WorldWideScience

Sample records for superconducting oxide composite

  1. Composite superconducting wires produced by rapid coating in Bi-Sr-Ca-Cu-O metal oxide system

    International Nuclear Information System (INIS)

    Grozav, A.D.; Konopko, L.A.; Leoporda, N.I.

    1989-01-01

    Method for producing superconducting composite wires by dip coating of copper wires in metal-oxide BiSrCaCu 2 O x melt is developed. The thickness of the coating is regulated by the change of dip rate, melt viscosity and by the number of passages through the melt. Wire annealing at 700-800 deg C leads to the production of two phases, one of them being superconducting with T c =80K

  2. Oxide superconducting ribbon and its fabrication process

    International Nuclear Information System (INIS)

    Belouet, C.

    1990-01-01

    A film without cavities, of perovskite type superconducting oxide is deposited by melting on a metal or composite flexible substrate with a rectangular cross section. The film thickness is comprised between 1 and 100 micrometers and orientation of C axis of superconducting crystals is perpendicular to the subtrate [fr

  3. Superconducting composites materials

    International Nuclear Information System (INIS)

    Kerjouan, P.; Boterel, F.; Lostec, J.; Bertot, J.P.; Haussonne, J.M.

    1991-01-01

    The new superconductor materials with a high critical current own a large importance as well in the electronic components or in the electrotechnical devices fields. The deposit of such materials with the thick films technology is to be more and more developed in the years to come. Therefore, we tried to realize such thick films screen printed on alumina, and composed mainly of the YBa 2 Cu 3 O 7-δ material. We first realized a composite material glass/YBa 2 Cu 3 O 7-δ , by analogy with the classical screen-printed inks where the glass ensures the bonding with the substrate. We thus realized different materials by using some different classes of glass. These materials owned a superconducting transition close to the one of the pure YBa 2 Cu 3 O 7-δ material. We made a slurry with the most significant composite materials and binders, and screen-printed them on an alumina substrate preliminary or not coated with a diffusion barrier layer. After firing, we studied the thick films adhesion, the alumina/glass/composite material interfaces, and their superconducting properties. 8 refs.; 14 figs.; 9 tabs [fr

  4. Manufacturing of superconductive silver/ceramic composites

    DEFF Research Database (Denmark)

    Seifi, Behrouz; Bech, Jakob Ilsted; Eriksen, Morten

    2000-01-01

    Manufacturing of superconducting metal/ceramic composites is a rather new discipline within materials forming processes. High Temperature SuperConductors, HTSC, are manufactured applying the Oxide-Powder-In-Tube process, OPIT. A ceramic powder containing lead, calcium, bismuth, strontium, and cop......Manufacturing of superconducting metal/ceramic composites is a rather new discipline within materials forming processes. High Temperature SuperConductors, HTSC, are manufactured applying the Oxide-Powder-In-Tube process, OPIT. A ceramic powder containing lead, calcium, bismuth, strontium...

  5. Superconducting composite for magnetic bearings

    International Nuclear Information System (INIS)

    Rigney, T.K. II.

    1995-01-01

    A composite includes granules of Type II superconducting material and granules of rare-earth permanent magnets that are distributed in a binder. The composite is a two-phase structure that combines the properties of the superconductor and magnets with the flexibility and toughness of a polymeric material. A bearing made from this composite has the load capacity and stiffness of a permanent magnet bearing with added stability from a Type II superconducting material. 7 figs

  6. Microimpurity composition of superconducting ceramics

    International Nuclear Information System (INIS)

    Zhiglov, Yu.S.; Poltoratskij, Yu.B.; Protsenko, A.N.; Tuchin, O.V.

    1989-01-01

    Using laser mass spectrometry, the microimpurity composition of YBa 2 Cu 3 O 7-y superconducting ceramics, prepared by routine solid-phase synthesis from extremely pure yttrium and copper oxides and BaCO 3 , is determined. The presence of F, Na, Al, P, Cl, S, K, Ca impurities, which concentration in specimens varies within 10 -3 +5x10 -3 at.% and also Si, Sr, Fe of about 1x10 -1 at.% is established. It is difficult to determine concentrations of C, N, H 2 O impurities because of the presence of background signals of residual gases in the chamber. Using the method of Auger electron spectroscopy, a surface layer of HTSC ceramics grain is studied. The availability of chlorine impurity, which amount considerably exceeds its volume concentration, is determined in near the surface layer. 2 refs.; 2 figs

  7. Critical energy of superconducting composites

    International Nuclear Information System (INIS)

    Jayakumar, R.

    1987-01-01

    The stability of superconducting composites is studied in one-dimensional geometry and critical quench energies are calculated by solving for the steady state temperature profile which gives the minimum energy. The present calculations give lower values for the critical energy than previous estimates. The calculations are shown to be applicable to both direct cooled and impregnated conductors. Critical energies are also calculated including the effect of temperature dependence of conductor properties. (author)

  8. Composition superconductive plumbous coatings

    International Nuclear Information System (INIS)

    Volodin, V.N.; Tuleushev, A.Zh.; Tuleushev, Yu.Zh.; Lisizin, V.N.

    2002-01-01

    Independent dispersion of two or more targets, precipitation of pulverized material on substrate and possibility of composition change in wide range of component concentrations made possible ion-plasma forming of film composition materials from materials with different chemical and physical qualities, particularly in lead-aluminum, lead-beryllium and lead-graphite systems. Named systems are characterized in wide sphere of immiscibility in solid and liquid state and absence of intermediate compounds. It is impossible to receive materials from them in traditional method in conditions of gravitational field. In lead-aluminum system there was received a number of film coatings with aluminum content up to 95 at. % at coating thickness up to 2 μm. Owing to X-ray investigations it is fixed that lead and aluminum have been performed by separate phases. Lead in sprayed layer represents well-crystallized phase with grain size more than 100 nm; texturing is not found. Study of physical qualities has shown that materials with lead base 21.6 at. % Al) have enough high crystalline current in comparison with compact lead, which reaches (2.5-3.0)·10 5 A)·cm 2 , while materials with aluminum base (21.6 at. % Al) loose this effect and critical temperature of transition is reduced from 7.1 to 5.8 K. It was impossible to carry out X-rayed analysis for lead-beryllium film because of weak intensity of beryllium lines against a background of lead owing to a quite large difference of atomic balance. Cryogen tests have shown the increase of critical current strength up to (3.1-3.6)·10 4 A)·cm 2 or composition coating of lead-beryllium (56.99 at. % or 5,45 mas. % Be), at that the critical temperature of transition does not differ from lead temperature. Samples of lead edge of state diagram have been received in the lead-graphite system. X-ray investigation subjected coating contained 6.81 at. % (55.82 mas. %) of lead. Choice of the composition is conditioned on possibilities of

  9. Superconducting composites materials. Materiaux composites supraconducteurs

    Energy Technology Data Exchange (ETDEWEB)

    Kerjouan, P; Boterel, F; Lostec, J; Bertot, J P; Haussonne, J M [Centre National d' Etudes des Telecommunications (CNET), 22 - Lannion (FR)

    1991-11-01

    The new superconductor materials with a high critical current own a large importance as well in the electronic components or in the electrotechnical devices fields. The deposit of such materials with the thick films technology is to be more and more developed in the years to come. Therefore, we tried to realize such thick films screen printed on alumina, and composed mainly of the YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} material. We first realized a composite material glass/YBa{sub 2}Cu{sub 3}O{sub 7-{delta}}, by analogy with the classical screen-printed inks where the glass ensures the bonding with the substrate. We thus realized different materials by using some different classes of glass. These materials owned a superconducting transition close to the one of the pure YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} material. We made a slurry with the most significant composite materials and binders, and screen-printed them on an alumina substrate preliminary or not coated with a diffusion barrier layer. After firing, we studied the thick films adhesion, the alumina/glass/composite material interfaces, and their superconducting properties. 8 refs.; 14 figs.; 9 tabs.

  10. Limiting currents in superconducting composites

    International Nuclear Information System (INIS)

    Keilin, V.E.; Romanovskii, V.R.

    1992-01-01

    In this paper the results of numerical and analytical calculations of the process of current charging into a round superconducting composite with properties homogenized over cross-section are presented. In the numerical solution taken was into account a common proceeding of the thermal and electromagnetic processes. A wire with real volt-ampere characteristics approximated by exponential dependence was considered. The calculations carried out at various rates of current charging, voltampere characteristics, matrix materials, heat transfer coefficients and other parameters showed: the existence of characteristic limiting value of current below which the wire remains in a superconducting state if the current charging ceases and above which changes into a normal state; this current is somewhat less than a quench current; the existence of finite value for limiting current at any low heat transfer from a surface. The analytical solution of the problem is given. It permitted to write the stability criterion from which the dependence of limiting currents on initial parameters follows. The wire nonisothermality, its heat capacity, thermal and electric conductivities are taken into account additionally, as compared to results published earlier

  11. Y-Ba-Cu-O superconducting film on oxidized silicon

    International Nuclear Information System (INIS)

    Gupta, R.P.; Khokle, W.S.; Dubey, R.C.; Singhal, S.; Nagpal, K.C.; Rao, G.S.T.; Jain, J.D.

    1988-01-01

    We report thick superconducting films of Y-Ba-Cu-O on oxidized silicon substrates. The critical temperatures for onset and zero resistance are 96 and 77 K, respectively. X-ray diffraction analysis predicts 1, 2, 3 composition and orthorhombic phase of the film

  12. Composite conductor containing superconductive wires

    Energy Technology Data Exchange (ETDEWEB)

    Larson, W.L.; Wong, J.

    1974-03-26

    A superconductor cable substitute made by coworking multiple rods of superconductive niobium--titanium or niobium--zirconium alloy with a common copper matrix to extend the copper and rods to form a final elongated product which has superconductive wires distributed in a reduced cross-section copper conductor with a complete metallurgical bond between the normal-conductive copper and the superconductor wires contained therein is described. The superconductor cable can be in the form of a tube.

  13. Laser patterning of superconducting oxide films

    International Nuclear Information System (INIS)

    Gupta, A.; Hussey, B.W.; Koren, G.; Cooper, E.I.; Jagannathan, R.

    1988-01-01

    The focused output of an argon ion laser (514.5 nm) has been used for wiring superconducting lines of Y/sub 1/Ba/sub 2/CU/sub 3/O/sub 7-δ/ using films prepared from nitrate and trifluoroacetate solution precursors. A stoichiometric solution of the precursors is sprayed or spun on to the substrate to form a film. The film is patterned by irradiating in selected areas to convert the irradiated layers to an intermediate oxide or fluoride state, the nonirradiated areas being unchanged. The nonirradiated areas are then dissolved away, leaving a pattern of the oxide or fluoride material. This patterned layer is converted to the superconducting 1-2-3 oxide in a subsequent annealing step. Maskless patterning of superconducting films has also been demonstrated by laser-assisted etching of the films in aqueous KOH solution. Although superconductivity is destroyed when the films are placed in solution, it can be restored after a brief anneal in oxygen

  14. Thermal cycling in multifilamentary superconducting composites

    International Nuclear Information System (INIS)

    Aragao, E.E.A. de.

    1984-01-01

    NbTi-Cu multifilamentary superconducting composites were embedded, polished, characterized by microscopic techniques, and analyzed in a qualitative and semiquantitative way by energy dispersion technique. The superconductors were submitted to thermal cycling between the ambient temperature and the boiling point of helium (4.2K), for different number of cycles. The aims were to study the correlation between the possible microstructural damages due to thermal stresses arising in the composite during cycling and the variation of properties of the material with the number of cycles as well as to verify the validity of an elastic model for thermal stresses for low temperature cycles. (author)

  15. Charge Aspects of Composite Pair Superconductivity

    Science.gov (United States)

    Flint, Rebecca

    2014-03-01

    Conventional Cooper pairs form from well-defined electronic quasiparticles, making the internal structure of the pair irrelevant. However, in the 115 family of superconductors, the heavy electrons are forming as they pair and the internal pair structure becomes as important as the pairing mechanism. Conventional spin fluctuation mediated pairing cannot capture the direct transition from incoherent local moments to heavy fermion superconductivity, but the formation of composite pairs favored by the two channel Kondo effect can. These composite pairs are local d-wave pairs formed by two conduction electrons in orthogonal Kondo channels screening the same local moment. Composite pairing shares the same symmetries as magnetically mediated pairing, however, only composite pairing necessarily involves a redistribution of charge within the unit cell originating from the internal pair structure, both as a monopole (valence change) and a quadrupole effect. This redistribution will onset sharply at the superconducting transition temperature. A smoking gun test for composite pairing is therefore a sharp signature at Tc - for example, a cusp in the Mossbauer isomer shift in NpPd5Al2 or in the NQR shift in (Ce,Pu)CoIn5.

  16. Method of preparing composite superconducting wire

    International Nuclear Information System (INIS)

    Verhoeven, J. D.; Finnemore, D. K.; Gibson, E. D.; Ostenson, J. E.; Schmidt, F. A.

    1985-01-01

    An improved method of preparing composite multifilament superconducting wire of Nb 3 Sn in a copper matrix which eliminates the necessity of coating the drawn wire with tin. A generalized cylindrical billet of an alloy of copper containing at least 15 weight percent niobium, present in the copper as discrete, randomly distributed and oriented dendritic-shaped particles, is provided with at least one longitudinal opening which is filled with tin to form a composite drawing rod. The drawing rod is then drawn to form a ductile composite multifilament wire containing a filament of tin. The ductile wire containing the tin can then be wound into magnet coils or other devices before heating to diffuse the tin through the wire to react with the niobium forming Nb 3 Sn. Also described is an improved method for making large billets of the copper-niobium alloy by consumable-arc casting

  17. High critical temperature superconducting composite and fabrication process

    International Nuclear Information System (INIS)

    Dubots, P.; Legat, D.

    1989-01-01

    The core comprises a high temperature superconducting sintered oxide coated with alumina or barium oxide covered with a first sheath in aluminum, a second sheath in niobium and a third sheath in copper [fr

  18. Fine filament NbTi superconductive composite

    International Nuclear Information System (INIS)

    Hong, S.; Grabinsky, G.; Marancik, W.; Pattanayak, D.

    1986-01-01

    The large superconducting magnet for the high energy physics accelerator requires fine filament composite to minimize the field error due to the persistent current in the filaments. New concepts toward the fine filament composite and its cable fabrication are discussed. Two-stage cables of fine wire with intermediate number of filaments were introduced. The first stage was six wires cables around one and in the second stage this was used to produce a Rutherford cable. The advantage of this process is in the ease of billet fabrication since the number of filaments in a single wire is within the range of easy billet fabrication. The disadvantage is in the cable fabrication. One of the major concerns in the fabrication of fine NbTi filaments composite in a copper matrix is the intermetallic compound formation during the extrusion and heat treatment steps. The hard intermetallic particles degrade the uniformity of the filaments and reduce the critical current density. The process of using Nb barrier between the filaments and copper matrix in order to prevent this CuTi intermetallic particle formation is described

  19. Radiation resistant organic composites for superconducting fusion magnets

    International Nuclear Information System (INIS)

    Nishijima, S.; Okada, T.

    1993-01-01

    Organic composite materials (usually reinforced by glas fibers: GFRP) are to be used in fusion superconducting magnets as insulating and/or structural materials. The fusion superconducting magnets are operated under radiation environments and hence the radiation induced degradation of magnet components is ought to be estimated. Among the components the organic composite materials were evaluated to be the most radiation sensitive. Consequently the development of radiation resistant organic composite materials is thought one of the 'key' technologies for fusion superconducting magnets. The mechanism of radiation-induced degradation was studied and the degradation of interlaminar shear strength (ILSS) was found to be the intrinsic phenomenon which controlled the overall degradation of organic composite materials. The degradation of ILSS was studied changing matrix resin, reinforcement and type of fabrics. The possible combination of the organic composites for the fusion superconducting magnet will be discussed. (orig.)

  20. Nano-fabricated superconducting radio-frequency composites, method for producing nano-fabricated superconducting rf composites

    Science.gov (United States)

    Norem, James H.; Pellin, Michael J.

    2013-06-11

    Superconducting rf is limited by a wide range of failure mechanisms inherent in the typical manufacture methods. This invention provides a method for fabricating superconducting rf structures comprising coating the structures with single atomic-layer thick films of alternating chemical composition. Also provided is a cavity defining the invented laminate structure.

  1. Ceramic superconductor/metal composite materials employing the superconducting proximity effect

    Science.gov (United States)

    Holcomb, Matthew J.

    2002-01-01

    Superconducting composite materials having particles of superconducting material disposed in a metal matrix material with a high electron-boson coupling coefficient (.lambda.). The superconducting particles can comprise any type of superconductor including Laves phase materials, Chevrel phase materials, A15 compounds, and perovskite cuprate ceramics. The particles preferably have dimensions of about 10-500 nanometers. The particles preferably have dimensions larger than the superconducting coherence length of the superconducting material. The metal matrix material has a .lambda. greater than 0.2, preferably the .lambda. is much higher than 0.2. The metal matrix material is a good proximity superconductor due to its high .lambda.. When cooled, the superconductor particles cause the metal matrix material to become superconducting due to the proximity effect. In cases where the particles and the metal matrix material are chemically incompatible (i.e., reactive in a way that destroys superconductivity), the particles are provided with a thin protective metal coating. The coating is chemically compatible with the particles and metal matrix material. High Temperature Superconducting (HTS) cuprate ceramic particles are reactive and therefore require a coating of a noble metal resistant to oxidation (e.g., silver, gold). The proximity effect extends through the metal coating. With certain superconductors, non-noble metals can be used for the coating.

  2. Determination of copper oxidizing power in superconducting yttrium ceramics

    International Nuclear Information System (INIS)

    Pontaler, R.P.; Lebed', N.B.

    1989-01-01

    A new photometric method for determining the formal copper degree of oxidation and oxygen deficiency in superconducting high-temperature oxides containing yttrium, barium and copper is developed. The method is based on oxidation of Co(2) complex with EDTA by Cu(3) ions in acetrate buffer solution with pH 4.2-4.7 and allows one to determine 1-10% of Cu(3). Relative standard deviation when determining Cu(3) makes up 0.03-0.05. Using a qualitative reaction with the application of sodium vanadate hydrochloride solution the absence of peroxide compound in superconducting yttrium ceramics is ascertained

  3. Superconducting oxide thin films by ion beam sputtering

    International Nuclear Information System (INIS)

    Kobrin, P.H.; DeNatale, J.F.; Housley, R.M.; Flintoff, J.F.; Harker, A.B.

    1987-01-01

    Superconducting thin films of ternary copper oxides from the Y-Ba-Cu-O and La-Sr-Cu-O systems have been deposited by ion beam sputtering of ceramic targets. Crystallographic orientation of the polycrystalline films has been shown to vary with substrate identity, deposition temperature and annealing temperature. The onset of the superconductive transition occurs near 90K in the Y-Ba-Cu-O system. Fe impurities of < 0.2% have been found to inhibit the superconducting transition, probably by migrating to the grain boundaries

  4. Analysis of thermodynamic properties for high-temperature superconducting oxides

    International Nuclear Information System (INIS)

    Kushwah, S.S.; Shanker, J.

    1993-01-01

    Analysis of thermodynamic properties such as specific heat, Debye temperature, Einstein temperature, thermal expansion coefficient, bulk modulus, and Grueneisen parameter is performed for rare-earth-based, Tl-based, and Bi-based superconducting copper oxides. Values of thermodynamic parameters are calculated and reported. The relationship between the Debye temperature and the superconducting transition temperature is used to estimate the values of T c using the interaction parameters from Ginzburg. (orig.)

  5. Raman scattering and luminescence of high-Tc superconducting oxides

    International Nuclear Information System (INIS)

    Eremenko, V.V.; Gnezdilov, V.P.; Fomin, V.I.; Fugol', I.Ya.; Samovarov, V.N.

    1989-01-01

    Raman and luminescence spectra of high-T c superconducting oxides are summarized, mainly YBa 2 Cu 3 O 7-σ and partly La 2-x Ba x CuO 4-σ . In raman spectra we succeeded to distinguish electron scattering to define the energy gap Δ in the superconducting state. The luminescence spectra are due to the emission of oxygen and interaction with conduction electrons. 70 refs.; 13 figs

  6. Composite elements with superconducting ceramic materials and preparation process

    International Nuclear Information System (INIS)

    Drifford, M.; Lambard, J.

    1990-01-01

    Supraconducting ceramic powder is introduced in a ductile metal with an open porosity, then the tube is sealed at both ends and necked to form a composite element which is sintered and the ceramic becomes superconductive by gaseous diffusion. Then the composite element can be placed into a gasproof cladding [fr

  7. Use of neutron diffraction in determining strains in high-temperaure superconducting composites

    International Nuclear Information System (INIS)

    Hitterman, R.L.; Faber, J. Jr.; Kupperman, D.S.; Singh, J.P.; Majumdar, S.

    1990-01-01

    The Argonne Intense Pulsed Neutron Source and General Purpose Powder Diffractometer have been used to study high T c metal oxide composites composed of yttrium barium copper oxide and silver. Neutron diffraction techniques were applied to composites with 15, 20 and 30% silver content by volume. The authors have observed that after hot pressing, the 30% Ag specimens contained both orthorhombic high T c and tetragonal, non-superconducting phases near the center of the specimens but only tetragonal near the surface. The relationship of shifts in Bragg peaks to strains of the constituents is discussed

  8. Filament bundle location influence on coupling losses in superconducting composites

    International Nuclear Information System (INIS)

    Ito, Daisuke; Koizumi, Misao; Hamajima, Takataro; Nakane, Fumoto.

    1983-01-01

    The ac losses in multifilamentary superconducting composites with different superconducting filament bundle positions have been measured using the magnetization method in order to reveal the relation between filament bundle position and coupling losses. Loss components depending on dB/dt in a mixed matrix superconducting composite, whose filament bundle is located in a central region surrounded by an outer stabilizing copper sheath, has been compared with another superconducting composite whose stabilizing copper is located in a central region surrounded by an outer filament bundle. In both conductors, key parameters, such as filament twistpitch, wire diameter and amount of copper stabilizer, were almost the same. Applied magnetic field is 2 Tesla with 0.05-2 Tesla/sec field change rate. Experimental results indicate that coupling losses between filaments in the composite with the filament bundle located in the central region is smaller than the composite with the filament bundle located in the outer region. A similar conclusion was reached theoretically by B. Truck. Coupling loss values obtained by the experiment show good agreement with calculated values with the equations proposed by B. Truck. It is also pointed out that a copper stabilizer, divided by the CuNi barrier into small regions, like a honeycomb, causes anomalous increasing in the copper resistivity due to Ni diffusion during heat treatment. (author)

  9. Oxygen stoichiometry and the high Tc superconducting oxides

    International Nuclear Information System (INIS)

    Tarascon, J.M.; Bagley, B.G.

    1989-01-01

    Methods for determining the oxygen content in high Tc materials, such as thermogravimetric analysis and chemical analysis, are discussed. Consideration is given to La-based cuprates, Y-based cuprates, and Bi-based cuprates. Superconducting transition temperatures are analyzed as a function of the Cu(1)-O(4) bond lengths for several different compositions in the Y-based system. 28 references

  10. Structural phase transitions and superconductivity in lanthanum copper oxides

    International Nuclear Information System (INIS)

    Crawford, M.K.; Harlow, R.L.; McCarron, E.M.

    1996-01-01

    Despite the enormous effort expended over the past ten years to determine the mechanism underlying high temperature superconductivity in cuprates there is still no consensus on the physical origin of this fascinating phenomenon. This is a consequence of a number of factors, among which are the intrinsic difficulties in understanding the strong electron correlations in the copper oxides, determining the roles played by antiferromagnetic interactions and low dimensionality, analyzing the complex phonon dispersion relationships, and characterizing the phase diagrams which are functions of the physical parameters of temperature and pressure, as well as the chemical parameters of stoichiometry and hole concentration. In addition to all of these intrinsic difficulties, extrinsic materials issues such as sample quality and homogeneity present additional complications. Within the field of high temperature superconductivity there exists a subfield centered around the material originally reported to exhibit high temperature superconductivity by Bednorz and Mueller, Ba doped La 2 CuO 4 . This is structurally the simplest cuprate superconductor. The authors report on studies of phase differences observed between such base superconductors doped with Ba or Sr. What these studies have revealed is a fascinating interplay of structural, magnetic and superconducting properties which is unique in the field of high temperature superconductivity and is summarized in this paper

  11. Methods for forming complex oxidation reaction products including superconducting articles

    International Nuclear Information System (INIS)

    Rapp, R.A.; Urquhart, A.W.; Nagelberg, A.S.; Newkirk, M.S.

    1992-01-01

    This patent describes a method for producing a superconducting complex oxidation reaction product of two or more metals in an oxidized state. It comprises positioning at least one parent metal source comprising one of the metals adjacent to a permeable mass comprising at least one metal-containing compound capable of reaction to form the complex oxidation reaction product in step below, the metal component of the at least one metal-containing compound comprising at least a second of the two or more metals, and orienting the parent metal source and the permeable mass relative to each other so that formation of the complex oxidation reaction product will occur in a direction towards and into the permeable mass; and heating the parent metal source in the presence of an oxidant to a temperature region above its melting point to form a body of molten parent metal to permit infiltration and reaction of the molten parent metal into the permeable mass and with the oxidant and the at least one metal-containing compound to form the complex oxidation reaction product, and progressively drawing the molten parent metal source through the complex oxidation reaction product towards the oxidant and towards and into the adjacent permeable mass so that fresh complex oxidation reaction product continues to form within the permeable mass; and recovering the resulting complex oxidation reaction product

  12. Production of superconducting ceramic oxides by coprecipitation

    International Nuclear Information System (INIS)

    Bizaio, L.R.; Lima, M.A.F. de; Figueiredo Jardim, R.de; Pinheiro, E.A.; Galembeck, F.

    1988-01-01

    An alternative method for production of ceramic oxides is described. The method consist in the coprecipitation reaction of metallic ions with oxalic acid. The obtainment samples present additional phases characterized by X-rays and optical microscopy. (C.G.C.) [pt

  13. Superconductivity

    International Nuclear Information System (INIS)

    Taylor, A.W.B.; Noakes, G.R.

    1981-01-01

    This book is an elementray introduction into superconductivity. The topics are the superconducting state, the magnetic properties of superconductors, type I superconductors, type II superconductors and a chapter on the superconductivity theory. (WL)

  14. Contributions to the study of superconducting multifilamentary composites and cables

    International Nuclear Information System (INIS)

    Turck, B.

    1992-03-01

    This report is a collection of published papers in French and in English on superconducting composites and cables. All domains concerning the behaviour of superconductors in coils for field generation have been covered: critical current, current distribution, instabilities, losses in varying field. This document provides with expressions and criteria for conductor design, with conditions for achieving given performances and with criteria for design and optimization of structures of multifilamentary composites and cables. These publications have played a determining role in the understanding of the behaviour of superconductors and in their use in high performing magnets

  15. Fabrication and characterizations of high-Tc superconducting ceramic/polymer 0--3 composites

    International Nuclear Information System (INIS)

    Du, J.; Unsworth, J.

    1994-01-01

    High-T c superconducting ceramic YBa 2 Cu 3 O 7-x /thermosetting plastic 0--3 composites were fabricated. The structure, physical property, magnetic susceptibility, levitation, and mechanical strength of the composites were accessed. The influence of filler content on these properties was also studied. Although the 0--3 composites lack an electrical superconducting path through materials, the intrinsic diamagnetic properties were preserved. The magnetic superconducting transition temperature was not degraded. The values of magnetic susceptibility and levitation force for the composites were basically proportional to the actual volume fraction of superconducting filler. These new composite materials are most suitable for the applications in levitating vehicles and mechanical bearings

  16. Understanding the superconductivity in copper oxides

    CERN Document Server

    2019-01-01

    The aim of this book is to clarify the situation by adopting a very different approach from the above electronic/magnetic models, where explicitly local dynamical distortions are considered. These are distinctly different from conventional phonons which are a property of the infinite translational invariant symmetric lattice. The local dynamical distortions are shown to account for bulk properties and provide consistent and quantitative agreement with experimental data together with explicit predictions. Selected published experimental and theoretical papers are presented which support the above arguments, but have been ignored on purpose by the originators of the RVB/t-J bubble. To summarize the scope of this book, comprising nine chapters, it is shown, that the phenomenon of HTS in copper oxides is much better understood than publically claimed by RVB/t-J followers. Using the words of B. Laughlin, the presence of the antiferromagnetism in HTS masks the underlying physics where vibronic bipolarons with spin...

  17. Applications and fabrication processes of superconducting composite materials

    International Nuclear Information System (INIS)

    Gregory, E.

    1984-01-01

    This paper discusses the most recent applications and manufacturing considerations in the field of superconductivity. The constantly changing requirements of a growing number of users encourage development in fabrication and inspection techniques. For the first time, superconductors are being used commercially in large numbers and superconducting magnets are no longer just laboratory size. Although current demand for these conductors represents relatively small quantities of material, advances in the production of high-quality composites may accelerate technological growth into several new markets. Three large-scale application areas for superconductors are discussed: accelerator magnets for high-energy physics research, magnetic confinement for thermonuclear fusion, and magnetic resonance imaging for health care. Each application described is accompanied by a brief description of the conductors used and fabrication processes employed to make them

  18. Crystalline phases and electronic structures in superconducting Bi endash Sr endash Ca endash Cu oxides

    International Nuclear Information System (INIS)

    Giardina, M.D.; Feduzi, R.; Inzaghi, D.; Manara, A.; Giori, C.; Sora, I.N.; Dallacasa, V.

    1997-01-01

    Two classes of samples, designated A and B, of layered Bi endash Sr endash Ca endash Cu oxides having the same nominal composition 4:3:3:4, but different thermal histories, were investigated by using field modulated microwave absorption (ESR), powder x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and x-ray absorption near the edge structure (XANES). Previous electrical resistivity measurements showed that the B samples only presented two superconducting phases with midpoints of the transition temperatures at ∼80K and ∼105K. The microwave absorption technique indicated instead the presence of islands which became superconducting at the above-mentioned temperatures also in the A samples. The crystalline and electronic structures of the two types of samples are illustrated and discussed. A plausible theoretical interpretation of the experimental results, based on a quantum percolation model with Coulomb interaction, is also given. copyright 1997 Materials Research Society

  19. Superconductivity

    CERN Document Server

    Poole, Charles P; Farach, Horacio A

    1995-01-01

    Superconductivity covers the nature of the phenomenon of superconductivity. The book discusses the fundamental principles of superconductivity; the essential features of the superconducting state-the phenomena of zero resistance and perfect diamagnetism; and the properties of the various classes of superconductors, including the organics, the buckministerfullerenes, and the precursors to the cuprates. The text also describes superconductivity from the viewpoint of thermodynamics and provides expressions for the free energy; the Ginzburg-Landau and BCS theories; and the structures of the high

  20. Superconductivity

    International Nuclear Information System (INIS)

    Langone, J.

    1989-01-01

    This book explains the theoretical background of superconductivity. Includes discussion of electricity, material fabrication, maglev trains, the superconducting supercollider, and Japanese-US competition. The authors reports the latest discoveries

  1. Superconductivity

    International Nuclear Information System (INIS)

    Onnes, H.K.

    1988-01-01

    The author traces the development of superconductivity from 1911 to 1986. Some of the areas he explores are the Meissner Effect, theoretical developments, experimental developments, engineering achievements, research in superconducting magnets, and research in superconducting electronics. The article also mentions applications shown to be technically feasible, but not yet commercialized. High-temperature superconductivity may provide enough leverage to bring these applications to the marketplace

  2. A-15 superconducting composite wires and a method for making

    International Nuclear Information System (INIS)

    Suenaga, M.; Klamut, C. J.; Luhman, Th. S.

    1984-01-01

    A method for fabricating superconducting wires wherein a billet of copper containing filaments of niobium or vanadium is rolled to form a strip which is wrapped about a tin-alloy core to form a composite. The alloy is a tin-copper alloy for niobium filaments and a gallium-copper alloy for vanadium filaments. The composite is then drawn down to a desired wire size and heat treated. During the heat treatment process, The tin in the bronze reacts with the niobium to form the superconductor niobium tin. In the case where vanadium is used, the gallium in the gallium bronze reacts with the vanadium to form the superconductor vanadium gallium. This new process eliminates the costly annealing steps, external tin plating and drilling of bronze ingots required in a number of prior art processes

  3. Cyclic stress effects on transport properties of superconducting composite materials

    International Nuclear Information System (INIS)

    Fisher, E.S.; Kim, S.H.; Turner, A.P.L.

    1976-01-01

    The effects of cyclic stresses at 4.2 0 K on the conductor materials for large superconducting magnets are being investigted in samples of unalloyed copper and of composites containing Nb--Ti or Nb 3 Sn wires in a copper matrix. The samples are constant-strain cycled in pure tension-compression modes. The increase in electrical resistivity of different grades of copper with number and amplitude of cycles is described. The increases can be of the order of the magnetoresistance for 1000 to 2000 cycles at 0.20 percent strain per cycle. The facility for measuring critical current changes with composite cycling is described and the initial results indicate significant I/sub c/ changes as well as unexpected filament fractures. 10 fig

  4. Cell percolation model for electrical conduction of granular superconducting composites. 2

    International Nuclear Information System (INIS)

    Horvath, G.; Bankuti, J.

    1990-01-01

    The percolation of the electrical conductivity of the uniform cells is studied in an in-situ elongated granular superconducting composite on the basis of the uniform cell model improved previously. The critical temperatures are determined in the macroscopic superconducting state of the two- and the three-dimensional composites. (author)

  5. Superconductivity

    International Nuclear Information System (INIS)

    Andersen, N.H.; Mortensen, K.

    1988-12-01

    This report contains lecture notes of the basic lectures presented at the 1st Topsoee Summer School on Superconductivity held at Risoe National Laboratory, June 20-24, 1988. The following lecture notes are included: L.M. Falicov: 'Superconductivity: Phenomenology', A. Bohr and O. Ulfbeck: 'Quantal structure of superconductivity. Gauge angle', G. Aeppli: 'Muons, neutrons and superconductivity', N.F. Pedersen: 'The Josephson junction', C. Michel: 'Physicochemistry of high-T c superconductors', C. Laverick and J.K. Hulm: 'Manufacturing and application of superconducting wires', J. Clarke: 'SQUID concepts and systems'. (orig.) With 10 tabs., 128 figs., 219 refs

  6. Superconductivity

    International Nuclear Information System (INIS)

    Palmieri, V.

    1990-01-01

    This paper reports on superconductivity the absence of electrical resistance has always fascinated the mind of researchers with a promise of applications unachievable by conventional technologies. Since its discovery superconductivity has been posing many questions and challenges to solid state physics, quantum mechanics, chemistry and material science. Simulations arrived to superconductivity from particle physics, astrophysic, electronics, electrical engineering and so on. In seventy-five years the original promises of superconductivity were going to become reality: a microscopical theory gave to superconductivity the cloth of the science and the level of technological advances was getting higher and higher. High field superconducting magnets became commercially available, superconducting electronic devices were invented, high field accelerating gradients were obtained in superconductive cavities and superconducting particle detectors were under study. Other improvements came in a quiet progression when a tornado brought a revolution in the field: new materials had been discovered and superconductivity, from being a phenomenon relegated to the liquid Helium temperatures, became achievable over the liquid Nitrogen temperature. All the physics and the technological implications under superconductivity have to be considered ab initio

  7. Superconductivity

    CERN Document Server

    Thomas, D B

    1974-01-01

    A short general review is presented of the progress made in applied superconductivity as a result of work performed in connection with the high-energy physics program in Europe. The phenomenon of superconductivity and properties of superconductors of Types I and II are outlined. The main body of the paper deals with the development of niobium-titanium superconducting magnets and of radio-frequency superconducting cavities and accelerating structures. Examples of applications in and for high-energy physics experiments are given, including the large superconducting magnet for the Big European Bubble Chamber, prototype synchrotron magnets for the Super Proton Synchrotron, superconducting d.c. beam line magnets, and superconducting RF cavities for use in various laboratories. (0 refs).

  8. Upper critical field measurements in high-Tc superconducting oxides

    Science.gov (United States)

    Ousset, J. C.; Bobo, J. F.; Ulmet, J. P.; Rakoto, H.; Cheggour, N.

    We present upper critical field measurements on the superconducting oxides RE Ba2Cu3O7-δ (RE = Y, Gd) performed in a pulsed magnetic field up to 43 T. Values for Hc2 as high as 52 T and 77 T for Y and Gd respectively, are expected at 77 K. However, in order to observe no resistive behaviour up to 43 T the temperature must be decreased down to 50 K. In the case of oxygen deficient systems the magnetoresistance reveals two superconducting phases wich could be related to two different orders of oxygen vacancies. Nous présentons des mesures de champ critique Hc2 sur les supraconducteurs TR Ba 2Cu3O7-δ (TR = Y, Gd) réalisées en champ magnétique pulsé jusqu'à 43 T. Elles permettent de prévoir des valeurs de H c2 de 52 T et 77 T respectivement pour Y et Gd à 77 K. Cependant, pour ne pas observer de comportement résistif jusqu'au champ maximum, il est nécessaire de refroidir l'échantillon jusqu'à 50 K. Dans le cas des systèmes déficients en oxygène (δ important) nous mettons en évidence l'existence de deux phases supraconductrices qui pourraient être dues à deux ordres différents des lacunes d'oxygène.

  9. Hyperfine interactions associated with iron substitute superconducting oxides

    International Nuclear Information System (INIS)

    Ellis, D.E.; Dunlap, B.D.; Saitovitch, E.B.; Azevedo, I.S.; Scorzelli, R.B.; Kimball, C.W.

    1988-01-01

    Theoretical and experimental Moessbauer spectroscopy studies have been made concerning charge and spin densities and magnetic hyperfine fields (H hf in iron-substituted superconducting oxides. Calculations were carried out in the self-consistent-field embedded cluster model using local density theory (SCF-Xα) with a variational atomic orbital basis. Spectral densities and changes in charge and spin density were monitored around neighboring Cu sites, as well as Fe impurity site, in La 2 Cu 1-x Fe x O 4 and YBa 2 Cu 3-x Fe x O 7-y compounds. Moessbauer isomer shifts (IS), quadrupole splittings (QS) and H hf are obtained by fitting multiline models to the observed spectra and are compared with SCF-Xα results for specific lattice sites. The influence of oxygen vacancies and partial oxygen disorder is modelled and compared with the experimental data on variable oxygen content and disorder. (author)

  10. Influence of resistive matrices on the stability of superconducting composites

    International Nuclear Information System (INIS)

    Maccioni, P.

    1990-03-01

    Stability of superconducting composites is governed by limiting the temperature rise in conductors submitted to disturbances. Cooling exchange enhancement and reduction of the composite mean resistivity in the normal state, introducing a sufficient amount of copper, are the main ways to ensure stabilization. Nevertheless some losses occur in composites exposed to time varying fields because of induced currents between the filaments and circulating through the matrix. These currents have to be reduced to a convenient level by increasing the matrix resistivity by means of resistive barriers of greater resistivity than copper. It is necessary to study how the existence of these barriers affects the composite stability and whether an improved arrangement may lead to the fulfillment of the required conditions e.g: stability and low losses. The original theoretical approaches allow some existing models to be completed, to evaluate additional energy dissipation, inherent in current transfer through resistive barriers, and to compare the performance of two different conductor concepts from the cryostability point of view. Numerical simulations -performed by means of a finite element code- are in quite good agreement with theoretical predictions and link up with experimental results. The influence of resistive matrix and barriers on stability degradation is clearly demonstrated by the comparison between various kinds of conductors [fr

  11. Magnetism and superconductivity of some Tl-Cu oxides

    Science.gov (United States)

    Datta, Timir

    1991-01-01

    Many copper oxide based Thallium compounds are now known. In comparison to the Bi-compounds, the Tl-system shows a richer diversity; i.e., High Temperature Superconductors (HTSC) can be obtained with either one or two Tl-0 layers (m = 1,2); also, the triple-digit phases are easier to synthesize. The value of d, oxygen stoichiometry, is critical to achieving superconductivity. The Tl system is robust to oxygen loss; Tl may be lost or incorporated by diffusion. A diffusion coefficient equal to 10 ms at 900 C was determined. Both ortho-rhombic and tetragonal structures are found, but HTSC behavior is indifferent to the crystal symmetry. This system has the highest T(sub c) confirmed. T(sub c) generally increases with p, the number of CuO layers, but tends to saturate at p = 3. Zero resistance was observed at temperatures as great as 125 K. Most of these HTSC's are hole type, but the Ce-doped specimens may be electronic. The magnetic aspects were studied; because in addition to defining the perfectly diamagnetic ground state as in conventional superconductors, magnetism of the copper oxides show a surprising variety. This is true of both the normal and the superconducting states. Also, due to the large phonon contribution to the specific heat at the high T(sub c) jump, electronic density of states, D(Ef), and coherence length are uncertain, and thus, are estimated from the magnetic results. Results from the Tl-system CuO, LaBaCuO,120 and the Bi-CuO compounds are discussed. The emphasis is on the role of magnetism in the Tl-CuO HTSC, but technological aspects are also pointed out.

  12. Superconductivity

    International Nuclear Information System (INIS)

    Kakani, S.L.; Kakani, Shubhra

    2007-01-01

    The monograph provides readable introduction to the basics of superconductivity for beginners and experimentalists. For theorists, the monograph provides nice and brief description of the broad spectrum of experimental properties, theoretical concepts with all details, which theorists should learn, and provides a sound basis for students interested in studying superconducting theory at the microscopic level. Special chapter on the theory of high-temperature superconductivity in cuprates is devoted

  13. Note on the cryostatic stability of superconducting composites

    International Nuclear Information System (INIS)

    Gauster, W.F.

    1978-02-01

    A careful discussion is given of the ''equal area condition'' developed by Maddock et al. In order to make the essential points as clear as possible, analytical solutions are derived under simplifying assumptions (simple model for heat transfer by nucleate and film boiling liquid helium; constant heat conduction and specific heat) instead of using more realistic but less controllable computer calculations. A quantitative definition of the concept of a long wire is given. Numerical examples for the Maddock transition characterized by the equal area condition are given for a long superconducting composite with linear cooling and for a liquid helium-cooled resistance wire of finite length. In addition, cases are shown where instead of applying the equal area stability condition, time-dependent solutions should be considered

  14. Ductile alloy and process for preparing composite superconducting wire

    Science.gov (United States)

    Verhoeven, J.D.; Finnemore, D.K.; Gibson, E.D.; Ostenson, J.E.

    An alloy for the commercial production of ductile superconducting wire is prepared by melting together copper and at least 15 weight percent niobium under non-oxygen-contaminating conditions, and rapidly cooling the melt to form a ductile composite consisting of discrete, randomly distributed and oriented dendritic-shaped particles of niobium in a copper matrix. As the wire is worked, the dendritic particles are realigned parallel to the longitudinal axis and when drawn form a plurality of very fine ductile superconductors in a ductile copper matrix. The drawn wire may be tin coated and wound into magnets or the like before diffusing the tin into the wire to react with the niobium. Impurities such as aluminum or gallium may be added to improve upper critical field characteristics.

  15. Losses in superconducting multifilament composites under alternating changing fields

    International Nuclear Information System (INIS)

    Turck, B.

    1979-03-01

    The first part of this report presents a brief review of the losses in superconducting composites in a changing external field. The losses are expressed for a single triangular shaped pulse and for a field varying exponentially with time. The losses are calculated as a function of two important time constants. The first is due to the coupling currents between the filaments, the second is due to the eddy currents induced in the matrix. In the second part of the report, the case of an oscillating sinusoidal field is considered. In particular, in a rapidly varying field, several layers of filaments can be saturated by returning currents. Complete expressions of the losses are provided together with simplified expressions which enable one to calculate the losses in most cases. In the third part, a comparison between several kinds of conductors shows that in some cases the losses are reduced by increasing the twist pitch of the conductor

  16. Method of quantitative analysis of superconducting metal-conducting composite materials

    International Nuclear Information System (INIS)

    Bogomolov, V.N.; Zhuravlev, V.V.; Petranovskij, V.P.; Pimenov, V.A.

    1990-01-01

    Technique for quantitative analysis of superconducting metal-containing composite materials, SnO 2 -InSn, WO 3 -InW, Zn)-InZn in particular, has been developed. The method of determining metal content in a composite is based on the dependence of superconducting transition temperature on alloy composition. Sensitivity of temperature determination - 0.02K, error of analysis for InSn system - 0.5%

  17. Superconductivity

    International Nuclear Information System (INIS)

    Caruana, C.M.

    1988-01-01

    Despite reports of new, high-temperature superconductive materials almost every day, participants at the First Congress on Superconductivity do not anticipate commercial applications with these materials soon. What many do envision is the discovery of superconducting materials that can function at much warmer, perhaps even room temperatures. Others hope superconductivity will usher in a new age of technology as semiconductors and transistors did. This article reviews what the speakers had to say at the four-day congress held in Houston last February. Several speakers voiced concern that the Reagan administration's apparent lack of interest in funding superconductivity research while other countries, notably Japan, continue to pour money into research and development could hamper America's international competitiveness

  18. Powder of a copper oxide superconductor precursor, fabrication process and use for the preparation of superconducting oxide

    International Nuclear Information System (INIS)

    Dehaudt, P.

    1990-01-01

    The precursor powder comprises at least a copper compound (hydroxide, oxide and hydroxynitrates), at least a rare earth and/or yttrium compound (nitrates, hydroxides and hydroxynitrates) or bismuth oxide and at least an alkaline earth nitrate. It can be prepared by atomization drying of a suspension a copper precipitate or coprecipitate and other elements of the superconducting oxide in solution [fr

  19. Critical currents and superconductivity ferromagnetism coexistence in high-Tc oxides

    CERN Document Server

    Khene, Samir

    2016-01-01

    The book comprises six chapters which deal with the critical currents and the ferromagnetism-superconductivity coexistence in high-Tc oxides. It begins by gathering key data for superconducting state and the fundamental properties of the conventional superconductors, followed by a recap of the basic theories of superconductivity. It then discusses the differences introduced by the structural anisotropy on the Ginzburg-Landau approach and the Lawrence-Doniach model before addressing the dynamics of vortices and the ferromagnetism-superconductivity coexistence in high-Tc oxides, and provides an outline of the pinning phenomena of vortices in these materials, in particular the pinning of vortices by the spins. It elucidates the methods to improve the properties of superconducting materials for industrial applications. This optimization aims at obtaining critical temperatures and densities of critical currents at the maximum level possible. Whereas the primary objective is the basic mechanisms pushing the superco...

  20. Superconductivity

    CERN Document Server

    Ketterson, John B

    2008-01-01

    Conceived as the definitive reference in a classic and important field of modern physics, this extensive and comprehensive handbook systematically reviews the basic physics, theory and recent advances in the field of superconductivity. Leading researchers, including Nobel laureates, describe the state-of-the-art in conventional and unconventional superconductors at a particularly opportune time, as new experimental techniques and field-theoretical methods have emerged. In addition to full-coverage of novel materials and underlying mechanisms, the handbook reflects continued intense research into electron-phone based superconductivity. Considerable attention is devoted to high-Tc superconductivity, novel superconductivity, including triplet pairing in the ruthenates, novel superconductors, such as heavy-Fermion metals and organic materials, and also granular superconductors. What’s more, several contributions address superconductors with impurities and nanostructured superconductors. Important new results on...

  1. Estimate of thermoelastic heat production from superconducting composites in pulsed poloidal coil systems

    International Nuclear Information System (INIS)

    Ballou, J.K.; Gray, W.H.

    1976-01-01

    In the design of the cryogenic system and superconducting magnets for the poloidal field system in a tokamak, it is important to have an accurate estimate of the heat produced in superconducting magnets as a result of rapidly changing magnetic fields. A computer code, PLASS (Pulsed Losses in Axisymmetric Superconducting Solenoids), was written to estimate the contributions to the heat production from superconductor hysteresis losses, superconductor coupling losses, stabilizing material eddy current losses, and structural material eddy current losses. Recently, it has been shown that thermoelastic dissipation in superconducting composites can contribute as much to heat production as the other loss mechanisms mentioned above. A modification of PLASS which takes into consideration thermoelastic dissipation in superconducting composites is discussed. A comparison between superconductor thermoelastic dissipation and the other superconductor loss mechanisms is presented in terms of the poloidal coil system of the ORNL Experimental Power Reactor design

  2. New analytical results in the electromagnetic response of composite superconducting wire in parallel fields

    NARCIS (Netherlands)

    Niessen, E.M.J.; Niessen, E.M.J.; Zandbergen, P.J.

    1993-01-01

    Analytical results are presented concerning the electromagnetic response of a composite superconducting wire in fields parallel to the wire axis, using the Maxwell equations supplemented with constitutive equations. The problem is nonlinear due to the nonlinearity in the constitutive equation

  3. Degradation of superconducting Nb/NbN films by atmospheric oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Henry, Michael David; Wolfley, Steven L.; Young, Travis Ryan; Monson, Todd; Pearce, Charles Joseph; Lewis, Rupert M.; Clark, Blythe; Brunke, Lyle Brent; Missert, Nancy A.

    2017-03-01

    Niobium and niobium nitride thin films are transitioning from fundamental research toward wafer scale manufacturing with technology drivers that include superconducting circuits and electronics, optical single photon detectors, logic, and memory. Successful microfabrication requires precise control over the properties of sputtered superconducting films, including oxidation. Previous work has demonstrated the mechanism in oxidation of Nb and how film structure could have deleterious effects upon the superconducting properties. This study provides an examination of atmospheric oxidation of NbN films. By examination of the room temperature sheet resistance of NbN bulk oxidation was identified and confirmed by secondary ion mass spectrometry. As a result, Meissner magnetic measurements confirmed the bulk oxidation not observed with simple cryogenic resistivity measurements.

  4. High temperature oxidation resistant cermet compositions

    Science.gov (United States)

    Phillips, W. M. (Inventor)

    1976-01-01

    Cermet compositions are designed to provide high temperature resistant refractory coatings on stainless steel or molybdenum substrates. A ceramic mixture of chromium oxide and aluminum oxide form a coating of chromium oxide as an oxidation barrier around the metal particles, to provide oxidation resistance for the metal particles.

  5. Superconductivity

    CERN Document Server

    Poole, Charles P; Creswick, Richard J; Prozorov, Ruslan

    2014-01-01

    Superconductivity, Third Edition is an encyclopedic treatment of all aspects of the subject, from classic materials to fullerenes. Emphasis is on balanced coverage, with a comprehensive reference list and significant graphics from all areas of the published literature. Widely used theoretical approaches are explained in detail. Topics of special interest include high temperature superconductors, spectroscopy, critical states, transport properties, and tunneling. This book covers the whole field of superconductivity from both the theoretical and the experimental point of view. This third edition features extensive revisions throughout, and new chapters on second critical field and iron based superconductors.

  6. A manufacturing process for a mixed-oxide type superconducting material

    International Nuclear Information System (INIS)

    Gendre, P.; Regnier, P.; Schmirgeld-Mignot, L.; Marquet, A.

    1995-01-01

    In order to produce high temperature superconducting materials such as YBaCuO and Bi 2 Sr 2 Ca Cu 2 O 8 , a process is presented which consists in an electrodeposition on a conductive substrate of successive layers made of the metallic elements composing the superconductor, with only one element in each layer; between each layer deposition, an intermediary oxide-reaction thermal treatment is carried out; a global oxidation thermal treatment is then finally conducted to produce the mixed oxide material. Narrow superconducting transitions and high critical current densities are possible. 3 refs., 4 figs

  7. Redox mechanisms and superconductivity in layered copper oxides

    International Nuclear Information System (INIS)

    Raveau, B.; Michel, C.; Hervieu, M.; Provost, J.

    1992-01-01

    Redox reactions in high T c superconductors cuprates are complex and play an important role in superconductivity: oxygen non-stoichiometry is influencing the critical temperature, and rock salt layers interact with copper layers. 25 refs., 7 figs

  8. Superconductivity

    International Nuclear Information System (INIS)

    Narlikar, A.V.

    1993-01-01

    Amongst the numerous scientific discoveries that the 20th century has to its credit, superconductivity stands out as an exceptional example of having retained its original dynamism and excitement even for more than 80 years after its discovery. It has proved itself to be a rich field by continually offering frontal challenges in both research and applications. Indeed, one finds that a majority of internationally renowned condensed matter theorists, at some point of their career, have found excitement in working in this important area. Superconductivity presents a unique example of having fetched Nobel awards as many as four times to date, and yet, interestingly enough, the field still remains open for new insights and discoveries which could undeniably be of immense technological value. 1 fig

  9. High temperature superconducting material: Bismuth strontium calcium copper oxide. (Latest citations from the Aerospace database). Published Search

    International Nuclear Information System (INIS)

    1993-11-01

    The bibliography contains citations concerning the development, fabrication, and analysis of a high temperature superconducting material based on bismuth-strontium-calcium-copper-oxides (Bi-Sr-Ca-Cu-O). Topics include the physical properties, structural and compositional analysis, magnetic field and pressure effects, and noble metal dopings of Bi-Sr-Ca-Cu-O based systems. The highest transition temperature recorded to date for this material was 120 degrees Kelvin. Fabrication methods and properties of Bi-Sr-Ca-Cu-O films and ceramics are also considered. (Contains 250 citations and includes a subject term index and title list.)

  10. Superconductivity

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This book profiles the research activity of 42 companies in the superconductivity field, worldwide. It forms a unique and comprehensive directory to this emerging technology. For each research site, it details the various projects in progress, analyzes the level of activity, pinpoints applications and R and D areas, reviews strategies and provides complete contact information. It lists key individuals, offers international comparisons of government funding, reviews market forecasts and development timetables and features a bibliography of selected articles on the subject

  11. Superconductivity

    International Nuclear Information System (INIS)

    Buller, L.; Carrillo, F.; Dietert, R.; Kotziapashis, A.

    1989-01-01

    Superconductors are materials which combine the property of zero electric resistance with the capability to exclude any adjacent magnetic field. This leads to many large scale applications such as the much publicized levitating train, generation of magnetic fields in MHD electric generators, and special medical diagnostic equipment. On a smaller-scale, superconductive materials could replace existing resistive connectors and decrease signal delays by reducing the RLC time constants. Thus, a computer could operate at much higher speeds, and consequently at lower power levels which would reduce the need for heat removal and allow closer spacing of circuitry. Although technical advances and proposed applications are constantly being published, it should be recognized that superconductivity is a slowly developing technology. It has taken scientists almost eighty years to learn what they now know about this material and its function. The present paper provides an overview of the historical development of superconductivity and describes some of the potential applications for this new technology as it pertains to the electronics industry

  12. A new way for preparing superconducting materials: the electrochemical oxidation of La2CuO4

    International Nuclear Information System (INIS)

    Wattiaux, A.; Park, J.C.; Grenier, J.C.; Pouchard, M.

    1990-01-01

    The electrochemical oxidation in alkaline medium is described as a new way for preparing superconducting oxides at room temperature. The application of this method to La 2 CuO 4 gave rise to a metallic material with a superconducting behaviour below 39 K and whose physical and chemical features appear as quite promising [fr

  13. Analysis of flat rolling of superconducting silver/ceramic composites

    DEFF Research Database (Denmark)

    Bech, Jakob Ilsted; Nielsen, Morten Storgård; Eriksen, Morten

    2001-01-01

    The flat rolling process from wire to tape is presumably the most crucial link in the chain of mechanical processes leading from loose powder and silver tubes to the final superconducting Ag/BSCCO tape. In order to improve the critical current density of the superconducting filaments, one must...... process these to the highest possible density without at the same time introducing failures as large cracks and macroscopic shear bands. In order to analyse and optimise the process, the interaction between the involved materials and their very different mechanical properties must be taken into account...

  14. Superconductivity

    International Nuclear Information System (INIS)

    2007-01-01

    During 2007, a large amount of the work was centred on the ITER project and related tasks. The activities based on low-temperature superconducting (LTS) materials included the manufacture and qualification of ITER full-size conductors under relevant operating conditions, the design of conductors and magnets for the JT-60SA tokamak and the manufacture of the conductors for the European dipole facility. A preliminary study was also performed to develop a new test facility at ENEA in order to test long-length ITER or DEMO full-size conductors. Several studies on different superconducting materials were also started to create a more complete database of superconductor properties, and also for use in magnet design. In this context, an extensive measurement campaign on transport and magnetic properties was carried out on commercially available NbTi strands. Work was started on characterising MgB 2 wire and bulk samples to optimise their performance. In addition, an intense experimental study was started to clarify the effect of mechanical loads on the transport properties of multi-filamentary Nb 3 Sn strands with twisted or untwisted superconducting filaments. The experimental activity on high-temperature superconducting (HTS) materials was mainly focussed on the development and characterisation of YBa 2 Cu 3 O 7-X (YBCO) based coated conductors. Several characteristics regarding YBCO deposition, current transport performance and tape manufacture were investigated. In the framework of chemical approaches for YBCO film growth, a new method, developed in collaboration with the Technical University of Cluj-Napoca (TUCN), Romania, was studied to obtain YBCO film via chemical solution deposition, which modifies the well-assessed metallic organic deposition trifluoroacetate (MOD-TFA) approach. The results are promising in terms of critical current and film thickness values. YBCO properties in films with artificially added pinning sites were characterised in collaboration with

  15. Raman spectra, microstructure and superconducting properties of Sb(III)-YBCO composite superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Elsabawy, Khaled M. [Chemistry Department, Faculty of Science, Tanta University, Tanta (Egypt)]. E-mail: ksabawy@yahoo.com

    2005-11-15

    The pure YBCO (YBa{sub 2}Cu{sub 3}O{sub 7}) and its variant antimony containing composites with general formula; Y{sub 1+x}Sb {sub x}Ba{sub 2}Cu{sub 3}O {sub z}, where x = 0.1, 0.2, 0.4 and 0.6 mol%, respectively, were prepared by the solid-state reaction route. X-ray measurements indicated that Sb{sup 3+} ions have a negligible effect on the main crystalline structure and substitutes Y-sites successfully in lattice structure of 123-YBCO at low concentrations of doping (x = 0.1 {sup {yields}} 0.2). From SE-microscopy mapping and EDX elemental analysis, Sb{sup 3+} was detected qualitatively with good approximation to the actual molar ratio but not observed at 123-YBCO grain boundaries which confirm that antimony (III) has diffused regularly into material bulk of superconducting 123-YBCO-phase at low concentrations. Additions of Sb(III) affected sharply on the main vibrating modes of YBCO regime particularly, on the apical oxygen (O{sub 4}) vibrational mode A {sub 1g}. Magnetic susceptibility measurements proved that antimony oxide additions have slight effect on the transport properties of YBCO-composites regime.

  16. A new quantum interferometer effect in superconducting oxide ceramics

    International Nuclear Information System (INIS)

    Chela Flores, J.; Shehata, L.N.

    1987-08-01

    On the basis of a phenomenological approach to type II high T c superconductivity, we suggest that in the lanthanum compounds the Mercereau effect for a coupled junction pair should display and ex-dependent shift in the period of modulation of the tunnelling current. (author). 14 refs

  17. Theoretical and experimental determination of mechanical properties of superconducting composite wire

    International Nuclear Information System (INIS)

    Gray, W.H.; Sun, C.T.

    1976-07-01

    The mechanical properties of a composite superconducting (NbTi/Cu) wire are characterized in terms of the mechanical properties of each constituent material. For a particular composite superconducting wire, five elastic material constants were experimentally determined and theoretically calculated. Since the Poisson's ratios for the fiber and the matrix material were very close, there was essentially no (less than 1 percent) difference among all the theoretical predictions for any individual mechanical constant. Because of the expense and difficulty of producing elastic constant data of 0.1 percent accuracy, and therefore conclusively determining which theory is best, no further experiments were performed

  18. Synthesis of superconducting cobalt oxyhydrates using a novel method: Electrolyzed and oxidized water

    International Nuclear Information System (INIS)

    Liu, C.-J.; Wu, T.-H.; Hsu, L.-L.; Wang, J.-S.; Chen, S.-Y.

    2007-01-01

    By deintercalation of Na + followed by inserting bilayers of water molecules into the host lattice, the layered cobalt oxide of γ-Na 0.7 CoO 2 undergoes a topotactic transformation to a layered cobalt oxyhydrate of Na 0.35 (H 2 O) 1.3 CoO 2-δ with the c-axis expanded from c ∼ 10.9 A to c ∼ 19.6 A. In this paper, we demonstrate that the superconducting phase of c ∼ 19.6 A can be directly obtained by simply immersing γ-Na 0.7 CoO 2 powders in electrolyzed/oxidized (EO) water, which is readily available from a commercial electrolyzed water generator. We found that high oxidation-reduction potential of EO water drives the oxidation of the cobalt ions accompanying by the formation of the superconductive c ∼ 19.6 A phase. Our results demonstrate how EO water can be used to oxidize the cobalt ions and hence form superconducting cobalt oxyhydrates in a clean and simple way and may provide an economic and environment-friendly route to oxidize the transition metal of complex metal oxides

  19. Synthesis of superconducting cobalt oxyhydrates using a novel method: Electrolyzed and oxidized water

    Science.gov (United States)

    Liu, Chia-Jyi; Wu, Tsung-Hsien; Hsu, Lin-Li; Wang, Jung-Sheng; Chen, Shu-Yo

    2007-09-01

    By deintercalation of Na+ followed by inserting bilayers of water molecules into the host lattice, the layered cobalt oxide of γ-Na0.7CoO2 undergoes a topotactic transformation to a layered cobalt oxyhydrate of Na0.35(H2O)1.3CoO2-δ with the c-axis expanded from c ≈ 10.9 Å to c ≈ 19.6 Å. In this paper, we demonstrate that the superconducting phase of c ≈ 19.6 Å can be directly obtained by simply immersing γ-Na0.7CoO2 powders in electrolyzed/oxidized (EO) water, which is readily available from a commercial electrolyzed water generator. We found that high oxidation-reduction potential of EO water drives the oxidation of the cobalt ions accompanying by the formation of the superconductive c ≈ 19.6 Å phase. Our results demonstrate how EO water can be used to oxidize the cobalt ions and hence form superconducting cobalt oxyhydrates in a clean and simple way and may provide an economic and environment-friendly route to oxidize the transition metal of complex metal oxides.

  20. Synthesis of superconducting cobalt oxyhydrates using a novel method: Electrolyzed and oxidized water

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.-J. [Department of Physics, National Changhua University of Education, Changhua 50007, Taiwan (China)], E-mail: liucj@cc.ncue.edu.tw; Wu, T.-H.; Hsu, L.-L.; Wang, J.-S.; Chen, S.-Y. [Department of Physics, National Changhua University of Education, Changhua 50007, Taiwan (China)

    2007-09-01

    By deintercalation of Na{sup +} followed by inserting bilayers of water molecules into the host lattice, the layered cobalt oxide of {gamma}-Na{sub 0.7}CoO{sub 2} undergoes a topotactic transformation to a layered cobalt oxyhydrate of Na{sub 0.35}(H{sub 2}O){sub 1.3}CoO{sub 2-{delta}} with the c-axis expanded from c {approx} 10.9 A to c {approx} 19.6 A. In this paper, we demonstrate that the superconducting phase of c {approx} 19.6 A can be directly obtained by simply immersing {gamma}-Na{sub 0.7}CoO{sub 2} powders in electrolyzed/oxidized (EO) water, which is readily available from a commercial electrolyzed water generator. We found that high oxidation-reduction potential of EO water drives the oxidation of the cobalt ions accompanying by the formation of the superconductive c {approx} 19.6 A phase. Our results demonstrate how EO water can be used to oxidize the cobalt ions and hence form superconducting cobalt oxyhydrates in a clean and simple way and may provide an economic and environment-friendly route to oxidize the transition metal of complex metal oxides.

  1. Superconducting characteristics of 4-Å carbon nanotube-zeolite composite

    KAUST Repository

    Lortz, Rolf W.

    2009-04-15

    We have fabricated nanocomposites consisting of 4-A carbon nanotubes embedded in the 0.7-nm pores of aluminophosphate- five (AFI) zeolite that display a superconducting specific heat transition at 15 K. MicroRaman spectra of the samples show strong and spatially uniform radial breathing mode (RBM) signals at 510 cm-1 and 550 cm-1, characteristic of the (4,2) and (5,0) nanotubes, respectively. The specific heat transition is suppressed at >2T, with a temperature dependence characteristic of finite-size effects. Comparison with theory shows the behavior to be consistent with that of a type II BCS superconductor, characterized by a coherence length of 14 ± 2 nm and a magnetic penetration length of 1.5 ± 0.7 μm. Four probe and differential resistance measurements have also indicated a superconducting transition initiating at 15 K, but the magnetoresistance data indicate the superconducting network to be inhomogeneous, with a component being susceptible to magnetic fields below 3 T and other parts capable of withstanding a magnetic field of 5Tor beyond.

  2. Dense high temperature ceramic oxide superconductors

    Science.gov (United States)

    Landingham, Richard L.

    1993-01-01

    Dense superconducting ceramic oxide articles of manufacture and methods for producing these articles are described. Generally these articles are produced by first processing these superconducting oxides by ceramic processing techniques to optimize materials properties, followed by reestablishing the superconducting state in a desired portion of the ceramic oxide composite.

  3. Magnetic levitation using high temperature superconducting pancake coils as composite bulk cylinders

    International Nuclear Information System (INIS)

    Patel, A; Hopkins, S C; Baskys, A; Glowacki, B A; Kalitka, V; Molodyk, A

    2015-01-01

    Stacks of superconducting tape can be used as composite bulk superconductors for both trapped field magnets and for magnetic levitation. Little previous work has been done on quantifying the levitation force behavior between stacks of tape and permanent magnets. This paper reports the axial levitation force properties of superconducting tape wound into pancake coils to act as a composite bulk cylinder, showing that similar stable forces to those expected from a uniform bulk cylinder are possible. Force creep was also measured and simulated for the system. The geometry tested is a possible candidate for a rotary superconducting bearing. Detailed finite element modeling in COMSOL Multiphysics was also performed including a full critical state model for induced currents, with temperature and field dependent properties and 3D levitation force models. This work represents one of the most complete levitation force modeling frameworks yet reported using the H-formulation and helps explain why the coil-like stacks of tape are able to sustain levitation forces. The flexibility of geometry and consistency of superconducting properties offered by stacks of tapes, make them attractive for superconducting levitation applications. (paper)

  4. Composite superconducting MgB2 wires made by continuous process

    NARCIS (Netherlands)

    Kutukcu, Mehmet; Atamert, Serdar; Scandella, Jean Louis; Hopstock, Ron; Blackwood, Alexander C.; Dhulst, Chris; Mestdagh, Jan; Nijhuis, Arend; Glowacki, Bartek A.

    Previously developed manufacturing technology of a low-cost composite single core MgB2 superconductive wires has been investigated in details using monel sheath and titanium diffusion barrier. In this process Mg and nano-sized B as well as SiC dopant powders were fed continuously to a "U" shaped

  5. Composite superconducting MgB2 wires made by continuous process

    NARCIS (Netherlands)

    Kutukcu, Mehmet; Atamert, Serdar; Scandella, Jean Louis; Hopstock, Ron; Blackwood, Alexander C.; Dhulst, Chris; Mestdagh, Jan; Nijhuis, Arend; Glowacki, Bartek A.

    2018-01-01

    Previously developed manufacturing technology of a low-cost composite single core MgB2 superconductive wires has been investigated in details using monel sheath and titanium diffusion barrier. In this process Mg and nano-sized B as well as SiC dopant powders were fed continuously to a "U" shaped

  6. Development of a new type of three-component composite superconducting wire

    International Nuclear Information System (INIS)

    Onishi, T.

    1977-01-01

    A new type of multifilamentary composite superconducting wire is described. This wire consists of seven filaments, each of which is a fine tubular Nb 50% Ti wire, filled with high purity aluminium and embedded in a cupronickel matrix. The results of experiments carried out on the stability and ac losses of this wire are presented. (author)

  7. MAXIMSUPER: a computer program to assist in the design of multifilamentary superconducting composites

    International Nuclear Information System (INIS)

    Hoard, R.W.; Scanlan, R.M.; Hirzel, D.G.

    1979-01-01

    The strain degradation of critical current density has been analytically and experimentally investigated for multifilamentary superconducting composites produced in a bronze core geometry. Analytic results were obtained from a computer program (MAXIMSUPER) which predicts the stresses and strains in composites as a result of thermal and axial loading. Tensile test data for Nb 3 Sn are described. It is believed that the strain dependence of the critical current found in Nb 3 Sn is due to strain enhanced martensitic transformation

  8. Composite ceramic superconducting wires for electric motor applications

    Science.gov (United States)

    Halloran, John W.

    1990-07-01

    Several types of HTSC wire have been produced and two types of HTSC motors are being built. Hundreds of meters of Ag- clad wire were fabricated from YBa2Cu3O(7-x) (Y-123) and Bi2Ca2Sr2Cu3O10 (BiSCCO). The dc homopolar motor coils are not yet completed, but multiple turns of wire have been wound on the coil bobbins to characterize the superconducting properties of coiled wire. Multifilamentary conductors were fabricated as cables and coils. The sintered polycrystalline wire has self-field critical current densities (Jc) as high as 2800 A/sq cm, but the Jc falls rapidly with magnetic field. To improve Jc, sintered YBCO wire is melt textured with a continuous process which has produced textures wire up to 0.5 meters long with 77K transport Jc above 11, 770 A/sq cm2 in self field and 2100 A/sq cm2 at 1 telsa. The Emerson Electric dc homopolar HTSC motor has been fabricated and run with conventional copper coils. A novel class of potential very powerful superconducting motors have been designed to use trapped flux in melt textures Y-123 as magnet replicas in an new type of permanent magnet motor. The stator element and part of the rotor of the first prototype machine exist, and the HTSC magnet replica segments are being fabricated.

  9. Superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Batistoni, Paola; De Marco, Francesco; Pieroni, Leonardo [ed.

    2005-07-01

    Research on superconductivity at ENEA is mainly devoted to projects related to the ITER magnet system. In this framework, ENEA has been strongly involved in the design, manufacturing and test campaigns of the ITER toroidal field model coil (TFMC), which reached a world record in operating current (up to 80 kA). Further to this result, the activities in 2004 were devoted to optimising the ITER conductor performance. ENEA participated in the tasks launched by EFDA to define and produce industrial-scale advanced Nb3Sn strand to be used in manufacturing the ITER high-field central solenoid (CS) and toroidal field (TF) magnets. As well as contributing to the design of the new strand and the final conductor layout, ENEA will also perform characterisation tests, addressing in particular the influence of mechanical stress on the Nb3Sn performance. As a member of the international ITER-magnet testing group, ENEA plays a central role in the measurement campaigns and data analyses for each ITER-related conductor and coil. The next phase in the R and D of the ITER magnets will be their mechanical characterisation in order to define the fabrication route of the coils and structures. During 2004 the cryogenic measurement campaign on the Large Hadron Collider (LHC) by-pass diode stacks was completed. As the diode-test activity was the only LHC contract to be finished on schedule, the 'Centre Europeenne pour la Recherche Nucleaire' (CERN) asked ENEA to participate in an international tender for the cold check of the current leads for the LHC magnets. The contract was obtained, and during 2004, the experimental setup was designed and realised and the data acquisition system was developed. The measurement campaign was successfully started at the end of 2004 and will be completed in 2006.

  10. Ultrasensitive interplay between ferromagnetism and superconductivity in NbGd composite thin films

    Science.gov (United States)

    Bawa, Ambika; Gupta, Anurag; Singh, Sandeep; Awana, V. P. S.; Sahoo, Sangeeta

    2016-01-01

    A model binary hybrid system composed of a randomly distributed rare-earth ferromagnetic (Gd) part embedded in an s-wave superconducting (Nb) matrix is being manufactured to study the interplay between competing superconducting and ferromagnetic order parameters. The normal metallic to superconducting phase transition appears to be very sensitive to the magnetic counterpart and the modulation of the superconducing properties follow closely to the Abrikosov-Gor’kov (AG) theory of magnetic impurity induced pair breaking mechanism. A critical concentration of Gd is obtained for the studied NbGd based composite films (CFs) above which superconductivity disappears. Besides, a magnetic ordering resembling the paramagnetic Meissner effect (PME) appears in DC magnetization measurements at temperatures close to the superconducting transition temperature. The positive magnetization related to the PME emerges upon doping Nb with Gd. The temperature dependent resistance measurements evolve in a similar fashion with the concentration of Gd as that with an external magnetic field and in both the cases, the transition curves accompany several intermediate features indicating the traces of magnetism originated either from Gd or from the external field. Finally, the signatures of magnetism appear evidently in the magnetization and transport measurements for the CFs with very low (<1 at.%) doping of Gd.

  11. Investigating superconductivity by tunneling spectroscopy using oxide heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Fillis-Tsirakis, Evangelos

    2017-06-19

    Electronic systems which are as highly-functional as the LaAlO{sub 3}/SrTiO{sub 3} interface are rare, as the emergent high-mobility two-dimensional electron system (2DES) exhibits ferromagnetism, incipient ferroelectricity, piezoelectricity, Rashba spin-orbit coupling, superconductivity and high electronic correlations; properties that may also coexist with one another. The possibility of tuning its electrical properties by external parameters such as a gate-field, temperature, pressure and magnetic-field makes the LaAlO{sub 3}/SrTiO{sub 3}-2DES the scientific analogue of a multi-tool. LaAlO{sub 3}/SrTiO{sub 3} samples were grown by pulsed-laser-deposition. Using this system, planar tunnel junctions were constructed that allowed for tunneling spectroscopy measurements. The resemblance of the LaAlO{sub 3}/SrTiO{sub 3} 2DES to the high-temperature superconductors undoubtedly adds value to the findings of this work. Further investigation of its nature has revealed that by depleting from the optimally doped region, the electron-phonon coupling strength increases and accounts for the persisting superconducting behavior within the macroscopically resistive regime at very low doping. Transport measurements at T = 50 mK were performed while tuning the carrier concentration and sweeping magnetic fields in the perpendicular-to-interface orientation, to investigate the superconductor-to-insulator transition by carrier depletion. The transition in LaAlO{sub 3}/SrTiO{sub 3}, induced by tuning the carrier concentration, has thus been characterized as a superconductor-metal-insulator transition (SMIT). One aim of these measurements was to investigate the possible existence of the ''superinsulator'' phase, identified by several authors in thin metallic films. Such a phase has not been observed during transport measurements at the LaAlO{sub 3}/SrTiO{sub 3} 2DES. The nature of superconductivity in the entire phase diagram and particularly across the SMIT has

  12. Investigating superconductivity by tunneling spectroscopy using oxide heterostructures

    International Nuclear Information System (INIS)

    Fillis-Tsirakis, Evangelos

    2017-01-01

    Electronic systems which are as highly-functional as the LaAlO 3 /SrTiO 3 interface are rare, as the emergent high-mobility two-dimensional electron system (2DES) exhibits ferromagnetism, incipient ferroelectricity, piezoelectricity, Rashba spin-orbit coupling, superconductivity and high electronic correlations; properties that may also coexist with one another. The possibility of tuning its electrical properties by external parameters such as a gate-field, temperature, pressure and magnetic-field makes the LaAlO 3 /SrTiO 3 -2DES the scientific analogue of a multi-tool. LaAlO 3 /SrTiO 3 samples were grown by pulsed-laser-deposition. Using this system, planar tunnel junctions were constructed that allowed for tunneling spectroscopy measurements. The resemblance of the LaAlO 3 /SrTiO 3 2DES to the high-temperature superconductors undoubtedly adds value to the findings of this work. Further investigation of its nature has revealed that by depleting from the optimally doped region, the electron-phonon coupling strength increases and accounts for the persisting superconducting behavior within the macroscopically resistive regime at very low doping. Transport measurements at T = 50 mK were performed while tuning the carrier concentration and sweeping magnetic fields in the perpendicular-to-interface orientation, to investigate the superconductor-to-insulator transition by carrier depletion. The transition in LaAlO 3 /SrTiO 3 , induced by tuning the carrier concentration, has thus been characterized as a superconductor-metal-insulator transition (SMIT). One aim of these measurements was to investigate the possible existence of the ''superinsulator'' phase, identified by several authors in thin metallic films. Such a phase has not been observed during transport measurements at the LaAlO 3 /SrTiO 3 2DES. The nature of superconductivity in the entire phase diagram and particularly across the SMIT has been investigated by magnetic-field-dependent tunneling

  13. Atomic Layer Epitaxy of Superconducting Oxides and Heterostructures

    National Research Council Canada - National Science Library

    Chang, R

    1998-01-01

    ...) materials and insulating metal oxides. Improving the nature of such interfaces is a crucial barrier which must be surmounted before HTS materials can be successfully incorporated on a large scale into a myriad of advanced active...

  14. Analysis of the superconductivity in perovskite oxides using three ...

    Indian Academy of Sciences (India)

    2Institute of Theoretical Physics, University of Erlangen-Nürnberg, D-91058 Erlangen, Germany ... taining oxide superconductor with the transition temperature (Tc ≈ 30 K, for x = 0.4 ... high-frequency (energy) optical phonons, as the answer.

  15. Plasma oxidation of the high T/sub c/ superconducting perovskites

    International Nuclear Information System (INIS)

    Bagley, B.G.; Greene, L.H.; Tarascon, J.; Hull, G.W.

    1987-01-01

    A near room-temperature plasma oxidation process is shown to restore superconductivity and metalliclike behavior in oxygen deficient La/sub 2-//sub x/ Sr/sub x/ CuO/sub 4-//sub y/ and YBa 2 Cu 3 O/sub 7-//sub x/ compounds. In the YBa 2 Cu 3 O/sub 7-//sub x/ compound the conversion from an oxygen deficient n-type tetragonal to the p-type orthorhombic phase with a concomitant factor of 5 x 10 5 increase in room-temperature conductivity is also accomplished. This process is of technological importance because oxygen can be restored in these materials at temperatures compatible with device processing. Of scientific interest, the process allows us to carefully control the oxidation state and thereby systematically study the 90 and 55 K superconducting transitions in YBa 2 Cu 3 O/sub 7-//sub x/

  16. The stress-strain relationship for multilayers of the high Tc superconducting oxides

    International Nuclear Information System (INIS)

    Hidaka, H.; Yamamura, H.

    1988-01-01

    This paper reports the calculation of the stress-strain relationship for multilayers of the high Tc superconducting oxides. The elucidation of this relationship is expected quite helpful for the preparation of high-quality multilayers of these materials. This calculation is possible to do in the same way of Timoshenko's bi-metal treatment. The authors did computation of the residual stress and strain, and the state of stress and strain for these multilayers has been acquired in detail by this calculation

  17. Structural chemistry of superconducting pnictides and pnictide oxides with layered structures

    Energy Technology Data Exchange (ETDEWEB)

    Johrendt, Dirk [Ludwig-Maximilians-Univ. Muenchen (Germany). Dept. Chemie und Biochemie; Hosono, Hideo [Tokyo Institute of Technology, Yokohama (Japan). Frontier Research Center; Hoffmann, Rolf-Dieter; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie

    2011-07-01

    The basic structural chemistry of superconducting pnictides and pnictide oxides is reviewed. Crystal chemical details of selected compounds and group subgroup schemes are discussed with respect to phase transitions upon charge-density formation, the ordering of vacancies, or the ordered displacements of oxygen atoms. Furthermore, the influences of doping and solid solutions on the valence electron concentration are discussed in order to highlight the structural and electronic flexibility of these materials. (orig.)

  18. Quenching effect on properties of Bi-Sr-Ca-Cu-O superconducting ceramics of various composition

    International Nuclear Information System (INIS)

    Amitin, E.B.; Gromilov, S.A.; Naumov, V.N.; Royak, A.Ya.; Starikov, M.A.

    1989-01-01

    Bismuth ceramics quenching effect on superconducting properties of samples of various composition is investigated. Two types of quenching effect on sample properties are detected: an increase of superconducting transition temperature T c by 15-20 K; broadening of temperature interval of the phase transition without anynatable T c displacement. X ray diffraction investigations have not detected sufficient differences in diffraction patterns of quenched and non-quenched samples. Within the limits of composition analysis by oxygen (±3%) no change of its content prior to and after quenching is detected. A correlation between the presence of an amorphous phase in a sample and the type of quenching effect is observed: T c increases in ceramics where an amorphous component is detected

  19. Method of forming a ceramic superconducting composite wire using a molten pool

    International Nuclear Information System (INIS)

    Geballe, T.H.; Feigelson, R.S.; Gazit, D.

    1991-01-01

    This paper describes a method for making a flexible superconductive composite wire. It comprises: drawing a wire of noble metal through a molten material, formed by melting a solid formed by pressing powdered Bi 2 O 3 , CaCO 3 SrCO 3 and CuO in a ratio of components necessary for forming a Bi-Sr-Ca-Cu-O superconductor, into the solid and sintering at a temperature in the range of 750 degrees - 800 degrees C. for 10-20 hours, whereby the wire is coated by the molten material; and cooling the coated wire to solidify the molten material to form the superconductive flexible composite wire without need of further annealing

  20. Crossover from BCS to composite boson (local pair) superconductivity in quasi-2D systems

    International Nuclear Information System (INIS)

    Gorbar, E.V.; Loktev, V.M.; Sharapov, S.G.

    1995-01-01

    The crossover from cooperative Cooper pairing to independent bound state (composite bosons) formation and condensation in quasi-2 D systems is studied. It is shown that at low carrier density the critical superconducting temperature is equal to the temperature of Bose-condensation of ideal quasi-2 D Bose-gas with heavy dynamical mass, meanwhile at high densities the BCS result remains valid. 15 refs

  1. High-temperature superconducting oxide synthesis and the chemical doping of the Cu-O planes

    International Nuclear Information System (INIS)

    Tarascon, J.M.; Barboux, P.; Bagley, B.G.; Greene, L.H.; McKinnon, W.R.; Hull, G.W.

    1987-01-01

    Different synthesis techniques for the preparation of dense superconducting ceramics are discussed, and a sol-gel process is shown to be very promising. The effect of oxygen content, and the effect of substitution of Ni and Zn for copper, on the structural, transport and superconducting properties of the La-Sr-Cu-O and Y-Ba-Cu-O systems are presented. The authors find that substitution on the copper sites destroys T/sub c/ in the La-Sr-Cu-O system and decreases it in the Y-Ba-Cu-O system, and this effect is insensitive as to whether the 3d metal is magnetic (Ni) or diamagnetic (Zn). A detailed study of the YBa/sub 2/Cu/sub 3/O/sub 7-y/ system as a function of oxygen content (y) shows that superconductivity can be destroyed in these materials by the removal of oxygen and restored by reinjecting oxygen; either thermally at 500 0 C or at temperatures (80 0 C) compatible with device processing by means of a novel plasma oxidation process. Of scientific interest, the plasma process induces bulk superconductivity in the undoped La/sub 2/CuO/sub 4/

  2. Ceramic/metal and A15/metal superconducting composite materials exploiting the superconducting proximity effect and method of making the same

    International Nuclear Information System (INIS)

    Holcomb, M.J.

    1999-01-01

    A composite superconducting material made of coated particles of ceramic superconducting material and a metal matrix material is disclosed. The metal matrix material fills the regions between the coated particles. The coating material is a material that is chemically nonreactive with the ceramic. Preferably, it is silver. The coating serves to chemically insulate the ceramic from the metal matrix material. The metal matrix material is a metal that is susceptible to the superconducting proximity effect. Preferably, it is a NbTi alloy. The metal matrix material is induced to become superconducting by the superconducting proximity effect when the temperature of the material goes below the critical temperature of the ceramic. The material has the improved mechanical properties of the metal matrix material. Preferably, the material consists of approximately 10% NbTi, 90% coated ceramic particles (by volume). Certain aspects of the material and method will depend upon the particular ceramic superconductor employed. An alternative embodiment of the invention utilizes A15 compound superconducting particles in a metal matrix material which is preferably a NbTi alloy

  3. Ceramic/metal and A15/metal superconducting composite materials exploiting the superconducting proximity effect and method of making the same

    Science.gov (United States)

    Holcomb, Matthew J.

    1999-01-01

    A composite superconducting material made of coated particles of ceramic superconducting material and a metal matrix material. The metal matrix material fills the regions between the coated particles. The coating material is a material that is chemically nonreactive with the ceramic. Preferably, it is silver. The coating serves to chemically insulate the ceramic from the metal matrix material. The metal matrix material is a metal that is susceptible to the superconducting proximity effect. Preferably, it is a NbTi alloy. The metal matrix material is induced to become superconducting by the superconducting proximity effect when the temperature of the material goes below the critical temperature of the ceramic. The material has the improved mechanical properties of the metal matrix material. Preferably, the material consists of approximately 10% NbTi, 90% coated ceramic particles (by volume). Certain aspects of the material and method will depend upon the particular ceramic superconductor employed. An alternative embodiment of the invention utilizes A15 compound superconducting particles in a metal matrix material which is preferably a NbTi alloy.

  4. Periodate oxidation of nanoscaled magnetic dextran composites

    International Nuclear Information System (INIS)

    Hong Xia; Guo Wei; Yuan Hang; Li Jun; Liu Yanmei; Ma Lan; Bai Yubai; Li Tiejin

    2004-01-01

    Highly hydrophilic, uniform and nontoxic magnetic fluids consisting of magnetite (Fe 3 O 4 ) and dextran were prepared. A periodate oxidation method was used to further activate the magnetic dextran, forming magnetic polyaldehyde-dextran, which could be conjugated to biomolecules such as proteins or antibodies. Oxidated Magnetic dextran composites were characterized by TEM, XRD and SQUID magnetometry. Moreover, a flexible, rapid and simple method to detect aldehydes was introduced to the magnetic composite system by utilizing 2,4-dinitrophenylhydrazine reagent. The result of the quantitative analysis of aldehyde was given by thermogravimetric analysis and elemental analysis

  5. Synthesis of high-temperature superconducting oxides and chemical alloying in Cu-O planes

    International Nuclear Information System (INIS)

    Tarascon, J.M.; Barboux, P.; Bagley, B.G.; Green, L.H.; Mckinnon, W.R.; Hull, G.W.

    1988-01-01

    Some methods for synthesis permitting to fabricate dense superconducting ceramics are considered. The Zole-Hell method is the most perspective one among them. Effect of oxygen content in a sample and copper substitution for nickel and zinc on structural, transition and superconducting properties of samples of the La-Sr-Cu-O(1) and Y-Ba-Cu-O(2) systems is studied. Copper substitution is established to suppress superconductivity in system 1 and to decrease T c in system 2, and this effect doesn't depend on the fact whether the substituting 3d-metal is magnetic (nickel) or diamagnetic (zinc). Detailed study of YBa 2 Cu 3 O 7-y properties as a function of oxygen content has shown that superconductivty in this composition can be suppressed as a result of oxygen removal and it can be reduced with its interoduction. The possibility to prepare nonalloyed La 2 CuO 4 in superconducting state as a result of plasma treatment comprises a scientific interest. 27 refs.; 5 figs.; 1 tab

  6. High-pressure effects on the superconductivity of β-pyrochlore oxides AOs2O6

    International Nuclear Information System (INIS)

    Muramatsu, Takaki; Takeshita, Nao; Terakura, Chikeko; Takagi, Hidenori; Tokura, Yoshinori; Yonezawa, Shigeki; Muraoka, Yuji; Hiroi, Zenji

    2006-01-01

    High-pressure effects on the superconducting transitions of β-pyrochlore oxide superconductors AOs 2 O 6 (A=Cs, Rb, K) are studied by measuring resistivity under high pressures up to 16 GPa. The superconducting transition temperature T c first increases with increasing pressure in all the compounds and then exhibits a broad maximum at 7.6 K (6 GPa), 8.2 K (2 GPa) and 10 K (0.6 GPa) for A=Cs, Rb and K, respectively. Finally, the superconductivity is suppressed completely at a critical pressure near 7 and 6 GPa for A=Rb and K and probably above 10 GPa for A=Cs. Characteristic changes in the temperature dependence of resistivity of RbOs 2 O 6 under high pressure. The residual resistivity largely increases with pressure above 4 GPa and, as a result, resistivity indicates small temperature dependence down to 4.2 K at 7 GPa and application of further pressure up to 10 GPa indicates that temperature dependence of resistivity decrease below 100 K. This characteristic behavior in the β-pyrochlore oxides may originate from the nesting of nearly octahedron shape of Fermi surface

  7. Magnetization of in situ multifilamentary superconducting Nb3Sn-Cu composites

    International Nuclear Information System (INIS)

    Shen, S.S.; Verhoeven, J.D.

    1980-01-01

    Magnetic properties are reported for in situ superconducting Nb 3 Sn composites that have exhibited attractive electrical properties and superior mechanical characteristics. Magnetization measurements were conducted up to 4 T at 4.2 K on a variety of samples of different sizes and twist pitches, and the results are presented in absolute M-H curves and losses per cycle. It is observed that the magnetization of such composites is generally proportional to the size of the wire (approx. 0.25 to 0.51 mm) rather than the fiber size (approx. 10 -7 m), which indicates a strong coupling effect among Nb 3 Sn fibers

  8. Hyperfine interactions in iron substituted high-Tc superconducting oxides

    International Nuclear Information System (INIS)

    Ellis, D.E.; Saitovitch, E.B.; Lam, D.J.

    1991-01-01

    The hyperfine interactions in Fe substituted copper oxide ternary and quaternary compounds with perovskite-related structures are studied, using the Local Density theory in an embedded cluster approach. The self-consistent electronic structure is examined for Cu and Fe sites in a number of plausible local geometries representative of La 2 Cu O 4 , YBa 2 Cu 3 O 7-δ and related materials. Moessbauer isomer shifts, electric fields gradients, magnetic moments, and contact hyperfine fields are presented for comparison with experiment and discussed in light of lattice structure data. (author)

  9. Splitting of the resistive transition of copper oxide superconductors: Intrinsic double superconducting transitions versus extrinsic effects

    International Nuclear Information System (INIS)

    Pomar, A.; Curras, S.R.; Veira, J.A.; Vidal, F.

    1996-01-01

    To prove the possible existence of an intrinsic double superconducting transition in the high-temperature copper oxide superconductors (HTSC), an effect recently attributed by various groups to different intrinsic properties of these materials (including unconventional wave pairing), we present in this paper high resolution data of the electrical resistivity, ρ(T), around the superconducting transition of different single crystal and polycrystal YBa 2 Cu 3 O 7-δ samples. The analysis of the temperature derivative of these ρ(T) data strongly suggests that (i) with a temperature resolution well to within 20 mK, the intrinsic resistive transition of the HTSC does not present any double transition anomaly and (ii) the double peak structure observed in dρ(T)/dT by some authors is probably an extrinsic effect (associated with stoichiometric inhomogeneities in some cases, and with experimental artifacts in other cases). copyright 1996 The American Physical Society

  10. Moessbauer studies of 57Fe substitution of Cu ions in superconducting oxides

    International Nuclear Information System (INIS)

    Saitovitch, E.B.

    1988-01-01

    Since the discovery of high-T c superconductivity in YBa 2 Cu 3 O 7 oxides several studies of metal ions substitutions were reported. The observed depression on T c without a systematic correlation with the charge and magnetic moment of Cu substituents claims for more detailed information about its local properties as can be revealed by 57 Fe Moessbauer spectroscopy. The results for different iron concentrations combined with modifications of the superconducting transition are discussed concerning the presence of magnetic moments on the Fe ions and the preferential occupation of Cu(1) sites, recently confirmed by neutron and electron diffraction experiments. The oxygen coordination for the different iron species are proposed on the basis of their dependence on Fe concentration, their behavior at high temperatures as well as the electron diffraction and electron microscopy measurements reported for Fe: YBa 2 Cu 3 O 7 samples. (author) [pt

  11. Selective carbon monoxide oxidation over Ag-based composite oxides

    Energy Technology Data Exchange (ETDEWEB)

    Guldur, C. [Gazi University, Ankara (Turkey). Chemical Engineering Department; Balikci, F. [Gazi University, Ankara (Turkey). Institute of Science and Technology, Environmental Science Department

    2002-02-01

    We report our results of the synthesis of 1 : 1 molar ratio of the silver cobalt and silver manganese composite oxide catalysts to remove carbon monoxide from hydrogen-rich fuels by the catalytic oxidation reaction. Catalysts were synthesized by the co-precipitation method. XRD, BET, TGA, catalytic activity and catalyst deactivation studies were used to identify active catalysts. Both CO oxidation and selective CO oxidation were carried out in a microreactor using a reaction gas mixture of 1 vol% CO in air and another gas mixture was prepared by mixing 1 vol% CO, 2 vol% O{sub 2}, 84 vol% H{sub 2}, the balance being He. 15 vol% CO{sub 2} was added to the reactant gas mixture in order to determine the effect of CO{sub 2}, reaction gases were passed through the humidifier to determine the effect of the water vapor on the oxidation reaction. It was demonstrated that metal oxide base was decomposed to the metallic phase and surface areas of the catalysts were decreased when the calcination temperature increased from 200{sup o}C to 500{sup o}C. Ag/Co composite oxide catalyst calcined at 200{sup o}C gave good activity at low temperatures and 90% of CO conversion at 180{sup o}C was obtained for the selective CO oxidation reaction. The addition of the impurities (CO{sub 2} or H{sub 2}O) decreased the activity of catalyst for selective CO oxidation in order to get highly rich hydrogen fuels. (author)

  12. Improving superconducting properties of YBCO high temperature superconductor by Graphene Oxide doping

    Energy Technology Data Exchange (ETDEWEB)

    Dadras, S., E-mail: dadras@alzahra.ac.ir; Dehghani, S.; Davoudiniya, M.; Falahati, S.

    2017-06-01

    In this research, we report the synthesis and characterization of YBa{sub 2}Cu{sub 3}O{sub 7-δ} (YBCO) high temperature superconductor prepared by sol-gel method and doped with Graphene Oxide (GO) in different weight percentages, 0, 0.1, 0.7 and 1 % wt. The x-ray diffraction (XRD) analysis confirms the formation of orthorhombic phase of superconductivity for all the prepared samples. We found that GO doping reduces the crystalline size of the samples. We evaluated the effects of GO doping on the normal state resistivity (ρ), superconducting transition temperature (T{sub c}) and critical current density (J{sub c}). The results show that the GO doping has a positive effect on these properties. Also, the highest J{sub c} is obtained for the 0.7 %wt GO doped YBCO compound that its critical current density is about 15 times more than the J{sub c} of pure one in 0.4 T magnetic field. The scanning electron microscope (SEM) analysis shows that there are better connections between the grains of GO doped samples. - Highlights: • Graphene Oxide doping increased the YBCO critical current density. • Graphene Oxide creates a better connection between the YBCO grains. • The normal resistivity of samples were decreased by GO doping to YBCO compounds. • Graphene Oxide doping has a positive effect on the critical transition temperature.

  13. Research of mechanical and void properties of composite insulation for superconducting busbar

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiongyi, E-mail: huangxy@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Li, Guoliang [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Clayton, Nicholas [ITER IO, Superconductor Systems & Auxiliaries Section, 13067 St Paul Lez Durance Cedex (France); Lu, Kun; Wang, Chunyu; Wang, Chao; Dai, Zhiheng [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Gung, Chen-yu; Devred, Arnaud [ITER IO, Superconductor Systems & Auxiliaries Section, 13067 St Paul Lez Durance Cedex (France); Song, Yuntao; Fang, Linlin [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2017-01-15

    Highlights: • Two curing methods for the pre-preg on the superconducting busbar are researched. • Vaccum bag and silicone rubber is used for pre-preg curing as complement of VPI in fusion filed. • The results of mechanical properties and void content is described and discussed. - Abstract: Pre-preg material has been widely-used in the industry of the aerospace, the wind power, which has many advantages on manufacture process, and can be chosen as an effective complementary insulation method for the Wet-winding and Vacuum Pressure Impregnation technology in the field of superconducting fusion magnets. ASIPP undertaken many engineering tasks on the superconducting coil and busbar design and manufacture for the large fusion device, the pre-preg material and the relevant curing technology were researched as a new method for the high voltage potential components in ITER Feeders, such as the busbars and current leads. Two types of Chinese industrial glass fiber pre-preg insulation composite material were studied and pre-qualified using vacuum bag and silicone rubber assistance technique in ASIPP. The mechanical properties including the ILSS and UTS at 77 K, and void content of this composites were measured and discussed in this paper in detail.

  14. Alumina composites for oxide/oxide fibrous monoliths

    International Nuclear Information System (INIS)

    Cruse, T. A.; Polzin, B. J.; Picciolo, J. J.; Singh, D.; Tsaliagos, R. N.; Goretta, K. C.

    2000-01-01

    Most work on ceramic fibrous monoliths (FMs) has focused on the Si 3 N 4 /BN system. In an effort to develop oxidation-resistant FMs, several oxide systems have recently been examined. Zirconia-toughened alumina and alumina/mullite appear to be good candidates for the cell phase of FMs. These composites offer higher strength and toughness than pure alumina and good high-temperature stability. By combining these oxides, possibly with a weaker high-temperature oxide as the cell-boundary phase, it should be possible to product a strong, resilient FM that exhibits graceful failure. Several material combinations have been examined. Results on FM fabrication and microstructural development are presented

  15. An investigation of the element composition of superconducting ceramics by neutron activation and radiography methods

    International Nuclear Information System (INIS)

    Kist, A.A.; Flitsiyan, E.S.

    1994-01-01

    The neutron activation methods for determining the general composition and distribution of the main components in HTSC ceramics were developed. The conditions for the reduction of the analysis error were discussed. The dependences of the oxygen content and superconducting parameters of single-phase and polyphase yttrium ceramics on the regime of heat treatment in air were investigated. Variation in the oxygen content was found to have a nonmonotone character, depending on the temperature of quenching and annealing. Correlation between the character of the superconducting transition and the oxygen content was observed. During the heat treatment, reversible structural phase transitions proceed in the single-phase ceramics in the polyphase ceramics, the recrystallization processes occur, which result in homogenization of its structure

  16. Superconducting properties of powder-metallurgically produced Cu-Nb3Sn composite wires

    International Nuclear Information System (INIS)

    Schaper, W.; Wecker, J.; Heine, K.; Bormann, R.; Freyhardt, H.C.

    1988-01-01

    The critical current density of composite superconducting wires can be improved by ternary or quaternary additions. If these additions are incorporated into the A15 phase the upper critical field can be increased. An increase in this field, however, can only be realized if the additions do not strongly deteriorate the critical temperature. An enhanced upper critical field in connection with a favorable grain size of the A15 phase finally leads to improved critical current densities in the entire field range. With these parameters as guidelines, the effects of Ti, In, Ga, and Ge additions to the bronze and of Ta additions to the niobium on the superconducting properties of PM produced Cu-Nb 3 Sn wires were investigated

  17. The self-field effect in twisted superconducting composites

    International Nuclear Information System (INIS)

    Duchateau, J.L.; Turck, B.; Krempasky, L.; Polak, M.

    1976-01-01

    Since twisting of composites does not cause a transposition with respect to the self-field of the transport current, they behave like a bulk superconductor with averaged critical current density, when the transport current is changed. Consequently, the electric field is given by the history of the transport current changes. Using a simplified model (Jsub(c) = const) the expressions for the electric fields and losses for the first and immediately following second increase of the transport current are derived. Experimental results are also presented which clearly show higher electric field during the first run than during the following, which agrees with theoretical predictions. Quite a good quantitative agreement between theory and experiment was obtained up to about 80 % of the critical transport current. The influence of the copper matrix is also discussed. (author)

  18. Compositions comprising enhanced graphene oxide structures and related methods

    Science.gov (United States)

    Kumar, Priyank Vijaya; Bardhan, Neelkanth M.; Belcher, Angela; Grossman, Jeffrey

    2016-12-27

    Embodiments described herein generally relate to compositions comprising a graphene oxide species. In some embodiments, the compositions advantageously have relatively high oxygen content, even after annealing.

  19. Fabrication of extruded wire of MgB2/Al composite material and its superconducting property and microstructure

    Czech Academy of Sciences Publication Activity Database

    Matsuda, K.; Nishimura, K.; Ikeno, S.; Mori, K.; Aoyama, S.; Yabumoto, Y.; Hishinuma, Y.; Müllerová, Ilona; Frank, Luděk; Yurchenko, V. V.; Johansen, T. H.

    2008-01-01

    Roč. 97, - (2008), 012230:1-6 E-ISSN 1742-6596. [European Conference on Applied Superconductivity /8./ - EUCAS 2007. Brussels, 16.09.2007-20.09.2007] Institutional research plan: CEZ:AV0Z20650511 Keywords : MgB2/Al composite * superconductors * electron microscopy Subject RIV: JI - Composite Materials

  20. Influence of various parameters on the elaboration of superconducting oxides. Influence de divers parametres sur la synthese d'oxydes supraconducteurs

    Energy Technology Data Exchange (ETDEWEB)

    Remy, F; Monnereau, O; Vacquier, G; Sorbier, J P; Fournel, A [Aix-Marseille-1 Univ., 13 - Marseille (FR); Mokrani, R [Aix-Marseille-3 Univ., 13 - Marseille (FR)

    1989-01-01

    Several oxides able to give rise to a high T{sub c} superconductivity have been studied. Samples were prepared in both series: La(Ba{sub 2-x}La{sub x}) Cu{sub 3}O{sub 7+y} and YBa{sub 2} (Cu{sub 3-x}Ag{sub x})O{sub 7-y}. The evolution of the resistance versus the composition has been studied on sintered samples. The results assess the importance of the experimental conditions of the synthesis. In the system La(Ba{sub 2-x}La{sub x})Cu{sub 3}O{sub 7+y} our results complete the work of Segre et al. and precise composition at which the superconductivity transition disappear for the profit of the semiconductive behaviour. The samples YBa{sub 2}(Cu{sub 3-x}Ag{sub x})O{sub 7-y} has for x = 0 electrical properties very dependent of the thermal treatment. Some characteristic data are shown. The partial substitution of Cu by Ag for x {ge} 1 enables to keep the superconducting behaviour.

  1. Elastic stiffnesses of an Nb-Ti/Cu-composite superconductive wire

    Science.gov (United States)

    Kim, Sudook; Ledbetter, Hassel; Ogi, Hirotsugu

    2000-09-01

    Elastic-stiffness coefficients were determined on a 1.4-mm-diameter wire consisting of superconducting Nb-Ti fibers in a copper matrix, with a polyvinyl-resin coating. The matrix contained 324 Nb-Ti fibers. An electromagnetic-acoustic-resonance method was used to obtain five independent elastic-stiffness coefficients assuming transverse-isotropic symmetry. From these we calculated Young moduli, bulk modulus, and principal Poisson ratios. As a check, we used a mechanical-impulse-excitation method to directly measure the Young modulus in the fiber direction. The three-phase composite wire showed a 10% anisotropy in the Young modulus.

  2. Irradiatable polymer composition with improved oxidation resistance

    International Nuclear Information System (INIS)

    Lyons, B.J.

    1977-01-01

    A method is described for the incorporation of a substantially insoluble organic phosphite into a polymer composition such as polyolefin polymers or ethylene copolymers to prevent oxidation of the polymer at elevated temperatures after radiation-induced crosslinking. The crosslinking is readily achieved without affecting the antioxidant properties of the organic phosphite. Particularly suitable organic compounds are derivatives of pentaerythritol, dipentaerythritol, and tripentaerythritol in cooncentrations of 1 to 3% of the mixture to be irradiated

  3. Supercapacitors Based on Nickel Oxide/Carbon Materials Composites

    OpenAIRE

    Lota, Katarzyna; Sierczynska, Agnieszka; Lota, Grzegorz

    2011-01-01

    In the thesis, the properties of nickel oxide/active carbon composites as the electrode materials for supercapacitors are discussed. Composites with a different proportion of nickel oxide/carbon materials were prepared. A nickel oxide/carbon composite was prepared by chemically precipitating nickel hydroxide on an active carbon and heating the hydroxide at 300 ∘C in the air. Phase compositions of the products were characterized using X-ray diffractometry (XRD). The morphology of the composite...

  4. Characterization of transparent superconductivity Fe-doped CuCrO{sub 2} delafossite oxide

    Energy Technology Data Exchange (ETDEWEB)

    Taddee, Chutirat [Materials Science and Nanotechnology Program, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Kamwanna, Teerasak, E-mail: teekam@kku.ac.th [Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Nanotec-KKU Center of Excellence on Advanced Nanomaterials for Energy Production and Storage, Khon Kaen 40002 (Thailand); Integrated Nanotechnology Research Center (INRC), Khon Kaen University, Khon Kaen 40002 (Thailand); Amornkitbamrung, Vittaya [Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Nanotec-KKU Center of Excellence on Advanced Nanomaterials for Energy Production and Storage, Khon Kaen 40002 (Thailand); Integrated Nanotechnology Research Center (INRC), Khon Kaen University, Khon Kaen 40002 (Thailand)

    2016-09-01

    Graphical abstract: - Highlights: • Effect of Fe substitution on the physical properties in CuCrO{sub 2} is studied. • The substitution of Cr{sup 3+} by Fe{sup 3+} produces a mixed effect on the magnetic properties. • CuCr{sub 1−x}Fe{sub x}O{sub 2} delafossite oxides show transparent superconductivity. - Abstract: Delafossite CuCr{sub 1−x}Fe{sub x}O{sub 2} (0.0 ≤ x ≤ 0.15) semiconductors were synthesized using a self-combustion urea nitrate process. The effects of Fe concentration on its microstructural, optical, magnetic, and electrical properties were investigated. X-ray diffraction (XRD) analysis results revealed the delafossite structure in all the samples. The lattice spacing of CuCr{sub 1−x}Fe{sub x}O{sub 2} slightly increased with increasing substitution of Fe at the Cr sites. The optical properties measured at room temperature using UV–visible spectroscopy showed a weak absorbability in the visible light and near IR regions. The corresponding direct optical band gap was about 3.61 eV, exhibiting transparency in the visible region. The magnetic hysteresis loop measurements showed that the Fe-doped CuCrO{sub 2} samples exhibited ferromagnetic behavior at room temperature. This indicated that the substitution of Fe{sup 3+} for Cr{sup 3+} produced a mixed effect on the magnetic properties of CuCrO{sub 2} delafossite oxide. The temperature dependent resistivity measurements clearly revealed the presence of superconductivity in the CuCr{sub 1−x}Fe{sub x}O{sub 2} with a superconducting transition up to 118 K.

  5. Superconducting cermets

    International Nuclear Information System (INIS)

    Goyal, A.; Funkenbusch, P.D.; Chang, G.C.S.; Burns, S.J.

    1988-01-01

    Two distant classes of superconducting cermets can be distinguished, depending on whether or not a fully superconducting skeleton is established. Both types of cermets have been successfully fabricated using non-noble metals, with as high as 60wt% of the metal phase. The electrical, magnetic and mechanical behavior of these composites is discussed

  6. Superconducting materials

    International Nuclear Information System (INIS)

    Kormann, R.; Loiseau, R.; Marcilhac, B.

    1989-01-01

    The invention concerns superconducting ceramics containing essentially barium, calcium and copper fluorinated oxides with close offset and onset temperatures around 97 K and 100 K and containing neither Y nor rare earth [fr

  7. Superconducting and normal state properties of niobium-potasium chloride composites

    International Nuclear Information System (INIS)

    Boysel, R.M.

    1981-01-01

    The electrical resistivity, current-voltage characteristics, critical currents, and DC magnetic susceptibility of composites consisting of 50 μm grains of Nb randomly dispersed in a KCl medium were measured. Data were taken between 1.2K and 20K in magnetic fields from 0 to +- 5G. The resistivity and current-voltage characteristics were measured using a standard four-terminal AC technique with a voltage sensitivity of 1 to 2nV, and the magnetic susceptibility was measured using an rf SQUID magnetometer. We found that samples with rho/sub n/ 2 . For 0.1Ω-cm 10Ω-cm there was no superconducting transition. The susceptibility decreased slowly below the grain transition temperature T/sub infinity/ and even below T/sub c/ in samples which underwent resistive transitions. The shape of the resistive transitions and the kink structure in the I-V's require a phase coherent transition model to adequately describe them. However, the poor fit of the theory to our data, the existence of the voltage steps, and the changing susceptibility below the resistive transition indicate that sample disorder plays a more important role in the superconducting transition of composites than is currently accounted for by phase coherent transition theories

  8. Photoconductivity of reduced graphene oxide and graphene oxide composite films

    International Nuclear Information System (INIS)

    Liang, Haifeng; Ren, Wen; Su, Junhong; Cai, Changlong

    2012-01-01

    A photoconductive device was fabricated by patterning magnetron sputtered Pt/Ti electrode and Reduced Graphene Oxide (RGO)/Graphene Oxide (GO) composite films with a sensitive area of 10 × 20 mm 2 . The surface morphology of as-deposited GO films was observed by scanning electronic microscopy, optical microscopy and atomic force microscopy, respectively. The absorption properties and chemical structure of RGO/GO composite films were obtained using a spectrophotometer and an X-ray photoelectron spectroscopy. The photoconductive properties of the system were characterized under white light irradiation with varied output power and biased voltage. The results show that the resistance decreased from 210 kΩ to 11.5 kΩ as the irradiation power increased from 0.0008 mW to 625 mW. The calculated responsiveness of white light reached 0.53 × 10 −3 A/W. Furthermore, the device presents a high photo-conductivity response and displays a photovoltaic response with an open circuit voltage from 0.017 V to 0.014 V with irradiation power. The sources of charge are attributed to efficient excitation dissociation at the interface of the RGO/GO composite film, coupled with cross-surface charge percolation.

  9. Tensile damage and its influence on the critical current of Bi2223/Ag superconducting composite tape

    International Nuclear Information System (INIS)

    Ochiai, S; Nagai, T; Okuda, H; Oh, S S; Hojo, M; Tanaka, M; Sugano, M; Osamura, K

    2003-01-01

    We have studied the tensile behaviour of Bi2223 superconducting composite tapes at room temperature, and the influence of the tensile damages introduced at room temperature on the critical current I c and the n values at 77 K. In the measurement of the I c and n values, the overall composite with a gauge length 60 mm was divided into six elements with a gauge length of 10 mm in order to find the correlation of the I c and n values of the overall composite to those of the local elements which constitute the composite. From the measured stress-strain curve of the composite and the calculated residual strain of the Bi2223 filaments, the intrinsic fracture strain of Bi2223 filaments was estimated to be 0.09-0.12%. When the applied strain was lower than the onset strain of the filament damage, the original I c and n values were retained both in the overall composite and the elements. In this situation, while the overall voltage at the transition from superconductivity to normal conductivity of the composite was the sum of the voltages of the constituent elements, among all elements the overall voltage was affected more by the element with the lower I c (higher voltage). The damage of the filaments arose first locally, resulting in a reduction of the I c and n values in the corresponding local element, even though the other elements retained the original I c and n values. In this situation, the voltage of the overall composite stemmed dominantly from that of the firstly damaged weakest element, and the overall I c and n values were almost determined by the values of such an element. After the local element was fully damaged, the damage arose also in other elements, resulting in segmentation of the filaments. Thus, the I c and n values were reduced in all elements. The correlation of I c between the overall composite and the elements could be described comprehensively for non-damaged and damaged states from the voltage-current relation

  10. High Performance Graphene Oxide Based Rubber Composites

    Science.gov (United States)

    Mao, Yingyan; Wen, Shipeng; Chen, Yulong; Zhang, Fazhong; Panine, Pierre; Chan, Tung W.; Zhang, Liqun; Liang, Yongri; Liu, Li

    2013-01-01

    In this paper, graphene oxide/styrene-butadiene rubber (GO/SBR) composites with complete exfoliation of GO sheets were prepared by aqueous-phase mixing of GO colloid with SBR latex and a small loading of butadiene-styrene-vinyl-pyridine rubber (VPR) latex, followed by their co-coagulation. During co-coagulation, VPR not only plays a key role in the prevention of aggregation of GO sheets but also acts as an interface-bridge between GO and SBR. The results demonstrated that the mechanical properties of the GO/SBR composite with 2.0 vol.% GO is comparable with those of the SBR composite reinforced with 13.1 vol.% of carbon black (CB), with a low mass density and a good gas barrier ability to boot. The present work also showed that GO-silica/SBR composite exhibited outstanding wear resistance and low-rolling resistance which make GO-silica/SBR very competitive for the green tire application, opening up enormous opportunities to prepare high performance rubber composites for future engineering applications. PMID:23974435

  11. Metallurgy, fabrication, and superconducting properties of multifilamentary Nb3Al composites

    International Nuclear Information System (INIS)

    Hafstrom, J.W.

    1976-01-01

    The control of metallurgical structure during fabrication that will improve the superconducting properties of multifilamentary, aluminium-stabilized, Nb 3 Al composites is described. Composites are fabricated by placing niobium rods in an aluminum matrix, and then drawing to wire. Nb 3 Al is formed at temperatures exceeding 1800 0 C for about 5 s and ordered at 750 0 C for 48 h. A critical current, J/sub c/(H), in excess of 10 5 A/cm 2 (F/sub p/ approximately equal to 7 x 10 8 dynes/cm 3 ) at 7 T and a T/sub c/ to 18.2 K are obtained. Attempts to improve J/sub c/(H) by controlling the grain size in the Nb 3 Al diffused layer are discussed. Precipitates, arising from the addition of carbon during Nb 3 Al layer growth, do not appear to be effective as grain-boundary or flux pinners. When 1 percent Zr is added to the Nb, the growth of the Nb 3 Al layer is accelerated, T/sub c/ is lowered and J/sub c/(H) is not significantly improved. J/sub c/(H) rapidly decreases with an increase in Nb 3 Al or (Nb-Zr) 3 Al layer thickness, d. J/sub c/(H) is independent of d in composites with d greater than or approximately equal to 1.5 μm. In general, the Nb 3 Al grain size appears comparable to d for d less than or equal to 1 μm. Significant improvement of J/sub c/(H) for Nb 3 Al superconducting composites reacted at temperatures above 1800 0 C (to achieve T/sub c/ greater than 17 K) is achieved only by maintaining the layer thickness well below d approximately equal to 1.0 μm

  12. Solid-state ionics: Studies of lithium-conducting sulfide glasses and a superconducting oxide compound

    International Nuclear Information System (INIS)

    Ahn, Byung Tae.

    1989-01-01

    The first part of this work studies lithium-conducting sulfide glasses for battery applications, while the second part studies the thermodynamic properties of a superconducting oxide compound by using an oxide electrolyte. Lithium conducting glasses based on the SiS 2 -Li 2 S system are possible solid electrolytes for high-energy-density lithium batteries. The foremost requirement for solid electrolytes is that they should have high ionic conductivities. Unfortunately, most crystalline lithium conductors have low ionic conductivities at room temperature. However, glass ionic conductors show higher ionic conductivities than do crystalline forms of the same material. In addition to higher ionic conductivities, glasses appear to have several advantages over crystalline materials. These advantages include isotropic conductivity, absence of grain boundary effects, ease of glass forming, and the potential for a wide range of stability to oxidizing and reducing conditions. Using pyrolitic graphite-coated quartz ampoules, new ternary compounds and glasses in the SiS 2 -Li 2 S system were prepared. Several techniques were used to characterize the materials: powder x-ray diffraction, differential thermal analysis, differential scanning calorimetry, and AC impedance spectroscopy. The measured lithium conductivity of the sulfide glasses was one of the highest among the known solid lithium conductors. Measuring the equilibrium open circuit voltages assisted in determining the electrochemical stabilities of the ternary compounds and glasses with respect to pure Li. A solid-state ionic technique called oxygen coulometric titration was used to measure the thermodynamic stability, the oxygen stoichiometry, and the effects of the oxygen stoichiometry, and the effects of the oxygen stoichiometry and the cooling rate on superconductivity of the YBa 2 Cu 3 O 7-x compound were investigated

  13. Oxygen hole mechanism of superconductivity in cuprates and other metal oxides

    International Nuclear Information System (INIS)

    Rao, C.N.R.

    1989-01-01

    Several theoretical models have been proposed to explain high-temperature superconductivity in cuprates. An issue that is central to any model is the nature of copper and oxygen species in the cuprates since superconductivity clearly owes its origin to the Cu-O sheets universally present in all the cuprate families. Thus, the five families of cuprate superconductors, La 2 - x M x CuO 4 (M = Ca, Sr or Ba) of the K 2 NiF 4 structure, LnBa 2 Cu 3 O 7 - δ (Ln = Y or rare earth), Bi 2 (Ca, Sr) n + 1 Cu n O 2n + 4 , Tl 2 (Ca, Ba) n + 1 Cu n O 2n + 4 and Tl (Ca, Ba) n + 1 Cu n O 2n + 3 , all contain two-dimensional Cu-O sheets. The Cu-O chains additionally present in the 123 compounds do not seem to play any crucial role. It has been generally believed that magnetic, superconducting and related properties of cuprates have some thing to do with the mixed valency of copper. For example, the resonating valence bond (RVB) model requires the presence of holes on Cu sites (Cu 3 + species). There are also a few models, however, based on the presence of holes on oxygen sites (O - species); dimerization of oxygen holes has also been suggested to occur by a few workers. It is the purpose of this article to briefly present the available experimental evidence for the presence of oxygen holes and to discuss their role in high-temperature conductivity. It will be shown that these holes play a role in other oxide materials as well as including the Cu-free Ba 1 - x K x BiO 3 superconductor

  14. Introducing Barium in Transition Metal Oxide Frameworks: Impact upon Superconductivity, Magnetism, Multiferroism and Oxygen Diffusion and Storage.

    Science.gov (United States)

    Raveau, Bernard

    2017-06-01

    The role of barium in the structural chemistry of some transition metal oxides of the series "Cu, Mn, Fe,Co" is reviewed, based on its size effect and its particular chemical bonding. Its impact upon various properties, superconductivity, magnetism, multiferroism, oxygen storage is emphasized. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. High-temperature superconductivity

    International Nuclear Information System (INIS)

    Ginzburg, V.L.

    1987-07-01

    After a short account of the history of experimental studies on superconductivity, the microscopic theory of superconductivity, the calculation of the control temperature and its possible maximum value are presented. An explanation of the mechanism of superconductivity in recently discovered superconducting metal oxide ceramics and the perspectives for the realization of new high-temperature superconducting materials are discussed. 56 refs, 2 figs, 3 tabs

  16. Superconductivity and thermal property of MgB2/aluminum matrix composite materials fabricated by 3-dimensional penetration casting method

    International Nuclear Information System (INIS)

    Matsuda, Kenji; Saeki, Tomoaki; Nishimura, Katsuhiko; Ikeno, Susumu; Mori, Katsunori; Yabumoto, Yukinobu

    2006-01-01

    Superconductive MgB 2 /Al composite material with low and high volume fractions of particles were fabricated by our special pre-packing technique and 3-dimensional penetration casting method. The composite material showed homogeneous distribution of MgB 2 particles in the Al-matrix with neither any aggregation of particles nor defects such as cracks or cavities. The critical temperature of superconducting transition (T C ) was determined by electrical resistivity and magnetization to be about 37-39 K. Specific heat measurements further supported these T C findings. The Meissner effect was also verified in the liquid He, in which a piece of the composite floated above a permanent magnet. The thermal conductivity of the MgB 2 /Al composite material was about 25 W/K·m at 30K, a value much higher than those found for NbTi or Nb 3 Sn superconducting wires normally used in practice, which are 0.5 and 0.2 W/K·m at 10 K, respectively. A billet of the superconducting material was successfully hot-extruded, forming a rod. The same as the billet sample, the rod showed an onset T C of electrical resistivity of 39 K. (author)

  17. Development of Industrially Produced Composite Quench Heaters for the LHC Superconducting Lattice Magnets

    CERN Document Server

    Szeless, Balázs; Calvone, F

    1996-01-01

    The quench heaters are vital elements for the protection of the LHC superconducting lattice magnets in the case of resistive transitions of the conductor. The basic concept of magnet protection and technical solutions are briefly presented. The quench heater consists of partially copper clad stainless steel strips sandwiched in between electric insulating carrier foils with electrical and mechanical properties such as to withstand high voltages, low temperatures, pressures and ionizing radiation. Testing of some commercial available electric insulation foils, polyimide (PI), polyetheretherketon (PEEK) and polyarylate (PA) and combinations of adhesive systems which are suitable for industrial processing are described. Possible industrial methods for series production for some 80 km of these composite quench heaters are indicated.

  18. Optical properties of copper-oxygen planes in superconducting oxides and related materials

    International Nuclear Information System (INIS)

    Kelly, M.K.; Barboux, P.; Tarascon, J.; Aspnes, D.E.

    1989-01-01

    The optical spectra of YBa 2 Cu 3 O 7-x and other Cu-O-based superconductors have several common features in the visible and near uv. Chemical changes that affect the conductivity of these materials also have a strong effect on some of these features. By comparing the spectra of many materials containing similar Cu-O structures, we have determined that some of the optical features are associated with specific local structures within the unit cell. Of particular interest is a sharp feature at 1.7 eV that appears for nonmetallic compositions of many of the materials and is removed by the introduction of carriers. Similar features in materials not yet showing superconductivity encourage further investigation of them

  19. Effect of shock pressure on the structure and superconducting properties of Y-Ba-Cu-O in explosively fabricated bulk metal-matrix composites

    Science.gov (United States)

    Murr, L. E.; Niou, C. S.; Pradhan-Advani, M.

    1991-01-01

    While it is now well established that copper-oxide-based power, or virtually any other ceramic superconductor powder, can be consolidated and encapsulated within a metal matrix by explosive consolidation, the erratic superconductivity following fabrication has posed a major problem for bulk applications. The nature of this behavior was found to arise from microstructural damage created in the shock wave front, and the residual degradation in superconductivity was demonstrated to be directly related to the peak shock pressure. The explosively fabricated or shock loaded YBa2Cu3Ox examples exhibit drastically altered rho (or R) - T curves. The deterioration in superconductivity is even more noticeable in the measurement of ac magnetic susceptibility and flux exclusion or shielding fraction which is also reduced in proportion to increasing peak shock pressure. The high frequency surface resistance (in the GHz range) is also correspondingly compromised in explosively fabricated, bulk metal-matrix composites based on YBa2Cu3O7. Transmission electron microscopy (including lattice imaging techniques) is being applied in an effort to elucidate the fundamental (microstructural) nature of the shock-induced degradation of superconductivity and normal state conductivity. One focus of TEM observations has assumed that oxygen displaced from b-chains rather than oxygen-vacancy disorder in the basal plane of oxygen deficient YBa2Cu3Ox may be a prime mechanism. Shock-wave displaced oxygen may also be locked into new positions or interstitial clusters or chemically bound to displaced metal (possibly copper) atoms to form precipitates, or such displacements may cause the equivalent of local lattice cell changes as a result of stoichiometric changes. While the shock-induced suppression of T(sub c) is not desirable in the explosive fabrication of bulk metal-matrix superconductors, it may be turned into an advantage if the atomic-scale distortion can be understood and controlled as local

  20. Composite catalyst for carbon monoxide and hydrocarbon oxidation

    Science.gov (United States)

    Liu, Wei; Flytzani-Stephanopoulos, Maria

    1996-01-01

    A method and composition for the complete oxidation of carbon monoxide and/or hydrocarbon compounds. The method involves reacting the carbon monoxide and/or hydrocarbons with an oxidizing agent in the presence of a metal oxide composite catalyst. The catalyst is prepared by combining fluorite-type oxygen ion conductors with active transition metals. The fluorite oxide, selected from the group consisting of cerium oxide, zirconium oxide, thorium oxide, hafnium oxide, and uranium oxide, and may be doped by alkaline earth and rare earth oxides. The transition metals, selected from the group consisting of molybdnum, copper, cobalt, maganese, nickel, and silver, are used as additives. The atomic ratio of transition metal to fluorite oxide is less than one.

  1. Hole superconductivity

    International Nuclear Information System (INIS)

    Hirsch, J.E.; Marsiglio, F.

    1989-01-01

    The authors review recent work on a mechanism proposed to explain high T c superconductivity in oxides as well as superconductivity of conventional materials. It is based on pairing of hole carriers through their direct Coulomb interaction, and gives rise to superconductivity because of the momentum dependence of the repulsive interaction in the solid state environment. In the regime of parameters appropriate for high T c oxides this mechanism leads to characteristic signatures that should be experimentally verifiable. In the regime of conventional superconductors most of these signatures become unobservable, but the characteristic dependence of T c on band filling survives. New features discussed her include the demonstration that superconductivity can result from repulsive interactions even if the gap function does not change sign and the inclusion of a self-energy correction to the hole propagator that reduces the range of band filling where T c is not zero

  2. Development of microstructure and superconductivity of silver-clad Bi(2223) composite tapes in the process of heat treatment

    International Nuclear Information System (INIS)

    Guo, Y.C.; Liu, H.K.; Dou, S.X.

    1994-01-01

    A systematic study on the development of phase composition, microstructure and superconducting properties (critical temperature Tc and critical current density J c ) in silver-clad (Bi,Pb) 2 Sr 2 Ca 2 Cu 3 O 10 composite tapes during the process of heat treatment has been conducted using X-ray diffraction, scanning electron microscopy and electrical measurements. The correlation between the tape's high Tc phase purity, microstructure and superconducting properties at different heat treatment stages has been carefully analysed and explained. The results indicate that pure high Tc phase, high degree of grain alignment, high mass density and good connection between grains are all essential for superconducting tapes to carry a large current. With the optimized process parameters, a critical current density J c up to 32665 A cm -2 (corresponding critical current, 42.3 A) at 77 K and self-magnetic field for silver-clad (Bi,Pb) 2 Sr 2 Ca 2 Cu 3 O 10 superconducting composite tapes has been achieved. (orig.)

  3. Nanostructured manganese oxide/carbon nanotubes, graphene and graphene oxide as water-oxidizing composites in artificial photosynthesis.

    Science.gov (United States)

    Najafpour, Mohammad Mahdi; Rahimi, Fahime; Fathollahzadeh, Maryam; Haghighi, Behzad; Hołyńska, Małgorzata; Tomo, Tatsuya; Allakhverdiev, Suleyman I

    2014-07-28

    Herein, we report on nano-sized Mn oxide/carbon nanotubes, graphene and graphene oxide as water-oxidizing compounds in artificial photosynthesis. The composites are synthesized by different and simple procedures and characterized by a number of methods. The water-oxidizing activities of these composites are also considered in the presence of cerium(IV) ammonium nitrate. Some composites are efficient Mn-based catalysts with TOF (mmol O2 per mol Mn per second) ~ 2.6.

  4. Theory of novel normal and superconducting states in doped oxide high-Tc superconductors

    International Nuclear Information System (INIS)

    Dzhumanov, S.

    2001-10-01

    A consistent and complete theory of the novel normal and superconducting (SC) states of doped high-T c superconductors (HTSC) is developed by combining the continuum model of carrier self-trapping, the tight-binding model and the novel Fermi-Bose-liquid (FBL) model. The ground-state energy of carriers in lightly doped HTSC is calculated within the continuum model and adiabatic approximation using the variational method. The destruction of the long-range antiferromagnetic (AF) order at low doping x≥ x cl ≅0.015, the formation of the in-gap states or bands and novel (bi)polaronic insulating phases at x c2 ≅0.06-0.08, and the new metal- insulator transition at x≅x c2 in HTSC are studied within the continuum model of impurity (defect) centers and large (bi)polarons by using the appropriate tight-binding approximations. It is found that the three-dimensional (3d) large (bi)polarons are formed at ε ∞ /ε 0 ≤0.1 and become itinerant when the (bi)polaronic insulator-to-(bi)polaronic metal transitions occur at x x c2 . We show that the novel pseudogapped metallic and SC states in HTSC are formed at x c2 ≤x≤x p ≅0.20-0.24. We demonstrate that the large polaronic and small BCS-like pairing pseudogaps opening in the excitation spectrum of underdoped (x c2 BCS =0.125), optimally doped (x BCS o ≅0.20) and overdoped (x>x o ) HTSC above T c are unrelated to superconductivity and they are responsible for the observed anomalous optical, transport, magnetic and other properties of these HTSC. We develop the original two-stage FBL model of novel superconductivity describing the combined novel BCS-like pairing scenario of fermions and true superfluid (SF) condensation scenario of composite bosons (i.e. bipolarons and cooperons) in any Fermi-systems, where the SF condensate gap Δ B and the BCS-like pairing pseudogap Δ F have different origins. The pair and single particle condensations of attracting 3d and two- dimensional (2d) composite bosons are responsible for

  5. Pulsed field magnetization strategies and the field poles composition in a bulk-type superconducting motor

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhen, E-mail: zhen.huang@sjtu.edu.cn [Academy of Information Technology and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Ruiz, H.S., E-mail: dr.harold.ruiz@le.ac.uk [Department of Engineering, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Coombs, T.A., E-mail: tac1000@cam.ac.uk [Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom)

    2017-03-15

    Highlights: • Different compositions of the magnetic poles have been obtained depending on the relative orientation of the magnetizing coil and the surfaces of the columns of bulks that conform a magnetic pole. • Two bidimensional models accounting for the electromagnetic response of the top and lateral cross sections of three columns of HTS bulks subjected to multiple pulsed magnetic fields have been created. • An extended PFM strategy has been proposed by considering the magnetization of at least three successive columns of HTS bulks per pole. In the extended PFM strategy the area of each one of the poles can be seen increased by a factor of 200%-400% - Abstract: High temperature superconducting (HTS) bulks offer the potential of trapping and maintaining much higher magnetic loading level compared with the conventional permanent magnets used in rotary machines, although the effective magnetization of multiple HTS bulks with different relative orientations over the surface of cylindrical rotors creates new challenges. In this paper, we present the design and numerical validation of the Pulse Field Magnetization (PFM) strategy considered for the magnetization of the four-pole synchronous fully superconducting motor developed at the University of Cambridge. In a first instance, singular columns of up to five HTS bulks aligned over the height of the rotor were subjected to up to three magnetic pulses of 1.5 T peak, and the experimental results have been simulated by considering the electrical and thermal properties of the system in a 2D approach. The entire active surface of the rotor is covered by HTS bulks of approximately the same dimensions, resulting in an uneven distribution of pole areas with at least one of the poles formed by up to 3 columns of magnetized bulks, with relatively the same peaks of trapped magnetic field. Thus, in order to effectively use the entire area of the superconducting rotor, multiple pulsed fields per column have been applied

  6. Pulsed field magnetization strategies and the field poles composition in a bulk-type superconducting motor

    International Nuclear Information System (INIS)

    Huang, Zhen; Ruiz, H.S.; Coombs, T.A.

    2017-01-01

    Highlights: • Different compositions of the magnetic poles have been obtained depending on the relative orientation of the magnetizing coil and the surfaces of the columns of bulks that conform a magnetic pole. • Two bidimensional models accounting for the electromagnetic response of the top and lateral cross sections of three columns of HTS bulks subjected to multiple pulsed magnetic fields have been created. • An extended PFM strategy has been proposed by considering the magnetization of at least three successive columns of HTS bulks per pole. In the extended PFM strategy the area of each one of the poles can be seen increased by a factor of 200%-400% - Abstract: High temperature superconducting (HTS) bulks offer the potential of trapping and maintaining much higher magnetic loading level compared with the conventional permanent magnets used in rotary machines, although the effective magnetization of multiple HTS bulks with different relative orientations over the surface of cylindrical rotors creates new challenges. In this paper, we present the design and numerical validation of the Pulse Field Magnetization (PFM) strategy considered for the magnetization of the four-pole synchronous fully superconducting motor developed at the University of Cambridge. In a first instance, singular columns of up to five HTS bulks aligned over the height of the rotor were subjected to up to three magnetic pulses of 1.5 T peak, and the experimental results have been simulated by considering the electrical and thermal properties of the system in a 2D approach. The entire active surface of the rotor is covered by HTS bulks of approximately the same dimensions, resulting in an uneven distribution of pole areas with at least one of the poles formed by up to 3 columns of magnetized bulks, with relatively the same peaks of trapped magnetic field. Thus, in order to effectively use the entire area of the superconducting rotor, multiple pulsed fields per column have been applied

  7. Advances in high-field superconducting composites by addition of artificial pinning centres to niobium-titanium

    International Nuclear Information System (INIS)

    Cooley, L.D.; Motowidlo, L.R.

    1999-01-01

    Artificial pinning-centre (APC) niobium-titanium composites attain critical current density J c values higher than 4000 A mm -2 at 5 T, 4.2 K, surpassing the barrier reached by the conventional Nb-Ti composite process. At 2 T APC composites achieve more than double the J c of conventional composites, making them particularly well suited for low-field applications. On the other hand, APC composites are inferior to conventional composites at 8 T, due to weak high-field pinning and reduced upper critical field. This review discusses fabrication techniques, microstructural development and superconducting and flux-pinning properties of APC composites. Key elements and underlying issues for achieving higher J c are identified and discussed in terms of the current state of the art. (author)

  8. GLAG theory for superconducting property variations with A15 composition in Nb3Sn wires.

    Science.gov (United States)

    Li, Yingxu; Gao, Yuanwen

    2017-04-25

    We present a model for the variation of the upper critical field H c2 with Sn content in A15-type Nb-Sn wires, within the Ginzburg-Landau-Abrikosov-Gor'kov (GLAG) theory frame. H c2 at the vicinity of the critical temperature T c is related quantitatively to the electrical resistivity ρ, specific heat capacity coefficient γ and T c . H c2 versus tin content is theoretically formulated within the GLAG theory, and generally reproduces the experiment results. As Sn content gradually approaches the stoichiometry, A15-type Nb-Sn undergoes a transition from the dirty limit to clean limit, split by the phase transformation boundary. The H-T phase boundary and pinning force show different behaviors in the cubic and tetragonal phase. We dipict the dependence of the composition gradient on the superconducting properties variation in the A15 layer, as well as the curved tail at vicinity of H c2 in the Kramer plot of the Nb 3 Sn wire. This helps understanding of the inhomogeneous-composition inducing discrepancy between the results by the state-of-art scaling laws and experiments.

  9. Phases and structural characteristics of high Tc superconducting oxide in (Bi, Pb)-Sr-Ca-Cu-O system

    International Nuclear Information System (INIS)

    Chen, Zuyano; Li, Zhengrong; Qian, Yitai; Zhou, Quien; Cheng, Tingzhu

    1989-01-01

    The various phases, which are responsible for variant maximum d-value including 18.5 angstrom, 15.4 angstrom, 12.2 angstrom, 6.2 angstrom, 3.2 angstrom and possible 9.1 angstrom respectively, observed in high Tc superconducting complex oxide of (Bi,Pb)-Sr-Ca-Cu-O system are reported in this paper according to the result of X-ray diffraction on platelike crystals or crystallites synthesized under different preparation conditions. The phase of tetragonal system with c=3.21 angstrom, a=3.86 angstrom is possible parent structural unit and it is of great significance to the structure constitution of various phases with large lattice parameter c and structural characteristics of superconducting oxide. In view of the above a model of two-dimension stack-up which causes a stack in variant styles along c-axis and constitute various phases with different lattice parameter c is proposed and discussed

  10. Long-term research in Japan: amorphous metals, metal oxide varistors, high-power semiconductors and superconducting generators

    Energy Technology Data Exchange (ETDEWEB)

    Hane, G.J.; Yorozu, M.; Sogabe, T.; Suzuki, S.

    1985-04-01

    The review revealed that significant activity is under way in the research of amorphous metals, but that little fundamental work is being pursued on metal oxide varistors and high-power semiconductors. Also, the investigation of long-term research program plans for superconducting generators reveals that activity is at a low level, pending the recommendations of a study currently being conducted through Japan's Central Electric Power Council.

  11. Advanced composite materials and processes for the manufacture of SSC (Superconducting Super Collider) and RHIC (Relativistic Heavy Ion Collider) superconducting magnets used at cryogenic temperatures in a high radiation environment

    Energy Technology Data Exchange (ETDEWEB)

    Sondericker, J.H.

    1989-01-01

    Presently, BNL work on superconducting magnets centers mainly on the development of 17 meter length dipoles for the Superconducting Super Collider Project, approved for construction at Waxahatchie, Texas and 9.7 meter dipoles and quadrupoles for the Relativistic Heavy Ion Collider, a BNL project to start construction next year. This paper will discuss the role of composites in the manufacture of magnets, their operational requirements in cryogenic and radiation environments, and the benefits derived from their use. 13 figs.

  12. Advanced composite materials and processes for the manufacture of SSC [Superconducting Super Collider] and RHIC [Relativistic Heavy Ion Collider] superconducting magnets used at cryogenic temperatures in a high radiation environment

    International Nuclear Information System (INIS)

    Sondericker, J.H.

    1989-01-01

    Presently, BNL work on superconducting magnets centers mainly on the development of 17 meter length dipoles for the Superconducting Super Collider Project, approved for construction at Waxahatchie, Texas and 9.7 meter dipoles and quadrupoles for the Relativistic Heavy Ion Collider, a BNL project to start construction next year. This paper will discuss the role of composites in the manufacture of magnets, their operational requirements in cryogenic and radiation environments, and the benefits derived from their use. 13 figs

  13. ac superconducting articles

    International Nuclear Information System (INIS)

    Meyerhoff, R.W.

    1977-01-01

    A noval ac superconducting cable is described. It consists of a composite structure having a superconducting surface along with a high thermally conductive material wherein the superconducting surface has the desired physical properties, geometrical shape and surface finish produced by the steps of depositing a superconducting layer upon a substrate having a predetermined surface finish and shape which conforms to that of the desired superconducting article, depositing a supporting layer of material on the superconducting layer and removing the substrate, the surface of the superconductor being a replica of the substrate surface

  14. Supercapacitors Based on Nickel Oxide/Carbon Materials Composites

    Directory of Open Access Journals (Sweden)

    Katarzyna Lota

    2011-01-01

    Full Text Available In the thesis, the properties of nickel oxide/active carbon composites as the electrode materials for supercapacitors are discussed. Composites with a different proportion of nickel oxide/carbon materials were prepared. A nickel oxide/carbon composite was prepared by chemically precipitating nickel hydroxide on an active carbon and heating the hydroxide at 300 ∘C in the air. Phase compositions of the products were characterized using X-ray diffractometry (XRD. The morphology of the composites was observed by SEM. The electrochemical performances of composite electrodes used in electrochemical capacitors were studied in addition to the properties of electrode consisting of separate active carbon and nickel oxide only. The electrochemical measurements were carried out using cyclic voltammetry, galvanostatic charge/discharge, and impedance spectroscopy. The composites were tested in 6 M KOH aqueous electrolyte using two- and three-electrode Swagelok systems. The results showed that adding only a few percent of nickel oxide to active carbon provided the highest value of capacity. It is the confirmation of the fact that such an amount of nickel oxide is optimal to take advantage of both components of the composite, which additionally can be a good solution as a negative electrode in asymmetric configuration of electrode materials in an electrochemical capacitor.

  15. Development of oxide dispersion strengthened 2205 duplex stainless steel composite

    Directory of Open Access Journals (Sweden)

    Oladayo OLANIRAN

    2015-05-01

    Full Text Available Composites of duplex stainless steel were produced by oxide dispersion strengthening with comparatively improved mechanical properties by hot press sintering of partially stabilized Zirconia (PSZ, 3% yttria, mole fraction dispersion in 2205 duplex stainless steels. Ceramic oxide was added as reinforcement, while chromium (Cr and Nickel (Ni were incorporated to maintain the austenitic/ferritic phase balance of the duplex stainless steel. The powders and sintered were characterized in detail using scanning electron microscopy (SEM and X-ray diffraction (XRD. The microstructural evolution and phase formation during oxide dispersion strengthening of duplex stainless steel composites were investigated. The influence of composition variation of the reinforcements on the microstructural and corrosion behaviour in simulated mine water of the composites were investigated. In this manuscript, it was established that composition has great influence on the structure/properties relationship of the composites developed.

  16. Solid oxide fuel cell having a glass composite seal

    Science.gov (United States)

    De Rose, Anthony J.; Mukerjee, Subhasish; Haltiner, Jr., Karl Jacob

    2013-04-16

    A solid oxide fuel cell stack having a plurality of cassettes and a glass composite seal disposed between the sealing surfaces of adjacent cassettes, thereby joining the cassettes and providing a hermetic seal therebetween. The glass composite seal includes an alkaline earth aluminosilicate (AEAS) glass disposed about a viscous glass such that the AEAS glass retains the viscous glass in a predetermined position between the first and second sealing surfaces. The AEAS glass provides geometric stability to the glass composite seal to maintain the proper distance between the adjacent cassettes while the viscous glass provides for a compliant and self-healing seal. The glass composite seal may include fibers, powders, and/or beads of zirconium oxide, aluminum oxide, yttria-stabilized zirconia (YSZ), or mixtures thereof, to enhance the desirable properties of the glass composite seal.

  17. Direct measurement of elastic modulus of Nb 3Sn using extracted filaments from superconducting composite wire and resin impregnation method

    Science.gov (United States)

    Hojo, M.; Matsuoka, T.; Hashimoto, M.; Tanaka, M.; Sugano, M.; Ochiai, S.; Miyashita, K.

    2006-10-01

    Young's modulus of Nb3Sn filaments in Nb3Sn/Cu superconducting composite wire was investigated in detail. Nb3Sn filaments were first extracted from composite wire. Nitric acid and hydrofluoric acid were used to remove copper stabilizer, Nb3Sn/Nb barrier and bronze. Then, Nb3Sn filaments were impregnated with epoxy resin to form simple filament bundle composite rods. A large difference in Young's moduli of filaments and epoxy resin enhance the accuracy of the measurement of Nb3Sn filament modulus. The ratio of Nb3Sn to Nb in filaments and the number of filaments in the fiber bundle composite rods were used in the final calculation of the Young's modulus of Nb3Sn. The obtained modulus of 127 GPa was the lower bound of the already reported values.

  18. Direct measurement of elastic modulus of Nb3Sn using extracted filaments from superconducting composite wire and resin impregnation method

    International Nuclear Information System (INIS)

    Hojo, M.; Matsuoka, T.; Hashimoto, M.; Tanaka, M.; Sugano, M.; Ochiai, S.; Miyashita, K.

    2006-01-01

    Young's modulus of Nb 3 Sn filaments in Nb 3 Sn/Cu superconducting composite wire was investigated in detail. Nb 3 Sn filaments were first extracted from composite wire. Nitric acid and hydrofluoric acid were used to remove copper stabilizer, Nb 3 Sn/Nb barrier and bronze. Then, Nb 3 Sn filaments were impregnated with epoxy resin to form simple filament bundle composite rods. A large difference in Young's moduli of filaments and epoxy resin enhance the accuracy of the measurement of Nb 3 Sn filament modulus. The ratio of Nb 3 Sn to Nb in filaments and the number of filaments in the fiber bundle composite rods were used in the final calculation of the Young's modulus of Nb 3 Sn. The obtained modulus of 127 GPa was the lower bound of the already reported values

  19. Fabrication and characterization of iron oxide dextran composite layers

    Science.gov (United States)

    Iconaru, S. L.; Predoi, S. A.; Beuran, M.; Ciobanu, C. S.; Trusca, R.; Ghita, R.; Negoi, I.; Teleanu, G.; Turculet, S. C.; Matei, M.; Badea, Monica; Prodan, A. M.

    2018-02-01

    Super paramagnetic iron oxide nanoparticles such as maghemite have been shown to exhibit antimicrobial properties [1-5]. Moreover, the iron oxide nanoparticles have been proposed as a potential magnetically controllable antimicrobial agent which could be directed to a specific infection [3-5]. The present research has focused on studies of the surface and structure of iron oxide dextran (D-IO) composite layers surface and structure. These composite layers were deposited on Si substrates. The structure of iron oxide dextran composite layers was investigated by X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) while the surface morphology was evaluated by Scanning Electron Microscopy (SEM). The structural characterizations of the iron oxide dextran composite layers revealed the basic constituents of both iron and dextran structure. Furthermore, the in vitro evaluation of the antifungal effect of the complex layers, which have been shown revealed to be active against C. albicans cells at distinct intervals of time, is exhibited. Our research came to confirm the fungicidal effect of iron oxide dextran composite layers. Also, our results suggest that iron oxide dextran surface may be used for medical treatment of biofilm associated Candida infections.

  20. Oxidation behaviour of ribbon shape carbon fibers and their composites

    International Nuclear Information System (INIS)

    Manocha, L.M.; Warrier, Ashish; Manocha, S.; Edie, D.D.; Ogale, A.A.

    2006-01-01

    Carbon fibers, though important constituent as reinforcements for high performance carbon/carbon composites, are shadowed by their oxidation in air at temperatures beginning 450 deg. C. Owing to tailorable properties of carbon fibers, efforts are underway to explore structural modification possibilities to improve the oxidation resistance of the fibers and their composites. The pitch based ribbon shape carbon fibers are found to have highly preferential oriented graphitic structure resulting in high mechanical properties and thermal conductivity. In the present work oxidation behaviour of ribbon shape carbon fibers and their composites heat treated to 1000-2700 deg. C has been studied. SEM examination of these composites exhibits development of graphitic texture and ordering within the fibers with increase in heat treatment temperature. Oxidation studies made by thermogravimetric analysis in air show that matrix has faster rate of oxidation and in the initial stages the matrix gets oxidized at faster rate with slower rate of oxidation of the fibers depending on processing conditions of fibers and composites

  1. Dechlorination of hexachlorobenzene using ultrafine Ca-Fe composite oxides

    International Nuclear Information System (INIS)

    Ma Xiaodong; Zheng Minghui; Liu Wenbin; Qian Yong; Zhang Bing; Liu Wenxia

    2005-01-01

    Ca-Fe composite oxides with different Ca/Fe atomic ratios were synthesized by co-precipitation method and characterized by X-ray diffraction (XRD), scanning electron microscopy with elemental X-ray analysis (SEM-EDX) and inductively coupled plasma optical emission spectrometer (ICP-OES). Their dechlorination activities were evaluated using hexachlorobenzene (HCB) as a model compound. The results indicate that the dechlorination activity is related to the composition of metal oxides. Different compositions lead to the formation of different phases of Ca-Fe composite oxides. When Ca/Fe atomic ratio was 3.4, the dechlorination activity reached 97%, which was the highest in the dechlorination of HCB at 300 deg. C for 0.5 h. This may be related to the formation of Ca 2 Fe 2 O 5 phase and small agglomerate size of oxide crystal of about 1 μm. The effect of reaction time on HCB dechlorination and the pathway of dechlorination were investigated using the Ca-Fe composite oxide with the highest activity. It was found that hydrodechlorination took place in the destruction of HCB, the dechlorination efficiency is almost 100% after 2 h reaction. After reaction, quantitative measurement of chloride ion and qualitative analysis of CaCO 3 indicate besides hydrodechlorination, other degradation routes may be present. The mechanism of synergic dechlorination using Ca-Fe composite oxides was discussed

  2. The Rashba spin-orbit coupling for superconductivity in oxide interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Beyl, Stefan; Orth, Peter P.; Schmalian, Joerg [Institut fuer Theorie der Kondensierten Materie, Karlsruher Institut fuer Technologie, Karlsruhe (Germany)

    2014-07-01

    We investigate the role of the Rashba spin-orbit coupling on the superconducting order parameter and the phase stiffness at the interface of LaAlO{sub 3} and SrTiO{sub 3}. In particular, we analyze the gate controlled crossover between BCS superconductivity and Bose-Einstein condensation of Cooper pairs, amplified by the Rashba coupling and the possibility of a phase fluctuation induced quantum critical point.

  3. Contributions to the study of superconducting multifilamentary composites and cables; Contributions a l`etude du comportement des composites et cables supraconducteurs

    Energy Technology Data Exchange (ETDEWEB)

    Turck, B

    1992-03-01

    This report is a collection of published papers in French and in English on superconducting composites and cables. All domains concerning the behaviour of superconductors in coils for field generation have been covered: critical current, current distribution, instabilities, losses in varying field. This document provides with expressions and criteria for conductor design, with conditions for achieving given performances and with criteria for design and optimization of structures of multifilamentary composites and cables. These publications have played a determining role in the understanding of the behaviour of superconductors and in their use in high performing magnets.

  4. Oxidation of mullite-zirconia-alumina-silicon carbide composites

    International Nuclear Information System (INIS)

    Baudin, C.; Moya, J.S.

    1990-01-01

    This paper reports the isothermal oxidation of mullite-alumina-zirconia-silicon carbide composites obtained by reaction sintering studied in the temperature interval 800 degrees to 1400 degrees C. The kinetics of the oxidation process was related to the viscosity of the surface glassy layer as well as to the crystallization of the surface film. The oxidation kinetics was halted to T ≤ 1300 degrees C, presumably because of crystallization

  5. Oxidation behavior of molybdenum silicides and their composites

    International Nuclear Information System (INIS)

    Natesan, K.; Deevi, S. C.

    2000-01-01

    A key materials issue associated with the future of high-temperature structural silicides is the resistance of these materials to oxidation at low temperatures. Oxidation tests were conducted on Mo-based silicides over a wide temperature range to evaluate the effects of alloy composition and temperature on the protective scaling characteristics and testing regime for the materials. The study included Mo 5 Si 3 alloys that contained several concentrations of B. In addition, oxidation characteristics of MoSi 2 -Si 3 N 4 composites that contained 20--80 vol.% Si 3 N 4 were evaluated at 500--1,400 C

  6. Metal Oxide/Graphene Composites for Supercapacitive Electrode Materials.

    Science.gov (United States)

    Jeong, Gyoung Hwa; Baek, Seungmin; Lee, Seungyeol; Kim, Sang-Wook

    2016-04-05

    Graphene composites with metal or metal oxide nanoparticles have been extensively investigated owing to their potential applications in the fields of fuel cells, batteries, sensing, solar cells, and catalysis. Among them, much research has focused on supercapacitor applications and have come close to realization. Composites include monometal oxides of cobalt, nickel, manganese, and iron, as well as their binary and ternary oxides. In addition, their morphological control and hybrid systems of carbon nanotubes have also been investigated. This review presents the current trends in research on metal oxide/graphene composites for supercapacitors. Furthermore, methods are suggested to improve the properties of electrochemical capacitor electrodes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Superconductivity mediated by anharmonic phonons: application to β-pyrochlore oxides

    Science.gov (United States)

    Hattori, Kazumasa; Tsunetsugu, Hirokazu

    2010-03-01

    We investigate three dimensional anharmonic phonons under tetrahedral symmetry and superconductivity mediated by these phonons. Three dimensional anharmonic phonon spectra are calculated directly by solving Schr"odinger equation and the superconducting transition temperature is determined by using the theory of strong coupling superconductivity assuming an isotropic gap function. With increasing the third order anharmonicity b of the tetrahedral potential, we find a crossover in the energy spectrum to a quantum tunneling regime. We obtain strongly enhanced transition temperatures around the crossover point. The first order transition observed in KOs2O6 is discussed in terms of the first excited state energy δ, and the coupling constant λ in the strong coupling theory of superconductivity. Our results suggest that the decrease of λ and increase of δ below the first order transition temperature. We point out that the change in the oscillation amplitude and characterizes this isomorphic transition. The chemical trends of the superconducting transition temperature, λ, and δ in the β-pyrochlore compounds are also discussed.

  8. Thermal Oxidation Resistance of Rare Earth-Containing Composite Elastomer

    Institute of Scientific and Technical Information of China (English)

    邱关明; 张明; 周兰香; 中北里志; 井上真一; 冈本弘

    2001-01-01

    The rare earth-containing composite elastomer was obtained by the reaction of vinyl pyridine-SBR (PSBR) latex with rare earth alkoxides, and its thermal oxidation resistance was studied. After aging test, it is found that its retention rate of mechanical properties is far higher than that of the control sample. The results of thermogravimetric analysis show that its thermal-decomposing temperature rises largely. The analysis of oxidation mechanisms indicates that the main reasons for thermal oxidation resistance are that rare earth elements are of the utility to discontinue autoxidation chain reaction and that the formed complex structure has steric hindrance effect on oxidation.

  9. Property-porosity relationships for polymer-impregnated superconducting ceramic composite

    International Nuclear Information System (INIS)

    Salib, S.; Vipulanandan, C.

    1990-01-01

    A thermoplastic polymer, poly(methyl methacrylate) (PMMA), was used to improve the flexural properties of the high-temperature superconducting ceramic (YBa 2 Cu 3 O 7-δ ). Ceramic specimens with different porosities were prepared by dry compacting 12.5-mm-diameter disk specimens at various uniaxial pressures. Density-pressure relationships have been developed for before- and after-sintering conditions. The PMMA polymer was impregnated into the porous ceramic at room temperature. The mechanical properties were evaluated by concentrically loading simply supported disk specimens. The load-displacement responses were analyzed using the finite-element method. Impregnation of PMMA polymer at room temperature increased the flexural strength and modulus of the superconducting ceramic without affecting its electrical properties. The flexural properties depended on the porosity of the ceramics, and, hence, linear and nonlinear property-porosity relationships have been used to characterize the behavior of superconducting ceramic with an without the polymer

  10. Similarity in the superconducting properties of chalcogenides, cuprate oxides and fullerides

    International Nuclear Information System (INIS)

    Tsendin, K.D.; Popov, B.P.; Denisov, D.V.

    2004-01-01

    The idea of Anderson pairs has been put forward for explanation of many extraordinary properties of chalcogenides glassy semiconductors. Recent decades made obvious that these pairs localized on the centers with negative effective correlation energy (negative-U centers) really exist in chalcogenides. If the concentration of negative-U centers is enough to create the pair band states, this can lead to superconductivity because Anderson pairs are Bose particles. In the present paper we show that several puzzling superconductivity properties of chalcogenides, high-temperature cuprate superconductors and fullerides are similar for these three groups of materials and can be naturally explained in the frame of negative-U centers model of superconductivity

  11. Maskless X-Ray Writing of Electrical Devices on a Superconducting Oxide with Nanometer Resolution and Online Process Monitoring.

    Science.gov (United States)

    Mino, Lorenzo; Bonino, Valentina; Agostino, Angelo; Prestipino, Carmelo; Borfecchia, Elisa; Lamberti, Carlo; Operti, Lorenza; Fretto, Matteo; De Leo, Natascia; Truccato, Marco

    2017-08-22

    X-ray nanofabrication has so far been usually limited to mask methods involving photoresist impression and subsequent etching. Herein we show that an innovative maskless X-ray nanopatterning approach allows writing electrical devices with nanometer feature size. In particular we fabricated a Josephson device on a Bi 2 Sr 2 CaCu 2 O 8+δ (Bi-2212) superconducting oxide micro-crystal by drawing two single lines of only 50 nm in width using a 17.4 keV synchrotron nano-beam. A precise control of the fabrication process was achieved by monitoring in situ the variations of the device electrical resistance during X-ray irradiation, thus finely tuning the irradiation time to drive the material into a non-superconducting state only in the irradiated regions, without significantly perturbing the crystal structure. Time-dependent finite element model simulations show that a possible microscopic origin of this effect can be related to the instantaneous temperature increase induced by the intense synchrotron picosecond X-ray pulses. These results prove that a conceptually new patterning method for oxide electrical devices, based on the local change of electrical properties, is actually possible with potential advantages in terms of heat dissipation, chemical contamination, miniaturization and high aspect ratio of the devices.

  12. Oxidation and corrosion of silicon-based ceramics and composites

    International Nuclear Information System (INIS)

    Jacobson, N.S.; Fox, D.S.; Smialek, J.L.

    1997-01-01

    Silica scales exhibit slow growth rates and a low activation energy. Thus silica-protected materials are attractive high temperature structural materials for their potentially excellent oxidation resistance and well-documented high temperature strength. This review focuses on silicon carbide, silicon nitride, and composites of these materials. It is divided into four parts: (i) Fundamental oxidation mechanisms, (ii) Special properties of silica scales, (iii) Protective coatings, and (iv) Internal oxidation behavior of composites. While the fundamental oxidation mechanism of SiC is understood, there are still many questions regarding the oxidation mechanism of Si 3 N 4 . Silica scales exhibit many unique properties as compared to chromia and alumina. These include slower growth rates, SiO(g) formation, sensitivity to water vapor and impurities, and dissolution by basic molten salts. Protective coatings can limit the deleterious effects. The fourth area-internal oxidation of fibers and fiber coatings in composites-has limited the application of these novel materials. Strategies for understanding and limiting this internal oxidation are discussed. (orig.)

  13. Physical properties of high-Tc superconducting oxides. Modification of tc using organic dopants. Final report. Proprietes physiques d'oxydes supraconducteurs a haute Tc. Modification de tc sous l'effet de dopants organiques

    Energy Technology Data Exchange (ETDEWEB)

    Brau, A

    1993-01-01

    An attempt was made to significantly modify the Tc transition temperature of certain copper-based superconducting oxides by introducing organic or mineral dopants, and to study the mobility of 300K-carriers in crystallized tallium-base superconducting oxides. Since the critical transition temperature of superconducting oxides is highly influenced by the density of the free carriers they contain, the authors tried making superconducting powders react with either an organic electron acceptor or a mineral compound. The goal was to increase the density of the holes by altering the copper's degree of oxidation. Their preparatory work showed a direct charge-transfer reaction between the electron-donor copper and the acceptor TCNQ and studied the degree to which the electron acceptor can alter the copper's oxidation. Initial results also showed that dopants can affect superconducting Tc and the course of R(T) curves.

  14. Microstructure and Mechanical Properties of Graphene Oxide/Copper Composites

    Directory of Open Access Journals (Sweden)

    HONG Qi-hu

    2016-09-01

    Full Text Available Graphene oxide/copper (GO/Cu composites were successfully synthesized through the ball milling and vacuum hot press sintering process. The morphologies of the mixture powders, and the microstructure and mechanical properties of GO/Cu composites were investigated by OM, SEM, XRD, hardness tester and electronic universal testing machine, respectively. The results show that the GO/Cu composites are compact. Graphene oxide with flake morphology is uniformly dispersed and well consolidated with copper matrix. When the mass fraction of graphene oxide is 0.5%, the microhardness and compress strength at RT reach up to 63HV and 276MPa, increased by 8.6% and 28%, respectively. The strengthening mechanism is load transfer effect, dislocation strengthening and fine crystal reinforcing.

  15. Graphene composites containing chemically bonded metal oxides

    Indian Academy of Sciences (India)

    the oxide layers are chemically bonded to graphene (Zhang ... sists of three glass chambers, one to contain the metal halide. (TiCl4, SiCl4 ... In this step, the metal halide reacts with the oxygen function- ... 1·0 g of FeCl3 were vigorously stirred in 30 ml of ethylene ... Reaction with water vapour results in hydrolysis of the un-.

  16. Room temperature aerobic oxidation of amines by a nanocrystalline ruthenium oxide pyrochlore nafion composite catalyst.

    Science.gov (United States)

    Venkatesan, Shanmuganathan; Kumar, Annamalai Senthil; Lee, Jyh-Fu; Chan, Ting-Shan; Zen, Jyh-Myng

    2012-05-14

    The aerobic oxidation of primary amines to their respective nitriles has been carried out at room temperature using a highly reusable nanocrystalline ruthenium oxide pyrochlore Nafion composite catalyst (see figure). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Graphene Oxide/ Ruthenium Oxide Composites for Supercapacitors Electrodes

    Science.gov (United States)

    Amir, Fatima

    Supercapacitors are electrical energy storage devices with high power density, high rate capability, low maintenance cost, and long life cycle. They complement or replace batteries in harvesting applications when high power delivery is needed. An important improvement in performance of supercapacitors has been achieved through recent advances in the development of new nanostructured materials. Here we will discuss the fabrication of graphene oxide/ ruthenium oxide supercacitors electrodes including electrophoretic deposition. The morphology and structure of the fabricated electrodes were investigated and will be discussed. The electrochemical properties were determined using cyclic voltammetry and galvanostatic charge/discharge techniques and the experiments that demonstrate the excellent capacitive properties of the obtained supercapacitors will also be discussed. The fabrication and characterization of the samples were performed at the Center of Functional Nanomaterials at Brookhaven National Lab. The developed approaches in our study represent an exciting direction for designing the next generation of energy storage devices. This work was supported in part by the U.S. Department of Energy through the Visiting Faculty Program and the research used resources of the Center for Functional Nanomaterials at Brookhaven National Laboratory.

  18. Preparation and characterization of antimony barium composite oxide photocatalysts

    Science.gov (United States)

    Han, X. P.; Yao, B. H.; Pan, Q. H.; Pen, C.; Zhang, C. L.

    2018-01-01

    In this paper, two kinds of antimony barium composite oxide photocatalysts have been prepared by two methods and characterized by XRD and SEM. The photocatalytic activity was evaluated by a photocatalytic reactor and an ultraviolet spectrophotometer. The results showed that-BaSb2O5•4H2O, BaSb2O6 two kinds of antimony barium composite oxide photocatalysts were successfully prepared in this experiment and they showed good photocatalytic properties. In addition, BaSb2O6 morphology showed more regular, microstructure and better catalytic performance.

  19. Application of high-pressure techniques: stabilization and oxidation-state control of novel superconductive and related multi-layered copper oxides

    International Nuclear Information System (INIS)

    Yamauchi, H.; Karppinen, M.

    2000-01-01

    Copper oxide superconductors possess multi-layered structures with a layer sequence of -CuO 2 -(Q-CuO 2 ) n-1 -AO-(MO 1±δ ) m -AO- or -CuO 2 -B-(O 2 -B) s-1 -CuO 2 -AO-(MO 1±δ ) m -AO- along the elongated c axis. Based on this layer sequence, the known copper oxide structures are categorized as members of the homologous series, M m A r Q n-1 Cu n O m+r+2 +n ±δ (M-mr(n-1)n ; category A) or M m A 2k B s Cu 1+k O m +4k +2s±δ (M-m(2k)s (1+k ); category B). Stabilization of such structures especially in the case of high values of the n /s parameter, i.e. the higher members of the homologous series, has been demonstrated to be apparently promoted under high pressures and/or strongly oxidizing conditions. Consequently, techniques for applying both high oxygen gas pressures (10-2000 atm) and ultra-high solid-medium pressures (2-8 GPa) have been advantageously utilized in synthesizing various superconductive copper oxide phases. Especially the ultra-high solid-medium pressure synthesis carried out in the so-called cubic-anvil/belt-type apparatus has proven to be extremely successful in synthesizing novel superconductive phases. In order to achieve high partial pressures of oxygen in the solid-medium environment, 'external' oxygen-generating oxides such as KClO 4 , KClO 3 and Ag 2 O 2 are commonly added to the precursor mixtures. It is emphasized that in some cases it is possible to utilize 'internal' oxidizing agents alone, i.e. highly oxidized precursors such as BaCuO 2+δ and Ba 2 Cu 3 O 5+δ containing metal constituents common with the desired copper oxide phase only. In the present paper, the potential and applications of high-pressure techniques in synthesizing multi-layered copper oxides and related structures are reviewed and discussed with emphasis on the important 'historical' discoveries of novel phases and the present status of controlled production of high-quality samples of such phases. (author)

  20. Oxidation behaviour and electrical properties of cobalt/cerium oxide composite coatings for solid oxide fuel cell interconnects

    DEFF Research Database (Denmark)

    Harthøj, Anders; Holt, Tobias; Møller, Per

    2015-01-01

    This work evaluates the performance of cobalt/cerium oxide (Co/CeO2) composite coatings and pure Co coatings to be used for solid oxide fuel cell (SOFC) interconnects. The coatings are electroplated on the ferritic stainless steels Crofer 22 APU and Crofer 22H. Coated and uncoated samples...

  1. On the superconducting state in Ba0.6K0.4BiO3 perovskite oxide

    Science.gov (United States)

    Szcześniak, D.; Kaczmarek, A. Z.; Drzazga, E. A.; Szewczyk, K. A.; Szcześniak, R.

    2018-05-01

    We report study on the superconducting state in Ba0.6K0.4BiO3 (BKBO) perovskite oxide, motivated by the inconclusive results on the pairing mechanism in this compound. Our investigations are conducted within the Migdal-Eliashberg formalism, to account for the phonon-mediated superconducting phase. The considered doping level of the discussed material corresponds to the highest critical temperature in this compound, and allows simultaneous analysis of the oxygen isotope effect, for the O16 and O18 isotopes, respectively. We found that such effect is particularly visible for the critical values of the Coulomb pseudopotential (μC⋆) , which equals to 0.18 for the O16 and 0.16 for the O18 isotope in BKBO. Moreover, we determine the size of the superconducting energy band gap (Δg) and note that obtained values (9.68 meV and 9.55 meV for the O16 and O18, respectively) are in good agreement with the experimental predictions which give Δg ∼ 8.68 meV . Finally, we calculate the characteristic dimensionless parameters, such as the zero-temperature energy gap to the critical temperature, the ratio for the specific heat, as well as the ratio associated with the zero-temperature thermodynamic critical field, which suggest occurrence of the strong-coupling and retardation effects within the phonon-mediated scenario in the analyzed material. Where possible the dimensionless ratios are compared to the experimental estimates, and agrees with these which account for the strong-coupling character of the BKBO superconductor.

  2. Improving Thermo-Oxidative Stability of Nitrile Rubber Composites by Functional Graphene Oxide

    Directory of Open Access Journals (Sweden)

    Rui Zhong

    2018-05-01

    Full Text Available Graphene oxide (GO, modified with anti-aging agent p-phenylenediamine (PPD, was added into nitrile rubber (NBR in order to improve the thermo-oxidative stability of NBR. The modification of GO and the transformation of functional groups were characterized by Fourier transform infrared spectroscopy (FTIR, Raman, and X-ray diffraction (XRD. Mechanical performances of NBR composites before and after the thermo-oxidative aging were recorded. The results of dynamic mechanical analysis (DMA show an increased storage modulus (G’ and a decreased value of area of tan δ peak after introducing modified GO into NBR. It indicates that filler particles show positive interaction with molecular chains. The thermo-oxidative stability of composites was investigated by thermogravimetric analysis (TG and differential scanning calorimetry (DSC. Then, the thermo-oxidative aging kinetic parameters were obtained by the Flynn–Wall–Ozawa (FWO equation. The results of aging tests show that the thermo-oxidative stability of rubber matrix increases obviously after introducing GO–PPD. In addition, mechanical properties (tensile strength and elongation at break of both before and after aged NBR/GO–PPD composites were superior to that of NBR. This work provides meaningful guidance for achieving multifunction thermo-oxidative aging resistance rubber composites.

  3. Improving Thermo-Oxidative Stability of Nitrile Rubber Composites by Functional Graphene Oxide.

    Science.gov (United States)

    Zhong, Rui; Zhang, Zhao; Zhao, Hongguo; He, Xianru; Wang, Xin; Zhang, Rui

    2018-05-30

    Graphene oxide (GO), modified with anti-aging agent p -phenylenediamine (PPD), was added into nitrile rubber (NBR) in order to improve the thermo-oxidative stability of NBR. The modification of GO and the transformation of functional groups were characterized by Fourier transform infrared spectroscopy (FTIR), Raman, and X-ray diffraction (XRD). Mechanical performances of NBR composites before and after the thermo-oxidative aging were recorded. The results of dynamic mechanical analysis (DMA) show an increased storage modulus (G') and a decreased value of area of tan δ peak after introducing modified GO into NBR. It indicates that filler particles show positive interaction with molecular chains. The thermo-oxidative stability of composites was investigated by thermogravimetric analysis (TG) and differential scanning calorimetry (DSC). Then, the thermo-oxidative aging kinetic parameters were obtained by the Flynn⁻Wall⁻Ozawa (FWO) equation. The results of aging tests show that the thermo-oxidative stability of rubber matrix increases obviously after introducing GO⁻PPD. In addition, mechanical properties (tensile strength and elongation at break) of both before and after aged NBR/GO⁻PPD composites were superior to that of NBR. This work provides meaningful guidance for achieving multifunction thermo-oxidative aging resistance rubber composites.

  4. Structural and superconducting properties of La2−xNdxCuO4+y (0≤x≤0.5) prepared by room temperature chemical oxidation

    DEFF Research Database (Denmark)

    Rial, C.; Morán, E.; Alario-Franco, M.A.

    1997-01-01

    The systematic characterization of the structural and superconducting properties of room temperature chemically oxidized T/O La2-xNdxCuO4+y (0 less than or equal to x less than or equal to 0.5) has been performed by neutron powder diffraction and magnetic susceptibility measurements. Similarities...

  5. Characterization and multi-scales modeling of the thermomechanical behaviour of a superconducting composite cable

    International Nuclear Information System (INIS)

    Gourdin, C.; Reytier, M.; Vedrine, P.

    2000-06-01

    The prediction of the superconducting cable mechanical properties (NbTi and Nb 3 Sn) becomes a great stake for the STCM applications. During the design phase of our magnets, the electromagnetic forces become considerable. Therefore, the control and the accuracy of the structural calculations need well known mechanical properties for each component. But, superconducting cables present, in compression, a non linear mechanical behaviour with a significant hysteresis, which will have to be taken into account in a near future. That is why a study is started in order to understand and to formulate this particular mechanical behaviour. In this paper, the NbTi and Nb 3 Sn cable structure is first presented as well as their manufacturing process. Then, a description of the experimental procedure used to realize the compression tests is made. Finally, the main results obtained at room temperature and also in liquid helium at 4.2 K are discussed. (author)

  6. Microstructures and superconducting properties of Y-Ba-Cu and Bi-Sr-Ca-Cu oxide wires and coils prepared by the explosive compaction technique

    International Nuclear Information System (INIS)

    Hagino, S.; Suzuki, M.; Takeshita, T.; Takashima, K.; Tonda, H.

    1989-01-01

    It has been shown that explosive compaction technique can be used to densify metal, and ceramics powders and their mixtures. The authors discuss how they applied this technique to produce silver sheathed superconducting oxide wires and coils (Y-B-Cu-O and Bi-Sr-Ca-Cu-O). The wires and coils to be compacted were placed into metal tube and the tube was filled with SiC powder as a pressure propagating medium and the tube was compacted by a cylindrically axisymmetric method. The wires and coils compacted were then heat-treated in order to improve grain boundary connections of superconducting oxide crystalline grains. The oxide cores heat-treated were seen to be very dense, and a part of a Y-Ba-Cu oxide coil which was heat-treated optimally was found to have a critical current density higher than 13,000A/cm 2 at 77K

  7. "A New Class of Creep Resistant Oxide/Oxide Ceramic Matrix Composites"

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Mohit Jain, Dr. Ganesh Skandan, Prof. Roger Cannon, Rutgers University

    2007-03-30

    Despite recent progress in the development of SiC-SiC ceramic matrix composites (CMCs), their application in industrial gas turbines for distributed energy (DE) systems has been limited. The poor oxidation resistance of the non-oxide ceramics warrants the use of envrionmental barrier coatings (EBCs), which in turn lead to issues pertaining to life expectancy of the coatings. On the other hand, oxide/oxide CMCs are potential replacements, but their use has been limited until now due to the poor creep resistance at high temperatures, particularly above 1200 oC: the lack of a creep resistant matrix has been a major limiting factor. Using yttrium aluminum garnet (YAG) as the matrix material system, we have advanced the state-of-the-art in oxide/oxide CMCs by introducing innovations in both the structure and composition of the matrix material, thereby leading to high temperature matrix creep properties not achieved until now. An array of YAG-based powders with a unique set of particle characteristics were produced in-house and sintered to full density and compressive creep data was obtained. Aided in part by the composition and the microstructure, the creep rates were found to be two orders of magnitude smaller than the most creep resistant oxide fiber available commercially. Even after accounting for porosity and a smaller matrix grain size in a practical CMC component, the YAG-based matrix material was found to creep slower than the most creep resistant oxide fiber available commercially.

  8. Method of producing superconducting fibers of bismuth strontium calcium copper oxide (Bi(2212) and Bi(2223))

    Science.gov (United States)

    Schwartzkopf, Louis A.

    1991-10-01

    Fibers of Bi(2212) have been produce by pendant drop melt extraction. This technique involves the end of a rod of Bi(2212) melted with a hydrogen-oxygen torch, followed by lowering onto the edge of a spinning wheel. The fibers are up to 15 cm in length with the usual lateral dimensions, ranging from 20 um to 30 um. The fibers require a heat treatment to make them superconducting.

  9. On the crystal growth and chemistry of the new electron-type superconducting oxides

    Energy Technology Data Exchange (ETDEWEB)

    Tarascon, J.M.; Wang, E.; Greene, L.H.; Ramesh, R.; Bagley, B.G.; Hull, G.W.; Miceli, P.F. (Bellcore, Red Bank, NJ (USA)); Wang, Z.Z.; Brawner, D.; Ong, N.P. (Dept. of Physics, Princeton Univ., NJ (USA))

    1989-12-01

    The effect on transport and superconducting properties produced by changes in x and y in the Nd{sub 2-x}Ce{sub x}CuO{sub y} compound were studied in both polycrystalline ceramics and single crystals. Thermogravimetric analysis shows that the total oxygen content y for the as-prepared samples is always greater than 4 (i.e. presence of interstitial oxygen) whereas for the reduced sample y becomes equal to or smaller than 4 only when x is 0.15 or greater. This is the range of Ce content for which the material superconducts. For a material with Ce x=0.15 the superconducting properties can be varied reversibly by changing the oxygen content. In addition, we propose that the oxygen in these materials can be either ordered or disordered, thereby affecting the transport properties. Platelet-like crystals of Nd{sub 2-x}Ce{sub x}CuO{sub y} with x=0 to 0.18, have been grown via a flux technique. Those having a Ce content between 0.14 and 0.17 are superconducting with the sharpest transitions (Tc=21{plus minus}1K) for x=0.14. Metallic-like behavior above Tc, with a linear temperature dependence above 150K was observed on all the crystals. Below 30K, the in-plane resistivity is independent of T. The Hall coefficient is sensitive to processing conditions but is usually negative above 100K. The upper critical field with field along the c-axis is 6T at 4.2K. (orig.).

  10. Experimental investigations of superconductivity in quasi-two-dimensional epitaxial copper oxide superlattices and trilayers

    International Nuclear Information System (INIS)

    Lowndes, D.H.; Norton, D.P.

    1993-01-01

    Epitaxial trilayer and superlattice structures grown by pulsed laser ablation have been used to study the superconducting-to-normal transition of ultrathin (one and two c-axis unit cells) YBa 2 Cu 3 O 7-x layers. The normalized flux-flow resistances for several epitaxial structures containing two-cell-thick YBa 2 Cu 3 O 7-x films collapse onto the ''universal'' curve of the Ginzburg-Landau Coulomb Gas (GLCG) model. Analysis of normalized resistance data for a series of superlattices containing one-cell-thick YBa 2 Cu 3 O 7-x layers also is consistent with the behavior expected for quasi-two-dimensional layers in a highly anisotropic, layered three-dimensional superconductor. Current-voltage measurements for one of the trilayer structures also are consistent with the normalized resistance data, and with the GLCG model. Scanning tunneling microscopy, transmission electron microscopy, and electrical transport studies show that growth-related steps in ultrathin YBa 2 Cu 3 O 7-x layers affect electrical continuity over macroscopic distances, acting as weak links. However , the perturbation of the superconducting order parameter can be minimized by utilizing hole-doped buffer and cap layers, on both sides of the YBa 2 Cu 3 O 7-x layer, in trilayers and superlattices. These results demonstrate the usefulness of epitaxial trilayer and superlattice structures as tools for systematic, fundamental studies of high-temperature superconductivity

  11. Synthesis and characterization of composites of mixed oxides of iron ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 34; Issue 4. Synthesis and characterization of composites of mixed oxides of iron and neodymium in polymer matrix of aniline–formaldehyde. Sajdha H N Sheikh B L Kalsotra N Kumar S Kumar. Volume 34 Issue 4 July 2011 pp 843-851 ...

  12. Reinforcing graphene oxide/cement composite with NH2 ...

    Indian Academy of Sciences (India)

    Reinforcing graphene oxide/cement composite with NH2 functionalizing group. M EBRAHIMIZADEH ABRISHAMI1,∗ and V ZAHABI2. 1Materials and Electroceramics Laboratory, Department of Physics, Ferdowsi University of Mashhad, Mashhad. 9177948974, Iran. 2Department of Civil Engineering, Islamic Azad University, ...

  13. Composition of MBE-grown iron oxide films

    NARCIS (Netherlands)

    Voogt, F.C; Hibma, T; Smulders, P.J M; Niesen, L

    A wide range of iron oxides have been grown epitaxially on MgO(100) substrates using a dual beam technique in which the deposited iron is oxidised by a beam of NO2 particles. At high fluxes magnetite (Fe3-deltaO4) phases with compositions between near-stoichiometric magnetite (Fe3O4, delta = 0) and

  14. Superconducting and Structural Transitions in the β-Pyrochlore Oxide KOs2O6 under High Pressure

    Science.gov (United States)

    Ogusu, Hiroki; Takeshita, Nao; Izawa, Koichi; Yamaura, Jun-ichi; Ohishi, Yasuo; Tsutsui, Satoshi; Okamoto, Yoshihiko; Hiroi, Zenji

    2010-11-01

    Rattling-induced superconductivity in the β-pyrochlore oxide KOs2O6 is investigated under high pressure up to 5 GPa. Resistivity measurements in a high-quality single crystal reveal a gradual decrease in the superconducting transition temperature Tc from 9.7 K at 1.0 GPa to 6.5 K at 3.5 GPa, followed by a sudden drop to 3.3 K at 3.6 GPa. Powder X-ray diffraction experiments show a structural transition from cubic to monoclinic or triclinic at a similar pressure. The sudden drop in Tc is ascribed to this structural transition, by which an enhancement in Tc due to a strong electron-rattler interaction present in the low-pressure cubic phase is abrogated as the rattling of the K ion is completely suppressed or weakened in the high-pressure phase of reduced symmetry. In addition, we find two anomalies in the temperature dependence of resistivity in the low-pressure phase, which may be due to subtle changes in rattling vibration.

  15. Modes of oxidation in SiC-reinforced mullite/ZrO2 composites: Oxidation vs depth behavior

    International Nuclear Information System (INIS)

    Lin, C.C.; Ruh, R.

    1999-01-01

    Two basic oxidation modes of composites with oxidizing particles in a non-oxidizing matrix have been observed. Mode I is defined as the complete oxidation of all the particles within an outer layer of the composite, while mode II exhibits partial oxidation of the particles, deep into the composite. Using microscopic observations to plot the silica layer thickness on particles (whiskers) vs the depth of the particles (whiskers) below the composite surface is proposed as a powerful means of categorizing and quantifying actual oxidation modes. Thus, mullite/SiC-whisker composites were found to have mode I oxidation behavior, while certain (mullite + ZrO 2 )/SiC-whisker composites were found to exhibit mode II behavior, followed by a mixed mode after severe exposures. It is proposed that mode II behavior appears when oxygen diffusivity in the matrix is much higher than that in the product oxide layer

  16. Oxidation resistance coating for niobium base structural composites

    International Nuclear Information System (INIS)

    Tabaru, T.; Shobu, K.; Kim, J.H.; Hirai, H.; Hanada, S.

    2003-01-01

    Oxidation behavior of Al-rich Mo(Si,Al) 2 base alloys, which is a candidate material for the oxidation resistance coating on Nb base structural composites, were investigated by thermogravimetry. The Mo(Si,Al) 2 base alloys containing Mo 5 (Si,Al) 3 up to about 10 vol% exhibits excellent oxidation resistance at temperatures ranging from 780 to 1580 K, particularly at 1580 K due to continuous Al 2 O 3 layer development. To evaluate the applicability of the Mo(Si,Al) 2 base coating, plasma spraying on Nb base composites were undertaken. However, interface reaction layer was found to form during the following heat treatment. Preparation of Mo(Si,Al) 2 /Al 2 O 3 /Nb layered structures via powder metallurgical process was attempted to preclude diffusion reaction between coating and substrate. (orig.)

  17. Obtention of superconductivity by room temperature electrochemical oxidation of La2CuO4

    International Nuclear Information System (INIS)

    Casan-Pastor, N.; Fuertes, A.; Gomez-Romero, P.

    1993-01-01

    The undoped oxide La2CuO4 has required traditionally synthesis under high pressure of oxygen (and high temperatures) to incorporate excess oxygen into its structure and become a superconductor. The electrochemical oxidation of this same oxide at room temperature and pressure constitutes a striking example of the use of an alternative driving force for the oxidation of oxides to become superconductors. Electrochemical treatment of oxides has been frequently applied to their reduction with cationic intercalation. Oxidations of these solid with the concomitant intercalation of anions into their lattice shows also great promises. The paper reports recent results in the electrochemical oxidation of La2CuO4 and other cuprates, showing also the important role of post-oxidation thermal treatments on the properties of the resulting solids

  18. Compositional analysis of silicon oxide/silicon nitride thin films

    Directory of Open Access Journals (Sweden)

    Meziani Samir

    2016-06-01

    Full Text Available Hydrogen, amorphous silicon nitride (SiNx:H abbreviated SiNx films were grown on multicrystalline silicon (mc-Si substrate by plasma enhanced chemical vapour deposition (PECVD in parallel configuration using NH3/SiH4 gas mixtures. The mc-Si wafers were taken from the same column of Si cast ingot. After the deposition process, the layers were oxidized (thermal oxidation in dry oxygen ambient environment at 950 °C to get oxide/nitride (ON structure. Secondary ion mass spectroscopy (SIMS, Rutherford backscattering spectroscopy (RBS, Auger electron spectroscopy (AES and energy dispersive X-ray analysis (EDX were employed for analyzing quantitatively the chemical composition and stoichiometry in the oxide-nitride stacked films. The effect of annealing temperature on the chemical composition of ON structure has been investigated. Some species, O, N, Si were redistributed in this structure during the thermal oxidation of SiNx. Indeed, oxygen diffused to the nitride layer into Si2O2N during dry oxidation.

  19. Study of Plasma Electrolytic Oxidation Coatings on Aluminum Composites

    Directory of Open Access Journals (Sweden)

    Leonid Agureev

    2018-06-01

    Full Text Available Coatings, with a thickness of up to 75 µm, were formed by plasma electrolytic oxidation (PEO under the alternating current electrical mode in a silicate-alkaline electrolyte on aluminum composites without additives and alloyed with copper (1–4.5%. The coatings’ structure was analyzed by scanning electron microscopy, X-ray microanalysis, X-ray photoelectron spectroscopy, nuclear backscattering spectrometry, and XRD analysis. The coatings formed for 60 min were characterized by excessive aluminum content and the presence of low-temperature modifications of alumina γ-Al2O3 and η-Al2O3. The coatings formed for 180 min additionally contained high-temperature corundum α-Al2O3, and aluminum inclusions were absent. The electrochemical behavior of coated composites and uncoated ones in 3% NaCl was studied. Alloyage of aluminum composites with copper increased the corrosion current density. Plasma electrolytic oxidation reduced it several times.

  20. Facile synthesis of iron oxides/reduced graphene oxide composites: application for electromagnetic wave absorption at high temperature

    OpenAIRE

    Lili Zhang; Xinxin Yu; Hongrui Hu; Yang Li; Mingzai Wu; Zhongzhu Wang; Guang Li; Zhaoqi Sun; Changle Chen

    2015-01-01

    Iron oxides/reduced graphene oxide composites were synthesized by facile thermochemical reactions of graphite oxide and FeSO4?7H2O. By adjusting reaction temperature, ?-Fe2O3/reduced graphene oxide and Fe3O4/reduced graphene oxide composites can be obtained conveniently. Graphene oxide and reduced graphene oxide sheets were demonstrated to regulate the phase transition from ?-Fe2O3 to Fe3O4 via ?-Fe2O3, which was reported for the first time. The hydroxyl groups attached on the graphene oxide ...

  1. Superconductivity in power engineering

    International Nuclear Information System (INIS)

    1989-01-01

    This proceedings volume presents 24 conference papers and 15 posters dealing with the following aspects: 1) Principles and elementary aspects of high-temperature superconductivity (3 plenary lectures); 2) Preparation, properties and materials requirements of metallic or oxide superconductors (critical current behaviour, soldered joints, structural studies); 3) Magnet technology (large magnets for thermonuclear fusion devices; magnets for particle accelerators and medical devices); 4) Magnetic levitation and superconductivity; 5) Cryogenics; 6) Energy storage systems using superconducting coils (SMES); 7) Superconducting power transmission cables, switches, transformers, and generator systems for power plant; 8) Supporting activities, industrial aspects, patents. There are thirty-eight records in the ENERGY database relating to individual conference papers. (MM) [de

  2. Magnetic composites based on hybrid spheres of aluminum oxide and superparamagnetic nanoparticles of iron oxides

    International Nuclear Information System (INIS)

    Braga, Tiago P.; Vasconcelos, Igor F.; Sasaki, Jose M.; Fabris, J.D.; Oliveira, Diana Q.L. de; Valentini, Antoninho

    2010-01-01

    Materials containing hybrid spheres of aluminum oxide and superparamagnetic nanoparticles of iron oxides were obtained from a chemical precursor prepared by admixing chitosan and iron and aluminum hydroxides. The oxides were first characterized with scanning electron microscopy, X-ray diffraction, and Moessbauer spectroscopy. Scanning electron microscopy micrographs showed the size distribution of the resulting spheres to be highly homogeneous. The occurrence of nano-composites containing aluminum oxides and iron oxides was confirmed from powder X-ray diffraction patterns; except for the sample with no aluminum, the superparamagnetic relaxation due to iron oxide particles were observed from Moessbauer spectra obtained at 298 and 110 K; the onset six line-spectrum collected at 20 K indicates a magnetic ordering related to the blocking relaxation effect for significant portion of small spheres in the sample with a molar ratio Al:Fe of 2:1.

  3. High-frequency properties of superconducting Y-Ba-Cu-oxide thin films

    International Nuclear Information System (INIS)

    Ramakrishnan, E.S.; Su, M.; Howng, W.

    1992-01-01

    rf and microwave properties of superconducting YBa 2 Cu 3 O 7-x thin films were measured and analyzed using a coplanar resonator structure. The films were developed by sequential electron-beam evaporation of the metals followed by postanneal processing. dc properties of the films were obtained from resistance-temperature and current-voltage measurements to evaluate the transition temperature and current densities. High-frequency properties were measured from 70 to 10 K and in the frequency range 1--3 GHz to determine the film characteristics as compared to pure copper films on the same substrates

  4. Flux pinning by voids in surface-oxidized superconducting niobium and vanadium

    International Nuclear Information System (INIS)

    Meij, G.P. van der.

    1984-01-01

    This thesis describes a study of flux pinning by small voids (roughly 10 nm) in the type II superconductors niobium and vanadium. These voids were created in rectangular foils (with typical dimensions of 30x3x0.2 mm) during an irradiation with fast neutrons in the High Flux Reactor at Petten at temperatures between 400 and 1000 0 C. The pinning force per unit volume is determined from the magnetic properties of the superconducting samples. The experiments were carried out in a slowly ramped magnetic field, as well as in a combination of a static and a much smaller alternating field. (Auth.)

  5. Multifilamentary superconducting (NbTa)-Sn composite wire by solid-liquid reaction for possible application above 20 tesla

    International Nuclear Information System (INIS)

    Hong, M.; Hull, G.W. Jr.; Fuchs, E.O.; Holthuis, J.T.

    1983-01-01

    Nb alloyed with Ta was employed in fabricating multifilamentary composite wires of (NbTa)-Sn using the liquid-infiltration process. The superconducting A15 phase was formed with subsequent heat treatments at 800-950 0 C by the solid-liquid reaction. High inductive Tsub(c)'s of 18.2 K with sharp transition width ( 4 A/cm 2 at 2O T and 4.2 K were obtained. It was found that 2 wt.% Ta in the Nb was sufficient in the enhancement of the overall Jsub(c) at the high fields and in increasing the Hsub(c2) (4.2 K) to 25 T. (Auth.)

  6. Multifilamentary superconducting (NbTa)-Sn composite wire by solid-liquid reaction for possible application above 20 tesla

    International Nuclear Information System (INIS)

    Hong, M.; Hull, G.W. Jr.; Fuchs, E.O.; Holthuis, J.T.

    1983-01-01

    Nb alloyed with Ta was employed in fabricating multifilamentary composite wires of (NbTa)-Sn using the liquid-infiltration process. The superconducting A15 phase was formed with subsequent heat treatments at 800-950 0 C by the solid-liquid reaction. High inductive Tsub(c)'s of 18.2 K with sharp transition width ( 4 A/cm 2 at 20 T and 4.2 K were obtained. It was found that 2 wt.% Ta in the Nb was sufficient in the enhancement of the overall Jsub(c) at the high fields and in increasing the Hsub(c2) (4.2 K) to 25 T. (orig.)

  7. Liquid crystallinity driven highly aligned large graphene oxide composites

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Eun; Oh, Jung Jae; Yun, Taeyeong [Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 305-701 (Korea, Republic of); Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701 (Korea, Republic of); Kim, Sang Ouk, E-mail: sangouk.kim@kaist.ac.kr [Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 305-701 (Korea, Republic of); Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701 (Korea, Republic of)

    2015-04-15

    Graphene is an emerging graphitic carbon materials, consisting of sp{sup 2} hybridized two dimensinal honeycomb structure. It has been widely studied to incorporate graphene with polymer to utilize unique property of graphene and reinforce electrical, mechanical and thermal property of polymer. In composite materials, orientation control of graphene significantly influences the property of composite. Until now, a few method has been developed for orientation control of graphene within polymer matrix. Here, we demonstrate facile fabrication of high aligned large graphene oxide (LGO) composites in polydimethylsiloxane (PDMS) matrix exploiting liquid crystallinity. Liquid crystalline aqueous dispersion of LGO is parallel oriented within flat confinement geometry. Freeze-drying of the aligned LGO dispersion and subsequent infiltration with PDMS produce highly aligned LGO/PDMS composites. Owing to the large shape anisotropy of LGO, liquid crystalline alignment occurred at low concentration of 2 mg/ml in aqueous dispersion, which leads to the 0.2 wt% LGO loaded composites. - Graphical abstract: Liquid crystalline LGO aqueous dispersions are spontaneous parallel aligned between geometric confinement for highly aligned LGO/polymer composite fabrication. - Highlights: • A simple fabrication method for highly aligned LGO/PDMS composites is proposed. • LGO aqueous dispersion shows nematic liquid crystalline phase at 0.8 mg/ml. • In nematic phase, LGO flakes are highly aligned by geometric confinement. • Infiltration of PDMS into freeze-dried LGO allows highly aligned LGO/PDMS composites.

  8. Mechanical properties of graphene oxide (GO/epoxy composites

    Directory of Open Access Journals (Sweden)

    Shivan Ismael Abdullah

    2015-08-01

    Full Text Available In this study, the effects of graphene oxide (GO on composites based on epoxy resin were analyzed. Different contents of GO (1.5–6 vol.% were added to epoxy resin. The GO/epoxy composite was prepared using the casting method and was prepared under room temperature. Mechanical tests’ results such as tensile test, impact test and hardness test show enhancements of the mechanical properties of the GO/epoxy composite. The experimental results clearly show an improvement in the Young’s modulus, tensile strength and hardness. The impact strength was seen to decrease, pointing to brittleness increase of the GO/epoxy composite. A microstructure analysis using Scanning Electron Microscopy (SEM and X-ray diffraction (XRD analysis was also performed, which showed how GO impeded the propagation of cracks in the composite. From the SEM images we observed the interface between the GO and the epoxy composite. As can be seen from this research, the GO/epoxy composites can be used for a large number of applications. The results of this research are a strong evidence for GO/epoxy composites being a potential candidate for use in a variety of industrial applications, especially for automobile parts, aircraft components, and electronic parts such as supercapacitors, transistors, etc.

  9. Process for producing uranium oxide rich compositions from uranium hexafluoride

    International Nuclear Information System (INIS)

    DeHollander, W.R.; Fenimore, C.P.

    1978-01-01

    Conversion of gaseous uranium hexafluoride to a uranium dioxide rich composition in the presence of an active flame in a reactor defining a reaction zone is achieved by separately introducing a first gaseous reactant comprising a mixture of uranium hexafluoride and a reducing carrier gas, and a second gaseous reactant comprising an oxygen-containing gas. The reactants are separated by a shielding gas as they are introduced to the reaction zone. The shielding gas temporarily separates the gaseous reactants and temporarily prevents substantial mixing and reacting of the gaseous reactants. The flame occurring in the reaction zone is maintained away from contact with the inlet introducing the mixture to the reaction zone. After suitable treatment, the uranium dioxide rich composition is capable of being fabricated into bodies of desired configuration for loading into nuclear fuel rods. Alternatively, an oxygen-containing gas as a third gaseous reactant is introduced when the uranium hexafluoride conversion to the uranium dioxide rich composition is substantially complete. This results in oxidizing the uranium dioxide rich composition to a higher oxide of uranium with conversion of any residual reducing gas to its oxidized form

  10. Superconducting Technology Assessment

    National Research Council Canada - National Science Library

    2005-01-01

    This Superconducting Technology Assessment (STA) has been conducted by the National Security Agency to address the fundamental question of a potential replacement for silicon complementary metal oxide semiconductor (CMOS...

  11. Humidity Sensing Properties of Surface Modified Polyaniline Metal Oxide Composites

    Directory of Open Access Journals (Sweden)

    S. C. Nagaraju

    2014-01-01

    Full Text Available Polyaniline- (PANI praseodymium Oxide (Pr2O3 composites have been synthesized by in situ polymerization method with different weight percentages. The synthesized composites have been characterized by Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy. The temperature dependent conductivity shows that the conductivity is due to the hopping of polarons and bipolarons. These composites show negative thermal coefficient (α behavior as a function of temperature, which is characteristic behavior of semiconducting materials. Sensor studies have been carried out by two-probe method and found that the sensitivity increases with increase in % RH. It is noticed that stability increase is due to the presence of Pr2O3 in polyaniline up to 30 wt%. A fast recovery and response time along with high sensitivity make these composites suitable for humidity sensors.

  12. Superconductivity and its application

    International Nuclear Information System (INIS)

    Spadoni, M.

    1988-01-01

    This paper, after a short introduction to superconductivity and to multifilamentary superconducting composites is aiming to review the state of the art and the future perspective of some of the applications of the superconducting materials. The main interest is focussed to large scale applications like, for istance, magnets for accelerators or fusion reactors, superconducting system for NMR thomography, etc. A short paragraph is dedicated to applications for high sensitivity instrumentation. The paper is then concluded by some considerations about the potentialities of the newly discovered high critical temperature materials

  13. Process for producing clad superconductive materials

    International Nuclear Information System (INIS)

    Cass, R.B.; Ott, K.C.; Peterson, D.E.

    1992-01-01

    This patent describes a process for fabricating superconducting composite wire. It comprises placing a superconductive precursor admixture capable of undergoing self propagating combustion in stoichiometric amounts sufficient to form a superconductive product within an oxygen-porous metal tube; sealing one end of the tube; igniting the superconductive precursor admixture whereby the superconductive precursor admixture endburns along the length of the admixture; and cross-section reducing the tube at a rate substantially equal to the rate of burning of the superconductive precursor admixture and at a point substantially planar with the burnfront of the superconductive precursor mixture, whereby a clad superconductive product is formed in situ

  14. Elemental composition and oxidation of chamber organic aerosol

    Directory of Open Access Journals (Sweden)

    P. S. Chhabra

    2011-09-01

    Full Text Available Recently, graphical representations of aerosol mass spectrometer (AMS spectra and elemental composition have been developed to explain the oxidative and aging processes of secondary organic aerosol (SOA. It has been shown previously that oxygenated organic aerosol (OOA components from ambient and laboratory data fall within a triangular region in the f44 vs. f43 space, where f44 and f43 are the ratios of the organic signal at m/z 44 and 43 to the total organic signal in AMS spectra, respectively; we refer to this graphical representation as the "triangle plot." Alternatively, the Van Krevelen diagram has been used to describe the evolution of functional groups in SOA. In this study we investigate the variability of SOA formed in chamber experiments from twelve different precursors in both "triangle plot" and Van Krevelen domains. Spectral and elemental data from the high-resolution Aerodyne aerosol mass spectrometer are compared to offline species identification analysis and FTIR filter analysis to better understand the changes in functional and elemental composition inherent in SOA formation and aging. We find that SOA formed under high- and low-NOx conditions occupy similar areas in the "triangle plot" and Van Krevelen diagram and that SOA generated from already oxidized precursors allows for the exploration of areas higher on the "triangle plot" not easily accessible with non-oxidized precursors. As SOA ages, it migrates toward the top of the triangle along a path largely dependent on the precursor identity, which suggests increasing organic acid content and decreasing mass spectral variability. The most oxidized SOA come from the photooxidation of methoxyphenol precursors which yielded SOA O/C ratios near unity. α-pinene ozonolysis and naphthalene photooxidation SOA systems have had the highest degree of mass closure in previous chemical characterization studies and also show the

  15. CO oxidation on Alsbnd Au nano-composite systems

    Science.gov (United States)

    Rajesh, C.; Majumder, C.

    2018-03-01

    Using first principles method we report the CO oxidation behaviour of Alsbnd Au nano-composites in three different size ranges: Al6Au8, Al13Au42 and a periodic slab of Alsbnd Au(1 1 1) surface. The clusters prefer enclosed structures with alternating arrangement of Al and Au atoms, maximising Auδ-sbnd Alδ+ bonds. Charge distribution analysis suggests the charge transfer from Al to Au atoms, corroborated by the red shift in the density of states spectrum. Further, CO oxidation on these nano-composite systems was investigated through both Eley - Rideal and Langmuir Hinshelwood mechanism. While, these clusters interact with O2 non-dissociatively with an elongation of the Osbnd O bond, further interaction with CO led to formation of CO2 spontaneously. On contrary, the CO2 evolution by co-adsorption of O2 and CO molecules has a transition state barrier. On the basis of the results it is inferred that nano-composite material of Alsbnd Au shows significant promise toward effective oxidative catalysis.

  16. Composite vortex ordering in superconducting films with arrays of blind holes

    International Nuclear Information System (INIS)

    Berdiyorov, G R; Milosevic, M V; Peeters, F M

    2009-01-01

    The pinning properties of a superconducting thin film with a square array of blind holes are studied using the nonlinear Ginzburg-Landau theory. Although blind holes provide a weaker pinning potential than holes (also called antidots), several novel vortex structures are predicted for different size and thickness of the blind holes. Orientational dimer and trimer vortex states as well as concentric vortex shells can nucleate in the blind holes. In addition, we predict the stabilization of giant vortices that may be located both in the pinning centers and/or at the interstitial sites, as well as the combination of giant vortices with sets of individual vortices. For large blind holes, local vortex shell structures inside the blind holes may transfer their symmetry to interstitial vortices as well. The subtle interplay of shell formation and traditional Abrikosov vortex lattices inside the blind holes is also studied for different numbers of trapped vortices.

  17. Orbital Kondo effect due to assisted hopping: Superconductivity, mass enhancement in Cooper oxides with apical oxygen

    International Nuclear Information System (INIS)

    Zawadowski, A.; Penc, K.; Zimanyi, G.

    1991-07-01

    Orbital Kondo effect is treated in a model, where additional to the conduction band there are localized orbitals with energy not very far from the Fermi energy. If the hopping between the conduction band and the localized heavy orbitals depends on the occupation of the conduction band orbital then orbital Kondo correlation occurs. The assisted hopping vertex is enhanced due to the Coulomb interaction between the heavy orbital and the conduction band. The enhanced hopping results in mass enhancement and attractive interaction in the conduction band. The superconductivity transition temperature is calculated. The models of this type can be applied to the high-T c superconductors where the non-bonding oxygen orbitals of the apical oxygens play the role of heavy orbitals. For an essential range of the parameters the T c obtained is about 100K. (author). 22 refs, 9 figs

  18. Electro-mechanical behaviors of composite superconducting strand with filament breakage

    International Nuclear Information System (INIS)

    Wang, Xu; Gao, Yuanwen; Zhou, Youhe

    2016-01-01

    Highlights: • The electromechanical behaviors of the superconducting (SC) strand are investigated. • A 3D FEM model for bending behaviors and electric properties of strand is developed. • The influence of breakage of filaments on the critical current of SC strand is calculated. • The impact of current transfer length on the electric properties of SC strand is discussed. - Abstract: The bending behaviors of superconducting strand with typical multi-filament twist configuration are investigated based on a three-dimensional finite element method (FEM) model, named as the Multi-filament twist model, of the strand. In this 3D FEM model, the impacts of initial thermal residual stress, filament-breakage and its evaluation are taken into accounts. The mechanical responses of the strand under bending load are studied with the factors taken into consideration one by one. The distribution of the damage of the filaments and its evolution and the movement of the neutral axis caused by it are studied and displayed in detail. Besides, taking the advantages of the Multi-filament twist model, the normalized critical current of the strand under bending load is also calculated based on the invariant temperature and field strain functions. In addition, the non-negligible influences of the pitch length of the filaments on both the mechanical behaviors and the normalized critical current are discussed. The stress-strain characteristics of the strand under tensile load and the normalized critical current of it under axial and bending loads resulting from the Multi-filament twist model show good agreement with the experimental data.

  19. Electro-mechanical behaviors of composite superconducting strand with filament breakage

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xu [Key Laboratory of Mechanics on Environment and Disaster in Western China, The Ministry of Education of China, Lanzhou, Gansu 730000 (China); Department of Mechanics and Engineering Science, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China); Gao, Yuanwen, E-mail: ywgao@lzu.edu.cn [Key Laboratory of Mechanics on Environment and Disaster in Western China, The Ministry of Education of China, Lanzhou, Gansu 730000 (China); Department of Mechanics and Engineering Science, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China); Zhou, Youhe [Key Laboratory of Mechanics on Environment and Disaster in Western China, The Ministry of Education of China, Lanzhou, Gansu 730000 (China); Department of Mechanics and Engineering Science, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China)

    2016-10-15

    Highlights: • The electromechanical behaviors of the superconducting (SC) strand are investigated. • A 3D FEM model for bending behaviors and electric properties of strand is developed. • The influence of breakage of filaments on the critical current of SC strand is calculated. • The impact of current transfer length on the electric properties of SC strand is discussed. - Abstract: The bending behaviors of superconducting strand with typical multi-filament twist configuration are investigated based on a three-dimensional finite element method (FEM) model, named as the Multi-filament twist model, of the strand. In this 3D FEM model, the impacts of initial thermal residual stress, filament-breakage and its evaluation are taken into accounts. The mechanical responses of the strand under bending load are studied with the factors taken into consideration one by one. The distribution of the damage of the filaments and its evolution and the movement of the neutral axis caused by it are studied and displayed in detail. Besides, taking the advantages of the Multi-filament twist model, the normalized critical current of the strand under bending load is also calculated based on the invariant temperature and field strain functions. In addition, the non-negligible influences of the pitch length of the filaments on both the mechanical behaviors and the normalized critical current are discussed. The stress-strain characteristics of the strand under tensile load and the normalized critical current of it under axial and bending loads resulting from the Multi-filament twist model show good agreement with the experimental data.

  20. Influence of ion beam mixing on the growth of high temperature oxide superconducting thin film

    International Nuclear Information System (INIS)

    Bordes, N.; Rollett, A.D.; Cohen, M.R.; Nastasi, M.

    1989-01-01

    The superconducting properties of high temperature superconductor thin films are dependent on the quality of the substrate used to grow these films. In order to maximize the lattice matching between the superconducting film and the substrate, we have used a YBa 2 Cu 3 O 7 thin film deposited on left-angle 100 right-angle SrTiO 3 as a template. The first film was prepared by coevaporation of Y, BaF 2 and Cu on left-angle 100 right-angle SrTiO 3 , followed by an anneal in ''wet'' oxygen at 850 degree C. This film showed a sharp transition at about 90 K. A thicker layer of about 5000 A was then deposited on top of this first 2000 angstrom film, using the same procedure. After the post anneal at 850 degree C, the transition took place at 80 K and no epitaxy of the second film was observed. Ion beam mixing at 400 degree C, using 400 keV O ions was done at the interface of the two films (the second one being not annealed). After the post anneal, the film displayed an improved Tc at 90K. Moreover, epitaxy was shown to take place from the interface SrTiO 3 -123 film towards the surface and was dependent of the dose. These results will be discussed from the data obtained from Rutherford backscattering spectroscopy (RBS) combined with channeling experiments, x-ray diffraction (XRD) and scanning electron microscopy (SEM) observations. 8 refs., 2 figs., 2 tabs

  1. Ultrathin Tungsten Oxide Nanowires/Reduced Graphene Oxide Composites for Toluene Sensing

    Directory of Open Access Journals (Sweden)

    Muhammad Hassan

    2017-09-01

    Full Text Available Graphene-based composites have gained great attention in the field of gas sensor fabrication due to their higher surface area with additional functional groups. Decorating one-dimensional (1D semiconductor nanomaterials on graphene also show potential benefits in gas sensing applications. Here we demonstrate the one-pot and low cost synthesis of W18O49 NWs/rGO composites with different amount of reduced graphene oxide (rGO which show excellent gas-sensing properties towards toluene and strong dependence on their chemical composition. As compared to pure W18O49 NWs, an improved gas sensing response (2.8 times higher was achieved in case of W18O49 NWs composite with 0.5 wt. % rGO. Promisingly, this strategy can be extended to prepare other nanowire based composites with excellent gas-sensing performance.

  2. Graphite oxide and molybdenum disulfide composite for hydrogen evolution reaction

    Science.gov (United States)

    Niyitanga, Theophile; Jeong, Hae Kyung

    2017-10-01

    Graphite oxide and molybdenum disulfide (GO-MoS2) composite is prepared through a wet process by using hydrolysis of ammonium tetrathiomolybdate, and it exhibits excellent catalytic activity of the hydrogen evolution reaction (HER) with a low overpotential of -0.47 V, which is almost two and three times lower than those of precursor MoS2 and GO. The high performance of HER of the composite attributes to the reduced GO supporting MoS2, providing a conducting network for fast electron transport from MoS2 to electrodes. The composite also shows high stability after 500 cycles, demonstrating a synergistic effect of MoS2 and GO for efficient HER.

  3. The use of microemulsions for the synthesis of oxalate precursors of YBaCuO superconduction oxide

    International Nuclear Information System (INIS)

    Wang, L.; Zhang, Y.; Muhammed, M.

    1992-01-01

    Although emulsion technique has been used as an advanced separation method, little attention has been paid to the particular feature of emulsions as a powerful reaction media for synthesis of powders, e.g., precipitation of fine particles. In the present paper, the authors report the use of some microemulsion systems as a reaction media in a controlled coprecipitation of the oxalate precursors of superconducting YBa 2 Cu 3 O 7-δ ceramics. The phase diagram of the system: oil (hydrocarbon) - surfactant (Aerosol Orange T) - water, in the absence and presence of nitric/oxalic acids and nitrates, have been systematically investigated. Several hydrocarbons, n-hexane, n-haptene and n-octane have been tested. The different stability regions of microemulsions have been determined. The oxalate coprecipitation of Y, Ba and Cu from nitrate solution was studied under various operating conditions, pH, ratio of oil/surfactant/water and ratio of Y/Ba/Cu/.H 2 C 2 O 4 2 . The chemical and morphological properties of the oxalate powders obtained in the microemulsion systems have been examined by different techniques, e.g., ICP, TGA, XRD and SEM. By XRD, the optimum products are found to be amorphous oxalate composite with exact required stoichiometry and high homogeneity. The average size of the dispersed particles is 50-70 nm while the mean diameter of the agglomerates is around 300 nm. The best sinters bulk sample has T, (R = 0) at 92 K. These powders are used as fine precursors for the synthesis of high T c superconducting ceramics as bulk material and particularly thick films

  4. Composite cathode based on yttria stabilized bismuth oxide for low-temperature solid oxide fuel cells

    International Nuclear Information System (INIS)

    Xia Changrong; Zhang Yuelan; Liu Meilin

    2003-01-01

    Composites consisting of silver and yttria stabilized bismuth oxide (YSB) have been investigated as cathodes for low-temperature honeycomb solid oxide fuel cells with stabilized zirconia as electrolytes. At 600 deg. C, the interfacial polarization resistances of a porous YSB-Ag cathode is about 0.3 Ω cm 2 , more than one order of magnitude smaller than those of other reported cathodes on stabilized zirconia. For example, the interfacial resistances of a traditional YSZ-lanthanum maganites composite cathode is about 11.4 Ω cm 2 at 600 deg. C. Impedance analysis indicated that the performance of an YSB-Ag composite cathode fired at 850 deg. C for 2 h is severely limited by gas transport due to insufficient porosity. The high performance of the YSB-Ag cathodes is very encouraging for developing honeycomb fuel cells to be operated at temperatures below 600 deg. C

  5. Applied superconductivity

    CERN Document Server

    Newhouse, Vernon L

    1975-01-01

    Applied Superconductivity, Volume II, is part of a two-volume series on applied superconductivity. The first volume dealt with electronic applications and radiation detection, and contains a chapter on liquid helium refrigeration. The present volume discusses magnets, electromechanical applications, accelerators, and microwave and rf devices. The book opens with a chapter on high-field superconducting magnets, covering applications and magnet design. Subsequent chapters discuss superconductive machinery such as superconductive bearings and motors; rf superconducting devices; and future prospec

  6. Alternating current loss characteristics in (bismuth,lead)SCCO and yttrium barium copper oxide superconducting tapes

    Science.gov (United States)

    Nguyen, Doan Ngoc

    Alternating current (AC) loss and current carrying capacity are two of the most crucial considerations in large-scale power applications of high temperature superconducting (HTS) conductors. AC losses result in an increased thermal load for cooling machines, and thus increased operating costs. Furthermore, AC losses can stimulate quenching phenomena or at least decrease the stability margin for superconducting devices. Thus, understanding AC losses is essential for the development of HTS AC applications. The main focus of this dissertation is to make reliable total AC loss measurements and interpret the experimental results in a theoretical framework. With a specially designed magnet, advanced total AC loss measurement system in liquid nitrogen (77 K) has been successfully built. Both calorimetric and electromagnetic methods were employed to confirm the validity of the measured results and to have a more thorough understanding of AC loss in HTS conductors. The measurement is capable of measuring total AC loss in HTS tapes over a wide range of frequency and amplitude of transport current and magnetic field. An accurate phase control technique allows measurement of total AC loss with any phase difference between the transport current and magnetic field by calorimetric method. In addition, a novel total AC loss measurement system with variable temperatures from 30 K to 100 K was successfully built and tested. Understanding the dependence of AC losses on temperature will enable optimization of the operating temperature and design of HTS devices. As a part of the dissertation, numerical calculations using Brandt's model were developed to study electrodynamics and total AC loss in HTS conductors. In the calculations, the superconducting electrical behavior is assumed to follow a power-law model. In general, the practical properties of conductors, including field-dependence of critical current density Jc, n-value and non-uniform distribution of Jc, can be accounted for in

  7. Compositional analysis of YBaCuO superconducting films with ion beam analysis techniques

    International Nuclear Information System (INIS)

    Jones, S.; Timmers, H.; Ophel, T.R.; Elliman, R.G.

    1999-01-01

    High-T c YBa x Cu y O 7-δ superconducting films are being developed for applications such as superconducting quantum interference devices. The carrier concentration, critical current density J c and critical temperature T c of these films depend sensitively on the oxygen content . Stoichiometry, uniformity with depth, homogeneity across the sample and film thickness are also important quantities for their characterisation. It has been shown, for example, that the stoichiometry of the metallic elements affects the growth characteristics and surface morphology of the films. With the deposit ion techniques used, reproducibility of film properties is difficult. The characterisation of YBa x Cu y O 7-δ films with ion beam analysis techniques is complex. Whereas the three metallic elements can be detected with helium beams and Rutherford Backscattering (RBS), the oxygen signal is generally obscured by that from substrate elements. It can be better detected using resonant backscattering with 3.04MeV 4 He ions or nuclear reaction analysis. Elastic Recoil Detection (ERD) with high-energetic (1MeV/amu), heavy beams (Z > 120), enables all elements to be detected and separated in a single experiment. It is well established that ion bombardment induces vacancies in the oxygen sub-lattice, driving the material to change from crystalline to amorphous, the latter phase having a reduced oxygen content. In previous heavy ion ERD measurements of YBa x Cu yO z films with 200MeV 127 I beams, the opaque films became transparent in the beam spot area, indicative of the amorphous phase. The accuracy of the oxygen measurement is therefore questionable. Indeed, using Raman spectroscopy, distortions of the crystalline structure above a fluence of 5 x 10 11 ion/cm 2 and for higher doses some signatures of a reduction in oxygen content have been observed for such beams. It appears therefore that a correct determination of the oxygen content requires either a drastic reduction in fluence or a

  8. Electrical, Structural and Mechanical Properties of Superconducting MGB2/MG Composites

    International Nuclear Information System (INIS)

    Ulucan, S.

    2004-01-01

    The brittle nature of MgB 2 does not allow this material to be used as a stand-alone material for large scale applications based on wire production. MgB 2 /Mg composites were prepared using metal matrix composite fabrication technique. To obtain composites MgB 2 and Mg powders were mixed at different weight fractions and uniaxially pressed in a cylindrical dye under the pressure of 0.5 GPa and 1.0 GPa for two hours at various temperatures. XRD, SEM and EDX techniques were used for phase identification and microstructural studies. Resistivities of the composites were measured between 20 K and room temperature. The effect of temperature on the mechanical properties of MgB 2 /Mg composites was investigated. For this purpose, compressive mechanical testing was performed to measure elastic modulus and strain at failure values of the composites. It was found that the relative weight fraction of the powders and the temperature have same considerable effect on the electrical, microstructural and the mechanical properties of the composites

  9. Photoluminescence study on amino functionalized dysprosium oxide-zinc oxide composite bifunctional nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Aswathy; Praveen, G.L; Abha, K.; Lekha, G.M [Department of Chemistry, University of Kerala, Kariavattom, Kerala 695581 (India); George, Sony, E-mail: emailtosony@gmail.com [Department of Chemistry, University of Kerala, Kariavattom, Kerala 695581 (India)

    2012-08-15

    An organic dispersion of 9-15 nm size stable dysprosium oxide incorporated zinc oxide nanocomposites exhibiting luminescence in the visible region has been synthesised by a wet chemical precipitation technique at room temperature. Tetraethoxysilane TEOS [(C{sub 2}H{sub 5}O){sub 4}Si], (3-aminopropyl) trimethoxysilane (APTS) and a 1:1 mixture of TEOS-APTS have been used as capping agents to control the particle size as well as to achieve uniform dispersion of composite nanoparticles in methanol medium. X-ray diffractometer (XRD) analysis reveals the formation phase of amino-functionalised colloidal dysprosium oxide incorporated ZnO composite nanoparticles to be of zincite structure. The Transmission Electron Microscopy (TEM) images show that the particles are spheroids in shape, having average crystalline sizes ranging from 9 to 15 nm. The photoluminescence (PL) observed in these composites has been attributed to the presence of near band edge excitonic emission and existence of defect centres. The time correlated single photon counting studies of the composite nanoparticles exhibited three decay pathways. The enhanced PL emission intensity of solid state fluorescence spectra of samples is attributed to the absence of vibrational relaxation process. - Highlights: Black-Right-Pointing-Pointer Nano-composites are synthesised using a one step wet chemical precipitation method. Black-Right-Pointing-Pointer A significant fluorescence life time of 8.25 ns is obtained for the nano-composite. Black-Right-Pointing-Pointer Nano-composite particles exhibited pale yellow fluorescence rather than blue. Black-Right-Pointing-Pointer Vibrational cascade free enhanced fluorescence is obtained for the dry sample.

  10. Glass/Ceramic Composites for Sealing Solid Oxide Fuel Cells

    Science.gov (United States)

    Bansal, Narottam P.; Choi, Sung R.

    2007-01-01

    A family of glass/ceramic composite materials has been investigated for use as sealants in planar solid oxide fuel cells. These materials are modified versions of a barium calcium aluminosilicate glass developed previously for the same purpose. The composition of the glass in mole percentages is 35BaO + 15CaO + 5Al2O3 + 10B2O3 + 35SiO2. The glass seal was found to be susceptible to cracking during thermal cycling of the fuel cells. The goal in formulating the glass/ ceramic composite materials was to (1) retain the physical and chemical advantages that led to the prior selection of the barium calcium aluminosilicate glass as the sealant while (2) increasing strength and fracture toughness so as to reduce the tendency toward cracking. Each of the composite formulations consists of the glass plus either of two ceramic reinforcements in a proportion between 0 and 30 mole percent. One of the ceramic reinforcements consists of alumina platelets; the other one consists of particles of yttria-stabilized zirconia wherein the yttria content is 3 mole percent (3YSZ). In preparation for experiments, panels of the glass/ceramic composites were hot-pressed and machined into test bars.

  11. Investigation of mechanical behavior of copper in Nb3Sn superconducting composite wire

    International Nuclear Information System (INIS)

    Hojo, M.; Matsuoka, T.; Nakamura, M.; Tanaka, M.; Adachi, T.; Ochiai, S.; Miyashita, K.

    2004-01-01

    The mechanical properties and the thermal residual stress distribution of copper in Nb 3 Sn/Cu composite superconductor were investigated in detail. The stabilizer copper was removed from the composite wire, and the stress-strain behavior of this wire was compared with that of the original composite wire. The subtraction yielded the stress-strain curves of the copper when the Bauschinger effect was taken into account. The tensile test of the composites from which about 30% and 60% of copper was removed suggested the existence of the distribution of the thermal residual stress in the stabilizer copper. When this factor was taken into account, the analytical stress-strain curve agreed well with the experimental stress-strain curve. Thus, the stress-stain behavior of each component was fully understood

  12. Theoretical band structure of the superconducting antiperovskite oxide Sr3-xSnO

    Science.gov (United States)

    Ikeda, Atsutoshi; Fukumoto, Toshiyuki; Oudah, Mohamed; Hausmann, Jan Niklas; Yonezawa, Shingo; Kobayashi, Shingo; Sato, Masatoshi; Tassel, Cédric; Takeiri, Fumitaka; Takatsu, Hiroshi; Kageyama, Hiroshi; Maeno, Yoshiteru

    2018-05-01

    In order to investigate the position of the strontium deficiency in superconductive Sr3-xSnO, we synthesized and measured X-ray-diffraction patterns of Sr3-xSnO (x ∼ 0.5). Because no clear peaks originating from superstructures were observed, strontium deficiency is most likely to be randomly distributed. We also performed first-principles band-structure calculations on Sr3-xSnO (x = 0, 0.5) using two methods: full-potential linearized-augmented plane-wave plus local orbitals method and the Korringa-Kohn-Rostoker Green function method combined with the coherent potential approximation. We revealed that the Fermi energy of Sr3-xSnO in case of x ∼ 0.5 is about 0.8 eV below the original Fermi energy of the stoichiometric Sr3SnO, where the mixing of the valence p and conduction d orbitals are considered to be small.

  13. Oxidation Kinetics and Strength Degradation of Carbon Fibers in a Cracked Ceramic Matrix Composite

    Science.gov (United States)

    Halbig, Michael C.

    2003-01-01

    Experimental results and oxidation modeling will be presented to discuss carbon fiber susceptibility to oxidation, the oxidation kinetics regimes and composite strength degradation and failure due to oxidation. Thermogravimetric Analysis (TGA) was used to study the oxidation rates of carbon fiber and of a pyro-carbon interphase. The analysis was used to separately obtain activation energies for the carbon constituents within a C/SiC composite. TGA was also conducted on C/SiC composite material to study carbon oxidation and crack closure as a function of temperature. In order to more closely match applications conditions C/SiC tensile coupons were also tested under stressed oxidation conditions. The stressed oxidation tests show that C/SiC is much more susceptible to oxidation when the material is under an applied load where the cracks are open and allow for oxygen ingress. The results help correlate carbon oxidation with composite strength reduction and failure.

  14. Reversible Compositional Control of Oxide Surfaces by Electrochemical Potentials

    KAUST Repository

    Mutoro, Eva

    2012-01-05

    Perovskite oxides can exhibit a wide range of interesting characteristics such as being catalytically active and electronically/ionically conducting, and thus, they have been used in a number of solid-state devices such as solid oxide fuel cells (SOFCs) and sensors. As the surface compositions of perovskites can greatly influence the catalytic properties, knowing and controlling their surface compositions is crucial to enhance device performance. In this study, we demonstrate that the surface strontium (Sr) and cobalt (Co) concentrations of perovskite-based thin films can be controlled reversibly at elevated temperatures by applying small electrical potential biases. The surface compositional changes of La 0.8Sr 0.2CoO 3-δ (LSC 113), (La 0.5Sr 0.5) 2CoO 4±δ (LSC 214), and LSC 214-decorated LSC 113 films (LSC 113/214) were investigated in situ by utilizing synchrotron-based X-ray photoelectron spectroscopy (XPS), where the largest changes of surface Sr were found for the LSC 113/214 surface. These findings offer the potential of reversibly controlling the surface functionality of perovskites. © 2011 American Chemical Society.

  15. Mesoporous metal oxide microsphere electrode compositions and their methods of making

    Science.gov (United States)

    Parans Paranthaman, Mariappan; Bi, Zhonghe; Bridges, Craig A.; Brown, Gilbert M.

    2017-04-11

    Compositions and methods of making are provided for treated mesoporous metal oxide microspheres electrodes. The compositions include microspheres with an average diameter between about 200 nanometers and about 10 micrometers and mesopores on the surface and interior of the microspheres. The methods of making include forming a mesoporous metal oxide microsphere composition and treating the mesoporous metal oxide microspheres by at least annealing in a reducing atmosphere, doping with an aliovalent element, and coating with a coating composition.

  16. Effects of graphene oxide doping on the structural and superconducting properties of YBa2Cu3O7-δ

    Science.gov (United States)

    Dadras, S.; Falahati, S.; Dehghani, S.

    2018-05-01

    In this research we reported the effects of graphene oxide (GO) doping on the structural and superconducting properties of YBa2Cu3O7-δ (YBCO) high temperature superconductors. We synthesized YBCO powder by sol-gel method. After calcination, the powder mixed with different weight percent (0, 0.1, 0.3, 0.7, 1 wt.%) of GO. Refinement of X-ray diffraction (XRD) was carried out by material analysis using diffraction (MAUD) program to obtain the structural parameters such as lattice parameters, site occupancy of different atoms and orthorhombicity value for the all samples. Results show that GO doping does not change the structure of YBCO compound, Cu (1), Cu (2) and oxygen sites occupancy. It seems that GO remains between the grains and can play the role of weak links. We found that GO addition to YBCO compound increases transition temperature (TC). The oxygen contents of the all GO-doped samples are increased with respect to the pure one. The strain (ɛ) of the samples obtained from Williamson-Hall method, varies with increasing of GO doping. The scanning electron microscopy (SEM) images of the samples show better YBCO grain connections by GO doping.

  17. Investigation of niobium surface structure and composition for improvement of superconducting radio-frequency cavities

    Science.gov (United States)

    Trenikhina, Yulia

    Nano-scale investigation of intrinsic properties of niobium near-surface is a key to control performance of niobium superconducting radio-frequency cavities. Mechanisms responsible for the performance limitations and their empirical remedies needs to be justified in order to reproducibly control fabrication of SRF cavities with desired characteristics. The high field Q-slope and mechanism behind its cure (120°C mild bake) were investigated by comparison of the samples cut out of the cavities with high and low dissipation regions. Material evolution during mild field Q-slope nitrogen treatment was characterized using the coupon samples as well as samples cut out of nitrogen treated cavity. Evaluation of niobium near-surface state after some typical and novel cavity treatments was accomplished. Various TEM techniques, SEM, XPS, AES, XRD were used for the structural and chemical characterization of niobium near-surface. Combination of thermometry and structural temperature-dependent comparison of the cavity cutouts with different dissipation characteristics revealed precipitation of niobium hydrides to be the reason for medium and high field Q-slopes. Step-by-step effect of the nitrogen treatment processing on niobium surface was studied by analytical and structural characterization of the cavity cutout and niobium samples, which were subject to the treatment. Low concentration nitrogen doping is proposed to explain the benefit of nitrogen treatment. Chemical characterization of niobium samples before and after various surface processing (Electropolishing (EP), 800°C bake, hydrofluoric acid (HF) rinsing) showed the differences that can help to reveal the microscopic effects behind these treatments as well as possible sources of surface contamination.

  18. Effects of weak magnetic fields on post-implantation damage in superconducting oxides

    International Nuclear Information System (INIS)

    Khait, Y.L.

    1996-01-01

    Experimentally verifiable effects of weak permanent magnetic fields (PMF's) acting during ion implantation in high-T c superconducting (HTSC) materials at T∼300 K on post-implantation damage (PID) and material parameters are considered. The presence of PMF's of H∼10 3 Oe during ion implantation can enlarge substantially the PID in HTSC materials implanted with ions of moderate energies (e.g. 200-400 keV) and dosage (10 11- 10 12 cm -3 ) at room temperature. The PMF-induced increase in the radiation damage causes the corresponding enhancement in the material resistivity R and reduction in the critical current j cir (measured after the cooling of the HTSC material down to T (L) c after the ion implantation). This is an extension of the PMF effects found experimentally (and explained theoretically) in semiconductors in our previous work. The experimentally verifiable PMF effects on the defect (atomic) migration and radiation damage is a generic consequence of the kinetic electron-related theory of atomic rate processes in solids. The theory links the PMF effects with electron transitions occurring in the nanometer vicinity of atoms overcoming energy barriers which affect exponentially rates of atomic (defect) diffusion. The magnetic field can enhance the number of downward electron transitions that accompany atomic (defect) jumps over energy barriers and synchronize with the jumps. This enhances exponentially the rates of defect migration out of thermal spikes that prevents the defects from fast recombination, and thus, the PMF increases the PID and changes correspondingly R and j cir . (orig.)

  19. Proceedings of damage and oxidation protection in high temperature composites

    International Nuclear Information System (INIS)

    Haritos, G.K.; Ochoa, O.O.

    1991-01-01

    This book contains proceedings of Damage and Oxidation Protection in High Temperature Composites. Topics covered include: current issues in the development of new materials and structural concepts for the aerospace structures of the future; transportation vehicles of the future; materials and structural concepts; fundamental understanding and quantitative descriptions of the physical processes and mechanisms controlling the behavior of emerging materials and structures; and the critical need for advances in our understanding of how the interaction of service loads and environment influences the lifecycle of emerging structures and materials

  20. Composition-structure-property relation of oxide glasses

    DEFF Research Database (Denmark)

    Hermansen, Christian

    also increases such properties. Yet, these rules are not strictly followed even for the simplest binary oxide glasses, such as alkali silicates, borates and phosphates. In this thesis it is argued that the missing link between composition and properties is the glass structure. Structural models...... are proposed based on topological selection rules and experimentally verified. The relation between structure and properties is evaluated using topological constraint theory, which in its essence is a theory that quantifies the two intuitions of the glass scientist. The end result is a quantitative model...

  1. Pulsed cathodoluminescence of nanoscale aluminum oxide with different phase compositions

    International Nuclear Information System (INIS)

    Kortov, V.S.; Zvonarev, S.V.; Medvedev, A.I.

    2011-01-01

    The methods of pulsed cathodoluminescence have been used to study compacted powders and ceramics containing different phases of aluminum oxide. An intensive luminescence of the samples under study in the visible, NIR, and UV regions of the spectrum has been found. The luminescence bands are very broad and include a few components. The number of the bands depends on the phase composition of the samples. The oxygen vacancies, which capture one or two electrons, produce luminescence centers in the near UV region. The most probable in the visible region is the luminescence of aggregate defects, impurities, and surface centers. - Highlights: → We investigate pulsed cathodoluminescence spectra of nanoscale alumina. → We found the intensive luminescence in the visible, NIR, and UV regions. → The transformation of R-line structure depends on phase composition of alumina. → We substantiate the relation of luminescence bands with concrete centers.

  2. submitter Elemental composition and clustering behaviour of α-pinene oxidation products for different oxidation conditions

    CERN Document Server

    Praplan, A P; Bianchi, F; Rissanen, M P; Ehn, M; Jokinen, T; Junninen, H; Adamov, A; Amorim, A; Dommen, J; Duplissy, J; Hakala, J; Hansel, A; Heinritzi, M; Kangasluoma, J; Kirkby, J; Krapf, M; Kürten, A; Lehtipalo, K; Riccobono, F; Rondo, L; Sarnela, N; Simon, M; Tomé, A; Tröstl, J; Winkler, P M; Williamson, C; Ye, P; Curtius, J; Baltensperger, U; Donahue, N M; Kulmala, M; Worsnop, D R

    2015-01-01

    This study presents the difference between oxidised organic compounds formed by α-pinene oxidation under various conditions in the CLOUD environmental chamber: (1) pure ozonolysis (in the presence of hydrogen as hydroxyl radical (OH) scavenger) and (2) OH oxidation (initiated by nitrous acid (HONO) photolysis by ultraviolet light) in the absence of ozone. We discuss results from three Atmospheric Pressure interface Time-of-Flight (APi-TOF) mass spectrometers measuring simultaneously the composition of naturally charged as well as neutral species (via chemical ionisation with nitrate). Natural chemical ionisation takes place in the CLOUD chamber and organic oxidised compounds form clusters with nitrate, bisulfate, bisulfate/sulfuric acid clusters, ammonium, and dimethylaminium, or get protonated. The results from this study show that this process is selective for various oxidised organic compounds with low molar mass and ions, so that in order to obtain a comprehensive picture of the elemental composition o...

  3. Synthesis and heating effect of iron/iron oxide composite and iron oxide nanoparticles.

    Science.gov (United States)

    Zeng, Q; Baker, I; Loudis, J A; Liao, Y F; Hoopes, P J

    2007-02-09

    Fe/Fe oxide nanoparticles, in which the core consists of metallic Fe and the shell is composed of Fe oxides, were obtained by reduction of an aqueous solution of FeCl 3 within a NaBH 4 solution, or, using a water-in-oil micro-emulsion with CTAB as the surfactant. The reduction was performed either in an inert atmosphere or in air, and passivation with air was performed to produce the Fe/Fe 3 O 4 core/shell composite. Phase identification and particle size were determined by X-ray diffraction and TEM. Thermal analysis was performed using a differential scanning calorimeter. The quasistatic magnetic properties were measured using a VSM, and the specific absorption rates (SARs) of both Fe oxide and Fe/Fe 3 O 4 composite nanoparticles either dispersed in methanol or in an epoxy resin were measured by Luxtron fiber temperature sensors in an alternating magnetic field of 150 Oe at 250 kHz. It was found that the preparation conditions, including the concentrations of solutions, the mixing procedure and the heat treatment, influence the particle size, the crystal structure and consequently the magnetic properties of the particles. Compared with Fe oxides, the saturation magnetization ( M S ) of Fe/Fe 3 O 4 particles (100-190 emu/g) can be twice as high, and the coercivity ( H C ) can be tunable from several Oe to several hundred Oe. Hence, the SAR of Fe/Fe 3 O 4 composite nanoparticles can be much higher than that of Fe oxides, with a maximum SAR of 345 W/g. The heating behavior is related to the magnetic behavior of the nanoparticles.

  4. Fatigue-damage evolution and damage-induced reduction of critical current of a Nb3Al superconducting composite

    International Nuclear Information System (INIS)

    Ochiai, S; Sekino, F; Sawada, T; Ohno, H; Hojo, M; Tanaka, M; Okuda, H; Koganeya, M; Hayashi, K; Yamada, Y; Ayai, N; Watanabe, K

    2003-01-01

    We have studied the fatigue-damage mechanism of a Nb 3 Al superconducting composite at room temperature, and the influences of the fatigue damages introduced at room temperature on the critical current at 4.2 K and the residual strength at room temperature. The main (largest) fatigue crack arose first in the clad copper and then extended into the inner core with an increasing number of stress cycles. The cracking of the Nb 3 Al filaments in the core region occurred at a late stage (around 60-90% of the fatigue life). Once the fracture of the core occurred, it extended very quickly, resulting in a quick reduction in critical current and the residual strength with increasing stress cycles. Such a behaviour was accounted for by the crack growth calculated from the S-N curves (the relation of the maximum stress to the number of stress cycles at failure) combined with the Paris law. The size and distribution of the subcracks along the specimen length, and therefore the reduction in critical current of the region apart from the main crack, were dependent on the maximum stress level. The large subcracks causing fracture of the Nb 3 Al filaments were formed when the maximum stress was around 300-460 MPa, resulting in large reduction in critical current, but not when the maximum stress was outside such a stress range

  5. The mechanical deformation of superconducting BiSrCaCuO/Ag composites

    International Nuclear Information System (INIS)

    Han, Z.; Skov-Hansen, P.; Freltoft, T.

    1997-01-01

    The mechanical deformation of BiSrCaCuO/Ag composites made by the powder-in-tube method is a multi-step process. The main difficulty is that the mechanical properties of the ceramic powder are very different from those of the Ag sheath. A key parameter is the core density, which changes during mechanical deformation. In this review, basic concepts of the classical mechanical deformation theory are briefly discussed. Simple descriptions of deformation processes like pressing, rolling, drawing and extrusion are also presented. The term 'freedom parameter', Δ f , is introduced to illustrate the influence of various constraint factors on the mass-flow behaviour. Simple pictures including mass redistribution and the powder-flow model are presented for interpreting the plastic deformation process of the composites. Experimental results are reviewed and our proposed pictures and models are applied for discussion. (author)

  6. The effect of diffusion couple tin content on the superconductivity of filamentary niobium tin composites

    International Nuclear Information System (INIS)

    McDougall, I.L.

    1978-01-01

    The precision with which composites can be designed to meet magnet specifications is improved by considering the effect of non-equilibrium growth in the bronze niobium diffusion couples. Evidence is presented for the suggestion that high growth rates induce lattice microfaulting which reduced Tsub(c) and Hsub(c2) and gives a large gradient in grain size which reduces Jsub(c). (author)

  7. The Development of High Transition Temperature Superconducting Ceramic Thick Films and Wire Composites

    Science.gov (United States)

    1991-12-02

    number of protein or sugar agents were experimented with including Agar, pectin, carboxymethylcellulose, gelatin, alginic acid, xanthan gum , guar gum ...I) Introduction and Description of Scientific Goals 1 II) Material and Powder Synthesis 1 A) Freeze Dried Fabrication of Powders 1 B) Utilization of...composites. II). Material and Powder Synthesis The availability of a reliable technique for producing large quantities of phase pure, submicron powders

  8. Graphene oxide/oxidized carbon nanofiber/mineralized hydroxyapatite based hybrid composite for biomedical applications

    Science.gov (United States)

    Murugan, N.; Sundaramurthy, Anandhakumar; Chen, Shen-Ming; Sundramoorthy, Ashok K.

    2017-12-01

    Hydroxyapatite (Ca10(PO4)6(OH)2, HAP), a multi-mineral substituted calcium phosphate is the main mineral component of tooth enamel and bone, has become an important biomaterial for biomedical applications. However, as-synthesized HAP has poor mechanical properties and inferior wear resistance, so it is not suitable to use in bone tissue engineering applications. We report the successful incorporation of oxidized carbon nanofibers (O-CNF) and graphene oxide (GO) into the mineralized hydroxyapatite (M-HAP) which showed excellent mechanical and biological properties. GO improved the high mechanical strength and corrosion protection of the substrate in simulated body fluid (SBF) solution and promoted the viability of osteoblasts MG63 cells. As-prepared M-HAP/O-CNF/GO composite showed materials characteristics that similar to natural bone (M-HAP) with high mechanical strength. The resultant M-HAP/O-CNF/GO composite was characterized out by x-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), and Fourier-transform infrared spectroscopy (FT-IR), respectively. The mechanical strength of the material was determined by Vicker’s micro-hardness method and it was found that M-HAP/O-CNF/GO (468  ±  4 Hv) composite has superior mechanical properties than M-HAP (330  ±  3 Hv) and M-HAP/GO (425  ±  5 Hv) samples. In addition, antibacterial activity of the composite was studied against Staphylococcus aureus and Escherichia coli. Furthermore, the cell viability of the composite was observed in vitro against osteoblast cells. All these studies confirmed that the M-HAP/O-CNF/GO composite can be considered as potential candidate for dental and orthopedic applications.

  9. Reduction Behaviors of Carbon Composite Iron Oxide Briquette Under Oxidation Atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki-Woo; Kim, Kang-Min; Kwon, Jae-Hong; Han, Jeong-Whan [Inha University, Incheon (Korea, Republic of); Son, Sang-Han [POSCO, Pohang (Korea, Republic of)

    2017-01-15

    The carbon composite iron oxide briquette (CCB) is considered a potential solution to the upcoming use of low grade iron resources in the ironmaking process. CCB is able to reduce raw material cost by enabling the use of low grade powdered iron ores and coal. Additionally, the fast reduction of iron oxides by direct contact with coal can be utilized. In this study, the reduction behaviors of CCB were investigated in the temperature range of 200-1200 ℃ under oxidizing atmosphere. Briquettes were prepared by mixing iron ore and coal in a weight ratio of 8:2. Then reduction experiments were carried out in a mixed gas atmosphere of N{sub 2}, O{sub 2}, and CO{sub 2}. Compressive strength tests and quantitative analysis were performed by taking samples at each target temperature. In addition, the reduction degree depending on the reaction time was evaluated by off-gas analysis during the reduction test. It was found that the compressive strength and the metallization degree of the reduced briquettes increased with increases in the reaction temperature and holding time. However, it tended to decrease when the re-oxidation phenomenon was caused by injected oxygen. The degree of reduction reached a maximum value in 26 minutes. Therefore, the re-oxidation phenomenon becomes dominant after 26 minutes.

  10. Quantification of oxide particle composition in model oxide dispersion strengthened steel alloys

    Energy Technology Data Exchange (ETDEWEB)

    London, A.J., E-mail: andrew.london@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Lozano-Perez, S.; Moody, M.P. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Amirthapandian, S.; Panigrahi, B.K.; Sundar, C.S. [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, TN (India); Grovenor, C.R.M. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom)

    2015-12-15

    Oxide dispersion strengthened ferritic steels (ODS) are being considered for structural components of future designs of fission and fusion reactors because of their impressive high-temperature mechanical properties and resistance to radiation damage, both of which arise from the nanoscale oxide particles they contain. Because of the critical importance of these nanoscale phases, significant research activity has been dedicated to analysing their precise size, shape and composition (Odette et al., Annu. Rev. Mater. Res. 38 (2008) 471–503 [1]; Miller et al., Mater. Sci. Technol. 29(10) (2013) 1174–1178 [2]). As part of a project to develop new fuel cladding alloys in India, model ODS alloys have been produced with the compositions, Fe–0.3Y{sub 2}O{sub 3}, Fe–0.2Ti–0.3Y{sub 2}O{sub 3} and Fe–14Cr–0.2Ti–0.3Y{sub 2}O{sub 3}. The oxide particles in these three model alloys have been studied by APT in their as-received state and following ion irradiation (as a proxy for neutron irradiation) at various temperatures. In order to adequately quantify the composition of the oxide clusters, several difficulties must be managed, including issues relating to the chemical identification (ranging and variable peak-overlaps); trajectory aberrations and chemical structure; and particle sizing. This paper presents how these issues can be addressed by the application of bespoke data analysis tools and correlative microscopy. A discussion follows concerning the achievable precision in these measurements, with reference to the fundamental limiting factors.

  11. Quantification of oxide particle composition in model oxide dispersion strengthened steel alloys.

    Science.gov (United States)

    London, A J; Lozano-Perez, S; Moody, M P; Amirthapandian, S; Panigrahi, B K; Sundar, C S; Grovenor, C R M

    2015-12-01

    Oxide dispersion strengthened ferritic steels (ODS) are being considered for structural components of future designs of fission and fusion reactors because of their impressive high-temperature mechanical properties and resistance to radiation damage, both of which arise from the nanoscale oxide particles they contain. Because of the critical importance of these nanoscale phases, significant research activity has been dedicated to analysing their precise size, shape and composition (Odette et al., Annu. Rev. Mater. Res. 38 (2008) 471-503 [1]; Miller et al., Mater. Sci. Technol. 29(10) (2013) 1174-1178 [2]). As part of a project to develop new fuel cladding alloys in India, model ODS alloys have been produced with the compositions, Fe-0.3Y2O3, Fe-0.2Ti-0.3Y2O3 and Fe-14Cr-0.2Ti-0.3Y2O3. The oxide particles in these three model alloys have been studied by APT in their as-received state and following ion irradiation (as a proxy for neutron irradiation) at various temperatures. In order to adequately quantify the composition of the oxide clusters, several difficulties must be managed, including issues relating to the chemical identification (ranging and variable peak-overlaps); trajectory aberrations and chemical structure; and particle sizing. This paper presents how these issues can be addressed by the application of bespoke data analysis tools and correlative microscopy. A discussion follows concerning the achievable precision in these measurements, with reference to the fundamental limiting factors. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Low-Cost Repairable Oxidation Resistant Coatings for Carbon-Carbon Composites via CCVD

    National Research Council Canada - National Science Library

    Hendrick, Michelle

    2000-01-01

    ...) thin film process to yield oxidation resistant coatings on carbon-carbon (C-C) composites. Work was on simple coatings at this preliminary stage of investigation, including silicon dioxide, platinum and aluminum oxide...

  13. Investigation of Mechanical Properties and Metallurical Characteristics of a Metallic Chromium and Magnesium Oxide Composite

    National Research Council Canada - National Science Library

    Manning, Charles

    1963-01-01

    An experimental investigation has been made to evaluate an uncoated thin composite sheet material containing metallic chromium and magnesium oxide for aerospace applications in the temperature range...

  14. Oxidation-resistant interface coatings for Nicalon/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Stinton, D.P.; Besmann, T.M.; Lowden, R.A. [Oak Ridge National Lab., TN (United States); Liaw, P.K.; Shanmugham, S. [Univ. of Tennessee, Knoxville, TN (United States)

    1997-12-01

    Nicalon/SiC composites with thin C and C/oxide/C interfaces were fabricated. The oxide layers, mullite and Al{sub 2}O{sub 3}-TiO{sub 2}, were deposited by a sol-gel process, while the C layer was deposited by a chemical vapor infiltration method. The fabricated composites were flexure tested in both as-processed and oxidized conditions. Composites with C and C/oxide/C interfaces retained graceful failure even after 500 h oxidation at 1000 C, but with reduced flexural strengths.

  15. Effect of annealing on the superconducting and normal state properties of the doped multifilamentary Cu-Nb composite wires prepared by in situ technique

    International Nuclear Information System (INIS)

    Dubey, S.S.; Dheer, P.N.

    1999-01-01

    The effect of annealing on the superconducting and normal state properties of the Ga-, In-, Ti- and Zr-doped (1 wt%) Cu-Nb composite wires prepared by in situ technique have been investigated in this paper. The wires annealed at 700 C for 10 h and then quenched at room temperature, show a decrease in the superconducting transition temperature, T c , and increase in the transition width, ΔT. Doping of the Cu-Nb wires causes an increase in the normal state resistivity and hence the upper critical field, H C2 . This results in a significant increase of J c . Annealing of these doped samples decreases H C2 and J c . In the case of In- and Ga-doped samples J c shows a marginal improvement at lower field but decreases at higher field. Zr and Ti doping appears to be beneficial for the improved J c in these in situ materials. (orig.)

  16. Analysis of critical current-bend strain relationships in composite Nb3Sn superconducting wires

    International Nuclear Information System (INIS)

    Luhman, T.; Welch, D.O.

    1979-01-01

    In order to be used successfully in fusion magnets, Nb 3 Sn conductors must meet several mechanical strain criteria, including tolerance to bending strains encountered during magnet construction. Since Nb 3 Sn is extremely brittle much information has been generated regarding the sensitivity of these conductros to tensile strain. A recent comparison of critical current-bend and tensile test data indicates that the strain required to initiate compound cracking during bending is significantly less than the strain required to do so by tensile of critical current on bending strains in monofilamentary Nb 3 Sn wires is calculated and compared with experimental data. The calculation takes into account a shift in the composite's neutral axis which occurs during bending. The analysis correctly predicts the observed depdndence of the critical current on bending strains

  17. Superconductivity in filamentary eutectic composites. Progress report, June 1, 1980-May 31, 1980

    International Nuclear Information System (INIS)

    Zaitlin, M.P.

    1980-01-01

    Measurements of electrical resistivity and magnetic susceptibility have been performed as a function of temperature on samples of Nb-Th eutectic composite. Samples with Nb filament radii as small as 38A were used which is considerably less than the coherence length xi in Nb of approx. 380A. Surprisingly, measurements of all samples showed a drop in electrical resistance near the transition temperature of bulk Nb and an unmeasurably small resistance by approx. 8K. The magnetic susceptibility showed essentially perfect diamagnetism below approx. 7 to 9K even for samples with the smallest of filament radii. This is in contradiction to theories of the proximity effect which predict a sharp decrease in the transition temperature for samples with a radius smaller than xi. Some measurements in a static magnetic field have also been made

  18. SELF-ASSEMBLY CE OXIDE/ORGANOPOLYSILOXANE COMPOSITE COATINGS.

    Energy Technology Data Exchange (ETDEWEB)

    SUGAMA,T.; SABATINI,R.; GAWLIK,K.

    2005-01-01

    A self-assembly composite synthesis technology was used to put together a Ce(OH){sub 3}-dispersed poly-acetamide-acetoxyl methyl-propylsiloxane (PAAMPA) organometallic polymer. Three spontaneous reactions were involved; condensation, amidation, and acetoxylation, between the Ce acetate and aminopropylsilane triol (APST) at 150 C. An increase in temperature to 200 C led to the in-situ phase transformation of Ce(OH){sub 3} into Ce{sub 2}O{sub 3} in the PAAMPA matrix. A further increase to 250 C caused oxidative degradation of the PAAMPA, thereby generating copious fissures in the composite. We assessed the potential of Ce(OH){sub 3}/ and Ce{sub 2}O{sub 3}/ PAAMPA composite materials as corrosion-preventing coatings for carbon steel and aluminum. The Ce{sub 2}O{sub 3} composite coating displayed better performance in protecting both metals against NaCl-caused corrosion than did the Ce(OH){sub 3} composite. Using this coating formed at 200 C, we demonstrated that the following four factors played an essential role in further mitigating the corrosion of the metals: First was a minimum susceptibility of coating's surface to moisture; second was an enhanced densification of the coating layer; third was the retardation of the cathodic oxygen reduction reaction at the metal's corrosion sites due to the deposition of Ce{sub 2}O{sub 3} as a passive film over the metal's surface; and, fourth was its good adherence to metals. The last two factors contributed to minimizing the cathodic delamination of coating film from the metal's surface. We also noted that the affinity of the composite with the surface of aluminum was much stronger than that with steel. Correspondingly, the rate of corrosion of aluminum was reduced as much as two orders of magnitude by a nanoscale thick coating. In contrast, its ability to reduce the corrosion rate of steel was lower than one order of magnitude.

  19. Nanoscale gadolinium oxide capping layers on compositionally variant gate dielectrics

    KAUST Repository

    Alshareef, Husam N.

    2010-11-19

    Metal gate work function enhancement using nanoscale (1.0 nm) Gd2O3 interfacial layers has been evaluated as a function of silicon oxide content in the HfxSiyOz gate dielectric and process thermal budget. It is found that the effective work function tuning by the Gd2O3 capping layer varied by nearly 400 mV as the composition of the underlying dielectric changed from 0% to 100% SiO2, and by nearly 300 mV as the maximum process temperature increased from ambient to 1000 °C. A qualitative model is proposed to explain these results, expanding the existing models for the lanthanide capping layer effect.

  20. Nanoscale gadolinium oxide capping layers on compositionally variant gate dielectrics

    KAUST Repository

    Alshareef, Husam N.; Caraveo-Frescas, J. A.; Cha, D. K.

    2010-01-01

    Metal gate work function enhancement using nanoscale (1.0 nm) Gd2O3 interfacial layers has been evaluated as a function of silicon oxide content in the HfxSiyOz gate dielectric and process thermal budget. It is found that the effective work function tuning by the Gd2O3 capping layer varied by nearly 400 mV as the composition of the underlying dielectric changed from 0% to 100% SiO2, and by nearly 300 mV as the maximum process temperature increased from ambient to 1000 °C. A qualitative model is proposed to explain these results, expanding the existing models for the lanthanide capping layer effect.

  1. Oxidation resistant coatings for ceramic matrix composite components

    Energy Technology Data Exchange (ETDEWEB)

    Vaubert, V.M.; Stinton, D.P. [Oak Ridge National Lab., TN (United States); Hirschfeld, D.A. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States). Dept. of Materials and Metallurgical Engineering

    1998-11-01

    Corrosion resistant Ca{sub 0.6}Mg{sub 0.4}Zr{sub 4}(PO{sub 4}){sub 6} (CMZP) and Ca{sub 0.5}Sr{sub 0.5}Zr{sub 4}(PO{sub 4}){sub 6} (CS-50) coatings for fiber-reinforced SiC-matrix composite heat exchanger tubes have been developed. Aqueous slurries of both oxides were prepared with high solids loading. One coating process consisted of dipping the samples in a slip. A tape casting process has also been created that produced relatively thin and dense coatings covering a large area. A processing technique was developed, utilizing a pre-sintering step, which produced coatings with minimal cracking.

  2. On the oxidation behaviour of a Cu-10 vol% Cr in situ composite

    International Nuclear Information System (INIS)

    Haugsrud, R.; Lee, K.L.

    2005-01-01

    The oxidation behaviour of copper and Cu-10 vol% Cr in situ composite was studied at 400-700 deg. C in air and in argon containing 10 ppm O 2 . Oxidation kinetics was investigated by means of isothermal thermogravimetry and the oxide scales were characterized by scanning electron microscopy (SEM). The presence of the chromium fibres increases the oxidation resistance compared to unalloyed copper up to 600 deg. C. The oxidation mechanism and the influence of the different oxidation phenomena on the creep characteristics of the alloy composite are discussed

  3. Possible influence of surface oxides on the optical response of high-purity niobium material used in the fabrication of superconducting radio frequency cavity

    Science.gov (United States)

    Singh, Nageshwar; Deo, M. N.; Roy, S. B.

    2016-09-01

    We have investigated the possible influence of surface oxides on the optical properties of a high-purity niobium (Nb) material for fabrication of superconducting radio frequency (SCRF) cavities. Various peaks in the infrared region were identified using Fourier transform infrared and Raman spectroscopy. Optical response functions such as complex refractive index, dielectric and conductivity of niobium were compared with the existing results on oxides free Nb and Cu. It was observed that the presence of a mixture of niobium-oxides, and probably near other surface impurities, appreciably influence the conducting properties of the material causing deviation from the typical metallic characteristics. In this way, the key result of this work is the observation, identification of vibrational modes of some of surface complexes and study of its influences on the optical responses of materials. This method of spectroscopic investigation will help in understanding the origin of degradation of performance of SCRF cavities.

  4. Possible influence of surface oxides on the optical response of high-purity niobium material used in the fabrication of superconducting radio frequency cavity

    International Nuclear Information System (INIS)

    Singh, Nageshwar; Deo, M.N.; Roy, S.B.

    2016-01-01

    We have investigated the possible influence of surface oxides on the optical properties of a high-purity niobium (Nb) material for fabrication of superconducting radio frequency (SCRF) cavities. Various peaks in the infrared region were identified using Fourier transform infrared and Raman spectroscopy. Optical response functions such as complex refractive index, dielectric and conductivity of niobium were compared with the existing results on oxides free Nb and Cu. It was observed that the presence of a mixture of niobium-oxides, and probably near other surface impurities, appreciably influence the conducting properties of the material causing deviation from the typical metallic characteristics. In this way, the key result of this work is the observation, identification of vibrational modes of some of surface complexes and study of its influences on the optical responses of materials. This method of spectroscopic investigation will help in understanding the origin of degradation of performance of SCRF cavities.

  5. Possible influence of surface oxides on the optical response of high-purity niobium material used in the fabrication of superconducting radio frequency cavity

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Nageshwar [Magnetic and Superconducting Materials Section, Raja Ramanna Centre for Advanced Technology, Indore 452013, M.P. (India); Deo, M.N. [High Pressure & Synchrotron Radiation Physics Division, BARC, Mumbai 400085 (India); Roy, S.B. [Magnetic and Superconducting Materials Section, Raja Ramanna Centre for Advanced Technology, Indore 452013, M.P. (India)

    2016-09-11

    We have investigated the possible influence of surface oxides on the optical properties of a high-purity niobium (Nb) material for fabrication of superconducting radio frequency (SCRF) cavities. Various peaks in the infrared region were identified using Fourier transform infrared and Raman spectroscopy. Optical response functions such as complex refractive index, dielectric and conductivity of niobium were compared with the existing results on oxides free Nb and Cu. It was observed that the presence of a mixture of niobium-oxides, and probably near other surface impurities, appreciably influence the conducting properties of the material causing deviation from the typical metallic characteristics. In this way, the key result of this work is the observation, identification of vibrational modes of some of surface complexes and study of its influences on the optical responses of materials. This method of spectroscopic investigation will help in understanding the origin of degradation of performance of SCRF cavities.

  6. Study of microstructure and superconducting properties of Nb3Al-tapes, obtained by heat treatment of three-layer and multilayer composites Nb/AlCu

    International Nuclear Information System (INIS)

    Korzhov, Valeriy P.

    2012-01-01

    The structure and superconductivity of three- and multilayer composite tapes of Nb/AlCu after high- temperature heating at 1750-1850 0 C for 1-3 seconds were investigated. Three-layer composites of Nb/AlCu/Nb with thickness of 50 microns were obtained by applying a vacuum rolling at 400-450 0 C and subsequent rolling at room temperature. Multilayer lengthy composites of Nb/AlCu obtained by extrusion with subsequent flattening by rolling of complex blank, collected in a special way. The effect of copper on the structure and properties of three-layer tapes was investigated. Copper increased the critical current of the superconductor. The critical current density in multilayered Nb 3 Al-tape reaches the value 8.10 4 A/cm 2 in magnetic field 14 T. The critical bending radius of the tape is 7 mm. Key words: multilayer composite tape, extrusion, rolling, superconducting Nb 3 Al-tape, high- temperature heat treatment, critical current density

  7. Composition and oxidation state of sulfur in atmospheric particulate matter

    Directory of Open Access Journals (Sweden)

    A. F. Longo

    2016-10-01

    Full Text Available The chemical and physical speciation of atmospheric sulfur was investigated in ambient aerosol samples using a combination of sulfur near-edge x-ray fluorescence spectroscopy (S-NEXFS and X-ray fluorescence (XRF microscopy. These techniques were used to determine the composition and oxidation state of sulfur in common primary emission sources and ambient particulate matter collected from the greater Atlanta area. Ambient particulate matter samples contained two oxidation states: S0 and S+VI. Ninety-five percent of the individual aerosol particles (> 1 µm analyzed contain S0. Linear combination fitting revealed that S+VI in ambient aerosol was dominated by ammonium sulfate as well as metal sulfates. The finding of metal sulfates provides further evidence for acidic reactions that solubilize metals, such as iron, during atmospheric transport. Emission sources, including biomass burning, coal fly ash, gasoline, diesel, volcanic ash, and aerosolized Atlanta soil, and the commercially available bacterium Bacillus subtilis, contained only S+VI. A commercially available Azotobacter vinelandii sample contained approximately equal proportions of S0 and S+VI. S0 in individual aerosol particles most likely originates from primary emission sources, such as aerosolized bacteria or incomplete combustion.

  8. Superconductivity - applications

    International Nuclear Information System (INIS)

    The paper deals with the following subjects: 1) Electronics and high-frequency technology, 2) Superconductors for energy technology, 3) Superconducting magnets and their applications, 4) Electric machinery, 5) Superconducting cables. (WBU) [de

  9. Novel composite materials synthesized by the high-temperature interaction of pyrrole with layered oxide matrices

    Science.gov (United States)

    Pavel, Alexandru Cezar

    The initial goal of the research presented herein was to develop the very first synthetic metal---high-temperature superconductor ceramic composite material, in the specific form of a polypyrrole---Bi2Sr2CaCu 2O8+delta nanocomposite. In the course of scientific investigation, this scope was broadened to encompass structurally and compositionally similar layered bismuthates and simpler layered oxides. The latter substrates were prepared through novel experimental procedures that enhanced the chance of yielding nanostructured morphologies. The designed novel synthesis approaches yielded a harvest of interesting results that may be further developed upon their dissemination in the scientific community. High-temperature interaction of pyrrole with molybdenum trioxide substrates with different crystalline phases and morphologies led to the formation of the first members of a new class of heterogeneous microcomposites characterized by incomplete occupancy by the metal oxide core of the volume encapsulated by the rigid, amorphous permeable polymeric membrane that reproduces the volume of the initial grain of precursor substrate. The method may be applied for various heterogeneous catalyst substrates for the precise determination of the catalytically active crystallographic planes. In a different project, room-temperature, templateless impregnation of molybdenum trioxide substrates with different crystalline phases and morphologies by a large excess of silver (I) cations led to the formation of 1-D nanostructured novel Ag-Mo-O ternary phase in what may be the simplest experimental procedure available to date that has yielded a 1-D nanostructure, regardless the nature of the constituent material. Interaction of this novel ternary phase with pyrrole vapors at high reaction temperatures led to heterogeneous nanostructured composites that exhibited a silver nanorod core. Nanoscrolls of vanadium pentoxide xerogel were synthesized through a novel, facile reflux-based method that

  10. Superconductivity: materials and applications

    International Nuclear Information System (INIS)

    Duchateau, J.L.; Kircher, F.; Leveque, J.; Tixador, P.

    2008-01-01

    This digest paper presents the different types of superconducting materials: 1 - the low-TC superconductors: the multi-filament composite as elementary constituent, the world production of NbTi, the superconducting cables of the LHC collider and of the ITER tokamak; 2 - the high-TC superconductors: BiSrCaCuO (PIT 1G) ribbons and wires, deposited coatings; 3 - application to particle physics: the the LHC collider of the CERN, the LHC detectors; 4 - applications to thermonuclear fusion: Tore Supra and ITER tokamaks; 5 - NMR imaging: properties of superconducting magnets; 6 - applications in electrotechnics: cables, motors and alternators, current limiters, transformers, superconducting energy storage systems (SMES). (J.S.)

  11. Oxidation Behavior of AlN/h-BN Nano Composites at High Temperature

    International Nuclear Information System (INIS)

    Jin Haiyun; Huang Yinmao; Feng Dawei; He Bo; Yang Jianfeng

    2011-01-01

    Both AlN/ nano h-BN composites and AlN/ micro h-BN composites were fabricated. The high temperature oxidation behaviors were investigated at 1000deg. C and 1300deg. C using a cycle-oxidation method. The results showed that there were little changes of both nano composites and monolithic AlN ceramic at temperature of 1000deg. C. And at 1300deg. C, the oxidation dynamics curve of composites could be divided into two courses: a slowly weight increase and a rapid weight decrease, but the oxidation behavior of nano composites was better than micro composites. It was due to that the uniform distribution of oxidation production (Al 18 B 4 O 33 ) surround the AlN grains in nano composites and the oxidation proceeding was retarded. The XRD analysis and SEM observations showed that there was no BN remained in the composites surface after 1300deg. C oxidation and the micropores remain due to the vaporizing of B 2 O 3 oxidized by BN.

  12. Simple Synthesis and Enhanced Performance of Graphene Oxide-Gold Composites

    Directory of Open Access Journals (Sweden)

    Min Song

    2012-01-01

    Full Text Available Graphene oxide-gold composites were prepared by one-step reaction in aqueous solution, where the gold nanoparticles were deposited on the graphene oxide during their synthesis process. Transmission electron morphology, X-ray diffraction, Roman spectra, and UV-Vis absorption spectra were used to characterize the obtained composites. Furthermore, based on the BET analysis results, it was found that the surface area of the composite film was obviously enhanced compared with the synthesized graphene oxide. Electrochemical measurements indicated that the modification of the composites on electrode could efficiently enhance the voltammetric response, suggesting the potential application for making electrochemical sensors.

  13. Effect of TiC addition on surface oxidation behavior of SKD11 tool steel composites

    Science.gov (United States)

    Cho, Seungchan; Jo, Ilguk; Kim, Heebong; Kwon, Hyuk-Tae; Lee, Sang-Kwan; Lee, Sang-Bok

    2017-09-01

    Titanium carbide (TiC) reinforced tool steel matrix composites were successfully fabricated by a liquid pressing infiltration process and research was subsequently conducted to investigate the composites' oxidation resistance. The mass gain of the tested TiC-SKD11 composite held at 700 °C for 50 h in an air environment decreased by about 60%, versus that of the SKD11, which indicates improved oxidation resistance. Improved oxidation resistance of the TiC-SKD11 composite originates from uniformly reinforced TiC, with a phase transition to thermodynamically stable, volume-expanded TiO2.

  14. Facile synthesis of iron oxides/reduced graphene oxide composites: application for electromagnetic wave absorption at high temperature.

    Science.gov (United States)

    Zhang, Lili; Yu, Xinxin; Hu, Hongrui; Li, Yang; Wu, Mingzai; Wang, Zhongzhu; Li, Guang; Sun, Zhaoqi; Chen, Changle

    2015-03-19

    Iron oxides/reduced graphene oxide composites were synthesized by facile thermochemical reactions of graphite oxide and FeSO4 · 7H2O. By adjusting reaction temperature, α-Fe2O3/reduced graphene oxide and Fe3O4/reduced graphene oxide composites can be obtained conveniently. Graphene oxide and reduced graphene oxide sheets were demonstrated to regulate the phase transition from α-Fe2O3 to Fe3O4 via γ-Fe2O3, which was reported for the first time. The hydroxyl groups attached on the graphene oxide sheets and H2 gas generated during the annealing of graphene oxide are believed to play an important role during these phase transformations. These samples showed good electromagnetic wave absorption performance due to their electromagnetic complementary effect. These samples possess much better electromagnetic wave absorption properties than the mixture of separately prepared Fe3O4 with rGO, suggesting the crucial role of synthetic method in determining the product properties. Also, these samples perform much better than commercial absorbers. Most importantly, the great stability of these composites is highly advantageous for applications as electromagnetic wave absorption materials at high temperatures.

  15. A new way for preparing superconducting materials: the electrochemical oxidation of La sub 2 CuO sub 4. Une nouvelle voie d'acces aux oxydes supraconducteurs: l'oxydation electrochimique de La sub 2 CuO sub 4

    Energy Technology Data Exchange (ETDEWEB)

    Wattiaux, A; Park, J C; Grenier, J C; Pouchard, M [Bordeaux-1 Univ., 33 - Talence (FR)

    1990-04-01

    The electrochemical oxidation in alkaline medium is described as a new way for preparing superconducting oxides at room temperature. The application of this method to La{sub 2}CuO{sub 4} gave rise to a metallic material with a superconducting behaviour below 39 K and whose physical and chemical features appear as quite promising.

  16. Thin-film method-XRF determination of the composition of rare earth oxides

    International Nuclear Information System (INIS)

    Xiao Deming

    1992-01-01

    The author describes the thin-film sample preparation by precipitation-pumping filtering method and the composition of rare earth oxide materials by XRF determination. The determination limits are 0.01% to 0.17%. The coefficients of variation are in the range of 0.85% to 14.9%. The analytical results of several kinds of rare earth oxide materials show that this method can be applied to the determination of the composition of rare earth oxide mixtures

  17. Lead oxide-decorated graphene oxide/epoxy composite towards X-Ray radiation shielding

    Science.gov (United States)

    Hashemi, Seyyed Alireza; Mousavi, Seyyed Mojtaba; Faghihi, Reza; Arjmand, Mohammad; Sina, Sedigheh; Amani, Ali Mohammad

    2018-05-01

    In this study, employing modified Hummers method coupled with a multi-stage manufacturing procedure, graphene oxide (GO) decorated with Pb3O4 (GO-Pb3O4) at different weight ratios was synthesized. Thereupon, via the vacuum shock technique, composites holding GO-Pb3O4 at different filler loadings (5 and 10 wt%) and thicknesses (4 and 6 mm) were fabricated. Successful decoration of GO with Pb3O4 was confirmed via FTIR analysis. Moreover, particle size distribution of the produced fillers was examined using particle size analyzer. X-ray attenuation examination revealed that reinforcement of epoxy-based composites with GO-Pb3O4 led to a significant improvement in the overall attenuation rate of X-ray beam. For instance, composites containing 10 wt% GO-Pb3O4 with 6 mm thickness showed 4.06, 4.83 and 3.91 mm equivalent aluminum thickness at 40, 60 and 80 kVp energies, denoting 124.3, 124.6 and 103.6% improvement in the X-ray attenuation rate compared to a sample holding neat epoxy resin, respectively. Simulation results revealed that the effect of GO-Pb3O4 loading on the X-ray shielding performance undermined with increase in the voltage of the applied X-ray beam.

  18. Superconducting properties of magnetron sputtered high T/sub c/ thin films containing oxide compounds of yttrium, bismuth, or thallium

    International Nuclear Information System (INIS)

    Kang, J.H.; Kampwirth, R.T.; Gray, K.E.

    1989-01-01

    The authors have used multiple source magnetron sputtering to prepare thin films of Y-Ba-Cu-O, Bi-Ca-Sr-Cu-O, and Tl-Ca-Ba-Cu-O on (100) SrTiO/sub 3/, (100) MgO, and ZrO/sub 2/-9%Y/sub 2/O/sub 3/ substrates. Y-Ba-Cu-O films grow best on SrTiO/sub 3/ with mostly an a-axis orientation. Stoichiometry, particularly the Ba/Ca ratio must be within 2% of the correct value to obtain narrow ΔT/sub c/ transitions. Conversely the 80K phase of Bi-Ca-Sr-Cu-O films grows best on MgO substrates and has a predominant c-axis orientation. The requirements on composition are less stringent, however, the annealing temperature must be held within a narrow around 865 0 C to obtain the best films. The best films of Tl-Ca-Ba-Cu-O compounds are grown on (100) oriented and polycrystalline ZrO/sub 2/ substrates. The highest transition temperature, T/sub c0/, where the resistance goes zero is about 114K in the Tl/sub 2/Ba/sub 2/Ca/sub 2/Cu/sub 3/O/sub x/ phase and 100-105K in Tl/sub 2/Ba/sub 2/Ca/sub 1/Cu/sub 2/O/sub x/ and Tl/sub 1/Ba/sub 2/Ca/sub 2/Cu/sub 3/O/sub x/ phase samples. The upper critical field measurements show high anisotropies in the critical field slopes (≥70 for Tl-Ba-Ca-Cu-O compounds and ∼15 for Bi-Sr-Ca-Cu-O compounds), as might be expected from highly oriented materials. The authors compare the preparation conditions and superconducting properties, including T/sub c/, ΔT/sub c/, dB/sub c2//dT (parallel and perpendicular to film surface), of all three compounds

  19. Altering the structure and properties of iron oxide nanoparticles and graphene oxide/iron oxide composites by urea

    Energy Technology Data Exchange (ETDEWEB)

    Naghdi, Samira [Physics department, Bu-Ali Sina University, 65174 Hamedan (Iran, Islamic Republic of); Department of Mechanical Engineering, College of Engineering, Kyung Hee University, 446-701 Yongin (Korea, Republic of); Rhee, Kyong Yop, E-mail: rheeky@khu.ac.kr [Department of Mechanical Engineering, College of Engineering, Kyung Hee University, 446-701 Yongin (Korea, Republic of); Jaleh, Babak [Physics department, Bu-Ali Sina University, 65174 Hamedan (Iran, Islamic Republic of); Park, Soo Jin [Chemistry, Colloge of Natural Science, Inha University, 402-751 Incheon (Korea, Republic of)

    2016-02-28

    Graphical abstract: - Highlights: • Iron oxide (Fe{sub 2}O{sub 3}) nanoparticles were directly grown on graphene oxide (GO) using a facile microwave assistant method. • The effect of urea concentration on Fe{sub 2}O{sub 3} nanoparticles and GO/Fe{sub 2}O{sub 3} composite was examined. • Increasing urea concentration altered the morphology and decreased the particle size. • The increased concentration of urea induced a larger surface area with more active sites in the Fe{sub 2}O{sub 3} nanoparticles. • The increase in urea concentration led to decreased thermal stability of the Fe{sub 2}O{sub 3} nanoparticles. - Abstract: Iron oxide (Fe{sub 2}O{sub 3}) nanoparticles were grown on graphene oxide (GO) using a simple microwave-assisted method. The effects of urea concentration on Fe{sub 2}O{sub 3} nanoparticles and GO/Fe{sub 2}O{sub 3} composite were examined. The as-prepared samples were characterized using X-ray powder diffraction, Raman spectroscopy, and transmission electron microscopy. The Fe{sub 2}O{sub 3} nanoparticles were uniformly developed on GO sheets. The results showed that urea affects both Fe{sub 2}O{sub 3} morphology and particle size. In the absence of urea, the Fe{sub 2}O{sub 3} nanostructures exhibited a rod-like morphology. However, increasing urea concentration altered the morphology and decreased the particle size. The Raman results of GO/Fe{sub 2}O{sub 3} showed that the intensity ratio of D band to G band (I{sub D}/I{sub G}) was decreased by addition of urea, indicating that urea can preserve the GO sheets during synthesis of the composite from exposing more defects. The surface area and thermal stability of GO/Fe{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} were compared using the Brunauer–Emmett–Teller method and thermal gravimetric analysis, respectively. The results showed that the increased concentration of urea induced a larger surface area with more active sites in the Fe{sub 2}O{sub 3} nanoparticles. However, the increase in urea

  20. High-temperature superconductivity

    International Nuclear Information System (INIS)

    Lynn, J.W.

    1990-01-01

    This book discusses development in oxide materials with high superconducting transition temperature. Systems with Tc well above liquid nitrogen temperature are already a reality and higher Tc's are anticipated. The author discusses how the idea of a room-temperature superconductor appears to be a distinctly possible outcome of materials research

  1. Electron density distribution in BaPb1−xSbxO3 superconducting oxides studied by double nuclear magnetic resonance methods

    International Nuclear Information System (INIS)

    Piskunov, Yu. V.; Ogloblichev, V. V.; Arapova, I. Yu.; Sadykov, A. V.; Gerashchenko, A. P.; Verkhovskii, S. V.

    2011-01-01

    The effect of charge disorder on the formation of an inhomogeneous state of the electron system in the conduction band in BaPb 1−x Sb x O 3 superconducting oxides is investigated experimentally by NMR methods. The NMR spectra of 17 O are measured systematically, and the contributions from 17 O atoms with different cation nearest surroundings are identified. It is found that microscopic regions with an elevated spin density of charge carriers are formed within two coordination spheres near antimony ions. Nuclei of the superconducting phase of the oxide (regions with an elevated antimony concentration) microscopically distributed over the sample are detected in compounds with x = 0.25 and 0.33. Experiments in which a double resonance signal of the spin echo of 17 O- 207 Pb and 17 O- 121 Sb are measured in the metal phase of BaPb 1−x Sb x O 3 oxides are carried out for the first time. The constants of indirect heteronuclear spin-spin 17 O- 207 Pb interaction are determined as functions of the local Knight shift 207 Ks. The estimates of the constants of the indirect interaction between the nuclei of the nearest neighbors (O-Pb and Pb-Pb atoms) and analysis of evolution of the NMR spectra of 17 O upon a change in the antimony concentration are convincing evidence in favor of the development of a microscopically inhomogeneous state of the electron system in the metal phase of BaPb 1−x Sb x O 3 oxides.

  2. [Oxidation behavior and kinetics of representative VOCs emitted from petrochemical industry over CuCeOx composite oxides].

    Science.gov (United States)

    Chen, Chang-Wei; Yu, Yan-Ke; Chen, Jin-Sheng; He, Chi

    2013-12-01

    CuCeOx composite catalysts were synthesized via coprecipitation (COP-CuCeO,) and incipient impregnation (IMP-CuCeOx) methods, respectively. The physicochemical properties of the samples were characterized by XRD, low-temperature N2 sorption, H2-TPR and O2-TPD. The influences of reactant composition and concentration, reaction space velocity, O2 content, H2O concentration, and catalyst type on the oxidation behaviors of benzene, toluene, and n-hexane emitted from petrochemical industry were systematically investigated. In addition, the related kinetic parameters were model fitted. Compared with IMP-CuCeOx, COP-CuCeOx had well-dispersed active phase, better low-temperature reducibility, and more active surface oxygen species. The increase of reactant concentration was unfavorable for toluene oxidation, while the opposite phenomenon could be observed in n-hexane oxidation. The inlet concentration of benzene was irrelevant to its conversion under high oxidation rate. The introduction of benzene obviously inhibited the oxidation of toluene and n-hexane, while the presence of toluene had a positive effect on beuzene conversion. The presence of n-hexane could promote the oxidation of toluene, while toluene had a negative influence on e-hexane oxidation. Both low space velocity and high oxygen concentration were beneficial for the oxidation process, and the variation of oxygen content had negligible effect on n-hexane and henzene oxidation. The presence of H2O noticeably inhibited the oxidation of toluene, while significantly accelerated the oxidation procedure of henzene and n-hexane. COP-CuCeOx had superior catalytic performance for toluene and benzene oxidation, while IMP-CuCeOx showed higher n-hexane oxidation activity under dry condition. The oxidation behaviors under different conditions could be well fitted and predicted by the pseudo first-order kinetic model.

  3. Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review

    Science.gov (United States)

    Zhi, Mingjia; Xiang, Chengcheng; Li, Jiangtian; Li, Ming; Wu, Nianqiang

    2012-12-01

    This paper presents a review of the research progress in the carbon-metal oxide composites for supercapacitor electrodes. In the past decade, various carbon-metal oxide composite electrodes have been developed by integrating metal oxides into different carbon nanostructures including zero-dimensional carbon nanoparticles, one-dimensional nanostructures (carbon nanotubes and carbon nanofibers), two-dimensional nanosheets (graphene and reduced graphene oxides) as well as three-dimensional porous carbon nano-architectures. This paper has described the constituent, the structure and the properties of the carbon-metal oxide composites. An emphasis is placed on the synergistic effects of the composite on the performance of supercapacitors in terms of specific capacitance, energy density, power density, rate capability and cyclic stability. This paper has also discussed the physico-chemical processes such as charge transport, ion diffusion and redox reactions involved in supercapacitors.

  4. Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review.

    Science.gov (United States)

    Zhi, Mingjia; Xiang, Chengcheng; Li, Jiangtian; Li, Ming; Wu, Nianqiang

    2013-01-07

    This paper presents a review of the research progress in the carbon-metal oxide composites for supercapacitor electrodes. In the past decade, various carbon-metal oxide composite electrodes have been developed by integrating metal oxides into different carbon nanostructures including zero-dimensional carbon nanoparticles, one-dimensional nanostructures (carbon nanotubes and carbon nanofibers), two-dimensional nanosheets (graphene and reduced graphene oxides) as well as three-dimensional porous carbon nano-architectures. This paper has described the constituent, the structure and the properties of the carbon-metal oxide composites. An emphasis is placed on the synergistic effects of the composite on the performance of supercapacitors in terms of specific capacitance, energy density, power density, rate capability and cyclic stability. This paper has also discussed the physico-chemical processes such as charge transport, ion diffusion and redox reactions involved in supercapacitors.

  5. Oxidation behaviour of cast aluminium matrix composites with Ce surface coatings

    International Nuclear Information System (INIS)

    Pardo, A.; Merino, M.C.; Arrabal, R.; Feliu, S.; Viejo, F.

    2007-01-01

    The oxidation behaviour of SiC-reinforced aluminium matrix composites (A3xx.x/SiCp) has been studied after Ce-based treatments. Kinetics data of oxidation process were obtained from gravimetric tests performed at different temperatures (350, 425 and 500 o C). The nature of the oxidation layer was analyzed by scanning electron and atomic force microscopy, energy dispersive X-ray analysis, X-ray photoelectron spectroscopy and X-ray diffraction. The extent of oxidation degradation in untreated composites was preferentially localized in matrix/SiCp interfaces favouring the MgO formation. Ce coatings favoured a uniform oxidation of the composite surface with MgAl 2 O 4 spinel formation. This oxide increased the surface hardness of the materials

  6. Liquid Phase Plasma Synthesis of Iron Oxide/Carbon Composite as Dielectric Material for Capacitor

    Directory of Open Access Journals (Sweden)

    Heon Lee

    2014-01-01

    Full Text Available Iron oxide/carbon composite was synthesized using a liquid phase plasma process to be used as the electrode of supercapacitor. Spherical iron oxide nanoparticles with the size of 5~10 nm were dispersed uniformly on carbon powder surface. The specific capacitance of the composite increased with increasing quantity of iron oxide precipitate on the carbon powder up to a certain quantity. When the quantity of the iron oxide precipitate exceeds the threshold, however, the specific capacitance was rather reduced by the addition of precipitate. The iron oxide/carbon composite containing an optimum quantity (0.33 atomic % of iron oxide precipitate exhibited the smallest resistance and the largest initial resistance slope.

  7. Highly stable copper oxide composite as an effective photocathode for water splitting via a facile electrochemical synthesis strategy

    KAUST Repository

    Zhang, Zhonghai; Wang, Peng

    2012-01-01

    focused on n-type metal oxide semiconductors as photoanodes, whereas studies of p-type metal oxide semiconductors as photocathodes where hydrogen is generated are scarce. In this paper, highly efficient and stable copper oxide composite photocathode

  8. Review of thin film superconductivity

    International Nuclear Information System (INIS)

    Kihlstrom, K.E.

    1989-01-01

    Advances in thin film superconductivity are critical to the success of many proposed applications. The authors review several of the prominent techniques currently used to produce thin films of the high temperature superconductors including electron beam co-deposition, sputtering (both multiple and composite source configurations) and laser ablation. The authors look at the relevant parameters for each and evaluate the advantages and disadvantages of each technique. In addition, promising work on in situ oxidation is discussed. Also addressed are efforts to find optimum substrate materials and substrate buffer layers for various applications. The current state of the art for T c , J c and H c2 is presented for the yttrium, bismuth, and thallium compounds

  9. Facial synthesis of carrageenan/reduced graphene oxide/Ag composite as efficient SERS platform

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yuhong; Wang, Zhong; Fu, Li; Peng, Feng, E-mail: yuhongzhengcas@gmail.com [Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing (China); Wang, Aiwu [Department of Physics and Materials Science, City University of Hong (Hong Kong)

    2017-01-15

    In this paper, we reported the preparation of carrageenan/reduced graphene oxide/Ag composite (CA-RGO-Ag) by a wet chemical method at room temperature using carrageenan, graphene oxide and silver nitrate as starting materials. As-prepared composite was characterized by UV-vis spectroscopy, Raman spectroscopy, FTIR, SEM, EDX and XRD. Results showed that the reduction of graphene oxide (GO) and silver nitrate was achieved simultaneously by addition of NaBH{sub 4} . Surface-enhanced Raman scattering study showed that the obtained composite give an intensive and enhanced Raman scattering when Rhodamine B was used as a probing molecule. (author)

  10. Korea's developmental program for superconductivity

    Science.gov (United States)

    Hong, Gye-Won; Won, Dong-Yeon; Kuk, Il-Hyun; Park, Jong-Chul

    1995-04-01

    Superconductivity research in Korea was firstly carried out in the late 70's by a research group in Seoul National University (SNU), who fabricated a small scale superconducting magnetic energy storage system under the financial support from Korea Electric Power Company (KEPCO). But a few researchers were involved in superconductivity research until the oxide high Tc superconductor was discovered by Bednorz and Mueller. After the discovery of YBaCuO superconductor operating above the boiling point of liquid nitrogen (77 K)(exp 2), Korean Ministry of Science and Technology (MOST) sponsored a special fund for the high Tc superconductivity research to universities and national research institutes by recognizing its importance. Scientists engaged in this project organized 'High Temperature Superconductivity Research Association (HITSRA)' for effective conducting of research. Its major functions are to coordinate research activities on high Tc superconductivity and organize the workshop for active exchange of information. During last seven years the major superconductivity research has been carried out through the coordination of HITSRA. The major parts of the Korea's superconductivity research program were related to high temperature superconductor and only a few groups were carrying out research on conventional superconductor technology, and Korea Atomic Energy Research Institute (KAERI) and Korea Electrotechnology Research Institute (KERI) have led this research. In this talk, the current status and future plans of superconductivity research in Korea will be reviewed based on the results presented in interim meeting of HITSRA, April 1-2, 1994. Taejeon, as well as the research activity of KAERI.

  11. Zinc (hydr)oxide/graphite oxide/AuNPs composites: role of surface features in H₂S reactive adsorption.

    Science.gov (United States)

    Giannakoudakis, Dimitrios A; Bandosz, Teresa J

    2014-12-15

    Zinc hydroxide/graphite oxide/AuNPs composites with various levels of complexity were synthesized using an in situ precipitation method. Then they were used as H2S adsorbents in visible light. The materials' surfaces were characterized before and after H2S adsorption by various physical and chemical methods (XRD, FTIR, thermal analysis, potentiometric titration, adsorption of nitrogen and SEM/EDX). Significant differences in surface features and synergistic effects were found depending on the materials' composition. Addition of graphite oxide and the deposition of gold nanoparticles resulted in a marked increase in the adsorption capacity in comparison with that on the zinc hydroxide and zinc hydroxide/AuNP. Addition of AuNPs to zinc hydroxide led to a crystalline ZnO/AuNP composite while the zinc hydroxide/graphite oxide/AuNP composite was amorphous. The ZnOH/GO/AuNPs composite exhibited the greatest H2S adsorption capacity due to the increased number of OH terminal groups and the conductive properties of GO that facilitated the electron transfer and consequently the formation of superoxide ions promoting oxidation of hydrogen sulfide. AuNPs present in the composite increased the conductivity, helped with electron transfer to oxygen, and prevented the fast recombination of the electrons and holes. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Mechanical and tribological property of single layer graphene oxide reinforced titanium matrix composite coating

    Science.gov (United States)

    Hu, Zengrong; Li, Yue; Fan, Xueliang; Chen, Feng; Xu, Jiale

    2018-04-01

    Single layer grapheme oxide Nano sheets and Nano titanium powder were dispersed in deionized water by ultrasonic dispersion. Then the mixed solution was pre-coating on AISI4140 substrate. Using laser sintering process to fabricated grapheme oxide and Ti composite coating. Microstructures and composition of the composite coating was studied by Scanning Electron Microscopy (SEM), x-ray diffract meter (XRD) and Raman spectroscopy. Raman spectrum, XRD pattern and SEM results proved that grapheme oxide sheets were dispersed in the composite coating. The composite coating had much higher average Vickers hardness values than that of pure Ti coating. The tribological performance of the composite coatings became better while the suitable GO content was selected. For the 2.5wt. % GO content coating, the friction coefficient was reduced to near 0.1.

  13. Radiation-induced synthesis of gold, iron-oxide composite nanoparticles

    International Nuclear Information System (INIS)

    Seino, Satoshi; Yamamoto, Takao; Nakagawa, Takashi; Kinoshita, Takuya; Kojima, Takao; Taniguchi, Ryoichi; Okuda, Shuichi

    2007-01-01

    Composite nanoparticles consisting of magnetic iron oxide nanoparticles and gold nanoparticles were synthesized using gamma-rays or electron beam. Ionizing irradiation induces the generation of reducing species inside the aqueous solution, and gold ions are reduced to form metallic Au nanoparticles. The size of Au nanoparticles depended on the dose rate and the concentration of support iron oxide. The gold nanoparticles on iron oxide nanoparticles selectively adsorb biomolecules via Au-S bonding. By using magnetic property of the support iron oxide nanoparticles, the composite nanoparticles are expected as a new type of magnetic nanocarrier for biomedical applications. (author)

  14. Superconducting Electronic Film Structures

    Science.gov (United States)

    1991-02-14

    Segmuller, A., Cooper, E.I., Chisholm, M.F., Gupta, A. Shinde, S., and Laibowitz, R.B. Lanthanum gallate substrates for epitaxial high-T superconducting thin...M. F. Chisholm, A. Gupta, S. Shinde, and R. B. Laibowitz, " Lanthanum Gallate Substrates for Epitaxial High-T c Superconducting Thin Films," Appl...G. Forrester and J. Talvacchio, " Lanthanum Copper Oxide Buffer Layers for Growth of High-T c Superconductor Films," Disclosure No. RDS 90-065, filed

  15. Superconductivity in doped semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Bustarret, E., E-mail: Etienne.bustarret@neel.cnrs.fr

    2015-07-15

    A historical survey of the main normal and superconducting state properties of several semiconductors doped into superconductivity is proposed. This class of materials includes selenides, tellurides, oxides and column-IV semiconductors. Most of the experimental data point to a weak coupling pairing mechanism, probably phonon-mediated in the case of diamond, but probably not in the case of strontium titanate, these being the most intensively studied materials over the last decade. Despite promising theoretical predictions based on a conventional mechanism, the occurrence of critical temperatures significantly higher than 10 K has not been yet verified. However, the class provides an enticing playground for testing theories and devices alike.

  16. Superconductivity revisited

    CERN Document Server

    Dougherty, Ralph

    2013-01-01

    While the macroscopic phenomenon of superconductivity is well known and in practical use worldwide in many industries, including MRIs in medical diagnostics, the current theoretical paradigm for superconductivity (BCS theory) suffers from a number of limitations, not the least of which is an adequate explanation of high temperature superconductivity. This book reviews the current theory and its limitations and suggests new ideas and approaches in addressing these issues. The central objective of the book is to develop a new, coherent, understandable theory of superconductivity directly based on molecular quantum mechanics.

  17. Effect of graphene oxide nano filler on dynamic behaviour of GFRP composites

    Science.gov (United States)

    Pujar, Nagabhushan V.; Nanjundaradhya, N. V.; Sharma, Ramesh S.

    2018-04-01

    Nano fillers like Alumina oxide, Titanium oxide, Carbon nano tube, Nano clay have been used to improve the mechanical and damping properties of fiber reinforced polymer composites. In the recent years Graphene oxide nano filler is receiving considerable attention for its outstanding properties. Literature available shows that Graphene oxide nano filler can be used to improve the mechanical properties. The use of Graphene oxide in vibration attenuation by enhancing the passive damping in fiber reinforced polymer composite has not been fully explored. The objective of this work is to investigate the dynamic behaviour of Glass fiber-reinforced composite embedded with Graphene oxide nano filler. Graphene oxide is dispersed in epoxy resin with various concentration (0.1%, 0.5% and 1%wt) using ultra-sonification process. Composite laminates were made using the traditional hand-lay-up followed by vacuum bag process. Experimental modal analysis using traditional `strike method' is used to evaluate modal parameters using FFT analyzer and Data Acquisition System. Experiments were carried out for two different fiber orientations viz 0 ➙ & 45 ➙ and two boundary conditions (Free-Free and Cantilever). The modal parameters such as natural frequency, mode shape, damping ratio were studied. This research work demonstrates the vibration damping behaviour with incorporation of Graphene oxide and provides a basic understanding of the damping characteristics in design and manufacture of high performance composites.

  18. Directed synthesis of bio-inorganic vanadium oxide composites using genetically modified filamentous phage

    International Nuclear Information System (INIS)

    Mueller, Michael; Baik, Seungyun; Jeon, Hojeong; Kim, Yuchan; Kim, Jungtae; Kim, Young Jun

    2015-01-01

    Highlights: • Phage is an excellent seeding for bio-templates for environmentally benign vanadium oxide nanocomposite synthesis. • The synthesized bio-inorganic vanadium oxide showed photodegradation activities. • The fabricated wt phage/vanadium oxide composite exhibited bundle-like structure. • The fabricated RSTB-phage/vanadium oxide composite exhibited a ball with a fiber-like nanostructure. • The virus/vanadium oxide composite could be applied in photocatalysts, sensors and nanoelectronic applications. - Abstract: The growth of crystalline vanadium oxide using a filamentous bacteriophage template was investigated using sequential incubation in a V 2 O 5 precursor. Using the genetic modification of the bacteriophage, we displayed two cysteines that constrained the RSTB-1 peptide on the major coat protein P8, resulting in vanadium oxide crystallization. The phage-driven vanadium oxide crystals with different topologies, microstructures, photodegradation and vanadium oxide composites were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), quartz microbalance and dissipation (QCM-D) and X-ray photoelectron spectroscopy (XPS). Non-specific electrostatic attraction between a wild-type phage (wt-phage) and vanadium cations in the V 2 O 5 precursor caused phage agglomeration and fiber formation along the length of the viral scaffold. As a result, the addition of recombinant phage (re-phage) in V 2 O 5 precursors formed heterogeneous structures, which led to efficient condensation of vanadium oxide crystal formation in lines, shown by QCM-D analysis. Furthermore, re-phage/V x O x composites showed significantly enhanced photodegradation activities compared with the synthesized wt-phage-V 2 O 5 composite under illumination. This study demonstrates that peptide-mediated vanadium oxide mineralization is governed by a complicated interplay of peptide sequence, local structure, kinetics and the presence of a mineralizing

  19. Facile solvothermal synthesis of a graphene nanosheet-bismuth oxide composite and its electrochemical characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Wang Huanwen [Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China); Hu Zhongai, E-mail: zhongai@nwnu.edu.c [Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China); Chang Yanqin; Chen Yanli; Lei Ziqiang; Zhang Ziyu; Yang Yuying [Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China)

    2010-12-01

    This work demonstrates a novel and facile route for preparing graphene-based composites comprising of metal oxide nanoparticles and graphene. A graphene nanosheet-bismuth oxide composite as electrode materials of supercapacitors was firstly synthesized by thermally treating the graphene-bismuth composite, which was obtained through simultaneous solvothermal reduction of the colloidal dispersions of negatively charged graphene oxide sheets in N,N-dimethyl formamide (DMF) solution of bismuth cations at 180 {sup o}C. The morphology, composition, and microstructure of the composites together with pure graphite oxide, and graphene were characterized using powder X-ray diffraction (XRD), FT-IR, field emission scanning electron microscopy (FESEM), transmission electron microscope (TEM), thermogravimetry and differential thermogravimetry (TG-DTG). The electrochemical behaviors were measured by cyclic voltammogram (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS). The specific capacitance of 255 F g{sup -1} (based on composite) is obtained at a specific current of 1 A g{sup -1} as compared with 71 F g{sup -1} for pure graphene. The loaded-bismuth oxide achieves a specific capacitance as high as 757 F g{sup -1} even at 10 A g{sup -1}. In addition, the graphene nanosheet-bismuth oxide composite electrode exhibits the excellent rate capability and well reversibility.

  20. Facile solvothermal synthesis of a graphene nanosheet-bismuth oxide composite and its electrochemical characteristics

    International Nuclear Information System (INIS)

    Wang Huanwen; Hu Zhongai; Chang Yanqin; Chen Yanli; Lei Ziqiang; Zhang Ziyu; Yang Yuying

    2010-01-01

    This work demonstrates a novel and facile route for preparing graphene-based composites comprising of metal oxide nanoparticles and graphene. A graphene nanosheet-bismuth oxide composite as electrode materials of supercapacitors was firstly synthesized by thermally treating the graphene-bismuth composite, which was obtained through simultaneous solvothermal reduction of the colloidal dispersions of negatively charged graphene oxide sheets in N,N-dimethyl formamide (DMF) solution of bismuth cations at 180 o C. The morphology, composition, and microstructure of the composites together with pure graphite oxide, and graphene were characterized using powder X-ray diffraction (XRD), FT-IR, field emission scanning electron microscopy (FESEM), transmission electron microscope (TEM), thermogravimetry and differential thermogravimetry (TG-DTG). The electrochemical behaviors were measured by cyclic voltammogram (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS). The specific capacitance of 255 F g -1 (based on composite) is obtained at a specific current of 1 A g -1 as compared with 71 F g -1 for pure graphene. The loaded-bismuth oxide achieves a specific capacitance as high as 757 F g -1 even at 10 A g -1 . In addition, the graphene nanosheet-bismuth oxide composite electrode exhibits the excellent rate capability and well reversibility.

  1. Superconductivity in graphite intercalation compounds

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Robert P. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Weller, Thomas E.; Howard, Christopher A. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Dean, Mark P.M. [Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973 (United States); Rahnejat, Kaveh C. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Saxena, Siddharth S. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Ellerby, Mark, E-mail: mark.ellerby@ucl.ac.uk [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom)

    2015-07-15

    Highlights: • Historical background of graphite intercalates. • Superconductivity in graphite intercalates and its place in the field of superconductivity. • Recent developments. • Relevant modeling of superconductivity in graphite intercalates. • Interpretations that pertain and questions that remain. - Abstract: The field of superconductivity in the class of materials known as graphite intercalation compounds has a history dating back to the 1960s (Dresselhaus and Dresselhaus, 1981; Enoki et al., 2003). This paper recontextualizes the field in light of the discovery of superconductivity in CaC{sub 6} and YbC{sub 6} in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how these relate to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity, and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.

  2. Superconductivity in graphite intercalation compounds

    International Nuclear Information System (INIS)

    Smith, Robert P.; Weller, Thomas E.; Howard, Christopher A.; Dean, Mark P.M.; Rahnejat, Kaveh C.; Saxena, Siddharth S.; Ellerby, Mark

    2015-01-01

    Highlights: • Historical background of graphite intercalates. • Superconductivity in graphite intercalates and its place in the field of superconductivity. • Recent developments. • Relevant modeling of superconductivity in graphite intercalates. • Interpretations that pertain and questions that remain. - Abstract: The field of superconductivity in the class of materials known as graphite intercalation compounds has a history dating back to the 1960s (Dresselhaus and Dresselhaus, 1981; Enoki et al., 2003). This paper recontextualizes the field in light of the discovery of superconductivity in CaC 6 and YbC 6 in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how these relate to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity, and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition

  3. Alteration of the superconducting properties of A15 compounds and elementary composite superconductors by non-hydrostatic elastic strain

    International Nuclear Information System (INIS)

    Welch, D.O.

    1979-01-01

    Elastic strains alter (usually, but not always, adversely) the critical temperatures, magnetic fields, and current densities of superconducting A15 compounds; non-hydrostatic strain states are particularly effective in this regard. This paper is a review of the experimental evidence, obtained by a variety of techniques, concerning the strain dependence of the critical properties of a number of A15 compounds and a discussion of theoretical models for describing such effects

  4. The Mercereau effect as a guide to the theory of high-Tc superconductivity in rare earth oxide ceramics

    International Nuclear Information System (INIS)

    Chela-Flores, J.; Martin, P.; Rodriguez-Nunez, J.

    1988-08-01

    We emphasize the importance of performing definite experiments on quantum interferometers, basing our work on a phenomenological theory of high-T c superconductivity co-existing with antiferromagnetism. The theory satisfies all the general requirements of previous models, including minimal gauge invariant coupling terms. Yet, since no doping-dependent displacements are implied in the Mercereau diffraction pattern, this phenomenological approach underlines the urgency of performing new experiments in order to guide the theory. (author). 21 refs, 1 fig

  5. {mu}SR studies of the interplay of magnetic spin stripe order with superconductivity in transition metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Klauss, Hans-Henning, E-mail: h.klauss@physik.tu-dresden.de [Institute for Solid State Physics, TU Dresden, D-01069 Dresden (Germany)

    2012-11-01

    In this work we review muon spin relaxation experiments on the layered La{sub 2-x}Sr{sub x}NiO{sub 4} nickelate as well as La{sub 2-x}Ba{sub x}CuO{sub 4} and La{sub 2-x}Sr{sub x}CuO{sub 4} cuprate systems to examine spin stripe order. In particular, the interplay of stripe order with superconductivity in Nd and Eu doped La{sub 2-x}Sr{sub x}CuO{sub 4} cuprates is discussed. Detailed studies of the electronic phase diagrams as well as the magnetic and superconducting order parameters for different rare-earth and Sr doping levels in La{sub 2-x-y}RE{sub y}Sr{sub x}CuO{sub 4} revealed the strong correlation of static spin stripe order with the structural distortion in the low temperature tetragonal (LTT) phase and the competition with the superconducting ground state. High magnetic field studies demonstrate the nearly degenerate ground state energy of the different electronic phases. Slow transverse fluctuations of the charge stripes are found in nickelates and cuprates at low temperatures.

  6. Progress in the characterisation of structural oxide/oxide ceramic matrix composites fabricated by electrophoretic deposition (EPD)

    Czech Academy of Sciences Publication Activity Database

    Stoll, E.; Mahr, P.; Kruger, H. G.; Kern, H.; Dlouhý, Ivo; Boccaccini, A. R.

    2006-01-01

    Roč. 8, č. 4 (2006), s. 282-285 ISSN 1438-1656 R&D Projects: GA ČR(CZ) GA106/05/0495 Institutional research plan: CEZ:AV0Z20410507 Keywords : electorphoretic deposition * oxid/oxid ceramic matrix composites * flexural strength Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.402, year: 2006 http://www3.interscience.wiley.com/cgi-bin/jissue/112579545

  7. Viability of oxide fiber coatings in ceramic composites for accommodation of misfit stresses

    International Nuclear Information System (INIS)

    Kerans, R.J.

    1996-01-01

    The C and BN fiber coatings used in most ceramic composites perform a less obvious but equally essential function, in addition to crack deflection; they accommodate misfit stresses due to interfacial fracture surface roughness. Coatings substituted for them must also perform that function to be effective. However, in general, oxides are much less compliant materials than C and BN, which raises the question of the feasibility of oxide substitutes. The viability of oxide coatings for accommodating misfit stresses in Nicalon fiber/SiC composites was investigated by calculating the maximum misfit stresses as functions of coating properties and geometries. Control of interfacial fracture path was also briefly considered. The implications regarding composite properties were examined by calculating properties for composites with mechanically viable oxide coatings

  8. Enhanced oxidation resistance of carbon fiber reinforced lithium aluminosilicate composites by boron doping

    International Nuclear Information System (INIS)

    Xia, Long; Jin, Feng; Zhang, Tao; Hu, Xueting; Wu, Songsong; Wen, Guangwu

    2015-01-01

    Highlights: • C f /LAS composites exhibit enhanced oxidation resistance by boron doping. • Boron doping is beneficial to the improvement of graphitization degree of carbon fibers. • Graphitization of carbon fibers together with the decrease of viscosity of LAS matrix is responsible to the enhancement of oxidation resistance of C f /LAS composites. - Abstract: Carbon fiber reinforced lithium aluminosilicate matrix composites (C f /LAS) modified with boron doping were fabricated and oxidized for 1 h in static air. Weight loss, residual strength and microstructure were analyzed. The results indicate that boron doping has a remarkable effect on improving the oxidation resistance for C f /LAS. The synergism of low viscosity of LAS matrix at high temperature and formation of graphite crystals on the surface of carbon fibers, is responsible for excellent oxidation resistance of the boron doped C f /LAS.

  9. Oxidation behavior and compositional analysis of aluminized superalloy

    International Nuclear Information System (INIS)

    Khalid, F.A.; Nawaz, F.

    2003-01-01

    The high temperature oxidation behavior of superalloy specimens used for the manufacture of turbine blades has been examined using scanning electron microscopy (SEM) and fine-probe spot and line scan EDS microanalysis techniques. The performance of aluminized coating applied to the specimens has also been examined. It was observed that complex oxides are formed in both coated and uncoated specimens. However the coated specimens revealed a greater stability of gamma phase and integrity of aluminized coating as compared with uncoated specimens. The microchemical and microstructural changes that occurred during oxidation have been analyzed to examine characteristics of oxide layers. (author)

  10. Synthesis of Patchouli Biochar Cr2O3 Composite Using Double Acid Oxidators for Paracetamol Adsorption

    Directory of Open Access Journals (Sweden)

    Tutik Setianingsih

    2018-01-01

    Full Text Available Composite built by patchouli biochar and metal oxide, Cr2O3, is a potential material for remediation of contaminated wasterwater. Oxidation of biochar using acid or salt oxidators can improve its surface polar functional groups. This treatment may be able to increase impregnation of metal cation (as salt before calcination to form its oxide. In this research, 3 types of oxidators were used to oxidize the biochar before impregnation with purpose to study its influence toward physichochemistry and adsorption performance of the composite. Preparation of the composite included 3 steps, including preparation of biochar by pyrolisis of patchouli biomass using ZnCl2 activator at 450 oC, oxidation of the biochar using 3 different oxidators (H2SO4-HNO3, H3PO4-HNO3, H2O2–HNO3 at 60 oC, impregnation of the oxidized biochar using CrCl3 followed by calcination process to form biochar–Cr2O3 composite at 600 oC. Characterization using X-ray diffraction indicated that the composite containes the Cr2O3 structure. FTIR spectrophotometry characterization indicates the different content of C=O, C-O, and –OH on the composite surface. SEM images shows irregular micro ball shapes. EDX characterization indicates the different Cr content in the composite with same sequence with FTIR absorbances of both C-O and –OH. Adsorption of paracetamol indicates effect of Cr2O3 showing the same sequence of both.

  11. Superconducting technology

    International Nuclear Information System (INIS)

    2010-01-01

    Superconductivity has a long history of about 100 years. Over the past 50 years, progress in superconducting materials has been mainly in metallic superconductors, such as Nb, Nb-Ti and Nb 3 Sn, resulting in the creation of various application fields based on the superconducting technologies. High-T c superconductors, the first of which was discovered in 1986, have been changing the future vision of superconducting technology through the development of new application fields such as power cables. On basis of these trends, future prospects of superconductor technology up to 2040 are discussed. In this article from the viewpoints of material development and the applications of superconducting wires and electronic devices. (author)

  12. Hierarchical oxide-based composite nanostructures for energy, environmental, and sensing applications

    Science.gov (United States)

    Gao, Pu-Xian; Shimpi, Paresh; Cai, Wenjie; Gao, Haiyong; Jian, Dunliang; Wrobel, Gregory

    2011-02-01

    Self-assembled composite nanostructures integrate various basic nano-elements such as nanoparticles, nanofilms and nanowires toward realizing multifunctional characteristics, which promises an important route with potentially high reward for the fast evolving nanoscience and nanotechnology. A broad array of hierarchical metal oxide based nanostructures have been designed and fabricated in our research group, involving semiconductor metal oxides, ternary functional oxides such as perovskites and spinels and quaternary dielectric hydroxyl metal oxides with diverse applications in efficient energy harvesting/saving/utilization, environmental protection/control, chemical sensing and thus impacting major grand challenges in the area of materials and nanotechnology. Two of our latest research activities have been highlighted specifically in semiconductor oxide alloy nanowires and metal oxide/perovskite composite nanowires, which could impact the application sectors in ultraviolet/blue lighting, visible solar absorption, vehicle and industry emission control, chemical sensing and control for vehicle combustors and power plants.

  13. Interface superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Gariglio, S., E-mail: stefano.gariglio@unige.ch [DQMP, Université de Genève, 24 Quai E.-Ansermet, CH-1211 Genève (Switzerland); Gabay, M. [Laboratoire de Physique des Solides, Bat 510, Université Paris-Sud 11, Centre d’Orsay, 91405 Orsay Cedex (France); Mannhart, J. [Max Planck Institute for Solid State Research, 70569 Stuttgart (Germany); Triscone, J.-M. [DQMP, Université de Genève, 24 Quai E.-Ansermet, CH-1211 Genève (Switzerland)

    2015-07-15

    Highlights: • We discuss interfacial superconductivity, a field boosted by the discovery of the superconducting interface between LaAlO. • This system allows the electric field control and the on/off switching of the superconducting state. • We compare superconductivity at the interface and in bulk doped SrTiO. • We discuss the role of the interfacially induced Rashba type spin–orbit. • We briefly discuss superconductivity in cuprates, in electrical double layer transistor field effect experiments. • Recent observations of a high T{sub c} in a monolayer of FeSe deposited on SrTiO{sub 3} are presented. - Abstract: Low dimensional superconducting systems have been the subject of numerous studies for many years. In this article, we focus our attention on interfacial superconductivity, a field that has been boosted by the discovery of superconductivity at the interface between the two band insulators LaAlO{sub 3} and SrTiO{sub 3}. We explore the properties of this amazing system that allows the electric field control and on/off switching of superconductivity. We discuss the similarities and differences between bulk doped SrTiO{sub 3} and the interface system and the possible role of the interfacially induced Rashba type spin–orbit. We also, more briefly, discuss interface superconductivity in cuprates, in electrical double layer transistor field effect experiments, and the recent observation of a high T{sub c} in a monolayer of FeSe deposited on SrTiO{sub 3}.

  14. CO2-selective PEO–PBT (PolyActive™)/graphene oxide composite membranes

    KAUST Repository

    Karunakaran, Madhavan

    2015-07-31

    CO2-selective graphene oxide (GO) nano-composite membranes were prepared for the first time by embedding GO into a commercially available poly(ethylene oxide)–poly(butylene terephthalate) (PEO–PBT) copolymer (PolyActive™). The as-prepared GO membrane shows high CO2 permeability (143 Barrer) and CO2/N2 selectivity (α = 73).

  15. Oxidation of SiC/BN/SiC Composites in Reduced Oxygen Partial Pressures

    Science.gov (United States)

    Opila, Elizabeth J.; Boyd, Meredith

    2010-01-01

    SiC fiber-reinforced SiC composites with a BN interphase are proposed for use as leading edge structures of hypersonic vehicles. The durability of these materials under hypersonic flight conditions is therefore of interest. Thermogravimetric analysis was used to characterize the oxidation kinetics of both the constituent fibers and composite coupons at four temperatures: 816, 1149, 1343, and 1538 C (1500, 2100, 2450, and 2800 F) and in oxygen partial pressures between 5% and 0.1% (balance argon) at 1 atm total pressure. One edge of the coupons was ground off so the effects of oxygen ingress into the composite could be monitored by post-test SEM and EDS. Additional characterization of the oxidation products was conducted by XPS and TOF-SIMS. Under most conditions, the BN oxidized rapidly, leading to the formation of borosilicate glass. Rapid initial oxidation followed by volatilization of boria lead to protective oxide formation and further oxidation was slow. At 1538C in 5% oxygen, both the fibers and coupons exhibited borosilicate glass formation and bubbling. At 1538C in 0.1% oxygen, active oxidation of both the fibers and the composites was observed leading to rapid SiC degradation. BN oxidation at 1538C in 0.1% oxygen was not significant.

  16. CO2-selective PEO–PBT (PolyActive™)/graphene oxide composite membranes

    KAUST Repository

    Karunakaran, Madhavan; Shevate, Rahul; Kumar, Mahendra; Peinemann, Klaus-Viktor

    2015-01-01

    CO2-selective graphene oxide (GO) nano-composite membranes were prepared for the first time by embedding GO into a commercially available poly(ethylene oxide)–poly(butylene terephthalate) (PEO–PBT) copolymer (PolyActive™). The as-prepared GO membrane shows high CO2 permeability (143 Barrer) and CO2/N2 selectivity (α = 73).

  17. Tin oxide quantum dots embedded iron oxide composite as efficient lead sensor

    Science.gov (United States)

    Dutta, Dipa; Bahadur, Dhirendra

    2018-04-01

    SnO2 quantum dots (QDs) embedded iron oxide (IO) nanocomposite is fabricated and explored as a capable sensor for lead detection. Square wave anodic stripping voltammetry (SWASV) and amperometry have been used to explore the proposed sensor's response towards lead detection. The modified electrode shows linear current response for concentration of lead ranging from 99 nM to 6.6 µM with limit of detection 0.42 µM (34 ppb). Amperometry shows a detection limit as low as 0.18 nM (0.015 ppb); which is far below the permissible limit of lead in drinking water by World Health Organization. This proposed sensor shows linear current response (R2 = 0.98) for the lead concentration ranging from 133 × 10-9 to 4.4 × 10-6M. It also exhibits rapid response time of 12 sec with an ultra high sensitivity of 5.5 µA/nM. These detection properties promise the use of SnO2 QDs -IO composite for detection of lead in environmental sample with great ease.

  18. Copper-substituted perovskite compositions for solid oxide fuel cell cathodes and oxygen reduction electrodes in other electrochemical devices

    Science.gov (United States)

    Rieke, Peter C [Pasco, WA; Coffey, Gregory W [Richland, WA; Pederson, Larry R [Kennewick, WA; Marina, Olga A [Richland, WA; Hardy, John S [Richland, WA; Singh, Prabhaker [Richland, WA; Thomsen, Edwin C [Richland, WA

    2010-07-20

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells. Also provided are electrochemical devices that include active oxygen reduction electrodes, such as solid oxide fuel cells, sensors, pumps and the like. The compositions comprises a copper-substituted ferrite perovskite material. The invention also provides novel methods for making and using the electrode compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having cathodes comprising the compositions.

  19. Enhanced magnetic properties of Fe soft magnetic composites by surface oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Guoliang; Wu, Chen, E-mail: chen_wu@zju.edu.cn; Yan, Mi, E-mail: mse_yanmi@zju.edu.cn

    2016-02-01

    Fe soft magnetic composites (SMCs) with low core loss were fabricated via surface oxidation of the Fe powders by H{sub 2}O and O{sub 2} at elevated temperatures. Surface oxidation prevents magnetic dilution due to the formation of the ferromagnetic iron oxide coating layer, giving rise to high magnetic flux density and effective permeability of the SMCs compared with those fabricated with traditional phosphate coating. Mechanism of the oxidation process has been investigated where Fe{sub 3}O{sub 4} forms by reactions of Fe with H{sub 2}O and O{sub 2}. The Fe{sub 3}O{sub 4} coating layer tends to convert into γ-Fe{sub 2}O{sub 3} with increased oxidation temperature and time. By controlling composition of the coating layer, low core loss of 688.9 mW/cm{sup 3} (measured at 50 mT and 100 kHz) and higher effective permeability of 88.3 can be achieved for the Fe SMCs. - Highlights: • Surface oxidation as a new method to fabricate Fe Soft magnetic composite (SMCs). • Oxidation mechanism revealed where Fe reacts with H2O and O2 at high temperatures. • Evolution of the iron oxide coating with growth temperature and time investigated. • The iron oxide insulation coating results in improved magnetic performance.

  20. Toughened and machinable glass matrix composites reinforced with graphene and graphene-oxide nano platelets

    Czech Academy of Sciences Publication Activity Database

    Porwal, H.; Tatarko, Peter; Grasso, S.; Hu, Ch.; Boccaccini, A. R.; Dlouhý, Ivo; Reece, M.J.

    2013-01-01

    Roč. 14, č. 5 (2013), Art.N. 055007 ISSN 1468-6996 EU Projects: European Commission(XE) 264526 - GLACERCO Institutional support: RVO:68081723 Keywords : silica * graphene/graphene-oxide nano platelets * nano composites * mechanical properties * sintering Subject RIV: JI - Composite Materials Impact factor: 2.613, year: 2013

  1. Preparation of graphene oxide/polypyrrole/multi-walled carbon nanotube composite and its application in supercapacitors

    International Nuclear Information System (INIS)

    Wang, Bin; Qiu, Jianhui; Feng, Huixia; Sakai, Eiichi

    2015-01-01

    Highlights: • A novel method for synthesizing graphene oxide/polypyrrole/multi-walled nanotube composites. • Investigation of the effects of the mass ratio of GO, CM and Py on the capacitance of prepared composites. • Excellent electrochemical performance of PCMG composites. - Abstract: We report a novel method for preparing graphene oxide/polypyrrole/multi-walled carbon nanotubes (MWCNTs) composites (PCMG). The MWCNTs are treated by sulfuric acid, nitric acid and thionyl chloride, and then composite with graphene oxide and PPy by in suit polymerization. Transition electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) results show that in 3-D structure of PCMG composites, PPy chains act as the “bridge” between graphene oxide and chlorinated-MWCNTs. Electrochemical tests reveal that the PCMG1-1 composite has high capacitance of 406.7 F g −1 at current density of 0.5 A g −1 , and the capacitance retention of PCMG1-1 composite is 92% after 1000 cycles

  2. Evaluation of hydrous ferric oxide loaded activated carbon as a granular composite sorbent for radiostrontium

    International Nuclear Information System (INIS)

    Samanta, S.K.

    1997-01-01

    A composite sorbent was prepared in granular form by depositing hydrous ferric oxide inside the pores of activated carbon. The composite sorbent was found to show excellent sorption of radiostrontium in the presence of high sodium concentration under alkaline conditions. (author). 3 refs., 2 figs., 1 tab

  3. Bombardment-induced compositional change with alloys, oxides, and oxysalts. 1

    International Nuclear Information System (INIS)

    Kelly, R.

    1989-01-01

    A review of the role of surface binding energies in bombardment-induced compositional change with alloys, oxides and oxysalts is presented. The concepts of preferential sputtering and compositional change may or may not coincide; their differences are clarified. 77 refs.; 12 figs.; 4 tabs

  4. Mechanical, Dielectric, and Spectroscopic Characteristics of "Micro/Nanocellulose + Oxide" Composites

    Science.gov (United States)

    Nedielko, Maksym; Hamamda, Smail; Alekseev, Olexander; Chornii, Vitalii; Dashevskii, Mykola; Lazarenko, Maksym; Kovalov, Kostiantyn; Nedilko, Sergii G.; Tkachov, Sergii; Revo, Sergiy; Scherbatskyi, Vasyl

    2017-02-01

    The set of composite materials that consist of micro/nanocellulose and complex K2Eu(MoO4)(PO4) luminescent oxide particles was prepared. The composites were studied by means of scanning electron microscopy, XRD analysis, dilatometry, differential scanning calorimetry and thermogravimetric analysis, and dielectric and luminescence spectroscopy.

  5. Distribution of local critical current along sample length and its relation to overall current in a long Bi2223/Ag superconducting composite tape

    International Nuclear Information System (INIS)

    Ochiai, S; Doko, D; Okuda, H; Oh, S S; Ha, D W

    2006-01-01

    The distribution of the local critical current and the n-value along the sample length and its relation to the overall critical current were studied experimentally and analytically for the bent multifilamentary Bi2223/Ag/Ag-Mg alloy superconducting composite tape. Then, based on the results, it was attempted to simulate on a computer the dependence of the critical current on the sample length. The main results are summarized as follows. The experimentally observed relation of the distributed local critical current and n-value to the overall critical current was described comprehensively with a simple voltage summation model, in which the sample was regarded as a one-dimensional series circuit. The sample length dependence of the critical current was reproduced on the computer by a Monte Carlo simulation incorporating the voltage summation model and the regression analysis results for the local critical current distribution and the relation of the n-value to the critical current

  6. Catalytic wet oxidation of ammonia solution: Activity of the nanoscale platinum-palladium-rhodium composite oxide catalyst

    International Nuclear Information System (INIS)

    Hung, C.-M.

    2009-01-01

    Aqueous solutions of 400-1000 mg/L of ammonia were oxidized in a trickle-bed reactor (TBR) in this study of nanoscale platinum-palladium-rhodium composite oxide catalysts, which were prepared by the co-precipitation of H 2 PtCl 6 , Pd(NO 3 ) 3 and Rh(NO 3 ) 3 . Hardly any of the dissolved ammonia was removed by wet oxidation in the absence of any catalyst, whereas about 99% of the ammonia was reduced during wet oxidation over nanoscale platinum-palladium-rhodium composite oxide catalysts at 503 K in an oxygen partial pressure of 2.0 MPa. A synergistic effect exists in the nanoscale platinum-palladium-rhodium composite structure, which is the material with the highest ammonia reduction activity. The nanometer-sized particles were characterized by TEM, XRD and FTIR. The effect of the initial concentration and reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid hourly space velocity of under 9 h -1 in the wet catalytic processes

  7. Catalytic wet oxidation of ammonia solution: Activity of the nanoscale platinum-palladium-rhodium composite oxide catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Hung, C.-M. [Department of Industry Engineering and Management, Yung-Ta Institute of Technology and Commerce, 316 Chung-shan Road, Linlo, Pingtung 909, Taiwan (China)], E-mail: hungcm1031@gmail.com

    2009-04-15

    Aqueous solutions of 400-1000 mg/L of ammonia were oxidized in a trickle-bed reactor (TBR) in this study of nanoscale platinum-palladium-rhodium composite oxide catalysts, which were prepared by the co-precipitation of H{sub 2}PtCl{sub 6}, Pd(NO{sub 3}){sub 3} and Rh(NO{sub 3}){sub 3}. Hardly any of the dissolved ammonia was removed by wet oxidation in the absence of any catalyst, whereas about 99% of the ammonia was reduced during wet oxidation over nanoscale platinum-palladium-rhodium composite oxide catalysts at 503 K in an oxygen partial pressure of 2.0 MPa. A synergistic effect exists in the nanoscale platinum-palladium-rhodium composite structure, which is the material with the highest ammonia reduction activity. The nanometer-sized particles were characterized by TEM, XRD and FTIR. The effect of the initial concentration and reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid hourly space velocity of under 9 h{sup -1} in the wet catalytic processes.

  8. Catalytic wet oxidation of ammonia solution: activity of the nanoscale platinum-palladium-rhodium composite oxide catalyst.

    Science.gov (United States)

    Hung, Chang-Mao

    2009-04-15

    Aqueous solutions of 400-1000 mg/L of ammonia were oxidized in a trickle-bed reactor (TBR) in this study of nanoscale platinum-palladium-rhodium composite oxide catalysts, which were prepared by the co-precipitation of H(2)PtCl(6), Pd(NO(3))(3) and Rh(NO(3))(3). Hardly any of the dissolved ammonia was removed by wet oxidation in the absence of any catalyst, whereas about 99% of the ammonia was reduced during wet oxidation over nanoscale platinum-palladium-rhodium composite oxide catalysts at 503 K in an oxygen partial pressure of 2.0 MPa. A synergistic effect exists in the nanoscale platinum-palladium-rhodium composite structure, which is the material with the highest ammonia reduction activity. The nanometer-sized particles were characterized by TEM, XRD and FTIR. The effect of the initial concentration and reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid hourly space velocity of under 9 h(-1) in the wet catalytic processes.

  9. Facile synthesis of polyaniline/TiO2/graphene oxide composite for high performance supercapacitors

    Science.gov (United States)

    Su, Haifang; Wang, Teng; Zhang, Shengyi; Song, Jiming; Mao, Changjie; Niu, Helin; Jin, Baokang; Wu, Jieying; Tian, Yupeng

    2012-06-01

    The polyaniline/TiO2/graphene oxide (PANI/TiO2/GO) composite, as a novel supercapacitor material, is synthesized by in situ hydrolyzation of tetrabutyl titanate and polymerization of aniline monomer in the presence of graphene oxide. The morphology, composition and structure of the composites as-obtained are characterized by SEM, TEM, XRD and TGA. The electrochemical property and impedance of the composites are studied by cyclic voltammetry and Nyquist plot, respectively. The results show that the introduction of the GO and TiO2 enhanced the electrode conductivity and stability, and then improved the supercapacitive behavior of PANI/TiO2/GO composite. Significantly, the electrochemical measurement results show that the PANI/TiO2/GO composite has a high specific capacitance (1020 F g-1 at 2 mV s-1, 430 F g-1 at 1 A g-1) and long cycle life (over 1000 times).

  10. Oxidation-resistant interface coatings for SiC/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Stinton, D.P.; Kupp, E.R.; Hurley, J.W.; Lowden, R.A. [Oak Ridge National Lab., TN (United States)] [and others

    1996-08-01

    The characteristics of the fiber-matrix interfaces in ceramic matrix composites control the mechanical behavior of these composites. Finite element modeling (FEM) was performed to examine the effect of interface coating modulus and coefficient of thermal expansion on composite behavior. Oxide interface coatings (mullite and alumina-titania) produced by a sol-gel method were chosen for study as a result of the FEM results. Amorphous silicon carbide deposited by chemical vapor deposition (CVD) is also being investigated for interface coatings in SiC-matrix composites. Processing routes for depositing coatings of these materials were developed. Composites with these interfaces were produced and tested in flexure both as-processed and after oxidation to examine the suitability of these materials as interface coatings for SiC/SiC composites in fossil energy applications.

  11. Surfactant-free electrodeposition of reduced graphene oxide/copper composite coatings with enhanced wear resistance

    Science.gov (United States)

    Mai, Y. J.; Zhou, M. P.; Ling, H. J.; Chen, F. X.; Lian, W. Q.; Jie, X. H.

    2018-03-01

    How to uniformly disperse graphene sheets into the electrolyte is one of the main challenges to synthesize graphene enhanced nanocomposites by electrodeposition. A surfactant-free colloidal solution comprised of copper (II)-ethylene diamine tetra acetic acid ([CuIIEDTA]2-) complexes and graphene oxide (GO) sheets is proposed to electrodeposit reduced graphene oxide/copper (RGO/Cu) composite coatings. Anionic [CuIIEDTA]2- complexes stably coexist with negatively charged GO sheets due to the electrostatic repulsion between them, facilitating the electrochemical reduction and uniform dispersion of GO sheets into the copper matrix. The RGO/Cu composite coatings are well characterized by XRD, Raman, SEM and XPS. Their tribological behavior as a function of RGO content in composite coatings and normal loads are investigated. Also the chemical composition and topography of the wear tracks for the composite coatings are analyzed to deduce the lubricating and anti-wear mechanism of RGO/Cu composite coatings.

  12. Nafion/Silicon Oxide Composite Membrane for High Temperature Proton Exchange Membrane Fuel Cell

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Nafion/Silicon oxide composite membranes were produced via in situ sol-gel reaction of tetraethylorthosilicate (TEOS) in Nafion membranes. The physicochemical properties of the membranes were studied by FT-IR, TG-DSC and tensile strength. The results show that the silicon oxide is compatible with the Nafion membrane and the thermo stability of Nafion/Silicon oxide composite membrane is higher than that of Nafion membrane. Furthermore, the tensile strength of Nafion/Silicon oxide composite membrane is similar to that of the Nafion membrane. The proton conductivity of Nafion/Silicon oxide composite membrane is higher than that of Nafion membrane. When the Nafion/Silicon oxide composite membrane was employed as an electrolyte in H2/O2 PEMFC, a higher current density value (1 000 mA/cm2 at 0.38 V) than that of the Nafion 1135 membrane (100 mA/cm2 at 0.04 V) was obtained at 110 ℃.

  13. Microstructure And Mechanical Properties Of Lead Oxide- Thermoplastic Elas Tomer Composite

    International Nuclear Information System (INIS)

    Sudirman; Handayani, Ari; Darwinto, Tri; Teguh, Yulius S.P.P.; Sunarni, Anik; Marlijanti, Isni

    2000-01-01

    Research on microstructure and mechanical properties of lead oxide-thermoplastic elastomer composite with Pb 3 O 4 as lead oxide. Thermoplastic elastomer synthesized from natural rubber as the elastomer and methyl metacrilate as the thermoplastic and irradiated simultaneously with optimum gamma ray. Thermoplastic elastomer (NR-PMMA) grind in a laboplastomill and Pb 3 O 4 was added in varied amount of 10%. 30%. 40% and 50%wt.The results showed that mechanical properties (tensile strength and elongation break) decreased as the Pb 3 O 4 composition increased. Microstructure from SEM observation showed that Pb 3 O 4 distributed evenly and having function as filler in composite

  14. Synthesis, Consolidation and Characterization of Sol-gel Derived Tantalum-Tungsten Oxide Thermite Composites

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes, O [Univ. of California, Davis, CA (United States)

    2010-06-01

    Energetic composite powders consisting of sol-gel (SG) derived nanostructured tungsten oxide were produced with various amounts of micrometer-scale tantalum fuel metal. Such energetic composite powders were ignition-tested and results show that the powders are not sensitive to friction, spark and/or impact ignition. Initial consolidation experiments, using the High Pressure Spark Plasma Sintering (HPSPS) technique, on the SG derived nanostructured tungsten oxide produced samples with higher relative density than can be achieved with commercially available tungsten oxide. The SG derived nanostructured tungsten oxide with immobilized tantalum fuel metal (Ta - WO3) energetic composite was consolidated to a density of 9.17 g·cm-3 or 93% relative density. In addition, those samples were consolidated without significant pre-reaction of the constituents, thus retaining their stored chemical energy.

  15. Chlorination of antimony and its volatilization treatment of waste antimony-uranium composite oxide catalyst

    International Nuclear Information System (INIS)

    Sawada, K.; Enokida, Y.

    2011-01-01

    For the waste antimony-uranium composite oxide catalyst, the chlorination of antimony and its volatilization treatment were proposed, and evaluated using hydrogen chloride gas at 873-1173 K. During the treatment, the weight loss of the composite oxide sample, which resulted from the volatilization of antimony, was confirmed. An X-ray diffraction analysis showed that uranium oxide, U 3 O 8 , was formed during the reaction. After the treatment at 1173 K for 1 h, almost all the uranium contained in the waste catalyst was dissolved by a 3 M nitric acid solution at 353 K within 10 min, although that of the non-treated catalyst was less than 0.1%. It was found that the chlorination and volatilization treatment was effective to separate antimony from the composite oxide catalyst and change uranium into its removable form. (orig.)

  16. Organic superconductivity

    International Nuclear Information System (INIS)

    Jerome, D.

    1980-01-01

    We present the experimental evidences for the existence of a superconducting state in the Quasi One Dimensional organic conductor (TMTSF) 2 PF 6 . Superconductivity occuring at 1 K under 12 kbar is characterized by a zero resistance diamagnetic state. The anistropy of the upper critical field of this type II superconductor is consistent with the band structure anistropy. We present evidences for the existence of large superconducting precursor effects giving rise to a dominant paraconductive contribution below 40 K. We also discuss the anomalously large pressure dependence of T sb(s), which drops to 0.19 K under 24 kbar in terms of the current theories. (author)

  17. Nickel cobalt oxide nanowire-reduced graphite oxide composite material and its application for high performance supercapacitor electrode material.

    Science.gov (United States)

    Wang, Xu; Yan, Chaoyi; Sumboja, Afriyanti; Lee, Pooi See

    2014-09-01

    In this paper, we report a facile synthesis method of mesoporous nickel cobalt oxide (NiCo2O4) nanowire-reduced graphite oxide (rGO) composite material by urea induced hydrolysis reaction, followed by sintering at 300 degrees C. P123 was used to stabilize the GO during synthesis, which resulted in a uniform coating of NiCo2O4 nanowire on rGO sheet. The growth mechanism of the composite material is discussed in detail. The NiCo2O4-rGO composite material showed an outstanding electrochemical performance of 873 F g(-1) at 0.5 A g(-1) and 512 F g(-1) at 40 A g(-1). This method provides a promising approach towards low cost and large scale production of supercapacitor electrode material.

  18. Effect of Sintering Temperature on the Properties of Aluminium-Aluminium Oxide Composite Materials

    Directory of Open Access Journals (Sweden)

    Dewan Muhammad Nuruzzaman

    2016-12-01

    Full Text Available In this study, aluminium-aluminium oxide (Al-Al2O3 metal matrix composites of different weight percentage reinforcements of aluminium oxide were processed at different sintering temperatures. In order to prepare these composite specimens, conventional powder metallurgy (PM method was used. Three types specimens of different compositions such as 95%Al+5%Al2O3, 90%Al+10%Al2O3 and 85%Al+15%Al2O3 were prepared under 20 Ton compaction load. Then, all the specimens were sintered in a furnace at two different temperatures 550oC and 580oC. In each sintering process, two different heating cycles were used. After the sintering process, it was observed that undistorted flat specimens were successfully prepared for all the compositions. The effects of sintering temperature and weight fraction of aluminium oxide particulates on the density, hardness and microstructure of Al-Al2O3 composites were observed. It was found that density and hardness of the composite specimens were significantly influenced by sintering temperature and percentage aluminium oxide reinforcement. Furthermore, optical microscopy revealed that almost uniform distribution of aluminium oxide reinforcement within the aluminium matrix was achieved.

  19. Electrochemical Properties of Graphene-vanadium Oxide Composite Prepared by Electro-deposition for Electrochemical Capacitors

    International Nuclear Information System (INIS)

    Jeong, Heeyoung; Jeong, Sang Mun

    2015-01-01

    The nanostructural graphene/vanadium oxide (graphene/V 2 O 5 ) composite with enhanced capacitance was synthesized by the electro-deposition in 0.5 M VOSO 4 solution. The morphology of composites was characterized using scanning electron microscopy (SEM), x-ray diffraction pattern (XRD), and x-ray photoelectron spectroscopy (XPS). The oxidation states of the electro-deposited vanadium oxide was found to be V 5+ and V 4+ . The morphology of the prepared graphene/V 2 O 5 composite exhibits a netlike nano-structure with V 2 O 5 nanorods in about 100 nm diameter, which could lead a better contact between electrolyte an electrode. The composite with a deposition time of 4,000 s exhibits the specific capacitance of 854 mF/cm 2 at a scan rate of 20 mV/s and the capacitance retention of 53% after 1000 CV cycles

  20. Fabrication processes of C/Sic composites for high temperature components in energy systems and investigation of their oxidation behavior

    International Nuclear Information System (INIS)

    El-Hakim, E.

    2004-01-01

    Carbon fibre-reinforced ceramic matrix composite are promising candidate materials for high temperature applications such as structural components in energy systems, fusion reactors and advanced gas turbine engines. C/C composites has low oxidation resistance at temperatures above 500degree. To overcome this low oxidation resistance a coating should be applied. Tenax HTA 5131 carbon fibres impregnated with phenolic resin and reinforced silicon carbide were modified by the addition of a coating layer of boron oxide, (suspended in Dyansil-40) for improving anti-oxidation properties of the composites.The oxidation behavior of carbon-silicon carbide composites coated with B 2 O 3 , as an protective layer former, in dry air has been studied in the temperature range 800- 1000 degree for 8 hrs and 16 hrs. The results show that the oxidation rates of the uncoated composites samples are higher than those of the coated composites. The uncoated samples exhibit the highest oxidation rate during the initial stages of oxidation. The composite coated with B 2 O 3 had a significantly improved oxidation resistance due to the formation of a barrier layer for oxygen diffusion. This improvement in the oxidation resistance is attributed to the blocking of the active sites for oxygen diffusion. The oxidation resistance of the coated composite is highly improved; the weight loss percentage of casted samples is 4.5-16% after 16-hrs oxidation in air while the weight loss of uncoated samples is about 60%. The results are supported by scanning electron microscopy

  1. Oxidation of C/SiC Composites at Reduced Oxygen Partial Pressures

    Science.gov (United States)

    Opila, Elizabeth J.; Serra, Jessica

    2009-01-01

    Carbon-fiber reinforced SiC (C/SiC) composites are proposed for leading edge applications of hypersonic vehicles due to the superior strength of carbon fibers at high temperatures (greater than 1500 C). However, the vulnerability of the carbon fibers in C/SiC to oxidation over a wide range of temperatures remains a problem. Previous oxidation studies of C/SiC have mainly been conducted in air or oxygen, so that the oxidation behavior of C/SiC at reduced oxygen partial pressures of the hypersonic flight regime are less well understood. In this study, both carbon fibers and C/SiC composites were oxidized over a wide range of temperatures and oxygen partial pressures to facilitate the understanding and modeling of C/SiC oxidation kinetics for hypersonic flight conditions.

  2. Synthesis of visible-light responsive graphene oxide/TiO(2) composites with p/n heterojunction.

    Science.gov (United States)

    Chen, Chao; Cai, Weimin; Long, Mingce; Zhou, Baoxue; Wu, Yahui; Wu, Deyong; Feng, Yujie

    2010-11-23

    Graphene oxide/TiO(2) composites were prepared by using TiCl(3) and graphene oxide as reactants. The concentration of graphene oxide in starting solution played an important role in photoelectronic and photocatalytic performance of graphene oxide/TiO(2) composites. Either a p-type or n-type semiconductor was formed by graphene oxide in graphene oxide/TiO(2) composites. These semiconductors could be excited by visible light with wavelengths longer than 510 nm and acted as sensitizer in graphene oxide/TiO(2) composites. Visible-light driven photocatalytic performance of graphene oxide/TiO(2) composites in degradation of methyl orange was also studied. Crystalline quality and chemical states of carbon elements from graphene oxide in graphene oxide/TiO(2) composites depended on the concentration of graphene oxide in the starting solution. This study shows a possible way to fabricate graphene oxide/semiconductor composites with different properties by using a tunable semiconductor conductivity type of graphene oxide.

  3. Microstructure and optical appearance of anodized friction stir processed Al - Metal oxide surface composites

    DEFF Research Database (Denmark)

    Gudla, Visweswara Chakravarthy; Jensen, Flemming; Bordo, Kirill

    2014-01-01

    Multiple-pass friction stir processing (FSP) was employed to impregnate Ti, Y and Ce oxide powders into the surface of an Aluminium alloy. The FSP processed surface composite was subsequently anodized with an aim to develop optical effects in the anodized layer owing to the presence of incorporated...... oxide particles which will influence the scattering of light. This paper presents the investigations on relation between microstructure of the FSP zone and optical appearance of the anodized layer due to incorporation of metal oxide particles and modification of the oxide particles due to the anodizing...

  4. Reduced Cost Composite Hot Structures with Oxidation Protection, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Innovative, low cost high performance technologies are critical to the affordability of future space missions. Carbon/carbon (C/C) composites have significant...

  5. Superconducting linac

    International Nuclear Information System (INIS)

    Bollinger, L.M.; Shepard, K.W.; Wangler, T.P.

    1978-01-01

    This project has two goals: to design, build, and test a small superconducting linac to serve as an energy booster for heavy ions from an FN tandem electrostatic accelerator, and to investigate various aspects of superconducting rf technology. The main design features of the booster are described, a status report on various components (resonators, rf control system, linac control system, cryostats, buncher) is given, and plans for the near future are outlined. Investigations of superconducting-linac technology concern studies on materials and fabrication techniques, resonator diagnostic techniques, rf-phase control, beam dynamics computer programs, asymmetry in accelerating field, and surface-treatment techniques. The overall layout of the to-be-proposed ATLAS, the Argonne Tandem-Linac Accelerator System, is shown; the ATLAS would use superconducting technology to produce beams of 5 to 25 MeV/A. 6 figures

  6. Superconducted tour

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1988-09-15

    Superconductivity - the dramatic drop in electrical resistance in certain materials at very low temperatures - has grown rapidly in importance over the past two or three decades to become a key technology for high energy particle accelerators. It was in this setting that a hundred students and 15 lecturers met in Hamburg in June for a week's course on superconductivity in particle accelerators, organized by the CERN Accelerator School and the nearby DESY Laboratory.

  7. Superconductivity: Phenomenology

    International Nuclear Information System (INIS)

    Falicov, L.M.

    1988-08-01

    This document discusses first the following topics: (a) The superconducting transition temperature; (b) Zero resistivity; (c) The Meissner effect; (d) The isotope effect; (e) Microwave and optical properties; and (f) The superconducting energy gap. Part II of this document investigates the Ginzburg-Landau equations by discussing: (a) The coherence length; (b) The penetration depth; (c) Flux quantization; (d) Magnetic-field dependence of the energy gap; (e) Quantum interference phenomena; and (f) The Josephson effect

  8. Sulfur tolerant composite cermet electrodes for solid oxide electrochemical cells

    Science.gov (United States)

    Isenberg, Arnold O.

    1987-01-01

    An electrochemical apparatus is made containing an exterior electrode bonded to the exterior of a tubular, solid, oxygen ion conducting electrolyte where the electrolyte is also in contact with an interior electrode, said exterior electrode comprising particles of an electronic conductor contacting the electrolyte, where a ceramic metal oxide coating partially surrounds the particles and is bonded to the electrolyte, and where a coating of an ionic-electronic conductive material is attached to the ceramic metal oxide coating and to the exposed portions of the particles.

  9. Ruthenium oxide resistors as sensitive elements of composite bolometers

    International Nuclear Information System (INIS)

    Benassai, M.; Gallinaro, G.; Gatti, F.; Siri, S.; Vitale, S.

    1988-01-01

    Bolometers for particle detection made with Ruthenium oxide thermistors could be produced by means of a simple technique on a variety of different materials as substrata. Preliminary results on alpha particle detection with devices realized using commercial RuO 2 thick film resistor (Tfr) are considered positive for devices operating between. 3 and .1 k and determined us to pursue further the idea. Ruthenium oxide resistors on sapphire at the moment are being prepared. The behaviour of these devices st temperatures lower than .1 k has to be investigated in more detail

  10. Effects of Graphene Oxide and Chemically-Reduced Graphene Oxide on the Dynamic Mechanical Properties of Epoxy Amine Composites

    Directory of Open Access Journals (Sweden)

    Cristina Monteserín

    2017-09-01

    Full Text Available Composites based on epoxy/graphene oxide (GO and epoxy/reduced graphene oxide (rGO were investigated for thermal-mechanical performance focusing on the effects of the chemical groups present on nanoadditive-enhanced surfaces. GO and rGO obtained in the present study have been characterized by Fourier transform infrared spectroscopy (FTIR, X-ray photoelectron spectroscopy (XPS, and X-ray powder diffraction (XRD demonstrating that materials with different oxidation degrees have been obtained. Thereafter, GO/epoxy and rGO/epoxy nanocomposites were successfully prepared and thoroughly characterized by dynamic mechanical thermal analysis (DMTA and transmission electron microscopy (TEM. A significant increase in the glass transition temperature was found in comparison with the neat epoxy. The presence of functional groups on the graphene surface leads to chemical interactions between these functional groups on GO and rGO surfaces with the epoxy, contributing to the possible formation of covalent bonds between GO and rGO with the matrix. The presence of oxidation groups on GO also contributes to an improved exfoliation, intercalation, and distribution of the GO sheets in the composites with respect to the rGO based composites.

  11. Variability of Fe isotope compositions of hydrothermal sulfides and oxidation products at mid-ocean ridges

    Science.gov (United States)

    Li, Xiaohu; Wang, Jianqiang; Chu, Fengyou; Wang, Hao; Li, Zhenggang; Yu, Xing; Bi, Dongwei; He, Yongsheng

    2018-04-01

    Significant Fe isotopic fractionation occurs during the precipitation and oxidative weathering of modern seafloor hydrothermal sulfides, which has an important impact on the cycling of Fe isotopes in the ocean. This study reports the Fe-isotope compositions of whole-rock sulfides and single-mineral pyrite collected from hydrothermal fields at the South Mid-Atlantic Ridge (SMAR) and the East Pacific Rise (EPR) and discusses the impacts of precipitation and late-stage oxidative weathering of sulfide minerals on Fe isotopic fractionation. The results show large variation in the Fe-isotope compositions of the sulfides from the different hydrothermal fields on the mid-oceanic ridges, indicating that relatively significant isotope fractionation occurs during the sulfide precipitation and oxidative weathering processes. The Fe-isotope compositions of the sulfides from the study area at the SMAR vary across a relatively small range, with an average value of 0.01‰. This Fe-isotope composition is similar to the Fe-isotope composition of mid-oceanic ridge basalt, which suggests that Fe was mainly leached from basalt. In contrast, the Fe-isotope composition of the sulfides from the study area at the EPR are significantly enriched in light Fe isotopes (average value - 1.63‰), mainly due to the kinetic fractionation during the rapid precipitation process of hydrothermal sulfide. In addition, the pyrite from different hydrothermal fields is enriched in light Fe isotopes, which is consistent with the phenomenon in which light Fe isotopes are preferentially enriched during the precipitation of pyrite. The red oxides have the heaviest Fe-isotope compositions (up to 0.80‰), indicating that heavy Fe isotopes are preferentially enriched in the oxidation product during the late-stage oxidation process. The data obtained from this study and previous studies show a significant difference between the Fe-isotope compositions of the sulfides from the SMAR and EPR. The relatively heavy

  12. Hierarchical Assembly of Multifunctional Oxide-based Composite Nanostructures for Energy and Environmental Applications

    Directory of Open Access Journals (Sweden)

    Hui-Jan Lin

    2012-06-01

    Full Text Available Composite nanoarchitectures represent a class of nanostructured entities that integrates various dissimilar nanoscale building blocks including nanoparticles, nanowires, and nanofilms toward realizing multifunctional characteristics. A broad array of composite nanoarchitectures can be designed and fabricated, involving generic materials such as metal, ceramics, and polymers in nanoscale form. In this review, we will highlight the latest progress on composite nanostructures in our research group, particularly on various metal oxides including binary semiconductors, ABO3-type perovskites, A2BO4 spinels and quaternary dielectric hydroxyl metal oxides (AB(OH6 with diverse application potential. Through a generic template strategy in conjunction with various synthetic approaches—such as hydrothermal decomposition, colloidal deposition, physical sputtering, thermal decomposition and thermal oxidation, semiconductor oxide alloy nanowires, metal oxide/perovskite (spinel composite nanowires, stannate based nanocompostes, as well as semiconductor heterojunction—arrays and networks have been self-assembled in large scale and are being developed as promising classes of composite nanoarchitectures, which may open a new array of advanced nanotechnologies in solid state lighting, solar absorption, photocatalysis and battery, auto-emission control, and chemical sensing.

  13. Sponge-like reduced graphene oxide/silicon/carbon nanotube composites for lithium ion batteries

    Science.gov (United States)

    Fang, Menglu; Wang, Zhao; Chen, Xiaojun; Guan, Shiyou

    2018-04-01

    Three-dimensional sponge-like reduced graphene oxide/silicon/carbon nanotube composites were synthesized by one-step hydrothermal self-assembly using silicon nanoparticles, graphene oxide and amino modified carbon nanotubes to develop high-performance anode materials of lithium ion batteries. Scanning electron microscopy and transmission electron microscopy images show the structure of composites that Silicon nanoparticles are coated with reduced graphene oxide while amino modified carbon nanotubes wrap around the reduced graphene oxide in the composites. When applied to lithium ion battery, these composites exhibit high initial specific capacity of 2552 mA h/g at a current density of 0.05 A/g. In addition, reduced graphene oxide/silicon/carbon nanotube composites also have better cycle stability than bare Silicon nanoparticles electrode with the specific capacity of 1215 mA h/g after 100 cycles. The three-dimension sponge-like structure not only ensures the electrical conductivity but also buffers the huge volume change, which has broad potential application in the field of battery.

  14. The influence of modification of elastomer compositions in polyethylene oxides on their resistance to mineral oils

    Directory of Open Access Journals (Sweden)

    E. P. Uss

    2017-01-01

    Full Text Available The influence of modifying of elastomer compositions based on nitrile rubber in the medium of low molecular weight polyethylene oxide on resistance of rubbers to liquid aggressive mediawas studied. Standard hydrocarbon oils – oil ASTM №1 and ASTM №3, having a constant chemical composition and properties, were used as aggressive fluids. Resistance of elastomer compositions to standard oil was evaluated by change in weight, volume and relative compression set after keeping the samples in these oils at elevated temperatures. The influence of aggressive environment on the degree of swelling and the value of compression set of compositions modified in polyethylene oxides medium was established. It has been shown that the mass/volume of modified rubbers during aging in oil ASTM №1 reduced to a lesser degree compared to unmodified samples, which is probably due to the influence of low molecular weight polyethylene oxides for the formation of vulcanizates structure. At the same time exposure to oil ASTM №3 of elastomer compositions increases the degree of swelling of modified rubber more than unmodified, which can be due to destruction by the action of aggressive medium additional intermolecular bonds between macromolecules of polyethylene oxide and rubber, resulting in increased flexibility of the elastomeric matrix segments. It revealed that modification of rubbers in low molecular weightpolyethylene oxides facilitates preparation of rubber with low compression set after aging in standard oils at elevated temperatures.

  15. Photo-oxidation of gaseous ethanol on photocatalyst prepared by acid leaching of titanium oxide/hydroxyapatite composite

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Y., E-mail: ono-y@kanagawa-iri.go.jp [Mechanical and Material Engineering Division, Kanagawa Industrial Technology Center, Ebina, Kanagawa 243-0435 (Japan); Rachi, T.; Yokouchi, M.; Kamimoto, Y. [Mechanical and Material Engineering Division, Kanagawa Industrial Technology Center, Ebina, Kanagawa 243-0435 (Japan); Nakajima, A. [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, Meguro, Tokyo 152-8552 (Japan); Okada, K. [Materials and Structures Laboratory, Tokyo Institute of Technology, Midori, Yokohama, Kanagawa 226-8503 (Japan)

    2013-06-01

    Highlights: ► Photocatalyst powder was prepared by acid leaching of TiO{sub 2}/apatite composite. ► The photocatalytic activity was evaluated from in situ FT-IR study using ethanol. ► Apatite in the composite had positive effect for the photo-oxidation of ethanol. ► The enhanced oxidation rate was explained by the difference in deactivation rate. - Abstract: Highly active photocatalysts were synthesized by leaching of heat-treated titanium dioxide (TiO{sub 2})/hydroxyapatite (HAp) powder with hydrochloric acid at 0.25, 0.50, 0.75 mol/l, and their photocatalytic activities were evaluated from in situ Fourier transform infrared (FT-IR) study of photo-oxidation of gaseous ethanol. By changing the acid concentration, the TiO{sub 2}/HAp composite had different atomic ratios of Ca/Ti (0.0–2.8) and P/Ti (0.3–2.1). It was found that phosphate group remained on the surface of TiO{sub 2} particle even in the sample treated with concentrated acid (0.75 mol/l). These acid-treated samples showed higher rates for ethanol photo-oxidation than the commercial TiO{sub 2} powder, Degussa P25. The highest rate was obtained in the TiO{sub 2}/HAp composite treated with the dilute (0.25 mol/l) acid in spite of its low content of TiO{sub 2} photocatalyst. This enhanced photocatalytic activity was attributed to the result that the deactivation with repeated injections of ethanol gas was suppressed in the TiO{sub 2}/HAp composites compared with the TiO{sub 2} powders.

  16. Photo-oxidation of gaseous ethanol on photocatalyst prepared by acid leaching of titanium oxide/hydroxyapatite composite

    International Nuclear Information System (INIS)

    Ono, Y.; Rachi, T.; Yokouchi, M.; Kamimoto, Y.; Nakajima, A.; Okada, K.

    2013-01-01

    Highlights: ► Photocatalyst powder was prepared by acid leaching of TiO 2 /apatite composite. ► The photocatalytic activity was evaluated from in situ FT-IR study using ethanol. ► Apatite in the composite had positive effect for the photo-oxidation of ethanol. ► The enhanced oxidation rate was explained by the difference in deactivation rate. - Abstract: Highly active photocatalysts were synthesized by leaching of heat-treated titanium dioxide (TiO 2 )/hydroxyapatite (HAp) powder with hydrochloric acid at 0.25, 0.50, 0.75 mol/l, and their photocatalytic activities were evaluated from in situ Fourier transform infrared (FT-IR) study of photo-oxidation of gaseous ethanol. By changing the acid concentration, the TiO 2 /HAp composite had different atomic ratios of Ca/Ti (0.0–2.8) and P/Ti (0.3–2.1). It was found that phosphate group remained on the surface of TiO 2 particle even in the sample treated with concentrated acid (0.75 mol/l). These acid-treated samples showed higher rates for ethanol photo-oxidation than the commercial TiO 2 powder, Degussa P25. The highest rate was obtained in the TiO 2 /HAp composite treated with the dilute (0.25 mol/l) acid in spite of its low content of TiO 2 photocatalyst. This enhanced photocatalytic activity was attributed to the result that the deactivation with repeated injections of ethanol gas was suppressed in the TiO 2 /HAp composites compared with the TiO 2 powders

  17. Antibacterial properties of composite resins incorporating silver and zinc oxide nanoparticles on Streptococcus mutans and Lactobacillus

    Directory of Open Access Journals (Sweden)

    Shahin Kasraei

    2014-05-01

    Full Text Available Objectives Recurrent caries was partly ascribed to lack of antibacterial properties in composite resin. Silver and zinc nanoparticles are considered to be broad-spectrum antibacterial agents. The aim of the present study was to evaluate the antibacterial properties of composite resins containing 1% silver and zinc-oxide nanoparticles on Streptococcus mutans and Lactobacillus. Materials and Methods Ninety discoid tablets containing 0%, 1% nano-silver and 1% nano zinc-oxide particles were prepared from flowable composite resin (n = 30. The antibacterial properties of composite resin discs were evaluated by direct contact test. Diluted solutions of Streptococcus mutans (PTCC 1683 and Lactobacillus (PTCC 1643 were prepared. 0.01 mL of each bacterial species was separately placed on the discs. The discs were transferred to liquid culture media and were incubated at 37℃ for 8 hr. 0.01 mL of each solution was cultured on blood agar and the colonies were counted. Data was analyzed with Kruskall-Wallis and Mann-Whitney U tests. Results Composites containing nano zinc-oxide particles or silver nanoparticles exhibited higher antibacterial activity against Streptococcus mutans and Lactobacillus compared to the control group (p < 0.05. The effect of zinc-oxide on Streptococcus mutans was significantly higher than that of silver (p < 0.05. There were no significant differences in the antibacterial activity against Lactobacillus between composites containing silver nanoparticles and those containing zinc-oxide nanoparticles. Conclusions Composite resins containing silver or zinc-oxide nanoparticles exhibited antibacterial activity against Streptococcus mutans and Lactobacillus.

  18. Recent advancements in the cobalt oxides, manganese oxides and their composite as an electrode material for supercapacitor: a review

    Science.gov (United States)

    Uke, Santosh J.; Akhare, Vijay P.; Bambole, Devidas R.; Bodade, Anjali B.; Chaudhari, Gajanan N.

    2017-08-01

    In this smart edge, there is an intense demand of portable electronic devices such as mobile phones, laptops, smart watches etc. That demands the use of such components which has light weight, flexible, cheap and environmental friendly. So that needs an evolution in technology. Supercapacitors are energy storage devices emerging as one of the promising energy storage devices in the future energy technology. Electrode material is the important part of supercapacitor. There is much new advancement in types of electrode materials as for supercapacitor. In this review, we focused on the recent advancements in the cobalt oxides, manganese oxides and their composites as an electrodes material for supercapacitor.

  19. Superconducting wires and methods of making thereof

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xingchen; Sumption, Michael D.; Peng, Xuan

    2018-03-13

    Disclosed herein are superconducting wires. The superconducting wires can comprise a metallic matrix and at least one continuous subelement embedded in the matrix. Each subelement can comprise a non-superconducting core, a superconducting layer coaxially disposed around the non-superconducting core, and a barrier layer coaxially disposed around the superconducting layer. The superconducting layer can comprise a plurality of Nb.sub.3Sn grains stabilized by metal oxide particulates disposed therein. The Nb.sub.3Sn grains can have an average grain size of from 5 nm to 90 nm (for example, from 15 nm to 30 nm). The superconducting wire can have a high-field critical current density (J.sub.c) of at least 5,000 A/mm.sup.2 at a temperature of 4.2 K in a magnetic field of 12 T. Also described are superconducting wire precursors that can be heat treated to prepare superconducting wires, as well as methods of making superconducting wires.

  20. Electrophoretic deposition of calcium silicate-reduced graphene oxide composites on titanium substrate

    DEFF Research Database (Denmark)

    Mehrali, Mehdi; Akhiani, Amir Reza; Talebian, Sepehr

    2016-01-01

    Calcium silicate (CS)/graphene coatings have been used to improve the biological and mechanical fixation of metallic prosthesis. Among the extraordinary features of graphene is its very high mechanical strength, which makes it an attractive nanoreinforcement material for composites. Calcium...... silicate-reduced graphene oxide (CS-rGO) composites were synthesized, using an in situ hydrothermal method. CS nanowires were uniformly decorated on the rGO, with an appropriate interfacial bonding. The CS-rGO composites behaved like hybrid composites when deposited on a titanium substrate by cathodic...

  1. Synthesis of Poly aniline-Montmorillonite Nano composites Using H2O2 as the Oxidant

    International Nuclear Information System (INIS)

    Binitha, N.; Binitha, N.; Suraja, V.; Zahira Yaakob; Sugunan, S.

    2011-01-01

    Poly aniline montmorillonite nano composite was prepared using H 2 O 2 as the oxidant. The catalytic environment of montmorillonite favours polymerization. Intercalation and composite formation was proven from various techniques such as XRD, FTIR, DRS and thermal analysis. XRD patterns give the dimension of the intercalated PANI, from the shift of 2θ values, which is in the nano range. FTIR showed that PANI composite formation occurred without affecting the basic clay layer structure. Thus the successful development of an alternative cheap route for poly aniline-montmorillonite nano composite was well established. (author)

  2. Composition dependence of the kinetics and mechanisms of thermal oxidation of titanium-tantalum alloys

    International Nuclear Information System (INIS)

    Park, Y.S.; Butt, D.P.

    1999-01-01

    The oxidation behavior of titanium-tantalum alloys was investigated with respective concentrations of each element ranging from 0 to 100 wt.%. Alloys were exposed to argon-20% oxygen at 800 to 1400 C. The slowest oxidation rates were observed in alloys with 5--20% Ta. The oxidation kinetics of alloys containing less than approximately 40% Ta were approximately parabolic. Pure Ta exhibited nearly linear kinetics. Alloys containing 50% or more Ta exhibited paralinear kinetics. The activation energies for oxidation ranged between 232 kJ/mole for pure Ti and 119 kJ/mole for pure Ta, with the activation energies of the alloys falling between these values and generally decreasing with increasing Ta content. The activation energies for oxidation of the end members, Ti and Ta, agree well with published values for the activation energies for diffusion of oxygen in α-Ti and Ta. Scale formation in the alloys was found to be complex exhibiting various layers of Ti-, Ta-, and TiTa-oxides. The outermost layer of the oxidized alloys was predominantly rutile (TiO 2 ). Beneath the TiO 2 grew a variety of other oxides with the Ta content generally increasing with proximity to the metal-oxide interface. It was found that the most oxidation-resistant alloys had compositions falling between Ti-5Ta and Ti-15Ta. Although Ta stabilizes the β-phase of Ti, the kinetics of oxidation appeared to be rate limited by oxygen transport through the oxygen-stabilized α-phase. However, the kinetics are complicated by the formation of a complex oxide, which cracks periodically. Tantalum appears to increase the compositional range of oxygen-stabilized α-phase and reduces both the solubility of oxygen and diffusivity of Ti in the α- and β-phases

  3. Directed synthesis of bio-inorganic vanadium oxide composites using genetically modified filamentous phage

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Michael; Baik, Seungyun [Environmental Safety Group, Korea Institute of Science and Technology Europe (KIST-Europe) Forschungsgesellschaft mbH, Campus E 7 1, Saarbruecken (Germany); Jeon, Hojeong; Kim, Yuchan [Center for Biomaterials, Biomedical Research Institute Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Kim, Jungtae [Environmental Safety Group, Korea Institute of Science and Technology Europe (KIST-Europe) Forschungsgesellschaft mbH, Campus E 7 1, Saarbruecken (Germany); Kim, Young Jun, E-mail: youngjunkim@kist-europe.de [Environmental Safety Group, Korea Institute of Science and Technology Europe (KIST-Europe) Forschungsgesellschaft mbH, Campus E 7 1, Saarbruecken (Germany)

    2015-05-15

    Highlights: • Phage is an excellent seeding for bio-templates for environmentally benign vanadium oxide nanocomposite synthesis. • The synthesized bio-inorganic vanadium oxide showed photodegradation activities. • The fabricated wt phage/vanadium oxide composite exhibited bundle-like structure. • The fabricated RSTB-phage/vanadium oxide composite exhibited a ball with a fiber-like nanostructure. • The virus/vanadium oxide composite could be applied in photocatalysts, sensors and nanoelectronic applications. - Abstract: The growth of crystalline vanadium oxide using a filamentous bacteriophage template was investigated using sequential incubation in a V{sub 2}O{sub 5} precursor. Using the genetic modification of the bacteriophage, we displayed two cysteines that constrained the RSTB-1 peptide on the major coat protein P8, resulting in vanadium oxide crystallization. The phage-driven vanadium oxide crystals with different topologies, microstructures, photodegradation and vanadium oxide composites were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), quartz microbalance and dissipation (QCM-D) and X-ray photoelectron spectroscopy (XPS). Non-specific electrostatic attraction between a wild-type phage (wt-phage) and vanadium cations in the V{sub 2}O{sub 5} precursor caused phage agglomeration and fiber formation along the length of the viral scaffold. As a result, the addition of recombinant phage (re-phage) in V{sub 2}O{sub 5} precursors formed heterogeneous structures, which led to efficient condensation of vanadium oxide crystal formation in lines, shown by QCM-D analysis. Furthermore, re-phage/V{sub x}O{sub x} composites showed significantly enhanced photodegradation activities compared with the synthesized wt-phage-V{sub 2}O{sub 5} composite under illumination. This study demonstrates that peptide-mediated vanadium oxide mineralization is governed by a complicated interplay of peptide sequence, local structure

  4. High temperature interface superconductivity

    International Nuclear Information System (INIS)

    Gozar, A.; Bozovic, I.

    2016-01-01

    Highlight: • This review article covers the topic of high temperature interface superconductivity. • New materials and techniques used for achieving interface superconductivity are discussed. • We emphasize the role played by the differences in structure and electronic properties at the interface with respect to the bulk of the constituents. - Abstract: High-T_c superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-T_c Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed. We conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.

  5. Temperature dependent thermoelectric property of reduced graphene oxide-polyaniline composite

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, Mousumi, E-mail: mousumimitrabesu@gmail.com; Banerjee, Dipali, E-mail: dipalibanerjeebesu@gmail.com [Department of Physics, Indian Institute of Engineering Science and Technology (IIEST), Howrah-711103 (India); Kargupta, Kajari, E-mail: karguptakajari2010@gmail.com [Department of Chemical Engineering, Jadavpur University, Kolkata (India); Ganguly, Saibal, E-mail: gangulysaibal2011@gmail.com [Chemical Engineering department, Universiti Teknologi Petronas, Perak, Tronoh (Malaysia)

    2016-05-06

    A composite material of reduced graphene oxide (rG) nanosheets with polyaniline (PANI) protonated by 5-sulfosalicylic acid has been synthesized via in situ oxidative polymerization method. The morphological and spectral characterizations have been done using FESEM and XRD measurements. The thermoelectric (TE) properties of the reduced graphene oxide-polyaniline composite (rG-P) has been studied in the temperature range from 300-400 K. The electrical conductivity and the Seebeck coefficient of rG-P is higher than the of pure PANI, while the thermal conductivity of the composite still keeps much low value ensuing an increase in the dimensionless figure of merit (ZT) in the whole temperature range.

  6. Multilayer oxidation resistant coating for SiC coated carbon/carbon composites at high temperature

    International Nuclear Information System (INIS)

    Li Hejun; Jiao Gengsheng; Li Kezhi; Wang Chuang

    2008-01-01

    To prevent carbon/carbon (C/C) composites from oxidation, a multilayer coating based on molybdenum disilicide and titanium disilicide was formed using a two-step pack cementation technique in argon atmosphere. XRD and SEM analysis showed that the internal coating was a bond SiC layer that acts as a buffer layer, and that the external multilayer coating formed in the two-step pack cementation was composed of two MoSi 2 -TiSi 2 -SiC layers. This coating, which is characterized by excellent thermal shock resistance, could effectively protect the composites from exposure to an oxidizing atmosphere at 1773 K for 79 h. The oxidation of the coated C/C composites was primarily due to the reaction of C/C matrix and oxygen diffusing through the penetrable cracks in the coating

  7. Oxidation of BN-coated SiC fibers in ceramic matrix composites

    International Nuclear Information System (INIS)

    Sheldon, B.W.; Sun, E.Y.

    1996-01-01

    Thermodynamic calculations were performed to analyze the simultaneous oxidation of BN and SiC. The results show that, with limited amounts of oxygen present, the formation of SiO 2 should occur prior to the formation of B 2 O 3 . This agrees with experimental observations of oxidation in glass-ceramic matrix composites with BN-coated SiC fibers, where a solid SiO 2 reaction product containing little or no boron has been observed. The thermodynamic calculations suggest that this will occur when the amount of oxygen available is restricted. One possible explanation for this behavior is that SiO 2 formation near the external surfaces of the composite closes off cracks or pores, such that vapor phase O 2 diffusion into the composite occurs only for a limited time. This indicates that BN-coated SiC fibers will not always oxidize to form significant amounts of a low-melting, borosilicate glass

  8. Synthesis of magnetite/graphene oxide/chitosan composite and its application for protein adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Nengsheng, E-mail: yensh@cnu.edu.cn; Xie, Yali; Shi, Pengzhi; Gao, Ting; Ma, Jichao

    2014-12-01

    In this study, a facile and novel strategy was developed to fabricate magnetite/graphene oxide/chitosan (Fe{sub 3}O{sub 4}/GO/CS) composite, and the composite was used as a magnetic adsorbent for the enrichment of protein, and followed by matrix-assisted laser desorption ionization mass spectrometry (MALDI-TOF MS) analysis. The phase composition, chemical structure and morphology of the composite were characterized by X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR), transmission electron microscopy (TEM), scanning electronic microscope (SEM) and vibrating sample magnetometer (VSM). Protein cytochrome c was chosen as model target to evaluate the adsorptive property of Fe{sub 3}O{sub 4}/GO/CS. After enrichment procedure and magnetic separation, protein bounded with the material was analyzed by MALDI-TOF MS without desorption. The results indicated that Fe{sub 3}O{sub 4}/GO/CS composite exhibited a good adsorptive capacity for protein, and Fe{sub 3}O{sub 4}/GO/CS composite had a promising potential in magnetic separation research. - Highlights: • Magnetite/graphene oxide/chitosan composite was synthesized by novel route. • The composite was used as magnetic absorbent for protein enrichment. • The composite had excellent adsorption performance for protein enrichment.

  9. The Composites of Graphene Oxide with Metal or Semimetal Nanoparticles and Their Effect on Pathogenic Microorganisms

    Directory of Open Access Journals (Sweden)

    Lukas Richtera

    2015-05-01

    Full Text Available The present experiment describes a synthesis process of composites based on graphene oxide, which was tested as a carrier for composites of metal- or metalloid-based nanoparticles (Cu, Zn, Mn, Ag, AgP, Se and subsequently examined as an antimicrobial agent for some bacterial strains (Staphylococcus aureus (S. aureus, methicillin-resistant Staphylococcus aureus (MRSA and Escherichia coli (E. coli. The composites were first applied at a concentration of 300 µM on all types of model organisms and their effect was observed by spectrophotometric analysis, which showed a decrease in absorbance values in comparison with the control, untreated strain. The most pronounced inhibition (87.4% of S. aureus growth was observed after the application of graphene oxide composite with selenium nanoparticles compared to control. Moreover, the application of the composite with silver and silver phosphate nanoparticles showed the decrease of 68.8% and 56.8%, respectively. For all the tested composites, the observed antimicrobial effect was found in the range of 26% to 87.4%. Interestingly, the effects of the composites with selenium nanoparticles significantly differed in Gram-positive (G+ and Gram-negative (G− bacteria. The effects of composites on bacterial cultures of S. aureus and MRSA, the representatives of G+ bacteria, increased with increasing concentrations. On the other hand, the effects of the same composites on G− bacteria E. coli was observed only in the highest applied concentration.

  10. Flame Synthesis of Composite Oxides for Catalytic Applications

    DEFF Research Database (Denmark)

    Jensen, Joakim Reimer

    2002-01-01

    gas (CO/CO2/H2) and an excellent thermal stability. Addition of alumina as a structural promoter is necessary in order to obtain a high activity for methanol formation. The binary systems, i.e., CuO/ZnO, ZnO/Al2O3 and CuO/Al2O3 are investigated as a prelude to the preparation of the ternary catalyst...... the flame temperature, the high temperature residence time and the precursor concentration. The Cu/ZnO/Al2O3 methanol catalyst is used as a model system for the preparation of catalytic materials. The flame synthesized catalyst exhibits a high and reproducible activity for methanol formation from synthesis...... crystallites is oxidized. A number of complications may arise using the N2O-titration. It may be difficult to obtain full oxidation of the copper surface without having some oxidation of the bulk. Secondly, some sintering of the nano-sized copper crystallites may occur due to the exothermic nature...

  11. Processing and mechanical behavior of Nicalon{reg_sign}/SiC composites with sol-gel derived oxide interfacial coatings

    Energy Technology Data Exchange (ETDEWEB)

    Shanmugham, S.; Liaw, P.K. [Tennessee Univ., Knoxville, TN (United States). Dept. of Materials Science and Engineering

    1996-10-01

    Recent analytical and finite element modeling studies have indicated that low modulus interface materials are desirable for obtaining Nicalon/SiC composites with good toughness. Two oxides, Al titanate and mullite, were chosen on this basis as interface materials. The oxide and C coatings were deposited by sol-gel and CVD, respectively. Nicalon/SiC composites with oxide/C and C/oxide/C interfaces were fabricated and evaluated for flexure strength in the as-processed and oxidized conditions. Composites with C/oxide/C interfaces retained considerable strength and damage-tolerant behavior even after 500 h oxidation at 1000 C in air. The C/oxide/C interface shows promise as a viable oxidation-resistant interface alternative to C or BN interfaces.

  12. 2005 annual report of MEXT specially promoted research, 'Development of the 4D Space Access Neutron Spectrometer (4SEASONS) and elucidation of the Mechanism of Oxide High-Tc superconductivity'

    International Nuclear Information System (INIS)

    Arai, Masatoshi; Kajimoto, Ryoichi; Nakajima, Kenji; Shamoto, Shin'ichi; Soyama, Kazuhiko; Nakamura, Mitsutaka; Aizawa, Kazuya; Asaoka, Hidehito; Kodama, Katsuaki; Inamura, Yasuhiro; Imai, Yoshinori; Yokoo, Tetsuya; Ino, Takashi; Yamada, Kazuyoshi; Fujita, Masaki; Ohoyama, Kenji; Hiraka, Haruhiro

    2006-11-01

    A research project entitled 'Development of the 4D Space Access Neutron Spectrometer (4SEASONS) and Elucidation of the Mechanism of Oxide High-T c Superconductivity' has started in 2005 (repr. by M. Arai). It is supported by MEXT, Grant-in-Aid for Specially Promoted Research and is going to last until fiscal 2009. The goal of the project is to elucidate the mechanism of oxide high-T c superconductivity by neutron scattering technique. For this purpose, we will develop an inelastic neutron scattering instrument 4SEASONS (4d SpacE AccesS neutrON Spectrometer) for the spallation neutron source in Japan Proton Accelerator Research Complex (J-PARC). The instrument will have 100 times higher performance than existing world-class instruments, and will enable detailed observation of anomalous magnetic excitations and phonons in a four-dimensional momentum-energy space. This report summarizes the progress in the research project in fiscal 2005. (author)

  13. NMR study of nanophase Al/Al-oxide powder and consolidated composites

    International Nuclear Information System (INIS)

    Suits, B.H.; Apte, P.; Wilken, D.E.; Siegel, R.W.

    1994-10-01

    27 Al Nuclear Magnetic Resonance (NMR) measurements from aluminum powders and consolidated nanophase aluminum made from those powders are presented. The signals from the metal and surface oxidation are easily separated and are compared before and after consolidation. The results presented indicate that the oxide coating becomes the interface region within the nanophase composite material and that during consolidation the metal has undergone a deformation equivalent to that seen for bulk material under a compressive strain of between 4% and 8%

  14. Synthesis, characterization, and catalytic application of ordered mesoporous carbon–niobium oxide composites

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Juan-Li; Gao, Shuang; Liu, Chun-Ling; Liu, Zhao-Tie; Dong, Wen-Sheng, E-mail: wsdong@snnu.edu.cn

    2014-11-15

    Graphical abstract: The ordered mesoporous carbon–niobium oxide composites have been synthesized by a multi-component co-assembly method associated with a carbonization process. - Highlights: • Ordered mesoporous carbon–niobium oxide composites were synthesized. • The content of Nb{sub 2}O{sub 5} in the composites could be tuned from 38 to 75%. • Niobium species were highly dispersed in amorphous carbon framework walls. • The composites exhibited good catalytic performance in the dehydration of fructose. - Abstract: Ordered mesoporous carbon–niobium oxide composites have been synthesized by a multi-component co-assembly method associated with a carbonization process using phenolic resol as carbon source, niobium chloride as precursor and amphiphilic triblock copolymer Pluronic F127 as template. The resulting materials were characterized using a combination of techniques including differential scanning calorimetry–thermogravimetric analysis, N{sub 2} physical adsorption, X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. The results show that with increasing the content of Nb{sub 2}O{sub 5} from 38 to 75% the specific surface area decreases from 306.4 to 124.5 m{sup 2} g{sup −1}, while the ordered mesoporous structure is remained. Niobium species is well dispersed in the amorphous carbon framework. The mesoporous carbon–niobium oxide composites exhibit high catalytic activity in the dehydration of fructose to 5-hydroxymethylfurfural. A 100% conversion of fructose and a 76.5% selectivity of 5-hydroxymethylfurfural were obtained over the carbon–niobium oxide composite containing 75% Nb{sub 2}O{sub 5} under the investigated reaction conditions.

  15. Effect of SiC particles on microarc oxidation process of magnesium matrix composites

    International Nuclear Information System (INIS)

    Wang, Y.Q.; Wang, X.J.; Gong, W.X.; Wu, K.; Wang, F.H.

    2013-01-01

    SiC particles are an important reinforced phase in metal matrix composites. Their effect on the microarc oxidation (MAO, also named plasma electrolytic oxidation-PEO) process of SiC p /AZ91 Mg matrix composites (MMCs) was studied and the mechanism was revealed. The corrosion resistance of MAO coating was also investigated. Voltage–time curves during MAO were recorded to study the barrier film status on the composites. Scanning electron microscopy was used to characterize the existing state of SiC particles in MAO. Energy dispersive X-ray spectrometry and X-ray photoelectron spectroscopy were used to analyze the chemical composition of the coating. Corrosion resistance of the bare and coated composites was evaluated by potentiodynamic polarization curves in 3.5% NaCl solution. Results showed that the integrality and electrical insulation properties of the barrier film on the composites were destroyed by the SiC particles. Consequently, the sparking discharge at the early stage of MAO was inhibited, and the growth efficiency of the MAO coating decreased with the increase in the volume fraction of SiC particles. SiC particles did not exist stably during MAO; they were oxidized or partially oxidized into SiO 2 before the overall sparking discharge. The transformation from semi-conductive SiC to insulating SiO 2 by oxidation restrained the current leakage at the original SiC positions and then promoted sparking discharge and coating growth. The corrosion current density of SiC p /AZ91 MMCs was reduced by two orders of magnitude after MAO treatment. However, the corrosion resistances of the coated composites were lower than that of the coated alloy.

  16. Oxidation and creep behaviour of dense silicon nitride materials with different compositions

    International Nuclear Information System (INIS)

    Ernstberger, U.

    1985-09-01

    The study was intended to yield information on the oxidation and creep behaviour of Si 3 N 4 materials of different composition and microstructure, and produced by different processes. The experiments carried out in a vast temperature and load range showed that the chemical grain boundary composition is the key parameter affecting the materials' high-temperature properties. Significant correlations could be established between oxidation and creep behaviour on the one hand, and between microstructure and the behaviour on the other. (orig./IHOE) [de

  17. Lithium-storage Properties of Gallic Acid-Reduced Graphene Oxide and Silicon-Graphene Composites

    International Nuclear Information System (INIS)

    Xu, Binghui; Zhang, Jintao; Gu, Yi; Zhang, Zhi; Al Abdulla, Wael; Kumar, Nanjundan Ashok; Zhao, X.S.

    2016-01-01

    Graphene oxide (GO) was de-oxygenated using gallic acid under mild conditions to prepare reduced graphene oxide (RGO). The resultant RGO showed a lithium-ion storage capacity of 1280 mA h g −1 at a current density of 200 mA g −1 after 350 cycles when used as an anode for lithium ion batteries. The RGO was further used to stabilize silicon (Si) nanoparticles to prepare silicon-graphene composite electrode materials. Experimental results showed that a composite electrode prepared with a mass ratio of Si:GO = 1:2 exhibited the best lithium ion storage performance.

  18. Sonochemically synthesized iron-doped zinc oxide nanoparticles: Influence of precursor composition on characteristics

    International Nuclear Information System (INIS)

    Roy, Anirban; Maitra, Saikat; Ghosh, Sobhan; Chakrabarti, Sampa

    2016-01-01

    Highlights: • Sonochemical synthesis of iron-doped zinc oxide nanoparticles. • Green synthesis without alkali at room temperature. • Characterization by UV–vis spectroscopy, FESEM, XRD and EDX. • Influence of precursor composition on characteristics. • Composition and characteristics are correlated. - Abstract: Iron-doped zinc oxide nanoparticles have been synthesized sonochemically from aqueous acetyl acetonate precursors of different proportions. Synthesized nanoparticles were characterized with UV–vis spectroscopy, X-ray diffraction and microscopy. Influences of precursor mixture on the characteristics have been examined and modeled. Linear correlations have been proposed between dopant dosing, extent of doping and band gap energy. Experimental data corroborated with the proposed models.

  19. Production of oxide-metal P/M composites using pulsed plasma heating

    Energy Technology Data Exchange (ETDEWEB)

    Blinkov, I.V.; Manukhin, A.V.; Ostapovich, A.O.; Pavlov, IU.A.

    1987-08-01

    The possibility of producing oxide-metal P/M composites using plasma generated by a pulsed discharge is investigated experimentally for the system Al/sup 2/O/sub 3/-Ni. It is found that Al/sup 2/O/sub 3/ metallization in plasma is accompanied by spheroidization; changes in the physicomechanical properties of the Al/sup 2/O/sub 3/-Ni composite during plasma treatment are examined. The characteristic features of the process associated with the effect of pulsed energy on the disperse flow of the oxide-metal mixture are discussed. 7 references.

  20. Nanoporous titanium niobium oxide and titanium tantalum oxide compositions and their use in anodes of lithium ion batteries

    Science.gov (United States)

    Dai, Sheng; Guo, Bingkun; Sun, Xiao-Guang; Qiao, Zhenan

    2017-10-31

    Nanoporous metal oxide framework compositions useful as anodic materials in a lithium ion battery, the composition comprising metal oxide nanocrystals interconnected in a nanoporous framework and having interconnected channels, wherein the metal in said metal oxide comprises titanium and at least one metal selected from niobium and tantalum, e.g., TiNb.sub.2-x Ta.sub.xO.sub.y (wherein x is a value from 0 to 2, and y is a value from 7 to 10) and Ti.sub.2Nb.sub.10-vTa.sub.vO.sub.w (wherein v is a value from 0 to 2, and w is a value from 27 to 29). A novel sol gel method is also described in which sol gel reactive precursors are combined with a templating agent under sol gel reaction conditions to produce a hybrid precursor, and the precursor calcined to form the anodic composition. The invention is also directed to lithium ion batteries in which the nanoporous framework material is incorporated in an anode of the battery.

  1. A facile synthesis of nanorods of ZnO/graphene oxide composites with enhanced photocatalytic activity

    International Nuclear Information System (INIS)

    Qin, Jiaqian; Zhang, Xinyu; Xue, Yannan; Kittiwattanothai, Nutsakun; Kongsittikul, Pongsakorn; Rodthongkum, Nadnudda; Limpanart, Sarintorn; Ma, Mingzhen; Liu, Riping

    2014-01-01

    Graphical abstract: - Highlights: • Room temperature method to prepare ZnO–GO composites. • ZnO–GO composites exhibit superior absorption ability and photocatalytic performance. • With GO content increasing, the absorption and photocatalytic ability increased. - Abstract: Graphene oxide (GO)–ZnO nanorods composites were successfully synthesized by a facile room-temperature approach using the colloidal coagulation effect. The samples are characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, specific surface area, and UV–vis spectroscopy. The photodegradation of methylene blue (MB) has been investigated in the presence of composites. It is observed that the absorption capacity and photocatalytic effect could be enhanced by adding graphene oxide

  2. Electrochemical intercalation of lithium into polypyrrole/silver vanadium oxide composite used for lithium primary batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong-Won; Popov, Branko N. [Center for Electrochemical Engineering, Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208 (United States)

    2006-10-20

    Hybrid composites of polypyrrole (PPy) and silver vanadium oxide (SVO) used for lithium primary batteries were chemically synthesized by an oxidative polymerization of pyrrole monomer on the SVO surface in an acidic medium. The composite electrode exhibited higher discharge capacity and better rate capability as compared with the pristine SVO electrode. The improvement in electrochemical performance of the composite electrode was due to PPy which accommodates lithium ions and also enhances the SVO utilization. Chronoamperometric and ac-impedance measurements indicated that lithium intercalation proceeds under the mixed control by interfacial charge transfer and diffusion. The enhanced SVO utilization in the composite electrode results from a facilitated kinetics of interfacial charge transfer in the presence of PPy. (author)

  3. Electrochemical intercalation of lithium into polypyrrole/silver vanadium oxide composite used for lithium primary batteries

    Science.gov (United States)

    Lee, Jong-Won; Popov, Branko N.

    Hybrid composites of polypyrrole (PPy) and silver vanadium oxide (SVO) used for lithium primary batteries were chemically synthesized by an oxidative polymerization of pyrrole monomer on the SVO surface in an acidic medium. The composite electrode exhibited higher discharge capacity and better rate capability as compared with the pristine SVO electrode. The improvement in electrochemical performance of the composite electrode was due to PPy which accommodates lithium ions and also enhances the SVO utilization. Chronoamperometric and ac-impedance measurements indicated that lithium intercalation proceeds under the mixed control by interfacial charge transfer and diffusion. The enhanced SVO utilization in the composite electrode results from a facilitated kinetics of interfacial charge transfer in the presence of PPy.

  4. Effect of annealing temperature on electrochemical characteristics of ruthenium oxide/multi-walled carbon nanotube composites

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Min-Kang [Department of Chemistry, Inha University, 253, Incheon 402-751 (Korea, Republic of); Saouab, Abdelghani [Department of Mechanical Engineering, University of Le Havre, Place Robert Schuman, BP 4006, 76610 Le Havre (France); Park, Soo-Jin, E-mail: sjpark@inha.ac.k [Department of Chemistry, Inha University, 253, Incheon 402-751 (Korea, Republic of)

    2010-02-25

    The preparation and characterization of high-surface-area ruthenium oxide (RuO{sub 2})/multi-walled carbon nanotubes (MWCNTs) composite electrodes for use in supercapacitors is reported in this work. The RuO{sub 2}/MWCNTs composites were prepared by the polyol process of RuO{sub 2} into MWCNTs and by Ru annealing in air before mixed with MWCNTs. The chemically oxidized and annealed Ru nanoparticles contribute a pseudocapacitance to the electrodes and dramatically improve the energy storage characteristics of the MWCNTs. These composites annealed at 200 deg. C demonstrate specific capacitances in excess of 130 F/g in comparison to 80 F/g for pristine MWCNTs. The annealing temperature is found to play an important role, as it affects the electrochemical performance of annealed RuO{sub 2}/MWCNTs composites critically due to its influence on the diffusion of protons into the structure.

  5. Structural Study of Reduced Graphene Oxide/ Polypyrrole Composite as Methanol Sensor in Direct Methanol Fuel Cell

    International Nuclear Information System (INIS)

    Mumtazah Atiqah Hassan; Siti Kartom Kamarudin; Siti Kartom Kamarudin

    2016-01-01

    Density functional theory (DFT) computations were performed on the optimized geometric and electronic properties of reduced graphene oxide/polypyrole (rGO/ PPy) composite in comparison with pure graphene and graphene oxide structures. Incorporation of both reduced GO (rGO) and PPy will form a good composite which have advantages from both materials such as good mechanical strength and excellent electrical conductivity. These composite would be very suitable in fabrication of methanol sensor in direct methanol fuel cell (DMFC). The HOMO-LUMO energy (eV) was also calculated. These computations provide a theoretical explanation for the good performance of rGO/ PPy composite as electrode materials in methanol sensor. (author)

  6. Low Working-Temperature Acetone Vapor Sensor Based on Zinc Nitride and Oxide Hybrid Composites.

    Science.gov (United States)

    Qu, Fengdong; Yuan, Yao; Guarecuco, Rohiverth; Yang, Minghui

    2016-06-01

    Transition-metal nitride and oxide composites are a significant class of emerging materials that have attracted great interest for their potential in combining the advantages of nitrides and oxides. Here, a novel class of gas sensing materials based on hybrid Zn3 N2 and ZnO composites is presented. The Zn3 N2 /ZnO (ZnNO) composites-based sensor exhibits selectivity and high sensitivity toward acetone vapor, and the sensitivity is dependent on the nitrogen content of the composites. The ZnNO-11.7 described herein possesses a low working temperature of 200 °C. The detection limit (0.07 ppm) is below the diabetes diagnosis threshold (1.8 ppm). In addition, the sensor shows high reproducibility and long-term stability. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Technical note: An inverse method to relate organic carbon reactivity to isotope composition from serial oxidation

    Directory of Open Access Journals (Sweden)

    J. D. Hemingway

    2017-11-01

    Full Text Available Serial oxidation coupled with stable carbon and radiocarbon analysis of sequentially evolved CO2 is a promising method to characterize the relationship between organic carbon (OC chemical composition, source, and residence time in the environment. However, observed decay profiles depend on experimental conditions and oxidation pathway. It is therefore necessary to properly assess serial oxidation kinetics before utilizing decay profiles as a measure of OC reactivity. We present a regularized inverse method to estimate the distribution of OC activation energy (E, a proxy for bond strength, using serial oxidation. Here, we apply this method to ramped temperature pyrolysis or oxidation (RPO analysis but note that this approach is broadly applicable to any serial oxidation technique. RPO analysis directly compares thermal reactivity to isotope composition by determining the E range for OC decaying within each temperature interval over which CO2 is collected. By analyzing a decarbonated test sample at multiple masses and oven ramp rates, we show that OC decay during RPO analysis follows a superposition of parallel first-order kinetics and that resulting E distributions are independent of experimental conditions. We therefore propose the E distribution as a novel proxy to describe OC thermal reactivity and suggest that E vs. isotope relationships can provide new insight into the compositional controls on OC source and residence time.

  8. Technical note: An inverse method to relate organic carbon reactivity to isotope composition from serial oxidation

    Science.gov (United States)

    Hemingway, Jordon D.; Rothman, Daniel H.; Rosengard, Sarah Z.; Galy, Valier V.

    2017-11-01

    Serial oxidation coupled with stable carbon and radiocarbon analysis of sequentially evolved CO2 is a promising method to characterize the relationship between organic carbon (OC) chemical composition, source, and residence time in the environment. However, observed decay profiles depend on experimental conditions and oxidation pathway. It is therefore necessary to properly assess serial oxidation kinetics before utilizing decay profiles as a measure of OC reactivity. We present a regularized inverse method to estimate the distribution of OC activation energy (E), a proxy for bond strength, using serial oxidation. Here, we apply this method to ramped temperature pyrolysis or oxidation (RPO) analysis but note that this approach is broadly applicable to any serial oxidation technique. RPO analysis directly compares thermal reactivity to isotope composition by determining the E range for OC decaying within each temperature interval over which CO2 is collected. By analyzing a decarbonated test sample at multiple masses and oven ramp rates, we show that OC decay during RPO analysis follows a superposition of parallel first-order kinetics and that resulting E distributions are independent of experimental conditions. We therefore propose the E distribution as a novel proxy to describe OC thermal reactivity and suggest that E vs. isotope relationships can provide new insight into the compositional controls on OC source and residence time.

  9. High-Capacity, High-Voltage Composite Oxide Cathode Materials

    Science.gov (United States)

    Hagh, Nader M.

    2015-01-01

    This SBIR project integrates theoretical and experimental work to enable a new generation of high-capacity, high-voltage cathode materials that will lead to high-performance, robust energy storage systems. At low operating temperatures, commercially available electrode materials for lithium-ion (Li-ion) batteries do not meet energy and power requirements for NASA's planned exploration activities. NEI Corporation, in partnership with the University of California, San Diego, has developed layered composite cathode materials that increase power and energy densities at temperatures as low as 0 degC and considerably reduce the overall volume and weight of battery packs. In Phase I of the project, through innovations in the structure and morphology of composite electrode particles, the partners successfully demonstrated an energy density exceeding 1,000 Wh/kg at 4 V at room temperature. In Phase II, the team enhanced the kinetics of Li-ion transport and electronic conductivity at 0 degC. An important feature of the composite cathode is that it has at least two components that are structurally integrated. The layered material is electrochemically inactive; however, upon structural integration with a spinel material, the layered material can be electrochemically activated and deliver a large amount of energy with stable cycling.

  10. Earlier and recent aspects of superconductivity

    International Nuclear Information System (INIS)

    Bednorz, J.G.; Muller, K.A.

    1990-01-01

    Contemporary knowledge of superconductivity is set against its historical background in this book. First, the highlights of superconductivity research in the twentieth century are reviewed. Further contributions then describe the basic phenomena resulting from the macroscopic quantum state of superconductivity (such as zero resistivity, the Meissner-Ochsenfeld effect, and flux quantization) and review possible mechanisms, including the classical BCS theory and the more recent alternative theories. The main categories of superconductors - elements, intermetallic phases, chalcogenides, oxides and organic compounds - are described. Common features and differences in their structure and electronic properties are pointed out. This overview of superconductivity is completed by a discussion of properties related to the coherence length

  11. Van der Waals pressure sensors using reduced graphene oxide composites

    Science.gov (United States)

    Jung, Ju Ra; Ahn, Sung Il

    2018-04-01

    Reduced graphene oxide (RGO) films intercalated with various polymers were fabricated by reaction-based self-assembly, and their characteristics as vacuum pressure sensors based on van der Waals interactions were studied. At low temperature, the electrical resistances of the samples decrease linearly with increasing vacuum pressure, whereas at high temperature the variation of the electrical resistance shows secondary order curves. Among all samples, the poly vinyl alcohol intercalated RGO shows the highest sensitivity, being almost two times more sensitive than reference RGO. All samples show almost the same signal for repetitive sudden pressure changes, indicating reasonable reproducibility and durability.

  12. Effect of Thermally Reduced Graphene Oxide on Mechanical Properties of Woven Carbon Fiber/Epoxy Composite

    OpenAIRE

    Nitai Chandra Adak; Suman Chhetri; Naresh Chandra Murmu; Pranab Samanta; Tapas Kuila

    2018-01-01

    Thermally reduced graphene oxide (TRGO) was incorporated as a reinforcing filler in the epoxy resin to investigate the effect on the mechanical properties of carbon fiber (CF)/epoxy composites. At first, the epoxy matrix was modified by adding different wt % of TRGO from 0.05 to 0.4 wt % followed by the preparation of TRGO/CF/epoxy composites througha vacuum-assisted resin transfer molding process. The prepared TRGO was characterized by using Fourier transform infrared spectroscopy, Raman Spe...

  13. Analysis of Textile Composite Structures Subjected to High Temperature Oxidizing Environment

    Science.gov (United States)

    2010-08-01

    process in a polymer is a combination of the diffusion of oxygen and its consumption by reaction, which also results in the creation of by-products...based on the work by Pochiraju et al[24-26] in which they used the conservation of mass law for diffusion with a term to model the rate of consumption ...Oxidation of C/SiC Composites, Proceedings of the 21st Annual Conference on Composites, Advanced Ceramics Materials and Structures, Cocoa Beach

  14. Fabrication of 2-3 YBa2Cu3O7-x/polymer composite with Tc above liquid nitrogen temperature

    International Nuclear Information System (INIS)

    Wilson, C.M.; Safari, A.

    1990-01-01

    This paper reports on high T c superconducting oxide woven networks fabricated and used to form YBa 2 Cu 3 O 7-x /polymer composites showing a superconducting resistive transition above liquid nitrogen temperature. The ceramic network was produced by soaking biaxially woven carbon fabric in a solution containing the stoichiometric proportions of Y, Ba, and Cu. Decomposition of the infiltrated carbon fabric and reaction of the remaining oxides resulted in a ceramic replica of the original fabric. The fired networks had a strand diameter ∼100 μm and were embedded in a polymer matrix to produce 2--3 superconducting/polymer composites with a superconducting transition of ∼89 K. Linear shrinkage of the networks was constrained during firing, although the radial shrinkage of the superconducting strands occurred freely. XRD of the networks indicated the presence of BaCO 3 , CuO, and BaCuO 2 as impurity phases

  15. Friction stir processed Al - Metal oxide surface composites: Anodization and optical appearance

    DEFF Research Database (Denmark)

    Gudla, Visweswara Chakravarthy; Jensen, Flemming; Canulescu, Stela

    2014-01-01

    Multiple-pass friction stir processing (FSP) was employed to impregnate metal oxide (TiO2, Y2O3 and CeO2) particles into the surface of an Aluminium alloy. The surface composites were then anodized in a sulphuric acid electrolyte. The effect of anodizing parameters on the resulting optical...... dark to greyish white. This is attributed to the localized microstructural and morphological differences around the metal oxide particles incorporated into the anodic alumina matrix. The metal oxide particles in the FSP zone electrochemically shadowed the underlying Al matrix and modified the local...

  16. Synthesis and electrochemical properties of tin oxide-based composite by rheological technique

    International Nuclear Information System (INIS)

    He Zeqiang; Li Xinhai; Xiong Lizhi; Wu Xianming; Xiao Zhuobing; Ma Mingyou

    2005-01-01

    Novel rheological technique was developed to synthesize tin oxide-based composites. The microstructure, morphology, and electrochemical performance of the materials were investigated by X-ray diffraction, scanning electron microscopy and electrochemical methods. The particles of tin oxide-based materials form an inactive matrix. The average size of the particles is about 150 nm. The material delivers a charge capacity of more than 570 mAh g -1 . The capacity loss per cycle is about 0.15% after being cycled 30 times. The good electrochemical performance indicates that this kind of tin oxide-based material is promising anode for lithium-ion battery

  17. Preparation of anionic clay–birnessite manganese oxide composites by interlayer oxidation of oxalate ions by permanganate

    International Nuclear Information System (INIS)

    Arulraj, James; Rajamathi, Michael

    2013-01-01

    Oxalate intercalated anionic clay-like nickel zinc hydroxysalt was obtained starting from nickel zinc hydroxyacetate, Ni 3 Zn 2 (OH) 8 (OAc) 2 ·2H 2 O, by anion exchange. The intercalated oxalate species was reacted with potassium permanganate in such a way that the layered manganese oxide formed was within the interlayer region of the anionic clay resulting in a layered composite in which the negative charges on the birnessite type manganese oxide layers compensate the positive charges on the anionic clay layers. Birnessite to anionic clay ratio could be varied by varying the reaction time or the amount of potassium permanganate used. - Graphical abstract: Nickel zinc hydroxyoxalate was reacted with potassium permanganate to get nickel zinc hydroxide birnessite composites in which the positive charges on the hydroxide layers are neutralized by the negative charges on birnessite layers. Highlights: ► Anionic and cationic layered solid composites prepared. ► Ni–Zn hydroxyoxalate reacted with KMnO 4 to deposit MnO 2 in the interlayer. ► Birnessite layers coexist with anionic clay layers in the composites. ► Birnessite/anionic clay ratio controlled by amount of KMnO 4 used and reaction time

  18. Preparation of anionic clay-birnessite manganese oxide composites by interlayer oxidation of oxalate ions by permanganate

    Energy Technology Data Exchange (ETDEWEB)

    Arulraj, James [Materials Research Group, Department of Chemistry, St. Joseph' s College, 36 Langford Road, Bangalore 560 027 (India); Rajamathi, Michael, E-mail: mikerajamathi@rediffmail.com [Materials Research Group, Department of Chemistry, St. Joseph' s College, 36 Langford Road, Bangalore 560 027 (India)

    2013-02-15

    Oxalate intercalated anionic clay-like nickel zinc hydroxysalt was obtained starting from nickel zinc hydroxyacetate, Ni{sub 3}Zn{sub 2}(OH){sub 8}(OAc){sub 2}{center_dot}2H{sub 2}O, by anion exchange. The intercalated oxalate species was reacted with potassium permanganate in such a way that the layered manganese oxide formed was within the interlayer region of the anionic clay resulting in a layered composite in which the negative charges on the birnessite type manganese oxide layers compensate the positive charges on the anionic clay layers. Birnessite to anionic clay ratio could be varied by varying the reaction time or the amount of potassium permanganate used. - Graphical abstract: Nickel zinc hydroxyoxalate was reacted with potassium permanganate to get nickel zinc hydroxide birnessite composites in which the positive charges on the hydroxide layers are neutralized by the negative charges on birnessite layers. Highlights: Black-Right-Pointing-Pointer Anionic and cationic layered solid composites prepared. Black-Right-Pointing-Pointer Ni-Zn hydroxyoxalate reacted with KMnO{sub 4} to deposit MnO{sub 2} in the interlayer. Black-Right-Pointing-Pointer Birnessite layers coexist with anionic clay layers in the composites. Black-Right-Pointing-Pointer Birnessite/anionic clay ratio controlled by amount of KMnO{sub 4} used and reaction time.

  19. Chemical composition and morphology of oxidic ceramics at filtration of steel deoxidised by aluminium

    Directory of Open Access Journals (Sweden)

    J. Bažan

    2009-10-01

    Full Text Available Composition and morphology of filter ceramics were investigated during filtration of steel deoxidised by aluminium. Filtration was realized with use of filters based on oxidic ceramics Cr2O3, TiO2, SiO2, ZrO2, Al2O3, 3Al2O3•2SiO2 and MgO•Al2O3. It was established that change of interphase (coating occurs during filtration of steel on the surface of capillaries of ceramics, where content of basic oxidic component decreases. Loss of oxidic component in the coating is replaced by increase of oxides of manganese and iron and it is great extent inversely proportional to the value of Gibbs’ energy of oxide, which forms this initial basis of ceramics.

  20. Superconducting cyclotrons

    International Nuclear Information System (INIS)

    Blosser, H.G.; Johnson, D.A.; Burleigh, R.J.

    1976-01-01

    Superconducting cyclotrons are particularly appropriate for acceleration of heavy ions. A review is given of design features of a superconducting cyclotron with energy 440 (Q 2 /A) MeV. A strong magnetic field (4.6 tesla average) leads to small physical size (extraction radius 65 cm) and low construction costs. Operating costs are also low. The design is based on established technology (from present cyclotrons and from large bubble chambers). Two laboratories (in Chalk River, Canada and in East Lansing, Michigan) are proceeding with construction of full-scale prototype components for such cyclotrons

  1. Composite harm to plants by sulfurous acid gas and oxidant

    Energy Technology Data Exchange (ETDEWEB)

    Matsushima, J

    1971-01-01

    The composite effects on plants of sulfur dioxide and ozone, SO/sub 2/ and PAN, SO/sub 2/ and nitrogen dioxide, and NO/sub 2/ and ozone were studied. Pinto bean plants were exposed to SO/sub 2/ or O/sub 3/ only, to each gas alternately, and to a mixture of the two. The degree of injury by the gas or gases was indicated in percentage by area of the leaves damaged. In cases where no geometric effect occurred the damage to the plant by the individual gas had been great; damage from the individual gas had been slight in these cases where such an effect was observed. The geometric effect is produced when the density of SO/sub 2/ is rather low, generally 0.05-0.25 ppm. A mixture of SO/sub 2/ and O/sub 3/ was applied to a tabacco plant; it affected fully grown leaves. In experiments on the composite effects of SO/sub 2/ and PAN on bean, tomato and pepper plants, PAN affected mainly young leaves while SO/sub 2/ affected mature ones. These effects were arithmetric rather then geometric. The SO/sub 2/ and NO/sub 2/ were also studied in the same manner. When SO/sub 2/ and NO/sub 2/ were mixed, a geometric effect was conspicuous in damage to vegetables, the symptoms of damage by either of the two appeared about the same, younger leaves being affected less. When treated with the two gases alternately, the damage was greater if the plants were first treated with NO/sub 2/; possible causes for this effect are discussed. No significant composite effect of NO/sub 2/ and O/sub 3/ was observed.

  2. Ac superconducting articles and a method for their manufacture

    International Nuclear Information System (INIS)

    Meyerhoff, R.W.

    1975-01-01

    A novel ac superconducting article is described comprising a composite structure having a superconducting surface along with a high thermally conductive material wherein the superconducting surface has the desired physical properties, geometrical shape and surface finish produced by the steps of depositing a superconducting layer upon a substrate having a predetermined surface finish and shape which conforms to that of the desired superconducting article, depositing a supporting layer of material on the superconducting layer and removing the substrate, the surface of the superconductor being a replica of the substrate surface. (auth)

  3. Superconducting materials arrangement and realization process

    International Nuclear Information System (INIS)

    Pribat, D.; Dieumegard, D.; Garry, G.; Mercandalli, L.

    1989-01-01

    Thin and stable layers of the superconducting oxychloride YBa Cu OF with an accurate content of oxygen and fluorine can be obtained by the invention. The superconducting material is deposited on a substrate and encapsulated in an ionic conductor for adjustment of stoichiometry. Composition of the superconductor can be adjusted by electrolysis [fr

  4. Comparative study of water chemistry and surface oxide composition on alloy 600 steam generator tubing

    International Nuclear Information System (INIS)

    Bjoernkvist, L.; Norring, K.; Nyborg, L.

    1993-01-01

    The Ringhals 3 steam generators experience secondary IGSCC on the tubes at support plate locations. Its sister unit Ringhals 4 is so far without IGSCC. Extensive work has been carried out in order to determine the local chemistry in crevices and the composition of deposits and oxide films on the tubes. Hot soaks of the SG:s at zero power has been performed and the water chemistry in occluded crevices of the SGs was predicted to be alkaline, pH 300degreesC = 10. In addition to eddy current testing, a large number of tubes have been pulled and destructively examined. These analysis include SEM/EDS characterization of TSP crevice deposits and Auger electron spectroscopy (AES) with depth profiling to reveal the composition of the tube OD oxide film. The AES analysis show an outer oxide rich in Fe 3 O 4 , mostly deposited. The actual Alloy 600 oxide is found below the magnetite and is 1-2 μm thick. The composition profile of the oxide exhibits a Cr-depletion relative to Ni in the outer part of the oxide, whereas an enrichment is found in depth. In order to correlate the water chemistry to the oxide composition profiles and deposits on pulled tubes, reference samples were prepared in an autoclave. The environments were chosen similar to the predicted Ringhals 3 and 4 crevice chemistry. Exposure both in an alkaline (pH 320degreesC∼ 9.9) and an acidic (pH 320degreesC ∼4.3) environment, containing sodium, chloride and sulphate, was studied. Some samples were also found on the Alloy 600 samples exposed to alkaline environment. Thus the prediction of alkaline chemistry was verified. The enrichment of chromium relative to nickel was shown to be potential and time dependent resulting in an increased Cr/Ni ratio at Cr-max with increasing potential and time

  5. Copper and Zinc Oxide Composite Nanostructures for Solar Energy Harvesting

    Science.gov (United States)

    Wu, Fei

    Solar energy is a clean and sustainable energy source to counter global environmental issues of rising atmospheric CO2 levels and depletion of natural resources. To extract useful work from solar energy, silicon-based photovoltaic devices are extensively used. The technological maturity and the high quality of silicon (Si) make it a material of choice. However limitations in Si exist, ranging from its indirect band gap to low light absorption coefficient and energy and capital intensive crystal growth schemes. Therefore, alternate materials that are earth-abundant, benign and simpler to process are needed for developing new platforms for solar energy harvesting applications. In this study, we explore oxides of copper (CuO and Cu2O) in a nanowire morphology as alternate energy harvesting materials. CuO has a bandgap of 1.2 eV whereas Cu2O has a bandgap of 2.1 eV making them ideally suited for absorbing solar radiation. First, we develop a method to synthesize vertical, single crystalline CuO and Cu2O nanowires of ~50 microm length and aspect ratios of ~200. CuO nanowire arrays are synthesized by thermal oxidation of Cu foils. Cu2O nanowire arrays are synthesized by thermal reduction of CuO nanowires. Next, surface engineering of these nanowires is achieved using atomic layer deposition (ALD) of ZnO. By depositing 1.4 nm of ZnO, a highly defective surface is produced on the CuO nanowires. These defects are capable of trapping charge as is evident through persistent photoconductivity measurements of ZnO coated CuO nanowires. The same nanowires serve as efficient photocatalysts reducing CO2 to CO with a yield of 1.98 mmol/g-cat/hr. Finally, to develop a robust platform for flexible solar cells, a protocol to transfer vertical CuO nanowires inside flexible polydimethylsiloxane (PDMS) is demonstrated. Embedded CuO nanowires-ZnO pn junctions show a VOC of 0.4 V and a JSC of 10.4 microA/cm2 under white light illumination of 5.7 mW/cm2. Thus, this research provides broad

  6. Carbon nanotube—cuprous oxide composite based pressure sensors

    International Nuclear Information System (INIS)

    Karimov, Kh. S.; Chani, Muhammad Tariq Saeed; Khalid, Fazal Ahmad; Khan, Adam; Khan, Rahim

    2012-01-01

    In this paper, we present the design, the fabrication, and the experimental results of carbon nanotube (CNT) and Cu 2 O composite based pressure sensors. The pressed tablets of the CNT—Cu 2 O composite are fabricated at a pressure of 353 MPa. The diameters of the multiwalled nanotubes (MWNTs) are between 10 nm and 30 nm. The sizes of the Cu 2 O micro particles are in the range of 3–4 μm. The average diameter and the average thickness of the pressed tablets are 10 mm and 4.0 mm, respectively. In order to make low resistance electric contacts, the two sides of the pressed tablet are covered by silver pastes. The direct current resistance of the pressure sensor decreases by 3.3 times as the pressure increases up to 37 kN/m 2 . The simulation result of the resistance—pressure relationship is in good agreement with the experimental result within a variation of ±2%. (condensed matter: structural, mechanical, and thermal properties)

  7. Improved Internal Reference Oxygen Sensors Using Composite Oxides as Electrodes

    DEFF Research Database (Denmark)

    Hu, Qiang

    The thesis describes the research on and development of an internal reference oxygen sensor (IROS). The IROS is potentiometric and uses the equilibrium pO2of the binary mixture of Ni/NiO as the reference pO2. The sensing electrode of the IROS are made from metallic Pt or the composite of (La0.75S...... the application of IROSes are provided. Based on the concepts and fundamentals of the IROS, internal reference sensors that detect other gas species such as hydrogen, chlorine and bromine may be developed.......The thesis describes the research on and development of an internal reference oxygen sensor (IROS). The IROS is potentiometric and uses the equilibrium pO2of the binary mixture of Ni/NiO as the reference pO2. The sensing electrode of the IROS are made from metallic Pt or the composite of (La0.75Sr0...... from 8YSZ is evaluated quantitatively and figures that may be used to design the depletion period of an IROS due to the electronic leak of 8YSZ are provided. One dimensional numerical simulations are performed to study the variation in cell voltage during the process of gas mixing, and the asymmetric...

  8. Method and system for controlling chemical reactions between superconductors and metals in superconducting cables

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Tengming

    2018-01-02

    A method, system, and apparatus for fabricating a high-strength Superconducting cable comprises pre-oxidizing at least one high-strength alloy wire, coating at least one Superconducting wire with a protective layer, and winding the high-strength alloy wire and the Superconducting wire to form a high-strength Superconducting cable.

  9. Method and system for controlling chemical reactions between superconductors and metals in superconducting cables

    Science.gov (United States)

    Shen, Tengming

    2016-11-15

    A method, system, and apparatus for fabricating a high-strength Superconducting cable comprises pre-oxidizing at least one high-strength alloy wire, coating at least one Superconducting wire with a protective layer, and winding the high-strength alloy wire and the Superconducting wire to form a high-strength Superconducting cable.

  10. Superconductivity proximate to antiferromagnetism in a copper-oxide monolayer grown on Bi2Sr2CaCu2O8 +δ

    Science.gov (United States)

    Wang, Shuai; Zhang, Long; Wang, Fa

    2018-01-01

    A nodeless superconducting (SC) gap was reported in a recent scanning tunneling spectroscopy experiment of a copper-oxide monolayer grown on a Bi2Sr2CaCu2O8 +δ (Bi2212) substrate [Zhong et al., Sci. Bull. 61, 1239 (2016), 10.1007/s11434-016-1145-4], which is in stark contrast to the nodal d -wave pairing gap in the bulk cuprates. Motivated by this experiment, we first show with first-principles calculations that the tetragonal CuO (T-CuO) monolayer on the Bi2212 substrate is more stable than the commonly postulated CuO2 structure. The T-CuO monolayer is composed of two CuO2 layers sharing the same O atoms. The band structure is obtained by first-principles calculations, and its strong electron correlation is treated with the renormalized mean-field theory. We argue that one CuO2 sublattice is hole doped while the other sublattice remains half filled and may have antiferromagnetic (AF) order. The doped Cu sublattice can show d -wave SC; however, its proximity to the AF Cu sublattice induces a spin-dependent hopping, which splits the Fermi surface and may lead to a full SC gap. Therefore, the nodeless SC gap observed in the experiment could be accounted for by the d -wave SC proximity to an AF order, thus it is extrinsic rather than intrinsic to the CuO2 layers.

  11. Electrical and optical properties of indium tin oxide/epoxy composite film

    International Nuclear Information System (INIS)

    Guo Xia; Guo Chun-Wei; Chen Yu; Su Zhi-Ping

    2014-01-01

    The electrical and optical properties of the indium tin oxide (ITO)/epoxy composite exhibit dramatic variations as functions of the ITO composition and ITO particle size. Sharp increases in the conductivity in the vicinity of a critical volume fraction have been found within the framework of percolation theory. A conductive and insulating transition model is extracted by the ITO particle network in the SEM image, and verified by the resistivity dependence on the temperature. The dependence of the optical transmittance on the particle size was studied. Further decreasing the ITO particle size could further improve the percolation threshold and light transparency of the composite film. (condensed matter: structural, mechanical, and thermal properties)

  12. Non-oxidic nanoscale composites: single-crystalline titanium carbide nanocubes in hierarchical porous carbon monoliths.

    Science.gov (United States)

    Sonnenburg, Kirstin; Smarsly, Bernd M; Brezesinski, Torsten

    2009-05-07

    We report the preparation of nanoscale carbon-titanium carbide composites with carbide contents of up to 80 wt%. The synthesis yields single-crystalline TiC nanocubes 20-30 nm in diameter embedded in a hierarchical porous carbon matrix. These composites were generated in the form of cylindrical monoliths but can be produced in various shapes using modern sol-gel and nanocasting methods in conjunction with carbothermal reduction. The monolithic material is characterized by a combination of microscopy, diffraction and physisorption. Overall, the results presented in this work represent a concrete design template for the synthesis of non-oxidic nanoscale composites with high surface areas.

  13. Accelerators and superconductivity: A marriage of convenience

    International Nuclear Information System (INIS)

    Wilson, M.

    1987-01-01

    This lecture deals with the relationship between accelerator technology in high-energy-physics laboratories and the development of superconductors. It concentrates on synchrotron magnets, showing how their special requirements have brought about significant advances in the technology, particularly the development of filamentary superconducting composites. Such developments have made large superconducting accelerators an actuality: the Tevatron in routine operation, the Hadron Electron Ring Accelerator (HERA) under construction, and the Superconducting Super Collider (SSC) and Large Hadron Collider (LHC) at the conceptual design stage. Other applications of superconductivity have also been facilitated - for example medical imaging and small accelerators for industrial and medical use. (orig.)

  14. Iridescent cellulose nanocrystal/polyethylene oxide composite films with low coefficient of thermal expansion

    Science.gov (United States)

    Jairo A. Diaz; Julia L. Braun; Robert J. Moon; Jeffrey P. Youngblood

    2015-01-01

    Simultaneous control over optical and thermal properties is particularly challenging and highly desired in fields like organic electronics. Here we incorporated cellulose nanocrystals (CNCs) into polyethylene oxide (PEO) in an attempt to preserve the iridescent CNC optical reflection given by their chiral nematic organisation, while reducing the composite thermal...

  15. Ag2S deposited on oxidized polypropylene as composite material for solar light absorption

    NARCIS (Netherlands)

    Krylovaa, V.; Milbrat, Alexander; Embrachts, A.; Baltrusaitis, Jonas

    2014-01-01

    Thin film metal chalcogenides are superior solar light absorbers and can be combined into a functional material when deposited on polymeric substrates. Ag2S composite materials were synthesized on oxidized polypropylene using chemical bath deposition method and their properties were explored using

  16. Superconducting energy storage magnet

    International Nuclear Information System (INIS)

    Eyssa, Y.M.; Boom, R.W.; Young, W.C.; McIntosh, G.E.; Abdelsalam, M.K.

    1986-01-01

    A superconducting magnet is described comprising: (a) a first, outer coil of one layer of conductor including at least a superconducting composite material; (b) a second, inner coil of one layer of conductor including at least a superconducting composite material. The second coil disposed adjacent to the first coil with each turn of the second inner coil at substantially the same level as a turn on the first coil; (c) an inner support structure between the first and second coils and engaged to the conductors thereof, including support rails associated with each turn of conductor in each coil and in contact therewith along its length at positions on the inwardly facing periphery of the conductor. The rail associated with each conductor is electrically isolated from other rails in the inner support structure. The magnetic field produced by a current flowing in the same direction through the conductors of the first and second coils produces a force on the conductors that are directed inwardly toward the inner support structure

  17. Synthesis, structure and superconductivity in Ba1-xKxBiO3

    International Nuclear Information System (INIS)

    Hinks, D.G.

    1989-01-01

    Ba 1-x K x BiO 3 (with x = 0.4) has the highest T c (30 K) of any copperless compound. The superconducting transition temperature of this material is expected to be at the limit of conventional electron-phonon coupling. Since this material is much simpler than the copper containing high-T c superconductors (it is cubic in its superconducting state and only sp electrons are involved in the transport properties), it should be much easier to unravel the nature of the superconducting pairing mechanism in this system. Understanding this system may help explain superconductivity in the more complex copper-oxide materials. In this paper, the authors report on the development of a synthesis method which allows the preparation of stoichiometric, single-phase materials with x between 0.0 and 0.5. The structural phase diagram was determined using powder neutron diffraction as a function of both composition and temperature. Superconductivity only occurs in the cubic perovskite phase which is stable for x larger than 0.3. At a x = 0.3 composition the material undergoes a semiconductor to metal transition with a maximum value for T c . As the K content is further increased, T c is reduced

  18. Adsorption of Cadmium Ions from Water on Double-walled Carbon Nanotubes/Iron Oxide Composite

    Directory of Open Access Journals (Sweden)

    Karima Seffah

    2017-12-01

    Full Text Available A new material (DWCNT/iron oxide for heavy metals removal was developed by combining the adsorption features of double-walled carbon nanotubes with the magnetic properties of iron oxides. Batch experiments were applied in order to evaluate adsorption capacity of the DWCNT/iron oxide composite for cadmium ions. The influence of operating parameters such as pH value, amount of adsorbent, initial adsorbate concentration and agitation speed was studied. The adsorption capacity of the DWCNT/iron oxide adsorbent for Cd2+ ions was 20.8 mg g-1, which is at the state of the art. The obtained results revealed that DWCNT/iron oxide composite is a very promising adsorbent for removal of Cd2+ ions from water under natural conditions. The advantage of the magnetic composite is that it can be used as adsorbent for contaminants in water and can be subsequently controlled and removed from the medium by a simple magnetic process.

  19. Ionic Conductance, Thermal and Morphological Behavior of PEO-Graphene Oxide-Salts Composites

    Directory of Open Access Journals (Sweden)

    Mohammad Saleem Khan

    2015-01-01

    Full Text Available Thin films composites of poly(ethylene oxide-graphene oxide were fabricated with and without lithium salts by solvent cast method. The ionic conductivity of these composites was studied at various concentrations of salt polymer-GO complexes and at different temperatures. The effects of temperature and graphene oxide concentration were measured from Arrhenius conductance plots. It is shown that the addition of salts in pure PEO increases conductance many times. The graphene oxide addition has enhanced the conductance approximately 1000 times as compared to that of pure PEO. The activation energies were determined for all the systems which gave higher values for pure PEO and the value decreased with the addition of LiClO4 and LiCl salts and further decreases with the addition of graphene oxide. The composite has also lowered the activation energy values which mean that incorporation of GO in PEO has decreased crystallinity and the amorphous region has increased the local mobility of polymer chains resulting in lower activation energies. SEM analysis shows uniform distribution of GO in polymer matrix. The thermal stability studies reveal that incorporation of GO has somewhat enhanced the thermal stability of the films.

  20. Development of functionally graded anti-oxidation coatings for carbon/carbon composites

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, J.H. [Dept. of Materials Technology, Korea Inst. of Machinery and Materials, Changwon (Korea); Fang Hai-Tao; Lai Zhong-Hong; Yin Zhong-Da [Materials Science and Engineering School, Harbin Inst. of Tech., Harbin (China)

    2005-07-01

    The concept of functionally graded materials (FGMs) was originated in the research field of thermal barrier coatings. Continuous changes in the composition, grain size, porosity, etc., of these materials result in gradients in such properties as mechanical strength and thermal conductivity. In recent years, functionally graded structural composite materials have received increased attention as promising candidate materials to exhibit better mechanical and functional properties than homogeneous materials or simple composite materials. Therefore the research area of FGMs has been expending in the development of various structural and functional materials, such as cutting tools, photonic crystals, dielectric and piezoelectric ceramics, thermoelectric semiconductors, and biomaterials. We have developed functionally graded structural ceramic/metal composite materials for relaxation of thermal stress, functionally graded anti-oxidation coatings for carbon/carbon composites, and functionally graded dielectric ceramic composites to develop advanced dielectric ceramics with flat characteristics of dielectric constant in a wide temperature range. This paper introduces functionally graded coatings for C/C composites with superior oxidation resistance at high temperatures. (orig.)

  1. Superconducting materials

    International Nuclear Information System (INIS)

    Ruvalds, J.

    1990-01-01

    This report discusses the following topics: Fermi liquid nesting in high temperature superconductors; optical properties of high temperature superconductors; Hall effect in superconducting La 2-x Sr x CuO 4 ; source of high transition temperatures; and prospects for new superconductors

  2. Superconducting transformer

    International Nuclear Information System (INIS)

    Murphy, J.H.

    1982-01-01

    A superconducting transformer having a winding arrangement that provides for current limitation when subjected to a current transient as well as more efficient utilization of radial spacing and winding insulation. Structural innovations disclosed include compressed conical shaped winding layers and a resistive matrix to promote rapid switching of current between parallel windings

  3. Superconducting magnets

    International Nuclear Information System (INIS)

    1994-08-01

    This report discusses the following topics on superconducting magnets: D19B and -C: The next steps for a record-setting magnet; D20: The push beyond 10 T: Beyond D20: Speculations on the 16-T regime; other advanced magnets for accelerators; spinoff applications; APC materials development; cable and cabling-machine development; and high-T c superconductor at low temperature

  4. Superconducting magnets

    International Nuclear Information System (INIS)

    Willen, E.

    1996-01-01

    Superconducting dipole magnets for high energy colliders are discussed. As an example, the magnets recently built for the Relativistic Heavy Ion Collider at Brookhaven are reviewed. Their technical performance and the cost for the industry-built production dipoles are given. The cost data is generalized in order to extrapolate the cost of magnets for a new machine

  5. Bipolar superconductivity

    International Nuclear Information System (INIS)

    Pankratov, S.G.

    1987-01-01

    A model of bipolaron superconductivity suggested by Soviet scientist Alexandrov A.S. and French scientist Ranninger is presentes in a popular way. It is noted that the bipolaron theory gives a good explanation of certain properties of new superconductors, high critical temperature, in particular

  6. Superconducting transistor

    International Nuclear Information System (INIS)

    Gray, K.E.

    1978-01-01

    A three film superconducting tunneling device, analogous to a semiconductor transistor, is presented, including a theoretical description and experimental results showing a current gain of four. Much larger current gains are shown to be feasible. Such a development is particularly interesting because of its novelty and the striking analogies with the semiconductor junction transistor

  7. The effect of the ceramic core initial phase composition on the Ag-sheathed Bi-2223 tapes critical properties

    International Nuclear Information System (INIS)

    Nikulin, A.D.; Shikov, A.K.; Khlebova, N.E.; Antipova, E.V.; Dontsova, E.V.; Kazakov, E.G.; Medvedev, M.I.; Kozlenkova, N.I.; Shishov, V.N.; Akimov, I.I.

    1993-01-01

    Ag - sheathed superconducting tapes were fabricated using ''powder-in-tube'' method with powders of Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3.2 O x chemical composition prepared by the ''freeze-drying'' tecnique and taken as a core materials. The effect of ceramic core initial phase composition: the mixture of oxide non-superconducting phases - OP (typeI) and 50% OP + 50% OP ''2212''- phase (type II) on the critical current density was investigated as well as the ''annealing - cold pressing'' parameters. Multifilamentary superconducting tapes and the pancake coils were fabricated. (orig.)

  8. Nano-graphene oxide composite for in vivo imaging

    Directory of Open Access Journals (Sweden)

    Jang SC

    2018-01-01

    Full Text Available Sung-Chan Jang,1,2,* Sung-Min Kang,1,* Jun Young Lee,3,* Seo Yeong Oh,1 AT Ezhil Vilian,4 Ilsong Lee,1,2 Young-Kyu Han,4 Jeong Hoon Park,3 Wan-Seob Cho,5,* Changhyun Roh,2,6 Yun Suk Huh1 1Department of Biological Engineering, Biohybrid Systems Research Center (BSRC, Inha University, Incheon, 2Biotechnology Research Division, 3Radiation Instrumentation Research Division, Advanced Radiation Technology Institute (ARTI, Korea Atomic Energy Research Institute (KAERI, Jeongeup, 4Department of Energy and Materials Engineering, Dongguk University, Seoul, 5Laboratory of Toxicology, Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, 6Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology (UST, Daejeon, Republic of Korea *These authors contributed equally to this work Introduction: Positron emission tomography (PET tracers has the potential to revolutionize cancer imaging and diagnosis. PET tracers offer non-invasive quantitative imaging in biotechnology and biomedical applications, but it requires radioisotopes as radioactive imaging tracers or radiopharmaceuticals. Method: This paper reports the synthesis of 18F-nGO-PEG by covalently functionalizing PEG with nano-graphene oxide, and its excellent stability in physiological solutions. Using a green synthesis route, nGO is then functionalized with a biocompatible PEG polymer to acquire high stability in PBS and DMEM. Results and discussion: The radiochemical safety of 18F-nGO-PEG was measured by a reactive oxygen species and cell viability test. The biodistribution of 18F-nGO-PEG could be observed easily by PET, which suggested the significantly high sensitivity tumor uptake of 18F-nGO-PEG and in a tumor bearing CT-26 mouse compared to the control. 18F-nGO-PEG was applied successfully as an efficient radiotracer or drug agent in vivo using PET imaging. This article is expected to assist many researchers in the fabrication of

  9. Static and Dynamic Mechanical Properties of Graphene Oxide-Incorporated Woven Carbon Fiber/Epoxy Composite

    Science.gov (United States)

    Adak, Nitai Chandra; Chhetri, Suman; Kim, Nam Hoon; Murmu, Naresh Chandra; Samanta, Pranab; Kuila, Tapas

    2018-03-01

    This study investigates the synergistic effects of graphene oxide (GO) on the woven carbon fiber (CF)-reinforced epoxy composites. The GO nanofiller was incorporated into the epoxy resin with variations in the content, and the CF/epoxy composites were manufactured using a vacuum-assisted resin transfer molding process and then cured at 70 and 120 °C. An analysis of the mechanical properties of the GO (0.2 wt.%)/CF/epoxy composites showed an improvement in the tensile strength, Young's modulus, toughness, flexural strength and flexural modulus by 34, 20, 83, 55 and 31%, respectively, when compared to the CF/epoxy composite. The dynamic mechanical analysis of the composites exhibited an enhancement of 56, 114 and 22% in the storage modulus, loss modulus and damping capacity (tan δ), respectively, at its glass transition temperature. The fiber-matrix interaction was studied using a Cole-Cole plot analysis.

  10. An ultraviolet photodetector fabricated from WO3 nanodiscs/reduced graphene oxide composite material

    International Nuclear Information System (INIS)

    Shao Dali; Sawyer, Shayla; Yu Mingpeng; Lian Jie

    2013-01-01

    A high sensitivity, fast ultraviolet (UV) photodetector was fabricated from WO 3 nanodiscs (NDs)/reduced graphene oxide (RGO) composite material. The WO 3 NDs/reduced GO composite material was synthesized using a facile three-step synthesis procedure. First, the Na 2 WO 4 /GO precursor was synthesized by homogeneous precipitation. Second, the Na 2 WO 4 /GO precursor was transformed into H 2 WO 4 /GO composites by acidification. Finally, the H 2 WO 4 /GO composites were reduced to WO 3 NDs/RGO via a hydrothermal reduction process. The UV photodetector showed a fast transient response and high responsivity, which are attributed to the improved carrier transport and collection efficiency through graphene. The excellent material properties of the WO 3 NDs/RGO composite demonstrated in this work may open up new possibilities for using WO 3 NDs/RGO for future optoelectronic applications. (paper)

  11. Investigations into the effect of spinel oxide composition on rate of carbon deposition

    International Nuclear Information System (INIS)

    Allen, G.C.; Jutson, J.A.

    1987-11-01

    The deposition of carbon on fuel cladding and other steels results in a reduction in heat transfer efficiency. Methane and carbon monoxide are added to the gaseous coolant in the Advanced Gas Cooled Reactor (AGR) to reduce the radiolytic oxidation of the graphite moderator and this is known to increase the rate of carbon deposition. However, the composition of oxides formed on steel surfaces within the reactor may also influence deposition. In this investigation carefully characterised spinel type oxides of varying composition have been subjected to γ radiation under conditions of temperature, pressure and atmosphere similar to those experienced in the reactor. The rate of carbon deposition has been studied using Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Analysis (EDX). (U.K.)

  12. A redox-assisted molecular assembly of molybdenum oxide amine composite nanobelts

    International Nuclear Information System (INIS)

    Luo Haiyan; Wei Mingdeng; Wei Kemei

    2011-01-01

    Research highlights: → Nanobelts of molybdenum oxide amine were first synthesized via a redox-assisted molecular assembly route. → These nanobelts are highly crystalline with a several tens of micrometers in length and 20-30 nm in thickness. - Abstract: In this paper, the nanobelts of molybdenum oxide amine composite were successfully synthesized via a redox-assisted molecular assembly route under the hydrothermal conditions. The synthesized nanobelts were characterized by XRD, SEM, TEM, TG and FT-IR measurements. The thickness of nanobelts is found to be ca. 20-30 nm and their lengths are up to several tens of micrometers. Based on a series of the experimental results, a possible model, redox-intercalation-exfoliation, was suggested for the formation of nanobelts of molybdenum oxide amine composite.

  13. Effect of pasteurization on the protein composition and oxidative stability of beer during storage.

    Science.gov (United States)

    Lund, Marianne N; Hoff, Signe; Berner, Torben S; Lametsch, René; Andersen, Mogens L

    2012-12-19

    The impacts of pasteurization of a lager beer on protein composition and the oxidative stability were studied during storage at 22 °C for 426 days in the dark. Pasteurization clearly improved the oxidative stability of beer determined by ESR spectroscopy, whereas it had a minor negative effect on the volatile profile by increasing volatile compounds that is generally associated with heat treatment and a loss of fruity ester aroma. A faster rate of radical formation in unpasteurized beer was consistent with a faster consumption of sulfite. Beer proteins in the unpasteurized beer were more degraded, most likely due to proteolytic enzyme activity of yeast remnants and more precipitation of proteins was also observed. The differences in soluble protein content and composition are suggested to result in differences in the contents of prooxidative metals as a consequence of the proteins ability to bind metals. This also contributes to the differences in oxidative stabilities of the beers.

  14. Novel magnetically separable AgCl/iron oxide composites with enhanced photocatalytic activity driven by visible light

    International Nuclear Information System (INIS)

    Zhang, Ying; Zhang, Yanrong; Tan, Jue

    2013-01-01

    Highlights: •The AgCl/iron oxide composites were prepared by a chemical precipitation method. •The composites exhibited improved performances in the photodegradation of pollutants. •The visible light photocatalysts could be recycled easily by a magnet. -- Abstract: In this work, AgCl/iron oxide composites were synthesized by a simple chemical precipitation method and calcining process. The composition of the material and magnetic and optical properties of the composites were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and vibrating specimen magnetometer (VSM) techniques, which confirms the high crystalline and magnetic behavior of the composites. UV-vis diffuse reflectance spectral (DRS) studies showed that the AgCl/iron oxide composites were of much higher absorption in longer wavelength region compared to bare iron oxide. The AgCl/iron oxide composites showed better performance in the photodegradation of organic dyes Rhodamin B (RhB) under the fluorescent lamp irradiation, which is remarkably superior to the N-TiO 2 . The degradation of microcystin-LR (MC-LR) and phenol was also found to be good owing to its effective electron-hole separation at AgCl/iron oxide interface. The separation of AgCl/iron oxide composites from the treated water was achieved by an external magnetic field as γ-Fe 2 O 3 exhibits enough magnetic power to facilitate the separation

  15. Emergent macrophytes modify the abundance and community composition of ammonia oxidizers in their rhizosphere sediments.

    Science.gov (United States)

    Zhao, Dayong; He, Xiaowei; Huang, Rui; Yan, Wenming; Yu, Zhongbo

    2017-07-01

    Ammonia oxidation is a crucial process in global nitrogen cycling, which is catalyzed by the ammonia oxidizers. Emergent plants play important roles in the freshwater ecosystem. Therefore, it is meaningful to investigate the effects of emergent macrophytes on the abundance and community composition of ammonia oxidizers. In the present study, two commonly found emergent macrophytes (Zizania caduciflora and Phragmitas communis) were obtained from freshwater lakes and the abundance and community composition of the ammonia-oxidizing prokaryotes in the rhizosphere sediments of these emergent macrophytes were investigated. The abundance of the bacterial amoA gene was higher in the rhizosphere sediments of the emergent macrophytes than those of bulk sediments. Significant positive correlation was found between the potential nitrification rates (PNRs) and the abundance of bacterial amoA gene, suggesting that ammonia-oxidizing bacteria (AOB) might play an important role in the nitrification process of the rhizosphere sediments of emergent macrophytes. The Nitrosotalea cluster is the dominant ammonia-oxidizing archaea (AOA) group in all the sediment samples. Analysis of AOB group showed that the N. europaeal cluster dominated the rhizosphere sediments of Z. caduciflora and the bulk sediments, whereas the Nitrosospira cluster was the dominant AOB group in the rhizosphere sediments of P. communis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Studies on nitric oxide removal in simulated gas compositions under plasma-dielectric/catalytic discharges

    International Nuclear Information System (INIS)

    Rajanikanth, B.S.; Rout, Satyabrata

    2001-01-01

    Application of pulsed electrical discharges for gas cleaning is gaining prominence, mainly from the energy consideration point of view. This present paper presents recent work on applying the electrical discharge plasma technology for treating gaseous pollutants, in general, and nitric oxide, in particular, as this is one of the major contributors to air pollution. The present work focuses attention on pulsed electrical discharge technique for nitric oxide removal from simulated gas compositions and study of effect of packed dielectric pellets, with and without a coating of catalyst, on the removal process. Experiments were conducted in a cylindrical corona reactor energized by repetitive high voltage pulses. The effects of various parameters, viz. pulse voltage magnitude, pulse frequency, initial nitric oxide concentration and gas mixture composition on nitric oxide removal efficiency, are discussed. When the reactors were filled with different dielectric pellets like, barium titanate, alumina, and alumina coated with palladium catalyst, the improvement in nitric oxide removal efficiency is studied and discussed. The power dissipated in the reactor and the energy consumed per nitric oxide molecule removed was calculated. Further results and comparative study of various cases are presented in the paper

  17. Kinetic studies of oxidation of {gamma}-AlON-TiN composites

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Zuotai; Wang Xidong; Li Wenchao

    2005-01-25

    The present article deals with the investigation of the oxidation kinetics of {gamma}-aluminum oxynitride-Titanium Nitride composites (AlON-TiN) in the temperature range of 1100-1300 deg. C by thermogravimetry. Oxidation experiments with AlON-TiN composite plates have been carried out in air both in isothermal and nonisothermal modes. The results showed that the rate of oxidation was negligible below 1000 deg. C, and showed an increase with increasing temperature at higher temperature. Both isothermal studies as well as experiments with ramped temperature clearly indicated that the mechanism of the reaction changes around 1400 deg. C. In the nonisothermal mode, the oxidation curve showed an increased reaction rate in this temperature range. Oxidation of AlON-TiN composite results in {alpha}-Al{sub 2}O{sub 3} and TiO{sub 2} at a low temperature and Al{sub 2}TiO{sub 5} at higher temperature. The buildup of the product layer leads to diffusion controlled kinetics. In the nonisothermal experiments, the phase transformation from Al{sub 2}O{sub 3} and TiO{sub 2}, to a Al{sub 2}TiO{sub 5} product layer at higher temperature would lead to crack formation, thereby leading to direct chemical reaction. From the experiments for the isothermal oxidation of AlON-TiN composite plates, the overall reactions are separated into three stages: chemistry reaction-controlling stage; chemical reaction- and diffusion-mixed-controlled stage; diffusion-controlled stage. The apparent activation energy for the experiments were calculated to be 10.109, 2.19 and 5.614 kJ mol{sup -1}, respectively, in the above three stages.

  18. Theory of superconductivity

    International Nuclear Information System (INIS)

    Crisan, M.

    1988-01-01

    This book discusses the most important aspects of the theory. The phenomenological model is followed by the microscopic theory of superconductivity, in which modern formalism of the many-body theory is used to treat most important problems such as superconducting alloys, coexistence of superconductivity with the magnetic order, and superconductivity in quasi-one-dimensional systems. It concludes with a discussion on models for exotic and high temperature superconductivity. Its main aim is to review, as complete as possible, the theory of superconductivity from classical models and methods up to the 1987 results on high temperature superconductivity. Contents: Phenomenological Theory of Superconductivity; Microscopic Theory of Superconductivity; Theory of Superconducting Alloys; Superconductors in a Magnetic Field; Superconductivity and Magnetic Order; Superconductivity in Quasi-One-Dimensional Systems; and Non-Conventional Superconductivity

  19. Synthesis spherical porous hydroxyapatite/graphene oxide composites by ultrasonic-assisted method for biomedical applications.

    Science.gov (United States)

    Duan, Peizhen; Shen, Juan; Zou, Guohong; Xia, Xu; Jin, Bo; Yu, Jiaxin

    2018-04-10

    Spherical porous hydroxyapatite (SHA)/graphene oxide (GO) composites with different GO (w/w) content of 16%, 40%, and 71% have been fabricated through a facile and controllable ultrasonic-assisted method at room temperature. The products were characterized by x-ray diffraction, field emission scanning electron microscopy, thermogravimetric analysis, mechanical testing and biomimetic mineralization. Results showed SHA were covered by GO, and SHA/GO composites had an irregular surface with different degrees of wrinkles. The elastic modulus and hardness of SHA/GO-3 composites were up to 12.45 ± 0.33 GPa and 686.67 ± 26.95 MPa, which indicated that the contents of GO had an effect on SHA/GO composites. And the mechanical properties of SHA/GO-2 composites were similar to SHA particles. The biomimetic mineralization in SBF solution showed the bone-like apatite layer on composites surface, which demonstrated that the SHA/GO materials had osseointegration property. Moreover, in vitro cytocompatibility of SHA/GO-2 composites and pure GO were evaluated by cell adhesion and proliferation tests using MC3T3-E1 cells, which demonstrated that the SHA/GO composites can act as a good template for the cells growth and adhesion. These results suggested that the SHA/GO composites will be a promising material for biomedical application.

  20. From Graphene Oxide to Reduced Graphene Oxide: Impact on the Physiochemical and Mechanical Properties of Graphene-Cement Composites.

    Science.gov (United States)

    Gholampour, Aliakbar; Valizadeh Kiamahalleh, Meisam; Tran, Diana N H; Ozbakkaloglu, Togay; Losic, Dusan

    2017-12-13

    Graphene materials have been extensively explored and successfully used to improve performances of cement composites. These formulations were mainly optimized based on different dosages of graphene additives, but with lack of understanding of how other parameters such as surface chemistry, size, charge, and defects of graphene structures could impact the physiochemical and mechanical properties of the final material. This paper presents the first experimental study to evaluate the influence of oxygen functional groups of graphene and defectiveness of graphene structures on the axial tension and compression properties of graphene-cement mortar composites. A series of reduced graphene oxide (rGO) samples with different levels of oxygen groups (high, mild, and low) were prepared by the reduction of graphene oxide (GO) using different concentrations of hydrazine (wt %, 0.1, 0.15, 0.2, 0.3, and 0.4%) and different reduction times (5, 10, 15, 30, and 60 min) and were added to cement mortar composites at an optimal dosage of 0.1%. A series of characterization methods including scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, thermogravimetric analysis, and Fourier transform infrared spectroscopy were performed to determine the distribution and mixing of the prepared rGO in the cement matrix and were correlated with the observed mechanical properties of rGO-cement mortar composites. The measurement of the axial tension and compression properties revealed that the oxygen level of rGO additives has a significant influence on the mechanical properties of cement composites. An addition of 0.1% rGO prepared by 15 min reduction and 0.2% (wt %) hydrazine with mild level of oxygen groups resulted in a maximum enhancement of 45.0 and 83.7%, respectively, in the 28-day tensile and compressive strengths in comparison with the plain cement mortar and were higher compared to the composite prepared with GO (37.5 and 77.7%, respectively). These

  1. High temperature oxidation and crystallization behavior of phosphate glass compositions

    International Nuclear Information System (INIS)

    Russo, Diego; Rodriguez, Diego; Grumbaum, N.; Gonzalez Oliver, Carlos

    2003-01-01

    We analyzed the thermal transformation of three iron phosphate glasses having the following nominal compositions: M4 [70% P 2 O 5 , 30% Fe 2 O 3 ], M5 [85% M4, 15% UO 2 ] y M7 [69.7% P 2 O 5 , 28.6% Fe 2 O 3 , 1,7% Al 2 O 3 ]. Thermogravimetric analysis, DTA (differential thermal analysis) and SAXS (Small Angle X-ray Scattering) were performed.It was observed that it is easily possible to produce glasses in these systems having very low crystallinity.We could determine the final stable crystalline phases [Fe 4 (P 2 O 7 ) 3 , Fe(PO 3 ) 3 and Fe 3 (P 2 O 7 ) 2 ].The presence of uranium ions affects not only the redox effects but also the crystallization of the system.SAXS data obtained during the heating in vacuum up to ∼600degC, gave some variation of scattering intensities vs. scattering vector suggesting the development of an extra phase or some kind inhomogeneities that seems to disappear on heating

  2. Manganese oxide/graphene oxide composites for high-energyaqueous asymmetric electrochemical capacitors

    CSIR Research Space (South Africa)

    Jafta, CJ

    2013-11-01

    Full Text Available A high-energy aqueous asymmetric electrochemical capacitor was developed using manganese diox-ide ( -MnO2)/graphene oxide (GO) nanocomposites. The nanostructured -MnO2was prepared frommicron-sized commercial electrolytic manganese dioxide (EMD) via...

  3. Research and development of a high-temperature superconducting flywheel energy storage system. Research and development of the New Sunshine Program; Furaihoiru denryoku chozo shisutemu kenkyu kaihatsu. Nyu sanshain keikaku ni motozuku kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Y. [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1999-11-25

    The project conducted by NEDO for developing a high-temperature superconducting flywheel energy storage system is introduced; the two test results of fundamental studies are described. One is the measurement of levitation force and rotation loss of superconducting magnetic bearings composed of oxide superconducting bulks and permanent magnet composite. Two types of superconducting magnetic bearings. axial and radial types, were fabricated and tested. The other test was the fabrication and testing of two functional models. A small-sized superconducting flywheel model of the 0.5 kWh class was fabricated and tested. A medium-sized rotating functional model of the 10 kWh class was fabricated as well. (author)

  4. Superconducting properties, chemical compositions, and lattice parameters of Pb-, Sn- and (Pb1-xSnx)Mo6S8

    International Nuclear Information System (INIS)

    Sadakata, N.; Corderman, R.; Asano, T.; Cox, D.; Suenaga, M.; Foner, S.; McNiff, E.J. Jr.

    1991-01-01

    The values of critical temperatures for alloys of Pb- and SnMo 6 S 8 were shown to be lower than those of the respective pure Chevrel phases. Chemical compositional analysis of the compounds revealed that the decreased T c in the alloys are due to the off-stoichiometric compositions in the alloys. Although alloying slightly increased the values of the upper critical field H c2 over that for PbMo 6 S 8 , the H c2 values for these specimens were substantially lower than those which have been reported for PbMo 6 S 8 . Possible causes for these depressed values of H c2 are discussed

  5. Authigenic oxide Neodymium Isotopic composition as a proxy of seawater: applying multivariate statistical analyses.

    Science.gov (United States)

    McKinley, C. C.; Scudder, R.; Thomas, D. J.

    2016-12-01

    The Neodymium Isotopic composition (Nd IC) of oxide coatings has been applied as a tracer of water mass composition and used to address fundamental questions about past ocean conditions. The leached authigenic oxide coating from marine sediment is widely assumed to reflect the dissolved trace metal composition of the bottom water interacting with sediment at the seafloor. However, recent studies have shown that readily reducible sediment components, in addition to trace metal fluxes from the pore water, are incorporated into the bottom water, influencing the trace metal composition of leached oxide coatings. This challenges the prevailing application of the authigenic oxide Nd IC as a proxy of seawater composition. Therefore, it is important to identify the component end-members that create sediments of different lithology and determine if, or how they might contribute to the Nd IC of oxide coatings. To investigate lithologic influence on the results of sequential leaching, we selected two sites with complete bulk sediment statistical characterization. Site U1370 in the South Pacific Gyre, is predominantly composed of Rhyolite ( 60%) and has a distinguishable ( 10%) Fe-Mn Oxyhydroxide component (Dunlea et al., 2015). Site 1149 near the Izu-Bonin-Arc is predominantly composed of dispersed ash ( 20-50%) and eolian dust from Asia ( 50-80%) (Scudder et al., 2014). We perform a two-step leaching procedure: a 14 mL of 0.02 M hydroxylamine hydrochloride (HH) in 20% acetic acid buffered to a pH 4 for one hour, targeting metals bound to Fe- and Mn- oxides fractions, and a second HH leach for 12 hours, designed to remove any remaining oxides from the residual component. We analyze all three resulting fractions for a large suite of major, trace and rare earth elements, a sub-set of the samples are also analyzed for Nd IC. We use multivariate statistical analyses of the resulting geochemical data to identify how each component of the sediment partitions across the sequential

  6. Atomic layer deposition grown composite dielectric oxides and ZnO for transparent electronic applications

    International Nuclear Information System (INIS)

    Gieraltowska, S.; Wachnicki, L.; Witkowski, B.S.; Godlewski, M.; Guziewicz, E.

    2012-01-01

    In this paper, we report on transparent transistor obtained using laminar structure of two high-k dielectric oxides (hafnium dioxide, HfO 2 and aluminum oxide, Al 2 O 3 ) and zinc oxide (ZnO) layer grown at low temperature (60 °C–100 °C) using Atomic Layer Deposition (ALD) technology. Our research was focused on the optimization of technological parameters for composite layers Al 2 O 3 /HfO 2 /Al 2 O 3 for thin film transistor structures with ZnO as a channel and a gate layer. We elaborate on the ALD growth of these oxides, finding that the 100 nm thick layers of HfO 2 and Al 2 O 3 exhibit fine surface flatness and required amorphous microstructure. Growth parameters are optimized for the monolayer growth mode and maximum smoothness required for gating.

  7. Recent Advancements in the Cobalt Oxides, Manganese Oxides, and Their Composite As an Electrode Material for Supercapacitor: A Review

    Directory of Open Access Journals (Sweden)

    Santosh J. Uke

    2017-08-01

    Full Text Available Recently, our modern society demands the portable electronic devices such as mobile phones, laptops, smart watches, etc. Such devices demand light weight, flexible, and low-cost energy storage systems. Among different energy storage systems, supercapacitor has been considered as one of the most potential energy storage systems. This has several significant merits such as high power density, light weight, eco-friendly, etc. The electrode material is the important part of the supercapacitor. Recent studies have shown that there are many new advancement in electrode materials for supercapacitors. In this review, we focused on the recent advancements in the cobalt oxides, manganese oxides, and their composites as an electrode material for supercapacitor.

  8. Photocatalytic Oxidation of NO over Composites of Titanium Dioxide and Zeolite ZSM-5

    Directory of Open Access Journals (Sweden)

    Akram Tawari

    2016-02-01

    Full Text Available Composites of TiO2 (Hombikat, P25, sol-gel synthesis and zeolite ZSM-5 (nSi/nAl = 55 with mass fractions from 25/75 to 75/25 were prepared by mechanical mixing, solid-state dispersion and sol-gel synthesis. Characterization of the composites by X-ray diffraction (XRD, N2-sorption, scanning electron microscopy (SEM, and UV-Vis spectroscopy show that mechanical mixing and solid-state dispersion lead to comparable textural properties of the composites. A homogeneous distribution and intimate contact of small TiO2 particles on the crystal surface of zeolite ZSM-5 were achieved by sol-gel synthesis. The composites were studied in the photocatalytic oxidation (PCO of NO in a flatbed reactor under continuous flow according to ISO 22197-1. The highest NO conversion of 41% at an NO2 selectivity as low as 19% stable for 24 h on-stream was reached over the TiO2/ZSM-5 composite from sol-gel synthesis with equal amounts of the two components after calcination at 523 K. The higher activity and stability for complete NO oxidation than for pure TiO2 from sol-gel synthesis, Hombikat, or P25 is attributed to the adsorptive properties of the zeolite ZSM-5 in the composite catalyst. Increasing the calcination temperature up to 823 K leads to larger TiO2 particles and a lower photocatalytic activity.

  9. Graphene oxide/ferric hydroxide composites for efficient arsenate removal from drinking water

    International Nuclear Information System (INIS)

    Zhang Kai; Dwivedi, Vineet; Chi Chunyan; Wu Jishan

    2010-01-01

    A series of novel composites based on graphene oxide (GO) cross-linked with ferric hydroxide was developed for effective removal of arsenate from contaminated drinking water. GO, which was used as a supporting matrix here, was firstly treated with ferrous sulfate. Then, the ferrous compound cross-linked with GO was in situ oxidized to ferric compound by hydrogen peroxide, followed by treating with ammonium hydroxide. The morphology and composition of the composites were analyzed by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The ferric hydroxide was found to be homogenously impregnated onto GO sheets in amorphous form. These composites were evaluated as absorbents for arsenate removal from contaminated drinking water. For the water with arsenate concentration at 51.14 ppm, more than 95% of arsenate was absorbed by composite GO-Fe-5 with an absorption capacity of 23.78 mg arsenate/g of composite. Effective arsenate removal occurred in a wide range of pH from 4 to 9. However, the efficiency of arsenate removal was decreased when pH was increased to higher than 8.

  10. Lanthanum gallate and ceria composite as electrolyte for solid oxide fuel cells

    International Nuclear Information System (INIS)

    Li Shuai; Li Zhicheng; Bergman, Bill

    2010-01-01

    The composite of doped lanthanum gallate (La 0.9 Sr 0.1 Ga 0.8 Mg 0.2 O 2.85 , LSGM) and doped ceria (Ce 0.8 Sm 0.2 O 1.9 , CSO) was investigated as an electrolyte for solid oxide fuel cell (SOFC). The LSGM-CSO composite was examined by X-ray diffraction (XRD) and impedance spectroscopy. It was found that the sintered LSGM-CSO composite contains mainly fluorite CeO 2 phase and a minority impurity phase, Sm 3 Ga 5 O 12 . The LSGM-CSO composite electrolyte shows a small grain boundary response in the impedance spectroscopy as compared to LSGM and CSO pellets. The composite electrolyte exhibits the highest conductivity in the temperature range of 250-600 o C, compared to LSGM and CSO. The LSGM-CSO composite can be expected to be an attractive intermediate temperature electrolyte material for solid oxide fuel cells.

  11. Lanthanum gallate and ceria composite as electrolyte for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Li Shuai, E-mail: shuail@kth.s [Department of Materials Science and Engineering, School of Industrial Engineering and Management, Royal Institute of Technology, SE 10044 Stockholm (Sweden); Li Zhicheng [School of Materials Science and Engineering, Central South University, 410083 Changsha, Hunan (China); Bergman, Bill [Department of Materials Science and Engineering, School of Industrial Engineering and Management, Royal Institute of Technology, SE 10044 Stockholm (Sweden)

    2010-03-04

    The composite of doped lanthanum gallate (La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 2.85}, LSGM) and doped ceria (Ce{sub 0.8}Sm{sub 0.2}O{sub 1.9}, CSO) was investigated as an electrolyte for solid oxide fuel cell (SOFC). The LSGM-CSO composite was examined by X-ray diffraction (XRD) and impedance spectroscopy. It was found that the sintered LSGM-CSO composite contains mainly fluorite CeO{sub 2} phase and a minority impurity phase, Sm{sub 3}Ga{sub 5}O{sub 12}. The LSGM-CSO composite electrolyte shows a small grain boundary response in the impedance spectroscopy as compared to LSGM and CSO pellets. The composite electrolyte exhibits the highest conductivity in the temperature range of 250-600 {sup o}C, compared to LSGM and CSO. The LSGM-CSO composite can be expected to be an attractive intermediate temperature electrolyte material for solid oxide fuel cells.

  12. Facile Synthesis of Co3O4/Mildly Oxidized Multiwalled Carbon Nanotubes/Reduced Mildly Oxidized Graphene Oxide Ternary Composite as the Material for Supercapacitors

    International Nuclear Information System (INIS)

    Lv, Meiyu; Liu, Kaiyu; Li, Yan; Wei, Lai; Zhong, Jianjian; Su, Geng

    2014-01-01

    A three-dimensional (3D) Co 3 O 4 /mildly oxidized multiwalled carbon nanotubes (moCNTs)/reduced mildly oxidized graphene oxide (rmGO) ternary composite was prepared via a simple and green hydrolysis-hydrothermal approach by mixing Co(Ac) 2 ·4H 2 O with moCNTs and mGO suspension in mixed ethanol/H 2 O. As characterized by scanning electron microscopy and transmission electron microscopy, Co 3 O 4 nanoparticles with size of 20-100 nm and moCNTs are effectively anchored in mGO. Cyclic voltammetry and galvanostatic charge-discharge measurements were adopted to investigate the electrochemical properties of Co 3 O 4 /moCNTs/rmGO ternary composite in 6 M KOH solution. In a potential window of 0-0.6 V vs. Hg/HgO, the composite delivers an initial specific capacitance of 492 F g -1 at 0.5 A g -1 and the capacitance remains 592 F g -1 after 2000 cycles, while the pure Co 3 O 4 shows obviously capacitance fading, indicating that rmGO and moCNTs greatly enhance the electrochemical performance of Co 3 O 4

  13. Towards the improvement of the oxidation resistance of Nb-silicides in situ composites: A solid state diffusion approach

    International Nuclear Information System (INIS)

    Mathieu, S.; Knittel, S.; François, M.; Portebois, L.; Mathieu, S.; Vilasi, M.

    2014-01-01

    Highlights: •Local equilibrium is attained during oxidation at phase boundaries (steady state conditions). •A solid state diffusion model explains the oxidation mechanism of Nb-silicides composites. •The Nb ss fraction is not the only parameters governing the oxidation rate of Nb-silicides. •Aluminium increases the thermodynamic activity of Si in the Nb-silicides composites. •The results indicate the need to develop a Nb–Ti–Hf–Al–Cr–Si thermodynamic database. -- Abstract: The present study focuses on the oxidation mechanism of Nb-silicide composites and on the effect of the composition on the oxidation rate at 1100 °C. A theoretical approach is proposed based on experimental results and used to optimise the oxidation resistance. The growth model based on multiphase diffusion was experimentally tested and confirmed by manufacturing seven composites with different compositions. It was also found that the effect of the composition has to be evaluated at 1100 °C within a short time duration (50 h), where the oxide scale and the internal oxidation zone both grow according to parabolic kinetics

  14. Heterogeneous Oxidation of Laboratory-generated Mixed Composition and Biomass Burning Particles

    Science.gov (United States)

    Lim, C. Y.; Sugrue, R. A.; Hagan, D. H.; Cappa, C. D.; Kroll, J. H.; Browne, E. C.

    2016-12-01

    Heterogeneous oxidation of organic aerosol (OA) can significantly transform the chemical and physical properties of particulate matter in the atmosphere, leading to changes to the chemical composition of OA and potential volatilization of organic compounds. It has become increasingly apparent that the heterogeneous oxidation kinetics of OA depend on the phase and morphology of the particles. However, most laboratory experiments to date have been performed on single-component, purely organic precursors, which may exhibit fundamentally different behavior than more complex particles in the atmosphere. Here we present laboratory studies of the heterogeneous oxidation of two more complex chemical systems: thin, organic coatings on inorganic seed particles and biomass burning OA. In the first system, squalane (C30H62), a model compound for reduced OA, is coated onto dry ammonium sulfate particles at various thicknesses (10-20 nm) and exposed to hydroxyl radical (OH) in a flow tube reactor. In the second, we use a semi-batch reactor to study the heterogeneous OH-initiated oxidation of biomass burning particles as a part of the 2016 FIREX campaign in Missoula, MT. The resulting changes in chemical composition are monitored with an Aerodyne High Resolution Time-of-flight Aerosol Mass Spectrometer (AMS) and a soot-particle AMS for the non-refractory and refractory systems, respectively. We show that the heterogeneous oxidation kinetics of these multicomponent particles are substantially different than that of the single-component particles. The oxidation of organic coatings is rapid, undergoing dramatic changes to carbon oxidation state and losing a significant amount of organic mass after relatively low OH exposures (equivalent to several days of atmospheric processing). In the case of biomass burning particles, the kinetics are complex, with different components (inferred by aerosol mass spectrometry) undergoing oxidation at different rates.

  15. In-situ synthesis of magnetic iron-oxide nanoparticle-nanofibre composites using electrospinning

    International Nuclear Information System (INIS)

    Burke, Luke; Mortimer, Chris J.; Curtis, Daniel J.; Lewis, Aled R.; Williams, Rhodri; Hawkins, Karl; Maffeis, Thierry G.G.; Wright, Chris J.

    2017-01-01

    We demonstrate a facile, one-step process to form polymer scaffolds composed of magnetic iron oxide nanoparticles (MNPs) contained within electrospun nano- and micro-fibres of two biocompatible polymers, Poly(ethylene oxide) (PEO) and Poly(vinyl pyrrolidone) (PVP). This was achieved with both needle and free-surface electrospinning systems demonstrating the scalability of the composite fibre manufacture; a 228 fold increase in fibre fabrication was observed for the free-surface system. In all cases the nanoparticle-nanofibre composite scaffolds displayed morphological properties as good as or better than those previously described and fabricated using complex multi-stage techniques. Fibres produced had an average diameter (Needle-spun: 125 ± 18 nm (PEO) and 1.58 ± 0.28 μm (PVP); Free-surface electrospun: 155 ± 31 nm (PEO)) similar to that reported previously, were smooth with no bead defects. Nanoparticle-nanofibre composites were characterised using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), dynamic light scattering (DLS) (Nanoparticle average diameter ranging from 8 ± 3 nm to 27 ± 5 nm), XRD (Phase of iron oxide nanoparticles identified as magnetite) and nuclear magnetic resonance relaxation measurements (NMR) (T1/T2: 32.44 for PEO fibres containing MNPs) were used to verify the magnetic behaviour of MNPs. This study represents a significant step forward for production rates of magnetic nanoparticle-nanofibre composite scaffolds by the electrospinning technique. - Graphical abstract: We present a novel facile, one-step process for the in-situ synthesis of magnetic iron oxide nanoparticle-nanofibre composites using both needle and free-surface electrospinning. This is a significant step forward for production rates of magnetic nanoparticle-nanofibre scaffolds both in terms of fibre and nanoparticle production. - Highlights: • We present a novel process for the in-situ synthesis of magnetic iron oxide nanoparticle

  16. In-situ synthesis of magnetic iron-oxide nanoparticle-nanofibre composites using electrospinning

    Energy Technology Data Exchange (ETDEWEB)

    Burke, Luke; Mortimer, Chris J. [Biomaterials, Biofouling and Biofilms Engineering Laboratory (B3EL), Systems and Process Engineering Centre, College of Engineering, Swansea University, Fabian Way, Swansea SA1 8EN (United Kingdom); Systems and Process Engineering Centre, College of Engineering, Swansea University, Fabian Way, Swansea SA1 8EN (United Kingdom); Curtis, Daniel J.; Lewis, Aled R.; Williams, Rhodri [Systems and Process Engineering Centre, College of Engineering, Swansea University, Fabian Way, Swansea SA1 8EN (United Kingdom); Hawkins, Karl [Centre for NanoHealth (CNH), Swansea University, Singleton Park, Swansea SA2 8PP (United Kingdom); Maffeis, Thierry G.G. [Systems and Process Engineering Centre, College of Engineering, Swansea University, Fabian Way, Swansea SA1 8EN (United Kingdom); Wright, Chris J., E-mail: c.wright@swansea.ac.uk [Biomaterials, Biofouling and Biofilms Engineering Laboratory (B3EL), Systems and Process Engineering Centre, College of Engineering, Swansea University, Fabian Way, Swansea SA1 8EN (United Kingdom); Systems and Process Engineering Centre, College of Engineering, Swansea University, Fabian Way, Swansea SA1 8EN (United Kingdom); Centre for NanoHealth (CNH), Swansea University, Singleton Park, Swansea SA2 8PP (United Kingdom)

    2017-01-01

    We demonstrate a facile, one-step process to form polymer scaffolds composed of magnetic iron oxide nanoparticles (MNPs) contained within electrospun nano- and micro-fibres of two biocompatible polymers, Poly(ethylene oxide) (PEO) and Poly(vinyl pyrrolidone) (PVP). This was achieved with both needle and free-surface electrospinning systems demonstrating the scalability of the composite fibre manufacture; a 228 fold increase in fibre fabrication was observed for the free-surface system. In all cases the nanoparticle-nanofibre composite scaffolds displayed morphological properties as good as or better than those previously described and fabricated using complex multi-stage techniques. Fibres produced had an average diameter (Needle-spun: 125 ± 18 nm (PEO) and 1.58 ± 0.28 μm (PVP); Free-surface electrospun: 155 ± 31 nm (PEO)) similar to that reported previously, were smooth with no bead defects. Nanoparticle-nanofibre composites were characterised using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), dynamic light scattering (DLS) (Nanoparticle average diameter ranging from 8 ± 3 nm to 27 ± 5 nm), XRD (Phase of iron oxide nanoparticles identified as magnetite) and nuclear magnetic resonance relaxation measurements (NMR) (T1/T2: 32.44 for PEO fibres containing MNPs) were used to verify the magnetic behaviour of MNPs. This study represents a significant step forward for production rates of magnetic nanoparticle-nanofibre composite scaffolds by the electrospinning technique. - Graphical abstract: We present a novel facile, one-step process for the in-situ synthesis of magnetic iron oxide nanoparticle-nanofibre composites using both needle and free-surface electrospinning. This is a significant step forward for production rates of magnetic nanoparticle-nanofibre scaffolds both in terms of fibre and nanoparticle production. - Highlights: • We present a novel process for the in-situ synthesis of magnetic iron oxide nanoparticle

  17. Capillarity, oxidative capacity and fibre composition of the soleus and gastrocnemius muscles of rats in hypothyroidism.

    Science.gov (United States)

    Sillau, A H

    1985-01-01

    Muscle capillarity, mean and maximal diffusion distances and muscle fibre composition were evaluated in frozen sections stained for myosin ATPase of the soleus and the white area of the gastrocnemius medial head (gastrocnemius) of rats made hypothyroid by the injection of propylthiouracil (PTU) (50 mg kg-1) every day for 21 or 42 days. Oxygen consumption in the presence of excess ADP and Pi with pyruvate plus malate as substrates and the activity of cytochrome c oxidase were measured in muscle homogenates. Treatment with PTU decreased body oxygen consumption and the concentration of triiodothyronine in plasma. The capacity of the soleus and gastrocnemius muscles' homogenates to oxidize pyruvate plus malate and their cytochrome c oxidase activity were reduced after 21 or 42 days of treatment with PTU. Fibre composition in the soleus muscle was changed by treatment with PTU. There was a decrease in the proportion of type IIa or fast glycolytic oxidative fibres and an increase in type I or slow oxidative fibres. After 21 days of PTU administration there was also an increase in the proportion of fibres classified as IIc. The changes in fibre composition are believed to be the result of changes in the types of myosin synthesized by the fibres. Therefore, the fibres classified as IIc are, most probably, IIa fibres in the process of changing their myosin to that of the type I fibres. No changes in fibre composition were evident in the white area of the gastrocnemius medial head, an area made up of IIb or fast glycolytic fibres. The indices of capillarity: capillary density and capillary to fibre ratio, as well as mean and maximal diffusion distances from the capillaries, were not changed by the treatment with PTU in the muscles studied. The lack of changes in capillarity in spite of significant changes in oxidative capacity indicates that in skeletal muscle capillarity is not necessarily related to the oxidative capacity of the fibres. PMID:3989729

  18. Room temperature NO2-sensing properties of porous silicon/tungsten oxide nanorods composite

    International Nuclear Information System (INIS)

    Wei, Yulong; Hu, Ming; Wang, Dengfeng; Zhang, Weiyi; Qin, Yuxiang

    2015-01-01

    Highlights: • Porous silicon/WO 3 nanorods composite is synthesized via hydrothermal method. • The morphology of WO 3 nanorods depends on the amount of oxalic acid (pH value). • The sensor can detect ppb level NO 2 at room temperature. - Abstract: One-dimensional single crystalline WO 3 nanorods have been successfully synthesized onto the porous silicon substrates by a seed-induced hydrothermal method. The controlled morphology of porous silicon/tungsten oxide nanorods composite was obtained by using oxalic acid as an organic inducer. The reaction was carried out at 180 °C for 2 h. The influence of oxalic acid (pH value) on the morphology of porous silicon/tungsten oxide nanorods composite was investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The NO 2 -sensing properties of the sensor based on porous silicon/tungsten oxide nanorods composite were investigated at different temperatures ranging from room temperature (∼25 °C) to 300 °C. At room temperature, the sensor behaved as a typical p-type semiconductor and exhibited high gas response, good repeatability and excellent selectivity characteristics toward NO 2 gas due to its high specific surface area, special structure, and large amounts of oxygen vacancies

  19. Enhanced photocatalytic properties of ZnO/reduced graphene oxide sheets (rGO) composites with controllable morphology and composition

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yanting, E-mail: 928221565@qq.com; Liu, Lin, E-mail: llspzjnu@163.com; Cui, Tingting, E-mail: wuleiwangyou@163.com; Tong, Guoxiu, E-mail: tonggx@zjnu.cn; Wu, Wenhua, E-mail: tongwu@zjnu.cn

    2017-08-01

    Highlights: • An easy one-step low-temperature chemical etching route for ZnO NR/rGO composites. • Modulation over the ZnO morphology and content in ZnO NR/rGO composites. • Investigating shape and content-dependent optical and photocatalytic properties. • Revealing the enhancement mechanism of optical and photocatalytic properties. - Abstract: ZnO with various morphologies and contents was used to decorate reduced graphene oxide (rGO) sheets via an easy one-step low-temperature chemical etching route to improve photocatalytic properties. The ZnO shape and content in ZnO/rGO composites were adjusted by changing aging time, heating mode, and rGO mass added. Shape and content-dependent optical and photocatalytic properties are observed in ZnO/rGO composites. A moderate amount of ZnO nanorings (NRs) decorated with rGO can significantly improve the light absorption and photo-luminescence emission because of plasmonic resonant absorption and plasmonic nanoantenna radiation, respectively. ZnO NR/rGO composites with a moderate ZnO content of 29.54 wt.% exhibit the optimum photocatalytic activity with a 0.025 min{sup −1} apparent rate constant, which is significantly higher than those of pure rGO (0.0085 min{sup −1}) and ZnO NRs (0.018 min{sup −1}). The improved performance is ascribed to the synergistic effect of enhanced adsorption capacity, plasmonic light absorption, plasmonic nanoantenna radiation, and the prolonged lifetime of photogenerated electron-hole pairs. Our findings not only offer insights into the plasmon enhanced optical and photocatalytic properties of ZnO NR/rGO composites but also suggest the possibility of fabricating ZnO NR/rGO photocatalyst with enhanced performance.

  20. Color superconductivity

    International Nuclear Information System (INIS)

    Wilczek, F.

    1997-01-01

    The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken

  1. Color superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Wilczek, F. [Institute for Advanced Study, Princeton, NJ (United States)

    1997-09-22

    The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken.

  2. Preparation of Reduced Graphene Oxide/MnO Composite and Its Electromagnetic Wave Absorption Performance

    Science.gov (United States)

    Yuan, Jiangtao; Li, Kunzhen; Liu, Zhongfei; Jin, Shaowei; Li, Shikuo; Zhang, Hui

    2018-02-01

    The composite containing reduced graphene oxide and MnO nanoparticles (RGO/MnO) has been prepared via a one step pyrolysis method. The MnO nanoparticles were uniformly dispersed on the surface of RGO nanosheets forming MnO/RGO composite. The composite displays a maximum absorption of ‒38.9 dB at 13.5 GHz and the bandwidth of reflection loss corresponding to -10 dB can reach 4.9 GHz (from 11.5 to 16.4 GHz) with a coating layer thickness of only 2 mm. Therefore, the obtained RGO/MnO composite a perfect lightweight and high-performance electromagnetic wave absorbent.

  3. Graphene oxide-Li(+)@C60 donor-acceptor composites for photoenergy conversion.

    Science.gov (United States)

    Supur, Mustafa; Kawashima, Yuki; Ohkubo, Kei; Sakai, Hayato; Hasobe, Taku; Fukuzumi, Shunichi

    2015-06-28

    An ionic endohedral metallofullerene (Li(+)@C60) with mild hydrophilic nature was combined with graphene oxide (GO) to construct a donor-acceptor composite in neat water. The resulting composite was characterised by UV-Vis and Raman spectroscopy, powder X-ray diffraction, dynamic light scattering measurements and transmission electron microscopy. Theoretical calculations (DFT at the B3LYP/6-31(d) level) were also utilized to gain further insight into the composite formation. As detected by electron paramagnetic resonance spectroscopy, photoexcitation of the GO-Li(+)@C60 composite results in electron transfer from GO to the triplet excited state of Li(+)@C60, leading to photocurrent generation at the OTE/SnO2 electrode.

  4. Tungsten Oxide and Polyaniline Composite Fabricated by Surfactant-Templated Electrodeposition and Its Use in Supercapacitors

    Directory of Open Access Journals (Sweden)

    Benxue Zou

    2014-01-01

    Full Text Available Composite nanostructures of tungsten oxide and polyaniline (PANI were fabricated on carbon electrode by electrocodeposition using sodium dodecylbenzene sulfonate (SDBS as the template. The morphology of the composite can be controlled by changing SDBS surfactant and aniline monomer concentrations in solution. With increasing concentration of aniline in surfactant solution, the morphological change from nanoparticles to nanofibers was observed. The nanostructured WO3/PANI composite exhibited enhanced capacitive charge storage with the specific capacitance of 201 F g−1 at 1.28 mA cm−2 in large potential window of -0.5~ 0.65 V versus SCE compared to the bulk composite film. The capacitance retained about 78% when the sweeping potential rate increased from 10 to 150 mV/s.

  5. Optimization on microwave absorbing properties of carbon nanotubes and magnetic oxide composite materials

    Science.gov (United States)

    Mingdong, Chen; Huangzhong, Yu; Xiaohua, Jie; Yigang, Lu

    2018-03-01

    Based on the physical principle of interaction between electromagnetic field and the electromagnetic medium, the relationship between microwave absorbing coefficient (MAC) and the electromagnetic parameters of materials was established. With the composite materials of nickel ferrite (NiFe2O4), carbon nanotubes (CNTs) and paraffin as an example, optimization on absorbing properties of CNTs/magnetic oxide composite materials was studied at the frequency range of 2-18 GHz, and a conclusion is drawn that the MAC is the biggest at the same frequency, when the CNTs is 10 wt% in the composite materials. Through study on the relationship between complex permeability and MAC, another interesting conclusion is drawn that MAC is obviously affected by the real part of complex permeability, and increasing real part of complex permeability is beneficial for improving absorbing properties. The conclusion of this paper can provide a useful reference for the optimization research on the microwave absorbing properties of CNTs/ferrite composite materials.

  6. Unconventional superconductivity in heavy fermionic and high-Tc superconductors

    International Nuclear Information System (INIS)

    Volovik, G.E.

    1989-01-01

    Splitting of the superconducting transition and glass spectrum in heavy fermion companies and oxide superconductors are discussed. The multicomponent order parameter leads to splitting of transition due to magnetic field, impurities, orthorhombic distortion, etc... Linear specific heat in oxide superconductors may be explained in terms of the Fermi-surface arising in superconducting state if interband is pairing strong enough

  7. Status of RF superconductivity at Argonne

    International Nuclear Information System (INIS)

    Shepard, K.W.

    1990-01-01

    Development of a superconducting slow-wave structures began at Argonne National Laboratory (ANL) in 1971, and led to the first superconducting heavy-ion linac (ATLAS - the Argonne Tandem-Linac Accelerator System). The Physics Division at ANL has continued to develop superconducting RF technology for accelerating heavy-ions, with the result that the linac has been in an almost continuous process of upgrade and expansion. In 1987, the Engineering Physics Division at ANL began developing of superconducting RF components for the acceleration of high-brightness proton and deuterium beams. The two divisions collaborate in work on several applications of RF superconductivity, and also in work to develop the technology generally. The present report briefly describes major features of the superconducting heavy-ion linac (very-low-velocity superconducting linac, positive ion injector), proton accelerating structures (superconducting resonant cavities for acceleration of high-current proton and deuteron beams, RF properties of oxide superconductors), and future work. Both divisions expect to continue a variety of studies, frequently in collaboration, to advance the basic technology of RF superconductivity. (N.K.)

  8. Superconducting magnet

    Science.gov (United States)

    1985-01-01

    Extensive computer based engineering design effort resulted in optimization of a superconducting magnet design with an average bulk current density of approximately 12KA/cm(2). Twisted, stranded 0.0045 inch diameter NbTi superconductor in a copper matrix was selected. Winding the coil from this bundle facilitated uniform winding of the small diameter wire. Test coils were wound using a first lot of the wire. The actual packing density was measured from these. Interwinding voltage break down tests on the test coils indicated the need for adjustment of the wire insulation on the lot of wire subsequently ordered for construction of the delivered superconducting magnet. Using the actual packing densities from the test coils, a final magnet design, with the required enhancement and field profile, was generated. All mechanical and thermal design parameters were then also fixed. The superconducting magnet was then fabricated and tested. The first test was made with the magnet immersed in liquid helium at 4.2K. The second test was conducted at 2K in vacuum. In the latter test, the magnet was conduction cooled from the mounting flange end.

  9. Enhancement of the oxidation resistance of carbon fibres in C/C composites via surface treatments

    Energy Technology Data Exchange (ETDEWEB)

    Labruquere, S.; Pailler, R.; Naslain, R. [Bordeaux Univ., Pessac (France). Lab. des Composites Thermostructuraux; Desbat, B. [Lab. de Spectroscopie Moleculaire et Cristalline, Univ. of Bordeaux, Talence (France)

    1997-12-31

    Carbon-carbon (C/C) composites are commonly used in rockets and braking systems. However, the carbon reacts with oxygen, burning away rapidly at temperatures as low as 450 C. This work deals with the protection of carbon fibres from oxidation between 600 and 1000 C. Two kinds of methods were investigated to protect carbon fibres: (i) surface treatment with aqueous solutions (e.g. of H3PO4) and (ii) chemical vapour deposition (CVD) of SiC coatings. Oxidation resistance of the as treated preforms was studied under dry air atmosphere. (orig.) 2 refs.

  10. A study of the oxidation of nickel-titanium intermetallics. II. Phase composition of the scale

    Energy Technology Data Exchange (ETDEWEB)

    Chuprina, V G [Institut Problem Materialovedeniia, Kiev (Ukrainian SSR)

    1989-06-01

    The phase composition of the scale formed on NiTi during oxidation in air in the temperature range 600-1000 C was investigated by X-ray diffraction and layer-by-layer metallographic analyses. The scale was found to contain NiO, NiO.TiO2, TiO2, Ti2O3, Ti3O5, Ni, and Ni(Ti) solid solution; an Ni3Ti sublayer was present at the scale-alloy boundary. Oxygen diffusion in the scale toward the sublayer and counterdiffusion of Ni(+2) were found to be the principal processes responsible for NiTi oxidation. 8 refs.

  11. Digital laser printing of metal/metal-oxide nano-composites with tunable electrical properties

    International Nuclear Information System (INIS)

    Zenou, M; Kotler, Z; Sa’ar, A

    2016-01-01

    We study the electrical properties of aluminum structures printed by the laser forward transfer of molten, femtoliter droplets in air. The resulting printed material is an aluminum/aluminum-oxide nano-composite. By controlling the printing conditions, and thereby the droplet volume, its jetting velocity and duration, it is possible to tune the electrical resistivity to a large extent. The material resistivity depends on the degree of oxidation which takes place during jetting and on the formation of electrical contact points as molten droplets impact the substrate. Evidence for these processes is provided by FIB cross sections of printed structures. (paper)

  12. Reaction of Antimony-Uranium Composite Oxide in the Chlorination Treatment of Waste Catalyst - 13521

    International Nuclear Information System (INIS)

    Sawada, Kayo; Hirabayashi, Daisuke; Enokida, Youichi

    2013-01-01

    The effect of oxygen gas concentration on the chlorination treatment of antimony-uranium composite oxide catalyst waste was investigated by adding different concentrations of oxygen at 0-6 vol% to its chlorination agent of 0.6 or 6 vol% hydrogen chloride gas at 1173 K. The addition of oxygen tended to prevent the chlorination of antimony in the oxide. When 6 vol% hydrogen chloride gas was used, the addition of oxygen up to 0.1 vol% could convert the uranium contained in the catalyst to U 3 O 8 without any significant decrease in the reaction rate compared to that of the treatment without oxygen. (authors)

  13. Melt formed superconducting joint between superconducting tapes

    International Nuclear Information System (INIS)

    Benz, M.G.; Knudsen, B.A.; Rumaner, L.E.; Zaabala, R.J.

    1992-01-01

    This patent describes a superconducting joint between contiguous superconducting tapes having an inner laminate comprised of a parent-metal layer selected from the group niobium, tantalum, technetium, and vanadium, a superconductive intermetallic compound layer on the parent-metal layer, a reactive-metal layer that is capable of combining with the parent-metal and forming the superconductive intermetallic compound, the joint comprising: a continuous precipitate of the superconductive intermetallic compound fused to the tapes forming a continuous superconducting path between the tapes

  14. Strong composite films with layered structures prepared by casting silk fibroin-graphene oxide hydrogels

    Science.gov (United States)

    Huang, Liang; Li, Chun; Yuan, Wenjing; Shi, Gaoquan

    2013-04-01

    Composite films of graphene oxide (GO) sheets and silk fibroin (SF) with layered structures have been prepared by facile solution casting of SF-GO hydrogels. The as-prepared composite film containing 15% (by weight, wt%) of SF shows a high tensile strength of 221 +/- 16 MPa and a failure strain of 1.8 +/- 0.4%, which partially surpass those of natural nacre. Particularly, this composite film also has a high modulus of 17.2 +/- 1.9 GPa. The high mechanical properties of this composite film can be attributed to its high content of GO (85 wt%), compact layered structure and the strong hydrogen bonding interaction between SF chains and GO sheets.Composite films of graphene oxide (GO) sheets and silk fibroin (SF) with layered structures have been prepared by facile solution casting of SF-GO hydrogels. The as-prepared composite film containing 15% (by weight, wt%) of SF shows a high tensile strength of 221 +/- 16 MPa and a failure strain of 1.8 +/- 0.4%, which partially surpass those of natural nacre. Particularly, this composite film also has a high modulus of 17.2 +/- 1.9 GPa. The high mechanical properties of this composite film can be attributed to its high content of GO (85 wt%), compact layered structure and the strong hydrogen bonding interaction between SF chains and GO sheets. Electronic supplementary information (ESI) available: XPS spectrum of the SF-GO hybrid film, SEM images of lyophilized GO dispersion and the failure surface of GO film. See DOI: 10.1039/c3nr00196b

  15. Graphene nanoplate-MnO2 composites for supercapacitors: a controllable oxidation approach

    Science.gov (United States)

    Huang, Huajie; Wang, Xin

    2011-08-01

    Graphene nanoplate-MnO2 composites have been synthesized by oxidising part of the carbon atoms in the framework of graphene nanoplates at ambient temperature. The composites were characterized by means of X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV). It was found that the oxidation extent of the carbon atoms in the graphene framework in these composites was dependent on the reaction time, which also influenced their microstructure, morphology and electrochemical properties. Compared with MnO2 nanolamellas, the nanocomposite prepared with a reaction time of 3 h reveals better electrochemical properties as a supercapacitor electrode material.Graphene nanoplate-MnO2 composites have been synthesized by oxidising part of the carbon atoms in the framework of graphene nanoplates at ambient temperature. The composites were characterized by means of X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV). It was found that the oxidation extent of the carbon atoms in the graphene framework in these composites was dependent on the reaction time, which also influenced their microstructure, morphology and electrochemical properties. Compared with MnO2 nanolamellas, the nanocomposite prepared with a reaction time of 3 h reveals better electrochemical properties as a supercapacitor electrode material. Electronic supplementary information (ESI) available: Fig. S1, AFM image (5 μm × 5 μm) of graphene nanoplate-MnO2 composite obtained at 3 h; Fig. S2, nitrogen adsorption/desorption isotherm of graphene nanoplate-MnO2 composite obtained at 3 h. See DOI: 10.1039/c1nr10229j

  16. Biaxial (Tension-Torsion) Testing of an Oxide/Oxide Ceramic Matrix Composite

    Science.gov (United States)

    2013-03-01

    11 3.1 NextelTM 720/AS Dogbone and Straightsided Specimen Layups . . . . . . . . 15 3.2 Prepreg processing steps of NextelTM 720/AS composite...the laminate in the test section, used for producing circum- ferential or axial stresses, should be minimized to avoid adding a high radial stress...provided fabrication process in Figure 3.2. The process followed the fabric, prepreg , and layup process versus the fiber tow and filament winding

  17. SnO{sub 2}/reduced graphene oxide composite films for electrochemical applications

    Energy Technology Data Exchange (ETDEWEB)

    Bondarenko, E.A. [Belarusian State University, Nezalezhnastsi Av. 4, Minsk 220030 (Belarus); Mazanik, A.V., E-mail: mazanikalexander@gmail.com [Belarusian State University, Nezalezhnastsi Av. 4, Minsk 220030 (Belarus); Streltsov, E.A. [Belarusian State University, Nezalezhnastsi Av. 4, Minsk 220030 (Belarus); Kulak, A.I., E-mail: kulak@igic.bas-net.by [Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus, Surganova str., 9/1, Minsk 220072 (Belarus); Korolik, O.V. [Belarusian State University, Nezalezhnastsi Av. 4, Minsk 220030 (Belarus)

    2015-12-15

    Highlights: • SnO{sub 2}/GO composites with mass fraction of carbon phase 0.01% ≤ w{sub C} ≤ 80% have been formed. • 400 °C annealing was applied for GO reduction in the composites. • SnO{sub 2}/rGO composites demonstrate a high electrocatalytic activity in anodic processes. • Exchange current density grows linearly with carbon phase concentration at w{sub C} ≤ 10%. - Abstract: SnO{sub 2}/GO (GO is graphene oxide) composite films with GO mass fraction w{sub C} ranging from 0.01 to 80% have been prepared using colloidal solutions. Heat treatment of SnO{sub 2}/GO films in Ar atmosphere at 400 °C leads to GO reduction accompanied by partial exfoliation and decreasing of the particle thickness. SnO{sub 2}/rGO (rGO is reduced GO) film electrodes demonstrate a high electrocatalytic activity in the anodic oxidation of inorganic (iodide-, chloride-, sulfite-anions) and organic (ascorbic acid) substances. The increase of the anodic current in these reactions is characterized by overpotential inherent to the individual rGO films and exchange current density grows linearly with rGO concentration at w{sub C} ≤ 10% indicating that the rGO particles in composites act as sites of electrochemical process. The SnO{sub 2}/rGO composite films, in which the chemically stable oxide matrix encapsulates the rGO inclusions, can be considered as a promising material for applied electrochemistry.

  18. Cycle oxidation behavior and anti-oxidation mechanism of hot-dipped aluminum coating on TiBw/Ti6Al4V composites with network microstructure.

    Science.gov (United States)

    Li, X T; Huang, L J; Wei, S L; An, Q; Cui, X P; Geng, L

    2018-04-10

    Controlled and compacted TiAl 3 coating was successfully fabricated on the network structured TiBw/Ti6Al4V composites by hot-dipping aluminum and subsequent interdiffusion treatment. The network structure of the composites was inherited to the TiAl 3 coating, which effectively reduces the thermal stress and avoids the cracks appeared in the coating. Moreover, TiB reinforcements could pin the TiAl 3 coating which can effectively improve the bonding strength between the coating and composite substrate. The cycle oxidation behavior of the network structured coating on 873 K, 973 K and 1073 K for 100 h were investigated. The results showed the coating can remarkably improve the high temperature oxidation resistance of the TiBw/Ti6Al4V composites. The network structure was also inherited to the Al 2 O 3 oxide scale, which effectively decreases the tendency of cracking even spalling about the oxide scale. Certainly, no crack was observed in the coating after long-term oxidation due to the division effect of network structured coating and pinning effect of TiB reinforcements. Interfacial reaction between the coating and the composite substrate occurred and a bilayer structure of TiAl/TiAl 2 formed next to the substrate after oxidation at 973 K and 1073 K. The anti-oxidation mechanism of the network structured coating was also discussed.

  19. A composite structure based on reduced graphene oxide and metal oxide nanomaterials for chemical sensors.

    Science.gov (United States)

    Galstyan, Vardan; Comini, Elisabetta; Kholmanov, Iskandar; Ponzoni, Andrea; Sberveglieri, Veronica; Poli, Nicola; Faglia, Guido; Sberveglieri, Giorgio

    2016-01-01

    A hybrid nanostructure based on reduced graphene oxide and ZnO has been obtained for the detection of volatile organic compounds. The sensing properties of the hybrid structure have been studied for different concentrations of ethanol and acetone. The response of the hybrid material is significantly higher compared to pristine ZnO nanostructures. The obtained results have shown that the nanohybrid is a promising structure for the monitoring of environmental pollutants and for the application of breath tests in assessment of exposure to volatile organic compounds.

  20. A composite structure based on reduced graphene oxide and metal oxide nanomaterials for chemical sensors

    Directory of Open Access Journals (Sweden)

    Vardan Galstyan

    2016-10-01

    Full Text Available A hybrid nanostructure based on reduced graphene oxide and ZnO has been obtained for the detection of volatile organic compounds. The sensing properties of the hybrid structure have been studied for different concentrations of ethanol and acetone. The response of the hybrid material is significantly higher compared to pristine ZnO nanostructures. The obtained results have shown that the nanohybrid is a promising structure for the monitoring of environmental pollutants and for the application of breath tests in assessment of exposure to volatile organic compounds.

  1. Community size and composition of ammonia oxidizers and denitrifiers in an alluvial intertidal wetland ecosystem

    Directory of Open Access Journals (Sweden)

    Ziye eHu

    2014-07-01

    Full Text Available Global nitrogen cycling is mainly mediated by the activity of microorganisms. Nitrogen cycle processes are mediated by functional groups of microorganisms that are affected by constantly changing environmental conditions and substrate availability. In this study, we investigated the temporal and spatial patterns of nitrifier and denitrifier communities in an intertidal wetland. Soil samples were collected over four distinct seasons from three locations with different vegetative cover. Multiple environmental factors and process rates were measured and analyzed together with the community size and composition profiles. We observed that the community size and composition of the nitrifiers and denitrifiers are affected significantly by seasonal factors, while vegetative cover affected the community composition. The seasonal impacts on the community size of ammonia oxidizing archaea (AOA are much higher than that of ammonia oxidizing bacteria (AOB. The seasonal change was a more important indicator for AOA community composition patterns, while vegetation was more important for the AOB community patterns. The microbial process rates were correlated with both the community size and composition.

  2. Zinc oxide-potassium ferricyanide composite thin film matrix for biosensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Shibu [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Arya, Sunil K. [Department of Science and Technology Centre on Biomolecular Electronics, National Physical Laboratory, New Delhi 110012 (India); Singh, S.P. [Department of Engineering Science and Materials, University of Puerto Rico, Mayaguez, PR 00680 (United States); Sreenivas, K. [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Malhotra, B.D. [Department of Science and Technology Centre on Biomolecular Electronics, National Physical Laboratory, New Delhi 110012 (India); Gupta, Vinay, E-mail: vgupta@physics.du.ac.in [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2009-10-27

    Thin film of zinc oxide-potassium ferricyanide (ZnO-KFCN) composite has been deposited on indium tin oxide (ITO) coated corning glass using pulsed laser deposition (PLD). The composite thin film electrode has been exploited for amperometric biosensing in a mediator-free electrolyte. The composite matrix has the advantages of high iso-electric point of ZnO along with enhanced electron communication due to the presence of a redox species in the matrix itself. Glucose oxidase (GOx) has been chosen as the model enzyme for studying the application of the developed matrix to biosensing. The sensing response of the bio-electrode, GOx/ZnO-KFCN/ITO/glass, towards glucose was studied using cylic voltammetry (CV) and photometric assay. The bio-electrode exhibits good linearity from 2.78 mM to 11.11 mM glucose concentration. The low value of Michaelis-Menten constant (1.69 mM) indicates an enhanced affinity of the immobilized enzyme towards its substrate. A quassireversible system is obtained with the composite matrix. The results confirm promising application of the ZnO-KFCN composite matrix for amperometric biosensing applications in a mediator-less electrolyte that could lead to the realization of an integrated lab-on-chip device.

  3. Zinc oxide-potassium ferricyanide composite thin film matrix for biosensing applications

    International Nuclear Information System (INIS)

    Saha, Shibu; Arya, Sunil K.; Singh, S.P.; Sreenivas, K.; Malhotra, B.D.; Gupta, Vinay

    2009-01-01

    Thin film of zinc oxide-potassium ferricyanide (ZnO-KFCN) composite has been deposited on indium tin oxide (ITO) coated corning glass using pulsed laser deposition (PLD). The composite thin film electrode has been exploited for amperometric biosensing in a mediator-free electrolyte. The composite matrix has the advantages of high iso-electric point of ZnO along with enhanced electron communication due to the presence of a redox species in the matrix itself. Glucose oxidase (GOx) has been chosen as the model enzyme for studying the application of the developed matrix to biosensing. The sensing response of the bio-electrode, GOx/ZnO-KFCN/ITO/glass, towards glucose was studied using cylic voltammetry (CV) and photometric assay. The bio-electrode exhibits good linearity from 2.78 mM to 11.11 mM glucose concentration. The low value of Michaelis-Menten constant (1.69 mM) indicates an enhanced affinity of the immobilized enzyme towards its substrate. A quassireversible system is obtained with the composite matrix. The results confirm promising application of the ZnO-KFCN composite matrix for amperometric biosensing applications in a mediator-less electrolyte that could lead to the realization of an integrated lab-on-chip device.

  4. Optimization of strontium adsorption from aqueous solution using (mn-Zr) oxide-pan composite spheres

    International Nuclear Information System (INIS)

    Inan, S.; Altas, Y.

    2009-01-01

    The processes based on adsorption and ion exchange have a great role for the pre-concentration and separation of toxic, long lived radionuclides from liquid waste. In Nuclear waste management, the removal of long lived, radiotoxic isotopes from radioactive waste such as strontium reduces the storage problems and facilitates the disposal of the waste. Depending on the waste type, a variety of adsorbents and/or ion exchangers are used. Due to the amorphous structure of hydrous oxides and their mixtures, they don't have reproducible properties. Besides, obtained powders are very fine particles and they can cause operational problems such as pressure drop and filtration. Therefore they are not suitable for column applications. These reasons have recently expedited the study on the preparation of organic-inorganic composite adsorbent beads for industrial applications. PAN, as a stable and porous support for fine particles, provides the utilization of ion exchangers in large scale column applications. The utilization of PAN as a support material with many inorganic ion exchangers was firstly achieved by Sebesta in the beginning of 1990's. Later on, PAN based composite ion exchangers were prepared and used for the removal of radionuclides and heavy metal ions from aqueous solution and waste waters. In this study, spherical (Mn-Zr)oxide-PAN composite were prepared for separation of strontium from aqueous solution in a wide pH range. Sr 2 + adsorption of composite adsorbent was optimized by using experimental design 'Central Composite Design' model.

  5. Polyaniline-stabilized electromagnetic wave absorption composites of reduced graphene oxide on magnetic carbon nanotube film

    Science.gov (United States)

    Li, Jinsong; Duan, Yan; Lu, Weibang; Chou, Tsu-Wei

    2018-04-01

    A multi-layered composite with exceptionally high electromagnetic wave-absorbing capacity and performance stability was fabricated via the facile electrophoresis of a reduced graphene oxide network on carbon nanotube (CNT)-Fe3O4-polyaniline (PANI) film. Minimum reflection loss (RL) of -53.2 dB and absorbing bandwidth of 5.87 GHz (graphene-based absorbers. In particular, comparing to the original composites, the minimum RL and bandwidth (< -10 dB) maintains 82.5% and 99.7%, respectively, after 20 h charge/discharge cycling, demonstrating high environmental suitability.

  6. Electrophoretically deposited graphene oxide and carbon nanotube composite for electrochemical capacitors

    International Nuclear Information System (INIS)

    Ajayi, Obafunso A; Wong, Chee Wei; Guitierrez, Daniel H; Peaslee, David; Cheng, Arthur; Chen, Bin; Gao, Theodore

    2015-01-01

    We report a scalable one-step electrode fabrication approach for synthesizing composite carbon-based supercapacitors with synergistic outcomes. Multi-walled carbon nanotubes (MWCNTs) were successfully integrated into our modified electrophoretic deposition process to directly form composite MWCNT–GO electrochemical capacitor electrodes (where GO is graphene oxide) with superior performance to solely GO electrodes. The measured capacitance improved threefold, reaching a maximum specific capacitance of 231 F g"−"1. Upon thermal reduction, MWCNT–GO electrode sheet resistance decreased by a factor of 8, significantly greater than the 2× decrease of those without MWCNTs. (paper)

  7. Sample-length dependence of the critical current of slightly and significantly bent-damaged Bi2223 superconducting composite tape

    International Nuclear Information System (INIS)

    Ochiai, S; Fujimoto, M; Okuda, H; Oh, S S; Ha, D W

    2007-01-01

    The local critical current along a sample length is different from position to position in a long sample, especially when the sample is damaged by externally applied strain. In the present work, we attempted to reveal the relation of the distribution of the local critical current to overall critical current and the sample-length dependence of critical current for slightly and significantly damaged Bi2223 composite tape samples. In the experiment, 48 cm long Bi2223 composite tape samples, composed of 48 local elements with a length of 1 cm and 8 parts with a length 6 cm, were bent by 0.37 and 1.0% to cause slight and significant damage, respectively. The V-I curve, critical current (1 μV cm -1 criterion) and n value were measured for the overall sample as well as for the local elements and parts. It was found that the critical current distributions of the 1 cm elements at 0.37 and 1.0% bending strains are described by the three-parameter- and bimodal Weibull distribution functions, respectively. The critical current of a long sample at both bending strains could be described well by substituting the distributed critical current and n value of the short elements into the series circuit model for voltage generation. Also the measured relation of average critical current to sample length could be reproduced well in the computer by a Monte Carlo simulation method. It was shown that the critical current and n value decrease with increasing sample length at both bending strains. The extent of the decrease in critical current with sample length is dependent on the criterion of the critical current; the critical current decreases only slightly under the 1 μV cm -1 criterion which is not damage-sensitive, while it decreases greatly with increasing sample length under damage-sensitive criteria such as the 1 μV one

  8. Process of preparing superconductive oxide complexes containing L, Ba, Cu and O and method of using the same

    International Nuclear Information System (INIS)

    Salama, K.; Selvamanickam, V.

    1995-01-01

    A superconductor material having a current density, J, of from about 30,000 to about 85,000 amps/cm 2 at zero magnetic field and 77 K is disclosed. The 123 superconductor, of the formula L 1 Ba 2 Cu 3 O 6+δ wherein L is preferably yttrium, is capable of entrapping sufficiently high magnetic fields and exhibits a low microwave surface resistance. The process of preparing the superconductor comprises compacting the bulk product, L 1 Ba 2 Cu 3 O, and then sintering the reaction product at a temperature between about 40 C to about 90 C below its melting point, i.e., for Y 1 Ba 2 Cu 3 O 6+δ at a temperature of approximately 940 C. The composition is then heated in a preheated chamber maintained at approximately 1090 C to about 1,200 C (approximately 1,100 C for Y 1 Ba 2 Cu 3 O 6+δ ) until it has been decomposed, and is then rapidly cooled to a temperature between about 10 C to about 30 C above its melting point, i.e. for Y 1 Ba 2 Cu 3 O 6+δ a temperature of 1,030 C, and then is controlled cooled at a rate of 1 C/hr until it reaches a temperature of about 20 C to about 40 C below its melting point, i.e., for Y 1 Ba 2 Cu 3 O 6+δ a temperature of 980 C. The composition is steadily held at this temperature for at least eight hours, and then cooled to a temperature of approximately 400 C below its melting point (for Y 1 Ba 2 Cu 3 O 6+δ approximately a temperature of 600 C). The material is then slowly cooled by another 200 C and is then annealed in oxygen. 5 figs

  9. Persulfate activation by iron oxide-immobilized MnO2 composite: identification of iron oxide and the optimum pH for degradations.

    Science.gov (United States)

    Jo, Young-Hoon; Do, Si-Hyun; Kong, Sung-Ho

    2014-01-01

    Iron oxide-immobilized manganese oxide (MnO2) composite was prepared and the reactivity of persulfate (PS) with the composite as activator was investigated for degradation of carbon tetrachloride and benzene at various pH levels. Brunauer-Emmett-Teller (BET) surface area of the composite was similar to that of pure MnO2 while the pore volume and diameter of composite was larger than those of MnO2. Scanning electron microscopy couples with energy dispersive spectroscopy (SEM-EDS) showed that Fe and Mn were detected on the surface of the composite, and X-ray diffraction (XRD) analysis indicated the possibilities of the existence of various iron oxides on the composite surface. Furthermore, the analyses of X-ray photoelectron (XPS) spectra revealed that the oxidation state of iron was identified as 1.74. In PS/composite system, the same pH for the highest degradation rates of both carbon tetrachloride and benzene were observed and the value of pH was 9. Scavenger test was suggested that both oxidants (i.e. hydroxyl radical, sulfate radical) and reductant (i.e. superoxide anion) were effectively produced when PS was activated with the iron-immobilized MnO2. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. A novel superconducting toroidal field magnetic concept using advanced materials

    International Nuclear Information System (INIS)

    Schwartz, J.

    1991-01-01

    The plasma physics database indicates that two distinct approaches to tokamak design may lead to commercial fusion reactors: Low Aspect ratio, high plasma current, relatively low magnetic field devices, and high Aspect ratio, high field devices. The former requires significant enhancements in plasma performance, while the latter depends primarily upon technology development. The key technology for the commercialization of the high-field approach is large, high magnetic field superconducting magnets. In this paper, the physics motivation for the high field approach and key superconducting magnet (SCM) development issues are reviewed. Improved SCM performance may be obtained from improved materials and/or improved engineering. Superconducting materials ranging from NbTi to high-T c oxides are reviewed, demonstrating the broad range of potential superconducting materials. Structural material options are discussed, including cryogenic steel alloys and fiber-reinforced composite materials. The potential for improved magnet engineering is quantified in terms of the Virial Theorem Limit, and two examples of approaches to highly optimized magnet configurations are discussed. The force-reduced concept, which is a finite application of the force-free solutions to Ampere's Law, appear promising for large SCMs but may be limited by the electromagnetics of a fusion plasma. The Solid Superconducting Cylinder (SSC) concept is proposed. This concept combines the unique properties of high-T c superconductors within a low-T c SCM to obtain (1) significant reductions in the structural material volume, (2) a decoupling of the tri-axial (compressive and tensile) stress rate, and (3) a demountable TF magnet system. The advantages of this approach are quantified in terms of a 24 T commercial reactor TF magnet system. Significant reductions in the mechanical stress and the TF radial build are demonstrated. 54 refs., 14 figs., 5 tabs

  11. Computer Simulations of Composite Electrodes in Solid-Oxide Fuel-Cells

    Energy Technology Data Exchange (ETDEWEB)

    Sunde, Svein

    1999-07-01

    Fuel cells are devices for converting the combined chemical (free) energy of fuels and oxygen (air) directly to electrical energy without relying on the dynamic action of steam heated by reacting fuel-oxygen mixtures, like in steam turbines, or of the reacting gas mixtures themselves, like in gas turbines. The basic rationale for fuel cells is their high efficiencies as compared to indirect-conversion methods. Fuel cells are currently being considered for a number of applications, among them de-centralised power supply. Fuel cells come in five basic types and are usually classified according to the type of electrolyte used, which in turn to a significant degree limits the options for anode and cathode materials. The solid-oxide fuel-cell (SOFC) , with which this thesis is concerned, is thus named after its oxide electrolyte, typically the oxide-ion conducting material yttria-stabilised zirconia (YSZ). While the cathode of an SOFC is often uniform in chemical composition (or at least intended to be), various problems of delamination, cracking etc. associated with the use of metallic anode electrocatalysts led to the development of composite SOFC anodes. Porous anodes consisting of Ni and YSZ particles in roughly 50/50 wt-% mixtures are now almost standard with any SOFC-development programme. The designer of composite SOFC electrodes is faced with at least three, interrelated questions: (1) What will be the optimum microstructure and composition of the composite electrode? (2) If the structure changes during operation, as is often observed, what will be the consequences for the internal losses in the cell? (3) How do we interpret electrochemical and conductivity measurements with regard to structure and composition? It is the primary purpose of this thesis to provide a framework for modelling the electrochemical and transport properties of composite electrodes for SOFC, and to arrive at some new insights that cannot be offered by experiment alone. Emphasis is put on

  12. Synthesis of benzimidazole-grafted graphene oxide/multi-walled carbon nanotubes composite for supercapacitance application

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Rajesh Kr., E-mail: r05bhu@gmail.com [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore (Singapore); Xingjue, Wang [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore (Singapore); Kumar, Vinod [Department of Zoology, Banaras Hindu University, Varanasi (India); Srivastava, Anchal [Department of Physics, Banaras Hindu University, Varanasi (India); Singh, Vidya Nand [CSIR-National Physical Laboratory, New Delhi (India)

    2014-11-05

    Highlights: • We are reporting supercapacitance performance of BI-GO/MWCNTs composite. • The specific capacitance of BI-GO/MWCNTs is 275 and 460 F/g at 200 and 5 mV/s scan rate. • This composite has shown 224 F/g capacitance after 1300 cycles at 200 mV/s scan rate. - Abstract: We are reporting the fabrication, characterizations and supercapacitance performance of benzimidazole-grafted graphene oxide/multi-walled carbon nanotubes (BI-GO/MWCNTs) composite. The synthesis of BI-GO materials involves cyclization reaction of carboxylic groups on GO among the hydroxyl and amino groups on o-phenylenediamine. The BI-GO/MWCNTs composite has been fabricated via in situ reduction of BI-GO using hydrazine in presence of MWCNTs. Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Raman spectroscopy, X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) have been used to characterize its surface and elemental composition. The uniform dispersion of MWCNTs with BI-GO helps to improve the charge transfer reaction during electrochemical process. The specific capacitance of BI-GO/MWCNTs composite is 275 and 460 F/g at 200 and 5 mV/s scan rate in 1 mol/L aqueous solution of H{sub 2}SO{sub 4}. This BI-GO/MWCNTs composite has shown 224 F/g capacitance after 1300 cycles at 200 mV/s scan rate, which represents its good electrochemical stability.

  13. Synthesis of benzimidazole-grafted graphene oxide/multi-walled carbon nanotubes composite for supercapacitance application

    International Nuclear Information System (INIS)

    Srivastava, Rajesh Kr.; Xingjue, Wang; Kumar, Vinod; Srivastava, Anchal; Singh, Vidya Nand

    2014-01-01

    Highlights: • We are reporting supercapacitance performance of BI-GO/MWCNTs composite. • The specific capacitance of BI-GO/MWCNTs is 275 and 460 F/g at 200 and 5 mV/s scan rate. • This composite has shown 224 F/g capacitance after 1300 cycles at 200 mV/s scan rate. - Abstract: We are reporting the fabrication, characterizations and supercapacitance performance of benzimidazole-grafted graphene oxide/multi-walled carbon nanotubes (BI-GO/MWCNTs) composite. The synthesis of BI-GO materials involves cyclization reaction of carboxylic groups on GO among the hydroxyl and amino groups on o-phenylenediamine. The BI-GO/MWCNTs composite has been fabricated via in situ reduction of BI-GO using hydrazine in presence of MWCNTs. Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Raman spectroscopy, X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) have been used to characterize its surface and elemental composition. The uniform dispersion of MWCNTs with BI-GO helps to improve the charge transfer reaction during electrochemical process. The specific capacitance of BI-GO/MWCNTs composite is 275 and 460 F/g at 200 and 5 mV/s scan rate in 1 mol/L aqueous solution of H 2 SO 4 . This BI-GO/MWCNTs composite has shown 224 F/g capacitance after 1300 cycles at 200 mV/s scan rate, which represents its good electrochemical stability

  14. Toughened and machinable glass matrix composites reinforced with graphene and graphene-oxide nano platelets

    Science.gov (United States)

    Porwal, Harshit; Tatarko, Peter; Grasso, Salvatore; Hu, Chunfeng; Boccaccini, Aldo R; Dlouhý, Ivo; Reece, Mike J

    2013-01-01

    The processing conditions for preparing well dispersed silica–graphene nanoplatelets and silica–graphene oxide nanoplatelets (GONP) composites were optimized using powder and colloidal processing routes. Fully dense silica–GONP composites with up to 2.5 vol% loading were consolidated using spark plasma sintering. The GONP aligned perpendicularly to the applied pressure during sintering. The fracture toughness of the composites increased linearly with increasing concentration of GONP and reached a value of ∼0.9 MPa m1/2 for 2.5 vol% loading. Various toughening mechanisms including GONP necking, GONP pull-out, crack bridging, crack deflection and crack branching were observed. GONP decreased the hardness and brittleness index (BI) of the composites by ∼30 and ∼50% respectively. The decrease in BI makes silica–GONP composites machinable compared to pure silica. When compared to silica–Carbon nanotube composites, silica–GONP composites show better process-ability and enhanced mechanical properties. PMID:27877614

  15. Superconducting Nb{sub 3}Sn intermetallics made by electrochemical reduction of Nb{sub 2}O{sub 5}-SnO{sub 2} oxides

    Energy Technology Data Exchange (ETDEWEB)

    Glowacki, B A; Fray, D J; Yan, X-Y; Chen, G

    2003-05-01

    The article is focused on low temperature superconducting Nb{sub 3}Sn material manufactured by novel electrodeoxidizing method developed in Cambridge whereby the range of alloys and intermetallics are produced cheaply making potential superconducting wires more cost effective. The process of direct electrochemical reduction of Nb{sub 2}O{sub 5}-SnO{sub 2} mixtures and in situ formation of the Nb{sub 3}Sn is discussed in details.

  16. Characterization of composite metal-ceramic of nickel-oxide cerium doped gadolinium

    International Nuclear Information System (INIS)

    Silva, M.L.A. da; Varela, M.C.R.S.

    2016-01-01

    Composite nickel doped cerium oxide are used in SOFC anode materials. In this study we evaluated the effect of the presence of gadolinium on the properties of composite nickel and ceria and. The supports were synthesized by sol-gel method. The impregnation with nickel nitrate was taken sequentially, followed by calcination. The materials were characterized by X-ray diffraction, measurement of specific surface area, temperature programmed reduction, Raman spectroscopy. The presence of gadolinium retained the fluorite structure of ceria by forming a solid solution, also not influencing significantly on the specific surface area of the support. On the other hand, there was a decrease in the area catalysts, which can be attributed to sintering of nickel. Furthermore, addition of gadolinium favored the formation of intrinsic and extrinsic vacancies in cerium oxide, which leads to an increase in the ionic conductivity of the solid, desirable property for an SOFC anode catalyst. (author)

  17. Nacre-like calcium carbonate controlled by ionic liquid/graphene oxide composite template.

    Science.gov (United States)

    Yao, Chengli; Xie, Anjian; Shen, Yuhua; Zhu, Jinmiao; Li, Hongying

    2015-06-01

    Nacre-like calcium carbonate nanostructures have been mediated by an ionic liquid (IL)-graphene oxide (GO) composite template. The resultant crystals were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, and X-ray powder diffractometry (XRD). The results showed that either 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF4) or graphene oxide can act as a soft template for calcium carbonate formation with unusual morphologies. Based on the time-dependent morphology changes of calcium carbonate particles, it is concluded that nacre-like calcium carbonate nanostructures can be formed gradually utilizing [BMIM]BF4/GO composite template. During the process of calcium carbonate formation, [BMIM]BF4 acted not only as solvents but also as morphology templates for the fabrication of calcium carbonate materials with nacre-like morphology. Based on the observations, the possible mechanisms were also discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Graphite oxide/β-Ni(OH)2 composites for application in supercapacitors

    Science.gov (United States)

    Singh, Arvinder; Chandra, Amreesh

    2013-06-01

    Graphite oxide/β-Ni(OH)2 composites have been investigated as electrode material in supercapacitors. Phase formation of electrode material is investigated using diffraction measurements. Particle shape-size studies show deposition of β-Ni(OH)2 nanoparticles on graphite oxide (GO) sheets. Electrochemical performance of GO/β-Ni(OH)2 composite in supercapacitors is discussed based on the analysis of electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and galvanostatic charge-discharge studies. Excellent energy density of ˜53 Wh/kg in 1M Na2SO4 aqueous electrolyte is reported at power density of ˜1364W/kg. The significance of results is discussed in the paper.

  19. Photoluminescence from Au nanoparticles embedded in Au:oxide composite films

    Science.gov (United States)

    Liao, Hongbo; Wen, Weijia; Wong, George K.

    2006-12-01

    Au:oxide composite multilayer films with Au nanoparticles sandwiched by oxide layers (such as SiO2, ZnO, and TiO2) were prepared in a magnetron sputtering system. Their photoluminescence (PL) spectra were investigated by employing a micro-Raman system in which an Argon laser with a wavelength of 514 nm was used as the pumping light. Distinct PL peaks located at a wavelength range between 590 and 680 nm were observed in most of our samples, with Au particle size varying from several to hundreds of nanometers. It was found that the surface plasmon resonance (SPR) in these composites exerted a strong influence on the position of the PL peaks but had little effect on the PL intensity.

  20. Photoluminescence from Au nanoparticles embedded in Au:oxide composite films

    International Nuclear Information System (INIS)

    Liao Hongbo; Wen Weijia; Wong, George K. L.

    2006-01-01

    Au:oxide composite multilayer films with Au nanoparticles sandwiched by oxide layers (such as SiO 2 , ZnO, and TiO 2 ) were prepared in a magnetron sputtering system. Their photoluminescence (PL) spectra were investigated by employing a micro-Raman system in which an Argon laser with a wavelength of 514 nm was used as the pumping light. Distinct PL peaks located at a wavelength range between 590 and 680 nm were observed in most of our samples, with Au particle size varying from several to hundreds of nanometers. It was found that the surface plasmon resonance (SPR) in these composites exerted a strong influence on the position of the PL peaks but had little effect on the PL intensity