping capabilities as well as critical current density, Jc, values between the growth section boundary (GSB) and the growth sections (GS) in bulk superconductors. By adjusting the angle between the GSB of bulk HTSCs and the strongest magnetic field position of a permanent magnet guideway (PMG), the levitation force and its relaxation processes are compared at different field-cooling conditions. Experimental results show that the levitation capability and the suppression of levitation force decay can be enhanced by optimizing the GS/GSB alignment of every bulk HTSC above the PMG. Meanwhile, our conclusions may provide references to other HTS maglev systems with small levitation gaps, i.e., superconducting magnetic bearings.

  16. Low Loss and Magnetic Field-tuned Superconducting THz Metamaterial

    CERN Document Server

    Jin, Biaobing; Engelbrecht, Sebastian; Pimenov, Andrei; Wu, Jingbo; Xu, Qinyin; Cao, Chunhai; Chen, Jian; Xu, Weiwei; Kang, Lin; Wu, Peiheng

    2010-01-01

    Superconducting terahertz (THz) metamaterial (MM) made from superconducting Nb film has been investigated using a continuous-wave THz spectroscopy with a superconducting split-coil magnet. The obtained quality factors of the resonant modes at 132 GHz and 450 GHz are about three times as large as those calculated for a metal THz MM operating at 1 K, which indicates that superconducting THz MM is a very nice candidate to achieve low loss performance. In addition, the magnetic field-tuning on superconducting THz MM is also demonstrated, which offer an alternative tuning method apart from the existed electric, optical and thermal tuning on THz MM.

  17. Ruthenocuprats: Playground for superconductivity and magnetism

    Directory of Open Access Journals (Sweden)

    A. Khajehnezhad

    2008-03-01

    Full Text Available  We have compared the structural, electrical, and magnetic properties of Ru(Gd1.5-xPrxCe0.5Sr2Cu2O10-δ (Pr/Gd samples with x = 0.0, 0.01, 0.03, 0.033, 0.035, 0.04, 0.05, 0.06, 0.1 and RuGd1.5(Ce0.5-xPrxSr2Cu2O10-δ (Pr/Ce samples with x = 0.0, 0.01, 0.03, 0.05, 0.08, 0.1, 0.15, 0.2 prepared by the standard solid-state reaction technique with RuGd1.5(GdxCe0.5-x Sr2Cu2O10-δ (Gd/Ce samples with x= 0.0, 0.1, 0.2, 0.3. We obtained the XRD patterns for different samples with various x. The lattice parameters versus x for different substitutions have been obtained from the Rietveld analysis. To determine how the magnetic and superconducting properties of these layered cuprate systems can be affected by Pr substitution, the resistivity and magnetoresistivity, with Hext varying from 0.0 to 15 kOe, have been measured at various temperatures. Superconducting transition temperature Tc and magnetic transition Tirr have been obtained through resistivity and ac susceptibility measurements. The Tc suppression due to Gd/Ce, Pr/Gd and Pr/Ce substitutions show competition between pair breaking by magnetic impurity, hole doping due to different ionic valences, difference in ionic radii, and oxygen stoichiometry. Pr/Gd substitution suppresses superconductivity more rapidly than for Pr/Ce or Gd/Ce, showing that the effect of hole doping and pair breaking by magnetic impurity is stronger than the difference in ionic radii. In Pr/Gd substitution, the small difference between the ionic radii of Pr and Gd, and absorption of more oxygen due to higher valence of Pr with respect to Gd, decrease the mean Ru-Ru distance, and as a result, the magnetic exchange interaction becomes stronger with the increase of x. But, Pr/Ce and Gd/Ce substitutions have a reverse effect. The magnetic properties such as Hc, obtained through magnetization measurements versus applied magnetic field isoterm at 77K and room temperatures, become stronger with x in Pr/Gd and weaker with x in Pr

  18. Novel Approach to Linear Accelerator Superconducting Magnet System

    Energy Technology Data Exchange (ETDEWEB)

    Kashikhin, Vladimir; /Fermilab

    2011-11-28

    Superconducting Linear Accelerators include a superconducting magnet system for particle beam transportation that provides the beam focusing and steering. This system consists of a large number of quadrupole magnets and dipole correctors mounted inside or between cryomodules with SCRF cavities. Each magnet has current leads and powered from its own power supply. The paper proposes a novel approach to magnet powering based on using superconducting persistent current switches. A group of magnets is powered from the same power supply through the common, for the group of cryomodules, electrical bus and pair of current leads. Superconducting switches direct the current to the chosen magnet and close the circuit providing the magnet operation in a persistent current mode. Two persistent current switches were fabricated and tested. In the paper also presented the results of magnetic field simulations, decay time constants analysis, and a way of improving quadrupole magnetic center stability. Such approach substantially reduces the magnet system cost and increases the reliability.

  19. SUPERCONDUCTING HELICAL SNAKE MAGNET FOR THE AGS.

    Energy Technology Data Exchange (ETDEWEB)

    WILLEN, E.; ANERELLA, M.; ESCALLIER, G.; GANETIS, G.; GHOSH, A.; GUPTA, R.; HARRISON, M.; JAIN, A.; LUCCIO, A.; MACKAY, W.; MARONE, A.; MURATORE, J.; PLATE, S.; ET AL.

    2005-05-16

    A superconducting helical magnet has been built for polarized proton acceleration in the Brookhaven AGS. This ''partial Snake'' magnet will help to reduce the loss of polarization of the beam due to machine resonances. It is a 3 T magnet some 1940 mm in magnetic length in which the dipole field rotates with a pitch of 0.2053 degrees/mm for 1154 mm in the center and a pitch of 0.3920 degrees/mm for 393 mm in each end. The coil cross-section is made of two slotted cylinders containing superconductor. In order to minimize residual offsets and deflections of the beam on its orbit through the Snake, a careful balancing of the coil parameters was necessary. In addition to the main helical coils, a solenoid winding was built on the cold bore tube inside the main coils to compensate for the axial component of the field that is experienced by the beam when it is off-axis in this helical magnet. Also, two dipole corrector magnets were placed on the same tube with the solenoid. A low heat leak cryostat was built so that the magnet can operate in the AGS cooled by several cryocoolers. The design, construction and performance of this unique magnet will be summarized.

  20. Permanent magnets in accelerators can save energy, space and cost

    DEFF Research Database (Denmark)

    Bødker, F.; Baandrup, L.O.; Hauge, N.

    2013-01-01

    Green Magnet® technology with close to zero electrical power consumption without the need for cooling water saves costs, space and natural resources. A compact dipole based on permanent magnets has been developed at Danfysik in collaboration with Sintex and Aarhus University. Our first Green Magnet...... Magnet technology in other accelerator systems like synchrotron light sources and transfer beamlines....

  1. Relativistic Engine Based on a Permanent Magnet

    CERN Document Server

    Tuval, Miron

    2015-01-01

    Newton's third law states that any action is countered by a reaction of equal magnitude but opposite direction. The total force in a system not affected by external forces is thus zero. However, according to the principles of relativity a signal can not propagate at speeds exceeding the speed of light. Hence the action cannot be generated at the same time with the reaction due to the relativity of simultaneity, thus the total force cannot be null at a given time. The following is a continuation of a previous paper \\cite{Tuval} in which we analyzed the relativistic effects in a system of two current conducting loops. Here the analysis is repeated but one of the loops is replaced by a permanent magnet. It should be emphasized that although momentum can be created in the {\\bf material} part of the system as described in the following work momentum can not be created in the {\\bf physical} system, hence for any momentum that is acquired by matter an opposite momentum is attributed to the electromagnetic field.

  2. A Novel Permanent Magnetic Angular Acceleration Sensor

    Directory of Open Access Journals (Sweden)

    Hao Zhao

    2015-07-01

    Full Text Available Angular acceleration is an important parameter for status monitoring and fault diagnosis of rotary machinery. Therefore, we developed a novel permanent magnetic angular acceleration sensor, which is without rotation angle limitations and could directly measure the instantaneous angular acceleration of the rotating system. The sensor rotor only needs to be coaxially connected with the rotating system, which enables convenient sensor installation. For the cup structure of the sensor rotor, it has a relatively small rotational inertia. Due to the unique mechanical structure of the sensor, the output signal of the sensor can be directed without a slip ring, which avoids signal weakening effect. In this paper, the operating principle of the sensor is described, and simulated using finite element method. The sensitivity of the sensor is calibrated by torsional pendulum and angle sensor, yielding an experimental result of about 0.88 mV/(rad·s−2. Finally, the angular acceleration of the actual rotating system has been tested, using both a single-phase asynchronous motor and a step motor. Experimental result confirms the operating principle of the sensor and indicates that the sensor has good practicability.

  3. From permanent magnets to rechargeable hydride electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Willems, J.J.G.; Buschow, K.H.J.

    1987-02-15

    A brief historical survey is given of how the study of coercitivity mechanisms in SmCo/sub 5/ permanent-magnet materials eventually led to the discovery of the favourable hydrogen sorption properties of the compound LaNi/sub 5/. It is shown how continued research by many investigators dealing with a variety of different physical and chemical properties has resulted in an advanced understanding of some of the principles that govern hydrogen absorption and which are responsible for the changes in physical properties that accompany it. The problems associated with various applications of LaNi/sub 5/-based hydrogen-storage materials are also briefly discussed. A large part of this paper is devoted to the applicability of LaNi/sub 5/-type materials in batteries. Research in this area has resulted in the development of a new type of rechargeable battery: the nickel-hydride cell. This battery can be charged and discharged at high rates and is relatively insensitive to overcharging and overdischarging. Special attention is given to the nature of the electrode degradation process and the effect of composition variations in LaNi/sub 5/-related materials on the lifetime of the corresponding hydride electrodes when subjected to severe electrochemical charge-discharge cycles.

  4. A Novel Permanent Magnetic Angular Acceleration Sensor.

    Science.gov (United States)

    Zhao, Hao; Feng, Hao

    2015-07-03

    Angular acceleration is an important parameter for status monitoring and fault diagnosis of rotary machinery. Therefore, we developed a novel permanent magnetic angular acceleration sensor, which is without rotation angle limitations and could directly measure the instantaneous angular acceleration of the rotating system. The sensor rotor only needs to be coaxially connected with the rotating system, which enables convenient sensor installation. For the cup structure of the sensor rotor, it has a relatively small rotational inertia. Due to the unique mechanical structure of the sensor, the output signal of the sensor can be directed without a slip ring, which avoids signal weakening effect. In this paper, the operating principle of the sensor is described, and simulated using finite element method. The sensitivity of the sensor is calibrated by torsional pendulum and angle sensor, yielding an experimental result of about 0.88 mV/(rad·s(-2)). Finally, the angular acceleration of the actual rotating system has been tested, using both a single-phase asynchronous motor and a step motor. Experimental result confirms the operating principle of the sensor and indicates that the sensor has good practicability.

  5. Efficient IEC permanent magnet motor; Effizienter IEC Permanent-Magnetmotor (3 kW) - Jahresbericht 2007

    Energy Technology Data Exchange (ETDEWEB)

    Lindegger, M.; Salathe, D.; Biner, H. P.; Evequoz, B.

    2007-07-01

    This annual report for the Swiss Federal Office of Energy (SFOE) takes a look at the work done at the Swiss Universities of Applied Sciences in Lucerne and Valais and the Circle Motor Company in 2007 on the economic feasibility, efficiency and limitations of permanent magnet motors. The higher efficiency of permanent-magnet motors in comparison with asynchronous motors for powers of over 100 kW is noted. Work done on the integration of a 3 kW permanent-magnet motor in an IEC-Standard housing is described. The construction of an efficient permanent magnet motor drive and its testing at the Valais University of Applied Sciences is discussed. The high efficiencies obtained both for the motor and its drive electronics are noted.

  6. Research on Magnetic Model of Low Resistance Permanent Magnet Pipe Belt Conveyor

    Science.gov (United States)

    Wang, Shuang; Li, De-yong; Guo, Yong-cun

    2016-09-01

    In view of the feasibility of a new type of low resistance permanent magnet pipe belt conveyor, the magnetic properties of the permanent magnet magnetic pipe conveyor belt system are studied. Based on the molecular current hypothesis, the mathematical model of the three dimensional radial magnetic force of permanent magnet pipe conveyor belt was established. The mathematical model of the radial magnetic force was derived, and the influence factors of the radial magnetic force were derived. The finite element simulation of permanent magnet-magnetic pipe conveyor belt magnetic model was carried out, then the magnetic flux density distribution chart under the conditions of different remanence intensity of different permanent magnet and different lengths of the permanent magnets (along the transport direction) were obtained. The simulation results are consistent with the calculation results, which shows that the permanent magnet pipe belt conveyor is feasible. Under certain conditions, the radial magnetic force has nonlinear increase relations with residual magnetism of permanent magnet and the length of the permanent magnet (along the transport direction).

  7. High temperature superconducting axial field magnetic coupler: realization and test

    Science.gov (United States)

    Belguerras, L.; Mezani, S.; Lubin, T.; Lévêque, J.; Rezzoug, A.

    2015-09-01

    Contactless torque transmission through a large airgap is required in some industrial applications in which hermetic isolation is necessary. This torque transmission usually uses magnetic couplers, whose dimension strongly depends on the airgap flux density. The use of high temperature superconducting (HTS) coils to create a strong magnetic field may constitute a solution to reduce the size of the coupler. It is also possible to use this coupler to replace a torque tube in transmitting the torque produced by a HTS motor to its load. This paper presents the detailed construction and tests of an axial field HTS magnetic coupler. Pancake coils have been manufactured from BSCCO tape and used in one rotor of the coupler. The second rotor is mainly composed of NdFeB permanent magnets. Several tests have been carried out showing that the constructed coupler is working properly. A 3D finite element (FE) model of the studied coupler has been developed. Airgap magnetic field and torque measurements have been carried out and compared to the FE results. It has been shown that the measured and the computed quantities are in satisfactory agreement.

  8. Critical Magnetic Field Determination of Superconducting Materials

    Energy Technology Data Exchange (ETDEWEB)

    Canabal, A.; Tajima, T.; /Los Alamos; Dolgashev, V.A.; Tantawi, S.G.; /SLAC; Yamamoto, T.; /Tsukuba, Natl. Res. Lab. Metrol.

    2011-11-04

    Superconducting RF technology is becoming more and more important. With some recent cavity test results showing close to or even higher than the critical magnetic field of 170-180 mT that had been considered a limit, it is very important to develop a way to correctly measure the critical magnetic field (H{sup RF}{sub c}) of superconductors in the RF regime. Using a 11.4 GHz, 50-MW, <1 {mu}s, pulsed power source and a TE013-like mode copper cavity, we have been measuring critical magnetic fields of superconductors for accelerator cavity applications. This device can eliminate both thermal and field emission effects due to a short pulse and no electric field at the sample surface. A model of the system is presented in this paper along with a discussion of preliminary experimental data.

  9. Transformer current sensor for superconducting magnetic coils

    Science.gov (United States)

    Shen, Stewart S.; Wilson, C. Thomas

    1988-01-01

    A transformer current sensor having primary turns carrying a primary current for a superconducting coil and secondary turns only partially arranged within the primary turns. The secondary turns include an active winding disposed within the primary turns and a dummy winding which is not disposed in the primary turns and so does not experience a magnetic field due to a flow of current in the primary turns. The active and dummy windings are wound in opposite directions or connected in series-bucking relationship, and are exposed to the same ambient magnetic field. Voltages which might otherwise develop in the active and dummy windings due to ambient magnetic fields thus cancel out. The resultant voltage is purely indicative of the rate of change of current flowing in the primary turns.

  10. Globally Optimal Segmentation of Permanent-Magnet Systems

    DEFF Research Database (Denmark)

    Insinga, Andrea Roberto; Bjørk, Rasmus; Smith, Anders

    2016-01-01

    Permanent-magnet systems are widely used for generation of magnetic fields with specific properties. The reciprocity theorem, an energy-equivalence principle in magnetostatics, can be employed to calculate the optimal remanent flux density of the permanent-magnet system, given any objective...... functional that is linear in the magnetic field. This approach, however, yields a continuously varying remanent flux density, while in practical applications, magnetic assemblies are realized by combining uniformly magnetized segments. The problem of determining the optimal shape of each of these segments...

  11. Permanent magnet microstructures using dry-pressed magnetic powders

    Science.gov (United States)

    Oniku, Ololade D.; Bowers, Benjamin J.; Shetye, Sheetal B.; Wang, Naigang; Arnold, David P.

    2013-07-01

    This paper presents microfabrication methods and performance analysis of bonded powder permanent magnets targeting dimensions ranging from 10 µm to greater than 1 mm. For the structural definition and pattern transfer, a doctor blade technique is used to dry press magnetic powders into pre-etched cavities in a silicon substrate. The powders are secured in the cavities by one of the three methods: capping with a polyimide layer, thermal reflow of intermixed wax-binder particles, or conformal coating with a vapor-deposited parylene-C film. A systematic study of micromagnets fabricated using these methods is conducted using three different types of magnetic powders: 50 µm Nd-Fe-B, 5 µm Nd-Fe-B and 1 µm barium ferrite powder. The isotropic magnets are shown to exhibit intrinsic coercivities (Hci) as high as 720 kA m-1, remanences (Br) up to 0.5 T and maximum energy products (BHmax) up to 30 kJ m-3, depending on the magnetic powder used. Process compatibility experiments demonstrate the potential for the magnets to withstand typical microfabrication chemical exposure and thermal cycles, thereby facilitating their integration into more complex process flows. The remanences are also characterized at elevated temperatures to determine thermal sensitivities and maximum operating temperature ranges.

  12. Vibrational Properties of High- Superconductors Levitated Above a Bipolar Permanent Magnetic Guideway

    Science.gov (United States)

    Liu, Lu; Wang, Jiasu

    2014-05-01

    A bipolar permanent magnetic guideway (PMG) has a unique magnetic field distribution profile which may introduce a better levitation performance and stability to the high- superconducting (HTS) maglev system. The dynamic vibration properties of multiple YBCO bulks arranged into different arrays positioned above a bipolar PMG and free to levitate were investigated. The acceleration and resonance frequencies were experimentally measured, and the stiffness and damping coefficients were evaluated for dynamic stability. Results indicate that the levitation stiffness is closely related to the field-cooling-height and sample positioning. The damping ratio was found to be low and nonlinear for the Halbach bipolar HTS-PMG system.

  13. High-Field Superconducting Magnets Supporting PTOLEMY

    Science.gov (United States)

    Hopkins, Ann; Luo, Audrey; Osherson, Benjamin; Gentile, Charles; Tully, Chris; Cohen, Adam

    2013-10-01

    The Princeton Tritium Observatory for Light, Early Universe, Massive Neutrino Yield (PTOLEMY) is an experiment planned to collect data on Big Bang relic neutrinos, which are predicted to be amongst the oldest and smallest particles in the universe. Currently, a proof-of-principle prototype is being developed at Princeton Plasma Physics Laboratory to test key technologies associated with the experiment. A prominent technology in the experiment is the Magnetic Adiabatic Collimation with an Electrostatic Filter (MAC-E filter), which guides tritium betas along magnetic field lines generated by superconducting magnets while deflecting those of lower energies. B field mapping is performed to ensure the magnets produce a minimum field at the midpoint of the configuration of the magnets and to verify accuracy of existing models. Preliminary tests indicate the required rapid decrease in B field strength from the bore of the more powerful 3.35 T magnet, with the field dropping to 0.18 T approximately 0.5 feet from the outermost surface of the magnet.

  14. Development of superconducting magnet systems for HIFExperiments

    Energy Technology Data Exchange (ETDEWEB)

    Sabbi, Gian Luca; Faltens, A.; Leitzke, A.; Seidl, P.; Lund, S.; Martovets ky, N.; Chiesa, L.; Gung, C.; Minervini, J.; Schultz, J.; Goodzeit, C.; Hwang, P.; Hinson, W.; Meinke, R.

    2004-07-27

    The U.S. Heavy Ion Fusion program is developing superconducting focusing quadrupoles for near-term experiments and future driver accelerators. Following the fabrication and testing of several models, a baseline quadrupole design was selected and further optimized. The first prototype of the optimized design achieved a conductor-limited gradient of 132 T/m in a 70 mm bore, with measured field harmonics within 10 parts in 10{sup 4}. In parallel, a compact focusing doublet was fabricated and tested using two of the first-generation quadrupoles. After assembly in the cryostat, both magnets reached their conductor-limited quench current. Further optimization steps are currently underway to improve the performance of the magnet system and reduce its cost. They include the fabrication and testing of a new prototype quadrupole with reduced field errors as well as improvements of the cryostat design for the focusing doublet. The prototype units will be installed in the HCX beamline at LBNL, to perform accelerator physics experiments and gain operational experience. Successful results in the present phase will make superconducting magnets a viable option for the next generation of integrated beam experiments.

  15. Aspects of passive magnetic levitation based on high-T(sub c) superconducting YBCO thin films

    Science.gov (United States)

    Schoenhuber, P.; Moon, F. C.

    1995-01-01

    Passive magnetic levitation systems reported in the past were mostly confined to bulk superconducting materials. Here we present fundamental studies on magnetic levitation employing cylindrical permanent magnets floating above high-T(sub c) superconducting YBCO thin films (thickness about 0.3 mu m). Experiments included free floating rotating magnets as well as well-established flexible beam methods. By means of the latter, we investigated levitation and drag force hysteresis as well as magnetic stiffness properties of the superconductor-magnet arrangement. In the case of vertical motion of the magnet, characteristic high symmetry of repulsive (approaching) and attractive (withdrawing) branches of the pronounced force-displacement hysteresis could be detected. Achievable force levels were low as expected but sufficient for levitation of permanent magnets. With regard to magnetic stiffness, thin films proved to show stiffness-force ratios about one order of magnitude higher than bulk materials. Phenomenological models support the measurements. Regarding the magnetic hysteresis of the superconductor, the Irie-Yamafuji model was used for solving the equation of force balance in cylindrical coordinates allowing for a macroscopic description of the superconductor magnetization. This procedure provided good agreement with experimental levitation force and stiffness data during vertical motion. For the case of (lateral) drag force basic qualitative characteristics could be recovered, too. It is shown that models, based on simple asymmetric magnetization of the superconductor, describe well asymptotic transition of drag forces after the change of the magnet motion direction. Virgin curves (starting from equilibrium, i.e. symmetric magnetization) are approximated by a linear approach already reported in literature only. This paper shows that basic properties of superconducting thin films allow for their application to magnetic levitation or - without need of levitation

  16. Aspects of passive magnetic levitation based on high-T(sub c) superconducting YBCO thin films

    Science.gov (United States)

    Schoenhuber, P.; Moon, F. C.

    1995-04-01

    Passive magnetic levitation systems reported in the past were mostly confined to bulk superconducting materials. Here we present fundamental studies on magnetic levitation employing cylindrical permanent magnets floating above high-T(sub c) superconducting YBCO thin films (thickness about 0.3 mu m). Experiments included free floating rotating magnets as well as well-established flexible beam methods. By means of the latter, we investigated levitation and drag force hysteresis as well as magnetic stiffness properties of the superconductor-magnet arrangement. In the case of vertical motion of the magnet, characteristic high symmetry of repulsive (approaching) and attractive (withdrawing) branches of the pronounced force-displacement hysteresis could be detected. Achievable force levels were low as expected but sufficient for levitation of permanent magnets. With regard to magnetic stiffness, thin films proved to show stiffness-force ratios about one order of magnitude higher than bulk materials. Phenomenological models support the measurements. Regarding the magnetic hysteresis of the superconductor, the Irie-Yamafuji model was used for solving the equation of force balance in cylindrical coordinates allowing for a macroscopic description of the superconductor magnetization. This procedure provided good agreement with experimental levitation force and stiffness data during vertical motion. For the case of (lateral) drag force basic qualitative characteristics could be recovered, too. It is shown that models, based on simple asymmetric magnetization of the superconductor, describe well asymptotic transition of drag forces after the change of the magnet motion direction. Virgin curves (starting from equilibrium, i.e. symmetric magnetization) are approximated by a linear approach already reported in literature only. This paper shows that basic properties of superconducting thin films allow for their application to magnetic levitation or - without need of levitation

  17. Time Transient Effects in Superconducting Magnets

    CERN Document Server

    AUTHOR|(CDS)2051280; Russenschuck, Stephan; Palumbo, Luigi

    2004-01-01

    The subject of this thesis is the study of time transient effects in super- conducting cables, with applications to accelerator magnets, and the development of a simulation code. The superconducting cables are modeled at the strand level as a lumped resistor, inductor generator circuit. The analysis in time domain of the circuit currents discloses the transient effects. The code developed can solve Rutherford type cable of any size, shape geometry under any exciting external field. The code has been implemented in Roxie where it is used to compute ramp dependent field error and heat losses.

  18. Measuring the interaction force between a high temperature superconductor and a permanent magnet

    Science.gov (United States)

    Valenzuela, S. O.; Jorge, G. A.; Rodríguez, E.

    1999-11-01

    Repulsive and attractive forces are both possible between a superconducting sample and a permanent magnet, and they can give rise to magnetic levitation or free-suspension phenomena, respectively. We show experiments to quantify this magnetic interaction, which represents a promising field with regard to short-term technological applications of high temperature superconductors. The measuring technique employs an electronic balance and a rare-earth magnet that induces a magnetic moment in a melt-textured YBa2Cu3O7 superconductor immersed in liquid nitrogen. The simple design of the experiments allows a fast and easy implementation in the advanced physics laboratory with a minimum cost. Actual levitation and suspension demonstrations can be done simultaneously as a help to interpret magnetic force measurements.

  19. Magnetic interaction between spatially extended superconducting tunnel junctions

    DEFF Research Database (Denmark)

    Grønbech-Jensen, Niels; Samuelsen, Mogens Rugholm

    2002-01-01

    A general description of magnetic interactions between superconducting tunnel junctions is given. The description covers a wide range of possible experimental systems, and we explicitly explore two experimentally relevant limits of coupled junctions. One is the limit of junctions with tunneling...... been considered through arrays of superconducting weak links based on semiconductor quantum wells with superconducting electrodes. We use the model to make direct interpretations of the published experiments and thereby propose that long-range magnetic interactions are responsible for the reported...

  20. Iron free permanent magnet systems for charged particle beam optics

    Energy Technology Data Exchange (ETDEWEB)

    Lund, S.M.; Halbach, K.

    1995-09-03

    The strength and astounding simplicity of certain permanent magnet materials allow a wide variety of simple, compact configurations of high field strength and quality multipole magnets. Here we analyze the important class of iron-free permanent magnet systems for charged particle beam optics. The theory of conventional segmented multipole magnets formed from uniformly magnetized block magnets placed in regular arrays about a circular magnet aperture is reviewed. Practical multipole configurations resulting are presented that are capable of high and intermediate aperture field strengths. A new class of elliptical aperture magnets is presented within a model with continuously varying magnetization angle. Segmented versions of these magnets promise practical high field dipole and quadrupole magnets with an increased range of applicability.

  1. A new ring-shape high-temperature superconducting trapped-field magnet

    Science.gov (United States)

    Sheng, Jie; Zhang, Min; Wang, Yawei; Li, Xiaojian; Patel, Jay; Yuan, Weijia

    2017-09-01

    This paper presents a new trapped-field magnet made of second-generation high-temperature superconducting (2G HTS) rings. This so-called ring-shape 2G HTS magnet has the potential to provide much stronger magnetic fields relative to existing permanent magnets. Compared to existing 2G HTS trapped- field magnets, e.g. 2G HTS bulks and stacks, this new ring-shape 2G HTS magnet is more flexible in size and can be made into magnets with large dimensions for industrial applications. Effective magnetization is the key to being able to use trapped-field magnets. Therefore, this paper focuses on the magnetization mechanism of this new magnet using both experimental and numerical methods. Unique features have been identified and quantified for this new type of HTS magnet in the field cooling and zero field cooling process. The magnetization mechanism can be understood by the interaction between shielding currents and the penetration of external magnetic fields. An accumulation in the trapped field was observed by using multiple pulse field cooling. Three types of demagnetization were studied to measure the trapped-field decay for practical applications. Our results show that this new ring-shape HTS magnet is very promising in the trapping of a high magnetic field. As a super-permanent magnet, it will have a significant impact on large-scale industrial applications, e.g. the development of HTS machines with a very high power density and HTS magnetic resonance imaging devices.

  2. Fracture in sintered Sm-Co permanent magnetic materials

    Institute of Scientific and Technical Information of China (English)

    LI; Anhua(李安华); DONG; Shengzhi(董生智); LI; Wei(李卫)

    2003-01-01

    The bending strength and fracture toughness of sintered Sm-Co permanent magnetic materials are measured. A scanning electron microscope equipped with an energy dispersive X-ray analysis system is employed to investigate the bending fractography. The fracture behavior and micromechanism are discussed. The fracture behavior of sintered Sm-Co permanent magnetic materials exhibits cleavage fracture. Some Sm-rich impurities are found in fracture plane, suggesting that the Sm-rich impurities help reduce the cleavage brittleness of sintered Sm-Co permanent magnetic materials. The possible methods for improving the strength and toughness are also proposed.

  3. Ultralow Friction in a Superconducting Magnetic Bearing

    Science.gov (United States)

    Bornemann, Hans J.; Siegel, Michael; Zaitsev, Oleg; Bareiss, Martin; Laschuetza, Helmut

    1996-01-01

    Passive levitation by superconducting magnetic bearings can be utilized in flywheels for energy storage. Basic design criteria of such a bearing are high levitation force, sufficient vertical and horizontal stability and low friction. A test facility was built for the measurement and evaluation of friction in a superconducting magnetic bearing as a function of operating temperature and pressure in the vacuum vessel. The bearing consists of a commercial disk shaped magnet levitated above single grain, melt-textured YBCO high-temperature superconductor material. The superconductor was conduction cooled by an integrated AEG tactical cryocooler. The temperature could be varied from 50 K to 80 K. The pressure in the vacuum chamber was varied from 1 bar to 10(exp -5) mbar. At the lowest pressure setting, the drag torque shows a linear frequency dependence over the entire range investigated (0 less than f less than 40 Hz). Magnetic friction, the frequency independent contribution, is very low. The frequency dependent drag torque is generated by molecular friction from molecule-surface collisions and by eddy currents. Given the specific geometry of the set-up and gas pressure, the molecular drag torque can be estimated. At a speed of 40 Hz, the coefficient of friction (drag-to-lift ratio) was measured to be mu = 1.6 x 10(exp -7) at 10(exp -5) mbar and T = 60 K. This is equivalent to a drag torque of 7.6 x 10(exp -10) Nm. Magnetic friction causes approx. 1% of the total losses. Molecular friction accounts for about 13% of the frequency dependent drag torque, the remaining 87% being due to eddy currents and losses from rotor unbalance. The specific energy loss is only 0.3% per hour.

  4. Superconducting Helical Snake Magnet for the AGS

    CERN Document Server

    Willen, Erich; Escallier, John; Ganetis, George; Ghosh, Arup; Gupta, Ramesh C; Harrison, Michael; Jain, Animesh K; Luccio, Alfredo U; MacKay, William W; Marone, Andrew; Muratore, Joseph F; Okamura, Masahiro; Plate, Stephen R; Roser, Thomas; Tsoupas, Nicholaos; Wanderer, Peter

    2005-01-01

    A superconducting helical magnet has been built for polarized proton acceleration in the Brookhaven AGS. This "partial Snake" magnet will help to reduce the loss of polarization of the beam due to machine resonances. It is a 3 T magnet some 1940 mm in magnetic length in which the dipole field rotates with a pitch of 0.2053 degrees/mm for 1154 mm in the center and a pitch of 0.3920 degrees/mm for 393 mm in each end. The coil cross-section is made of two slotted cylinders containing superconductor. In order to minimize residual offsets and deflections of the beam on its orbit through the Snake, a careful balancing of the coil parameters was necessary. In addition to the main helical coils, a solenoid winding was built on the cold bore tube inside the main coils to compensate for the axial component of the field that is experienced by the beam when it is off-axis in this helical magnet. Also, two dipole corrector magnets were placed on the same tube with the solenoid. A low heat leak cryostat was built so that t...

  5. Quench thresholds in operational superconducting magnets

    Energy Technology Data Exchange (ETDEWEB)

    Allinger, J; Danby, G; Foelsche, H; Jackson, J; Lowenstein, D; Prodell, A; Weng, W

    1978-01-01

    Superconducting magnets exposed to intense primary proton beams in high energy physics applications are subject to potentially extreme heat deposition. The beam power density, its duration and spatial distribution, the current density in the superconductor and, potentially, in the normal metal substrate, as well as the construction and cooling details of the magnet, are all relevant parameters. An extension of some earlier work is discussed in which 28.5 GeV/c proton beams with up to 50 k joules of energy were targeted upstream from a 4 m long, 4 T dipole magnet used to deflect the protons through an angle of 8/sup 0/. Quench thresholds much greater than the enthalpy limit of the magnet materials were observed. In the beam exposure experiment described, intense beams of 1.5 GeV/c protons have been deflected directly into the magnet coil at relatively steep angles of incidence. The magnet quench threshold was studied by varying the beam currents and beam sizes.

  6. Multipactor Mitigation in Coaxial Lines by Means of Permanent Magnets

    CERN Document Server

    Gonzalez-Iglesias, D; Anza, S; Vague, J; Gimeno, B; Boria, V E; Raboso, D; Vicente, C; Gil, J; Caspers, F; Conde, L

    2014-01-01

    The main aim of this paper is the analysis of the feasibility of employing permanent magnets for the multipactor mitigation in a coaxial waveguide. First, the study of a coaxial line immersed in a uniform axial magnetic field shows that multipactor can be suppressed at any RF frequency if the external magnetic field is strong enough. Both theoretical simulations and experimental tests validate this statement. Next, multipactor breakdown of a coaxial line immersed in a hollow cylindrical permanent magnet is analyzed. Numerical simulations show that multipactor can be suppressed in a certain RF frequency range. The performed experimental test campaign demonstrates the capability of the magnet to avoid the multipactor electron multiplication process.

  7. On the interplay of superconductivity and magnetism

    CERN Document Server

    Powell, B J

    2002-01-01

    We explore the exchange field dependence of the Hubbard model with a attractive, effective, pairwise, nearest neighbour interaction via the Hartree-Fock-Gorkov approximation. We derive a Ginzburg-Landau theory of spin triplet superconductivity in an exchange field. For microscopic parameters which lead to ABM phase superconductivity in zero field, the Ginzburg-Landau theory allows both an axial (A, A sub 1 or A sub 2) solution with the vector order parameter, d(k), perpendicular to the field, H, and an A phase solution with d(k) parallel to H. We study the spin-generalised Bogoliubov-de Gennes (BdG) equations for this model with parameters suitable for strontium ruthenate (Sr sub 2 RuO sub 4). The A sub 2 phase is found to be stable in a magnetic field. However, in the real material, spin-orbit coupling could pin the order parameter to the crystallographic c-axis which would favour the A phase for fields parallel to the c-axis. We show that the low temperature thermodynamic behaviour in a magnetic field could...

  8. Method for obtaining large levitation pressure in superconducting magnetic bearings

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Hinsdale, IL)

    1996-01-01

    A method and apparatus for compressing magnetic flux to achieve high levitation pressures. Magnetic flux produced by a magnetic flux source travels through a gap between two high temperature superconducting material structures. The gap has a varying cross-sectional area to compress the magnetic flux, providing an increased magnetic field and correspondingly increased levitation force in the gap.

  9. Method for obtaining large levitation pressure in superconducting magnetic bearings

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Hinsdale, IL)

    1997-01-01

    A method and apparatus for compressing magnetic flux to achieve high levitation pressures. Magnetic flux produced by a magnetic flux source travels through a gap between two high temperature superconducting material structures. The gap has a varying cross-sectional area to compress the magnetic flux, providing an increased magnetic field and correspondingly increased levitation force in the gap.

  10. On the Motion of the Field of a Permanent Magnet

    Science.gov (United States)

    Leus, Vladimir; Taylor, Stephen

    2011-01-01

    A description is given of a series of recent experiments using a rotating magnetic circuit comprising a permanent magnet ring and yoke, and a stationary conductor in the air gap between the ring and yoke. The EMF induced in this case cannot be described by a simple application of Faraday's flux law. This is because the magnetic flux in the air gap…

  11. Fully permanent magnet atom chip for Bose-Einstein condensation

    NARCIS (Netherlands)

    T. Fernholz; R. Gerritsma; S. Whitlock; I. Barb; R.J.C. Spreeuw

    2008-01-01

    We describe a proof-of-principle experiment on a fully permanent magnet atom chip. We study ultracold atoms and produce a Bose-Einstein condensate. The magnetic trap is loaded efficiently by adiabatic transport of a magnetic trap via the application of uniform external fields. Radio frequency spectr

  12. A Cryogenic Magnetostrictive Actuator Using a Persistent High Temperature Superconducting Magnet. Part 1; Concept and Design

    Science.gov (United States)

    Horner, Garnett; Bromberg, Leslie; Teter, J. P.

    2000-01-01

    Cryogenic magnetostrictive materials, such as rare earth zinc crystals, offer high strains and high forces with minimally applied magnetic fields, making the material ideally suited for deformable optics applications. For cryogenic temperature applications the use of superconducting magnets offer the possibility of a persistent mode of operation, i.e., the magnetostrictive material will maintain a strain field without power. High temperature superconductors (HTS) are attractive options if the temperature of operation is higher than 10 degrees Kelvin (K) and below 77 K. However, HTS wires have constraints that limit the minimum radius of winding, and even if good wires can be produced, the technology for joining superconducting wires does not exist. In this paper, the design and capabilities of a rare earth zinc magnetostrictive actuator using bulk HTS is described. Bulk superconductors can be fabricated in the sizes required with excellent superconducting properties. Equivalent permanent magnets, made with this inexpensive material, are persistent, do not require a persistent switch as in HTS wires, and can be made very small. These devices are charged using a technique which is similar to the one used for charging permanent magnets, e.g., by driving them into saturation. A small normal conducting coil can be used for charging or discharging. Because of the magnetic field capability of the superconductor material, a very small amount of superconducting magnet material is needed to actuate the rare earth zinc. In this paper, several designs of actuators using YBCO and BSCCO 2212 superconducting materials are presented. Designs that include magnetic shielding to prevent interaction between adjacent actuators will also be described. Preliminary experimental results and comparison with theory for BSCCO 2212 with a magnetostrictive element will be discussed.

  13. Operational experience with forced cooled superconducting magnets

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, D.P., E-mail: denis.ivanov30@mail.ru [National Research Center “Kurchatov Institute”, Moscow 123182 (Russian Federation); Kolbasov, B.N., E-mail: kolbasov@nfi.kiae.ru [National Research Center “Kurchatov Institute”, Moscow 123182 (Russian Federation); Anashkin, I.O.; Khvostenko, P.P. [National Research Center “Kurchatov Institute”, Moscow 123182 (Russian Federation); Pan, W.J. [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, Anhui 230031 (China); Pradhan, S.; Sharma, A.N. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India); Song, Y.T.; Weng, P.D. [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, Anhui 230031 (China)

    2013-10-15

    Highlights: ► Seventeen breakdowns happened in the fusion facilities with forced cooled superconducting magnets (FCSMs). ► The breakdowns always began on the electric, cryogenic and diagnostic communications (ECDCs) and never on the coils. ► In all the FCSMs the ECDCs were always insulated worse than the coils. ► For reliable operation of ITER organization team should essentially improve the ECDC insulation. ► Use of stainless steel grounded casings filled up with solid insulation over all the ECDCs is the best way to get reliable insulation. -- Abstract: Force-cooled concept has been chosen for ITER superconducting magnet to get reliable coil insulation using vacuum-pressure impregnation (VPI) technology. However 17 breakdowns occurred during operation of six magnets of this type or their single coil tests at operating voltage < 3 kV, while ITER needs 12 kV. All the breakdowns started on electric, cryogenic and diagnostic communications (ECDCs) by the high voltage induced at fast current variations in magnets concurrently with vacuum deterioration, but never on the coils, though sometimes the latter were damaged too. It suggests that simple wrap insulation currently employed on ECDCs and planned to be used in ITER is unacceptable. Upgrade of the ECDC insulation to the same level as on the coils is evidently needed. This could be done by covering each one from ECDCs with vacuum-tight grounded stainless steel casings filled up with solid insulator using VPI-technology. Such an insulation will be insensitive to in-cryostat conditions, excluding helium leaks and considerably simplifying the tests thus allowing saving time and cost. However it is not accepted in ITER design yet. So guarantee of breakdown prevention is not available.

  14. Electrical joints in the CMS superconducting magnet

    CERN Document Server

    Farinon, S; Curé, B; Fabbricatore, P; Greco, Michela; Musenich, R

    2002-01-01

    The Compact Muon Solenoid (CMS) is one of the general-purpose detectors to be provided for the LHC project at CERN. The design field of the CMS superconducting magnet is 4 T, the magnetic length is 12.5 m and the free bore is 6 m. The CMS coil consists of five independent modules each containing four winding layers. Each winding layer is composed of a single length of aluminum stabilized and aluminum alloy reinforced conductor. Each of the four conductor lengths within a module will be electrically joined after winding is completed, and each of the five modules will be connected to the magnet bus bars during module assembly. Due to the large dimensions of the conductor and to the high current it carries, the conductor joints are sources of substantial and nontrivial joule heating during nonsteady state operation of the magnet. In addition to steady-state conditions, three transient conditions have been analyzed. The first is related to the current diffusion during a magnet transient that results in a time dep...

  15. Magnetization measurements on LHC superconducting strands

    CERN Document Server

    Le Naour, S; Wolf, R; Puzniak, R; Szewczyk, A; Wisniewski, A; Fikis, H; Foitl, M; Kirchmayr, H

    1999-01-01

    When using superconducting magnets in particle accelerators like the LHC, persistent currents in the superconductor often determine the field quality at injection, where the magnetic field is low. This paper describes magnetization measurements made on LHC cable strands at the Technical University of Vienna and the Institute of Physics of the Polish Academy of Sciences in collaboration with CERN. Measurements were performed at T=2 K and T=4.2 K on more than 50 strands of 7 different manufacturers with NbTi filament diameter between 5 and 7 micrometer. Two different measurement set-ups were used: vibrating sample magnetometer, with a sample length of about 8 mm, and an integrating coil magnetometer, with sample length of about 1 m. The two methods were compared by measuring the same sample. Low field evidence of proximity effect is discussed. Statistics like ratio of the width of the magnetization loop at 4.2 K 2 K, and the initial slope dM/dB after cooldown are presented. Decrease of the magnetization with ti...

  16. Wide gap, permanent magnet biased magnetic bearing system

    Science.gov (United States)

    Boden, Karl

    1992-01-01

    The unique features and applications of the presented electrical permanent magnetic bearing system essentially result from three facts: (1) the only bearing rotor components are nonlaminated ferromagnetic steel collars or cylinders; (2) all radial and axial forces are transmitted via radial gaps; and (3) large radial bearing gaps can be provided with minimum electric power consumption. The large gaps allow for effective encapsulation and shielding of the rotors at elevated or low temperatures, corrosive or ultra clean atmosphere or vacuum or high pressure environment. Two significant applications are described: (1) a magnetically suspended x ray rotary anode was operated under high vacuum conditions at 100 KV anode potential, 600 C temperature at the rotor collars and speed 18000 rpm with 13 mm radial bearing gap; and (2) an improved Czochralski type crystal growth apparatus using the hot wall method for pulling GaAs single crystals of low dislocation density. Both crystal and crucible are carried and transported by magnetically suspended shafts inside a hermetically sealed housing at 800 C shaft and wall temperature. The radial magnetic bearing gap measures 24 mm.

  17. Single Phase Permanent Magnet Low Speed Synchronous Motor

    Directory of Open Access Journals (Sweden)

    Gao Lianxue

    2013-04-01

    Full Text Available In order to acquire a better cognition to the single phase permanent magnet low speed synchronous motor and validate the correctness of the motor mathematical model, the performances of the motor are tested with the single phase permanent magnet low speed synchronous motor whose type is 70TDY4, the corresponding simulations are done too. The resistance and the inductance of the single phase permanent magnet low speed synchronous motor are measured. According to the data of experiments and simulations, the static characteristics of the single phase permanent magnet low speed synchronous motor with the changes of the phase shift resistance and the phase shift capacitance are analysed, the results of experiments and simulations prove the correctness of the mathematics model.

  18. Design of Permanent Magnet Synchronous Generators for Wave Power Generation

    Institute of Scientific and Technical Information of China (English)

    方红伟; 王丹

    2016-01-01

    In this paper, a design method for ocean wave permanent magnet synchronous generator(PMSG)is proposed with new performance criteria to obtain better output performance at the cost of less permanent magnet material. Besides, a simple equivalent analytical geometry method is put forward to calculate the sizes of permanent magnets. Based on geometric and electromagnetic models, four types of rotor structures are compared, i.e., embed-ded, tangential, tile surface mount and convex surface mount structures. The designs and comparisons of machine are performed with the same permanent magnet volume. Moreover, the influences of mechanical pole-arc coeffi-cient of tile surface mount PMSG on electrical efficiency, output power, material corrosion, core loss, and torque ripple are investigated. Finite-element analysis method is applied to verify the results using Ansoft/Maxwell.

  19. Pulsed field magnetization strategies and the field poles composition in a bulk-type superconducting motor

    Science.gov (United States)

    Huang, Zhen; Ruiz, H. S.; Coombs, T. A.

    2017-03-01

    High temperature superconducting (HTS) bulks offer the potential of trapping and maintaining much higher magnetic loading level compared with the conventional permanent magnets used in rotary machines, although the effective magnetization of multiple HTS bulks with different relative orientations over the surface of cylindrical rotors creates new challenges. In this paper, we present the design and numerical validation of the Pulse Field Magnetization (PFM) strategy considered for the magnetization of the four-pole synchronous fully superconducting motor developed at the University of Cambridge. In a first instance, singular columns of up to five HTS bulks aligned over the height of the rotor were subjected to up to three magnetic pulses of 1.5 T peak, and the experimental results have been simulated by considering the electrical and thermal properties of the system in a 2D approach. The entire active surface of the rotor is covered by HTS bulks of approximately the same dimensions, resulting in an uneven distribution of pole areas with at least one of the poles formed by up to 3 columns of magnetized bulks, with relatively the same peaks of trapped magnetic field. Thus, in order to effectively use the entire area of the superconducting rotor, multiple pulsed fields per column have been applied under the same experimental conditions, what results in about three times larger magnetic pole areas but with an average drop on the peaks of trapped magnetic field of about 50%.

  20. Passive control of Permanent Magnet Synchronous Motor chaotic systems

    Institute of Scientific and Technical Information of China (English)

    QI Dong-lian; WANG Jia-jun; ZHAO Guang-zhou

    2005-01-01

    Permanent Magnet Synchronous Motor model can exhibit a variety of chaotic phenomena under some choices of system parameters and external input. Based on the property of passive system, the essential conditions were studied, by which Permanent Magnet Synchronous Motor chaotic system could be equivalent to passive system. Using Lyapunov stability theory, the convergence condition deciding the system's characters was discussed. In the convergence condition area, the equivalent passive system could be globally asymptotically stabilized by smooth state feedback.

  1. Summary on Sensorless permanent magnet Brushless DC Motor Control Strategies

    OpenAIRE

    Li Hai Xia; Cao Yang

    2016-01-01

    This paper aims at discussing the development process and application of permanent magnet brushless DC motor. By referring to the related literatures, this thesis gives an overview of several common non-position sensor detection technologies, analyzing their strengths and weaknesses as well as a number of new and improved methods in practical applications. Besides, The application situation of the electric door with sensorless permanent magnet brushless DC motor was illustrated.

  2. Summary on Sensorless permanent magnet Brushless DC Motor Control Strategies

    Directory of Open Access Journals (Sweden)

    Li Hai Xia

    2016-01-01

    Full Text Available This paper aims at discussing the development process and application of permanent magnet brushless DC motor. By referring to the related literatures, this thesis gives an overview of several common non-position sensor detection technologies, analyzing their strengths and weaknesses as well as a number of new and improved methods in practical applications. Besides, The application situation of the electric door with sensorless permanent magnet brushless DC motor was illustrated.

  3. Electromagnetic superconductivity of vacuum induced by strong magnetic field

    CERN Document Server

    Chernodub, M N

    2012-01-01

    The quantum vacuum may become an electromagnetic superconductor in the presence of a strong external magnetic field of the order of 10^{16} Tesla. The magnetic field of the required strength (and even stronger) is expected to be generated for a short time in ultraperipheral collisions of heavy ions at the Large Hadron Collider. The superconducting properties of the new phase appear as a result of a magnetic-field-assisted condensation of quark-antiquark pairs with quantum numbers of electrically charged rho mesons. We discuss similarities and differences between the suggested superconducting state of the quantum vacuum, a conventional superconductivity and the Schwinger pair creation. We argue qualitatively and quantitatively why the superconducting state should be a natural ground state of the vacuum at the sufficiently strong magnetic field. We demonstrate the existence of the superconducting phase using both the Nambu-Jona-Lasinio model and an effective bosonic model based on the vector meson dominance (th...

  4. Reliability of large superconducting magnets through design

    Energy Technology Data Exchange (ETDEWEB)

    Henning, C.D.

    1980-09-05

    As superconducting magnet systems grow larger and become the central component of major systems involving fusion, magnetohydrodynamics, and high-energy physics, their reliability must be commensurate with the enormous capital investment in the projects. Although the magnet may represent only 15% of the cost of a large system such as the Mirror Fusion Test Facility, its failure would be catastrophic to the entire investment. Effective quality control during construction is one method of ensuring success. However, if the design is unforgiving, even an inordinate amount of effort expended on quality control may be inadequate. Creative design is the most effective way of ensuring magnet reliability and providing a reasonable limit on the amount of quality control needed. For example, by subjecting the last drawing operation is superconductor manufacture to a stress larger than the magnet design stress, a 100% proof test is achieved; cabled conductors offer mechanical redundancy, as do some methods of conductor joining; ground-plane insulation should be multilayered to prevent arcs, and interturn and interlayer insulation spaced to be compatible with the self-extinguishing of arcs during quench voltages; electrical leads should be thermally protected; and guard vacuum spaces can be incorporated to control helium leaks. Many reliable design options are known to magnet designers. These options need to be documented and organized to produce a design guide. Eventually, standard procedures, safety factors, and design codes can lead to reliability in magnets comparable to that obtained in pressure vessels and other structures. Wihout such reliability, large-scale applications in major systems employing magnetic fusion energy, magnetohydrodynamics, or high-energy physics would present unacceptable economic risks.

  5. Permanent magnet with MgB{sub 2} bulk superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Akiyasu, E-mail: yamamoto@appchem.t.u-tokyo.ac.jp [The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Ishihara, Atsushi; Tomita, Masaru [Railway Technical Research Institute, 2-8-38 Hikari, Kokubunji, Tokyo 185-8540 (Japan); Kishio, Kohji [The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan)

    2014-07-21

    Superconductors with persistent zero-resistance currents serve as permanent magnets for high-field applications requiring a strong and stable magnetic field, such as magnetic resonance imaging. The recent global helium shortage has quickened research into high-temperature superconductors (HTSs)—materials that can be used without conventional liquid-helium cooling to 4.2 K. Herein, we demonstrate that 40-K-class metallic HTS magnesium diboride (MgB{sub 2}) makes an excellent permanent bulk magnet, maintaining 3 T at 20 K for 1 week with an extremely high stability (<0.1 ppm/h). The magnetic field trapped in this magnet is uniformly distributed, as for single-crystalline neodymium-iron-boron. Magnetic hysteresis loop of the MgB{sub 2} permanent bulk magnet was determined. Because MgB{sub 2} is a simple-binary-line compound that does not contain rare-earth metals, polycrystalline bulk material can be industrially fabricated at low cost and with high yield to serve as strong magnets that are compatible with conventional compact cryocoolers, making MgB{sub 2} bulks promising for the next generation of Tesla-class permanent-magnet applications.

  6. Two cylinder permanent magnet stirrer for liquid metals

    Science.gov (United States)

    Bojarevičs, A.; Baranovskis, R.; Kaldre, I.; Milgrāvis, M.; Beinerts, T.

    2017-07-01

    To achieve a uniform liquid metal composition and temperature distribution, stirring is often necessary for industrial processes. Here, a novel permanent magnet system for liquid melt stirring is proposed. It promises very low energy consumption and options for multiple different flow types compared to traditional travelling magnetic field inductors or mechanical stirrers. The proposed system has a simple design: it consists of two rotating permanent magnet cylinders, which are magnetized transversely to the axis of the cylinders. The experimental device was developed and tested under various regimes using GaInSn alloy in a cylindrical crucible. Aluminum stirring by permanent magnets in laboratory scale is tested, and stirring impact on directional solidification of metallic alloys is experimentally investigated.

  7. Permanent magnet with MgB2 bulk superconductor

    Science.gov (United States)

    Yamamoto, Akiyasu; Ishihara, Atsushi; Tomita, Masaru; Kishio, Kohji

    2014-07-01

    Superconductors with persistent zero-resistance currents serve as permanent magnets for high-field applications requiring a strong and stable magnetic field, such as magnetic resonance imaging. The recent global helium shortage has quickened research into high-temperature superconductors (HTSs)—materials that can be used without conventional liquid-helium cooling to 4.2 K. Herein, we demonstrate that 40-K-class metallic HTS magnesium diboride (MgB2) makes an excellent permanent bulk magnet, maintaining 3 T at 20 K for 1 week with an extremely high stability (cryocoolers, making MgB2 bulks promising for the next generation of Tesla-class permanent-magnet applications.

  8. High temperature superconductivity induced by incipient magnetism

    Science.gov (United States)

    Weger, M.; Pereg, Y.

    1990-10-01

    We consider the BCS gap equation, with an attractive interaction λ with an upper cutoff ω 0 and lower cutoff ω 1, and a repulsive interaction μ with cutoffΓ. We consider parameters such that a superconducting solution does not exist. We add a repulsive interaction ν eith cutoff ω1 ( ω1 < ω0), and show that this repulsive interaction (that we attribute to incipient magnetism) induces a superconducting state possessing a high transition temperature. In this state, the gap function Δ(ɛ) oscillates as function of ɛ, with a period of order ω 0. We also find solutions antisymmetric in energy [ Δ( ɛ) = - Δ(- ɛ) ], which turn out to be almost degenerate with the normal, symmetric ones. We discuss the physical implications of this model. Our model thus combines a low frequency repulsion due to antiferromagnetic interactions, with excitonic attraction at intermediate frequencies, and ordinary Coulomb repulsion above that. All frequency ranges, and coupling strengths, are comparable with the bandwidth.

  9. Magnetic levitation performance of high-temperature superconductor over three magnetic hills of permanent magnet guideway with iron shims of different thicknesses

    Institute of Scientific and Technical Information of China (English)

    Yuming Gong; Gang Liang; Lifeng Zhao; Yong Zhang; Yong Zhao; Xuyong Chen

    2014-01-01

    Superconducting magnetic levitation perfor-mance, including levitation force and guidance force, is important for the application of high-temperature super-conducting maglev. Both of them are not only affected by different arrays of superconductors and magnets, but also by the thickness of the iron shim between permanent magnets. In order to obtain the best levitation performance, the magnetic field distribution, levitation force, and guid-ance force of a new type of three magnetic hills of per-manent magnet guideway with iron shim of different thicknesses (4, 6, and 8 mm) are discussed in this paper. Simulation analysis and experiment results show that the guideway with iron shim of 8 mm thickness possesses the strongest magnetic field and levitation performance when the suspension gap is larger than 10 mm. However, with the decreasing of suspension gap, the guideway with iron shim of 4 mm thickness possesses the best levitation per-formance. The phenomena can be attributed to the density distribution of flux and magnetization of iron shim.

  10. Magnetism in structures with ferromagnetic and superconducting layers

    Energy Technology Data Exchange (ETDEWEB)

    Zhaketov, V. D.; Nikitenko, Yu. V., E-mail: nikiten@nf.jinr.ru [Joint Institute for Nuclear Research (Russian Federation); Radu, F. [Helmholtz-Zentrum Berlin für Materialen un Energie (Germany); Petrenko, A. V. [Joint Institute for Nuclear Research (Russian Federation); Csik, A. [MTA Atomki, Institute for Nuclear Research (Hungary); Borisov, M. M.; Mukhamedzhanov, E. Kh. [Russian Research Centre Kurchatov Institute (Russian Federation); Aksenov, V. L. [Russian Research Centre Kurchatov Institute, Konstantinov St. Petersburg Nuclear Physics Institute (Russian Federation)

    2017-01-15

    The influence of superconductivity on ferromagnetism in the layered Ta/V/Fe{sub 1–x}V{sub x}/V/Fe{sub 1–x}V{sub x}/Nb/Si structures consisting of ferromagnetic and superconducting layers is studied using polarized neutron reflection and scattering. It is experimentally shown that magnetic structures with linear sizes from 5 nm to 30 μm are formed in these layered structures at low temperatures. The magnetization of the magnetic structures is suppressed by superconductivity at temperatures below the superconducting transition temperatures in the V and Nb layers. The magnetic states of the structures are shown to undergo relaxation over a wide magnetic-field range, which is caused by changes in the states of clusters, domains, and Abrikosov vortices.

  11. Contribution to permanent magnet excited dc linear actuators

    Energy Technology Data Exchange (ETDEWEB)

    Okonkwo, R.C.; Hanitsch, R. [Technische Univ. Berlin (Germany)

    1998-07-01

    In this paper an efficient method for the computation of magnetic fields and forces in dc linear actuators built with Sm{sub 2}Co{sub 17} - permanent magnet is presented. The results obtained show good agreement with measurements. (orig.)

  12. Variable-period permanent-magnet helical undulator

    OpenAIRE

    Jungho Mun; Young Uk Jeong; Vinokurov, Nikolay A.; Kitae Lee; Kyu-Ha Jang; Seong Hee Park; Min Yong Jeon; Sang-In Shin

    2014-01-01

    We realized a variable-period permanent-magnet helical undulator with high (∼1  T) field amplitude, which is almost constant over undulator periods of 23–26 mm. Each undulator period has four modular sections of iron poles and permanent magnets embedded in nonmagnetic disks with holes along the undulator axis. Modular plates undergo a longitudinal repulsive force from the magnetic field pressure and the spring coils between modular plates. The undulator period can thus be controlled by mechan...

  13. Development of superconducting magnetic bearing with superconducting coil and bulk superconductor for flywheel energy storage system

    Science.gov (United States)

    Arai, Y.; Seino, H.; Yoshizawa, K.; Nagashima, K.

    2013-11-01

    We have been developing superconducting magnetic bearing for flywheel energy storage system to be applied to the railway system. The bearing consists of a superconducting coil as a stator and bulk superconductors as a rotor. A flywheel disk connected to the bulk superconductors is suspended contactless by superconducting magnetic bearings (SMBs). We have manufactured a small scale device equipped with the SMB. The flywheel was rotated contactless over 2000 rpm which was a frequency between its rigid body mode and elastic mode. The feasibility of this SMB structure was demonstrated.

  14. Development of large bore superconducting magnet for wastewater treatment application

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hui Ming; Xu, Dong; Shen, Fuzhi; Zhang, Hengcheng; Li, Lafeng [State Key Laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing (China)

    2017-03-15

    Water issue, especially water pollution, is a serious issue of 21st century. Being an significant technique for securing water resources, superconducting magnetic separation wastewater system was indispensable. A large bore conduction-cooled magnet was custom-tailored for wastewater treatment. The superconducting magnet has been designed, fabricated and tested. The superconducting magnet was composed of NbTi solenoid coils with an effective horizontal warm bore of 400 mm and a maximum central field of 2.56T. The superconducting magnet system was cooled by a two-stage 1.5W 4K GM cryocooler. The NbTi solenoid coils were wound around an aluminum former that is thermally connected to the second stage cold head of the cryocooler through a conductive copper link. The temperature distribution along the conductive link was measured during the cool-down process as well as at steady state. The magnet was cooled down to 4.8K in approximately 65 hours. The test of the magnetic field and quench analysis has been performed to verify the safe operation for the magnet system. Experimental results show that the superconducting magnet reached the designed magnetic performance.

  15. Bonded permanent magnets: Current status and future opportunities (invited)

    Science.gov (United States)

    Ormerod, John; Constantinides, Steve

    1997-04-01

    Permanent magnets play a vital role in modern society as a component in a wide range of devices utilized by many industries and consumers. In 1995, the world production of permanent magnets was estimated to be valued at 3.6 billion and growing at an annual rate of 12%. Bonded permanent magnets are the fastest growing segment of this market. Bonded magnet technology enables a wide variety of magnetic powders to be combined with several polymer and binder systems to produce magnetic components utilizing several processing options. In this article, we review the development of bonded magnet technology. The major classes of magnetic powders, binder systems, and processing technologies are described. Recent developments in magnetic material grades, e.g., anisotropic NdFeB, rare earth lean NdFeB, SmFe(N,C) are outlined. The current status of processing and binder options aimed at increasing the upper application temperature limit of these materials is highlighted. Finally, the improvements and future opportunities for bonded magnets are discussed.

  16. System Cost Analysis for an Interior Permanent Magnet Motor

    Energy Technology Data Exchange (ETDEWEB)

    Peter Campbell

    2008-08-01

    The objective of this program is to provide an assessment of the cost structure for an interior permanent magnet ('IPM') motor which is designed to meet the 2010 FreedomCAR specification. The program is to evaluate the range of viable permanent magnet materials for an IPM motor, including sintered and bonded grades of rare earth magnets. The study considers the benefits of key processing steps, alternative magnet shapes and their assembly methods into the rotor (including magnetization), and any mechanical stress or temperature limits. The motor's costs are estimated for an annual production quantity of 200,000 units, and are broken out into such major components as magnetic raw materials, processing and manufacturing. But this is essentially a feasibility study of the motor's electromagnetic design, and is not intended to include mechanical or thermal studies as would be done to work up a selected design for production.

  17. Constructing a Superconducting Corrector Magnet for the LHC

    CERN Multimedia

    CERN Audiovisual Unit

    1998-01-01

    1. Construction principles : development at CERN shown on a decapolar (MCD) superconducting corrector magnet.2. Computer controlled automatic winding : development with Ferrara University, Italy.3. Electro-mechanically controlled automatic winding : development with CAT-Patel, India

  18. Radiation Shielding Utilizing A High Temperature Superconducting Magnet Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project aims to leverage near-term high-temperature superconducting technologies to assess applicability of magnetic shielding for protecting against exposure...

  19. Lunar magnetic field - Permanent and induced dipole moments

    Science.gov (United States)

    Russell, C. T.; Coleman, P. J., Jr.; Schubert, G.

    1974-01-01

    Apollo 15 subsatellite magnetic field observations have been used to measure both the permanent and the induced lunar dipole moments. Although only an upper limit of 1.3 x 10 to the 18th gauss-cubic centimeters has been determined for the permanent dipole moment in the orbital plane, there is a significant induced dipole moment which opposes the applied field, indicating the existence of a weak lunar ionosphere.

  20. Angular Dependence of Lateral and Levitation Forces in Asymmetric Small Magnet/Superconducting Systems

    Institute of Scientific and Technical Information of China (English)

    H. M. Al-Khateeb; M. K. Alqadi; F. Y. Alzoubi; N. Y. Ayoub

    2007-01-01

    The dipole-dipole interaction model is used to calculate the angular dependence of lateral and levitation forces on a small permanent magnet and a cylindrical superconductor in the Meissner state lying laterally offthe symmetric axis of the cylinder. Under the assumption that the lateral displacement of the magnet is small compared with the physical dimensions of the system, we obtain analytical expressions for the lateral and levitation forces as functions of geometrical parameters of the superconductor as well as the height, the lateral displacement and the orientation of magnetic moment of the magnet. The effect of thickness and radius of the superconductor on the levitation force is similar to that for a symmetric magnet/superconducting cylinder system, but within the range of lateral displacement. The splitting in the levitation force increases with the increasing angle of orientation of the magnetic moment of the magnet. For a given lateral displacement of the magnet, the lateral force vanishes when the magnetic moment is perpendicular to the surface of the superconductor and has a maximum value when the moment is parallel to the surface. For a given orientation of the magnetic moment, the lateral force has a linear relationship with the lateral displacement. The stability of the magnet above the superconducting cylinder is discussed in detail.

  1. Design and characterization of permanent magnetic solenoids for REGAE

    Energy Technology Data Exchange (ETDEWEB)

    Hachmann, M., E-mail: max.hachmann@desy.de [Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg (Germany); Flöttmann, K. [Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg (Germany); Gehrke, T. [Deutsches Krebsforschungszentrum DKFZ, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Mayet, F. [Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg (Germany)

    2016-09-01

    REGAE is a small electron linear accelerator at DESY. In order to focus short and low charged electron bunches down to a few μm permanent magnetic solenoids were designed, assembled and field measurements were done. Due to a shortage of space close to the operation area an in-vacuum solution has been chosen. Furthermore a two-ring design made of wedges has been preferred in terms of beam dynamic issues. To keep the field quality of a piecewise built magnet still high a sorting algorithm for the wedge arrangement including a simple magnetic field model has been developed and used for the construction of the magnets. The magnetic field of these solenoids has been measured with high precision and compared to simulations. - Highlights: • presenting a two-ring radially magnetized permanent magnetic solenoid design. • development of a analytical field description and field quality factor. • development of a sorting algorithm for permanent magnetic pieces to form a magnet. • performing a high-precision field measurement of a high gradient field.

  2. Design, manufacture and measurements of permanent dipole magnets for DIRAC

    CERN Document Server

    Vorozhtsov, A; Kasaei, S; Solodko, E; Thonet, P A; Tommasini, D

    2013-01-01

    The one of the aim of the DIRAC experiment is the observation of the long-lived π+π- atoms, using the proton beam of the CERN Proton Synchrotron [1]. Two dipole magnets are needed for the for the DIRAC experiment as high resolution spectrometers. The dipole magnet will be used to identify the long-lived atoms on the high level background of π+π- pairs produced simultaneously with π+π- atoms. The proposed design is a permanent magnet dipole with a mechanical aperture of 60 mm. The magnet, of a total physical length of 66 mm, is based on Sm2Co17 blocks and provides an integrated field strength of 24·10-3 T×m. The Sm2Co17 was chosen as a material for the permanent magnet blocks due to its radiation hardness and weaker temperature dependence. The magnetic field quality is determined by 2 ferromagnetic poles, aligned together with the permanent magnets blocks. The paper describes the design, manufacture and magnetic measurements of the magnets.

  3. Low temperature magnetic force microscopy on ferromagnetic and superconducting oxides

    Science.gov (United States)

    Sirohi, Anshu; Sheet, Goutam

    2016-05-01

    We report the observation of complex ferromagnetic domain structures on thin films of SrRuO3 and superconducting vortices in high temperature superconductors through low temperature magnetic force microscopy. Here we summarize the experimental details and results of magnetic imaging at low temperatures and high magnetic fields. We discuss these data in the light of existing theoretical concepts.

  4. Effect of permanent-magnet irregularities in levitation force measurements.

    Energy Technology Data Exchange (ETDEWEB)

    Hull, J. R.

    1999-10-14

    In the measurement of the levitation force between a vertically magnetized permanent magnet (PM) and a bulk high-temperature superconductor (HTS), PM domains with horizontal components of magnetization are shown to produce a nonnegligible contribution to the levitation force in most systems. Such domains are typically found in all PMs, even in those that exhibit zero net horizontal magnetic moment. Extension of this analysis leads to an HTS analog of Earnshaw's theorem, in which at the field-cooling position the vertical stiffness is equal to the sum of the horizontal stiffnesses, independent of angular distribution of magnetic moments within the PM.

  5. Effect of permanent-magnet irregularities in levitation force measurements

    Science.gov (United States)

    Hull, John R.

    2000-06-01

    In the measurement of the levitation force between a vertically magnetized permanent magnet (PM) and a bulk high-temperature superconductor (HTS), PM domains with horizontal components of magnetization are shown to produce a non-negligible contribution to the levitation force in most systems. Such domains are typically found in all PMs, even in those that exhibit zero net horizontal magnetic moment. Extension of this analysis leads to an HTS analogue of Earnshaw's theorem, in which the vertical stiffness is equal to the sum of the horizontal stiffness at the field-cooling position, independent of the angular distribution of magnetic moments within the PM.

  6. Effect of permanent-magnet irregularities in levitation force measurements

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. [Energy Technology Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2000-06-01

    In the measurement of the levitation force between a vertically magnetized permanent magnet (PM) and a bulk high-temperature superconductor (HTS), PM domains with horizontal components of magnetization are shown to produce a non-negligible contribution to the levitation force in most systems. Such domains are typically found in all PMs, even in those that exhibit zero net horizontal magnetic moment. Extension of this analysis leads to an HTS analogue of Earnshaw's theorem, in which the vertical stiffness is equal to the sum of the horizontal stiffness at the field-cooling position, independent of the angular distribution of magnetic moments within the PM. (author)

  7. Special-Purpose High-Torque Permanent-Magnet Motors

    Science.gov (United States)

    Doane, George B., III

    1995-01-01

    Permanent-magnet brushless motors that must provide high commanded torques and satisfy unusual heat-removal requirement are developed. Intended for use as thrust-vector-control actuators in large rocket engines. Techniques and concepts used to design improved motors for special terrestrial applications. Conceptual motor design calls for use of rotor containing latest high-energy-product rare-earth permanent magnets so that motor produces required torque while drawing smallest possible currents from power supply. Torque generated by electromagnetic interaction between stator and permanent magnets in rotor when associated electronic circuits applied appropriately temporally and spatially phased currents to stator windings. Phase relationships needed to produce commanded torque computed in response to torque command and to electronically sensed angular position of rotor relative to stator.

  8. Dynamic Analysis of Permanent Magnet Synchronous Generator with Power Electronics

    Directory of Open Access Journals (Sweden)

    OZCIRA, S.

    2010-05-01

    Full Text Available Permanent magnet DC motor-generators (PMDC, PMSG have been widely used in industrial and energy sectors recently. Power control of these systems can be achieved by controlling the output voltage. In this study, PMDC-PMSG systems are mathematically modeled and simulated in MATLAB and Simulink software. Then the results are discussed. A low power permanent magnet synchronous generator is driven by a permanent magnet DC motor and the output voltage is controlled by a frequency cycle-converter. The output of a half-wave uncontrolled rectifier is applied to an SPWM inverter and the power is supplied to a 300V, 50Hz load. The load which is connected to an LC filter is modeled by state-space equations. LC filter is utilized in order to suppress the voltage oscillations at the inverter output.

  9. Asynchronous slip-ring motor synchronized with permanent magnets

    Directory of Open Access Journals (Sweden)

    Glinka Tadeusz

    2017-03-01

    Full Text Available The electric LSPMSM motor presented in the paper differs from standard induction motor by rotor design. The insulated start-up winding is located in slots along the rotor circumference. The winding ends are connected to the slip-rings. The rotor core contains permanent magnets. The electromechanical characteristics for synchronous operation were calculated, as were the start-up characteristics for operation with a short-circuited rotor winding. Two model motors were used for the calculations, the V-shaped Permanent Magnet (VPM – Fig. 3, and the Linear Permanent Magnet (IPM – Fig. 4, both rated at 14.5 kW. The advantages of the investigated motor are demonstrated in the conclusions.

  10. Proposal of Permanent Magnet Repulsive Maglev Transportation System

    Science.gov (United States)

    Moriyama, Shin-Ichi

    This paper describes a maglev transportation system for automobile. The track is an array of permanent magnet blocks, and the levitating body is the bedplate which consists of permanent magnet plates, propulsion coils, levitation coils and guidance coils. The feature of this system is that the automobile equipped with the bedplate is free to approach into the track or to swerve from the track by using four wheels with the lift. The force acting on the levitating body is calculated on the assumption that each permanent magnet can be expressed as a surface current. From the calculation results, it is proven that the automobile of 4.35m length, 1.8m width and 1700kg weight can run at speed of 500km/h against the air resistance force of 3704N on the condition that the battery has an output of 337.5V and a capacity of 190Ah.

  11. Superconducting and hybrid systems for magnetic field shielding

    Science.gov (United States)

    Gozzelino, L.; Gerbaldo, R.; Ghigo, G.; Laviano, F.; Truccato, M.; Agostino, A.

    2016-03-01

    In this paper we investigate and compare the shielding properties of superconducting and hybrid superconducting/ferromagnetic systems, consisting of cylindrical cups with an aspect ratio of height/radius close to unity. First, we reproduced, by finite-element calculations, the induction magnetic field values measured along the symmetry axis in a superconducting (MgB2) and in a hybrid configuration (MgB2/Fe) as a function of the applied magnetic field and of the position. The calculations are carried out using the vector potential formalism, taking into account simultaneously the non-linear properties of both the superconducting and the ferromagnetic material. On the basis of the good agreement between the experimental and the computed data we apply the same model to study the influence of the geometric parameters of the ferromagnetic cup as well as of the thickness of the lateral gap between the two cups on the shielding properties of the superconducting cup. The results show that in the considered non-ideal geometry, where the edge effect in the flux penetration cannot be disregarded, the superconducting shield is always the most efficient solution at low magnetic fields. However, a partial recovery of the shielding capability of the hybrid configuration occurs if a mismatch in the open edges of the two cups is considered. In contrast, at high magnetic fields the hybrid configurations are always the most effective. In particular, the highest shielding factor was found for solutions with the ferromagnetic cup protruding over the superconducting one.

  12. Build Axial Gradient Field by Using Axial Magnetized Permanent Rings

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Axial magnetic field produced by an axial magnetized permanent ring was studied. For two permanent rings, if they are magnetized in the same directions, a nearly uniform axial field can be produced. If they are magnetized in opposite direction,an axial gradient magnetic field can be generated, with the field range changing from -B0 to B0. A permanent magnet with a high axial gradient field was fabricated, the measured results agree with the PANDIRA calculation very well. For wider usage,it is desirable for the field gradient to be changed. Some methods to produce the variable gradient field are presented. These kinds of axial gradient magnetic field can also be used as a beam focusing for linear accelerator if the periodic field can be produced along the beam trajectory. The axial magnetic field is something like a solenoid, large stray field will leak to the outside environment if no method is taken to control them. In this paper, one method is illustrated to shield off the outside leakage field.

  13. Miniature high speed compressor having embedded permanent magnet motor

    Science.gov (United States)

    Zhou, Lei (Inventor); Zheng, Liping (Inventor); Chow, Louis (Inventor); Kapat, Jayanta S. (Inventor); Wu, Thomas X. (Inventor); Kota, Krishna M. (Inventor); Li, Xiaoyi (Inventor); Acharya, Dipjyoti (Inventor)

    2011-01-01

    A high speed centrifugal compressor for compressing fluids includes a permanent magnet synchronous motor (PMSM) having a hollow shaft, the being supported on its ends by ball bearing supports. A permanent magnet core is embedded inside the shaft. A stator with a winding is located radially outward of the shaft. The PMSM includes a rotor including at least one impeller secured to the shaft or integrated with the shaft as a single piece. The rotor is a high rigidity rotor providing a bending mode speed of at least 100,000 RPM which advantageously permits implementation of relatively low-cost ball bearing supports.

  14. Analysis and Design of Hybrid Excitation Permanent Magnet Synchronous Generators

    Institute of Scientific and Technical Information of China (English)

    JIN Wan-bing; ZHANG Dong; AN Zhong-liang; TAN Ren-yuan

    2006-01-01

    On the basis of a conventional permanent magnet (PM) synchronous generator's construction,a novel kind of Hybrid Excitation Permanent Magnet Synchronous Generator (HEPMSG) is introduced by inserting exciting winding in the stator or rotor.Firstly,the construction of HEPMSG is improved with the addition of PM excitation on the ferromagnetic pole,and its working principle and design method are studied in detail.Then,an appropriate exciting current control system is presented considering the characteristics of HEPMSG.Finally,a prototype is made,and test results confirm the analysis and design.

  15. Motor Integrated Permanent Magnet Gear in a Battery Electrical Vehicle

    DEFF Research Database (Denmark)

    Frandsen, Tommy; Mathe, Laszlo; Berg, Nick Ilsø

    2015-01-01

    This paper presents the physical construction and test results of two new demonstrators of a Motor Integrated Permanent Magnet Gear (MIPMG), which is a second version of an already tested demonstrator. The demonstrators will be used as traction units for a Battery Electrical Vehicle (BEV) and the......This paper presents the physical construction and test results of two new demonstrators of a Motor Integrated Permanent Magnet Gear (MIPMG), which is a second version of an already tested demonstrator. The demonstrators will be used as traction units for a Battery Electrical Vehicle (BEV...

  16. Imprinting superconducting vortex footsteps in a magnetic layer.

    Science.gov (United States)

    Brisbois, Jérémy; Motta, Maycon; Avila, Jonathan I; Shaw, Gorky; Devillers, Thibaut; Dempsey, Nora M; Veerapandian, Savita K P; Colson, Pierre; Vanderheyden, Benoît; Vanderbemden, Philippe; Ortiz, Wilson A; Nguyen, Ngoc Duy; Kramer, Roman B G; Silhanek, Alejandro V

    2016-06-06

    Local polarization of a magnetic layer, a well-known method for storing information, has found its place in numerous applications such as the popular magnetic drawing board toy or the widespread credit cards and computer hard drives. Here we experimentally show that a similar principle can be applied for imprinting the trajectory of quantum units of flux (vortices), travelling in a superconducting film (Nb), into a soft magnetic layer of permalloy (Py). In full analogy with the magnetic drawing board, vortices act as tiny magnetic scribers leaving a wake of polarized magnetic media in the Py board. The mutual interaction between superconducting vortices and ferromagnetic domains has been investigated by the magneto-optical imaging technique. For thick Py layers, the stripe magnetic domain pattern guides both the smooth magnetic flux penetration as well as the abrupt vortex avalanches in the Nb film. It is however in thin Py layers without stripe domains where superconducting vortices leave the clearest imprints of locally polarized magnetic moment along their paths. In all cases, we observe that the flux is delayed at the border of the magnetic layer. Our findings open the quest for optimizing magnetic recording of superconducting vortex trajectories.

  17. Magnetism and superconductivity in neodymium/lanthanum superlattices

    DEFF Research Database (Denmark)

    Goff, J.P.; Sarthour, R.S.; McMorrow, Desmond Francis

    1997-01-01

    bilayers. Magnetization studies reveal the onset of superconductivity at a temperature comparable to bulk DHCP La, and the results suggest coupling across the antiferromagnetic Nd layers. The magnetic structures, investigated using neutron diffraction techniques, resemble those found in bulk Nd....... For the cubic sites of the DHCP structure the magnetic order is confined to individual Nd blocks. However, the magnetic order on the Nd hexagonal sites propagates coherently through the La, even when it becomes superconducting. (C) 1998 Elsevier Science B.V. All rights reserved....

  18. Magnetic response of superconducting mesoscopic-size YBCO powder

    Energy Technology Data Exchange (ETDEWEB)

    Deimling, C.V. [Grupo de Supercondutividade e Magnetismo, Departamento de Fisica, Universidade Federal de Sao Carlos, Sao Carlos, SP (Brazil)], E-mail: cesard@df.ufscar.br; Motta, M.; Lisboa-Filho, P.N. [Laboratorio de Materiais Supercondutores, Departamento de Fisica, Universidade Estadual Paulista, Bauru, SP Brazil (Brazil); Ortiz, W.A. [Grupo de Supercondutividade e Magnetismo, Departamento de Fisica, Universidade Federal de Sao Carlos, Sao Carlos, SP (Brazil)

    2008-07-15

    In this work it is reported the magnetic behavior of submicron and mesoscopic-size superconducting YBCO powders, prepared by a modified polymeric precursors method. The grain size and microstructure were analyzed using scanning electron microscopy (SEM). Measurements of magnetization and AC-susceptibility as a function of temperature were performed with a quantum design SQUID magnetometer. Our results indicated significant differences on the magnetic propreties, in connection with the calcination temperature and the pressure used to pelletize the samples. This contribution is part of an effort to study vortex dynamics and magnetic properties of submicron and mesoscopic-size superconducting samples.

  19. Study on industrial wastewater treatment using superconducting magnetic separation

    Science.gov (United States)

    Zhang, Hao; Zhao, Zhengquan; Xu, Xiangdong; Li, Laifeng

    2011-06-01

    The mechanism of industrial wastewater treatment using superconducting magnetic separation is investigated. Fe 3O 4 nanoparticles were prepared by liquid precipitation and characterized by X-ray diffraction (XRD). Polyacrylic acid (PAA) film was coated on the magnetic particles using plasma coating technique. Transmission electron microscope (TEM) observation and infrared spectrum measurement indicate that the particle surface is well coated with PAA, and the film thickness is around 1 nm. Practical paper factory wastewater treatment using the modified magnetic seeds in a superconducting magnet (SCM) was carried out. The results show that the maximum removal rate of chemical oxygen demand (COD) by SCM method can reach 76%.

  20. Vibration-induced field fluctuations in a superconducting magnet

    Science.gov (United States)

    Britton, J. W.; Bohnet, J. G.; Sawyer, B. C.; Uys, H.; Biercuk, M. J.; Bollinger, J. J.

    2016-06-01

    Superconducting magnets enable precise control of nuclear and electron spins, and are used in experiments that explore biological and condensed-matter systems, and fundamental atomic particles. In high-precision applications, a common view is that slow (Be+9 electron-spin qubits in the 4.46 -T field of a superconducting magnet. We measure a spin-echo T2 coherence time of ˜6 ms for the Be+9 electron-spin resonance at 124 GHz , limited by part-per-billion fractional fluctuations in the magnet's homogeneous field. Vibration isolation of the magnet improved T2 to ˜50 ms.

  1. Superconductivity in Strong Magnetic Field (Greater Than Upper Critical Field)

    Energy Technology Data Exchange (ETDEWEB)

    Tessema, G.X.; Gamble, B.K.; Skove, M.J.; Lacerda, A.H.; Mielke, C.H.

    1998-08-22

    The National High Magnetic Field Laboratory, funded by the National Science Foundation and other US federal Agencies, has in recent years built a wide range of magnetic fields, DC 25 to 35 Tesla, short pulse 50 - 60 Tesla, and quasi-continuous 60 Tesla. Future plans are to push the frontiers to 45 Tesla DC and 70 to 100 Tesla pulse. This user facility, is open for national and international users, and creates an excellent tool for materials research (metals, semiconductors, superconductors, biological systems ..., etc). Here we present results of a systematic study of the upper critical field of a novel superconducting material which is considered a promising candidate for the search for superconductivity beyond H{sub c2} as proposed by several new theories. These theories predict that superconductors with low carrier density can reenter the superconducting phase beyond the conventional upper critical field H{sub c2}. This negates the conventional thinking that superconductivity and magnetic fields are antagonistic.

  2. Design and Analysis of Tubular Permanent Magnet Linear Wave Generator

    Directory of Open Access Journals (Sweden)

    Jikai Si

    2014-01-01

    Full Text Available Due to the lack of mature design program for the tubular permanent magnet linear wave generator (TPMLWG and poor sinusoidal characteristics of the air gap flux density for the traditional surface-mounted TPMLWG, a design method and a new secondary structure of TPMLWG are proposed. An equivalent mathematical model of TPMLWG is established to adopt the transformation relationship between the linear velocity of permanent magnet rotary generator and the operating speed of TPMLWG, to determine the structure parameters of the TPMLWG. The new secondary structure of the TPMLWG contains surface-mounted permanent magnets and the interior permanent magnets, which form a series-parallel hybrid magnetic circuit, and their reasonable structure parameters are designed to get the optimum pole-arc coefficient. The electromagnetic field and temperature field of TPMLWG are analyzed using finite element method. It can be included that the sinusoidal characteristics of air gap flux density of the new secondary structure TPMLWG are improved, the cogging force as well as mechanical vibration is reduced in the process of operation, and the stable temperature rise of generator meets the design requirements when adopting the new secondary structure of the TPMLWG.

  3. Design and analysis of tubular permanent magnet linear wave generator.

    Science.gov (United States)

    Si, Jikai; Feng, Haichao; Su, Peng; Zhang, Lufeng

    2014-01-01

    Due to the lack of mature design program for the tubular permanent magnet linear wave generator (TPMLWG) and poor sinusoidal characteristics of the air gap flux density for the traditional surface-mounted TPMLWG, a design method and a new secondary structure of TPMLWG are proposed. An equivalent mathematical model of TPMLWG is established to adopt the transformation relationship between the linear velocity of permanent magnet rotary generator and the operating speed of TPMLWG, to determine the structure parameters of the TPMLWG. The new secondary structure of the TPMLWG contains surface-mounted permanent magnets and the interior permanent magnets, which form a series-parallel hybrid magnetic circuit, and their reasonable structure parameters are designed to get the optimum pole-arc coefficient. The electromagnetic field and temperature field of TPMLWG are analyzed using finite element method. It can be included that the sinusoidal characteristics of air gap flux density of the new secondary structure TPMLWG are improved, the cogging force as well as mechanical vibration is reduced in the process of operation, and the stable temperature rise of generator meets the design requirements when adopting the new secondary structure of the TPMLWG.

  4. Some Character of Application of Nd-Fe-B Permanent Magnet

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The character of application of Nd-Fe-B permanent magnet is characterized in an irreversible loss of magnetic flux in the various environment conditions. According to the size of permanent magnet in the various environment conditions the irreversible loss of the permanent magnets is very different. Therefore, the irreversible loss and the application method according to the size of permanent magnets and the intervals in the magnetic system are discussed.

  5. A modified Rogowski coil for measurements of hybrid permanent magnets

    Energy Technology Data Exchange (ETDEWEB)

    Bertsche, K.

    1996-08-01

    For large permanent magnets, as proposed for the Fermilab Recycler Ring, it may be important to quickly verify that the magnet`s strength is correct. This may be important, for example, if a magnet is suspected of having changed due to some sort of accident. The field strength of a pure dipole can be readily measured with a Hall probe, but for indexed dipoles and for quadrupoles a Hall probe will not give very accurate results without precise positioning. We have investigated a different approach, the use of a modified Rogowski coil to measure the magnetic potential of each pole. As long as magnet geometry is fixed and known, measurement of the magnetic potential at each pole gives a good measurement of field strength even for magnets with large quadrupole components. The construction and use of such a coil and the precision of measurements made with it will be discussed. 4 refs., 5 figs.

  6. The effects of magnetization process on levitation characteristics of a superconducting bulk magnet

    Science.gov (United States)

    Jiang, J.; Gong, Y. M.; Li, Y. H.; Liang, G.; Yang, X. S.; Cheng, C. H.; Zhao, Y.

    2015-09-01

    In this paper, a bulk YBCO superconductor was magnetized in a chosen magnetic field generated from a superconducting magnet (SM) after field cooling process. The effects of magnetization process with different magnetization intensities on levitation forces and relaxation characteristics were investigated. From the results, it can be confirmed that the superconducting bulk magnet (SBM) magnetized with proper magnetization intensity was beneficial to improve the levitation characteristics of the magnetic levitation system. Nevertheless, when the magnetization intensity exceeded 0.85T, the levitation forces and the relaxation characteristics of the SBM attained saturation.

  7. Evaluation of superconducting magnetic energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Little, A. D.

    1979-11-01

    Superconducting magnetic energy storage (SMES) systems differ from other storage systems presently in use, or considered for use, by the electric utility industry, principally because of the radically different technology involved. SMES also has certain unique advantages: it appears to be able to store and deliver energy at very high efficiency, and it can switch from the charge to discharge mode in a few tens of milliseconds. The combination of these two desirable characteristics distinguishes SMES from almost all other energy storage systems. This investigation was undertaken to discover if the nation and the electric utility industry might benefit sufficiently from the use of SMES systems to justify continued research and development support by DOE. At present, systems development is in a relatively early stage, and much component development for many of the major subsystems remains to be performed. It appears each SMES unit will be large and therefore expensive; also that the investment in research and development required to achieve final commercial success may be substantial.

  8. Electromagnetic, stress and thermal analysis of the Superconducting Magnet

    CERN Document Server

    Ren, Yong

    2015-01-01

    Within the framework of the National Special Project for Magnetic Confined Nuclear Fusion Energy of China, the design of a superconducting magnet project as a test facility of the Nb3Sn coil or NbTi coil for the Chinese Fusion Engineering Test Reactor (CFETR) has been carried out not only to estimate the relevant conductor performance but also to implement a background magnetic field for CFETR CS insert and toroidal field (TF) insert coils. The superconducting magnet is composed of two parts: the inner part with Nb3Sn cable-in-conduit conductor (CICC) and the outer part with NbTi CICC. Both parts are connected in series and powered by a single DC power supply. The superconducting magnet can be cooled with supercritical helium at inlet temperature of 4.5 K. The total inductance and stored energy of the superconducting magnet are about 0.278 H and 436.6 MJ at an operating current of 56 kA respectively. An active quench protection circuit was adopted to transfer the stored magnetic energy of the superconducting ...

  9. CALCULATION OF INDUCTANCE OF THE INTERIOR PERMANENT MAGNET SYNCHRONOUS MOTOR

    Directory of Open Access Journals (Sweden)

    Phyong Le Ngo

    2017-01-01

    Full Text Available Interior permanent magnet synchronous motor (IPMSM refers to salient-pole synchronous motors, characterized by inequality of inductances of longitudinal (d and transverse (q axes. Electromagnetic torque of IPMSM consists of two components: active torque and reactive torque; the latter depends on inductances of d and q axes. An analytical method to calculate own inductances and mutual inductances of a three-phase IPMSM is presented. Distributed windings of the stator are substituted by equivalent sine distributed windings. An interior permanent magnets rotor is substituted by an equivalent salient-pole rotor. Sections of a magnetic circuit comprising interior permanent magnets, air barriers and steel bridges are substituted by equivalent air-gap. The expressions of the magnetic induction created by current of the stator windings at each point of the air gap as well as of magnetic flux linkage of the stator windings have been obtained. The equations of the self-inductances of phases A, B, C, and of inductance of mutual induction are determined from magnetic flux linkage. The inductance of the d and q axes have been obtained as a result of transformation of the axes abc–dq. The results obtained with the use of the proposed analytical method and the finite element method are presented in the form of a graph; the calculations that have been obtained by these two methods were compared. 

  10. Performance characterization of a permanent-magnet helicon plasma thruster

    Science.gov (United States)

    Takahashi, Kazunori; Charles, Christine; Boswell, Rod

    2012-10-01

    Helicon plasma thrusters operated at a few kWs of rf power is an active area of an international research. Recent experiments have clarified part of the thrust-generation mechanisms. Thrust components which have been identified include an electron pressure inside the source region and a Lorentz force due to an electron diamagnetic drift current and a radial component of the applied magnetic field. The use of permanent magnets (PMs) instead of solenoids is one of the solutions for improving the thruster efficiency because it does not require electricity for the magnetic nozzle formation. Here the thrust imparted from a permanent-magnet helicon plasma thruster is directly measured using a pendulum thrust balance. The source consists of permanent magnet (PM) arrays, a double turn rf loop antenna powered by a 13.56 MHz rf generator and a glass source tube. The PM arrays provide a magnetic nozzle near the open exit of the source and two configurations, which have maximum field strengths of about 100 and 270 G, are tested. A thrust of 15 mN, specific impulse of 2000 sec and a thrust efficiency of 8 percent are presently obtained for 2 kW of input power, 24 sccm flow rate of argon and the stronger magnetic field configuration.

  11. Modeling of Hybrid Permanent Magnetic-Gas Bearings

    DEFF Research Database (Denmark)

    Morosi, Stefano; Santos, Ilmar

    2009-01-01

    Modern turbomachinery applications require nowadays ever-growing rotational speeds and high degree of reliability. It then becomes natural to focus the attention of the research to contact-free bearings elements. The present alternatives focus on gas lubricated journal bearings or magnetic bearings....... In the present paper both the technologies are combined with the aim of developing a new kind of hybrid permanent magnetic - gas bearing. This new kind of machine is intended to exploit the benefits of the two technologies while minimizing their drawbacks. The poor start-up and low speed operation performance...... of the gas bearing is balanced by the properties of the passive magnetic one. At high speeds the dynamic characteristics of the gas bearing are improved by offsetting the stator ring of the permanent magnetic bearing. Furthermore this design shows a kind of redundancy, which offers soft failure properties...

  12. Optimal Design Solutions for Permanent Magnet Synchronous Machines

    Directory of Open Access Journals (Sweden)

    POPESCU, M.

    2011-11-01

    Full Text Available This paper presents optimal design solutions for reducing the cogging torque of permanent magnets synchronous machines. A first solution proposed in the paper consists in using closed stator slots that determines a nearly isotropic magnetic structure of the stator core, reducing the mutual attraction between permanent magnets and the slotted armature. To avoid complications in the windings manufacture technology the stator slots are closed using wedges made of soft magnetic composite materials. The second solution consists in properly choosing the combination of pole number and stator slots number that typically leads to a winding with fractional number of slots/pole/phase. The proposed measures for cogging torque reduction are analyzed by means of 2D/3D finite element models developed using the professional Flux software package. Numerical results are discussed and compared with experimental ones obtained by testing a PMSM prototype.

  13. Rational design of the exchange-spring permanent magnet.

    Science.gov (United States)

    Jiang, J S; Bader, S D

    2014-02-12

    The development of the optimal exchange-spring permanent magnet balances exchange hardening, magnetization enhancement, and the feasibility of scalable fabrication. These requirements can be met with a rational design of the microstructural characteristics. The magnetization processes in several model exchange-spring structures with different geometries have been analyzed with both micromagnetic simulations and nucleation theory. The multilayer geometry and the soft-cylinders-in-hard-matrix geometry have the highest achievable figure of merit (BH)max, while the soft-spheres-in-hard-matrix geometry has the lowest upper limit for (BH)max. The cylindrical geometry permits the soft phase to be larger and does not require strict size control. Exchange-spring permanent magnets based on the cylindrical geometry may be amenable to scaled-up fabrication.

  14. The permanent and induced magnetic dipole moment of the moon

    Science.gov (United States)

    Russell, C. T.; Coleman, P. J., Jr.; Lichtenstein, B. R.; Schubert, G.

    1974-01-01

    Magnetic field observations with the Apollo 15 subsatellite have been used to deduce the components of both the permanent and induced lunar dipole moments in the orbital plane. The present permanent lunar magnetic dipole moment in the orbital plane is less than 1.3 times ten to the eighteenth power gauss-cu cm. Any uniformly magnetized near surface layer is therefore constrained to have a thickness-magnetization product less than 2.5 emu-cm per g. The induced moment opposes the external field, implying the existence of a substantial lunar ionosphere with a permeability between 0.63 and 0.85. Combining this with recent measures of the ratio of the relative field strength at the ALSEP and Explorer 35 magnetometers indicates that the global lunar permeability relative to the plasma in the geomagnetic tail lobes is between 1.008 and 1.03.

  15. Investigation Procedure of Magnetic Performances of NdFeB Permanent Magnets

    DEFF Research Database (Denmark)

    Calin, Marius-Daniel; Helerea, Elena; Ritchie, Ewen

    2011-01-01

    The permanent magnet applications based on carbon steel magnets, hard ferrites and AlNiCo magnets classes are renewed with new classes of advanced magnetic materials based on rare earth elements, the Sm-Co and NdFeB types. Performance increase of the hard magnetic materials and their use...... in specific applications impose also great advances in the field of magnetic measurement. New researches need to be validated in order to investigate the NdFeB permanent magnets performances, including their stability under different thermal operational regimes. In this paper a specific investigation...... procedure of magnetic performances of NdFeB permanent magnets in correlation with the range of operating temperature is proposed based on modern hysteresisgraph method and impulse magnetization technique....

  16. Preferred Orientation in Nanocomposite Permanent Magnet Materials

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Melt-spun (Nd11.4Fe82.9B5.7)0.99M1 ribbons (M=Zr, Nb, Ga, Zr+Ga, Nb+Ga) were prepared by melt-spinning technique. Ga addition is found to be effective for the orientation of c-axis of Nd2Fe14B grains perpendicular to the ribbon plane. Better magnetic properties can be achieved by adding both the two kinds of elements Zr+Ga, Nb+Ga, and it is found that the preferred orientation is further improved. The alignment degree changes with ribbon thickness and is highest when ribbon thickness is 120 μm. Heat treatment can improve the texture degree, but lead to coarser grains. Cryogenic treatment is first applied for the treatment of nanocomposite Nd2Fe14B/α-Fe melt-spun ribbons. The effects on magnetic properties and texture degree of nanocomposite magnets after cryogenic treatment were studied. The result shows that cryogenic treatment is beneficial to the enhancement of texture degree of melt-spun ribbon and the grain size has no obvious change.

  17. Design study of the KIRAMS-430 superconducting cyclotron magnet

    Science.gov (United States)

    Kim, Hyun Wook; Kang, Joonsun; Hong, Bong Hwan; Jung, In Su

    2016-07-01

    Design study of superconducting cyclotron magnet for the carbon therapy was performed at the Korea Institute of Radiological and Medical Science (KIRAMS). The name of this project is The Korea Heavy Ion Medical Accelerator (KHIMA) project and a fixed frequency cyclotron with four spiral sector magnet was one of the candidate for the accelerator type. Basic parameters of the cyclotron magnet and its characteristics were studied. The isochronous magnetic field which can guide the 12C6+ ions up to 430 MeV/u was designed and used for the single particle tracking simulation. The isochronous condition of magnetic field was achieved by optimization of sector gap and width along the radius. Operating range of superconducting coil current was calculated and changing of the magnetic field caused by mechanical deformations of yokes was considered. From the result of magnetic field design, structure of the magnet yoke was planned.

  18. Study of a Mini-Actuator with Permanent Magnets

    Directory of Open Access Journals (Sweden)

    PETRESCU, C.

    2009-10-01

    Full Text Available The paper presents an analytical method for the determination of the magnetic force produced by a mini - actuator with permanent magnets. The results are compared with those obtained by performing a numerical field analysis with COMSOL Multiphysics, showing a very good agreement. The study reveals that the actuator has two equilibrium points, one of which is stable and the other one unstable.

  19. Structural looseness investigation in slow rotating permanent magnet generators

    DEFF Research Database (Denmark)

    Skrimpas, Georgios Alexandros; Mijatovic, Nenad; Sweeney, Christian Walsted;

    2016-01-01

    Structural looseness in electric machines is a condition influencing the alignment of the machine and thus the overall bearing health. In this work, assessment of the above mentioned failure mode is tested on a slow rotating (running speed equal to 0.7Hz) permanent magnet generator (PMG), while...

  20. The permanent magnet propulsion motor: from infancy to adolescence

    Energy Technology Data Exchange (ETDEWEB)

    Voyce, J.E. [Royal Navy (United Kingdom); Husband, S.M. [Rolls-Royce Strategic Research Centre (United Kingdom); Mattick, D.J. [Rolls-Royce Marine (United Kingdom)

    2000-07-01

    This paper presents an update on the Permanent Magnet Propulsion Motor (PMPM) Technical Demonstrator Programme (TDP). It looks at the history behind the TDP before concentrating on the design and development of the motor. The paper highlights the manufacturing processes involved in building such a novel design, and the motor testing programme, both complete and forthcoming at the time of writing the paper. (authors)

  1. Design Considerations of Permanent Magnet Transverse Flux Machines

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Rasmussen, Peter Omand; Ritchie, Ewen

    2011-01-01

    Permanent magnet transverse flux machine (PMTFM) is well known for its high torque density and is interested in various direct-drive applications. Due to its complicated 3-D flux components, design and design optimization of a PMTFM is more difficult and time consuming than for radial flux...

  2. Compact ECR ion source with permanent magnets for Carbon therapy

    NARCIS (Netherlands)

    Muramatsu, M; Kitagawa, A; Sakamoto, Y; Sato, Y; Yamada, S; Ogawa, H; Drentje, AG; Biri, S; Yoshida, Y

    Ion sources for the medical facilities should have the following characteristics of easy maintenance, low electric power, good stability, and long operation time without trouble (1 year or longer). For this, a 10 GHz compact electron cyclotron resonance ion source (ECRIS) with all permanent magnets

  3. Modeling of Exterior Rotor Permanent Magnet Machines with Concentrated Windings

    NARCIS (Netherlands)

    Vu Xuan, H.

    2012-01-01

    In this thesis modeling, analysis, design and measurement of exterior rotor permanent magnet (PM) machines with concentrated windings are dealt with. Special attention is paid to slotting effect. The PM machine is integrated in flywheel and used for small-scale ship application. Analytical model and

  4. Study of flow fractionation characteristics of magnetic chromatography utilizing high-temperature superconducting bulk magnet

    Directory of Open Access Journals (Sweden)

    Satoshi Fukui, Yoshihiro Shoji, Jun Ogawa, Tetsuo Oka, Mitsugi Yamaguchi, Takao Sato, Manabu Ooizumi, Hiroshi Imaizumi and Takeshi Ohara

    2009-01-01

    Full Text Available We present numerical simulation of separating magnetic particles with different magnetic susceptibilities by magnetic chromatography using a high-temperature superconducting bulk magnet. The transient transport is numerically simulated for two kinds of particles having different magnetic susceptibilities. The time evolutions were calculated for the particle concentration in the narrow channel of the spiral arrangement placed in the magnetic field. The field is produced by the highly magnetized high-temperature superconducting bulk magnet. The numerical results show the flow velocity difference of the particle transport corresponding to the difference in the magnetic susceptibility, as well as the possible separation of paramagnetic particles of 20 nm diameter.

  5. Combinatorial investigation of rare-earth free permanent magnets

    Science.gov (United States)

    Fackler, Sean Wu

    The combinatorial high throughput method allows one to rapidly study a large number of samples with systematically changing parameters. We apply this method to study Fe-Co-V alloys as alternatives to rare-earth permanent magnets. Rare-earth permanent magnets derive their unmatched magnetic properties from the hybridization of Fe and Co with the f-orbitals of rare-earth elements, which have strong spin-orbit coupling. It is predicted that Fe and Co may also have strong hybridization with 4d and 5d refractory transition metals with strong spin-orbit coupling. Refractory transition metals like V also have the desirable property of high temperature stability, which is important for permanent magnet applications in traction motors. In this work, we focus on the role of crystal structure, composition, and secondary phases in the origin of competitive permanent magnetic properties of a particular Fe-Co-V alloy. Fe38Co52V10, compositions are known as Vicalloys. Fe-CoV composition spreads were sputtered onto three-inch silicon wafers and patterned into discrete sample pads forming a combinatorial library. We employed highthroughput screening methods using synchrotron X-rays, wavelength dispersive spectroscopy, and magneto-optical Kerr effect (MOKE) to rapidly screen crystal structure, composition, and magnetic properties, respectively. We found that in-plane magnetic coercive fields of our Vicalloy thin films agree with known bulk values (300 G), but found a remarkable eight times increase of the out-of-plane coercive fields (˜2,500 G). To explain this, we measured the switching fields between in-plane and out-of-plane thin film directions which revealed that the Kondorsky model of 180° domain wall reversal was responsible for Vicalloy's enhanced out-of-plane coercive field and possibly its permanent magnetic properties. The Kondorsky model suggests that domain-wall pinning is the origin of Vicalloy's permanent magnetic properties, in contrast to strain, shape, or

  6. Case Studies on Superconducting Magnets for Particle Accelerators

    CERN Document Server

    Ferracin, P

    2014-01-01

    During the CERN Accelerator School 'Superconductivity for accelerators', the students were divided into 18 groups, and 6 different exercises (case studies), involving the design and analysis of superconducting magnets and RF cavities, were assigned. The problems covered a broad spectrum of topics, from properties of superconducting materials to operation conditions and general dimensions of components. The work carried out by the students turned out to be an extremely useful opportunity to review the material explained during the lectures, to become familiar with the orders of magnitude of the key parameters, and to understand and compare different design options. We provide in this paper a summary of the activities related to the case studies on superconducting magnets and present the main outcomes.

  7. Analytical & Numerical Modelings of Elliptical Superconducting Filament Magnetization

    CERN Document Server

    Bottura, L; Bouillault, F; Devred, Arnaud

    2005-01-01

    This paper deals with the two-dimensional computation of magnetization in an elliptic superconducting filament by using numerical and analytical methods. The numerical results are obtained from the finite element method and by using Bean's model. This model is well adapted for Low Tc superconductor studies. We observe the effect of the axis ratio and of the field angle to the magnetic moment per unit length at saturation, and also to the cycle of magnetization. Moreover, the current density and the distribution of the electromagnetic fields in the superconducting filament are also studied.

  8. CLIQ. A new quench protection technology for superconducting magnets

    CERN Document Server

    Ravaioli, Emmanuele; ten Kate, H H J

    CLIQ, the Coupling-Loss Induced Quench system, is a new method for protecting superconducting magnets after a sudden transition to the normal state. It offers significant advantages over the conventional technology due to its effective mechanism for heating the superconductor relying on coupling loss and its robust electrical design, which makes it more reliable and less interfering with the coil winding process. The analysis of the electro-magnetic and thermal transients during and after a CLIQ discharge allows identifying the system parameters that affect the system performance and defining guidelines for implementing this technology on coils of various characteristics. Most existing superconducting magnets can be protected by CLIQ as convincingly shown by test results performed on magnets of different sizes, superconductor types, geometries, cables and strand parameters. Experimental results are successfully reproduced by means of a novel technique for modeling non-linear dynamic effects in superconducting...

  9. Performance Comparison of Permanent Magnet Linear Actuators of Different Mover Types

    DEFF Research Database (Denmark)

    Ritchie, Ewen; Hinov, K.; Yatchev, I.

    2006-01-01

    A comparative study of permanent magnet linear actuators with different location of the permanent magnet is reported. Three mover types are considered - soft magnetic mover, permanent magnet mover and hybrid mover. Force-stroke characteristics are obtained with the help of finite element models...

  10. Levitation performance of the magnetized bulk high-T{sub c} superconducting magnet with different trapped fields

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W. [Applied Superconductivity Laboratory, Southwest Jiaotong University (ASCLab), Chengdu, Sichuan 610031 (China); State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); National Laboratory of Rail Transit, Chengdu, Sichuan 610031 (China); Wang, J.S., E-mail: tonny@mars.swjtu.edu.c [Applied Superconductivity Laboratory, Southwest Jiaotong University (ASCLab), Chengdu, Sichuan 610031 (China); National Laboratory of Rail Transit, Chengdu, Sichuan 610031 (China); Liao, X.L.; Zheng, S.J.; Ma, G.T.; Zheng, J. [Applied Superconductivity Laboratory, Southwest Jiaotong University (ASCLab), Chengdu, Sichuan 610031 (China); State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); National Laboratory of Rail Transit, Chengdu, Sichuan 610031 (China); Wang, S.Y. [Applied Superconductivity Laboratory, Southwest Jiaotong University (ASCLab), Chengdu, Sichuan 610031 (China); National Laboratory of Rail Transit, Chengdu, Sichuan 610031 (China)

    2011-03-15

    Research highlights: {yields} The different trapped fields bring entirely different levitation performance. {yields} The force relaxation characters is directly bound up with the trapped field. {yields} The higher trapped field not means better levitation performance. {yields} An profitable internal induced current configuration will benefit to suppress flux motion. - Abstract: To a high-T{sub c} superconducting (HTS) maglev system which needs large levitation force density, the magnetized bulk high-T{sub c} superconductor (HTSC) magnet is a good candidate because it can supply additional repulsive or attractive force above a permanent magnet guideway (PMG). Because the induced supercurrent within a magnetized bulk HTSC is the key parameter for the levitation performance, and it is sensitive to the magnetizing process and field, so the magnetized bulk HTSC magnets with different magnetizing processes had various levitation performances, not only the force magnitude, but also its force relaxation characteristics. Furthermore, the distribution and configuration of the induced supercurrent are also important factor to decide the levitation performance, especially the force relaxation characteristics. This article experimentally investigates the influences of different magnetizing processes and trapped fields on the levitation performance of a magnetized bulk HTSC magnet with smaller size than the magnetic inter-pole distance of PMG, and the obtained results are qualitatively analyzed by the Critical State Model. The test results and analyses of this article are useful for the suitable choice and optimal design of magnetized bulk HTSC magnets.

  11. Thermal properties of a large-bore cryocooled 10 T superconducting magnet for a hybrid magnet

    Energy Technology Data Exchange (ETDEWEB)

    Ishizuka, M., E-mail: Mas_Ishizuka@shi.co.j [Graduate School of Engineering, Tohoku University, 6-6 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579 (Japan); Research and Development Center, Sumitomo Heavy Industries, Ltd., 19 Natsushima-chou, Yokosuka, Kanagawa 237-8555 (Japan); Hamajima, T. [Graduate School of Engineering, Tohoku University, 6-6 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579 (Japan); Itou, T. [Ehime Works, Sumitomo Heavy Industries, Ltd., 5-2 Soubiraki-cho, Niihama, Ehime 792-8588 (Japan); Sakuraba, J. [Research and Development Center, Sumitomo Heavy Industries, Ltd., 19 Natsushima-chou, Yokosuka, Kanagawa 237-8555 (Japan); Nishijima, G.; Awaji, S.; Watanabe, K. [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2010-11-01

    A cryocooled 10 T superconducting magnet with a 360 mm room temperature bore has been developed for a hybrid magnet. The superconducting magnet cooled by four Gifford-McMahon cryocoolers has been designed to generate a magnetic field of 10 T. Since superconducting wires composed of coils were subjected to large hoop stress over 150 MPa and Nb{sub 3}Sn superconducting wires particularly showed a low mechanical strength due to those brittle property, Nb{sub 3}Sn wires strengthened by NbTi-filaments were developed for the cryocooled superconducting magnet. We have already reported that the hybrid magnet could generate the resultant magnetic field of 27.5 T by adding 8.5 T from the superconducting magnet and 19 T from a water-cooled Bitter resistive magnet, after the water-cooled resistive magnet was inserted into the 360 mm room temperature bore of the cryocooled superconducting magnet. When the hybrid magnet generated the field of 27.5 T, it achieved the high magnetic-force field (B x {partial_derivative}Bz/{partial_derivative}z) of 4500 T{sup 2}/m, which was useful for magneto-science in high fields such as materials levitation research. In this paper, we particularly focus on the cause that the cryocooled superconducting magnet was limited to generate the designed magnetic field of 10 T in the hybrid magnet operation. As a result, it was found that there existed mainly two causes as the limitation of the magnetic field generation. One was a decrease of thermal conductive passes due to exfoliation from the coil bobbin of the cooling flange. The other was large AC loss due to both a thick Nb{sub 3}Sn layer and its large diameter formed on Nb-barrier component in Nb{sub 3}Sn wires.

  12. A FORMULA FOR CALCULATING THE ERRORS OF SUPERCONDUCTING MAGNETIZATION CURVE

    Institute of Scientific and Technical Information of China (English)

    GUO SHU-QUAN; LIU MENG-LIN; ZHENG DONG-NING; ZHAO BAI-RU

    2001-01-01

    Because of field inhomogeneity in the magnetization measurement system, large errors may exist in the decreasing field superconducting magnetization curves, but not in the increasing field curves. The physical origin of the large errors is proposed here. A simple formula for calculating the errors is given. This formula is consistent with the experimental data.

  13. Power Switches Utilizing Superconducting Material for Accelerator Magnets

    CERN Document Server

    March, S A; Yang, Y

    2009-01-01

    Power switches that utilize superconducting material find application in superconducting systems. They can be used for the protection of magnets as a replacement for warm DC breakers, as well as for the replacement of cold diodes. This paper presents a comparison of switches made of various superconducting materials having transport currents of up to 600 A and switching times of the order of milliseconds. The switches operate in the temperature range 4.2-77 K and utilize stainless steel clad YBCO tape and MgB2 tape with a nickel, copper, and iron matrix. Results from simulations and tests are reported.

  14. Cryocooled superconducting magnets for high magnetic fields at the HFLSM and future collaboration with the TML

    Science.gov (United States)

    Watanabe, K.; Nishijima, G.; Awaji, S.; Koyama, K.; Takahashi, K.; Kobayashi, N.; Kiyoshi, T.

    2006-11-01

    A hybrid magnet needs a large amount of liquid helium for operation. In order to make an easy-to-operate hybrid magnet system, we constructed a cryocooled 28 T hybrid magnet, consisting of an outer cryocooled 10 T superconducting magnet and an inner traditional water-cooled 19 T resistive magnet. As a performance test, the cryocooled hybrid magnet generated 27.5 T in a 32 mm room temperature experimental bore. As long as Nb3Sn superconducting wires are employed, the expected maximum high field generation in the cryocooled superconducting magnet will be 17 T at 5 K. We adopted the high temperature superconducting insert coil, employing Ag-sheathed Bi2Sr2Ca2Cu3O10superconducting tape. In combination with the low temperature 16.5 T back-up coil with a 174 mm cold bore, the cryocooled high temperature superconducting magnet successfully generated the total central field of 18.1 T in a 52 mm room temperature bore. As a next step, we start the collaboration with the National Institute for Materials Science for the new developmental works of a 30 T high temperature superconducting magnet and a 50 T-class hybrid magnet.

  15. Rotating permanent magnet excitation for blood flow measurement.

    Science.gov (United States)

    Nair, Sarath S; Vinodkumar, V; Sreedevi, V; Nagesh, D S

    2015-11-01

    A compact, portable and improved blood flow measurement system for an extracorporeal circuit having a rotating permanent magnetic excitation scheme is described in this paper. The system consists of a set of permanent magnets rotating near blood or any conductive fluid to create high-intensity alternating magnetic field in it and inducing a sinusoidal varying voltage across the column of fluid. The induced voltage signal is acquired, conditioned and processed to determine its flow rate. Performance analysis shows that a sensitivity of more than 250 mV/lpm can be obtained, which is more than five times higher than conventional flow measurement systems. Choice of rotating permanent magnet instead of an electromagnetic core generates alternate magnetic field of smooth sinusoidal nature which in turn reduces switching and interference noises. These results in reduction in complex electronic circuitry required for processing the signal to a great extent and enable the flow measuring device to be much less costlier, portable and light weight. The signal remains steady even with changes in environmental conditions and has an accuracy of greater than 95%. This paper also describes the construction details of the prototype, the factors affecting sensitivity and detailed performance analysis at various operating conditions.

  16. A Practical Permanent Magnetic Motor Drive for Hybrid Motorcycle

    Institute of Scientific and Technical Information of China (English)

    崔巍; 江建中; 邵定国; 杨斌

    2003-01-01

    A novel embedded-type permanent magnetic motor for hybrid motorcycle, which employs asymmetric design of eccentric air-gap, is proposed in the paper. This special design of air-gap well conforms to the mono-directional operation characteristic of motorcycle and effectively suppresses the distortion of air-gap magnetic field caused by armature reaction. Hence the torque ripple is reduced. A drive system consisting of the newly-designed Nd-Fe-B permanent magnet synchronous motor and parallel-MOSFET threephase inverter for hybrid motorcycle propulsion is established. Wide-range speed operation is realized through a simple and novel control strategy. Computer simulation is described and experimental results given to verify the practicality of the proposed motor design and control strategy.

  17. Sampling Hyperpolarized Molecules Utilizing a 1 Tesla Permanent Magnetic Field.

    Science.gov (United States)

    Tee, Sui Seng; DiGialleonardo, Valentina; Eskandari, Roozbeh; Jeong, Sangmoo; Granlund, Kristin L; Miloushev, Vesselin; Poot, Alex J; Truong, Steven; Alvarez, Julio A; Aldeborgh, Hannah N; Keshari, Kayvan R

    2016-09-06

    Hyperpolarized magnetic resonance spectroscopy (HP MRS) using dynamic nuclear polarization (DNP) is a technique that has greatly enhanced the sensitivity of detecting (13)C nuclei. However, the HP MRS polarization decays in the liquid state according to the spin-lattice relaxation time (T1) of the nucleus. Sampling of the signal also destroys polarization, resulting in a limited temporal ability to observe biologically interesting reactions. In this study, we demonstrate that sampling hyperpolarized signals using a permanent magnet at 1 Tesla (1T) is a simple and cost-effective method to increase T1s without sacrificing signal-to-noise. Biologically-relevant information may be obtained with a permanent magnet using enzyme solutions and in whole cells. Of significance, our findings indicate that changes in pyruvate metabolism can also be quantified in a xenograft model at this field strength.

  18. Sampling Hyperpolarized Molecules Utilizing a 1 Tesla Permanent Magnetic Field

    Science.gov (United States)

    Tee, Sui Seng; Digialleonardo, Valentina; Eskandari, Roozbeh; Jeong, Sangmoo; Granlund, Kristin L.; Miloushev, Vesselin; Poot, Alex J.; Truong, Steven; Alvarez, Julio A.; Aldeborgh, Hannah N.; Keshari, Kayvan R.

    2016-09-01

    Hyperpolarized magnetic resonance spectroscopy (HP MRS) using dynamic nuclear polarization (DNP) is a technique that has greatly enhanced the sensitivity of detecting 13C nuclei. However, the HP MRS polarization decays in the liquid state according to the spin-lattice relaxation time (T1) of the nucleus. Sampling of the signal also destroys polarization, resulting in a limited temporal ability to observe biologically interesting reactions. In this study, we demonstrate that sampling hyperpolarized signals using a permanent magnet at 1 Tesla (1T) is a simple and cost-effective method to increase T1s without sacrificing signal-to-noise. Biologically-relevant information may be obtained with a permanent magnet using enzyme solutions and in whole cells. Of significance, our findings indicate that changes in pyruvate metabolism can also be quantified in a xenograft model at this field strength.

  19. Bearingless Permanent Magnet Synchronous Motor using Independent Control

    Directory of Open Access Journals (Sweden)

    Normaisharah Mamat

    2015-06-01

    Full Text Available Bearingless permanent magnet synchronous motor (BPMSM combines the characteristic of the conventional permanent magent synchronous motor and magnetic bearing in one electric motor. BPMSM is a kind of high performance motor due to having both advantages of PMSM and magnetic bearing with simple structure, high efficiency, and reasonable cost. The research on BPMSM is to design and analyse BPMSM by using Maxwell 2-Dimensional of ANSYS Finite Element Method (FEM. Independent suspension force model and bearingless PMSM model are developed by using the method of suspension force. Then, the mathematical model of electromagnetic torque and radial suspension force has been developed by using Matlab/Simulink. The relation between force, current, distance and other parameter are determined. This research covered the principle of suspension force, the mathematical model, FEM analysis and digital control system of bearingless PMSM. This kind of motor is widely used in high speed application such as compressors, pumps and turbines.

  20. Development of permanent magnetic refrigerator at room temperature

    Institute of Scientific and Technical Information of China (English)

    HUANG Jiaohong; LIU Jinrong; JIN Peiyu; YAN Hongwei; QIU Jufeng; XU Laizi; ZHANG Jiuxing

    2006-01-01

    A reciprocating magnetic refrigerator was developed based on the active magneticregeneration technology. Rare earth metal Gd and intermetallic compound LaFe11.2Co0.7Si1.1 were used as the magnetic operating materials in the machine. The particles of the magnetic operating materials, with diameter of 0.5- 2 mm and total mass of 950 g, were mounted in the cooling bed. A magnetic field was assembled using NdFeB rare earth permanent magnets. It had the magneticfield space of Φ 34×200 and the magnetic induction of 1.5 T. The water at pH=10 is used as a heat transfer fluid. When the ambient temperature is 296 K, a temperature span of 18 K was achieved after operation of 45 min at a frequency of 0.178 Hz. The temperature span and the output power increase significantly with the increasing velocity of heat transfer.

  1. Study of Permanent Magnet Focusing for Astronomical Camera Tubes

    Science.gov (United States)

    Long, D. C.; Lowrance, J. L.

    1975-01-01

    A design is developed of a permanent magnet assembly (PMA) useful as the magnetic focusing unit for the 35 and 70 mm (diagonal) format SEC tubes. Detailed PMA designs for both tubes are given, and all data on their magnetic configuration, size, weight, and structure of magnetic shields adequate to screen the camera tube from the earth's magnetic field are presented. A digital computer is used for the PMA design simulations, and the expected operational performance of the PMA is ascertained through the calculation of a series of photoelectron trajectories. A large volume where the magnetic field uniformity is greater than 0.5% appears obtainable, and the point spread function (PSF) and modulation transfer function(MTF) indicate nearly ideal performance. The MTF at 20 cycles per mm exceeds 90%. The weight and volume appear tractable for the large space telescope and ground based application.

  2. Magnetic field shimming of a permanent magnet using a combination of pieces of permanent magnets and a single-channel shim coil for skeletal age assessment of children.

    Science.gov (United States)

    Terada, Y; Kono, S; Ishizawa, K; Inamura, S; Uchiumi, T; Tamada, D; Kose, K

    2013-05-01

    We adopted a combination of pieces of permanent magnets and a single-channel (SC) shim coil to shim the magnetic field in a magnetic resonance imaging system dedicated for skeletal age assessment of children. The target magnet was a 0.3-T open and compact permanent magnet tailored to the hand imaging of young children. The homogeneity of the magnetic field was first improved by shimming using pieces of permanent magnets. The residual local inhomogeneity was then compensated for by shimming using the SC shim coil. The effectiveness of the shimming was measured by imaging the left hands of human subjects and evaluating the image quality. The magnetic resonance images for the child subject clearly visualized anatomical structures of all bones necessary for skeletal age assessment, demonstrating the usefulness of combined shimming.

  3. Application of textured YBCO bulks with artificial holes for superconducting magnetic bearing

    Science.gov (United States)

    Dias, D. H. N.; Sotelo, G. G.; Moysés, L. A.; Telles, L. G. T.; Bernstein, P.; Kenfaui, D.; Aburas, M.; Chaud, X.; Noudem, J. G.

    2015-07-01

    The levitation force between a superconductor and a permanent magnet has been investigated for the development of superconducting magnetic bearings (SMBs). Depending on the proposed application, the SMBs can be arranged with two kinds of symmetries: rotational or linear. The SMBs present passive operation, low level of noise and no friction, but they need a cooling system for their operation. Nowadays the cooling problem may be easily solved by the use of a commercial cryocooler. The levitation force of SMBs is directly related to the quality of the superconductor material (which depends on its critical current density) and the permanent magnet arrangement. Also, research about the YBa2Cu3Ox (Y123) bulk materials has shown that artificial holes enhance the superconducting properties, in particular the magnetic trapped field. In this context, this work proposes the investigation of the levitation force of a bulk Y123 sample with multiple holes and the comparison of its performances with those of conventional plain Y123 superconductors.

  4. Development of a miniature permanent magnetic circuit for nuclear magnetic resonance chip

    Science.gov (United States)

    Lu, Rongsheng; Yi, Hong; Wu, Weiping; Ni, Zhonghua

    2013-07-01

    The existing researches of miniature magnetic circuits focus on the single-sided permanent magnetic circuits and the Halbach permanent magnetic circuits. In the single-sided permanent magnetic circuits, the magnetic flux density is always very low in the work region. In the Halbach permanent magnetic circuits, there are always great difficulties in the manufacturing and assembly process. The static magnetic flux density required for nuclear magnetic resonance(NMR) chip is analyzed based on the signal noise ratio(SNR) calculation model, and then a miniature C-shaped permanent magnetic circuit is designed as the required magnetic flux density. Based on Kirchhoff's law and magnetic flux refraction principle, the concept of a single shimming ring is proposed to improve the performance of the designed magnetic circuit. Using the finite element method, a comparative calculation is conducted. The calculation results demonstrate that the magnetic circuit improved with a single shimming has higher magnetic flux density and better magnetic field homogeneity than the one improved with no shimming ring or double shimming rings. The proposed magnetic circuit is manufactured and its experimental test platform is also built. The magnetic flux density measured in the work region is 0.7 T, which is well coincided with the theoretical design. The spatial variation of the magnetic field is within the range of the instrument error. At last, the temperature dependence of the magnetic flux density produced by the proposed magnetic circuit is investigated through both theoretical analysis and experimental study, and a linear functional model is obtained. The proposed research is crucial for solving the problem in the application of NMR-chip under different environmental temperatures.

  5. Magnetic field expulsion in superconducting granular ceramics and in polymer/superconductor composites

    Energy Technology Data Exchange (ETDEWEB)

    Benlhachemi, A. [Univ. de Toulon et du Var, La Garde (France). Lab. des Materiaux Multiphases et Interfaces]|[Lab. de Chimie des Solides, Faculte des Sciences, Univ. Ibnou Zohr, Agadir (Morocco); Fremy, M.A.; Breandon, C.; Tatarenko, H.; Gavarri, J.R. [Univ. de Toulon et du Var, La Garde (France). Lab. des Materiaux Multiphases et Interfaces; Benyaich, H. [Lab. de Chimie des Solides, Faculte des Sciences, Univ. Ibnou Zohr, Agadir (Morocco)

    1998-05-01

    The magnetic interaction between a permanent magnet and superconducting ceramics such as YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} and Bi{sub 1.6}Pb{sub 0.4}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub (10+} {sub de} {sub lta)} depend on the superconducting state of each phase and on the junctions between grains. In the case of polymer/superconductor composites, screening effects depend on the volume fraction of superconductor. Measurements of the evolution of the levitation force (F=A/d{sup {gamma}}) as a function of the interaction distance d are used to characterize the effective response of the ceramics or composites to the magnetic flux penetration. Some of the abnormal variations of the exponent {gamma} and of the term A (in F=A/d{sup {gamma}}) could be reinterpreted in terms of a change in superconducting regime. Other observed variations of {gamma} should be due to the variation of the effective field from the cylindrical magnet. (orig.) 19 refs.

  6. Enhanced Energy Density in Permanent Magnets using Controlled High Magnetic Field during Processing

    Energy Technology Data Exchange (ETDEWEB)

    Rios, Orlando [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carter, Bill [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Constantinides, Steve [Arnold Magnetic Technologies, Rochester, NY (United States)

    2016-05-05

    This ORNL Manufacturing Demonstraction Facility (MDF) technical collaboration focused on the use of high magnetic field processing (>2Tesla) using energy efficient large bore superconducting magnet technology and high frequency electromagnetics to improve magnet performance and reduce the energy budget associated with Alnico thermal processing. Alnico, alloys containing Al, Ni, Co and Fe, represent a class of functional nanostructured alloys, and show the greatest potential for supplementing or replacing commercial Nd-based rare-earth alloy magnets.

  7. 2-D Electromagnetic Model of Fast-Ramping Superconducting Magnets

    CERN Document Server

    Auchmann, B; Kurz, S; Russenschuck, Stephan

    2006-01-01

    Fast-ramping superconducting (SC) accelerator magnets are the subject of R&D efforts by magnet designers at various laboratories. They require modifications of magnet design tools such as the ROXIE program at CERN, i.e. models of dynamic effects in superconductors need to be implemented and validated. In this paper we present the efforts towards a dynamic 2-D simulation of fast-ramping SC magnets with the ROXIE tool. Models are introduced and simulation results are compared to measurements of the GSI001 magnet of a GSI test magnet constructed and measured at BNL.

  8. Numerical calculation of transient field effects in quenching superconducting magnets

    CERN Document Server

    Schwerg, Nikolai; Russenschuck, Stephan

    2009-01-01

    The maximum obtainable magnetic induction of accelerator magnets, relying on normal conducting cables and iron poles, is limited to around 2 T because of ohmic losses and iron saturation. Using superconducting cables, and employing permeable materials merely to reduce the fringe field, this limit can be exceeded and fields of more than 10 T can be obtained. A quench denotes the sudden transition from the superconducting to the normal conducting state. The drastic increase in electrical resistivity causes ohmic heating. The dissipated heat yields a temperature rise in the coil and causes the quench to propagate. The resulting high voltages and excessive temperatures can result in an irreversible damage of the magnet - to the extend of a cable melt-down. The quench behavior of a magnet depends on numerous factors, e.g. the magnet design, the applied magnet protection measures, the external electrical network, electrical and thermal material properties, and induced eddy current losses. The analysis and optimizat...

  9. submitter Thermal, Hydraulic, and Electromagnetic Modeling of Superconducting Magnet Systems

    CERN Document Server

    Bottura, L

    2016-01-01

    Modeling techniques and tailored computational tools are becoming increasingly relevant to the design and analysis of large-scale superconducting magnet systems. Efficient and reliable tools are useful to provide an optimal forecast of the envelope of operating conditions and margins, which are difficult to test even when a prototype is available. This knowledge can be used to considerably reduce the design margins of the system, and thus the overall cost, or increase reliability during operation. An integrated analysis of a superconducting magnet system is, however, a complex matter, governed by very diverse physics. This paper reviews the wide spectrum of phenomena and provides an estimate of the time scales of thermal, hydraulic, and electromagnetic mechanisms affecting the performance of superconducting magnet systems. The analysis is useful to provide guidelines on how to divide the complex problem into building blocks that can be integrated in a design and analysis framework for a consistent multiphysic...

  10. Method for forming permanent magnets with different polarities for use in microelectromechanical devices

    Science.gov (United States)

    Roesler, Alexander W.; Christenson, Todd R.

    2007-04-24

    Methods are provided for forming a plurality of permanent magnets with two different north-south magnetic pole alignments for use in microelectromechanical (MEM) devices. These methods are based on initially magnetizing the permanent magnets all in the same direction, and then utilizing a combination of heating and a magnetic field to switch the polarity of a portion of the permanent magnets while not switching the remaining permanent magnets. The permanent magnets, in some instances, can all have the same rare-earth composition (e.g. NdFeB) or can be formed of two different rare-earth materials (e.g. NdFeB and SmCo). The methods can be used to form a plurality of permanent magnets side-by-side on or within a substrate with an alternating polarity, or to form a two-dimensional array of permanent magnets in which the polarity of every other row of the array is alternated.

  11. Interplay between superconductivity and magnetism in iron-based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Chubukov, Andrey V [University of Wisconsin

    2015-06-10

    This proposal is for theoretical work on strongly correlated electron systems, which are at the center of experimental and theoretical activities in condensed-matter physics. The interest to this field is driven fascinating variety of observed effects, universality of underlying theoretical ideas, and practical applications. I propose to do research on Iron-based superconductors (FeSCs), which currently attract high attention in the physics community. My goal is to understand superconductivity and magnetism in these materials at various dopings, the interplay between the two, and the physics in the phase in which magnetism and superconductivity co-exist. A related goal is to understand the origin of the observed pseudogap-like behavior in the normal state. My research explores the idea that superconductivity is of electronic origin and is caused by the exchange of spin-fluctuations, enhanced due to close proximity to antiferromagnetism. The multi-orbital/multi-band nature of FeSCs opens routes for qualitatively new superconducting states, particularly the ones which break time-reversal symmetry. By all accounts, the coupling in pnictdes is below the threshold for Mott physics and I intend to analyze these systems within the itinerant approach. My plan is to do research in two stages. I first plan to address several problems within weak-coupling approach. Among them: (i) what sets stripe magnetic order at small doping, (ii) is there a preemptive instability into a spin-nematic state, and how stripe order affects fermions; (iii) is there a co-existence between magnetism and superconductivity and what are the system properties in the co-existence state; (iv) how superconductivity emerges despite strong Coulomb repulsion and can the gap be s-wave but with nodes along electron FSs, (v) are there complex superconducting states, like s+id, which break time reversal symmetry. My second goal is to go beyond weak coupling and derive spin-mediated, dynamic interaction between

  12. Performance of an Adjustable Strength Permanent Magnet Quadrupole

    CERN Document Server

    Gottschalk, Stephen C; Kangas, Kenneth; Spencer, Cherrill M; Volk, James T

    2005-01-01

    An adjustable strength permanent magnet quadrupole suitable for use in Next Linear Collider has been built and tested. The pole length is 42cm, aperture diameter 13mm, peak pole tip strength 1.03Tesla and peak integrated gradient * length (GL) is 68.7 Tesla. This paper describes measurements of strength, magnetic centerline and field quality made using an air bearing rotating coil system. The magnetic centerline stability during -20% strength adjustment proposed for beam based alignment was < 0.2 microns. Strength hysteresis was negligible. Thermal expansion of quadrupole and measurement parts caused a repeatable and easily compensated change in the vertical magnetic centerline. Calibration procedures as well as centerline measurements made over a wider tuning range of 100% to 20% in strength useful for a wide range of applications will be described. The impact of eddy currents in the steel poles on the magnetic field during strength adjustments will be reported.

  13. Magnetoelastic instabilities and vibrations of superconducting-magnet systems

    Energy Technology Data Exchange (ETDEWEB)

    Moon, F.C.

    1982-03-01

    This report describes the research accomplished under Depatment of Energy/NSF grants associated with the structural design of superconducting magnets for magnetic fusion reactors. The main results pertain to magnetomechanical instabilities in toroidal and poloidal field magnets for proposed fusion reactors. One major accomplishment was the building and testing of a 1/75th scale superconducting structural model of a 16 coil Tokamak reactor. Using this model the buckling of toroidal and poloidal field coils under different constraints was observed. A series of dynamic tests were performed, including the effect of currents on natural frequencies, poloidal-toroidal coil interaction, and buckling induced superconducting-normal quench of the coils. The stability of poloidal coils in a toroidal magnet field were investigated with the 16 coil torus. A superconducting poloidal coil was observed to become statically unstable or buckle as the current approached a certain value. Magnetoelastic buckling of other magnet systems such as a yin-yang pair of magnets, Ioffe coils, and discrete coil solenoids were also studied.

  14. Coexistence of Incommensurate Magnetism and Superconductivity in the Two-Dimensional Hubbard Model.

    Science.gov (United States)

    Yamase, Hiroyuki; Eberlein, Andreas; Metzner, Walter

    2016-03-04

    We analyze the competition of magnetism and superconductivity in the two-dimensional Hubbard model with a moderate interaction strength, including the possibility of incommensurate spiral magnetic order. Using an unbiased renormalization group approach, we compute magnetic and superconducting order parameters in the ground state. In addition to previously established regions of Néel order coexisting with d-wave superconductivity, the calculations reveal further coexistence regions where superconductivity is accompanied by incommensurate magnetic order.

  15. High Magnetic Field Superconducting Magnets Fabricated In Budker Inp For Sr Generation

    CERN Document Server

    Zolotarev, K V; Khruschev, S V; Krämer, Dietrich; Kulipanov, G N; Lev, V H; Mezentsev, N A; Miginsky, E G; Shkaruba, V A; Syrovatin, V M; Tsukanov, V M; Zjurba, V K

    2004-01-01

    BESSY operates a 3-rd generation synchrotron light source in VUV to XUV region at Berlin-Adlershof. The main radiation sources in storage ring are special magnetic elements as undulators and wigglers. 3 superconducting shifters and one multipole superconducting wiggler are operating giving enhanced photon flux for 10-25 keV X-ray region. As the superconducting elements presently are located in straight sections, BESSY intends to exchange 4 of conventional room-temperature bending magnets by superconducting ones.The report contains brief description of 9 Tesla superbend prototype as a candidate for replacing of conventional magnets of BESSY-2, which was designed, fabricated and tested at Budker INP and was commissioned at BESSY in June 2004.Main parameters of 9 Tesla superconducting bending magnet prototype as well as testing results are presented.

  16. Study of quench propagation velocity in superconducting magnets for UNK

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanov, I.V.; Sheherbakov, P.A.; Snitko, V.P.; Tkachenko, N.P.; Vasiliev, L.M.; Vybornov, M.G.; Ziobin, A.V.

    1989-03-01

    Two superconducting magnet models, warm-iron and cold-iron designs are studied within the frames of work on UNK. The present note describes the method and results on measuring quench propagation velocity in the superconducting cables with a transport current in external field under the cooling conditions typical for those of the magnet winding. The results on measuring quench propagation velocities in warm-iron and cold-iron designs are presented. The results obtained for short samples and model coils are compared.

  17. Improved Nonambipolar Electron Source Operation with Permanent Magnets

    Science.gov (United States)

    Gudmundson, Jesse; Hershkowitz, Noah

    2008-11-01

    The Nonambipolar Electron Source (NES) is a Radio Frequency (rf) plasma-based electron source that does not rely on electron emission at a cathode surface. All electrons are extracted at an electron sheath through a biased ring and all ions are lost radially to a biased Faraday shield. An electromagnet in the original NES has been replaced by a NdFeB permanent magnet array. A portion of the magnet array consists of a ring of radially aligned magnets followed by a ring of axially aligned magnets that produce a peak field of approximately 800 Gauss. Axial magnetic field strength at the extraction ring was increased using an additional ring of axially aligned magnets. Measurement of the magnetic field was in good agreement with field predicted by the FEMM (Finite Element Method Magnetics) code. Optimization of the single turn antenna and biased ring position in the magnetic field will be discussed. At least 15 A of electron current was extracted using a flow rate of 15 sccm Ar at 600 W of rf power at 13.56 MHz. For comparison, the original NES required 1200 W of power to achieve 15 A of extracted current. Compared to the previous coil design, the NdFeB magnets are lighter weight and require no power.

  18. A Novel superconducting toroidal field magnet concept using advanced materials

    Science.gov (United States)

    Schwartz, J.

    1992-03-01

    The plasma physics database indicates that two distinct approaches to tokamak design may lead to commercial fusion reactors: low Aspect ratio, high plasma current, relatively low magnetic field devices, and high Aspect ratio, high field devices. The former requires significant enhancements in plasma performance, while the latter depends primarily upon technology development. The key technology for the commercialization of the high-field approach is large, high magnetic field superconducting magnets. In this paper, the physics motivation for the high field approach and key superconducting magnet (SCM) development issues are reviewed. Improved SCM performance may be obtained from improved materials and/or improved engineering. Superconducting materials ranging from NbTi to high- T c oxides are reviewed, demonstrating the broad range of potential superconducting materials. Structural material options are discussed, including cryogenic steel alloys and fiber-reinforced composite materials. Again, the breadth of options is highlighted. The potential for improved magnet engineering is quantified in terms of the Virial Theorem Limit, and two examples of approaches to highly optimized magnet configurations are discussed. The force-reduced concept, which is a finite application of the force-free solutions to Ampere's Law, appear promising for large SCMs but may be limited by the electromagnetics of a fusion plasma. The Solid Superconducting Cylinder (SSC) concept is proposed. This concept combines the unique properties of high- T c superconductors within a low- T c SCM to obtain (1) significant reductions in the structural material volume, (2) a decoupling of the tri-axial (compressive and tensile) stress state, and (3) a demountable TF magnet system. The advantages of this approach are quantified in terms of a 24 T commercial reactor TF magnet system. Significant reductions in the mechanical stress and the TF radial build are demonstrated.

  19. Sensorless operation of surface mount permanent magnet AC (PMAC) motors

    Energy Technology Data Exchange (ETDEWEB)

    Toliyat, H.A.; Rahman, K.M.; Shet, D.S.

    1999-12-01

    A sensorless field oriented control scheme for surface mount permanent magnet ac (PMAC) motor with split phase stator windings is presented. This motor is obtained by splitting the phase windings of a conventional three phase motor. The six-phase motor, however is run as a three-phase motor by connecting the split phase stator windings in series, while the taps are made available for voltage measurements. By measuring the terminal voltages and the line currents, absolute position of the permanent magnet ac motor driven by a current regulated PWM inverter with a hysteresis controller is estimated. The estimated position information is independent of the stator resistance, thus this scheme is even applicable at low speeds. Results are presented to show the effectiveness of the new controller, and it is also shown that the position error is negligible.

  20. FUZZY FAULT DETECTION FOR PERMANENT MAGNET SYNCHRONOUS GENERATOR

    Directory of Open Access Journals (Sweden)

    N. Selvaganesan

    2011-07-01

    Full Text Available Faults in engineering systems are difficult to avoid and may result in serious consequences. Effective fault detection and diagnosis can improve system reliability and avoid expensive maintenance. In this paper fuzzy system based fault detection scheme for permanent magnet synchronous generator is proposed. The sequence current components like positive and negative sequence currents are used as fault indicators and given as inputs to fuzzy fault detector. Also, the fuzzy inference system is created and rule base is evaluated, relating the sequence current component to the type of faults. These rules are fired for specific changes in sequence current component and the faults are detected. The feasibility of the proposed scheme for permanent magnet synchronous generator is demonstrated for different types of fault under various operating conditions using MATLAB/Simulink.

  1. A New Torque Control System of Permanent Magnet Synchronous Motor

    Directory of Open Access Journals (Sweden)

    Evstratov Andrey

    2017-01-01

    Full Text Available The article describes a new approach to control of permanent magnet synchronous motor drive based on the analysis of the electromechanical transformation. The proposed control system provides quick response and low ripple of the motor torque and flux. To synthesis this control system, the authors put the electromagnetic torque and the modulus of stator flux vector as controlled values and use the Lyapunov’s second method. In addition, the stator voltage constriction and ability of low-pass filtration are taken into account. The investigation of the proposed control system has carried out with the simulation and the experimental research which have confirmed that the proposed control system correspond to all above-mentioned control tasks and the permanent magnet synchronous motor controlled under this system may be recommended to use in robotics.

  2. Study on cogging force of permanent magnet linear synchronous motor

    Institute of Scientific and Technical Information of China (English)

    SHANGGUAN Xuan-feng; YUAN Shi-ying; LI Qing-fu

    2005-01-01

    Presented the methods to obtain the cogging force of permanent magnet linear synchronous motors(PMLSMs), analyzed the characteristics of the cogging force,and provided a basis for reducing the effect of the cogging force. 2-dimensional finite element method(2D FEM) was used to solve the whole motor when its mover was at different position, so that the relation was derived between the cogging force and the mover position. The analysis results show that the cogging force between the two ends of the primary iron-core and the secondary permanent magnets (PMs) is sinusoidal function of the mover position under certain conditions only. Two proposed methods,namely direct and indirect methods, are applied to calculate the cogging force between the primary iron-core teeth and the secondary PMs. The agreement of the two methods is validated.

  3. New Cogging Torque Reduction Methods for Permanent Magnet Machine

    Science.gov (United States)

    Bahrim, F. S.; Sulaiman, E.; Kumar, R.; Jusoh, L. I.

    2017-08-01

    Permanent magnet type motors (PMs) especially permanent magnet synchronous motor (PMSM) are expanding its limbs in industrial application system and widely used in various applications. The key features of this machine include high power and torque density, extending speed range, high efficiency, better dynamic performance and good flux-weakening capability. Nevertheless, high in cogging torque, which may cause noise and vibration, is one of the threat of the machine performance. Therefore, with the aid of 3-D finite element analysis (FEA) and simulation using JMAG Designer, this paper proposed new method for cogging torque reduction. Based on the simulation, methods of combining the skewing with radial pole pairing method and skewing with axial pole pairing method reduces the cogging torque effect up to 71.86% and 65.69% simultaneously.

  4. Photovoltaic-wind hybrid system for permanent magnet DC motor

    Science.gov (United States)

    Nasir, M. N. M.; Lada, M. Y.; Baharom, M. F.; Jaafar, H. I.; Ramani, A. N.; Sulaima, M. F.

    2015-05-01

    Hybrid system of Photovoltaic (PV) - Wind turbine (WT) generation has more advantages and reliable compared to PV or wind turbine system alone. The aim of this paper is to model and design hybrid system of PV-WT supplying 100W permanent-magnet dc motor. To achieve the objective, both of PV and WT are connected to converter in order to get the same source of DC supply. Then both sources were combined and straightly connected to 100W permanent magnet dc motor. All the works in this paper is only applied in circuit simulator by using Matlab Simulink. The output produced from each converter is expected to be suit to the motor specification. The output produced from each renewable energy system is as expected to be high as it can support the motor if one of them is breakdown

  5. Normal zone propagation in adiabatic superconducting magnets: Pt. 1; Normal zone propagation velocity in superconducting composites

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Z.P.; Iwasa, Y. (Massachusetts Inst. of Tech., Cambridge, MA (United States). Francis Bitter National Magnet Lab. Massachusetts Inst. of Tech., Cambridge, MA (United States). Plasma Fusion Center)

    1991-09-01

    A normal zone propagation model has been developed for superconducting composites under adiabatic conditions. It is based on the Whetstone-Roos model, originally developed for normal zone propagation in adiabatic wires of unclad superconductor. The model takes into account the temperature and magnetic field dependent material properties, for both superconductor and matrix metal. Analytical results agree well with experimental data. (author).

  6. Cogging torque reduction for interior permanent magnet synchronous motors

    OpenAIRE

    Tost Candel, Miquel

    2015-01-01

    Interior permanent magnet synchronous machines show a good range of behaviours, which make these kinds of machines good candidates for an electromechanical energy conversion. However, in order to improve their accuracy in their torque responses, the cogging torque and torque ripple phenomena should be mitigated to obtain better performance of the machine. In order to reduce the cogging torque and torque ripple, control techniques as well as geometric parameters of the machine have to be im...

  7. Studies Directed Toward New and Improved Permanent Magnet Materials.

    Science.gov (United States)

    1994-09-28

    electric motors and generators. At present there are only 3 permanent magnet materials in widespread use - SmCo5, Nd2Fe14B and SmCo5-Sm2Co17. Each has...a third of the effort has been devoted to effecting improvements in existing materials which occur in the SmCo5 or Nd2Fe14B structures. Materials

  8. Induction Motors Versus Permanent-Magnet Actuators for Aerospace Applications

    OpenAIRE

    Kakosimos, Panagiotis E.; Sarigiannidis, Athanasios G.; Beniakar, Minos E.; Kladas, Antonios G.; Gerada, C

    2014-01-01

    This paper introduces a comparative study on the design of aerospace actuators concerning Induction Motor (IM) and Permanent Magnet Motor (PMM) technologies. In the analysis undertaken, the two candidate configurations are evaluated in terms of both their electromagnetic and thermal behavior in a combined manner. On a first step, the basic dimensioning of the actuators and their fundamental operational characteristics are determined via a time-stepping Finite Element (FE) analysis. The consid...

  9. Permanent magnet brushless motor control based on ADRC

    Directory of Open Access Journals (Sweden)

    Li Xiaokun

    2016-01-01

    Full Text Available Permanent magnet brushless motor is a nonlinear system with multiple variables, the mathematical model of Permanent magnet brushless motor is difficult to establish, and since that the classic PID control is hard to precisely control the motor. Active disturbance rejection control (ADRC technique is a new nonlinear controller which does not depend on the system model. It is starting from the classic PID control, and establishing the loop control system by error negative feedback, the ESO(extended state observer observing system which comes from the observer theory of modern control theory to observe internal and external perturbations. ADRC inherits the advantages of PID with little overshoot, high convergence speed, high accuracy, strong anti-interference ability and other characteristics, and it has a strong disturbance adaptability and robustness as for the uncertainty perturbation and their internal disturbance of control objects. Therefore, This paper attempts to use Active disturbance rejection control(ADRC, in order to improve the control of permanent magnet brushless motor. In this design of control system, the simulation of the system is realized based on MATLAB, and then the discrete control algorithm is transplanted to the embedded system to control the permanent magnet brushless DC motor (PMBLDCM. The control system is implemented on the DSP-F28335 digital signal processor, and the DSP also provides the functions like voltage and current AD sampling, PWM driver generation, speed and rotor position calculation, etc. The simulation and experiment results indicate that, the system has good dynamic performance and anti-disturbance performance.

  10. Speed Regulator for Permanent Magnet DC Boring Machine

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper a variable-speed system for a loaded permanent magnet direct current boring machine (PMDCBM) is described in details. The voltage adjustment of PMDCBM is accomplished by means of solid state switch with a high gain Darlington transistor. The device designed possesses good variable speed characteristic and Iow loss at low speed. The speed can be regulated automatically to hold at an ideal value according to the load.

  11. UCLA-KIAE focusing permanent magnet undulator for SASE experiment

    Science.gov (United States)

    Osmanov, N.; Tolmachev, S.; Varfolomeev, A.; Varfolomeev, A. A.; Frigola, P.; Hogan, M.; Pellegrini, C.; Carr, R.; Lidia, S.

    1998-02-01

    A description of a new 2 m undulator is presented which was specially designed and manufactured for a SASE mode FEL experiment. It is a one section two plane focusing permanent magnet construction. The uniform period length is 2.06 cm, total number of periods is 98. The peak field on the axis is 5.4 kG for a 5 mm gap.

  12. Cogging torque mitigation of modular permanent magnet machines

    OpenAIRE

    Li, G. J.; Ren, B.; Zhu, Z-Q.; Li, Y X; Ma, J.

    2015-01-01

    This paper proposes a novel cogging torque mitigation method for modular permanent magnet (PM) machines with flux gaps in alternate stator teeth. The slot openings of the modular PM machines are divided into two groups in a special way. By shifting the slot openings of two groups in opposite directions with the same angle, the machine cogging torque can be significantly reduced. Analytical formula of the desired shift angle is derived, and can be applicable to other modular machines with diff...

  13. Modular Permanent Magnet Machines with Alternate Teeth Having Tooth Tips

    OpenAIRE

    Li, G. J.; Zhu, Z.Q.; Foster, M. P.; Stone, D. A.; Zhan, H.L.

    2015-01-01

    This paper presents single layer modular permanent magnet machines with either wound or unwound teeth with tooth tips. The structures with wound teeth having tooth tips are suitable for modular machines with slot number higher than pole number to compensate for the drop in winding factor due to the flux gaps in alternate stator teeth, accordingly to maintain or even to increase their average torques. However, the structures with unwound teeth having tooth tips are suitable for modular machine...

  14. A permanent magnet electron beam phase-shifter

    Energy Technology Data Exchange (ETDEWEB)

    Novikov, G.A. E-mail: trower@naxs.net; Ermakov, A.N.; Pakhomov, N.I.; Semyachkin, V.K.; Shvedunov, V.I.; Skachkov, V.S.; Tyurin, S.A

    2004-05-21

    We describe here the design and construction of a permanent magnet-based electron beam phase-shifter now operating in our 70 MeV Race-Track Microtron (P. Lucas, S. Webber (Eds.), Proceedings of the 2001 Particle Accelerator Conference, Vol. 4, IEEE, Piscataway, NJ, 2001, p. 2596; L. Gennary (Ed.), Proceedings of the 1995 Particle Accelerator Conference, Vol. 2, IEEE, Piscataway, NJ, 1996, p. 807)

  15. Simulation of dynamics of a permanent magnet linear actuator

    DEFF Research Database (Denmark)

    Yatchev, Ivan; Ritchie, Ewen

    2010-01-01

    Comparison of two approaches for the simulation of the dynamic behaviour of a permanent magnet linear actuator is presented. These are full coupled model, where the electromagnetic field, electric circuit and mechanical motion problems are solved simultaneously, and decoupled model, where first...... flexibility when the actuator response is required to be estimated for different external conditions, e.g. external circuit parameters or mechanical loads....

  16. Vibration-induced field fluctuations in a superconducting magnet

    CERN Document Server

    Britton, J W; Bohnet, J G; Uys, H; Biercuk, M J; Bollinger, J J

    2015-01-01

    Superconducting magnets enable precise control of nuclear and electron spins, and are used in experiments that explore biological and condensed matter systems, and fundamental atomic particles. In high-precision applications, a common view is that that slow (<1 Hz) drift of the homogeneous magnetic field limits control and measurement precision. We report on previously undocumented higher-frequency field noise (10 Hz to 200 Hz) that limits the coherence time of 9Be+ electron-spin qubits in the 4.46 T field of a superconducting magnet. We measure a spin-echo T2 coherence time of ~6 ms for the 9Be+ electron-spin resonance at 124 GHz, limited by part-per-billion fractional fluctuations in the magnet's homogeneous field. Vibration isolation of the magnet improved T2 to ~50 ms.

  17. Decoherence in Superconducting Qubits from Surface Magnetic States

    Science.gov (United States)

    Hover, David; Sendelbach, Steven; Kittel, Achim; Mueck, Michael; McDermott, Robert

    2008-03-01

    Unpaired spins in amorphous surface oxides can act as a source of decoherence in superconducting and other solid-state qubits. A density of surface spins can give rise to low-frequency magnetic flux noise, which in turn leads to dephasing of the qubit state. In addition, magnetic surface states can couple to high-frequency resonant magnetic fields, and thereby contribute to energy relaxation of the qubit. We present the results of low-frequency measurements of the nonlinear and imaginary spin susceptibility of surface magnetic states in superconducting devices at millikelvin temperatures. In addition, we describe high-frequency magnetic resonance measurements that directly probe the surface spin density of states. We present calculations that connect the measurement results to qubit energy relaxation and dephasing times.

  18. Magnet Science and Technology for Basic Research at the High Field Laboratory for Superconducting Materials

    Institute of Scientific and Technical Information of China (English)

    渡辺和雄

    2007-01-01

    Since the first practical cryocooled superconducting magnet using a GM-cryocooler and high temperature superconducting current leads has been demonstrated successfully at the High Field Laboratory for Superconducting Materials (HFLSM), various kinds of cryocooled superconducting magnets in fields up to 15 T have been used to provide access for new research areas in fields of magneto-science. Recently, the HFLSM has succeeded in demonstrating a cryocooed 18 T high temperature superconducting magnet and a high field cryocooled 27.5 T hybrid magnet. Cryocooled magnet technology and basic research using high field magnets at the HFLSM are introduced.

  19. Application concepts of small regenerative cryocoolers in superconducting magnet systems

    Science.gov (United States)

    van der Laan, M. T. G.; Tax, R. B.; ten Kate, H. H. J.

    Superconducting magnets are in growing use outside laboratories for example MRI scanners in hospitals. Other applications under development are magnet systems for separation, levitated trains and ship propulsion. The application of cryocoolers can make these systems more practical. Interfacing these cryocoolers to the magnets can be designed in several different ways. The four basic methods will be dealt with. Test results of a realized GM cryocooler-SC magnet system will be shown. It handles about a 1:3 scale MRI magnet of which one of the six coils has been successfully tested at temperatures between 10 and 14 K.

  20. Equilibrium of a magnet floating above a superconducting disk

    Science.gov (United States)

    Williams, Richard; Matey, J. R.

    1988-02-01

    A superconducting body will repel a nearby magnet. The repulsion is due to the perfect diamagnetism resulting from the Meissner effect. A small magnet will float above a superconducting disk at an equilibrium position over the disk center, stable against lateral displacements. It is not intuitively obvious why the potential energy of the magnet over a flat disk should have a minimum at the center, rather than a maximum. We have measured the properties of the attractive potential well of a YBa2Cu3O7 disk by two experiments. In the first, we use a low-frequency magnetic field, 0-100 Hz, to excite oscillations of a small, freely levitating bar magnet about its equilibrium position. We find sharp resonances, corresponding to longitudinal, transverse, and torsional modes of oscillation. The frequencies of these resonances define the properties near the bottom of the potential well. In the second experiment, we attach the magnet to a vertical glass fiber of known stiffness. The magnet is suspended horizontally a small known distance, z, above the superconducting disk. By moving the magnet from the center of the disk to the edge and measuring the bending of the support fiber as a function of position we determine the shape of the potential curve for large displacements and the total energy needed to escape from the well.

  1. Superconducting Cable and Magnets for the Large Hadron Collider

    CERN Document Server

    Rossi, L

    2004-01-01

    The Large Hadron Collider (LHC) is a high energy, high luminosity particle accelerator under construction at CERN and it will be the largest application of superconductivity. Most of the existing 27 km underground tunnel will be filled with superconducting magnets, mainly 15 m long dipoles and 3 m long quadrupoles. These 1232 dipole and 400 quadrupole magnets as well as many other magnets, are wound with copper stabilized NbTi Rutherford cables and will be operated at 1.9 K by means of pressurized superfluid helium. The operating dipole field is 8.33 T; however the whole system is designed for possible operation up to 9 T. The coils are powered at about 12 kA and about 12 GJ of magnetic energy will be stored in superconducting devices. After a brief review of the main characteristics of the superconductors and of the magnets, the special measures taken to fulfill the mass production with the necessary accuracy are presented. The results on one third of the superconducting cable production and on the first f...

  2. Simulation of dynamics of a permanent magnet linear actuator

    DEFF Research Database (Denmark)

    Yatchev, Ivan; Ritchie, Ewen

    2010-01-01

    Comparison of two approaches for the simulation of the dynamic behaviour of a permanent magnet linear actuator is presented. These are full coupled model, where the electromagnetic field, electric circuit and mechanical motion problems are solved simultaneously, and decoupled model, where first...... a set of static magnetic filed analysis is carried out and then the electric circuit and mechanical motion equations are solved employing bi-cubic spline approximations of the field analysis results. The results show that the proposed decoupled model is of satisfactory accuracy and gives more...

  3. Permanent magnetic ferrite based power-tunable metamaterials

    Science.gov (United States)

    Zhang, Guanqiao; Lan, Chuwen; Gao, Rui; Zhou, Ji

    2017-08-01

    Power-tunable metamaterials based on barium permanent magnetic ferrite have been proposed and fabricated in this research. Scattering parameter measurements confirm a shift in resonant frequency in correlation to changes in incident electromagnetic power within microwave frequency band. The tunable phenomenon represented by a blue-shift in transmission spectra in the metamaterials array can be attributed to a decrease in saturation magnetization resulting from FMR-induced temperature elevation upon resonant conditions. This power-dependent behavior offers a simple and practical route towards dynamically fine-tunable ferrite metamaterials.

  4. A clip-on Zeeman slower using toroidal permanent magnets.

    Science.gov (United States)

    Krzyzewski, S P; Akin, T G; Dahal, Parshuram; Abraham, E R I

    2014-10-01

    We present the design of a zero-crossing Zeeman slower for (85)Rb using rings of flexible permanent magnets. The design is inexpensive, requires no power or cooling, and can be easily attached and removed for vacuum maintenance. We show theoretically that such a design can reproduce a magnetic field profile of a standard zero-crossing Zeeman slower. Experimental measurements of a prototype and comparisons to theoretical simulations demonstrate the feasibility of the design and point toward future improvements. Simulations show an atom flux similar to other Zeeman slowers.

  5. Multipole shimming of permanent magnets using harmonic corrector rings.

    Science.gov (United States)

    Jachmann, R C; Trease, D R; Bouchard, L-S; Sakellariou, D; Martin, R W; Schlueter, R D; Budinger, T F; Pines, A

    2007-03-01

    Shimming systems are required to provide sufficient field homogeneity for high resolution nuclear magnetic resonance (NMR). In certain specialized applications, such as rotating-field NMR and mobile ex situ NMR, permanent magnet-based shimming systems can provide considerable advantages. We present a simple two-dimensional shimming method based on harmonic corrector rings which can provide arbitrary multipole order shimming corrections. Results demonstrate, for example, that quadrupolar order shimming improves the linewidth by up to an order of magnitude. An additional order of magnitude reduction is in principle achievable by utilizing this shimming method for z-gradient correction and higher order xy gradients.

  6. Two dimensional model of a permanent magnet spur gear

    DEFF Research Database (Denmark)

    Jørgensen, Frank Thorleif; Andersen, Torben Ole; Rasmussen, Peter Omand

    2005-01-01

    This paper presents calculation and measurement results of a high-performance permanent-magnetic gear. The analyzed permanent-magnetic gear has a gear ratio of 5.5 and is able to deliver 27 N/spl middot/m. The analysis has shown that special attention needs to be paid to the system where the gear...... is to be installed because of a low natural torsion spring constant. The analyzed gear was also constructed in practice in order to validate the analysis and predict the efficiency. The measured torque from the magnetic gear was only 16 N/spl middot/m reduced by the large end-effects. A systematic analysis...... of the loss components in the magnetic gear is also performed in order to figure out why the efficiency for the actual construction was only 81%. A large magnetic loss component originated in the bearings, where an unplanned extra bearing was necessary due to mechanical problems. Without the losses...

  7. Practical Aspects of Modern and Future Permanent Magnets

    Science.gov (United States)

    McCallum, R. W.; Lewis, L.; Skomski, R.; Kramer, M. J.; Anderson, I. E.

    2014-07-01

    The mandate to reduce greenhouse gases will require highly efficient electric machines for both power generation and traction motor applications. Although permanent magnet electric machines utilizing Nd2Fe14B-based magnets provide obvious power-to-weight advantages over induction machines, the limited availability and high price of the rare earth (RE) metals make these machines less favorable. Of particular concern is the cost and supply criticality of Dy, a key RE element that is required to improve the high-temperature performance of Nd-based magnetic alloys for use in generators and traction motors. Alternatives to RE-based alloys do exist, but they currently lack the energy density necessary to replace Nd-based magnets. Many of these compounds have been known for decades, but serious interest in their development waned once compounds based on RE elements were discovered. In this review, intrinsic and extrinsic materials factors that impact the optimization of both existing and potential future permanent magnets for energy applications are examined in light of new insights gained from renewed examination.

  8. Inspired by nature: investigating tetrataenite for permanent magnet applications.

    Science.gov (United States)

    Lewis, L H; Mubarok, A; Poirier, E; Bordeaux, N; Manchanda, P; Kashyap, A; Skomski, R; Goldstein, J; Pinkerton, F E; Mishra, R K; Kubic, R C; Barmak, K

    2014-02-12

    Chemically ordered L10-type FeNi, also known as tetrataenite, is under investigation as a rare-earth-free advanced permanent magnet. Correlations between crystal structure, microstructure and magnetic properties of naturally occurring tetrataenite with a slightly Fe-rich composition (~ Fe55Ni44) obtained from the meteorite NWA 6259 are reported and augmented with computationally derived results. The tetrataenite microstructure exhibits three mutually orthogonal crystallographic variants of the L10 structure that reduce its remanence; nonetheless, even in its highly unoptimized state tetrataenite provides a room-temperature coercivity of 95.5 kA m(-1) (1200 Oe), a Curie temperature of at least 830 K and a largely temperature-independent anisotropy that preliminarily point to a theoretical magnetic energy product exceeding (BH)max = 335 kJ m(-3) (42 MG Oe) and approaching those found in today's best rare-earth-based magnets.

  9. Torque Characteristics of Saturated Permanent-Magnet Synchronous Motors

    Science.gov (United States)

    Takahashi, Akeshi; Kikuchi, Satoshi; Wakui, Shinichi; Mikami, Hiroyuki; Ide, Kazumasa; Shima, Kazuo

    The evaluation of torque characteristics in a saturated magnetic field for permanent-magnet (PM) synchronous motors is presented. The torque saturation characteristics of non-salient and salient pole machines are investigated by finite element analysis and measurement. Thus, it is found that the torque saturation originates in the magnetic saturation in both the stator teeth, which are located on the leading position toward the direct axis, and in the stator back yoke, which is located on the lagging position toward the direct axis. This mechanism can also explain the reason for the significant torque saturation in the salient-pole machine; the higher inductance of the quadrature axis of the salient-pole machine causes a significant magnetic saturation in the stator back yoke. Therefore, less saliency or a wider back yoke can improve the torque saturation.

  10. Dysprosium-free melt-spun permanent magnets.

    Science.gov (United States)

    Brown, D N; Wu, Z; He, F; Miller, D J; Herchenroeder, J W

    2014-02-12

    Melt-spun NdFeB powders can be formed into a number of different types of permanent magnet for a variety of applications in electronics, automotive and clean technology industries. The melt-spinning process produces flake powder with a fine uniform array of nanoscale Nd2Fe14B grains. These powders can be net-shape formed into isotropic polymer-bonded magnets or hot formed into fully dense magnets. This paper discusses the influence of heavy rare earth elements and microstructure on the magnetic performance, thermal stability and material cost of NdFeB magnets. Evidence indicates that melt-spun nanocrystalline NdFeB magnets are less dependent on heavy rare earth elements for high-temperature performance than the alternative coarser-grained sintered NdFeB magnets. In particular, hot-pressed melt-spun magnets are an attractive low-cost solution for applications that require thermal stability up to 175-200 °C.

  11. Optimization of Magnet Arrangement in Double-Layer Interior Permanent-Magnet Motors

    Science.gov (United States)

    Yamazaki, Katsumi; Kitayuguchi, Kazuya

    The arrangement of permanent magnets in double-layer interior permanent-magnet motors is optimized for variable-speed applications. First, the arrangement of magnets is decided by automatic optimization. Next, the superiority of the optimized motor is discussed by the d- and q-axis equivalent circuits that consider the magnetic saturation of the rotor core. Finally, experimental verification is carried out by using a prototype motor. It is confirmed that the maximum torque of the optimized motor under both low speed and high speed conditions are higher than those of conventional motors because of relatively large q-axis inductance and small d-axis inductance.

  12. Academic Training Lecture Regular Programme: Superconducting Magnets with HTS

    CERN Multimedia

    2012-01-01

    Superconducting Magnets with HTS (1/5), by Justin Schwartz (North Carolina State University).   Monday, June 25, 2012 from 11:00 to 12:00 (Europe/Zurich) at CERN ( 30-7-018 - Kjell Johnsen Auditorium ).   More information here.

  13. Route to topological superconductivity via magnetic field rotation

    Energy Technology Data Exchange (ETDEWEB)

    Loder, Florian; Kampf, Arno P.; Kopp, Thilo [Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg (Germany)

    2015-07-01

    Apart from the very few spin-triplet superconductors with p-wave pairing symmetry, a candidate system for topological superconductivity is a conventional, two-dimensional s-wave superconductor in a magnetic field with a sufficiently strong Rashba spin-orbit coupling. Typically, the required magnetic field to convert the superconductor into a topologically non-trivial state is however by far larger than the upper critical field H{sub c2}, which excludes its realization. Here we argue that this problem is overcome by rotating the magnetic field into the superconducting plane. We explore the topological transitions which occur upon changing the strength and the orientation of the magnetic field and show that an unusual superconducting state with finite-momentum pairing exists, which preserves its topological nature up to an in-plane field orientation. We discuss the realizability of this state at the superconducting interface between LaAlO{sub 3} and SrTiO{sub 3}.

  14. Levitation of Superconductive Cable in Earth Magnetic Field

    Directory of Open Access Journals (Sweden)

    Bohus Ulrych

    2006-01-01

    Full Text Available The paper represents an introductory study about a superconductive cable levitating in Earth’s magnetic field. Built are two mathematical models of the problem providing both the shape of the arc of the cable and forces acting along it. The theoretical analysis is supplemented with an illustrative example.

  15. Survey of high field superconducting material for accelerator magnets

    Energy Technology Data Exchange (ETDEWEB)

    Scahlan, R.; Greene, A.F.; Suenaga, M.

    1986-05-01

    The high field superconductors which could be used in accelerator dipole magnets are surveyed, ranking these candidates with respect to ease of fabrication and cost as well as superconducting properties. Emphasis is on Nb/sub 3/Sn and NbTi. 27 refs., 2 figs. (LEW)

  16. Mirror Fusion Test Facility: Superconducting magnet system cost analysis

    Energy Technology Data Exchange (ETDEWEB)

    1977-07-01

    At the request of Victor Karpenko, Project manager for LLL`s Mirror Fusion Test Facility, EG&G has prepared this independent cost analysis for the proposed MFTF Superconducting Magnet System. The analysis has attempted to show sufficient detail to provide adequate definition for a basis of estimating costs.

  17. Superconductivity and magnetic order in La--Ce alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wollan, J.J.; Finnemore, D.K.

    1971-03-01

    Superconductivity and magnetic order have been studied both above and below the Kondo temperature for the La--Ce system. Electrical resistivity measurements on La 0.2, 1.0, 2.0, 3.2, and 4.0 wt. percent Ce have been made from 0.060 to 20.0K.

  18. Nucleation of bulk superconductivity close to critical magnetic fields

    DEFF Research Database (Denmark)

    Fournais, Søren; Kachmar, Ayman

    2011-01-01

    threshold value of the applied magnetic field for which bulk superconductivity contributes to the leading order of the energy. Furthermore, the energy of the bulk is related to that of the Abrikosov problem in a periodic lattice. A key ingredient of the proof is a novel L∞ -bound which is of independent...

  19. Superconductive combinational logic circuit using magnetically coupled SQUID array

    Energy Technology Data Exchange (ETDEWEB)

    Yamanashi, Y., E-mail: yamanasi@ynu.ac.j [Interdisciplinary Research Center, Yokohama National University, Tokiwadai 79-5, Hodogaya-ku, Yokohama 240-8501 (Japan); Umeda, K.; Sai, K. [Department of Electrical and Computer Engineering, Yokohama National University, Tokiwadai 79-5, Hodogaya-ku, Yokohama 240-8501 (Japan)

    2010-11-01

    In this paper, we propose the development of superconductive combinational logic circuits. One of the difficulties in designing superconductive single-flux-quantum (SFQ) digital circuits can be attributed to the fundamental nature of the SFQ circuits, in which all logic gates have latching functions and are based on sequential logic. The design of ultralow-power superconductive digital circuits can be facilitated by the development of superconductive combinational logic circuits in which the output is a function of only the present input. This is because superconductive combinational logic circuits do not require determination of the timing adjustment and clocking scheme. Moreover, semiconductor design tools can be used to design digital circuits because CMOS logic gates are based on combinational logic. The proposed superconductive combinational logic circuits comprise a magnetically coupled SQUID array. By adjusting the circuit parameters and coupling strengths between neighboring SQUIDs, fundamental combinational logic gates, including the AND, OR, and NOT gates, can be built. We have verified the accuracy of the operations of the fundamental logic gates by analog circuit simulations.

  20. The Darwin-Breit magnetic interaction and superconductivity

    CERN Document Server

    Essen, Hanno

    2013-01-01

    A number of facts indicating the relevance of the Darwin magnetic interaction energy in the superconducting phase are pointed out. The magnetic interaction term derived by Darwin is the same as the, so called, Breit term in relativistic quantum mechanics. While this term always is a small perturbation in few body systems it can be shown to be potentially dominating in systems of large numbers of electrons. It is therefore a natural candidate in the explanation of emergent phenomena---phenomena that only occur in sufficiently large systems. The dimensionless parameter that indicates the importance of the magnetic energy is the number of electrons times the classical electron radius divided by the size of the system. The number of electrons involved are only the electrons at the Fermi surface; electrons with lower energy cannot contribute to current density and thus not to the magnetic field. The conventional understanding of superconductivity has always been problematic and no really reductionistic derivation ...

  1. State-of-the-art of superconducting magnets

    Energy Technology Data Exchange (ETDEWEB)

    Lubell, M. S.

    1972-09-01

    A survey of the most recent developments in superconducting magnet materials is presented, and complete data on the upper critical field and transition temperature for the NbTi alloy system are given. The overall critical current density of compound conductors is shown for both low and high field commercial superconductors. A tabulation is given of high field and large bore solenoids, comparing design and test data. Comparative data are also given for some nonsolenoidal coils, and details are listed for the systems under construction or design. A criterion is derived for the stable current density attainable in extremely large magnet systems such as those envisioned for fusion reactors: j ∝ (stored energy)-1/6 . The review concludes with summaries concerning the structural materials useful in large magnets and the effects of radiation on superconducting magnets.

  2. Field Measurement for Superconducting Magnets of ADS Injector I

    CERN Document Server

    Yang, Xiangchen

    2013-01-01

    The superconducting solenoid magnet prototype for ADS injection-I had been fabricated in Beijing Qihuan Mechanical and Electric Engineer Company and tested in Haerbin Institute of Technology (HIT) in Nov, 2012. Batch magnet production was processed after some major revision from the magnet prototype, they include: removing off the perm-alloy shield, extending the iron yoke, using thin superconducting cable, etc. The first one of the batch magnets was tested in the vertical Dewar in HIT in Sept. 2013. Field measurement was carried out at the same time by the measurement platform that seated on the top of the vertical Dewar. This paper will present the field measurement system design, measurement results and discussion on the residual field from the persistent current effect.

  3. Magnetically coupled gear based drive mechanism for contactless continuous rotation using superconducting magnetic bearing below 10 K

    Science.gov (United States)

    Matsumura, T.; Sakurai, Y.; Kataza, H.; Utsunomiya, S.; Yamamoto, R.

    2016-11-01

    We present the design and mechanical performances of a magnetically coupled gear mechanism to drive a levitating rotor magnet of a superconducting magnetic bearing (SMB). The SMB consists of a ring-shaped high-temperature superconducting array (YBCO) and a ring-shaped permanent magnet. This rotational system is designed to operate below 10 K, and thus the design philosophy is to minimize any potential source of heat dissipation. While an SMB provides only a functionality of namely a bearing, it requires a mechanism to drive a rotational motion. We introduce a simple implementation of a magnetically coupled gears between a stator and a rotor. This enables to achieve enough torque to drive a levitating rotor without slip at the rotation frequency of about 1 Hz below 10 K. The rotational variation between the rotor and the drive gear is synchronised within σ = 0.019 Hz. The development of this mechanism is a part of the program to develop a testbed in order to evaluate a prototype half-wave plate based polarization modulator for future space missions. The successful development allows this modulator to be a candidate for an instrument to probe the cosmic inflation by measuring the cosmic microwave background polarization.

  4. High-Performance Permanent Magnets for Energy-Efficient Devices

    Science.gov (United States)

    Hadjipanayis, George

    2012-02-01

    Permanent magnets (PMs) are indispensable for many commercial applications including the electric, electronic and automobile industries, communications, information technologies and automatic control engineering. In most of these applications, an increase in the magnetic energy density of the PM, usually presented via the maximum energy product (BH)max, immediately increases the efficiency of the whole device and makes it smaller and lighter. Worldwide demand for high performance permanent magnets has increased dramatically in the past few years driven by hybrid and electric cars, wind turbines and other power generation systems. New energy challenges in the world require devices with higher energy efficiency and minimum environmental impact. The potential of 3d-4f compounds which revolutionized the PM science and technology is almost fully utilized, and the supply of 4f rare earth elements does not seem to be much longer assured. This talk will address the major principles guiding the development of PMs and overview state-of-the-art theoretical and experimental research. Recent progress in the development of nanocomposite PMs, consisting of a fine (at the scale of the magnetic exchange length) mixture of phases with high magnetization and large magnetic hardness will be discussed. Fabrication of such PMs is currently the most promising way to boost the (BH)max, while simultaneously decreasing, at least partially, the reliance on the rare earth elements. Special attention will be paid to the impact which the next-generation high-(BH)max magnets is expected to have on existing and proposed energy-saving technologies.

  5. Experimental evidence for Froehlich superconductivity in high magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, N. [National High Magnetic Field Laboratory, LANL, MS-E536, Los Alamos, NM (United States)]. E-mail: nharrison@lanl.gov; Mielke, C.H.; Singleton, J. [National High Magnetic Field Laboratory, LANL, MS-E536, Los Alamos, NM (United States); Brooks, J.S. [National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL (United States); Tokumoto, M. [Electrotechnical Laboratory, Tsukuba, Ibaraki (Japan)

    2001-05-14

    Resistivity and irreversible magnetization data taken within the high magnetic field CDW{sub x} phase of the quasi-two-dimensional organic metal {alpha}-(BEDT-TTF){sub 2}KHg(SCN){sub 4} are shown to be consistent with a field-induced inhomogeneous superconducting phase. In-plane skin depth measurements show that the resistive transition on entering the CDW{sub x} phase is both isotropic and representative of the bulk. (author). Letter-to-the-editor.

  6. Structural materials for large superconducting magnets for tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Long, C.J.

    1976-12-01

    The selection of structural materials for large superconducting magnets for tokamak-type fusion reactors is considered. The important criteria are working stress, radiation resistance, electromagnetic interaction, and general feasibility. The most advantageous materials appear to be face-centered-cubic alloys in the Fe-Ni-Cr system, but high-modulus composites may be necessary where severe pulsed magnetic fields are present. Special-purpose structural materials are considered briefly.

  7. Study on the characteristics of magnetic levitation for permanent magnets and ferromagnetic materials with various sizes using stacked HTS bulk annuli

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.B., E-mail: kim@elec.okayama-u.ac.jp [Graduate School of Natural Science and Technology, Okayama University, 3-1-1, Tsushima-Naka, Kita-ku, Okayama 700-8530 (Japan); Matsunaga, J.; Doi, A.; Ikegami, T. [Graduate School of Natural Science and Technology, Okayama University, 3-1-1, Tsushima-Naka, Kita-ku, Okayama 700-8530 (Japan); Onodera, H. [JST-CREST, K’s Gobancho 6F, 7 Gobancho, Chiyoda-ku, Tokyo 102-0076 (Japan)

    2013-01-15

    Highlights: ► We achieved the stable levitation of irons by magnetized HTS bulk annuli. ► The relationship between magnetized field and sample size was cleared. ► The iron samples smaller than 1 mm diameter could not levitate stably. ► The spherical solenoid magnet was fabricated to levitate small iron samples. -- Abstract: We achieved stable levitation of cylindrical permanent magnets and irons using stacked ring-shaped high temperature superconducting (HTS) bulks with 20 mm ID, 60 mm OD and 50 mm height, and those were magnetized by field cooling method. The levitation characteristics of permanent magnets and iron samples located in the inner space of that levitation system were investigated experimentally. Iron samples with needle-shape and smaller than 1 mm diameter could not levitate stably. However, we found that the high strength of magnetized field was not necessary to levitate small needle-shaped irons. In order to levitate them, we need a uniform magnetic field in radial direction, so, a spherical solenoid magnet that can easily make a homogeneous magnetic field in inner space of HTS bulk annuli was developed. The spherical solenoid magnet, composed of seven solenoid coils with different inner and outer diameters, was designed by an electromagnetic analysis and fabricated.

  8. SERPENTINE COIL TOPOLOGY FOR BNL DIRECT WIND SUPERCONDUCTING MAGNETS.

    Energy Technology Data Exchange (ETDEWEB)

    PARKER, B.; ESCALLIER, J.

    2005-05-16

    Serpentine winding, a recent innovation developed at BNL for direct winding superconducting magnets, allows winding a coil layer of arbitrary multipolarity in one continuous winding process and greatly simplifies magnet design and production compared to the planar patterns used before. Serpentine windings were used for the BEPC-II Upgrade and JPARC magnets and are proposed to make compact final focus magnets for the EC. Serpentine patterns exhibit a direct connection between 2D body harmonics and harmonics derived from the integral fields. Straightforward 2D optimization yields good integral field quality with uniformly spaced (natural) coil ends. This and other surprising features of Serpentine windings are addressed in this paper.

  9. Rotor assembly including superconducting magnetic coil

    Energy Technology Data Exchange (ETDEWEB)

    Snitchler, Gregory L. (Shrewsbury, MA); Gamble, Bruce B. (Wellesley, MA); Voccio, John P. (Somerville, MA)

    2003-01-01

    Superconducting coils and methods of manufacture include a superconductor tape wound concentrically about and disposed along an axis of the coil to define an opening having a dimension which gradually decreases, in the direction along the axis, from a first end to a second end of the coil. Each turn of the superconductor tape has a broad surface maintained substantially parallel to the axis of the coil.

  10. Pulsed field magnetization strategies and the field poles composition in a bulk-type superconducting motor

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhen, E-mail: zhen.huang@sjtu.edu.cn [Academy of Information Technology and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Ruiz, H.S., E-mail: dr.harold.ruiz@le.ac.uk [Department of Engineering, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Coombs, T.A., E-mail: tac1000@cam.ac.uk [Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom)

    2017-03-15

    Highlights: • Different compositions of the magnetic poles have been obtained depending on the relative orientation of the magnetizing coil and the surfaces of the columns of bulks that conform a magnetic pole. • Two bidimensional models accounting for the electromagnetic response of the top and lateral cross sections of three columns of HTS bulks subjected to multiple pulsed magnetic fields have been created. • An extended PFM strategy has been proposed by considering the magnetization of at least three successive columns of HTS bulks per pole. In the extended PFM strategy the area of each one of the poles can be seen increased by a factor of 200%-400% - Abstract: High temperature superconducting (HTS) bulks offer the potential of trapping and maintaining much higher magnetic loading level compared with the conventional permanent magnets used in rotary machines, although the effective magnetization of multiple HTS bulks with different relative orientations over the surface of cylindrical rotors creates new challenges. In this paper, we present the design and numerical validation of the Pulse Field Magnetization (PFM) strategy considered for the magnetization of the four-pole synchronous fully superconducting motor developed at the University of Cambridge. In a first instance, singular columns of up to five HTS bulks aligned over the height of the rotor were subjected to up to three magnetic pulses of 1.5 T peak, and the experimental results have been simulated by considering the electrical and thermal properties of the system in a 2D approach. The entire active surface of the rotor is covered by HTS bulks of approximately the same dimensions, resulting in an uneven distribution of pole areas with at least one of the poles formed by up to 3 columns of magnetized bulks, with relatively the same peaks of trapped magnetic field. Thus, in order to effectively use the entire area of the superconducting rotor, multiple pulsed fields per column have been applied

  11. Simulation and experiments of Stacks of High Temperature Superconducting Coated Conductors Magnetized by Pulsed Field Magnetization with Multi-Pulse Technique

    CERN Document Server

    Zou, Shengnan; Baskys, A; Patel, A; Grilli, Francesco; Glowacki, B A

    2016-01-01

    High temperature superconducting (HTS) bulks or stacks of coated conductors (CCs) can be magnetized to become trapped field magnets (TFMs). The magnetic fields of such TFMs can break the limitation of conventional magnets (<2 T), so they show potential for improving the performance of many electrical applications that use permanent magnets like rotating machines. Towards practical or commercial use of TFMs, effective in situ magnetization is one of the key issues. The pulsed field magnetization (PFM) is among the most promising magnetization methods in virtue of its compactness, mobility and low cost. However, due to the heat generation during the magnetization, the trapped field and flux acquired by PFM usually cannot achieve the full potential of a sample (acquired by the field cooling or zero field cooling method). The multi-pulse technique was found to effectively improve the trapped field by PFM in practice. In this work, a systematic study on the PFM with successive pulses is presented. A 2D electrom...

  12. Discrete Current Control Strategy of Permanent Magnet Synchronous Motors

    Directory of Open Access Journals (Sweden)

    Yan Dong

    2013-01-01

    Full Text Available A control strategy of permanent magnet synchronous motors (PMSMs, which is different from the traditional vector control (VC and direct torque control (DTC, is proposed. Firstly, the circular rotating magnetic field is analyzed on the simplified model and discredited into stepping magnetic field. The stepping magnetomotive force will drive the rotor to run as the stepping motor. Secondly, the stator current orientation is used to build the control model instead of rotor flux orientation. Then, the discrete current control strategy is set and adopted in positioning control. Three methods of the strategy are simulated in computer and tested on the experiment platform of PMSM. The control precision is also verified through the experiment.

  13. Innovative Sensors for Pipeline Crawlers: Rotating Permanent Magnet Inspection

    Energy Technology Data Exchange (ETDEWEB)

    J. Bruce Nestleroth; Richard J. Davis; Stephanie Flamberg

    2006-09-30

    Internal inspection of pipelines is an important tool for ensuring safe and reliable delivery of fossil energy products. Current inspection systems that are propelled through the pipeline by the product flow cannot be used to inspect all pipelines because of the various physical barriers they may encounter. To facilitate inspection of these ''unpiggable'' pipelines, recent inspection development efforts have focused on a new generation of powered inspection platforms that are able to crawl slowly inside a pipeline and can maneuver past the physical barriers that limit internal inspection applicability, such as bore restrictions, low product flow rate, and low pressure. The first step in this research was to review existing inspection technologies for applicability and compatibility with crawler systems. Most existing inspection technologies, including magnetic flux leakage and ultrasonic methods, had significant implementation limitations including mass, physical size, inspection energy coupling requirements and technology maturity. The remote field technique was the most promising but power consumption was high and anomaly signals were low requiring sensitive detectors and electronics. After reviewing each inspection technology, it was decided to investigate the potential for a new inspection method. The new inspection method takes advantage of advances in permanent magnet strength, along with their wide availability and low cost. Called rotating permanent magnet inspection (RPMI), this patent pending technology employs pairs of permanent magnets rotating around the central axis of a cylinder to induce high current densities in the material under inspection. Anomalies and wall thickness variations are detected with an array of sensors that measure local changes in the magnetic field produced by the induced current flowing in the material. This inspection method is an alternative to the common concentric coil remote field technique that induces

  14. A SQP optimization method for shimming a permanent MRI magnet

    Institute of Scientific and Technical Information of China (English)

    Zhe Jin; Xing Tang; Bin Meng; Donglin Zu; Weimin Wang

    2009-01-01

    Based on the sequential quadratic programming (SQP) method, a new approach is presented in this paper to gain a uniform magnetic field for a permanent MRI magnet with biplanar poles. First, the adopted shimming piece is modeled as a magnetic dipole moment to calculate its effect on the background field over the imaging region of interest. Then, the SQP method is utilized to determine the ideal solution for the shimming equation. Finally, the ideal solution is discrete, and the quantization error control technique is used for special cases. This new method helps to reduce the inhomogeneity from 1234.5 ppm to 21.4 ppm over a 36 cm diameter spherical volume (DSV), within hours in practical shimming work.

  15. Virtual test system for permanent-magnet DC motor

    Institute of Scientific and Technical Information of China (English)

    崔淑梅; 王悦; 柴凤; 吴红星; 刘宝廷; 程树康

    2003-01-01

    In order to obtain the primary parameters and operating characteristics of a DC motor without directlymeasuring its torque and rational speed, it is proposed to use a PC and a data acquisition card to acquire boththe dynamic and static data of armature current to establish the performance of a DC permanent-magnet motor.The accuracy and validity of this virtual test system proposed were verified by comparing the measurements madewith the system proposed with the measurements made with conventional torque meters. It is concluded from theresults of comparison that from the mathematic model established for the DC permant-magnet motors, both majorparameters and operating characteristics can be directly established for the DC motors without measuring theirtorques and rotational speed, a perfect on-line measurement and test system has been established for the DCpermanent-magnet motors using the theory of virtual test system. The system proposed features shorter test time,higher efficiency and lower cost.

  16. Simulation of magnetic induction distribution in a coaxial linear motor with axial and radial direction of permanent magnets magnetization

    Directory of Open Access Journals (Sweden)

    G.M. Golenkov

    2014-03-01

    Full Text Available The paper presents results of computer simulation and experimental study of magnetic induction distribution in a coaxial linear motor air gap throughout the length of the runner active part at different heights of the air gap between the runner and the inductor magnetic core for motors with axial and radial direction of the permanent magnets magnetization.

  17. Design method and magnetic field analysis of axial-magnetized permanent magnet micromotor

    Institute of Scientific and Technical Information of China (English)

    YANG Jiewei; WU Yihui; JIA Hongguang; ZHANG Ping; WANG Shurong

    2007-01-01

    To investigate the impact of size on its performance in designing an axial-magnetized permanent magnet micromotor,the finite element method is adopted to simulate the magnetic field of the dual rotor motor,and the flux density wave form distributed in the airgap is obtained.The influence of the external dimensions,pole numbers and magnet thicknesses of the rotor,and the airgap distances on the flux density,are analyzed and analytical results are given.With the increase of the airgap distance,the flux density under more poles reduces more quickly than under fewer poles.With the increase of the magnet thickness,the flux density is a rising curve,and after the magnet thickness attains a certain point,the flux density is almost a constant.While reducing the diameter of the rotor,the decrease of the flux density slows down as magnet thickness is reduced.To avoid having a seriously distorted waveform,the distance between inner and outer radii of the rotor must be larger than 1.5 millimeter.Results of the magnetic field analysis can guide a microminiaturization of the motor.Moreover,the results are analyzed theoretically and the simulated values are almost consistent with the experimental values.

  18. [Development of RF coil of permanent magnet mini-magnetic resonance imager and mouse imaging experiments].

    Science.gov (United States)

    Hou, Shulian; Xie, Huantong; Chen, Wei; Wang, Guangxin; Zhao, Qiang; Li, Shiyu

    2014-10-01

    In the development of radio frequency (RF) coils for better quality of the mini-type permanent magnetic resonance imager for using in the small animal imaging, the solenoid RF coil has a special advantage for permanent magnetic system based on analyses of various types.of RF coils. However, it is not satisfied for imaging if the RF coils are directly used. By theoretical analyses of the magnetic field properties produced from the solenoid coil, the research direction was determined by careful studies to raise further the uniformity of the magnetic field coil, receiving coil sensitivity for signals and signal-to-noise ratio (SNR). The method had certain advantages and avoided some shortcomings of the other different coil types, such as, birdcage coil, saddle shaped coil and phased array coil by using the alloy materials (from our own patent). The RF coils were designed, developed and made for keeled applicable to permanent magnet-type magnetic resonance imager, multi-coil combination-type, single-channel overall RF receiving coil, and applied for a patent. Mounted on three instruments (25 mm aperture, with main magnetic field strength of 0.5 T or 1.5 T, and 50 mm aperture, with main magnetic field strength of 0.48 T), we performed experiments with mice, rats, and nude mice bearing tumors. The experimental results indicated that the RF receiving coil was fully applicable to the permanent magnet-type imaging system.

  19. Toroidal-Core Microinductors Biased by Permanent Magnets

    Science.gov (United States)

    Lieneweg, Udo; Blaes, Brent

    2003-01-01

    The designs of microscopic toroidal-core inductors in integrated circuits of DC-to-DC voltage converters would be modified, according to a proposal, by filling the gaps in the cores with permanent magnets that would apply bias fluxes (see figure). The magnitudes and polarities of the bias fluxes would be tailored to counteract the DC fluxes generated by the DC components of the currents in the inductor windings, such that it would be possible to either reduce the sizes of the cores or increase the AC components of the currents in the cores without incurring adverse effects. Reducing the sizes of the cores could save significant amounts of space on integrated circuits because relative to other integrated-circuit components, microinductors occupy large areas - of the order of a square millimeter each. An important consideration in the design of such an inductor is preventing magnetic saturation of the core at current levels up to the maximum anticipated operating current. The requirement to prevent saturation, as well as other requirements and constraints upon the design of the core are expressed by several equations based on the traditional magnetic-circuit approximation. The equations involve the core and gap dimensions and the magnetic-property parameters of the core and magnet materials. The equations show that, other things remaining equal, as the maximum current is increased, one must increase the size of the core to prevent the flux density from rising to the saturation level. By using a permanent bias flux to oppose the flux generated by the DC component of the current, one would reduce the net DC component of flux in the core, making it possible to reduce the core size needed to prevent the total flux density (sum of DC and AC components) from rising to the saturation level. Alternatively, one could take advantage of the reduction of the net DC component of flux by increasing the allowable AC component of flux and the corresponding AC component of current

  20. Sample Size Effect of Magnetomechanical Response for Magnetic Elastomers by Using Permanent Magnets

    Directory of Open Access Journals (Sweden)

    Tsubasa Oguro

    2017-01-01

    Full Text Available The size effect of magnetomechanical response of chemically cross-linked disk shaped magnetic elastomers placed on a permanent magnet has been investigated by unidirectional compression tests. A cylindrical permanent magnet with a size of 35 mm in diameter and 15 mm in height was used to create the magnetic field. The magnetic field strength was approximately 420 mT at the center of the upper surface of the magnet. The diameter of the magnetoelastic polymer disks was varied from 14 mm to 35 mm, whereas the height was kept constant (5 mm in the undeformed state. We have studied the influence of the disk diameter on the stress-strain behavior of the magnetoelastic in the presence and in the lack of magnetic field. It was found that the smallest magnetic elastomer with 14 mm diameter did not exhibit measurable magnetomechanical response due to magnetic field. On the opposite, the magnetic elastomers with diameters larger than 30 mm contracted in the direction parallel to the mechanical stress and largely elongated in the perpendicular direction. An explanation is put forward to interpret this size-dependent behavior by taking into account the nonuniform field distribution of magnetic field produced by the permanent magnet.

  1. Analysis of Vibration and Acoustic Noise in Permanent Magnet Motors.

    Science.gov (United States)

    Hwang, Sangmoon

    The drive motor is a frequent source of vibration and acoustic noise in many precision spindle motors. One of the electromagnetic sources of vibration in permanent magnet motors is the torque ripple, consisting of the reluctance torque and electromagnetic torque fluctuation. This type of vibration is becoming more serious with the advent of new high-grade magnets with increased flux density. Acoustic noise of electromagnetic origin is difficult to predict and its exact mechanism is unclear. The mechanism of noise generation should be revealed to design a quieter motor which is the modern customer's demand. For motor operation at low speeds and loads, torque ripple due to the reluctance torque is often a source of vibration and control difficulty. The reluctance torque in a motor was calculated from the flux density by a finite element method and the Maxwell stress method. Effects of design parameters, such as stator slot width, permanent slot width, airgap length and magnetization direction, were investigated. Magnet pole shaping, by gradually decreasing the magnet thickness toward edges, yields a sinusoidal shape of the reluctance torque with reduced harmonics, thus reducing the vibration. This dissertation also presents two motor design techniques: stator tooth notching and rotor pole skewing with magnet pole shaping, and the effect of each method on the output torque. The analysis shows that the reluctance torque can be nearly eliminated by the suggested designs, with minimal sacrifice of the output torque. In permanent magnet DC motors, the most popular design type is the trapezoidal back electro-motive force (BEMF), for switched DC controllers. It is demonstrated that the output torque profile of one phase energized is qualitatively equivalent to the BEMF profile for motors with reduced reluctance torque. It implies that design of BEMF profile is possible by magnetic modeling of a motor, without expensive and time-consuming experiments for different designs

  2. Self-suspended permanent magnetic FePt ferrofluids

    KAUST Repository

    Dallas, Panagiotis

    2013-10-01

    We present the synthesis and characterization of a new class of self-suspended ferrofluids that exhibit remanent magnetization at room temperature. Our system relies on the chemisorption of a thiol-terminated ionic liquid with very low melting point on the surface of L10 FePt nanoparticles. In contrast, all types of ferrofluids previously reported employ either volatile solvents as the suspending media or superparamagnetic iron oxide nanoparticles (that lacks permanent magnetization) as the inorganic component. The ferrofluids do not show any sign of flocculation or phase separation, despite the strong interactions between the magnetic nanoparticles due to the strong chemisorption of the ionic liquid as evidenced by Raman spectroscopy and thermal analysis. Composites with high FePt loading (40 and 70. wt%) exhibit a pseudo solid-like rheological behavior and high remanent magnetization values (10.1 and 12.8. emu/g respectively). At lower FePt loading (12. wt%) a liquid like behavior is observed and the remanent and saturation magnetization values are 3.5 and 6.2. emu/g, respectively. The magnetic and flow properties of the materials can be easily fine tuned by controlling the type and amount of FePt nanoparticles used. © 2013 Elsevier Inc.

  3. A Review of Permanent Magnet Stirring During Metal Solidification

    Science.gov (United States)

    Zeng, Jie; Chen, Weiqing; Yang, Yindong; Mclean, Alexander

    2017-08-01

    Rather than using conventional electromagnetic stirring (EMS) with three-phase alternating current, permanent magnet stirring (PMS), based on the use of sintered NdFeB material which has excellent magnetic characteristics, can be employed to generate a magnetic field for the stirring of liquid metal during solidification. Recent experience with steel casting indicates that PMS requires less than 20 pct of the total energy compared with EMS. Despite the excellent magnetic density properties and low power consumption, this relatively new technology has received comparatively little attention by the metal casting community. This paper reviews simulation modeling, experimental studies, and industrial trials of PMS conducted during recent years. With the development of magnetic simulation software, the magnetic field and associated flow patterns generated by PMS have been evaluated. Based on the results obtained from laboratory experiments, the effects of PMS on metal solidification structures and typical defects such as surface pinholes and center cavities are summarized. The significance of findings obtained from trials of PMS within the metals processing sector, including the continuous casting of steel, are discussed with the aim of providing an overview of the relevant parameters that are of importance for further development and industrial application of this innovative technology.

  4. Field Quality and Hysteresis of LHC Superconducting Corrector Magnets

    CERN Document Server

    Allitt, M; Giloux, C; Karppinen, M; Khare, P; Lombardi, A M; Maurya, T; Puntambekar, A; Remondino, Vittorio; Santrich-Badal, A; Venturini-Delsolaro, W; Wolf, R

    2004-01-01

    The Large Hadron Collider (LHC) will use some 7600 superconducting corrector magnets. The magnetic field quality is measured at room temperature by 12 magnetic measurement benches employed by the corrector manufacturers. CERN performs magnetic measurements at 4.2 K and at 1.9 K on a small subset of corrector magnets. The paper discusses the correlation between the warm and cold field measurements. The field quality is compared to the target field quality for LHC. Many corrector circuits will be powered in a way which cannot be predicted before LHC will start operation and which even then may change between physics runs. The measured magnetic hysteresis and its influence on possible setting errors during operation is discussed, in particular for the orbit correctors and the tuning/trim quadrupole magnet circuits.

  5. Magnetic hysteresis effects in superconducting coplanar microwave resonators

    Energy Technology Data Exchange (ETDEWEB)

    Bothner, D.; Gaber, T.; Kemmler, M.; Gruenzweig, M.; Ferdinand, B.; Koelle, D.; Kleiner, R. [Universitaet Tuebingen (Germany); Wuensch, S.; Siegel, M. [Karlsruher Institut fuer Technologie (Germany); Mikheenko, P.; Johansen, T.H. [University of Oslo (Norway)

    2013-07-01

    We present experimental data regarding the impact of external magnetic fields on quality factor and resonance frequency of superconducting microwave resonators in a coplanar waveguide geometry. In particular we focus on the influence of magnetic history and show with the assistance of numerical calculations that the found hysteretic behaviour can be well understood with a highly inhomogeneous microwave current density in combination with established field penetration models for type-II superconducting thin films. Furthermore we have used magneto-optical imaging techniques to check the field distribution which we have assumed in our calculations. Finally, we demonstrate that and how the observed hysteretic behaviour can be used to optimize and tune the resonator performance for possible hybrid quantum sytems in magnetic fields.

  6. Magnetic Flux Dynamics in Horizontally Cooled Superconducting Cavities

    CERN Document Server

    Martinello, M; Grassellino, A; Crawford, A C; Melnychuk, O; Romanenko, A; Sergatkov, D A

    2015-01-01

    Previous studies on magnetic flux expulsion as a function of cooling details have been performed for superconducting niobium cavities with the cavity beam axis placed parallel respect to the helium cooling flow, and findings showed that for sufficient cooling thermogradients all magnetic flux could be expelled and very low residual resistance could be achieved. In this paper we investigate the flux trapping and its impact on radio frequency surface resistance when the resonators are positioned perpendicularly to the helium cooling flow, which is representative of how superconducting radio-frequency (SRF) cavities are cooled in an accelerator. We also extend the studies to different directions of applied magnetic field surrounding the resonator. Results show that in the cavity horizontal configuration there is a different impact of the various field components on the final surface resistance, and that several parameters have to be considered to understand flux dynamics. A newly discovered phenomenon of concent...

  7. Vacuum impregnation with epoxy of large superconducting magnet structures

    Energy Technology Data Exchange (ETDEWEB)

    Green, M.A.; Coyle, D.E.; Miller, P.B.; Wenzel, W.F.

    1978-06-01

    The Lawrence Berkeley Laboratory (LBL) has been developing a new generation of superconducting magnets which have the helium cooling system as an integral part of the magnet structure. The LBL technique calls for large sections of the magnet structure to be vacuum impregnated with epoxy. The epoxy was chosen for its impregnation properties. Epoxies which have good impregnation characteristics are often subject to cracking when they are cooled to cryogenic temperatures. The cracking of such an epoxy can be controlled by: (1) minimizing the amount of epoxy in the structure; (2) reducing the size of unfilled epoxy spaces; and (3) keeping the epoxy in compression. The technique for using the epoxy is often more important than the formulation of the epoxy. The LBL vacuum impregnation and curing technique is described. Experimental measurements on small samples of coil sections are presented. Practical experience with large vacuum impregnation superconducting coils (up to two meters in dia) is also discussed.

  8. A 2 Tesla Full Scale High Performance Periodic Permanent Magnet Model for Attractive (228 KN) and repulsive Maglev

    Science.gov (United States)

    Stekly, Z. J. J.; Gardner, C.; Domigan, P.; Baker, J.; Hass, M.; McDonald, C.; Wu, C.; Farrell, R. A.

    1996-01-01

    Two 214.5 cm. long high performance periodic (26 cm period) permanent magnet half-assemblies were designed and constructed for use as a wiggler using Nd-B-Fe and vanadium permendur as hard and soft magnetic materials by Field Effects, a division of Intermagnetics General Corporation. Placing these assemblies in a supporting structure with a 2.1 cm pole to pole separation resulted in a periodic field with a maximum value of 2.04 T. This is believed to be the highest field ever achieved by this type of device. The attractive force between the two 602 kg magnet assemblies is 228 kN, providing enough force for suspension of a 45,500 kg vehicle. If used in an attractive maglev system with an appropriate flat iron rail, one assembly will generate the same force with a gap of 1.05 cm leading to a lift to weight ratio of 38.6, not including the vehicle attachment structure. This permanent magnet compares well with superconducting systems which have lift to weight ratios in the range of 5 to 10. This paper describes the magnet assemblies and their measured magnetic performance. The measured magnetic field and resulting attractive magnetic force have a negative spring characteristic. Appropriate control coils are necessary to provide stable operation. The estimated performance of the assemblies in a stable repulsive mode, with eddy currents in a conducting guideway, is also discussed.

  9. Slip Torque Investigation and Magnetic Redesign of Motor Integrated Permanent Magnet Gear

    DEFF Research Database (Denmark)

    Frandsen, Tommy Vestergaard; Rasmussen, Peter Omand

    2015-01-01

    This paper presents an investigation of 20% difference between the measured and calculated slip torque of a Motor Integrated Permanent Magnet Gear (MIPMG) prototype. The High Speed (HS) side of the Magnetic Gear (MG) was fixed by loading the motor when conducting the slip torque measurement...

  10. Improving torque per kilogram magnet of permanent magnet couplings using finite element analysis

    DEFF Research Database (Denmark)

    Högberg, Stig; Jensen, Bogi Bech; Bendixen, Flemming Buus

    2013-01-01

    This paper presents the methodology and subsequent findings of a performance-improvement routine that employs automated finite element (FE) analysis to increase the torque-per-kilogram-magnet (TPKM) of a permanent magnet coupling (PMC). The routine is applied to a commercially available cylindrical...

  11. Microscopic observation of magnetic bacteria in the magnetic field of a rotating permanent magnet.

    Science.gov (United States)

    Smid, Pieter; Shcherbakov, Valeriy; Petersen, Nikolai

    2015-09-01

    Magnetotactic bacteria are ubiquitous and can be found in both freshwater and marine environments. Due to intracellular chains of magnetic single domain particles, they behave like swimming compass needles. In external magnetic fields like the Earth's magnetic field, a torque is acting on the chain. This will cause the bacterium to be rotated and aligned with the external field. The swimming direction of magnetotactic bacteria can be controlled with external magnetic fields, which makes it convenient to study them under a light microscope. Usually, a special set of coils arranged around a light microscope is used to control the swimming magnetotactic bacteria. Here, we present a simple mechanical system with a permanent magnet, which produces a rotating magnetic field of nearly constant amplitude in the focal plane of a light microscope. The device is placed beside the light microscope and easily adaptable to almost any microscope and thus convenient for field experiments. To describe the trajectories qualitatively, a theoretical model of the trajectories is presented. This device can be used to control the swimming direction of magnetotactic bacteria and also for studying their magnetic and hydrodynamic properties.

  12. Prediction and analysis of magnetic forces in permanent magnet brushless dc motor with rotor eccentricity

    Science.gov (United States)

    Liu, Z. J.; Li, J. T.; Jabbar, M. A.

    2006-04-01

    In design of permanent magnet motors for high-precision applications, it is sometimes necessary, early in the design stage, to have a detailed analysis of the effect of rotor eccentricity that may result from manufacturing imperfectness or use of fluid dynamic or aerodynamic bearings. This paper presents an analytical model for electromagnetic torque and forces in permanent magnet motors with rotor eccentricity. The model gives an insight to the relationship between the effect of the eccentricity and the other motor design parameters on the electromagnetic forces. It is shown that the calculated magnetic forces obtained from this model agree well with those obtained from numerical simulations that are very computationally demanding.

  13. A superconducting large-angle magnetic suspension. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Downer, J.R.; Anastas, G.V. Jr.; Bushko, D.A.; Flynn, F.J.; Goldie, J.H.; Gondhalekar, V.; Hawkey, T.J.; Hockney, R.L.; Torti, R.P.

    1992-12-01

    SatCon Technology Corporation has completed a Small Business Innovation Research (SBIR) Phase 2 program to develop a Superconducting Large-Angle Magnetic Suspension (LAMS) for the NASA Langley Research Center. The Superconducting LAMS was a hardware demonstration of the control technology required to develop an advanced momentum exchange effector. The Phase 2 research was directed toward the demonstration for the key technology required for the advanced concept CMG, the controller. The Phase 2 hardware consists of a superconducting solenoid ('source coils') suspended within an array of nonsuperconducting coils ('control coils'), a five-degree-of-freedom positioning sensing system, switching power amplifiers, and a digital control system. The results demonstrated the feasibility of suspending the source coil. Gimballing (pointing the axis of the source coil) was demonstrated over a limited range. With further development of the rotation sensing system, enhanced angular freedom should be possible.

  14. The design considerations for a superconducting magnetic bearing system

    Science.gov (United States)

    Cansiz, Ahmet; Yildizer, Irfan

    2014-09-01

    In this paper a high temperature superconducting magnetic bearing is studied with various design considerations. The design of the bearing consists of a rotor with 7.5 kg mass. The stable levitation of the rotor is provided with the Evershed type and superconducting components. The dynamic stability of the rotor is strengthened with the electromagnetic and electrodynamic levitation techniques. The force on the rotor is predicted in terms of semi-analytical frozen image model. The designed driving system sustains stable levitation during the rotation of the rotor and achieves higher rotational speed than that of the torque driver. The results indicate that the designed rotor and driving system have potential solutions for the development of the superconducting flywheel energy storage.

  15. Development of superconducting magnetic bearing for flywheel energy storage system

    Science.gov (United States)

    Miyazaki, Yoshiki; Mizuno, Katsutoshi; Yamashita, Tomohisa; Ogata, Masafumi; Hasegawa, Hitoshi; Nagashima, Ken; Mukoyama, Shinichi; Matsuoka, Taro; Nakao, Kengo; Horiuch, Shinichi; Maeda, Tadakazu; Shimizu, Hideki

    2016-12-01

    We have been developing a superconducting magnetic bearing (SMB) that has high temperature superconducting (HTS) coils and bulks for a flywheel energy storage system (FESS) that have an output capability of 300 kW and a storage capacity of 100 kW h (Nagashima et al., 2008, Hasegawa et al., 2015) [1,2]. The world largest-class FESS with a SMB has been completed and test operation has started. A CFRP flywheel rotor that had a diameter of 2 m and weight of 4000 kg had a capability to be rotated at a maximum speed of 6000 min-1. The SMB using superconducting material both for its rotor and stator is capable of supporting the flywheel that had the heavy weight and the high seed rotation mentioned above. This paper describes the design of the SMB and results of the cooling test of the SMB.

  16. Permanent Magnetic Synchronous Motor Control System Based on ADRC

    Directory of Open Access Journals (Sweden)

    Song Wang

    2013-06-01

    Full Text Available Permanent magnetic synchronous motor (PMSM is a strong coupling and non-linear system. In the PMSM speed-regulation system, PID controller is the conventional one, it is difficult to decide the parameters of PID. Moreover, the performance of PID controller is not very well in large disturbance. In the paper, the Active Disturbance Rejection Controller (ADRC is applied to the PMSM speed-regulation system. The result of simulations and experiments show that this algorithm has better anti-load-disturbance performance than PID controller.

  17. Axial Permanent Magnet Generator for Wearable Energy Harvesting

    DEFF Research Database (Denmark)

    Högberg, Stig; Sødahl, Jakob Wagner; Mijatovic, Nenad

    2016-01-01

    An increasing demand for battery-free electronics is evident by the rapid increase of wearable devices, and the design of wearable energy harvesters follows accordingly. An axial permanent magnet generator was designed to harvest energy from human body motion and supplying it to a wearable...... in order to reduce the rotor inertia and to reduce losses. Analytical models and finite element simulations were employed for the analyses of both generator types, and verified experimentally by prototypes. The results suggested that a generator of this size and power rating (20 mm radius, and 5 m...

  18. Modelling of Permanent Magnet Synchronous Motor Incorporating Core-loss

    Directory of Open Access Journals (Sweden)

    K. Suthamno

    2012-08-01

    Full Text Available This study proposes a dq-axis modelling of a Permanent Magnet Synchronous Motor (PMSM with copper-loss and core-loss taken into account. The proposed models can be applied to PMSM control and drive with loss minimization in simultaneous consideration. The study presents simulation results of direct drive of a PMSM under no-load and loaded conditions using the proposed models with MATLAB codes. Comparisons of the results are made among those obtained from using PSIM and SIMULINK software packages. The comparison results indicate very good agreement.

  19. A strong permanent magnet-assisted electromagnetic undulator

    Science.gov (United States)

    Halbach, K.

    1987-01-30

    This invention discloses an improved undulator comprising a plurality of electromagnet poles located along opposite sides of a particle beam axis with alternate north and south poles on each side of the beam to cause the beam to wiggle or undulate as it travels generally along the beam axis and permanent magnets spaced adjacent the electromagnetic poles on each side of the axis of said particle beam in an orientation sufficient to reduce the saturation of the electromagnet poles whereby the field strength of the electromagnet poles can be increased beyond the normal saturation levels of the electromagnetic poles. 4 figs.

  20. Progress on Superconducting Magnets for the MICE Cooling Channel

    Energy Technology Data Exchange (ETDEWEB)

    Green, Michael A; Virostek, Steve P.; Li, Derun; Zisman, Michael S.; Wang, Li; Pan, Heng; Wu, Hong; Guo, XingLong; Xu, FengYu; Liu, X. K.; Zheng, S. X.; Bradshaw, Thomas; Baynham, Elwyn; Cobb, John; Lau, Wing; Lau, Peter; Yang, Stephanie Q.

    2009-09-09

    The muon ionization cooling experiment (MICE) consists of a target, a beam line, a pion decay channel, the MICE cooling channel. Superconducting magnets are used in the pion decay channel and the MICE cooling channel. This report describes the MICE cooling channel magnets and the progress in the design and fabrication of these magnets. The MICE cooling channel consists of three types of superconducting solenoids; the spectrometer solenoids, the coupling solenoids and the focusing solenoids. The three types of magnets are being fabricated in he United States, China, and the United Kingdom respectively. The spectrometer magnets are used to analyze the muon beam before and after muon cooling. The coupling magnets couple the focusing sections and keep the muon beam contained within the iris of the RF cavities that re used to recover the muon momentum lost during ionization cooling. The focusing magnets focus the muon beam in the center of a liquid hydrogen absorber. The first of the cooling channel magnets will be operational in MICE in the spring of 2010.

  1. Fiber Optic Cryogenic Sensors for Superconducting Magnets and Superconducting Power Transmission lines at CERN

    CERN Document Server

    Chiuchiolo, A; Cusano, A; Bajko, M; Perez, J C; Bajas, H; Giordano, M; Breglio, G; Palmieri, L

    2014-01-01

    The design, fabrication and tests of a new generation of superconducting magnets for the upgrade of the LHC require the support of an adequate, robust and reliable sensing technology. The use of Fiber Optic Sensors is becoming particularly challenging for applications in extreme harsh environments such as ultra-low temperatures, high electromagnetic fields and strong mechanical stresses offering perspectives for the development of technological innovations in several applied disciplines.

  2. Superconducting Magnets for Accelerators and Detectors

    CERN Document Server

    Rossi, L

    2003-01-01

    The development of superconductors for magnet applications has received a strong boost from the High Energy Physics (HEP) community, both for detector magnets and for accelerator magnets. The demand for very high current density (both Jc and Jc,overall), for fine filaments, for control of the copper content, for very compact cables with large current capability, the ability to superstabilize large cables at moderate cost, together with necessity of producing hundreds of tons of materials for large projects, have been the main motivation for the continued improvement of practical superconductors. HEP has provided so far, and still does nowadays, a unique forum where material scientists, fabrication engineers and final users, i.e. magnet designers and magnet constructors, gather together and, by sharing their knowledge and their needs, are able to accomplish real progress in the technology. In particular accelerator magnets have reached a point where, in order to go beyond the 9 T limit of the present LHC in co...

  3. Cryogenic Infrastructure for Testing of LHC Series Superconducting Magnets

    CERN Document Server

    Axensalva, J; Herblin, L; Lamboy, J P; Tovar-Gonzalez, A; Vuillerme, B

    2005-01-01

    The ~1800 superconducting magnets for the LHC machine shall be entirely tested at reception before their installation in the tunnel. For this purpose and in order to reach the reliability and efficiency at the nominal load required for an industrial operation for several years, we have gradually upgraded and retrofitted the cryogenic facilities installed in the early nineties for the testing at CERN of prototypes and preseries magnets. The final infrastructure of the test station, dedicated to check industrially the quality of the series magnets, is now nearly complete. We present the general layout and describe the overall performance of the system.

  4. Superconducting Magnet Technology for the Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Todesco, E. [European Organization for Nuclear Research (CERN), Geneva (Switzerland). TE Dept.; Ambrosio, G. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Ferracin, P. [European Organization for Nuclear Research (CERN), Geneva (Switzerland). TE Dept.; Rifflet, J. M. [European Organization for Nuclear Research (CERN), Geneva (Switzerland). TE Dept.; Sabbi, G. L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Segreti, M. [Alternative Energies and Atomic Energy Commission (CEA), Saclay (France); Nakamoto, T. [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); van Weelderen, R. [European Organization for Nuclear Research (CERN), Geneva (Switzerland). TE Dept.; Xu, Q. [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan)

    2015-10-01

    In this section we present the magnet technology for the High Luminosity LHC. After a short review of the project targets and constraints, we discuss the main guidelines used to determine the technology, the field/gradients, the operational margins, and the choice of the current density for each type of magnet. Then we discuss the peculiar aspects of each class of magnet, with special emphasis on the triplet.

  5. Thermo-magnetic instabilities in Nb3Sn superconducting accelerator magnets

    Energy Technology Data Exchange (ETDEWEB)

    Bordini, Bernardo [Univ. of Pisa (Italy)

    2006-09-01

    The advance of High Energy Physics research using circulating accelerators strongly depends on increasing the magnetic bending field which accelerator magnets provide. To achieve high fields, the most powerful present-day accelerator magnets employ NbTi superconducting technology; however, with the start up of Large Hadron Collider (LHC) in 2007, NbTi magnets will have reached the maximum field allowed by the intrinsic properties of this superconductor. A further increase of the field strength necessarily requires a change in superconductor material; the best candidate is Nb3Sn. Several laboratories in the US and Europe are currently working on developing Nb3Sn accelerator magnets, and although these magnets have great potential, it is suspected that their performance may be fundamentally limited by conductor thermo-magnetic instabilities: an idea first proposed by the Fermilab High Field Magnet group early in 2003. This thesis presents a study of thermo-magnetic instability in high field Nb3Sn accelerator magnets. In this chapter the following topics are described: the role of superconducting magnets in High Energy Physics; the main characteristics of superconductors for accelerator magnets; typical measurements of current capability in superconducting strands; the properties of Nb3Sn; a description of the manufacturing process of Nb3Sn strands; superconducting cables; a typical layout of superconducting accelerator magnets; the current state of the art of Nb3Sn accelerator magnets; the High Field Magnet program at Fermilab; and the scope of the thesis.

  6. Additive Manufacturing of Near-net Shaped Permanent Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Paranthaman, M Parans [ORNL

    2016-07-26

    The technical objective of this technical collaboration phase I proposal is to fabricate near net-shaped permanent magnets using alloy powders utilizing direct metal deposition technologies at the ORNL MDF. Direct Manufacturing using the POM laser system was used to consolidate Nd2Fe14B (NdFeB) magnet powders into near net-shape parts efficiently and with virtually no wasted material as part of the feasibility study. We fabricated builds based on spherical NdFeB magnet particles. The results show that despite the ability to fabricate highly reactive materials in the laser deposition process, the magnetic coercivity and remanence of the NdFeB hard magnets is significantly reduced. X-ray powder diffraction in conjunction with electron microscopy showed that the material experienced a primary Nd2Fe17Bx solidification due to the undercooling effect (>60K). Consequently the presence of alpha iron phase resulted in deterioration of the build properties. Further optimization of the processing parameters is needed to maintain the Nd2Fe14B phase during fabrication.

  7. Magnetization reversal processes of isotropic permanent magnets with various inter-grain exchange interactions

    Directory of Open Access Journals (Sweden)

    Hiroshi Tsukahara

    2017-05-01

    Full Text Available We performed a large-scale micromagnetics simulation on a supercomputing system to investigate the properties of isotropic nanocrystalline permanent magnets consisting of cubic grains. In the simulation, we solved the Landau–Lifshitz–Gilbert equation under a periodic boundary condition for accurate calculation of the magnetization dynamics inside the nanocrystalline isotropic magnet. We reduced the inter-grain exchange interaction perpendicular and parallel to the external field independently. Propagation of the magnetization reversal process is inhibited by reducing the inter-grain exchange interaction perpendicular to the external field, and the coercivity is enhanced by this restraint. In contrast, when we reduce the inter-grain exchange interaction parallel to the external field, the coercivity decreases because the magnetization reversal process propagates owing to dipole interaction. These behaviors show that the coercivity of an isotropic permanent magnet depends on the direction of the inter-grain exchange interaction.

  8. Improved Electrical Insulation of Rare Earth Permanent Magnetic Materials With High Magnetic Properties

    Institute of Scientific and Technical Information of China (English)

    CHANG Ying; WANG Da-peng; LI Wei; PAN Wei; YU Xiao-jun; QI Min

    2009-01-01

    Rare earth permanent magnetic materials are typical electrical conductor, and their magnetic properties will decrease because of the eddy current effect, so it is difficult to keep them stable for a long enough time under a high frequency AC field. In the present study, as far as rare earth permanent magnets are concerned, for the first time, rare earth permanent magnets with strong electrical insulation and high magnetic performance have been obtained through experiments, and their properties are as follows:(1) Sm2TM17: Br=0.62 T, jHc=803.7 kA/m, (BH)m= The magnetic properties of Sm2TM17 and NdFeB are obviously higher than those of ferrite permanent magnet, and the electric insulating characteristics of Sm2TM17 and NdFeB applied have in fact been approximately the same as those of ferrite. Therefore, Sm2TM17 and NdFeB will possess the ability to take the place of ferrite under a certain high frequency AC electric field.

  9. A compact permanent magnet cyclotrino for accelerator mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Young, A.T.; Clark, D.J.; Kunkel, W.B.; Leung, K.N.; Li, C.Y. [Lawrence Berkeley Lab., CA (United States)

    1995-02-01

    The authors describe the development of a new instrument for the detection of trace amounts of rare isotopes, a Cyclotron Mass Spectrometer (CMS). A compact low energy cyclotron optimized for high mass resolution has been designed and has been fabricated. The instrument has high sensitivity and is designed to measure carbon-14 at abundances of < 10{sup {minus}12}. A novel feature of the instrument is the use of permanent magnets to energize the iron poles of the cyclotron. The instrument uses axial injection, employing a spiral inflector. The instrument has been assembled and preliminary measurements of the magnetic field show that it has a uniformity on the order of 2 parts in 10{sup 4}.

  10. Plasma Diagnostic and Performance of a Permanent Magnet Hall Thruster

    CERN Document Server

    Ferreira, J L; Rego, I D S; Ferreira, I S; Ferreira, Jose Leonardo; Souza, Joao Henrique Campos De; Rego, Israel Da Silveira; Ferreira, Ivan Soares

    2004-01-01

    Electric propulsion is now a sucessfull method for primary propulsion of deep space long duration missions and for geosyncronous satellite attitude control. Closed Drift Plasma Thruster, so called Hall Thruster or SPT (stationary plasma thruster) were primarily conceived in USSR (the ancient Soviet Union) and now it is been developed by space agencies, space research institutes and industries in several countries such as France, USA, Israel, Russian Federation and Brazil. In this work, we show plasma characteristics and performance of a Hall Thruster designed with an innovative concept which uses an array of permanent magnets, instead of an eletromagnet, to produce a radial magnetic field inside its cylindrical plasma drift channel. Within this new concept, we expect to develop a Hall Thruster within power consuption that will scale up to small and medium size satellites. A plasma density and temperature space profiles inside and outside the thruster channel will be shown. Space plasma potential, ion temperat...

  11. Torque analysis for double-stator permanent-magnet motor

    Institute of Scientific and Technical Information of China (English)

    柴凤; 程树康; 崔淑梅

    2002-01-01

    In addition to the characteristics of a conventional motor, a novel direct-drive double-stator perma-nent-magnet brushless motor proposed can operate in the state of either a generator or a motor as appropriate.Through numerical calculation and analysis, the output torque of double-stator permanent-magnet brushless motor of the same volume as the traditional machine is discussed, and the reduction of torque ripple by using the structure features of this motor is investigated. The results indicate that lower torque ripple under the condition of ideal effective torque can be obtained by the rational design of motor. The prototype motors tested show that this kind of motor structure has a higher power density.

  12. An improved iron loss estimation for permanent magnet brushless machines

    CERN Document Server

    Fang, D

    1999-01-01

    This paper presents an improved approach for predicting iron losses in permanent magnet brushless machines. The new approach is based on the fundamental concept that eddy current losses are proportional to the square of the time rate of change of flux density. Expressions are derived for predicting hysteresis and eddy current losses in the stator teeth and yoke. The so-called anomalous or excess losses, caused by the induced eddy current concentration around moving magnetic domain walls and neglected in the conventional core loss calculation, are also included in the proposed approach. In addition, the model is also capable of accounting for the stator skewing, if present. The core losses obtained from the proposed approach are compared with those measured on an existing PM motor at several operating speeds, showing very good agreement. (14 refs).

  13. Unconventional superconductivity from magnetism in transition-metal dichalcogenides

    Science.gov (United States)

    Rahimi, M. A.; Moghaddam, A. G.; Dykstra, C.; Governale, M.; Zülicke, U.

    2017-03-01

    We investigate proximity-induced superconductivity in monolayers of transition-metal dichalcogenides (TMDs) in the presence of an externally generated exchange field. A variety of superconducting order parameters is found to emerge from the interplay of magnetism and superconductivity, covering the entire spectrum of possibilities to be symmetric or antisymmetric with respect to the valley and spin degrees of freedom, as well as even or odd in frequency. More specifically, when a conventional s -wave superconductor with singlet Cooper pairs is tunnel-coupled to the TMD layer, both spin-singlet and triplet pairings between electrons from the same and opposite valleys arise due to the combined effects of intrinsic spin-orbit coupling and a magnetic-substrate-induced exchange field. As a key finding, we reveal the existence of an exotic even-frequency triplet pairing between equal-spin electrons from different valleys, which arises whenever the spin orientations in the two valleys are noncollinear. All types of superconducting order turn out to be highly tunable via straightforward manipulation of the external exchange field.

  14. Optimum design of flywheel storage system using superconducting magnetic bearings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Soo Hun; Kim, Jong Soo; Kim, Jung Guen [Ajou University, Suwon (Korea)

    1999-03-01

    The flywheel energy storage system using superconducting magnetic bearings is a device to store electrical energy as rotational kinetic energy by motor and to convert it to electrical energy by generator when it is necessary. An analytical model of the SMB-FESS is necessary to identify the system behavior. At first, we have to model the superconducting magnetic bearings that have different characteristics from mechanical and the electric magnetic bearing. Modeling the SMB is same as estimating the bearing parameter. The theoretical modal parameter is calculated through the equation of motion and the experimental modal parameter is estimated through the impact testing (modal testing). The bearing parameter is searched by using the non-linear least square method until the theoretical result corresponds to the experimental result. The suggested modeling method is verified by comparing experimental and analytical frequency response function. The loss mechanisms associated with the combined effects of magnetic unbalance and hysteretic damping in the superconducting flywheel system have been modeled under the assumption that dynamic characteristics of the bearing can be approximated by a linear, elastic anisotropic spring with complex stiffness. Theoretical energy loss model effected by unbalance is derived from generalized rotational model including gyroscopic effect and generalized response. The validity of suggested energy loss model is confirmed by comparing experimental deceleration curve. (author). 12 refs., 28 figs., 10 tabs.

  15. Modular transportable superconducting magnetic Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lieurance, D.; Kimball, F.; Rix, C. [Martin Marietta Space Magnetics, San Diego, CA (United States)

    1994-12-31

    Design and cost studies were performed for the magnet components of mid-size (1-5 MWh), cold supported SMES systems using alternative configurations. The configurations studied included solenoid magnets, which required onsite assembly of the magnet system, and toroid and racetrack configurations which consisted of factory assembled modules. For each configuration, design concepts and cost information were developed for the major features of the magnet system including the conductor, electrical insulation, and structure. These studies showed that for mid-size systems, the costs of solenoid and toroid magnet configurations are comparable and that the specific configuration to be used for a given application should be based upon customer requirements such as limiting stray fields or minimizing risks in development or construction.

  16. Improvement of the levitation stability of the HTSC-permanent magnet hybrid bearing by using the new arrangement of the permanent magnet

    Science.gov (United States)

    Sukedaia, M.; Emoto, K.; Sugiyama, R.; Ohashi, S.

    The hybrid magnetic bearing using permanent magnets and the high temperature superconductor (HTSC) has been developed. Repulsive force of the permanent magnet is introduced to increase the load weight of the magnetic bearing. Effect of the hybrid system has been shown. Although the previous configuration improves the load weight of the rotor, levitation and guidance stability has been decreased because of the repulsive force of the permanent magnet. Three-dimensional numerical analysis of the system has been undertaken to reduce lateral force which decreases lateral stability of the rotor. From the results, effective arrangement of the hybrid system is given. Increment of the load weight is confirmed. Influence of the hybrid system on the pinning force between the HTSC and the permanent magnet is shown to be smaller than previous one.

  17. Effect of the repulsive force in the HTSC-permanent magnet hybrid bearing system

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, S., E-mail: ohashi@ipcku.kansai-u.ac.j [Kansai University, 3-3-35, Yamate-cho, Suita, Osaka 564-8680 (Japan); Kobayashi, S. [Kansai University, 3-3-35, Yamate-cho, Suita, Osaka 564-8680 (Japan)

    2009-10-15

    Magnetic levitation using the pinning force of the YBaCuO high-T{sub c} bulk superconductor (HTSC) materials has an advantage to achieve stable levitation without control. To increase levitation force, the HTSC-permanent magnet hybrid magnetic bearing system is introduced. A circular shaped three phase Nd-Fe-B permanent magnet is installed on the rotor, and HTSC bulk superconductor is set on the stator. The additional permanent magnet is installed under the HTSC. Repulsive force of the permanent magnet is used for levitation, and pinning force between the HTSC and permanent magnet is used for guidance force of the bearing. In this system, relationship between permanent magnet and the HTSC is important. When repulsive force of the permanent magnet is large, pinning force of superconductor is used to keep the rotor position. As a result, stability for the lateral direction is decreased with hybrid system. For levitation force, effect of the hybrid system is not observed with column HTSC. Compared with the ring HTSC results, the following thing is considered. Because there is no space that flux of one permanent magnet acts on the other one with the column HTSC configuration, interaction between two permanent magnets becomes small.

  18. Effect of the repulsive force in the HTSC-permanent magnet hybrid bearing system

    Science.gov (United States)

    Ohashi, S.; Kobayashi, S.

    2009-10-01

    Magnetic levitation using the pinning force of the YBaCuO high- Tc bulk superconductor (HTSC) materials has an advantage to achieve stable levitation without control. To increase levitation force, the HTSC-permanent magnet hybrid magnetic bearing system is introduced. A circular shaped three phase Nd-Fe-B permanent magnet is installed on the rotor, and HTSC bulk superconductor is set on the stator. The additional permanent magnet is installed under the HTSC. Repulsive force of the permanent magnet is used for levitation, and pinning force between the HTSC and permanent magnet is used for guidance force of the bearing. In this system, relationship between permanent magnet and the HTSC is important. When repulsive force of the permanent magnet is large, pinning force of superconductor is used to keep the rotor position. As a result, stability for the lateral direction is decreased with hybrid system. For levitation force, effect of the hybrid system is not observed with column HTSC. Compared with the ring HTSC results, the following thing is considered. Because there is no space that flux of one permanent magnet acts on the other one with the column HTSC configuration, interaction between two permanent magnets becomes small.

  19. Estimating effects from trapped magnetic fluxes in superconducting magnetic levitation measurement

    Institute of Scientific and Technical Information of China (English)

    Masakazu Nakanishi

    2008-01-01

    Superconducting magnetic levitation measurement is one of the most promising approaches to define mass standard based on the fundamental physical constants. However, the present system has unknown factors causing error larger than 50 ppm. We examined the effects of magnetic fluxes trapped in the superconducting coil and the superconducting floating body. When fluxes were trapped in either coil or floating body, their effects were able to be cancelled by reversing polarities of current and magnetic field, as had been believed. However, fluxes trapped in both coil and body induced an attractive force between them and caused error. In order to reduce the fluxes, the coil and the floating body should be cooled in low magnetic field in magnetic and electromagnetic shields.

  20. Analysis and design of permanent magnet biased magnetic bearing based on hybrid factor

    Directory of Open Access Journals (Sweden)

    Jinji Sun

    2016-03-01

    Full Text Available In this article, hybrid factor is proposed for hybrid magnetic bearing. The hybrid factor is defined as the ratio of the force produced by the permanent magnet and the forces produced by the permanent magnet and current in hybrid magnetic bearing. It is deduced from a certain radial hybrid magnetic bearing using its important parameters such as the current stiffness and displacement stiffness at first and then the dynamic model of magnetically suspended rotor system is established. The relationship between structural parameters and control system parameters is analyzed based on the hybrid factor. Some influencing factors of hybrid factor in hybrid magnetic bearing, such as the size of the permanent magnet, length of air gap, and area of the stator poles, are analyzed in this article. It can be concluded that larger hybrid factor can be caused by the smaller power loss according to the definition of hybrid factor mentioned above. Meanwhile, the hybrid factor has a maximum value, which is related to control system parameters such as proportional factor expect for structural parameters. Finally, the design steps of parameters of hybrid magnetic bearing can be concluded.

  1. Improvement of the Levitation Characteristics in the Magnetic Bearing System Using HTSC-Permanent Magnet Hybrid Structure

    Science.gov (United States)

    Ohashi, Shunsuke

    Magnetic bearing using pining force of a permanent magnet and a high-temperature superconductor has been developed. Additional permanent magnet is introduced to increase the levitation force of the magnetic bearing. In this hybrid magnetic bearing system, levitation force is mainly given by the repulsive force of the permanent magnets, and stability for the lateral direction is given by pining force of the superconductor. The experimental device is developed. A ring type superconductor and a bulk one are examined. Levitation characteristics of the hybrid magnetic bearing are measured. A bulk superconductor shows better characteristics both levitation and lateral stability than ring one. Levitation force of the hybrid system becomes about twice as large as that of the no-hybrid one. Although repulsive force of the permanent magnet decreases lateral stability of the system, its influence becomes small by choosing adequate position of the permanent magnets and the superconductor.

  2. Analysis and Design Optimization of a Coaxial Surface-Mounted Permanent-Magnet Magnetic Gear

    DEFF Research Database (Denmark)

    Zhang, Xiaoxu; Liu, Xiao; Wang, Chao

    2014-01-01

    This paper presents the analysis and design optimization of a coaxial surface-mounted permanent-magnet magnetic gear. The magnetic field distribution in the coaxial magnetic gear is calculated analytically in the polar coordinate system and then validated by the finite element method (FEM......) algorithm is employed to optimize the studied magnetic gear. Given that the torque capability and material cost conflict with each other, both of them are set as the optimization objectives in this paper. Different weight factors may be chosen for the two objectives so that more attention can be placed...

  3. Compact Superconducting Final Focus Magnet Options for the ILC

    CERN Document Server

    Parker, Brett; Escallier, John; Harrison, Michael; He, Ping; Jain, Animesh K; Markiewicz, Thomas W; Marone, Andrew; Maruyama, Takashi; Nosochkov, Yuri; Seryi, Andrei; Wu, Kuo-Chen

    2005-01-01

    We present a compact superconducting final focus (FF) magnet system for the ILC based on recent BNL direct wind technology developments. Direct wind gives an integrated coil prestress solution for small transverse size coils. With beam crossing angles more than 15 mr, disrupted beam from the IP passes outside the coil while incoming beam is strongly focused. A superconducting FF magnet is adjustable to accommodate collision energy changes, i.e. energy scans and low energy calibration runs. A separate extraction line permits optimization of post IP beam diagnostics. Direct wind construction allows adding separate coils of arbitrary multipolarity (such as sextupole coils for local chromaticity correction). In our simplest coil geometry extracted beam sees significant fringe field. Since the fringe field affects the extracted beam, we also study advanced configurations that give either dramatic fringe field reduction (especially critical for gamma-gamma colliders) or useful quadrupole focusing on the outgoing be...

  4. Magnetic phenomena in holographic superconductivity with Lifshitz scaling

    Directory of Open Access Journals (Sweden)

    Aldo Dector

    2015-09-01

    Full Text Available We investigate the effects of Lifshitz dynamical critical exponent z on a family of minimal D=4+1 holographic superconducting models, with a particular focus on magnetic phenomena. We see that it is possible to have a consistent Ginzburg–Landau approach to holographic superconductivity in a Lifshitz background. By following this phenomenological approach we are able to compute a wide array of physical quantities. We also calculate the Ginzburg–Landau parameter for different condensates, and conclude that in systems with higher dynamical critical exponent, vortex formation is more strongly unfavored energetically and exhibits a stronger Type I behavior. Finally, following the perturbative approach proposed by Maeda, Natsuume and Okamura, we calculate the critical magnetic field of our models for different values of z.

  5. Characteristics Analysis of Square Wave BLDC Motor Considering Magnetization Distribution of Permanent Magnet

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Byung Il; Park, Seung Chan [Hanyang University (Korea, Republic of); Im, Tae Bin [Korea Electronics Technology Institute (Korea, Republic of); Kang, Young Gyu [Samsung Electro-Mechanics R and D Center (Korea, Republic of)

    1998-04-01

    This paper deals with the characteristics analysis of a permanent magnet brushless DC(BLDC) motor. The analysis method is to utilize the time-stepped finite element method considering the square wave voltage of MOS FET inverter. The system matrix that unknown parameters are magnetic vector potentials at nodes and phases currents is constructed through the finite element formulation and circuit equations, and then solved by bi-conjugate gradient(BCG) method. The analyzed model has a inner rotor which is consisted of a permanent magnet of ring shape and a laminated steel core. The current carrying free-wheeling diode of inverter is neglected because of low value of the winding inductance of motor. The magnetization distribution in the permanent magnet i determined by solving inverse problem that the calculated flux densities values on the surface of the permanent magnet are led to the same values that measured by gauss meter. And then, torque and phase currents, which are calculated by finite element analysis are compared with experimental values. (author). 12 refs., 17 figs., 2 tabs.

  6. Power deposition in superconducting magnets of the momentum cleaning insertion

    CERN Document Server

    CERN. Geneva; Baishev, I S; Jeanneret, J B; Kourotchkine, I A

    2002-01-01

    This note describes the calculation of power deposition in the superconducting magnets Q6, Q7 and MB8 downstream of the momentum collimators in IR3. To reduce a relatively high power deposition density of 1.8mW/cm^3 in the coils of Q6, we propose to install some fixed shielding collimators upstream of the warm dogleg dipoles D4.

  7. Zinc contamination from brass upon heat treating a superconducting magnet

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, D.W.; Hassenzahl, W.V.

    1994-07-01

    Theoretical calculations predicted that zinc outgassing from brass spacers during a planned heat treatment would likely damage a lab-scale superconducting magnet. This specter was reinforced by a simulated heat treatment, the samples of which were analyzed by gravimetry, metallography, and microprobe chemical analysis. It was found that zinc escaping from the brass could diffuse 80 {mu}m into copper electrical conductors and degrade their conductivity. To avoid this, steel was temporarily substituted for the brass during the heat treatment process.

  8. Design considerations for permanent magnet direct drive generators for wind energy applications

    NARCIS (Netherlands)

    Jassal, A.K.; Polinder, H.; Damen, M.E.C.; Versteegh, K.

    2012-01-01

    Permanent Magnet Direct Drive (PMDD) generators offer very high force density, high efficiency and low number of components. Due to these advantages, PMDD generators are getting popular in the wind energy industry especially for offshore application. Presence of permanent magnets gives magnetic fiel

  9. Design considerations for permanent magnet direct drive generators for wind energy applications

    NARCIS (Netherlands)

    Jassal, A.K.; Polinder, H.; Damen, M.E.C.; Versteegh, K.

    2012-01-01

    Permanent Magnet Direct Drive (PMDD) generators offer very high force density, high efficiency and low number of components. Due to these advantages, PMDD generators are getting popular in the wind energy industry especially for offshore application. Presence of permanent magnets gives magnetic

  10. Numerical analysis of fundamental characteristics of superconducting magnetic bearings for a polarization modulator

    Science.gov (United States)

    Terachi, Yusuke; Terao, Yutaka; Ohsaki, Hiroyuki; Sakurai, Yuki; Matsumura, Tomotake; Sugai, Hajime; Utsunomiya, Shin; Kataza, Hirokazu; Yamamoto, Ryo

    2017-07-01

    We have carried out numerical analysis of mechanical properties of a superconducting magnetic bearing (SMB). A contactless bearing operating at below 10 K with low rotational energy loss is an attractive feature to be used as a rotational mechanism of a polarization modulator for a cosmic microwave background experiment. In such application, a rotor diameter of about 400 mm forces us to employ a segmented magnet. As a result, there is inevitable spatial gap between the segments. In order to understand the path towards the design optimizations, 2D and 3D FEM analyses were carried out to examine fundamental characteristics of the SMBs for a polarization modulator. Two axial flux type SMBs were dealt with in the analysis: (a) the SMB with axially magnetized permanent magnets (PMs), and (b) the SMB with radially magnetized PMs and steel components for magnetic flux paths. Magnetic flux lines and density distributions, electromagnetic force characteristics, spring constants, etc. were compared among some variations of the SMBs. From the numerical analysis results, it is discussed what type, configuration and design of SMBs are more suitable for a polarization modulator.

  11. Rotational characteristics in the resonance state of the HTSC-permanent magnet hybrid magnetic bearing

    Energy Technology Data Exchange (ETDEWEB)

    Morii, Y.; Sukedai, M. [Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan); Ohashi, S., E-mail: ohashi@kansai-u.ac.jp [Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan)

    2011-11-15

    The hybrid magnetic bearing has been developed. In the hybrid system, effect of the pinning force becomes smaller. Influence of the vibration and the gradient angle in the resonance state is large. The resonance frequency becomes small in the hybrid bearing system. The hybrid magnetic bearing using permanent magnets and the high-Tc bulk superconductor (HTSC) has been developed. Repulsive force of the permanent magnet is introduced to increase the load weight of the magnetic bearing. Effect of the hybrid system has been shown. In this paper, influence of the hybrid system on the dynamic characteristics of the rotor is studied. The rotational characteristics in the mechanical resonance state are studied, and the equivalent magnetic spring coefficient is estimated from the experimental results of the load weight. The resonance frequency is measured by the rotation experiments. The rotor achieves stable levitation even in the resonance state. In the hybrid system, effect of the pinning force becomes smaller than that of the lateral force generated by the repulsive force between the two permanent magnets at the smaller air gap. Thus influence of the lateral vibration and the gradient angle in the resonance state becomes larger at a smaller air gap. The equivalent magnetic spring coefficient becomes also small, and the resonance frequency becomes small in the hybrid bearing system.

  12. Motor Integrated Permanent Magnet Gear with a Wide Torque-Speed Range

    DEFF Research Database (Denmark)

    Rasmussen, Peter Omand; Matzen, Torben N.; Jahns, T. M.

    2009-01-01

    This paper present a new motor integrated permanent magnet gear with a wide torque-speed range. In the paper a 35 kW permanent magnet motor with a base speed of 4000 rpm and a top speed of 14000 rpm is integrated into a permanent magnetic gear with a gearing ratio of 8.67. The design process of t...... may be useful as a direct drive wheel motor for EV's and no liquid cooling system is required....

  13. Numerical calculation of transient field effects in quenching superconducting magnets

    Energy Technology Data Exchange (ETDEWEB)

    Schwerg, Juljan Nikolai

    2010-07-01

    The maximum obtainable magnetic induction of accelerator magnets, relying on normal conducting cables and iron poles, is limited to around 2 T because of ohmic losses and iron saturation. Using superconducting cables, and employing permeable materials merely to reduce the fringe field, this limit can be exceeded and fields of more than 10 T can be obtained. A quench denotes the sudden transition from the superconducting to the normal conducting state. The drastic increase in electrical resistivity causes ohmic heating. The dissipated heat yields a temperature rise in the coil and causes the quench to propagate. The resulting high voltages and excessive temperatures can result in an irreversible damage of the magnet - to the extend of a cable melt-down. The quench behavior of a magnet depends on numerous factors, e.g. the magnet design, the applied magnet protection measures, the external electrical network, electrical and thermal material properties, and induced eddy current losses. The analysis and optimization of the quench behavior is an integral part of the construction of any superconducting magnet. The dissertation is divided in three complementary parts, i.e. the thesis, the detailed treatment and the appendix. In the thesis the quench process in superconducting accelerator magnets is studied. At first, we give an overview over features of accelerator magnets and physical phenomena occurring during a quench. For all relevant effects numerical models are introduced and adapted. The different models are weakly coupled in the quench algorithm and solved by means of an adaptive time-stepping method. This allows to resolve the variation of material properties as well as time constants. The quench model is validated by means of measurement data from magnets of the Large Hadron Collider. In a second step, we show results of protection studies for future accelerator magnets. The thesis ends with a summary of the results and a critical outlook on aspects which could

  14. Flywheel energy storage using superconducting magnetic bearings

    Science.gov (United States)

    Abboud, R. G.; Uherka, K.; Hull, J.; Mulcahy, T.

    Storage of electrical energy on a utility scale is currently not practicable for most utilities, preventing the full utilization of existing base-load capacity. A potential solution to this problem is Flywheel Energy Storage (FES), made possible by technological developments in high-temperature superconducting materials. Commonwealth Research Corporation (CRC), the research arm of Commonwealth Edison Company, and Argonne National Laboratory are implementing a demonstration project to advance the state of the art in high temperature superconductor (HTS) bearing performance and the overall demonstration of efficient Flywheel Energy Storage. Currently, electricity must be used simultaneously with its generation as electrical energy storage is not available for most utilities. Existing storage methods either are dependent on special geography, are too expensive, or are too inefficient. Without energy storage, electric utilities, such as Commonwealth Edison Company, are forced to cycle base load power plants to meet load swings in hourly customer demand. Demand can change by as much as 30% over a 12-hour period and result in significant costs to utilities as power plant output is adjusted to meet these changes. HTS FES systems can reduce demand-based power plant cycling by storing unused nighttime capacity until it is needed to meet daytime demand.

  15. Test equipment for a flywheel energy storage system using a magnetic bearing composed of superconducting coils and superconducting bulks

    Science.gov (United States)

    Ogata, M.; Matsue, H.; Yamashita, T.; Hasegawa, H.; Nagashima, K.; Maeda, T.; Matsuoka, T.; Mukoyama, S.; Shimizu, H.; Horiuchi, S.

    2016-05-01

    Energy storage systems are necessary for renewable energy sources such as solar power in order to stabilize their output power, which fluctuates widely depending on the weather. Since ‘flywheel energy storage systems’ (FWSSs) do not use chemical reactions, they do not deteriorate due to charge or discharge. This is an advantage of FWSSs in applications for renewable energy plants. A conventional FWSS has capacity limitation because of the mechanical bearings used to support the flywheel. Therefore, we have designed a superconducting magnetic bearing composed of a superconducting coil stator and a superconducting bulk rotor in order to solve this problem, and have experimentally manufactured a large scale FWSS with a capacity of 100 kWh and an output power of 300 kW. The superconducting magnetic bearing can levitate 4 tons and enables the flywheel to rotate smoothly. A performance confirmation test will be started soon. An overview of the superconducting FWSS is presented in this paper.

  16. Design of the superconducting magnet for 9.4 Tesla whole-body magnetic resonance imaging

    Science.gov (United States)

    Li, Y.; Wang, Q.; Dai, Y.; Ni, Z.; Zhu, X.; Li, L.; Zhao, B.; Chen, S.

    2017-02-01

    A superconducting magnet for 9.4 Tesla whole-body magnetic resonance imaging is designed and fabricated in Institute of Electrical Engineering, Chinese Academy of Sciences. In this paper, the electromagnetic design methods of the main coils and compensating coils are presented. Sensitivity analysis is performed for all superconducting coils. The design of the superconducting shimming coils is also presented and the design of electromagnetic decoupling of the Z2 coils from the main coils is introduced. Stress and strain analysis with both averaged and detailed models is performed with finite element method. A quench simulation code with anisotropic continuum model and control volume method is developed by us and is verified by experimental study. By means of the quench simulation code, the quench protection system for the 9.4 T magnet is designed for the main coils, the compensating coils and the shimming coils. The magnet cryostat design with zero helium boiling-off technology is also introduced.

  17. Accelerated Testing of High Temperature Permanent Magnets for Spacecraft Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — High temperature permanent magnet materials play an important role in NASA's space missions in electric propulsion, energy generation and storage and other...

  18. Genetic Algorithms for the Optimal Design of Superconducting Accelerator Magnets

    CERN Document Server

    Ramberger, S

    1998-01-01

    The paper describes the use of genetic algorithms with the concept of niching for the optimal design of superconducting magnets for the Large Hadron Collider, LHC at CERN. The method provides the designer with a number of local optima which can be further examined with respect to objectives such as ease of coil winding, sensitivity to manufacturing tolerances and local electromagnetic force distribution. A 6 block dipole coil was found to have advantages compared to the standard 5 block version which was previously designed using deterministic optimization methods. Results were proven by a short model magnet recently built and tested at CERN.

  19. A simple, small and low cost permanent magnet design to produce homogeneous magnetic fields.

    Science.gov (United States)

    Manz, B; Benecke, M; Volke, F

    2008-05-01

    A new portable, pocket-size NMR probe based on a novel permanent magnet arrangement is presented. It is based on a Halbach-type magnet design which mimics the field of a spherical dipole by using cylindrical bar and ring magnets. The magnet system is made up of only three individual magnets, and most field calculations and optimisations can be performed analytically. A prototype system has been built using a set of small, off the shelf commercially available permanent magnets. Proton linewidths of 50 ppm FWHM could be achieved at a field strength of 1T. Calculations show that with custom-sized permanent magnets, linewidths of less than 1 ppm can be achieved over sample volumes of up to 1 mm3, which would in theory enable chemical shift resolved proton spectroscopy on mass-limited samples. But even with the achieved linewidth of 50 ppm, this can be a useful portable sensor for small amounts of liquid samples with restricted molecular mobility, like gels, polymers or high viscosity liquids.

  20. Rotational characteristics in the resonance state of the HTSC-permanent magnet hybrid magnetic bearing

    Science.gov (United States)

    Morii, Y.; Sukedai, M.; Ohashi, S.

    2011-11-01

    The hybrid magnetic bearing using permanent magnets and the high-Tc bulk superconductor (HTSC) has been developed. Repulsive force of the permanent magnet is introduced to increase the load weight of the magnetic bearing. Effect of the hybrid system has been shown. In this paper, influence of the hybrid system on the dynamic characteristics of the rotor is studied. The rotational characteristics in the mechanical resonance state are studied, and the equivalent magnetic spring coefficient is estimated from the experimental results of the load weight. The resonance frequency is measured by the rotation experiments. The rotor achieves stable levitation even in the resonance state. In the hybrid system, effect of the pinning force becomes smaller than that of the lateral force generated by the repulsive force between the two permanent magnets at the smaller air gap. Thus influence of the lateral vibration and the gradient angle in the resonance state becomes larger at a smaller air gap. The equivalent magnetic spring coefficient becomes also small, and the resonance frequency becomes small in the hybrid bearing system.

  1. Basic Characteristics of the Propulsion System in the Permanent Magnet-HTSC Hybrid Magnetic Conveyance System

    Science.gov (United States)

    Ohashi, Shunsuke; Kumano, Daiki; Goto, Yasuyuki

    The Hybrid magnetically levitated transportation system has been developed. The magnetic rail is set on the ground, and the carrier with permanent magnets and high-Tc superconductors (HTSC) levitates on the rail. Repulsive force of permanent magnet is introduced to support load weight. Pinning force of the HTSC is used to support weight of the frame of the carrier and to achieve lateral stability of the carrier. In this paper, propulsion system of the conveyance system is studied. Propulsion function is installed on the carrier body. Magnetic gradient is used to get propulsion force. Propulsion force of the system is little. So propulsion rail system is introduced. Air core copper coils are installed on the magnetic rail. Interaction between current of these coils and permanent magnets on the carrier generates propulsion force. Enough propulsion force is given. Influence of the propulsion system on the levitation and guidance system is measured. Stability of levitation and guidance system is enough even when propulsion system is operated.

  2. Precision transport of LHC superconducting magnet

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    These photos show tests of the first convoy with a prototype short straight section (SSS) quadrupole in the LHC tunnel. There is little free space in the tunnel as the SSS convoy passes alongside a dipole vacuum vessel. These convoys feature infrared guidance, which offsets the minimal clearance in the tunnel and limits vibration, both of which could damage the fragile magnets.

  3. Ultra-high-field superconducting magnets

    Energy Technology Data Exchange (ETDEWEB)

    Hoard, R.W.; Cornish, D.N.; Scanlan, R.M.; Zbasnik, J.P.; Leber, R.L.; Hickman, R.B.; Lee, J.D.

    1983-08-01

    The following topics are considered: (1) superfluid helium for advanced magnets, (2) conductor reinforcement, (3) designing a 20-T, 2-m bore solenoidal coil, (4) coil size and conductor properties, (5) axial forces on the coil, (6) effect of radiation on the coil systems, and (7) helium-II transient heat transfer and coil protection. (MOW)

  4. Novel design configurations for permanent magnet wind generators

    Science.gov (United States)

    Chen, Yicheng

    2004-12-01

    The aim of this research is to search for optimal designs of permanent magnet (PM) wind generators of different topologies. The dissertation deals with the development of analytical design equations and formulas for PM wind generators of different topologies, including equivalent magnetic circuit model for magnets, calculation of leakage flux, influence of d-q axis armature reaction, flux waveform analysis, as well as performance verification. 3-D and simplified 2-D finite element analysis is used to enhance the design precision, by which analytical formulas are modified. A new and improved formula is proposed for lamination loss calculations, based on a large experimental data set provided by steel manufacturers. The temperature stability of NdFeB magnets is analyzed and some proposals for eliminating irreversible demagnetization are presented. Two existing experimental machines are used to validate the design equations. The genetic algorithms are used to investigate the multi-objective design optimization of PM wind generators for a high efficiency and light-weight design. The reasoning behind the selection of the objective functions, design variables and constraints are given as guidance for the PM wind generator optimum design. The implementation of the genetic algorithm is also given. A comparison of PM wind generators of different topologies is presented. Conclusions are drawn for topology selections of PM wind generators. The group of soft magnetic composites (SMC) has recently been expanded by the introduction of new materials with significantly improved frequency properties. This has made SMC a viable alternative to steel laminations for a range of new applications, especially axial-flux wind generators. The isotropic nature of the SMC combined with the unique shaping possibilities opens up new design solutions for axial-flux wind generators. Through careful design, an axial-flux PM wind generator with SMC core is built and tested, demonstrating the

  5. Innovative Sensors for Pipeline Crawlers: Rotating Permanent Magnet Inspection

    Energy Technology Data Exchange (ETDEWEB)

    J. Bruce Nestleroth; Richard J. Davis; Stephanie Flamberg

    2006-09-30

    Internal inspection of pipelines is an important tool for ensuring safe and reliable delivery of fossil energy products. Current inspection systems that are propelled through the pipeline by the product flow cannot be used to inspect all pipelines because of the various physical barriers they may encounter. To facilitate inspection of these ''unpiggable'' pipelines, recent inspection development efforts have focused on a new generation of powered inspection platforms that are able to crawl slowly inside a pipeline and can maneuver past the physical barriers that limit internal inspection applicability, such as bore restrictions, low product flow rate, and low pressure. The first step in this research was to review existing inspection technologies for applicability and compatibility with crawler systems. Most existing inspection technologies, including magnetic flux leakage and ultrasonic methods, had significant implementation limitations including mass, physical size, inspection energy coupling requirements and technology maturity. The remote field technique was the most promising but power consumption was high and anomaly signals were low requiring sensitive detectors and electronics. After reviewing each inspection technology, it was decided to investigate the potential for a new inspection method. The new inspection method takes advantage of advances in permanent magnet strength, along with their wide availability and low cost. Called rotating permanent magnet inspection (RPMI), this patent pending technology employs pairs of permanent magnets rotating around the central axis of a cylinder to induce high current densities in the material under inspection. Anomalies and wall thickness variations are detected with an array of sensors that measure local changes in the magnetic field produced by the induced current flowing in the material. This inspection method is an alternative to the common concentric coil remote field technique that induces

  6. Precise Thermometry for Next Generation LHC Superconducting Magnet Prototypes

    CERN Document Server

    Datskov, V; Bottura, L; Perez, J C; Borgnolutti, F; Jenninger, B; Ryan, P

    2013-01-01

    The next generation of LHC superconducting magnets is very challenging and must operate in harsh conditions: high radiation doses in a range between 10 and 50 MGy, high voltage environment of 1 to 5 kV during the quench, dynamic high magnetic field up to 12 T, dynamic temperature range 1.8 K to 300 K in 0.6 sec. For magnet performance and long term reliability it is important to study dynamic thermal effects, such as the heat flux through the magnet structure, or measuring hot spot in conductors during a magnet quench with high sampling rates above 200 Hz. Available on the market cryogenic temperature sensors comparison is given. An analytical model for special electrically insulating thermal anchor (Kapton pad) with high voltage insulation is described. A set of instrumentation is proposed for fast monitoring of thermal processes during normal operation, quenches and failure situations. This paper presents the technology applicable for mounting temperature sensors on high voltage superconducting (SC) cables....

  7. Optimization of Multibrid Permanent-Magnet Wind Generator Systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Li, H.; Polinder, H.

    2009-01-01

    This paper investigates the cost-effective ranges of gearbox ratios and power ratings of multibrid permanent-magnet (PM) wind generator systems by using a design optimization method. First, the analytical model of a multibrid wind turbine concept consisting of a single-stage gearbox and a three......-phase radial-flux PM synchronous generator with a back-to-back power converter is presented. The design optimization is adopted with a genetic algorithm forminimizing generator system cost. To demonstrate the effectiveness of the developed electromagnetic design model, the optimization results of a 500-k......W direct-drive PM generator and a 1.5-MW multibrid PM generator with various gear ratios are, respectively, compared with those from other methods. Then, the optimal design approach is further employed for a range from 750 kW up to 10 MW. The optimization results of PM generator systems including direct...

  8. A double-sided linear primary permanent magnet vernier machine.

    Science.gov (United States)

    Du, Yi; Zou, Chunhua; Liu, Xianxing

    2015-01-01

    The purpose of this paper is to present a new double-sided linear primary permanent magnet (PM) vernier (DSLPPMV) machine, which can offer high thrust force, low detent force, and improved power factor. Both PMs and windings of the proposed machine are on the short translator, while the long stator is designed as a double-sided simple iron core with salient teeth so that it is very robust to transmit high thrust force. The key of this new machine is the introduction of double stator and the elimination of translator yoke, so that the inductance and the volume of the machine can be reduced. Hence, the proposed machine offers improved power factor and thrust force density. The electromagnetic performances of the proposed machine are analyzed including flux, no-load EMF, thrust force density, and inductance. Based on using the finite element analysis, the characteristics and performances of the proposed machine are assessed.

  9. Zeeman slowers for strontium based on permanent magnets

    Science.gov (United States)

    Hill, Ian R.; Ovchinnikov, Yuri B.; Bridge, Elizabeth M.; Curtis, E. Anne; Gill, Patrick

    2014-04-01

    We present the design, construction, and characterization of longitudinal- and transverse-field Zeeman slowers, based on arrays of permanent magnets, for slowing thermal beams of atomic Sr. The slowers are optimized for operation with deceleration related to the local laser intensity (by the parameter ɛ), which uses more effectively the available laser power, in contrast to the usual constant deceleration mode. Slowing efficiencies of up to ≈18% are realized and compared to those predicted by modelling. We highlight the transverse-field slower, which is compact, highly tunable, light-weight, and requires no electrical power, as a simple solution to slowing Sr, well-suited to space-borne application. For 88Sr we achieve a slow-atom flux of around 6 × 109 atoms s-1 at 30 ms-1, loading approximately 5 × 108 atoms in to a magneto-optical-trap, and capture all isotopes in approximate relative natural abundances.

  10. Zeeman Slowers for Strontium based on Permanent Magnets

    CERN Document Server

    Hill, Ian R; Bridge, Elizabeth M; Curtis, E Anne; Gill, Patrick

    2014-01-01

    We present the design, construction, and characterisation of longitudinal- and transverse-field Zeeman slowers, based on arrays of permanent magnets, for slowing thermal beams of atomic Sr. The slowers are optimised for operation with deceleration related to the local laser intensity (by the parameter $\\epsilon$), which uses more effectively the available laser power, in contrast to the usual constant deceleration mode. Slowing efficiencies of up to $\\approx$ $18$ $%$ are realised and compared to those predicted by modelling. We highlight the transverse-field slower, which is compact, highly tunable, light-weight, and requires no electrical power, as a simple solution to slowing Sr, well-suited to spaceborne application. For $^{88}$Sr we achieve a slow-atom flux of around $6\\times 10^9$ atoms$\\,$s$^{-1}$ at $30$ ms$^{-1}$, loading approximately $5\\times 10^8$ atoms in to a magneto-optical-trap (MOT), and capture all isotopes in approximate relative natural abundances.

  11. A Double-Sided Linear Primary Permanent Magnet Vernier Machine

    Directory of Open Access Journals (Sweden)

    Yi Du

    2015-01-01

    Full Text Available The purpose of this paper is to present a new double-sided linear primary permanent magnet (PM vernier (DSLPPMV machine, which can offer high thrust force, low detent force, and improved power factor. Both PMs and windings of the proposed machine are on the short translator, while the long stator is designed as a double-sided simple iron core with salient teeth so that it is very robust to transmit high thrust force. The key of this new machine is the introduction of double stator and the elimination of translator yoke, so that the inductance and the volume of the machine can be reduced. Hence, the proposed machine offers improved power factor and thrust force density. The electromagnetic performances of the proposed machine are analyzed including flux, no-load EMF, thrust force density, and inductance. Based on using the finite element analysis, the characteristics and performances of the proposed machine are assessed.

  12. Force prediction in permanent magnet flat linear motors (abstract)

    Science.gov (United States)

    Eastham, J. F.; Akmese, R.

    1991-11-01

    The advent of neodymium iron boron rare-earth permanent magnet material has afforded the opportunity to construct linear machines of high force to weight ratio. The paper describes the design and construction of an axial flux machine and rotating drum test rig. The machine occupies an arc of 45° on a drum 1.22 m in diameter. The excitation is provided by blocks of NdFeB material which are skewed in order to minimize the force variations due to slotting. The stator carries a three-phase short-chorded double-layer winding of four poles. The machine is supplied by a PWM inverter the fundamental component of which is phase locked to the rotor position so that a ``dc brushless'' drive system is produced. Electromagnetic forces including ripple forces are measured at supply frequencies up to 100 Hz. They are compared with finite-element analysis which calculates the force variation over the time period. The paper then considers some of the causes of ripple torque. In particular, the force production due solely to the permanent magnet excitation is considered. This has two important components each acting along the line of motion of the machine, one is due to slotting and the other is due to the finite length of the primary. In the practical machine the excitation poles are skewed to minimize the slotting force and the effectiveness of this is confirmed by both results from the experiments and the finite-element analysis. The end effect force is shown to have a space period of twice that of the excitation. The amplitude of this force and its period are again confirmed by practical results.

  13. Tunnel-diode resonator and nuclear magnetic resonance studies of low-dimensional magnetic and superconducting systems

    Energy Technology Data Exchange (ETDEWEB)

    Yeninas, Steven Lee [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    This thesis emphasizes two frequency-domain techniques which uniquely employ radio frequency (RF) excitations to investigate the static and dynamic properties of novel magnetic and superconducting materials.

  14. Phase boundary of the hexagonal-prism superconducting network in a magnetic field

    Institute of Scientific and Technical Information of China (English)

    金绍维; 李伟; 易佑民; 甄胜来; 缪胜清

    2002-01-01

    In this paper, we systematically study the phase boundary Tc(H ) of a hexagonal-prism superconducting network inan external magnetic field H of arbitrary magnitude and direction. The result indicates that the phase boundary of thehexagonal-prism superconducting circuit varies more sharply than that of the cubic circuit. The potential applicationsof the hexagonal-prism superconducting circuit are also discussed.

  15. Magnetic trapping of superconducting submicron particles produced by laser ablation in superfluid helium

    Science.gov (United States)

    Takahashi, Yuta; Suzuki, Junpei; Yoneyama, Naoya; Tokawa, Yurina; Suzuki, Nobuaki; Matsushima, Fusakazu; Kumakura, Mitsutaka; Ashida, Masaaki; Moriwaki, Yoshiki

    2017-02-01

    We produced spherical superconducting submicron particles by laser ablation of their base metal tips in superfluid helium, and trapped them using a quadrupole magnetic field owing to the diamagnetism caused by the Meissner effect. We also measured their critical temperatures of superconductivity, by observing the threshold temperatures for the confinement of superconducting submicron particles in the trap.

  16. Superconducting dipole magnet for the CBM experiment at FAIR

    Directory of Open Access Journals (Sweden)

    Kurilkin P.

    2017-01-01

    Full Text Available The scientific goal of the CBM (Compressed Baryonic Matter experiment at FAIR (Darmstadt is to explore the phase diagram of strongly interacting matter at highest baryon densities. The physics program of the CBM experiment is complimentary to the programs to be realized at MPD and BMN facilities at NICA and will start with beam derived by the SIS100 synchrotron. The 5.15 MJ superconducting dipole magnet will be used in the silicon tracking system of the CBM detector. The magnet will provide a magnetic field integral of 1 Tm which is required to obtain a momentum resolution of 1% for the track reconstruction. The results of the development of dipole magnet of the CBM experiment are presented.

  17. The Behavior Of Asymmetric Frontal Couplings With Permanent Magnets In Magnetic Powder And High Temperature Environments

    Directory of Open Access Journals (Sweden)

    Ion DOBROTA

    2002-12-01

    Full Text Available The main purpose of this paper is the comparative analysis of the behavior of frontal couplings with Nd-Fe-B permanent magnets in difficult environments, specific to metallurgy – such as environments with magnetic powders and high temperature – in two constructive variants: symmetric couplings and asymmetric couplings (with divided poles. The results show the superior performance of asymmetric couplings under the given conditions

  18. Economic viability, applications and limits of efficient permanent magnet motors - Summary and update; Wirtschaftlichkeit, Anwendungen und Grenzen von effizienten Permanent-Magnet-Motoren - Zusammenfassung und Update - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Lindegger, M. [Circle Motor AG, Guemligen (Switzerland); Biner, H.-P.; Evequoz, B. [Hochschule Westschweiz, Delemont (Switzerland); Salathe, D. [Hochschule Luzern Technik und Architektur, Horw (Switzerland)

    2009-06-15

    This final report for the Swiss Federal Office of Energy (SFOE), takes a look at the economic viability, applications and limits of efficient permanent magnet motors. Permanent magnet motors are compared with standard IEC asynchronous motors. In a theoretical part of the report, it is discussed how the increasing size of the motor influences efficiency, weight, volume and power. The results of practical tests carried out on six motors are presented. Three standard motors with varying efficiency were compared with three permanent-magnet motors for the power range around 3 kW. Market-oriented considerations concerning permanent-magnet motors are discussed. Operational criteria for the choice of the type of motor to be used are also examined.

  19. Computing the External Magnetic Scalar Potential due to an Unbalanced Six-Pole Permanent Magnet Motor

    Energy Technology Data Exchange (ETDEWEB)

    Selvaggi J, Salon S, Kwon O, Chari MVK

    2007-02-12

    The accurate computation of the external magnetic field from a permanent magnet motor is accomplished by first computing its magnetic scalar potential. In order to find a solution which is valid for any arbitrary point external to the motor, a number of proven methods have been employed. Firstly, A finite element model is developed which helps generate magnetic scalar potential values valid for points close to and outside the motor. Secondly, charge simulation is employed which generates an equivalent magnetic charge matrix. Finally, an equivalent multipole expansion is developed through the application of a toroidal harmonic expansion. This expansion yields the harmonic components of the external magnetic scalar potential which can be used to compute the magnetic field at any point outside the motor.

  20. The helium cryogenic plant for the CMS superconducting magnet

    CERN Document Server

    Perinic, G; Dagut, F; Dauguet, P; Hirel, P

    2002-01-01

    A new helium refrigeration plant with a cooling capacity of 800 W at 4.45 K, 4500 W between 60 K and 80 K, and 4 g/s liquefaction simultaneously has been designed and is presently being constructed by Air Liquide for CERN. The refrigeration plant will provide the cooling power for the cool down and the operation of the CMS (Compact Muon Solenoid) superconducting coil whose cold mass weighs 225 t. The refrigeration plant will at first be installed in a surface building for the tests of the superconducting magnet. On completion of the tests the cold box will be moved to its final underground position next to the CMS experimental cavern. This paper presents the process design, describes the main components and explains their selection. (4 refs).

  1. Magnetic design of a 14 mm period prototype superconducting undulator

    Science.gov (United States)

    Gehlot, Mona; Mishra, G.; Trillaud, Frederic; Sharma, Geetanjali

    2017-02-01

    In this paper we report the design of a 14 mm period prototype superconducting undulator that is under fabrication at Insertion Device Development Laboratory (IDDL) at Devi Ahilya Vishwavidyalaya, Indore, India. The field computations are made in RADIA and results are presented in an analytical form for computation of the on axis field and the field on the surface of the coil. On the basis of the findings, a best fit is presented for the model to calculate the field dependence on the gap and the current density. The fit is compared with Moser-Rossmanith formula proposed earlier to predict the magnetic flux density of a superconducting undulator. The field mapping is used to calculate the field integrals and its dependence on gap and current densities as well.

  2. Design and Maxwell 3D simulation of small permanent magnetic actuator

    Institute of Scientific and Technical Information of China (English)

    Zhang Guangcai; Xu Yajie; Chang Yan; Chen Qiaoyan; Yang Xiaodong

    2014-01-01

    According to the magnetic circuit design theory and performance requirements of magnetic field, an H-type permanent magnetic actuator that generates uniform magnetic field larger than 0.4 T in the interested re- gion has been designed in this paper. The static magnetic field simulation analysis was done by Ansoft' s Max- well three-dimensional (3D) software. The simulation results showed that the magnetic field of this system can meet the requirements, and this permanent magnetic actuator designed in this paper can be used in small nuclear magnetic resonance (NMR) svstem.

  3. Pareto optimal design of sectored toroidal superconducting magnet for SMES

    Science.gov (United States)

    Bhunia, Uttam; Saha, Subimal; Chakrabarti, Alok

    2014-10-01

    A novel multi-objective optimization design approach for sectored toroidal superconducting magnetic energy storage coil has been developed considering the practical engineering constraints. The objectives include the minimization of necessary superconductor length and torus overall size or volume, which determines a significant part of cost towards realization of SMES. The best trade-off between the necessary conductor length for winding and magnet overall size is achieved in the Pareto-optimal solutions, the compact magnet size leads to increase in required superconducting cable length or vice versa The final choice among Pareto optimal configurations can be done in relation to other issues such as AC loss during transient operation, stray magnetic field at outside the coil assembly, and available discharge period, which is not considered in the optimization process. The proposed design approach is adapted for a 4.5 MJ/1 MW SMES system using low temperature niobium-titanium based Rutherford type cable. Furthermore, the validity of the representative Pareto solutions is confirmed by finite-element analysis (FEA) with a reasonably acceptable accuracy.

  4. Fundamental study of cesium decontamination from soil by superconducting magnet

    Energy Technology Data Exchange (ETDEWEB)

    Igarashi, Susumu, E-mail: igarashi@qb.see.eng.osaka-u.ac.jp; Mishima, Fumihito; Akiyama, Yoko, E-mail: yoko-ak@see.eng.osaka-u.ac.jp; Nishijima, Shigehiro

    2013-11-15

    Highlights: •The method for the soil decontamination by the superconducting magnet is proposed. •Cesium ion can be absorbed by Prussian blue in potassium iodide wash fluid. •It is possible to recover Cs{sup +} ion-adsorbing Prussian blue with a high rate by HGMS. •It is expected that HGMS can be applied to the actual soil decontamination. -- Abstract: The radioactive substances have been spread out all over the surrounding area of Fukushima Daiichi Nuclear Power Plant caused by the accident in March 2011. Decontamination and volume reduction of radioactive substances, especially cesium ion, are desired issue. This study proposed a decontamination method of the soil by the magnetic separation using superconducting magnet. Cesium ion was adsorbed by Prussian blue in the potassium iodide solution. We succeeded in separating selectively the cesium ion-adsorbed Prussian blue out of the liquid phase by high gradient magnetic separation. High recovery ratio of the Prussian blue was achieved by this method.

  5. Superconductivity

    CERN Document Server

    Poole, Charles P; Farach, Horacio A

    1995-01-01

    Superconductivity covers the nature of the phenomenon of superconductivity. The book discusses the fundamental principles of superconductivity; the essential features of the superconducting state-the phenomena of zero resistance and perfect diamagnetism; and the properties of the various classes of superconductors, including the organics, the buckministerfullerenes, and the precursors to the cuprates. The text also describes superconductivity from the viewpoint of thermodynamics and provides expressions for the free energy; the Ginzburg-Landau and BCS theories; and the structures of the high

  6. New power-conditioning systems for superconducting magnetic energy storage

    Science.gov (United States)

    Han, Byung Moon

    1992-06-01

    This dissertation presents the development of new power-conditioning systems for superconducting magnetic energy storage (SMES), which can regulate fast and independently the active and reactive powers demanded in the ac network. Three new power-conditioning systems were developed through a systematic approach to match the requirements of the superconducting coil and the ac power network. Each of these new systems is composed of ten 100-MW modules connected in parallel to handle the large current through the superconducting coil. The first system, which was published in the IEEE Transactions on Energy Conversion, consists of line-commutated 24-pulse converter, a thyristor-switched tap-changing transformer, and a thyristor-switched capacitor bank. The second system, which was accepted for publication in the IEEE Transactions on Energy Conversion, consists of a 12-pulse GTO (gate turn-off thyristor) converter and a thyristor-switched tap-changing transformer. The third system, which was submitted to the International Journal of Energy System, consists of a dc chopper and a voltage-source PWM (pulse width modulation) converter. The operational concept of each new system is verified through mathematical analyses and computer simulations. The dynamic interaction of each new system with the ac network and the superconducting coil is analyzed using a simulation model with EMTP (electro-magnetic transients program). The analysis results prove that each new system is feasible and realizable. Each system can regulate the active and reactive powers of the utility network rapidly and independently, and each offer a significant reduction of the system rating by reducing the reactive power demand in the converter. Feasible design for each new system was introduced using a modular design approach based on the 1000 MW/5000 MWH plant, incorporating commercially available components and proven technologies.

  7. Topology optimized and 3D printed polymer-bonded permanent magnets for a predefined external field

    Science.gov (United States)

    Huber, C.; Abert, C.; Bruckner, F.; Pfaff, C.; Kriwet, J.; Groenefeld, M.; Teliban, I.; Vogler, C.; Suess, D.

    2017-08-01

    Topology optimization offers great opportunities to design permanent magnetic systems that have specific external field characteristics. Additive manufacturing of polymer-bonded magnets with an end-user 3D printer can be used to manufacture permanent magnets with structures that had been difficult or impossible to manufacture previously. This work combines these two powerful methods to design and manufacture permanent magnetic systems with specific properties. The topology optimization framework is simple, fast, and accurate. It can also be used for the reverse engineering of permanent magnets in order to find the topology from field measurements. Furthermore, a magnetic system that generates a linear external field above the magnet is presented. With a volume constraint, the amount of magnetic material can be minimized without losing performance. Simulations and measurements of the printed systems show very good agreement.

  8. Demonstrating superconductivity at liquid nitrogen temperatures

    Science.gov (United States)

    Early, E. A.; Seaman, C. L.; Yang, K. N.; Maple, M. B.

    1988-07-01

    This article describes two demonstrations of superconductivity at the boiling temperature of liquid nitrogen (77 K) using the 90 K superconductor YBa2Cu3O7-δ(δ≊0.2). Both demonstrations involve the repulsion of a permanent magnet by a superconductor due to the expulsion of the magnetic field from the interior of the latter. In the first demonstration, the repulsion is manifested in the separation of a permanent magnet and a superconductor that are suspended from separate threads, while in the second it results in the levitation of a permanent magnet above a flat superconducting disk.

  9. A superconducting magnet upgrade of the ATF2 final focus

    CERN Document Server

    Parker, B; Escallier, J; He, P; Jain, P; Marone, A; Wanderer, P; Wu, KC; Hauviller, C; Marin, E; Tomas, R; Zimmermann, F; Bolzon, B; Jeremie, A; Kimura, N; Kubo, K; Kume, T; Kuroda, S; Okugi, T; Tauchi, T; Terunuma, N; Tomaru, T; Tsuchiya, K; Urakawa, J; Yamamoto, A; Bambade, P; Coe, P; Urner, D; Seryi, A; Spencer, C; White, G

    2010-01-01

    The ATF2 facility at KEK is a proving ground for linear collider technology with a well instrumented extracted beam line and Final Focus (FF). The primary ATF2 goal is to demonstrate the extreme beam demagnification and spot stability needed for a linear collider FF [1]. But the ATF2 FF uses water cooled magnets and the ILC baseline has a superconducting (SC) FF [2]. We plan to upgrade ATF2 and replace some of the warm FF magnets with SC FF magnets. The ATF2 SC magnets, like the ILC FF, will made via direct wind construction [3]. ATF2 coil winding is in progress at BNL and warm magnetic measurements indicate we have achieved good field quality. Studies indicate that having ATF2 FF magnets with larger aperture and better field quality should allow reducing the ATF2 FF beta function for study of focusing regimes relevant to CLIC [4]. The ATF2 magnet cryostat will have laser view ports for directly monitoring cold mass movement. We plan to make stability measurements at BNL and KEK to relate ATF2 FF magnet perfo...

  10. A Superconducting Magnet Upgrade of the ATF2 Final Focus

    Energy Technology Data Exchange (ETDEWEB)

    Parker B.; Anerella M.; Escallier J.; He P.; Jain A.; Marone A.; Wanderer P.; Wu K.C.; Hauviller C.; Marin E.; Tomas R.; Zimmermann F.; Bolzon B.; Jeremie A.; Kimura N.; Kubo K.; Kume T.; Kuroda S.; Okugi T.; Tauchi T.; Terunuma N.; Tomaru T.; Tsuchiya K.; Urakawa J.; Yamamoto A.; Bambabe P.; Coe P.; Urner D.; Seryi A.; Spencer C.; White G.

    2010-05-23

    The ATF2 facility at KEK is a proving ground for linear collider technology with a well instrumented extracted beam line and Final Focus (FF). The primary ATF2 goal is to demonstrate the extreme beam demagnification and spot stability needed for a linear collider FF. But the ATF2 FF uses water cooled magnets and the ILC baseline has a superconducting (SC) FF. We plan to upgrade ATF2 and replace some of the warm FF magnets with SC FF magnets. The ATF2 SC magnets, like the ILC FF, will made via direct wind construction. ATF2 coil winding is in progress at BNL and warm magnetic measurements indicate we have achieved good field quality. Studies indicate that having ATF2 FF magnets with larger aperture and better field quality should allow reducing the ATF2 FF beta function for study of focusing regimes relevant to CLIC. The ATF2 magnet cryostat will have laser view ports for directly monitoring cold mass movement. We plan to make stability measurements at BNL and KEK to relate ATF2 FF magnet performance to that of a full length ILC QD0 R and D FF prototype under construction at BNL.

  11. A Superconducting Magnet Upgrade of the ATF2 Final Focus

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Brett; /Brookhaven; Anerella, Michael; /Brookhaven; Escallier, John; /Brookhaven; He, Ping; /Brookhaven; Jain, Animesh; /Brookhaven; Marone, Andrew; /Brookhaven; Wanderer, Peter; /Brookhaven; Wu, Kuo-Chen; /Brookhaven; Bambade, Philip; /Orsay, LAL; Bolzon, Benoit; /Annecy, LAPP; Jeremie, Andrea; /Annecy, LAPP; Coe, Paul; /Oxford U.; Urner, David /Oxford U.; Hauviller, Claude; /CERN; Marin, Eduardo; /CERN; Tomas, Rogelio; /CERN; Zimmermann, Frank; /CERN; Kimura, Nobuhiro; /KEK, Tsukuba; Kubo, Kiyoshi; /KEK, Tsukuba; Kume, Tatsuya /KEK, Tsukuba; Kuroda, Shigeru; /KEK, Tsukuba /KEK, Tsukuba /KEK, Tsukuba /KEK, Tsukuba /KEK, Tsukuba /KEK, Tsukuba /KEK, Tsukuba /KEK, Tsukuba /SLAC /SLAC /SLAC

    2012-07-05

    The ATF2 facility at KEK is a proving ground for linear collider technology with a well instrumented extracted beam line and Final Focus (FF). The primary ATF2 goal is to demonstrate the extreme beam demagnification and spot stability needed for a linear collider FF. But the ATF2 FF uses water cooled magnets and the ILC baseline has a superconducting (SC) FF. We plan to upgrade ATF2 and replace some of the warm FF magnets with SC FF magnets. The ATF2 SC magnets, like the ILC FF, will made via direct wind construction. ATF2 coil winding is in progress at BNL and warm magnetic measurements indicate we have achieved good field quality. Studies indicate that having ATF2 FF magnets with larger aperture and better field quality should allow reducing the ATF2 FF beta function for study of focusing regimes relevant to CLIC. The ATF2 magnet cryostat will have laser view ports for directly monitoring cold mass movement. We plan to make stability measurements at BNL and KEK to relate ATF2 FF magnet performance to that of a full length ILC QD0 R&D FF prototype under construction at BNL.

  12. The study, design and testing of a linear oscillating generator with moving permanent magnets

    Directory of Open Access Journals (Sweden)

    Teodora Susana Oros (Pop

    2015-12-01

    Full Text Available This paper presents a study, design and testing of a Linear Oscillating Generator. There are presented the main steps of the magnetic and electric calculations for a permanent magnet linear alternator of fixed coil and moving magnets type. Finally it has been shown the comparative analysis between the linear oscillating generator with moving permanent magnets in no load operation and load operation.

  13. Analysis of a Permanent-Magnet Brushless DC Motor with Fixed Dimensions

    Science.gov (United States)

    Brakanskis, Uldis; Dirba, Janis; Kukjane, Ludmila; Drava, Viesturs

    2010-01-01

    The purpose of this paper is to describe the analysis of a permanent-magnet brushless DC motor with fixed outer diameter and active zone length. The influence of air gap, material of permanent magnets and their size on the magnetic flux density of the machine and magnetic flux is analyzed. The work presents the calculations of two programs, the comparison of the results and the most suitable combination of factors that has been found.

  14. Analytical Calculation of the Magnetic Field distribution in a Flux-Modulated Permanent-Magnet Brushless Motor

    DEFF Research Database (Denmark)

    Zhang, Xiaoxu; Liu, Xiao; Chen, Zhe

    2015-01-01

    This paper presents a rapid approach to compute the magnetic field distribution in a flux-modulated permanent-magnet brushless motor. Partial differential equations are used to describe the magnet field behavior in terms of magnetic vector potentials. The whole computational domain is divided int...... magnetic field with those calculated by finite element method....

  15. Assessment of Alphamagnetic Spectrometer (AMS) Upper Experiment Structural Configuration Shielding Effectiveness Associated with Change from Cryo-Cooled Magnet to Permanent Magnet

    Science.gov (United States)

    Scully, Robert

    2012-01-01

    In the spring of 2010, the Alpha Magnetic Spectrometer 2 (AMS-02) underwent a series of system level electromagnetic interference control measurements, followed by thermal vacuum testing. Shortly after completion of the thermal vacuum testing, the project decided to remove the cryogenically cooled superconducting magnet, and replace it with the original permanent magnet design employed in the earlier AMS- 01 assembly. Doing so necessitated several structural changes, as well as removal or modification of numerous electronic and thermal control devices and systems. At this stage, the project was rapidly approaching key milestone dates for hardware completion and delivery for launch, and had little time for additional testing or assessment of any impact to the electromagnetic signature of the AMS-02. Therefore, an analytical assessment of the radiated emissions behavioural changes associated with the system changes was requested.

  16. Levitation and Guidance Characteristics of the Permanent magnet-HTSC Hybrid Magnetic Conveyance System

    Science.gov (United States)

    Ohashi, Shunsuke; Dodo, Daiki

    Hybrid magnetically levitated transportation system has been developed. The magnetic rail is set on the ground, and the carrier with permanent magnets and high-Tc superconductors (HTSC) levitates on the rail. In this system, pinning force of HTSC and repulsive force of permanent magnet is combined. Repulsive force of permanent magnet is introduced to support weight. Pinning force is used to support weight of the frame of the carrier and to achieve lateral stability of the carrier. To decrease influence of weight on the levitation gap of the carrier, the weight stage is fixed to the carrier frame by linear sliders, and moves freely for vertical direction. As a result, there is little influence on levitation gap of the carrier. Basic levitation and guidance characteristics of the system are shown. Repulsive force generates very large levitation force. It also generates unstable lateral force. Weight added to the carrier has some influence on lateral stability. Although lateral position recovery force by pinning effect decreases at a heavier weight, the carrier shows enough force to keep lateral stability.

  17. Torque Analysis With Saturation Effects for Non-Salient Single-Phase Permanent-Magnet Machines

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Ritchie, Ewen

    2011-01-01

    The effects of saturation on torque production for non-salient, single-phase, permanent-magnet machines are studied in this paper. An analytical torque equation is proposed to predict the instantaneous torque with saturation effects. Compared to the existing methods, it is computationally faster......-element results, and experimental results obtained on a prototype single-phase permanent-magnet machine....

  18. Influence of End-Effects on Static Torque Performance of Misaligned Cylindrical Permanent Magnet Couplings

    DEFF Research Database (Denmark)

    Högberg, Stig; Hansen, Hilary; Jensen, Bogi Bech;

    2014-01-01

    Permanent magnet couplings are widely used in applications requiring torque to be transmitted through an air- gap. The aim of this study is to observe and explain the effect of radial and axial misalignment in a 12-pole, cylindrical permanent magnet coupling. Pull-out torque was measured for two...

  19. Improved cost of energy comparison of permanent magnet generators for large offshore wind turbines

    NARCIS (Netherlands)

    Hart, K.; McDonald, A.; Polinder, H.; Corr, E.; Carroll, J.

    2014-01-01

    This paper investigates geared and direct-drive permanent magnet generators for a typical offshore wind turbine, providing a detailed comparison of various wind turbine drivetrain configurations in order to minimise the Cost of Energy. The permanent magnet generator topologies considered include a d

  20. Improved cost of energy comparison of permanent magnet generators for large offshore wind turbines

    NARCIS (Netherlands)

    Hart, K.; McDonald, A.; Polinder, H.; Corr, E.; Carroll, J.

    2014-01-01

    This paper investigates geared and direct-drive permanent magnet generators for a typical offshore wind turbine, providing a detailed comparison of various wind turbine drivetrain configurations in order to minimise the Cost of Energy. The permanent magnet generator topologies considered include a

  1. Optimal Design of Stator Interior Permanent Magnet Machine with Minimized Cogging Torque for Wind Power Application

    DEFF Research Database (Denmark)

    Chen, Zhe; Zhang, Jianzhong; Cheng, Ming

    2008-01-01

    This paper proposes a new approach to minimize the cogging torque of a stator interior permanent magnet (SIPM) machine. The optimization of stator slot gap and permanent magnet is carried out and the cogging torque ripple is analyzed by using finite element analysis. Experiments on a prototype...

  2. Magnetic force microscope study on anisotropic NdFeB permanent magnets

    Institute of Scientific and Technical Information of China (English)

    刘薇; 蒋建华; 吴建生; 李刚

    2003-01-01

    NdFeB permanent magnets prepared by powder metallurgy were investigated using magnetic force microscopy(MFM).The excellent MFM images of sample along the surfaces parallel and perpendicular to the alignment axis were collected respectively.The results show the necessity of annealing procedure in the preparation of the samples to remove the polishing surface stress and to illustrate the real magnetic domain structure,so that the much information about both the magnetic structure and the topographic microstructure is obtained.The hard MFM tip is verified to be effective for this material especially for the sample with the examined surface parallel to alignment axis.By analyzing these well-captured magnetic force images,magnetic domains and alignment degree as well as thetopographic information such as grain size and the nonmagnetic phases at the grain boundaries were demonstrated.

  3. Effect of axial magnetic field on a 2.45 GHz permanent magnet ECR ion source

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, T., E-mail: tsubasa@oshima-k.ac.jp; Wada, H.; Furuse, M. [National Institute of Technology, Oshima College, 1091-1 Komatsu, Suouoshima, Oshima, Yamaguchi 742-2193 (Japan); Asaji, T. [National Institute of Technology, Toyama College, 13 Hongo, Toyama 939-8630 (Japan)

    2016-02-15

    Herein, we conduct a fundamental study to improve the generation efficiency of a multi-charged ion source using argon. A magnetic field of our electron cyclotron resonance ion source is composed of a permanent magnet and a solenoid coil. Thereby, the axial magnetic field in the chamber can be tuned. Using the solenoid coil, we varied the magnetic field strength in the plasma chamber and measured the ion beam current extracted at the electrode. We observed an approximately three times increase in the Ar{sup 4+} ion beam current when the magnetic field on the extractor-electrode side of the chamber was weakened. From our results, we can confirm that the multi-charged ion beam current changes depending on magnetic field intensity in the plasma chamber.

  4. Magnetized sheath near positively biased wall between two permanent magnetic plates

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yan; Wei, Zi-an; Ma, J. X., E-mail: jxma@ustc.edu.cn; Jiang, Zheng-qi; Wu, Fei [Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); CAS Key Laboratory of Geospace Environment, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2015-06-15

    The characteristics of magnetized electron sheath near a positively biased conducting wall parallel to magnetic field formed between two permanent magnetic plates were experimentally investigated in a double plasma device. The magnetic field strength between the magnetic plates is about 1200 G which is sufficient to magnetize the plasma such that the ion gyroradius is comparable to the electron Debye length. A virtual cathode (or potential dip) structure was found between the electron-rich sheath and bulk plasma. For a given neutral gas pressure, the potential minimum (dip position) remains almost the same for different positive biases on the wall. For a given bias on the wall, however, the electron sheath thickness and the potential drop from the bulk plasma to the dip decrease with the increase of the neutral gas pressure. In addition, the electron sheath and potential dip appear to be wider and deeper in the downstream side of the wall.

  5. Local magnetization fluctuations in superconducting glasses resolved by Hall sensors

    Science.gov (United States)

    Lefebvre, J.; Hilke, M.; Altounian, Z.; West, K. W.; Pfeiffer, L. N.

    2009-05-01

    We report on magnetization measurements performed on a series of FexNi1-xZr2 superconducting metallic glasses with 0≤x≤0.5 using the Hall effect of a nearby two-dimensional electron gas (2DEG) in a GaAs/Al0.33Ga0.67As heterostructure as a local probe. The great sensitivity of the Hall effect of the 2DEG in such heterostructure is exploited to determine the magnetization of the superconductor due to the Meissner effect and flux trapping. The data are used to determine the lower critical-field Bc1 of the superconductors as a function of temperature. Surprisingly large fluctuations in the magnetization are also observed and attributed to the presence of large flux clusters in the superconductor.

  6. A Scaling Law for the Snapback in Superconducting Accelerator Magnets

    CERN Document Server

    Bottura, L; Bauer, P; Haverkamp, M; Pieloni, T; Sanfilippo, S; Velev, G

    2005-01-01

    The decay of the sextupole component in the bending dipoles during injection and the subsequent snapback at the start of beam acceleration are issues of common concern for all superconducting colliders built or in construction. Recent studies performed on LHC and Tevatron dipole magnets revealed many similarities in the snapback characteristics. Some are expected, e.g. the effect of operational history. One particular similarity, however, is striking and is the subject of this paper. It appears that there is a simple linear relation between the amount of sextupole drift during the decay and the magnet current (or field) change during the ramp required to resolve the snapback. It is surprising that the linear correlation between snapback amplitude and snapback field holds very well for all magnets of the same family (e.g. Tevatron or LHC dipoles). In this paper we present the data collected to date and discuss a simple theory that explains the scaling found.

  7. The superconducting magnet system for the Wendelstein7-X stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Sapper, J. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Teilinstitut Greifswald, D-17489 Greifswald (Germany)

    2000-05-01

    The superconducting magnet system for the new stellarator Wendelstein7-X, to be located at Greifswald, Germany, consists of 50 non-planar and 20 planar large magnet coils. The conductor used is a cable-in-conduit type, composed of copper stabilized NbTi strands and enveloped by an aluminium alloy jacket (CICC). The individual winding packs are built up from six (three) double layers, glass insulated and resin impregnated. A cast steel casing encapsulates each winding pack to achieve sufficient mechanical stiffness. The toroidal set-up of the coil system weighs 400 tons and has a diameter of 11 metres. Operation will be at 6 T and a coil current of 1.75 MA. Cooling is provided by supercritical helium. A fast de-energizing system protects the magnet from overheating in the case of a quench. (author)

  8. A novel rotating experimental platform in a superconducting magnet

    Science.gov (United States)

    Chen, Da; Cao, Hui-Ling; Ye, Ya-Jing; Dong, Chen; Liu, Yong-Ming; Shang, Peng; Yin, Da-Chuan

    2016-08-01

    This paper introduces a novel platform designed to be used in a strong static magnetic field (in a superconducting magnet). The platform is a sample holder that rotates in the strong magnetic field. Any samples placed in the platform will rotate due to the rotation of the sample holder. With this platform, a number of experiments such as material processing, culture of biological systems, chemical reactions, or other processes can be carried out. In this report, we present some preliminary experiments (protein crystallization, cell culture, and seed germination) conducted using this platform. The experimental results showed that the platform can affect the processes, indicating that it provides a novel environment that has not been investigated before and that the effects of such an environment on many different physical, chemical, or biological processes can be potentially useful for applications in many fields.

  9. First Ever Storage of Ultracold Neutrons in a Magnetic Trap Made of Permanent Magnets.

    Science.gov (United States)

    Ezhov, V F; Andreev, A Z; Glushkov, A A; Glushkov, A G; Groshev, M N; Knyazkov, V A; Krygin, G B; Ryabov, V L; Serebrov, A P; Bazarov, B A; Geltenbort, P; Hartman, F J; Paul, S; Picker, R; Zimmer, O; Kovrizhnykh, N A

    2005-01-01

    Further improvement in the accuracy of any neutron lifetime experiment by means of ultracold neutrons (UCN) in material bottles is limited due to unavoidable systematic effects when the UCN are reflected from the walls. However, such effects can be excluded in principle if magnetic trapping of UCN is used. The storage of UCN in a small magnetic trap made of permanent magnets was demonstrated for the first time ever. The measured storage time in this feasibility study was (882 ± 16) s. At this level of accuracy no depolarization was observed.

  10. Induction heating of rotating nonmagnetic billet in magnetic field produced by high-parameter permanent magnets

    Directory of Open Access Journals (Sweden)

    Ivo Doležel

    2014-04-01

    Full Text Available An advanced way of induction heating of nonmagnetic billets is discussed and modeled. The billet rotates in a stationary magnetic field produced by unmoving high-parameter permanent magnets fixed on magnetic circuit of an appropriate shape. The mathematical model of the problem consisting of two coupled partial differential equations is solved numerically, in the monolithic formulation. Computations are carried out using our own code Agros2D based on a fully adaptive higher-order finite element method. The most important results are verified experimentally on our own laboratory device.

  11. Large-Area Permanent-Magnet ECR Plasma Source

    Science.gov (United States)

    Foster, John E.

    2007-01-01

    A 40-cm-diameter plasma device has been developed as a source of ions for material-processing and ion-thruster applications. Like the device described in the immediately preceding article, this device utilizes electron cyclotron resonance (ECR) excited by microwave power in a magnetic field to generate a plasma in an electrodeless (noncontact) manner and without need for an electrically insulating, microwave-transmissive window at the source. Hence, this device offers the same advantages of electrodeless, windowless design - low contamination and long operational life. The device generates a uniform, high-density plasma capable of sustaining uniform ion-current densities at its exit plane while operating at low pressure [magnetic field in this device is generated by a permanent-magnet circuit that is optimized to generate resonance surfaces. The microwave power is injected on the centerline of the device. The resulting discharge plasma jumps into a "high mode" when the input power rises above 150 W. This mode is associated with elevated plasma density and high uniformity. The large area and uniformity of the plasma and the low operating pressure are well suited for such material-processing applications as etching and deposition on large silicon wafers. The high exit-plane ion-current density makes it possible to attain a high rate of etching or deposition. The plasma potential is <3 V low enough that there is little likelihood of sputtering, which, in plasma processing, is undesired because it is associated with erosion and contamination. The electron temperature is low and does not vary appreciably with power.

  12. High-gradient permanent magnet apparatus and its use in particle collection

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Mengdawn; Ludtka, Gerard Michael; Avens, Larry R.

    2016-07-12

    A high-gradient permanent magnet apparatus for capturing paramagnetic particles, the apparatus comprising: (i) at least two permanent magnets positioned with like poles facing each other; (ii) a ferromagnetic spacer separating the like poles; and (iii) a magnetizable porous filling material in close proximity to the at least two permanent magnets. Also described is a method for capturing paramagnetic particles in which a gas or liquid sample containing the paramagnetic particles is contacted with the high-gradient permanent magnet apparatus described above; wherein, during the contacting step, the gas or liquid sample contacts the magnetizable porous filling material of the high-gradient permanent magnet apparatus, and at least a portion of the paramagnetic particles in the gas or liquid sample is captured on the magnetizable porous filling material.

  13. Passive control of Permanent Magnet Synchronous Motor chaotic system based on state observer

    Institute of Scientific and Technical Information of China (English)

    QI Dong-lian; WANG Qiao

    2006-01-01

    Passive system theory was applied to propose a new passive control method with nonlinear observer of the Permanent Magnet Synchronous Motor chaotic system. Through constructing a Lyapunov function, the subsystem of the Permanent Magnet Synchronous Motor chaotic system could be proved to be globally stable at the equilibrium point. Then a controller with smooth state feedback is designed so that the Permanent Magnet Synchronous Motor chaotic system can be equivalent to a passive system.To get the state variables of the controller, the nonlinear observer is also studied. It is found that the outputs of the nonlinear observer can approximate the state variables of the Permanent Magnet Synchronous Motor chaotic system if the system's nonlinear function is a globally Lipschitz function. Simulation results showed that the equivalent passive system of Permanent Magnet Synchronous Motor chaotic system could be globally asymptotically stabilized by smooth state feedback in the observed parameter convergence condition area.

  14. Processing of alnico permanent magnets by advanced directional solidification methods

    Science.gov (United States)

    Zou, Min; Johnson, Francis; Zhang, Wanming; Zhao, Qi; Rutkowski, Stephen F.; Zhou, Lin; Kramer, Matthew J.

    2016-12-01

    Advanced directional solidification methods have been used to produce large (>15 cm length) castings of Alnico permanent magnets with highly oriented columnar microstructures. In combination with subsequent thermomagnetic and draw thermal treatment, this method was used to enable the high coercivity, high-Titanium Alnico composition of 39% Co, 29.5% Fe, 14% Ni, 7.5% Ti, 7% Al, 3% Cu (wt%) to have an intrinsic coercivity (Hci) of 2.0 kOe, a remanence (Br) of 10.2 kG, and an energy product (BH)max of 10.9 MGOe. These properties compare favorably to typical properties for the commercial Alnico 9. Directional solidification of higher Ti compositions yielded anisotropic columnar grained microstructures if high heat extraction rates through the mold surface of at least 200 kW/m2 were attained. This was achieved through the use of a thin walled (5 mm thick) high thermal conductivity SiC shell mold extracted from a molten Sn bath at a withdrawal rate of at least 200 mm/h. However, higher Ti compositions did not result in further increases in magnet performance. Images of the microstructures collected by scanning electron microscopy (SEM) reveal a majority α phase with inclusions of secondary αγ phase. Transmission electron microscopy (TEM) reveals that the α phase has a spinodally decomposed microstructure of FeCo-rich needles in a NiAl-rich matrix. In the 7.5% Ti composition the diameter distribution of the FeCo needles was bimodal with the majority having diameters of approximately 50 nm with a small fraction having diameters of approximately 10 nm. The needles formed a mosaic pattern and were elongated along one crystal direction (parallel to the field used during magnetic annealing). Cu precipitates were observed between the needles. Regions of abnormal spinodal morphology appeared to correlate with secondary phase precipitates. The presence of these abnormalities did not prevent the material from displaying superior magnetic properties in the 7.5% Ti composition

  15. Testing beam-induced quench levels of LHC superconducting magnets

    Science.gov (United States)

    Auchmann, B.; Baer, T.; Bednarek, M.; Bellodi, G.; Bracco, C.; Bruce, R.; Cerutti, F.; Chetvertkova, V.; Dehning, B.; Granieri, P. P.; Hofle, W.; Holzer, E. B.; Lechner, A.; Nebot Del Busto, E.; Priebe, A.; Redaelli, S.; Salvachua, B.; Sapinski, M.; Schmidt, R.; Shetty, N.; Skordis, E.; Solfaroli, M.; Steckert, J.; Valuch, D.; Verweij, A.; Wenninger, J.; Wollmann, D.; Zerlauth, M.

    2015-06-01

    In the years 2009-2013 the Large Hadron Collider (LHC) has been operated with the top beam energies of 3.5 and 4 TeV per proton (from 2012) instead of the nominal 7 TeV. The currents in the superconducting magnets were reduced accordingly. To date only seventeen beam-induced quenches have occurred; eight of them during specially designed quench tests, the others during injection. There has not been a single beam-induced quench during normal collider operation with stored beam. The conditions, however, are expected to become much more challenging after the long LHC shutdown. The magnets will be operating at near nominal currents, and in the presence of high energy and high intensity beams with a stored energy of up to 362 MJ per beam. In this paper we summarize our efforts to understand the quench levels of LHC superconducting magnets. We describe beam-loss events and dedicated experiments with beam, as well as the simulation methods used to reproduce the observable signals. The simulated energy deposition in the coils is compared to the quench levels predicted by electrothermal models, thus allowing one to validate and improve the models which are used to set beam-dump thresholds on beam-loss monitors for run 2.

  16. Testing beam-induced quench levels of LHC superconducting magnets

    CERN Document Server

    Auchmann, B; Bednarek, M; Bellodi, G; Bracco, C; Bruce, R; Cerutti, F; Chetvertkova, V; Dehning, B; Granieri, P P; Hofle, W; Holzer, E B; Lechner, A; Del Busto, E Nebot; Priebe, A; Redaelli, S; Salvachua, B; Sapinski, M; Schmidt, R; Shetty, N; Skordis, E; Solfaroli, M; Steckert, J; Valuch, D; Verweij, A; Wenninger, J; Wollmann, D; Zerlauth, M

    2015-01-01

    In the years 2009-2013 the Large Hadron Collider (LHC) has been operated with the top beam energies of 3.5 TeV and 4 TeV per proton (from 2012) instead of the nominal 7 TeV. The currents in the superconducting magnets were reduced accordingly. To date only seventeen beam-induced quenches have occurred; eight of them during specially designed quench tests, the others during injection. There has not been a single beam- induced quench during normal collider operation with stored beam. The conditions, however, are expected to become much more challenging after the long LHC shutdown. The magnets will be operating at near nominal currents, and in the presence of high energy and high intensity beams with a stored energy of up to 362 MJ per beam. In this paper we summarize our efforts to understand the quench levels of LHC superconducting magnets. We describe beam-loss events and dedicated experiments with beam, as well as the simulation methods used to reproduce the observable signals. The simulated energy depositio...

  17. Cryogenic Characteristics of the ATLAS Barrel Toroid Superconducting Magnet

    CERN Document Server

    Pengo, R; Delruelle, N; Pezzetti, M; Pirotte, O; Passardi, Giorgio; Dudarev, A; ten Kate, H

    2008-01-01

    ATLAS, one of the experiments of the LHC accelerator under commissioning at CERN, is equipped with a large superconducting magnet the Barrel Toroid (BT) that has been tested at nominal current (20500 A). The BT is composed of eight race-track superconducting coils (each one weights about 45 tons) forming the biggest air core toroidal magnet ever built. By means of a large throughput centrifugal pump, a forced flow (about 10 liter/second at 4.5 K) provides the indirect cooling of the coils in parallel. The paper describes the results of the measurements carried out on the complete cryogenic system assembled in the ATLAS cavern situated 100 m below the ground level. The measurements include, among other ones, the static heat loads, i.e., with no or constant current in the magnet, and the dynamic ones, since additional heat losses are produced, during the current ramp-up or slow dump, by eddy currents induced on the coil casing.

  18. A novel HTS SMES application in combination with a permanent magnet synchronous generator type wind power generation system

    Science.gov (United States)

    Kim, G. H.; Kim, A. R.; Kim, S.; Park, M.; Yu, I. K.; Seong, K. C.; Won, Y. J.

    2011-11-01

    Superconducting magnetic energy storage (SMES) system is a DC current driven device and can be utilized to improve power quality particularly in connection with renewable energy sources due to higher efficiency and faster response than other devices. This paper suggests a novel connection topology of SMES which can smoothen the output power flow of the wind power generation system (WPGS). The structure of the proposed system is cost-effective because it reduces a power converter in comparison with a conventional application of SMES. One more advantage of SMES in the proposed system is to improve the capability of low voltage ride through (LVRT) for the permanent magnet synchronous generator (PMSG) type WPGS. The proposed system including a SMES has been modeled and analyzed by a PSCAD/EMTDC. The simulation results show the effectiveness of the novel SMES application strategy to not only mitigate the output power of the PMSG but also improve the capability of LVRT for PMSG type WPGS.

  19. Analysis and Design Optimization of a Coaxial Surface-Mounted Permanent-Magnet Magnetic Gear

    Directory of Open Access Journals (Sweden)

    Xiaoxu Zhang

    2014-12-01

    Full Text Available This paper presents the analysis and design optimization of a coaxial surface-mounted permanent-magnet magnetic gear. The magnetic field distribution in the coaxial magnetic gear is calculated analytically in the polar coordinate system and then validated by the finite element method (FEM. The analytical field solution allows the prediction of the magnetic torque, which is formulated as a function of design parameters. The impacts of key design parameters on the torque capability are then studied and some significant observations are summarized. Furthermore, the particle swarm optimization (PSO algorithm is employed to optimize the studied magnetic gear. Given that the torque capability and material cost conflict with each other, both of them are set as the optimization objectives in this paper. Different weight factors may be chosen for the two objectives so that more attention can be placed on one or another. The results shows that the highest torque density of 157 kNm/m3 is achieved with the consideration focusing on the torque capability only, then the highest torque per permanent magnet (PM consumption could be improved to 145 Nm/kg by taking the material cost into account. By synthesizing the torque capability and material cost, a 124 kNm/m3 of torque density and a 128 Nm/kg of torque per PM consumption could be achieved simultaneously by the optimal design.

  20. Magnetic Field Analysis of Interior Composite-Rotor Controllable-Flux Permanent Magnet Synchronous Machine

    Institute of Scientific and Technical Information of China (English)

    CHEN Yiguang; PAN Wei; SHEN Yonghuan; TANG Renyuan

    2006-01-01

    Conventional permanent magnet synchronous machine(PMSM)has the problem of large stator copper loss and narrow speed range. To solve this problem, an interior composite-rotor controllable-flux PMSM adaptive to multi-polar is proposed. This machine has the characteristics of low stator copper loss and wide-speed operation. The half-radial-set and half-tangential-set permanent magnets(PMs)are NdFeB that has high remanent flux density and high coercive force. The tangential-set PMs are AlNiCo that has high remanent flux density and low coercive force. By applying the pulse of d-axis stator current id, the magnetized intensity and direction of AlNiCo can be controlled. The flux created by NdFeB is repelled to stator and air-gap PM-flux is intensified, or is partially bypassed by AlNiCo in the rotor, so the air-gap PM-flux is weakened. The internal magnetic field distribution in two ultra magnetized situations is analyzed by finite element method. The dimension of PMs and magnetic structure are demonstrated. Especially when the q-axis magnetic resistance is larger and the q-axis inductance is smaller, the result of flux-weakening is better and the influence of armature reaction on air-gap PM-flux is weakened.