WorldWideScience

Sample records for superconducting oxide composite

  1. High-temperature processing of oxide superconductors and superconducting oxide-silver oxide composite

    Science.gov (United States)

    Wu, M. K.; Loo, B. H.; Peters, P. N.; Huang, C. Y.

    1988-01-01

    High temperature processing was found to partially convert the green 211 phase oxide to 123 phase. High Tc superconductivity was observed in Bi-Sr-Cu-O and Y-Sr-Cu-O systems prepared using the same heat treatment process. High temperature processing presents an alternative synthetic route in the search for new high Tc superconductors. An unusual magnetic suspension with enhancement in critical current density was observed in the 123 and AgO composite.

  2. Fabrication and superconductivity of BPSCCO-2223 oxide bulk by a new design composite

    Energy Technology Data Exchange (ETDEWEB)

    Hishinuma, Yoshimitsu [National Institute for Fusion Science, 322-6, Oroshi-cho, Toki, Gifu 509-5292 (Japan); Nishimura, Arata [National Institute for Fusion Science, 322-6, Oroshi-cho, Toki, Gifu 509-5292 (Japan); Mito, Toshiyuki [National Institute for Fusion Science, 322-6, Oroshi-cho, Toki, Gifu 509-5292 (Japan); Hirano, Shinji [Advanced Materials R and D Center, Meisei University, 2-1-1, Hodokubo, Hino, Tokyo 191-8506 (Japan); Yoshizawa, Shuji [Advanced Materials R and D Center, Meisei University, 2-1-1, Hodokubo, Hino, Tokyo 191-8506 (Japan); Matsumoto, Akiyoshi [National Institute for Materials Science, 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Kumakura, Hiroaki [National Institute for Materials Science, 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047 (Japan)

    2003-08-01

    We have studied a newly designed BPSCCO-2223 bulk composed of mono-cored BPSCCO-2223/Ag sheath filaments. The composite structure design of the combination of BPSCCO-2223 and mono-cored filaments was newly developed with the aim of protection when bulk material is used as a current feeder for large-scale applications. The composites were made by alternately stacking BPSCCO-2223 oxide-cored Ag sheath filaments and the oxide powder by the powder-in-tube (PIT) method, and then the prepared samples were sintered at 840 deg. C for 50 h. Then, a cold isosatic pressing (CIP) process was applied and they were re-sintered at 840 deg. C for 50 h. As a result, the maximum transport current (I{sub c}) value of the composite bulk, which is composed of 24 mono-cored sheath filaments of 0.4 mm in diameter, was estimated to be about 240 A at 4.2 K and 0 T. This I{sub c} value was about three times higher than that of a conventional bulk, and the value of the PIT filaments composite bulk was also higher than that of the Ag wires composite bulk. This is why good c-axis oriented and densely structured BPSCCO-2223 plate-like grains were formed on both the outer and inner interface between the oxide and Ag in the PIT filaments. Furthermore, we confirmed that transport current was flowed into the PIT filaments composite bulk after forcing a fracture by the bending test. We guessed that the PIT filaments could act as a bypass for the fracture of the bulk. We thought that a new design of the composite bulk in this study was interesting in terms of safety precautions for large-scale applications.

  3. Superconducting interfaces between insulating oxides.

    Science.gov (United States)

    Reyren, N; Thiel, S; Caviglia, A D; Kourkoutis, L Fitting; Hammerl, G; Richter, C; Schneider, C W; Kopp, T; Rüetschi, A-S; Jaccard, D; Gabay, M; Muller, D A; Triscone, J-M; Mannhart, J

    2007-08-31

    At interfaces between complex oxides, electronic systems with unusual electronic properties can be generated. We report on superconductivity in the electron gas formed at the interface between two insulating dielectric perovskite oxides, LaAlO3 and SrTiO3. The behavior of the electron gas is that of a two-dimensional superconductor, confined to a thin sheet at the interface. The superconducting transition temperature of congruent with 200 millikelvin provides a strict upper limit to the thickness of the superconducting layer of congruent with 10 nanometers.

  4. Manufacturing of superconductive silver/ceramic composites

    DEFF Research Database (Denmark)

    Seifi, Behrouz; Bech, Jakob Ilsted; Eriksen, Morten

    2000-01-01

    Manufacturing of superconducting metal/ceramic composites is a rather new discipline within materials forming processes. High Temperature SuperConductors, HTSC, are manufactured applying the Oxide-Powder-In-Tube process, OPIT. A ceramic powder containing lead, calcium, bismuth, strontium...... and current leading properties of the final superconducting fibres. The present work describes studies on alternative packing geometries and process parameters in the flat rolling operations. The aim is to obtain homogenous filaments with advantageous geometry and good texture while avoiding potential defects...

  5. Cryogenic deformation of high temperature superconductive composite structures

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Peter R. (Groton, MA); Michels, William (Brookline, MA); Bingert, John F. (Jemez Springs, NM)

    2001-01-01

    An improvement in a process of preparing a composite high temperature oxide superconductive wire is provided and involves conducting at least one cross-sectional reduction step in the processing preparation of the wire at sub-ambient temperatures.

  6. Superconductive articles including cerium oxide layer

    Science.gov (United States)

    Wu, Xin D.; Muenchausen, Ross E.

    1993-01-01

    A ceramic superconductor comprising a metal oxide substrate, a ceramic high temperature superconductive material, and a intermediate layer of a material having a cubic crystal structure, said layer situated between the substrate and the superconductive material is provided, and a structure for supporting a ceramic superconducting material is provided, said structure comprising a metal oxide substrate, and a layer situated over the surface of the substrate to substantially inhibit interdiffusion between the substrate and a ceramic superconducting material deposited upon said structure.

  7. Manufacturing of superconductive silver/ceramic composites

    DEFF Research Database (Denmark)

    Seifi, Behrouz; Bech, Jakob Ilsted; Eriksen, Morten

    2000-01-01

    Manufacturing of superconducting metal/ceramic composites is a rather new discipline within materials forming processes. High Temperature SuperConductors, HTSC, are manufactured applying the Oxide-Powder-In-Tube process, OPIT. A ceramic powder containing lead, calcium, bismuth, strontium......, and copper oxides is inserted into a silver tube and reduced by multi-step drawing. These single-filaments are packed in a new silver tube thus forming a multi-filament containing e.g. 37 single-filaments, which is subsequently reduced by drawing and rolling to tapes approximately 0.2 mm thick by 3 mm wide...

  8. Superconducting composites materials. Materiaux composites supraconducteurs

    Energy Technology Data Exchange (ETDEWEB)

    Kerjouan, P.; Boterel, F.; Lostec, J.; Bertot, J.P.; Haussonne, J.M. (Centre National d' Etudes des Telecommunications (CNET), 22 - Lannion (FR))

    1991-11-01

    The new superconductor materials with a high critical current own a large importance as well in the electronic components or in the electrotechnical devices fields. The deposit of such materials with the thick films technology is to be more and more developed in the years to come. Therefore, we tried to realize such thick films screen printed on alumina, and composed mainly of the YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} material. We first realized a composite material glass/YBa{sub 2}Cu{sub 3}O{sub 7-{delta}}, by analogy with the classical screen-printed inks where the glass ensures the bonding with the substrate. We thus realized different materials by using some different classes of glass. These materials owned a superconducting transition close to the one of the pure YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} material. We made a slurry with the most significant composite materials and binders, and screen-printed them on an alumina substrate preliminary or not coated with a diffusion barrier layer. After firing, we studied the thick films adhesion, the alumina/glass/composite material interfaces, and their superconducting properties. 8 refs.; 14 figs.; 9 tabs.

  9. Dimensionality of high temperature superconductivity in oxides

    Science.gov (United States)

    Chu, C. W.

    1989-01-01

    Many models have been proposed to account for the high temperature superconductivity observed in oxide systems. Almost all of these models proposed are based on the uncoupled low dimensional carrier Cu-O layers of the oxides. Results of several experiments are presented and discussed. They suggest that the high temperature superconductivity observed cannot be strictly two- or one-dimensional, and that the environment between the Cu-O layers and the interlayer coupling play an important role in the occurrence of such high temperature superconductivity. A comment on the very short coherence length reported is also made.

  10. Free-standing oxide superconducting articles

    Science.gov (United States)

    Wu, Xin D.; Muenchausen, Ross E.

    1993-01-01

    A substrate-free, free-standing epitaxially oriented superconductive film including a layer of a template material and a layer of a ceramic superconducting material is provided together with a method of making such a substrate-free ceramic superconductive film by coating an etchable material with a template layer, coating the template layer with a layer of a ceramic superconductive material, coating the layer of ceramic superconductive material with a protective material, removing the etchable material by an appropriate means so that the etchable material is separated from a composite structure including the template lay This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).

  11. Composite conductor containing superconductive wires

    Energy Technology Data Exchange (ETDEWEB)

    Larson, W.L.; Wong, J.

    1974-03-26

    A superconductor cable substitute made by coworking multiple rods of superconductive niobium--titanium or niobium--zirconium alloy with a common copper matrix to extend the copper and rods to form a final elongated product which has superconductive wires distributed in a reduced cross-section copper conductor with a complete metallurgical bond between the normal-conductive copper and the superconductor wires contained therein is described. The superconductor cable can be in the form of a tube.

  12. Empirical Criteria of Superconductivity for Some Oxides

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The properties of superconductivity of some oxides were investigated by structural parametricdiagrams or pattern recognition with structural chemical parameters. The essential criteria ofsuperconductivity for some oxides have been obtained by using 109 oxides as the training setand seven parameters as features; the results illustrated that the electronegativity difference isthe most important factor among seven parameters. Moreover, the regularity of superconductivetransition temperature Tc for complex oxides is discussed by partial least squares (PL5) method.

  13. Charge Aspects of Composite Pair Superconductivity

    Science.gov (United States)

    Flint, Rebecca

    2014-03-01

    Conventional Cooper pairs form from well-defined electronic quasiparticles, making the internal structure of the pair irrelevant. However, in the 115 family of superconductors, the heavy electrons are forming as they pair and the internal pair structure becomes as important as the pairing mechanism. Conventional spin fluctuation mediated pairing cannot capture the direct transition from incoherent local moments to heavy fermion superconductivity, but the formation of composite pairs favored by the two channel Kondo effect can. These composite pairs are local d-wave pairs formed by two conduction electrons in orthogonal Kondo channels screening the same local moment. Composite pairing shares the same symmetries as magnetically mediated pairing, however, only composite pairing necessarily involves a redistribution of charge within the unit cell originating from the internal pair structure, both as a monopole (valence change) and a quadrupole effect. This redistribution will onset sharply at the superconducting transition temperature. A smoking gun test for composite pairing is therefore a sharp signature at Tc - for example, a cusp in the Mossbauer isomer shift in NpPd5Al2 or in the NQR shift in (Ce,Pu)CoIn5.

  14. Prediction of Superconductivity for Oxides Based on Structural Parameters and Artificial Neural Network Method

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Superconductive properties for oxides were predicted by artificial neural network (ANN) method with structural and chemical parameters as inputs. The predicted properties include superconductivity for oxides, distributed ranges of the superconductive transition temperature (Tc) for complex oxides, and Tc values for cuprate superconductors. The calculated results indicated that the adjusted ANN can be used to predict superconductive properties for unknown oxides.

  15. Superconducting composite with multilayer patterns and multiple buffer layers

    Science.gov (United States)

    Wu, Xin D.; Muenchausen, Ross E.

    1993-01-01

    An article of manufacture including a substrate, a patterned interlayer of a material selected from the group consisting of magnesium oxide, barium-titanium oxide or barium-zirconium oxide, the patterned interlayer material overcoated with a secondary interlayer material of yttria-stabilized zirconia or magnesium-aluminum oxide, upon the surface of the substrate whereby an intermediate article with an exposed surface of both the overcoated patterned interlayer and the substrate is formed, a coating of a buffer layer selected from the group consisting of cerium oxide, yttrium oxide, curium oxide, dysprosium oxide, erbium oxide, europium oxide, iron oxide, gadolinium oxide, holmium oxide, indium oxide, lanthanum oxide, manganese oxide, lutetium oxide, neodymium oxide, praseodymium oxide, plutonium oxide, samarium oxide, terbium oxide, thallium oxide, thulium oxide, yttrium oxide and ytterbium oxide over the entire exposed surface of the intermediate article, and, a ceramic superco n FIELD OF THE INVENTION The present invention relates to the field of superconducting articles having two distinct regions of superconductive material with differing in-plane orientations whereby the conductivity across the boundary between the two regions can be tailored. This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).

  16. Synthesis and superconductivity of (Agx/CuTl-1223 composites

    Directory of Open Access Journals (Sweden)

    Abdul Jabbar

    2015-06-01

    Full Text Available Series of (Agx/(Cu0.5Tl0.5Ba2Ca2Cu3O10-δ {(Agx/CuTl-1223} nano-superconductor composites were synthesized with different concentrations (i.e. x=0~4.0 wt% of silver (Ag nanoparticles. Low anisotropic CuTl-1223 superconducting matrix was prepared by solid-state reaction and Ag nanoparticles were prepared by a sol–gel method separately. The required (Agx/CuTl-1223 composition was obtained by the inclusion of Ag nanoparticles in CuTl-1223 superconducting matrix. Structural, morphological, compositional and superconducting transport properties of these composites were investigated in detail by x-ray diffraction (XRD, scanning electron microscopy (SEM, energy dispersive x-rays (EDX spectroscopy and four-point probe electrical resistivity (ρ measurements. The inclusion of Ag nanoparticles enhanced the superconducting properties without affecting the tetragonal structure of the host CuTl-1223 matrix. The improvement in superconducting properties of (Agx/CuTl-1223 composites is most likely due to enhanced inter-grains coupling and increased superconducting volume fraction after the addition of metallic Ag nanoparticles at the inter-crystallite sites in the samples. The presence of Ag nanoparticles at the grain-boundaries may increase the number of flux pinning centers, which were present in the form of weak-links in the pure CuTl-1223 superconducting matrix.

  17. Nano-fabricated superconducting radio-frequency composites, method for producing nano-fabricated superconducting rf composites

    Science.gov (United States)

    Norem, James H.; Pellin, Michael J.

    2013-06-11

    Superconducting rf is limited by a wide range of failure mechanisms inherent in the typical manufacture methods. This invention provides a method for fabricating superconducting rf structures comprising coating the structures with single atomic-layer thick films of alternating chemical composition. Also provided is a cavity defining the invented laminate structure.

  18. Emergent vortices at a ferromagnetic superconducting oxide interface

    Science.gov (United States)

    Petrović, A. P.; Paré, A.; Paudel, T. R.; Lee, K.; Holmes, S.; Barnes, C. H. W.; David, A.; Wu, T.; Tsymbal, E. Y.; Panagopoulos, C.

    2014-10-01

    Understanding the cohabitation arrangements of ferromagnetism and superconductivity at the LaAlO3/SrTiO3 interface remains an open challenge. Probing this coexistence with sub-Kelvin magnetotransport experiments, we demonstrate that a hysteretic in-plane magnetoresistance develops below the superconducting transition for ≤ft| {{H}//} \\right| \\lt 0.15 T, independently of the carrier density or oxygen annealing. This hysteresis is argued to arise from vortex depinning within a thin (\\lt 20 nm) superconducting layer, mediated by discrete ferromagnetic dipoles located solely above the layer. The pinning strength may be modified by varying the superconducting channel thickness via electric field-effect doping. No evidence is found for bulk magnetism or finite-momentum pairing, and we conclude that ferromagnetism is strictly confined to the interface, where it competes with superconductivity. Our work indicates that oxide interfaces are ideal candidate materials for the growth and analysis of nanoscale superconductor/ferromagnet hybrids.

  19. Nonlocal transport in superconducting oxide nanostructures

    Science.gov (United States)

    Veazey, Joshua; Cheng, Guanglei; Lu, Shicheng; Tomczyk, Michelle; Irvin, Patrick; Huang, Mengchen; Wung Bark, Chung; Ryu, Sangwoo; Eom, Chang-Beom; Levy, Jeremy

    2013-03-01

    We report nonlocal transport signatures in the superconducting state of nanostructures formed[2] at the LaAlO3/SrTiO3 interface using conductive AFM lithography. Nonlocal resistances (nonlocal voltage divided by current) are as large as 200 Ω when 2-10 μm separate the current-carrying segments from the voltage-sensing leads. The nonlocal resistance reverses sign at the local critical current of the superconducting state. Features observed in the nonlocal V-I curves evolve with back gate voltage and magnetic field, and are correlated with the local four-terminal V-I curves. We discuss how nonlocal and local transport effects in LaAlO3/SrTiO3 nanostructures may result from the electronic phase separation and superconducting inhomogeneity reported by others in planar structures[3]. This work is supported by AFOSR (FA9550-10-1-0524) and NSF DMR-0906443

  20. Normal zone propagation in adiabatic superconducting magnets: Pt. 1; Normal zone propagation velocity in superconducting composites

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Z.P.; Iwasa, Y. (Massachusetts Inst. of Tech., Cambridge, MA (United States). Francis Bitter National Magnet Lab. Massachusetts Inst. of Tech., Cambridge, MA (United States). Plasma Fusion Center)

    1991-09-01

    A normal zone propagation model has been developed for superconducting composites under adiabatic conditions. It is based on the Whetstone-Roos model, originally developed for normal zone propagation in adiabatic wires of unclad superconductor. The model takes into account the temperature and magnetic field dependent material properties, for both superconductor and matrix metal. Analytical results agree well with experimental data. (author).

  1. Stress dependent oxidation of sputtered niobium and effects on superconductivity

    Science.gov (United States)

    David Henry, M.; Wolfley, Steve; Monson, Todd; Clark, Blythe G.; Shaner, Eric; Jarecki, Robert

    2014-02-01

    We report on the suppression of room temperature oxidation of DC sputtered niobium films and the effects upon the superconductive transition temperature, Tc. Niobium was sputter-deposited on silicon dioxide coated 150 mm wafers and permitted to oxidize at room temperature and pressure for up to two years. Resistivity and stress measurements indicate that tensile films greater than 400 MPa resist bulk oxidation with measurements using transmission electron microscope, electron dispersive X-ray spectroscopy, x-ray photoelectric spectroscopy, and secondary ion mass spectrometry confirming this result. Although a surface oxide, Nb2O5, consumed the top 6-10 nm, we measure less than 1 at. % oxygen and nitrogen in the bulk of the films after the oxidation period. Tc measurements using a SQUID magnetometer indicate that the tensile films maintained a Tc approaching the dirty superconductive limit of 8.4 K after two years of oxidation while maintaining room temperature sheet resistance. This work demonstrates that control over niobium film stress during deposition can prevent bulk oxidation by limiting the vertical grain boundaries ability to oxidize, prolonging the superconductive properties of sputtered niobium when exposed to atmosphere.

  2. Multistable current states in high-temperature superconducting composites

    Science.gov (United States)

    Romanovskii, V. R.

    2016-09-01

    Conditions for current instabilities that arise in high-temperature superconducting composites with essentially nonlinear dependences of the critical current densities and resistivity on the temperature and magnetic induction have been studied. The analysis has been conducted in terms of zero-dimensional models, which has made it possible to formulate general physical mechanisms behind the formation of currents states in superconducting composites according to the external magnetic field induction, cooling conditions, and the properties of the superconductor and cladding. The possible existence of current and temperature stable steps, as well as stable steps of the electric field strength, in the absence of the superconducting-normal transition, has been demonstrated. Reasons for instabilities under multistable current states have been discussed.

  3. Superconductivity above 10 K in Non-Cuprate Oxides

    OpenAIRE

    Johnston, David C.

    2010-01-01

    Beginning in 1973, several non-cuprate transition metal and non-transition metal oxides were discovered with superconducting transition temperatures between 10 and 30 K. Retrospectives about these discoveries in spinel structure LiTi2O4 and perovskite structure (Ba,K)(Bi,Pb)O3 are given.

  4. Oxygen stabilization induced enhancement in superconducting characteristics of high-Tc oxides

    Science.gov (United States)

    Wu, M. K.; Chen, J. T.; Huang, C. Y.

    1991-01-01

    In an attempt to enhance the electrical and mechanical properties of the high temperature superconducting oxides, high T(sub c) composites were prepared composed of the 123 compounds and AgO. The presence of extra oxygen due to the decomposition of AgO at high temperature is found to stabilize the superconducting 123 phase. Ag is found to serve as clean flux for grain growth and precipitates as pinning center. Consequently, almost two orders of magnitude enhancement in critical current densities were also observed in these composites. In addition, these composites also show much improvement in workability and shape formation. On the other hand, proper oxygen treatment of Y5Ba6Cu11Oy was found to possibly stabilize superconducting phase with T(sub c) near 250 K. I-V, ac susceptibility, and electrical resistivity measurements indicate the existence of this ultra high T(sub c) phase in this compound. Detailed structure, microstructure, electrical, magnetic and thermal studies of the superconducting composites and the ultra high T(sub c) compound are presented and discussed.

  5. Combinatorial search of superconductivity in Fe-B composition spreads

    Directory of Open Access Journals (Sweden)

    Kui Jin

    2013-10-01

    Full Text Available We have fabricated Fe-B thin film composition spreads in search of possible superconducting phases following a theoretical prediction by Kolmogorov [Phys. Rev. Lett. 105, 217003 (2010]. Co-sputtering was used to deposit spreads covering a large compositional region of the Fe-B binary phase diagram. A trace of superconducting phase was found in the nanocrystalline part of the spread, where the film undergoes a metal to insulator transition as a function of composition in a region with the average composition of FeB2. The resistance drop occurs at 4 K, and a diamagnetic signal has also been detected at the same temperature. From the field-dependent resistive transition behavior, we estimate the upper critical field to be approximately 2 T.

  6. Possible Superconductivity at 37 K in Graphite-Sulphur Composite

    Institute of Scientific and Technical Information of China (English)

    杨海朋; 闻海虎; 赵志文; 李世亮

    2001-01-01

    Sulphur intercalated graphite composites with diamagnetic transitions at 6.7 and 37K are prepared. The magnetization hysteresis loops (MHL), x-ray diffraction (XRD) patterns, and resistance have been measured. From the MHL, a slight superconducting-like penetration process is observed at 15K in the low field region. The XRD shows no large difference from the mixture of graphite and sulphur indicating that the volume of the superconducting phase (if any) is very small. The temperature dependence of resistance shows a typical semi-conducting behaviour with a saturation in the low-temperature region. This saturation is either induced by the delocalization of conducting electrons or by possible superconductivity in this system.

  7. Magnetic Exchange Between Superconducting and Ferromagnetic Oxide Layers

    Science.gov (United States)

    Giblin, Sean; Taylor, Jon; Duffy, Jon; Dugdale, Stephen; Nakamura, T.; Santamaria, Jacobo

    2012-02-01

    The origins of high temperature superconductivity and the rich phase diagrams in complex oxides are still a matter of contention that have stimulated many novel experimental studies and observations. Recently the improvement of layer by layer growth techniques of thin films has enabled investigations of both bulk and surface properties. For most common superconductors the order parameter is thought to be antagonistic to that of the exchange mechanism in ferromagnets. Accurately grown thin fllms have enabled these competing interactions to be probed experimentally. In particular, the growth of epitaxial oxide layers, with well-characterized atomically flat interfaces, consisting of superconducting layers of YBa2Cu3O7 (YBCO) and lattice-matched ferromagnetic La2/3Ca1/3MnO3 (LCMO) has flourished. Using XMCD we demonstrate that the known superexchange between Mn and Cu across the YBCO/LCMO is modified when an apparent critical thickness of the superconducting layer is reduced. All samples show an apparent exchange below the superconducting transition but above it is dependent on the YBCO thickness. Possible origins of this behaviour will be discussed.

  8. Tunable spin polarization and superconductivity in engineered oxide interfaces.

    Science.gov (United States)

    Stornaiuolo, D; Cantoni, C; De Luca, G M; Di Capua, R; Di Gennaro, E; Ghiringhelli, G; Jouault, B; Marrè, D; Massarotti, D; Miletto Granozio, F; Pallecchi, I; Piamonteze, C; Rusponi, S; Tafuri, F; Salluzzo, M

    2016-03-01

    Advances in growth technology of oxide materials allow single atomic layer control of heterostructures. In particular delta doping, a key materials' engineering tool in today's semiconductor technology, is now also available for oxides. Here we show that a fully electric-field-tunable spin-polarized and superconducting quasi-2D electron system (q2DES) can be artificially created by inserting a few unit cells of delta doping EuTiO3 at the interface between LaAlO3 and SrTiO3 oxides. Spin polarization emerges below the ferromagnetic transition temperature of the EuTiO3 layer (TFM = 6-8 K) and is due to the exchange interaction between the magnetic moments of Eu-4f and of Ti-3d electrons. Moreover, in a large region of the phase diagram, superconductivity sets in from a ferromagnetic normal state. The occurrence of magnetic interactions, superconductivity and spin-orbit coupling in the same q2DES makes the LaAlO3/EuTiO3/SrTiO3 system an intriguing platform for the emergence of novel quantum phases in low-dimensional materials.

  9. Tunable spin polarization and superconductivity in engineered oxide interfaces

    Science.gov (United States)

    Stornaiuolo, D.; Cantoni, C.; de Luca, G. M.; di Capua, R.; di. Gennaro, E.; Ghiringhelli, G.; Jouault, B.; Marrè, D.; Massarotti, D.; Miletto Granozio, F.; Pallecchi, I.; Piamonteze, C.; Rusponi, S.; Tafuri, F.; Salluzzo, M.

    2016-03-01

    Advances in growth technology of oxide materials allow single atomic layer control of heterostructures. In particular delta doping, a key materials' engineering tool in today's semiconductor technology, is now also available for oxides. Here we show that a fully electric-field-tunable spin-polarized and superconducting quasi-2D electron system (q2DES) can be artificially created by inserting a few unit cells of delta doping EuTiO3 at the interface between LaAlO3 and SrTiO3 oxides. Spin polarization emerges below the ferromagnetic transition temperature of the EuTiO3 layer (TFM = 6-8 K) and is due to the exchange interaction between the magnetic moments of Eu-4f and of Ti-3d electrons. Moreover, in a large region of the phase diagram, superconductivity sets in from a ferromagnetic normal state. The occurrence of magnetic interactions, superconductivity and spin-orbit coupling in the same q2DES makes the LaAlO3/EuTiO3/SrTiO3 system an intriguing platform for the emergence of novel quantum phases in low-dimensional materials.

  10. Superconductivity

    CERN Document Server

    Poole, Charles P; Farach, Horacio A

    1995-01-01

    Superconductivity covers the nature of the phenomenon of superconductivity. The book discusses the fundamental principles of superconductivity; the essential features of the superconducting state-the phenomena of zero resistance and perfect diamagnetism; and the properties of the various classes of superconductors, including the organics, the buckministerfullerenes, and the precursors to the cuprates. The text also describes superconductivity from the viewpoint of thermodynamics and provides expressions for the free energy; the Ginzburg-Landau and BCS theories; and the structures of the high

  11. Triplet superconductivity in oxide ferromagnetic interlayer of mesa-structure

    Science.gov (United States)

    Ovsyannikov, G. A.; Y Constantinian, K.; Sheerman, A. E.; Shadrin, A. V.; Kislinski, Yu V.; Khaydukov, Yu N.; Mustafa, L.; Kalabukhov, A.; Winkler, D.

    2015-03-01

    We present experimental data on Nb-Au/La0.7Sr0.3MnO3/SrRuO3/YBa2Cu3O7-δ mesa- structure with in plane linear size 10÷50 μm. The mesa-structures were patterned from the epitaxial heterostructures fabricated by pulsed laser ablation and magnetron sputtering. Superconducting critical current was observed for mesa-structures with the interlayer thicknesses up to 50 nm. In the mesa-structures with just one, either La0.7Sr0.3MnO3 or SrRuO3 interlayer with a thickness larger than 10 nm no superconducting current was observed. The registered superconducting current for the mesa-structures with a thinner interlayer is attributed to pinholes. Obtained results are discussed in terms of superconducting long-range triplet generation at interfaces of superconductor and a composite ferromagnet consisting of ferromagnetic materials with non-collinear magnetization.

  12. Understanding the superconductivity in copper oxides

    CERN Document Server

    2016-01-01

    The aim of this book is to clarify the situation by adopting a very different approach from the above electronic/magnetic models, where explicitly local dynamical distortions are considered. These are distinctly different from conventional phonons which are a property of the infinite translational invariant symmetric lattice. The local dynamical distortions are shown to account for bulk properties and provide consistent and quantitative agreement with experimental data together with explicit predictions. Selected published experimental and theoretical papers are presented which support the above arguments, but have been ignored on purpose by the originators of the RVB/t-J bubble. To summarize the scope of this book, comprising nine chapters, it is shown, that the phenomenon of HTS in copper oxides is much better understood than publically claimed by RVB/t-J followers. Using the words of B. Laughlin, the presence of the antiferromagnetism in HTS masks the underlying physics where vibronic bipolarons with spin...

  13. Superconductivity

    CERN Document Server

    Thomas, D B

    1974-01-01

    A short general review is presented of the progress made in applied superconductivity as a result of work performed in connection with the high-energy physics program in Europe. The phenomenon of superconductivity and properties of superconductors of Types I and II are outlined. The main body of the paper deals with the development of niobium-titanium superconducting magnets and of radio-frequency superconducting cavities and accelerating structures. Examples of applications in and for high-energy physics experiments are given, including the large superconducting magnet for the Big European Bubble Chamber, prototype synchrotron magnets for the Super Proton Synchrotron, superconducting d.c. beam line magnets, and superconducting RF cavities for use in various laboratories. (0 refs).

  14. Preparation of uniform mixed metal oxide and superconductive oxides

    Energy Technology Data Exchange (ETDEWEB)

    Barder, T.J.

    1991-04-30

    This paper describes a method for producing a uniform mixed metal oxide. It includes dissolving metals as their salts of a carboxylic acid in an aliphatic alcohol in the substantial absence of water, the metals are in the same proportions as in the corresponding mixed metal oxide; co-precipitating the metals as their oxalates by mixing the alcohol solution with oxalic acid; separating the co-precipitated metal oxalates and calcining the oxalates in air or oxygen above about 500{degrees} C to convert the oxalates to the corresponding metal oxides.

  15. Superconductivity

    Science.gov (United States)

    1989-07-01

    SUPERCONDUCTIVITY HIGH-POWER APPLICATIONS Electric power generation/transmission Energy storage Acoustic projectors Weapon launchers Catapult Ship propulsion • • • Stabilized...temperature superconductive shields could be substantially enhanced by use of high-Tc materials. 27 28 NRAC SUPERCONDUCTIVITY SHIP PROPULSION APPLICATIONS...motor shown in the photograph. As a next step in the evolution of electric-drive ship propulsion technology, DTRC has proposed to scale up the design

  16. The oxygen isotope effect on critical temperature in superconducting copper oxides

    OpenAIRE

    Mourachkine, A.

    2003-01-01

    The isotope effect provided a crucial key to the development of the BCS (Bardeen-Cooper-Schrieffer) microscopic theory of superconductivity for conventional superconductors. In superconducting cooper oxides (cuprates) showing an unconventional type of superconductivity, the oxygen isotope effect is very peculiar: the exponential coefficient strongly depends on doping level. No consensus has been reached so far on the origin of the isotope effect in the cuprates. Here we show that the oxygen i...

  17. Nitrogen oxides under pressure: stability, ionization, polymerization, and superconductivity.

    Science.gov (United States)

    Li, Dongxu; Oganov, Artem R; Dong, Xiao; Zhou, Xiang-Feng; Zhu, Qiang; Qian, Guangrui; Dong, Huafeng

    2015-11-17

    Nitrogen oxides are textbook class of molecular compounds, with extensive industrial applications. Nitrogen and oxygen are also among the most abundant elements in the universe. We explore the N-O system at 0 K and up to 500 GPa though ab initio evolutionary simulations. Results show that two phase transformations of stable molecular NO2 occur at 7 and 64 GPa, and followed by decomposition of NO2 at 91 GPa. All of the NO(+)NO3(-) structures are found to be metastable at T = 0 K, so experimentally reported ionic NO(+)NO3(-) is either metastable or stabilized by temperature. N2O5 becomes stable at 9 GPa, and transforms from P-1 to C2/c structure at 51 GPa. NO becomes thermodynamically stable at 198 GPa. This polymeric phase is superconducting (Tc = 2.0 K) and contains a -N-N- backbone.

  18. Tunable electromagnetically induced transparency in a composite superconducting system

    Science.gov (United States)

    Wang, Xin; Li, Hong-rong; Chen, Dong-xu; Liu, Wen-xiao; Li, Fu-li

    2016-05-01

    We theoretically propose an efficient method to realize electromagnetically induced transparency (EIT) in the microwave regime through a coupled system consisting of a flux qubit and a superconducting LC resonator. Driven by two appropriate microwave fields, the system will be trapped in the dark states. In our proposal, the control field of EIT is played by a second-order transfer rather than by a direct strong-pump field. In particular, we obtained conditions for electromagnetically induced transparency and Autler-Townes splitting in this composite system. Both theoretical and numerical results show that this EIT system benefits from the relatively long coherent time of the resonator. Since this whole system is artificial and tunable, our scheme may have potential applications in various domains.

  19. Note on the cryostatic stability of superconducting composites

    Energy Technology Data Exchange (ETDEWEB)

    Gauster, W. F.

    1978-02-01

    A careful discussion is given of the ''equal area condition'' developed by Maddock et al. In order to make the essential points as clear as possible, analytical solutions are derived under simplifying assumptions (simple model for heat transfer by nucleate and film boiling liquid helium; constant heat conduction and specific heat) instead of using more realistic but less controllable computer calculations. A quantitative definition of the concept of a long wire is given. Numerical examples for the Maddock transition characterized by the equal area condition are given for a long superconducting composite with linear cooling and for a liquid helium-cooled resistance wire of finite length. In addition, cases are shown where instead of applying the equal area stability condition, time-dependent solutions should be considered.

  20. Magnetism and superconductivity of some Tl-Cu oxides

    Science.gov (United States)

    Datta, Timir

    1991-01-01

    Many copper oxide based Thallium compounds are now known. In comparison to the Bi-compounds, the Tl-system shows a richer diversity; i.e., High Temperature Superconductors (HTSC) can be obtained with either one or two Tl-0 layers (m = 1,2); also, the triple-digit phases are easier to synthesize. The value of d, oxygen stoichiometry, is critical to achieving superconductivity. The Tl system is robust to oxygen loss; Tl may be lost or incorporated by diffusion. A diffusion coefficient equal to 10 ms at 900 C was determined. Both ortho-rhombic and tetragonal structures are found, but HTSC behavior is indifferent to the crystal symmetry. This system has the highest T(sub c) confirmed. T(sub c) generally increases with p, the number of CuO layers, but tends to saturate at p = 3. Zero resistance was observed at temperatures as great as 125 K. Most of these HTSC's are hole type, but the Ce-doped specimens may be electronic. The magnetic aspects were studied; because in addition to defining the perfectly diamagnetic ground state as in conventional superconductors, magnetism of the copper oxides show a surprising variety. This is true of both the normal and the superconducting states. Also, due to the large phonon contribution to the specific heat at the high T(sub c) jump, electronic density of states, D(Ef), and coherence length are uncertain, and thus, are estimated from the magnetic results. Results from the Tl-system CuO, LaBaCuO,120 and the Bi-CuO compounds are discussed. The emphasis is on the role of magnetism in the Tl-CuO HTSC, but technological aspects are also pointed out.

  1. Superconductivity

    CERN Document Server

    Ketterson, John B

    2008-01-01

    Conceived as the definitive reference in a classic and important field of modern physics, this extensive and comprehensive handbook systematically reviews the basic physics, theory and recent advances in the field of superconductivity. Leading researchers, including Nobel laureates, describe the state-of-the-art in conventional and unconventional superconductors at a particularly opportune time, as new experimental techniques and field-theoretical methods have emerged. In addition to full-coverage of novel materials and underlying mechanisms, the handbook reflects continued intense research into electron-phone based superconductivity. Considerable attention is devoted to high-Tc superconductivity, novel superconductivity, including triplet pairing in the ruthenates, novel superconductors, such as heavy-Fermion metals and organic materials, and also granular superconductors. What’s more, several contributions address superconductors with impurities and nanostructured superconductors. Important new results on...

  2. The Oxidation of Sn-Ag coated Superconducting Cables for the Large Hadron Collider (LHC)

    CERN Document Server

    Scheuerlein, C; Cantoni, M

    2006-01-01

    The oxides formed on the Sn-Ag coated LHC superconducting cables during a 200°C heat treatment in air are described and the oxide composition is compared with the interstrand contact resistance (Rc). The analysis of more than 250 interstrand contact areas shows that the higher the average Cu content with respect to the Sn content in the oxide, the higher is Rc. During the 200°C heat treatment, Sn in the coating is transformed into a Cu3Sn layer, on which an oxide grows that consists essentially of a thin outermost layer of CuO on top of Cu2O, similar to the oxide structure formed on bare Cu. The underlying Cu3Sn layer acts as an O diffusion barrier that prevents O diffusion into the Cu bulk during the subsequent cable heat treatment under high pressure. On contact zones where the Cu3Sn layer is not formed during the 200°C heat treatment mainly Sn oxide grows and Rc is comparatively low.

  3. Study of some superconducting and magnetic materials on high T sub c oxide superconductors

    Science.gov (United States)

    Wu, M. K.

    1987-01-01

    On the basis of existing data it appears that the high-temperature superconductivity above 77 K reported here, occurs only in compound systems consisting of a phase other than the K2NiF4 phase. A narrow superconducting transition was obtained with T sub c0 = 98 K and T sub c1 = 94 K in Y-Ba-Cu-O (YBCO). Preliminary results indicate that YBCO is rather different from the layered LaBCO, LaSCO, and LaCCO. While electron-photon interaction cannot be absent from this compound system, nonconventional enhanced superconducting interactions due to interfaces, Resonating Valence Bond (RVB) states, or even a superconducting state beyond the BCS framework, may be required to account for the high T sub c in YBCO. It is believed that study of the possible subtle correlation between magnetism and superconductivity will definitely provide important insight into the superconducting mechanism in YBCO and other oxides.

  4. Superconductivity in the antiperovskite Dirac-metal oxide Sr3-xSnO

    Science.gov (United States)

    Oudah, Mohamed; Ikeda, Atsutoshi; Hausmann, Jan Niklas; Yonezawa, Shingo; Fukumoto, Toshiyuki; Kobayashi, Shingo; Sato, Masatoshi; Maeno, Yoshiteru

    2016-12-01

    Investigations of perovskite oxides triggered by the discovery of high-temperature and unconventional superconductors have had crucial roles in stimulating and guiding the development of modern condensed-matter physics. Antiperovskite oxides are charge-inverted counterpart materials to perovskite oxides, with unusual negative ionic states of a constituent metal. No superconductivity was reported among the antiperovskite oxides so far. Here we present the first superconducting antiperovskite oxide Sr3-xSnO with the transition temperature of around 5 K. Sr3SnO possesses Dirac points in its electronic structure, and we propose from theoretical analysis a possibility of a topological odd-parity superconductivity analogous to the superfluid 3He-B in moderately hole-doped Sr3-xSnO. We envision that this discovery of a new class of oxide superconductors will lead to a rapid progress in physics and chemistry of antiperovskite oxides consisting of unusual metallic anions.

  5. Critical currents and superconductivity ferromagnetism coexistence in high-Tc oxides

    CERN Document Server

    Khene, Samir

    2016-01-01

    The book comprises six chapters which deal with the critical currents and the ferromagnetism-superconductivity coexistence in high-Tc oxides. It begins by gathering key data for superconducting state and the fundamental properties of the conventional superconductors, followed by a recap of the basic theories of superconductivity. It then discusses the differences introduced by the structural anisotropy on the Ginzburg-Landau approach and the Lawrence-Doniach model before addressing the dynamics of vortices and the ferromagnetism-superconductivity coexistence in high-Tc oxides, and provides an outline of the pinning phenomena of vortices in these materials, in particular the pinning of vortices by the spins. It elucidates the methods to improve the properties of superconducting materials for industrial applications. This optimization aims at obtaining critical temperatures and densities of critical currents at the maximum level possible. Whereas the primary objective is the basic mechanisms pushing the superco...

  6. Synthesis and superconductivity of (Ag)x/CuTl-1223 composites

    Institute of Scientific and Technical Information of China (English)

    Abdul Jabbar; Irfan Qasim; M Mumtaz; K Nadeem

    2015-01-01

    Series of (Ag)x/(Cu0.5Tl0.5Ba2Ca2Cu3O10-δ) {(Ag)x/CuTl-1223} nano-superconductor composites were synthesized with different concentra-tions (i.e. x ¼ 0 ? 4.0 wt%) of silver (Ag) nanoparticles. Low anisotropic CuTl-1223 superconducting matrix was prepared by solid-state reaction and Ag nanoparticles were prepared by a sol–gel method separately. The required (Ag)x/CuTl-1223 composition was obtained by the inclusion of Ag nanoparticles in CuTl-1223 superconducting matrix. Structural, morphological, compositional and superconducting transport properties of these composites were investigated in detail by x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive x-rays (EDX) spectroscopy and four-point probe electrical resistivity (ρ) measurements. The inclusion of Ag nanoparticles enhanced the superconducting properties without affecting the tetragonal structure of the host CuTl-1223 matrix. The improvement in superconducting properties of (Ag)x/CuTl-1223 composites is most likely due to enhanced inter-grains coupling and increased superconducting volume fraction after the addition of metallic Ag nanoparticles at the inter-crystallite sites in the samples. The presence of Ag nanoparticles at the grain-boundaries may increase the number of flux pinning centers, which were present in the form of weak-links in the pure CuTl-1223 superconducting matrix.

  7. Oxide-based platform for reconfigurable superconducting nanoelectronics

    Science.gov (United States)

    Veazey, Joshua P.; Cheng, Guanglei; Irvin, Patrick; Cen, Cheng; Bogorin, Daniela F.; Bi, Feng; Huang, Mengchen; Bark, Chung-Wung; Ryu, Sangwoo; Cho, Kwang-Hwan; Eom, Chang-Beom; Levy, Jeremy

    2013-09-01

    We report quasi-1D superconductivity at the interface of LaAlO3 and SrTiO3. The material system and nanostructure fabrication method supply a new platform for superconducting nanoelectronics. Nanostructures having line widths w ˜ 10 nm are formed from the parent two-dimensional electron liquid using conductive atomic force microscope lithography. Nanowire cross-sections are small compared to the superconducting coherence length in LaAlO3/SrTiO3, placing them in the quasi-1D regime. Broad superconducting transitions versus temperature and finite resistances in the superconducting state well below Tc ≈ 200 mK are observed, suggesting the presence of fluctuation- and heating-induced resistance. The superconducting resistances and V-I characteristics are tunable through the use of a back gate. Four-terminal resistances in the superconducting state show an unusual dependence on the current path, varying by as much as an order of magnitude. This new technology, i.e., the ability to ‘write’ gate-tunable superconducting nanostructures on an insulating LaAlO3/SrTiO3 ‘canvas’, opens possibilities for the development of new families of reconfigurable superconducting nanoelectronics.

  8. Superconductivity

    CERN Document Server

    Poole, Charles P; Creswick, Richard J; Prozorov, Ruslan

    2014-01-01

    Superconductivity, Third Edition is an encyclopedic treatment of all aspects of the subject, from classic materials to fullerenes. Emphasis is on balanced coverage, with a comprehensive reference list and significant graphics from all areas of the published literature. Widely used theoretical approaches are explained in detail. Topics of special interest include high temperature superconductors, spectroscopy, critical states, transport properties, and tunneling. This book covers the whole field of superconductivity from both the theoretical and the experimental point of view. This third edition features extensive revisions throughout, and new chapters on second critical field and iron based superconductors.

  9. Aluminium-oxide wires for superconducting high kinetic inductance circuits

    Science.gov (United States)

    Rotzinger, H.; Skacel, S. T.; Pfirrmann, M.; Voss, J. N.; Münzberg, J.; Probst, S.; Bushev, P.; Weides, M. P.; Ustinov, A. V.; Mooij, J. E.

    2017-02-01

    We investigate thin films of conducting aluminium-oxide, also known as granular aluminium, as a material for superconducting high quality, high kinetic inductance circuits. The films are deposited by an optimised reactive DC magnetron sputter process and characterised using microwave measurement techniques at milli-Kelvin temperatures. We show that, by precise control of the reactive sputter conditions, a high room temperature sheet resistance and therefore high kinetic inductance at low temperatures can be obtained. For a coplanar waveguide resonator with 1.5 kΩ sheet resistance and a kinetic inductance fraction close to unity, we measure a quality factor in the order of 700 000 at 20 mK. Furthermore, we observe a sheet resistance reduction by gentle heat treatment in air. This behaviour is exploited to study the kinetic inductance change using the microwave response of a coplanar wave guide resonator. We find the correlation between the kinetic inductance and the sheet resistance to be in good agreement with theoretical expectations.

  10. Degradation of superconducting Nb/NbN films by atmospheric oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Henry, Michael David; Wolfley, Steven L.; Young, Travis Ryan; Monson, Todd; Pearce, Charles Joseph; Lewis, Rupert M.; Clark, Blythe; Brunke, Lyle Brent; Missert, Nancy A.

    2017-03-01

    Niobium and niobium nitride thin films are transitioning from fundamental research toward wafer scale manufacturing with technology drivers that include superconducting circuits and electronics, optical single photon detectors, logic, and memory. Successful microfabrication requires precise control over the properties of sputtered superconducting films, including oxidation. Previous work has demonstrated the mechanism in oxidation of Nb and how film structure could have deleterious effects upon the superconducting properties. This study provides an examination of atmospheric oxidation of NbN films. By examination of the room temperature sheet resistance of NbN bulk oxidation was identified and confirmed by secondary ion mass spectrometry. As a result, Meissner magnetic measurements confirmed the bulk oxidation not observed with simple cryogenic resistivity measurements.

  11. Evidence for spin-triplet superconducting correlations in metal-oxide heterostructures with noncollinear magnetization

    Science.gov (United States)

    Khaydukov, Yu. N.; Ovsyannikov, G. A.; Sheyerman, A. E.; Constantinian, K. Y.; Mustafa, L.; Keller, T.; Uribe-Laverde, M. A.; Kislinskii, Yu. V.; Shadrin, A. V.; Kalaboukhov, A.; Keimer, B.; Winkler, D.

    2014-07-01

    Heterostructures composed of ferromagnetic La0.7Sr0.3MnO3, ferromagnetic SrRuO3, and superconducting YBa2Cu3O6+x were studied experimentally. Structures of composition Au /La0.7Sr0.3MnO3/SrRuO3/YBa2Cu3O6+x were prepared by pulsed laser deposition, and their high quality was confirmed by x-ray diffraction and reflectometry. A noncollinear magnetic state of the heterostructures was revealed by means of superconducting quantum interference device magnetometry and polarized neutron reflectometry. We have further observed superconducting currents in mesa structures fabricated by deposition of a second superconducting Nb layer on top of the heterostructure, followed by patterning with photolithography and ion-beam etching. Josephson effects observed in these mesa structures can be explained by the penetration of a triplet component of the superconducting order parameter into the magnetic layers.

  12. Superconductivity at 31 K in Alkaline Metal-Doped Cobalt Oxides

    Institute of Scientific and Technical Information of China (English)

    闻海虎; 杨海朋; 鲁希锋; 闫静

    2003-01-01

    By using a simple solid reaction method, we have fabricated alkaline metal doped cobalt oxides Anx CoO2+δ(An = Na, K). The magnetic measurement shows a superconducting-like diamagnetic signal at 31 K based on a strong superparamagnetic signal. Below 31 K, the magnetization hysteresis loops contain a strong rough linear superparamagnetic background and a superconducting hysteresis. The typical magnetization hysteresis loops for a type-Ⅱ superconductor are found. Preliminary resistive data also show a fast dropping of resistance below Tc.These give indication of superconductivity below 31 K in Anx CoO2+δ (An = Na, K).

  13. Superconductivity of composite particles in a two-channel Kondo lattice.

    Science.gov (United States)

    Hoshino, Shintaro; Kuramoto, Yoshio

    2014-04-25

    Emergence of odd-frequency s-wave superconductivity is demonstrated in the two-channel Kondo lattice by means of the dynamical mean-field theory combined with the continuous-time quantum Monte Carlo method. Around half filling of the conduction bands, divergence of an odd-frequency pairing susceptibility is found, which signals instability toward the superconductivity. The corresponding order parameter is equivalent to a staggered composite-pair amplitude with even frequencies, which involves both localized spins and conduction electrons. A model wave function is constructed for the composite order with the use of symmetry operations such as charge conjugation and channel rotations. Given a certain asymmetry of the conduction bands, another s-wave superconductivity is found that has a uniform order parameter. The Kondo effect in the presence of two channels is essential for both types of unconventional superconductivity.

  14. Superconductivity in the antiperovskite Dirac-metal oxide Sr$_3$SnO

    CERN Document Server

    Oudah, Mohamed; Yonezawa, Shingo; Fukumoto, Toshiyuki; Kobayashi, Shingo; Sato, Masatoshi; Maeno, Yoshiteru

    2016-01-01

    Oxides with perovskite-based structures have been known as essential materials for fascinating phenomena such as high-temperature and unconventional superconductivity. Discoveries of these oxide superconductors have driven the science community to vastly extend the concepts of strongly correlated electron systems. The base of these materials, the cubic perovskite oxides, $AB$O$_3$, also exhibit superconductivity with $T_{\\mathrm{c}}$ of up to 30 K, as reported for Ba$_{0.6}$K$_{0.4}$BiO$_3$. Perovskite oxides have their counterparts, antiperovskite oxides $A_3B$O (or "$B$O$A_3$"), in which the position of metal and oxygen ions are reversed and therefore metallic $B$ ions take unusual negative valence states. However, no superconductivity has been reported among antiperovskite oxides. Here, we report the discovery of the first superconducting antiperovskite oxide Sr$_3$SnO with $T_{\\mathrm{c}}$ of around 5 K. Sr$_3$SnO possesses Dirac points in its electronic structure, originating from the inversion of bands ...

  15. Tuning the superconductivity in single-layer FeSe/oxides by interface engineering

    Science.gov (United States)

    Peng, Rui

    2015-03-01

    The discovery of high Tc in single-layer FeSe films has enormous implications for both searching new high Tc superconductors and exploring the important factors for high temperature superconductivity. In this talk, I will show our recent angle-resolved photoemission studies on various FeSe-based heterostructures grown by molecular beam epitaxy. We systematically studied the electronic structures and superconducting properties of FeSe with varied strain, different interfacial oxide materials and different thicknesses, and uncover that electronic correlations and superconducting gap-closing temperatures are tuned by interfacial effects. We exclude the direct relation between superconductivity and tensile strain, or the energy of an interfacial phonon mode, and demonstrate the crucial and non-trivial role of FeSe/oxide interface on the high pairing temperature. By tuning the interface, superconducting pairing temperature reaches up to 75K in FeSe/Nb:BaTiO3/KTaO3 with the in-plane lattice of 3.99 Å, which sets a new superconducting-gap-closing temperature record for iron-based superconductors, and may paves the way to more cost-effective applications of ultra-thin superconductors. Besides, in extremely tensile-strained single-layer FeSe films, we found that the Fermi surfaces consist of two elliptical electron pockets at the zone corner, without detectable hybridization. The lifting of degeneracy is clearly observed for the first time for the iron-based superconductors with only electron Fermi surfaces. Intriguingly, the superconducting gap distribution is anisotropic but nodeless around the electron pockets, with minima at the crossings of the two pockets. Our results provide important experimental foundations for understanding the interfacial superconductivity and the pairing symmetry puzzle of iron-based superconductors, and also provide clues for further enhancing Tc through interface engineering.

  16. Superconducting optical modulator

    Science.gov (United States)

    Bunt, Patricia S.; Ference, Thomas G.; Puzey, Kenneth A.; Tanner, David B.; Tache, Nacira; Varhue, Walter J.

    2000-12-01

    An optical modulator based on the physical properties of high temperature superconductors has been fabricated and tested. The modulator was constructed form a film of Yttrium Barium Copper Oxide (YBCO) grown on undoped silicon with a buffer layer of Yttria Stabilized Zirconia. Standard lithographic procedures were used to pattern the superconducting film into a micro bridge. Optical modulation was achieved by passing IR light through the composite structure normal to the micro bridge and switching the superconducting film in the bridge region between the superconducting and non-superconducting states. In the superconducting state, IR light reflects from the superconducting film surface. When a critical current is passed through the micro bridge, it causes the film in this region to switch to the non-superconducting state allowing IR light to pass through it. Superconducting materials have the potential to switch between these two states at speeds up to 1 picosecond using electrical current. Presently, fiber optic transmission capacity is limited by the rate at which optical data can be modulated. The superconducting modulator, when combined with other components, may have the potential to increase the transmission capacity of fiber optic lines.

  17. Low temperature magnetic force microscopy on ferromagnetic and superconducting oxides

    Science.gov (United States)

    Sirohi, Anshu; Sheet, Goutam

    2016-05-01

    We report the observation of complex ferromagnetic domain structures on thin films of SrRuO3 and superconducting vortices in high temperature superconductors through low temperature magnetic force microscopy. Here we summarize the experimental details and results of magnetic imaging at low temperatures and high magnetic fields. We discuss these data in the light of existing theoretical concepts.

  18. Competition between the pseudogap and superconductivity in the high-T(c) copper oxides.

    Science.gov (United States)

    Kondo, Takeshi; Khasanov, Rustem; Takeuchi, Tsunehiro; Schmalian, Jörg; Kaminski, Adam

    2009-01-15

    In a classical Bardeen-Cooper-Schrieffer superconductor, pairing and coherence of electrons are established simultaneously below the critical transition temperature (T(c)), giving rise to a gap in the electronic energy spectrum. In the high-T(c) copper oxide superconductors, however, a pseudogap extends above T(c). The relationship between the pseudogap and superconductivity is one of the central issues in this field. Spectral gaps arising from pairing precursors are qualitatively similar to those caused by competing electronic states, rendering a standard approach to their analysis inconclusive. The issue can be settled, however, by studying the correlation between the weights associated with the pseudogap and superconductivity spectral features. Here we report a study of two spectral weights using angle-resolved photoemission spectroscopy. The weight of the superconducting coherent peak increases away from the node following the trend of the superconducting gap, but starts to decrease in the antinodal region. This striking non-monotonicity reveals the presence of a competing state. We demonstrate a direct correlation, for different values of momenta and doping, between the loss in the low-energy spectral weight arising from the opening of the pseudogap and a decrease in the spectral weight associated with superconductivity. We therefore conclude that the pseudogap competes with the superconductivity by depleting the spectral weight available for pairing.

  19. Superconducting characteristics of 4-Å carbon nanotube-zeolite composite

    KAUST Repository

    Lortz, Rolf W.

    2009-04-15

    We have fabricated nanocomposites consisting of 4-A carbon nanotubes embedded in the 0.7-nm pores of aluminophosphate- five (AFI) zeolite that display a superconducting specific heat transition at 15 K. MicroRaman spectra of the samples show strong and spatially uniform radial breathing mode (RBM) signals at 510 cm-1 and 550 cm-1, characteristic of the (4,2) and (5,0) nanotubes, respectively. The specific heat transition is suppressed at >2T, with a temperature dependence characteristic of finite-size effects. Comparison with theory shows the behavior to be consistent with that of a type II BCS superconductor, characterized by a coherence length of 14 ± 2 nm and a magnetic penetration length of 1.5 ± 0.7 μm. Four probe and differential resistance measurements have also indicated a superconducting transition initiating at 15 K, but the magnetoresistance data indicate the superconducting network to be inhomogeneous, with a component being susceptible to magnetic fields below 3 T and other parts capable of withstanding a magnetic field of 5Tor beyond.

  20. Superconductivity in the antiperovskite Dirac-metal oxide Sr3−xSnO

    Science.gov (United States)

    Oudah, Mohamed; Ikeda, Atsutoshi; Hausmann, Jan Niklas; Yonezawa, Shingo; Fukumoto, Toshiyuki; Kobayashi, Shingo; Sato, Masatoshi; Maeno, Yoshiteru

    2016-01-01

    Investigations of perovskite oxides triggered by the discovery of high-temperature and unconventional superconductors have had crucial roles in stimulating and guiding the development of modern condensed-matter physics. Antiperovskite oxides are charge-inverted counterpart materials to perovskite oxides, with unusual negative ionic states of a constituent metal. No superconductivity was reported among the antiperovskite oxides so far. Here we present the first superconducting antiperovskite oxide Sr3−xSnO with the transition temperature of around 5 K. Sr3SnO possesses Dirac points in its electronic structure, and we propose from theoretical analysis a possibility of a topological odd-parity superconductivity analogous to the superfluid 3He-B in moderately hole-doped Sr3−xSnO. We envision that this discovery of a new class of oxide superconductors will lead to a rapid progress in physics and chemistry of antiperovskite oxides consisting of unusual metallic anions. PMID:27941805

  1. Superconducting transistor

    Science.gov (United States)

    Gray, Kenneth E.

    1979-01-01

    A superconducting transistor is formed by disposing three thin films of superconducting material in a planar parallel arrangement and insulating the films from each other by layers of insulating oxides to form two tunnel junctions. One junction is biased above twice the superconducting energy gap and the other is biased at less than twice the superconducting energy gap. Injection of quasiparticles into the center film by one junction provides a current gain in the second junction.

  2. Negative lattice expansion from the superconductivity--antiferromagnetism crossover in ruthenium copper oxides.

    Science.gov (United States)

    McLaughlin, A C; Sher, F; Attfield, J P

    2005-08-11

    The mechanism of high-transition-temperature (high-T(c)) superconductivity in doped copper oxides is an enduring problem. Antiferromagnetism is established as the competing order, but the relationship between the two states in the intervening 'pseudogap' regime has become a central puzzle. The role of the crystal lattice, which is important in conventional superconductors, also remains unclear. Here we report an anomalous increase of the distance between copper oxide planes on cooling, which results in negative thermal volume expansion, for layered ruthenium copper oxides that have been doped to the boundary of antiferromagnetism and superconductivity. We propose that a crossover between these states is driven by spin ordering in the ruthenium oxide layers, revealing a novel mechanism for negative lattice expansion in solids. The differences in volume and lattice strain between the distinct superconducting and antiferromagnetic states can account for the phase segregation phenomena found extensively in low-doped copper oxides, and show that Cooper pair formation is coupled to the lattice. Unusually large variations of resistivity with magnetic field are found in these ruthenium copper oxides at low temperatures through coupling between the ordered Ru and Cu spins.

  3. Synthesis and characterization of graphene oxide composite with Fe3O4

    Directory of Open Access Journals (Sweden)

    Chuanyu Sun

    2015-09-01

    Full Text Available In the paper, a magnetic composite of graphene oxide (MGO has been successfully synthesized through decomposition of iron (III acetylacetonate in the mixture solution of triethylene glycol and graphene oxide (GO. Atomic force microscopy (AFM, transmission electron microscopy (TEM, X-ray diffraction (XRD and superconducting quantum interference device were used to characterize the material. The results show that the magnetic Fe3O4 nanoparticles modified graphene oxide composite with superparamagnetic properties, and magnetization saturation of 16.4 emu/g has been obtained. The MGO has a good sustained-release performance, and in vitro cytotoxicity confirming its secure use as a potential drug carrier.

  4. From quantum matter to high-temperature superconductivity in copper oxides.

    Science.gov (United States)

    Keimer, B; Kivelson, S A; Norman, M R; Uchida, S; Zaanen, J

    2015-02-12

    The discovery of high-temperature superconductivity in the copper oxides in 1986 triggered a huge amount of innovative scientific inquiry. In the almost three decades since, much has been learned about the novel forms of quantum matter that are exhibited in these strongly correlated electron systems. A qualitative understanding of the nature of the superconducting state itself has been achieved. However, unresolved issues include the astonishing complexity of the phase diagram, the unprecedented prominence of various forms of collective fluctuations, and the simplicity and insensitivity to material details of the 'normal' state at elevated temperatures.

  5. Dense high temperature ceramic oxide superconductors

    Science.gov (United States)

    Landingham, Richard L.

    1993-01-01

    Dense superconducting ceramic oxide articles of manufacture and methods for producing these articles are described. Generally these articles are produced by first processing these superconducting oxides by ceramic processing techniques to optimize materials properties, followed by reestablishing the superconducting state in a desired portion of the ceramic oxide composite.

  6. Superconductivity at 43 K in Samarium-arsenide Oxides $SmFeAsO_{1-x}F_x$

    OpenAIRE

    Chen, X. H.; Wu, T; Wu, G.; Liu, R. H.; Chen, H.; Fang, D. F.

    2008-01-01

    Since the discovery of high-transition temperature ($T_c$) superconductivity in layered copper oxides, extensive efforts have been devoted to explore the higher $T_c$ superconductivity. However, the $T_c$ higher than 40 K can be obtained only in the copper oxide superconductors so far. The highest reported value of $T_c$ for non-copper-oxide bulk superconductivity is 39 K in $MgB_2$.\\cite{jun} The $T_c$ of about 40 K is close to or above the theoretical value predicted from BCS theory.\\cite{m...

  7. Composite ceramic superconducting wires for electric motor applications

    Science.gov (United States)

    Halloran, John W.

    1990-07-01

    Several types of HTSC wire have been produced and two types of HTSC motors are being built. Hundreds of meters of Ag- clad wire were fabricated from YBa2Cu3O(7-x) (Y-123) and Bi2Ca2Sr2Cu3O10 (BiSCCO). The dc homopolar motor coils are not yet completed, but multiple turns of wire have been wound on the coil bobbins to characterize the superconducting properties of coiled wire. Multifilamentary conductors were fabricated as cables and coils. The sintered polycrystalline wire has self-field critical current densities (Jc) as high as 2800 A/sq cm, but the Jc falls rapidly with magnetic field. To improve Jc, sintered YBCO wire is melt textured with a continuous process which has produced textures wire up to 0.5 meters long with 77K transport Jc above 11, 770 A/sq cm2 in self field and 2100 A/sq cm2 at 1 telsa. The Emerson Electric dc homopolar HTSC motor has been fabricated and run with conventional copper coils. A novel class of potential very powerful superconducting motors have been designed to use trapped flux in melt textures Y-123 as magnet replicas in an new type of permanent magnet motor. The stator element and part of the rotor of the first prototype machine exist, and the HTSC magnet replica segments are being fabricated.

  8. High-temperature interface superconductivity between metallic and insulating copper oxides.

    Science.gov (United States)

    Gozar, A; Logvenov, G; Kourkoutis, L Fitting; Bollinger, A T; Giannuzzi, L A; Muller, D A; Bozovic, I

    2008-10-09

    The realization of high-transition-temperature (high-T(c)) superconductivity confined to nanometre-sized interfaces has been a long-standing goal because of potential applications and the opportunity to study quantum phenomena in reduced dimensions. This has been, however, a challenging target: in conventional metals, the high electron density restricts interface effects (such as carrier depletion or accumulation) to a region much narrower than the coherence length, which is the scale necessary for superconductivity to occur. By contrast, in copper oxides the carrier density is low whereas T(c) is high and the coherence length very short, which provides an opportunity-but at a price: the interface must be atomically perfect. Here we report superconductivity in bilayers consisting of an insulator (La(2)CuO(4)) and a metal (La(1.55)Sr(0.45)CuO(4)), neither of which is superconducting in isolation. In these bilayers, T(c) is either approximately 15 K or approximately 30 K, depending on the layering sequence. This highly robust phenomenon is confined within 2-3 nm of the interface. If such a bilayer is exposed to ozone, T(c) exceeds 50 K, and this enhanced superconductivity is also shown to originate from an interface layer about 1-2 unit cells thick. Enhancement of T(c) in bilayer systems was observed previously but the essential role of the interface was not recognized at the time.

  9. Low cost composite structures for superconducting magnetic energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Rix, C. (General Dynamics Space Magnetics, San Diego, CA (United States)); McColskey, D. (National Inst. of Standards and Technology, Boulder, CO (United States)); Acree, R. (Phillips Lab., Edwards Air Force Base, CA (United States))

    1994-07-01

    As part of the Superconducting Magnetic Energy Storage/Engineering Test Model (SMES-ETM) programs, design, analysis, fabrication and test programs were conducted to evaluate the low cost manufacturing of Fiberglass Reinforced Plastic (FRP) beams for usage as major components of the structural and electrical insulation systems. These studies utilized pultrusion process technologies and vinylester resins to produce large net sections at costs significantly below that of conventional materials. Demonstration articles incorporating laminate architectures and design details representative of SMES-ETM components were fabricated using the pultrusion process and epoxy, vinylester, and polyester resin systems. The mechanical and thermal properties of these articles were measured over the temperature range from 4 K to 300 K. The results of these tests showed that the pultruded, vinylester components have properties comparable to those of currently used materials, such as G-10, and are capable of meeting the design requirements for the SMES-ETM system.

  10. Deformation processing of high-Tc superconducting oxides

    Science.gov (United States)

    Rajan, K.; German, R. M.; Knorr, D. B.; Maccrone, R. K.; Misiolek, W.; Wright, R. N.

    1989-04-01

    Plastic deformation and texture development in polycrystalline YBa2Cu3O7- δ has been studied to expedite the process development of high-critical-temperature (high-Tc) superconducting wires and tapes. It is anticipated that deformation texture will be a major processing consideration in terms of maximizing critical current density, assessing conductor-fabrication options in light of critical current density, and developing such mechanical properties as strength, toughness and thermal fatigue. The intrinsic texture development in YBa2Cu3O7- δ deformation processing should be highly beneficial, insofar as the c axes of the crystals tend to become oriented along the compression axis. This means that conducting tapes and wires formed by rolling, extrusion and drawing can develop textures with the c axis in the transverse or radial direction, thus maximizing the flow of current along the length of the conductor.

  11. Microscopic annealing process and its impact on superconductivity in T'-structure electron-doped copper oxides.

    Science.gov (United States)

    Kang, Hye Jung; Dai, Pengcheng; Campbell, Branton J; Chupas, Peter J; Rosenkranz, Stephan; Lee, Peter L; Huang, Qingzhen; Li, Shiliang; Komiya, Seiki; Ando, Yoichi

    2007-03-01

    High-transition-temperature superconductivity arises in copper oxides when holes or electrons are doped into the CuO(2) planes of their insulating parent compounds. Whereas hole doping quickly induces metallic behaviour and superconductivity in many cuprates, electron doping alone is insufficient in materials such as R(2)CuO(4) (R is Nd, Pr, La, Ce and so on), where it is necessary to anneal an as-grown sample in a low-oxygen environment to remove a tiny amount of oxygen in order to induce superconductivity. Here we show that the microscopic process of oxygen reduction repairs Cu deficiencies in the as-grown materials and creates oxygen vacancies in the stoichiometric CuO(2) planes, effectively reducing disorder and providing itinerant carriers for superconductivity. The resolution of this long-standing materials issue suggests that the fundamental mechanism for superconductivity is the same for electron- and hole-doped copper oxides.

  12. Superconducting and related oxides: Physics and nanoengineering 3

    Energy Technology Data Exchange (ETDEWEB)

    Pavuna, D.; Bozovic, I. [eds.

    1998-12-31

    This volume is composed of 51 papers presented at the symposium. Topics covered are: physical properties of oxide superconductors; thin film growth and properties; and device physics and new concepts.

  13. Enhancing triplet superconductivity by the proximity to a singlet superconductor in oxide heterostructures

    Science.gov (United States)

    Horsdal, Mats; Khaliullin, Giniyat; Hyart, Timo; Rosenow, Bernd

    2016-06-01

    We show how in principle a coherent coupling between two superconductors of opposite parity can be realized in a three-layer oxide heterostructure. Due to strong intraionic spin-orbit coupling in the middle layer, singlet Cooper pairs are converted into triplet ones and vice versa. This results in a large enhancement of the triplet superconductivity, persisting well above the native triplet critical temperature.

  14. Crystallographic texturing in Nb3Sn multifilamentary superconducting composites

    Science.gov (United States)

    Cogan, Stuart F.; Rose, Robert M.

    1980-03-01

    Crystallographic texturing in Nb3Sn composites, fabricated by both the external diffusion and the commercial bronze processes, has been investigated. In the external-diffusion-processed composite the as-drawn texture of the copper matrix contained ca. 55% and 45% ; after recrystallization at 650 °C for 16 h this changed to 70% and 30% . Tin plating and reaction heat treatment for 40 h at 650 °C eliminated most of the texturing. In a commercial bronze-processed composite a or texture was obtained in the as-drawn bronze matrix, and after a reaction heat treatment at 700 °C for 30 h a diffuse texture was developed. In both composites the Nb3Sn reaction layer exhibited no preferred orientation.

  15. Theory analysis of critical-current degeneration in bended superconducting tapes of multifilament composite Bi2223/Ag

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Peifeng; Wang, Xingzhe, E-mail: xzwang@lzu.edu.cn

    2015-10-15

    Highlights: • We proposed an empirical model to describe carrying-current degradation of bent Bi2223/Ag tapes. • Asymmetric damage of superconductor multifilament is taken into account. • Both the loading and unloading processes of bend deformation are captured. • Carrying-current property can be improved by designing configuration of the multifilament core. - Abstract: This paper proposed a degradation model to explore the influence of the mechanical bending deformation on the critical-current of superconducting composite Bi2223/Ag tape taking into account the asymmetric mechanical damage. With the aid of Weibull distribution function of statistical damage of filaments, the critical-current dependence upon bending strain of the superconducting tape in processes of loading and unloading is characterized. The degradation profile of critical-current in the superconducting composite tape is theoretically investigated by the proposed model for different critical damage strains and configurations of superconducting multifilament core at the cross-section. It is shown that the theoretical predictions are in reasonably good agreement with the experimental data, and the configuration of the multifilament core of the superconducting composite tape has a significant influence on the critical-current degradation. The superconducting multifilament core located near the compression region of the cross-section remarkably improves the mechanical and carrying-current capabilities of the superconducting composite tape.

  16. Superconductivity in the non-oxide perovskite MgCNi3.

    Science.gov (United States)

    He, T; Huang, Q; Ramirez, A P; Wang, Y; Regan, K A; Rogado, N; Hayward, M A; Haas, M K; Slusky, J S; Inumara, K; Zandbergen, H W; Ong, N P; Cava, R J

    2001-05-03

    The interplay of magnetic interactions, the dimensionality of the crystal structure and electronic correlations in producing superconductivity is one of the dominant themes in the study of the electronic properties of complex materials. Although magnetic interactions and two-dimensional structures were long thought to be detrimental to the formation of a superconducting state, they are actually common features of both the high transition-temperature (Tc) copper oxides and low-Tc material Sr2RuO4, where they appear to be essential contributors to the exotic electronic states of these materials. Here we report that the perovskite-structured compound MgCNi3 is superconducting with a critical temperature of 8 K. This material is the three-dimensional analogue of the LnNi2B2C family of superconductors, which have critical temperatures up to 16 K (ref. 2). The itinerant electrons in both families of materials arise from the partial filling of the nickel d-states, which generally leads to ferromagnetism as is the case in metallic Ni. The high relative proportion of Ni in MgCNi3 suggests that magnetic interactions are important, and the lower Tc of this three-dimensional compound-when compared to the LnNi2B2C family-contrasts with conventional ideas regarding the origins of superconductivity.

  17. Graphene composites containing chemically bonded metal oxides

    Indian Academy of Sciences (India)

    K Pramoda; S Suresh; H S S Ramakrishna Matte; A Govindaraj

    2013-08-01

    Composites of graphene involving chemically bonded nano films of metal oxides have been prepared by reacting graphene containing surface oxygen functionalities with metal halide vapours followed by exposure to water vapour. The composites have been characterized by electron microscopy, atomic force microscopy and other techniques. Magnetite particles chemically bonded to graphene dispersible in various solvents have been prepared and they exhibit fairly high magnetization.

  18. Influence of Oxygen Content on the Superconductivity of Bi-Based Oxides Homologous to 2212 Phase

    Science.gov (United States)

    Deshimaru, Yuichi; Otani, Tetsuya; Shimizu, Youichi; Miura, Norio; Yamazoe, Noboru

    1991-10-01

    Thermal desorption of oxygen and its relevance to superconductivity were examined for a series of oxides Bi2Sr2-xCa1+xCu2Oy (x=0, 0.25, 0.5, 0.8 and 1.0) isostructural to the 2212 phase. The total oxygen desorbed up to 600°C amounted to 2˜ 3× 10-5 mol/g for each oxide. Tc was constant at about 80 K for all the as-prepared oxides but Tc decreased linearly with x from 97 K (x=0) to 67 K (x=1.0) for the oxygen-desorbed oxides. The total oxygen contents (y) were determined and correlated with Tc, which increased for x=0 and 0.25, whereas it went through a maximum at about y=8.15 for x=0.8.

  19. Relationship between oxygen content and seebeck coefficient of Bi-based superconducting oxides

    Science.gov (United States)

    Miura, N.; Sakata, F.; Shimizu, Y.; Deshimaru, Y.; Yamazoe, N.

    1994-12-01

    The correlations among Seebeck coefficient, oxygen content and superconducting property were examined for four Bi-based oxides (2223 and 2212 phases). Each oxide underwent reversible sorption and desorption of small amounts of oxygen (ca.3x10 -5mol/g) in the temperature range 100-600 °C. In good agreement with such behavior, the Seebeck coefficient (Q) of each oxide was found to change reversibly with changing temperature, suggesting that Q is a reversible function of oxygen content. It was further found that the highest Tc was reached at the oxygen content at which Q was incidentally brought to be around zero at 100 °C for each oxide.

  20. Magnetic field expulsion in superconducting granular ceramics and in polymer/superconductor composites

    Energy Technology Data Exchange (ETDEWEB)

    Benlhachemi, A. [Univ. de Toulon et du Var, La Garde (France). Lab. des Materiaux Multiphases et Interfaces]|[Lab. de Chimie des Solides, Faculte des Sciences, Univ. Ibnou Zohr, Agadir (Morocco); Fremy, M.A.; Breandon, C.; Tatarenko, H.; Gavarri, J.R. [Univ. de Toulon et du Var, La Garde (France). Lab. des Materiaux Multiphases et Interfaces; Benyaich, H. [Lab. de Chimie des Solides, Faculte des Sciences, Univ. Ibnou Zohr, Agadir (Morocco)

    1998-05-01

    The magnetic interaction between a permanent magnet and superconducting ceramics such as YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} and Bi{sub 1.6}Pb{sub 0.4}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub (10+} {sub de} {sub lta)} depend on the superconducting state of each phase and on the junctions between grains. In the case of polymer/superconductor composites, screening effects depend on the volume fraction of superconductor. Measurements of the evolution of the levitation force (F=A/d{sup {gamma}}) as a function of the interaction distance d are used to characterize the effective response of the ceramics or composites to the magnetic flux penetration. Some of the abnormal variations of the exponent {gamma} and of the term A (in F=A/d{sup {gamma}}) could be reinterpreted in terms of a change in superconducting regime. Other observed variations of {gamma} should be due to the variation of the effective field from the cylindrical magnet. (orig.) 19 refs.

  1. Microwave observation of magnetic field penetration of high-T/sub c/ superconducting oxides

    Energy Technology Data Exchange (ETDEWEB)

    Khachaturyan, K.; Weber, E.R.; Tejedor, P.; Stacy, A.M.; Portis, A.M.

    1987-12-01

    Microwave methods, using a conventional EPR spectrometer, have been applied to a study of magnetic field penetration of the high-T/sub c/ superconducting oxides La/sub 1.85/Sr/sub 0.15/CuO/sub 4/, YBa/sub 2/Cu/sub 3/O/sub 7/, and EuBa/sub 2/Cu/sub 3/O/sub 7/. Signals over 10/sup 5/ times the sensitivity limit of the EPR spectrometer were obtained. Huge low-field peaks were observed in the superconducting phase for magnetic fields below 10 G. The peak signal decreased exponentially with temperature just below T/sub c/. These observations are taken as evidence of the spin-glass features of these materials and of fluxoid penetration of intrinsic Josephson junctions.

  2. Materials science studies of high-temperature superconducting ceramic oxides. Final report, May 1988-March 1993

    Energy Technology Data Exchange (ETDEWEB)

    Vezzoli, G.C.; Chen, M.F.; Craver, F.; Katz, R.N.

    1997-12-01

    Herein is presented the results of a comprehensive program of research aimed at understanding the materials science and the mechanistic physics of high-temperature superconducting oxides. This comprehensive research program has identified the materials properties that are consistently associated with high-Tc superconductors and has shown that the mechanism that gives rise to the phenomenon of high-Tc superconductivity is associated with bound holes that are due to charge-transfer excitations at high frequency. The latter are a result of the high internal electric field present in high-Tc materials, owing to the asymmetry of the crystal structure. The interaction of bound holes with free electrons and the interaction of local spin fluctuations with the spin of free electrons generate a charge density wave and a spin density wave that cause Cooper pairing.

  3. Improving superconducting properties of YBCO high temperature superconductor by Graphene Oxide doping

    Energy Technology Data Exchange (ETDEWEB)

    Dadras, S., E-mail: dadras@alzahra.ac.ir; Dehghani, S.; Davoudiniya, M.; Falahati, S.

    2017-06-01

    In this research, we report the synthesis and characterization of YBa{sub 2}Cu{sub 3}O{sub 7-δ} (YBCO) high temperature superconductor prepared by sol-gel method and doped with Graphene Oxide (GO) in different weight percentages, 0, 0.1, 0.7 and 1 % wt. The x-ray diffraction (XRD) analysis confirms the formation of orthorhombic phase of superconductivity for all the prepared samples. We found that GO doping reduces the crystalline size of the samples. We evaluated the effects of GO doping on the normal state resistivity (ρ), superconducting transition temperature (T{sub c}) and critical current density (J{sub c}). The results show that the GO doping has a positive effect on these properties. Also, the highest J{sub c} is obtained for the 0.7 %wt GO doped YBCO compound that its critical current density is about 15 times more than the J{sub c} of pure one in 0.4 T magnetic field. The scanning electron microscope (SEM) analysis shows that there are better connections between the grains of GO doped samples. - Highlights: • Graphene Oxide doping increased the YBCO critical current density. • Graphene Oxide creates a better connection between the YBCO grains. • The normal resistivity of samples were decreased by GO doping to YBCO compounds. • Graphene Oxide doping has a positive effect on the critical transition temperature.

  4. Nylon/Graphene Oxide Electrospun Composite Coating

    Directory of Open Access Journals (Sweden)

    Carmina Menchaca-Campos

    2013-01-01

    Full Text Available Graphite oxide is obtained by treating graphite with strong oxidizers. The bulk material disperses in basic solutions yielding graphene oxide. Starting from exfoliated graphite, different treatments were tested to obtain the best graphite oxide conditions, including calcination for two hours at 700°C and ultrasonic agitation in acidic, basic, or peroxide solutions. Bulk particles floating in the solution were filtered, rinsed, and dried. The graphene oxide obtained was characterized under SEM and FTIR techniques. On the other hand, nylon 6-6 has excellent mechanical resistance due to the mutual attraction of its long chains. To take advantage of the properties of both materials, they were combined as a hybrid material. Electrochemical cells were prepared using porous silica as supporting electrode of the electrospun nylon/graphene oxide films for electrochemical testing. Polarization curves were performed to determine the oxidation/reduction potentials under different acidic, alkaline, and peroxide solutions. The oxidation condition was obtained in KOH and the reduction in H2SO4 solutions. Potentiostatic oxidation and reduction curves were applied to further oxidize carbon species and then reduced them, forming the nylon 6-6/functionalized graphene oxide composite coating. Electrochemical impedance measurements were performed to evaluate the coating electrochemical resistance and compared to the silica or nylon samples.

  5. Superconducting Hg-Based Mixed Oxides and Oxyfluorides

    Science.gov (United States)

    Antipov, E. V.

    2000-09-01

    Syntheses under high pressure and under controlled mercury and oxygen partial pressures of different members of the HgBa2Can-1CunO2n+2+δ series have been developed. There are two main parameters influencing Tc in this family: width of a perovskite slab (n) and concentration (δ) of the extra oxygen located in the Hg layer. The increase of Tc with n occurs until the third member, while after that it decreases. All the members of the series exhibit similar cupola shaped dependencies of Tc vs. δ. Strongly overdoped high members of the series with n = 3-5 were prepared only using high pressure technique and BaO2 as an internal oxidizer. Neutron powder diffraction experiments were carried out for monophase oxygenated HgBa2CuO4F4+δ and fluorinated HgBa2CuO4Fδ samples with different extra oxygen or fluorine content and Tc values. Fluorinated series also exhibits the cupola -like behavior for the Tc vs. δ dependence. NPD showed twice the amount of extra fluorine in comparison with those for the oxygenated Hg-1201 phases with close Tc's. The exchange of the extra oxygen by double amount of fluorine causes shortening of the apical Cu-O distances, while the in-plane ones, as well as Tc, do not vary. The influence of the external pressure on the structure and Tc of Hg-1201 strongly depends on the doping level. The increase of the extra oxygen content on going from underdoped to overdoped state results in the larger compression of the apical Cu-O and Ba-OHg distances while the HgO2 dumbbell as well as the distance between Ba and O from the (CuO2) layers becomes practically pressure independent. These results together with the data for fluorinated materials allow to elucidate the crucial structural features responsible for the Tc variation under high pressure.

  6. Coulomb-oscillator origin of superconductivity in p-doped copper oxides

    CERN Document Server

    Bucher, Manfred

    2013-01-01

    Emergence, development and cessation of superconductivity in three representative compounds of copper oxide families---cation doped Ca_2-xNa_xCuO2Cl2 and La_2-xAe_xCuO4 (Ae = Ba, Sr), as well as oxygen enriched YBa2Cu3O_6+x ---are explained with the Coulomb-oscillator model of superconductivity. By the model, non-resistive current is carried by axial Coulomb oscillations of s electrons through neighbor nuclei---here excited 3s electrons from O^2- ions through next-nearest neighbor oxygen nuclei---if their accompanying lateral oscillation is sufficiently confined to prevent lateral overswing. Cation doping gives rise to a superlattice in the layers that sandwich each CuO2 plane. In Ca_2-xNa_xCuO2Cl2, having one CuO2 plane per unit cell, superconductivity emerges when laterally confined Coulomb oscillators start connecting along 6 x 6 superlattice domains (in units of planar lattice constants) and it peaks at 4 x 4 domains when, at doping x = 1/8, the superlattice is completed. With further doping a new, off-se...

  7. Superconductivity of Nd1.85Ce0.15CuO4-y by Electrochemical Oxidation

    Institute of Scientific and Technical Information of China (English)

    CHEN Ling; CHE Guang-Can; LI Hong; DONG Cheng; ZHOU Fang; HUANG Yu-Zhen; ZHAO Zhong-Xian

    2000-01-01

    Superconductivity of n-type superconductor Nd1.85Ce0.15CuO4-y (NCCO) by electrochemical oxidation is re ported for the first time and the cyclic voltammogram curve for NCCO as working electrode is presented. In vestigations indicate that after oxidation, superconductivity of NCCO is improved: Tc is raised from 20 K up to 26 K, the superconducting volume fraction is increased also. The valence electronic states of oxygen and copper in NCCO are studied by x-ray photoelectron spectroscopy. It is found that the Cu-2ps/2 peak shifts to the higher binding energy side about 0.4 e V, which indicates that the valence-state of copper ions is risen up after oxidation. These results imply that hole-carriers exist in n-type superconductor.

  8. Characterization of transparent superconductivity Fe-doped CuCrO{sub 2} delafossite oxide

    Energy Technology Data Exchange (ETDEWEB)

    Taddee, Chutirat [Materials Science and Nanotechnology Program, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Kamwanna, Teerasak, E-mail: teekam@kku.ac.th [Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Nanotec-KKU Center of Excellence on Advanced Nanomaterials for Energy Production and Storage, Khon Kaen 40002 (Thailand); Integrated Nanotechnology Research Center (INRC), Khon Kaen University, Khon Kaen 40002 (Thailand); Amornkitbamrung, Vittaya [Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Nanotec-KKU Center of Excellence on Advanced Nanomaterials for Energy Production and Storage, Khon Kaen 40002 (Thailand); Integrated Nanotechnology Research Center (INRC), Khon Kaen University, Khon Kaen 40002 (Thailand)

    2016-09-01

    Graphical abstract: - Highlights: • Effect of Fe substitution on the physical properties in CuCrO{sub 2} is studied. • The substitution of Cr{sup 3+} by Fe{sup 3+} produces a mixed effect on the magnetic properties. • CuCr{sub 1−x}Fe{sub x}O{sub 2} delafossite oxides show transparent superconductivity. - Abstract: Delafossite CuCr{sub 1−x}Fe{sub x}O{sub 2} (0.0 ≤ x ≤ 0.15) semiconductors were synthesized using a self-combustion urea nitrate process. The effects of Fe concentration on its microstructural, optical, magnetic, and electrical properties were investigated. X-ray diffraction (XRD) analysis results revealed the delafossite structure in all the samples. The lattice spacing of CuCr{sub 1−x}Fe{sub x}O{sub 2} slightly increased with increasing substitution of Fe at the Cr sites. The optical properties measured at room temperature using UV–visible spectroscopy showed a weak absorbability in the visible light and near IR regions. The corresponding direct optical band gap was about 3.61 eV, exhibiting transparency in the visible region. The magnetic hysteresis loop measurements showed that the Fe-doped CuCrO{sub 2} samples exhibited ferromagnetic behavior at room temperature. This indicated that the substitution of Fe{sup 3+} for Cr{sup 3+} produced a mixed effect on the magnetic properties of CuCrO{sub 2} delafossite oxide. The temperature dependent resistivity measurements clearly revealed the presence of superconductivity in the CuCr{sub 1−x}Fe{sub x}O{sub 2} with a superconducting transition up to 118 K.

  9. Ubiquitous long-range antiferromagnetic coupling across the interface between superconducting and ferromagnetic oxides

    Science.gov (United States)

    de Luca, G. M.; Ghiringhelli, G.; Perroni, C. A.; Cataudella, V.; Chiarella, F.; Cantoni, C.; Lupini, A. R.; Brookes, N. B.; Huijben, M.; Koster, G.; Rijnders, G.; Salluzzo, M.

    2014-11-01

    The so-called proximity effect is the manifestation, across an interface, of the systematic competition between magnetic order and superconductivity. This phenomenon has been well documented and understood for conventional superconductors coupled with metallic ferromagnets; however it is still less known for oxide materials, where much higher critical temperatures are offered by copper oxide-based superconductors. Here we show that, even in the absence of direct Cu-O-Mn covalent bonding, the interfacial CuO2 planes of superconducting La1.85Sr0.15CuO4 thin films develop weak ferromagnetism associated to the charge transfer of spin-polarised electrons from the La0.66Sr0.33MnO3 ferromagnet. Theoretical modelling confirms that this effect is general to all cuprate/manganite heterostructures and the presence of direct bonding only affects the strength of the coupling. The Dzyaloshinskii-Moriya interaction, also at the origin of the weak ferromagnetism of bulk cuprates, propagates the magnetisation from the interface CuO2 planes into the superconductor, eventually depressing its critical temperature.

  10. Visualizing short-range charge transfer at the interfaces between ferromagnetic and superconducting oxides.

    Science.gov (United States)

    Chien, Te Yu; Kourkoutis, Lena F; Chakhalian, Jak; Gray, Benjamin; Kareev, Michael; Guisinger, Nathan P; Muller, David A; Freeland, John W

    2013-01-01

    The interplay between antagonistic superconductivity and ferromagnetism has been a interesting playground to explore the interaction between competing ground states. Although this effect in systems of conventional superconductors is better understood, the framework of the proximity effect at complex-oxide-based superconductor/ferromagnet interfaces is not so clear. The main difficulty originates from the lack of experimental tools capable of probing the interfaces directly with high spatial resolution. Here we harness cross-sectional scanning tunnelling microscopy and spectroscopy together with atomic-resolution electron microscopy to understand the buried interfaces between cuprate and manganite layers. The results show that the fundamental length scale of the electronic evolution between YBa2Cu3O(7-δ) (YBCO) and La2/3Ca1/3MnO3 (LCMO) is confined to the subnanometre range. Our findings provide a complete and direct microscopic picture of the electronic transition across the YBCO/LCMO interfaces, which is an important step towards understanding the competition between ferromagnetism and superconductivity in complex-oxide heterostructures.

  11. Ubiquitous long-range antiferromagnetic coupling across the interface between superconducting and ferromagnetic oxides.

    Science.gov (United States)

    De Luca, G M; Ghiringhelli, G; Perroni, C A; Cataudella, V; Chiarella, F; Cantoni, C; Lupini, A R; Brookes, N B; Huijben, M; Koster, G; Rijnders, G; Salluzzo, M

    2014-11-24

    The so-called proximity effect is the manifestation, across an interface, of the systematic competition between magnetic order and superconductivity. This phenomenon has been well documented and understood for conventional superconductors coupled with metallic ferromagnets; however it is still less known for oxide materials, where much higher critical temperatures are offered by copper oxide-based superconductors. Here we show that, even in the absence of direct Cu-O-Mn covalent bonding, the interfacial CuO2 planes of superconducting La(1.85)Sr(0.15)CuO(4) thin films develop weak ferromagnetism associated to the charge transfer of spin-polarised electrons from the La(0.66)Sr(0.33)MnO(3) ferromagnet. Theoretical modelling confirms that this effect is general to all cuprate/manganite heterostructures and the presence of direct bonding only affects the strength of the coupling. The Dzyaloshinskii-Moriya interaction, also at the origin of the weak ferromagnetism of bulk cuprates, propagates the magnetisation from the interface CuO2 planes into the superconductor, eventually depressing its critical temperature.

  12. Antistatic Polycarbonate/Copper Oxide Composite

    Science.gov (United States)

    Kovich, Michael; Rowland, George R., Jr.

    2003-01-01

    A composite material consisting of polycarbonate filled with copper oxide has been found to be suitable as an antistatic material. This material was developed to satisfy a requirement for an antistatic material that has a mass density less than that of aluminum and that exhibits an acceptably low level of outgassing in a vacuum.

  13. Effects of grain size and grain boundary on critical current density of high T(sub c) superconducting oxides

    Science.gov (United States)

    Zhao, Y.; Zhang, Q. R.; Zhang, H.

    1990-01-01

    By means of adding impurity elements in high T sub c oxides, the effects were studied of grain size and grain boundary on the critical current density of the following systems: YBa2Cu3O(7-y) and Bi-Pr-Sr-Ca-Cu-O. In order to only change the microstructure instead of the superconductivity of the grains in the samples, the impurity elements were added into the systems in terms of the methods like this: (1) substituting Y with the lanthanide except Pr, Ce, and Tb in YBa2Cu3O(7-y) system to finning down grains in the samples, therefore, the effect can be investigated of the grain size on the critical current density of 1:2:3 compounds; (2) mixing the high T sub c oxides with the metal elements, such as Ag, according to the composition of (high T sub c oxide)1-xAgx to metallize the grain boundaries in the samples, studying the effect of the electric conductivity of the grain boundaries on the critical current density; (3) adding SiO2, PbO2, and SnO2 into the high T sub c oxide to form impurity phases in the grain boundaries, trying to find out the effects of the impurity phases or metalloid grain boundaries on the critical current density of the high T sub c superconductors. The experimental results indicate that in the case of of the presence of the metalloid grain boundaries finning down grains fails to enhance the j sub c, but restrains it strongly, the granular high T sub c superconductors with the small size grains coupled weakly is always the low j sub c system.

  14. Compositions comprising enhanced graphene oxide structures and related methods

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Priyank Vijaya; Bardhan, Neelkanth M.; Belcher, Angela; Grossman, Jeffrey

    2016-12-27

    Embodiments described herein generally relate to compositions comprising a graphene oxide species. In some embodiments, the compositions advantageously have relatively high oxygen content, even after annealing.

  15. Compositions comprising enhanced graphene oxide structures and related methods

    Science.gov (United States)

    Kumar, Priyank Vijaya; Bardhan, Neelkanth M.; Belcher, Angela; Grossman, Jeffrey

    2016-12-27

    Embodiments described herein generally relate to compositions comprising a graphene oxide species. In some embodiments, the compositions advantageously have relatively high oxygen content, even after annealing.

  16. Itinerant Ferromagnetism and Superconductivity

    OpenAIRE

    Karchev, Naoum

    2004-01-01

    Superconductivity has again become a challenge following the discovery of unconventional superconductivity. Resistance-free currents have been observed in heavy-fermion materials, organic conductors and copper oxides. The discovery of superconductivity in a single crystal of $UGe_2$, $ZrZn_2$ and $URhGe$ revived the interest in the coexistence of superconductivity and ferromagnetism. The experiments indicate that: i)The superconductivity is confined to the ferromagnetic phase. ii)The ferromag...

  17. Introducing Barium in Transition Metal Oxide Frameworks: Impact upon Superconductivity, Magnetism, Multiferroism and Oxygen Diffusion and Storage.

    Science.gov (United States)

    Raveau, Bernard

    2016-11-25

    The role of barium in the structural chemistry of some transition metal oxides of the series "Cu, Mn, Fe,Co" is reviewed, based on its size effect and its particular chemical bonding. Its impact upon various properties, superconductivity, magnetism, multiferroism, oxygen storage is emphasized.

  18. Superconducting magnetic separation of phosphate using freshly formed hydrous ferric oxide sols.

    Science.gov (United States)

    Li, Yiran; Li, Zhiyong; Xu, Fengyu; Zhang, Weimin

    2017-02-01

    Paramagnetic materials, such as ferric hydroxides, which are cost-effective and highly-efficient, have been little studied in relation to the magnetic separation process. In this study, freshly formed hydrous ferric oxide (HFO) sols were used to remove aqueous phosphate, followed by superconducting magnetic separation. The magnetization of HFO was determined to be 5.7 emu/g in 5.0 T. The particle size distributions ranged from 1 to 80 μm. Ferrihydrite was the primary mineral phase according to XRD analysis. Dissolved P (DP) was first adsorbed on HFO, and second, the P-containing HFO were separated by high gradient superconducting magnetic separation (HGSMS) to remove the Total P (TP). To obtain a P concentration of <0.05 mg/l in the effluent, 0.3, 1.0 and 1.3 g/l HFO were added to 2.5, 5 and 10 mg/l P solutions. The capacity of the HGSMS canister for capturing P-adsorbed HFO depends on the magnetic intensity and flow rate. In the 5.0 T HGSMS at a 1.0 cm/s flow rate, there were 75 column volumes in a single HGSMS cycle. The P concentration increased by 37.5 times after regeneration. Approximately 170 mg/l TP was measured in the backwash water.

  19. Characterization of transparent superconductivity Fe-doped CuCrO2 delafossite oxide

    Science.gov (United States)

    Taddee, Chutirat; Kamwanna, Teerasak; Amornkitbamrung, Vittaya

    2016-09-01

    Delafossite CuCr1-xFexO2 (0.0 ≤ x ≤ 0.15) semiconductors were synthesized using a self-combustion urea nitrate process. The effects of Fe concentration on its microstructural, optical, magnetic, and electrical properties were investigated. X-ray diffraction (XRD) analysis results revealed the delafossite structure in all the samples. The lattice spacing of CuCr1-xFexO2 slightly increased with increasing substitution of Fe at the Cr sites. The optical properties measured at room temperature using UV-visible spectroscopy showed a weak absorbability in the visible light and near IR regions. The corresponding direct optical band gap was about 3.61 eV, exhibiting transparency in the visible region. The magnetic hysteresis loop measurements showed that the Fe-doped CuCrO2 samples exhibited ferromagnetic behavior at room temperature. This indicated that the substitution of Fe3+ for Cr3+ produced a mixed effect on the magnetic properties of CuCrO2 delafossite oxide. The temperature dependent resistivity measurements clearly revealed the presence of superconductivity in the CuCr1-xFexO2 with a superconducting transition up to 118 K.

  20. A novel pre-sintering technique for the growth of Y-Ba-Cu-O superconducting single grains from raw metal oxides

    Science.gov (United States)

    Li, Jiawei; Shi, Yun-Hua; Dennis, Anthony R.; Namburi, Devendra Kumar; Durrell, John H.; Yang, Wanmin; Cardwell, David A.

    2017-09-01

    Most established top seeded melt growth (TSMG) processes of bulk, single grain Y-Ba-Cu-O (YBCO) superconductors are performed using a mixture of pre-reacted precursor powders. Here we report the successful growth of large, single grain YBCO samples by TSMG with good superconducting properties from a simple precursor composition consisting of a sintered mixture of the raw oxides. The elimination of the requirement to synthesize precursor powders in a separate process prior to melt processing has the potential to reduce significantly the cost of bulk superconductors, which is essential for their commercial exploitation. The growth morphology, microstructure, trapped magnetic field and critical current density, J c, at different positions within the sample and maximum levitation force of the YBCO single grains fabricated by this process are reported. Measurements of the superconducting properties show that the trapped filed can reach 0.45 T and that a zero field J c of 2.5 × 104 A cm-2 can be achieved in these samples. These values are comparable to those observed in samples fabricated using pre-reacted, high purity commercial oxide precursor powders. The experimental results are discussed and the possibility of further improving the melt process using raw oxides is outlined.

  1. Fracture behaviour and its relation to critical current of silver-sheathed Ba2YCu3O(7-x) superconducting composite wires and tapes

    Science.gov (United States)

    Ochiai, Shojiro; Hayashi, Kenji; Osamura, Kozo

    1990-08-01

    Silver-sheathed Ba2YCu3O(7-x) superconducting composite wires and tapes were prepared by rolling, drawing, swaging and pressing methods. The fracture behavior and its influence on critical current at 0T at 77 K of the Ba2YCu3O(7-x) were investigated. The oxide was found to show multiple fracture under applied tensile stress, and the critical current density and tensile strength of the oxide in the rolled, swaged and pressed samples were higher than those in the drawn samples. When the working amount was high, the current density and the strength of the oxide were found to become high. Within the present conditions, there was a correlation between critical current density and cracking stress: the higher the cracking stress, the higher the critical current density became. The cracking stress of the present oxide was determined to be 50 MPa at most, being far lower than that of the Nb3Sn compound (800 to 2000 MPa). The critical current density of the rolled, swaged and pressed samples was reduced rapidly when exerted stress on the oxide exceeded the cracking stress, while the reduction in the drawn samples occurred gradually. A strong dependence of the critical current, as a function of applied stress and cracking stress of the oxide, on the measured portion due to scatter in the size of defects contained in the oxide, was found.

  2. Representation of A15 composition and TC in internal-Sn Nb3Sn superconducting strands

    Institute of Scientific and Technical Information of China (English)

    Andre; SULPICE; Jean-Louis; SOUBEYROUX; Christophe; VERWAERDE; Gia; Ky; HOANG

    2010-01-01

    Four sets of mono-element (ME) and two kinds of multifilament (MF) internal-Sn Nb3Sn superconducting strands were designed and fabricated through RRP method in which different compoment ratios, various composite configurations and some third element alloying were arranged. All the strand samples underwent a 210°C/50 h + 340°C/25 h thermal duration for Cu-Sn alloying. After that A15 phase formation heat treatment (HT) was applied for which the ME samples were chosen at three reaction temperatures of 675°C, 700°C and 725°C for 100 h and 200 h while the MF samples at four temperatures of 650°C, 675°C, 700°C and 725°C for 128 h and 200 h. The heat-treated samples were examined for A15 phase composition distribution by X-ray EDS. SQUID magnetization measurement was used to determine critical temperature TC. The obtained results demonstrate that for fully-reacted internal-Sn Nb3Sn superconductors the A15 phase composition and the intrinsic property TC are determined by the diffusion and solid state reaction mechanism and are independent of the factors including HT temperature, strand composite component and configuration arrangement, and the third element addition within the experimental range.

  3. Ionic Model of Some Aspects of Cu NQR Spectra in Superconducting Oxides

    Science.gov (United States)

    Shimizu, Tadashi

    1993-02-01

    We apply an ionic model to explain the pressure and the temperature dependences of copper nuclear quadrupole frequency νQ in superconducting oxides. The pressure and the temperature dependences of νQ can, for the most part, be explained only by the change in the lattice spacing. It has also been shown that the origin of large difference in the 63Cu NQR line width between crystallographically different copper sites in YBa2Cu3O6.5 can be explained in the same model. The result of the present study suggests that the Sternheimer antishielding factor γ∞ is certainly effective in the case of ionic model, although a negligibly small value has been argued from viewpoint of the band calculation.

  4. Development of Industrially Produced Composite Quench Heaters for the LHC Superconducting Lattice Magnets

    CERN Document Server

    Szeless, Balázs; Calvone, F

    1996-01-01

    The quench heaters are vital elements for the protection of the LHC superconducting lattice magnets in the case of resistive transitions of the conductor. The basic concept of magnet protection and technical solutions are briefly presented. The quench heater consists of partially copper clad stainless steel strips sandwiched in between electric insulating carrier foils with electrical and mechanical properties such as to withstand high voltages, low temperatures, pressures and ionizing radiation. Testing of some commercial available electric insulation foils, polyimide (PI), polyetheretherketon (PEEK) and polyarylate (PA) and combinations of adhesive systems which are suitable for industrial processing are described. Possible industrial methods for series production for some 80 km of these composite quench heaters are indicated.

  5. Direct Observation of Long-Term Durability of Superconductivity in YBa2Cu3O7-Ag2O Composites

    Science.gov (United States)

    Lin, Juhn-Jong; Lin, Yong-Han; Huang, Shiu-Ming; Lee, Tsang-Chou; Chen, Teng-Ming

    2003-10-01

    We report direct observation of long-term durability of superconductivity of several YBa2Cu3O7-Ag2O composites that were first prepared and studied almost fourteen years ago [J. J. Lin et al.: Jpn. J. Appl. Phys. 29 (1990) 497]. Remeasurements performed recently on both resistances and magnetizations indicate a sharp critical transition temperature at 91 K. We also find that such long-term environmental stability of high-temperature superconductivity can only be achieved in YBa2Cu3O7 with Ag2O addition, but not with pure Ag addition.

  6. Effect of shock pressure on the structure and superconducting properties of Y-Ba-Cu-O in explosively fabricated bulk metal-matrix composites

    Science.gov (United States)

    Murr, L. E.; Niou, C. S.; Pradhan-Advani, M.

    1991-01-01

    While it is now well established that copper-oxide-based power, or virtually any other ceramic superconductor powder, can be consolidated and encapsulated within a metal matrix by explosive consolidation, the erratic superconductivity following fabrication has posed a major problem for bulk applications. The nature of this behavior was found to arise from microstructural damage created in the shock wave front, and the residual degradation in superconductivity was demonstrated to be directly related to the peak shock pressure. The explosively fabricated or shock loaded YBa2Cu3Ox examples exhibit drastically altered rho (or R) - T curves. The deterioration in superconductivity is even more noticeable in the measurement of ac magnetic susceptibility and flux exclusion or shielding fraction which is also reduced in proportion to increasing peak shock pressure. The high frequency surface resistance (in the GHz range) is also correspondingly compromised in explosively fabricated, bulk metal-matrix composites based on YBa2Cu3O7. Transmission electron microscopy (including lattice imaging techniques) is being applied in an effort to elucidate the fundamental (microstructural) nature of the shock-induced degradation of superconductivity and normal state conductivity. One focus of TEM observations has assumed that oxygen displaced from b-chains rather than oxygen-vacancy disorder in the basal plane of oxygen deficient YBa2Cu3Ox may be a prime mechanism. Shock-wave displaced oxygen may also be locked into new positions or interstitial clusters or chemically bound to displaced metal (possibly copper) atoms to form precipitates, or such displacements may cause the equivalent of local lattice cell changes as a result of stoichiometric changes. While the shock-induced suppression of T(sub c) is not desirable in the explosive fabrication of bulk metal-matrix superconductors, it may be turned into an advantage if the atomic-scale distortion can be understood and controlled as local

  7. Anomalous pressure dependence of the superconducting transition temperature of beta-pyrochlore AOs2O6 oxides.

    Science.gov (United States)

    Muramatsu, T; Takeshita, N; Terakura, C; Takagi, H; Tokura, Y; Yonezawa, S; Muraoka, Y; Hiroi, Z

    2005-10-14

    High-pressure effects on the superconducting transitions of beta-pyrochlore oxide superconductors AOs(2)O(6) (A = Cs,Rb,K) are studied by measuring resistivity under high pressures up to 10 GPa. The superconducting transition temperature T(c) first increases with increasing pressure in every compound and then exhibits a broad maximum at 7.6 K (6 GPa), 8.2 K (2 GPa), and 10 K (0.6 GPa) for A = Cs, Rb, and K, respectively. Finally, the superconductivity is suppressed completely at a critical pressure near 7 GPa and 6 GPa for A = Rb and K and probably above 10 GPa for A = Cs. Characteristic changes in the coefficient A of the T(2) term in resistivity and residual resistivity are observed, both of which are synchronized with the corresponding change in T(c).

  8. Pulsed field magnetization strategies and the field poles composition in a bulk-type superconducting motor

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhen, E-mail: zhen.huang@sjtu.edu.cn [Academy of Information Technology and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Ruiz, H.S., E-mail: dr.harold.ruiz@le.ac.uk [Department of Engineering, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Coombs, T.A., E-mail: tac1000@cam.ac.uk [Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom)

    2017-03-15

    Highlights: • Different compositions of the magnetic poles have been obtained depending on the relative orientation of the magnetizing coil and the surfaces of the columns of bulks that conform a magnetic pole. • Two bidimensional models accounting for the electromagnetic response of the top and lateral cross sections of three columns of HTS bulks subjected to multiple pulsed magnetic fields have been created. • An extended PFM strategy has been proposed by considering the magnetization of at least three successive columns of HTS bulks per pole. In the extended PFM strategy the area of each one of the poles can be seen increased by a factor of 200%-400% - Abstract: High temperature superconducting (HTS) bulks offer the potential of trapping and maintaining much higher magnetic loading level compared with the conventional permanent magnets used in rotary machines, although the effective magnetization of multiple HTS bulks with different relative orientations over the surface of cylindrical rotors creates new challenges. In this paper, we present the design and numerical validation of the Pulse Field Magnetization (PFM) strategy considered for the magnetization of the four-pole synchronous fully superconducting motor developed at the University of Cambridge. In a first instance, singular columns of up to five HTS bulks aligned over the height of the rotor were subjected to up to three magnetic pulses of 1.5 T peak, and the experimental results have been simulated by considering the electrical and thermal properties of the system in a 2D approach. The entire active surface of the rotor is covered by HTS bulks of approximately the same dimensions, resulting in an uneven distribution of pole areas with at least one of the poles formed by up to 3 columns of magnetized bulks, with relatively the same peaks of trapped magnetic field. Thus, in order to effectively use the entire area of the superconducting rotor, multiple pulsed fields per column have been applied

  9. Out-of-plane Ionicity versus In-plane Covalency Interplay in High-Tc Superconducting Oxides

    OpenAIRE

    2015-01-01

    It seems that the remarkable properties of the high temperature superconducting oxides, especially the Insulator-Metal Transition (IMT) and the Metal-Superconductor Transition (MST) both originate from the competition (interplay) between ionic versus in-plane covalence nature of bonds in these materials. As a result of this competition, the microscopic order parameter, that is firmly identified to be the local field estimated from the ionic polarization at the sub-unit level (one half of the ...

  10. Effects of oxide precursors on superconducting properties of polycrystalline SmFeAsO1-xFx

    Science.gov (United States)

    Yuan, F. F.; Ding, Y.; Sun, Y.; Zhuang, J. C.; Zhou, W.; Li, G. Z.; Sumption, M.; Li, X. W.; Shi, Z. X.

    2013-12-01

    A series of polycrystalline SmFeAsO1-xFx samples were synthesized by one-step and two-step method at ambient pressure using different oxide precursors, namely As2O3, Fe2O3 and nano-Fe2O3 powder, as the source of element O. Results of X-ray diffraction and magnetic measurements manifest that starting oxides affected the phase formation and superconducting properties of SmFeAsO1-xFx. As2O3 as oxide precursor contributes to the fast formation of superconducting phase for a short period of sintering time. And samples prepared using As2O3 show higher superconducting transition temperature Tc and more stable fluorine doping level. Compared with Fe2O3, nano-Fe2O3 promotes fluorine doping into the O site. While using Fe2O3 leads to higher level of Fe and SmOF impurities. The critical current density Jcm were derived from magnetic hysteresis loops. Sample prepared using As2O3 shows higher Jcm in low temperature and high magnetic fields.

  11. Strong, damage tolerant oxide-fiber/oxide matrix composites

    Science.gov (United States)

    Bao, Yahua

    Electrophoretic deposition (EPD) is an easy and cost effective method to fabricate fiber-reinforced green composites. Non-conductive Nextel(TM) 720 fibers were successfully coated with a transient, conductive polypyrrole submicron surface layer for use directly as an electrode in EPD processing. However, electric-field shielding limits particle infiltration into the conductive fiber bundles and they mostly deposit on the outer surface of the fiber bundle. When the bundle is large, central cavities exist after deposition. The EPD cell was modified for electrophoretic infiltration deposition (EPID). Non conductive fibers were laid on an electrode and charged particles in an ethanol suspension are driven there through by an electric field, infiltrate and deposit on the electrode to then build up into the fiber preform and fill the voids therein. Dense, uniform, green fiber composites were successfully fabricated via constant current EPID. The EPID process is modeled as capillary electrophoretic infiltration. The process consists of two steps: particle electrophoresis outside the capillaries and electrophoretic infiltration inside the capillaries. Due to the zero net flow of the ethanol across the capillary cross-section, there is no electro-osmotic flow contribution to the deposition rate. Hamaker's law was extended to the EPID process, i.e., the deposition yield is proportional to the electric field inside the capillaries. The total deposition yield is controlled by the slow step of the process, i.e., the rate of electrophoresis in the open suspension outside the capillaries. AlPO4 was proposed as a weak layer between oxide fibers and oxide matrix in fiber-reinforced ceramic matrix composites (CMC's). AlPO 4 nano particles were synthesized by chemical co-precipitation of Al 3+ and HPO42- with urea at 95°C. The solution pH basic region and amorphous AlPO4 precipitated of narrow size distribution with a mean particle size 50nm. Nextel 720 fibers were pretreated with

  12. Epoxide composites with thermally reduced graphite oxide and their properties

    Science.gov (United States)

    Arbuzov, A. A.; Muradyan, V. E.; Tarasov, B. P.; Sokolov, E. A.; Babenko, S. D.

    2016-05-01

    The properties of epoxide composites modified by thermal reduced graphite oxide are studied. The dielectric permittivities of epoxide composites with additives of up to 1.5 wt % of reduced graphite oxide are studied at a frequency of 9.8 GHz. It is shown that despite its low electrical conductivity, the large specific surface area of reduced graphite oxide allows us to create epoxide composites with high complex dielectric permittivities and dielectric loss tangents.

  13. Properties of Graphene Oxide/Epoxy Resin Composites

    OpenAIRE

    Jijun Tang; Haijun Zhou; Yunxia Liang; Xinlan Shi; Xin Yang; Jiaoxia Zhang

    2014-01-01

    The graphene oxide (GO) was obtained by pressurized oxidation method using natural graphite as raw materials. Then the GO/epoxy resin composites were prepared by casting. The mechanical and damping properties of composites were studied. As a result, the impact intensity of GO/epoxy resin composites was prominently improved with the content of the graphene oxide increasing. The glass transition temperature decreased and the damping capacity is improved.

  14. Properties of Graphene Oxide/Epoxy Resin Composites

    OpenAIRE

    Jijun Tang; Haijun Zhou; Yunxia Liang; Xinlan Shi; Xin Yang; Jiaoxia Zhang

    2014-01-01

    The graphene oxide (GO) was obtained by pressurized oxidation method using natural graphite as raw materials. Then the GO/epoxy resin composites were prepared by casting. The mechanical and damping properties of composites were studied. As a result, the impact intensity of GO/epoxy resin composites was prominently improved with the content of the graphene oxide increasing. The glass transition temperature decreased and the damping capacity is improved.

  15. Properties of Graphene Oxide/Epoxy Resin Composites

    Directory of Open Access Journals (Sweden)

    Jijun Tang

    2014-01-01

    Full Text Available The graphene oxide (GO was obtained by pressurized oxidation method using natural graphite as raw materials. Then the GO/epoxy resin composites were prepared by casting. The mechanical and damping properties of composites were studied. As a result, the impact intensity of GO/epoxy resin composites was prominently improved with the content of the graphene oxide increasing. The glass transition temperature decreased and the damping capacity is improved.

  16. Exploration of Anomalous Gravity Effects by rf-Pumped Magnetized High-T(c) Superconducting Oxides

    Science.gov (United States)

    Robertson, Tony; Litchford, Ron; Peters, Randall; Thompson, Byran; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    A number of anomalous gravitational effects have been reported in the scientific literature during recent years, but there has been no independent confirmation with regard to any of these claims. Therefore, the NASA Marshall Space Flight Center, in response to the propulsion challenges specified by NASA's Breakthrough Propulsion Physics (BPP) program, proposed to explore the possibility of observing anomalous gravitation behavior through the manipulation of Josephson junction effects in magnetized high-Tc superconducting oxides. The technical goal was to critically test this revolutionary physical claim and provide a rigorous, independent, empirical confirmation (or refutation) of anomalous effects related to the manipulation of gravity by radio frequency (rf)-pumped magnetized type-2 superconductors. Because the current empirical evidence for gravity modification is anecdotal, our objective was to design, construct, and meticulously implement a discriminating experiment, which would put these observations on a more firm footing within the scientific community. Our approach is unique in that we advocate the construction of an extremely sensitive torsion balance with which to measure gravity modification effects by rf-pumped type-2 superconductor test masses. This paper reviews the anecdotal evidence for anomalous gravity effects, describes the design and development of a simplified torsion balance experiment for empirically investigating these claims, and presents the results of preliminary experiments.

  17. Phase Diagram and Electronic Properties of High-Tc Superconducting Oxides

    Science.gov (United States)

    Pavuna, Davor

    We firstly briefly summarize some of the most relevant recent results and open questions across rather complex electronic phase diagram of cuprates. We continue with a discussion of results on thin superconducting oxide films grown by laser ablation. Systematic studies show that BSCCO-phases and LSCO-214 exhibit conductor-like Fermi edge, whereas materials containing "chains" (like YBCO-123) are prone to very rapid surface degradation, most likely related to critical oxygen loss at the outermost layers. Recently, direct ARPES dispersion measurements on in-situ grown, strained 10UC thin LSCO-214 films (Tc = 44 K) have shown the band crossing of Fermi level well before the Brillouin zone boundary. This is in contrast to the flat band observed in unstrained single crystals — and to the band flattening predicted by band calculations for in-plane compressive strain. In spite of density of states reduction near the Fermi level, the critical temperature increases in strained films with respect to unstrained crystals; this poses further challenge to HTSC theory.

  18. Charge transfer polarisation wave in high Tc oxides and superconductive pairing

    Science.gov (United States)

    Chakraverty, B. K.

    1991-01-01

    A general formalism of quantized charge transfer polarization waves was developed. The nature of possible superconductive pairing between oxygen holes is discussed. Unlike optical phonons, these polarization fields will give rise to dielectric bipolarons or bipolaron bubbles. In the weak coupling limit, a new class of superconductivity is to be expected.

  19. Mass distribution of cluster ions produced from laser ablation of metal-composite-oxides Y-M-Cu-O (M = Ba, Sr, Ca, Mg)

    Energy Technology Data Exchange (ETDEWEB)

    Liu Zhaoyang; Wang Chunru; Huang Rongbin; Zheng Lansun [Xiamen Univ. (China). Dept. of Chem.

    1995-09-01

    Laser ablation of YMCuO metal-composite-oxides (M = Ba, Sr, Ca, Mg) in high vacuum produced cluster ions with various sizes and compositions. Mass spectra of the cluster ions were recorded by a home-built time-of-flight (TOF) mass spectrometer and the mass distributions were analyzed by a statistical model. For YBa{sub 2}Cu{sub 3}O{sub 7-x} (YBCO) high-Tc superconducting samples, six series of cluster ions were observed. Replacement of barium in the metal-composite-oxide sample with other alkaline earth metal, such as strontium, calcium, or magnesium, not only removed the superconductivity, but also changed the compositions and distributions of the laser generated cluster ions. For instance, copper was only found in the compositions of cluster ions generated from YBCO sample. From comparison of the experimental results, interactions among components of the metal-composite-oxides and the function of alkaline earth metal in superconducting material were discussed. (orig.) 19 refs.

  20. MAXIMSUPER: a computer program to assist in the design of multifilamentary superconducting composites. [Nb/sub 3/Sn

    Energy Technology Data Exchange (ETDEWEB)

    Hoard, R.W.; Scanlan, R.M.; Hirzel, D.G.

    1979-07-03

    The strain degradation of critical current density has been analytically and experimentally investigated for multifilamentary superconducting composites produced in a bronze core geometry. Analytic results were obtained from a computer program (MAXIMSUPER) which predicts the stresses and strains in composites as a result of thermal and axial loading. Tensile test data for Nb/sub 3/Sn are described. It is believed that the strain dependence of the critical current found in Nb/sub 3/Sn is due to strain enhanced martensitic transformation.

  1. Nanostructured manganese oxide/carbon nanotubes, graphene and graphene oxide as water-oxidizing composites in artificial photosynthesis.

    Science.gov (United States)

    Najafpour, Mohammad Mahdi; Rahimi, Fahime; Fathollahzadeh, Maryam; Haghighi, Behzad; Hołyńska, Małgorzata; Tomo, Tatsuya; Allakhverdiev, Suleyman I

    2014-07-28

    Herein, we report on nano-sized Mn oxide/carbon nanotubes, graphene and graphene oxide as water-oxidizing compounds in artificial photosynthesis. The composites are synthesized by different and simple procedures and characterized by a number of methods. The water-oxidizing activities of these composites are also considered in the presence of cerium(IV) ammonium nitrate. Some composites are efficient Mn-based catalysts with TOF (mmol O2 per mol Mn per second) ~ 2.6.

  2. Fabrication of Al/AlOx/Al Josephson junctions and superconducting quantum circuits by shadow evaporation and a dynamic oxidation process

    Institute of Scientific and Technical Information of China (English)

    Wu Yu-Lin; Deng Hui; Yu Hai-Feng; Xue Guang-Ming; Tian Ye; Li Jie; Chen Ying-Fei

    2013-01-01

    Besides serving as promising candidates for realizing quantum computing,superconducting quantum circuits are one of a few macroscopic physical systems in which fundamental quantum phenomena can be directly demonstrated and tested,giving rise to a vast field of intensive research work both theoretically and experimentally.In this paper we report our work on the fabrication of superconducting quantum circuits,starting from its building blocks:Al/AlOx/Al Josephson junctions.By using electron beam lithography patterning and shadow evaporation,we have fabricated aluminum Josephson junctions with a controllable critical current density (jc) and wide range of junction sizes from 0.01 μm2 up to 1 μm2.We have carried out systematical studies on the oxidation process in fabricating Al/AlOx/Al Josephson junctions suitable for superconducting flux qubits.Furthermore,we have also fabricated superconducting quantum circuits such as superconducting flux qubits and charge-flux qubits.

  3. Compositional Analysis of the High Molecular Weight Ethylene Oxide Propylene Oxide Copolymer by MALDI Mass Spectrometry

    CERN Document Server

    Houshia, Orwa Jaber

    2012-01-01

    The composition of narrow distribution poly ethylene oxide-propylene oxide copolymer (Mw ~ 8700 Da) was studied using matrix assisted laser desorption ionization (MALDI) mass spectrometry. The ethylene oxide-propylene oxide copolymer produced oligomers separated by 14 Da. The average resolving power over the entire spectrum was 28,000. Approximately 448 isotopically resolved peaks representing about 56 oligomers are identified. Although agreement between experimental and calculated isotopic distributions was strong, the compositional assignment was difficult. This is due to the large number of possible isobaric components. The purpose of this research is to resolve and study the composition of high mass copolymer such as ethylene oxide-propylene oxide.

  4. Probing the density of states of two-level tunneling systems in silicon oxide films using superconducting lumped element resonators

    Energy Technology Data Exchange (ETDEWEB)

    Skacel, S. T. [Physikalisches Institut, Karlsruher Institut für Technologie, Wolfgang-Gaede-Straße 1, D-76131 Karlsruhe (Germany); Institut für Mikro- und Nanoelektronische Systeme, Karlsruher Institut für Technologie, Hertzstraße 16, D-76187 Karlsruhe (Germany); Kaiser, Ch.; Wuensch, S.; Siegel, M. [Institut für Mikro- und Nanoelektronische Systeme, Karlsruher Institut für Technologie, Hertzstraße 16, D-76187 Karlsruhe (Germany); Rotzinger, H.; Lukashenko, A.; Jerger, M.; Weiss, G. [Physikalisches Institut, Karlsruher Institut für Technologie, Wolfgang-Gaede-Straße 1, D-76131 Karlsruhe (Germany); Ustinov, A. V. [Physikalisches Institut, Karlsruher Institut für Technologie, Wolfgang-Gaede-Straße 1, D-76131 Karlsruhe (Germany); Russian Quantum Center, 100 Novaya St., Skolkovo, Moscow Region 143025 (Russian Federation)

    2015-01-12

    We have investigated dielectric losses in amorphous silicon oxide (a-SiO) thin films under operating conditions of superconducting qubits (mK temperatures and low microwave powers). For this purpose, we have developed a broadband measurement setup employing multiplexed lumped element resonators using a broadband power combiner and a low-noise amplifier. The measured temperature and power dependences of the dielectric losses are in good agreement with those predicted for atomic two-level tunneling systems (TLS). By measuring the losses at different frequencies, we found that the TLS density of states is energy dependent. This had not been seen previously in loss measurements. These results contribute to a better understanding of decoherence effects in superconducting qubits and suggest a possibility to minimize TLS-related decoherence by reducing the qubit operation frequency.

  5. Superconductivity of an oxide film on the surface of Bi(1-x)Sb(x) alloy single crystals produced by electrochemical oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Alfeev, V.N.; Aminov, B.A.; Brandt, N.B.; Vasina, S.IA.; Damaskin, B.B. (Moskovskii Gosudarstvennyi Universitet, Moscow (USSR))

    1989-10-01

    A study is made of the volt-ampere characteristics of point contacts produced by the mechanical compression of the electrochemically oxidized Bi(1-x)Sb(x) single crystals. Volt-ampere characteristics of the Josephson type have been observed at temperatures below Tc=6-8 K, indicating that the oxide films have superconducting properties at these temperatures. In a magnetic field, Mersereau oscillations, typical of a Josephson transition net, are observed in the contact region. In an external microwave field, the volt-ampere characteristics exhibit a structure related to the occurrence of Shapiro steps.

  6. Superconductivity of Ag-added composites of Hg-1223 grained Bean model

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, M.; Akune, T. [Department of Electrical Engineering, Kyushu Sangyo University, 2-3-1 Matsukadai, 813-8503 Fukuoka (Japan); Sakamoto, N. [Department of Electrical Engineering, Kyushu Sangyo University, 2-3-1 Matsukadai, 813-8503 Fukuoka (Japan)], E-mail: saka@te.kyusan-u.ac.jp; Khan, H.R. [Institut von Ionenstrahl und Vakuum Technologie, 73728 Esslingen (Germany); Lueders, K. [Freie Universitaet Berlin, Institut fuer Experimentalphysik, 14 Arnimallee, D-14195 Berlin (Germany)

    2007-10-01

    High-T{sub c} ceramics tend to lower its quality by the aging effect. The main cause of the degradation is considered to originate in the link region among the superconducting grains. The preservation and recovery of superconductivity by reinforcement of the grain boundary is an important issue for high-T{sub c} application. A quantitative analysis of the contribution due to the grain and link is necessary and the grained Bean model is proposed, where the superconducting phases are immersed in the matrix link superconductor. Difference of the superconducting characteristics of the grain, the link and grain content factor give a variety of deformation on the AC susceptibility curves. Comparing the observed data with the numerically computed model allows more clear insight between the grain and intergrain structure.

  7. Water defluoridation by aluminium oxide-manganese oxide composite material.

    Science.gov (United States)

    Alemu, Sheta; Mulugeta, Eyobel; Zewge, Feleke; Chandravanshi, Bhagwan Singh

    2014-08-01

    In this study, aluminium oxide-manganese oxide (AOMO) composite material was synthesized, characterized, and tested for fluoride removal in batch experiments. AOMO was prepared from manganese(II) chloride and aluminium hydroxide. The surface area of AOMO was found to be 30.7m2/g and its specific density was determined as 2.78 g/cm3. Detailed investigation of the adsorbent by inductively coupled plasma-optical emission spectrometry, inductively coupled plasma-mass spectrometry, and ion chromatography (for sulphate only) showed that it is composed of Al, Mn, SO4, and Na as major components and Fe, Si, Ca, and Mg as minor components. Thermogravimetric analysis was used to study the thermal behaviour of AOMO. X-ray diffraction analysis showed that the adsorbent is poorly crystalline. The point of zero charge was determined as 9.54. Batch experiments (by varying the proportion of MnO, adsorbent dose, contact time, initial F concentration, and raw water pH) showed that fluoride removal efficiency ofAOMO varied significantly with percentage of MnO with an optimum value of about I11% of manganese oxide in the adsorbent. The optimum dose of the adsorbent was 4 g/L which corresponds to the equilibrium adsorption capacity of 4.8 mg F-/g. Both the removal efficiency and adsorption capacity showed an increasing trend with an increase in initial fluoride concentration of the water. The pH for optimum fluoride removal was found to be in the range between 5 and 7. The adsorption data were analysed using the Freundlich, Langmuir, and Dubinirn-Radushkevich models. The minimum adsorption capacity obtained from the non-linear Freundlich isotherm model was 4.94 mg F-/g and the maximum capacity from the Langmuir isotherm method was 19.2mg F-/g. The experimental data of fluoride adsorption on AOMO fitted well to the Freundlich isotherm model. Kinetic studies showed that the adsorption is well described by a non-linear pseudo-second-order reaction model with an average rate constant of 3

  8. Superconducting material development

    Science.gov (United States)

    1987-09-01

    A superconducting compound was developed that showed a transition to a zero-resistance state at 65 C, or 338 K. The superconducting material, which is an oxide based on strontium, barium, yttrium, and copper, continued in the zero-resistance state similar to superconductivity for 10 days at room temperature in the air. It was also noted that measurements of the material allowed it to observe a nonlinear characteristic curve between current and voltage at 65 C, which is another indication of superconductivity. The research results of the laboratory experiment with the superconducting material will be published in the August edition of the Japanese Journal of Applied Physics.

  9. Highly flexible, mechanically robust superconducting wire consisting of NbN-carbon-nanotube nanofibril composites

    Science.gov (United States)

    Kim, Jeong-Gyun; Kang, Haeyong; Kim, Joonggyu; Lee, Young Hee; Suh, Dongseok

    A flexible superconducting fiber is prepared by twisting carbon nanotube (CNT) sheets coated with sputter-deposited niobium nitride (NbN) layer to form the shape of yarn. Twisted CNT yarn, which has been extensively studied due to its high flexibility as well as excellent mechanical properties, and NbN, which is a superconducting material with high transition temperature (Tc) and critical magnetic field (Hc), are combined together by the deposition of NbN layer on free-standing CNT-sheet substrate followed by the biscrolling process. We tried many experimental conditions to investigate the superconducting properties of NbN-CNT yarn as a function of NbN thickness and number of CNT-sheet layers, and found out that the superconducting property of NbN on CNT-sheet can be comparable to that of NbN thin film on the normal solid substrate. In addition, the superconducting property survived even under the condition of severe mechanical deformation such as knotting. These results show the potential application of this technology as a large-scale fabrication method of flexible, mechanically robust, high performance superconducting wire. This work is supported by the Institute for Basic Science (IBS-R011-D1), and by the National Research Foundation (BSR-2013R1A1A1076063) funded by the Ministry of Science, ICT & Future Planning, Republic of Korea.

  10. Superconducting YBa2Cu3O(7-delta) thin films on GaAs with conducting indium-tin-oxide buffer layers

    Science.gov (United States)

    Kellett, B. J.; Gauzzi, A.; James, J. H.; Dwir, B.; Pavuna, D.

    1990-12-01

    Superconducting YBa2Cu3O(7-delta) (YBCO) thin films have been grown in situ on GaAs with conducting indium-tin-oxide (ITO) buffer layers. Superconducting onset is about 92 K with zero resistance at 60 K. ITO buffer layers usually form Schottky-like barriers on GaAs. The YBCO film and ITO buffer layer, grown by ion beam sputter codeposition, are textured and polycrystalline with a combined room-temperature resistivity of about 1 milliohm cm.

  11. PHASE CONVERSIONS IN METAL-OXIDE COMPOSITIONS ON THE BASIS OF ALUMINIUM AND SILICON OXIDE

    OpenAIRE

    2010-01-01

    The regularities of phase conversions in metal-oxide compositions on the basis of aluminium and silicon oxide with the purpose of silumins synthesis by means of direct restoration of aluminium silicon are studied.

  12. Development and properties of an oxide fiber-oxide matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, S.M.; Blum, Y.D. [SRI International, Menlo Park, CA (United States); Kanazawa, C.H.

    1999-03-01

    Continuous oxide fiber/oxide matrix composites are attractive for use as high temperature structural materials because they can combine composite properties with long-term oxidative stability. The development of a matrix for such a composite and prevention of matrix-fiber coating interaction is described here. The goal use temperature of the composite is 1100 C. The composite is being developed by the M{sup 2}C Consortium comprising 3M, Rockwell International, and SRI International. The composite consists of an alumina-based woven-tow fiber preform, coated with lanthanum phosphate (monazite) in an oxide matrix derived from a preceramic-polymer slurry filled with active and inert powders. This approach to the matrix enables conventional polymer matrix composite technology such as RTM to be used in composite part fabrication. Only one infiltration of the matrix is required, a critical factor in keeping the cost low. (orig.) 6 refs.

  13. Superconductivity-induced magnetization depletion in a ferromagnet through an insulator in a ferromagnet-insulator-superconductor hybrid oxide heterostructure.

    Science.gov (United States)

    Prajapat, C L; Singh, Surendra; Paul, Amitesh; Bhattacharya, D; Singh, M R; Mattauch, S; Ravikumar, G; Basu, S

    2016-05-21

    Coupling between superconducting and ferromagnetic states in hybrid oxide heterostructures is presently a topic of intense research. Such a coupling is due to the leakage of the Cooper pairs into the ferromagnet. However, tunneling of the Cooper pairs though an insulator was never considered plausible. Using depth sensitive polarized neutron reflectivity we demonstrate the coupling between superconductor and magnetic layers in epitaxial La2/3Ca1/3MnO3 (LCMO)/SrTiO3/YBa2Cu3O7-δ (YBCO) hybrid heterostructures, with SrTiO3 as an intervening oxide insulator layer between the ferromagnet and the superconductor. Measurements above and below the superconducting transition temperature (TSC) of YBCO demonstrate a large modulation of magnetization in the ferromagnetic layer below the TSC of YBCO in these heterostructures. This work highlights a unique tunneling phenomenon between the epitaxial layers of an oxide superconductor (YBCO) and a magnetic layer (LCMO) through an insulating layer. Our work would inspire further investigations on the fundamental aspect of a long range order of the triplet spin-pairing in hybrid structures.

  14. Superconductivity-induced magnetization depletion in a ferromagnet through an insulator in a ferromagnet-insulator-superconductor hybrid oxide heterostructure

    Science.gov (United States)

    Prajapat, C. L.; Singh, Surendra; Paul, Amitesh; Bhattacharya, D.; Singh, M. R.; Mattauch, S.; Ravikumar, G.; Basu, S.

    2016-05-01

    Coupling between superconducting and ferromagnetic states in hybrid oxide heterostructures is presently a topic of intense research. Such a coupling is due to the leakage of the Cooper pairs into the ferromagnet. However, tunneling of the Cooper pairs though an insulator was never considered plausible. Using depth sensitive polarized neutron reflectivity we demonstrate the coupling between superconductor and magnetic layers in epitaxial La2/3Ca1/3MnO3 (LCMO)/SrTiO3/YBa2Cu3O7-δ (YBCO) hybrid heterostructures, with SrTiO3 as an intervening oxide insulator layer between the ferromagnet and the superconductor. Measurements above and below the superconducting transition temperature (TSC) of YBCO demonstrate a large modulation of magnetization in the ferromagnetic layer below the TSC of YBCO in these heterostructures. This work highlights a unique tunneling phenomenon between the epitaxial layers of an oxide superconductor (YBCO) and a magnetic layer (LCMO) through an insulating layer. Our work would inspire further investigations on the fundamental aspect of a long range order of the triplet spin-pairing in hybrid structures.

  15. Centre seeded infiltration and growth process for fabrication of large grain bulk YBCO/Ag superconducting composites

    Science.gov (United States)

    Parthasarathy, R.; Seshubai, V.

    2012-06-01

    We report the fabrication of a large grain bulk YBCO/Ag superconductor using a novel technique which we call Centre Seeded Infiltration and Growth Process (CSIGP). Using this technique, it has been made possible to get bulk YBCO/Ag composite sample with uniform grain growth textured along the c-axis. The resulting large grain sample has been found to have high critical current densities up to large magnetic fields. We correlate the improved superconducting and magnetic properties to the modified grain growth conditions employed in this fabrication technique.

  16. Elemental composition analysis of superconducting Hg0.67Pb0.34Ba2Ca2Cu3O8+δ

    Institute of Scientific and Technical Information of China (English)

    毛福明; 邵力为

    1997-01-01

    The analysis of superconducting sample by using a sputtered neutral particle mass spectrometer demonstrates that Ca and Ba elements are oxidative, Cu is non-oxidative, Hg is mainly in metallic form near the surface and becomes oxidative far from the surface, and Pb is concentrated on the surface. The analysis also reveals that the highly concentrative hydrocarbon and water impurities are mixed into the sample during the preparation and conservation.

  17. Superconductivity at 52.5 K in the lanthanum-barium-copper-oxide system

    Science.gov (United States)

    Chu, C. W.; Hor, P. H.; Meng, R. L.; Gao, L.; Huang, Z. J.

    1987-01-01

    The electrical properties of the (La/0/9/Ba/0.1/)CuO/4-y/ system are examined under ambient and hydrostatic pressures. The resistance, ac magnetic susceptibility, and superconductivity onset, midpoint, and intercept temperatures are measured. It is observed that at ambient pressure the resistance decreases with temperature decreases, and the ac susceptibility shows diamagnetic shifts starting at about 32 K. Under hydrostatic pressure a superconducting transition with an onset temperature of 52.5 K is observed, and the resistance increases at lower temperatures. The data reveal that the electrical properties of the La-Ba-Cu-O system are dependent on samples and preparation conditions. Various causes for the high temperature superconductivity of the system are proposed.

  18. Growth and characterization of superconducting spinel oxide LiTiO thin films

    Science.gov (United States)

    Chopdekar, Rajesh V.; Wong, Franklin J.; Takamura, Yayoi; Arenholz, Elke; Suzuki, Yuri

    2009-11-01

    Epitaxial films of LiTiO on single crystalline substrates of MgAlO, MgO, and SrTiO provide model systems to systematically explore the effects of lattice strain and microstructural disorder on the superconducting state. Lattice strain that affects bandwidth gives rise to variations in the superconducting and normal state properties. Microstructural disorder, such as antiphase boundaries that give rise to Ti network disorder, reduces the critical temperature, and Ti network disorder combined with Mg interdiffusion lead to a much more dramatic effect on the superconducting state. Surface sensitive X-ray absorption spectroscopy has identified Ti to retain site symmetry and average valence of the bulk material regardless of film thickness.

  19. High conducting oxide--sulfide composite lithium superionic conductor

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Chengdu; Rangasamy, Ezhiylmurugan; Dudney, Nancy J.; Keum, Jong Kahk; Rondinone, Adam Justin

    2017-01-17

    A solid electrolyte for a lithium-sulfur battery includes particles of a lithium ion conducting oxide composition embedded within a lithium ion conducting sulfide composition. The lithium ion conducting oxide composition can be Li.sub.7La.sub.3Zr.sub.2O.sub.12 (LLZO). The lithium ion conducting sulfide composition can be .beta.-Li.sub.3PS.sub.4 (LPS). A lithium ion battery and a method of making a solid electrolyte for a lithium ion battery are also disclosed.

  20. Composition-structure-property relation of oxide glasses

    DEFF Research Database (Denmark)

    Hermansen, Christian

    The composition of glass can be varied continuously within their glass-forming regions. This compositional flexibility makes it possible to tailor the properties of a glass for a variety of specific uses. In the industry such tailoring is done on a trial-and-error basis with only the intuition...... also increases such properties. Yet, these rules are not strictly followed even for the simplest binary oxide glasses, such as alkali silicates, borates and phosphates. In this thesis it is argued that the missing link between composition and properties is the glass structure. Structural models...... capable of ab initio prediction of the oxide glass properties from composition....

  1. Structure and composition of the superconducting phase in alkali iron selenide KyFe1.6+xSe2

    Science.gov (United States)

    Carr, Scott V.; Louca, Despina; Siewenie, Joan; Huang, Q.; Wang, Aifeng; Chen, Xianhui; Dai, Pengcheng

    2014-04-01

    We use neutron diffraction to study the temperature evolution of the average structure and local lattice distortions in insulating and superconducting potassium iron selenide KyFe1.6+xSe2. In the high temperature paramagnetic state, both materials have a single phase with a crystal structure similar to that of the BaFe2As2 family of iron pnictides. While the insulating KyFe1.6+xSe2 forms a √5 ×√5 iron vacancy ordered block antiferromagnetic (AF) structure at low temperature, the superconducting compounds spontaneously phase separate into an insulating part with √5 ×√5 iron vacancy order and a superconducting phase with chemical composition of KzFe2Se2 and BaFe2As2 structure. Therefore, superconductivity in alkaline iron selenides arises from alkali deficient KzFe2Se2 in the matrix of the insulating block AF phase.

  2. Methylene blue adsorption on graphene oxide/calcium alginate composites.

    Science.gov (United States)

    Li, Yanhui; Du, Qiuju; Liu, Tonghao; Sun, Jiankun; Wang, Yonghao; Wu, Shaoling; Wang, Zonghua; Xia, Yanzhi; Xia, Linhua

    2013-06-05

    Graphene oxide has been used as an adsorbent in wastewater treatment. However, the dispersibility in aqueous solution and the biotoxicity to human cells of graphene oxide limits its practical application in environmental protection. In this research, a novel environmental friendly adsorbent, calcium alginate immobilized graphene oxide composites was prepared. The effects of pH, contact time, temperature and dosage on the adsorption properties of methylene blue onto calcium alginate immobilized graphene oxide composites were investigated. The equilibrium adsorption data were described by the Langmuir and Freundlich isotherms. The maximum adsorption capacity obtained from Langmuir isotherm equation was 181.81 mg/g. The pseudo-first order, pseudo-second order, and intraparticle diffusion equation were used to evaluate the kinetic data. Thermodynamic analysis of equilibriums indicated that the adsorption reaction of methylene blue onto calcium alginate immobilized graphene oxide composites was exothermic and spontaneous in nature.

  3. Solid oxide fuel cell having a glass composite seal

    Science.gov (United States)

    De Rose, Anthony J.; Mukerjee, Subhasish; Haltiner, Jr., Karl Jacob

    2013-04-16

    A solid oxide fuel cell stack having a plurality of cassettes and a glass composite seal disposed between the sealing surfaces of adjacent cassettes, thereby joining the cassettes and providing a hermetic seal therebetween. The glass composite seal includes an alkaline earth aluminosilicate (AEAS) glass disposed about a viscous glass such that the AEAS glass retains the viscous glass in a predetermined position between the first and second sealing surfaces. The AEAS glass provides geometric stability to the glass composite seal to maintain the proper distance between the adjacent cassettes while the viscous glass provides for a compliant and self-healing seal. The glass composite seal may include fibers, powders, and/or beads of zirconium oxide, aluminum oxide, yttria-stabilized zirconia (YSZ), or mixtures thereof, to enhance the desirable properties of the glass composite seal.

  4. Theoretical consideration on composite oxide scales and coatings

    Institute of Scientific and Technical Information of China (English)

    HE Yedong; GAO Wei

    2013-01-01

    The present paper discussed some fundamental aspects on composite oxide scales and coatings for protection of alloys from high temperature oxidation,the related thermodynamic conditions,special mechanical characteristics and a sealing mechanism.It was proposed that the oxide scales and coatings with a composite structure should possess superior mechanical properties than that with a single phase oxide.It also showed that the A12O3 scales or coatings doped with Y2O3 and ZrO2 (or YSZ)-Al2O3 composite coatings possessed superior properties at high temperatures.In such composite oxide scales and coatings,the fracture resistance of the scales was increased by the toughening effect,the thermal stress was decreased owing to the increase of thermal-expansion coefficients,and Al2O3 phase could seal the alloy substrate well.In addition,the kinetic equation of thermal growth oxide on alloy covered with composite oxide coatings was derived.

  5. Dechlorination of hexachlorobenzene using ultrafine Ca-Fe composite oxides.

    Science.gov (United States)

    Ma, Xiaodong; Zheng, Minghui; Liu, Wenbin; Qian, Yong; Zhang, Bing; Liu, Wenxia

    2005-12-09

    Ca-Fe composite oxides with different Ca/Fe atomic ratios were synthesized by co-precipitation method and characterized by X-ray diffraction (XRD), scanning electron microscopy with elemental X-ray analysis (SEM-EDX) and inductively coupled plasma optical emission spectrometer (ICP-OES). Their dechlorination activities were evaluated using hexachlorobenzene (HCB) as a model compound. The results indicate that the dechlorination activity is related to the composition of metal oxides. Different compositions lead to the formation of different phases of Ca-Fe composite oxides. When Ca/Fe atomic ratio was 3.4, the dechlorination activity reached 97%, which was the highest in the dechlorination of HCB at 300 degrees C for 0.5 h. This may be related to the formation of Ca(2)Fe(2)O(5) phase and small agglomerate size of oxide crystal of about 1 microm. The effect of reaction time on HCB dechlorination and the pathway of dechlorination were investigated using the Ca-Fe composite oxide with the highest activity. It was found that hydrodechlorination took place in the destruction of HCB, the dechlorination efficiency is almost 100% after 2 h reaction. After reaction, quantitative measurement of chloride ion and qualitative analysis of CaCO(3) indicate besides hydrodechlorination, other degradation routes may be present. The mechanism of synergic dechlorination using Ca-Fe composite oxides was discussed.

  6. Magnetic proximity effect and superconducting triplet correlations at the cuprate superconductor and oxide spin valve interface

    Science.gov (United States)

    Ovsyannikov, G. A.; Constantinian, K. Y.; Demidov, V. V.; Khaydukov, Yu. N.

    2016-10-01

    A heterostructure consisting of a cuprate superconductor YBa2Cu3O7-δ and a ruthenate/manganite (SrRuO3/La0.7Sr0.3MnO3) spin valve was studied using SQUID magnetometry, ferromagnetic resonance, and neutron reflectometry. It is shown that because of the magnetic proximity effect a magnetic moment is excited in the superconducting portion of the heterostructure, whereas the magnetic moment in the spin valve becomes suppressed. The experimentally obtained value of a typical penetration depth of a magnetic moment into the superconductor is significantly greater than the coherence length of the cuprate superconductor, which indicates that the induced magnetic moment mechanism of Cu atoms is dominant. The mesastructure prepared by adding niobium film as a second superconducting electrode to the existing heterostructure, exhibited a superconducting current (dc Josephson effect) at interlayer thicknesses that are much greater than the coherence length of the ferromagnetic materials. The maximum of the critical current density dependence on the thickness of the spin valve material corresponds to the interlayer coherence length, which agrees with the theoretical predictions associated with spin-triplet pairing. The superconducting current is observed at magnetic fields that are two orders of magnitude greater than the field corresponding to the occurrence of one magnetic flux quantum in the mesastructure. The ratio of the second harmonic of the current-phase dependence of the mesastructure superconducting current to the first, determined according to the dependence of the Shapiro steps on the amplitude of microwave exposure, did not exceed 50%.

  7. COMPOSITIONAL HETEROGENEITY OF ETHYLENE OXIDE-BUTYLENE TEREPHTHALATE SEGMENTED COPOLYMER

    Institute of Scientific and Technical Information of China (English)

    De-zhu Ma; Dong-sheng Li; Ming-chuan Zhao; Mo-zhen Wang; Ran Ye; Xiao-lie Luo

    1999-01-01

    A series of ethylene oxide-butylene terephthalate (EOBT) segmented copolymers with different soft segment length and hard segment content were synthesized. The compositional heterogeneity was studied by solvent extraction. The results show that the compositional heterogeneity increases when soft segment length and hard segment content increase. The compositional heterogeneity is also reflected in the crystallization behavior and morphology of soft and hard segment in EOBT segmented copolymer. The more compositional heterogeneous the EOBT segmented copolymer is, the more different the morphology and the crystallization behavior between separated fractions. Compared with ethylene oxide-ethylene terephthalate (EOET) segmented copolymer, compositional heterogeneity in EOBT segmented copolymer is weaker. But the compositional heterogeneity in EOBT segmented copolymer with long soft segment and high hard segment content is still obvious.

  8. Polymer/mesoporous metal oxide composites

    Science.gov (United States)

    Ver Meer, Melissa Ann

    Understanding the nature of the interfacial region between an organic polymer matrix and an inorganic filler component is essential in determining how this region impacts the overall bulk properties of the organic/inorganic hybrid composite material. In this work, polystyrene was used as the model polymer matrix coupled with silica-based filler materials to investigate the nature of structure-property relationships in polymer composites. Initial work was conducted on synthesis and characterization of colloidal and mesoporous silica particles melt blended into the polystyrene matrix. Modification of the interface was accomplished by chemically bonding the silica particles with the polystyrene chains through polymerization from the particle surface via atom transfer radical polymerization. High molecular weight polystyrene chains were formed and bulk test samples were evaluated with increased thermal stability of the grafted polymer composite system versus equivalent melt blended polymer composites. Polymer grafting was also conducted from the internal pores of mesoporous silica, further improving the thermal stability of the composite system without degrading dynamic mechanical properties. Characterization of the polymer composites was conducted with gel permeation chromatography, transmission electron microscopy, thermogravimetric analysis and dynamic mechanical analysis. It was also discovered during the polystyrene-silica composite studies that amorphous polystyrene can possess a less mobile phase, evident in a second peak of the loss tangent (tan delta). The long annealing times necessitated by the mesoporous silica composites were replicated in as received polystyrene. This new, less mobile phase is of particular interest in determining the mobility of polymer chains in the interfacial region.

  9. Pulsed field magnetization strategies and the field poles composition in a bulk-type superconducting motor

    Science.gov (United States)

    Huang, Zhen; Ruiz, H. S.; Coombs, T. A.

    2017-03-01

    High temperature superconducting (HTS) bulks offer the potential of trapping and maintaining much higher magnetic loading level compared with the conventional permanent magnets used in rotary machines, although the effective magnetization of multiple HTS bulks with different relative orientations over the surface of cylindrical rotors creates new challenges. In this paper, we present the design and numerical validation of the Pulse Field Magnetization (PFM) strategy considered for the magnetization of the four-pole synchronous fully superconducting motor developed at the University of Cambridge. In a first instance, singular columns of up to five HTS bulks aligned over the height of the rotor were subjected to up to three magnetic pulses of 1.5 T peak, and the experimental results have been simulated by considering the electrical and thermal properties of the system in a 2D approach. The entire active surface of the rotor is covered by HTS bulks of approximately the same dimensions, resulting in an uneven distribution of pole areas with at least one of the poles formed by up to 3 columns of magnetized bulks, with relatively the same peaks of trapped magnetic field. Thus, in order to effectively use the entire area of the superconducting rotor, multiple pulsed fields per column have been applied under the same experimental conditions, what results in about three times larger magnetic pole areas but with an average drop on the peaks of trapped magnetic field of about 50%.

  10. Analysis of the superconductivity in perovskite oxides using three-square-well BCS formalism

    Indian Academy of Sciences (India)

    G C Asomba; O Abah; O A Ogbuu; C M I Okoye

    2015-12-01

    Superconductivity in perovskite, BaKBiO, is studied in the Bardeen–Cooper–Schrieffer (BCS) model, with three-square-well potentials. Components of the new coupling are: the attractive acoustic phonon–electron, optical phonon–electron and repulsive Coulomb interactions. With these in the BCS pairing Hamiltonian, expressions for the superconducting transition temperature and isotope effect exponent are obtained. Results of our analysis are consistent with experiments. Contributions of interactions to system properties are exhibited and analysed. Acoustic phonon–electron and optical phonon–electron interactions have near-identical elevation of transition temperature, holding out possible explanations for high-. Contrastingly, optical phonon–electron and Coulomb couplings cause debilitation of isotope exponent, a possible explanation for low isotope exponent in the cuprates and other high- systems. It is found that BCS electron–phonon coupling appears synonymous with acoustic phonon–electron coupling.

  11. Structural and superconducting properties of La2−xNdxCuO4+y (0≤x≤0.5) prepared by room temperature chemical oxidation

    DEFF Research Database (Denmark)

    Rial, C.; Morán, E.; Alario-Franco, M.A.;

    1997-01-01

    The systematic characterization of the structural and superconducting properties of room temperature chemically oxidized T/O La2-xNdxCuO4+y (0 less than or equal to x less than or equal to 0.5) has been performed by neutron powder diffraction and magnetic susceptibility measurements. Similarities...

  12. High-T(c) Superconductivity at the Interface between the CaCuO2 and SrTiO3 Insulating Oxides.

    Science.gov (United States)

    Di Castro, D; Cantoni, C; Ridolfi, F; Aruta, C; Tebano, A; Yang, N; Balestrino, G

    2015-10-02

    At interfaces between complex oxides it is possible to generate electronic systems with unusual electronic properties, which are not present in the isolated oxides. One important example is the appearance of superconductivity at the interface between insulating oxides, although, until now, with very low T(c). We report the occurrence of high T(c) superconductivity in the bilayer CaCuO(2)/SrTiO(3), where both the constituent oxides are insulating. In order to obtain a superconducting state, the CaCuO(2)/SrTiO(3) interface must be realized between the Ca plane of CaCuO(2) and the TiO(2) plane of SrTiO(3). Only in this case can oxygen ions be incorporated in the interface Ca plane, acting as apical oxygen for Cu and providing holes to the CuO(2) planes. A detailed hole doping spatial profile can be obtained by scanning transmission electron microscopy and electron-energy-loss spectroscopy at the O K edge, clearly showing that the (super)conductivity is confined to about 1-2 CaCuO(2) unit cells close to the interface with SrTiO(3). The results obtained for the CaCuO(2)/SrTiO(3) interface can be extended to multilayered high T(c) cuprates, contributing to explaining the dependence of T(c) on the number of CuO(2) planes in these systems.

  13. Thermal Oxidation Resistance of Rare Earth-Containing Composite Elastomer

    Institute of Scientific and Technical Information of China (English)

    邱关明; 张明; 周兰香; 中北里志; 井上真一; 冈本弘

    2001-01-01

    The rare earth-containing composite elastomer was obtained by the reaction of vinyl pyridine-SBR (PSBR) latex with rare earth alkoxides, and its thermal oxidation resistance was studied. After aging test, it is found that its retention rate of mechanical properties is far higher than that of the control sample. The results of thermogravimetric analysis show that its thermal-decomposing temperature rises largely. The analysis of oxidation mechanisms indicates that the main reasons for thermal oxidation resistance are that rare earth elements are of the utility to discontinue autoxidation chain reaction and that the formed complex structure has steric hindrance effect on oxidation.

  14. Electrodynamic stabilization conditions for high-temperature superconducting composites with different types of current-voltage characteristic nonlinearity

    Science.gov (United States)

    Arkharov, A. M.; Lavrov, N. A.; Romanovskii, V. R.

    2014-06-01

    The current instability is studied in high-temperature superconducting current-carrying elements with I- V characteristics described by power or exponential equations. Stability analysis of the macroscopic states is carried out in terms of a stationary zero-dimensional model. In linear temperature approximation criteria are derived that allow one to find the maximum allowable values of the induced current, induced electric field intensity, and overheating of the superconductor. A condition is formulated for the complete thermal stabilization of the superconducting composite with regard to the nonlinearity of its I- V characteristic. It is shown that both subcritical and supercritical stable states may arise. In the latter case, the current and electric field intensity are higher than the preset critical parameters of the superconductor. Conditions for these states depending on the properties of the matrix, superconductor's critical current, fill factor, and nonlinearity of the I- V characteristic are discussed. The obtained results considerably augment the class of allowable states for high-temperature superconductors: it is demonstrated that there exist stable resistive conditions from which superconductors cannot pass to the normal state even if the parameters of these conditions are supercritical.

  15. Nano-sized Mn oxide/agglomerated silsesquioxane composite as a good catalyst for water oxidation.

    Science.gov (United States)

    Najafpour, Mohammad Mahdi; Madadkhani, Sepideh

    2016-12-01

    Water splitting to hydrogen and oxygen is an important reaction to store sustainable energies, and water oxidation is identified as the bottleneck for water splitting because it requires the high activation energy to perform. Herein a nano-sized Mn oxide/agglomerated silsesquioxane composite was used to synthesize an efficient catalyst for water oxidation. The composite was synthesized by a straightforward and simple procedure and characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, dynamic light scattering, X-ray diffraction spectrometry, and electrochemical methods. Silsesquioxane causes good dispersion of Mn in the composite. The water-oxidizing activity of this composite was studied in the presence of cerium(IV) ammonium nitrate. The composite at the best calcination temperature (300 °C) shows a turnover frequency 0.3 (mmol O2/mol Mn.s). Regarding the low-cost, environmentally friendly precursors, simple synthesis, and efficiency for water oxidation, the composite is a promising catalyst that can be used in artificial photosynthetic systems for water splitting. We used Agglomerated silsesquioxane as a support for nano-sized Mn oxide to synthesize a good water-oxidizing catalyst.

  16. Oxidation-resistant interfacial coatings for continuous fiber ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Stinton, D.P.; Besmann, T.M.; Bleier, A. [Oak Ridge National Lab., TN (United States); Shanmugham, S.; Liaw, P.K. [Univ. of Tennessee, Knoxville, TN (United States)

    1995-08-01

    Continuous fiber ceramic composites mechanical behavior are influenced by the bonding characteristics between the fiber and the matrix. Finite modeling studies suggest that a low-modulus interfacial coating material will be effective in reducing the residual thermal stresses that are generated upon cooling from processing temperatures. Nicalon{trademark}/SiC composites with carbon, alumina and mullite interfacial coatings were fabricated with the SiC matrix deposited using a forced-flow, thermal gradient chemical vapor infiltration process. Composites with mullite interfacial coatings exhibited considerable fiber pull-out even after oxidation and have potential as a composite system.

  17. In situ growth of superconducting YBa sub 2 Cu sub 3 O sub 7 minus. delta. thin films on Si with conducting indium-tin-oxide buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    Kellett, B.J.; James, J.H.; Gauzzi, A.; Dwir, B.; Pavuna, D.; Reinhart, F.K. (Institute of Micro and Optoelectronics, Ecole Polytechnique Federale de Lausanne, CH-1015, Lausanne (Switzerland))

    1990-09-10

    Superconducting YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} (YBCO) thin films have been grown {ital in} {ital situ} on Si with conducting indium-tin-oxide (ITO) buffer layers. ITO allows YBCO to be electrically connected to the underlying Si substrate. Both the YBCO film and ITO buffer layer, grown by ion beam sputtering, are textured and polycrystalline with a combined room- temperature resistivity of about 2 m{Omega} cm. Superconducting onsets are 92 K with zero resistance at 68 K.

  18. Superconducting YBa sub 2 Cu sub 3 O sub 7 minus. delta. thin films on GaAs with conducting indium-tin-oxide buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    Kellett, B.J.; Gauzzi, A.; James, J.H.; Dwir, B.; Pavuna, D.; Reinhart, F.K. (Institut de Micro et Optoelectronique, Ecole Polytechnique Federale de Lausanne, CH-1015, Lausanne (CH))

    1990-12-10

    Superconducting YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} (YBCO) thin films have been grown {ital in} {ital situ} on GaAs with conducting indium-tin-oxide (ITO) buffer layers. Superconducting onset is about 92 K with zero resistance at 60 K. ITO buffer layers usually form Schottky-like barriers on GaAs. The YBCO film and ITO buffer layer, grown by ion beam sputter codeposition, are textured and polycrystalline with a combined room-temperature resistivity of about 1 m{Omega} cm.

  19. PREPARATION OF ZINC OXIDE AND POLY-ETHYLENE OXIDE COMPOSITE MEMBRANES AND THEIR PHASE RELATIONSHIP

    OpenAIRE

    JESÚS FABIAN JURADO; CARLOS VARGAS HERNÁNDEZ; RUBÉN ANTONIO VARGAS

    2012-01-01

    Zinc oxide and organic polymer (poly-ethylene oxide) based nanocomposite membranes were prepared and their phase relationship investigated. The composites were characterized by XRD, Raman scattering, DSC, and impedance spectroscopy analysis. It was found that embedding inorganic nanoparticles of ZnO into the polymer matrix of PEO allowed for some crystallinity formation, and cross-linking of the polymer composites during annealing or synthesis. The XRD and Raman scattering results show more d...

  20. Microstructure and Mechanical Properties of Graphene Oxide/Copper Composites

    Directory of Open Access Journals (Sweden)

    HONG Qi-hu

    2016-09-01

    Full Text Available Graphene oxide/copper (GO/Cu composites were successfully synthesized through the ball milling and vacuum hot press sintering process. The morphologies of the mixture powders, and the microstructure and mechanical properties of GO/Cu composites were investigated by OM, SEM, XRD, hardness tester and electronic universal testing machine, respectively. The results show that the GO/Cu composites are compact. Graphene oxide with flake morphology is uniformly dispersed and well consolidated with copper matrix. When the mass fraction of graphene oxide is 0.5%, the microhardness and compress strength at RT reach up to 63HV and 276MPa, increased by 8.6% and 28%, respectively. The strengthening mechanism is load transfer effect, dislocation strengthening and fine crystal reinforcing.

  1. Modeling oxidation damage of continuous fiber reinforced ceramic matrix composites

    Institute of Scientific and Technical Information of China (English)

    Cheng-Peng Yang; Gui-Qiong Jiao; Bo Wang

    2011-01-01

    For fiber reinforced ceramic matrix composites (CMCs), oxidation of the constituents is a very important damage type for high temperature applications. During the oxidizing process, the pyrolytic carbon interphase gradually recesses from the crack site in the axial direction of the fiber into the interior of the material. Carbon fiber usually presents notch-like or local neck-shrink oxidation phenomenon, causing strength degradation. But, the reason for SiC fiber degradation is the flaw growth mechanism on its surface. A micromechanical model based on the above mechanisms was established to simulate the mechanical properties of CMCs after high temperature oxidation. The statistic and shearlag theory were applied and the calculation expressions for retained tensile modulus and strength were deduced, respectively. Meanwhile, the interphase recession and fiber strength degradation were considered. And then, the model was validated by application to a C/SiC composite.

  2. Characterization of Compressive Creep Behavior of Oxide/Oxide Composite with Monazite Coating at Elevated Temperature

    Science.gov (United States)

    2006-03-01

    Materials, and Structures: A. Ed. Mrityunjay Singh and Todd Jensen. Westerville, OH: The American Ceramic Society, 2001. 5. Antti, M-L, E. Lara-Curzio... Emmanuel E. Boakye, Pavel Mogilevsky, and Michael K. Cinibulk. “Effectiveness of Monazite Coatings in Oxide/Oxide Composites after Long-Term Exposure

  3. New Collagen-Dextran-Zinc Oxide Composites for Wound Dressing

    Directory of Open Access Journals (Sweden)

    Georgeta Păunica-Panea

    2016-01-01

    Full Text Available The goal of this paper was the design, development, and characterization of some new composites, based on collagen and dextran as natural polymers and zinc oxide as antimicrobial, to be used in wound healing. Collagen hydrogels with various concentrations of dextran and zinc oxide were investigated in terms of rheological analysis. The spongious composites, obtained by freeze-drying of hydrogels, were evaluated by morphology (SEM, water uptake, and biological (enzymatic biodegradation analysis. All the results were strongly influenced by the nature and concentration of composite components. Based on the performances of the hydrogels, stationary rheometry, porous structure, morphology, and biological behavior, the antimicrobial spongious composite based on collagen and dextran with 50% ZnO were the most promising for future applications in wound dressing and a biomaterial with high potential in skin regeneration.

  4. Graphene Oxide/ Ruthenium Oxide Composites for Supercapacitors Electrodes

    Science.gov (United States)

    Amir, Fatima

    Supercapacitors are electrical energy storage devices with high power density, high rate capability, low maintenance cost, and long life cycle. They complement or replace batteries in harvesting applications when high power delivery is needed. An important improvement in performance of supercapacitors has been achieved through recent advances in the development of new nanostructured materials. Here we will discuss the fabrication of graphene oxide/ ruthenium oxide supercacitors electrodes including electrophoretic deposition. The morphology and structure of the fabricated electrodes were investigated and will be discussed. The electrochemical properties were determined using cyclic voltammetry and galvanostatic charge/discharge techniques and the experiments that demonstrate the excellent capacitive properties of the obtained supercapacitors will also be discussed. The fabrication and characterization of the samples were performed at the Center of Functional Nanomaterials at Brookhaven National Lab. The developed approaches in our study represent an exciting direction for designing the next generation of energy storage devices. This work was supported in part by the U.S. Department of Energy through the Visiting Faculty Program and the research used resources of the Center for Functional Nanomaterials at Brookhaven National Laboratory.

  5. Correlation of normal and superconducting properties and unified approach to the description of high Tc oxides

    Science.gov (United States)

    Kresin, V. Z.; Wolf, S. A.

    1991-01-01

    We present a unified approach based on the Fermi liquid picture which allows us to describe the normal as well as the superconducting properties of the doped cuprates. The theory that is presented is for the doped compounds which are metallic. One can distinguish two interrelated, but nevertheless, different directions in the physics of high T(sub c): one involving the problem of carrier doping and the transition to the metallic state, and the second being the description of the metallic state. It is important that this metallic phase undergoes the transition into the superconducting state; as a result, our analysis is directly related to the origin of high T(sub c). We are using a quasi-2D Fermi liquid model to estimate the fundamental parameters of these very interesting materials. We find that this description is able to describe these materials and also that phonons and plasmons play a major role in the mechanism of high T(sub c).

  6. Critical field of two-dimensional superconducting Sn1-x/Six bimetallic composite cluster assembled films with energetic cluster impact deposition

    Science.gov (United States)

    Kurokawa, Yuichiro; Hihara, Takehiko; Ichinose, Ikuo

    2013-05-01

    Sn1-x/Six cluster assembled films have been prepared by an energetic cluster impact deposition using a plasma-gas-condensation cluster beam deposition apparatus. Transmission electron microscope images indicated that individual clusters have composite morphologies, where Sn and Si were separated from each other. The superconducting critical magnetic fields, Hc, of Sn1-x/Six cluster assembled films were measured and found to be much higher than the critical magnetic field of the bulk Sn. We estimated the Hc values by using a theory of the superconducting thin film. The estimated values are in good agreement with the experiments, indicating that the Sn1-x/Six cluster assembled films can be regarded as a two-dimensional system although thickness, t, of Sn1-x/Six cluster assembled films (t ≈ 1000 nm) is thicker than conventional superconducting thin film (t < 100 nm).

  7. Applied superconductivity

    CERN Document Server

    Newhouse, Vernon L

    1975-01-01

    Applied Superconductivity, Volume II, is part of a two-volume series on applied superconductivity. The first volume dealt with electronic applications and radiation detection, and contains a chapter on liquid helium refrigeration. The present volume discusses magnets, electromechanical applications, accelerators, and microwave and rf devices. The book opens with a chapter on high-field superconducting magnets, covering applications and magnet design. Subsequent chapters discuss superconductive machinery such as superconductive bearings and motors; rf superconducting devices; and future prospec

  8. Thermodynamic Properties of Non-Oxide Composite Refractories

    Institute of Scientific and Technical Information of China (English)

    HONG Yanruo; WU Hongpeng; SUN Jialin

    2005-01-01

    For initiative application of non-oxides in refractories, it is essential to study thermodynamic properties of non-oxides. The stability and stable order of non-oxides under oxidized atmosphere are analyzed firstly and then a new process, "converse reaction sintering", is proposed. The results of study on oxidation mechanism of silicon and aluminum nitrides indicate that the gaseous suboxides can be produced observably when the oxygen partial pressure is lower than "conversion oxygen partial pressure". The suboxides can be deposited near the surface of composite to become a compact layer. This causes the material possessing a performance of "self-impedient oxidation". Metal Si and Al are the better additives for increasing the density and width of compact layer and increasing the ability of anti-oxidation and anti-corrosion. The study on Si3N4-Al2O3, Si3N4-MgO, Si3N4-SiC systems is also enumerated as examples in the paper. The experimental results show that the converse reaction sintering is able to make high performance composites and metal Si and Al not only can promote the sintering but also increase the density and width of compact layer.

  9. Graphene Oxide Regulated Tin Oxide Nanostructures: Engineering Composition, Morphology, Band Structure, and Photocatalytic Properties.

    Science.gov (United States)

    Pan, Xiaoyang; Yi, Zhiguo

    2015-12-16

    A facile, one-step hydrothermal method has been developed to fabricate tin oxide-reduced graphene oxide (Sn-RGO) nanocomposites with tunable composition, morphology, and energy band structure by utilizing graphene oxide (GO) as a multifunctional two-dimensional scaffold. By adjusting the GO concentration during synthesis, a variety of tin oxide nanomaterials with diverse composition and morphology are obtained. Simultaneously, the varying of GO concentration can also narrow the bandgap and tune the band edge positions of the Sn-RGO nanocomposites. As a result, the Sn-RGO nanocomposites with controllable composition, morphology, and energy band structure are obtained, which exhibit efficient photoactivities toward methyl orange (MO) degradation under visible-light irradiation. It is expected that our work would point to the new possibility of using GO for directing synthesis of semiconductor nanomaterials with tailored structure and physicochemical properties.

  10. Electro-mechanical behaviors of composite superconducting strand with filament breakage

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xu [Key Laboratory of Mechanics on Environment and Disaster in Western China, The Ministry of Education of China, Lanzhou, Gansu 730000 (China); Department of Mechanics and Engineering Science, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China); Gao, Yuanwen, E-mail: ywgao@lzu.edu.cn [Key Laboratory of Mechanics on Environment and Disaster in Western China, The Ministry of Education of China, Lanzhou, Gansu 730000 (China); Department of Mechanics and Engineering Science, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China); Zhou, Youhe [Key Laboratory of Mechanics on Environment and Disaster in Western China, The Ministry of Education of China, Lanzhou, Gansu 730000 (China); Department of Mechanics and Engineering Science, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China)

    2016-10-15

    Highlights: • The electromechanical behaviors of the superconducting (SC) strand are investigated. • A 3D FEM model for bending behaviors and electric properties of strand is developed. • The influence of breakage of filaments on the critical current of SC strand is calculated. • The impact of current transfer length on the electric properties of SC strand is discussed. - Abstract: The bending behaviors of superconducting strand with typical multi-filament twist configuration are investigated based on a three-dimensional finite element method (FEM) model, named as the Multi-filament twist model, of the strand. In this 3D FEM model, the impacts of initial thermal residual stress, filament-breakage and its evaluation are taken into accounts. The mechanical responses of the strand under bending load are studied with the factors taken into consideration one by one. The distribution of the damage of the filaments and its evolution and the movement of the neutral axis caused by it are studied and displayed in detail. Besides, taking the advantages of the Multi-filament twist model, the normalized critical current of the strand under bending load is also calculated based on the invariant temperature and field strain functions. In addition, the non-negligible influences of the pitch length of the filaments on both the mechanical behaviors and the normalized critical current are discussed. The stress-strain characteristics of the strand under tensile load and the normalized critical current of it under axial and bending loads resulting from the Multi-filament twist model show good agreement with the experimental data.

  11. Graphene and Graphene Oxide Composites and Their Electrorheological Applications

    Directory of Open Access Journals (Sweden)

    Wen Ling Zhang

    2015-01-01

    Full Text Available Graphene oxide (GO based composite systems have been fabricated and investigated as a novel electroresponsive electrorheological (ER dispersed phase because of their proper electrical conductivity and polarizability for their ER application, in addition to graphene composites. This paper briefly reviews mechanisms of the fabrication of various graphene and GO based composites and their critical ER characteristics including flow curve, yield stress, and dynamic properties measured using a rotational rheometer. Relaxation time and achievable polarizability from dielectric analysis using a LCR meter are also discussed.

  12. Manganese oxide composite electrodes for lithium batteries

    Science.gov (United States)

    Thackeray, Michael M.; Johnson, Christopher S.; Li, Naichao

    2007-12-04

    An activated electrode for a non-aqueous electrochemical cell is disclosed with a precursor of a lithium metal oxide with the formula xLi.sub.2MnO.sub.3.(1-x)LiMn.sub.2-yM.sub.yO.sub.4 for 0

  13. STRUCTURAL AND SUPERCONDUCTING PROPERTIES OF LA2-XSRXCUO4+Y (0-LESS-THAN-X-LESS-THAN-0.15) PREPARED BY ROOM-TEMPERATURE CHEMICAL OXIDATION

    DEFF Research Database (Denmark)

    Rial, C.; Morán, E.; Alario-Franco, M.A.;

    1995-01-01

    The presence of interstitial oxygen in room temperature chemically oxidized La2-xSrxCuO4+y, (0.15superconducting properties of these cuprates. The existence of a structural limit for the insertion of oxygen under the current oxidation...... conditions, related to the relieving of the internal strain of these materials, is proposed. Besides, oxidized materials show an almost constant T-c close to that corresponding to the optimum hole doping concentration. The coincidence of both features is remarked upon and discussed....

  14. "A New Class of Creep Resistant Oxide/Oxide Ceramic Matrix Composites"

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Mohit Jain, Dr. Ganesh Skandan, Prof. Roger Cannon, Rutgers University

    2007-03-30

    Despite recent progress in the development of SiC-SiC ceramic matrix composites (CMCs), their application in industrial gas turbines for distributed energy (DE) systems has been limited. The poor oxidation resistance of the non-oxide ceramics warrants the use of envrionmental barrier coatings (EBCs), which in turn lead to issues pertaining to life expectancy of the coatings. On the other hand, oxide/oxide CMCs are potential replacements, but their use has been limited until now due to the poor creep resistance at high temperatures, particularly above 1200 oC: the lack of a creep resistant matrix has been a major limiting factor. Using yttrium aluminum garnet (YAG) as the matrix material system, we have advanced the state-of-the-art in oxide/oxide CMCs by introducing innovations in both the structure and composition of the matrix material, thereby leading to high temperature matrix creep properties not achieved until now. An array of YAG-based powders with a unique set of particle characteristics were produced in-house and sintered to full density and compressive creep data was obtained. Aided in part by the composition and the microstructure, the creep rates were found to be two orders of magnitude smaller than the most creep resistant oxide fiber available commercially. Even after accounting for porosity and a smaller matrix grain size in a practical CMC component, the YAG-based matrix material was found to creep slower than the most creep resistant oxide fiber available commercially.

  15. A possible mechanism of exciton exchange percolated superconductivity for the oxide Balacuo

    Science.gov (United States)

    Tao, Ruibao

    1987-08-01

    The effect of oxygen vacancies in (La 1- xBa x) 2CuO 4- y (Balacuo) is analyzed and it is pointed out that the vacancies in the Cu-O basal plane will break the bonds of Cu-O-Cu to make the hopping between those coppers disappear so that the electrical conduction in the Cu-O basal plane would become a bond percolation system consisting of an infinite cluster carrying the current with a great number of finite clusters hanging around. It is favorable to create some mechanism of exciton exchange so that the transition temperature Tc of superconductivity could be increased significantly. The comparison with YBa 2Cu 3O 9- y is also discussed briefly.

  16. Highly-textured thallium-barium-calcium-copper-oxide polycrystalline superconducting films on silver substrates

    Energy Technology Data Exchange (ETDEWEB)

    Arendt, P.; Elliott, N.; Cooke, D.W.; Dye, R.; Gray, E.; Hubbard, K.; Martin, J.; Reeves, G.; Brown, D.; Klapetzky, A.

    1990-01-01

    Thick (8 to 10 {mu}m) Ba--Ca--Cu--O films have been rf magnetron sputtered onto Ag alloy (Consil 995) substrates. The films were given a post-deposition anneal in an over pressure of Tl in order to form the superconducting phases. Annealing protocols were done which result in predominantly the 1212 and 2212 phases. The substrate orientation was varied to determine its effect on film orientation. Material properties of the films were characterized by x-ray diffraction (XRD), ion beam backscattering spectroscopy, energy dispersive x-ray analysis (EDAX), and scanning electron microscopy (SEM). Electrical characterization of the films was done using dynamic impedance (DI) at 10 kHz and rf surface resistance (R{sub s}) at 18 GHz in a TE{sub 011} fundamental mode cavity. 19 refs., 7 figs.

  17. Experimental study of yttrium barium copper oxide superconducting tape’s critical current under twisting moment

    Indian Academy of Sciences (India)

    Ziauddin Khan; Ananya Kundu; Subrata Pradhan

    2013-10-01

    Critical current (c) characteristics of 2G YBCO superconducting tape under the influence of twisting moment was experimentally investigated at varying current ramp rates in the self-field. Under a uniform twist, the degradation in the current-carrying capacity of YBCO tape up to 30% was observed at 77 K. The degradation is largely attributed to the shear stress and torsional shear strain resulting from the twisting. The superconductor to resistive transition index, , is also found to behave in an identical manner with increase in the twisting. Finite element analysis (FEA) of the tape in the experimental configuration with twisting moment being applied on to it has been carried out in COMSOL. The torsional strain calculated analytically as per the experimental configuration matches closely with that of FEA results, which shows that the critical current degradation is a function of strain.

  18. Fundamental alloy design of oxide ceramics and their composites

    Energy Technology Data Exchange (ETDEWEB)

    Chen, I.W.

    1992-01-01

    The main research was on microstructural development of oxide ceramics. Projects were completed and the publications given. Abstracts are given on: Reactive CeO[sub 2]powders by homogeneous precipitation, SiC whisker-reinforced lithium aluminosilicate composite, solute drag on grain boundary in ionic solids (space charge effect), in-situ alumina/aluminate platelet composites, exaggerated texture and grain growth of superplastic silicon nitride (SiAlON), hot extrusion of ceramics, control of grain boundary pinning in Al[sub 2]O[sub 3]/ZrO[sub 2] composites with Ce[sup 3+]/Ce[sup 4+] doping, superplastic forming of ceramic composites, computer simulation of final stage sintering (model, kinetics, microstructure, effect of initial pore size), development of superplastic structural ceramics, and superplastic flow of two-phase ceramics containing rigid inclusions (zirconia/mullite composites). A proposed research program is outlined: materials, solute drag, densification and coarsening, and grain boundary electrical behavior.

  19. Superconductivity of oxide film electrolytically deposited on surface of B(1-x)Sb(x) single crystal

    Science.gov (United States)

    Alfeyev, V. N.; Aminov, B. A.; Brandt, N. B.; Vasina, S. Ya.; Damaskin, B. B.; Zigel, M.; Kuznetsov, V. P.; Petriy, O. A.; Ponomarev, Ya. G.; Sudakova, M. V.

    1990-10-01

    An experimental study was made of thin oxide films electrolytically deposited on the surface of Bi(1-x)Sb(x) single crystals (x from 0.1 to 0.3) at room temperature, the electrolyte consisting of acetonitrile as solvent with salicylic acid as conductive additive and containing copper ions. The current-voltage characteristics of point junctions produced by mechanical pressure on oxidized surfaces were measured at temperatures ranging from 1.7 K to above 20 K. They were found in most cases to be characteristic of Josephson junctions, with a critical current in the milliampere range at 4.2 K, with Mersero constant-period oscillations of the differential electrical conductance dI/dV near zero voltage in a magnetic field, and with Shapiro plateaus in a microwave field. The critical temperature of superconducting transition corresponding to maximum differential electrical conductance near zero voltage was found to be within 6 to 8 K in most cases and 20 K or higher in some cases.

  20. Oxidation behavior of molybdenum silicides and their composites

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Deevi, S. C.

    2000-04-03

    A key materials issue associated with the future of high-temperature structural silicides is the resistance of these materials to oxidation at low temperatures. Oxidation tests were conducted on Mo-based silicides over a wide temperature range to evaluate the effects of alloy composition and temperature on the protective scaling characteristics and testing regime for the materials. The study included Mo{sub 5}Si{sub 3} alloys that contained several concentrations of B. In addition, oxidation characteristics of MoSi{sub 2}-Si{sub 3}N{sub 4} composites that contained 20--80 vol.% Si{sub 3}N{sub 4} were evaluated at 500--1,400 C.

  1. Development of oxidation/corrosion-resistant composite materials and interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Stinton, D.P.; Besmann, T.M.; Shanmugham, S. [and others

    1995-06-01

    Continuous fiber ceramic composites (CFCCs) are being developed for high temperature structural applications, many of which are in oxidative environments. Such composites are attractive since they are light-weight and possess the desired mechanical properties at elevated temperature and in aggressive environments. The most significant advantage is their toughness and their non-catastrophic failure behavior. The mechanical properties of CFCCs have been characteristically linked with the nature of the interfacial bond between the fibers and the matrix. Weakly bonded fiber-matrix intefaces allow an impinging matrix crack to be deflected such that the fracture process occurs through several stages: Crack deflection, debonding at the interface, fiber slip and pull-out, and ultimately fiber failure. Such a composite will fail in a graceful manner and exhibit substantial fracture toughness. Currently, carbon interface coatings are used to appropriately tailor interface properties, however their poor oxidation resistance has required a search of an appropriate replacement. Generally, metal oxides are inherently stable to oxidation and possess thermal expansion coefficients relatively close to those of Nicalon and SiC. However, the metal oxides must also be chemically compatible with the fiber and matrix. If the fiber/interface/matrix system is chemically compatible, then the interfacial bonding stress is influenced by the thermal residual stresses that are generated as the composite is cooled from processing to room temperature. In the current work, thermomechanical computational results were obtained from a finite element model (FEM) for calculating the thermal residual stresses. This was followed by experimental evaluation of Nicalon/SiC composites with carbon, alumina, and mullite interfacial coatings.

  2. Compositional analysis of silicon oxide/silicon nitride thin films

    Directory of Open Access Journals (Sweden)

    Meziani Samir

    2016-06-01

    Full Text Available Hydrogen, amorphous silicon nitride (SiNx:H abbreviated SiNx films were grown on multicrystalline silicon (mc-Si substrate by plasma enhanced chemical vapour deposition (PECVD in parallel configuration using NH3/SiH4 gas mixtures. The mc-Si wafers were taken from the same column of Si cast ingot. After the deposition process, the layers were oxidized (thermal oxidation in dry oxygen ambient environment at 950 °C to get oxide/nitride (ON structure. Secondary ion mass spectroscopy (SIMS, Rutherford backscattering spectroscopy (RBS, Auger electron spectroscopy (AES and energy dispersive X-ray analysis (EDX were employed for analyzing quantitatively the chemical composition and stoichiometry in the oxide-nitride stacked films. The effect of annealing temperature on the chemical composition of ON structure has been investigated. Some species, O, N, Si were redistributed in this structure during the thermal oxidation of SiNx. Indeed, oxygen diffused to the nitride layer into Si2O2N during dry oxidation.

  3. In-situ spectroscopic studies and interfacial engineering on FeSe/oxide heterostructures:Insights on the interfacial superconductivity

    Institute of Scientific and Technical Information of China (English)

    彭瑞; 徐海超; 封东来

    2015-01-01

    The discovery of high temperature superconductivity in single-layer FeSe/SrTiO3 provides a new platform for ex-ploring superconductivity and pursuing higher Tc (superconducting transition temperature) through fabricating artificial heterostructures. In this paper, we review the recent progress in studying and tuning the interfacial superconductivity in single-layer FeSe, through the combined in-situ spectroscopic studies and atomic-scale engineering. By fabricating arti-ficial heterostructures, various interfacial factors were tuned, and the corresponding evolutions of electronic structure and superconducting gap behavior were investigated. These studies enrich the current understanding on the interfacial super-conductivity, and provide clues for further enhancing Tc through interface engineering.

  4. Magnetic composites based on hybrid spheres of aluminum oxide and superparamagnetic nanoparticles of iron oxides

    Energy Technology Data Exchange (ETDEWEB)

    Braga, Tiago P. [Langmuir - Laboratorio de Adsorcao e Catalise, Departamento de Quimica Analitica e Fisico-Quimica, Universidade Federal do Ceara, CP 6021, CEP 60455-970 Campus do Pici, Fortaleza (Brazil); Vasconcelos, Igor F. [Departamento de Engenharia Metalurgica e de Materiais, Universidade Federal do Ceara, Fortaleza (Brazil); Sasaki, Jose M. [Laboratorio de Raios X, Departamento de Fisica, Universidade Federal do Ceara, Campus do Pici, Fortaleza, CE (Brazil); Fabris, J.D.; Oliveira, Diana Q.L. de [Departamento de Quimica, Universidade Federal de Minas Gerais, Belo Horizonte (Brazil); Valentini, Antoninho, E-mail: valent@ufc.b [Langmuir - Laboratorio de Adsorcao e Catalise, Departamento de Quimica Analitica e Fisico-Quimica, Universidade Federal do Ceara, CP 6021, CEP 60455-970 Campus do Pici, Fortaleza (Brazil)

    2010-03-15

    Materials containing hybrid spheres of aluminum oxide and superparamagnetic nanoparticles of iron oxides were obtained from a chemical precursor prepared by admixing chitosan and iron and aluminum hydroxides. The oxides were first characterized with scanning electron microscopy, X-ray diffraction, and Moessbauer spectroscopy. Scanning electron microscopy micrographs showed the size distribution of the resulting spheres to be highly homogeneous. The occurrence of nano-composites containing aluminum oxides and iron oxides was confirmed from powder X-ray diffraction patterns; except for the sample with no aluminum, the superparamagnetic relaxation due to iron oxide particles were observed from Moessbauer spectra obtained at 298 and 110 K; the onset six line-spectrum collected at 20 K indicates a magnetic ordering related to the blocking relaxation effect for significant portion of small spheres in the sample with a molar ratio Al:Fe of 2:1.

  5. Electro-mechanical behaviors of composite superconducting strand with filament breakage

    Science.gov (United States)

    Wang, Xu; Gao, Yuanwen; Zhou, Youhe

    2016-10-01

    The bending behaviors of superconducting strand with typical multi-filament twist configuration are investigated based on a three-dimensional finite element method (FEM) model, named as the Multi-filament twist model, of the strand. In this 3D FEM model, the impacts of initial thermal residual stress, filament-breakage and its evaluation are taken into accounts. The mechanical responses of the strand under bending load are studied with the factors taken into consideration one by one. The distribution of the damage of the filaments and its evolution and the movement of the neutral axis caused by it are studied and displayed in detail. Besides, taking the advantages of the Multi-filament twist model, the normalized critical current of the strand under bending load is also calculated based on the invariant temperature and field strain functions. In addition, the non-negligible influences of the pitch length of the filaments on both the mechanical behaviors and the normalized critical current are discussed. The stress-strain characteristics of the strand under tensile load and the normalized critical current of it under axial and bending loads resulting from the Multi-filament twist model show good agreement with the experimental data.

  6. Liquid crystallinity driven highly aligned large graphene oxide composites

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Eun; Oh, Jung Jae; Yun, Taeyeong [Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 305-701 (Korea, Republic of); Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701 (Korea, Republic of); Kim, Sang Ouk, E-mail: sangouk.kim@kaist.ac.kr [Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 305-701 (Korea, Republic of); Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701 (Korea, Republic of)

    2015-04-15

    Graphene is an emerging graphitic carbon materials, consisting of sp{sup 2} hybridized two dimensinal honeycomb structure. It has been widely studied to incorporate graphene with polymer to utilize unique property of graphene and reinforce electrical, mechanical and thermal property of polymer. In composite materials, orientation control of graphene significantly influences the property of composite. Until now, a few method has been developed for orientation control of graphene within polymer matrix. Here, we demonstrate facile fabrication of high aligned large graphene oxide (LGO) composites in polydimethylsiloxane (PDMS) matrix exploiting liquid crystallinity. Liquid crystalline aqueous dispersion of LGO is parallel oriented within flat confinement geometry. Freeze-drying of the aligned LGO dispersion and subsequent infiltration with PDMS produce highly aligned LGO/PDMS composites. Owing to the large shape anisotropy of LGO, liquid crystalline alignment occurred at low concentration of 2 mg/ml in aqueous dispersion, which leads to the 0.2 wt% LGO loaded composites. - Graphical abstract: Liquid crystalline LGO aqueous dispersions are spontaneous parallel aligned between geometric confinement for highly aligned LGO/polymer composite fabrication. - Highlights: • A simple fabrication method for highly aligned LGO/PDMS composites is proposed. • LGO aqueous dispersion shows nematic liquid crystalline phase at 0.8 mg/ml. • In nematic phase, LGO flakes are highly aligned by geometric confinement. • Infiltration of PDMS into freeze-dried LGO allows highly aligned LGO/PDMS composites.

  7. Effects of oxide precursors on superconducting properties of polycrystalline SmFeAsO{sub 1−x}F{sub x}

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, F.F.; Ding, Y.; Sun, Y.; Zhuang, J.C.; Zhou, W. [Department of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 211189 (China); Li, G.Z.; Sumption, M. [Center for Superconducting and Magnetic Materials (CSMM), Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210 (United States); Li, X.W. [School of Physics and Electronic Electrical Engineering, Huaiyin Normal University, Huaian 223300 (China); State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Science, Shanghai 200050 (China); Shi, Z.X., E-mail: zxshi@seu.edu.cn [Department of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 211189 (China)

    2013-12-15

    Highlights: •Polycrystalline SmFeAsO{sub 1−x}F{sub x} samples were prepared by different oxide precursors. •Phase formation and superconductivity of these samples were comparatively studied. •Results show that nano-Fe{sub 2}O{sub 3} and As{sub 2}O{sub 3} promote fluorine doping. -- Abstract: A series of polycrystalline SmFeAsO{sub 1−x}F{sub x} samples were synthesized by one-step and two-step method at ambient pressure using different oxide precursors, namely As{sub 2}O{sub 3}, Fe{sub 2}O{sub 3} and nano-Fe{sub 2}O{sub 3} powder, as the source of element O. Results of X-ray diffraction and magnetic measurements manifest that starting oxides affected the phase formation and superconducting properties of SmFeAsO{sub 1−x}F{sub x}. As{sub 2}O{sub 3} as oxide precursor contributes to the fast formation of superconducting phase for a short period of sintering time. And samples prepared using As{sub 2}O{sub 3} show higher superconducting transition temperature T{sub c} and more stable fluorine doping level. Compared with Fe{sub 2}O{sub 3}, nano-Fe{sub 2}O{sub 3} promotes fluorine doping into the O site. While using Fe{sub 2}O{sub 3} leads to higher level of Fe and SmOF impurities. The critical current density J{sub cm} were derived from magnetic hysteresis loops. Sample prepared using As{sub 2}O{sub 3} shows higher J{sub cm} in low temperature and high magnetic fields.

  8. Oxidation Behavior of Carbon Fiber-Reinforced Composites

    Science.gov (United States)

    Sullivan, Roy M.

    2008-01-01

    OXIMAP is a numerical (FEA-based) solution tool capable of calculating the carbon fiber and fiber coating oxidation patterns within any arbitrarily shaped carbon silicon carbide composite structure as a function of time, temperature, and the environmental oxygen partial pressure. The mathematical formulation is derived from the mechanics of the flow of ideal gases through a chemically reacting, porous solid. The result of the formulation is a set of two coupled, non-linear differential equations written in terms of the oxidant and oxide partial pressures. The differential equations are solved simultaneously to obtain the partial vapor pressures of the oxidant and oxides as a function of the spatial location and time. The local rate of carbon oxidation is determined at each time step using the map of the local oxidant partial vapor pressure along with the Arrhenius rate equation. The non-linear differential equations are cast into matrix equations by applying the Bubnov-Galerkin weighted residual finite element method, allowing for the solution of the differential equations numerically.

  9. Interface high-temperature superconductivity

    Science.gov (United States)

    Wang, Lili; Ma, Xucun; Xue, Qi-Kun

    2016-12-01

    Cuprate high-temperature superconductors consist of two quasi-two-dimensional (2D) substructures: CuO2 superconducting layers and charge reservoir layers. The superconductivity is realized by charge transfer from the charge reservoir layers into the superconducting layers without chemical dopants and defects being introduced into the latter, similar to modulation-doping in the semiconductor superlattices of AlGaAs/GaAs. Inspired by this scheme, we have been searching for high-temperature superconductivity in ultra-thin films of superconductors epitaxially grown on semiconductor/oxide substrates since 2008. We have observed interface-enhanced superconductivity in both conventional and unconventional superconducting films, including single atomic layer films of Pb and In on Si substrates and single unit cell (UC) films of FeSe on SrTiO3 (STO) substrates. The discovery of high-temperature superconductivity with a superconducting gap of ∼20 meV in 1UC-FeSe/STO has stimulated tremendous interest in the superconductivity community, for it opens a new avenue for both raising superconducting transition temperature and understanding the pairing mechanism of unconventional high-temperature superconductivity. Here, we review mainly the experimental progress on interface-enhanced superconductivity in the three systems mentioned above with emphasis on 1UC-FeSe/STO, studied by scanning tunneling microscopy/spectroscopy, angle-resolved photoemission spectroscopy and transport experiments. We discuss the roles of interfaces and a possible pairing mechanism inferred from these studies.

  10. Organic oxide/Al composite cathode in small molecular organic light-emitting diodes

    Science.gov (United States)

    Guo, Tzung-Fang; Yang, Fuh-Shun; Tsai, Zen-Jay; Wen, Ten-Chin; Wu, Ching-In; Chung, Chia-Tin

    2006-07-01

    This study addresses the feasibility of using an organic oxide/Al composite cathode to fabricate the small molecular organic light-emitting diodes (OLEDs). A supplementary organic buffer film is placed at the interface between the tris(8-hydroxyquinoline) aluminum (Alq3) and the organic oxide/Al complex layers. Incorporating the rubrene/poly(ethylene glycol) dimethyl ether (PEGDE) buffer layers into the composite cathode structure markedly improves the performance of devices. The luminous efficiencies of Alq3-based OLEDs biased at ˜100mA /cm2 are 4.8 and 5.1cd/A for rubrene (50Å)/PEGDE (15Å)/Al and rubrene (50Å)/PEGDE (15Å)/LiF (5Å)/Al cathode devices, and 1.3 and 3.8cd/A for devices with Al and LiF (5Å)/Al cathodes, respectively.

  11. Humidity Sensing Properties of Surface Modified Polyaniline Metal Oxide Composites

    Directory of Open Access Journals (Sweden)

    S. C. Nagaraju

    2014-01-01

    Full Text Available Polyaniline- (PANI praseodymium Oxide (Pr2O3 composites have been synthesized by in situ polymerization method with different weight percentages. The synthesized composites have been characterized by Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy. The temperature dependent conductivity shows that the conductivity is due to the hopping of polarons and bipolarons. These composites show negative thermal coefficient (α behavior as a function of temperature, which is characteristic behavior of semiconducting materials. Sensor studies have been carried out by two-probe method and found that the sensitivity increases with increase in % RH. It is noticed that stability increase is due to the presence of Pr2O3 in polyaniline up to 30 wt%. A fast recovery and response time along with high sensitivity make these composites suitable for humidity sensors.

  12. Coulomb-oscillator explanation of striped STM images of superconductive copper oxides

    CERN Document Server

    Bucher, Manfred

    2013-01-01

    Asymmetric scanning tunneling microscopy (STM) of the CuO2 plane of Ca2-xNaxCuO2Cl2, x = 0.125, shows a square domain structure with edge length four times the compound's lattice constant a0 (Cu-O-Cu distance). The domain structure is a direct consequence of the 4a0 by 4a0 superlattice formed by vertical Na+ pairs (oriented parallel to the crystal's c axis) that substitute Ca2+ ions. The surrounding O2- ions are displaced away from, and the Cu2+ ions toward the Na+ pairs. Contrary to the fourfold symmetry of the CuO2 plane, the stable displacement configuration has a twofold symmetry, dominated by large and, respectively, small displacement of opposite O2- ions being nearest neighbors to each vertical Na+ pair. The ion displacements give rise to sufficient squeeze of certain O2- ions that, by the Coulomb-oscillator model of superconductivity, prevents lateral overswing of their excited 3s electrons. The axial 3s oscillations are predominantly oriented in the directions of O2- ion displacements. The observed l...

  13. Antibacterial activity of dental composites containing zinc oxide nanoparticles.

    Science.gov (United States)

    Aydin Sevinç, Berdan; Hanley, Luke

    2010-07-01

    The resin-based dental composites commonly used in restorations result in more plaque accumulation than other materials. Bacterial biofilm growth contributes to secondary caries and failure of resin-based dental composites. Methods to inhibit biofilm growth on dental composites have been sought for several decades. It is demonstrated here that zinc oxide nanoparticles (ZnO-NPs) blended at 10% (w/w) fraction into dental composites display antimicrobial activity and reduce growth of bacterial biofilms by roughly 80% for a single-species model dental biofilm. Antibacterial effectiveness of ZnO-NPs was assessed against Streptococcus sobrinus ATCC 27352 grown both planktonically and as biofilms on composites. Direct contact inhibition was observed by scanning electron microscopy and confocal laser scanning microscopy while biofilm formation was quantified by viable counts. An 80% reduction in bacterial counts was observed with 10% ZnO-NP-containing composites compared with their unmodified counterpart, indicating a statistically significant suppression of biofilm growth. Although, 20% of the bacterial population survived and could form a biofilm layer again, 10% ZnO-NP-containing composites maintained at least some inhibitory activity even after the third generation of biofilm growth. Microscopy demonstrated continuous biofilm formation for unmodified composites after 1-day growth, but only sparsely distributed biofilms formed on 10% ZnO-NP-containing composites. The minimum inhibitory concentration of ZnO-NPs suspended in S. sobrinus planktonic culture was 50 microg mL(-1). ZnO-NP-containing composites (10%) qualitatively showed less biofilm after 1-day-anaerobic growth of a three-species initial colonizer biofilm after being compared with unmodified composites, but did not significantly reduce growth after 3 days. (c) 2010 Wiley Periodicals, Inc.

  14. Micromechanics of TEMPO-oxidized fibrillated cellulose composites.

    Science.gov (United States)

    Bulota, Mindaugas; Tanpichai, Supachok; Hughes, Mark; Eichhorn, Stephen J

    2012-01-01

    Composites of poly(lactic) acid (PLA) reinforced with TEMPO-oxidized fibrillated cellulose (TOFC) were prepared to 15, 20, 25, and 30% fiber weight fractions. To aid dispersion and to improve stress transfer, we acetylated the TOFC prior to the fabrication of TOFC-PLA composite films. Raman spectroscopy was employed to study the deformation micromechanics in these systems. Microtensile specimens were prepared from the films and deformed in tension with Raman spectra being collected simultaneously during deformation. A shift in a Raman peak initially located at ~1095 cm(-1), assigned to C-O-C stretching of the cellulose backbone, was observed upon deformation, indicating stress transfer from the matrix to the TOFC reinforcement. The highest band shift rate, with respect to strain, was observed in composites having a 30% weight fraction of TOFC. These composites also displayed a significantly higher strain to failure compared to pure acetylated TOFC film, and to the composites having lower weight fractions of TOFC. The stress-transfer processes that occur in microfibrillated cellulose composites are discussed with reference to the micromechanical data presented. It is shown that these TOFC-based composite materials are progressively dominated by the mechanics of the networks, and a shear-lag type stress transfer between fibers.

  15. Amorphous molybdenum silicon superconducting thin films

    Directory of Open Access Journals (Sweden)

    D. Bosworth

    2015-08-01

    Full Text Available Amorphous superconductors have become attractive candidate materials for superconducting nanowire single-photon detectors due to their ease of growth, homogeneity and competitive superconducting properties. To date the majority of devices have been fabricated using WxSi1−x, though other amorphous superconductors such as molybdenum silicide (MoxSi1−x offer increased transition temperature. This study focuses on the properties of MoSi thin films grown by magnetron sputtering. We examine how the composition and growth conditions affect film properties. For 100 nm film thickness, we report that the superconducting transition temperature (Tc reaches a maximum of 7.6 K at a composition of Mo83Si17. The transition temperature and amorphous character can be improved by cooling of the substrate during growth which inhibits formation of a crystalline phase. X-ray diffraction and transmission electron microscopy studies confirm the absence of long range order. We observe that for a range of 6 common substrates (silicon, thermally oxidized silicon, R- and C-plane sapphire, x-plane lithium niobate and quartz, there is no variation in superconducting transition temperature, making MoSi an excellent candidate material for SNSPDs.

  16. Nanostructured Tungsten Oxide Composite for High-Performance Gas Sensors

    Directory of Open Access Journals (Sweden)

    Siyuan Feng Chen

    2015-10-01

    Full Text Available We report the results of composite tungsten oxide nanowires-based gas sensors. The morphologic surface, crystallographic structures, and chemical compositions of the obtained nanowires have been investigated using scanning electron microscopy (SEM, X-ray diffraction (XRD, and Raman scattering, respectively. The experimental measurements reveal that each wire consists of crystalline nanoparticles with an average diameter of less than 250 nm. By using the synthesized nanowires, highly sensitive prototypic gas sensors have been designed and fabricated. The dependence of the sensitivity of tungsten oxide nanowires to the methane and hydrogen gases as a function of time has been obtained. Various sensing parameters such as sensitivity, response time, stability, and repeatability were investigated in order to reveal the sensing ability.

  17. On the structural properties and superconductivity of room-temperature chemically oxidized La2-xBaxCuO4+y (0<=x<=0.15)

    DEFF Research Database (Denmark)

    Rial, C.; Moran, E.; Alario-Franco, M.A.;

    1996-01-01

    The insertion of oxygen within the structure of La2-xBaxCuO4+y (x less than or equal to 0.15), by means of room-temperature chemical oxidation, modifies both the physical and the structural features of these materials, Concerning the superconducting properties, the extra oxygen gives rise...... and differences concerning the modifications induced by this oxidation process in the present series of La2-xBaxCuO4+y compounds and in equivalent La2-xSrxCuO4+y materials are discussed....

  18. Electronic materials high-T(sub c) superconductivity polymers and composites structural materials surface science and catalysts industry participation

    Science.gov (United States)

    1988-01-01

    The fifth year of the Center for Advanced Materials was marked primarily by the significant scientific accomplishments of the research programs. The Electronics Materials program continued its work on the growth and characterization of gallium arsenide crystals, and the development of theories to understand the nature and distribution of defects in the crystals. The High Tc Superconductivity Program continued to make significant contributions to the field in theoretical and experimental work on both bulk materials and thin films and devices. The Ceramic Processing group developed a new technique for cladding YBCO superconductors for high current applications in work with the Electric Power Research Institute. The Polymers and Composites program published a number of important studies involving atomistic simulations of polymer surfaces with excellent correlations to experimental results. The new Enzymatic Synthesis of Materials project produced its first fluorinated polymers and successfully began engineering enzymes designed for materials synthesis. The structural Materials Program continued work on novel alloys, development of processing methods for advanced ceramics, and characterization of mechanical properties of these materials, including the newly documented characterization of cyclic fatigue crack propagation behavior in toughened ceramics. Finally, the Surface Science and Catalysis program made significant contributions to the understanding of microporous catalysts and the nature of surface structures and interface compounds.

  19. Electronic materials high-T(sub c) superconductivity polymers and composites structural materials surface science and catalysts industry participation

    Science.gov (United States)

    1988-01-01

    The fifth year of the Center for Advanced Materials was marked primarily by the significant scientific accomplishments of the research programs. The Electronics Materials program continued its work on the growth and characterization of gallium arsenide crystals, and the development of theories to understand the nature and distribution of defects in the crystals. The High Tc Superconductivity Program continued to make significant contributions to the field in theoretical and experimental work on both bulk materials and thin films and devices. The Ceramic Processing group developed a new technique for cladding YBCO superconductors for high current applications in work with the Electric Power Research Institute. The Polymers and Composites program published a number of important studies involving atomistic simulations of polymer surfaces with excellent correlations to experimental results. The new Enzymatic Synthesis of Materials project produced its first fluorinated polymers and successfully began engineering enzymes designed for materials synthesis. The structural Materials Program continued work on novel alloys, development of processing methods for advanced ceramics, and characterization of mechanical properties of these materials, including the newly documented characterization of cyclic fatigue crack propagation behavior in toughened ceramics. Finally, the Surface Science and Catalysis program made significant contributions to the understanding of microporous catalysts and the nature of surface structures and interface compounds.

  20. Graphene Oxide Reinforced Polylactic Acid/Polyurethane Antibacterial Composites

    OpenAIRE

    Xiaoli An; Haibin Ma; Bin Liu; Jizeng Wang

    2013-01-01

    Nanocomposites from PLA/PU containing small concentrations of graphene oxide (GO) were prepared by simple liquid-phase mixing followed by casting. The as-prepared ternary PLA/PU/GO composite films exhibited good antibacterial activity against the gram-positive Staphylococcus aureus and the gram-negative Escherichia coli, due to the excellent antibacterial property of GO sheets with high specific surface area. The addition of GO inhibited the attachment and proliferation of microbes on the fil...

  1. p-wave triggered superconductivity in single-layer graphene on an electron-doped oxide superconductor

    Science.gov (United States)

    di Bernardo, A.; Millo, O.; Barbone, M.; Alpern, H.; Kalcheim, Y.; Sassi, U.; Ott, A. K.; de Fazio, D.; Yoon, D.; Amado, M.; Ferrari, A. C.; Linder, J.; Robinson, J. W. A.

    2017-01-01

    Electron pairing in the vast majority of superconductors follows the Bardeen-Cooper-Schrieffer theory of superconductivity, which describes the condensation of electrons into pairs with antiparallel spins in a singlet state with an s-wave symmetry. Unconventional superconductivity was predicted in single-layer graphene (SLG), with the electrons pairing with a p-wave or chiral d-wave symmetry, depending on the position of the Fermi energy with respect to the Dirac point. By placing SLG on an electron-doped (non-chiral) d-wave superconductor and performing local scanning tunnelling microscopy and spectroscopy, here we show evidence for a p-wave triggered superconducting density of states in SLG. The realization of unconventional superconductivity in SLG offers an exciting new route for the development of p-wave superconductivity using two-dimensional materials with transition temperatures above 4.2 K.

  2. p-wave triggered superconductivity in single-layer graphene on an electron-doped oxide superconductor.

    Science.gov (United States)

    Di Bernardo, A; Millo, O; Barbone, M; Alpern, H; Kalcheim, Y; Sassi, U; Ott, A K; De Fazio, D; Yoon, D; Amado, M; Ferrari, A C; Linder, J; Robinson, J W A

    2017-01-19

    Electron pairing in the vast majority of superconductors follows the Bardeen-Cooper-Schrieffer theory of superconductivity, which describes the condensation of electrons into pairs with antiparallel spins in a singlet state with an s-wave symmetry. Unconventional superconductivity was predicted in single-layer graphene (SLG), with the electrons pairing with a p-wave or chiral d-wave symmetry, depending on the position of the Fermi energy with respect to the Dirac point. By placing SLG on an electron-doped (non-chiral) d-wave superconductor and performing local scanning tunnelling microscopy and spectroscopy, here we show evidence for a p-wave triggered superconducting density of states in SLG. The realization of unconventional superconductivity in SLG offers an exciting new route for the development of p-wave superconductivity using two-dimensional materials with transition temperatures above 4.2 K.

  3. Tension-Compression Fatigue of an Oxide/Oxide Ceramic Matrix Composite at Elevated Temperature in Air and Steam Environments

    Science.gov (United States)

    2015-03-26

    than several other advanced aerospace materials [15]. It is these qualities that make ceramics candidate materials for advanced aerospace ...TENSION-COMPRESSION FATIGUE OF AN OXIDE/OXIDE CERAMIC MATRIX COMPOSITE AT ELEVATED TEMPERATURE IN...is not subject to copyright protection in the United States. AFIT-ENY-MS-15-M-222 TENSION-COMPRESSION FATIGUE OF AN OXIDE/OXIDE CERAMIC MATRIX

  4. Relationships between oxygen content, modulation period and superconducting property of Bi-based superconducting oxides. Bi kei sankabtsu chodendotai ni okeru sanso ganryo, hencho kozo oyobi chodendo tokusei no sokan

    Energy Technology Data Exchange (ETDEWEB)

    Deshimaru, Y.; Shimizu, Y.; Miura, N.; Yamazoe, N. (Kyushu Univ., Fukuoka (Japan). Graduate School of Engineering Sciences); Hiroi, Z.; Bando, Y. (Kyoto Univ., Kyoto (Japan). Inst. for Chemical Research)

    1992-09-10

    Two (2223 and 2212) of three superconducting phases in the Pb-doped Bi-Sr-Ca-Cu-O (BSCCO) oxide superconductor were examined for their changes of crystal structures and superconducting properties with changing oxygen content. Their oxygen sorption behavior examined by the temperature-programmed-desorption method showed that both samples desorb trace amounts of oxygen in a temperature range of 350-600 centigrade and the behavior examined by the temperature-programmed oxidation method showed that they absorb (absorb) reversibly oxygen desorbed above in a range of 100-350 centigrade. The critical temperature to bear diamagnetism (Tc) of the 2223 sample fell from 111 K to 96 K as oxygen was desorbed up to 600 centigrade. However, Tc recovers reversibly to the initial value when oxygen was re-absorbed. Contrary to the 2223, the 2212 sample showed the opposite Tc change. Both samples increased in their c-axes lengths and their modulation periods and the changes were reversible respectively. It was pointed out that the Tc behaviors of both sample systems were dependent on the concentration of holes on the CuO2 surfaces. 33 refs., 9 figs.

  5. Mirrors fabricated with slightly oxidized C/C composites

    Science.gov (United States)

    Wang, Yongjie; Xu, Liang; Ding, Jiaoteng; Xie, Yongjie; Ma, Zhen

    2016-10-01

    Up to now, traditional materials, such as glass, metal and SiC ceramic, gradually begin to be unsatisfied development of the future mirrors. Designable carbon fiber reinforced composites became optimized material for large aperture lightweight mirrors. Carbon/carbon composites exhibit low thermal expansion and no moisture-absorption expansion problem, therefore, they get particular attention in the space reflector field. Ni was always employed as optical layer in the mirror, however, the coating behaved poor bond with substrate and often peeled off during optical processing. In order to solve this problem, slight oxidation was carried on the C/C composites before Ni plated. The Ni coating exhibited stronger coherence and better finish performance. Finally, a 100mm diameter plane mirror was successful fabricated.

  6. Formation of Al-Si Composite Oxide Film by Hydrolysis Precipitation and Anodizing

    Institute of Scientific and Technical Information of China (English)

    Zhe-Sheng Feng; Ying-Jie Xia; Jia Ding; Jin-Ju Chen

    2007-01-01

    This paper presents a new technique in the high dielectric constant composite oxide film preparation.On the basis of nanocompsite high dielectric constant aluminum oxide film growth technology, a new idea of adulterating Si oxide species into the aluminum composite film was proposed. As a result, the specific capacitance and withstanding voltage of the composite oxide film formed at the anodizing voltage of 20V are enhanced, and the leakage current of the aluminum composite oxide film is reduced through incorporation of Si oxide species.

  7. Electrochemical formation of a composite polymer-aluminum oxide film

    Science.gov (United States)

    Runge-Marchese, Jude Mary

    1997-10-01

    The formation of polymer films through electrochemical techniques utilizing electrolytes which include conductive polymer is of great interest to the coatings and electronics industries as a means for creating electrically conductive and corrosion resistant finishes. One of these polymers, polyamino-benzene (polyaniline), has been studied for this purpose for over ten years. This material undergoes an insulator-to-metal transition upon doping with protonic acids in an acid/base type reaction. Review of prior studies dealing with polyaniline and working knowledge of aluminum anodization has led to the development of a unique process whereby composite polymer-aluminum oxide films are formed. The basis for the process is a modification of the anodizing electrolyte which results in the codeposition of polyaniline during aluminum anodization. A second process, which incorporates electrochemical sealing of the anodic layer with polyaniline was also developed. The formation of these composite films is documented through experimental processing, and characterized by way of scientific analysis and engineering tests. Analysis results revealed the formation of unique dual phase anodic films with fine microstructures which exhibited full intrusion of the columnar aluminum oxide structure with polyaniline, indicating the polymer was deposited as the metal oxidation proceeded. An aromatic amine derivative of polyaniline with aluminum sulfate was determined to be the reaction product within the aluminum oxide phase of the codeposited films. Scientific characterization determined the codeposition process yields completely chemically and metallurgically bound composite films. Engineering studies determined the films, obtained through a single step, exhibited superior wear and corrosion resistance to conventionally anodized and sealed films processed through two steps, demonstrating the increased manufacturing process efficiency that can be realized with the modification of the

  8. Adaptation of the theory of superconductivity to the behavior of oxides

    Energy Technology Data Exchange (ETDEWEB)

    Teller, E.

    1989-07-01

    An adaptation of the conventional theory to high-temperature superconductors is proposed. Excitation of electrons from below the Fermi surface to above the Fermi surface (according to Bardeen, Copper and Schrieffer) is replaced by excitation from a filled energy band into an empty one. The energy bands are constructed from two-dimensional Bloch functions in neighboring layers of the oxide lattices. Strong coupling with lattice displacements is due to the removal of the topmost electrons from the O/sup 2/minus// ions in the perovskite planes. The main methods of the BCS theory are retained. The formation and observability of a super-lattice is discussed.

  9. Graphene Oxide Reinforced Polylactic Acid/Polyurethane Antibacterial Composites

    Directory of Open Access Journals (Sweden)

    Xiaoli An

    2013-01-01

    Full Text Available Nanocomposites from PLA/PU containing small concentrations of graphene oxide (GO were prepared by simple liquid-phase mixing followed by casting. The as-prepared ternary PLA/PU/GO composite films exhibited good antibacterial activity against the gram-positive Staphylococcus aureus and the gram-negative Escherichia coli, due to the excellent antibacterial property of GO sheets with high specific surface area. The addition of GO inhibited the attachment and proliferation of microbes on the film surfaces, resulting in that the PLA/PU/GO composite films show remarkably improved antibacterial activity compared with PLA/PU composite film. The inhibition efficiency is proportional to the amount of GO. Furthermore, PLA/PU/GO composite fibrous paper was fabricated using electrospinning and exhibited good biocompatibility. The addition of GO does not destroy normal cell’s proliferation and differentiation. PLA/PU/GO composites with good antibacterial activity and biocompatibility make it attractive for the environmental and clinical applications and also provide a candidate for future application of tissue engineering.

  10. Catalytic graphitization of carbon/carbon composites by lanthanum oxide

    Institute of Scientific and Technical Information of China (English)

    ZHANG Can; LU Guimin; SUN Ze; YU Jianguo

    2012-01-01

    Graphitized carbon/carbon composites were prepared by the process of catalytic graphitization with the rare-earth catalyst,lanthanum oxide (La2O3),in order to increase the degree of graphitization and reduce the electrical resistivity.The modified coal tar pitch and coal-based needle coke were used as carbon source,and a small amount of La2O3 was added to catalyze the graphitization of the disordered carbon materials.The effects of La2O3 catalyst on the graphitization degree and microstructure oftbe carbon/carbon composites were investigated by X-ray diffraction,scanning electron microscopy,and Raman spectroscopy.The results showed that La2O3 promoted the formation of more perfect and larger crystallites,and improved the electrical/mechanical properties of carbon/carbon composites.Carbon/carbon composites with a lower electrical resistivity (7.0 μΩ·m) could be prepared when adding 5 wt.% La2O3 powder with heating treatment at 2800 ℃.The catalytic effect of La2O3 for the graphitization of carbon/carbon composites was analyzed.

  11. Oxidation Behavior of C/C-SiC Gradient Matrix Composites

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Oxidation behavior of C/C-SiC gradient matrix composites and C/C composites were compared in stationary air. The results show that oxidation threshold of C-SiC materials increases with the amount of SiC particles in the codeposition matrix. Oxidation rate of C/C-SiC gradient matrix composites is significantly lower than that of C/C material. The micro-oxidation process was observed by SEM.

  12. Microstructure Analysis of Internally Oxidized Cu-C Composite

    Directory of Open Access Journals (Sweden)

    Rudolf, R.

    2006-01-01

    Full Text Available On the basis of experimentally obtained data, it was established that submicron-size bubbles are formed by the internal oxidation of Cu-C composite with fine dispersed graphite particles. They are homogeneously distributed in the Cu-matrix. This process starts with the dissolution of oxygen into the metal at the free surfaces, and continues with the diffusion of oxygen atoms into the volume of copper crystal lattice where they react with the graphite particles. The reactions of dissolved oxygen with carbon yield the gas products (CO2, CO, which cannot be dissolved in the crystal lattice of the matrix. The gas molecules, which are enclosed in the space previously occupied by the graphite, have a greater specific volume than the solid graphite. Consequently, compressive stresses arise in the copper matrix around the bubbles. The interaction of these stress fields with gliding dislocations during loading could improve the mechanical properties of the copper. The internal oxidation kinetic in Cu-C composite depends on the diffusion of oxygen in the copper matrix, and the penetration depth of the internal oxidation front indicates the parabolic nature of the process.

  13. Lattice vibrations of the superconducting oxide spinels (Li, Mg){sub 1+x}Ti{sub 2-x}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Green, M.A.; Dalton, M.; Day, P. [Royal Institution of Great Britain, 21 Albemarle Street, London W1X 4BS (United Kingdom); Prassides, K. [Royal Institution of Great Britain, 21 Albemarle Street, London W1X 4BS (United Kingdom); School of Chemistry, Physics and Environmental Science, Sussex University, Falmer, Brighton BN1 9QJ (United Kingdom); Neumann, D.A. [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States)

    1997-12-08

    The lattice vibrational spectra of the spinel phases, Li{sub 1+x}Ti{sub 2-x}O{sub 4} (x=0, 0.33) and Li{sub 1-y}Mg{sub y}Ti{sub 2}O{sub 4} (y = 0.1, 0.3) (space group Fd3-barm), have been measured as a function of temperature and composition by neutron inelastic scattering. Calculations of phonon densities of states (PDOSs) using interatomic potentials were performed and compared with the experimental data. Extensive phonon softening and hardening are observed on Li and Mg substitution throughout the energy range 10-100 MeV and are discussed in terms of electron - phonon coupling and its relevance to superconductivity. The observed PDOSs show no change on cooling through the superconducting transition temperature, T{sub c}. (author)

  14. Superconductivity and superconductive electronics

    Science.gov (United States)

    Beasley, M. R.

    1990-12-01

    The Stanford Center for Research on Superconductivity and Superconductive Electronics is currently focused on developing techniques for producing increasingly improved films and multilayers of the high-temperature superconductors, studying their physical properties and using these films and multilayers in device physics studies. In general the thin film synthesis work leads the way. Once a given film or multilayer structure can be made reasonably routinely, the emphasis shifts to studying the physical properties and device physics of these structures and on to the next level of film quality or multilayer complexity. The most advanced thin films synthesis work in the past year has involved developing techniques to deposit a-axis and c-axis YBCO/PBCO superlattices and related structures. The in-situ feature is desirable because no solid state reactions with accompanying changes in volume, morphology, etc., that degrade the quality of the film involved.

  15. Oxidation Kinetics and Strength Degradation of Carbon Fibers in a Cracked Ceramic Matrix Composite

    Science.gov (United States)

    Halbig, Michael C.

    2003-01-01

    Experimental results and oxidation modeling will be presented to discuss carbon fiber susceptibility to oxidation, the oxidation kinetics regimes and composite strength degradation and failure due to oxidation. Thermogravimetric Analysis (TGA) was used to study the oxidation rates of carbon fiber and of a pyro-carbon interphase. The analysis was used to separately obtain activation energies for the carbon constituents within a C/SiC composite. TGA was also conducted on C/SiC composite material to study carbon oxidation and crack closure as a function of temperature. In order to more closely match applications conditions C/SiC tensile coupons were also tested under stressed oxidation conditions. The stressed oxidation tests show that C/SiC is much more susceptible to oxidation when the material is under an applied load where the cracks are open and allow for oxygen ingress. The results help correlate carbon oxidation with composite strength reduction and failure.

  16. Reversible Compositional Control of Oxide Surfaces by Electrochemical Potentials

    KAUST Repository

    Mutoro, Eva

    2012-01-05

    Perovskite oxides can exhibit a wide range of interesting characteristics such as being catalytically active and electronically/ionically conducting, and thus, they have been used in a number of solid-state devices such as solid oxide fuel cells (SOFCs) and sensors. As the surface compositions of perovskites can greatly influence the catalytic properties, knowing and controlling their surface compositions is crucial to enhance device performance. In this study, we demonstrate that the surface strontium (Sr) and cobalt (Co) concentrations of perovskite-based thin films can be controlled reversibly at elevated temperatures by applying small electrical potential biases. The surface compositional changes of La 0.8Sr 0.2CoO 3-δ (LSC 113), (La 0.5Sr 0.5) 2CoO 4±δ (LSC 214), and LSC 214-decorated LSC 113 films (LSC 113/214) were investigated in situ by utilizing synchrotron-based X-ray photoelectron spectroscopy (XPS), where the largest changes of surface Sr were found for the LSC 113/214 surface. These findings offer the potential of reversibly controlling the surface functionality of perovskites. © 2011 American Chemical Society.

  17. Thermo-Oxidative Degradation Of SiC/Si3N4 Composites

    Science.gov (United States)

    Baaklini, George Y.; Batt, Ramakrishna T.; Rokhlin, Stanislav I.

    1995-01-01

    Experimental study conducted on thermo-oxidative degradation of composite-material specimens made of silicon carbide fibers in matrices of reaction-bonded silicon nitride. In SiC/Si3N4 composites of study, interphase is 3-micrometers-thick carbon-rich coat on surface of each SiC fiber. Thermo-oxidative degradation of these composites involves diffusion of oxygen through pores of composites to interphases damaged by oxidation. Nondestructive tests reveal critical exposure times.

  18. Mesoporous metal oxide microsphere electrode compositions and their methods of making

    Energy Technology Data Exchange (ETDEWEB)

    Parans Paranthaman, Mariappan; Bi, Zhonghe; Bridges, Craig A.; Brown, Gilbert M.

    2017-04-11

    Compositions and methods of making are provided for treated mesoporous metal oxide microspheres electrodes. The compositions include microspheres with an average diameter between about 200 nanometers and about 10 micrometers and mesopores on the surface and interior of the microspheres. The methods of making include forming a mesoporous metal oxide microsphere composition and treating the mesoporous metal oxide microspheres by at least annealing in a reducing atmosphere, doping with an aliovalent element, and coating with a coating composition.

  19. Temperature profile evolution in quenching high-c superconducting composite tape

    Indian Academy of Sciences (India)

    Ziauddin Khan; Subrata Pradhan; Irfan Ahmad

    2013-06-01

    Irreversible normal zones leading to quench is an important aspect of high-temperature superconductors (HTS) in all practical applications. As a consequence of quench, transport current gets diverted to the matrix stabilizer material of the high-c composite and causes Joule heating till the original conditions are restored. The nature of growth of the resistive zone in the superconductor greatly influences the temperature evolution of the quenched zone. In this investigation, a complete mathematical analysis of the temperature profile evolution following a quench in a HTS has been carried out. Such prediction in temperature profile would aid the design of HTS tape-based practical applications in limiting the thermal stress-induced damages in off-normal scenarios.

  20. Elemental composition and clustering behaviour of α-pinene oxidation products for different oxidation conditions

    Science.gov (United States)

    Praplan, A. P.; Schobesberger, S.; Bianchi, F.; Rissanen, M. P.; Ehn, M.; Jokinen, T.; Junninen, H.; Adamov, A.; Amorim, A.; Dommen, J.; Duplissy, J.; Hakala, J.; Hansel, A.; Heinritzi, M.; Kangasluoma, J.; Kirkby, J.; Krapf, M.; Kürten, A.; Lehtipalo, K.; Riccobono, F.; Rondo, L.; Sarnela, N.; Simon, M.; Tomé, A.; Tröstl, J.; Winkler, P. M.; Williamson, C.; Ye, P.; Curtius, J.; Baltensperger, U.; Donahue, N. M.; Kulmala, M.; Worsnop, D. R.

    2015-04-01

    This study presents the difference between oxidised organic compounds formed by α-pinene oxidation under various conditions in the CLOUD environmental chamber: (1) pure ozonolysis (in the presence of hydrogen as hydroxyl radical (OH) scavenger) and (2) OH oxidation (initiated by nitrous acid (HONO) photolysis by ultraviolet light) in the absence of ozone. We discuss results from three Atmospheric Pressure interface Time-of-Flight (APi-TOF) mass spectrometers measuring simultaneously the composition of naturally charged as well as neutral species (via chemical ionisation with nitrate). Natural chemical ionisation takes place in the CLOUD chamber and organic oxidised compounds form clusters with nitrate, bisulfate, bisulfate/sulfuric acid clusters, ammonium, and dimethylaminium, or get protonated. The results from this study show that this process is selective for various oxidised organic compounds with low molar mass and ions, so that in order to obtain a comprehensive picture of the elemental composition of oxidation products and their clustering behaviour, several instruments must be used. We compare oxidation products containing 10 and 20 carbon atoms and show that highly oxidised organic compounds are formed in the early stages of the oxidation.

  1. Elemental composition and clustering behaviour of α-pinene oxidation products for different oxidation conditions

    Directory of Open Access Journals (Sweden)

    A. P. Praplan

    2015-04-01

    Full Text Available This study presents the difference between oxidised organic compounds formed by α-pinene oxidation under various conditions in the CLOUD environmental chamber: (1 pure ozonolysis (in the presence of hydrogen as hydroxyl radical (OH scavenger and (2 OH oxidation (initiated by nitrous acid (HONO photolysis by ultraviolet light in the absence of ozone. We discuss results from three Atmospheric Pressure interface Time-of-Flight (APi-TOF mass spectrometers measuring simultaneously the composition of naturally charged as well as neutral species (via chemical ionisation with nitrate. Natural chemical ionisation takes place in the CLOUD chamber and organic oxidised compounds form clusters with nitrate, bisulfate, bisulfate/sulfuric acid clusters, ammonium, and dimethylaminium, or get protonated. The results from this study show that this process is selective for various oxidised organic compounds with low molar mass and ions, so that in order to obtain a comprehensive picture of the elemental composition of oxidation products and their clustering behaviour, several instruments must be used. We compare oxidation products containing 10 and 20 carbon atoms and show that highly oxidised organic compounds are formed in the early stages of the oxidation.

  2. A Gallium Oxide-Graphene Oxide Hybrid Composite for Enhanced Photocatalytic Reaction

    Directory of Open Access Journals (Sweden)

    Seungdu Kim

    2016-07-01

    Full Text Available Hybrid composites (HCs made up of gallium oxide (GaO and graphene oxide (GO were investigated with the intent of enhancing a photocatalytic reaction under ultraviolet (UV radiation. The material properties of both GaO and GO were preserved, even after the formation of the HCs. The incorporation of the GO into the GaO significantly enhanced the photocatalytic reaction, as indicated by the amount of methylene blue (MB degradation. The improvements in the reaction were discussed in terms of increased surface area and the retarded recombination of generated charged carriers.

  3. Optimization of Alumina Slurry for Oxide-Oxide Ceramic Composites Manufactured by Injection Molding

    Directory of Open Access Journals (Sweden)

    Catherine Billotte

    2017-01-01

    Full Text Available This paper focuses on the rheological study of an alumina suspension intended for the manufacturing of oxide-oxide composites by flexible injection. Given the production constraints, it is required to have stable suspension with low viscosity and a Newtonian behavior. This is achieved with a concentration of nitric acid between 0.08 wt% and 0.2 wt% and amount of 3 wt% of PVA binder. The maximum loading of the suspension of 47 vol% suggests that there is no structure development within the suspension with optimized concentration of acid and PVA.

  4. Oxidation and Hot Corrosion Behavior of a Composite Coating System

    Institute of Scientific and Technical Information of China (English)

    Dongbai XIE; Fuhui WANG

    2003-01-01

    The oxidation and hot corrosion behavior of Co-Ni-Cr-Al-Ta-Y coating produced by magnetron sputtering with and without enamel coating has been investigated in air at 900℃ and in molten 75 wt pct NaCl+25 wt pct Na2SO4at 850℃. The results show that the enamel coating possesses good hot corrosion resistance in the molten salts, in comparison with the sputtered Co-Ni-Cr-Al-Ta-Y coating. In the hot corrosion test, breakaway corrosion did not occur on the samples with enamel coating and the composition of enamel coating did not significantly change either. The oxidation resistance of the sputtered coating, which offers good adhesion, can be improved by the enamel coating.

  5. Synthesis and characterization of polyethylene oxide based nano composite electrolyte

    Indian Academy of Sciences (India)

    M Malathi; K Tamilarasan

    2014-08-01

    Polyethylene oxide (PEO) – montmorillonite (MMT) composite electrolytes were synthesised by solution casting technique. The salt used for the study is Lithium perchlorate (LiClO4). The morphology and percentage of crystallinity data were obtained through X-ray Diffraction and Differential Scanning Caloriemetry. The ionic conductivity of the polymer electrolytes was studied by impedance spectroscopy. The addition of MMT resulted in an increase in conductivity over the temperature range of 25–60°C. The ionic conductivity of a composite polymer electrolyte containing 1.2 wt% MMT was 1 × 10-5 S cm−1 at 25°C, which is at least one order of magnitude higher than that of the polymer electrolyte (4 × 10-7S cm−1). The increase in ionic conductivity is explained on the basis of crystallinity of the polymer electrolyte.

  6. Possible influence of surface oxides on the optical response of high-purity niobium material used in the fabrication of superconducting radio frequency cavity

    Science.gov (United States)

    Singh, Nageshwar; Deo, M. N.; Roy, S. B.

    2016-09-01

    We have investigated the possible influence of surface oxides on the optical properties of a high-purity niobium (Nb) material for fabrication of superconducting radio frequency (SCRF) cavities. Various peaks in the infrared region were identified using Fourier transform infrared and Raman spectroscopy. Optical response functions such as complex refractive index, dielectric and conductivity of niobium were compared with the existing results on oxides free Nb and Cu. It was observed that the presence of a mixture of niobium-oxides, and probably near other surface impurities, appreciably influence the conducting properties of the material causing deviation from the typical metallic characteristics. In this way, the key result of this work is the observation, identification of vibrational modes of some of surface complexes and study of its influences on the optical responses of materials. This method of spectroscopic investigation will help in understanding the origin of degradation of performance of SCRF cavities.

  7. Possible influence of surface oxides on the optical response of high-purity niobium material used in the fabrication of superconducting radio frequency cavity

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Nageshwar [Magnetic and Superconducting Materials Section, Raja Ramanna Centre for Advanced Technology, Indore 452013, M.P. (India); Deo, M.N. [High Pressure & Synchrotron Radiation Physics Division, BARC, Mumbai 400085 (India); Roy, S.B. [Magnetic and Superconducting Materials Section, Raja Ramanna Centre for Advanced Technology, Indore 452013, M.P. (India)

    2016-09-11

    We have investigated the possible influence of surface oxides on the optical properties of a high-purity niobium (Nb) material for fabrication of superconducting radio frequency (SCRF) cavities. Various peaks in the infrared region were identified using Fourier transform infrared and Raman spectroscopy. Optical response functions such as complex refractive index, dielectric and conductivity of niobium were compared with the existing results on oxides free Nb and Cu. It was observed that the presence of a mixture of niobium-oxides, and probably near other surface impurities, appreciably influence the conducting properties of the material causing deviation from the typical metallic characteristics. In this way, the key result of this work is the observation, identification of vibrational modes of some of surface complexes and study of its influences on the optical responses of materials. This method of spectroscopic investigation will help in understanding the origin of degradation of performance of SCRF cavities.

  8. submitter Elemental composition and clustering behaviour of α-pinene oxidation products for different oxidation conditions

    CERN Document Server

    Praplan, A P; Bianchi, F; Rissanen, M P; Ehn, M; Jokinen, T; Junninen, H; Adamov, A; Amorim, A; Dommen, J; Duplissy, J; Hakala, J; Hansel, A; Heinritzi, M; Kangasluoma, J; Kirkby, J; Krapf, M; Kürten, A; Lehtipalo, K; Riccobono, F; Rondo, L; Sarnela, N; Simon, M; Tomé, A; Tröstl, J; Winkler, P M; Williamson, C; Ye, P; Curtius, J; Baltensperger, U; Donahue, N M; Kulmala, M; Worsnop, D R

    2015-01-01

    This study presents the difference between oxidised organic compounds formed by α-pinene oxidation under various conditions in the CLOUD environmental chamber: (1) pure ozonolysis (in the presence of hydrogen as hydroxyl radical (OH) scavenger) and (2) OH oxidation (initiated by nitrous acid (HONO) photolysis by ultraviolet light) in the absence of ozone. We discuss results from three Atmospheric Pressure interface Time-of-Flight (APi-TOF) mass spectrometers measuring simultaneously the composition of naturally charged as well as neutral species (via chemical ionisation with nitrate). Natural chemical ionisation takes place in the CLOUD chamber and organic oxidised compounds form clusters with nitrate, bisulfate, bisulfate/sulfuric acid clusters, ammonium, and dimethylaminium, or get protonated. The results from this study show that this process is selective for various oxidised organic compounds with low molar mass and ions, so that in order to obtain a comprehensive picture of the elemental composition o...

  9. Monolithic oxide-metal composite thermoelectric generators for energy harvesting

    Science.gov (United States)

    Funahashi, Shuichi; Nakamura, Takanori; Kageyama, Keisuke; Ieki, Hideharu

    2011-06-01

    Monolithic oxide-metal composite thermoelectric generators (TEGs) were fabricated using multilayer co-fired ceramic technology. These devices consisted of Ni0.9Mo0.1 and La0.035Sr0.965TiO3 as p- and n-type thermoelectric materials, and Y0.03Zr0.97O2 was used as an insulator, sandwiched between p- and n-type layers. To co-fire dissimilar materials, p-type layers contained 20 wt. % La0.035Sr0.965TiO3; thus, these were oxide-metal composite layers. The fabricated device had 50 pairs of p-i-n junctions of 5.9 mm × 7.0 mm × 2.6 mm. The calculated maximum value of the electric power output from the device was 450 mW/cm2 at ΔT = 360 K. Furthermore, this device generated 100 μW at ΔT = 10 K and operated a radio frequency (RF) transmitter circuit module assumed to be a sensor network system.

  10. Gas sensing behaviour of cerium oxide and magnesium aluminate composites

    Indian Academy of Sciences (India)

    N NITHYAVATHY; V RAJENDRAN; L JOHN BERCHMANS; M MAAZA; S KRITHIKA; S ARUNMETHA

    2017-08-01

    Composites of cerium oxide (CeO$_2$) and magnesium aluminate (MgAl$_2$O$_4$) were prepared by the moltensalt synthesis (MSS) method at 1130 K. The composite samples were named as MA, MAC0.07 and MAC0.14 (at CeO$_2$:0, 0.07 and 0.14 g in MgAl$_2$O$_4$, respectively) and these were characterized by X-ray diffraction and energy-dispersiveX-ray analyses. It is seen that the microstructure of the composite samples are quite similar except for a small increasein particle size. The energy-dispersive X-ray analyses provide the presence of concentration of Ce, Mg, Al and O in thecomposite. Scanning electron microscope, coupled with energy-dispersive X-ray analysis (SEM-EDAX) was used to identifythe morphology, microstructure and elemental composition of the prepared samples. The decomposition and dissociationreactions of the precursors were determined using differential thermal and thermogravimetric analysis (TGA). A lone pairof the electron state was identified from the electro paramagnetic resonance spectrum. An optical energy band gap of 3.3 eV was calculated from the UV–Vis absorbance spectra. The gas response to changes in oxygen (O$_2$), carbon monoxide (CO) (at 0.5, 1.0 and 1.5 bar) and ethanol (at 50 and 100 ppm) was quantitatively analysed in all the samples at differentoperating temperatures (300-500 K). The magnitude of the temperature varied linearly regardless of the gas pressure insidethe chamber, by increasing the supply in the heating pad, mounted below the sensor sample. The composite samples indicatea good response to different gases with detection of the smallest change in gas pressure.

  11. Superconducting Quantum Circuits

    NARCIS (Netherlands)

    Majer, J.B.

    2002-01-01

    This thesis describes a number of experiments with superconducting cir- cuits containing small Josephson junctions. The circuits are made out of aluminum islands which are interconnected with a very thin insulating alu- minum oxide layer. The connections form a Josephson junction. The current trough

  12. Reduction Behaviors of Carbon Composite Iron Oxide Briquette Under Oxidation Atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki-Woo; Kim, Kang-Min; Kwon, Jae-Hong; Han, Jeong-Whan [Inha University, Incheon (Korea, Republic of); Son, Sang-Han [POSCO, Pohang (Korea, Republic of)

    2017-01-15

    The carbon composite iron oxide briquette (CCB) is considered a potential solution to the upcoming use of low grade iron resources in the ironmaking process. CCB is able to reduce raw material cost by enabling the use of low grade powdered iron ores and coal. Additionally, the fast reduction of iron oxides by direct contact with coal can be utilized. In this study, the reduction behaviors of CCB were investigated in the temperature range of 200-1200 ℃ under oxidizing atmosphere. Briquettes were prepared by mixing iron ore and coal in a weight ratio of 8:2. Then reduction experiments were carried out in a mixed gas atmosphere of N{sub 2}, O{sub 2}, and CO{sub 2}. Compressive strength tests and quantitative analysis were performed by taking samples at each target temperature. In addition, the reduction degree depending on the reaction time was evaluated by off-gas analysis during the reduction test. It was found that the compressive strength and the metallization degree of the reduced briquettes increased with increases in the reaction temperature and holding time. However, it tended to decrease when the re-oxidation phenomenon was caused by injected oxygen. The degree of reduction reached a maximum value in 26 minutes. Therefore, the re-oxidation phenomenon becomes dominant after 26 minutes.

  13. Quantification of oxide particle composition in model oxide dispersion strengthened steel alloys

    Energy Technology Data Exchange (ETDEWEB)

    London, A.J., E-mail: andrew.london@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Lozano-Perez, S.; Moody, M.P. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Amirthapandian, S.; Panigrahi, B.K.; Sundar, C.S. [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, TN (India); Grovenor, C.R.M. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom)

    2015-12-15

    Oxide dispersion strengthened ferritic steels (ODS) are being considered for structural components of future designs of fission and fusion reactors because of their impressive high-temperature mechanical properties and resistance to radiation damage, both of which arise from the nanoscale oxide particles they contain. Because of the critical importance of these nanoscale phases, significant research activity has been dedicated to analysing their precise size, shape and composition (Odette et al., Annu. Rev. Mater. Res. 38 (2008) 471–503 [1]; Miller et al., Mater. Sci. Technol. 29(10) (2013) 1174–1178 [2]). As part of a project to develop new fuel cladding alloys in India, model ODS alloys have been produced with the compositions, Fe–0.3Y{sub 2}O{sub 3}, Fe–0.2Ti–0.3Y{sub 2}O{sub 3} and Fe–14Cr–0.2Ti–0.3Y{sub 2}O{sub 3}. The oxide particles in these three model alloys have been studied by APT in their as-received state and following ion irradiation (as a proxy for neutron irradiation) at various temperatures. In order to adequately quantify the composition of the oxide clusters, several difficulties must be managed, including issues relating to the chemical identification (ranging and variable peak-overlaps); trajectory aberrations and chemical structure; and particle sizing. This paper presents how these issues can be addressed by the application of bespoke data analysis tools and correlative microscopy. A discussion follows concerning the achievable precision in these measurements, with reference to the fundamental limiting factors.

  14. Photocatalytic polyoxometalate compositions of tungstovanadates and uses as water oxidation catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Craig L.; Gueletii, Iourii V.; Song, Jie; Lv, Hongjin; Musaev, Djamaladdin; Luo, Zhen

    2017-08-22

    This disclosure relates to photocatalytic polyoxometalate compositions of tungstovanadates and uses as water oxidation catalysts. In certain embodiments, the disclosure relates to compositions comprising water, a complex of a tetra-metal oxide cluster and VW.sub.9O.sub.34 ligands, and a photosensitizer. Typically, the metal oxide cluster is Co. In certain embodiments, the disclosure relates to electrodes and other devices comprising water oxidation catalysts disclosed herein and uses in generating fuels and electrical power from solar energy.

  15. Oxidation-resistant interface coatings for Nicalon/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Stinton, D.P.; Besmann, T.M.; Lowden, R.A. [Oak Ridge National Lab., TN (United States); Liaw, P.K.; Shanmugham, S. [Univ. of Tennessee, Knoxville, TN (United States)

    1997-12-01

    Nicalon/SiC composites with thin C and C/oxide/C interfaces were fabricated. The oxide layers, mullite and Al{sub 2}O{sub 3}-TiO{sub 2}, were deposited by a sol-gel process, while the C layer was deposited by a chemical vapor infiltration method. The fabricated composites were flexure tested in both as-processed and oxidized conditions. Composites with C and C/oxide/C interfaces retained graceful failure even after 500 h oxidation at 1000 C, but with reduced flexural strengths.

  16. Korea's developmental program for superconductivity

    Science.gov (United States)

    Hong, Gye-Won; Won, Dong-Yeon; Kuk, Il-Hyun; Park, Jong-Chul

    1995-01-01

    Superconductivity research in Korea was firstly carried out in the late 70's by a research group in Seoul National University (SNU), who fabricated a small scale superconducting magnetic energy storage system under the financial support from Korea Electric Power Company (KEPCO). But a few researchers were involved in superconductivity research until the oxide high Tc superconductor was discovered by Bednorz and Mueller. After the discovery of YBaCuO superconductor operating above the boiling point of liquid nitrogen (77 K)(exp 2), Korean Ministry of Science and Technology (MOST) sponsored a special fund for the high Tc superconductivity research to universities and national research institutes by recognizing its importance. Scientists engaged in this project organized 'High Temperature Superconductivity Research Association (HITSRA)' for effective conducting of research. Its major functions are to coordinate research activities on high Tc superconductivity and organize the workshop for active exchange of information. During last seven years the major superconductivity research has been carried out through the coordination of HITSRA. The major parts of the Korea's superconductivity research program were related to high temperature superconductor and only a few groups were carrying out research on conventional superconductor technology, and Korea Atomic Energy Research Institute (KAERI) and Korea Electrotechnology Research Institute (KERI) have led this research. In this talk, the current status and future plans of superconductivity research in Korea will be reviewed based on the results presented in interim meeting of HITSRA, April 1-2, 1994. Taejeon, as well as the research activity of KAERI.

  17. SELF-ASSEMBLY CE OXIDE/ORGANOPOLYSILOXANE COMPOSITE COATINGS.

    Energy Technology Data Exchange (ETDEWEB)

    SUGAMA,T.; SABATINI,R.; GAWLIK,K.

    2005-01-01

    A self-assembly composite synthesis technology was used to put together a Ce(OH){sub 3}-dispersed poly-acetamide-acetoxyl methyl-propylsiloxane (PAAMPA) organometallic polymer. Three spontaneous reactions were involved; condensation, amidation, and acetoxylation, between the Ce acetate and aminopropylsilane triol (APST) at 150 C. An increase in temperature to 200 C led to the in-situ phase transformation of Ce(OH){sub 3} into Ce{sub 2}O{sub 3} in the PAAMPA matrix. A further increase to 250 C caused oxidative degradation of the PAAMPA, thereby generating copious fissures in the composite. We assessed the potential of Ce(OH){sub 3}/ and Ce{sub 2}O{sub 3}/ PAAMPA composite materials as corrosion-preventing coatings for carbon steel and aluminum. The Ce{sub 2}O{sub 3} composite coating displayed better performance in protecting both metals against NaCl-caused corrosion than did the Ce(OH){sub 3} composite. Using this coating formed at 200 C, we demonstrated that the following four factors played an essential role in further mitigating the corrosion of the metals: First was a minimum susceptibility of coating's surface to moisture; second was an enhanced densification of the coating layer; third was the retardation of the cathodic oxygen reduction reaction at the metal's corrosion sites due to the deposition of Ce{sub 2}O{sub 3} as a passive film over the metal's surface; and, fourth was its good adherence to metals. The last two factors contributed to minimizing the cathodic delamination of coating film from the metal's surface. We also noted that the affinity of the composite with the surface of aluminum was much stronger than that with steel. Correspondingly, the rate of corrosion of aluminum was reduced as much as two orders of magnitude by a nanoscale thick coating. In contrast, its ability to reduce the corrosion rate of steel was lower than one order of magnitude.

  18. SELF-ASSEMBLY CE OXIDE/ORGANOPOLYSILOXANE COMPOSITE COATINGS.

    Energy Technology Data Exchange (ETDEWEB)

    SUGAMA,T.; SABATINI,R.; GAWLIK,K.

    2005-01-01

    A self-assembly composite synthesis technology was used to put together a Ce(OH){sub 3}-dispersed poly-acetamide-acetoxyl methyl-propylsiloxane (PAAMPA) organometallic polymer. Three spontaneous reactions were involved; condensation, amidation, and acetoxylation, between the Ce acetate and aminopropylsilane triol (APST) at 150 C. An increase in temperature to 200 C led to the in-situ phase transformation of Ce(OH){sub 3} into Ce{sub 2}O{sub 3} in the PAAMPA matrix. A further increase to 250 C caused oxidative degradation of the PAAMPA, thereby generating copious fissures in the composite. We assessed the potential of Ce(OH){sub 3}/ and Ce{sub 2}O{sub 3}/ PAAMPA composite materials as corrosion-preventing coatings for carbon steel and aluminum. The Ce{sub 2}O{sub 3} composite coating displayed better performance in protecting both metals against NaCl-caused corrosion than did the Ce(OH){sub 3} composite. Using this coating formed at 200 C, we demonstrated that the following four factors played an essential role in further mitigating the corrosion of the metals: First was a minimum susceptibility of coating's surface to moisture; second was an enhanced densification of the coating layer; third was the retardation of the cathodic oxygen reduction reaction at the metal's corrosion sites due to the deposition of Ce{sub 2}O{sub 3} as a passive film over the metal's surface; and, fourth was its good adherence to metals. The last two factors contributed to minimizing the cathodic delamination of coating film from the metal's surface. We also noted that the affinity of the composite with the surface of aluminum was much stronger than that with steel. Correspondingly, the rate of corrosion of aluminum was reduced as much as two orders of magnitude by a nanoscale thick coating. In contrast, its ability to reduce the corrosion rate of steel was lower than one order of magnitude.

  19. Development of resistive type superconducting fault current limiter using oxide superconductor; Sankabutsu chodendotai wo mochiita teikogata chodendo genryuki no kaihatsu -muyudo sorenoido koiru no shisaku shiken kekka

    Energy Technology Data Exchange (ETDEWEB)

    Yoneda, E.; Shimada, M.; Nomura, S. [Toshiba Corp., Tokyo (Japan); Okuma, T.; Sato, Y.; Iwata, Y. [Tokyo Electric Power Co., Inc., Tokyo (Japan)

    1999-11-10

    We have advanced the development of resistive superconductivity current limiter using the normal transition of the superconductor until now, and it has produced and tested 6.6kV/1kA single-phase current limiter using the metal system superconductor experimentally. As a result of these evaluations, in turning to the practical application of that the oxide superconductor was used from the metal system superconductor from the viewpoint of wire rod performance, refrigerating machine, insulation performance, it reached the advantageous conclusion. Here, it reports the result that it produced the mischievous prank non-induction coil model experimentally in the mind and tested coil resistance type current-limiting element using the oxide superconductor. (NEDO)

  20. Oxidation resistant coatings for ceramic matrix composite components

    Energy Technology Data Exchange (ETDEWEB)

    Vaubert, V.M.; Stinton, D.P. [Oak Ridge National Lab., TN (United States); Hirschfeld, D.A. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States). Dept. of Materials and Metallurgical Engineering

    1998-11-01

    Corrosion resistant Ca{sub 0.6}Mg{sub 0.4}Zr{sub 4}(PO{sub 4}){sub 6} (CMZP) and Ca{sub 0.5}Sr{sub 0.5}Zr{sub 4}(PO{sub 4}){sub 6} (CS-50) coatings for fiber-reinforced SiC-matrix composite heat exchanger tubes have been developed. Aqueous slurries of both oxides were prepared with high solids loading. One coating process consisted of dipping the samples in a slip. A tape casting process has also been created that produced relatively thin and dense coatings covering a large area. A processing technique was developed, utilizing a pre-sintering step, which produced coatings with minimal cracking.

  1. Nanoscale gadolinium oxide capping layers on compositionally variant gate dielectrics

    KAUST Repository

    Alshareef, Husam N.

    2010-11-19

    Metal gate work function enhancement using nanoscale (1.0 nm) Gd2O3 interfacial layers has been evaluated as a function of silicon oxide content in the HfxSiyOz gate dielectric and process thermal budget. It is found that the effective work function tuning by the Gd2O3 capping layer varied by nearly 400 mV as the composition of the underlying dielectric changed from 0% to 100% SiO2, and by nearly 300 mV as the maximum process temperature increased from ambient to 1000 °C. A qualitative model is proposed to explain these results, expanding the existing models for the lanthanide capping layer effect.

  2. Electron density distribution in BaPb{sub 1-x}Sb{sub x}O{sub 3} superconducting oxides studied by double nuclear magnetic resonance methods

    Energy Technology Data Exchange (ETDEWEB)

    Piskunov, Yu. V., E-mail: piskunov@imp.uran.ru; Ogloblichev, V. V.; Arapova, I. Yu.; Sadykov, A. V.; Gerashchenko, A. P.; Verkhovskii, S. V. [Russian Academy of Sciences, Institute of Metal Physics, Ural Branch (Russian Federation)

    2011-11-15

    The effect of charge disorder on the formation of an inhomogeneous state of the electron system in the conduction band in BaPb{sub 1-x}Sb{sub x}O{sub 3} superconducting oxides is investigated experimentally by NMR methods. The NMR spectra of {sup 17}O are measured systematically, and the contributions from {sup 17}O atoms with different cation nearest surroundings are identified. It is found that microscopic regions with an elevated spin density of charge carriers are formed within two coordination spheres near antimony ions. Nuclei of the superconducting phase of the oxide (regions with an elevated antimony concentration) microscopically distributed over the sample are detected in compounds with x = 0.25 and 0.33. Experiments in which a double resonance signal of the spin echo of {sup 17}O-{sup 207}Pb and {sup 17}O-{sup 121}Sb are measured in the metal phase of BaPb{sub 1-x}Sb{sub x}O{sub 3} oxides are carried out for the first time. The constants of indirect heteronuclear spin-spin {sup 17}O-{sup 207}Pb interaction are determined as functions of the local Knight shift {sub 207}Ks. The estimates of the constants of the indirect interaction between the nuclei of the nearest neighbors (O-Pb and Pb-Pb atoms) and analysis of evolution of the NMR spectra of {sup 17}O upon a change in the antimony concentration are convincing evidence in favor of the development of a microscopically inhomogeneous state of the electron system in the metal phase of BaPb{sub 1-x}Sb{sub x}O{sub 3} oxides.

  3. Superconductivity in graphite intercalation compounds

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Robert P. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Weller, Thomas E.; Howard, Christopher A. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Dean, Mark P.M. [Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973 (United States); Rahnejat, Kaveh C. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Saxena, Siddharth S. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Ellerby, Mark, E-mail: mark.ellerby@ucl.ac.uk [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom)

    2015-07-15

    Highlights: • Historical background of graphite intercalates. • Superconductivity in graphite intercalates and its place in the field of superconductivity. • Recent developments. • Relevant modeling of superconductivity in graphite intercalates. • Interpretations that pertain and questions that remain. - Abstract: The field of superconductivity in the class of materials known as graphite intercalation compounds has a history dating back to the 1960s (Dresselhaus and Dresselhaus, 1981; Enoki et al., 2003). This paper recontextualizes the field in light of the discovery of superconductivity in CaC{sub 6} and YbC{sub 6} in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how these relate to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity, and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.

  4. Composition and oxidation state of sulfur in atmospheric particulate matter

    Science.gov (United States)

    Longo, Amelia F.; Vine, David J.; King, Laura E.; Oakes, Michelle; Weber, Rodney J.; Huey, Lewis Gregory; Russell, Armistead G.; Ingall, Ellery D.

    2016-10-01

    The chemical and physical speciation of atmospheric sulfur was investigated in ambient aerosol samples using a combination of sulfur near-edge x-ray fluorescence spectroscopy (S-NEXFS) and X-ray fluorescence (XRF) microscopy. These techniques were used to determine the composition and oxidation state of sulfur in common primary emission sources and ambient particulate matter collected from the greater Atlanta area. Ambient particulate matter samples contained two oxidation states: S0 and S+VI. Ninety-five percent of the individual aerosol particles (> 1 µm) analyzed contain S0. Linear combination fitting revealed that S+VI in ambient aerosol was dominated by ammonium sulfate as well as metal sulfates. The finding of metal sulfates provides further evidence for acidic reactions that solubilize metals, such as iron, during atmospheric transport. Emission sources, including biomass burning, coal fly ash, gasoline, diesel, volcanic ash, and aerosolized Atlanta soil, and the commercially available bacterium Bacillus subtilis, contained only S+VI. A commercially available Azotobacter vinelandii sample contained approximately equal proportions of S0 and S+VI. S0 in individual aerosol particles most likely originates from primary emission sources, such as aerosolized bacteria or incomplete combustion.

  5. Effects of extra oxygen on the structure and superconductivity of La2-xCaxCuO4+y prepared by chemical oxidation

    DEFF Research Database (Denmark)

    Rial, C.; Moran, E.; Alario Franco, M.A.

    1998-01-01

    improve considerably upon oxidation. The oxidized Ca-doped materials with x less than or equal to 0.08 show an almost constant T-c of similar to 38 K, close to that corresponding to the optimum hole-doping in La2-xMxCuO4; however, the oxidized samples with higher Ca contents present slightly lower T(c)s......The insertion of an excess of oxygen within the structure of La2-xCaxCuO4 (x less than or equal to 0.12) by means of room temperature chemical oxidation modifies the physical properties and the crystal structure of these cuprates. The superconducting features of the starting La2-xCaxCuO4 samples....... This decrease of T-c is connected with the ability of these compounds to incorporate extra oxygen, which decreases as the Ca-doping increases and is controlled by a structural limit. The behavior of the La2-xCaxCuO4 materials under the oxidation process and the changes induced by the interstitial oxygen...

  6. Poly(vinylidene fluoride)/zinc oxide smart composite material

    Science.gov (United States)

    Öğüt, Erdem; Yördem, O. Sinan; Menceloğlu, Yusuf Z.; Papila, Melih

    2007-04-01

    This work aimed at fabrication and electromechanical characterization of a smart material system composed of electroactive polymer and ceramic materials. The idea of composite material system is on account of complementary characteristics of the polymer and ceramic for flexibility and piezoelectric activity. Our preliminary work included Polyvinylidene Fluoride (PVDF) as the flexible piezoelectric polymer, and Zinc Oxide (ZnO) as the piezoelectric ceramic brittle, but capable to respond strains without poling. Two alternative processes were investigated. The first process makes use of ZnO fibrous formation achieved by sintering PVA/zinc acetate precursor fibers via electrospinning. Highly brittle fibrous ZnO mat was dipped into a PVDF polymer solution and then pressed to form pellets. The second process employed commercial ZnO nanopowder material. The powder was mixed into a PVDF/acetone polymer solution, and the resultant paste was pressed to form pellets. The free standing composite pellets with electrodes on the top and bottom surfaces were then subjected to sinusoidal electric excitation and response was recorded using a fotonic sensor. An earlier work on electrospun PVDF fiber mats was also summarized here and the electromechanical characterization is reported.

  7. Superconducting electronics

    NARCIS (Netherlands)

    Rogalla, Horst

    1994-01-01

    During the last decades superconducting electronics has been the most prominent area of research for small scale applications of superconductivity. It has experienced quite a stormy development, from individual low frequency devices to devices with high integration density and pico second switching

  8. Tungsten oxide--fly ash oxide composites in adsorption and photocatalysis.

    Science.gov (United States)

    Visa, Maria; Bogatu, Cristina; Duta, Anca

    2015-05-30

    A novel composite based on tungsten oxide and fly ash was hydrothermally synthetized to be used as substrate in the advanced treatment of wastewaters with complex load resulted from the textile industry. The proposed treatment consists of one single step process combining photocatalysis and adsorption. The composite's crystalline structure was investigated by X-ray diffraction and FTIR, while atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to analyze the morphology. The adsorption capacity and photocatalytic properties of the material were tested on mono- and multi-pollutants systems containing two dyes (Bemacid Blau - BB and Bemacid Rot - BR) and one heavy metal ion-Cu(2+), and the optimized process conditions were identified. The results indicate better removal efficiencies using the novel composite material in the combined adsorption and photocatalysis, as compared to the separated processes. Dyes removal was significantly enhanced in the photocatalytic process by adding hydrogen peroxide and the mechanism was presented and discussed. The pseudo second order kinetics model best fitted the experimental data, both in the adsorption and in the combined processes. The kinetic parameters were calculated and correlated with the properties of the composite substrate.

  9. Interphase for ceramic matrix composites reinforced by non-oxide ceramic fibers

    Science.gov (United States)

    DiCarlo, James A. (Inventor); Bhatt, Ramakrishna (Inventor); Morscher, Gregory N. (Inventor); Yun, Hee-Mann (Inventor)

    2008-01-01

    A ceramic matrix composite material is disclosed having non-oxide ceramic fibers, which are formed in a complex fiber architecture by conventional textile processes; a thin mechanically weak interphase material, which is coated on the fibers; and a non-oxide or oxide ceramic matrix, which is formed within the interstices of the interphase-coated fiber architecture. During composite fabrication or post treatment, the interphase is allowed to debond from the matrix while still adhering to the fibers, thereby providing enhanced oxidative durability and damage tolerance to the fibers and the composite material.

  10. Photoemission results and understanding of high-temperature superconducting oxides: Non-issues, real issues, limitations and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Margaritondo, G. [Ecole Polytechnique Federale, Lausanne (Switzerland). Inst. de Physique Appliquee

    1994-12-31

    The authors argue that the photoelectric effect in high-temperature superconductors is not only a source of extremely valuable information, but one of the most important and interesting open problems in today`s physics. Even without a complete picture of this phenomenon, very important conclusions can be obtained from an empirical analysis of photoemission data, notably on the parity (see Onellion`s article in this volume) and on the link between superconductivity and Anderson locations But a complete theoretical framework is urgently needed. Its development can contribute to the conceptual revolution that might be necessary to understand high-temperature superconductivity, as the Drude-Fermi-Landau revolution was necessary to understand metallic conductivity.

  11. Effect of TiC addition on surface oxidation behavior of SKD11 tool steel composites

    Science.gov (United States)

    Cho, Seungchan; Jo, Ilguk; Kim, Heebong; Kwon, Hyuk-Tae; Lee, Sang-Kwan; Lee, Sang-Bok

    2017-09-01

    Titanium carbide (TiC) reinforced tool steel matrix composites were successfully fabricated by a liquid pressing infiltration process and research was subsequently conducted to investigate the composites' oxidation resistance. The mass gain of the tested TiC-SKD11 composite held at 700 °C for 50 h in an air environment decreased by about 60%, versus that of the SKD11, which indicates improved oxidation resistance. Improved oxidation resistance of the TiC-SKD11 composite originates from uniformly reinforced TiC, with a phase transition to thermodynamically stable, volume-expanded TiO2.

  12. Simple Synthesis and Enhanced Performance of Graphene Oxide-Gold Composites

    Directory of Open Access Journals (Sweden)

    Min Song

    2012-01-01

    Full Text Available Graphene oxide-gold composites were prepared by one-step reaction in aqueous solution, where the gold nanoparticles were deposited on the graphene oxide during their synthesis process. Transmission electron morphology, X-ray diffraction, Roman spectra, and UV-Vis absorption spectra were used to characterize the obtained composites. Furthermore, based on the BET analysis results, it was found that the surface area of the composite film was obviously enhanced compared with the synthesized graphene oxide. Electrochemical measurements indicated that the modification of the composites on electrode could efficiently enhance the voltammetric response, suggesting the potential application for making electrochemical sensors.

  13. Tungsten oxide – fly ash oxide composites in adsorption and photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Visa, Maria, E-mail: maria.visa@unitbv.ro; Bogatu, Cristina, E-mail: cristina.bogatu@unitbv.ro; Duta, Anca, E-mail: a.duta@unitbv.ro

    2015-05-30

    Highlights: • A novel fly ash – WO{sub 3} composite was synthesized via mild hydrothermal treatment. • Simultaneous dyes and copper adsorption efficiently runs on the composite. • In situ tandem systems (TiO{sub 2}–WO{sub 3}) supports the high photocatalytic activity. • The processes kinetics mainly depend on the dye’s structure and flexibility. • Thermodynamics depend on the copper–dye/copper–dye-substrate interactions. - Abstract: A novel composite based on tungsten oxide and fly ash was hydrothermally synthetized to be used as substrate in the advanced treatment of wastewaters with complex load resulted from the textile industry. The proposed treatment consists of one single step process combining photocatalysis and adsorption. The composite’s crystalline structure was investigated by X-ray diffraction and FTIR, while atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to analyze the morphology. The adsorption capacity and photocatalytic properties of the material were tested on mono- and multi-pollutants systems containing two dyes (Bemacid Blau – BB and Bemacid Rot – BR) and one heavy metal ion-Cu{sup 2+}, and the optimized process conditions were identified. The results indicate better removal efficiencies using the novel composite material in the combined adsorption and photocatalysis, as compared to the separated processes. Dyes removal was significantly enhanced in the photocatalytic process by adding hydrogen peroxide and the mechanism was presented and discussed. The pseudo second order kinetics model best fitted the experimental data, both in the adsorption and in the combined processes. The kinetic parameters were calculated and correlated with the properties of the composite substrate.

  14. Facile synthesis of iron oxides/reduced graphene oxide composites: application for electromagnetic wave absorption at high temperature

    Science.gov (United States)

    Zhang, Lili; Yu, Xinxin; Hu, Hongrui; Li, Yang; Wu, Mingzai; Wang, Zhongzhu; Li, Guang; Sun, Zhaoqi; Chen, Changle

    2015-03-01

    Iron oxides/reduced graphene oxide composites were synthesized by facile thermochemical reactions of graphite oxide and FeSO4.7H2O. By adjusting reaction temperature, α-Fe2O3/reduced graphene oxide and Fe3O4/reduced graphene oxide composites can be obtained conveniently. Graphene oxide and reduced graphene oxide sheets were demonstrated to regulate the phase transition from α-Fe2O3 to Fe3O4 via γ-Fe2O3, which was reported for the first time. The hydroxyl groups attached on the graphene oxide sheets and H2 gas generated during the annealing of graphene oxide are believed to play an important role during these phase transformations. These samples showed good electromagnetic wave absorption performance due to their electromagnetic complementary effect. These samples possess much better electromagnetic wave absorption properties than the mixture of separately prepared Fe3O4 with rGO, suggesting the crucial role of synthetic method in determining the product properties. Also, these samples perform much better than commercial absorbers. Most importantly, the great stability of these composites is highly advantageous for applications as electromagnetic wave absorption materials at high temperatures.

  15. Facile synthesis of iron oxides/reduced graphene oxide composites: application for electromagnetic wave absorption at high temperature.

    Science.gov (United States)

    Zhang, Lili; Yu, Xinxin; Hu, Hongrui; Li, Yang; Wu, Mingzai; Wang, Zhongzhu; Li, Guang; Sun, Zhaoqi; Chen, Changle

    2015-03-19

    Iron oxides/reduced graphene oxide composites were synthesized by facile thermochemical reactions of graphite oxide and FeSO4 · 7H2O. By adjusting reaction temperature, α-Fe2O3/reduced graphene oxide and Fe3O4/reduced graphene oxide composites can be obtained conveniently. Graphene oxide and reduced graphene oxide sheets were demonstrated to regulate the phase transition from α-Fe2O3 to Fe3O4 via γ-Fe2O3, which was reported for the first time. The hydroxyl groups attached on the graphene oxide sheets and H2 gas generated during the annealing of graphene oxide are believed to play an important role during these phase transformations. These samples showed good electromagnetic wave absorption performance due to their electromagnetic complementary effect. These samples possess much better electromagnetic wave absorption properties than the mixture of separately prepared Fe3O4 with rGO, suggesting the crucial role of synthetic method in determining the product properties. Also, these samples perform much better than commercial absorbers. Most importantly, the great stability of these composites is highly advantageous for applications as electromagnetic wave absorption materials at high temperatures.

  16. Influence of additives on oxidation resistance of binderless C/C composite

    Institute of Scientific and Technical Information of China (English)

    周声劢; 刘其城; 胡晓凯

    2003-01-01

    Experiment of adding B4C, SiC, and Si powders to improve oxidation resistance of the C/C compositeswas carried out. The results show that the increase of oxidation resistance is remarkable when the contents of B4C,SiC, and Si powders are 10%, 10%, and 5% in the composites, respectively. The regularities and mechanism ofthe effects of the ceramic powders on the oxidation resistance of the composites were also discussed.

  17. Effect of Oxidation on Fracture Toughness of a Carbon/Carbon Composite

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chengyun; YAN Kefei; QIAO Shengru; LI Mei; HAN Dong; GUO Yong

    2012-01-01

    The fracture toughness of a carbon/carbon composites oxidized at different temperature for 1 h was measured.The fracture surfaces were examined by scanning electron microscopy (SEM).The results indicate that oxidation temperature has significant effects on the fracture toughness.Fracture toughness decreases with the increase of the weight loss.The SEM images reveal that the decrease of fracture toughness was mainly attributed to the oxidation of the interface in the composite.

  18. Graphenothermal reduction synthesis of 'exfoliated graphene oxide/iron (II) oxide' composite for anode application in lithium ion batteries

    Science.gov (United States)

    Petnikota, Shaikshavali; Marka, Sandeep Kumar; Banerjee, Arkaprabha; Reddy, M. V.; Srikanth, V. V. S. S.; Chowdari, B. V. R.

    2015-10-01

    Graphenothermal Reduction process is used to obtain exfoliated graphene oxide (EG)/iron (II) oxide (FeO) composite prepared at 650 °C for 5 h in argon. Structural and compositional analyses of the sample confirm the formation of EG/FeO composite. This composite shows a reversible capacity of 857 mAh g-1 at a current rate of 50 mA g-1 in the voltage range 0.005-3.0 V versus Li. An excellent capacity retention up to 60 cycles and high coulombic efficiency of 98% are also observed. Characteristic Fe2+/0 redox peaks observed in Cyclic Voltammetry measurement are explained in correlation with lithium storage mechanism. Thermal, electrical and impedance spectroscopy studies of EG/FeO composite are discussed in detail. Comparative electrochemical cycling studies of EG/FeO composite with Fe2O3 and Fe3O4 materials prepared under controlled conditions are also discussed.

  19. A study of mixed phase behavior in the lanthanide-substituted superconducting oxide ErBa sub 2 Cu sub 3 O sub 7

    Energy Technology Data Exchange (ETDEWEB)

    Zandbergen, H.W.; Holland, G.F.; Tejedor, P.; Gronsky, R.; Stacy, A.M. (Univ. of California, Berkeley (USA))

    1987-07-01

    Substitution of lanthanide ions, Ln{sup 3+}, for Y in the novel superconducting oxide YBa{sub 2}Cu{sub 3}O{sub 7} has been studied largely to investigate the effect of magnetic 4f{sup n} ions on superconductivity. A possibility that should also be considered however is that slight variation in the size of the lanthanide ions might lead to different structural types. For instance, La does not form the YBa{sub 2}Cu{sub 3}O{sub 7} structure, preferring instead the La{sub 3}Ba{sub 3}Cu{sub 6}O{sub 4} habit. Changes in the size of Ln could also be important on the microscopic scale, where different defect structures could occur. Defects as well as other impurities will adversely affect the current carrying capacity, J{sub c}, of these new high T{sub c} superconductors. The challenge in improving the performance of the Y-Ba-Cu-O type superconductors is to develop an understanding of the relationship between their fabrication, processing, performance, and microstructure. Here the authors report the synthesis and characterization, both magnetic and structural of ErBa{sub 2}Cu{sub 3}O{sub 7}. High resolution electron micrographs show the presence of an unusual defect structure in this pure phase.

  20. Simple Synthesis and Enhanced Performance of Graphene Oxide-Gold Composites

    OpenAIRE

    2012-01-01

    Graphene oxide-gold composites were prepared by one-step reaction in aqueous solution, where the gold nanoparticles were deposited on the graphene oxide during their synthesis process. Transmission electron morphology, X-ray diffraction, Roman spectra, and UV-Vis absorption spectra were used to characterize the obtained composites. Furthermore, based on the BET analysis results, it was found that the surface area of the composite film was obviously enhanced compared with the synthesized graph...

  1. Method of making bearing materials. [self-lubricating, oxidation resistant composites for high temperature applications

    Science.gov (United States)

    Sliney, H. E. (Inventor)

    1979-01-01

    A method is described for making a composite material which provides low friction surfaces for materials in rolling or sliding contact. The composite material which is self-lubricating and oxidation resistant up to and in excess of about 930 C is comprised of a metal component which lends strength and elasticity to the structure and a fluorine salt component which provides oxidation protection to the metal but may also enhance the lubrication qualities of the composite.

  2. Filled glass composites for sealing of solid oxide fuel cells.

    Energy Technology Data Exchange (ETDEWEB)

    Tandon, Rajan; Widgeon, Scarlett Joyce; Garino, Terry J.; Brochu, Mathieu; Gauntt, Bryan D.; Corral, Erica L.; Loehman, Ronald E.

    2009-04-01

    Glasses filled with ceramic or metallic powders have been developed for use as seals for solid oxide fuel cells (SOFC's) as part of the U.S. Department of Energy's Solid State Energy Conversion Alliance (SECA) Program. The composites of glass (alkaline earth-alumina-borate) and powders ({approx}20 vol% of yttria-stabilized zirconia or silver) were shown to form seals with SOFC materials at or below 900 C. The type and amount of powder were adjusted to optimize thermal expansion to match the SOFC materials and viscosity. Wetting studies indicated good wetting was achieved on the micro-scale and reaction studies indicated that the degree of reaction between the filled glasses and SOFC materials, including spinel-coated 441 stainless steel, at 750 C is acceptable. A test rig was developed for measuring strengths of seals cycled between room temperature and typical SOFC operating temperatures. Our measurements showed that many of the 410 SS to 410 SS seals, made using silver-filled glass composites, were hermetic at 0.2 MPa (2 atm.) of pressure and that seals that leaked could be resealed by briefly heating them to 900 C. Seal strength measurements at elevated temperature (up to 950 C), measured using a second apparatus that we developed, indicated that seals maintained 0.02 MPa (0.2 atm.) overpressures for 30 min at 750 C with no leakage. Finally, the volatility of the borate component of sealing glasses under SOFC operational conditions was studied using weight loss measurements and found by extrapolation to be less than 5% for the projected SOFC lifetime.

  3. Influence of Heterogeneous OH Oxidation on the Evaporation Behavior and Composition of a Model Organic Aerosol

    Science.gov (United States)

    Kolesar, K. R.; Cappa, C. D.; Wilson, K. R.

    2011-12-01

    Heterogeneously oxidized squalane particles are used here as a model system to investigate the interplay between chemical composition and particle volatility. Reaction of squalane particles by OH radicals leads to the production of oxygenated products. Here we use the vacuum ultra-violet Aerosol Mass Spectrometer (VUV-AMS) at beamline 9.0.2 at the Advanced Light Source to monitor the evolution of specific oxidation products that result from increasing OH exposures, and how the composition changes as the oxidized particles evaporate. The soft ionization in the VUV-AMS allows us to uniquely track the parent squalane molecule and the various oxidation products over multiple generations of oxidation. Compositional changes of the oxidized particles resulting from evaporation have been measured in three sets of laboratory experiments. In the first set, a thermodenuder at varying temperatures was used to induce evaporation of particles at a fixed OH exposure. Second, the OH exposure was varied along with temperature to create a cross-sectional observation of particle composition at 50% mass fraction remaining for ten different oxidation levels. The combination of these two experiments provides information as to the compositional changes that occur during evaporation due to heating. In the third set of experiments, VUV-AMS spectra of oxidized squalane particles following dilution-induced evaporation were measured for comparison with the thermodenuder experiments. These experiments provide insights into the relationships between particle oxidation, composition and evaporation kinetics.

  4. Surface composition and catalytic activity of La-Fe mixed oxides for methane oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fengxiang [School of Chemistry, Beijing Institute of Technology, Liangxiang East Road, Beijing 102488 (China); Li, Zhanping [Analysis Center, Tsinghua University, Beijing 100084 (China); Ma, Hongwei [School of Chemistry, Beijing Institute of Technology, Liangxiang East Road, Beijing 102488 (China); Gao, Zhiming, E-mail: zgao@bit.edu.cn [School of Chemistry, Beijing Institute of Technology, Liangxiang East Road, Beijing 102488 (China)

    2015-10-01

    Graphical abstract: - Highlights: • The sample with La/Fe atomic ratio of 0.94 is single phase perovskite La{sub 0.94}FeO{sub 3−d}. • The excess ironic oxide exists on the surface of the perovskite crystallites. • La{sup 3+} ions are enriched on surface of the oxides even for the La{sub 0.68}Fe sample. - Abstract: Four La-Fe oxide samples with La/Fe atomic ratio y = 1.02 ∼ 0.68 (denoted as LayFe) were prepared by the citrate method. The samples had a decreased specific surface area with the La/Fe atomic ratio decreasing. XRD pattern proved that the sample La{sub 0.94}Fe is single phase perovskite La{sub 0.94}FeO{sub 3−d}. Phase composition of the samples was estimated by the Rietveld refinement method. XPS analyses indicate that La{sup 3+} ions are enriched on surface of crystallites for all the samples, and surface carbonate ions are relatively abundant on the samples La{sub 1.02}Fe and La{sub 0.94}Fe. Catalytic activity for methane oxidation per unit surface area of the samples is in the order of La{sub 0.68}Fe > La{sub 0.76}Fe > La{sub 0.94}Fe > La{sub 1.02}Fe both in the presence and in the absence of gaseous oxygen. A reason for this order would be the higher concentration of Fe{sup 3+} ion on the surface of the samples La{sub 0.68}Fe and La{sub 0.76}Fe.

  5. Alkaline vapor oxidation synthesis and electrocatalytic activity toward glucose oxidation of CuO/ZnO composite nanoarrays

    Science.gov (United States)

    Soejima, Tetsuro; Takada, Kohei; Ito, Seishiro

    2013-07-01

    CuO/ZnO nanocomposite materials have attracted widespread attention because of their scientific and technological importance as, for example, photocatalysts, gas and humidity sensors, catalysts for H2 production and organic synthesis, and solar cells. High-temperature and/or complicated multistep processes are usually used to prepare these composites. Here we demonstrate a low-temperature and facile one-step synthesis of CuO nanoflowers/ZnO nanorods composite arrays via an alkaline vapor oxidation process. The CuO/ZnO composite nanoarrays show high electrocatalytic activity toward glucose oxidation.

  6. Altering the structure and properties of iron oxide nanoparticles and graphene oxide/iron oxide composites by urea

    Energy Technology Data Exchange (ETDEWEB)

    Naghdi, Samira [Physics department, Bu-Ali Sina University, 65174 Hamedan (Iran, Islamic Republic of); Department of Mechanical Engineering, College of Engineering, Kyung Hee University, 446-701 Yongin (Korea, Republic of); Rhee, Kyong Yop, E-mail: rheeky@khu.ac.kr [Department of Mechanical Engineering, College of Engineering, Kyung Hee University, 446-701 Yongin (Korea, Republic of); Jaleh, Babak [Physics department, Bu-Ali Sina University, 65174 Hamedan (Iran, Islamic Republic of); Park, Soo Jin [Chemistry, Colloge of Natural Science, Inha University, 402-751 Incheon (Korea, Republic of)

    2016-02-28

    Graphical abstract: - Highlights: • Iron oxide (Fe{sub 2}O{sub 3}) nanoparticles were directly grown on graphene oxide (GO) using a facile microwave assistant method. • The effect of urea concentration on Fe{sub 2}O{sub 3} nanoparticles and GO/Fe{sub 2}O{sub 3} composite was examined. • Increasing urea concentration altered the morphology and decreased the particle size. • The increased concentration of urea induced a larger surface area with more active sites in the Fe{sub 2}O{sub 3} nanoparticles. • The increase in urea concentration led to decreased thermal stability of the Fe{sub 2}O{sub 3} nanoparticles. - Abstract: Iron oxide (Fe{sub 2}O{sub 3}) nanoparticles were grown on graphene oxide (GO) using a simple microwave-assisted method. The effects of urea concentration on Fe{sub 2}O{sub 3} nanoparticles and GO/Fe{sub 2}O{sub 3} composite were examined. The as-prepared samples were characterized using X-ray powder diffraction, Raman spectroscopy, and transmission electron microscopy. The Fe{sub 2}O{sub 3} nanoparticles were uniformly developed on GO sheets. The results showed that urea affects both Fe{sub 2}O{sub 3} morphology and particle size. In the absence of urea, the Fe{sub 2}O{sub 3} nanostructures exhibited a rod-like morphology. However, increasing urea concentration altered the morphology and decreased the particle size. The Raman results of GO/Fe{sub 2}O{sub 3} showed that the intensity ratio of D band to G band (I{sub D}/I{sub G}) was decreased by addition of urea, indicating that urea can preserve the GO sheets during synthesis of the composite from exposing more defects. The surface area and thermal stability of GO/Fe{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} were compared using the Brunauer–Emmett–Teller method and thermal gravimetric analysis, respectively. The results showed that the increased concentration of urea induced a larger surface area with more active sites in the Fe{sub 2}O{sub 3} nanoparticles. However, the increase in urea

  7. Preparation of hierarchical layer-stacking Mn-Ce composite oxide for catalytic total oxidation of VOCs

    Institute of Scientific and Technical Information of China (English)

    唐文翔; 武晓峰; 刘刚; 李双德; 李东艳; 李文辉; 陈运法

    2015-01-01

    Hierarchical layer-stacking Mn-Ce composite oxide with mesoporous structure was firstly prepared by a simple precipita-tion/decomposition procedure with oxalate precursor and the complete catalytic oxidation of VOCs (benzene, toluene and ethyl ace-tate) were examined. The Mn-Ce oxalate precursor was obtained from metal salt and oxalic acid without any additives. The resulting materials were characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), en-ergy dispersive X-ray spectroscopy (EDX), hydrogen temperature programmed reduction (H2-TPR) and X-ray photoelectron spec-troscopy (XPS). Compared with Mn-Ce composite oxide synthesized through a traditional method (Na2CO3 route), the hierarchical layer-stacking Mn-Ce composite oxide exhibited higher catalytic activity in the complete oxidation of volatile organic compounds (VOCs). By means of testing, the data revealed that the hierarchical layer-stacking Mn-Ce composite oxide possessed superior physiochemical properties such as good low-temperature reducibility, high manganese oxidation state and rich adsorbed surface oxy-gen species which resulted in the enhancement of catalytic abilities.

  8. Superconductivity in highly disordered dense carbon disulfide.

    Science.gov (United States)

    Dias, Ranga P; Yoo, Choong-Shik; Struzhkin, Viktor V; Kim, Minseob; Muramatsu, Takaki; Matsuoka, Takahiro; Ohishi, Yasuo; Sinogeikin, Stanislav

    2013-07-16

    High pressure plays an increasingly important role in both understanding superconductivity and the development of new superconducting materials. New superconductors were found in metallic and metal oxide systems at high pressure. However, because of the filled close-shell configuration, the superconductivity in molecular systems has been limited to charge-transferred salts and metal-doped carbon species with relatively low superconducting transition temperatures. Here, we report the low-temperature superconducting phase observed in diamagnetic carbon disulfide under high pressure. The superconductivity arises from a highly disordered extended state (CS4 phase or phase III[CS4]) at ~6.2 K over a broad pressure range from 50 to 172 GPa. Based on the X-ray scattering data, we suggest that the local structural change from a tetrahedral to an octahedral configuration is responsible for the observed superconductivity.

  9. Superconducting YBa2Cu3O7 films on Si and GaAs with conducting indium tin oxide buffer layers

    Science.gov (United States)

    James, J. H.; Kellett, B. J.; Gauzzi, A.; Dwir, B.; Pavuna, D.

    1991-03-01

    Superconducting YBa2Cu3O7-delta (YBCO) thin films have been grown in situ by ion beam sputtering on Si and GaAs substrates with intermediate, conducting Indium Tin Oxide (ITO) buffer layers. Uniform, textured YBCO films on ITO exhibit Tc onset at 92K and Tc0 at 68K and 60K on Si and GaAs substrates respectively, the latter value is the highest Tc reported on GaAs. YBCO/ITO films exhibit metallic resistivity behavior. In situ YBCO films on SrTiO3 show Tc onset = 92K and Tc0 = 90.5K, transition widths are less than 1K. A simple optical bolometer has been constructed from YBCO films on SrTiO3. Tunnelling measurements have also been carried out using the first YBCO-Pb window-type tunnel junctions.

  10. Electronic structures, hole-doping, and superconductivity of the s = 1, 2, 3, and 4 members of the (Cu,Mo)-12s2 homologous series of superconductive copper oxides.

    Science.gov (United States)

    Grigoraviciute, Inga; Karppinen, Maarit; Chan, Ting-Shan; Liu, Ru-Shi; Chen, Jin-Ming; Chmaissem, Omar; Yamauchi, Hisao

    2010-01-20

    We demonstrate that the T(c) value of superconductive copper oxides does not depend on the distance between two adjacent CuO(2) planes as long as the hole-doping level and the immediate (crystal) chemical surroundings of the planes are kept the same. Experimental evidence is accomplished for the homologous series of (Cu,Mo)-12s2, the member phases of which differ from each other by the number (s) of cation layers in the fluorite-structured (Ce,Y)-[O(2)-(Ce,Y)](s-1) block between the CuO(2) planes. X-ray absorption near-edge structure spectroscopy is employed as a probe for the hole states of these phases. The s = 1 member appears to be more strongly doped with holes than other phases of the series and accordingly to possess the highest T(c) value of 87 K. For s > or = 2, unexpectedly, both the CuO(2) plane hole concentration and the value of T(c) (approximately 55 K) remain constant, being independent of s.

  11. Mesoporous metal oxide microsphere electrode compositions and their methods of making

    Energy Technology Data Exchange (ETDEWEB)

    Paranthaman, Mariappan Parans; Liu, Hansan; Brown, Gilbert M.; Sun, Xiao-Guang; Bi, Zhonghe

    2016-12-06

    Compositions and methods of making are provided for mesoporous metal oxide microspheres electrodes. The mesoporous metal oxide microsphere compositions comprise (a) microspheres with an average diameter between 200 nanometers (nm) and 10 micrometers (.mu.m); (b) mesopores on the surface and interior of the microspheres, wherein the mesopores have an average diameter between 1 nm and 50 nm and the microspheres have a surface area between 50 m.sup.2/g and 500 m.sup.2/g. The methods of making comprise forming composite powders. The methods may also comprise refluxing the composite powders in a basic solution to form an etched powder, washing the etched powder with an acid to form a hydrated metal oxide, and heat-treating the hydrated metal oxide to form mesoporous metal oxide microspheres.

  12. Recent progress in magnetic iron oxide-semiconductor composite nanomaterials as promising photocatalysts

    Science.gov (United States)

    Wu, Wei; Changzhong Jiang, Affc; Roy, Vellaisamy A. L.

    2014-11-01

    Photocatalytic degradation of toxic organic pollutants is a challenging tasks in ecological and environmental protection. Recent research shows that the magnetic iron oxide-semiconductor composite photocatalytic system can effectively break through the bottleneck of single-component semiconductor oxides with low activity under visible light and the challenging recycling of the photocatalyst from the final products. With high reactivity in visible light, magnetic iron oxide-semiconductors can be exploited as an important magnetic recovery photocatalyst (MRP) with a bright future. On this regard, various composite structures, the charge-transfer mechanism and outstanding properties of magnetic iron oxide-semiconductor composite nanomaterials are sketched. The latest synthesis methods and recent progress in the photocatalytic applications of magnetic iron oxide-semiconductor composite nanomaterials are reviewed. The problems and challenges still need to be resolved and development strategies are discussed.

  13. Y-Ba Superconducting Ceramics

    Science.gov (United States)

    Shunbao, Tian; Xiaofei, Li; Tinglian, Wen; Zuxiang, Lin; Shichun, Li; Huijun, Yu

    Polycrystalline Y-Ba-Cu-O superconducting materials have been studied. It was found that chemical composition and processing condition may play an important role in the final structure and superconducting properties. The density has been determined and compared with the calculated value according to the structure model reported by Bell Labs. The grain size and the morphology of the materials were observed by SEM.

  14. Visibly transparent and radiopaque inorganic organic composites from flame-made mixed-oxide fillers

    Energy Technology Data Exchange (ETDEWEB)

    Maedler, Lutz [University of California, Los Angeles, Department of Chemical Engineering (United States)], E-mail: lutz@seas.ucla.edu; Krumeich, Frank [Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences (Switzerland); Burtscher, Peter; Moszner, Norbert [Ivoclar Vivadent AG (Liechtenstein)

    2006-08-15

    Radiopaque composites have been produced from flame-made ytterbium/silica mixed oxide within a crosslinked methacrylate resin matrix. The refractive index of the filler powder increased with ytterbium oxide loading. A high transparency was achieved for a matching refractive index of the filler powder and the polymer in comparison to commercial materials with 52 wt% ceramic filling. It was demonstrated that powder homogeneity with regard to particle morphology and distribution of the individual metal atoms is essential to obtain a highly transparent composite. In contrast, segregation of crystalline single-oxide phases drastically decreased the composite transparency despite similar specific surface areas, refractive indices and overall composition. The superior physical strength, transparency and radiopacity compared to composites made from conventional silica based-fillers makes the flame-made mixed-oxide fillers especially attractive for dental restoration materials.

  15. Visibly transparent & radiopaque inorganic organic composites from flame-made mixed-oxide fillers

    Science.gov (United States)

    Mädler, Lutz; Krumeich, Frank; Burtscher, Peter; Moszner, Norbert

    2006-08-01

    Radiopaque composites have been produced from flame-made ytterbium/silica mixed oxide within a crosslinked methacrylate resin matrix. The refractive index of the filler powder increased with ytterbium oxide loading. A high transparency was achieved for a matching refractive index of the filler powder and the polymer in comparison to commercial materials with 52 wt% ceramic filling. It was demonstrated that powder homogeneity with regard to particle morphology and distribution of the individual metal atoms is essential to obtain a highly transparent composite. In contrast, segregation of crystalline single-oxide phases drastically decreased the composite transparency despite similar specific surface areas, refractive indices and overall composition. The superior physical strength, transparency and radiopacity compared to composites made from conventional silica based-fillers makes the flame-made mixed-oxide fillers especially attractive for dental restoration materials.

  16. Liquid Phase Plasma Synthesis of Iron Oxide/Carbon Composite as Dielectric Material for Capacitor

    Directory of Open Access Journals (Sweden)

    Heon Lee

    2014-01-01

    Full Text Available Iron oxide/carbon composite was synthesized using a liquid phase plasma process to be used as the electrode of supercapacitor. Spherical iron oxide nanoparticles with the size of 5~10 nm were dispersed uniformly on carbon powder surface. The specific capacitance of the composite increased with increasing quantity of iron oxide precipitate on the carbon powder up to a certain quantity. When the quantity of the iron oxide precipitate exceeds the threshold, however, the specific capacitance was rather reduced by the addition of precipitate. The iron oxide/carbon composite containing an optimum quantity (0.33 atomic % of iron oxide precipitate exhibited the smallest resistance and the largest initial resistance slope.

  17. Facile synthesis of cobalt oxide/reduced graphene oxide composites for electrochemical capacitor and sensor applications

    Science.gov (United States)

    Nguyen, Thi Toan; Nguyen, Van Hoa; Deivasigamani, Ranjith Kumar; Kharismadewi, Dian; Iwai, Yoshio; Shim, Jae-Jin

    2016-03-01

    Reduced graphene oxide sheets decorated with cobalt oxide nanoparticles (Co3O4/rGO) were produced using a hydrothermal method without surfactants. Both the reduction of GO and the formation of Co3O4 nanoparticles occurred simultaneously under this condition. At the same current density of 0.5 A g-1, the Co3O4/rGO nanocomposites exhibited much a higher specific capacitance (545 F g-1) than that of bare Co3O4 (100 F g-1). On the other hand, for the detection of H2O2, the peak current of Co3O4/rGO was 4 times higher than that of Co3O4. Moreover, the resulting composite displayed a low detection limit of 0.62 μM and a high sensitivity of 28,500 μA mM-1cm-2 for the H2O2 sensor. These results suggest that the Co3O4/rGO nanocomposite is a promising material for both supercapacitor and non-enzymatic H2O2 sensor applications.

  18. Stabilisation of composite LSFCO-CGO based anodes for methane oxidation in solid oxide fuel cells

    Science.gov (United States)

    Sin, A.; Kopnin, E.; Dubitsky, Y.; Zaopo, A.; Aricò, A. S.; Gullo, L. R.; Rosa, D. La; Antonucci, V.

    A La 0.6Sr 0.4Fe 0.8Co 0.2O 3-Ce 0.8Gd 0.2O 1.9 (LSFCO-CGO) composite anode material was investigated for the direct electrochemical oxidation of methane in intermediate temperature solid oxide fuel cells (IT-SOFCs). A maximum power density of 0.17 W cm -2 at 800 °C was obtained with a methane-fed ceria electrolyte-supported SOFC. A progressive increase of performance was recorded during 140 h operation with dry methane. The anode did not show any structure degradation after the electrochemical testing. Furthermore, no formation of carbon deposits was detected by electron microscopy and elemental analysis. Alternatively, this perovskite material showed significant chemical and structural modifications after high temperature treatment in a dry methane stream in a packed-bed reactor. It is derived that the continuous supply of mobile oxygen anions from the electrolyte to the LSFCO anode, promoted by the mixed conductivity of CGO electrolyte at 800 °C, stabilises the perovskite structure near the surface under SOFC operation and open circuit conditions.

  19. Tungsten oxide-Au nanosized film composites for glucose oxidation and sensing in neutral medium.

    Science.gov (United States)

    Gougis, Maxime; Ma, Dongling; Mohamedi, Mohamed

    2015-01-01

    In this work, we report for the first time the use of tungsten oxide (WOx) as catalyst support for Au toward the direct electrooxidation of glucose. The nanostructured WOx/Au electrodes were synthesized by means of laser-ablation technique. Both micro-Raman spectroscopy and transmission electron microscopy showed that the produced WOx thin film is amorphous and made of ultrafine particles of subnanometer size. X-ray diffraction and X-ray photoelectron spectroscopy revealed that only metallic Au was present at the surface of the WOx/Au composite, suggesting that the WOx support did not alter the electronic structure of Au. The direct electrocatalytic oxidation of glucose in neutral medium such as phosphate buffered saline (pH 7.2) solution has been investigated with cyclic voltammetry, chronoamperometry, and square-wave voltammetry. Sensitivity as high as 65.7 μA cm(-2) mM(-1) up to 10 mM of glucose and a low detection limit of 10 μM were obtained with square-wave voltammetry. This interesting analytical performance makes the laser-fabricated WOx/Au electrode potentially promising for implantable glucose fuel cells and biomedical analysis as the evaluation of glucose concentration in biological fluids. Finally, owing to its unique capabilities proven in this work, it is anticipated that the laser-ablation technique will develop as a fabrication tool for chip miniature-sized sensors in the near future.

  20. Facial synthesis of carrageenan/reduced graphene oxide/Ag composite as efficient SERS platform

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yuhong; Wang, Zhong; Fu, Li; Peng, Feng, E-mail: yuhongzhengcas@gmail.com [Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing (China); Wang, Aiwu [Department of Physics and Materials Science, City University of Hong (Hong Kong)

    2017-01-15

    In this paper, we reported the preparation of carrageenan/reduced graphene oxide/Ag composite (CA-RGO-Ag) by a wet chemical method at room temperature using carrageenan, graphene oxide and silver nitrate as starting materials. As-prepared composite was characterized by UV-vis spectroscopy, Raman spectroscopy, FTIR, SEM, EDX and XRD. Results showed that the reduction of graphene oxide (GO) and silver nitrate was achieved simultaneously by addition of NaBH{sub 4} . Surface-enhanced Raman scattering study showed that the obtained composite give an intensive and enhanced Raman scattering when Rhodamine B was used as a probing molecule. (author)

  1. Zinc (hydr)oxide/graphite oxide/AuNPs composites: role of surface features in H₂S reactive adsorption.

    Science.gov (United States)

    Giannakoudakis, Dimitrios A; Bandosz, Teresa J

    2014-12-15

    Zinc hydroxide/graphite oxide/AuNPs composites with various levels of complexity were synthesized using an in situ precipitation method. Then they were used as H2S adsorbents in visible light. The materials' surfaces were characterized before and after H2S adsorption by various physical and chemical methods (XRD, FTIR, thermal analysis, potentiometric titration, adsorption of nitrogen and SEM/EDX). Significant differences in surface features and synergistic effects were found depending on the materials' composition. Addition of graphite oxide and the deposition of gold nanoparticles resulted in a marked increase in the adsorption capacity in comparison with that on the zinc hydroxide and zinc hydroxide/AuNP. Addition of AuNPs to zinc hydroxide led to a crystalline ZnO/AuNP composite while the zinc hydroxide/graphite oxide/AuNP composite was amorphous. The ZnOH/GO/AuNPs composite exhibited the greatest H2S adsorption capacity due to the increased number of OH terminal groups and the conductive properties of GO that facilitated the electron transfer and consequently the formation of superoxide ions promoting oxidation of hydrogen sulfide. AuNPs present in the composite increased the conductivity, helped with electron transfer to oxygen, and prevented the fast recombination of the electrons and holes. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Altering the structure and properties of iron oxide nanoparticles and graphene oxide/iron oxide composites by urea

    Science.gov (United States)

    Naghdi, Samira; Rhee, Kyong Yop; Jaleh, Babak; Park, Soo Jin

    2016-02-01

    Iron oxide (Fe2O3) nanoparticles were grown on graphene oxide (GO) using a simple microwave-assisted method. The effects of urea concentration on Fe2O3 nanoparticles and GO/Fe2O3 composite were examined. The as-prepared samples were characterized using X-ray powder diffraction, Raman spectroscopy, and transmission electron microscopy. The Fe2O3 nanoparticles were uniformly developed on GO sheets. The results showed that urea affects both Fe2O3 morphology and particle size. In the absence of urea, the Fe2O3 nanostructures exhibited a rod-like morphology. However, increasing urea concentration altered the morphology and decreased the particle size. The Raman results of GO/Fe2O3 showed that the intensity ratio of D band to G band (ID/IG) was decreased by addition of urea, indicating that urea can preserve the GO sheets during synthesis of the composite from exposing more defects. The surface area and thermal stability of GO/Fe2O3 and Fe2O3 were compared using the Brunauer-Emmett-Teller method and thermal gravimetric analysis, respectively. The results showed that the increased concentration of urea induced a larger surface area with more active sites in the Fe2O3 nanoparticles. However, the increase in urea concentration led to decreased thermal stability of the Fe2O3 nanoparticles. The magnetic properties of Fe2O3 nanoparticles were characterized by a vibrating sample magnetometer and results revealed that the magnetic properties of Fe2O3 nanoparticles are affected by the morphology.

  3. Facile solvothermal synthesis of a graphene nanosheet-bismuth oxide composite and its electrochemical characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Wang Huanwen [Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China); Hu Zhongai, E-mail: zhongai@nwnu.edu.c [Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China); Chang Yanqin; Chen Yanli; Lei Ziqiang; Zhang Ziyu; Yang Yuying [Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China)

    2010-12-01

    This work demonstrates a novel and facile route for preparing graphene-based composites comprising of metal oxide nanoparticles and graphene. A graphene nanosheet-bismuth oxide composite as electrode materials of supercapacitors was firstly synthesized by thermally treating the graphene-bismuth composite, which was obtained through simultaneous solvothermal reduction of the colloidal dispersions of negatively charged graphene oxide sheets in N,N-dimethyl formamide (DMF) solution of bismuth cations at 180 {sup o}C. The morphology, composition, and microstructure of the composites together with pure graphite oxide, and graphene were characterized using powder X-ray diffraction (XRD), FT-IR, field emission scanning electron microscopy (FESEM), transmission electron microscope (TEM), thermogravimetry and differential thermogravimetry (TG-DTG). The electrochemical behaviors were measured by cyclic voltammogram (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS). The specific capacitance of 255 F g{sup -1} (based on composite) is obtained at a specific current of 1 A g{sup -1} as compared with 71 F g{sup -1} for pure graphene. The loaded-bismuth oxide achieves a specific capacitance as high as 757 F g{sup -1} even at 10 A g{sup -1}. In addition, the graphene nanosheet-bismuth oxide composite electrode exhibits the excellent rate capability and well reversibility.

  4. High temperature interface superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Gozar, A., E-mail: adrian.gozar@yale.edu [Yale University, New Haven, CT 06511 (United States); Bozovic, I. [Yale University, New Haven, CT 06511 (United States); Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2016-02-15

    Highlight: • This review article covers the topic of high temperature interface superconductivity. • New materials and techniques used for achieving interface superconductivity are discussed. • We emphasize the role played by the differences in structure and electronic properties at the interface with respect to the bulk of the constituents. - Abstract: High-T{sub c} superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-T{sub c} Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed. We conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.

  5. Electrochemical properties of poly(vinyl alcohol) and graphene oxide composite for supercapacitor applications

    Science.gov (United States)

    Theophile, Niyitanga; Jeong, Hae Kyung

    2017-02-01

    Poly(vinyl alcohol), PVA, polymer was successfully combined with graphene oxide (GO) and thermally reduced graphene oxide (RGO), respectively, to make composites and characterized for supercapacitor applications. PVA-RGO composite shows excellent electrochemical properties compared to PVA-GO composite. The capacitance of 190 Fg-1 is obtained from PVA-RGO composite which is larger than that (13 Fg-1) of PVA-GO composite. Electrochemical impedance of PVA-RGO is more than ten times smaller than that of PVA-GO at 20 kHz, demonstrating that PVA-RGO composite has a great advantage for supercapacitor applications compared to PVA, GO, RGO, and PVA-GO composite.

  6. High Capacity and High Voltage Composite Oxide Cathode for Li-ion Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NEI Corporation and University of Florida propose to develop a mixed metal oxide cathode that is a composite of two and three dimensional structures. At the atomic...

  7. Thermo-Oxidative Stability of Graphite/PMR-15 Composites: Effect of Fiber Surface Modification on Composite Shear Properties

    Science.gov (United States)

    Madhukar, Madhu S.; Bowles, Kenneth J.; Papadopolous, Demetrios S.

    1994-01-01

    Experiments were conducted to establish a correlation between the weight loss of a polyimide (PMR- 15) matrix and graphite fibers and the in-plane shear properties of their unidirectional composites subjected to different isothermal aging times up to 1000 hr at 316 C. The role of fiber surface treatment on the composite degradation during the thermo-oxidative aging was investigated by using A4 graphite fibers with three surface modifications: untreated (AU-4), surface treated (AS-4), and surface treated and sized with an epoxy-compatible sizing (AS-4G). The weight loss of the matrix fibers, and composites was determined during the aging. The effect of thermal aging was seen in all the fiber samples in terms of weight loss and reduction in fiber diameter. Calculated values of weight loss fluxes for different surfaces of rectangular unidirectional composite plates showed that the largest weight loss occurred at those cut surfaces where fibers were perpendicular to the surface. Consequently, the largest amount of damage was also noted on these cut surfaces. Optical observation of the neat matrix and composite plates subjected to different aging times revealed that the degradation (such as matrix microcracking and void growth) occurred in a thin surface layer near the specimen edges. The in-plane shear modulus of the composites was unaffected by the fiber surface treatment and the thermal aging. The shear strength of the composites with the untreated fibers was the lowest and it decreased with aging. A fracture surface examination of the composites with untreated fibers suggested that the weak interface allowed the oxidation reaction to proceed along the interface and thus expose the inner material to further oxidation. The results indicated that the fiber-matrix interface affected the composite degradation process during its thermal aging and that the the weak interface accelerated the composite degradation.

  8. Oxidation and silanization of MWCNTs for MWCNT/vinyl ester composites

    Directory of Open Access Journals (Sweden)

    2011-09-01

    Full Text Available Chemical functionalization of multi-wall carbon nanotubes (MWCNTs is conducted by means of acid oxidation, direct silanization of the as-received MWCNTs and a sequential treatment based on oxidation and silanization. Polymer composites made from the functionalized MWCNTs and a vinyl ester resin are fabricated and tested in compression. It is found that although silanization could be achieved without the assistance of a previous oxidative treatment, oxidizing the MWCNTs by HNO3/H2O2 prior to silanization yields significantly better attachment of the silane molecules to the CNT surface and hence, better mechanical performance of the resulting composite. The limited improvements in mechanical properties found are discussed in light of the reduction of the nanotube length after MWCNT oxidation and composite processing.

  9. Superconductivity at 36 K in gadolinium-arsenide oxides GdO1-xFxFeAs

    Institute of Scientific and Technical Information of China (English)

    CHENG Peng; FANG Lei; YANG Huan; ZHU XiYu; MU Gang; LUO HuiQian; WANG ZhaoSheng; WEN HaiHu

    2008-01-01

    In this paper we report the fabrication and superconducting properties of GdO1-xFxFeAs.It was found that when x is equal to 0.17,GdO0.83F0.17FeAs is a su-perconductor with the onset transition temperature Tonc≈36.6 K.Resistivity anomaly near 130 K was observed for all samples up to x = 0.17,and such a phenomenon is similar to that of LaO1-xFxFeAs.Hall coefficient indicates that GdO1-xFxFeAs is conducted by electron-like charge carriers.

  10. Superconductivity at 36 K in gadolinium-arsenide oxides GdO1-xFxFeAs

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this paper we report the fabrication and superconducting properties of GdO1-xFxFeAs. It was found that when x is equal to 0.17, GdO0.83F0.17FeAs is a su-perconductor with the onset transition temperature Tcon ≈ 36.6 K. Resistivity anomaly near 130 K was observed for all samples up to x = 0.17, and such a phenomenon is similar to that of LaO1-xFxFeAs. Hall coefficient indicates that GdO1-xFxFeAs is conducted by electron-like charge carriers.

  11. Application of CO2-TPD in the Synthesis of Composite Oxides from Metal-Organic Precursors

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    CO2-TPD was demonstrated an effective way to investigate the phase formation during pyrolysis for the preparation of composite oxides using metal-organic molecules as precursors. Based on the CO2-TPD results, it was found that calcination condition had deep effect on the carbonate formation and the minimum firing temperature to acquire pure phase composite oxide. An optimized calcination schedule was then developed.

  12. A Review on Decomposition Deflagration of Oxidizer and Binders in Composite Solid Propellants

    Directory of Open Access Journals (Sweden)

    K. Kishore

    1979-01-01

    Full Text Available Binder and oxidizer decomposition play very significant role during the combustion of composite solid propellants. Ammonium perchlorate (AP is the practical oxidizer in composite propellant formulations. Available information on binder decomposition in general and AP decomposition in particular have been collected and reviewed from the viewpoint of their application in propellants. This review may be useful in understanding the mechanism of propellant combustion.

  13. Low cost, formable, high T(sub c) superconducting wire

    Science.gov (United States)

    Smialek, James L. (Inventor)

    1991-01-01

    A ceramic superconductivity part such as a wire is produced through the partial oxidation of a specially formulated copper alloy in the core. The alloys contain low level quantities of rare earth and alkaline earth dopant elements. Upon oxidation at high temperature, superconducting oxide phases are formed as a thin film.

  14. Superconductivity in Al/Al2O3 interface

    Science.gov (United States)

    Palnichenko, A. V.; Vyaselev, O. M.; Mazilkin, A. A.; Khasanov, S. S.

    2016-06-01

    Metastable superconductivity at Tc ≈ 65 K has been observed in Al foil subjected to special oxidation process, according to the ac magnetic susceptibility and electrical resistance measurements. Comparison of the ac susceptibility and the dc magnetization measurements infers that the superconductivity arises within the interfacial granular layer formed during the oxidation process between metallic aluminum and its oxide.

  15. A 1 V supercapacitor device with nanostructured graphene oxide/polyaniline composite materials

    Indian Academy of Sciences (India)

    Deepak Kumar; Anjan Banerjee; Satish Patil; Ashok K Shukla

    2015-10-01

    Polyaniline and graphene oxide composite on activated carbon cum reduced graphene oxide-supported supercapacitor electrodes are fabricated and electrochemically characterized in a three-electrode cell assembly. Attractive supercapacitor performance, namely high-power capability and cycling stability for graphene oxide/polyaniline composite, is observed owing to the layered and porous-polymeric-structured electrodes. Based on the materials characterization data in a three-electrode cell assembly, 1 V supercapacitor devices are developed and performance tested. A comparative study has also been conducted for polyaniline and graphene oxide/polyaniline composite-based 1 V supercapacitors for comprehending the synergic effect of graphene oxide and polyaniline. Graphene oxide/polyaniline composite-based capacitor that exhibits about 100 F g−1 specific capacitance with faradaic efficiency in excess of 90% has its energy and power density values of 14 Wh kg−1 and 72 kW kg−1, respectively. Cycle-life data for over 1000 cycles reflect 10% capacitance degradation for graphene oxide/polyaniline composite supercapacitor.

  16. CO2-selective PEO–PBT (PolyActive™)/graphene oxide composite membranes

    KAUST Repository

    Karunakaran, M.

    2015-07-31

    CO2-selective graphene oxide (GO) nano-composite membranes were prepared for the first time by embedding GO into a commercially available poly(ethylene oxide)–poly(butylene terephthalate) (PEO–PBT) copolymer (PolyActive™). The as-prepared GO membrane shows high CO2 permeability (143 Barrer) and CO2/N2 selectivity (α = 73).

  17. Oxidation of SiC/BN/SiC Composites in Reduced Oxygen Partial Pressures

    Science.gov (United States)

    Opila, Elizabeth J.; Boyd, Meredith

    2010-01-01

    SiC fiber-reinforced SiC composites with a BN interphase are proposed for use as leading edge structures of hypersonic vehicles. The durability of these materials under hypersonic flight conditions is therefore of interest. Thermogravimetric analysis was used to characterize the oxidation kinetics of both the constituent fibers and composite coupons at four temperatures: 816, 1149, 1343, and 1538 C (1500, 2100, 2450, and 2800 F) and in oxygen partial pressures between 5% and 0.1% (balance argon) at 1 atm total pressure. One edge of the coupons was ground off so the effects of oxygen ingress into the composite could be monitored by post-test SEM and EDS. Additional characterization of the oxidation products was conducted by XPS and TOF-SIMS. Under most conditions, the BN oxidized rapidly, leading to the formation of borosilicate glass. Rapid initial oxidation followed by volatilization of boria lead to protective oxide formation and further oxidation was slow. At 1538C in 5% oxygen, both the fibers and coupons exhibited borosilicate glass formation and bubbling. At 1538C in 0.1% oxygen, active oxidation of both the fibers and the composites was observed leading to rapid SiC degradation. BN oxidation at 1538C in 0.1% oxygen was not significant.

  18. Enhanced Strain-Dependent Electrical Resistance of Polyurethane Composites with Embedded Oxidized Multiwalled Carbon Nanotube Networks

    Directory of Open Access Journals (Sweden)

    R. Benlikaya

    2013-01-01

    Full Text Available The effect of different chemical oxidation of multiwalled carbon nanotubes with H2O2, HNO3, and KMnO4 on the change of electrical resistance of polyurethane composites with embedded oxidized nanotube networks subjected to elongation and bending has been studied. The testing has shown about twenty-fold increase in the electrical resistance for the composite prepared from KMnO4 oxidized nanotubes in comparison to the composites prepared from the pristine and other oxidized nanotubes. The evaluated sensitivity of KMnO4 treated composite in terms of the gauge factor increases with strain to nearly 175 at the strain 11%. This is a substantial increase, which ranks the composite prepared from KMnO4 oxidized nanotubes among materials as strain gauges with the highest electromechanical sensitivity. The observed differences in electromechanical properties of the composites are discussed on basis of their structure which is examined by the measurements of Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscope. The possible practical use of the composites is demonstrated by monitoring of elbow joint flexion during two different physical exercises.

  19. Deposition and Characterization of Sisal Fiber Composite Prepare By Iron Oxide Synthesis.

    Directory of Open Access Journals (Sweden)

    Asif Jehan

    2015-02-01

    Full Text Available Iron oxide synthesized through sintering route. The present research work deals with ferrite composite prepared using chemical reactions. Ferric nitrates and ammonium chloride doped with sisal fiber has been prepared. The comparative studies of ferric oxide were examined through few characterizations. The structural behavior of iron oxide was studied in XRD, FT/IR, TEM and SEM. This behavior showed ferrite nature of the sample.

  20. Cerium-modified doped strontium titanate compositions for solid oxide fuel cell anodes and electrodes for other electrochemical devices

    Science.gov (United States)

    Marina, Olga A [Richland, WA; Stevenson, Jeffry W [Richland, WA

    2010-03-02

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells and electrochemical devices such as solid oxide fuel cells, electrolyzers, sensors, pumps and the like, the compositions comprising cerium-modified doped strontium titanate. The invention also provides novel methods for making and using anode material compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having anodes comprising the compositions.

  1. Copper-substituted perovskite compositions for solid oxide fuel cell cathodes and oxygen reduction electrodes in other electrochemical devices

    Science.gov (United States)

    Rieke, Peter C.; Coffey, Gregory W.; Pederson, Larry R.; Marina, Olga A.; Hardy, John S.; Singh, Prabhaker; Thomsen, Edwin C.

    2010-07-20

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells. Also provided are electrochemical devices that include active oxygen reduction electrodes, such as solid oxide fuel cells, sensors, pumps and the like. The compositions comprises a copper-substituted ferrite perovskite material. The invention also provides novel methods for making and using the electrode compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having cathodes comprising the compositions.

  2. Phase composition and properties of superconducting ceramics based on Bi1.7Pb0.3Sr2Ca2Cu3O y precursors fabricated by melt quenching in a solar furnace

    Science.gov (United States)

    Gulamova, D. D.; Uskenbaev, D. E.; Fantozzi, G.; Chigvinadze, J. G.; Magradze, O. V.

    2009-06-01

    Production of superconducting ceramics based on precursors with rated composition Bi1.7Pb0.3Sr2Ca2Cu3O y is studied. The precursors are synthesized in a solar furnace by melt rapid quenching. The phase composition of the samples is examined by microstructural and X-ray analyses. The temperature dependences of the resistance and magnetic susceptibility are measured. The influence of the composition and crystal structure of the substrate on texturing in the Bi-Sr-Ca-Cu-O system is studied. It is found that the type of quenching plays a significant role, while the type of substrate is of minor significance.

  3. Studies on High Temperature Oxidation of Electrodeposited RE-Ni-W-P-SiC Composite Materials

    Institute of Scientific and Technical Information of China (English)

    ZHUXiao-yun; XURui-dong; GUOZhong-cheng

    2004-01-01

    The oxidation of the Electrodeposited RE-Ni-W-P-SiC Composite materials at high temperature is investigated.The results show that during high temperature oxidation the relationship between the mass change of pure Ni,Ni-W-P,Ni-W-P-SiC or RE-Ni-W-P-SiC coatings and the oxidation time follows a mixed curve, i.e. it is approximately a linear relationship when the oxidation time is less than 60 rains while it is a power function relationship when the oxidation time is over 60 rains. The order for the oxidation rate of the four coatings is Ni> Ni-W-P>Ni-W-P-SiC>RE-Ni-W-P-SiC. The mass change of Ni-W-P, Ni-W-P-SiC or RE-Ni-W-P-SiC coatings increases exponentially with a rise of oxidation temperature. The high temperature-oxidation resistance of RE-Ni-W-P-SiC composite material is 3-4 times than that of Ni-W-P alloy coating. The cross section morphologies and X-ray diffraction patterns indicate that the high temperature-oxidation resistance of RE-Ni-W-P-SiC composite coating is better than any other coatings.

  4. Studies on High Temperature Oxidation of Electrodeposited RE-Ni-W-P-SiC Composite Materials

    Institute of Scientific and Technical Information of China (English)

    ZHU Xiao-yun; XU Rui-dong; GUO Zhong-cheng

    2004-01-01

    The oxidation of the Electrodeposited RE-Ni-W-P-SiC Composite materials at high temperature is investigated.The results show that during high temperature oxidation the relationship between the mass change of pure Ni, Ni-W-P,Ni-W-P-SiC or RE-Ni-W-P-SiC coatings and the oxidation time follows a mixed curve, i.e. it is approximately a linear relationship when the oxidation time is less than 60 mins while it is a power function relationship when the oxidation time is over 60 mins. The order for the oxidation rate of the four coatings is Ni> Ni-W-P> Ni-W-P-SiC>RE-Ni-W-P-SiC. The mass change of Ni-W-P, Ni-W-P-SiC or RE-Ni-W-P-SiC coatings increases exponentially with a rise of oxidation temperature. The high temperature-oxidation resistance of RE-Ni-W-P-SiC composite material is 3~4 times than that of Ni-W-P alloy coating. The cross section morphologies and X-ray diffraction patterns indicate that the high temperature-oxidation resistance of RE-Ni-W-P-SiC composite coating is better than any other coatings.

  5. Oxidation-resistant interface coatings for SiC/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Stinton, D.P.; Kupp, E.R.; Hurley, J.W.; Lowden, R.A. [Oak Ridge National Lab., TN (United States)] [and others

    1996-08-01

    The characteristics of the fiber-matrix interfaces in ceramic matrix composites control the mechanical behavior of these composites. Finite element modeling (FEM) was performed to examine the effect of interface coating modulus and coefficient of thermal expansion on composite behavior. Oxide interface coatings (mullite and alumina-titania) produced by a sol-gel method were chosen for study as a result of the FEM results. Amorphous silicon carbide deposited by chemical vapor deposition (CVD) is also being investigated for interface coatings in SiC-matrix composites. Processing routes for depositing coatings of these materials were developed. Composites with these interfaces were produced and tested in flexure both as-processed and after oxidation to examine the suitability of these materials as interface coatings for SiC/SiC composites in fossil energy applications.

  6. Oxidation-resistant interface coatings for SiC/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Stinton, D.P.; Kupp, E.R.; Hurley, J.W. [and others

    1996-06-01

    The characteristics of the fiber-matrix interfaces in ceramic matrix composites control the mechanical behavior of these composites. Finite element modeling (FEM) was performed to examine the effect of interface coating modulus and coefficient of thermal expansion on composite behavior. Oxide interface coatings (mullite and alumina-titania) produced by a sol-gel method were chosen for study as a result of the FEM results. Amorphous silicon carbide deposited by chemical vapor deposition (CVD) is also being investigated for interface coatings in SiC-matrix composites. Processing routes for depositing coatings of these materials were developed. Composites with these interfaces were produced and tested in flexure both as-processed and after oxidation to examine the suitability of these materials as interface coatings for SiC/SiC composites in fossil energy applications.

  7. Preparation of SiCp/Al2O3-Al Composites by Directed Metal Oxidation

    Institute of Scientific and Technical Information of China (English)

    LIN Ying; YANG Hai-bo; WANG Fen; ZHU Jian-feng

    2006-01-01

    SiCp/Al2O3-Al composites were synthesized by means of direct metal oxidation method. The composition and microstructures of the composites were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and metallurgical microscope. The effects of technical parameters on the properties of the product were analyzed. The results indicate that the composite possesses a dense microstructure, composed of three interpenetrated phases. Of them, SiO2 layer prohibits the powdering of the composites; Mg promotes the wetting and infiltration of the system and Si restricts the interfacial reaction while improving the wetting ability between reinforcement and matrix.

  8. Impact of leachate composition on the advanced oxidation treatment.

    Science.gov (United States)

    Oulego, Paula; Collado, Sergio; Laca, Adriana; Díaz, Mario

    2016-01-01

    Advanced oxidation processes (AOPs) are gaining importance as an alternative to the biological or physicochemical treatments for the management of leachates. In this work, it has been studied the effect of the characteristics of the leachate (content in humic acids, landfill age and degree of stabilization) on the wet oxidation process and final quality of the treated effluent. A high concentration of humic acids in the leachate had a positive effect on the COD removal because this fraction is more easily oxidizable. Additionally, it has been demonstrated that the simultaneous presence of humic acid and the intermediates generated during the oxidation process improved the degradation of this acid, since such intermediates are stronger initiators of free radicals than the humic acid itself. Similar values of COD removals (49% and 51%) and biodegradability indices (0.30 and 0.35) were observed, after 8 h of wet oxidation, for the stabilised leachate (biologically pretreated) and the raw one, respectively. Nevertheless, final colour removal was much higher for the stabilised leachate, achieving values up to 91%, whereas for the raw one only 56% removal was attained for the same reaction time. Besides, wet oxidation treatment was more efficient for the young leachate than for the old one, with final COD conversions of 60% and 37%, respectively. Eventually, a triangular "three-lump" kinetic model, which considered direct oxidation to CO2 and partial oxidation through intermediate compounds, was here proposed.

  9. Superior antibacterial activity of zinc oxide/graphene oxide composites originating from high zinc concentration localized around bacteria.

    Science.gov (United States)

    Wang, Yan-Wen; Cao, Aoneng; Jiang, Yu; Zhang, Xin; Liu, Jia-Hui; Liu, Yuanfang; Wang, Haifang

    2014-02-26

    New materials with good antibacterial activity and less toxicity to other species attract numerous research interest. Taking advantage of zinc oxide (ZnO) and graphene oxide (GO), the ZnO/GO composites were prepared by a facile one-pot reaction to achieve superior antibacterial properties without damaging other species. In the composites, ZnO nanoparticles (NPs), with a size of about 4 nm, homogeneously anchored onto GO sheets. The typical bacterium Escherichia coli and HeLa cell were used to evaluate the antibacterial activity and cytotoxicity of the ZnO/GO composites, respectively. The synergistic effects of GO and ZnO NPs led to the superior antibacterial activity of the composites. GO helped the dispersion of ZnO NPs, slowed the dissolution of ZnO, acted as the storage site for the dissolved zinc ions, and enabled the intimate contact of E. coli with ZnO NPs and zinc ions as well. The close contact enhanced the local zinc concentration pitting on the bacterial membrane and the permeability of the bacterial membrane and thus induced bacterial death. In addition, the ZnO/GO composites were found to be much less toxic to HeLa cells, compared to the equivalent concentration of ZnO NPs in the composites. The results indicate that the ZnO/GO composites are promising disinfection materials to be used in surface coatings on various substrates to effectively inhibit bacterial growth, propagation, and survival in medical devices.

  10. Generation of fast propagating combustion and shock waves with copper oxide/aluminum nanothermite composites

    Science.gov (United States)

    Apperson, S.; Shende, R. V.; Subramanian, S.; Tappmeyer, D.; Gangopadhyay, S.; Chen, Z.; Gangopadhyay, K.; Redner, P.; Nicholich, S.; Kapoor, D.

    2007-12-01

    Nanothermite composites containing metallic fuel and inorganic oxidizer are gaining importance due to their outstanding combustion characteristics. In this paper, the combustion behaviors of copper oxide/aluminum nanothermites are discussed. CuO nanorods were synthesized using the surfactant-templating method, then mixed or self-assembled with Al nanoparticles. This nanoscale mixing resulted in a large interfacial contact area between fuel and oxidizer. As a result, the reaction of the low density nanothermite composite leads to a fast propagating combustion, generating shock waves with Mach numbers up to 3.

  11. Catalytic wet oxidation of ammonia solution: activity of the nanoscale platinum-palladium-rhodium composite oxide catalyst.

    Science.gov (United States)

    Hung, Chang-Mao

    2009-04-15

    Aqueous solutions of 400-1000 mg/L of ammonia were oxidized in a trickle-bed reactor (TBR) in this study of nanoscale platinum-palladium-rhodium composite oxide catalysts, which were prepared by the co-precipitation of H(2)PtCl(6), Pd(NO(3))(3) and Rh(NO(3))(3). Hardly any of the dissolved ammonia was removed by wet oxidation in the absence of any catalyst, whereas about 99% of the ammonia was reduced during wet oxidation over nanoscale platinum-palladium-rhodium composite oxide catalysts at 503 K in an oxygen partial pressure of 2.0 MPa. A synergistic effect exists in the nanoscale platinum-palladium-rhodium composite structure, which is the material with the highest ammonia reduction activity. The nanometer-sized particles were characterized by TEM, XRD and FTIR. The effect of the initial concentration and reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid hourly space velocity of under 9 h(-1) in the wet catalytic processes.

  12. Superconducting Microelectronics.

    Science.gov (United States)

    Henry, Richard W.

    1984-01-01

    Discusses superconducting microelectronics based on the Josephson effect and its advantages over conventional integrated circuits in speed and sensitivity. Considers present uses in standards laboratories (voltage) and in measuring weak magnetic fields. Also considers future applications in superfast computer circuitry using Superconducting…

  13. CERAMIC MATRIX COMPOSITE SYNTHESIZED BY THE PURE Al+NaOH SELF-OXIDATION

    Institute of Scientific and Technical Information of China (English)

    S.X.He; S.Yuan; J.Wang; B.D.Sun

    2001-01-01

    An Al2 O3/Al ceramic matrix composite was fabricated by self-oxidation of pureAl+ NaOH,and its microstructure,mechanical properties and 9rowth mechanism wereanalyzed.Experimental results show that the composite possesses better mechanicalproperties,higher density and faster growth velocity than that made by Al-Mg-Si al-loy.The composite grows primarily along the crucible wall and has periodic wavy likestructure consisted with cell colonies.

  14. Can doping graphite trigger room temperature superconductivity? Evidence for granular high-temperature superconductivity in water-treated graphite powder.

    Science.gov (United States)

    Scheike, T; Böhlmann, W; Esquinazi, P; Barzola-Quiquia, J; Ballestar, A; Setzer, A

    2012-11-14

    Granular superconductivity in powders of small graphite grains (several tens of micrometers) is demonstrated after treatment with pure water. The temperature, magnetic field and time dependence of the magnetic moment of the treated graphite powder provides evidence for the existence of superconducting vortices with some similarities to high-temperature granular superconducting oxides but even at temperatures above 300 K. Room temperature superconductivity in doped graphite or at its interfaces appears to be possible.

  15. Fabrication of Ceramic Composites by Directed Metal Oxidation

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xi-ya; TAN Yue-hua

    2004-01-01

    To explain the growth mechanism of Al2O3/Al Lanxide composites, the dynamics of the directedoxidation of Al-Mg-Si alloys are analyzed. The experimental methods to produce Lanxide composites by directedoxidation of metal melts at high temperatures are presented. The effect of the processing factors on the microstruc-tures and properties of Al2O3/Al composites and enforced Al2O3/Al composites is also analyzed. Compared withsintering ceramic composites, the advantages of Lanxide process and Lanxide materials are as following: it is a nearnet shaped process; the process is very simple; the microstructures and properties of Lanxide materials can be adjust-ed; and this process can be used to infiltrate ceramic fiber or particle preforms .

  16. Method and system for controlling chemical reactions between superconductors and metals in superconducting cables

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Tengming

    2016-11-15

    A method, system, and apparatus for fabricating a high-strength Superconducting cable comprises pre-oxidizing at least one high-strength alloy wire, coating at least one Superconducting wire with a protective layer, and winding the high-strength alloy wire and the Superconducting wire to form a high-strength Superconducting cable.

  17. Nafion/Silicon Oxide Composite Membrane for High Temperature Proton Exchange Membrane Fuel Cell

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Nafion/Silicon oxide composite membranes were produced via in situ sol-gel reaction of tetraethylorthosilicate (TEOS) in Nafion membranes. The physicochemical properties of the membranes were studied by FT-IR, TG-DSC and tensile strength. The results show that the silicon oxide is compatible with the Nafion membrane and the thermo stability of Nafion/Silicon oxide composite membrane is higher than that of Nafion membrane. Furthermore, the tensile strength of Nafion/Silicon oxide composite membrane is similar to that of the Nafion membrane. The proton conductivity of Nafion/Silicon oxide composite membrane is higher than that of Nafion membrane. When the Nafion/Silicon oxide composite membrane was employed as an electrolyte in H2/O2 PEMFC, a higher current density value (1 000 mA/cm2 at 0.38 V) than that of the Nafion 1135 membrane (100 mA/cm2 at 0.04 V) was obtained at 110 ℃.

  18. Flame Synthesis of Composite Oxides for Catalytic Applications

    DEFF Research Database (Denmark)

    Jensen, Joakim Reimer

    2002-01-01

    mechanisms for the sintering, which allows the individual mechanisms to control the sintering in different temperature regimes. Simulation of the specific surface areas and collision diameters of the synthesized powder fits measured values nicely when the hybrid sintering model is applied. The temperature...... of the surface oxidation. A new improved approach for the N2O-titration, which provides the possibility of distinguishing surface oxidation and bulk oxidation, is developed. Furthermore, there is no indication of any sintering during the measurement of the copper surface areas. Experiments with synthesis of pure...... flame where fuel, air and the precursors are mixed prior to ignition. Metal acetylacetonates are used as the precursors due to a high thermal stability in air at temperatures up to 200-250̊C. The surface area, particle morphology and crystalline structure of the oxides are controlled by changing...

  19. Tantalum-Tungsten Oxide Thermite Composite Prepared by Sol-Gel Synthesis and Spark Plasma Sintering

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes, O; Kuntz, J; Gash, A; Munir, Z

    2009-02-13

    Energetic composite powders consisting of sol-gel derived nanostructured tungsten oxide were produced with various amounts of micrometer-scale tantalum fuel metal. Such energetic composite powders were ignition tested and results show that the powders are not sensitive to friction, spark and/or impact ignition. Initial consolidation experiments, using the High Pressure Spark Plasma Sintering (HPSPS) technique, on the sol-gel derived nanostructured tungsten oxide produced samples with higher relative density than can be achieved with commercially available tungsten oxide. The sol-gel derived nanostructured tungsten oxide with immobilized tantalum fuel metal (Ta - WO{sub 3}) energetic composite was consolidated to a density of 9.17 g.cm{sup -3} or 93% relative density. In addition those parts were consolidated without significant pre-reaction of the constituents, thus the sample retained its stored chemical energy.

  20. Does feed composition affect oxidation of rainbow trout (Oncorhynchus mykiss) during frozen storage?

    DEFF Research Database (Denmark)

    Baron, Caroline; Hyldig, Grethe; Jacobsen, Charlotte

    2009-01-01

    ) vegetable oil/canthaxanthin; (5) fish oil/no pigment; and (6) vegetable oil/no pigment. The fish were slaughtered and stored in polyethylene bags individually as butterfly fillets for up to 22 months at -20 C. The composition of the fish muscle at slaughter and during frozen storage was evaluated...... that in this investigation fish fed fish oil were slightly more oxidized than fish fed vegetable oil. Results showed that canthaxanthin effectively protected both protein and lipid against oxidation during frozen storage. In contrast, astaxanthin did not seem to have a clear and systematic effect. Results indicated...... that the feed composition influenced the fish muscle composition and subsequently the oxidative stability of the fish during frozen storage. Besides, other constituents in the feed might influence deposition of antioxidants in the tissue and consequently affect the oxidative stability of the muscle....

  1. Synthesis, Consolidation and Characterization of Sol-gel Derived Tantalum-Tungsten Oxide Thermite Composites

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes, O [Univ. of California, Davis, CA (United States)

    2010-06-01

    Energetic composite powders consisting of sol-gel (SG) derived nanostructured tungsten oxide were produced with various amounts of micrometer-scale tantalum fuel metal. Such energetic composite powders were ignition-tested and results show that the powders are not sensitive to friction, spark and/or impact ignition. Initial consolidation experiments, using the High Pressure Spark Plasma Sintering (HPSPS) technique, on the SG derived nanostructured tungsten oxide produced samples with higher relative density than can be achieved with commercially available tungsten oxide. The SG derived nanostructured tungsten oxide with immobilized tantalum fuel metal (Ta - WO3) energetic composite was consolidated to a density of 9.17 g·cm-3 or 93% relative density. In addition, those samples were consolidated without significant pre-reaction of the constituents, thus retaining their stored chemical energy.

  2. Combustion synthesis of CdS/reduced graphene oxide composites and their photocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jianxiu [School of Materials Science and Engineering, Liaocheng University, Liaocheng, Shandong 252000 (China); Pu, Xipeng, E-mail: xipengpu@hotmail.com [School of Materials Science and Engineering, Liaocheng University, Liaocheng, Shandong 252000 (China); Zhang, Dafeng [School of Materials Science and Engineering, Liaocheng University, Liaocheng, Shandong 252000 (China); Seo, Hyo Jin, E-mail: hjseo@pknu.ac.kr [Department of Physics and Center for Marine-Integrated Biomedical Technology, Pukyong National University, Busan 608-737 (Korea, Republic of); Du, Kaiping [School of Materials Science and Engineering, Liaocheng University, Liaocheng, Shandong 252000 (China); Cai, Peiqing [Department of Physics and Center for Marine-Integrated Biomedical Technology, Pukyong National University, Busan 608-737 (Korea, Republic of)

    2014-09-15

    Highlights: • CdS/reduced graphene oxide composites were prepared by a combustion method. • The phase changed from hexagonal to cubic phase by increasing the added amount of GO. • The composites showed excellent visible-light photocatalytic properties. • The plausible mechanism of photodegradation was discussed. - Abstract: CdS/reduced graphene oxide composites were synthesized by a simple one-pot combustion method using cadmium nitrate, thiourea and graphite as raw materials. The structure, morphologies, and photocatalytic properties of the as-prepared samples were studied by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, photoluminescence and ultraviolet–visible spectrophotometry. The results show that the structure of CdS in as-prepared samples changes from hexagonal to cubic phase by increasing the added amount of graphene oxide. During combustion reaction, graphene oxide was reduced to reduced graphene oxide. As-obtained CdS/reduced graphene oxide composites show high visible-light photoactivities, attributed to the minimized recombination of photoinduced electrons and holes and the high surface area of reduced graphene oxide sheets.

  3. Nickel cobalt oxide nanowire-reduced graphite oxide composite material and its application for high performance supercapacitor electrode material.

    Science.gov (United States)

    Wang, Xu; Yan, Chaoyi; Sumboja, Afriyanti; Lee, Pooi See

    2014-09-01

    In this paper, we report a facile synthesis method of mesoporous nickel cobalt oxide (NiCo2O4) nanowire-reduced graphite oxide (rGO) composite material by urea induced hydrolysis reaction, followed by sintering at 300 degrees C. P123 was used to stabilize the GO during synthesis, which resulted in a uniform coating of NiCo2O4 nanowire on rGO sheet. The growth mechanism of the composite material is discussed in detail. The NiCo2O4-rGO composite material showed an outstanding electrochemical performance of 873 F g(-1) at 0.5 A g(-1) and 512 F g(-1) at 40 A g(-1). This method provides a promising approach towards low cost and large scale production of supercapacitor electrode material.

  4. Effects of Oxide Layer Composition and Radial Compression on Nickel Release in Nitinol Stents

    Science.gov (United States)

    Sullivan, Stacey J. L.; Dreher, Maureen L.; Zheng, Jiwen; Chen, Lynn; Madamba, Daniel; Miyashiro, Katie; Trépanier, Christine; Nagaraja, Srinidhi

    2015-09-01

    There is a public health need to understand the effects of surface layer thickness and composition on corrosion in nickel-containing medical devices. To address this knowledge gap, five groups of Nitinol stents were manufactured by various processing methods that altered the titanium oxide layer. The following surfaces were created: >3500 nm thick mixed thermal oxide (OT), ~420 nm thick mixed thermal oxide (SP), ~130 nm thick mixed thermal oxide (AF), ~4 nm thick native oxide (MP), and an ~4 nm thick passivated oxide (EP). Radially compressed and not compressed devices were evaluated for nickel (Ni) ion release in a 60-day immersion test. The results indicated that OT stents released the most Ni, followed by stents in the SP and AF groups. For OT and SP stents, which exhibited the thickest oxide layers, radial compression significantly increased Ni release when compared to non-compressed stents. This result was not observed in AF, MP, SP stents indicating that the increased Ni release may be explained by cracking of the thicker oxide layers during crimping. Strong correlations were observed between oxide layer thickness and cumulative Ni release. These findings elucidate the importance of oxide layer thickness and composition on uniform corrosion of laser-cut Nitinol stents.

  5. Performance of titanium oxide-polymer insulation in superconducting coils made of Bi-2212/Ag-alloy round wire

    Science.gov (United States)

    Chen, Peng; Trociewitz, Ulf P.; Dalban-Canassy, Matthieu; Jiang, Jianyi; Hellstrom, Eric E.; Larbalestier, David C.

    2013-07-01

    Conductor insulation is one of the key components needed to make Ag-alloy clad Bi2Sr2CaCu2O8+x (Bi-2212/Ag) superconducting round wire (RW) successful for high field magnet applications, as dielectric standoff and high winding current densities (Jw) directly depend on it. In this study, a TiO2-polymer insulation coating developed by nGimat LLC was applied to test samples and a high field test coil. The insulation was investigated by differential thermal analysis (DTA), thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM), dielectric property measurement, and transport critical current (Ic) property measurement. About 29% of the insulation by weight is polymer. When the Bi-2212/Ag wire is fully heat treated, this decomposes with slow heating to 400 ° C in pure O2. After the full reaction, we found that the TiO2 did not degrade the critical current properties, adhered well to the conductor, and provided a breakdown voltage of more than 100 V, which allowed the test coil to survive quenching in 31.2 T background field, while providing a 2.6 T field increment. For Bi-2212/Ag RW with a typical diameter of 1.0-1.5 mm, this ˜15 μm thick insulation allows a very high coil packing factor of ˜0.74, whereas earlier alumino-silicate braid insulation only allows packing factors of 0.38-0.48.

  6. Oxidation of C/SiC Composites at Reduced Oxygen Partial Pressures

    Science.gov (United States)

    Opila, Elizabeth J.; Serra, Jessica

    2009-01-01

    Carbon-fiber reinforced SiC (C/SiC) composites are proposed for leading edge applications of hypersonic vehicles due to the superior strength of carbon fibers at high temperatures (greater than 1500 C). However, the vulnerability of the carbon fibers in C/SiC to oxidation over a wide range of temperatures remains a problem. Previous oxidation studies of C/SiC have mainly been conducted in air or oxygen, so that the oxidation behavior of C/SiC at reduced oxygen partial pressures of the hypersonic flight regime are less well understood. In this study, both carbon fibers and C/SiC composites were oxidized over a wide range of temperatures and oxygen partial pressures to facilitate the understanding and modeling of C/SiC oxidation kinetics for hypersonic flight conditions.

  7. Processing and mechanical behavior of aluminium oxide microstructure composites

    Science.gov (United States)

    Pavlacka, Robert J.

    We have proposed a new class of composites that accesses different component properties not through the use of distinct materials, but through the exploitation of the microstructure-property relationship within a single material. That is, we seek to adapt composite concepts to take advantage of the considerable variance in properties associated with different microstructures. This new class of composites is called microstructure composites. Microstructure composites are predominately single phase ceramics that utilize multiple distinct microstructure features in the same composite to obtain unique property combinations. Spatial control and composite connectivity of the individual microstructure components of a microstructure composite are ultimately the key to developing and controlling useful and unique properties. Microstructural features can be controlled via the starting location and transport of the dopants, minority second phases, and liquid phases that are used to manipulate microstructure development. This work focuses on textured-equiaxed microstructure in the Al2O 3 system. Texture is obtained in situ using templated grain growth (TGG). To control microstructure development locally during microstructure composite fabrication, it is important to use relatively low levels of dopant to mitigate the effects of dopant interdiffusion. Therefore, the development of texture in alpha-Al2O3 using TGG was explored under low liquid-phase dopant concentration conditions. High temperature dilatometry was performed to quantify the effect of template constraint on x-y plane shirinkage and the extent to which this constraint could be mitigated as a function of the dopant concentration. x-y plane shrinkage was observed to be increasingly constrained with increasing template loading and decreasing dopant concentration. Final x-y plane shrinkage was greater for samples with 0.14 wt% dopant than for those without dopant, despite have a much lower peak strain rate. It was

  8. Reduced Cost Composite Hot Structures with Oxidation Protection Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Innovative, low cost high performance technologies are critical to the affordability of future space missions. Carbon/carbon (C/C) composites have significant...

  9. Microstructure and optical appearance of anodized friction stir processed Al - Metal oxide surface composites

    DEFF Research Database (Denmark)

    Gudla, Visweswara Chakravarthy; Jensen, Flemming; Bordo, Kirill

    2014-01-01

    Multiple-pass friction stir processing (FSP) was employed to impregnate Ti, Y and Ce oxide powders into the surface of an Aluminium alloy. The FSP processed surface composite was subsequently anodized with an aim to develop optical effects in the anodized layer owing to the presence of incorporated...... oxide particles which will influence the scattering of light. This paper presents the investigations on relation between microstructure of the FSP zone and optical appearance of the anodized layer due to incorporation of metal oxide particles and modification of the oxide particles due to the anodizing...

  10. Mechanistic study of the visible-light-driven photocatalytic inactivation of bacteria by graphene oxide-zinc oxide composite

    Science.gov (United States)

    Wu, Dan; An, Taicheng; Li, Guiying; Wang, Wei; Cai, Yuncheng; Yip, Ho Yin; Zhao, Huijun; Wong, Po Keung

    2015-12-01

    The visible-light-driven (VLD) photocatalytic activity of graphene oxide-zinc oxide (GO-ZnO) composite prepared by a simple hydrothermal method was evaluated toward the inactivation of Escherichia coli K-12. The results showed that GO-ZnO composite had excellent VLD photocatalytic bacterial inactivation activity, comparing with those of ZnO and GO, which was attributed to the strong interaction between ZnO and GO in the composite. Accordingly, an interaction induced VLD photocatalytic inactivation mechanism of the strong interaction of GO with ZnO within the GO-ZnO composite was proposed. GO served as a photosensitizer and facilitated the charge separation and transfer, thus boosted the massive production of reactive oxygen species such as rad OHbulk, which was identified as the major reactive species from conduction band of ZnO, and resulted in a remarkable enhancement of bacterial inactivation efficiency. Moreover, GO-ZnO composite showed obviously superior photocatalytic bacterial inactivation within 10 min under natural solar light irradiation, indicating that GO-ZnO composite has great potential in wastewater treatment and environmental protection.

  11. In situ thermally reduced graphene oxide/epoxy composites: thermal and mechanical properties

    Science.gov (United States)

    Olowojoba, Ganiu B.; Eslava, Salvador; Gutierrez, Eduardo S.; Kinloch, Anthony J.; Mattevi, Cecilia; Rocha, Victoria G.; Taylor, Ambrose C.

    2016-10-01

    Graphene has excellent mechanical, thermal, optical and electrical properties and this has made it a prime target for use as a filler material in the development of multifunctional polymeric composites. However, several challenges need to be overcome to take full advantage of the aforementioned properties of graphene. These include achieving good dispersion and interfacial properties between the graphene filler and the polymeric matrix. In the present work, we report the thermal and mechanical properties of reduced graphene oxide/epoxy composites prepared via a facile, scalable and commercially viable method. Electron micrographs of the composites demonstrate that the reduced graphene oxide (rGO) is well dispersed throughout the composite. Although no improvements in glass transition temperature, tensile strength and thermal stability in air of the composites were observed, good improvements in thermal conductivity (about 36 %), tensile and storage moduli (more than 13 %) were recorded with the addition of 2 wt% of rGO.

  12. Co Oxidation Properties Of Selective Dissoluted Metallic Glass Composites

    Directory of Open Access Journals (Sweden)

    Kim S.-Y.

    2015-06-01

    Full Text Available Porous metallic materials have been widely used in many fields including aerospace, atomic energy, electro chemistry and environmental protection. Their unique structures make them very useful as lightweight structural materials, fluid filters, porous electrodes and catalyst supports. In this study, we fabricated Ni-based porous metallic glasses having uniformly dispersed micro meter pores by the sequential processes of ball-milling and chemical dissolution method. We investigated the application of our porous metal supported for Pt catalyst. The oxidation test was performed in an atmosphere of 1% CO and 3% O2. Microstructure observation was performed by using a scanning electron microscope. Oxidation properties and BET (Brunauer, Emmett, and Teller were analyzed to understand porous structure developments. The results indicated that CO Oxidation reaction was dependent on the specific surface area.

  13. Effects of Graphene Oxide and Chemically-Reduced Graphene Oxide on the Dynamic Mechanical Properties of Epoxy Amine Composites

    Directory of Open Access Journals (Sweden)

    Cristina Monteserín

    2017-09-01

    Full Text Available Composites based on epoxy/graphene oxide (GO and epoxy/reduced graphene oxide (rGO were investigated for thermal-mechanical performance focusing on the effects of the chemical groups present on nanoadditive-enhanced surfaces. GO and rGO obtained in the present study have been characterized by Fourier transform infrared spectroscopy (FTIR, X-ray photoelectron spectroscopy (XPS, and X-ray powder diffraction (XRD demonstrating that materials with different oxidation degrees have been obtained. Thereafter, GO/epoxy and rGO/epoxy nanocomposites were successfully prepared and thoroughly characterized by dynamic mechanical thermal analysis (DMTA and transmission electron microscopy (TEM. A significant increase in the glass transition temperature was found in comparison with the neat epoxy. The presence of functional groups on the graphene surface leads to chemical interactions between these functional groups on GO and rGO surfaces with the epoxy, contributing to the possible formation of covalent bonds between GO and rGO with the matrix. The presence of oxidation groups on GO also contributes to an improved exfoliation, intercalation, and distribution of the GO sheets in the composites with respect to the rGO based composites.

  14. Application of a novel plasma-induced CD/MWCNT/iron oxide composite in zinc decontamination.

    Science.gov (United States)

    Yang, Shitong; Guo, Zhiqiang; Sheng, Guodong; Wang, Xiangke

    2012-10-01

    Herein, β-cyclodextrin (β-CD) was grafted onto magnetic MWCNT/iron oxide particles by using low temperature plasma-induced technique to synthesize a novel nanocomposite. The prepared composite (denoted as CD/MWCNT/iron oxide) exhibited high magnetic property (saturation magnetization M(s)=37.8 emu/g) and good dispersion property in aqueous solution. Batch experiments were conducted to evaluate the application potential of CD/MWCNT/iron oxide in the decontamination of Zn(II) from aqueous solutions. The sorption amount of Zn(II) on CD/MWCNT/iron oxide was higher than that of Zn(II) on MWCNT/iron oxides and oxidized MWCNTs, indicating that the grafted β-CD could enhance the sorption capacity of CD/MWCNT/iron oxide composite toward Zn(II) by providing multiple hydroxyl functional groups. Due to its high magnetic, CD/MWCNT/iron oxide could be easily separated from aqueous solution with an external magnetic field. Regeneration studies suggested that CD/MWCNT/iron oxide can support long term use as a cost-effective material in sewage treatment with minimum replacement costs.

  15. Effects of precipitate aging time on the cerium-zirconium composite oxides

    Institute of Scientific and Technical Information of China (English)

    钟强; 崔梅生; 岳梅; 王琦; 王磊; 郭荣贵; 龙志奇; 黄小卫

    2014-01-01

    Cerium-zirconium composite oxides with high performance were synthesized by a co-precipitation method, using zirco-nium oxychloride and rare earth chloride as raw materials. The effects of precipitate aging time on the properties of cerium-zirconium composite oxides were investigated. The prepared cerium-zirconium composite oxides were characterized by X-ray diffraction (XRD), BET specific surface area, pulsed oxygen chemical adsorption, H2 temperature-programmed-reduction (H2-TPR), scanning electron microscopy (SEM), etc. The results showed that the precipitate aging time caused great effects on the properties of cerium zirconium composite oxides. With the increase of aging time, the cerium zirconium composite oxides showed enhanced specific sur-face area, good thermal stability, and high oxygen storage capacity (OSC). The best performance sample was obtained while the pre-cipitate aging time up to 48 h, with the specific surface area of 140.7 m2/g, and OSC of 657.24μmolO2/g for the fresh sample. Even after thermal aged under 1000 ºC for 4 h, the aged specific surface area was 41.6 m2/g, moreover with a good OSC of 569.9μmolO2/g.

  16. Hierarchical assembly of multifunctional oxide-based composite nanostructures for energy and environmental applications.

    Science.gov (United States)

    Gao, Pu-Xian; Shimpi, Paresh; Gao, Haiyong; Liu, Caihong; Guo, Yanbing; Cai, Wenjie; Liao, Kuo-Ting; Wrobel, Gregory; Zhang, Zhonghua; Ren, Zheng; Lin, Hui-Jan

    2012-01-01

    Composite nanoarchitectures represent a class of nanostructured entities that integrates various dissimilar nanoscale building blocks including nanoparticles, nanowires, and nanofilms toward realizing multifunctional characteristics. A broad array of composite nanoarchitectures can be designed and fabricated, involving generic materials such as metal, ceramics, and polymers in nanoscale form. In this review, we will highlight the latest progress on composite nanostructures in our research group, particularly on various metal oxides including binary semiconductors, ABO(3)-type perovskites, A(2)BO(4) spinels and quaternary dielectric hydroxyl metal oxides (AB(OH)(6)) with diverse application potential. Through a generic template strategy in conjunction with various synthetic approaches- such as hydrothermal decomposition, colloidal deposition, physical sputtering, thermal decomposition and thermal oxidation, semiconductor oxide alloy nanowires, metal oxide/perovskite (spinel) composite nanowires, stannate based nanocompostes, as well as semiconductor heterojunction-arrays and networks have been self-assembled in large scale and are being developed as promising classes of composite nanoarchitectures, which may open a new array of advanced nanotechnologies in solid state lighting, solar absorption, photocatalysis and battery, auto-emission control, and chemical sensing.

  17. Hierarchical Assembly of Multifunctional Oxide-based Composite Nanostructures for Energy and Environmental Applications

    Directory of Open Access Journals (Sweden)

    Hui-Jan Lin

    2012-06-01

    Full Text Available Composite nanoarchitectures represent a class of nanostructured entities that integrates various dissimilar nanoscale building blocks including nanoparticles, nanowires, and nanofilms toward realizing multifunctional characteristics. A broad array of composite nanoarchitectures can be designed and fabricated, involving generic materials such as metal, ceramics, and polymers in nanoscale form. In this review, we will highlight the latest progress on composite nanostructures in our research group, particularly on various metal oxides including binary semiconductors, ABO3-type perovskites, A2BO4 spinels and quaternary dielectric hydroxyl metal oxides (AB(OH6 with diverse application potential. Through a generic template strategy in conjunction with various synthetic approaches—such as hydrothermal decomposition, colloidal deposition, physical sputtering, thermal decomposition and thermal oxidation, semiconductor oxide alloy nanowires, metal oxide/perovskite (spinel composite nanowires, stannate based nanocompostes, as well as semiconductor heterojunction—arrays and networks have been self-assembled in large scale and are being developed as promising classes of composite nanoarchitectures, which may open a new array of advanced nanotechnologies in solid state lighting, solar absorption, photocatalysis and battery, auto-emission control, and chemical sensing.

  18. Enhanced wet hydrogen peroxide catalytic oxidation performances based on CuS nanocrystals/reduced graphene oxide composites

    Science.gov (United States)

    Qian, Jing; Wang, Kun; Guan, Qingmeng; Li, Henan; Xu, Hui; Liu, Qian; Liu, Wei; Qiu, Baijing

    2014-01-01

    CuS nanocrystals/reduced graphene oxide (CuS NCs/rGO) composites were prepared by a facile one-pot solvothermal reaction. In this solvothermal system, thioacetamide was found to perform the dual roles of sulphide source and reducing agent, resulting in the formation of CuS NCs and simultaneous reduction of graphene oxide (GO) sheets to rGO sheets. In addition, CuS NCs/rGO composites were further used as heterogeneous catalysts in the wet hydrogen peroxide catalytic oxidation process, with methylene blue as a model organic dye. The introduction of rGO to CuS NCs could effectively enhance the catalytic activity of CuS NCs, and the resultant CuS NCs/rGO composites with a starting GO amount of 5 wt% showed the highest catalytic activity. Furthermore, the CuS NCs/rGO composites showed high catalytic activity over a broad pH operation range from 3.0 to 11.0 under ambient conditions, and still retained 90% of the original catalytic activity after reuse in five cycles.

  19. Toughened and machinable glass matrix composites reinforced with graphene and graphene-oxide nano platelets

    Directory of Open Access Journals (Sweden)

    Harshit Porwal, Peter Tatarko, Salvatore Grasso, Chunfeng Hu, Aldo R Boccaccini, Ivo Dlouhý and Mike J Reece

    2013-01-01

    Full Text Available The processing conditions for preparing well dispersed silica–graphene nanoplatelets and silica–graphene oxide nanoplatelets (GONP composites were optimized using powder and colloidal processing routes. Fully dense silica–GONP composites with up to 2.5 vol% loading were consolidated using spark plasma sintering. The GONP aligned perpendicularly to the applied pressure during sintering. The fracture toughness of the composites increased linearly with increasing concentration of GONP and reached a value of ~0.9 MPa m1/2 for 2.5 vol% loading. Various toughening mechanisms including GONP necking, GONP pull-out, crack bridging, crack deflection and crack branching were observed. GONP decreased the hardness and brittleness index (BI of the composites by ~30 and ~50% respectively. The decrease in BI makes silica–GONP composites machinable compared to pure silica. When compared to silica–Carbon nanotube composites, silica–GONP composites show better process-ability and enhanced mechanical properties.

  20. Effects of Graphene Oxide Modified Sizing Agents on Interfacial Properties of Carbon Fibers/Epoxy Composites.

    Science.gov (United States)

    Zhang, Qingbo; Jiang, Dawei; Liu, Li; Huang, Yudong; Long, Jun; Wu, Guangshun; Wu, Zijian; Umar, Ahmad; Guo, Jiang; Zhang, Xi; Guo, Zhanhu

    2015-12-01

    A kind of graphene oxide (GO) modified sizing agent was used to improve the interfacial properties of carbon fibers/epoxy composites. The surface topography of carbon fibers was investigated by scanning electron microscopy (SEM). The surface compositions of carbon fibers were determined by X-ray photoelectron spectroscopy (XPS) and the interfacial properties of composites were studied by interlaminar shear strength (ILSS). The results show that the existence of GO increases the content of reactive functional groups on carbon fiber surface. Thus it enhances the interfacial properties of carbon fibers/epoxy composites. When GO loading in sizing agents is 1 wt%, the ILSS value of composite reaches to 96.2 MPa, which is increased by 27.2% while comparing with unsized carbon fiber composites. Furthermore, the ILSS of composites after aging is also increased significantly with GO modified sizing agents.

  1. A multiscale and multiphysics model of strain development in a 1.5 T MRI magnet designed with 36 filament composite MgB2 superconducting wire

    Science.gov (United States)

    Amin, Abdullah Al; Baig, Tanvir; Deissler, Robert J.; Yao, Zhen; Tomsic, Michael; Doll, David; Akkus, Ozan; Martens, Michael

    2016-05-01

    High temperature superconductors such as MgB2 focus on conduction cooling of electromagnets that eliminates the use of liquid helium. With the recent advances in the strain sustainability of MgB2, a full body 1.5 T conduction cooled magnetic resonance imaging (MRI) magnet shows promise. In this article, a 36 filament MgB2 superconducting wire is considered for a 1.5 T full-body MRI system and is analyzed in terms of strain development. In order to facilitate analysis, this composite wire is homogenized and the orthotropic wire material properties are employed to solve for strain development using a 2D-axisymmetric finite element analysis (FEA) model of the entire set of MRI magnet. The entire multiscale multiphysics analysis is considered from the wire to the magnet bundles addressing winding, cooling and electromagnetic excitation. The FEA solution is verified with proven analytical equations and acceptable agreement is reported. The results show a maximum mechanical strain development of 0.06% that is within the failure criteria of -0.6% to 0.4% (-0.3% to 0.2% for design) for the 36 filament MgB2 wire. Therefore, the study indicates the safe operation of the conduction cooled MgB2 based MRI magnet as far as strain development is concerned.

  2. Antibacterial properties of composite resins incorporating silver and zinc oxide nanoparticles on Streptococcus mutans and Lactobacillus

    Directory of Open Access Journals (Sweden)

    Shahin Kasraei

    2014-05-01

    Full Text Available Objectives Recurrent caries was partly ascribed to lack of antibacterial properties in composite resin. Silver and zinc nanoparticles are considered to be broad-spectrum antibacterial agents. The aim of the present study was to evaluate the antibacterial properties of composite resins containing 1% silver and zinc-oxide nanoparticles on Streptococcus mutans and Lactobacillus. Materials and Methods Ninety discoid tablets containing 0%, 1% nano-silver and 1% nano zinc-oxide particles were prepared from flowable composite resin (n = 30. The antibacterial properties of composite resin discs were evaluated by direct contact test. Diluted solutions of Streptococcus mutans (PTCC 1683 and Lactobacillus (PTCC 1643 were prepared. 0.01 mL of each bacterial species was separately placed on the discs. The discs were transferred to liquid culture media and were incubated at 37℃ for 8 hr. 0.01 mL of each solution was cultured on blood agar and the colonies were counted. Data was analyzed with Kruskall-Wallis and Mann-Whitney U tests. Results Composites containing nano zinc-oxide particles or silver nanoparticles exhibited higher antibacterial activity against Streptococcus mutans and Lactobacillus compared to the control group (p < 0.05. The effect of zinc-oxide on Streptococcus mutans was significantly higher than that of silver (p < 0.05. There were no significant differences in the antibacterial activity against Lactobacillus between composites containing silver nanoparticles and those containing zinc-oxide nanoparticles. Conclusions Composite resins containing silver or zinc-oxide nanoparticles exhibited antibacterial activity against Streptococcus mutans and Lactobacillus.

  3. Color superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Wilczek, F. [Institute for Advanced Study, Princeton, NJ (United States)

    1997-09-22

    The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken.

  4. INFLUENCE OF HEAT TREATMENT ON OXIDATION PROPERTIES OF C/C COMPOSITES FABRICATED BY HIGH PRESSURE IMPREGNATION CARBONIZATION

    Institute of Scientific and Technical Information of China (English)

    Q.Chen; H.J.Li; A.J.Li; H.M.Han; K.Z.Li

    2004-01-01

    Felt base carbon/carbon composites fabricated by super-high pressure impregnation carbonization process (SPIC) were heat treated at high temperature 2773K. The oxidation properties of felt base carbon/carbon composites were investigated at different temperatures (773-1173K), and the microstructures of carbon/carbon composites were studied by SEM and X-ray diffraction. The experimental results showed that the interlaminar distance of (002) plane (doo2) deceased while the microcrystalline stack height (Lc) increased. The oxidation rate of felt base carbon/carbon composites was invariable at certain temperatures. The oxidation mechanism of carbon/carbon composites changed remarkably at the oxidation temperature 973K. At the initial oxidation stage of carbon/carbon composites, carbon matrix was oxidized much more rapidly than carbon felt.

  5. Complex oxide with negative thermal expansion for producing ceramic matrix composites with invar effect

    Science.gov (United States)

    Dedova, Elena S.; Pertushina, Mariya U.; Kondratenko, Anton I.; Gorev, Mikhail V.; Kulkov, Sergei N.

    2016-11-01

    The article investigates the phase composition of (Al2O3-20 wt % ZrO2)-ZrW2O8 ceramic composites obtained by cold-pressing and sintering processes. Using X-ray analysis it has been shown that composites mainly have monoclinic modification of zirconium dioxide and orthorhombic phase of aluminum oxide. After adding zirconium tungstate the phase composition of sintered ceramics changes, followed by the formation of tungsten-aluminates spinel such as Alx(WOy)z. It has been shown that thermal expansion coefficient of material decreases approximatly by 30%, as compared with initial ceramics.

  6. Electrophoretic deposition of calcium silicate-reduced graphene oxide composites on titanium substrate

    DEFF Research Database (Denmark)

    Mehrali, Mehdi; Akhiani, Amir Reza; Talebian, Sepehr

    2016-01-01

    silicate-reduced graphene oxide (CS-rGO) composites were synthesized, using an in situ hydrothermal method. CS nanowires were uniformly decorated on the rGO, with an appropriate interfacial bonding. The CS-rGO composites behaved like hybrid composites when deposited on a titanium substrate by cathodic......Calcium silicate (CS)/graphene coatings have been used to improve the biological and mechanical fixation of metallic prosthesis. Among the extraordinary features of graphene is its very high mechanical strength, which makes it an attractive nanoreinforcement material for composites. Calcium...

  7. Oxidation behaviour and electrical properties of cobalt/cerium oxide composite coatings for solid oxide fuel cell interconnects

    DEFF Research Database (Denmark)

    Harthøj, Anders; Holt, Tobias; Møller, Per

    2015-01-01

    are exposed in air at 800 °C for 3000 h and oxidation rates are measured and oxide scale microstructures are investigated. Area-specific resistances (ASR) in air at 850 °C of coated and uncoated samples are also measured. A dual layered oxide scale formed on all coated samples. The outer layer consisted of Co...

  8. SUPERCONDUCTING PHOTOCATHODES.

    Energy Technology Data Exchange (ETDEWEB)

    SMEDLEY, J.; RAO, T.; WARREN, J.; SEKUTOWICZ, LANGNER, J.; STRZYZEWSKI, P.; LEFFERS, R.; LIPSKI, A.

    2005-10-09

    We present the results of our investigation of lead and niobium as suitable photocathode materials for superconducting RF injectors. Quantum efficiencies (QE) have been measured for a range of incident photon energies and a variety of cathode preparation methods, including various lead plating techniques on a niobium substrate. The effects of operating at ambient and cryogenic temperatures and different vacuum levels on the cathode QE have also been studied.

  9. Viscous sealing glass compositions for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheol Woon; Brow, Richard K.

    2016-12-27

    A sealant for forming a seal between at least two solid oxide fuel cell components wherein the sealant comprises a glass material comprising B.sub.2O.sub.3 as a principal glass former, BaO, and other components and wherein the glass material is substantially alkali-free and contains less than 30% crystalline material.

  10. Compositional and structural evolution of the titanium dioxide formation by thermal oxidation

    Institute of Scientific and Technical Information of China (English)

    Su Wei-Feng; Gnaser Hubert; Fan Yong-Liang; Jiang Zui-Min; Le Yong-Kang

    2008-01-01

    Titanium oxide films were prepared by annealing DC magnetron sputtered titanium films in an oxygen ambi-ent. X-ray diffraction (XRD), Auger electron spectroscopy (AES) sputter profiling, MCs+-mode secondary ion mass spectrometry (MCs+-SIMS) and atomic force microscopy (AFM) were employed, respectively, for the structural, com-positional and morphological characterization of the obtained films. For temperatures below 875 K, titanium films could not be fully oxidized within one hour. Above that temperature, the completely oxidized films were found to be rutile in structure. Detailed studies on the oxidation process at 925 K were carried out for the understanding of the underlying mechanism of titanium dioxide (TiO2) formation by thermal oxidation. It was demonstrated that the formation of crystalline TiO2 could be divided into a short oxidation stage, followed by crystal forming stage. Relevance of this recognition was further discussed.

  11. Morphological tuned preparation of zinc oxide: reduced graphene oxide composites for non-enzymatic fluorescence glucose sensing and enhanced photocatalysis

    Science.gov (United States)

    Sivalingam, Muthu Mariappan; Balasubramanian, Karthikeyan

    2016-07-01

    Zinc oxide: reduced graphene oxide (ZnO:rgo) composites with varying ZnO morphologies have been synthesized towards the application of non-enzymatic fluorescence (FL) glucose sensor and photocatalysis for methylene blue (MB) degradation. The phase structure of ZnO has confirmed by X-ray diffraction studies, and the band gap calculations were done by UV absorption spectra. Scanning electron microscope and Raman spectra revealed the morphological change and the vibrational studies of the prepared samples, respectively. The quenching of the FL emission band of ZnO:rgo composite sample confirmed the transfer of electrons from ZnO to rgo which inhibit the exciton recombination process. The non-enzymatic FL glucose sensing was carried out by the addition of dextrose glucose ( d-glucose) into the ZnO:rgo composite solution, which shows strong relationship between glucose concentration and the FL intensity. The photocatalytic studies showed that composite with high surface to volume ratio exhibits a maximum degradation of MB over 93 %. Our combined results ensured that the ZnO:rgo composites with varying morphologies could be an effective system for applications such as FL-based glucose sensing and photocatalytic degradation.

  12. Directed synthesis of bio-inorganic vanadium oxide composites using genetically modified filamentous phage

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Michael; Baik, Seungyun [Environmental Safety Group, Korea Institute of Science and Technology Europe (KIST-Europe) Forschungsgesellschaft mbH, Campus E 7 1, Saarbruecken (Germany); Jeon, Hojeong; Kim, Yuchan [Center for Biomaterials, Biomedical Research Institute Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Kim, Jungtae [Environmental Safety Group, Korea Institute of Science and Technology Europe (KIST-Europe) Forschungsgesellschaft mbH, Campus E 7 1, Saarbruecken (Germany); Kim, Young Jun, E-mail: youngjunkim@kist-europe.de [Environmental Safety Group, Korea Institute of Science and Technology Europe (KIST-Europe) Forschungsgesellschaft mbH, Campus E 7 1, Saarbruecken (Germany)

    2015-05-15

    Highlights: • Phage is an excellent seeding for bio-templates for environmentally benign vanadium oxide nanocomposite synthesis. • The synthesized bio-inorganic vanadium oxide showed photodegradation activities. • The fabricated wt phage/vanadium oxide composite exhibited bundle-like structure. • The fabricated RSTB-phage/vanadium oxide composite exhibited a ball with a fiber-like nanostructure. • The virus/vanadium oxide composite could be applied in photocatalysts, sensors and nanoelectronic applications. - Abstract: The growth of crystalline vanadium oxide using a filamentous bacteriophage template was investigated using sequential incubation in a V{sub 2}O{sub 5} precursor. Using the genetic modification of the bacteriophage, we displayed two cysteines that constrained the RSTB-1 peptide on the major coat protein P8, resulting in vanadium oxide crystallization. The phage-driven vanadium oxide crystals with different topologies, microstructures, photodegradation and vanadium oxide composites were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), quartz microbalance and dissipation (QCM-D) and X-ray photoelectron spectroscopy (XPS). Non-specific electrostatic attraction between a wild-type phage (wt-phage) and vanadium cations in the V{sub 2}O{sub 5} precursor caused phage agglomeration and fiber formation along the length of the viral scaffold. As a result, the addition of recombinant phage (re-phage) in V{sub 2}O{sub 5} precursors formed heterogeneous structures, which led to efficient condensation of vanadium oxide crystal formation in lines, shown by QCM-D analysis. Furthermore, re-phage/V{sub x}O{sub x} composites showed significantly enhanced photodegradation activities compared with the synthesized wt-phage-V{sub 2}O{sub 5} composite under illumination. This study demonstrates that peptide-mediated vanadium oxide mineralization is governed by a complicated interplay of peptide sequence, local structure

  13. The Composites of Graphene Oxide with Metal or Semimetal Nanoparticles and Their Effect on Pathogenic Microorganisms

    Directory of Open Access Journals (Sweden)

    Lukas Richtera

    2015-05-01

    Full Text Available The present experiment describes a synthesis process of composites based on graphene oxide, which was tested as a carrier for composites of metal- or metalloid-based nanoparticles (Cu, Zn, Mn, Ag, AgP, Se and subsequently examined as an antimicrobial agent for some bacterial strains (Staphylococcus aureus (S. aureus, methicillin-resistant Staphylococcus aureus (MRSA and Escherichia coli (E. coli. The composites were first applied at a concentration of 300 µM on all types of model organisms and their effect was observed by spectrophotometric analysis, which showed a decrease in absorbance values in comparison with the control, untreated strain. The most pronounced inhibition (87.4% of S. aureus growth was observed after the application of graphene oxide composite with selenium nanoparticles compared to control. Moreover, the application of the composite with silver and silver phosphate nanoparticles showed the decrease of 68.8% and 56.8%, respectively. For all the tested composites, the observed antimicrobial effect was found in the range of 26% to 87.4%. Interestingly, the effects of the composites with selenium nanoparticles significantly differed in Gram-positive (G+ and Gram-negative (G− bacteria. The effects of composites on bacterial cultures of S. aureus and MRSA, the representatives of G+ bacteria, increased with increasing concentrations. On the other hand, the effects of the same composites on G− bacteria E. coli was observed only in the highest applied concentration.

  14. Synthesis of magnetite/graphene oxide/chitosan composite and its application for protein adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Nengsheng, E-mail: yensh@cnu.edu.cn; Xie, Yali; Shi, Pengzhi; Gao, Ting; Ma, Jichao

    2014-12-01

    In this study, a facile and novel strategy was developed to fabricate magnetite/graphene oxide/chitosan (Fe{sub 3}O{sub 4}/GO/CS) composite, and the composite was used as a magnetic adsorbent for the enrichment of protein, and followed by matrix-assisted laser desorption ionization mass spectrometry (MALDI-TOF MS) analysis. The phase composition, chemical structure and morphology of the composite were characterized by X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR), transmission electron microscopy (TEM), scanning electronic microscope (SEM) and vibrating sample magnetometer (VSM). Protein cytochrome c was chosen as model target to evaluate the adsorptive property of Fe{sub 3}O{sub 4}/GO/CS. After enrichment procedure and magnetic separation, protein bounded with the material was analyzed by MALDI-TOF MS without desorption. The results indicated that Fe{sub 3}O{sub 4}/GO/CS composite exhibited a good adsorptive capacity for protein, and Fe{sub 3}O{sub 4}/GO/CS composite had a promising potential in magnetic separation research. - Highlights: • Magnetite/graphene oxide/chitosan composite was synthesized by novel route. • The composite was used as magnetic absorbent for protein enrichment. • The composite had excellent adsorption performance for protein enrichment.

  15. Structure of bicomponent metal–oxide composites synthesized by electron beam irradiation method

    Energy Technology Data Exchange (ETDEWEB)

    Kugai, Junichiro, E-mail: kugai@mit.eng.osaka-u.ac.jp [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Moriya, Toshiharu, E-mail: t-moriya@mit.eng.osaka-u.ac.jp [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Seino, Satoshi, E-mail: seino@mit.eng.osaka-u.ac.jp [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Nakagawa, Takashi, E-mail: nakagawa@mit.eng.osaka-u.ac.jp [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Ohkubo, Yuji, E-mail: okubo@mit.eng.osaka-u.ac.jp [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Ueno, Koji, E-mail: Kji_Ueno@EBIS.shi.co.jp [Japan Electron Beam Irradiation Service Co., 5-3 Odushima-cho Izumi-ohtsu, Osaka 595-0074 (Japan); Nitani, Hiroaki, E-mail: hiroaki.nitani@kek.jp [Institute of Materials Structure Science (IMSS), High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Yamamoto, Takao A., E-mail: takao@mit.eng.osaka-u.ac.jp [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2013-11-15

    Highlights: •In radiation-induced process, transition metal precipitates only with Pt or support. •Reduced Cu atom stabilizes by forming Pt–Cu alloy or oxidatively depositing on CeO{sub 2}. •Sulfate stabilizes metals allowing their growth against oxidative deposition on CeO{sub 2}. •FeO{sub x} is directly formed without being reduced to metal due to its oxophilicity. •Fe{sup 3+} in the precursor inhibits reduction of Pt yielding highly oxidic Pt on support. -- Abstract: In order to understand the formation process of metal–oxide composite in an electron beam irradiation method in aqueous phase, the structure and composition of obtained solid were correlated to the synthesis parameters. Transition metal did not precipitate alone by the electron beam irradiation, but they did in the presence of platinum or support. Due to the relatively high reduction potential, copper underwent reduction to metallic state and readily precipitated by forming Pt–Cu alloy and/or copper oxide on solid surface. In the Pt–Cu/CeO{sub 2} system, the structure of Pt–Cu was ruled by two competing factors, growth of alloy nanoparticles promoted by sulfate ion and deposition of metal (alloy) on CeO{sub 2} support with their concomitant partial oxidation. CeO{sub 2} was suggested to immobilize the metals oxidatively before they coalesce. Iron barely formed alloy with Pt, but it directly precipitated on support as oxide without being reduced to metal due to its oxophilicity. Oxide was formed either via reduction to metallic state (for Pt and Cu) or through direct oxygenation or hydroxylation on solid (for Fe). Under the restriction of reduction potential, the size and composition of alloy nanoparticles and the content of oxide phase were drastically modified by support surface property and anion species in the solution.

  16. Temperature dependent thermoelectric property of reduced graphene oxide-polyaniline composite

    Science.gov (United States)

    Mitra, Mousumi; Banerjee, Dipali; Kargupta, Kajari; Ganguly, Saibal

    2016-05-01

    A composite material of reduced graphene oxide (rG) nanosheets with polyaniline (PANI) protonated by 5-sulfosalicylic acid has been synthesized via in situ oxidative polymerization method. The morphological and spectral characterizations have been done using FESEM and XRD measurements. The thermoelectric (TE) properties of the reduced graphene oxide-polyaniline composite (rG-P) has been studied in the temperature range from 300-400 K. The electrical conductivity and the Seebeck coefficient of rG-P is higher than the of pure PANI, while the thermal conductivity of the composite still keeps much low value ensuing an increase in the dimensionless figure of merit (ZT) in the whole temperature range.

  17. Temperature dependent thermoelectric property of reduced graphene oxide-polyaniline composite

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, Mousumi, E-mail: mousumimitrabesu@gmail.com; Banerjee, Dipali, E-mail: dipalibanerjeebesu@gmail.com [Department of Physics, Indian Institute of Engineering Science and Technology (IIEST), Howrah-711103 (India); Kargupta, Kajari, E-mail: karguptakajari2010@gmail.com [Department of Chemical Engineering, Jadavpur University, Kolkata (India); Ganguly, Saibal, E-mail: gangulysaibal2011@gmail.com [Chemical Engineering department, Universiti Teknologi Petronas, Perak, Tronoh (Malaysia)

    2016-05-06

    A composite material of reduced graphene oxide (rG) nanosheets with polyaniline (PANI) protonated by 5-sulfosalicylic acid has been synthesized via in situ oxidative polymerization method. The morphological and spectral characterizations have been done using FESEM and XRD measurements. The thermoelectric (TE) properties of the reduced graphene oxide-polyaniline composite (rG-P) has been studied in the temperature range from 300-400 K. The electrical conductivity and the Seebeck coefficient of rG-P is higher than the of pure PANI, while the thermal conductivity of the composite still keeps much low value ensuing an increase in the dimensionless figure of merit (ZT) in the whole temperature range.

  18. Effect of CaO composition on oxidation and burning behaviors of AM50 Mg alloy

    Institute of Scientific and Technical Information of China (English)

    Jin-Kyu LEE; Shae K. KIM

    2011-01-01

    Oxidation and burning behaviors were studied for CaO added AM50 Mg composites which were manufactured by conventional melting and casting processes without SF6 protective gas. CaO added AM50 Mg composites show the stable oxidation resistance. while AM50 Mg alloys show the poor oxidation resistance. The effects of CaO addition on the burning resistance under ambient, nitrogen and dry air atmospheres were examined for CaO added AM50 Mg composites. With increasing CaO addition, the burning temperature increases under ambient, nitrogen and dry air atmospheres. The burning temperatures of small test specimen under all conditions greatly increase even by 0.3% CaO (mass fraction) addition into AM50 Mg alloys.

  19. Avocado waste for finishing pigs: Impact on muscle composition and oxidative stability during chilled storage.

    Science.gov (United States)

    Hernández-López, Silvia H; Rodríguez-Carpena, Javier G; Lemus-Flores, Clemente; Grageola-Nuñez, Fernando; Estévez, Mario

    2016-06-01

    The utilization of agricultural waste materials for pig feeding may be an interesting option for reducing production costs and contributing to sustainability and environmental welfare. In the present study, a mixed diet enriched with avocado waste (TREATED) is used for finishing industrial genotype pigs. The muscle longissimus thoracis et lomborum (LTL) from TREATED pigs was analyzed for composition and oxidative and color stability and compared with muscles obtained from pigs fed a CONTROL diet. Dietary avocado had significant impact on the content and composition of intramuscular fat (IMF), reducing the lipid content in LTL muscles and increasing the degree of unsaturation. This did not increase the oxidative instability of samples. On the contrary, muscles from TREATED pigs had significantly lower lipid and protein oxidation rates during chilled storage. The color of the muscles from TREATED pigs was also preserved from oxidation.

  20. W-Mo-Si/SiC Oxidation Protective Coating for Carbon/Carbon Composites

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A W-Mo-Si/SiC double-layer oxidation protective coating for carbon/carbon (C/C) composites was prepared by a two-step pack cementation technique. XRD (X-ray diffraction) and SEM (scanning electron microscopy)results show that the coating obtained by the first step pack cementation was a thin inner buffer layer of SiC with some cracks and pores, and a new phase of (WxMo1-x)Si2 appeared after the second step pack cementation. Oxidation test shows that, after oxidation in air at 1773 K for 175 h and thermal cycling between 1773 K and room temperature for 18 times, the weight loss of the W-Mo-Si/SiC coated C/C composites was only 2.06%. The oxidation protective failure of the W-Mo-Si/SiC coating was attributed to the formation of some penetrable cracks in the coating.

  1. Computer Simulations of Composite Electrodes in Solid-Oxide Fuel-Cells

    Energy Technology Data Exchange (ETDEWEB)

    Sunde, Svein

    1999-07-01

    Fuel cells are devices for converting the combined chemical (free) energy of fuels and oxygen (air) directly to electrical energy without relying on the dynamic action of steam heated by reacting fuel-oxygen mixtures, like in steam turbines, or of the reacting gas mixtures themselves, like in gas turbines. The basic rationale for fuel cells is their high efficiencies as compared to indirect-conversion methods. Fuel cells are currently being considered for a number of applications, among them de-centralised power supply. Fuel cells come in five basic types and are usually classified according to the type of electrolyte used, which in turn to a significant degree limits the options for anode and cathode materials. The solid-oxide fuel-cell (SOFC) , with which this thesis is concerned, is thus named after its oxide electrolyte, typically the oxide-ion conducting material yttria-stabilised zirconia (YSZ). While the cathode of an SOFC is often uniform in chemical composition (or at least intended to be), various problems of delamination, cracking etc. associated with the use of metallic anode electrocatalysts led to the development of composite SOFC anodes. Porous anodes consisting of Ni and YSZ particles in roughly 50/50 wt-% mixtures are now almost standard with any SOFC-development programme. The designer of composite SOFC electrodes is faced with at least three, interrelated questions: (1) What will be the optimum microstructure and composition of the composite electrode? (2) If the structure changes during operation, as is often observed, what will be the consequences for the internal losses in the cell? (3) How do we interpret electrochemical and conductivity measurements with regard to structure and composition? It is the primary purpose of this thesis to provide a framework for modelling the electrochemical and transport properties of composite electrodes for SOFC, and to arrive at some new insights that cannot be offered by experiment alone. Emphasis is put on

  2. Synthesis, characterization, and catalytic application of ordered mesoporous carbon–niobium oxide composites

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Juan-Li; Gao, Shuang; Liu, Chun-Ling; Liu, Zhao-Tie; Dong, Wen-Sheng, E-mail: wsdong@snnu.edu.cn

    2014-11-15

    Graphical abstract: The ordered mesoporous carbon–niobium oxide composites have been synthesized by a multi-component co-assembly method associated with a carbonization process. - Highlights: • Ordered mesoporous carbon–niobium oxide composites were synthesized. • The content of Nb{sub 2}O{sub 5} in the composites could be tuned from 38 to 75%. • Niobium species were highly dispersed in amorphous carbon framework walls. • The composites exhibited good catalytic performance in the dehydration of fructose. - Abstract: Ordered mesoporous carbon–niobium oxide composites have been synthesized by a multi-component co-assembly method associated with a carbonization process using phenolic resol as carbon source, niobium chloride as precursor and amphiphilic triblock copolymer Pluronic F127 as template. The resulting materials were characterized using a combination of techniques including differential scanning calorimetry–thermogravimetric analysis, N{sub 2} physical adsorption, X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. The results show that with increasing the content of Nb{sub 2}O{sub 5} from 38 to 75% the specific surface area decreases from 306.4 to 124.5 m{sup 2} g{sup −1}, while the ordered mesoporous structure is remained. Niobium species is well dispersed in the amorphous carbon framework. The mesoporous carbon–niobium oxide composites exhibit high catalytic activity in the dehydration of fructose to 5-hydroxymethylfurfural. A 100% conversion of fructose and a 76.5% selectivity of 5-hydroxymethylfurfural were obtained over the carbon–niobium oxide composite containing 75% Nb{sub 2}O{sub 5} under the investigated reaction conditions.

  3. Effect of SiC particles on microarc oxidation process of magnesium matrix composites

    Science.gov (United States)

    Wang, Y. Q.; Wang, X. J.; Gong, W. X.; Wu, K.; Wang, F. H.

    2013-10-01

    SiC particles are an important reinforced phase in metal matrix composites. Their effect on the microarc oxidation (MAO, also named plasma electrolytic oxidation-PEO) process of SiCp/AZ91 Mg matrix composites (MMCs) was studied and the mechanism was revealed. The corrosion resistance of MAO coating was also investigated. Voltage-time curves during MAO were recorded to study the barrier film status on the composites. Scanning electron microscopy was used to characterize the existing state of SiC particles in MAO. Energy dispersive X-ray spectrometry and X-ray photoelectron spectroscopy were used to analyze the chemical composition of the coating. Corrosion resistance of the bare and coated composites was evaluated by potentiodynamic polarization curves in 3.5% NaCl solution. Results showed that the integrality and electrical insulation properties of the barrier film on the composites were destroyed by the SiC particles. Consequently, the sparking discharge at the early stage of MAO was inhibited, and the growth efficiency of the MAO coating decreased with the increase in the volume fraction of SiC particles. SiC particles did not exist stably during MAO; they were oxidized or partially oxidized into SiO2 before the overall sparking discharge. The transformation from semi-conductive SiC to insulating SiO2 by oxidation restrained the current leakage at the original SiC positions and then promoted sparking discharge and coating growth. The corrosion current density of SiCp/AZ91 MMCs was reduced by two orders of magnitude after MAO treatment. However, the corrosion resistances of the coated composites were lower than that of the coated alloy.

  4. Effect of SiC particles on microarc oxidation process of magnesium matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.Q., E-mail: qiuorwang@hrbeu.edu.cn [Corrosion and Protection Laboratory, Education Ministry Key Laboratory of Superlight Materials and Surface Technology, Harbin Engineering University, Harbin 150001 (China); Wang, X.J. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Gong, W.X. [Corrosion and Protection Laboratory, Education Ministry Key Laboratory of Superlight Materials and Surface Technology, Harbin Engineering University, Harbin 150001 (China); Wu, K. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, F.H. [Corrosion and Protection Laboratory, Education Ministry Key Laboratory of Superlight Materials and Surface Technology, Harbin Engineering University, Harbin 150001 (China); State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2013-10-15

    SiC particles are an important reinforced phase in metal matrix composites. Their effect on the microarc oxidation (MAO, also named plasma electrolytic oxidation-PEO) process of SiC{sub p}/AZ91 Mg matrix composites (MMCs) was studied and the mechanism was revealed. The corrosion resistance of MAO coating was also investigated. Voltage–time curves during MAO were recorded to study the barrier film status on the composites. Scanning electron microscopy was used to characterize the existing state of SiC particles in MAO. Energy dispersive X-ray spectrometry and X-ray photoelectron spectroscopy were used to analyze the chemical composition of the coating. Corrosion resistance of the bare and coated composites was evaluated by potentiodynamic polarization curves in 3.5% NaCl solution. Results showed that the integrality and electrical insulation properties of the barrier film on the composites were destroyed by the SiC particles. Consequently, the sparking discharge at the early stage of MAO was inhibited, and the growth efficiency of the MAO coating decreased with the increase in the volume fraction of SiC particles. SiC particles did not exist stably during MAO; they were oxidized or partially oxidized into SiO{sub 2} before the overall sparking discharge. The transformation from semi-conductive SiC to insulating SiO{sub 2} by oxidation restrained the current leakage at the original SiC positions and then promoted sparking discharge and coating growth. The corrosion current density of SiC{sub p}/AZ91 MMCs was reduced by two orders of magnitude after MAO treatment. However, the corrosion resistances of the coated composites were lower than that of the coated alloy.

  5. Sonochemically synthesized iron-doped zinc oxide nanoparticles: Influence of precursor composition on characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Anirban [Department of Chemical Engineering, University of Calcutta, 92, Acharya P. C. Road, Kolkata 700 009 (India); Maitra, Saikat [Government College of Engineering and Ceramic Technology, 73, A.C. Banerjee Lane, Kolkata 700 010 (India); Ghosh, Sobhan [Managing Innovations, House No. 188, Sector 14, Faridabad 121 007 (India); Chakrabarti, Sampa, E-mail: scchemengg@caluniv.ac.in [Department of Chemical Engineering, University of Calcutta, 92, Acharya P. C. Road, Kolkata 700 009 (India); Centre for Research in Nanoscience & Nanotechnology, University of Calcutta JD- 2, Sector-III, Salt Lake, Kolkata 700 098 (India)

    2016-02-15

    Highlights: • Sonochemical synthesis of iron-doped zinc oxide nanoparticles. • Green synthesis without alkali at room temperature. • Characterization by UV–vis spectroscopy, FESEM, XRD and EDX. • Influence of precursor composition on characteristics. • Composition and characteristics are correlated. - Abstract: Iron-doped zinc oxide nanoparticles have been synthesized sonochemically from aqueous acetyl acetonate precursors of different proportions. Synthesized nanoparticles were characterized with UV–vis spectroscopy, X-ray diffraction and microscopy. Influences of precursor mixture on the characteristics have been examined and modeled. Linear correlations have been proposed between dopant dosing, extent of doping and band gap energy. Experimental data corroborated with the proposed models.

  6. Influence of argan kernel roasting-time on virgin argan oil composition and oxidative stability.

    Science.gov (United States)

    Harhar, Hicham; Gharby, Saïd; Kartah, Bader; El Monfalouti, Hanae; Guillaume, Dom; Charrouf, Zoubida

    2011-06-01

    Virgin argan oil, which is harvested from argan fruit kernels, constitutes an alimentary source of substances of nutraceutical value. Chemical composition and oxidative stability of argan oil prepared from argan kernels roasted for different times were evaluated and compared with those of beauty argan oil that is prepared from unroasted kernels. Prolonged roasting time induced colour development and increased phosphorous content whereas fatty acid composition and tocopherol levels did not change. Oxidative stability data indicate that kernel roasting for 15 to 30 min at 110 °C is optimum to preserve virgin argan oil nutritive properties.

  7. Mechanism of pore formation and structural characterization for mesoporous Mg-Al composite oxides

    Institute of Scientific and Technical Information of China (English)

    赵芸; 矫庆泽; 段雪

    2002-01-01

    Mg-AI layered double hydroxides (LDH) with different particle sizes were prepared using different aging times at high supersaturation by a new method developed in our laboratory. The key features of this method are a very rapid mixing and nucleation process followed by a separate aging process. By calcination of LDH at 500癈, mesoporous Mg-AI composite oxides with an extremely narrow pore size distribution were produced. The crystal structure of the Mg-AI composite oxides was a multiphasic one consisting of MgO-like crystals and a layered material.

  8. Mechanism of pore formation and structural characterization for mesoporous Mg-Al composite oxides

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Mg-Al layered double hydroxides(LDH) with different particle sizes were prepared using different aging times at high supersaturation by a new method developed in our laboratory. The key features of this method are a very rapid mixing and nucleation process followed by a separate aging process. By calcination of LDH at 500℃, mesoporous Mg-Al composite oxides with an ex-tremely narrow pore size distribution were produced. The crystal structure of the Mg-Al composite oxides was a multiphasic one consisting of MgO-like crystals and a layered material.

  9. A facile synthesis of nanorods of ZnO/graphene oxide composites with enhanced photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Jiaqian, E-mail: jiaqian.q@chula.ac.th [Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330 (Thailand); State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Zhang, Xinyu, E-mail: xyzhang@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Xue, Yannan [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Kittiwattanothai, Nutsakun [Department of Physics, King Mongkut' s University of Technology Thonburi (Thailand); Kongsittikul, Pongsakorn [Department of Petrochemicals and Polymer Science, Chulalongkorn University (Thailand); Rodthongkum, Nadnudda; Limpanart, Sarintorn [Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330 (Thailand); Ma, Mingzhen; Liu, Riping [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China)

    2014-12-01

    Graphical abstract: - Highlights: • Room temperature method to prepare ZnO–GO composites. • ZnO–GO composites exhibit superior absorption ability and photocatalytic performance. • With GO content increasing, the absorption and photocatalytic ability increased. - Abstract: Graphene oxide (GO)–ZnO nanorods composites were successfully synthesized by a facile room-temperature approach using the colloidal coagulation effect. The samples are characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, specific surface area, and UV–vis spectroscopy. The photodegradation of methylene blue (MB) has been investigated in the presence of composites. It is observed that the absorption capacity and photocatalytic effect could be enhanced by adding graphene oxide.

  10. Synthesis and characterization of MOF-aminated graphite oxide composites for CO2 capture

    Science.gov (United States)

    Zhao, Yunxia; Ding, Huiling; Zhong, Qin

    2013-11-01

    A kind of metal-organic frameworks (MOF-5) and aminated graphite oxide (AGO) composites were prepared for CO2 capture to mitigate global warming. MOF-5, MOF-5/GO (composite of MOF-5 and graphite oxide) and MOF-5/AGO samples were characterized by X-ray powder diffraction (XRD), infrared spectroscopy (IR), scanning electron microscope (SEM), nitrogen adsorption as well as thermogravimetric analysis to figure out their chemistry and structure information. Three types of samples with suitable specific surface area and pore diameter were chosen to test CO2 adsorption performance and stability under humidity conditions. The results indicate that high surface area and pore volume, pore similar in size to the size of gas adsorbate, and extra reactive sites modified in the composites contributes to the high CO2 capacity. Besides, the composites involved by GO or AGO show better anti-moisture performance than the parent MOF.

  11. Solar thermal charging properties of graphene oxide embedded myristic acid composites phase change material

    Science.gov (United States)

    Yadav, Apurv; Barman, Bidyut; Kumar, Vivek; Kardam, Abhishek; Narayanan, S. Shankara; Verma, Abhishek; Madhwal, Devinder; Shukla, Prashant; Jain, V. K.

    2016-05-01

    The present paper reports the heat transfer characteristics of graphene oxide (GO) embedded myristic acid based phase change material (GO-PCM) composites. By varying concentrations of GO (0.1-0.5 wt%), different GO-PCM composites were preapred. Two different experimental setups were used for investigating the heat transfer characteristics of the prepared GO-PCM composites during the melting and solidification processes: (i) conventional heating and (ii) solar illumination. The experimental observations indicated a higher heat transfer rate in the GO-PCM composites as compared to pristine PCM for both experimental setups. From the experimental results of conventional heating setup, it was observed that the melting and solidification rate for GO-PCM composites, at 0.5 wt% of GO, increased by 48% and 70%, respectively in comparison to pristine PCM. The experimental results using solar illumination setup demonstrated an ultrafast heating rate for GO-PCM composites than the conventional heating based approach.

  12. Does a sorghum-cowpea composite porridge hold promise for contributing to alleviating oxidative stress?

    Science.gov (United States)

    Apea-Bah, Franklin B; Minnaar, Amanda; Bester, Megan J; Duodu, Kwaku G

    2014-08-15

    The effect of compositing red non-tannin sorghum with cream-coloured cowpea and porridge preparation on phenolic profile and radical scavenging activity was studied. A maize-soybean composite porridge representing a similar product on the South African market was used as reference sample. UPLC-QToF-MS-ESI was used to determine phenolic composition of the grain flours, their composites and porridges. Total phenolic content was determined using Folin-Ciocalteu method while radical scavenging activity was determined using the ABTS, DPPH and NO radical scavenging assays. Four benzoic acid derivatives and five cinnamic acid derivatives were identified in the samples. The predominant flavonoid subclasses identified in sorghum were flavan-3-ols, flavanones and flavones while cowpea had mainly flavan-3-ols and flavonols with soybean having mainly isoflavones. Compositing the cereals with legumes significantly (pporridge showed better promise in contributing to alleviating radical induced oxidative stress than maize-soybean composite porridge.

  13. Microwave absorbing performance enhancement of Fe75Si15Al10 composites by selective surface oxidation

    Science.gov (United States)

    Zhang, Nan; Wang, Xin; Liu, Tao; Xie, Jianliang; Deng, Longjiang

    2017-09-01

    An excessively large dielectric constant is a challenge to improve the performances of the Fe-based absorbing material. Here, we propose a selective surface oxidation method to reduce the permittivity without sacrificing the permeability, by annealing under 5%H2—95%N2 (H2/N2). It is found that a thin layer of aluminum and silicon oxides formed on the surface of Fe75Si15Al10 particles during annealing in the range of 500-780 °C under H2/N2, thereby leading to an obvious decrease of permittivity of the Fe75Si15Al10 composite. According to Gibbs free energy, aluminum and silicon oxides are formed and iron oxides are reduced during annealing under H2/N2 at above 500 °C. Interestingly, the XPS result shows that the atomic ratio of Fe decreases significantly on the particle surface, which infers that the reduced Fe atoms diffuse to the interior of the particles. The surface oxide layer can protect the inner part of the alloy from further oxidation, which contributes to a high permeability. Meanwhile, the XRD result shows the formation of DO3-type ordering, which leads to the promotion of permeability. The two reasons lead to the improvement of permeability of the Fe75Si15Al10 composite after annealing. The composite is confirmed to have high permeability and low permittivity, exhibiting better electromagnetic wave absorption properties.

  14. Synthesis of Au microwires by selective oxidation of Au–W thin-film composition spreads

    Directory of Open Access Journals (Sweden)

    Sven Hamann, Hayo Brunken, Steffen Salomon, Robert Meyer, Alan Savan and Alfred Ludwig

    2013-01-01

    Full Text Available We report on the stress-induced growth of Au microwires out of a surrounding Au–W matrix by selective oxidation, in view of a possible application as 'micro-Velcro'. The Au wires are extruded due to the high compressive stress in the tungsten oxide formed by oxidation of elemental W. The samples were fabricated as a thin-film materials library using combinatorial sputter deposition followed by thermal oxidation. Sizes and shapes of the Au microwires were investigated as a function of the W to Au ratio. The coherence length and stress state of the Au microwires were related to their shape and plastic deformation. Depending on the composition of the Au–W precursor, the oxidized samples showed regions with differently shaped Au microwires. The Au48W52 composition yielded wires with the maximum length to diameter ratio due to the high compressive stress in the tungsten oxide matrix. The values of wire length (35 μm and diameter (2 μm achieved at the Au48W52 composition are suitable for micro-Velcro applications.

  15. A Novel superconducting toroidal field magnet concept using advanced materials

    Science.gov (United States)

    Schwartz, J.

    1992-03-01

    The plasma physics database indicates that two distinct approaches to tokamak design may lead to commercial fusion reactors: low Aspect ratio, high plasma current, relatively low magnetic field devices, and high Aspect ratio, high field devices. The former requires significant enhancements in plasma performance, while the latter depends primarily upon technology development. The key technology for the commercialization of the high-field approach is large, high magnetic field superconducting magnets. In this paper, the physics motivation for the high field approach and key superconducting magnet (SCM) development issues are reviewed. Improved SCM performance may be obtained from improved materials and/or improved engineering. Superconducting materials ranging from NbTi to high- T c oxides are reviewed, demonstrating the broad range of potential superconducting materials. Structural material options are discussed, including cryogenic steel alloys and fiber-reinforced composite materials. Again, the breadth of options is highlighted. The potential for improved magnet engineering is quantified in terms of the Virial Theorem Limit, and two examples of approaches to highly optimized magnet configurations are discussed. The force-reduced concept, which is a finite application of the force-free solutions to Ampere's Law, appear promising for large SCMs but may be limited by the electromagnetics of a fusion plasma. The Solid Superconducting Cylinder (SSC) concept is proposed. This concept combines the unique properties of high- T c superconductors within a low- T c SCM to obtain (1) significant reductions in the structural material volume, (2) a decoupling of the tri-axial (compressive and tensile) stress state, and (3) a demountable TF magnet system. The advantages of this approach are quantified in terms of a 24 T commercial reactor TF magnet system. Significant reductions in the mechanical stress and the TF radial build are demonstrated.

  16. High-Capacity, High-Voltage Composite Oxide Cathode Materials

    Science.gov (United States)

    Hagh, Nader M.

    2015-01-01

    This SBIR project integrates theoretical and experimental work to enable a new generation of high-capacity, high-voltage cathode materials that will lead to high-performance, robust energy storage systems. At low operating temperatures, commercially available electrode materials for lithium-ion (Li-ion) batteries do not meet energy and power requirements for NASA's planned exploration activities. NEI Corporation, in partnership with the University of California, San Diego, has developed layered composite cathode materials that increase power and energy densities at temperatures as low as 0 degC and considerably reduce the overall volume and weight of battery packs. In Phase I of the project, through innovations in the structure and morphology of composite electrode particles, the partners successfully demonstrated an energy density exceeding 1,000 Wh/kg at 4 V at room temperature. In Phase II, the team enhanced the kinetics of Li-ion transport and electronic conductivity at 0 degC. An important feature of the composite cathode is that it has at least two components that are structurally integrated. The layered material is electrochemically inactive; however, upon structural integration with a spinel material, the layered material can be electrochemically activated and deliver a large amount of energy with stable cycling.

  17. Local anodic oxidation on hydrogen-intercalated graphene layers: oxide composition analysis and role of the silicon carbide substrate.

    Science.gov (United States)

    Colangelo, Francesco; Piazza, Vincenzo; Coletti, Camilla; Roddaro, Stefano; Beltram, Fabio; Pingue, Pasqualantonio

    2017-03-10

    We investigate nanoscale local anodic oxidation (LAO) on hydrogen-intercalated graphene grown by controlled sublimation of silicon carbide (SiC). Scanning probe microscopy was used as a lithographic and characterization tool in order to investigate the local properties of the nanofabricated structures. The anomalous thickness observed after the graphene oxidation process is linked to the impact of LAO on the substrate. Micro-Raman (μ-Raman) spectroscopy was employed to demonstrate the presence of two oxidation regimes depending on the applied bias. We show that partial and total etching of monolayer graphene can be achieved by tuning the bias voltage during LAO. Finally, a complete compositional characterization was achieved by scanning electron microscopy and energy dispersive spectroscopy.

  18. Local anodic oxidation on hydrogen-intercalated graphene layers: oxide composition analysis and role of the silicon carbide substrate

    Science.gov (United States)

    Colangelo, Francesco; Piazza, Vincenzo; Coletti, Camilla; Roddaro, Stefano; Beltram, Fabio; Pingue, Pasqualantonio

    2017-03-01

    We investigate nanoscale local anodic oxidation (LAO) on hydrogen-intercalated graphene grown by controlled sublimation of silicon carbide (SiC). Scanning probe microscopy was used as a lithographic and characterization tool in order to investigate the local properties of the nanofabricated structures. The anomalous thickness observed after the graphene oxidation process is linked to the impact of LAO on the substrate. Micro-Raman (μ-Raman) spectroscopy was employed to demonstrate the presence of two oxidation regimes depending on the applied bias. We show that partial and total etching of monolayer graphene can be achieved by tuning the bias voltage during LAO. Finally, a complete compositional characterization was achieved by scanning electron microscopy and energy dispersive spectroscopy.

  19. Evaluating the Microshear Bond Strength and Microleakage of Flowable Composites Containing Zinc Oxide Nano-particles

    OpenAIRE

    Teymoornezhad, Koorosh; Alaghehmand, Homayoun; Daryakenari, Ghazaleh; Khafri, Soraya; Tabari, Mitra

    2016-01-01

    Introduction Preventive resin restorations (PRR) are the conservative choice for the most common carious lesions in children. Thus, new age flowable resin composites with higher filler content are readily used. The aim of this study was to evaluate the microshear bond strength and microleakage of two flowable resin composites containing different percentages of nano zinc oxide (NZnO) particles, which have proven to have antimicrobial properties. Methods This experimental in-vitro study was ca...

  20. Superconductivity, antiferromagnetism, and neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Tranquada, John M., E-mail: jtran@bnl.gov; Xu, Guangyong; Zaliznyak, Igor A.

    2014-01-15

    High-temperature superconductivity in both the copper-oxide and the iron–pnictide/chalcogenide systems occurs in close proximity to antiferromagnetically ordered states. Neutron scattering has been an essential technique for characterizing the spin correlations in the antiferromagnetic phases and for demonstrating how the spin fluctuations persist in the superconductors. While the nature of the spin correlations in the superconductors remains controversial, the neutron scattering measurements of magnetic excitations over broad ranges of energy and momentum transfers provide important constraints on the theoretical options. We present an overview of the neutron scattering work on high-temperature superconductors and discuss some of the outstanding issues. - Highlights: • High-temperature superconductivity is closely associated with antiferromagnetism. • Antiferromagnetic spin fluctuations coexist with the superconductivity. • Neutron scattering is essential for characterising the full spectrum of spin excitations.

  1. Twin boundary effects on spontaneous half-quantized vortices in superconducting composite structures (d-dot’s)

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Norio; Kato, Masaru [Department of Mathematical Sciences, Osaka Prefecture University, 1-1, Gakuencho, Nakaku, Sakai, Osaka 599-8531 (Japan); Ishida, Takekazu [Department of Physics and Electronics, Osaka Prefecture University, 1-1, Gakuencho, Nakaku, Sakai, Osaka 599-8531 (Japan)

    2015-11-15

    Highlights: • A d-dot is a nano-scaled composite structure that consists of a d- and s-wave SC. • Two-components GL equations with anisotropic effective mass of electrons are derived. • Anisotropic effective mass suppress spontaneous half-quantized vortices in d-dot’s. • Thin junctions are good for spontaneous half-quantized vortices in d-dot’s. - Abstract: We investigate effects of anisotropy of an orthorhombic structure in twin domains on spontaneous half-quantized vortices (SHQVs) in a d-dot, which is a nano-scaled composite structure that consists of a d-wave superconductor embedded in an s-wave matrix. Since YBa{sub 2}Cu{sub 3}O{sub 7−δ} (YBCO) has the orthorhombic structure, there are twin domains separated by twin boundaries (TBs). In order to analyze effects of TBs on SHQVs, we derive two-component Ginzburg–Landau equations, in which electrons in YBCO have anisotropic effective mass. It is found that the magnitude of field around SHQVs is monotonically decreasing with increasing anisotropy of effective mass and finally peak values of the fields become zero. This means that anisotropy of the effective mass suppresses SHQVs and when the anisotropy is too large, SHQVs do not appear in d-dot’s.

  2. Oxide fiber composites with promising properties for high-temperature structural applications

    Energy Technology Data Exchange (ETDEWEB)

    Simon, R.A. [Ceramic Materials Engineering, University of Bayreuth, 95440 Bayreuth (Germany); Danzer, R. [Institut fuer Struktur- und Funktionskeramik, Montanuniversitaet Leoben, 8700 Leoben (Austria)

    2006-11-15

    This paper summarizes the mechanical properties of recently developed Oxide Fiber Composites (OFCs) consisting of high-strength continuous oxide fibers embedded in an oxide matrix. The OFCs exhibit a favorable combination of high strength and damage tolerance due to unusual homogeneous microstructures. The tensile behavior in both fiber- and matrix-dominated loadings and interlaminar shear behavior are described. Special emphasis is placed on the attractive thermal shock resistance and high-temperature long-term performance of these new materials. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  3. Superconducting Radio Frequency Technology: An Overview

    Energy Technology Data Exchange (ETDEWEB)

    Peter Kneisel

    2003-06-01

    Superconducting RF cavities are becoming more often the choice for larger scale particle accelerator projects such as linear colliders, energy recovery linacs, free electron lasers or storage rings. Among the many advantages compared to normal conducting copper structures, the superconducting devices dissipate less rf power, permit higher accelerating gradients in CW operation and provide better quality particle beams. In most cases these accelerating cavities are fabricated from high purity bulk niobium, which has superior superconducting properties such as critical temperature and critical magnetic field when compared to other superconducting materials. Research during the last decade has shown, that the metallurgical properties--purity, grain structure, mechanical properties and oxidation behavior--have significant influence on the performance of these accelerating devices. This contribution attempts to give a short overview of the superconducting RF technology with emphasis on the importance of the material properties of the high purity niobium.

  4. Modelling of composition and phase changes in multiphase alloys due to growth of an oxide layer

    Energy Technology Data Exchange (ETDEWEB)

    Nijdam, T.J. [Materials Innovation Institute (M2i) and Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft (Netherlands); Sloof, W.G. [Materials Innovation Institute (M2i) and Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft (Netherlands)], E-mail: w.g.sloof@tudelft.nl

    2008-10-15

    A coupled thermodynamic-kinetic oxidation model is presented for the selective, external oxidation of the most reactive alloy constituent of a multicomponent multiphase alloy. The model computes the composition depth profiles of the alloy constituents in the alloy as well as the evolution in the phase fractions in the alloy as function of oxidation time. The applicability of the model is illustrated through several examples. For the isothermal and cyclic oxidation of single- and two-phase binary alloys excellent agreement was obtained between the numerical calculations and the corresponding analytical solutions. For the isothermal oxidation of two {gamma}+{beta} NiCrAl alloys with different initial volume fractions of the {beta} phase, very good agreement was obtained between experimentally and calculated composition depth profiles. Finally, the effect of alloying additions on the phase evolution in the alloy was studied for the isothermal oxidation of freestanding MCrAlY (M = Ni, Co) coatings. It is shown that for a similar bulk Al and Cr content in the coating, the concentration profiles of Al in the coating after oxidation can be significantly affected by alloying with elements like Co, Ta and Re. Consequently, the multicomponent and multiphase character of the MCrAlY coating has to be taken into account when performing lifetime studies.

  5. Impact of lipid content and composition on lipid oxidation and protein carbonylation in experimental fermented sausages.

    Science.gov (United States)

    Fuentes, Verónica; Estévez, Mario; Ventanas, Jesús; Ventanas, Sonia

    2014-03-15

    This study aims to investigate the effect of lipid content (∼4%, ∼10% and ∼15%) and composition (different lipid sources; animal fat and sunflower oil) on the oxidative stability of proteins and lipids in experimental fermented sausages. Increasing the lipid content of sausages enhanced the susceptibility of lipids to oxidation whereas the effect on the formation of specific carbonyls from protein oxidation was not so evident. Sausages manufactured with different lipid sources affected the susceptibility of lipids and proteins to oxidation as a likely result of the modifications in the fatty acid profile, as well as to the presence of antioxidant compounds. While the fatty acid profile had a major effect on the occurrence and extent of lipid oxidation, the presence of compounds with potential antioxidant activity may be more influential on the extent of protein carbonylation.

  6. Chemical composition and morphology of oxidic ceramics at filtration of steel deoxidised by aluminium

    Directory of Open Access Journals (Sweden)

    J. Bažan

    2009-10-01

    Full Text Available Composition and morphology of filter ceramics were investigated during filtration of steel deoxidised by aluminium. Filtration was realized with use of filters based on oxidic ceramics Cr2O3, TiO2, SiO2, ZrO2, Al2O3, 3Al2O3•2SiO2 and MgO•Al2O3. It was established that change of interphase (coating occurs during filtration of steel on the surface of capillaries of ceramics, where content of basic oxidic component decreases. Loss of oxidic component in the coating is replaced by increase of oxides of manganese and iron and it is great extent inversely proportional to the value of Gibbs’ energy of oxide, which forms this initial basis of ceramics.

  7. Improved Internal Reference Oxygen Sensors Using Composite Oxides as Electrodes

    DEFF Research Database (Denmark)

    Hu, Qiang

    The thesis describes the research on and development of an internal reference oxygen sensor (IROS). The IROS is potentiometric and uses the equilibrium pO2of the binary mixture of Ni/NiO as the reference pO2. The sensing electrode of the IROS are made from metallic Pt or the composite of (La0.75Sr0...... comprehensively and the evaluation is targeted to the performance indicators that relate closely to the practical application. IROSes show high accuracy, good stability, fast response, good tolerance to thermal and pO2cycling and easy recoverability when Ni is depleted. Both cell fabrication and performance show...

  8. Development of a new aluminium matrix composite reinforced with iron oxide (Fe3O4

    Directory of Open Access Journals (Sweden)

    E. Bayraktar

    2010-01-01

    Full Text Available Purpose: of this paper is to develop new aluminium matrix (intermetallic composites reinforced with iron oxide (Fe3O4 that will be used in aeronautical engineering or in electronic industry. Different parameters such as sintering time and temperature, reinforcement, compact pressure were evaluated. The final purpose of this project is going on to improve conductivity and magnetic permeability of this new composite.Design/methodology/approach: In this paper, a new alternative materials “aluminium–iron oxide (Fe3O4, naturally as the mineral magnetite powder composite” has been developed by using a microwave (in the laboratory scale sintering programme with various aspect ratios, that iron oxide (Fe3O4 particle sizes and aluminium powders together were prepared. This paper contains partially preliminary results of our going-on research project.Findings: Green density increased regularly depending on the compact pressure and percentage of the iron oxide (Fe3O4. Micro and macro porosity was not found due to very clean microwave sintering. Density after microwave sintering was higher than that of traditional sintering in an electrical oven.Research limitations/implications: This project is going on and magnetic permeability and conductivity of this composite will be improved.Practical implications: This composite is new and clean and thanks to the new microwave sintering basically will be used in aeronautical engineering. Microwave heating results in lower energy costs and decreased processing times for many industrial processes.Originality/value: Originality of this paper is to use a new reinforcement in the aluminium matrix composite; Fe3O4-iron oxide. A new method - microwave sintering- has been carried out on this composite.

  9. Elemental composition and clustering behaviour of α-pinene oxidation products for different oxidation conditions

    OpenAIRE

    A. P. Praplan; S. Schobesberger; Bianchi, F.(University of Turin, Turin, I-10125, Italy); Rissanen, M. P.; Ehn, M.; T. Jokinen; H. Junninen; A. Adamov; Amorim, A.; Dommen, J.; Duplissy, J.; Hakala, J.; Hansel, A.; M. Heinritzi; J. Kangasluoma

    2015-01-01

    This study presents the difference between oxidised organic compounds formed by α-pinene oxidation under various conditions in the CLOUD environmental chamber: (1) pure ozonolysis (in the presence of hydrogen as hydroxyl radical (OH) scavenger) and (2) OH oxidation (initiated by nitrous acid (HONO) photolysis by ultraviolet light) in the absence of ozone. We discuss results from three Atmospheric Pressure interface Time-of-Flight ...

  10. Carbon nanotube-cuprous oxide composite based pressure sensors

    Institute of Scientific and Technical Information of China (English)

    Kh. S. Karimov; Muhammad Tariq Saeed Chani; Fazal Ahmad Khalid; Adam Khan; Rahim Khan

    2012-01-01

    In this paper,we present the design,the fabrication,and the experimental results of carbon nanotube (CNT) and Cu2O composite based pressure sensors.The pressed tablets of the CNT-Cu2O composite are fabricated at a pressure of 353 MPa.The diameters of the multiwalled nanotubes (MWNTs) are between 10 nm and 30 nm.The sizes of the Cu2O micro particles are in the range of 3-4 μrn.The average diameter and the average thickness of the pressed tablets are 10 mm and 4.0 mm,respectively.In order to make low resistance electric contacts,the two sides of the pressed tablet are covered by silver pastes.The direct current resistance of the pressure sensor decreases by 3.3 times as the pressure increases up to 37 kN/m2.The simulation result of the resistance-pressure relationship is in good agreement with the experimental result within a variation of ±2%.

  11. Thermo-oxidative stability studies of PMR-15 polymer matrix composites reinforced with various fibers

    Science.gov (United States)

    Bowles, Kenneth J.

    1990-01-01

    An experimental study was conducted to measure the thermo-oxidative stability of PMR-15 polymer matrix composites reinforced with various fibers and to observe differences in the way they degrade in air. The fibers that were studied included graphite and the thermally stable Nicalon and Nextel ceramic fibers. Weight loss rates for the different composites were assessed as a function of mechanical properties, specimen geometry, fiber sizing, and interfacial bond strength. Differences were observed in rates of weight loss, matrix cracking, geometry dependency, and fiber-sizing effects. It was shown that Celion 6000 fiber-reinforced composites do not exhibit a straight-line Arrhenius relationship at temperatures above 316 C.

  12. Electrochemical oxidation of some basic alcohols on multiwalled carbon nanotube–platinum composites

    Indian Academy of Sciences (India)

    Minsoo Koo; Jong-Seong Bae; Hyun-Chul Kim; Dae-Geun Nam; Chang Hyun Ko; Jeong Hyun Yeum; Weontae Oh

    2012-08-01

    Some composites of multiwalled carbon nanotubes, which were chemically treated in acidic and/or hydrogen peroxide solution, and platinum nanoparticles were prepared by the simple reduction in glycerol solution. Carboxylated and/or hydroxyl MWNTs were structurally analysed using X-ray photoelectron spectroscopy. In addition, the MWNT–Pt composites were characterized by XRD and TEM in detail. The electrochemical oxidation of some basic alcohols, which was catalyzed by the MWNT–Pt composites, was analysed by cyclic voltammetry. Their catalytic activities were studied with cyclic voltammograms of alcohols.

  13. Non-oxidic nanoscale composites: single-crystalline titanium carbide nanocubes in hierarchical porous carbon monoliths.

    Science.gov (United States)

    Sonnenburg, Kirstin; Smarsly, Bernd M; Brezesinski, Torsten

    2009-05-07

    We report the preparation of nanoscale carbon-titanium carbide composites with carbide contents of up to 80 wt%. The synthesis yields single-crystalline TiC nanocubes 20-30 nm in diameter embedded in a hierarchical porous carbon matrix. These composites were generated in the form of cylindrical monoliths but can be produced in various shapes using modern sol-gel and nanocasting methods in conjunction with carbothermal reduction. The monolithic material is characterized by a combination of microscopy, diffraction and physisorption. Overall, the results presented in this work represent a concrete design template for the synthesis of non-oxidic nanoscale composites with high surface areas.

  14. Scalable Preparation of Ternary Hierarchical Silicon Oxide-Nickel-Graphite Composites for Lithium-Ion Batteries.

    Science.gov (United States)

    Wang, Jing; Bao, Wurigumula; Ma, Lu; Tan, Guoqiang; Su, Yuefeng; Chen, Shi; Wu, Feng; Lu, Jun; Amine, Khalil

    2015-12-07

    Silicon monoxide is a promising anode candidate because of its high theoretical capacity and good cycle performance. To solve the problems associated with this material, including large volume changes during charge-discharge processes, we report a ternary hierarchical silicon oxide-nickel-graphite composite prepared by a facile two-step ball-milling method. The composite consists of nano-Si dispersed silicon oxides embedded in nano-Ni/graphite matrices (Si@SiOx /Ni/graphite). In the composite, crystalline nano-Si particles are generated by the mechanochemical reduction of SiO by ball milling with Ni. These nano-Si dispersed oxides have abundant electrochemical activity and can provide high Li-ion storage capacity. Furthermore, the milled nano-Ni/graphite matrices stick well to active materials and interconnect to form a crosslinked framework, which functions as an electrical highway and a mechanical backbone so that all silicon oxide particles become electrochemically active. Owing to these advanced structural and electrochemical characteristics, the composite enhances the utilization efficiency of SiO, accommodates its large volume expansion upon cycling, and has good ionic and electronic conductivity. The composite electrodes thus exhibit substantial improvements in electrochemical performance. This ternary hierarchical Si@SiOx /Ni/graphite composite is a promising candidate anode material for high-energy lithium-ion batteries. Additionally, the mechanochemical ball-milling method is low cost and easy to reproduce, indicating potential for the commercial production of the composite materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Interfacial microstructure and properties of carbon fiber composites modified with graphene oxide.

    Science.gov (United States)

    Zhang, Xiaoqing; Fan, Xinyu; Yan, Chun; Li, Hongzhou; Zhu, Yingdan; Li, Xiaotuo; Yu, Liping

    2012-03-01

    The performance of carbon fiber-reinforced composites is dependent to a great extent on the properties of fiber-matrix interface. To improve the interfacial properties in carbon fiber/epoxy composites, we directly introduced graphene oxide (GO) sheets dispersed in the fiber sizing onto the surface of individual carbon fibers. The applied graphite oxide, which could be exfoliated to single-layer GO sheets, was verified by atomic force microscope (AFM). The surface topography of modified carbon fibers and the distribution of GO sheets in the interfacial region of carbon fibers were detected by scanning electron microscopy (SEM). The interfacial properties between carbon fiber and matrix were investigated by microbond test and three-point short beam shear test. The tensile properties of unidirectional (UD) composites were investigated in accordance with ASTM standards. The results of the tests reveal an improved interfacial and tensile properties in GO-modified carbon fiber composites. Furthermore, significant enhancement of interfacial shear strength (IFSS), interlaminar shear strength (ILSS), and tensile properties was achieved in the composites when only 5 wt % of GO sheets introduced in the fiber sizing. This means that an alternative method for improving the interfacial and tensile properties of carbon fiber composites by controlling the fiber-matrix interface was developed. Such multiscale reinforced composites show great potential with their improved mechanical performance to be likely applied in the aerospace and automotive industries. © 2012 American Chemical Society

  16. Preparation of Silica/Reduced Graphene Oxide Nanosheet Composites for Removal of Organic Contaminants from Water.

    Science.gov (United States)

    Li, Wen; Liu, Wei; Wang, Haifei; Lu, Wensheng

    2016-06-01

    Graphene-based composites open up new opportunities as effective adsorbents for the removal of organic contaminants from water. In this article, we report a novel and facile process to synthesize well-dispersed silica/reduced graphene oxide (SiO2/RGO) nanosheet composites. The SiO2/RGO nanosheet composites are prepared through a modified sol-gel process with in situ hydrolysis of tetraethoxysilane (TEOS) on graphene oxide (GO) nanosheet, followed by reduction of GO to graphene. In comparison with the RGO nanosheets, the as-prepared SiO2/RGO nanosheet composites have a larger surface area and good aqueous disperse ability. In addition, the application of SiO2/RGO nanosheet composites was demonstrated on removing organic dyes from water. The SiO2/RGO nanosheet composites show rapid and stable adsorption performance on removal of Methylene Blue (MB) and thionine (TH) from water. It is indicated that the resulting SiO2/RGO composites can be utilized as efficient adsorbents for the removal of organic contaminants from water.

  17. Ag2S deposited on oxidized polypropylene as composite material for solar light absorption

    NARCIS (Netherlands)

    Krylovaa, V.; Milbrat, A.; Embrachts, A.; Baltrusaitis, J.

    2014-01-01

    Thin film metal chalcogenides are superior solar light absorbers and can be combined into a functional material when deposited on polymeric substrates. Ag2S composite materials were synthesized on oxidized polypropylene using chemical bath deposition method and their properties were explored using X

  18. Oxidation resistant coating for titanium alloys and titanium alloy matrix composites

    Science.gov (United States)

    Brindley, William J. (Inventor); Smialek, James L. (Inventor); Rouge, Carl J. (Inventor)

    1992-01-01

    An oxidation resistant coating for titanium alloys and titanium alloy matrix composites comprises an MCrAlX material. M is a metal selected from nickel, cobalt, and iron. X is an active element selected from Y, Yb, Zr, and Hf.

  19. Friction stir processed Al - Metal oxide surface composites: Anodization and optical appearance

    DEFF Research Database (Denmark)

    Gudla, Visweswara Chakravarthy; Jensen, Flemming; Canulescu, Stela

    2014-01-01

    Multiple-pass friction stir processing (FSP) was employed to impregnate metal oxide (TiO2, Y2O3 and CeO2) particles into the surface of an Aluminium alloy. The surface composites were then anodized in a sulphuric acid electrolyte. The effect of anodizing parameters on the resulting optical...

  20. Selective catalytic oxidation of ammonia over copper-cerium composite catalyst.

    Science.gov (United States)

    Lou, Jie-Chung; Hung, Chang-Mao; Yang, Sheng-Fu

    2004-01-01

    This work considers the oxidation of ammonia (NH3) by selective catalytic oxidation (SCO) over a copper (Cu)-cerium (Ce) composite catalyst at temperatures between 150 and 400 degrees C. A Cu-Ce composite catalyst was prepared by coprecipitation of copper nitrate and cerium nitrate at various molar concentrations. This study also considers how the concentration of influent NH3 (500-1000 ppm), the space velocity (72,000-110,000 hr(-1)), the relative humidity (12-18%) and the concentration of oxygen (4-20%) affect the operational stability and the capacity for removing NH3. The effects of the O2 and NH3 content of the carrier gas on the catalyst's reaction rate also are considered. The experimental results show that the extent of conversion of NH3 by SCO in the presence of the Cu-Ce composite catalyst was a function of the molar ratio. The NH3 was removed by oxidation in the absence of Cu-Ce composite catalyst, and approximately 99.2% NH3 reduction was achieved during catalytic oxidation over the Cu-Ce (6:4, molar/molar) catalyst at 400 degrees C with an O2 content of 4%. Moreover, the effect of the initial concentration and reaction temperature on the removal of NH3 in the gaseous phase was also monitored at a gas hourly space velocity of less than 92,000 hr(-1).

  1. Electrical Percolation of Carbon Black Filled Poly (ethylene oxide) Composites in Relation to the Matrix Morphology

    Institute of Scientific and Technical Information of China (English)

    Gen Shui CHENG; Ji Wen HU; Ming Qiu ZHANG; Ming Wei LI; Ding Shu XIAO; Min Zhi RONG

    2004-01-01

    The present work studies the electrical conduction performance of carbon black (CB)filled poly(ethylene oxide) (PEO) composites. The addition of CB leads to reduced matrix crystallinity as the fillers which are partly situated inside the lamellae and hinder the growth of PEO crystallites. As a result, the electrical percolation behavior is related with the matrix morphology.

  2. Iridescent cellulose nanocrystal/polyethylene oxide composite films with low coefficient of thermal expansion

    Science.gov (United States)

    Jairo A. Diaz; Julia L. Braun; Robert J. Moon; Jeffrey P. Youngblood

    2015-01-01

    Simultaneous control over optical and thermal properties is particularly challenging and highly desired in fields like organic electronics. Here we incorporated cellulose nanocrystals (CNCs) into polyethylene oxide (PEO) in an attempt to preserve the iridescent CNC optical reflection given by their chiral nematic organisation, while reducing the composite thermal...

  3. Thickness dependence of oxygen permeation through erbia-stabilized bismuth oxide-silver composites

    NARCIS (Netherlands)

    Chen, C.S.; Kruidhof, H.; Bouwmeester, H.J.M.; Verweij, H.; Burggraaf, A.J.

    1997-01-01

    Oxygen permeation measurements were performed on erbia-stabilized bismuth oxide-silver (40 v/o) composite membranes in the range of thickness of 1.60–0.23 mm and temperature of 850–650 °C. Air was fed at one side of the membranes while permeated oxygen on the other side was swept away with helium. A

  4. Investigation of hydrogen evolution activity for the nickel, nickel-molybdenum nickel-graphite composite and nickel-reduced graphene oxide composite coatings

    Science.gov (United States)

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang

    2016-03-01

    The nickel, nickel-molybdenum alloy, nickel-graphite and nickel-reduced graphene oxide composite coatings were obtained by the electrodeposition technique from a nickel sulfate bath. Nanocrystalline molybdenum, graphite and reduced graphene oxide in nickel coatings promoted hydrogen evolution reaction in 0.5 M H2SO4 solution at room temperature. However, the nickel-reduced graphene oxide composite coating exhibited the highest electrocatalytic activity for the hydrogen evolution reaction in 0.5 M H2SO4 solution at room temperature. A large number of gaps between 'cauliflower' like grains could decrease effective area for hydrogen evolution reaction in slight amorphous nickel-molybdenum alloy. The synergistic effect between nickel and reduced graphene oxide promoted hydrogen evolution, moreover, refined grain in nickel-reduced graphene oxide composite coating and large specific surface of reduced graphene oxide also facilitated hydrogen evolution reaction.

  5. Oxidation performance of Fe-Al/WC composite coatings produced by high velocity arc spraying

    Institute of Scientific and Technical Information of China (English)

    MENG Fan-jun; XU Bin-shi; ZHU Sheng; MA Shi-ning; ZHANG wei

    2005-01-01

    Fe-Al intermetallics with remarkable high-temperature intensity and excellent erosion, high-temperature oxidation and sulfuration resistance are potential low cost high-temperature structural materials. But the room tem perature brittleness induces shape difficult and limits its industrial application. The Fe-Al intermetallic coatings were prepared by high velocity arc spraying technology with cored wire on 20G steel, which will not only obviate the problems faced in fabrication of these alloys into useful shapes, but also allow the effective use of their outstanding high-temperature performance. The Fe-Al/WC intermetallic composite coatings were prepared by high velocity arc spraying technology on 20G steel and the oxidation performance of Fe-Al/WC composite coatings was studied by means of thermogrativmetic analyzer at 450, 650 and 800 ℃. The results demonstrate that the kinetics curve of oxidation at three temperatures approximately follows the logarithmic law. The composition of the oxidized coating is mainly composed of Al2 O3, Fe2 O3, Fe3 O4 and FeO. These phases distribute unevenly. The protective Al2 O3 film firstly forms and preserves the coatings from further oxidation.

  6. Ionic Conductance, Thermal and Morphological Behavior of PEO-Graphene Oxide-Salts Composites

    Directory of Open Access Journals (Sweden)

    Mohammad Saleem Khan

    2015-01-01

    Full Text Available Thin films composites of poly(ethylene oxide-graphene oxide were fabricated with and without lithium salts by solvent cast method. The ionic conductivity of these composites was studied at various concentrations of salt polymer-GO complexes and at different temperatures. The effects of temperature and graphene oxide concentration were measured from Arrhenius conductance plots. It is shown that the addition of salts in pure PEO increases conductance many times. The graphene oxide addition has enhanced the conductance approximately 1000 times as compared to that of pure PEO. The activation energies were determined for all the systems which gave higher values for pure PEO and the value decreased with the addition of LiClO4 and LiCl salts and further decreases with the addition of graphene oxide. The composite has also lowered the activation energy values which mean that incorporation of GO in PEO has decreased crystallinity and the amorphous region has increased the local mobility of polymer chains resulting in lower activation energies. SEM analysis shows uniform distribution of GO in polymer matrix. The thermal stability studies reveal that incorporation of GO has somewhat enhanced the thermal stability of the films.

  7. Nanostructured composite materials of cerium oxide and barium cerate

    Science.gov (United States)

    Medvedev, D. A.; Pikalova, E. Yu.; Demin, A. K.; Khrustov, V. R.; Nikolaenko, I. V.; Nikonov, A. V.; Malkov, V. B.; Antonov, B. D.

    2013-02-01

    Nanosized powders with a composition of (1- x)Ce0.8Sm0.2O2-δ- xBace0.8Sm0.2O3-δ ( x = 0, 0.3, and 1) were obtained by self-ignition combustion synthesis (SICS) from the appropriate nitrates and various organic fuels (glycine, glycerol, citric acid, and a mixture of citric acid and ethylene glycol). The most finely dispersed powders formed when the concentration of the perovskite phase in the system decreased or when glycerol or citric acid-enthyleneglycol mixture was used as a fuel during SICS. A procedure for the preparation of powders and nanostructured ceramics was developed and their electric properties were studied.

  8. Composition change and capacitance properties of ruthenium oxide thin film

    Institute of Scientific and Technical Information of China (English)

    刘泓; 甘卫平; 刘仲武; 郑峰

    2015-01-01

    RuO2·nH2O film was deposited on tantalum foils by electrodeposition and heat treatment using RuCl3·3H2O as precursor. Surface morphology, composition change and cyclic voltammetry from precursor to amorphous and crystalline RuO2·nH2O films were studied by X-ray diffractometer, Fourier transformation infrared spectrometer, differential thermal analyzer, scanning electron microscope and electrochemical analyzer, respectively. The results show that the precursor was transformed gradually from amorphous to crystalline phase with temperature. When heat treated at 300 °C for 2 h, RuO2·nH2O electrode surface gains mass of 2.5 mg/cm2 with specific capacitance of 782 F/g. Besides, it is found that the specific capacitance of the film decreased by roughly 20%with voltage scan rate increasing from 5 to 250 mV/s.

  9. An ultraviolet photodetector fabricated from WO₃ nanodiscs/reduced graphene oxide composite material.

    Science.gov (United States)

    Shao, Dali; Yu, Mingpeng; Lian, Jie; Sawyer, Shayla

    2013-07-26

    A high sensitivity, fast ultraviolet (UV) photodetector was fabricated from WO₃ nanodiscs (NDs)/reduced graphene oxide (RGO) composite material. The WO₃ NDs/reduced GO composite material was synthesized using a facile three-step synthesis procedure. First, the Na₂WO₄/GO precursor was synthesized by homogeneous precipitation. Second, the Na₂WO₄/GO precursor was transformed into Na₂WO₄/GO composites by acidification. Finally, the Na₂WO₄/GO composites were reduced to WO₃ NDs/RGO via a hydrothermal reduction process. The UV photodetector showed a fast transient response and high responsivity, which are attributed to the improved carrier transport and collection efficiency through graphene. The excellent material properties of the WO₃ NDs/RGO composite demonstrated in this work may open up new possibilities for using WO₃ NDs/RGO for future optoelectronic applications.

  10. Multi-scale Model of Residual Strength of 2D Plain Weave C/SiC Composites in Oxidation Atmosphere

    Science.gov (United States)

    Chen, Xihui; Sun, Zhigang; Sun, Jianfen; Song, Yingdong

    2016-06-01

    Multi-scale models play an important role in capturing the nonlinear response of woven carbon fiber reinforced ceramic matrix composites. In plain weave carbon fiber/silicon carbon (C/SiC) composites, the carbon fibers and interphases will be oxidized at elevated temperature and the strength of the composite will be degraded when oxygen enters micro-cracks formed in the as-produced parts due to the mismatch in thermal properties between constituents. As a result of the oxidation on fiber surface, fiber shows a notch-like morphology. In this paper, the change rule of fiber notch depth is fitted by circular function. And a multi-scale model based upon the change rule of fiber notch depth is developed to simulate the residual strength and post-oxidation stress-strain curves of the composite. The multi-scale model is able to accurately predict the residual strength and post-oxidation stress-strain curves of the composite. Besides, the simulated residual strength and post-oxidation stress-strain curves of 2D plain weave C/SiC composites in oxidation atmosphere show good agreements with experimental results. Furthermore, the oxidation time and temperature of the composite are investigated to show their influences upon the residual strength and post-oxidation stress-strain curves of plain weave C/SiC composites.

  11. Synthesis and characterization of graphene oxide/carboxymethylcellulose/alginate composite blend films.

    Science.gov (United States)

    Yadav, Mithilesh; Rhee, Kyong Yop; Park, S J

    2014-09-22

    In this work, graphene oxide/carboxymethylcellulose/alginate (GO/CMC/Alg) composite blends were prepared by a simple solution mixing-evaporation method. The resulting structure, thermal stability, and mechanical properties of the blends were investigated by wide-angle X-ray diffractometry, Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy, thermogravimetric analysis, and mechanical testing. The obtained findings revealed that CMC, Alg, and graphene oxide were able to form a homogeneous mixture. When compared to a CMC/Alg blend, the incorporation of 1 wt% graphene oxide improved the tensile strength and Young's modulus by 40% and 1128%, respectively. In addition, the GO/CMC/Alg composite blend film showed a higher storage modulus than the CMC/Alg blend.

  12. Effect of pasteurization on the protein composition and oxidative stability of beer during storage.

    Science.gov (United States)

    Lund, Marianne N; Hoff, Signe; Berner, Torben S; Lametsch, René; Andersen, Mogens L

    2012-12-19

    The impacts of pasteurization of a lager beer on protein composition and the oxidative stability were studied during storage at 22 °C for 426 days in the dark. Pasteurization clearly improved the oxidative stability of beer determined by ESR spectroscopy, whereas it had a minor negative effect on the volatile profile by increasing volatile compounds that is generally associated with heat treatment and a loss of fruity ester aroma. A faster rate of radical formation in unpasteurized beer was consistent with a faster consumption of sulfite. Beer proteins in the unpasteurized beer were more degraded, most likely due to proteolytic enzyme activity of yeast remnants and more precipitation of proteins was also observed. The differences in soluble protein content and composition are suggested to result in differences in the contents of prooxidative metals as a consequence of the proteins ability to bind metals. This also contributes to the differences in oxidative stabilities of the beers.

  13. A redox-assisted molecular assembly of molybdenum oxide amine composite nanobelts

    Energy Technology Data Exchange (ETDEWEB)

    Luo Haiyan [Institute of New Energy Technology and Nano-Materials, Fuzhou University, Fuzhou, Fujian 350002 (China); Wei Mingdeng, E-mail: wei-mingdeng@fzu.edu.cn [Institute of New Energy Technology and Nano-Materials, Fuzhou University, Fuzhou, Fujian 350002 (China); National Engineering Research Center for Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, Fujian 350002 (China); Wei Kemei [National Engineering Research Center for Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, Fujian 350002 (China)

    2011-01-21

    Research highlights: > Nanobelts of molybdenum oxide amine were first synthesized via a redox-assisted molecular assembly route. > These nanobelts are highly crystalline with a several tens of micrometers in length and 20-30 nm in thickness. - Abstract: In this paper, the nanobelts of molybdenum oxide amine composite were successfully synthesized via a redox-assisted molecular assembly route under the hydrothermal conditions. The synthesized nanobelts were characterized by XRD, SEM, TEM, TG and FT-IR measurements. The thickness of nanobelts is found to be ca. 20-30 nm and their lengths are up to several tens of micrometers. Based on a series of the experimental results, a possible model, redox-intercalation-exfoliation, was suggested for the formation of nanobelts of molybdenum oxide amine composite.

  14. Adsorption of zinc ions from water using zeolite/iron oxide composites

    Energy Technology Data Exchange (ETDEWEB)

    Fungaro, D.A.; Graciano, J.E.A. [Institute for Energy and Nuclear Research, Sao Paulo (Brazil)

    2007-07-01

    The adsorption characteristics of zeolites synthesized from fly ash were combined in a composite with the magnetic properties of iron oxides to produce adsorbents which were magnetic materials. Such zeolite/iron oxide magnetic composites were prepared with weight ratios of 3:1, 2:1 and 1:1. The experimental data for the equilibrium adsorption isotherms of Zn{sup 2+} ions onto the composites were modelled using the Freundlich and Langmuir equations. The presence of iron oxide had no significant effect on the adsorption capacities of the magnetic composites. The experimental data were also employed to determine the kinetic characteristics of the adsorption process. The adsorption of Zn{sup 2+} ions was found to follow pseudo-second-order type kinetics. Although intra-particle diffusion occurred in the adsorption processes, it could not be accepted as the primary rate-determining step. The evaluated thermodynamic parameters indicated that the adsorption of Zn{sup 2+} ions onto zeolite/iron composites was spontaneous and endothermic.

  15. Novel magnetically separable AgCl/iron oxide composites with enhanced photocatalytic activity driven by visible light

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ying; Zhang, Yanrong, E-mail: yanrong_zhang@hust.edu.cn; Tan, Jue

    2013-10-15

    Highlights: •The AgCl/iron oxide composites were prepared by a chemical precipitation method. •The composites exhibited improved performances in the photodegradation of pollutants. •The visible light photocatalysts could be recycled easily by a magnet. -- Abstract: In this work, AgCl/iron oxide composites were synthesized by a simple chemical precipitation method and calcining process. The composition of the material and magnetic and optical properties of the composites were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and vibrating specimen magnetometer (VSM) techniques, which confirms the high crystalline and magnetic behavior of the composites. UV-vis diffuse reflectance spectral (DRS) studies showed that the AgCl/iron oxide composites were of much higher absorption in longer wavelength region compared to bare iron oxide. The AgCl/iron oxide composites showed better performance in the photodegradation of organic dyes Rhodamin B (RhB) under the fluorescent lamp irradiation, which is remarkably superior to the N-TiO{sub 2}. The degradation of microcystin-LR (MC-LR) and phenol was also found to be good owing to its effective electron-hole separation at AgCl/iron oxide interface. The separation of AgCl/iron oxide composites from the treated water was achieved by an external magnetic field as γ-Fe{sub 2}O{sub 3} exhibits enough magnetic power to facilitate the separation.

  16. 100 years of superconductivity

    CERN Document Server

    Rogalla, Horst

    2011-01-01

    Even a hundred years after its discovery, superconductivity continues to bring us new surprises, from superconducting magnets used in MRI to quantum detectors in electronics. 100 Years of Superconductivity presents a comprehensive collection of topics on nearly all the subdisciplines of superconductivity. Tracing the historical developments in superconductivity, the book includes contributions from many pioneers who are responsible for important steps forward in the field.The text first discusses interesting stories of the discovery and gradual progress of theory and experimentation. Emphasizi

  17. Topological superconductivity induced by ferromagnetic metal chains

    Science.gov (United States)

    Li, Jian; Chen, Hua; Drozdov, Ilya K.; Yazdani, A.; Bernevig, B. Andrei; MacDonald, A. H.

    2014-12-01

    Recent experiments have provided evidence that one-dimensional (1D) topological superconductivity can be realized experimentally by placing transition-metal atoms that form a ferromagnetic chain on a superconducting substrate. We address some properties of this type of system by using a Slater-Koster tight-binding model to account for important features of the electronic structure of the transition-metal chains on the superconducting substrate. We predict that topological superconductivity is nearly universal when ferromagnetic transition-metal chains form straight lines on superconducting substrates and that it is possible for more complex chain structures. When the chain is weakly coupled to the substrate and is longer than superconducting coherence lengths, its proximity-induced superconducting gap is ˜Δ ESO/J where Δ is the s -wave pair potential on the chain, ESO is the spin-orbit splitting energy induced in the normal chain state bands by hybridization with the superconducting substrate, and J is the exchange splitting of the ferromagnetic chain d bands. Because of the topological character of the 1D superconducting state, Majorana end modes appear within the gaps of finite length chains. We find, in agreement with the experiment, that when the chain and substrate orbitals are strongly hybridized, Majorana end modes are substantially reduced in amplitude when separated from the chain end by less than the coherence length defined by the p -wave superconducting gap. We conclude that Pb is a particularly favorable substrate material for ferromagnetic chain topological superconductivity because it provides both strong s -wave pairing and strong Rashba spin-orbit coupling, but that there is an opportunity to optimize properties by varying the atomic composition and structure of the chain. Finally, we note that in the absence of disorder, a new chain magnetic symmetry, one that is also present in the crystalline topological insulators, can stabilize multiple

  18. Graphite Sheet Coating for Improved Thermal Oxidative Stability of Carbon Fiber Reinforced/PMR-15 Composites

    Science.gov (United States)

    Campbell, Sandi; Papadopoulos, Demetrios; Heimann, Paula; Inghram, Linda; McCorkle, Linda

    2005-01-01

    Expanded graphite was compressed into graphite sheets and used as a coating for carbon fiber reinforced PMR-15 composites. BET analysis of the graphite indicated an increase in graphite pore size on compression, however the material was proven to be an effective barrier to oxygen when prepegged with PMR-15 resin. Oxygen permeability of the PMR-15/graphite was an order of magnitude lower than the compressed graphite sheet. By providing a barrier to oxygen permeation, the rate of oxidative degradation of PMR-15 was decreased. As a result, the composite thermo-oxidative stability increased by up to 25%. The addition of a graphite sheet as a top ply on the composites yielded little change in the material's flexural strength or interlaminar shear strength.

  19. Cobalt (hydr)oxide/graphite oxide composites: importance of surface chemical heterogeneity for reactive adsorption of hydrogen sulfide.

    Science.gov (United States)

    Mabayoje, Oluwaniyi; Seredych, Mykola; Bandosz, Teresa J

    2012-07-15

    Composites of cobalt (hydr)oxide and graphite oxide (GO) were obtained and evaluated as adsorbents of hydrogen sulfide at ambient conditions. The surface properties of the initial and exhausted samples were studied by FTIR, TEM, SEM/EDX, XRD, adsorption of nitrogen, potentiometric titration, and thermal analysis. The results obtained show a significant improvement in their adsorption capacities compared to parent compounds. The importance of the OH groups of cobalt (hydr)oxide/GO composites and new interface chemistry for the adsorption of hydrogen sulfide on these materials is revealed. The oxygen activation by the carbonaceous component resulted in formation of sulfites. Water enhanced the removal process. This is the result of the basic environment promoting dissociation of H(2)S and acid-base reactions. Finally, the differences in the performance of the materials with different mass ratios of GO were linked to the availability of active sites on the surface of the adsorbents, dispersion of these sites, their chemical heterogeneity, and location in the pore system.

  20. Visible light photocatalytic degradation of dyes by bismuth oxide-reduced graphene oxide composites prepared via microwave-assisted method.

    Science.gov (United States)

    Liu, Xinjuan; Pan, Likun; Lv, Tian; Sun, Zhuo; Sun, Chang Q

    2013-10-15

    Bi2O3-reduced graphene oxide (RGO) composites were successfully synthesized via microwave-assisted reduction of graphite oxide in Bi2O3 precursor solution using a microwave system. Their morphologies, structures, and photocatalytic performance in the degradation of methylene blue (MB) and methyl orange (MO) were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction spectroscopy, UV-vis absorption spectroscopy, and electrochemical impedance spectroscopy, respectively. The results show that the RGO addition can enhance the photocatalytic performance of Bi2O3-RGO composites. Bi2O3-RGO composite with 2 wt.% RGO achieves maximum MO and MB degradation rates of 93% and 96% at 240min under visible light irradiation, respectively, much higher than those for the pure Bi2O3 (78% and 76%). The enhanced photocatalytic performance is ascribed to the increased light adsorption and the reduction in electron-hole pair recombination in Bi2O3 with the introduction of RGO.

  1. Preferential distribution and oxidation inhibiting/catalytic effects of boron in carbon fiber reinforced carbon (CFRC) composites

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.J.; Joo, H.J.; Radovic, L.R. [Penn State University, University Park, PA (United States). Dept. of Energy & Geoenvironmental Engineering, Fuel Science Program

    2003-07-01

    Two different batches of CFRC composites were prepared in the absence/presence of boron with the expectation of increasing oxidation stability and improving the processing compatibility of CFRC composites in commercial applications. The composites were examined to reveal the nature of substitutional B in oxidation, crystallinity and distribution preference in the composites. Substitutional B acts both a catalyst and an inhibitor in carbon oxidation, depending on the content and the extent of carbon burn-off reaction. Crystallinity increases with the incorporation of B. Boron prefers to be distributed in the less ordered structure; non-graphitizable PAN-based carbon fibers have higher B contents than graphitizable coal-tar pitch, but processing conditions can change this preference. The incorporation of B in CFRC composites seems to be beneficial for improving the potential ability of the composites in applications by increasing crystallinity and oxidation stability.

  2. Aroma profiles of vegetable oils varying in fatty acid composition vs. concentrations of primary and secondary lipid oxidation products

    NARCIS (Netherlands)

    Ruth, van S.M.; Roozen, J.P.; Jansen, F.J.H.M.

    2000-01-01

    The aroma compositions of oxidised sunflower oil, linseed oil and a blend thereof (85/15) were compared with frequently used indicators for primary and secondary lipid oxidation. Primary lipid oxidation was followed by the formation of conjugated dienes, secondary lipid oxidation by proponal and

  3. Synergistic Effects of Temperature and Oxidation on Matrix Cracking in Fiber-Reinforced Ceramic-Matrix Composites

    Science.gov (United States)

    Longbiao, Li

    2017-06-01

    In this paper, the synergistic effects of temperatrue and oxidation on matrix cracking in fiber-reinforced ceramic-matrix composites (CMCs) has been investigated using energy balance approach. The shear-lag model cooperated with damage models, i.e., the interface oxidation model, interface debonding model, fiber strength degradation model and fiber failure model, has been adopted to analyze microstress field in the composite. The relationships between matrix cracking stress, interface debonding and slipping, fiber fracture, oxidation temperatures and time have been established. The effects of fiber volume fraction, interface properties, fiber strength and oxidation temperatures on the evolution of matrix cracking stress versus oxidation time have been analyzed. The matrix cracking stresses of C/SiC composite with strong and weak interface bonding after unstressed oxidation at an elevated temperature of 700 °C in air condition have been predicted for different oxidation time.

  4. Structure and superconductivity of room temperature chemically oxidized La2-xNdxCuO4+y (0<=x<=0.5)

    DEFF Research Database (Denmark)

    Rial, C.; Moran, E.; Alario-Franco, M.A.

    1997-01-01

    of oxygen introduced in the semiconducting starting materials relieves partially the distortion of the structure, which increases for increasing Nd content, and provides the hole doping required for superconductivity. The extra oxygen content decreases along this series of compounds as the Nd......-doping increases, probably due to the progressive contraction of the structure along the c-axis. Analogies and differences in the modifications induced by the oxidation process in the present La2-xNdxCuO4+y materials and in related compounds La2-x(Ca/Sr/Ba)(x)CuO4+y (x less than or equal to 0.15) are reported...

  5. Manganese oxide/graphene oxide composites for high-energyaqueous asymmetric electrochemical capacitors

    CSIR Research Space (South Africa)

    Jafta, CJ

    2013-11-01

    Full Text Available A high-energy aqueous asymmetric electrochemical capacitor was developed using manganese diox-ide ( -MnO2)/graphene oxide (GO) nanocomposites. The nanostructured -MnO2was prepared frommicron-sized commercial electrolytic manganese dioxide (EMD) via...

  6. Morphology and Frictional Characteristics Under Electrical Currents of Al203/Cu Composites Prepared by Internal Oxidation

    Institute of Scientific and Technical Information of China (English)

    Liu Ruihua; Song Kexing; Jia Shuguo; Xu Xiaofeng; Gao Jianxin; Guo Xiuhua

    2008-01-01

    Two AhO3/Cu composites containing 0.24 wt.% A1203 and 0.60 wt.% A1203 separately are prepared by internal oxidation.Effectsof sliding speed and pressure on the fi-ictional characteristics of the composites and copper against brass are investigated and compared.The changes in morphology of the sliding surface and subsurface are examined with scanning electron microscope (SEM) and energy dispersive X-ray spectrum (EDS).The results show that the wear resistance of the AI203/Cu composites is superior to that of copperunder the same conditions.Under a given electrical current,the wear rate of AI203/Cu composites decreases as the AleO3-content increases.However,the wear rates of the Al203/Cu composites and copper increase as the sliding speed and pressure increase under drysliding condition.The main wear mechanisms for AleO3/Cu composites are of abrasion and adhesion;for copper,it is adhesion,although wear by oxidation and electrical erosion can also be observed as the speed and pressure rise.

  7. Selective Oxidation of Isobutane to Methacrylic Acid over Supported V-Mo-P Based Composite Oxide Catalysts

    Institute of Scientific and Technical Information of China (English)

    Feifei Sun; Yunfeng Geng; Shunhe Zhong

    2002-01-01

    Heteropolyacid, the most popular catalyst for the direct oxidation of isobutane, exhibits high catalytic activity, poor thermal stability and a short lifetime. Therefore, the catalyst requires further research to improve its performance. Catalysts composed of mixed oxides (V2O5, P2O5, or MoO3) supported on silica were prepared by the sol-gel method to catalyze the reaction. Results of XRD, IR, and BET corroborated that the mixed oxides were dispersed homogeneously on the surface of support. The activity of lattice oxygen in the catalysts was studied by TPR, and the chemisorption property of isobutane on the surface of the catalysts was investigated by the TPD method. H2-TPR of the catalysts revealed that the lattice oxygen of the vanadium-based catalysts is more active than that of the molybdenum-based catalysts. The rcdox property of V or Mo species is slightly affected by other compositions of the series catalysts. The TPD curves illustrate that there are two kinds of adsorptive species of isobutane on the surface of the V and Mo based catalysts. The adsorbing species on the VMoP/SiO2 catalyst are identical to the main adsorbing species on VP/SiO2 and MoP/SiO2. The catalyst VMoP/SiO2 is more active than others in the selective oxidation of isobutane.

  8. Recent Advancements in the Cobalt Oxides, Manganese Oxides, and Their Composite As an Electrode Material for Supercapacitor: A Review

    Directory of Open Access Journals (Sweden)

    Santosh J. Uke

    2017-08-01

    Full Text Available Recently, our modern society demands the portable electronic devices such as mobile phones, laptops, smart watches, etc. Such devices demand light weight, flexible, and low-cost energy storage systems. Among different energy storage systems, supercapacitor has been considered as one of the most potential energy storage systems. This has several significant merits such as high power density, light weight, eco-friendly, etc. The electrode material is the important part of the supercapacitor. Recent studies have shown that there are many new advancement in electrode materials for supercapacitors. In this review, we focused on the recent advancements in the cobalt oxides, manganese oxides, and their composites as an electrode material for supercapacitor.

  9. Polymorphism control of superconductivity and magnetism in Cs(3)C(60) close to the Mott transition.

    Science.gov (United States)

    Ganin, Alexey Y; Takabayashi, Yasuhiro; Jeglic, Peter; Arcon, Denis; Potocnik, Anton; Baker, Peter J; Ohishi, Yasuo; McDonald, Martin T; Tzirakis, Manolis D; McLennan, Alec; Darling, George R; Takata, Masaki; Rosseinsky, Matthew J; Prassides, Kosmas

    2010-07-08

    The crystal structure of a solid controls the interactions between the electronically active units and thus its electronic properties. In the high-temperature superconducting copper oxides, only one spatial arrangement of the electronically active Cu(2+) units-a two-dimensional square lattice-is available to study the competition between the cooperative electronic states of magnetic order and superconductivity. Crystals of the spherical molecular C(60)(3-) anion support both superconductivity and magnetism but can consist of fundamentally distinct three-dimensional arrangements of the anions. Superconductivity in the A(3)C(60) (A = alkali metal) fullerides has been exclusively associated with face-centred cubic (f.c.c.) packing of C(60)(3-) (refs 2, 3), but recently the most expanded (and thus having the highest superconducting transition temperature, T(c); ref. 4) composition Cs(3)C(60) has been isolated as a body-centred cubic (b.c.c.) packing, which supports both superconductivity and magnetic order. Here we isolate the f.c.c. polymorph of Cs(3)C(60) to show how the spatial arrangement of the electronically active units controls the competing superconducting and magnetic electronic ground states. Unlike all the other f.c.c. A(3)C(60) fullerides, f.c.c. Cs(3)C(60) is not a superconductor but a magnetic insulator at ambient pressure, and becomes superconducting under pressure. The magnetic ordering occurs at an order of magnitude lower temperature in the geometrically frustrated f.c.c. polymorph (Néel temperature T(N) = 2.2 K) than in the b.c.c.-based packing (T(N) = 46 K). The different lattice packings of C(60)(3-) change T(c) from 38 K in b.c.c. Cs(3)C(60) to 35 K in f.c.c. Cs(3)C(60) (the highest found in the f.c.c. A(3)C(60) family). The existence of two superconducting packings of the same electronically active unit reveals that T(c) scales universally in a structure-independent dome-like relationship with proximity to the Mott metal-insulator transition

  10. Scanning SQUID microscopy of local superconductivity in inhomogeneous combinatorial ceramics.

    Science.gov (United States)

    Iranmanesh, Mitra; Stir, Manuela; Kirtley, John R; Hulliger, Jürg

    2014-11-24

    Although combinatorial solid-state chemistry promises to be an efficient way to search for new superconducting compounds, the problem of determining which compositions are strongly diamagnetic in a mixed-phase sample is challenging. By means of reactions in a system of randomly mixed starting components (Ca, Sr, Ba, La, Y, Pb, Bi, Tl, and Cu oxides), samples were produced that showed an onset of diamagnetic response above 115 K in bulk measurements. Imaging of this diamagnetic response in ceramic samples by scanning SQUID microscopy (SSM) revealed local superconducting areas with sizes down to as small as the spatial resolution of a few micrometers. In addition, locally formed superconducting matter was extracted from mixed-phase samples by magnetic separation. The analysis of single grains (d<80 μm) by X-ray diffraction, elemental analysis, and bulk SQUID measurements allowed Tl2Ca3Ba2Cu4O12, TlCaBaSrCu2O(7-δ), BaPb(0.5)Bi(0.25)Tl(0.25)O(3-δ), TlBa2Ca2Cu3O9, Tl2Ba2CaCu2O8, and YBa2Cu3O7 phases to be identified. SSM, in combination with other diagnostic techniques, is therefore shown to be a useful instrument to analyze inhomogeneous reaction products in the solid-state chemistry of materials showing magnetic properties.

  11. Antiferromagnetism and d-wave superconductivity in the Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Krahl, H.C.

    2007-07-25

    The two-dimensional Hubbard model is a promising effective model for the electronic degrees of freedom in the copper-oxide planes of high temperature superconductors. We present a functional renormalization group approach to this model with focus on antiferromagnetism and d-wave superconductivity. In order to make the relevant degrees of freedom more explicitly accessible on all length scales, we introduce composite bosonic fields mediating the interaction between the fermions. Spontaneous symmetry breaking is reflected in a non-vanishing expectation value of a bosonic field. The emergence of a coupling in the d-wave pairing channel triggered by spin wave fluctuations is demonstrated. Furthermore, the highest temperature at which the interaction strength for the electrons diverges in the renormalization flow is calculated for both antiferromagnetism and d-wave superconductivity over a wide range of doping. This ''pseudo-critical'' temperature signals the onset of local ordering. Moreover, the temperature dependence of d-wave superconducting order is studied within a simplified model characterized by a single coupling in the d-wave pairing channel. The phase transition within this model is found to be of the Kosterlitz-Thouless type. (orig.)

  12. The reduction of iron oxides by volatiles in a rotary hearth furnace process: Part II. The reduction of iron oxide/carbon composites

    Science.gov (United States)

    Sohn, I.; Fruehan, R. J.

    2006-04-01

    The reduction of iron oxide/carbon composite pellets with hydrogen at 900 °C to 1000 °C was studied. Compared to hydrogen, the reduction by carbon was negligible at 900 °C and below. However, significant carbon oxidation of the iron oxide/graphite pellets by H2O generated from the reduction of Fe2O3 by H2 was observed. At higher temperatures, reduction by carbon complicates the overall reduction mechanism, with the iron oxide/graphite composite pellet found to be more reactive than the iron oxide/char composite pellet. From the scanning electron micrographs, partially reduced composite pellets showed a typical topochemical interface with an intermediate region between an oxygen-rich unreacted core and an iron-rich outer shell. To determine the possibility of reduction by volatiles, a layer of iron oxide powders was spread on top of a high volatile containing bituminous coal and heated inside a reactor using infra-red radiation. By separating the individual reactions involved for an iron oxide/coal mixture where a complex set of reactions occur simultaneously, it was possible to determine the sole effect of volatile reduction. It was found that the light reducing gases evolve initially and react with the iron oxide, with complex hydrocarbons evolving at the later stages. The volatiles caused about 20 to 50 pct reduction of the iron oxide.

  13. Significantly improved photocurrent response of ZnS-reduced graphene oxide composites

    Energy Technology Data Exchange (ETDEWEB)

    Sookhakian, M., E-mail: m.sokhakian@gmail.com [Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Amin, Y.M. [Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Zakaria, R. [Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Photonics Research Centre, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Basirun, W.J. [Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Institute of Nanotechnology & Catalysis Research (NanoCat), University Malaya, Kuala Lumpur 50603 (Malaysia); Mahmoudian, M.R. [Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Nasiri-Tabrizi, B.; Baradaran, S. [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Azarang, Majid [Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia)

    2015-05-25

    Highlights: • ZnS/reduced graphene oxide nanoparticles by hydrothermal method. • ZnS nanoparticles in a gelatin medium without agglomeration. • Support of ZnS shows efficient photocurrent response. • The fabricated solar cell electrode improved in the presence of reduced graphene oxide. - Abstract: ZnS-nanoparticles (NPs) reduced graphene oxide (rGO) composites with a high degree of crystallinity and high dispersity were successfully synthesized via a facile solvothermal method in the gelatin medium, during which the formation of ZnS NPs, reduction of graphene oxide and loading of ZnS NPs into the rGO surface occur simultaneously. Gelatin, as a natural capping agent, plays a significant role in controlling the degree of dispersion and coverage of ZnS NPs. The effect of rGO on the crystalline structure and optical properties of ZnS NPs were determined via X-ray diffraction, UV–visible diffused reflectance spectroscopy and photoluminescence spectroscopy. The ZnS–rGO composites exhibit excellent potential for photocurrent generation compared with pure ZnS NPs under visible light irradiation, provided that efficient photoinduced charge separation and transportation can be achieved at the interface. The maximum photocurrent response was obtained for ZnS–rGO composite with a 3% mass fraction of rGO, which is 2 times that achieved on pure ZnS NPs.

  14. Dielectric properties of barium strontium titanate / non ferroelectric oxide ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Nenez, S. [THALES, Domaine de Corbeville, Orsay (France); Univ. de Bourgogne, Lab. de Recherche sur la Reactivite des Solides, Dijon (France); Morell, A.; Pate, M.; Ganne, J.P. [THALES, Domaine de Corbeville, Orsay (France); Maglione, M. [Inst. de Chimie de la Matiere Condensee de Bordeaux - CNRS, Pessac (France); Niepce, J.C. [Univ. de Bourgogne, Lab. de Recherche sur la Reactivite des Solides, Dijon (France)

    2002-07-01

    Barium strontium titanate ceramics present high dielectric permittivity and tunability. In order to reduce their permittivity and loss tangent while keeping tunability, various composites of barium strontium titanate oxide Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3} combined with non-ferroelectric oxides such as magnesium titanate MgTiO{sub 3} or magnesia MgO were investigated. The Ba-Sr oxide powder was mixed with 20, 40 or 60 wt% of the non-ferroelectric oxide (NFO). The paper discusses the processing and the material characterisations by X-ray diffraction and SEM. A secondary phase BaMg{sub 6}Ti{sub 6}O{sub 19} was detected only in the composites synthesised with MgTiO{sub 3}. The microstructure and the dielectric characteristics are presented and discussed. A correlation between the microstructure of the composites, including secondary phase and the dielectric properties is proposed. (orig.)

  15. Polyaniline/Vanadium oxide composites: An effective control in morphology by varying reactant concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Goswami, S. [Thin Film and Nanoscience Laboratory, Department of Physics, Jadavpur University, Kolkata 700 032 (India); School of Materials Science and Nanotechnology, Jadavpur University, Kolkata 700 032 (India); Maiti, U.N.; Maiti, S. [Thin Film and Nanoscience Laboratory, Department of Physics, Jadavpur University, Kolkata 700 032 (India); Mitra, M.K. [School of Materials Science and Nanotechnology, Jadavpur University, Kolkata 700 032 (India); Chattopadhyay, K.K., E-mail: kalyan_chattopadhyay@yahoo.com [Thin Film and Nanoscience Laboratory, Department of Physics, Jadavpur University, Kolkata 700 032 (India); School of Materials Science and Nanotechnology, Jadavpur University, Kolkata 700 032 (India)

    2013-02-15

    A one pot synthesis protocol is presented for the realization of organic/inorganic hybrid nanostructures comprised of polyaniline and vanadium oxide. The polyaniline/vanadium oxide hybrid morphology is tailored by controlling the relative concentration of reactants which resulted in diverse morphologies ranging from nanorods, combined nano/microrods to porous nano/microspheres. Temporal evolution of morphology is investigated to elucidate the formation mechanism in detail. The prepared composites exhibit enhanced thermal stability in comparison to pure polyaniline which may be attributed to the strong chemical combination of vanadium oxide and polyaniline within the composites as prevailed by FTIR and TGA analysis of the products. This simple and controllable approach for synthesizing the organic/inorganic hybrid material should have future applications in energy storage devices, sensors and many more. Highlights: ► Polyaniline/Vanadium oxide composite was tailored by a simple route. ► Morphology control by varying reagent concentrations. ► Possible growth mechanism for rods and hollow spheres. ► Exhibited enhanced thermal stability in comparison to pure polyaniline.

  16. Effects of Temperature and Environment on Creep Behavior of an Oxide-Oxide Ceramic Matrix Composite

    Science.gov (United States)

    2007-03-01

    resistant ceramic matrix composites by a precursor infiltration and pyrolysis method,” Materials Science and Engineering, A195:145-150 (1995). 33...the B-52 and F-16 airframes. He also spent a year as the Air Force Tire Engineer. In August 2005 he began graduate school work at the Air Force

  17. Synthesis, characterization and photo catalytic studies of the composites by tantalum oxide and zinc oxide nanorods

    Science.gov (United States)

    Chennakesavulu, K.; Reddy, M. Madhusudhana; Reddy, G. Ramanjaneya; Rabel, A. M.; Brijitta, J.; Vinita, V.; Sasipraba, T.; Sreeramulu, J.

    2015-07-01

    In-situ synthesis of ZnO:Ta2O5 composites in basic medium by using tantalum chloride and zinc chloride as precursors. The prepared composites were characterized by Fourier Transform Infrared spectroscopy (FTIR), confocal Raman spectroscopy, diffuse reflectance UV-Vis spectrophotometer (DRS), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) method, N2-sorption isotherms, Thermo Gravimetric Analysis (TGA), High Resolution Transmission Electron Microscope (HRTEM), X-ray Photoelectron Spectroscopy (XPS), and Field Emission Scanning Electron Microscopy (FESEM/EDS). The composite materials were used as photocatalyst in the degradation Rhodamine-B (RhB) dye under visible light irradiation. The catalytic activity and removal percentage of the dye was determined by the spectrophotometric method. This indicates the percentage of degradation was more for the ZnO:Ta2O5 composites. The kinetic parameter obeys pseudo-first order reaction. It may be due to fixed amount the catalysts and concentration of dye solution. The catalytic activity of the recycled ZnO:Ta2O5 catalyst was compared with fresh catalyst.

  18. High field superconducting magnets

    Science.gov (United States)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  19. In-situ synthesis of magnetic iron-oxide nanoparticle-nanofibre composites using electrospinning.

    Science.gov (United States)

    Burke, Luke; Mortimer, Chris J; Curtis, Daniel J; Lewis, Aled R; Williams, Rhodri; Hawkins, Karl; Maffeis, Thierry G G; Wright, Chris J

    2017-01-01

    We demonstrate a facile, one-step process to form polymer scaffolds composed of magnetic iron oxide nanoparticles (MNPs) contained within electrospun nano- and micro-fibres of two biocompatible polymers, Poly(ethylene oxide) (PEO) and Poly(vinyl pyrrolidone) (PVP). This was achieved with both needle and free-surface electrospinning systems demonstrating the scalability of the composite fibre manufacture; a 228 fold increase in fibre fabrication was observed for the free-surface system. In all cases the nanoparticle-nanofibre composite scaffolds displayed morphological properties as good as or better than those previously described and fabricated using complex multi-stage techniques. Fibres produced had an average diameter (Needle-spun: 125±18nm (PEO) and 1.58±0.28μm (PVP); Free-surface electrospun: 155±31nm (PEO)) similar to that reported previously, were smooth with no bead defects. Nanoparticle-nanofibre composites were characterised using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), dynamic light scattering (DLS) (Nanoparticle average diameter ranging from 8±3nm to 27±5nm), XRD (Phase of iron oxide nanoparticles identified as magnetite) and nuclear magnetic resonance relaxation measurements (NMR) (T1/T2: 32.44 for PEO fibres containing MNPs) were used to verify the magnetic behaviour of MNPs. This study represents a significant step forward for production rates of magnetic nanoparticle-nanofibre composite scaffolds by the electrospinning technique.

  20. Ionic liquids modified graphene oxide composites: a high efficient adsorbent for phthalates from aqueous solution

    Science.gov (United States)

    Zhou, Xinguang; Zhang, Yinglu; Huang, Zuteng; Lu, Dingkun; Zhu, Anwei; Shi, Guoyue

    2016-12-01

    In 2015, more than 30% of erasers were found to contain a PAE content that exceeded the 0.1% limit established by the Quality and Technology Supervision Bureau of Jiangsu Province in China. Thus, strengthening the supervision and regulation of the PAE content in foods and supplies, in particular, remains necessary. Graphene oxide (GO) and its composites have drawn great interests as promising adsorbents for polar and nonpolar compounds. However, GO-based adsorbents are typically restricted by the difficult separation after treatment because of the high pressure in filtration and low density in centrifugation. Herein, a series of novel ionic liquids modified graphene oxide composites (GO-ILs) were prepared as adsorbents for phthalates (PAEs) in eraser samples, which overcame the conventional drawbacks. These novel composites have a combination of the high surface area of graphene oxide and the tunability of the ionic liquids. It is expected that the GO-ILs composites can be used as efficient adsorbents for PAEs from aqueous solution. This work also demonstrated a new technique for GO-based materials applied in sample preparation.

  1. The Graphene Oxide Polymer Composites with High Breakdown Field Strength and Energy Storage Ability

    Science.gov (United States)

    Li, Yang; Hu, Jun; He, Jinliang; Gao, Lei

    The crystalline structure of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) is strongly related with its breakdown characteristic and energy storage capability. A graphene oxide (GO) polymer composite, making use of the specific interaction between GO and PVDF-HFP that can induce the formation of β-phase when crystallizing from solution, was developed. The results indicate that the breakdown field strength of the composites with GO nanosheets can reach more than 350 MV/m with small variance. And the composites exhibit a moderate dielectric constant (>13) which can obtain a maximum energy storage density of near 10 J/cm3 and discharged 5 J/cm3. Besides GO can alter the crystalline structure of PVDF-HFP from the non-polar phase to the polar phase. As a result, the composites with GO can achieve the similar results by mechanical stretching and avoid the necking effect in stretching.

  2. Tungsten Oxide and Polyaniline Composite Fabricated by Surfactant-Templated Electrodeposition and Its Use in Supercapacitors

    Directory of Open Access Journals (Sweden)

    Benxue Zou

    2014-01-01

    Full Text Available Composite nanostructures of tungsten oxide and polyaniline (PANI were fabricated on carbon electrode by electrocodeposition using sodium dodecylbenzene sulfonate (SDBS as the template. The morphology of the composite can be controlled by changing SDBS surfactant and aniline monomer concentrations in solution. With increasing concentration of aniline in surfactant solution, the morphological change from nanoparticles to nanofibers was observed. The nanostructured WO3/PANI composite exhibited enhanced capacitive charge storage with the specific capacitance of 201 F g−1 at 1.28 mA cm−2 in large potential window of -0.5~ 0.65 V versus SCE compared to the bulk composite film. The capacitance retained about 78% when the sweeping potential rate increased from 10 to 150 mV/s.

  3. Oxidation of Al2O3-30%TiCN-0.2%Y2O3 Composite

    Institute of Scientific and Technical Information of China (English)

    Li Xikun; Qiu Guanming; Xiu Zhimeng; Sun Xudong; Yan Changhao; Dai Shaojun

    2005-01-01

    The oxidation behavior of Al2O3-30%TiCN-0.2%Y2O3 composite and its effect on high temperature bending strength was studied. The result indicates that the mass gain during static oxidation of the material under normal atmosphere follows the parabolic law. Oxide increases with increasing temperature and prolonging time. It has good oxidation resistance. The product of oxidation of the material is TiO2. Therefore, the volume of the material expands. The oxide film is destroyed because residual stress inside the oxide film is released. Proper oxidation is beneficial to the improvement of bending strength of Al2O3-30%TiCN-0.2%Y2O3 composite. The strength increase is up to 4.5%.

  4. Spinel-embedded lithium-rich oxide composites for Li-ion batteries

    Science.gov (United States)

    Park, Kwangjin; Yeon, Donghee; Kim, Jung Hwa; Park, Jin-Hwan; Doo, Seokgwang; Choi, Byungjin

    2017-08-01

    Spinel-embedded lithium-rich oxides are synthesized and their structural phases are analyzed. The type of spinel LiM0.5Mn1.5O4 (M = Ni, Co, Mn) embedded is varied by controlling the spinel composition and content. Of the various composites fabricated with different spinel phases, the LiCo0.5Mn1.5O4-embedded over-lithiated layered oxide (OLO) shows the best electrochemical performance as a cathode because of the absence of a parasitic phase and its high structural stability. The formation energy of the LiCo0.5Mn1.5O4-embedded oxide is determined through first-principles calculations and is found to be lower than that of the pristine oxide as well as other spinel-phase-embedded oxides. It is also observed that use of OLO with optimal embedded spinel LiCo0.5Mn1.5O4 in a cylindrical 18650-type cell results in improvement in the full-cell electrochemical performance.

  5. Does feed composition affect oxidation of rainbow trout (Oncorhynchus mykiss) during frozen storage?

    Science.gov (United States)

    Baron, Caroline P; Hyldig, Grethe; Jacobsen, Charlotte

    2009-05-27

    Rainbow trout ( Oncorhynchus mykiss ) were fed a diet containing either fish oil or rapeseed oil and with or without 200 mg/kg carotenoid (either astaxanthin or canthaxanthin). A total of six diets were obtained: (1) fish oil/astaxanthin; (2) vegetable oil/astaxanthin; (3) fish oil/canthaxanthin; (4) vegetable oil/canthaxanthin; (5) fish oil/no pigment; and (6) vegetable oil/no pigment. The fish were slaughtered and stored in polyethylene bags individually as butterfly fillets for up to 22 months at -20 °C. The composition of the fish muscle at slaughter and during frozen storage was evaluated by sampling after 4, 8, 13, 18, and 22 months. The carotenoid content in the muscle was found to be approximately 9-10 mg/kg of fish for both carotenoids. Primary oxidation lipid products (peroxides) as well as secondary oxidation products (volatiles) were measured. In addition, the level of protein carbonyl groups and the content of tocopherols and carotenoids in the muscle were also measured. To estimate the overall changes in sensory properties of the different samples during storage, a trained sensory panel also evaluated the samples. Both the sensory panel and the chemical analysis revealed that in this investigation fish fed fish oil were slightly more oxidized than fish fed vegetable oil. Results showed that canthaxanthin effectively protected both protein and lipid against oxidation during frozen storage. In contrast, astaxanthin did not seem to have a clear and systematic effect. Results indicated that the feed composition influenced the fish muscle composition and subsequently the oxidative stability of the fish during frozen storage. Besides, other constituents in the feed might influence deposition of antioxidants in the tissue and consequently affect the oxidative stability of the muscle.

  6. Effect of Prior Exposure at Elevated Temperatures on Tensile Properties and Stress-Strain Behavior of Three Oxide/Oxide Ceramic Matrix Composites

    Science.gov (United States)

    2015-03-26

    aerospace , and military designs. One of the largest drawbacks to monolithic ceramics is low fracture toughness and susceptibility to catastrophic...Laboratory, Wright-Patterson AFB, OH, 2005. [30] G. Fair, " Ceramic Composites for Structural Aerospace Applications: Processing and Properties," Air...OF THREE OXIDE/OXIDE CERAMIC MATRIX COMPOSITES THESIS Christopher J. Hull, Captain, USAF AFIT-ENY-MS-15-M-228 DEPARTMENT OF THE AIR FORCE

  7. Digital laser printing of metal/metal-oxide nano-composites with tunable electrical properties

    Science.gov (United States)

    Zenou, M.; Sa'ar, A.; Kotler, Z.

    2016-01-01

    We study the electrical properties of aluminum structures printed by the laser forward transfer of molten, femtoliter droplets in air. The resulting printed material is an aluminum/aluminum-oxide nano-composite. By controlling the printing conditions, and thereby the droplet volume, its jetting velocity and duration, it is possible to tune the electrical resistivity to a large extent. The material resistivity depends on the degree of oxidation which takes place during jetting and on the formation of electrical contact points as molten droplets impact the substrate. Evidence for these processes is provided by FIB cross sections of printed structures.

  8. Nano-hardness and elastic modulus of anodic aluminium oxide based Poly (2-hydroxyethylmethacrylate composite membranes

    Directory of Open Access Journals (Sweden)

    Gérrard Eddy Jai Poinern

    2014-07-01

    Full Text Available In this study we determine the elastic and hardness properties of electrochemically engineered porous anodic aluminium oxide (AAO membranes and AAO membranes infiltrated with Poly (2-hydroxyethylmethacrylate to form a unique biologically compatible AAO/polymer composite. The electrochemically-synthesised membranes have a nanometre scale porous oxide structure with a mean pore diameter of 100 nm. The membranes were characterized using field emission scanning electron microscopy before and after polymer infiltration. The polymer treated and untreated membranes were then examined using the nano-indentation technique to measure the hardness and subsequently determine the membrane elasticity.

  9. Electrochemical corrosion of a noble metal-bearing alloy-oxide composite

    Energy Technology Data Exchange (ETDEWEB)

    Chen, X; Ebert, W. L.; Indacochea, Ernesto

    2017-08-01

    The effects of added Ru and Pd on the microstructure and electrochemical behaviour of a composite material made by melting those metals with AISI 410 stainless steel, Zr, Mo, and lanthanide oxides were assessed using electrochemical and microscopic methods The lanthanide oxides reacted with Zr to form durable lanthanide zirconates and Mo alloyed with steel to form FeMoCr intermetallics. The noble metals alloyed with the steel to provide solid solution strengthening and inhibit carbide/nitride formation. A passive film formed during electrochemical tests in acidic NaCl solution, but became less effective as corrosion progressed and regions over the intermetallics eventually failed.

  10. BiPO{sub 4}/reduced graphene oxide composites photocatalyst with high photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yihe, E-mail: zyh@cugb.edu.cn [National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 10083 (China); Shen, Bo [National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 10083 (China); Huang, Hongwei, E-mail: hhw@cugb.edu.cn [National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 10083 (China); He, Ying [National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 10083 (China); Fei, Bin [Institute of Textile and Clothing, The Hong Kong Polytechnic University, Kowloon, Hong Kong (China); Lv, Fengzhu [National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 10083 (China)

    2014-11-15

    Graphical abstract: The composite photocatalysts composed of BiPO{sub 4} and reduced graphene oxide (rGO) were synthesized by a facile hydrothermal method. The BiPO{sub 4}/rGO composites exhibit much better photocatalytic performance than pure BiPO{sub 4}. - Highlights: • BiPO{sub 4} nanoparticles are immobilized on reduced graphene oxide (rGO) as photocatalysts. • The BiPO{sub 4}/rGO composites show enhanced photocatalytic activity than the pure BiPO{sub 4} nanoparticles. • The crystallization phases of BiPO{sub 4} can be determined by the amount of graphene. - Abstract: The composite photocatalysts composed of BiPO{sub 4} and reduced graphene oxide (rGO) were synthesized by a facile hydrothermal method. Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), transmission electron spectroscopy (TEM), photoluminescence emission spectra (PL) and UV–vis diffuse reflection spectroscopy (DRS) were used to characterize the titled composites. The results showed that the BiPO{sub 4} particles can be immobilized on the surface of rGO sheets, and the crystallization phases of BiPO{sub 4} were significantly influenced by the amount of graphene. The phase transformation of BiPO{sub 4} crystal from hexagonal to monoclinic phase was observed. The introduction of rGO improved the optical properties of BiPO{sub 4} and thereby enhancing the utilization of light. Compared with pure BiPO{sub 4} under similar synthesis condition, the BiPO{sub 4}/rGO composites exhibit a much higher photodegradation activity, which was confirmed by photoluminescence (PL) spectra and photocurrent (PC) generation.

  11. SnO{sub 2}/reduced graphene oxide composite films for electrochemical applications

    Energy Technology Data Exchange (ETDEWEB)

    Bondarenko, E.A. [Belarusian State University, Nezalezhnastsi Av. 4, Minsk 220030 (Belarus); Mazanik, A.V., E-mail: mazanikalexander@gmail.com [Belarusian State University, Nezalezhnastsi Av. 4, Minsk 220030 (Belarus); Streltsov, E.A. [Belarusian State University, Nezalezhnastsi Av. 4, Minsk 220030 (Belarus); Kulak, A.I., E-mail: kulak@igic.bas-net.by [Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus, Surganova str., 9/1, Minsk 220072 (Belarus); Korolik, O.V. [Belarusian State University, Nezalezhnastsi Av. 4, Minsk 220030 (Belarus)

    2015-12-15

    Highlights: • SnO{sub 2}/GO composites with mass fraction of carbon phase 0.01% ≤ w{sub C} ≤ 80% have been formed. • 400 °C annealing was applied for GO reduction in the composites. • SnO{sub 2}/rGO composites demonstrate a high electrocatalytic activity in anodic processes. • Exchange current density grows linearly with carbon phase concentration at w{sub C} ≤ 10%. - Abstract: SnO{sub 2}/GO (GO is graphene oxide) composite films with GO mass fraction w{sub C} ranging from 0.01 to 80% have been prepared using colloidal solutions. Heat treatment of SnO{sub 2}/GO films in Ar atmosphere at 400 °C leads to GO reduction accompanied by partial exfoliation and decreasing of the particle thickness. SnO{sub 2}/rGO (rGO is reduced GO) film electrodes demonstrate a high electrocatalytic activity in the anodic oxidation of inorganic (iodide-, chloride-, sulfite-anions) and organic (ascorbic acid) substances. The increase of the anodic current in these reactions is characterized by overpotential inherent to the individual rGO films and exchange current density grows linearly with rGO concentration at w{sub C} ≤ 10% indicating that the rGO particles in composites act as sites of electrochemical process. The SnO{sub 2}/rGO composite films, in which the chemically stable oxide matrix encapsulates the rGO inclusions, can be considered as a promising material for applied electrochemistry.

  12. Theory of superconductivity

    CERN Document Server

    Crisan, Mircea

    1989-01-01

    This book discusses the most important aspects of the theory. The phenomenological model is followed by the microscopic theory of superconductivity, in which modern formalism of the many-body theory is used to treat most important problems such as superconducting alloys, coexistence of superconductivity with the magnetic order, and superconductivity in quasi-one-dimensional systems. It concludes with a discussion on models for exotic and high temperature superconductivity. Its main aim is to review, as complete as possible, the theory of superconductivity from classical models and methods up t

  13. Nylon 610/graphene oxide composites prepared by in-situ interfacial polymerization.

    Science.gov (United States)

    Lee, Jaehoon; Yun, Young Soo; Kim, Bona; Cho, Se Youn; Jin, Hyoung-Joon

    2014-08-01

    Nylon 610/nylon 610-grafted graphene oxide (nylon 610/GO-g-nylon 610) composites were fabricated using acyl chloride-functionalized graphene oxide by in-situ interfacial polymerization. GO-g-nylon 610 was synthesized by the condensation reaction between the acyl chloride groups of GO and the amino groups at the nylon 610 chains during the in-situ polymerization. Nylon 610/GO composites without grafting nylon 610 onto GO were also prepared to investigate the influence of grafting nylon 610 on the interfacial adhesion between GO and the nylon 610 matrix. The thermal properties of the nylon 610/GO-g-nylon 610 composites were enhanced with increasing GO-g-nylon 610 content in the nylon 610 matrix. The degradation temperature and thermal conductivity of the nylon 610/GO-g-nylon 610-10 composite were increased to 72.2 °C and 36.9%, respectively, compared with those of pure nylon 610. The crystallinity of the nylon 610/GO-g-nylon 610-10 composite was significantly lower than that of pure nylon 610 due to the hindered mobility of the nylon 610 chains by the strong interfacial adhesion between the GO-g-nylon 610 and the nylon 610 matrix.

  14. Influence of Cr2O3-Al2O3 Composite Oxide Scale on Oxidation Resistance of ZG40Cr24

    Institute of Scientific and Technical Information of China (English)

    WANG Haitao; JIANG Peigang; HUANG Liping

    2012-01-01

    Test alloys ZG40Cr24 with alloying of 3 wt% aluminium were cast by intermediate frequency induction furnace.The oxidation resistance of test alloys at 1 000 ℃ for 500 hours was examined according to oxidation weight gain method.The scale morphology and composition were studied using scanning electron microscope (SEM) and X-ray diffraction (XRD) respectively.By energy dispersive spectroscopy (EDS) studies,a kind of composite oxide scale compounded highly by Cr2O3,Al2O3 and spinel MCr2O4 in molecule scale came into being at high temperature.With flat and compact structure,fine and even grains,such composite scale granted complete oxidation resistance to alloy ZG40Cr24.The oxidation resistance mechanism was studied deeply in electrochemistry corrosion.The P+N semiconductor composite scale composed plenty of inner PN junctions,of which the unilateral conductive and the out-of-order arrangement endowed itself insulating in all directions.The positive and negative charges in scale could not move,and the mobile number and transferring rate of them both dropped enormously,as a result,the oxidation rate of the matrix metal was cut down greatly.So the composite scale presented excellent oxidation resistance.

  15. Cu-doped zinc oxide and its polythiophene composites: preparation and antibacterial properties.

    Science.gov (United States)

    Ma, Ge; Liang, Xiaoxi; Li, Liangchao; Qiao, Ru; Jiang, Donghua; Ding, Yan; Chen, Haifeng

    2014-04-01

    Cu-doped zinc oxide and its polythiophene nanocomposites were prepared by the Sol-Gel and in situ polymerization methods, respectively. The structures, morphologies and compositions of the samples were characterized. The antibacterial properties of the samples on three kinds of strains were determined by using powder inhibition zones, minimum inhibitory concentrations and minimal bactericidal concentrations. The study confirmed that the antibacterial activities of the composites were better than those of their each component. The antibacterial mechanisms of the samples were discussed further.

  16. Mesoporous carbon nitride-tungsten oxide composites for enhanced photocatalytic hydrogen evolution.

    Science.gov (United States)

    Kailasam, Kamalakannan; Fischer, Anna; Zhang, Guigang; Zhang, Jinshui; Schwarze, Michael; Schröder, Marc; Wang, Xinchen; Schomäcker, Reinhard; Thomas, Arne

    2015-04-24

    Composites of mesoporous polymeric carbon nitride and tungsten(VI) oxide show very high photocatalytic activity for the evolution of hydrogen from water under visible light and in the presence of sacrificial electron donors. Already addition of very small amounts of WO3 yields up to a twofold increase in the efficiency when compared to bulk carbon nitrides and their composites and more notably even to the best reported mesoporous carbon nitride-based photocatalytic materials. The higher activity can be attributed to the high surface area and synergetic effect of the carbon nitrides and the WO3 resulting in improved charge separation through a photocatalytic solid-state Z-scheme mechanism.

  17. Radiation cured epoxy acrylate composites based on graphene, graphite oxide and functionalized graphite oxide with enhanced properties.

    Science.gov (United States)

    Guo, Yuqiang; Bao, Chenlu; Song, Lei; Qian, Xiaodong; Yuan, Bihe; Hu, Yuan

    2012-03-01

    Epoxy acrylate (EA) composites containing graphite oxide (GO), graphene and nitrogen-double bond functionalized graphite oxide (FGO) were fabricated using UV-radiation and electron beam radiation via in-situ polymerization. Graphene and FGO were homogenously dispersed in EA matrix and enhanced properties, including thermal stability, flame retardancy, electrical conductivity and reduced deleterious gas releasing in thermo decomposition were obtained. Microscale combustion colorimeter results illustrated improved flame retardancy; EA/FGO composites achieved a 29.7% reduction in total heat release (THR) when containing only 0.1% FGO and a 38.6% reduction in peak-heat release rate (PHRR) when containing 3% FGO. The onset decomposition temperatures were delayed and the maximum decomposition values were reduced, according to thermogravimetric analysis which indicated enhanced thermal stabilities. The electrical conductivity was increased by 6 orders of magnitude (3% graphene) and the deleterious gas released during the thermo decomposition was reduced with the addition of all the graphite samples. This study represented a new approach to functionalize GO with flame retardant elements and active curable double bond to achieve better dispersion of GO into polymer matrix to obtain nanocomposites and paved a way for achieving graphene-based materials with high-performance of graphene in enhancement of flame retardancy of polymers for practical applications.

  18. Adsorption of ammonia on graphite oxide/aluminium polycation and graphite oxide/zirconium-aluminium polyoxycation composites.

    Science.gov (United States)

    Seredych, Mykola; Bandosz, Teresa J

    2008-08-01

    Graphite oxide (GO) synthesized from commercial graphite was modified with aluminium or zirconium-aluminium polyoxycations and then calcined at 350 degrees C. On the samples obtained adsorption of ammonia from moist air was investigated. The surface of materials before and after exposure to ammonia was characterized using adsorption of nitrogen, XRD, SEM, FTIR, TA, CHN analysis, and potentiometric titration. The results showed that in spite of the fact that graphite composites/pillared graphites (PG) have Keggin-like ions located between the layers, that space blocked for nitrogen molecules used to determine the specific surface area. During calcinations, the deflagration of layers occurred as a result of decomposition of epoxy groups. This results in formation of disordered graphitic carbons with some mesoporosity. Even though these materials were not porous, the significant amount of ammonia was retained on the surface. Since ammonia molecule is able to specifically interact with oxygen groups of graphite oxide and Brønsted centers of inorganic pillars, it is likely intercalated between the composite layers. While the best performance was found for GO modified with aluminium-zirconium species, after calcinations the samples containing Keggin Al(13) like cations revealed the high capacity which is linked to the high acidity of incorporated inorganic compounds.

  19. Synthesis of benzimidazole-grafted graphene oxide/multi-walled carbon nanotubes composite for supercapacitance application

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Rajesh Kr., E-mail: r05bhu@gmail.com [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore (Singapore); Xingjue, Wang [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore (Singapore); Kumar, Vinod [Department of Zoology, Banaras Hindu University, Varanasi (India); Srivastava, Anchal [Department of Physics, Banaras Hindu University, Varanasi (India); Singh, Vidya Nand [CSIR-National Physical Laboratory, New Delhi (India)

    2014-11-05

    Highlights: • We are reporting supercapacitance performance of BI-GO/MWCNTs composite. • The specific capacitance of BI-GO/MWCNTs is 275 and 460 F/g at 200 and 5 mV/s scan rate. • This composite has shown 224 F/g capacitance after 1300 cycles at 200 mV/s scan rate. - Abstract: We are reporting the fabrication, characterizations and supercapacitance performance of benzimidazole-grafted graphene oxide/multi-walled carbon nanotubes (BI-GO/MWCNTs) composite. The synthesis of BI-GO materials involves cyclization reaction of carboxylic groups on GO among the hydroxyl and amino groups on o-phenylenediamine. The BI-GO/MWCNTs composite has been fabricated via in situ reduction of BI-GO using hydrazine in presence of MWCNTs. Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Raman spectroscopy, X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) have been used to characterize its surface and elemental composition. The uniform dispersion of MWCNTs with BI-GO helps to improve the charge transfer reaction during electrochemical process. The specific capacitance of BI-GO/MWCNTs composite is 275 and 460 F/g at 200 and 5 mV/s scan rate in 1 mol/L aqueous solution of H{sub 2}SO{sub 4}. This BI-GO/MWCNTs composite has shown 224 F/g capacitance after 1300 cycles at 200 mV/s scan rate, which represents its good electrochemical stability.

  20. Polytetrafluoroethylene/TiO2 Composite Pellets as Sulfur Adsorbents for Pressure Oxidation Leaching of Chalcopyrite

    Science.gov (United States)

    Govindaiah, Patakamuri; Grundy, Mark; Guerra, Eduard; Choi, Yeonuk; Ye, Zhibin

    2015-04-01

    In this study, we report the use of polytetrafluoroethylene/titanium dioxide (PTFE/TiO2) composite pellets as sulfur adsorbents in the extraction of copper from chalcopyrite by pressure oxidation leaching. PTFE/TiO2 composites of various compositions were prepared by compression molding followed by pelletization. The mass percentage of TiO2 filler in the PTFE matrix was varied from 0 to 35 wt pct. With the use of the composite pellets, significant enhancements in copper leaching were observed, indicating their role as adsorbents for the adsorption of molten elemental sulfur. In particular, the enhancement in copper extraction was increasingly pronounced (from 75 to 89 pct) with the increase of the mass percentage of TiO2 in the composite pellets from 0 to 35 wt pct. This is reasoned to result from the loss of TiO2 domains from the pellet surface, which creates additional rough hydrophobic surface to better capture elemental sulfur. The composite pellet adsorbents show excellent reusability, with the performance well maintained for 10 leaching cycles. In addition, the effectiveness of composite adsorbents at different chalcopyrite pulp densities was also investigated.

  1. Computer Simulations of Composite Electrodes in Solid-Oxide Fuel-Cells

    Energy Technology Data Exchange (ETDEWEB)

    Sunde, Svein

    1999-07-01

    Fuel cells are devices for converting the combined chemical (free) energy of fuels and oxygen (air) directly to electrical energy without relying on the dynamic action of steam heated by reacting fuel-oxygen mixtures, like in steam turbines, or of the reacting gas mixtures themselves, like in gas turbines. The basic rationale for fuel cells is their high efficiencies as compared to indirect-conversion methods. Fuel cells are currently being considered for a number of applications, among them de-centralised power supply. Fuel cells come in five basic types and are usually classified according to the type of electrolyte used, which in turn to a significant degree limits the options for anode and cathode materials. The solid-oxide fuel-cell (SOFC) , with which this thesis is concerned, is thus named after its oxide electrolyte, typically the oxide-ion conducting material yttria-stabilised zirconia (YSZ). While the cathode of an SOFC is often uniform in chemical composition (or at least intended to be), various problems of delamination, cracking etc. associated with the use of metallic anode electrocatalysts led to the development of composite SOFC anodes. Porous anodes consisting of Ni and YSZ particles in roughly 50/50 wt-% mixtures are now almost standard with any SOFC-development programme. The designer of composite SOFC electrodes is faced with at least three, interrelated questions: (1) What will be the optimum microstructure and composition of the composite electrode? (2) If the structure changes during operation, as is often observed, what will be the consequences for the internal losses in the cell? (3) How do we interpret electrochemical and conductivity measurements with regard to structure and composition? It is the primary purpose of this thesis to provide a framework for modelling the electrochemical and transport properties of composite electrodes for SOFC, and to arrive at some new insights that cannot be offered by experiment alone. Emphasis is put on

  2. A composite structure based on reduced graphene oxide and metal oxide nanomaterials for chemical sensors

    Directory of Open Access Journals (Sweden)

    Vardan Galstyan

    2016-10-01

    Full Text Available A hybrid nanostructure based on reduced graphene oxide and ZnO has been obtained for the detection of volatile organic compounds. The sensing properties of the hybrid structure have been studied for different concentrations of ethanol and acetone. The response of the hybrid material is significantly higher compared to pristine ZnO nanostructures. The obtained results have shown that the nanohybrid is a promising structure for the monitoring of environmental pollutants and for the application of breath tests in assessment of exposure to volatile organic compounds.

  3. Catalytic ozone aqueous decomposition of methylene blue using composite metal oxides

    Science.gov (United States)

    Liu, Xuan; Hou, Yongjiang; Guo, Jie; Wang, Yaquan; Zuo, Qian; Wang, Chunyu

    2015-07-01

    By using the method of co-precipitation, Fe-Mn, Al-Mn, Al-Mg composite metal oxides were prepared. Using X-ray diffractometer(XRD), the phases of catalysts synthesized were observed to be Mn3O4 and Fe2O3. With the increase of the calcination temperature, Mn3O4 was gradually transformed into Mn2O3. The experimental results show that: the best catalyst is the Fe-Mn composite metal oxide with the calcination temperature of 650 °C. In this experimental condition, when the ozone amount was 1.92mg/min, and the dosage of catalyst was 0.5g, the removal rate of methylene blue (MB) was the best. The decolorization rate can reach to 100%. Compared with the effect of ozonation alone, the total organic carbon removal rate increased from 29.19% up to 65.78% after adding catalysts.

  4. Theory and Practice of Oxide Inclusion Composition and Morphology Control in Spring Steel Production

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In order to control the composition, morphology and size distribution of oxide inclusions in spring steel, the relationship between the content or activity of aluminum and calcium in molten steel and compositions of oxide inclusion precipitated at different temperatures was determined based on thermodynamic equilibrium for spring steel 60Si2MnA, and has been verified by practice. The size distribution of non-metallic inclusions electrolytically extracted from specimens of hot rolled spring steel was determined by image analyzer. The results show that there are a great deal of large inclusions in spring steel produced by the conventional process, and the quantity and the size of large inclusions in spring steel produced by new process are largely reduced. As a result, the fatigue properties of the spring steel produced by new process are highly improved, and the ratio of σ-1/σb is raised from 0.451 to 0.468.

  5. Photo-oxidation of EPDM/layered double hydroxides composites: Influence of layered hydroxides and stabilizers

    Directory of Open Access Journals (Sweden)

    2007-11-01

    Full Text Available The photo-oxidation of ethylene propylene diene monomer (EPDM/ layered double hydroxide (LDH composites as well as EPDM/LDH with stabilizers is studied under accelerated UV irradiation (λ≥290 nm at 60°C for different time intervals. The development of functional groups during oxidation was monitored by FT-IR spectroscopy. The photodegradation of the pristine polymer and composites take place and the increase in hydroxyl and carbonyl groups with irradiation times, was estimated. EPDM filled LDH showed higher degradation rate than pristine EPDM, while in acidic medium EPDM/LDH showed almost equal degradation as in isolated conditions. These results show the advantages of LDHs as a filler as well as an acid killer. The effect of stabilizers is very less because of their concentration in comparison of LDH.

  6. Abundance and Community Composition of Ammonia-Oxidizers in Paddy Soil at Different Nitrogen Fertilizer Rates

    Institute of Scientific and Technical Information of China (English)

    SONG Ya-na; LIN Zhi-min

    2014-01-01

    Ammonia oxidation, the ifrst and rate-limiting step of nitriifcation, is carried out by both ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA). However, the relative importance of AOB and AOA to nitriifcation in terrestrial ecosystems is not well understood. The aim of this study was to investigate the effect of the nitrogen input amount on abundance and community composition of AOB and AOA in red paddy soil. Soil samples of 10-20 cm (root layer soil) and 0-5 cm (surface soil) depths were taken from a red paddy. Rice in the paddy was fertilized with different rates of N as urea of N1 (75 kg N ha-1 yr-1), N2 (150 kg N ha-1 yr-1), N3 (225 kg N ha-1 yr-1) and CK (without fertilizers) in 2009, 2010 and 2011. Abundance and community composition of ammonia oxidizers was analyzed by real-time PCR and denaturing gradient gel electrophoresis (DGGE) based on amoA (the unit A of ammonia monooxygenase) gene. Archaeal amoA copies in N3 and N2 were signiifcantly (P<0.05) higher than those in CK and N1 in root layer soil or in surface soil under tillering and heading stages of rice, while the enhancement in bacterial amoA gene copies with increasing of N fertilizer rates only took on in root layer soil. N availability and soil NO3--N content increased but soil NH4+-N content didn’t change with increasing of N fertilizer rates. Otherwise, the copy numbers of archaeal amoA gene were higher (P<0.05) than those of bacterial amoA gene in root lary soil or in surface soil. Redundancy discriminate analysis based on DGGE bands showed that there were no obvious differs in composition of AOA or AOB communities in the ifeld among different N fertilizer rates. Results of this study suggested that the abundance of ammonia-oxidizers had active response to N fertilizer rates and the response of AOA was more obvious than that of AOB. Similarity in the community composition of AOA or AOB among different N fertilizer rates indicate that the community composition of ammonia-oxidizers

  7. Oxide_Oxide Ceramic Matrix Composite (CMC) Exhaust Mixer Development in the NASA Environmentally Responsible Aviation (ERA) Project

    Science.gov (United States)

    Kiser, J. Douglas; Bansal, Narottam P.; Szelagowski, James; Sokhey, Jagdish; Heffernan, Tab; Clegg, Joseph; Pierluissi, Anthony; Riedell, Jim; Wyen, Travis; Atmur, Steven; hide

    2015-01-01

    LibertyWorks®, a subsidiary of Rolls-Royce Corporation, first studied CMC (ceramic matrix composite) exhaust mixers for potential weight benefits in 2008. Oxide CMC potentially offered weight reduction, higher temperature capability, and the ability to fabricate complex-shapes for increased mixing and noise suppression. In 2010, NASA was pursuing the reduction of NOx emissions, fuel burn, and noise from turbine engines in Phase I of the Environmentally Responsible Aviation (ERA) Project (within the Integrated Systems Research Program). ERA subtasks, including those focused on CMC components, were being formulated with the goal of maturing technology from Proof of Concept Validation (Technology Readiness Level 3 (TRL 3)) to System/Subsystem or Prototype Demonstration in a Relevant Environment (TRL 6). LibertyWorks®, a subsidiary of Rolls-Royce Corporation, first studied CMC (ceramic matrix composite) exhaust mixers for potential weight benefits in 2008. Oxide CMC potentially offered weight reduction, higher temperature capability, and the ability to fabricate complex-shapes for increased mixing and noise suppression. In 2010, NASA was pursuing the reduction of NOx emissions, fuel burn, and noise from turbine engines in Phase I of the Environmentally Responsible Aviation (ERA) Project (within the Integrated Systems Research Program). ERA subtasks, including those focused on CMC components, were being formulated with the goal of maturing technology from Proof of Concept Validation (Technology Readiness Level 3 (TRL 3)) to System/Subsystem or Prototype Demonstration in a Relevant Environment (TRL 6). Oxide CMC component at both room and elevated temperatures. A TRL˜5 (Component Validation in a Relevant Environment) was attained and the CMC mixer was cleared for ground testing on a Rolls-Royce AE3007 engine for performance evaluation to achieve TRL 6.

  8. Oxidation and Thermal Shock Behavior of a Glass-Alumina Composite Coating on K38G Superalloy at 1000℃

    Institute of Scientific and Technical Information of China (English)

    Minghui Chen; Mingli Shen; Xin Wang; Shenglong Zhu; Fuhui Wang

    2012-01-01

    The glass-alumina composite coatings were successfully prepared on the K38G superalloy substrates.Their isothermal oxidation and thermal shock behavior at 1000 ℃ were characterized.With a post-annealing process at 850 ℃,the composite coatings possessed an improved protective effect for the alloy substrates from isothermal oxidation and a higher resistance to thermal shock.Crystallization from the glass matrix and interfacial reaction between the matrix and alumina inclusions,which caused the composites more refractory and tough,accounted for this improvement.The micromechanisms for the formation of oxidation results of spinel ZnCr_2O_4 were also discussed.

  9. Production of biologically safe and mechanically improved reduced graphene oxide/hydroxyapatite composites

    Science.gov (United States)

    Elif, Öztürk; Belma, Özbek; İlkay, Şenel

    2017-01-01

    As research trends included the improvement of the mechanical properties of hydroxyapatite (HA) for biological applications, HA was reinforced with different concentrations of reduced graphene oxide (RGO) in HA. In this context, graphene oxide was synthesized using the chemical exfoliation method and reduced using an environmentally safe and green method. As a green method, RGO was obtained using Melissa officinalis (melisa) extract and used as a second phase combination to the HA structure. RGO-HA composites with different concentrations of RGO in HA (0.25, 0.5, 1.0, 2.0% wt.) were prepared using the liquid precipitation method. Then they were pelleted and sintered. Characterization studies were carried out using UV-vis, Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), zetasizer (ZS), x-ray powder diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images. The mechanical properties of the composites were analyzed using a universal testing machine. Compared to pure HA, the compressive strength values of composites were increased significantly with the increase in RGO content. The optimum increase was observed for the RGO-HA (1%) composite, which was 3.2 times higher than the pure HA sample. Therefore, the RGO-HA (1%) composite was chosen as the best composition, and its cytotoxic and proliferative effects were examined using a minimum essential media elution test and a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The results showed that RGO-HA (1%) composites are biocompatible and even though they are proliferative at concentrations lower than 25%.

  10. DEVELOPMENT OF A COMPOSITE OF POLY-Ɛ-CAPROLACTONE-CERIUM OXIDE

    OpenAIRE

    Alejandra Melissa Martínez-Hernández; Simón Yobanny Reyes-López

    2017-01-01

    Nanotechnology is used in a variety of sectors for the manufacture of materials. However, there is a risk from exposure to nanomaterials due to their chemical composition and processing form, giving rise to health risks. CeO2 particles present antioxidant properties that accelerate the wound poly-Ɛ-caprolactone (PCL) provides the property of biocompatibility and biodegradability of the material. For the regulation of the transport and release of cerium oxide particles was incorporated into a ...

  11. Electrospun PVDF graphene oxide composite fibre mats with tunable physical properties.

    OpenAIRE

    Issa, A. A. [احمد عبد السلام عيسى; Al-Maadeed, M.A.A.S.; Mrlik, M.; Luyt,A.S.

    2016-01-01

    This article is aimed at a basic physical characterization of electrospun PVDF/graphene oxide (GO) composite non-woven fibre mats. The morphological characterization of the prepared fabrics was performed via SEM investigations. Introduction of the GO during the electrospinning process caused significant changes in the crystalline structure of PVDF, and a transformation from α- to β-crystalline phases was achieved. Addition of the GO particles into PVDF did not only improve the thermal stabili...

  12. Composite TiO2/clays materials for photocatalytic NOx oxidation

    Science.gov (United States)

    Todorova, N.; Giannakopoulou, T.; Karapati, S.; Petridis, D.; Vaimakis, T.; Trapalis, C.

    2014-11-01

    TiO2 photocatalyst received much attention for air purification applications especially for removal of air pollutants like NOx, VOCs etc. It has been established that the activity of the photocatalyst can be significantly enhanced by its immobilization onto suitable substrates like inorganic minerals, porous silica, hydroxyapatite, adsorbent materials like activated carbon, various co-catalysts such as semiconductors, graphene, reduced graphite oxide, etc. In the present work, photocatalytic composite materials consisted of mineral substrate and TiO2 in weight ratio 1:1 were manufactured and examined for oxidation and removal of nitric oxides NOx (NO and NO2). Commercial titania P25 (Evonik-Degussa) and urea-modified P25 were used as photocatalytically active components. Inorganic minerals, namely kunipia, talk and hydrotalcite were selected as supporting materials due to their layered structure and expected high NOx adsorption capability. Al3+ and Ca2+ intercalation was applied in order to improve the dispersion of TiO2 and its loading into the supporting matrix. The X-ray diffraction analysis and Scanning Electron Microscopy revealed the binary structure of the composites and homogeneous dispersion of the photocatalyst into the substrates. The photocatalytic behavior of the materials in NOx oxidation and removal was investigated under UV and visible light irradiation. The composite materials exhibited superior photocatalytic activity than the bare titania under both types of irradiation. Significant visible light activity was recorded for the composites containing urea-modified titania that was accredited to the N-doping of the semiconductor. Among the different substrates, the hydrotalcite caused highest increase in the NOx removal, while among the intercalation ions the Ca2+ was more efficient. The results were related to the improved dispersion of the TiO2 and the synergetic activity of the substrates as NOx adsorbers.

  13. SORPTION EXTRACTION OF Cu (II AND Co (II BY MODIFIED COMPOSITE BASED ON NANOPOROUS ALUMINUM OXIDE

    Directory of Open Access Journals (Sweden)

    U. E. Silina

    2013-01-01

    Full Text Available The application of modified nanoporous aluminum oxide (PAO as a composite for concentration and extraction of heavy metals is discussed in the article. There are identified the conditions for the synthesis of PAO matrix, selected the optimum surface-active agent for its modification. Spectrophotometric investigations have shown that the synthesized sorbent has complexing properties and it is suitable for concentration of metals from solutions.

  14. Electrospun carbon-tin oxide composite nanofibers for use as lithium ion battery anodes.

    Science.gov (United States)

    Bonino, Christopher A; Ji, Liwen; Lin, Zhan; Toprakci, Ozan; Zhang, Xiangwu; Khan, Saad A

    2011-07-01

    Composite carbon-tin oxide (C-SnO(2)) nanofibers are prepared by two methods and evaluated as anodes in lithium-ion battery half cells. Such an approach complements the long cycle life of carbon with the high lithium storage capacity of tin oxide. In addition, the high surface-to-volume ratio of the nanofibers improves the accessibility for lithium intercalation as compared to graphite-based anodes, while eliminating the need for binders or conductive additives. The composite nanofibrous anodes have first discharge capacities of 788 mAh g(-1) at 50 mA g(-1) current density, which are greater than pure carbon nanofiber anodes, as well as the theoretical capacity of graphite (372 mAh g(-1)), the traditional anode material. In the first protocol to fabricate the C-SnO(2) composites, tin sulfate is directly incorporated within polyacrylonitrile (PAN) nanofibers by electrospinning. During a thermal treatment the tin salt is converted to tin oxide and the polymer is carbonized, yielding carbon-SnO(2) nanofibers. In the second approach, we soak the nanofiber mats in tin sulfate solutions prior to the final thermal treatment, thereby loading the outer surfaces with SnO(2) nanoparticles and raising the tin content from 1.9 to 8.6 wt %. Energy-dispersive spectroscopy and X-ray diffraction analyses confirm the formation of conversion of tin sulfate to tin oxide. Furthermore, analysis with Raman spectroscopy reveals that the additional salt soak treatment from the second fabrication approach increases in the disorder of the carbon structure, as compared to the first approach. We also discuss the performance of our C-SnO(2) compared with its theoretical capacity and other nanofiber electrode composites previously reported in the literature.

  15. Nanoporous composites prepared by a combination of SBA-15 with Mg-Al mixed oxides. Water vapor sorption properties.

    Science.gov (United States)

    Pérez-Verdejo, Amaury; Sampieri, Alvaro; Pfeiffer, Heriberto; Ruiz-Reyes, Mayra; Santamaría, Juana-Deisy; Fetter, Geolar

    2014-01-01

    This work presents two easy ways for preparing nanostructured mesoporous composites by interconnecting and combining SBA-15 with mixed oxides derived from a calcined Mg-Al hydrotalcite. Two different Mg-Al hydrotalcite addition procedures were implemented, either after or during the SBA-15 synthesis (in situ method). The first procedure, i.e., the post-synthesis method, produces a composite material with Mg-Al mixed oxides homogeneously dispersed on the SBA-15 nanoporous surface. The resulting composites present textural properties similar to the SBA-15. On the other hand, with the second procedure (in situ method), Mg and Al mixed oxides occur on the porous composite, which displays a cauliflower morphology. This is an important microporosity contribution and micro and mesoporous surfaces coexist in almost the same proportion. Furthermore, the nanostructured mesoporous composites present an extraordinary water vapor sorption capacity. Such composites might be utilized as as acid-base catalysts, adsorbents, sensors or storage nanomaterials.

  16. Nanoporous composites prepared by a combination of SBA-15 with Mg–Al mixed oxides. Water vapor sorption properties

    Directory of Open Access Journals (Sweden)

    Amaury Pérez-Verdejo

    2014-08-01

    Full Text Available This work presents two easy ways for preparing nanostructured mesoporous composites by interconnecting and combining SBA-15 with mixed oxides derived from a calcined Mg–Al hydrotalcite. Two different Mg–Al hydrotalcite addition procedures were implemented, either after or during the SBA-15 synthesis (in situ method. The first procedure, i.e., the post-synthesis method, produces a composite material with Mg–Al mixed oxides homogeneously dispersed on the SBA-15 nanoporous surface. The resulting composites present textural properties similar to the SBA-15. On the other hand, with the second procedure (in situ method, Mg and Al mixed oxides occur on the porous composite, which displays a cauliflower morphology. This is an important microporosity contribution and micro and mesoporous surfaces coexist in almost the same proportion. Furthermore, the nanostructured mesoporous composites present an extraordinary water vapor sorption capacity. Such composites might be utilized as as acid-base catalysts, adsorbents, sensors or storage nanomaterials.

  17. Preparation and Properties of Microarc Oxidation Self-Lubricating Composite Coatings on Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Zhenwei Li

    2017-04-01

    Full Text Available Microarc oxidation (MAO coatings were prepared on 2024-T4 aluminum alloy using pulsed bipolar power supply at different cathode current densities. The MAO ceramic coatings contained many crater-like micropores and a small number of microcracks. After the MAO coatings were formed, the coated samples were immersed into a water-based Polytetrafluoroethylene (PTFE dispersion. The micropores and microcracks on the surface of the MAO coatings were filled with PTFE dispersion for preparing MAO self-lubricating composite coatings. The microstructure and properties of MAO coatings and the wear resistance of microarc oxidation self-lubricating composite coatings were analyzed by SEM, laser confocal microscope, X-ray diffractometry (XRD, Vickers hardness test, scratch test and ball-on-disc abrasive tests, respectively. The results revealed that the wear rates of the MAO coatings decreased significantly with an increase in cathode current density. Compared to the MAO coatings, the microarc oxidation self-lubricating composite coatings exhibited a lower friction coefficient and lower wear rates.

  18. Composite electrolyte with proton conductivity for low-temperature solid oxide fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Raza, Rizwan, E-mail: razahussaini786@gmail.com [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Department of Energy Technology, Royal Institute of Technology, KTH, Stockholm 10044 (Sweden); Ahmed, Akhlaq; Akram, Nadeem; Saleem, Muhammad; Niaz Akhtar, Majid; Ajmal Khan, M.; Abbas, Ghazanfar; Alvi, Farah; Yasir Rafique, M. [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Sherazi, Tauqir A. [Department of Chemistry, COMSATS Institute of Information Technology, Abbotabad 22060 (Pakistan); Shakir, Imran [Sustainable Energy Technologies (SET) center, College of Engineering, King Saud University, PO-BOX 800, Riyadh 11421 (Saudi Arabia); Mohsin, Munazza [Department of Physics, Lahore College for Women University, Lahore, 54000 (Pakistan); Javed, Muhammad Sufyan [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Department of Applied Physics, Chongqing University, Chongqing 400044 (China); Zhu, Bin, E-mail: binzhu@kth.se, E-mail: zhubin@hubu.edu.cn [Department of Energy Technology, Royal Institute of Technology, KTH, Stockholm 10044 (Sweden); Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Faculty of Physics and Electronic Science/Faculty of Computer and Information, Hubei University, Wuhan, Hubei 430062 (China)

    2015-11-02

    In the present work, cost-effective nanocomposite electrolyte (Ba-SDC) oxide is developed for efficient low-temperature solid oxide fuel cells (LTSOFCs). Analysis has shown that dual phase conduction of O{sup −2} (oxygen ions) and H{sup +} (protons) plays a significant role in the development of advanced LTSOFCs. Comparatively high proton ion conductivity (0.19 s/cm) for LTSOFCs was achieved at low temperature (460 °C). In this article, the ionic conduction behaviour of LTSOFCs is explained by carrying out electrochemical impedance spectroscopy measurements. Further, the phase and structure analysis are investigated by X-ray diffraction and scanning electron microscopy techniques. Finally, we achieved an ionic transport number of the composite electrolyte for LTSOFCs as high as 0.95 and energy and power density of 90% and 550 mW/cm{sup 2}, respectively, after sintering the composite electrolyte at 800 °C for 4 h, which is promising. Our current effort toward the development of an efficient, green, low-temperature solid oxide fuel cell with the incorporation of high proton conductivity composite electrolyte may open frontiers in the fields of energy and fuel cell technology.

  19. Fabrication of copper-ceria hybrid composite electrode for electrocatalytic oxidation of methanol

    Institute of Scientific and Technical Information of China (English)

    LI Jing; LI Lijun; YU Yuting; GAO Yanfang; LIU Jinrong

    2013-01-01

    Copper-ceria hybrid composite electrode prepared by electrochemical co-deposition was examined for their redox process and electrocatalytic activities towards the oxidation of methanol.The structure and morphology of electrodes were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM),respectively.XRD pattern of the copper-ceria hybrid composite electrode exhibited some diffraction peaks of CeO2 and SEM micrograph showed that it was composed of grains and flakes.The energy dispersive spectroscopy (EDS) spectrum of this area also showed the presence of cerium.Cyclic voltammetry,CO stripping and chronoamperometry were performed to characterize electrocatalytic property of the prepared samples.In cyclic voltammetry studies and chronoamperometry,copper-ceria hybrid composite electrode towards oxidation of methanol showed a significantly higher response and long term stability.CO stripping results indicated the facile removal of intermediate poisoning species CO in the presence of CeO2,which was helpful for CO and methanol electro-oxidation.

  20. Synthesis and properties of nanosized tin-zinc composite oxides as lithium storage materials

    Institute of Scientific and Technical Information of China (English)

    YUAN Zhengyong; YUAN Liangjie; SUN Jutang

    2007-01-01

    After preparing the precursor by a liquid precipitation method,a series of tin-zinc composite oxides with different components and structures were synthesized as the anode materials for lithium ion batteries when the precursor was pyrolyzed at different temperatures.The products were characterized by X-ray diffraction (XRD),transmission electron microscopy (TEM),and electrochemical measurements.The reversible capacity of amorphous ZnSnO3 is 844 mA.h/g in the first cycle and the charge capacity is 695 mA-h/g in the tenth cycle.The reversible capacity of ZnO.SnO2 is 845 mA.h/g in the first cycle and the charge capacity is 508 mA.h/g in the tenth cycle.The reversible capacity of SnO2-Zn2SnO4 is 758 mA.h/g in the first cycle and the charge capacity is 455 mA.h/g in the tenth cycle.Results show that amorphous ZnSnO3 exhibits the best electrochemical property among all of the tin-zinc composite oxides.With the formation of crystallites in the samples,the electrochemical property of the tin-zinc composite oxides decreases.

  1. Factors affecting the fatty acid composition and fat oxidative stability in pigs

    Directory of Open Access Journals (Sweden)

    Karel Vehovsky

    2015-03-01

    Full Text Available The aim of the study was to evaluate the effect of selected factors affecting fatty acids (FA composition in pig fat. In the experiment, the influence of nutrition, gender, carcass weight, lean meat proportion (LMP and intramuscular fat (IMF were monitored. The effect of diet, specifically the influence of added linseed or corn on the fatty acids composition in the backfat was studied in pigs. From the perspective of the required increase of polyunsaturated fatty acids (PUFA only the addition of the linseed proved to have a significant effect. Another evaluated aspect concerning the FA spectrum was the gender. While the backfat in barrows showed higher (P≤0.05 amount of monounsaturated fatty acids (MUFA, the backfat in gilts displayed a significantly higher proportion (P≤0.01 of the PUFA and total unsaturated fatty acids (UFA. A significant effect on the PUFA proportion has also been demonstrated for the lean meat proportion (LMP parameter, which therefore represents not only a qualitative carcass meat parameter but also plays an important role in relation to the FA composition in the fat in pigs. In connection to the FA proportion changes the study also monitored the fat oxidative stability with the use of the TBARS method. Concerning the oxidative stability the effects of nutrition, FA groups, gender, carcass weight and LMP were studied. The relationship between the above mentioned factors and oxidative stability was found to be insignificant.

  2. Influence of electropolishing and anodic oxidation on morphology, chemical composition and corrosion resistance of niobium

    Energy Technology Data Exchange (ETDEWEB)

    Sowa, Maciej; Greń, Katarzyna [Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100 Gliwice (Poland); Kukharenko, Andrey I. [Institute of Metal Physics, Russian Academy of Sciences-Ural Division, S. Kovalevskoi Street 18, 620990 Yekaterinburg (Russian Federation); Ural Federal University, Mira Street 19, 620002 Yekaterinburg, Mira str. 19 (Russian Federation); Korotin, Danila M. [Institute of Metal Physics, Russian Academy of Sciences-Ural Division, S. Kovalevskoi Street 18, 620990 Yekaterinburg (Russian Federation); Michalska, Joanna [Faculty of Materials Engineering and Metallurgy, Silesian University of Technology, Krasińskiego Street 8, 40-019 Katowice (Poland); Szyk-Warszyńska, Lilianna; Mosiałek, Michał [Jerzy Haber Institute of Catalysis and Surface Chemistry PAS, Niezapominajek Street 8, 30-239 Kraków (Poland); Żak, Jerzy [Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100 Gliwice (Poland); Pamuła, Elżbieta [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Mickiewicza Avenue 30, 30-059 Kraków (Poland); Kurmaev, Ernst Z. [Institute of Metal Physics, Russian Academy of Sciences-Ural Division, S. Kovalevskoi Street 18, 620990 Yekaterinburg (Russian Federation); Cholakh, Seif O. [Ural Federal University, Mira Street 19, 620002 Yekaterinburg, Mira str. 19 (Russian Federation); Simka, Wojciech, E-mail: wojciech.simka@polsl.pl [Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100 Gliwice (Poland)

    2014-09-01

    The work presents results of the studies performed on electropolishing of pure niobium in a bath that contained: sulphuric acid, hydrofluoric acid, ethylene glycol and acetanilide. After the electropolishing, the specimens were subjected to anodic passivation in a 1 mol dm{sup −3} phosphoric acid solution at various voltages. The surface morphology, thickness, roughness and chemical composition of the resulting oxide layers were analysed. Thusly prepared niobium samples were additionally investigated in terms of their corrosion resistance in Ringer's solution. The electropolished niobium surface was determined to be smooth and lustrous. The anodisation led to the growth of barrier-like oxide layers, which were enriched in phosphorus species. - Highlights: • Pure niobium was electropolished and subsequently anodised in a H{sub 3}PO{sub 4} solution. • Phosphorus was successfully introduced into the oxide layers after the treatment. • Corrosion resistance of niobium in Ringer's solution was improved after anodising.

  3. Enhanced hydrogen storage in graphene oxide-MWCNTs composite at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Aboutalebi, Seyed Hamed; Aminorroaya-Yamini, Sima; Nevirkovets, Ivan; Konstantinov, Konstantin; Liu, Hua Kun [Institute for Superconducting and Electronic Materials (ISEM), Innovation Campus, University of Wollongong, NSW 2519 (Australia)

    2012-12-15

    High hydrogen capacity (up to 2.6 wt%) is reported for highly aligned structures of Graphene oxide-Multiwalled carbon nanotubes composite at room temperature. It is demonstrated that the scalable liquid crystal route can be employed as a new method to prepare unique 3-D framework of graphene oxide layers with proper interlayer spacing as building blocks for cost-effective high-capacity hydrogen storage media. The strong synergistic effect of the intercalation of MWCNTs as 1-D spacers within graphene oxide frameworks resulted in unrivalled high hydrogen capacity at ambient temperature. The mechanisms involved in the intercalation procedure are fully discussed. The main concept behind intercalating one-dimensional spacers in between giant GO sheets represents a versatile and highly scalable route to fabricate devices with superior hydrogen uptake. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Synthesis of Tin Oxide/Carbon Nanotube Composite by Homogeneous Precipitation and Characterizations

    Science.gov (United States)

    Xie, Jining; Varadan, Vijay K.

    2004-07-01

    Nanosized tin oxide particles have shown excellent performance when used as anode material in lithium ion batteries. To further improve their electrochemical properties, functionalized carbon nanotubes were introduced during the homogenous precipitation synthesis. Various material characterization techniques such as XRD, SEM, TEM, TGA and BET were performed to check their crystalline, micro- and nano-structure, thermal stability and surface area. Compared with blank tin oxide nanoparticles, much finer tin oxide nanoparticles with higher surface area were observed with the presence of functional carbon nanotubes. It is proposed that functional carbon nanotubes play an important role for nanoparticles' nucleation, growth, coagulation processes. The potential application of this composite in lithium ion batteries is discussed.

  5. Optimized spherical manganese oxide-ferroferric oxide-tin oxide ternary composites as advanced electrode materials for supercapacitors.

    Science.gov (United States)

    Zhu, Jian; Tang, Shaochun; Vongehr, Sascha; Xie, Hao; Meng, Xiangkang

    2015-09-18

    Inexpensive MnO2 is a promising material for supercapacitors (SCs), but its application is limited by poor electrical conductivity and low specific surface area. We design and fabricate hierarchical MnO2-based ternary composite nanostructures showing superior electrochemical performance via doping with electrochemically active Fe3O4 in the interior and electrically conductive SnO2 nanoparticles in the surface layer. Optimization composition results in a MnO2-Fe3O4-SnO2 composite electrode material with 5.9 wt.% Fe3O4 and 5.3 wt.% SnO2, leading to a high specific areal capacitance of 1.12 F cm(-2) at a scan rate of 5 mV s(-1). This is two to three times the values for MnO2-based binary nanostructures at the same scan rate. The low amount of SnO2 almost doubles the capacitance of porous MnO2-Fe3O4 (before SnO2 addition), which is attributed to an improved conductivity and remaining porosity. In addition, the optimal ternary composite has a good rate capability and an excellent cycling performance with stable capacitance retention of ~90% after 5000 charge/discharge cycles at 7.5 mA cm(-2). All-solid-state SCs are assembled with such electrodes using polyvinyl alcohol/Na2SO4 electrolyte. An integrated device made by connecting two identical SCs in series can power a light-emitting diode indicator for more than 10 min.

  6. Reduced silanized graphene oxide/epoxy-polyurethane composites with enhanced thermal and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jing, E-mail: linjin00112043@126.com [School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006 (China); Zhang, Peipei [Worcester Polytechnic Institute, Worcester, MA 01605 (United States); Zheng, Cheng; Wu, Xu; Mao, Taoyan; Zhu, Mingning; Wang, Huaquan; Feng, Danyan; Qian, Shuxuan; Cai, Xianfang [School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006 (China)

    2014-10-15

    Graphical abstract: The synthesis route for EPUAs/R-Si-GEO composites. - Highlights: • Reduced silanized graphene oxide as fillers. • The graphene layers were well distributed in the epoxy-polyurethane composites. • The thermal stabilities of composites were greatly improved by incorporation of the graphene. • Mechanical properties of composites were greatly enhanced by the incorporation of the graphene. - Abstract: This paper describes the synthesis of reduced silanized graphene oxide/epoxy-polyurethane (EPUAs/R-Si-GEO) composites with enhanced thermal and mechanical properties. Graphene oxide (GEO), prepared from natural graphite flakes, was modified with methacryloxypropyltrimethoxysilane to prepare silanized GEO (Si-GEO), and was then reduced by NaHSO{sub 3} to prepare R-Si-GEO (partially reduced Si-GEO). EPAc/R-Si-GEO (R-Si-GEO/epoxy acrylate copolymers) was synthesized via an in situ polymerization of R-Si-GEO and epoxy acrylic monomers. EPUAs/R-Si-GEO was obtained by curing reaction between EPAc/R-Si-GEO and an isocyanate curing agent. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) were used to characterize the surface and crystal structure of the modified graphene and EPUAs/R-Si-GEO. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize their morphology. Thermal gravimetric analysis (TGA), tensile strength, elongation at break, and cross-linking density measurements showed that the thermal stability and mechanical properties of EPUAs/R-Si-GEO were greatly enhanced by the addition of R-Si-GEO.

  7. Study on Properties of Composite Oxides TiO2/SiO2

    Institute of Scientific and Technical Information of China (English)

    ZHOUYasong; JIANGGuowei

    2002-01-01

    The nanometer particles of TiO2 and TiO2/SiO2 oxides were prepared by sol-gel and supercritical fluid drying method.The properties of TiO2 and TiO2/SiO2 were characterized by means of BET(Brunner-Emmett-Teller method), TEM(transmission electron microscopy), SEM(Scanning electron microscopy), XRD(X-ray differaction) and FTIR(Fourier transform-infrared) techniques.The effects of different preparation route,prehydrolysis and non-prehydrolysis,on the properties of TiO2/SiO2 oxide were also examined.Experimental results show that the termal stability of pure TiO2 is improved greatly when it is mixed with SiO2 in nanometer level.The composite TiO2/SiO2 oxides form Ti-O-Si chemical bonds,which creates new Broensted acidity stes.The acidity character is related to TiO2/SiO2 chemical composition and preparation methods.The acidity of TiO2/SiO2 oxides by prehydrolysis is greater than that of by non-prehydrolysis.Ti atom is rich on the surface of TiO2/SiO2.

  8. Studies of heavy metal ion adsorption on chitosan/sulfydryl-functionalized graphene oxide composites.

    Science.gov (United States)

    Li, Xueying; Zhou, Haihui; Wu, Wenqin; Wei, Shudan; Xu, Yan; Kuang, Yafei

    2015-06-15

    Chitosan/Sulfydryl-functionalized graphene oxide composite (CS/GO-SH) was successfully synthesized via covalent modification and electrostatic self-assembly. A facile diazonium chemical process was developed to fabricate sulfydryl-functionalized graphene oxide (GO-SH) by introducing sulfydryl compounds to the graphene oxide sheets (GO), and the GO-SH was used to self-assemble with chitosan via an electrostatic interaction. The chemical structure and morphology of the CS/GO-SH composite were characterized by Fourier transformed infrared, Raman spectroscopy, scanning electron microscopy, X-ray powder diffraction and thermogravimetric examination. The results indicated that the CS/GO-SH was a new type of with multifunctional groups such as -OH, -COOH, -SH and -NH2. Simultaneously, the self-assembly of chitosan with GO-SH sheets changed the blocky structure of the CS to the loosely packed structure which is analogous to graphene oxide sheets. The resulting CS/GO-SH was used as an adsorbent material for removal of Cu (II), Pb (II) and Cd (II) in single- and multi-metal ions systems. It was found that the CS/GO-SH has potential applications in fields of adsorptive materials due to its superiority of the chemical characteristic and the specific surface area.

  9. One-pot green synthesis of silver/iron oxide composite nanoparticles for 4-nitrophenol reduction.

    Science.gov (United States)

    Chiou, Jau-Rung; Lai, Bo-Hung; Hsu, Kai-Chih; Chen, Dong-Hwang

    2013-03-15

    Silver/iron oxide composite nanoparticles have been synthesized successfully via a facile one-pot green route by the use of l-arginine, which created an aqueous solution of about pH 10 and acted as a reducing agent for the successive formation of iron oxide and Ag nanoparticles. The product was characterized to be silver-coated iron oxide and iron oxide hydroxide composite nanoparticles with a mean diameter of about 13.8 ± 3.0 nm and 8.53% of Ag in weight. It exhibited good catalytic activity for the reduction of 4-nitrophenol to 4-aminophenol with sodium borohydride. The reduction reaction followed the pseudo-first-order kinetics. The corresponding rate constants increased with the increases of temperature and catalyst amount but decreased with the increase of initial 4-NP concentration, revealing an activation energy of 28.2 kJ/mol and a diffusion controlled mechanism. In addition, this product had quite good stability. No significant activity loss was observed after reuse for 5 cycles. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Compositional analysis of polycrystalline hafnium oxide thin films by heavy-ion elastic recoil detection analysis

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, F.L. [Departamento de Electronica y Tecnologia de Computadoras, Universidad Politecnica de Cartagena, Campus Universitario Muralla del Mar, E-30202 Cartagena (Spain)]. E-mail: Felix.Martinez@upct.es; Toledano, M. [Departamento de Fisica Aplicada III, Universidad Complutense de Madrid, E-28025 Madrid (Spain); San Andres, E. [Departamento de Fisica Aplicada III, Universidad Complutense de Madrid, E-28025 Madrid (Spain); Martil, I. [Departamento de Fisica Aplicada III, Universidad Complutense de Madrid, E-28025 Madrid (Spain); Gonzalez-Diaz, G. [Departamento de Fisica Aplicada III, Universidad Complutense de Madrid, E-28025 Madrid (Spain); Bohne, W. [Hahn-Meitner-Institut Berlin, Abteilung SF-4, D-14109 Berlin (Germany); Roehrich, J. [Hahn-Meitner-Institut Berlin, Abteilung SF-4, D-14109 Berlin (Germany); Strub, E. [Hahn-Meitner-Institut Berlin, Abteilung SF-4, D-14109 Berlin (Germany)

    2006-10-25

    The composition of polycrystalline hafnium oxide thin films has been measured by heavy-ion elastic recoil detection analysis (HI-ERDA). The films were deposited by high-pressure reactive sputtering (HPRS) on silicon wafers using an oxygen plasma at pressures between 0.8 and 1.6 mbar and during deposition times between 0.5 and 3.0 h. Hydrogen was found to be the main impurity and its concentration increased with deposition pressure. The composition was always slightly oxygen-rich, which is attributed to the oxygen plasma. Additionally, an interfacial silicon oxide thin layer was detected and taken into account. The thickness of the hafnium oxide film was found to increase linearly with deposition time and to decrease exponentially with deposition pressure, whereas the thickness of the silicon oxide interfacial layer has a minimum as a function of pressure at around 1.2 mbar and increases slightly as a function of time. The measurements confirmed that this interfacial layer is formed mainly during the early stages of the deposition process.

  11. Oxidation behavior of in-situ Al2O3/TiAl composites at 900℃ in static air

    Institute of Scientific and Technical Information of China (English)

    Tao-tao Ai; Fen Wang; Xiao-ming Feng

    2009-01-01

    In-situ Al2O3/TiAl composites were successfully synthesized from the starting powders of Ti, Al, TiO2 and Nb2O5. The oxidation behavior of the composites at 900℃ in static air was investigated. The results indicate that the composite samples present a much lower oxidation mass gain. Under long-time intensive oxidation exposure, the formed oxide scale is multi-layer. The formation of the outer TiO2 layer is fine and dense, the internal Al2O3 scale has good adhesiveness with the outer TiO2 scale, and the TiO2+Al2O3 mixed layer forming the protective oxide scale is favorable for the improvement of oxidation resistance. It is believed that the incorporation of Al2O3 particulates into the metal matrix decreases the coefficient of thermal expansion of the substrate, and forms a local three-dimensional network structure that can hold the oxide scale. The formation of the oxide scale with fmer particle size, stronger adherence, less micro-defects and slower growth rate can contribute to the improvement of oxidation resistance. Nb element plays an important role in reducing the internal oxidation action of the materials, restraining the growth of TiO2 crystals andpromoting thc stable formation of the Al 2O3-riched layer,which is benfeicial to improve the oxidation properties.

  12. Synthesis and control of morphology, stoichiometry, and composition of transition metal oxides

    Science.gov (United States)

    Brier, Matthew Isaac

    Transition metal oxides (TMOs) are an important class of materials that have found uses in diverse applications, such as heterogeneous catalysts, sensors, and high temperature superconductors, due to their complex surface chemistry and high mobility of lattice oxygen atoms. Point defects such as oxygen and metal atom vacancies significantly perturb the electronic structure of TMOs and profoundly impact their electrical, optical, ferroelectric, photocatalytic, and other functional properties. As a result, significant research is being done to develop synthesis techniques that can produce metal oxides with controllable material properties. In this thesis, the use of hot wire chemical vapor deposition (HWCVD) was studied with the aim of precisely controlling the morphology, stoichiometry, and composition of TMOs. With molybdenum oxide as the model system, the control of morphology and stoichiometry was achieved by modulation of deposition parameters, such as filament power and gas phase composition. The study of HWCVD of MoOx led to the development of phase diagrams for the dependence of morphology and stoichiometry on deposition parameters. The knowledge gained studying the HWCVD of MoOx was then shown to translate to the deposition of other binary metal oxides by using tungsten, nickel, and vanadium metal filaments to synthesize their respective transition metal oxides. Additionally, NiMoO4 was synthesized as a proof-of-concept to show that HWCVD can be used to make ternary oxides. Nitridation of samples in an ammonia atmosphere was conducted to explore the potential for conversion of HWCVD grown TMOs to their respective metal nitrides, which are also reported to have catalytic properties. To examine the quality of TMOs grown by HWCVD, samples were electrochemically tested for their electrochromic properties and photoactivity with respect to splitting of water.

  13. Kinetics and mechanisms of oxidation of 2D woven C/SiC composites; 1: Experimental approach

    Energy Technology Data Exchange (ETDEWEB)

    Lamouroux, F.; Camus, G. (UMR 47, Pessac (France). Lab. des Composites Thermostructuraux); Thebault, J. (Societe Europeenne de Propulsion, Saint Medard-en-Jalles (France))

    1994-08-01

    The oxidation behavior of a 2D woven C/SiC composite partly protected with a SiC seal coating and heat-treated (stabilized) at 1,600 C in inert gas has been investigated through an experimental approach based on thermogravimetric analyses and optical/electron microscopy. Results of the tests, performed under flowing oxygen, have shown that the oxidation behavior of the composite material in terms of oxidation kinetics and morphological evolutions is related to the presence of thermal microcracks in the seal coating as well as in the matrix. Three different temperature domains exist. At low temperatures (< 800 C), the mechanisms of reaction between carbon and oxygen control the oxidation kinetics and are associated with a uniform degradation of the carbon reinforcement. At intermediate temperatures, (between 800 and 1,100 C), the oxidation kinetics are controlled by the gas-phase diffusion through a network of microcracks in the SiC coatings, resulting in a nonuniform degradation of the carbon phases. At high temperatures (> 1,100 C), such diffusion mechanisms are limited by sealing of the microcracks by silica; therefore, the degradation of the composite remains superficial. The study of the oxidation behavior of (i) the heat-treated composite in a lower oxygen content environment (dry air) and (ii) the as-processed (unstabilized) composite in dry oxygen confirms the different mechanisms proposed to explain the oxidation behavior of the composite material.

  14. Tungsten oxide-Au nanosized film composites for glucose oxidation and sensing in neutral medium

    Directory of Open Access Journals (Sweden)

    Gougis M

    2015-04-01

    Full Text Available Maxime Gougis, Dongling Ma, Mohamed Mohamedi INRS-Énergie, Matériaux et Télécommunications, Varennes, Québec, Canada Abstract: In this work, we report for the first time the use of tungsten oxide (WOx as catalyst support for Au toward the direct electrooxidation of glucose. The nanostructured WOx/Au electrodes were synthesized by means of laser-ablation technique. Both micro-Raman spectroscopy and transmission electron microscopy showed that the produced WOx thin film is amorphous and made of ultrafine particles of subnanometer size. X-ray diffraction and X-ray photoelectron spectroscopy revealed that only metallic Au was present at the surface of the WOx/Au composite, suggesting that the WOx support did not alter the electronic structure of Au. The direct electrocatalytic oxidation of glucose in neutral medium such as phosphate buffered saline (pH 7.2 solution has been investigated with cyclic voltammetry, chronoamperometry, and square-wave voltammetry. Sensitivity as high as 65.7 µA cm-2 mM-1 up to 10 mM of glucose and a low detection limit of 10 µM were obtained with square-wave voltammetry. This interesting analytical performance makes the laser-fabricated WOx/Au electrode potentially promising for implantable glucose fuel cells and biomedical analysis as the evaluation of glucose concentration in biological fluids. Finally, owing to its unique capabilities proven in this work, it is anticipated that the laser-ablation technique will develop as a fabrication tool for chip miniature-sized sensors in the near future. Keywords: Au, tungsten oxide, nanostructures, pulsed laser deposition, glucose oxidation and sensing

  15. Adsorption of uranium composites onto saltrock oxides - experimental and theoretical study.

    Science.gov (United States)

    Ivanova, Bojidarka; Spiteller, Michael

    2014-09-01

    The study encompassed experimental mass spectrometric and theoretical quantum chemical studies on adsorption of uranium species in different oxidation states of the metal ion, and oxides of UxOy(n+) type, where x = 1 or 3, y = 2 or 8, and n = 0, 1 or 2 onto nanosize-particles of saltrock oxides MO (M = Mg(II), Ca(II), Ni(II), Co(II), Sr(II) or Ba(II)), M2Oy (M = Au(III) or Ag(I), y = 3 or 1) silicates 3Al2O3.2SiO2, natural kaolinite (Al2O2·2SiO2·2H2O), illite (K0.78Ca0.02Na0.02(Mg0.34Al1.69Fe(III)0.02)[Si3.35Al0.65]O10(OH)2·nH2O), CaSiO3, 3MgO·4SiO2,H2O, and M(1)M(2)(SiO4)X2 (M(1) = M(2) = Al or M(1) = K, M(2) = Al, X = F or Cl), respectively. The UV-MALDI-Orbitrap mass spectrometry was utilized in solid-state and semi-liquid colloidal state, involving the laser ablation at λex = 337.2 nm. The theoretical modeling and experimental design was based on chemical-, physico-chemical, physical and biological processes involving uranium species under environmental conditions. Therefore, the results reported are crucial for quality control and monitoring programs for assessment of radionuclide migration. They impact significantly the methodology for evaluation of human health risk from radioactive contamination. The study has importance for understanding the coordination and red-ox chemistry of uranium compounds as well. Due to the double nature of uranium between rare element and superconductivity like materials as well as variety of oxidation states ∈ (+1)-(+6), the there remain challenging areas for theoretical and experimental research, which are of significant importance for management of nuclear fuel cycles and waste storage.

  16. Effectiveness of composition based on oxidized dextran in the treatment of grade IIIB skin burns.

    Science.gov (United States)

    Shkurupy, V A; Karpov, M A; Troitskii, A V; Arkhipov, S A; Neshchadim, D V

    2015-03-01

    Grade IIIB skin burns were treated with a composition based on oxidized dextran with a molecular weight of 40 kDa (oxidation of 7% glucose residues). On day 32 after burn infliction and from the start of the treatment, the area of skin defect in rats was 30% less than in the group without treatment and by 2.3 times less than in rats treated with panthenol. In rats treated with dextran-based composition or panthenol, the eschar was absent on day 21 after the start of the treatment; by day 32, we found cells of surface epithelium, hair follicles, and sebaceous glands above the scar tissue that were absent in untreated animals; in rats treated with the composition, their number was higher by 2.5 times than in animals treated with panthenol. Treatment with the composition increased volume density (by 2.5 times) and numerical density (by more than 3 times) of blood vessels in the wound and reduced signs of inflammation and fibroplastic activity of fibroblasts in comparison with the corresponding parameters in untreated animals or animals treated with panthenol.

  17. Controllable reduction of graphene oxide and its application during the fabrication of high dielectric constant composites

    Science.gov (United States)

    Liu, Hui; Xu, Peng; Yao, Haibo; Chen, Wenhui; Zhao, Jianying; Kang, Chuanqing; Bian, Zheng; Gao, Lianxun; Guo, Haiquan

    2017-10-01

    The synthesis of reduced graphene oxide (RGO) with various reduction extents was carried out in organic solvent using 1,4-diiodobutane as the reducing agent at moderate temperatures. Results showed that the C/O ratio of RGO nanosheet surface could be tailored by adjusting the ratio of graphene oxide (GO) and reducing agent. The controllable reduction strategy was applied to the fabrication of high dielectric constant graphene/polyimide composites via the in situ reduction of GO. The reduction extents of RGO in polymer matrix can be readily manipulated just through altering the addition of the reducing agent. The dielectric constants of gaphene/polyimide composites were significantly enhanced with the increasing of the reduction extent of RGO. Moreover, the mechanical properties of the composites were also affected by the reduction extent of RGO due to the decreases of the oxygen functional groups of RGO surface. Hence, the in situ controllable reduction of GO should be quite an ideal method for the fabrication of high dielectric constant composites with the tunable combination properties.

  18. Montmorillonite/graphene oxide/chitosan composite: Synthesis, characterization and properties.

    Science.gov (United States)

    Yadav, Mithilesh; Ahmad, Sharif

    2015-08-01

    The present work reports the successful preparation, thermal and mechanical characterization of high performance films of Na(+) montmorillonite (MMT)/graphene oxide (GO)/chitosan (CS) composite using simple solution mixing evaporation method. The formations of films were verified by Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy. The thermal stability and mechanical properties of these films were investigated by thermogravimetric analysis (TGA) and mechanical testing (Instron 8871). The results obtained from these studies revealed that the composites of chitosan, MMT, and graphene oxide were homogeneous in nature. A synergistic effect of MMT and GO reinforcing on chitosan matrix was observed for the first time, in case of 5 wt.% MMT and 1 wt.% GO. The tensile strength of (5 wt.%) MMT/(1 wt.%) GO/CS composite was formed 9±0.23% and 27±0.25% higher than that of the (1 wt.%) GO/CS composite and chitosan, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Zirconium oxide nanotube-Nafion composite as high performance membrane for all vanadium redox flow battery

    Science.gov (United States)

    Aziz, Md. Abdul; Shanmugam, Sangaraju

    2017-01-01

    A high-performance composite membrane for vanadium redox flow battery (VRB) consisting of ZrO2 nanotubes (ZrNT) and perfluorosulfonic acid (Nafion) was fabricated. The VRB operated with a composite (Nafion-ZrNT) membrane showed the improved ion-selectivity (ratio of proton conductivity to permeability), low self-discharge rate, high discharge capacity and high energy efficiency in comparison with a pristine commercial Nafion-117 membrane. The incorporation of zirconium oxide nanotubes in the Nafion matrix exhibits high proton conductivity (95.2 mS cm-1) and high oxidative stability (99.9%). The Nafion-ZrNT composite membrane exhibited low vanadium ion permeability (3.2 × 10-9 cm2 min-1) and superior ion selectivity (2.95 × 107 S min cm-3). The VRB constructed with a Nafion-ZrNT composite membrane has lower self-discharge rate maintaining an open-circuit voltage of 1.3 V for 330 h relative to a pristine Nafion membrane (29 h). The discharge capacity of Nafion-ZrNT membrane (987 mAh) was 3.5-times higher than Nafion-117 membrane (280 mAh) after 100 charge-discharge cycles. These superior properties resulted in higher coulombic and voltage efficiencies with Nafion-ZrNT membranes compared to VRB with Nafion-117 membrane at a 40 mA cm-2 current density.

  20. Polypyrrole/hexadecylpyridinium chloride-modified graphite oxide composites: Fabrication, characterization, and application in supercapacitors

    Science.gov (United States)

    Feng, Huixia; Wang, Bin; Tan, Lin; Chen, Nali; Wang, Nuoxin; Chen, Baiyi

    2014-01-01

    We report a facile and effective method for synthesizing polypyrrole/modified graphite oxide (PPy/MGO) composites by in situ polymerization. The graphite oxide (GO) is modified with hexadecylpyridinium chloride (CPC) and then composited with PPy. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) results demonstrate that PPy chains may combine with CPC molecule via π-π stacking interaction and the structures of PPy/GO and PPy/MGO composites are completely different. Cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectrum (EIS) tests indicate that, at the current density of 1 A g-1, the specific capacitance and energy density of PPy/MGO are 202 F g-1 and 8.49 Wh kg-1 in three-electrode systems and those are 87 F g-1 and 10 Wh kg-1 in two-electrode systems; the capacitance retention of PPy/MGO is 83.8% after 1000 cycles at a scan rate of 1 A g-1; PPy/MGO also exhibited excellent energy performance from Ragone charts. Based on these properties, the PPy/MGO composites may become a promising material for supercapacitor applications.