WorldWideScience

Sample records for superconducting nb films

  1. THz spectroscopy on superconducting NbN thin films

    Energy Technology Data Exchange (ETDEWEB)

    Daschke, Lena; Pracht, Uwe S.; Dressel, Martin; Scheffler, Marc [1. Physikalisches Institut, Universitaet Stuttgart (Germany); Ilin, Konstantin S.; Siegel, Michael [Institut fuer Mikro- und Nanoelektronische Systeme, Karlsruher Institut fuer Technologie (Germany)

    2015-07-01

    Epitaxial thin-film niobium nitride (NbN) is a conventional BCS superconductor. In presence of strong disorder, however, electronic inhomogeneities appear, which is not fully understood yet. To obtain a better insight into the physics of such disordered materials, studies on model systems such as structurally tailored films might be useful. Furthermore, disordered NbN films are used for single-photon detection devices, whose proper performance depends on a profound understanding of the superconducting properties. The studied NbN films have a T{sub c} ranging from 10 to 15 K and the superconducting energy gap is easily accessible with THz spectroscopy (0.4 - 5.6 meV). We investigate thin films of NbN sputtered on a sapphire substrate. With a Mach-Zehnder interferometer we measure the amplitude and phase shift of radiation transmitted through the thin-film sample. From there we can determine the real and imaginary parts of the optical conductivity. These results give information about the energy gap, Cooper pair density, and quasiparticle dynamics, including the temperature evolution of these quantities. We found that a film with 10 nm thickness roughly follows the BCS behavior, as expected. We will present results of our measurements on several different NbN samples.

  2. Dendritic flux avalanches in superconducting Nb3Sn films

    NARCIS (Netherlands)

    Rudnev, IA; Antonenko, SV; Shantsev, DV; Johansen, TH; Primenko, AE

    2003-01-01

    The penetration of magnetic flux into a thin superconducting film of Nb3Sn with critical temperature 17.8 K and critical current density 6 MA/cm(2) was visualized using magneto-optical imaging. Below 8 K an avalanche-like flux penetration in form of big and branching dendritic structures was

  3. Studies on superconducting NbN thin films and NbN microbridges

    Energy Technology Data Exchange (ETDEWEB)

    Xiuwen, W.; Jiazhang, L.; Taiping, Z.; Weixin, G.; Guangji, C.

    1984-06-01

    RF reactively of sputtred NbN films were fabricated by changing the ratio of argon to nittogen and using a range of substrate temperatures. The transition temperature T/sub c/, electrical resistivity and resistivity ratio of NbN films were measured. T/sub c/ was usually between 13K and 15K, and sometimes up to 15.2K. X-ray analysis and XPS studies on NbN films were made and superconducting microbridges and VTBS of NbN were fabricated.

  4. Degradation of superconducting Nb/NbN films by atmospheric oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Henry, Michael David; Wolfley, Steven L.; Young, Travis Ryan; Monson, Todd; Pearce, Charles Joseph; Lewis, Rupert M.; Clark, Blythe; Brunke, Lyle Brent; Missert, Nancy A.

    2017-03-01

    Niobium and niobium nitride thin films are transitioning from fundamental research toward wafer scale manufacturing with technology drivers that include superconducting circuits and electronics, optical single photon detectors, logic, and memory. Successful microfabrication requires precise control over the properties of sputtered superconducting films, including oxidation. Previous work has demonstrated the mechanism in oxidation of Nb and how film structure could have deleterious effects upon the superconducting properties. This study provides an examination of atmospheric oxidation of NbN films. By examination of the room temperature sheet resistance of NbN bulk oxidation was identified and confirmed by secondary ion mass spectrometry. As a result, Meissner magnetic measurements confirmed the bulk oxidation not observed with simple cryogenic resistivity measurements.

  5. Dependence of superconducting properties of NbN thin films on sputtering parameters

    Science.gov (United States)

    Khaire, Trupti; Carter, Faustin; Ding, Junjia; Posada, Chrystian; Bender, Amy; Wang, Gensheng; Yefremenko, Volodymyr; Pearson, John; Padin, Steve; Chang, Clarence; Hoffmann, Axel; Novosad, Valentyn; SPT3G Collaboration

    Recently, there has been growing interest in utilizing NbN, TiN, NbTiN thin films in superconducting device applications (e.g. detectors for CMB, mm and sub-mm astronomy). In this work, we have fabricated NbN superconducting thin films by DC reactive magnetron sputtering of Nb in the presence of argon and nitrogen gases. We found that the critical temperature of NbN films is sensitive to various deposition parameters like nitrogen flow rate, target voltage, base pressure, RF substrate bias, and the substrate temperature. By studying each of these factors we have been able to create highly reproducible NbN thin films. We obtained a Tc of 15.25 +/-0.25 K for 300 nm thick NbN film grown on silicon substrate at modest temperature of 250 C in the presence of RF substrate bias. We are also investigating the microwave properties of these NbN films at temperatures well below 50 mK by fabricating quarter wavelength CPW resonators out of NbN and characterizing their frequency shifts and quality factors as functions of temperature and power. In this work we present the results of these analyses. This work was supported by BES-DOE Grant DE-AC02-06CH11357.

  6. Highly oriented, free-standing, superconducting NbN films growth on chemical vapor deposited graphene

    Directory of Open Access Journals (Sweden)

    Garima Saraswat

    2014-05-01

    Full Text Available NbN films are grown on chemical vapor deposited graphene using dc magnetron sputtering. The orientation and transition temperature of the deposited films is studied as a function of substrate temperature. A superconducting transition temperature of 14 K is obtained for highly oriented (111 films grown at substrate temperature of 150 °C, which is comparable to epitaxial films grown on MgO and sapphire substrates. These films show a considerably high upper critical field of ∼33 T. In addition, we demonstrate a process for obtaining flexible, free-standing NbN films by delaminating graphene from the substrate using a simple wet etching technique. These free-standing NbN layers can be transferred to any substrate, potentially enabling a range of novel superconducting thin-film applications.

  7. Superconducting properties and chemical composition of NbTiN thin films with different thickness

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, L.; Peng, W.; You, L. X.; Wang, Z., E-mail: zwang@mail.sim.ac.cn [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050 (China)

    2015-09-21

    In this research, we systematically investigated the superconducting properties and chemical composition of NbTiN thin films prepared on single-crystal MgO substrates. The NbTiN thin films with different thicknesses (4–100 nm) were deposited by reactive DC magnetron sputtering at ambient temperature. We measured and analyzed the crystal structure and thickness dependence of the chemical composition using X-ray diffraction and X-ray photoelectron spectroscopy depth profiles. The films exhibited excellent superconducting properties, with a high superconducting critical temperature of 10.1 K, low resistivity (ρ{sub 20} = 93 μΩ cm), and residual resistivity ratio of 1.12 achieved for 4-nm-thick ultrathin NbTiN films prepared at the deposition current of 2.4 A. The stoichiometry and electrical properties of the films varied gradually between the initial and upper layers. A minimum ρ{sub 20} of 78 μΩ cm and a maximum residual resistivity ratio of 1.15 were observed for 12-nm-thick films, which significantly differ from the properties of NbN films with the same NaCl structure.

  8. Vortex pinning in superconducting Nb thin films deposited on nanoporous alumina templates

    DEFF Research Database (Denmark)

    Vinckx, W.; Vanacken, J.; Moshchalkov, V.V.

    2006-01-01

    We present a study of magnetization and transport properties of superconducting Nb thin films deposited on nanoporous aluminium oxide templates. Periodic oscillations in the critical temperature vs. field, matching effects in fields up to 700 mT and strongly enhanced critical currents were observ...

  9. Hysteresis magnetoresistance and edge superconductivity in Nb film with diluted square array of holes

    Science.gov (United States)

    He, S. K.; Zhang, W. J.; Han, X. F.; Qiu, X. G.

    2017-11-01

    We investigated the transport properties of a superconducting Nb film with a diluted square array of holes, in which one fourth of the sites were removed from the original square lattice. The edge-to-edge separation of the holes in the sample is comparable to the superconducting coherence length, resulting in a system similar to multi-connected superconducting islands. Three regions in magnetoresistance (R(H)) curves can be identified. In the low field region, fluxoid quantization leads to fine structures in R(H) and {T}{{c}}(H) curves. At higher fields, the entering and leaving of interstitial vortices results in a novel field and temperature dependent hysteresis. At even higher fields, weak oscillations in resistance were observed due to edge superconductivity of inter-hole biconcave thin necks and Little–Parks effect. Moreover, the edge state results in a remarkable field induced narrowing of superconducting transition width.

  10. Characterization of NbN films for superconducting nanowire single photon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Mcdonald, Ross D [Los Alamos National Laboratory; Ayala - Valenzuela, Oscar E [Los Alamos National Laboratory; Weisse - Bernstein, Nina R [Los Alamos National Laboratory; Williamson, Todd L [Los Alamos National Laboratory; Hoffbauer, M. A. [Los Alamos National Laboratory; Graf, M. J. [Los Alamos National Laboratory; Rabin, M. W. [Los Alamos National Laboratory

    2011-01-14

    Nanoscopic superconducting meander patterns offer great promise as a new class of cryogenic radiation sensors capable of single photon detection. To realize this potential, control of the superconducting properties on the nanoscale is imperative. To this end, Superconducting Nanowire Single Photon Detectors (SNSPDs) are under development by means Energetic Neutral Atom Beam Lithography and Epitaxy, or ENABLE. ENABLE can growth highly-crystalline, epitaxial thin-film materials, like NbN, at low temperatures; such wide-ranging control of fabrication parameters is enabling the optimization of film properties for single photon detection. T{sub c}, H{sub c2}, {zeta}{sub GL} and J{sub c} of multiple thin films and devices have been studied as a function of growth conditions. The optimization of which has already produced devices with properties rivaling all reports in the existing literature.

  11. Anisotropic behaviour of transmission through thin superconducting NbN film in parallel magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Šindler, M., E-mail: sindler@fzu.cz [Institute of Physics ASCR, v. v. i., Cukrovarnická 10, CZ-162 53 Praha 6 (Czech Republic); Tesař, R. [Institute of Physics ASCR, v. v. i., Cukrovarnická 10, CZ-162 53 Praha 6 (Czech Republic); Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, CZ-121 16 Praha (Czech Republic); Koláček, J. [Institute of Physics ASCR, v. v. i., Cukrovarnická 10, CZ-162 53 Praha 6 (Czech Republic); Skrbek, L. [Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, CZ-121 16 Praha (Czech Republic)

    2017-02-15

    Highlights: • Transmission through thin NbN film in parallel magnetic field exhibits strong anisotropic behaviour in the terahertz range. • Response for a polarisation parallel with the applied field is given as weighted sum of superconducting and normal state contributions. • Effective medium approach fails to describe response for linear polarisation perpendicular to the applied magnetic field. - Abstract: Transmission of terahertz waves through a thin layer of the superconductor NbN deposited on an anisotropic R-cut sapphire substrate is studied as a function of temperature in a magnetic field oriented parallel with the sample. A significant difference is found between transmitted intensities of beams linearly polarised parallel with and perpendicular to the direction of applied magnetic field.

  12. Superconducting NbN Thin-Film Nanowire Detectors for Time-of-Flight Mass Spectrometry

    Science.gov (United States)

    Suzuki, Koji; Miki, Shigehito; Wang, Zhen; Kobayashi, Yohei; Shiki, Shigetomo; Ohkubo, Masataka

    2008-05-01

    Superconducting nanowire detectors (SND) have been applied for time-of-flight mass spectrometry (TOF-MS) for the first time. In this study, we used the SND, which consists of a very thin niobium nitride (NbN) film having a nanowire meander pattern with a thickness of 6.8 nm and a width of 200 nm on a MgO substrate. The experiments were carried out for Angiotensin I and bovine serum albumin (BSA). These biomolecules were ionized by laser radiation with matrix-assisted laser desorption ionization (MALDI). The ions were accelerated by a static high voltage of 17.5 kV, and incident on the NbN meander, which is dc-biased below a superconducting critical current ( I c). It was found that the output pulses have a rise time of about 640 ps, which is extremely faster than superconducting tunnel junction (STJ) detectors, and a fall time of about 50 ns. Moreover, we investigated the bias current dependence of output pulses, and confirmed that molecules can be detected even for bias currents of about 50% of I c.

  13. Superconducting NbN films grown using pulsed laser deposition for potential application in internally shunted Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, Anupama; Meng, Xiaofan; Wong, Andre; Van Duzer, Theodore [Department of Electrical Engineering and Computer Sciences and the Electronics Research Laboratory, University of California, Berkeley, CA 720 1770 (United States)

    1999-11-01

    We have grown superconducting NbN films using a pulsed KrF laser for potential use as superconducting electrodes in SNS Josephson junctions being developed for nonlatching logic applications. The NbN films show a superconducting transition of 16 K using an Nb target in background N{sub 2} gas. The T{sub c} dependence on N{sub 2} pressure in the range of 50-80 mTorr was investigated at a growth temperature of 600 deg. C. The NbN films were grown on MgO(100) and amorphous SiN{sub x}/Si substrates. In the latter case, the films had a lower T{sub c}, and appeared amorphous from x-ray diffraction measurements, while those on the MgO(100) substrates were strongly textured. AFM measurements reveal RMS surface roughness as low as 1 nm, over a 5 {mu}m x 5 {mu}m area, indicating that these films appear suitable for SNS junctions. (author)

  14. The 2D-3D crossover and anisotropy of upper critical fields in Nb and NbN superconducting thin films

    Science.gov (United States)

    Joshi, Lalit M.; Verma, Apoorva; Rout, P. K.; Kaur, Mandeep; Gupta, Anurag; Budhani, R. C.

    2017-11-01

    The upper critical field (Bc2) of superconducting thin films of Nb (film thickness d = 40 nm) and NbN (d = 10, 50 and 100 nm) have been measured and analyzed as a function of temperature (T = 1.8-15 K) in both parallel and perpendicular magnetic field (B = 0-7 T) directions with respect to the film plane. Dimensional crossover from 2D to 3D is observed for all the thin films except for the 10 nm thick NbN film which exhibits only 2D behavior in the measured T and B range. Further, the upper critical fields were found to be anisotropic in case of both Nb and NbN films. However, the anisotropy shows different behavior in all the four samples. In case of Nb, below the 2D-3D crossover temperature, the Bc2∥(T) is higher than Bc2⊥(T) and both curves branch away further from each other. On the other hand, in case of NbN (50 and 100 nm), there is a reversal of anisotropy, i.e., in the 2D region Bc2∥(T) > Bc2⊥(T) and in the 3D region at some temperature Bc2⊥(T) > Bc2∥(T) . In the NbN films with increasing thickness, the 2D region shrinks and 3D region expands, and the 2D-3D crossover and anisotropy reversal characteristic temperatures shift toward Tc. These observations are quantitatively explained using the Ginzburg-Landau theoretical approach after Schneider and Locquet (Physica C, 179 (1991) 125).

  15. Growth and characterization of few unit-cell NbN superconducting films on 3C-SiC/Si substrate

    Science.gov (United States)

    Chang, H. W.; Wang, C. L.; Huang, Y. R.; Chen, T. J.; Wang, M. J.

    2017-11-01

    Superconducting δ-NbN ultrathin film has become a key element in extremely sensitive detector applications in recent decades because of its excellent electronic properties. We have realized the epitaxial growth of ultrathin δ-NbN films on (100)-oriented 3C-SiC/Si substrates by dc reactive magnetron sputtering at 760 °C with a deposition rate of 0.054 nm s-1. High-resolution transmission electron microscope images confirm the excellent epitaxy of these films. Even with a thickness of 1.3 nm (˜3 unit cells), the δ-NbN film shows a superconducting transition above 8 K. Furthermore, our ultrathin δ-NbN films demonstrate a long Ginzburg-Landau superconducting coherent length ({ξ }{{G}{{L}}}(0)> 5 {{nm}}) with a critical current density of about 2.2 MA cm-2, and good stability in an ambient environment.

  16. Surface properties of metal-nitride and metal-carbide films deposited on Nb for RF superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Garwin, E.L.; King, F.K.; Kirby, R.E.; Aita, O.

    1983-09-01

    Various effects occur which can prevent attainment of the high Q's and/or the high gradient fields necessary for the operation of rf superconducting cavities. One of these effects, multipactor, both causes the cavity to detune during filling due to resonant secondary electron emission at the cavity walls, and lowers the Q by dissipative processes. TiN deposited onto the high field regions of room temperature Al cavities has been used at SLAC to successfully reduce multipactor in the past. We have therefore studied TiN and its companion materials, NbN, NbC, and TiC, all on Nb substrates under several realistic conditions: (1) as deposited, (2) exposed to air, and (3) 1 keV electron-bombarded. The studied films (up to 14 nm thickness) were sputter deposited onto sputter-cleaned Nb substrates. Results indicate that the materials tested gave substantially the same results. The maximum secondary electron yields for as-deposited films was about 1.0 to 1.2. These yields rose to greater than 1.5 upon air-exposure and were reduced to nearly the pre-oxidized values after electron bombardment (about 3 x 10/sup 17/ electrons-cm/sup -2/ in the case of NbN and NbC). XPS analysis showed that the oxides (e.g. TiO/sub 2/ in the case of TiN films) formed during air exposure were only slightly reduced (converted to lower oxides) by the electron beam exposure. AES showed a slight reduction in the surface O concentration following beam exposure. The results indicate that any of these films would be poor choices if simply deposited and exposed to air, but, in fact, the in-situ electron bombardment which occurs in cavities serves to reduce the effective secondary electron yield and thereby causes a substantial reduction in multipacting.

  17. Flexible superconducting Nb transmission lines on thin film polyimide for quantum computing applications

    Science.gov (United States)

    Tuckerman, David B.; Hamilton, Michael C.; Reilly, David J.; Bai, Rujun; Hernandez, George A.; Hornibrook, John M.; Sellers, John A.; Ellis, Charles D.

    2016-08-01

    We describe progress and initial results achieved towards the goal of developing integrated multi-conductor arrays of shielded controlled-impedance flexible superconducting transmission lines with ultra-miniature cross sections and wide bandwidths (dc to >10 GHz) over meter-scale lengths. Intended primarily for use in future scaled-up quantum computing systems, such flexible thin-film niobium/polyimide ribbon cables could provide a physically compact and ultra-low thermal conductance alternative to the rapidly increasing number of discrete coaxial cables that are currently used by quantum computing experimentalists to transmit signals between the several low-temperature stages (from ˜4 K down to ˜20 mK) of a dilution refrigerator. We have concluded that these structures are technically feasible to fabricate, and so far they have exhibited acceptable thermo-mechanical reliability. S-parameter results are presented for individual 2-metal layer Nb microstrip structures having 50 Ω characteristic impedance; lengths ranging from 50 to 550 mm were successfully fabricated. Solderable pads at the end terminations allowed testing using conventional rf connectors. Weakly coupled open-circuit microstrip resonators provided a sensitive measure of the overall transmission line loss as a function of frequency, temperature, and power. Two common microelectronic-grade polyimide dielectrics, one conventional and the other photo-definable (PI-2611 and HD-4100, respectively) were compared. Our most striking result, not previously reported to our knowledge, was that the dielectric loss tangents of both polyimides, over frequencies from 1 to 20 GHz, are remarkably low at deep cryogenic temperatures, typically 100× smaller than corresponding room temperature values. This enables fairly long-distance (meter-scale) transmission of microwave signals without excessive attenuation, and also permits usefully high rf power levels to be transmitted without creating excessive dielectric

  18. A study on the superconducting properties of YBa{sub 2}Cu{sub 9-x}Nb{sub x}O{sup y} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Srinivas, S.; Bhatnagar, A.K. [Univ. of Hyderabad (India); Pinto, R. [Solid State Electronics Group, Bombay (India)] [and others

    1994-12-31

    Effect of niobium substitution at the copper site in YBa{sub 2}Cu{sub 9}O{sub 7-x} was studied in thin film form. The films were deposited by laser ablation technique using the targets of the YBa{sub 2}Cu{sub 3-x}Nb{sub x}O{sub y} where x = 0.0, 0.025, 0.05, 0.1, 0.2, 0.4, 0.8 and 1.0 under identical deposition conditions on SrTiO{sub 9} <100> substrates. Films were characterized by XRD, resistivity, I-V and J{sub c} measurements. Films made from x = 0.025 and 0.05 concentrations of Nb substituted targets showed relatively improved superconducting properties compared to that of undoped films. The best 7 realized for x = 0.025 Nb concentration was 1.8 x 10{sup {sigma}} A/cm{sup 2} and for 0.05 Nb concentration it was 3.2x10{sup {sigma}} A/cm{sup 2} at 77K. However, degradation of the superconducting properties, with the increase of x {ge} 0.1 Nb concentration and drastic suppression and complete loss of superconductivity was noticed for x {ge} 0.4. The growth of impurity phase YBa{sub 2}NbO{sub 6} for x = 0.1 and above of Nb concentration was noticed from XRD patterns. However, the site occupancy of Nb could not be confirmed from these studies.

  19. Giant flux jumps through a thin superconducting Nb film in a vortex free region

    Energy Technology Data Exchange (ETDEWEB)

    Tsindlekht, M.I., E-mail: mtsindl@vms.huji.ac.il [The Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904 (Israel); Genkin, V.M.; Felner, I.; Zeides, F.; Katz, N. [The Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904 (Israel); Gazi, Š.; Chromik, Š. [The Institute of Electrical Engineering SAS, Dúbravská cesta 9, 84104 Bratislava (Slovakia)

    2016-10-15

    Highlights: Giant magnetic flux jumps into thin-walled cylinder were measured using peak up coil method in a swept magnetic field. Magnetic moment jumps were observed in magnetic fields lower and above Hc1. - Abstract: We measure the dynamics of magnetic field penetration into thin-walled superconducting niobium cylinders. It is shown that magnetic field penetrates through the wall of a cylinder in a series of giant jumps with amplitude 1 - 2 mT and duration of less than a microsecond in a wide range of magnetic fields, including the vortex free region. Surprisingly, the jumps take place when the total current in the wall, not the current density, exceeds a critical value. In addition, there are small jumps and/or smooth penetration, but their contribution reaches only ≃ 20 % of the total penetrating flux. The number of jumps decreases with increased temperature. Thermomagnetic instabilities cannot explain the experimental observations.

  20. Studying superconducting Nb3Sn wire

    CERN Multimedia

    AUTHOR|(CDS)2099575

    2015-01-01

    Studying superconducting Nb3Sn wire. From the current experience from LHC and HL-LHC we know that the performance requirements for Nb3Sn conductor for future circular collider are challenging and should exceed that of present state-of-the-art materials.

  1. Preparation of superconducting Nb-Zr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Drapala, J.; Kuchar, L. (Vysoka Skola Banska, Ostrava (Czechoslovakia). Katedra Nezeleznych Kovu a Jaderne Metalurgie)

    1983-01-01

    Superconducting Nb-Zr alloy with a zirconium content of up to 3 wt.% was prepared by a combination of arc and electron zone melting. First, the Nb-Zr master alloy with 1 wt.% Zr was prepared in a horizontal arc furnace under an argon atmosphere. This master alloy was remelted several times to achieve the highest possible homogeneity of samples. The Nb-Zr ingot was then remelted through two zone passes on equipment for high-vacuum electron zone melting. Samples were taken of the Nb-Zr alloy and a metallographic analysis was made.

  2. Nb(x)Ti(1-x)N Superconducting-Nanowire Single-Photon Detectors

    Science.gov (United States)

    Stem, Jeffrey A.; Farr, William H.; Leduc, Henry G.; Bumble, Bruce

    2008-01-01

    Superconducting-nanowire singlephoton detectors (SNSPDs) in which Nb(x)Ti(1-x)N (where x<1) films serve as the superconducting materials have shown promise as superior alternatives to previously developed SNSPDs in which NbN films serve as the superconducting materials. SNSPDs have potential utility in optical communications and quantum cryptography. Nb(x)Ti(1-x)N is a solid solution of NbN and TiN, and has many properties similar to those of NbN. It has been found to be generally easier to stabilize NbxTi1 xN in the high-superconducting-transitiontemperature phase than it is to so stabilize NbN. In addition, the resistivity and penetration depth of polycrystalline films of Nb(x)Ti(1-x)N have been found to be much smaller than those of films of NbN. These differences have been hypothesized to be attributable to better coupling at grain boundaries within Nb(x)Ti(1-x)N films.

  3. Fabrication of a strain-induced high performance NbN ultrathin film by a Nb5N6 buffer layer on Si substrate

    Science.gov (United States)

    Jia, X. Q.; Kang, L.; Gu, M.; Yang, X. Z.; Chen, C.; Tu, X. C.; Jin, B. B.; Xu, W. W.; Chen, J.; Wu, P. H.

    2014-03-01

    Lattice mismatch between NbN and silicon (Si) reduces the superconducting properties of NbN film on Si substrate, and this in turn affects the performance of devices such as the hot electron bolometer (HEB) and superconducting nanowire single photon detector (SNSPD). We have found that the superconducting properties of NbN film on Si will be significantly improved by a Nb5N6 buffer layer. The strain of the NbN film was optimized by varying the thickness of the buffer layer. With 30 nm thick Nb5N6, the zero resistance superconducting transition temperature (TC0) of a 6 nm thick NbN film on Si is up to 13.5 K and the critical current density (JC) of the film is more than 107 A cm-2. All the details of preparation, improvement and characteristics of this film are also presented.

  4. Energetic condensation growth of Nb thin films

    Directory of Open Access Journals (Sweden)

    M. Krishnan

    2012-03-01

    Full Text Available This paper describes energetic condensation growth of Nb films using a cathodic arc plasma, whose 60–120 eV ions penetrate a few monolayers into the substrate and enable sufficient surface mobility to ensure that the lowest energy state (crystalline structure with minimal defects is accessible to the film. Heteroepitaxial films of Nb were grown on a-plane sapphire and MgO crystals with good superconducting properties and crystal size (10  mm×20  mm limited only by substrate size. The substrates were heated to temperatures of up to 700°C and coated at 125°C, 300°C, 500°C, and 700°C. Film thickness was varied from ∼0.25  μm to >3  μm. Residual resistivity ratio (⟨RRR⟩ values (up to a record ⟨RRR⟩=587 on MgO and ⟨RRR⟩=328 on a-sapphire depend strongly on substrate annealing and deposition temperatures. X-ray diffraction spectra and pole figures reveal that RRR increases as the crystal structure of the Nb film becomes more ordered, consistent with fewer defects and, hence, longer electron mean-free path. A transition from Nb(110 to Nb(100 orientation on the MgO(100 lattice occurs at higher temperatures. This transition is discussed in light of substrate heating and energetic condensation physics. Electron backscattered diffraction and scanning electron microscope images complement the XRD data.

  5. Pulsed laser deposition and characterisation of thin superconducting films

    Energy Technology Data Exchange (ETDEWEB)

    Morone, A. [CNR, zona industriale di Tito Scalo, Potenza (Italy). Istituto per i Materiali Speciali

    1996-09-01

    Same concepts on pulsed laser deposition of thin films will be discussed and same examples of high transition temperature (HTc) BiSrCaCuO (BISCO) and low transition temperature NbN/MgO/NbN multilayers will be presented. X-ray and others characterizations of these films will be reported and discussed. Electrical properties of superconducting thin films will be realized as a function of structural and morphological aspect.

  6. Discovery of Superconductivity in Hard Hexagonal ε-NbN.

    Science.gov (United States)

    Zou, Yongtao; Qi, Xintong; Zhang, Cheng; Ma, Shuailing; Zhang, Wei; Li, Ying; Chen, Ting; Wang, Xuebing; Chen, Zhiqiang; Welch, David; Zhu, Pinwen; Liu, Bingbing; Li, Qiang; Cui, Tian; Li, Baosheng

    2016-02-29

    Since the discovery of superconductivity in boron-doped diamond with a critical temperature (TC) near 4 K, great interest has been attracted in hard superconductors such as transition-metal nitrides and carbides. Here we report the new discovery of superconductivity in polycrystalline hexagonal ε-NbN synthesized at high pressure and high temperature. Direct magnetization and electrical resistivity measurements demonstrate that the superconductivity in bulk polycrystalline hexagonal ε-NbN is below ∼11.6 K, which is significantly higher than that for boron-doped diamond. The nature of superconductivity in hexagonal ε-NbN and the physical mechanism for the relatively lower TC have been addressed by the weaker bonding in the Nb-N network, the co-planarity of Nb-N layer as well as its relatively weaker electron-phonon coupling, as compared with the cubic δ-NbN counterpart. Moreover, the newly discovered ε-NbN superconductor remains stable at pressures up to ∼20 GPa and is significantly harder than cubic δ-NbN; it is as hard as sapphire, ultra-incompressible and has a high shear rigidity of 201 GPa to rival hard/superhard material γ-B (∼227 GPa). This exploration opens a new class of highly desirable materials combining the outstanding mechanical/elastic properties with superconductivity, which may be particularly attractive for its technological and engineering applications in extreme environments.

  7. High field matching effects in superconducting Nb porous arrays catalyzed from anodic alumina templates

    DEFF Research Database (Denmark)

    Vinckx, W.; Vanacken, J.; Moshchalkov, V.V.

    2007-01-01

    Vortex pinning in a superconducting Nb thin film deposited on an anodically grown alumina template is investigated. Anodic oxidation of aluminium layers permits under specific conditions the formation of highly ordered porous alumina, a membrane-like structure consisting of triangular arrays...... of parallel pores. Its pore diameter and interpore distance are set by careful tuning of the anodization parameters. A superconducting Nb thin film is deposited directly onto the alumina film. The porous alumina acts as a template and it allows Nb to form a periodic pinning array during its growth. Pinning...... force vs. field measurements derived from magnetization measurements, show matching effects in fields up to 1 T. We demonstrate that the anodic alumina template with 50 nm interpore spacing provides enhanced vortex pinning in a large field and temperature range....

  8. Bias sputtered NbN and superconducting nanowire devices

    Science.gov (United States)

    Dane, Andrew E.; McCaughan, Adam N.; Zhu, Di; Zhao, Qingyuan; Kim, Chung-Soo; Calandri, Niccolo; Agarwal, Akshay; Bellei, Francesco; Berggren, Karl K.

    2017-09-01

    Superconducting nanowire single photon detectors (SNSPDs) promise to combine near-unity quantum efficiency with >100 megacounts per second rates, picosecond timing jitter, and sensitivity ranging from x-ray to mid-infrared wavelengths. However, this promise is not yet fulfilled, as superior performance in all metrics is yet to be combined into one device. The highest single-pixel detection efficiency and the widest bias windows for saturated quantum efficiency have been achieved in SNSPDs based on amorphous materials, while the lowest timing jitter and highest counting rates were demonstrated in devices made from polycrystalline materials. Broadly speaking, the amorphous superconductors that have been used to make SNSPDs have higher resistivities and lower critical temperature (Tc) values than typical polycrystalline materials. Here, we demonstrate a method of preparing niobium nitride (NbN) that has lower-than-typical superconducting transition temperature and higher-than-typical resistivity. As we will show, NbN deposited onto unheated SiO2 has a low Tc and high resistivity but is too rough for fabricating unconstricted nanowires, and Tc is too low to yield SNSPDs that can operate well at liquid helium temperatures. By adding a 50 W RF bias to the substrate holder during sputtering, the Tc of the unheated NbN films was increased by up to 73%, and the roughness was substantially reduced. After optimizing the deposition for nitrogen flow rates, we obtained 5 nm thick NbN films with a Tc of 7.8 K and a resistivity of 253 μΩ cm. We used this bias sputtered room temperature NbN to fabricate SNSPDs. Measurements were performed at 2.5 K using 1550 nm light. Photon count rates appeared to saturate at bias currents approaching the critical current, indicating that the device's quantum efficiency was approaching unity. We measured a single-ended timing jitter of 38 ps. The optical coupling to these devices was not optimized; however, integration with front-side optical

  9. Suppression of superconductivity in Nb by IrMn in IrMn/Nb bilayers

    KAUST Repository

    Wu, B. L.

    2013-10-10

    Effect of antiferromagnet on superconductivity has been investigated in IrMn/Nb bilayers. Significant suppression of both transition temperature (Tc) and lower critical field (Hc1) of Nb is found in IrMn/Nb bilayers as compared to a single layer Nb of same thickness; the suppression effect is even stronger than that of a ferromagnet in NiFe/Nb bilayers. The addition of an insulating MgO layer at the IrMn-Nb interface nearly restores Tc to that of the single layer Nb, but Hc1 still remains suppressed. These results suggest that, in addition to proximity effect and magnetic impurity scattering, magnetostatic interaction also plays a role in suppressing superconductivity of Nb in IrMn/Nb bilayers. In addition to reduced Tc and Hc1, the IrMn layer also induces broadening in the transition temperature of Nb, which can be accounted for by a finite distribution of stray field from IrMn.

  10. Superconductivity and ferromagnetism in nanomaterial NbSe2

    Science.gov (United States)

    Gill, Raminder

    2017-07-01

    Finding of superconductivity (SC) in ultra thin layer of Niobium diselenide (NbSe2) caught the attention of each condensed matter physicist in the era of nanotechnology. The coexistence of SC and magnetism have been a topic of interesting research in solid-state physics since the discovery of superconductivity. Ferromagnetism induced in any compound could destroy superconductivity by disturbing the cooper pairing of electrons of the atoms. The interplay between ferromagnetism (FM) and SC in nanomaterial NBSe2 impressed to study and to know the exact mechanism behind this coexistence which can lead to a very interesting research: superconductivity at room temperature. In this paper, I have theoretically studied the coexistence of SC and FM in NbSe2 and how this material could be useful in finding many high Tc nanomaterials.

  11. Superconducting properties and microstructures for Ba2SmNbO6 and BaHfO3 co-doped SmBa2Cu3O y thin films

    Science.gov (United States)

    Kusafuka, Yuma; Ichino, Yusuke; Tsuchiya, Yuji; Ichinose, Ataru; Yoshida, Yuatka

    2017-12-01

    Recently, we observed that Ba2SmNbO6 (BSNO), which has a double perovskite structure, forms wide nanorods in a SmBa2Cu3O y (SmBCO) film when compared with BaHfO3 (BHO) nanorods. These wide nanorods can trap flux quanta effectively in low magnetic fields; on the other hand, narrow nanorods can trap flux quanta in high magnetic fields. In this paper, we doped SmBCO films with BSNO and BHO with the aim of introducing both wide and narrow nanorods and bringing out the flux pinning properties in low and high magnetic fields simultaneously. We investigated their microstructures and superconducting properties, and as a result, we confirmed that wide and narrow nanorods could coexist in the SmBCO films. The wide and narrow nanorods trapped the flux quanta in different magnetic fields. We also explored the optimal composition for BSNO + BHO co-doped SmBCO films. These findings indicate that flux pinning properties can be tuned by the multiple doping of BMO materials.

  12. High magnetic field matching effects in NbN films induced by template grown dense ferromagnetic nanowires arrays

    DEFF Research Database (Denmark)

    Hallet, X.; Mátéfi-Tempfli, Mária; Michotte, S.

    2009-01-01

    Dense arrays of ordered ferromagnetic nanowires have been used to create periodic magnetic pinning centers in thin superconducting NbN films. The nanowires were electrodeposited in a highly ordered porous alumina membrane and the thin NbN film was deposited on top of the perpendicularly oriented...... to the magnetization processes of arrays of interacting single domain ferromagnetic nanowires....

  13. Ising Superconductivity and Quantum Phase Transition in Macro-Size Monolayer NbSe2

    Science.gov (United States)

    Xing, Ying; Zhao, Kun; Shan, Pujia; Zheng, Feipeng; Zhang, Yangwei; Fu, Hailong; Liu, Yi; Tian, Mingliang; Xi, Chuanying; Liu, Haiwen; Feng, Ji; Lin, Xi; Ji, Shuaihua; Chen, Xi; Xue, Qi-Kun; Wang, Jian

    2017-11-01

    Two-dimensional (2D) transition metal dichalcogenides (TMDs) have a range of unique physics properties and could be used in the development of electronics, photonics, spintronics and quantum computing devices. The mechanical exfoliation technique of micro-size TMD flakes has attracted particular interest due to its simplicity and cost effectiveness. However, for most applications, large area and high quality films are preferred. Furthermore, when the thickness of crystalline films is down to the 2D limit (monolayer), exotic properties can be expected due to the quantum confinement and symmetry breaking. In this paper, we have successfully prepared macro-size atomically flat monolayer NbSe2 films on bilayer graphene terminated surface of 6H-SiC(0001) substrates by molecular beam epitaxy (MBE) method. The films exhibit an onset superconducting critical transition temperature above 6 K, 2 times higher than that of mechanical exfoliated NbSe2 flakes. Simultaneously, the transport measurements at high magnetic fields reveal that the parallel characteristic field Bc// is at least 4.5 times higher than the paramagnetic limiting field, consistent with Zeeman-protected Ising superconductivity mechanism. Besides, by ultralow temperature electrical transport measurements, the monolayer NbSe2 film shows the signature of quantum Griffiths singularity when approaching the zero-temperature quantum critical point.

  14. A new approach to fabricate superconducting NbTi alloys

    Science.gov (United States)

    Mousavi, Tayebeh; Hong, Zuliang; Morrison, Alasdair; London, Andrew; Grant, Patrick S.; Grovenor, Chris; Speller, Susannah C.

    2017-09-01

    Superconducting NbTi alloys have been successfully fabricated by a simple powder processing route involving ball-milling, pressing and annealing. The microstructure and superconducting properties of the NbTi alloys after each processing step have been characterised and compared to the microstructure and performance of NbTi wire manufactured by a conventional thermomechanical process. At the early stages of milling, a lamellar structure of pure Nb and Ti regions is formed, which is gradually refined by further milling leading to the introduction of a high density of microstructural defects. After 20 h milling, diffusion of Ti into the Nb generates a matrix of β-Nb-50 wt%Ti alloy, with a small grain size (50 nm) and high strain (1.8%), containing an even distribution of thin Ti flakes (10-40 nm). In some regions, these Ti flakes contain a supersaturation of Nb as a result of the energetic ball-milling process. The T c (8.1 K) and B c2 (9.8 T at 4.2 K) values of this as-milled material are slightly lower than those reported for Nb-47 wt%Ti due to the impurity content and lattice disorder. Sintering at 400 ^\\circ C leads to well consolidated, high density bulk samples, but annealing at temperatures above 600 ^\\circ C decreases J c values due to excessive grain growth and strain release. Annealing at lower temperatures results in higher J c values, a shift of the pinning force density peak towards higher fields and the presence of thermodynamically stable α-Ti precipitates which are effective pinning sites leading to critical current density values comparable with those of commercial NbTi wires.

  15. Nb-Pb superconducting RF-gun

    Energy Technology Data Exchange (ETDEWEB)

    Sekutowicz, J.; Iversen, J.; Kreps, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (DE)] (and others)

    2005-07-01

    We report on the status of an electron RF-gun made of two superconductors: niobium and lead. The presented design combines the advantages of the RF performance of bulk niobium superconducting cavities and the reasonably high quantum efficiency of lead, as compared to other superconducting metals. The concept, mentioned in a previous paper, follows the attractive approach of all niobium superconducting RF-gun as it has been proposed by the BNL group. Measured values of quantum efficiency for lead at various photon energies, analysis of recombination time of photon-broken Cooper pairs for lead and niobium, and preliminary cold test results are discussed in this paper. (orig.)

  16. Nb-Pb superconducting RF gun

    Energy Technology Data Exchange (ETDEWEB)

    J. Sekutowicz; J. Iversen; G. Kreps; W.D. Moller; W. Singer; X. Singer; I. Ben-Zvi; A. Burrill; J. Smedley; T. Rao; M. Ferrario; P. Kneisel; J. Langner; P. Strzyzewski; R. Lefferts; A. Lipski; K. Szalowski; K. Ko; L. Xiao

    2006-04-14

    We report on the status of an electron RF-gun made of two superconductors: niobium and lead. The presented design combines the advantages of the RF performance of bulk niobium superconducting cavities and the reasonably high quantum efficiency of lead, as compared to other superconducting metals. The concept, mentioned in a previous paper, follows the attractive approach of all niobium superconducting RF-gun as it has been proposed by the BNL group. Measured values of quantum efficiency for lead at various photon energies, analysis of recombination time of photon-broken Cooper pairs for lead and niobium, and preliminary cold test results are discussed in this paper.

  17. Nb-Pb Superconducting RF Gun

    Energy Technology Data Exchange (ETDEWEB)

    Sekutowicz, J.; Iversen, J.; Kreps, G.; Moller, W.D.; Singer, W.; Singer, X.; /DESY; Ben-Zvi, I.; Burrill, A.; Smedley, J.; Rao, T.; /Brookhaven; Ferrario, M.; /Frascati; Kneisel, P.; /Jefferson Lab; Langner, J.; Strzyzewski, P.; /Warsaw, Inst. Nucl. Studies; Lefferts, R.; Lipski, A.; /SUNY, Stony Brook; Szalowski, K.; /Lodz U.; Ko, K.; Xiao, L.; /SLAC

    2006-03-29

    We report on the status of an electron RF-gun made of two superconductors: niobium and lead. The presented design combines the advantages of the RF performance of bulk niobium superconducting cavities and the reasonably high quantum efficiency of lead, as compared to other superconducting metals. The concept, mentioned in a previous paper, follows the attractive approach of all niobium superconducting RF-gun as it has been proposed by the BNL group. Measured values of quantum efficiency for lead at various photon energies, analysis of recombination time of photon-broken Cooper pairs for lead and niobium, and preliminary cold test results are discussed in this paper.

  18. RESISTANCE NOISE IN HIGH-TC AND LOW-TC GRANULAR SUPERCONDUCTING FILMS

    NARCIS (Netherlands)

    APONTE, JM; BELLORIN, A; OENTRICH, R; VANDERKUUR, J; GUTIERREZ, G; OCTAVIO, M

    1993-01-01

    Measurements of the resistance noise in thick films of Y-Ba-Cu-0, in thick films of Bi-Sr-Ca-Cu-O, and in thin films of NbN, at the superconducting transition are reported. The transition to the R = 0 state was obtained by either changing the temperature at fixed currents or by lowering the current

  19. Anomalous superconducting spin-valve effect in NbN/FeN/Cu/FeN/FeMn multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Tae Jong; Kim, Dong Ho [Yeungnam University, Gyeongsan (Korea, Republic of)

    2017-09-15

    We have studied magnetic and transport properties of NbN/FeN/Cu/FeN/FeMn spin-valve structure. In-plane magnetic moment exhibited typical hysteresis loops of spin valves in the normal state of NbN film at 20 K. On the other hand, the magnetic hysteresis loop in the superconducting state exhibited more complex behavior in which exchange bias provided by antiferrmagnetic FeMn layer to adjacent FeN layer was disturbed by superconductivity. Because of this, the ideal superconducting spin-valve effect was not detected. Instead the stray field originated from unsaturated magnetic states dominated the transport properties of NbN/FeN/Cu/FeN/FeMn multilayer.

  20. The Impact of Standard Semiconductor Fabrication Processes on Polycrystalline Nb Thin Film Surfaces

    Science.gov (United States)

    Brown, Ari David; Barrentine, Emily; Moseley, S. Harvey; Noroozian, Omid; Stevenson, Thomas

    2016-01-01

    Polycrystalline Nb thin films are extensively used for microwave kinetic inductance detectors (MKIDs) and superconducting transmission line applications. The microwave and mm-wave loss in these films is impacted, in part, by the presence of surface nitrides and oxides. In this study, glancing incidence x-ray diffraction was used to identify the presence of niobium nitride and niobium monoxide surface layers on Nb thin films which had been exposed to chemicals used in standard photolithographic processing. A method of mitigating the presence of ordered niobium monoxide surface layers is presented. Furthermore, we discuss the possibility of using glancing incidence x-ray diffraction as a non-destructive diagnostic tool for evaluating the quality of Nb thin films used in MKIDs and transmission lines. For a given fabrication process, we have both the X-ray diffraction data of the surface chemistry and a measure of the mm-wave and microwave loss, the latter being made in superconducting resonators.

  1. Superconducting transport in single and parallel double InAs quantum dot Josephson junctions with Nb-based superconducting electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Shoji, E-mail: baba@meso.t.u-tokyo.ac.jp; Sailer, Juergen [Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Deacon, Russell S. [Center for Emergent Matter Science (CEMS), RIKEN, Wako, Saitama 351-0198 (Japan); RIKEN Advanced Science Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Oiwa, Akira [The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Shibata, Kenji [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Department of Electronics and Intelligent Systems, Tohoku Institute of Technology, Sendai 982-8577 (Japan); Hirakawa, Kazuhiko [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); JST CREST, 4-1-8 Hon-cho, Kawaguchi-shi, Saitama 332-0012 (Japan); Tarucha, Seigo [Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Center for Emergent Matter Science (CEMS), RIKEN, Wako, Saitama 351-0198 (Japan); INQIE, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); QPEC, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku 113-8656 (Japan)

    2015-11-30

    We report conductance and supercurrent measurements for InAs single and parallel double quantum dot Josephson junctions contacted with Nb or NbTiN superconducting electrodes. Large superconducting gap energy, high critical field, and large switching current are observed, all reflecting the features of Nb-based electrodes. For the parallel double dots, we observe an enhanced supercurrent when both dots are on resonance, which may reflect split Cooper pair tunneling.

  2. Controllable injector for local flux entry into superconducting films

    Energy Technology Data Exchange (ETDEWEB)

    Carmo, D.; Colauto, F.; de Andrade, A. M. H.; Oliveira, A. A. M.; Ortiz, W. A.; Johansen, T. H.

    2016-07-21

    A superconducting flux injector (SFI) has been designed to allow for controlled injections of magnetic flux into a superconducting film from a predefined location along the edge. The SFI is activated by an external current pulse, here chosen to be 200 ms long, and it is demonstrated on films of Nb that the amount of injected flux is controlled by the pulse height. Examples of injections at two different temperatures where the flux enters by stimulated flux-flow and by triggered thermomagnetic avalanches are presented. The boundary between the two types of injection is determined and discussed. The SFI opens up for active use of phenomena which up to now have been considered hazardous for a safe operation of superconducting devices.

  3. Complete Fabrication of a Traversable 3 µm Thick NbN Film Superconducting Coil with Cu plated layer of 42m in Length in a Spiral Three-Storied Trench Engraved in a Si Wafer of 76.2 mm in Diameter Formed by MEMS Technology for a Compact SMES with High Energy Storage Volume Density

    Science.gov (United States)

    Suzuki, Yasuhiro; Iguchi, Nobuhiro; Adachi, Kazuhiro; Ichiki, Akihisa; Hioki, Tatsumi; Hsu, Che-Wei; Sato, Ryoto; Kumagai, Shinya; Sasaki, Minoru; Noh, Joo-Hyong; Sakurahara, Yuuske; Okabe, Kyohei; Takai, Osamu; Honma, Hideo; Watanabe, Hideo; Sakoda, Hitoshi; Sasagawa, Hiroaki; Doy, Hideyuki; Zhou, Shuliang; Hori, H.; Nishikawa, Shigeaki; Nozaki, Toshihiro; Sugimoto, Noriaki; Motohiro, Tomoyoshi

    2017-09-01

    Based on the concept of a novel approach to make a compact SMES unit composed of a stack of Si wafers using MEMS process proposed previously, a complete fabrication of a traversable 3 µam thick NbN film superconducting coil lined with Cu plated layer of 42m in length in a spiral three-storied trench engraved in and extended over a whole Si-wafer of 76.2 mm in diameter was attained for the first time. With decrease in temperature, the DC resistivity showed a metallic decrease indicating the current pass was in the Cu plated layer and then made a sudden fall to residual contact resistance indicating the shift of current pass from the Cu plated layer to the NbN film at the critical temperature Tc of 15.5K by superconducting transition. The temperature dependence of I-V curve showed the increase in the critical current with decrease in the temperature and the highest critical current measured was 220 mA at 4K which is five times as large as that obtained in the test fabrication as the experimental proof of concept presented in the previous report. This completion of a one wafer superconducting NbN coil is an indispensable step for the next proof of concept of fabrication of series-connected two wafer coils via superconductive joint which will read to series connected 600 wafer coils finally, and for replacement of NbN by high Tc superconductor such as YBa2Cu3O7-x for operation under the cold energy of liquid hydrogen or liquid nitrogen.

  4. Materials Analysis of CED Nb Films Being Coated on Bulk Nb Single Cell SRF Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xin; Reece, Charles; Palczewski, Ari; Ciovati, Gianluigi; Krishnan, Mahadevan; James, Colt; Irfan, Irfan

    2013-09-01

    This study is an on-going research on depositing a Nb film on the internal wall of bulk Nb single cell SRF cavities, via a cathodic arc Nb plasma ions source, an coaxial energetic condensation (CED) facility at AASC company. The motivation is to firstly create a homoepitaxy-like Nb/Nb film in a scale of a ~1.5GHz RF single cell cavity. Next, through SRF measurement and materials analysis, it might reveal the baseline properties of the CED-type homoepitaxy Nb films. Literally, a top-surface layer of Nb films which sustains SRF function, always grows up in homo-epitaxy mode, on top of a Nb nucleation layer. Homo-epitaxy growth of Nb must be the final stage (a crystal thickening process) of any coatings of Nb film on alternative cavity structure materials. Such knowledge of Nb-Nb homo-epitaxy is useful to create future realistic SRF cavity film coatings, such as hetero-epitaxy Nb/Cu Films, or template-layer-mitigated Nb films. One large-grain, and three fine grain bulk Nb cavities were coated. They went through cryogenic RF measurement. Preliminary results show that the Q0 of a Nb film could be as same as the pre-coated bulk Nb surface (which received a chemically-buffered polishing plus a light electro-polishing); but quality factor of two tested cavities dropped quickly. We are investigating if the severe Q-slope is caused by hydrogen incorporation before deposition, or is determined by some structural defects during Nb film growth.

  5. SLPX: superconducting long-pulse tokamak experiment. [NbTi

    Energy Technology Data Exchange (ETDEWEB)

    Jassby, D.L.; File, J.; Bronner, G.

    1978-09-25

    The principal objectives of the SLPX (Superconducting Long-Pulse Experiment) are: (1) to demonstrate quasi-steady operation of 3 to 5 MA hydrogen and deuterium tokamak plasmas at high temperature and high thermal wall loading, and (2) to develop reliable operation of prototypical tokamak reactor magnetics systems featuring a toroidal assembly of high-field niobium-tin coils, and a system of pulsed niobium-titanium superconducting poloidal-field coils. This paper describes the status of the engineering design features of the SLPX, with emphasis on the magnetics systems. The toroidal-field coils have an aperture of 3.1 x 4.8 m and can operate with a maximum field at the conductor of 12 T. The superconducting poloidal field magnetics system consists of a pulsed NbTi central solenoid and a set of dc NbTi equilibrium-field coils. The entire machine is enclosed in an outer vacuum container equipped with re-entrant ports that provide ambient access to the room-temperature plasma vessel.

  6. Superconductivity in quasi-one-dimensional BaNbS3

    Science.gov (United States)

    Neumeier, J. J.; Smith, M. G.

    2017-11-01

    BaNbS3 is a quasi-one-dimensional metal possessing Nb-Nb chains. Superconductivity was observed at the transition temperature Tc = 0.89 K. Specific heat measurements reveal the bulk nature of the superconductivity, and an energy gap Eg = 0.245(3) meV, which agrees well with BCS theory. The upper critical magnetic field was used to estimate the coherence lengths parallel (ξ∥ = 987(17) Å) and perpendicular (ξ⊥ = 204(12) Å) to the Nb-Nb chains. Despite the anisotropy evident through ξ∥/ξ⊥, the large magnitudes of each reveal that coherence extends over a large enough volume that superconductivity in BaNbS3 can be viewed as isotropic on the scale of tens of Nb-Nb distances.

  7. Stoichiometry and thickness dependence of superconducting properties of niobium nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Beebe, Melissa R., E-mail: mrbeebe@email.wm.edu; Beringer, Douglas B.; Burton, Matthew C.; Yang, Kaida; Lukaszew, R. Alejandra [Department of Physics, The College of William & Mary, Small Hall, 300 Ukrop Way, Williamsburg, Virginia 23185 (United States)

    2016-03-15

    The current technology used in linear particle accelerators is based on superconducting radio frequency (SRF) cavities fabricated from bulk niobium (Nb), which have smaller surface resistance and therefore dissipate less energy than traditional nonsuperconducting copper cavities. Using bulk Nb for the cavities has several advantages, which are discussed elsewhere; however, such SRF cavities have a material-dependent accelerating gradient limit. In order to overcome this fundamental limit, a multilayered coating has been proposed using layers of insulating and superconducting material applied to the interior surface of the cavity. The key to this multilayered model is to use superconducting thin films to exploit the potential field enhancement when these films are thinner than their London penetration depth. Such field enhancement has been demonstrated in MgB{sub 2} thin films; here, the authors consider films of another type-II superconductor, niobium nitride (NbN). The authors present their work correlating stoichiometry and superconducting properties in NbN thin films and discuss the thickness dependence of their superconducting properties, which is important for their potential use in the proposed multilayer structure. While there are some previous studies on the relationship between stoichiometry and critical temperature T{sub C}, the authors are the first to report on the correlation between stoichiometry and the lower critical field H{sub C1}.

  8. Growth of superconducting FeSe films

    Science.gov (United States)

    Naito, Michio; Agatsuma, Shinya; Ueda, Shinya

    2009-03-01

    The recently discovered Fe arsenide and chalcogenide superconductors have provided the superconducting community with a great surprise that Fe-based compounds are not ferromagnetic but superconducting with high Tc. The superconducting Fe arsenides and chalcogenides are also interested from the viewpoint of superconducting electronics. One can see good lattice compatibility between the superconducting Fe family and the existing III-V and II-VI semiconducting family (GaAs, ZnSe). All-epitaxial super-semiconductor multilayer structures may be ideal for superconducting electronics and spintronics. Toward this goal, we have attempted to grow epitaxial thin films of the superconducting Fe family. Of this family, tetragonal α-FeSe seems to be the easiest to grow thin films. We employed two approaches for FeSe film growth: post-annealing and MBE growth. In the post-annealing, precursor films of Fe are annealed at 500 - 600 ^oC with Se vapor in an evacuated quartz tube. Annealing with elemental Se produced semiconducting FeSe2 whereas annealing with FeSe polycrystalline pellets produced superconducting FeSe with Tc(onset) ˜ 10 K. In the MBE growth, we attempted the growth similar to GaAs growth, namely with the vapor rich in Se, expecting self-limiting adsorption of Se. MBE films so far obtained with the growth temperature of 330 ^oC are nonsuperconducting hexagonal β-FeSe.

  9. Characterization of Nb coating in HIE-ISOLDE QWR superconducting accelerating cavities by means of SEM-FIB and TEM

    CERN Document Server

    Bartova, Barbora; Taborelli, M; Aebersold, A B; Alexander, D T L; Cantoni, M; Calatroni, Sergio; CERN. Geneva. ATS Department

    2015-01-01

    The Quarter Wave Resonators (QWR) high-β cavities (0.3 m diameter and 0.9 m height) are made from OFE 3D-forged copper and are coated by DC-bias diode sputtering with a thin superconducting layer of niobium. The Nb film thickness, morphology, purity and quality are critical parameters for RF performances of the cavity. They have been investigated in a detailed material study.

  10. Superconducting NbN single-photon detectors on GaAs with an AlN buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Ekkehart; Merker, Michael; Ilin, Konstantin; Siegel, Michael [Institut fuer Mikro- und Nanoelektronische Systeme (IMS), Karlsruher Institut fuer Technologie, Hertzstrasse 16, 76187 Karlsruhe (Germany)

    2015-07-01

    GaAs is the material of choice for photonic integrated circuits. It allows the monolithic integration of single-photon sources like quantum dots, waveguide based optical circuits and detectors like superconducting nanowire single-photon detectors (SNSPDs) onto one chip. The growth of high quality NbN films on GaAs is challenging, due to natural occurring surface oxides and the large lattice mismatch of about 27%. In this work, we try to overcome these problems by the introduction of a 10 nm AlN buffer layer. Due to the buffer layer, the critical temperature of 6 nm thick NbN films was increased by about 1.5 K. Furthermore, the critical current density at 4.2 K of NbN flim deposited onto GaAs with AlN buffer is 50% higher than of NbN film deposited directly onto GaAs substrate. We successfully fabricated NbN SNSPDs on GaAs with a AlN buffer layer. SNSPDs were patterned using electron-beam lithography and reactive-ion etching techniques. Results on the study of detection efficiency and jitter of a NbN SNSPD on GaAs, with and without AlN buffer layer will be presented and discussed.

  11. Thin Film Approaches to the SRF Cavity Problem Fabrication and Characterization of Superconducting Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Beringer, Douglas [College of William and Mary, Williamsburg, VA (United States)

    2017-08-01

    Superconducting Radio Frequency (SRF) cavities are responsible for the acceleration of charged particles to relativistic velocities in most modern linear accelerators, such as those employed at high-energy research facilities like Thomas Jefferson National Laboratory’s CEBAF and the LHC at CERN. Recognizing SRF as primarily a surface phenomenon enables the possibility of applying thin films to the interior surface of SRF cavities, opening a formidable tool chest of opportunities by combining and designing materials that offer greater performance benefit. Thus, while improvements in radio frequency cavity design and refinements in cavity processing techniques have improved accelerator performance and efficiency – 1.5 GHz bulk niobium SRF cavities have achieved accelerating gradients in excess of 35 MV/m – there exist fundamental material bounds in bulk superconductors limiting the maximally sustained accelerating field gradient (≈ 45 MV/m for Nb) where inevitable thermodynamic breakdown occurs. With state of the art Nb based cavity design fast approaching these theoretical limits, novel material innovations must be sought in order to realize next generation SRF cavities. One proposed method to improve SRF performance is to utilize thin film superconducting-insulating-superconducting (SIS) multilayer structures to effectively magnetically screen a bulk superconducting layer such that it can operate at higher field gradients before suffering critically detrimental SRF losses. This dissertation focuses on the production and characterization of thin film superconductors for such SIS layers for radio frequency applications. Correlated studies on structure, surface morphology and superconducting properties of epitaxial Nb and MgB2 thin films are presented.

  12. Superconductivity of Thin Film Intermetallic Compounds.

    Science.gov (United States)

    1985-09-15

    D-RISE 2?I SUPERCONDUCTIVITY OF THIN FILM INTERMETLLIC COMPOUNDS I/i. (U) MINNESOTR UNIV MINNERPOLIS SCHOOL OF PHYSICS AND RSTRONOMY R M GOLDMRN 15...parameters to either higher temperatures of higher critical fields. Materials under study are the superconducting Chevrel phase compounds, selected Heavy...superconducting field effect. Processing of the Chevrel Phase I compounds is carried out in a multi-source deposition system. The latter has been upgraded and

  13. Superconducting YBa 2Cu 3O 7-δ -Ag Thin Films (TC( 0) = 90 K) by Pulsed Laser Deposition on Polycrystalline Ba 2NdNbO 6; A Novel Substrate for YBa 2Cu 3O 7-δ Films

    Science.gov (United States)

    Kurian, Jose; John, Asha; Sajith, Poo; Koshy, Jacob; Pai, Subash; Pinto, Richard

    1998-10-01

    The development and characterisation of \\ba, a novel ceramicsubstrate material for \\yb superconductor, are reported. \\ba hasa complex cubic perovskite structure [\\bb] with lattice constanta = 8.573Å. The dielectric properties of \\ba are in a rangesuitable for its use as a substrate for microwave applications.\\ba was found to have a thermal expansion coefficient of8.6× 10-6{ }\\circC-1 and a thermal conductivityof 87 W·m-1·K-1. Superconducting \\yb-Ag thin filmshave been grown in situ on polycrystalline \\ba by pulsedlaser ablation technique and the optimum conditions have beenestablished. The films exhibited (00l) orientation of anorthorhombic \\yb phase and gave a zero resistivitysuperconducting transition [TC(0)] at 90 K with atransition width of ˜1.5 K and JC ˜3×105 A/cm2 at 77 K.

  14. Local imaging of magnetic flux in superconducting thin films

    Energy Technology Data Exchange (ETDEWEB)

    Shapoval, Tetyana

    2010-01-26

    Local studies of magnetic flux line (vortex) distribution in superconducting thin films and their pinning by natural and artificial defects have been performed using low-temperature magnetic force microscopy (LT-MFM). Taken a 100 nm thin NbN film as an example, the depinning of vortices from natural defects under the influence of the force that the MFM tip exerts on the individual vortex was visualized and the local pinning force was estimated. The good agreement of these results with global transport measurements demonstrates that MFM is a powerful and reliable method to probe the local variation of the pinning landscape. Furthermore, it was demonstrated that the presence of an ordered array of 1-{mu}m-sized ferromagnetic permalloy dots being in a magneticvortex state underneath the Nb film significantly influences the natural pinning landscape of the superconductor leading to commensurate pinning effects. This strong pinning exceeds the repulsive interaction between the superconducting vortices and allows vortex clusters to be located at each dot. Additionally, for industrially applicable YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} thin films the main question discussed was the possibility of a direct correlation between vortices and artificial defects as well as vortex imaging on rough as-prepared thin films. Since the surface roughness (droplets, precipitates) causes a severe problem to the scanning MFM tip, a nanoscale wedge polishing technique that allows to overcome this problem was developed. Mounting the sample under a defined small angle results in a smooth surface and a monotonic thickness reduction of the film along the length of the sample. It provides a continuous insight from the film surface down to the substrate with surface sensitive scanning techniques. (orig.)

  15. Direct Local Measurement of the Superconducting Energy Gap of Nb doped SrTiO3

    Science.gov (United States)

    Ha, Jeonghoon; Khalsa, Guru; Natterer, Fabian; Baek, Hongwoo; Cullen, William G.; Kuk, Young; Stroscio, Joseph A.

    Strontium titanate (STO) is a perovskite metal oxide insulator that can be electron doped by substitution of Ti or Sr sites with Nb or La, respectively, or by oxygen vacancies. When doped to high electron densities with concentration in the range of 5x1019 cm- 3 to 2x1020 cm-3, STO becomes superconducting with a transition temperature below 400 mK, at a value highly dependent on the doping concentration. Previous observations were made on bulk crystals or films of doped STO by measuring the transitions in resistivity, magnetic susceptibility or thermal conductivity as a function of temperature or magnetic field. In this work, we use an ultra-low temperature scanning tunneling microscope(STM) to investigate the local electronic structure of the surface of Nb doped STO. The tunneling spectra taken at a sample temperature of ~10 mK reveal a BCS energy gap of Δ = 40 ueV. Temperature and magnetic field dependent tunneling measurements show a critical temperature of ~250 mK and upper critical field of ~0.07 T. This is the first report of direct measurement of superconducting STO using an STM.

  16. Loss mechanisms in superconducting thin film microwave resonators

    Energy Technology Data Exchange (ETDEWEB)

    Goetz, Jan, E-mail: jan.goetz@wmi.badw.de; Haeberlein, Max; Wulschner, Friedrich; Zollitsch, Christoph W.; Meier, Sebastian; Fischer, Michael; Fedorov, Kirill G.; Menzel, Edwin P. [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany); Physik-Department, Technische Universität München, 85748 Garching (Germany); Deppe, Frank; Eder, Peter; Xie, Edwar; Gross, Rudolf, E-mail: rudolf.gross@wmi.badw.de [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany); Physik-Department, Technische Universität München, 85748 Garching (Germany); Nanosystems Initiative Munich (NIM), Schellingstraße 4, 80799 München (Germany); Marx, Achim [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany)

    2016-01-07

    We present a systematic analysis of the internal losses of superconducting coplanar waveguide microwave resonators based on niobium thin films on silicon substrates. In particular, we investigate losses introduced by Nb/Al interfaces in the center conductor, which is important for experiments where Al based Josephson junctions are integrated into Nb based circuits. We find that these interfaces can be a strong source for two-level state (TLS) losses, when the interfaces are not positioned at current nodes of the resonator. In addition to TLS losses, for resonators including Al, quasiparticle losses become relevant above 200 mK. Finally, we investigate how losses generated by eddy currents in conductive material on the backside of the substrate can be minimized by using thick enough substrates or metals with high conductivity on the substrate backside.

  17. Superconducting niobium nitride films deposited by unbalanced magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Olaya, J.J. [Departamento de Ingenieria Mecanica y Mecatronica, Universidad Nacional de Colombia, Ciudad Universitaria, Carrera 30 Numero 45-03, Bogota (Colombia); Huerta, L. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito exterior s/n, CU Coyoacan, Mexico D.F. 04510 (Mexico); Rodil, S.E. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito exterior s/n, CU Coyoacan, Mexico D.F. 04510 (Mexico)], E-mail: ser42@iim.unam.mx; Escamilla, R. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito exterior s/n, CU Coyoacan, Mexico D.F. 04510 (Mexico)

    2008-10-01

    Niobium nitride (NbN) thin films were deposited under different configurations of the magnetic field using a magnetron sputtering system. The magnetic field configuration varied from balanced to unbalanced leading to different growth conditions and film properties. The aim of the paper was to identify correlations between deposition conditions, film properties and the electrical properties, specially the superconductive critical temperature (T{sub C}). The results suggested that there is a critical deposition condition, having an optimum ion-atom arrival ratio that promotes a well ordered and textured nanocrystalline structure (cubic phase) with the minimum residual stress and only under this condition a high critical temperature (16K) was obtained. Lower T{sub C} values around 12K were obtained for the NbN samples having a lower degree of structural perfection and texture, and a larger fraction of intergranular voids. On the other hand, analysis of valence-band spectra showed that the contribution of the Nb 4d states remained essentially constant while the higher T{sub C} was correlated to a higher contribution of the N 2p states.

  18. Nonequilibrium interpretation of DC properties of NbN superconducting hot electron bolometers

    NARCIS (Netherlands)

    Shcherbatenko, M; Tretyakov, I; Lobanov, Yu; Maslennikov, S. N.; Kaurova, N; Finkel, M.; Voronov, B; Goltsman, G; Klapwijk, T.M.

    2016-01-01

    We present a physically consistent interpretation of the dc electrical properties of niobiumnitride (NbN)-based superconducting hot-electron bolometer mixers, using concepts of nonequilibrium superconductivity. Through this, we clarify what physical information can be extracted from the resistive

  19. Light Induced Electron-Phonon Scattering Mediated Resistive Switching in Nanostructured Nb Thin Film Superconductor.

    Science.gov (United States)

    Kazim, Shafaq; Sharma, Alka; Yadav, Sachin; Gajar, Bikash; Joshi, Lalit M; Mishra, Monu; Gupta, Govind; Husale, Sudhir; Gupta, Anurag; Sahoo, Sangeeta; Ojha, V N

    2017-04-13

    The elemental Nb is mainly investigated for its eminent superconducting properties. In contrary, we report of a relatively unexplored property, namely, its superior optoelectronic property in reduced dimension. We demonstrate here that nanostructured Nb thin films (NNFs), under optical illumination, behave as room temperature photo-switches and exhibit bolometric features below its superconducting critical temperature. Both photo-switch and superconducting bolometric behavior are monitored by its resistance change with light in visible and near infrared (NIR) wavelength range. Unlike the conventional photodetectors, the NNF devices switch to higher resistive states with light and the corresponding resistivity change is studied with thickness and grain size variations. At low temperature in its superconducting state, the light exposure shifts the superconducting transition towards lower temperature. The room temperature photon sensing nature of the NNF is explained by the photon assisted electron-phonon scattering mechanism while the low temperature light response is mainly related to the heat generation which essentially changes the effective temperature for the device and the device is capable of sensing a temperature difference of few tens of milli-kelvins. The observed photo-response on the transport properties of NNFs can be very important for future superconducting photon detectors, bolometers and phase slip based device applications.

  20. A multiple-field coupled resistive transition model for superconducting Nb3Sn

    Science.gov (United States)

    Yang, Lin; Ding, He; Zhang, Xin; Qiao, Li

    2016-12-01

    A study on the superconducting transition width as functions of the applied magnetic field and strain is performed in superconducting Nb3Sn. A quantitative, yet universal phenomenological resistivity model is proposed. The numerical simulation by the proposed model shows predicted resistive transition characteristics under variable magnetic fields and strain, which in good agreement with the experimental observations. Furthermore, a temperature-modulated magnetoresistance transition behavior in filamentary Nb3Sn conductors can also be well described by the given model. The multiple-field coupled resistive transition model is helpful for making objective determinations of the high-dimensional critical surface of Nb3Sn in the multi-parameter space, offering some preliminary information about the basic vortex-pinning mechanisms, and guiding the design of the quench protection system of Nb3Sn superconducting magnets.

  1. A multiple-field coupled resistive transition model for superconducting Nb3Sn

    Directory of Open Access Journals (Sweden)

    Lin Yang

    2016-12-01

    Full Text Available A study on the superconducting transition width as functions of the applied magnetic field and strain is performed in superconducting Nb3Sn. A quantitative, yet universal phenomenological resistivity model is proposed. The numerical simulation by the proposed model shows predicted resistive transition characteristics under variable magnetic fields and strain, which in good agreement with the experimental observations. Furthermore, a temperature-modulated magnetoresistance transition behavior in filamentary Nb3Sn conductors can also be well described by the given model. The multiple-field coupled resistive transition model is helpful for making objective determinations of the high-dimensional critical surface of Nb3Sn in the multi-parameter space, offering some preliminary information about the basic vortex-pinning mechanisms, and guiding the design of the quench protection system of Nb3Sn superconducting magnets.

  2. Effect of pressure on the composition and superconducting T{sub c} value of NbN prepared by combustion synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Buscaglia, V. [Consiglio Nazionale delle Ricerche, Genoa (Italy). Ist. di Chimica Fisica Applicata dei Materiali; Caracciolo, F.; Ferretti, M.; Minguzzi, M. [Dipt. di Chimica e Chimica Industriale, Genoa (Italy); Musenich, R. [Istituto Nazionale di Fisica Nucleare, Genoa (Italy)

    1998-02-20

    The synthesis of niobium nitride by combustion of packed niobium powder under nitrogen atmosphere was studied in the pressure range 3.5-700 bar without solid-phase dilution. Surface melting of niobium was only detected at 30 bar. The reaction products consist of {delta}-NbN above 100 bar and of {gamma}-Nb{sub 4}N{sub 3}+{delta}-NbN at lower pressures. The lattice parameter of {delta}-NbN vs. the applied pressure presents a maximum corresponding to the transition from a predominantly defective nitrogen sublattice (N/Nb<1) to a predominantly defective niobium sublattice (N/Nb>1). Bulk metal-nitride components were obtained using a `chemical oven` configuration and combining the high pressure with the high combustion temperatures of the niobium powder. Thick nitride films of {approx}50 {mu}m with a critical superconducting temperature up to 17.2 K were prepared. The films consist of a {delta}-NbN external layer, of a {gamma}-Nb{sub 4}N{sub 3} intermediate layer and of a {beta}-Nb{sub 2}N inner layer. (orig.) 25 refs.

  3. Vortices in superconducting bulk, films and SQUIDs

    Indian Academy of Sciences (India)

    ... realistic shapes like thin and thick strips and disks or thin rectangular plates or films, containing pinned vortices, can be computed within continuum theory by solving an integral equation. A useful example is a thin square with a central hole and a radial slit, used as superconducting quantum interference device (SQUID).

  4. Magnetic reversal dynamics of NiFe-based artificial spin ice: Effect of Nb layer in normal and superconducting state

    Science.gov (United States)

    Kaur, M.; Gupta, Anurag; Varandani, D.; Verma, Apoorva; Senguttuvan, T. D.; Mehta, B. R.; Budhani, R. C.

    2017-11-01

    Square arrays of artificial spin ice (ASI) constituting weakly interacting NiFe nano-islands, with length ˜312 nm, width ˜125 nm, thickness ˜20 nm, and lattice constant ˜570 nm, were fabricated on Nb thin film and on thermally grown 300 nm SiO2 on silicon. Detailed investigations of magnetic force microscopy (MFM) at room temperature, and magnetization M(H) loops and relaxation of remanent magnetization (Mr) at various temperatures were carried out in two in-plane field geometries, namely, parallel ("P"-parallel to the square lattice) and diagonal ("D"- 45° to the square lattice). The magnetic response of the ASI samples shows striking difference for insulating (SiO2), metallic (Nb, T > 6.6 K) and superconducting (Nb, T 6.6 K), (1) in "P" geometry the M(H) loops are found to be more "S" shaped in comparison with that for SiO2 base; (2) the ratio of magnetic vertex population of Type II to Type III vertices extracted from MFM studies in "P"("D") geometry is ˜1:1.1(1.2:1) that changed for the SiO2 base to ˜2.1:1 (4: 1). However, the NiFe-ASI on both metallic Nb and SiO2 bases exhibit a highly athermal decay of magnetization, and the % change in Mr in about two hours at T = 10 K (300 K) lies in a range of ˜1.07-1.80 (0.25-0.62). With Nb base in superconducting state (T < 6.6 K), the M(H) loops not only look radically different from those with SiO2 and metallic Nb as bases but also show significant difference in "P" and "D" geometries. These results are discussed in terms of inter-island magnetostatic energy as influenced by field geometry, presence of metallic Nb base and competing vortex pinning energy of superconducting Nb base.

  5. Thermo-magnetic instabilities in Nb3Sn superconducting accelerator magnets

    Energy Technology Data Exchange (ETDEWEB)

    Bordini, Bernardo [Univ. of Pisa (Italy)

    2006-09-01

    The advance of High Energy Physics research using circulating accelerators strongly depends on increasing the magnetic bending field which accelerator magnets provide. To achieve high fields, the most powerful present-day accelerator magnets employ NbTi superconducting technology; however, with the start up of Large Hadron Collider (LHC) in 2007, NbTi magnets will have reached the maximum field allowed by the intrinsic properties of this superconductor. A further increase of the field strength necessarily requires a change in superconductor material; the best candidate is Nb3Sn. Several laboratories in the US and Europe are currently working on developing Nb3Sn accelerator magnets, and although these magnets have great potential, it is suspected that their performance may be fundamentally limited by conductor thermo-magnetic instabilities: an idea first proposed by the Fermilab High Field Magnet group early in 2003. This thesis presents a study of thermo-magnetic instability in high field Nb3Sn accelerator magnets. In this chapter the following topics are described: the role of superconducting magnets in High Energy Physics; the main characteristics of superconductors for accelerator magnets; typical measurements of current capability in superconducting strands; the properties of Nb3Sn; a description of the manufacturing process of Nb3Sn strands; superconducting cables; a typical layout of superconducting accelerator magnets; the current state of the art of Nb3Sn accelerator magnets; the High Field Magnet program at Fermilab; and the scope of the thesis.

  6. Analysis and results of the industrial production of the superconducting Nb/Cu cavities for the LEP2 project

    CERN Document Server

    Chiaveri, Enrico; Cosso, R; Lacarrère, D; Schirm, K M; Taufer, M; Weingarten, Wolfgang

    1996-01-01

    For the energy upgrade of the Large Electron Positron Collider at CERN 216 RF superconducting cavities were ordered from three European industrial firms (Ansaldo, Cerca, Siemens/Accel) at the beginning of 1991. These cavities are made of copper (Cu), internally coated with niobium (Nb) according to a procedure developed at CERN. Up to now about 147 of these cavities fulfilling the specifications have been produced. The large-scale statistics available and the use of dedicated analytical and optical inspection techniques shed new light on the relationship between production procedures, niobium film properties and cavity performance. An overview of this subject is presented, together with some significant trends and results.

  7. Numerical restoration of surface vortices in Nb films measured by a scanning SQUID microscope

    Science.gov (United States)

    Ito, Atsuki; Thanh Huy, Ho; Dang, Vu The; Miyoshi, Hiroki; Hayashi, Masahiko; Ishida, Takekazu

    2017-07-01

    In the present work, we investigated a vortex profile appeared on a pure Nb film (500 nm in thickness, 10 mm x 10 mm) by using a scanning SQUID microscope. We found that the local magnetic distribution thus observed is broadened compared to a true vortex profile in the superconducting film. We therefore applied the numerical method to improve a spatial resolution of the scanning SQUID microscope. The method is based on the inverse Biot-Savart law and the Fourier transformation to recover a real-space image. We found that the numerical analyses give a smaller vortex than the raw vortex profile observed by the scanning microscope.

  8. Quantum device prospects of superconducting nanodiamond films

    Science.gov (United States)

    Mtsuko, D.; Churochkin, D.; Bhattacharyya, S.

    2016-02-01

    Nanostructured semiconducting carbon system, described by as a superlattice-like structure demonstrated its potential in switching device applications based on the quantum tunneling through the insulating carbon layer. This switching property can be enhanced further with the association of Josephson's tunneling between two superconducting carbon (diamond) grains separated by a very thin layer of carbon which holds the structure of the film firmly. The superconducting nanodiamond heterostructures form qubits which can lead to the development of quantum computers provided the effect of disorder present in these structure can be firmly understood. Presently we concentrate on electrical transport properties of heavily boron-doped nanocrystalline diamond films around the superconducting transition temperature measured as a function of magnetic fields and the applied bias current. Microstructure of these films is described by a two dimensional superlattice system which can also contain paramagnetic impurities. We report observation of anomalous negative Hall resistance in these films close to the superconductor-insulator-normal phase transition in the resistance versus temperature plots at low bias currents at zero and low magnetic field. The negative Hall effect is found to be suppressed as the bias current increase. Magnetoresistance study shows a distinct peak at zero field when measured in the low current regimes which suggest a superconductor-insulator-superconductor structure of films. Current vs. voltage characteristics show signature of π-Josephson like behaviour which can give rise to a characteristic frequency of several hundred of gigahertz. Signature of spin flipping also shows novel spintronic device applications.

  9. Charge density wave and superconductivity in 2H- and 4H-NbSe2 ...

    Indian Academy of Sciences (India)

    ρ300/ρTs , where ρTs is the resistivity at superconducting transition temperature Ts and we have calculated ∼66.7 for 2H-NbSe2. 2H-NbSe2 exhibits superconductor and CDW tran- sitions at 7.4 and 35 K respectively and the values are the same as in the previous result. We have found its room temperature resistivity to be ...

  10. Elastic anisotropy in multifilament Nb$_3$Sn superconducting wires

    CERN Document Server

    Scheuerlein, C; Alknes, P; Arnau, G; Bjoerstad, R; Bordini, B

    2015-01-01

    The elastic anisotropy caused by the texture in the Nb3Sn filaments of PIT and RRP wires has been calculated by averaging the estimates of Voigt and Reuss, using published Nb3Sn single crystal elastic constants and the Nb3Sn grain orientation distribution determined in both wire types by Electron Backscatter Diffraction. At ambient temperature the calculated Nb3Sn E-moduli in axial direction in the PIT and the RRP wire are 130 GPa and 140 GPa, respectively. The calculated E-moduli are compared with tensile test results obtained for the corresponding wires and extracted filament bundles.

  11. Charge density wave and superconductivity in 2H-and 4H-NbSe2: A ...

    Indian Academy of Sciences (India)

    Good-quality hexagonal NbSe2 single crystals were prepared. In 2H-NbSe2, superconducting and charge density wave (CDW) transitions were found at = 7.4 K and = 35 K respectively as reported previously. We have noticed that these two transitions are changed to = 42 K and = 6.5 K, in 4H-NbSe2.

  12. Fabrication of Nb{sub 3}Al superconducting wires by utilizing the mechanically alloyed Nb(Al){sub ss} supersaturated solid-solution with low-temperature annealing

    Energy Technology Data Exchange (ETDEWEB)

    Pan, X.F. [National Engineering Laboratory for Superconducting Material, Western Superconducting Technologies (WST) Co., Ltd., Xi’an 710018 (China); Superconducting Materials Center, Northwest Institute for Nonferrous Metal Research, Xi’an 710016 (China); Yan, G., E-mail: gyan@c-nin.com [National Engineering Laboratory for Superconducting Material, Western Superconducting Technologies (WST) Co., Ltd., Xi’an 710018 (China); Superconducting Materials Center, Northwest Institute for Nonferrous Metal Research, Xi’an 710016 (China); Qi, M. [Superconducting Materials Center, Northwest Institute for Nonferrous Metal Research, Xi’an 710016 (China); Cui, L.J. [National Engineering Laboratory for Superconducting Material, Western Superconducting Technologies (WST) Co., Ltd., Xi’an 710018 (China); Chen, Y.L.; Zhao, Y. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains (Ministry of Education of China), Superconductivity and New Energy R and D Center, Southwest Jiaotong University, Chengdu 610031 (China); Li, C.S. [Superconducting Materials Center, Northwest Institute for Nonferrous Metal Research, Xi’an 710016 (China); Liu, X.H. [National Engineering Laboratory for Superconducting Material, Western Superconducting Technologies (WST) Co., Ltd., Xi’an 710018 (China); Feng, Y.; Zhang, P.X. [National Engineering Laboratory for Superconducting Material, Western Superconducting Technologies (WST) Co., Ltd., Xi’an 710018 (China); Key Laboratory of Magnetic Levitation Technologies and Maglev Trains (Ministry of Education of China), Superconductivity and New Energy R and D Center, Southwest Jiaotong University, Chengdu 610031 (China); Liu, H.J. [Institute of Plasma Physics, Chinese Academy of Sciences (CAS), Hefei 230031 (China); and others

    2014-07-15

    Highlights: • This paper reported superconducting properties of the powder-in-tube Nb{sub 3}Al wires. • The Nb{sub 3}Al wires were made by using Nb(Al){sub ss} supersaturated solid solution powders. • The Cu-matrix Nb{sub 3}Al superconducting wires have been successfully fabricated. • The transport J{sub c} of Nb{sub 3}Al wires at 4.2 K, 10 T is up to 12,700 A/cm{sup 2}. - Abstract: High-performance Nb{sub 3}Al superconducting wire is a promising candidate to the application of high-field magnets. However, due to the production problem of km-grade wires that are free from low magnetic field instability, the Nb{sub 3}Al wires made by rapid heating, quenching and transformation (RHQT) are still not available to the large-scale engineering application. In this paper, we reported the properties of the in situ powder-in-tube (PIT) Nb{sub 3}Al superconducting wires, which were made by using the mechanically alloyed Nb(Al){sub ss} supersaturated solid solution, as well as the low temperature heat-treatment at 800 °C for 10 h. The results show that Nb{sub 3}Al superconductors in this method possess very fine grains and well superconducting properties, though a little of Nb{sub 2}Al and Nb impurities still keep being existence at present work. At the Nb{sub 3}Al with a nominal 26 at.% Al content, the onset T{sub c} reaches 15.8 K. Furthermore, a series of Nb{sub 3}Al wires and tapes with various sizes have been fabricated; for the 1.0 mm-diameter wire, the J{sub c} at 4.2 K, 10 T and 14 T have achieved 12,700 and 6900 A/cm{sup 2}, respectively. This work suggests it is possible to develop high-performance Cu-matrix Nb{sub 3}Al superconducting wires by directly using the Nb(Al){sub ss} supersaturated solid-solution without the complex RHQT heat-treatment process.

  13. The role of demagnetizing factors in the occurrence of vortex avalanches in Nb thin films

    Energy Technology Data Exchange (ETDEWEB)

    Colauto, F; Ortiz, W A [Grupo de Supercondutividade e Magnetismo, Departamento de Fisica, Universidade Federal de Sao Carlos, C P 676, 13565-905, Sao Carlos, SP (Brazil); Patino, E J; Aprilli, M, E-mail: fcolauto@df.ufscar.b [Laboratoire de Physique des Solides, Universite Paris-Sud, C.N.R.S., 91405 Orsay cedex (France)

    2009-03-01

    Under specific circumstances, magnetic flux penetrates into superconducting thin films as dendritic flux jumps. The phenomenon has a thermomagnetic origin, where flux motion generates heat that suppresses flux pining and facilitates further flux motion. We have studied the thickness influence on the flux stability for very thin Nb films, 20, 40, 60, and 80 nm, through dc-magnetometry. The thicker the film; the higher is the threshold field where instabilities first take place. Due to the demagnetizing factor in a perpendicular geometry, the effective magnetic field at the border of the film is largely amplified. For thin specimens, a linear dependence between the threshold field and the thickness is expected and has been actually observed. When normalized by the sample aspect ratio, the effective threshold magnetic field is nearly the same for all specimens studied.

  14. Single gap s-wave superconductivity in Nb{sub 2}PdS{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Shruti [School of Physical Sciences, JNU, New Delhi (India); Goyal, R.; Awana, V.P.S. [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Patnaik, S., E-mail: spatnaik@mail.jnu.ac.in [School of Physical Sciences, JNU, New Delhi (India)

    2016-05-15

    Highlights: • In this paper, we report on pairing symmetry and superconducting gap in recently discovered superconductor Nb2PdS5. • This is a remarkable superconductor with highest ever reported Hc2/Tc ratio of ∼3. • In some theoretical studies, such effects have been ascribed to multiband effects and possible p-wave superconductivity. • However our penetration depth data is well ascribed to a single gap nodeless S-wave superconductivity. - Abstract: Superconducting order parameter and its symmetry are important parameters towards deciphering the pairing mechanism in newly discovered superconducting systems. We report a study on penetration depth measurement on Nb{sub 2}PdS{sub 5} that has recently been reported with extremely high upper critical field with possible triplet pairing mechanism. Our data show that at low temperatures the change in penetration depth Δλ is best fitted with BCS s-wave model for single gap with zero-temperature value of the superconducting energy gap Δ{sub 0} = 1.05 meV, corresponding to the ratio 2Δ{sub 0}/k{sub B}T{sub c} = 3.9 ± 0.18. The superfluid density in the entire temperature range is well described by single gap with gap ratio 2Δ{sub 0}/k{sub B}T{sub c} = 4.1 ± 0.13 for λ(0) = 225 nm.

  15. A low energy muon spin rotation and point contact tunneling study of niobium films prepared for superconducting cavities

    Science.gov (United States)

    Junginger, Tobias; Calatroni, S.; Sublet, A.; Terenziani, G.; Prokscha, T.; Salman, Z.; Suter, A.; Proslier, T.; Zasadzinski, J.

    2017-12-01

    Point contact tunneling and low energy muon spin rotation are used to probe, on the same samples, the surface superconducting properties of micrometer thick niobium films deposited onto copper substrates using different sputtering techniques: diode, dc magnetron and HIPIMS. The combined results are compared to radio-frequency tests performances of RF cavities made with the same processes. Degraded surface superconducting properties are found to correlate to lower quality factors and stronger Q-slope. In addition, both techniques find evidence for surface paramagnetism on all samples and particularly on Nb films prepared by HIPIMS.

  16. Desgn of a 20-MJ superconducting ohmic-heating coil. [NbTi and Nb/sub 3/Sn

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S.K.; Murphy, J.H.; Janocko, M.A.; Haller, H.E.; Litz, D.C.; Eckels, P.W.; Rogers, J.D.; Thullen, P.

    1979-01-01

    Conceptual designs of 20-MJ superconducting coils which were developed to demonstrate the feasibility of an ohmic-heating system were discussed. The superconductor materials were NbTi and Nb/sub 3/Sn for the pool boil and forced-flow cooling, respectively. The coils were designed to be cryostable for bipolar operation from +7 to -7 tesla maximum field within one second. The structural design addresses the distribution of structure and structural materials used in the pulsed field environment. The cyclic stresses anticipated and the fatigue limits of the structural materials were examined in view of the operating life of the coil. The coils were designed to generate the flux swings while simultaneously meeting the limitations imposed by cooling, insulation, current density and the stresses in the materials. Both the pool and forced cooled conductors have the same criterion for cryostability, i.e., the conductor must return to the superconducting state from an initial temperature of 20/sup 0/K while the full transport current is flowing through the conductor.

  17. Microwave study of superconducting Sn films above and below percolation

    OpenAIRE

    Beutel, Manfred H.; Ebensperger, Nikolaj G; Thiemann, Markus; Untereiner, Gabriele; Fritz, Vincent; Javaheri, Mojtaba; Nägele, Jonathan; Rösslhuber, Roland; Dressel, Martin; Scheffler, Marc

    2016-01-01

    The electronic properties of superconducting Sn films ($T_c \\approx$ 3.8 K) change significantly when reducing the film thickness down to a few nm, in particular close to the percolation threshold. The low-energy electrodynamics of such Sn samples can be probed via microwave spectroscopy, e.g. with superconducting stripline resonators. Here we study Sn thin films, deposited via thermal evaporation -ranging in thickness between 38 nm and 842 nm- which encompasses the percolation transition. We...

  18. Experimental adiabatic vortex ratchet effect in Nb films with ...

    Indian Academy of Sciences (India)

    Nb films grown on top of an array of asymmetric pinning centers show a vortex ratchet effect. A net flow of vortices is induced when the vortex lattice is driven by fluctuating forces on an array of pinning centers without reflection symmetry. This effect occurs in the adiabatic regime and it could be mimiced only by reversible DC ...

  19. Directed motion of vortices in faceted Nb films

    CERN Document Server

    Soroka, A K

    2002-01-01

    Guided motion of vortices in the Nb films on a faceted Al sub 2 O sub 3 substrate is observed. Even and odd components of longitudinal and transverse magnetoresistivities of the samples with different orientation of transport current to the facet ridges are measured. The field inversion was used to separate the even and odd components of the measured magnetoresistivities.

  20. Superconducting thermomagnetic instabilities tuned through electric-field-controlled strain in Nb/PMN-PT/Nb hybrids

    Science.gov (United States)

    Zeibekis, M.; Zhang, S. J.; Stamopoulos, D.

    2018-01-01

    Electric-field-controlled piezoelectric strain has been used, recently, to modify the superconducting properties in a new class of piezoelectric/superconducting (PE/SC) hybrids. Here, we investigate the appearance of thermomagnetic instabilities (TMIs) and the respective modification of the critical current density (JC) through the application of electric field (Eex) in PE/SC hybrids. Specifically, the SC nanolayers are Nb (thickness, dSC= 20 nm) deposited on both surfaces of PE macroscopic crystals of (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT) with optimum composition x = 0.31 (thickness, dPE= 0.5-0.8 mm). The appearance of TMIs and the modification of JC by Eex is studied for two PMN-PT crystals of drastically different surface roughness (Sa). In the case of the PMN-PT crystal with low Sa (on the order of a few tenths of nm) TMIs are absent so that JC does not change under the variation of Eex. On the contrary, in the case of the PMN-PT crystal with high Sa (on the order of a few hundreds of nm) Eex induces TMIs in the Nb nanolayers. Specifically, the number of TMIs exhibits a non-monotonic increase on Eex, thus causing a non-monotonic degradation of JC. These experimental data are interpreted in terms of the variation of both volume strain and surface roughness on Eex. This work highlights practical means to control the current-carrying capability of SC nanolayers through strain provided by PE substrates.

  1. Proximity-Induced Superconductivity and Quantum Interference in Topological Crystalline Insulator SnTe Thin-Film Devices.

    Science.gov (United States)

    Klett, Robin; Schönle, Joachim; Becker, Andreas; Dyck, Denis; Borisov, Kiril; Rott, Karsten; Ramermann, Daniela; Büker, Björn; Haskenhoff, Jan; Krieft, Jan; Hübner, Torsten; Reimer, Oliver; Shekhar, Chandra; Schmalhorst, Jan-Michael; Hütten, Andreas; Felser, Claudia; Wernsdorfer, Wolfgang; Reiss, Günter

    2018-02-14

    Topological crystalline insulators represent a new state of matter, in which the electronic transport is governed by mirror-symmetry protected Dirac surface states. Due to the helical spin-polarization of these surface states, the proximity of topological crystalline matter to a nearby superconductor is predicted to induce unconventional superconductivity and, thus, to host Majorana physics. We report on the preparation and characterization of Nb-based superconducting quantum interference devices patterned on top of topological crystalline insulator SnTe thin films. The SnTe films show weak anti-localization, and the weak links of the superconducting quantum interference devices (SQUID) exhibit fully gapped proximity-induced superconductivity. Both properties give a coinciding coherence length of 120 nm. The SQUID oscillations induced by a magnetic field show 2π periodicity, possibly dominated by the bulk conductivity.

  2. Metallographic investigation of fracture behavior in ITER-style Nb$_{3}$Sn superconducting strands

    CERN Document Server

    Jewell, M C; Larbalestier, D C; Nijhuis, A

    2009-01-01

    In this work we specify the extent to which fracture in two ITER-style Nb3Sn composite strands occurs in a collective or individual manner, under mechanical tension and bending from the TARSIS apparatus at the University of Twente. A bronze-route strand from European Advanced Superconductors (EAS), which has very uniform, well-spaced filaments, has a widely distributed (200 μm) fracture field and exhibits a composite of individual and collective cracks. An internal tin strand from Oxford Instruments – Superconducting Technology (OST) demonstrates much more localized, collective fracture behavior. The filaments in this strand are about four times larger (in area) than the filaments in the EAS strand, and also agglomerate significantly during heat treatment upon conversion of the Nb to Nb3Sn. These results demonstrate that the architecture of the strand can play a significant role in determining the mechanical toughness of the composite, and that strand design should incorporate mechanical considerations in ...

  3. Measuring the microwave response of superconducting Nb:STO and Ti at mK temperatures using superconducting resonators

    Energy Technology Data Exchange (ETDEWEB)

    Thiemann, Markus; Beutel, Manfred; Dressel, Martin; Scheffler, Marc [1. Physikalisches Institut, Universitaet Stuttgart (Germany); Fillis-Tsirakis, Evangelos; Boschker, Hans; Mannhart, Jochen [Max Planck Institute for Solid State Research, Stuttgart (Germany)

    2016-07-01

    Niobium doped SrTiO{sub 3} is a superconductor, with the lowest charge carrier density among all superconductors. It shows a dome in the transition temperature as a function of doping concentration with a maximum T{sub c} ∼ 0.3 K. The superconducting dome may originate from the different bands being occupied depending on the doping level. The low energy scales of the system, as indicated by the low T{sub c} are within the GHz-regime. Therefore microwave measurements are a powerful technique to reveal the electronic properties of these superconductors. We preformed microwave measurements on Nb:STO of different doping levels in a dilution refrigerator, using superconducting stripline resonators. Measurements were done in a temperature and frequency range from 40-400 mK and 1-20 GHz, covering the normal and superconducting states. For comparison we also measured the temperature dependence of the surface impedance of superconducting titanium (T{sub c} ∼ 0.5 K), which can be well described by the Mattis-Bardeen equations with a ratio (2Δ)/(k{sub B}T{sub c}) = 3.56. Therefore titanium is an ideal reference sample representing a conventional BCS-superconductor.

  4. Minimum Quench Energy and Early Quench Development in NbTi Superconducting Strands

    CERN Document Server

    Breschi, M; Boselli, M; Bottura, Luca; Devred, Arnaud; Ribani, P L; Trillaud, F

    2007-01-01

    The stability of superconducting wires is a crucial task in the design of safe and reliable superconducting magnets. These magnets are prone to premature quenches due to local releases of energy. In order to simulate these energy disturbances, various heater technologies have been developed, such as coated tips, graphite pastes, and inductive coils. The experiments studied in the present work have been performed using a single-mode diode laser with an optical fiber to illuminate the superconducting strand surface. Minimum quench energies and voltage traces at different magnetic flux densities and transport currents have been measured on an LHC-type, Cu/NbTi wire bathed in pool boiling helium I. This paper deals with the numerical analysis of the experimental data. In particular, a coupled electromagnetic and thermal model has been developed to study quench development and propagation, focusing on the influence of heat exchange with liquid helium.

  5. Nb3Sn superconducting magnets for electron cyclotron resonance ion sources.

    Science.gov (United States)

    Ferracin, P; Caspi, S; Felice, H; Leitner, D; Lyneis, C M; Prestemon, S; Sabbi, G L; Todd, D S

    2010-02-01

    Electron cyclotron resonance (ECR) ion sources are an essential component of heavy-ion accelerators. Over the past few decades advances in magnet technology and an improved understanding of the ECR ion source plasma physics have led to remarkable performance improvements of ECR ion sources. Currently third generation high field superconducting ECR ion sources operating at frequencies around 28 GHz are the state of the art ion injectors and several devices are either under commissioning or under design around the world. At the same time, the demand for increased intensities of highly charged heavy ions continues to grow, which makes the development of even higher performance ECR ion sources a necessity. To extend ECR ion sources to frequencies well above 28 GHz, new magnet technology will be needed in order to operate at higher field and force levels. The superconducting magnet program at LBNL has been developing high field superconducting magnets for particle accelerators based on Nb(3)Sn superconducting technology for several years. At the moment, Nb(3)Sn is the only practical conductor capable of operating at the 15 T field level in the relevant configurations. Recent design studies have been focused on the possibility of using Nb(3)Sn in the next generation of ECR ion sources. In the past, LBNL has worked on the VENUS ECR, a 28 GHz source with solenoids and a sextupole made with NbTi operating at fields of 6-7 T. VENUS has now been operating since 2004. We present in this paper the design of a Nb(3)Sn ECR ion source optimized to operate at an rf frequency of 56 GHz with conductor peak fields of 13-15 T. Because of the brittleness and strain sensitivity of Nb(3)Sn, particular care is required in the design of the magnet support structure, which must be capable of providing support to the coils without overstressing the conductor. In this paper, we present the main features of the support structure, featuring an external aluminum shell pretensioned with water

  6. Superconducting Properties and μSR Study of the Noncentrosymmetric Superconductor Nb0.5Os0.5.

    Science.gov (United States)

    Singh, D; Barker, J A T; Arumugam, Thamizhavel; Hillier, A D; Paul, D McK; Singh, R P

    2017-12-21

    The properties of the noncentrosymmetric superconductor ($\\alpha$-$\\textit{Mn}$ structure) Nb$_{0.5}$Os$_{0.5}$ is investigated using resistivity, magnetization, specific heat, and muon spin relaxation and rotation ($\\mu$SR) measurements. These measurements suggest that Nb$_{0.5}$Os$_{0.5}$ is a weakly coupled ($\\lambda_{e-ph}$ $\\sim$ 0.53) type-II superconductor ($\\kappa_{GL}$ $\\approx$ 61) having a bulk superconducting transition temperature $T_c$ = 3.07 K. The specific heat data in the superconductive regime fits well with the single-gap BCS model indicating nodeless s-wave superconductivity in Nb$_{0.5}$Os$_{0.5}$. The $\\mu$SR measurements also confirm $\\textit{s}$-wave superconductivity with the preserved time-reversal symmetry. © 2017 IOP Publishing Ltd.

  7. Surface microstructures and corrosion resistance of Ni-Ti-Nb shape memory thin films

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kun [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Materials and Thin Film Technology, Beihang University, Beijing 100191 (China); Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST (United Kingdom); Li, Yan, E-mail: liyan@buaa.edu.cn [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Materials and Thin Film Technology, Beihang University, Beijing 100191 (China); Huang, Xu [Memry Corporation, Bethel, CT 06801 (United States); Gibson, Des [Institute of Thin Films, Sensors & Imaging, Scottish Universities Physics Alliance, University of the West of Scotland, Paisley PA1 2BE (United Kingdom); Zheng, Yang; Liu, Jiao; Sun, Lu [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Materials and Thin Film Technology, Beihang University, Beijing 100191 (China); Fu, Yong Qing, E-mail: richard.fu@northumbria.ac.uk [Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST (United Kingdom)

    2017-08-31

    Highlights: • The corrosion resistance of Ni-Ti-Nb shape memory thin films is investigated. • Modified surface oxide layers improve the corrosion resistance of Ni-Ti-Nb films. • Further Nb additions reduce the potential corrosion tendency of the films. - Abstract: Ni-Ti-Nb and Ni-Ti shape memory thin films were sputter-deposited onto silicon substrates and annealed at 600 °C for crystallization. X-ray diffraction (XRD) measurements indicated that all of the annealed Ni-Ti-Nb films were composed of crystalline Ni-Ti (Nb) and Nb-rich grains. X-ray photoelectron spectroscopy (XPS) tests showed that the surfaces of Ni-Ti-Nb films were covered with Ti oxides, NiO and Nb{sub 2}O{sub 5}. The corrosion resistance of the Ni-Ti-Nb films in 3.5 wt.% NaCl solution was investigated using electrochemical tests such as open-circuit potential (OCP) and potentio-dynamic polarization tests. Ni-Ti-Nb films showed higher OCPs, higher corrosion potentials (E{sub corr}) and lower corrosion current densities (i{sub corr}) than the binary Ni-Ti film, which indicated a better corrosion resistance. The reason may be that Nb additions modified the passive layer on the film surface. The OCPs of Ni-Ti-Nb films increased with further Nb additions, whereas no apparent difference of E{sub corr} and i{sub corr} was found among the Ni-Ti-Nb films.

  8. PREFACE: Superconductivity in ultrathin films and nanoscale systems Superconductivity in ultrathin films and nanoscale systems

    Science.gov (United States)

    Bianconi, Antonio; Bose, Sangita; Garcia-Garcia, Antonio Miguel

    2012-12-01

    The recent technological developments in the synthesis and characterization of high-quality nanostructures and developments in the theoretical techniques needed to model these materials, have motivated this focus section of Superconductor Science and Technology. Another motivation is the compelling evidence that all new superconducting materials, such as iron pnictides and chalcogenides, diborides (doped MgB2) and fullerides (alkali-doped C60 compounds), are heterostrucures at the atomic limit, such as the cuprates made of stacks of nanoscale superconducting layers intercalated by different atomic layers with nanoscale periodicity. Recently a great amount of interest has been shown in the role of lattice nano-architecture in controlling the fine details of Fermi surface topology. The experimental and theoretical study of superconductivity in the nanoscale started in the early 1960s, shortly after the discovery of the BCS theory. Thereafter there has been rapid progress both in experiments and the theoretical understanding of nanoscale superconductors. Experimentally, thin films, granular films, nanowires, nanotubes and single nanoparticles have all been explored. New quantum effects appear in the nanoscale related to multi-component condensates. Advances in the understanding of shape resonances or Fano resonances close to 2.5 Lifshitz transitions near a band edge in nanowires, 2D films and superlattices [1, 2] of these nanosized modules, provide the possibility of manipulating new quantum electronic states. Parity effects and shell effects in single, isolated nanoparticles have been reported by several groups. Theoretically, newer techniques based on solving Richardson's equation (an exact theory incorporating finite size effects to the BCS theory) numerically by path integral methods or solving the entire Bogoliubov-de Gennes equation in these limits have been attempted, which has improved our understanding of the mechanism of superconductivity in these confined

  9. Studies to Enhance Superconductivity in Thin Film Carbon

    Science.gov (United States)

    Pierce, Benjamin; Brunke, Lyle; Burke, Jack; Vier, David; Steckl, Andrew; Haugan, Timothy

    2012-02-01

    With research in the area of superconductivity growing, it is no surprise that new efforts are being made to induce superconductivity or increase transition temperatures (Tc) in carbon given its many allotropic forms. Promising results have been published for boron doping in diamond films, and phosphorus doping in highly oriented pyrolytic graphite (HOPG) films show hints of superconductivity.. Following these examples in the literature, we have begun studies to explore superconductivity in thin film carbon samples doped with different elements. Carbon thin films are prepared by pulsed laser deposition (PLD) on amorphous SiO2/Si and single-crystal substrates. Doping is achieved by depositing from (C1-xMx) single-targets with M = B4C and BN, and also by ion implantation into pure-carbon films. Previous research had indicated that Boron in HOPG did not elicit superconducting properties, but we aim to explore that also in thin film carbon and see if there needs to be a higher doping in the sample if trends were able to be seen in diamond films. Higher onset temperatures, Tc , and current densities, Jc, are hoped to be achieved with doping of the thin film carbon with different elements.

  10. Cu-Ti Formation in Nb-Ti/Cu Superconducting Strand Monitored by in situ Techniques

    CERN Document Server

    Pong, I; Pong, Ian; Gerardin, Alexandre; Scheuerlein, Christian; Bottura, Luca

    2010-01-01

    In order to investigate the high temperature exposure effect on Nb-Ti/Cu superconducting strands, as might be encountered in joining by soldering and in cabling annealing, X-ray diffraction and resistometry measurements were performed in situ during heat treatment, and complemented by conventional metallography, mechanical tests and superconducting properties measurements. Changes of the Nb-Ti nanostructure at temperatures above 300 degrees C are manifested in the degradation of critical current in an applied external magnetic field, although degradation at self field was insignificant up to 400 degrees C for several minutes. Above 500 degrees C, the formation of various Cu-Ti intermetallic compounds, due to Ti diffusion from Nb-Ti into Cu, is detected by in situ XRD albeit not resolvable by SEM-EDS. There is a ductile to brittle transition near 600 degrees C, and liquid formation is observed below 900 degrees C. The formation of Cu-Ti causes a delayed reduction of the residual resistivity ratio (RRR) and adv...

  11. Measurement of quality factor and losses in superconducting microwave resonator integrated with NbN/AlN/NbN qubit circuit

    Science.gov (United States)

    Qiu, W.; Makise, K.; Terai, H.; Nakamura, Y.; Wang, Z.

    2014-05-01

    Dielectric loss from two-level systems (TLSs) formed by local defects have shown a significant impact on the qubit coherence time. These defects can originate in the insulation material for superconducting wires isolation or in the Josephson junction tunnel barrier material. Due to the complexity of the qubit circuit fabrication process, identifying the contribution from each decoherence source is challenging. In an effort to address this issue, we have developed superconducting qubit that consists of full epitaxially-grown NbN/AlN/NbN Josephson junctions in NbN coplanar waveguide (CPW) resonator circuit. The dielectric loss introduced from TLFs in tunnel junction barrier has been largely reduced due to the unique epitaxial feature of the tunnel junction. The quality factor Qi of the CPW resonator was measured and the dielectric loss tanδ is 3×10-4. The relaxation time inferred from the measured resonator quality factor was comparable to the qubit relaxation time.

  12. Investigation of profile characteristics and interface of anodized niobium superconducting films

    Energy Technology Data Exchange (ETDEWEB)

    Ying, Liliang, E-mail: llying@mail.sim.ac.cn [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Kang, Xinjie [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Lu; Zhang, Guofeng; Wang, Huiwu; Peng, Wei; Kong, Xiangyan; Xie, Xiaoming; Wang, Zhen [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China)

    2014-04-15

    Highlights: • Microstructure evolution of anodized Nb films. • An amorphous NbO{sub x} layer in the interface between Nb layer and Nb{sub 2}O{sub 5} layer. • It is suggested that the anodization process mechanism of Nb films may start from NbO{sub x}, and subsequently developing to Nb{sub 2}O{sub 5}. • The rate of consumed Nb and produced Nb-oxide layer was measured for our anodization process. - Abstract: The profile and interface characteristics of anodized Nb (Nb-oxide) layer were investigated using atomic force microscopy (AFM) and transmission electron microscopy (TEM). The surface morphology of Nb-oxide layer shows smoother as well as the Nb grain gradually vanished with increasing anodization depth. The root mean square (RMS) roughness of Nb-oxide layer was decreased to be 0.35 nm with increasing applied voltage of anodization to 100 V. An amorphous NbO{sub x} layer in the interface between Nb layer and Nb{sub 2}O{sub 5} layer was confirmed by X-ray reflectometry (XRR) and transmission electron microscopy (TEM) analysis. The thickness of NbO{sub x} layer decreases to be 1.5 nm with the increasing anodization depth for 45 nm depth Nb-oxide layers, which is comparable to the value observed on the surface of Nb films.

  13. Superconducting properties and μSR study of the noncentrosymmetric superconductor Nb0.5Os0.5

    Science.gov (United States)

    Singh, D.; Barker, J. A. T.; Thamizhavel, A.; Hillier, A. D.; McK Paul, D.; Singh, R. P.

    2018-02-01

    The properties of the noncentrosymmetric superconductor (α-Mn structure) Nb0.5Os0.5 have been investigated using resistivity, magnetization, specific heat, and muon spin relaxation and rotation (μSR) measurements. These measurements suggest that Nb0.5Os0.5 is a weakly coupled (λ_e{-ph} ∼ 0.53 ) type-II superconductor (κ_GL ≈ 61 ), having a bulk superconducting transition temperature T c   =  3.07 K. The specific heat data fits well with the single-gap BCS model indicating nodeless s-wave superconductivity in Nb0.5Os0.5. The μSR measurements also confirm {s} -wave superconductivity with the preserved time-reversal symmetry.

  14. R-H superconducting phase transition in Nb/sub 3/Sn alloyed with Ti

    Energy Technology Data Exchange (ETDEWEB)

    Mao Xianglei; Gong Haimei; Zhu Zezhi; Zhang Yuheng

    1988-03-01

    The R-H superconducting transition in Nb/sub 3/Sn alloyed with Ti has been measured under the pulse magnetic field. An ideal superconducting-normal transition curve is obtained when applying a small measured current. The flux flow resistance and the real H/sub c//sub 2/ have been determined. We have studied the thermal effect under large currents. It is pointed out that defining the starting point of the flux flow resistance and the real H/sub c//sub 2/ have been determined. We have studied the thermal effect under large currents. It is pointed out that defining the starting point of the flux flow resistance as the S-N transition point is correct, no matter how large the measured current is applied. The relation of the disturbance voltage induced by the pulse magnetic field and the properties and size of material is also discussed in this paper.

  15. Vortices trapped in the damaged surroundings of antidots in Nb films - Depinning transition

    Energy Technology Data Exchange (ETDEWEB)

    Nunes-Kapp, J.S. [Grupo de Supercondutividade e Magnetismo, Departamento de Fisica, Universidade Federal de Sao Carlos, Sao Carlos, SP (Brazil); Faculdade de Tecnologia SENAI ' Antonio Adolpho Lobbe' , Sao Carlos, SP (Brazil); Zadorosny, R.; Oliveira, A.A.M. [Grupo de Supercondutividade e Magnetismo, Departamento de Fisica, Universidade Federal de Sao Carlos, Sao Carlos, SP (Brazil); Vaz, A.R.; Moshkalev, S.A. [Centro de Componentes Semicondutores, UNICAMP, Campinas, SP (Brazil); Lepienski, M. [Departamento de Fisica, Universidade Federal do Parana, Curitiba, PR (Brazil); Ortiz, W.A., E-mail: wortiz@df.ufscar.b [Grupo de Supercondutividade e Magnetismo, Departamento de Fisica, Universidade Federal de Sao Carlos, Sao Carlos, SP (Brazil)

    2010-10-01

    The depinning transition of Vortex Matter in the presence of antidots in superconducting Nb films has been investigated. The antidots were fabricated using two different techniques, resulting in samples with arrays of diverse pinning efficiency. At low temperatures and fields, the spatial arrangement of Vortex Matter is governed by the presence of the antidots. Keeping the temperature fixed, an increase of the field induces a depinning transition. As the temperature approaches T{sub c}, the depinning frontier exhibits a characteristic kink at the temperature T{sub k}, above which the phase boundary exhibits a different regime. The lower-temperature regime is adequately described by a power-law expression, whose exponent n was observed to be inversely proportional to the pinning capability of the antidot, a feature that qualifies this parameter as a figure of merit to quantify the pinning strength of the defect.

  16. Signature of coexistence of superconductivity and ferromagnetism in two-dimensional NbSe2 triggered by surface molecular adsorption.

    Science.gov (United States)

    Zhu, Xiaojiao; Guo, Yuqiao; Cheng, Hao; Dai, Jun; An, Xingda; Zhao, Jiyin; Tian, Kangzhen; Wei, Shiqiang; Cheng Zeng, Xiao; Wu, Changzheng; Xie, Yi

    2016-04-04

    Ferromagnetism is usually deemed incompatible with superconductivity. Consequently, the coexistence of superconductivity and ferromagnetism is usually observed only in elegantly designed multi-ingredient structures in which the two competing electronic states originate from separate structural components. Here we report the use of surface molecular adsorption to induce ferromagnetism in two-dimensional superconducting NbSe2, representing the freestanding case of the coexistence of superconductivity and ferromagnetism in one two-dimensional nanomaterial. Surface-structural modulation of the ultrathin superconducting NbSe2 by polar reductive hydrazine molecules triggers a slight elongation of the covalent Nb-Se bond, which weakens the covalent interaction and enhances the ionicity of the tetravalent Nb with unpaired electrons, yielding ferromagnetic ordering. The induced ferromagnetic momentum couples with conduction electrons generating unique correlated effects of intrinsic negative magnetoresistance and the Kondo effect. We anticipate that the surface molecular adsorption will be a powerful tool to regulate spin ordering in the two-dimensional paradigm.

  17. Characterization of Nb Superconducting Radio Frequency Cavities Based On In-Situ STEM And EELS

    Science.gov (United States)

    Tao, Runzhe

    Niobium, a 4d transition metal, has the highest superconducting transition temperature (Tc=9.2K) of any elemental superconductor as type II superconductor with coherent length, sigma approximately that of the penetration length, lambda. Pure niobium is grey in color and very soft, which makes this metal easily fabricable into different shapes for superconducting radio- frequency (SRF) cavities. Such cavities are used in some modern accelerators (SNS, CEBAF, XFEL), and are intended for usage in the next generation of particle accelerators, such as ILC. Since the crucial part of the cavities is top 100 nm of Nb near the inner cavity surface, considering the penetration depth is around 40 nm, it has attracted more and more attention in improving the surface process for optimizing the performance of the cavities. Nowadays, the main treatment of the Nb surface includes electro polishing (EP), buffered chemical polishing (BCP), high temperature baking (800 °C, 1000 °C and 1200 °C) and mild baking (120 °C). Firstly, the two half cells are welded together and the weld line is quite rough; there exists a lot of visible pits and defects on the inner shell of cavities. In this Ph.D. thesis, novel techniques in a scanning transmission electron microscope (STEM) that can be used to analyze the atomic scale structure-property relationship, both at room tem- perature and high/LN 2 temperature, are explored. Specifically, by using correlated Z-contrast imaging and electron energy loss spectrum (EELS), the structure, composition and bonding can be characterized directly on the atomic scale, also, light atoms, like H, O and C, are visible in ABF images. For the examining the defect behavior on the cavity surface, heating and cold stages are involved to simulate the baking treatment and low-temperature environments. These studies will serve as an important reference for qualifying different surface treatments to further improve SRF cavities' performance. The experimental results

  18. Optical and electrical properties of thin superconducting films

    Science.gov (United States)

    Covington, Billy C.; Jing, Feng Chen

    1990-01-01

    Infrared spectroscopic techniques can provide a vital probe of the superconducting energy gap which is one of the most fundamental physical properties of superconductors. Currently, the central questions regarding the optical properties of superconductors are how the energy gap can be measured by infrared techniques and at which frequency the gap exists. An effective infrared spectroscopic method to investigate the superconducting energy gap, Eg, was developed by using the Bomem DA 3.01 Fourier Transformation Spectrophotometer. The reflectivity of a superconducting thin film of YBaCuO deposited on SrTiO3 was measured. A shoulder was observed in the superconducting state reflectance R(sub S) at 480/cm. This gives a value of Eg/kT(sub c) = 7.83, where k is the Boltzmann constant and T(sub c) is the superconducting transition temperature, from which, it is suggested that YBaCuO is a very strong coupling superconductor.

  19. Nematic topological superconducting phase in Nb-doped Bi2Se3

    Science.gov (United States)

    Shen, Junying; He, Wen-Yu; Yuan, Noah Fan Qi; Huang, Zengle; Cho, Chang-woo; Lee, Seng Huat; Hor, Yew San; Law, Kam Tuen; Lortz, Rolf

    2017-10-01

    A nematic topological superconductor has an order parameter symmetry, which spontaneously breaks the crystalline symmetry in its superconducting state. This state can be observed, for example, by thermodynamic or upper critical field experiments in which a magnetic field is rotated with respect to the crystalline axes. The corresponding physical quantity then directly reflects the symmetry of the order parameter. We present a study on the superconducting upper critical field of the Nb-doped topological insulator NbxBi2Se3 for various magnetic field orientations parallel and perpendicular to the basal plane of the Bi2Se3 layers. The data were obtained by two complementary experimental techniques, magnetoresistance and DC magnetization, on three different single crystalline samples of the same batch. Both methods and all samples show with perfect agreement that the in-plane upper critical fields clearly demonstrate a two-fold symmetry that breaks the three-fold crystal symmetry. The two-fold symmetry is also found in the absolute value of the magnetization of the initial zero-field-cooled branch of the hysteresis loop and in the value of the thermodynamic contribution above the irreversibility field, but also in the irreversible properties such as the value of the characteristic irreversibility field and in the width of the hysteresis loop. This provides strong experimental evidence that Nb-doped Bi2Se3 is a nematic topological superconductor similar to the Cu- and Sr-doped Bi2Se3.

  20. Jsub(c)(B,T) characterisation of superconducting multifilamentary Nb/sub 3/Sn made by the ECN method

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, P.A.; Jones, H. (University of Oxford (U.K.))

    1984-01-01

    In contrast to the relatively well-developed bronze process which has been fairly extensively used in the construction of superconductive materials, the ECN method in which there is a growing interest is based upon the reaction of NbSn/sub 2/ powder in a Nb tube for the production of Nb/sub 3/Sn. We present date of Jsub(c)(B,T) between 4.2K and Tsub(c)(0) and in fields up to 15.5T on a sample of ECN/HOLEC wire made available to us by the Netherlands Energy Research Foundation.

  1. Proximity-effect-induced Superconducting Gap in Topological Surface States - A Point Contact Spectroscopy Study of NbSe2/Bi2Se3Superconductor-Topological Insulator Heterostructures.

    Science.gov (United States)

    Dai, Wenqing; Richardella, Anthony; Du, Renzhong; Zhao, Weiwei; Liu, Xin; Liu, C X; Huang, Song-Hsun; Sankar, Raman; Chou, Fangcheng; Samarth, Nitin; Li, Qi

    2017-08-09

    Proximity-effect-induced superconductivity was studied in epitaxial topological insulator Bi 2 Se 3 thin films grown on superconducting NbSe 2 single crystals. A point contact spectroscopy (PCS) method was used at low temperatures down to 40 mK. An induced superconducting gap in Bi 2 Se 3 was observed in the spectra, which decreased with increasing Bi 2 Se 3 layer thickness, consistent with the proximity effect in the bulk states of Bi 2 Se 3 induced by NbSe 2 . At very low temperatures, an extra point contact feature which may correspond to a second energy gap appeared in the spectrum. For a 16 quintuple layer Bi 2 Se 3 on NbSe 2 sample, the bulk state gap value near the top surface is ~159 μeV, while the second gap value is ~120 μeV at 40 mK. The second gap value decreased with increasing Bi 2 Se 3 layer thickness, but the ratio between the second gap and the bulk state gap remained about the same for different Bi 2 Se 3 thicknesses. It is plausible that this is due to superconductivity in Bi 2 Se 3 topological surface states induced through the bulk states. The two induced gaps in the PCS measurement are consistent with the three-dimensional bulk state and the two-dimensional surface state superconducting gaps observed in the angle-resolved photoemission spectroscopy (ARPES) measurement.

  2. Microwave study of superconducting Sn films above and below percolation

    Energy Technology Data Exchange (ETDEWEB)

    Beutel, Manfred H.; Ebensperger, Nikolaj G.; Thiemann, Markus; Untereiner, Gabriele; Dressel, Martin; Scheffler, Marc [1. Physikalisches Institut, Stuttgart Univ. (Germany)

    2016-07-01

    The electronic properties of superconducting Sn films (T{sub c} ∼ 3.7 K) change significantly when lowering the film thickness down to a few nm, in particular at the percolation threshold. The low energy electrodynamics of such Sn samples can be probed via microwave spectroscopy, e.g. with superconducting stripline resonators. We have deposited Sn films by thermal evaporation, ranging in thickness between 38 nm and 842 nm, and we characterized their morphology by AFM. We use superconducting Pb stripline resonators to probe the microwave response of Sn films at temperatures from 7.5 K down to 1.5 K in a frequency range between 1 GHz and 20 GHz. The measured quality factor of the resonators decreases with increasing temperature due to increasing losses. As a function of the sample thickness we observe three regimes with significantly different properties: Samples below percolation exhibit dielectric properties with negligible losses, demonstrating that macroscopic current paths are required for appreciable dynamical conductivity of Sn at GHz frequencies. Thick Sn films, on the other hand, lead to low-loss resonances above and below T{sub c} of Sn, but in an intermediate thickness regime, just above percolation, the metallic state of the Sn films is too lossy for resonator operation whereas the superconducting state only has low microwave losses.

  3. Superconductivity in dense Mg1–xMxB2 (M= Zr, Nb, Mo; x= 0⋅ 05 ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 28; Issue 3. Superconductivity in dense Mg1–MB2 (M = Zr, Nb, Mo; = 0.05) materials sintered under pressure. S Kalavathi C Divakar. Superconductors Volume 28 Issue 3 June 2005 pp 249-252 ...

  4. Electromagnetic and optical characteristics of Nb5+-doped double-crossover and salmon DNA thin films

    Science.gov (United States)

    Babu Mitta, Sekhar; Reddy Dugasani, Sreekantha; Jung, Soon-Gil; Vellampatti, Srivithya; Park, Tuson; Park, Sung Ha

    2017-10-01

    We report the fabrication and physical characteristics of niobium ion (Nb5+)-doped double-crossover DNA (DX-DNA) and salmon DNA (SDNA) thin films. Different concentrations of Nb5+ ([Nb5+]) are coordinated into the DNA molecules, and the thin films are fabricated via substrate-assisted growth (DX-DNA) and drop-casting (SDNA) on oxygen plasma treated substrates. We conducted atomic force microscopy to estimate the optimum concentration of Nb5+ ([Nb5+]O = 0.08 mM) in Nb5+-doped DX-DNA thin films, up to which the DX-DNA lattices maintain their structures without deformation. X-ray photoelectron spectroscopy (XPS) was performed to probe the chemical nature of the intercalated Nb5+ in the SDNA thin films. The change in peak intensities and the shift in binding energy were witnessed in XPS spectra to explicate the binding and charge transfer mechanisms between Nb5+ and SDNA molecules. UV-visible, Raman, and photoluminescence (PL) spectra were measured to determine the optical properties and thus investigate the binding modes, Nb5+ coordination sites in Nb5+-doped SDNA thin films, and energy transfer mechanisms, respectively. As [Nb5+] increases, the absorbance peak intensities monotonically increase until ˜[Nb5+]O and then decrease. However, from the Raman measurements, the peak intensities gradually decrease with an increase in [Nb5+] to reveal the binding mechanism and binding sites of metal ions in the SDNA molecules. From the PL, we observe the emission intensities to reduce them at up to ˜[Nb5+]O and then increase after that, expecting the energy transfer between the Nb5+ and SDNA molecules. The current-voltage measurement shows a significant increase in the current observed as [Nb5+] increases in the SDNA thin films when compared to that of pristine SDNA thin films. Finally, we investigate the temperature dependent magnetization in which the Nb5+-doped SDNA thin films reveal weak ferromagnetism due to the existence of tiny magnetic dipoles in the Nb5+-doped SDNA

  5. Guided vortex motion in Nb films on facetted substrate surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Soroka, Oleksiy K.; Huth, Michael; Shklovskij, Valerij A.; Oster, Jens; Adrian, Hermann

    2003-05-15

    Anisotropy of the pinning force in a superconductor can cause a guiding effect on the vortices, which leads to the appearance of new components in the galvanomagnetic quantities of the sample. In this case one can observe an additional odd magnetoresistive component with respect to magnetic field reversal. Furthermore, an even contribution to the Hall voltage is observed. Guided motion of vortices in Nb films on facetted {alpha}-Al{sub 2}O{sub 3} (1 0 1-bar 0) was found by measuring the longitudinal and transversal resistivities of three films with transport current directed parallel, perpendicular and at an angle of 45 deg. with respect to the facet ridges. Field inversion was used to separate the even and odd components of the measured magnetoresistivities and thus to obtain the contributions caused by the guided vortex motion.

  6. Influence of Nb Doping Concentration on Bolometric Properties of RF Magnetron Sputtered Nb:TiO2- x Films

    Science.gov (United States)

    Reddy, Y. Ashok Kumar; Shin, Young Bong; Kang, In-Ku; Lee, Hee Chul

    2018-03-01

    The present study directly addresses the improved bolometric properties by means of different Nb doping concentrations into TiO2- x films. The x-ray diffraction patterns do not display any obvious diffraction peaks, suggesting that all the films deposited at room temperature had an amorphous structure. A small binding energy shift was observed in x-ray photo electron spectroscopy due to the change of chemical composition with Nb doping concentration. All the device samples exhibit linear I- V characteristics, which attests to the formation of good ohmic contact with low contact resistance between the Nb:TiO2- x (TNO) film and the electrode (Ti) material. The performance of the bolometric material can be evaluated through the temperature coefficient of resistance (TCR), and the absolute value of TCR was found to be increased from 2.54% to 2.78% with increasing the Nb doping concentration. The voltage spectral density of 1/ f noise was measured in the frequency range of 1-60 Hz and found to be decreased with increase of Nb doping concentration. As a result, for 1 at.% Nb-doped TNO sample exhibits improved bolometric properties towards the good infrared image sensor device.

  7. Influence of Nb Doping Concentration on Bolometric Properties of RF Magnetron Sputtered Nb:TiO2-x Films

    Science.gov (United States)

    Reddy, Y. Ashok Kumar; Shin, Young Bong; Kang, In-Ku; Lee, Hee Chul

    2017-12-01

    The present study directly addresses the improved bolometric properties by means of different Nb doping concentrations into TiO2-x films. The x-ray diffraction patterns do not display any obvious diffraction peaks, suggesting that all the films deposited at room temperature had an amorphous structure. A small binding energy shift was observed in x-ray photo electron spectroscopy due to the change of chemical composition with Nb doping concentration. All the device samples exhibit linear I-V characteristics, which attests to the formation of good ohmic contact with low contact resistance between the Nb:TiO2-x (TNO) film and the electrode (Ti) material. The performance of the bolometric material can be evaluated through the temperature coefficient of resistance (TCR), and the absolute value of TCR was found to be increased from 2.54% to 2.78% with increasing the Nb doping concentration. The voltage spectral density of 1/f noise was measured in the frequency range of 1-60 Hz and found to be decreased with increase of Nb doping concentration. As a result, for 1 at.% Nb-doped TNO sample exhibits improved bolometric properties towards the good infrared image sensor device.

  8. Enhancement of transport critical current density of epitaxial Nb film by lithography

    Science.gov (United States)

    Yamada, H.; Harada, N.; Kanayama, K.; Nakagawa, S.; Yamasaki, H.; Hamajima, T.

    2005-12-01

    The critical current density, JC, of a superconductor is controlled by the pinning interaction between the flux line lattice and pinning centers. Artificial flux pinning centers are necessary for high- TC superconductors, because JC decreases markedly when a magnetic field of a few Tesla is applied at the temperature of liquid nitrogen. Here, we discuss the effects of groove-shaped artificial pinning centers introduced by microlithography. Superconducting Nb film was deposited epitaxially on Al 2O 3(1 1 0 2) substrates and grooves with a period of 4-μm were introduced. The micro-fabricated film had about 2-fold greater transport JC = 4.1 × 10 9 A/m 2 as compared with the value of JC = 2.1 × 10 9 A/m 2 of the standard film at 4.2 K, 0.1 T. This JC enhancement was observed over a wide temperature range of 4.2-9.0 K.

  9. Zeeman-limited Superconductivity in Crystalline Al Films

    Science.gov (United States)

    Adams, Philip; Nam, Hyoundo; Shih, Chin-Kang; Catalani, Gianluigi

    We report the evolution of the Zeeman-limited superconducting phase diagram (PD) in ultra-thin crystalline Al films. Parallel critical field measurements, down to 50 mK, were made across the superconducting tricritical point of epitaxially-grown Al films ranging in thickness from 7 monolayers (ML) to 30 ML. The resulting phase boundaries were compared with the quasi-classical theory of a Zeeman-mediated transition between a homogeneous BCS condensate and a spin polarized Fermi liquid. Films thicker than 20 ML showed good agreement with theory, but thinner films exhibited an anomalous PD that cannot be reconciled within a homogeneous BCS framework. DE-FG02-07ER46420, ONR-N00014-14-1-0330, NSF- DMR-1506678, CIG-618258.

  10. Difference in charge transport properties of Ni-Nb thin films with native and artificial oxide

    Energy Technology Data Exchange (ETDEWEB)

    Trifonov, A. S., E-mail: trifonov.artem@phys.msu.ru [Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 1(2), Leninskie Gory, GSP-1, Moscow 119991 (Russian Federation); Physics Faculty, Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Lubenchenko, A. V. [Department of General Physics and Nuclear Fusion, National Research University ' Moscow Power Engineering Institute,' Moscow 111250 (Russian Federation); Polkin, V. I. [National University of Science and Technology “MISiS,” Moscow 119049 (Russian Federation); Pavolotsky, A. B. [Chalmers University of Technology, Göteborg 41296 (Sweden); Ketov, S. V.; Louzguine-Luzgin, D. V. [WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2015-03-28

    Here, we report on the properties of native and artificial oxide amorphous thin film on a surface of an amorphous Ni-Nb sample. Careful measurements of local current-voltage characteristics of the system Ni-Nb / NiNb oxide/Pt, were carried out in contact mode of an atomic force microscope. Native oxide showed n-type conductivity, while in the artificial one exhibited p-type one. The shape of current-voltage characteristic curves is unique in both cases and no analogical behavior is found in the literature. X-ray photoelectron spectroscopy (XPS) measurements were used to detect chemical composition of the oxide films and the oxidation state of the alloy components. Detailed analysis of the XPS data revealed that the structure of natural Ni-Nb oxide film consists of Ni-NbO{sub x} top layer and nickel enriched bottom layer which provides n-type conductivity. In contrast, in the artificial oxide film Nb is oxidized completely to Nb{sub 2}O{sub 5}, Ni atoms migrate into bulk Ni-Nb matrix. Electron depletion layer is formed at the Ni-Nb/Nb{sub 2}O{sub 5} interface providing p-type conductivity.

  11. Critical Current Test Facilities for LHC Superconducting NbTi Cable Strands

    CERN Document Server

    Boutboul, T; Denarié, C H; Oberli, L R; Richter, D

    2001-01-01

    The Rutherford-type superconducting Cu/NbTi cables of the LHC accelerator are currently mass-produced by a few industrial firms. As a part of the acceptance tests, the critical current of superconducting multifilamentary wires is systematically measured on virgin strands to qualify the wires and on extracted strands to qualify the cables. For this purpose, four test stations are in operation at CERN to measure the critical current of strands at both 4.2 K and 1.9 K in magnetic fields in the 6-11 T range. The measurement setup and procedures of these facilities are reported in this article. The quality of the critical current test is guaranteed by supervising the SPC (Statistical Process Control) charts of a reference sample. The measurement repeatability and reproducibility of the stations are found to be excellent. Moreover, the measured critical current of a strand is found to be almost independent of the test station in which the measurement is performed.

  12. Resistivity changes in superconducting-cavity-grade Nb following high-energy proton irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Snead, C.L. Jr.; Hanson, A.; Greene, G.A. [and others

    1997-12-01

    Niobium superconducting rf cavities are proposed for use in the proton LINAC accelerators for spallation-neutron applications. Because of accidental beam loss and continual halo losses along the accelerator path, concern for the degradation of the superconducting properties of the cavities with accumulating damage arises. Residual-resistivity-ratio (RRR) specimens of Nb, with a range of initial RRR`s were irradiated at room temperature with protons at energies from 200 to 2000 MeV. Four-probe resistance measurements were made at room temperature and at 4.2 K both prior to and after irradiation. Nonlinear increases in resistivity simulate expected behavior in cavity material after extended irradiation, followed by periodic anneals to room temperature: For RRR = 316 material, irradiations to (2 - 3) x 10{sup 15} p/cm{sup 2} produce degradations up to the 10% level, a change that is deemed operationally acceptable. Without. periodic warming to room temperature, the accumulated damage energy would be up to a factor of ten greater, resulting in unacceptable degradations. Likewise, should higher-RRR material be used, for the same damage energy imparted, relatively larger percentage changes in the RRR will result.

  13. Anisotropic properties of superconducting niobium wire-networks

    Science.gov (United States)

    Hua, J.; Xiao, Z. L.; Imre, A.; Patel, U.; Ocola, L. E.; Novosad, V.; Welp, U.; Kwok, W. K.

    2008-03-01

    By utilizing focused ion beam (FIB) patterning technique we were able to fabricate hole-arrays with interhole spacing down to 150 nm into superconducting niobium (Nb) films. This enabled us to have a large temperature range to explore the properties of Nb wire networks in which the superconducting strips between neighboring holes are comparable to the superconducting coherence length. We studied the anisotropy of these superconducting networks by measuring the critical temperatures and magnetoresistances at various magnetic field directions respect to the film surface. The effect of film thickness, hole diameter, interhole-spacing and the symmetry of the hole lattice on the anisotropy will be reported.

  14. Preliminary Results of Nb Thin Film Coating for HIE-ISOLDE SRF Cavities Obtained by Magnetron Sputtering

    CERN Document Server

    Sublet, A; Calatroni, S; D'Elia, A; Jecklin, N; Mondino, I; Prunet, S; Therasse, M; Venturini Delsolaro, W; Zhang, P

    2013-01-01

    In the context of the HIE-ISOLDE upgrade at CERN, several new facilities for the niobium sputter coating of QWR-type superconducting RF accelerating cavities have been developed, built, and successfully operated. In order to further optimize the production process of these cavities the magnetron sputtering technique has been further investigated and continued as an alternative to the already successfully operational DC bias diode sputtering method. The purpose of this poster is to present the results obtained with this technique. The Nb thickness profile along the cavity and its correlation with the electro-magnetic field distribution inside the cavity are discussed. Film structure, morphology and Residual Resistivity Ratio (RRR) will be considered as well and compared with films obtained by DC bias diode sputtering. Finally these results will be compared with RF measurement of a production-like magnetron-coated cavity.

  15. Thin Film Technology of High-Critical-Temperature Superconducting Electronics.

    Science.gov (United States)

    1985-12-11

    ANALISIS OF THIN-FILM SUPERCONDUCTORS J. Talvacchio, M. A. Janocko, J. R. Gavaler, and A...in the areas of substrate preparation, niobum nitride, nlobium-tin, and molybdenum-rhenium. AN INTEGRATED DEPOSITION AND ANALISI - FACILITT The four...overlayer’s tendency to wet Nb (and V) decreases in the order: Si, Ge, Al, Mg and Y but the differences in the inter- facial energy are fairly

  16. Characterization of the critical current and physical properties of superconducting epitaxial NbTiN sub-micron structures

    Energy Technology Data Exchange (ETDEWEB)

    Klimov, A., E-mail: aklimov@ite.waw.pl [Institute of Electron Technology, Al. Lotników 32/46, 02-668 Warsaw (Poland); Słysz, W.; Guziewicz, M. [Institute of Electron Technology, Al. Lotników 32/46, 02-668 Warsaw (Poland); Kolkovsky, V.; Zaytseva, I.; Malinowski, A. [Institute of Physics Polish Academy of Science, Al. Lotników 32/46, 02-668 Warsaw (Poland)

    2017-05-15

    Highlights: • This manuscript presents investigation of the critical current dependence of Nb(Ti)N nanostructured superconducting single photon detectors (SNSPD) in function of temperature and applied magnetic field. • Presented results are complimentary and compared with the same data received for submicron-wide single bridge Nb(Ti)N structures. • Our data demonstrate significant influence of local constrictions on physical properties of our SNSPD detectors. - Abstract: Measurements of critical current in NbTiN as a function of applied magnetic field and temperature are reported for two samples: 700-nm-wide bridge and 100-nm-wide meander. In 700-nm-wide NbTiN bridge we pinpointed the limiting factors for the critical current density to be current-driven vortex de-pinning at low temperatures and thermally activated flux flow closer to the transition temperature. In 100-nm-wide NbTiN meander we found phase slips activation, accompanied by hotspots formation at all measured temperatures. These two types of structures demonstrate different dependence of the critical current on the applied magnetic field. Although our NbTiN meander structures has high de-pairing critical current densities ∼10{sup 7} A/cm{sup 2} at low temperatures, the real critical currents are smaller due to the presence of the local constrictions.

  17. Fabrication and superconducting properties of a simple-structured jelly-roll Nb{sub 3}Al wire with low-temperature heat-treatment

    Energy Technology Data Exchange (ETDEWEB)

    Cui, L.J. [National Engineering Laboratory for Superconducting Materials (NELSM), Western Superconducting Technologies (WST) Co. Ltd., Xi’an 710018 (China); Yan, G., E-mail: gyan@c-wst.com [National Engineering Laboratory for Superconducting Materials (NELSM), Western Superconducting Technologies (WST) Co. Ltd., Xi’an 710018 (China); Pan, X.F. [National Engineering Laboratory for Superconducting Materials (NELSM), Western Superconducting Technologies (WST) Co. Ltd., Xi’an 710018 (China); Zhang, P.X. [National Engineering Laboratory for Superconducting Materials (NELSM), Western Superconducting Technologies (WST) Co. Ltd., Xi’an 710018 (China); Northwest Institute for Nonferrous Metal Research (NIN), Xi’an 710016 (China); Qi, M. [Northwest Institute for Nonferrous Metal Research (NIN), Xi’an 710016 (China); Liu, X.H.; Feng, Y. [National Engineering Laboratory for Superconducting Materials (NELSM), Western Superconducting Technologies (WST) Co. Ltd., Xi’an 710018 (China); Chen, Y.L.; Zhao, Y. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Superconductivity and New Energy R& D Center, Southwest Jiaotong University (SWJTU), Chengdu 610031 (China)

    2015-06-15

    Highlights: • Nb{sub 3}Al superconducting wires with Cu-matrix and different filament numbers were prepared by the jelly-roll method. • The length of 18-cores Nb{sub 3}Al superconducting wire reaches 100 m without any breakage and intermediate anneal. • This wire has the uniform filament-shapes and fine long-wire homogeneity. • This Nb{sub 3}Al long wire has the T{sub c} of 13.4 K and J{sub c} of 4.7 × 10{sup 4} A/cm{sup 2} at 4.2 K and 12 T. - Abstract: With extremely high critical current density (J{sub c}) and excellent strain tolerance, Nb{sub 3}Al superconductor is considered as an alternative to Nb{sub 3}Sn for application of high-field magnets. However, owing to their complex structure, Nb{sub 3}Al superconducting wires can hardly meet the requirement of engineering application at present. In this work, a novel simple-structured Nb{sub 3}Al superconducting wires with Cu-matrix and different filament numbers were prepared by the conventional jelly-roll method, as well as a heat-treatment of 800–850 °C for 20–50 h. The results show that a 18-filament superconducting wire with length longer than 100 m can be successfully prepared by this method, and also this Nb{sub 3}Al long wire has the T{sub c} of 13.4 K and J{sub c} of 4.7 × 10{sup 4} A/cm{sup 2} at 4.2 K and 12 T. These suggest that with further optimization, the simple-structured Nb{sub 3}Al superconducting wires are very promising to fabricate the km-grade long wires to meet the requirement of engineering application.

  18. Nanomechanical properties of NbN films prepared by pulsed laser deposition using nanoindendation

    Science.gov (United States)

    Mamun, M. A.; Farha, A. H.; Er, A. O.; Ufuktepe, Y.; Gu, D.; Elsayed-Ali, H. E.; Elmustafa, A. A.

    2012-03-01

    Structural and mechanical properties of niobium nitride thin films deposited by pulsed laser deposition were investigated using X-ray diffraction, atomic force microscopy, and nanoindentation. Niobium nitride was deposited on Si(1 0 0) by pulsed laser deposition (PLD) of Nb in nitrogen background. A Nanoindenter XP equipped with a dynamic contact module (DCM II) head was used in conjunction with the continuous stiffness method (CSM) in depth and load control modes to measure the hardness and modulus of the NbN thin films. NbN film reveals simple cubic δ-NbN structure with the corresponding reflections of (1 1 1), (2 0 0), and (2 2 0) planes. Highly textured NbN film shows a strong (1 1 1) preferred orientation. The NbN thin films depict polycrystalline structure, with a wide range of grain sizes that range from 15 to 40 nm with an average surface roughness of 6 nm. The average modulus of the film is 420 ± 60 GPa, whereas for the substrate the average modulus is 180 GPa, which is considered higher than the average modulus for Si reported in the literature due to pile-up. The hardness of the film increases monotonically from an average of 12 GPa for deep indents (Si substrate) measured using XP CSM and load control (LC) modes to an average of 25 GPa measured using the DCM II head in CSM and LC modules. The average hardness of the Si substrate is 12 GPa.

  19. Nb-doped TiO2 thin films as photocatalytic materials

    Indian Academy of Sciences (India)

    Amorphous undoped and Nb-doped films were obtained by the spin coating method. The films have a compact structure, as revealed by scanning electron microscopy, and are very thin, with thickness values under 100 nm. The photocatalytic activity of the films was evaluated by observing the decomposition of an oleic acid ...

  20. Electrically tuned photoelectrochemical properties of ferroelectric nanostructure NaNbO3 films

    Science.gov (United States)

    Singh, Simrjit; Khare, Neeraj

    2017-04-01

    Photoelectrochemical (PEC) properties of NaNbO3 nanostructure ferroelectric films are investigated, and it is demonstrated that the efficiency of PEC water splitting can be tuned (7%-23%) by electrical polarization of the NaNbO3 films. The NaNbO3 photoelectrode is fabricated using hydrothermally synthesized NaNbO3 nanoparticles. Compared to the as-prepared photoanode, photocurrent is enhanced from 0.31 to 0.51 mA/cm2 (at 1 V vs. Ag/AgCl) for the negatively polarized NaNbO3 film, whereas the photocurrent is found to decrease from 0.31 to 0.09 mA/cm2 for the positively polarized NaNbO3 film. The change in the photoelectrochemical activity after the polarization of NaNbO3 films has been attributed to the change in the conduction/valence band bending at the semiconductor/electrolyte interface, leading to a change in the efficiency of charge transfer at the interface. Mott-Schottky studies confirmed the change in band bending after polarization, and electrochemical impedance spectroscopy studies confirmed the modulation in the charge transfer process after polarization.

  1. Microstructure and tribological properties of NbN-Ag composite films by reactive magnetron sputtering

    Science.gov (United States)

    Ju, Hongbo; Xu, Junhua

    2015-11-01

    Recently, the chameleon thin films were developed with the purpose of adjusting their chemistry at self-mating interfaces in response to environmental changes at a wide temperature range. However, very few studies have focused on what state the lubricious noble metal exists in the films and the tribological properties at room temperature (RT). Composite NbN-Ag films with various Ag content (Ag/(Nb + Ag)) were deposited using reactive magnetron sputtering to investigate the crystal structure, mechanical and tribological properties. A combination of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (HRTEM) analyses showed that face-centered cubic (fcc) NbN, hexagonal close-packed (hcp) NbN and fcc silver coexisted in NbN-Ag films. The incorporation of soft Ag into NbN matrix led to the hardness decrease from 29.6 GPa at 0 at.% Ag to 11.3 GPa at 19.9 at.% Ag. Tribological properties of NbN-Ag films performed using dry pin-on-disc wear tests against Al2O3 depended on Ag content to a large extent. The average friction coefficient and wear rate of NbN-Ag films decreased as Ag content increased from 4.0 to 9.2 at.%. With a further increase of Ag content, the average friction coefficient further decreased, while the wear rate increased gradually. The optimal Ag content was found to be 9.2-13.5 at.%, which showed low average friction coefficient values of 0.46-0.40 and wear rate values of 1.1 × 10-8 to 1.7 × 10-8 mm3/(mm N). 3D Profiler and Raman spectroscopy measurements revealed that the lubricant tribo-film AgNbO3 detected on the surface of the wear tracks could lead to the friction coefficient curve stay constant and decrease the average friction coefficients. The decrease of wear rate was mainly attributed to the lubricant tribo-film AgNbO3 as Ag content increased from 4.0 to 9.2 at.%; with a further increase in Ag content, the wear rate increased with increasing Ag content in NbN-Ag films because a

  2. Enhancement of superconductivity in NbN nanowires by negative electron-beam lithography with positive resist

    Science.gov (United States)

    Charaev, I.; Silbernagel, T.; Bachowsky, B.; Kuzmin, A.; Doerner, S.; Ilin, K.; Semenov, A.; Roditchev, D.; Vodolazov, D. Yu.; Siegel, M.

    2017-08-01

    We performed comparative experimental investigation of superconducting NbN nanowires which were prepared by means of positive- and negative electron-beam lithography with the same positive tone Poly-methyl-methacrylate (PMMA) resist. We show that nanowires with a thickness 4.9 nm and widths less than 100 nm demonstrate at 4.2 K higher critical temperature and higher density of critical and retrapping currents when they are prepared by negative lithography. Also the ratio of the experimental critical current to the depairing critical current is larger for nanowires prepared by negative lithography. We associate the observed enhancement of superconducting properties with the difference in the degree of damage that nanowire edges sustain in the lithographic process. A whole range of advantages which is offered by the negative lithography with positive PMMA resist ensures high potential of this technology for improving the performance metrics of superconducting nanowire singe-photon detectors.

  3. Magnetron Sputtered NbN Films with Nb Interlayer on Mild Steel

    Directory of Open Access Journals (Sweden)

    Kulwant Singh

    2011-01-01

    Full Text Available The aim of the study is to extend the NbN coating on MS with Nb interlayer to explore the benefits of hard nitride coatings on low-cost structural material and to compare the coating with NbN monolithic coating on SS. NbN on MS and SS was deposited by reactive d.c. magnetron sputtering at various N2/Ar flow ratios and substrate bias. Deposition rate decreased from 20 to 10 nm/min (without biasing and from 16 to 8 nm/min (−50 V biasing when N2/Ar ratio was varied from zero to 70%. Deposition rate decreased with the increase in bias voltage. Coatings showed hexagonal β Nb2N, cubic δ NbN, and hexagonal δ′ NbN as major phases with the increasing N2 flow. Surface hardness reached a maximum of 2040 HK25 at a N2/Ar of 20%. Critical loads, for cohesive and adhesive failure for coating on MS, were between 6–8 N and 9–12 N respectively; for coating on SS, the values were between 7–15 N and 12–25 N respectively. Duplex coatings were studied for hardness by Knoop microindentation, adhesion by scratch tester, and corrosion by potentiodynamic polarization technique. Hardness, adhesion, and corrosion resistance all improved when NbN coating was incorporated with Nb interlayer on MS.

  4. Microstructure and tribological properties of NbN-Ag composite films by reactive magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Hongbo; Xu, Junhua, E-mail: jhxu@just.edu.cn

    2015-11-15

    Highlights: • NbN-Ag films were deposited by reactive magnetron sputtering. • The fcc-NbN, hcp-NbN and fcc-Ag coexisted in NbN-Ag films. • The incorporation of Ag into NbN matrix led to the decrease of hardness. • The films (9.2–13.5 at.% Ag) were found to be optimized for wear resistance tools. - Abstract: Recently, the chameleon thin films were developed with the purpose of adjusting their chemistry at self-mating interfaces in response to environmental changes at a wide temperature range. However, very few studies have focused on what state the lubricious noble metal exists in the films and the tribological properties at room temperature (RT). Composite NbN-Ag films with various Ag content (Ag/(Nb + Ag)) were deposited using reactive magnetron sputtering to investigate the crystal structure, mechanical and tribological properties. A combination of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (HRTEM) analyses showed that face-centered cubic (fcc) NbN, hexagonal close-packed (hcp) NbN and fcc silver coexisted in NbN-Ag films. The incorporation of soft Ag into NbN matrix led to the hardness decrease from 29.6 GPa at 0 at.% Ag to 11.3 GPa at 19.9 at.% Ag. Tribological properties of NbN-Ag films performed using dry pin-on-disc wear tests against Al{sub 2}O{sub 3} depended on Ag content to a large extent. The average friction coefficient and wear rate of NbN-Ag films decreased as Ag content increased from 4.0 to 9.2 at.%. With a further increase of Ag content, the average friction coefficient further decreased, while the wear rate increased gradually. The optimal Ag content was found to be 9.2–13.5 at.%, which showed low average friction coefficient values of 0.46–0.40 and wear rate values of 1.1 × 10{sup −8} to 1.7 × 10{sup −8} mm{sup 3}/(mm N). 3D Profiler and Raman spectroscopy measurements revealed that the lubricant tribo-film AgNbO{sub 3} detected on the surface of the

  5. The CERN Nb/Cu Programme for the LHC and Reduced-b Superconducting Cavities

    CERN Document Server

    Chiaveri, Enrico

    1999-01-01

    The niobium/copper (Nb/Cu) sputter technology, successfully used on a large scale for LEP2, has been applied to the LHC and reduced-b superconducting (SC) cavities. For the LHC RF system the SC cavities were chosen, not only because of their high accelerating field leading to a small contribution to the machine impedance, but also because of their high stored energy which minimizes the effects of periodic transient beam loading associated with the high beam intensity (0.5 A). There will be eight single-cell cavities per beam, each delivering 2 MV (5.3 MV/m) at 400 MHz. In this paper the results of the industrial production of 21 cavities will be presented, and high-power test results on the prototype cryomodule reported. For the reduced-beta application an R&D programme at CERN was started in 1996. The goal is to demonstrate both the feasibility of such cavities and the possibility of producing them by low-cost modifications of LEP2 cavities (once LEP is decommissioned. Four different geometries were exte...

  6. Imaging of current distributions in superconducting thin film structures; Abbildung von Stromverteilungen in supraleitenden Duennfilmstrukturen

    Energy Technology Data Exchange (ETDEWEB)

    Doenitz, D.

    2006-10-31

    Local analysis plays an important role in many fields of scientific research. However, imaging methods are not very common in the investigation of superconductors. For more than 20 years, Low Temperature Scanning Electron Microscopy (LTSEM) has been successfully used at the University of Tuebingen for studying of condensed matter phenomena, especially of superconductivity. In this thesis LTSEM was used for imaging current distributions in different superconducting thin film structures: - Imaging of current distributions in Josephson junctions with ferromagnetic interlayer, also known as SIFS junctions, showed inhomogeneous current transport over the junctions which directly led to an improvement in the fabrication process. An investigation of improved samples showed a very homogeneous current distribution without any trace of magnetic domains. Either such domains were not present or too small for imaging with the LTSEM. - An investigation of Nb/YBCO zigzag Josephson junctions yielded important information on signal formation in the LTSEM both for Josephson junctions in the short and in the long limit. Using a reference junction our signal formation model could be verified, thus confirming earlier results on short zigzag junctions. These results, which could be reproduced in this work, support the theory of d-wave symmetry in the superconducting order parameter of YBCO. Furthermore, investigations of the quasiparticle tunneling in the zigzag junctions showed the existence of Andreev bound states, which is another indication of the d-wave symmetry in YBCO. - The LTSEM study of Hot Electron Bolometers (HEB) allowed the first successful imaging of a stable 'Hot Spot', a self-heating region in HEB structures. Moreover, the electron beam was used to induce an - otherwise unstable - hot spot. Both investigations yielded information on the homogeneity of the samples. - An entirely new method of imaging the current distribution in superconducting interference

  7. Stress control of reactively sputtered thick NbN film on Si wafer changing the location of the substrate Si wafer against the Nb target on a magnetron cathode

    Science.gov (United States)

    Suzuki, Y.; Iguchi, N.; Adachi, K.; Hioki, T.; Ichiki, A.; Hsu, C.-W.; Kumagai, S.; Sasaki, M.; Motohiro, T.

    2017-07-01

    We have been developing a superconducting NbN thin film coil in a spiral trench on a Si-wafer using MEMS technology. Connecting the coils on the different wafers using waferbonding process, a cylindrical wafer stack is to be formed as a unit of a compact SMES. The critical current density of our NbN film was measured to be around 1100 A/mm2. We measured critical current I c of 47 mA for the previously fabricated coil of the film thickness t f = 0.5 μm. I c in the spiral coil increases with t f. However, if we make the NbN film thicker, the film is apt to have higher lateral force caused by tensile or compressive stress which can cause peeling of the film from the Si substrate. It is well known that the stress of the sputtered thin films can be controlled from tensile to compressive stress by controlling the bombardment of high energy particles including argon atoms backscattered from the target surface. Based on this knowledge, a specially designed sputter-deposition apparatus was fabricated in which the substrate can be located not only at the different target-to-substrate distances but also at several different lateral distances from the central axis of the target (off-axis lateral shift). Using this apparatus, various stress conditions could be realized which contributed to fabrication of thick NbN film spiral coil in the trench. The film stress was calculated from bending analysis of the substrate Si wafer by stylus method using Stoney’s formula. The maximum compressive stress of 2.5 GPa was measured. By an off-axis lateral shift, t f could be increased from 0.5 to 1 μm. By increasing sputtering gas pressure from 0.7 to 2 Pa, the compressive stress could be mitigated and t f could be further increased from 1.0 to 3 μm. Up to now, we measured I c of 220 mA for a NbN spiral coil at t f around 3 μm. More detailed adjustment of the deposition condition will bring further increase in t f, and hence I c into sight.

  8. Quasi-One-Dimensional Intermittent Flux Behavior in Superconducting Films

    Directory of Open Access Journals (Sweden)

    A. J. Qviller

    2012-01-01

    Full Text Available Intermittent filamentary dynamics of the vortex matter in superconductors is found in films of YBa_{2}Cu_{3}O_{7-δ} deposited on tilted substrates. Deposition of this material on such substrates creates parallel channels of easy flux penetration when a magnetic field is applied perpendicular to the film. As the applied field is gradually increased, magneto-optical imaging reveals that flux penetrates via numerous quasi-one-dimensional jumps. The distribution of flux avalanche sizes follows a power law, and data collapse is obtained by finite-size scaling, with the depth of the flux front used as crossover length. The intermittent behavior shows no threshold value in the applied field, in contrast to conventional flux jumping. The results strongly suggest that the quasi-one-dimensional flux jumps are of a different nature than the thermomagnetic dendritic (branching avalanches that are commonly found in superconducting films.

  9. Nano-engineered pinning centres in YBCO superconducting films

    Energy Technology Data Exchange (ETDEWEB)

    Crisan, A., E-mail: adrian.crisan@infim.ro [National Institute for Materials Physics Bucharest, 105 bis Atomistilor Str., 077125 Magurele (Romania); School of Metallurgy and Materials, University of Birmingham, Edgbaston, B15 2TT Birmingham (United Kingdom); Dang, V.S. [School of Metallurgy and Materials, University of Birmingham, Edgbaston, B15 2TT Birmingham (United Kingdom); Nano and Energy Center, VNU Hanoi University of Science, 334 Nguyen Trai, Thanh Xuan, Hanoi (Viet Nam); Mikheenko, P. [School of Metallurgy and Materials, University of Birmingham, Edgbaston, B15 2TT Birmingham (United Kingdom); Department of Physics, University of Oslo, P.O. Box 1048 Blindern, N-0316 Oslo (Norway)

    2017-02-15

    Highlights: • Power applications of YBCO films/coated conductors in technological relevant magnetic fields requires nano-engineered pinning centre. • Three approaches have been proposed: substrate decoration, quasi-multilayers, and targets with secondary phase nano-inclusions. • Combination of all three approaches greatly increased critical current in YBCO films. • Bulk pinning force, pinning potential, and critical current density are estimated and discussed in relation with the type and strength of pinning centres related to the defects evidenced by Transmission Electron Microscopy. - Abstract: For practical applications of superconducting materials in applied magnetic fields, artificial pinning centres in addition to natural ones are required to oppose the Lorentz force. These pinning centres are actually various types of defects in the superconductor matrix. The pinning centres can be categorised on their dimension (volume, surface or point) and on their character (normal cores or Δκ cores). Different samples have been produced by Pulsed Laser Deposition, with various thicknesses, temperatures and nanostructured additions to the superconducting matrix. They have been characterized by SQUID Magnetic Properties Measurement System and Physical Properties Measurement System, as well as by Transmission Electron Microscopy (TEM). Correlations between pinning architecture, TEM images, and critical currents at various fields and field orientations will be shown for a large number of YBa{sub 2}Cu{sub 3}O{sub x} films with various types and architectures of artificial pinning centres.

  10. Inhomogeneous critical current in nanowire superconducting single-photon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Gaudio, R., E-mail: r.gaudio@tue.nl; Hoog, K. P. M. op ' t; Zhou, Z.; Sahin, D.; Fiore, A. [COBRA Research Institute, Eindhoven University of Technology, P.O. Box 513, NL-5600MB Eindhoven (Netherlands)

    2014-12-01

    A superconducting thin film with uniform properties is the key to realize nanowire superconducting single-photon detectors (SSPDs) with high performance and high yield. To investigate the uniformity of NbN films, we introduce and characterize simple detectors consisting of short nanowires with length ranging from 100 nm to 15 μm. Our nanowires, contrary to meander SSPDs, allow probing the homogeneity of NbN at the nanoscale. Experimental results, endorsed by a microscopic model, show the strongly inhomogeneous nature of NbN films on the sub-100 nm scale.

  11. Embedded fiber Bragg grating sensors for true temperature monitoring in Nb$_3$Sn superconducting magnets for high energy physics

    CERN Document Server

    Chiuchiolo, A; Bajko, M; Consales, M; Giordano, M; Perez, J C; Cusano, A

    2016-01-01

    The luminosity upgrade of the Large Hadron Collider (HL-LHC) planned at the European Organization for Nuclear Research (CERN) requires the development of a new generation of superconducting magnets based on Nb3Sn technology. The instrumentation required for the racetrack coils needs the development of reliable sensing systems able to monitor the magnet thermo-mechanical behavior during its service life, from the coil fabrication to the magnet operation. With this purpose, Fiber Bragg Grating (FBG) sensors have been embedded in the coils of the Short Model Coil (SMC) magnet fabricated at CERN. The FBG sensitivity to both temperature and strain required the development of a solution able to separate mechanical and temperature effects. This work presents for the first time a feasibility study devoted to the implementation of an embedded FBG sensor for the measurement of the "true" temperature in the impregnated Nb3Sn coil during the fabrication process. © (2016) COPYRIGHT Society of Photo-Optical Instrumentatio...

  12. The diversity of flux avalanche patterns in superconducting films

    Science.gov (United States)

    Vestgården, J. I.; Shantsev, D. V.; Galperin, Y. M.; Johansen, T. H.

    2013-05-01

    The variety of morphologies in flux patterns created by thermomagnetic dendritic avalanches in type-II superconducting films is investigated using numerical simulations. The avalanches are triggered by introducing a hot spot at the edge of a strip-shaped sample, which is initially prepared in a partially penetrated Bean critical state by slowly ramping the transversely applied magnetic field. The simulation scheme is based on a model accounting for the nonlinear and nonlocal electrodynamics of superconductors in the transverse geometry. By systematically varying the parameters representing the Joule heating, heat conduction in the film, and heat transfer to the substrate, a wide variety of avalanche patterns are formed, and quantitative characterizations of the areal extension, branch width etc are made. The results show that branching is suppressed by the lateral heat diffusion, while large Joule heating gives many branches, and heat removal into the substrate limits the areal size. The morphology shows significant dependence also on the initial flux penetration depth.

  13. Quasi-one-dimensional intermittent flux behavior in superconducting films

    DEFF Research Database (Denmark)

    Qviller, A. J.; Yurchenko, V. V.; Galperin, Y. M.

    2012-01-01

    Intermittent filamentary dynamics of the vortex matter in superconductors is found in films of YBa2Cu3O7-δ deposited on tilted substrates. Deposition of this material on such substrates creates parallel channels of easy flux penetration when a magnetic field is applied perpendicular to the film....... As the applied field is gradually increased, magneto-optical imaging reveals that flux penetrates via numerous quasi-one-dimensional jumps. The distribution of flux avalanche sizes follows a power law, and data collapse is obtained by finite-size scaling, with the depth of the flux front used as crossover length....... The intermittent behavior shows no threshold value in the applied field, in contrast to conventional flux jumping. The results strongly suggest that the quasi-one-dimensional flux jumps are of a different nature than the thermomagnetic dendritic (branching) avalanches that are commonly found in superconducting...

  14. Current oscillations in ultra-small superconducting Nb-Nb junctions formed by STM at mK temperatures

    Science.gov (United States)

    Dreyer, Michael; Roychowdhury, Anita; Dana, Rami

    2014-03-01

    Using etched Nb STM tips we formed ultra-small tunnel junctions on a Nb crystal at an effective temperature of ~ 200 mK using an Oxford dilution refrigerator. The Nb crystal was prepared in UHV and then transferred into the mK STM. The resulting superconductor-insulator-superconductor (SIS) junction displayed several sub-gap features from multiple Andreev reflections to a zero bias conductance peak. The latter showed features of a Josephson junction in the phase diffusion limit with side structures due to the electrical environment. Upon microwave irradiation the peak split into multiple peaks in accordance with theory, verifying Josephson tunneling. In addition we observed bias dependent oscillations of the tunneling current. The oscillations where recorded at a rate of 10 kS/s while acquiring conventional dI/dV or I(V) spectroscopic curves. Histograms of the current for each bias voltage step then reveal the nature of the oscillation. It ranges from multiple states in certain bias regions through pure oscillations to supercurrent-normal switching. Fourier transform of the current show in some cases a bias dependence of the main frequencies. Possible causes will be discussed.

  15. Investigation of superconducting thin film structures prepared by nanoscale wedge polishing

    Energy Technology Data Exchange (ETDEWEB)

    Pollithy, Martin; Hoefer, Katharina; Schinkel, Uwe; Michalowski, Peter; Grosse, Veit; Schmidl, Frank; Seidel, Paul [FSU Jena, Institute of Solid State Physics, Helmholtzweg 5, D-07743 Jena (Germany); Meier, Dagmar; Shapoval, Tanya [IFW Dresden, Institute for Metallic Materials, PO Box 270116, D-01171 Dresden (Germany)

    2009-07-01

    The performance of dc-SQUID gradiometers depends very strong on the spread of the critical parameters Ic, Rn and Ls. After the preparation of high temperature superconducting devices it could be useful to tune the superconducting properties by decrease of the film thickness. On the other hand it is often helpful for sensor applications to realise a superconducting thin film structure with a smooth surface to avoid resistive or superconducting shunts in insulating layers on the top of the superconductor. In these investigations we use a mechanical wedge polishing procedure to thin the superconducting devices (microbridges, dc-SQUIDs or dc-SQUID gradiometers) before and/or after the first measurements of the electrical properties. AFM and SEM measurements were done to characterise the film morphology. Temperature dependent measurements of the superconducting properties of microbridges, dc-SQUIDs and dc-SQUID gradiometer structures were realised. We discuss the possibilities and limitations of this procedure.

  16. PLD prepared bioactive BaTiO3 films on TiNb implants.

    Science.gov (United States)

    Jelínek, Miroslav; Vaněk, Přemysl; Tolde, Zdeněk; Buixaderas, Elena; Kocourek, Tomáš; Studnička, Václav; Drahokoupil, Jan; Petzelt, Jan; Remsa, Jan; Tyunina, Marina

    2017-01-01

    BaTiO3 (BTO) layers were deposited by pulsed laser deposition (PLD) on TiNb, Pt/TiNb, Si (100), and fused silica substrates using various deposition conditions. Polycrystalline BTO with sizes of crystallites in the range from 90nm to 160nm was obtained at elevated substrate temperatures of (600°C-700°C). With increasing deposition temperature above 700°C the formation of unwanted rutile phase prevented the growth of perovskite ferroelectric BTO. Concurrently, with decreasing substrate temperature below 500°C, amorphous films were formed. Post-deposition annealing of the amorphous deposits allowed obtaining perovskite BTO. Using a very thin Pt interlayer between the BTO films and TiNb substrate enabled high-temperature growth of preferentially oriented BTO. Raman spectroscopy and electrical characterization indicated polar ferroelectric behaviour of the BTO films. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Semiconducting properties of oxide films formed onto an Nb electrode in NaOH solutions

    Directory of Open Access Journals (Sweden)

    VLADIMIR D. JOVIC

    2008-03-01

    Full Text Available In this paper, the results of the potentiostatic formation of homogeneous and heterogeneous, nano-crystalline passive films of Nb2O5 onto an Nb electrode in NaOH solutions of different concentrations at potentials lower than 3.0 V vs. SCE are presented. The semiconducting properties of such films were investigated by EIS measurements. After fitting the EIS results by appropriate equivalent circuits, the space charge capacitance (Csc and space charge resistance (Rsc of these films were determined. The donor density (Nsc, flat band potential (Efb and thickness of the space charge layer (dsc for such oxide films were determined from the corresponding Mott–Schottky (M–S plots. It is shown that all oxide films were n-type semiconductors in a certain potential range.

  18. Solid-phase epitaxial film growth and optical properties of a ferroelectric oxide, Sr2Nb2O7

    Science.gov (United States)

    Nezu, Yukio; Zhang, Yu-Qiao; Chen, Chunlin; Ikuhara, Yuichi; Ohta, Hiromichi

    2017-10-01

    High-quality epitaxial films of a ferroelectric oxide Sr2Nb2O7 were successfully fabricated by solid phase epitaxy (SPE) on (110) LaAlO3 single crystal substrates. In the SPE method, amorphous Sr-Nb-O films are first deposited by pulsed laser deposition at room temperature and then annealed in vacuum at elevated temperatures, resulting in the crystallization of Sr2Nb2O7 with highly ordered atomic arrangement and an atomically flat surface. The refractive index of the resultant film was 2.1, indicating that the dielectric permittivity of the film was in between 20 and 80, which corresponds well with that of single crystal Sr2Nb2O7, demonstrating the effectiveness of the SPE method for the fabrication of high-quality epitaxial films of Sr2Nb2O7.

  19. High-RRR thin-films of NB produced using energetic condensation from a coaxial, rotating vacuum ARC plasma (CEDTM)

    Science.gov (United States)

    Valderrama, Enrique Francisco; James, Colt; Krishnan, Mahadevan; Zhao, Xin; Phillips, Larry; Reece, Charles; Seo, Kang

    2012-06-01

    We have recently demonstrated unprecedentedly high values of RRR (up to 542) in thin-films of pure Nb deposited on a-plane sapphire and MgO crystal substrates. The Nb films were grown using a vacuum arc discharge struck between a reactor grade Nb cathode rod (RRR 30) and a coaxial, semi-transparent Mo mesh anode, with a heated substrate placed just outside it. The substrates were pre-heated for several hours prior to deposition at different temperatures. Low pre-heat temperatures (600°C) is correlated with better epitaxial crystal structure in both a-sapphire and MgO substrate grown films. However, the SIMS data reveal that the most important requirement for high-RRR Nb films on either substrate is the reduction of impurities in the film, especially hydrogen. The hydrogen content in the MgO grown films is 1000 times lower than in bulk Nb tested as a reference from SRF cavity grade Nb. This result has potential implications for SRF accelerators. Coating bulk Nb cavities with an MgO layer followed by our CEDTM deposited Nb films, might create superior SRF cavities that would avoid Q-slope and operate at higher peak fields. This research was supported by Department of Energy grants DE-SC0004994 and DE-FG02-08ER85162.

  20. Direct Measurement of Inter-Filament Resistance in Superconducting Multifilamentary NbTi and Nb(3)Sn Strands

    CERN Document Server

    Zhou, C; Veldhuis, D; van Lanen, E P A; ten Kate, H H J; Dhalle, M

    2011-01-01

    A quantitative knowledge of inter-filament transverse resistance will allow us to describe current redistribution processes inside strands more accurately. This is particularly important for the analysis of the influence of strain and crack distribution patterns in Nb(3)Sn filaments on the shape of the voltage-current curves. Several indirect methods are commonly used to assess inter-filament resistance. Here we use a direct method to measure transverse inter-filament resistance and filament-to-matrix contact resistance. Two four-probe voltage-current methods are developed for measurements below 10 K at various background magnetic fields. In addition to FEM (Finite Element Method) simulation, also a new 3D strand model is developed to simulate the current-and voltage distributions. The experimental methods, first results as well as the simulations using the FEM method and new 3D strand model are described.

  1. Vortex shells in mesoscopic triangles of amorphous superconducting thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kokubo, N., E-mail: kokubo@uec.ac.jp [Department of Engineering Science, University of Electro-Communications, Cho-fugaoka 1-5-1, Cho-fu, Tokyo 182-8585 (Japan); Miyahara, H. [Department of Engineering Science, University of Electro-Communications, Cho-fugaoka 1-5-1, Cho-fu, Tokyo 182-8585 (Japan); Okayasu, S. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Nojima, T. [Institute for Materials Research,Tohoku University, Sendai 980-8577 (Japan)

    2016-11-15

    Highlights: • Direct imaging of multi-vortex states was made in mesoscopic equilateral triangles. • Commensurate and incommensurate vortex states were observed with metastability. • Formation of triangular multiple shells with alternative vortex packing was discussed. • Occupations of vortices in triangular multiple shells are not monotonic with vorticity. • Packing sequence of triangular shells was compared with ones of square and circle shells. - Abstract: Direct observation of vortex states confined in mesoscopic regular triangle dots of amorphous Mo–Ge thin films was made with a scanning superconducting quantum interference device microscope. The observed magnetic images illustrate clearly how vortices are distributed over the triangle dots by forming not only commensurate triangular clusters, but also unique patterns imposed by incommensurability. We discuss the results in terms of vortex shells and construct the packing sequence of vortices in the multiple shell structure.

  2. Nano-Crystallization of High-Entropy Amorphous NbTiAlSiWxNy Films Prepared by Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    Wenjie Sheng

    2016-06-01

    Full Text Available High-entropy amorphous NbTiAlSiWxNy films (x = 0 or 1, i.e., NbTiAlSiNy and NbTiAlSiWNy were prepared by magnetron sputtering method in the atmosphere of a mixture of N2 + Ar (N2 + Ar = 24 standard cubic centimeter per minute (sccm, where N2 = 0, 4, and 8 sccm. All the as-deposited films present amorphous structures, which remain stable at 700 °C for over 24 h. After heat treatment at 1000 °C the films began to crystalize, and while the NbTiAlSiNy films (N2 = 4, 8 sccm exhibit a face-centered cubic (FCC structure, the NbTiAlSiW metallic films show a body-centered cubic (BCC structure and then transit into a FCC structure composed of nanoscaled particles with increasing nitrogen flow rate. The hardness and modulus of the as-deposited NbTiAlSiNy films reach maximum values of 20.5 GPa and 206.8 GPa, respectively. For the as-deposited NbTiAlSiWNy films, both modulus and hardness increased to maximum values of 13.6 GPa and 154.4 GPa, respectively, and then decrease as the N2 flow rate is increased. Both films could be potential candidates for protective coatings at high temperature.

  3. Hexagonal-structured ε-NbN: ultra-incompressibility, high shear rigidity, and a possible hard superconducting material

    Science.gov (United States)

    Zou, Yongtao; Wang, Xuebing; Chen, Ting; Li, Xuefei; Qi, Xintong; Welch, David; Zhu, Pinwen; Liu, Bingbing; Cui, Tian; Li, Baosheng

    2015-01-01

    Exploring the structural stability and elasticity of hexagonal ε-NbN helps discover correlations among its physical properties for scientific and technological applications. Here, for the first time, we measured the ultra-incompressibility and high shear rigidity of polycrystalline hexagonal ε-NbN using ultrasonic interferometry and in situ X-ray diffraction, complemented with first-principles density-functional theory calculations up to 30 GPa in pressure. Using a finite strain equation of state approach, the elastic bulk and shear moduli, as well as their pressure dependences are derived from the measured velocities and densities, yielding BS0 = 373.3(15) GPa, G0 = 200.5(8) GPa, ∂BS/∂P = 3.81(3) and ∂G/∂P = 1.67(1). The hexagonal ε-NbN possesses a very high bulk modulus, rivaling that of superhard material cBN (B0 = 381.1 GPa). The high shear rigidity is comparable to that for superhard γ-B (G0 = 227.2 GPa). We found that the crystal structure of transition-metal nitrides and the outmost electrons of the corresponding metals may dominate their pressure dependences in bulk and shear moduli. In addition, the elastic moduli, Vickers hardness, Debye temperature, melting temperature and a possible superconductivity of hexagonal ε-NbN all increase with pressures, suggesting its exceptional suitability for applications under extreme conditions. PMID:26028439

  4. PLD prepared bioactive BaTiO.sub.3./sub. films on TiNb implants

    Czech Academy of Sciences Publication Activity Database

    Jelínek, Miroslav; Vaněk, Přemysl; Tolde, Z.; Buixaderas, Elena; Kocourek, Tomáš; Studnička, Václav; Drahokoupil, Jan; Petzelt, Jan; Remsa, Jan; Tyunina, Marina

    2017-01-01

    Roč. 70, Jan (2017), s. 334-339 ISSN 0928-4931 R&D Projects: GA ČR(CZ) GA15-05864S; GA ČR(CZ) GA15-01558S Institutional support: RVO:68378271 Keywords : BaTiO 3 * thin films * pld * implants * TiNb * ferroelectricity Subject RIV: BM - Solid Matter Physics ; Magnetism

  5. Texture in state-of-the-art Nb3Sn multifilamentary superconducting wires

    CERN Document Server

    Scheuerlein, C; Alknes, P; Jimenez, N; Bordini, B; Ballarino, A; Di Michiel, M; Thilly, L; Besara, T; Siegrist, T

    2014-01-01

    The texture of Nb3Sn in recent multifilamentary composite wires has been studied by neutron diffraction, synchrotron x-ray diffraction and electron backscatter diffraction. In powder-in-tube (PIT) type superconductors the Nb precursor filaments exhibit a strong 〈110〉 fiber texture as a consequence of the severe cold drawing process, and a 〈110〉 texture is also observed in the Nb3Sn. In the Nb–Ta precursor of the restacked rod process (RRP) strand there is an additional texture component, and in both Ta-alloyed and Ti-alloyed RRP type conductors the Nb3Sn grains grow with a preferential 〈100〉 orientation.

  6. Chalcogenoether complexes of Nb(v) thio- and seleno-halides as single source precursors for low pressure chemical vapour deposition of NbS2 and NbSe2 thin films.

    Science.gov (United States)

    Chang, Yao-Pang; Hector, Andrew L; Levason, William; Reid, Gillian

    2017-08-14

    NbSCl3 was obtained via reaction of NbCl5 with S(SiMe3)2 in anhydrous CH2Cl2, whilst in MeCN solution the same reaction gives [NbSCl3(MeCN)2]. [NbSeCl3(MeCN)2] was obtained similarly from NbCl5 with Se(SiMe3)2. The chalcogenoether complexes, [NbSCl3(ER2)] (E = S: R = Me, nBu; E = Se: R = nBu), were obtained from reaction of NbCl5, ER2 and S(SiMe3)2 in CH2Cl2. The structure of the [Nb2S2Cl6(SMe2)2] reveals a Cl-bridged dimer with the SMe2 ligands disposed syn. The Cl bridges are highly asymmetric, with the long Nb-Cl bond trans Nb[double bond, length as m-dash]S. The complexes, [NbSCl3(L-L)] (L-L = MeSCH2CH2SMe, MeS(CH2)3SMe, iPrSCH2CH2SiPr, MeSe(CH2)3SeMe and nBuS(CH2)3SnBu), were obtained from reaction of L-L with preformed [NbSCl3(MeCN)2]. The structures of the Me-substituted complexes reveal distorted octahedral monomers with the neutral ligands trans to S/Cl. Solution 1H and 77Se{1H} NMR data showed that the neutral ligands are partially dissociated and undergoing fast exchange at ambient temperatures in CH2Cl2 solution, consistent with weak Lewis acidity for NbSCl3. The complexes containing nBu-substituted ligands have been used as single source precursors for low pressure chemical vapour deposition (CVD) of 3R-NbS2 thin films. 2H-NbSe2 thin films were also obtained via low pressure CVD using [NbSe2Cl3(SenBu2)]. The thin films were characterised by grazing incidence and in-plane XRD, pole figure analysis, scanning electron microscopy and energy dispersive X-ray analysis.

  7. Influence of Nb content on the structural and optical properties of anatase TiO{sub 2} polycrystalline thin film by e-beam technique

    Energy Technology Data Exchange (ETDEWEB)

    Shah, A., E-mail: attaullah77@yahoo.com; Mahmood, Arshad; Aziz, Uzma; Rashid, Rashad; Raza, Qaiser; Ali, Zahid

    2016-09-01

    In this paper, we report the structural and optical properties of Nb-doped TiO{sub 2} thin films deposited by e-beam evaporation technique. After post annealing in air at 500 °C for 1 h, the samples were characterized by various techniques such as X-ray diffraction (XRD), Raman spectroscopy, UV–Vis spectrophotometry and spectroscopic Ellipsometer. Both XRD and Raman analyses indicate that the films were crystallized into the polycrystalline anatase TiO{sub 2} structure. However it was observed that the crystallinity of the films decreases with the addition of Nb atoms and tends to become amorphous at 20% Nb content in TiO{sub 2} film. Moreover, no new phases such as Nb{sub 2}O{sub 5}, NbO{sub 2} or Nb metal were observed. The band gap energy was found to decrease with the increasing of Nb concentration which was verified by ellipsometric study. Ellipsomtric measurements also indicate that refractive index (n) of the films decreases while extinction coefficient (k) increases with the increasing of Nb content. All these analyses elucidate that the incorporation of Nb atom into TiO{sub 2} may tune the structural and optical properties of TiO{sub 2} thin films. - Highlights: • The addition of Nb into TiO{sub 2} film has strongly influenced its physical properties. • Anatase polycrystalline Nb:TiO{sub 2} films were grown up to 15% Nb content. • The film becomes an amorphous at 20% Nb doping. • Band gap energy of TiO{sub 2} film was decreased with increasing of Nb content in the film. • The Optical constants (n, k) of Nb:TiO{sub 2} film were varied as a function of Nb content.

  8. High-Tc Superconducting Thick-Film Spiral Magnet: Development and Characterization of a Single Spiral Module

    National Research Council Canada - National Science Library

    McGinnis, W

    1997-01-01

    The objective of this project was to make characterized and numerically model prototype modules of a new type of superconducting electromagnet based on stacked spirals of superconducting thick films...

  9. Strain dependence of critical superconducting properties of Nb3Sn with different intrinsic strains based on a semi-phenomenological approach

    Science.gov (United States)

    Zhang, Rui; Gao, Peifeng; Wang, Xingzhe

    2017-09-01

    A semi-phenomenological approach, which combined the microscopic properties calculated by first-principles and macroscopic critical characteristics determined from empirical relations, is suggested to investigate the superconducting critical properties of the low temperature superconductor Nb3Sn with different intrinsic strain modes like uniaxial tension, shear and torsion deformations. Firstly, the microscopic properties of the electronic structure and density of state for Nb3Sn are numerically obtained by first-principles calculations using density-functional theory in the generalized gradient approximation. These are further incorporate with the macroscopic empirical relation of the unified scaling law for predicting critical parameters of the strained Nb3Sn superconductor. The superconducting critical profiles of critical temperature, magnetic field and current, in such a way, are achieved for Nb3Sn under different strains. The predictions on the critical parameters of the superconductor bulk in uniaxial tension/compression state exhibit obvious degradations and bell-shaped curves with maximum critical values at zero strain and a slight asymmetry between the tensile and compressive strains, which show quite good agreements with the experimental data. As for Nb3Sn under shear and torsion deformations, the similar degradations on critical parameters also are presented which are monotonously decreased with the applied strains. The first-principles calculations and results in this work are based on an assumption which the superconducting critical properties from the strain-induced variations in the electronic density of states. Furthermore, the modified critical surfaces of Nb3Sn, determined by the critical temperature, current and magnetic field dependence upon the applied different strains are depicted. The present study will be helpful to identify the scaling relation for the critical parameters and understanding the origin of strain sensitivity in Nb3Sn

  10. White noise of Nb-based microwave superconducting quantum interference device multiplexers with NbN coplanar resonators for readout of transition edge sensors

    Science.gov (United States)

    Kohjiro, Satoshi; Hirayama, Fuminori; Yamamori, Hirotake; Nagasawa, Shuichi; Fukuda, Daiji; Hidaka, Mutsuo

    2014-06-01

    White noise of dissipationless microwave radio frequency superconducting quantum interference device (RF-SQUID) multiplexers has been experimentally studied to evaluate their readout performance for transition edge sensor (TES) photon counters ranging from near infrared to gamma ray. The characterization has been carried out at 4 K, first to avoid the low-frequency fluctuations present at around 0.1 K, and second, for a feasibility study of readout operation at 4 K for extended applications. To increase the resonant Q at 4 K and maintain low noise SQUID operation, multiplexer chips consisting of niobium nitride (NbN)-based coplanar-waveguide resonators and niobium (Nb)-based RF-SQUIDs have been developed. This hybrid multiplexer exhibited 1 × 104 ≤ Q ≤ 2 × 104 and the square root of spectral density of current noise referred to the SQUID input √SI = 31 pA/√Hz. The former and the latter are factor-of-five and seven improvements from our previous results on Nb-based resonators, respectively. Two-directional readout on the complex plane of the transmission component of scattering matrix S21 enables us to distinguish the flux noise from noise originating from other sources, such as the cryogenic high electron mobility transistor (HEMT) amplifier. Systematic noise measurements with various microwave readout powers PMR make it possible to distinguish the contribution of noise sources within the system as follows: (1) The achieved √SI is dominated by the Nyquist noise from a resistor at 4 K in parallel to the SQUID input coil which is present to prevent microwave leakage to the TES. (2) The next dominant source is either the HEMT-amplifier noise (for small values of PMR) or the quantization noise due to the resolution of 300-K electronics (for large values of PMR). By a decrease of these noise levels to a degree that is achievable by current technology, we predict that the microwave RF-SQUID multiplexer can exhibit √SI ≤ 5 pA/√Hz, i.e., close to √SI of

  11. AC transport current loss of high-temperature superconducting film prepared on single-crystal substate; YBCO hakumaku dotai no koryu tsuden sonshitsu

    Energy Technology Data Exchange (ETDEWEB)

    Miyagi, D.; Ogawa, J.; Tsukamoto, O. [Yokohama National Univ., Yokohama (Japan); Kudo, Y.; Kubota, H.; Yamazaki, M.; Yoshino, H. [Toshiba Corp., Tokyo (Japan)

    1999-06-07

    The high temperature oxidation thing superconductor is operated at the liquid nitrogen temperature, and it is possible to hold the cooling cost low than metal system superconductor such as NbTi. Therefore, the applied research to the AC power equipment is advanced. In the application to the AC power equipment, the reduction of the ac loss of superconducting cable becomes the gist of the practical application. We measured alternating current loss of an YBCO thin film on the LaAlO3 single crystal substrate developed for SN transitional type current limiter. (NEDO)

  12. Growth and surface characterization of TiNbZr thin films deposited by magnetron sputtering for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Tallarico, D.A. [Federal University of Sao Carlos, Materials Science and Engineering Graduation Program, Via Washington Luis km 235, CEP 13565-905 Sao Carlos, SP (Brazil); Gobbi, A.L. [Brazilian Nanotechnology National Laboratory, Rua Giuseppe Máximo Scolfaro 10.000, CEP 13083-100 Campinas, SP (Brazil); Paulin Filho, P.I. [Federal University of Sao Carlos, Department of Materials Engineering, Via Washington Luis km 235, CEP 13565-905 Sao Carlos, SP (Brazil); Maia da Costa, M.E.H. [Pontifical Catholic University of Rio de Janeiro, Department of Physics, CEP 22451-900 Rio de Janeiro, RJ (Brazil); Nascente, P.A.P., E-mail: nascente@ufscar.br [Federal University of Sao Carlos, Department of Materials Engineering, Via Washington Luis km 235, CEP 13565-905 Sao Carlos, SP (Brazil)

    2014-10-01

    Low modulus of elasticity and the presence of non-toxic elements are important criteria for the development of materials for implant applications. Low modulus Ti alloys can be developed by designing β-Ti alloys containing non-toxic alloying elements such as Nb and Zr. Actually, most of the metallic implants are produced with stainless steel (SS) because it has adequate bulk properties to be used as biomaterials for orthopedic or dental implants and is less expensive than Ti and its alloys, but it is less biocompatible than them. The coating of this SS implants with Ti alloy thin films may be one alternative to improve the biomaterial properties at a relatively low cost. Sputtering is a physical deposition technique that allows the formation of nanostructured thin films. Nanostructured surfaces are interesting when it comes to the bone/implant interface due to the fact that both the surface and the bone have nanoscale particle sizes and similar mechanical properties. TiNbZr thin films were deposited on both Si(111) and stainless steel (SS) substrates. The TiNbZr/Si(111) film was used as a model system, while the TiNbZr/SS film might improve the biocompatibility and extend the life time of stainless steel implants. The morphology, chemical composition, Young's modulus, and hardness of the films were analyzed by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDS), and nanoindentation. - Highlights: • TiNbZr thin films were deposited on Si(111) and stainless steel (SS). • Their Young's modulus differences are within 5.3% and hardness 1.7%. • TiNbZr/SS film chemical composition remained almost constant with depth. • TiNbZr films presented nanostructured grains and low roughness for substrates. • TiNbZr/SS film hardness was about 100% greater than the SS substrate hardness.

  13. X-ray photoelectron spectroscopy studies of the electronic structure of superconducting Nb{sub 2}SnC and Nb{sub 2}SC

    Energy Technology Data Exchange (ETDEWEB)

    Romero, M.; Huerta, L.; Akachi, T. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, México D.F. 04510 (Mexico); Llamazares, J.L. Sánchez [Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Col. Lomas 4a, San Luis Potosí, S.L.P. 78216 (Mexico); Escamilla, R., E-mail: rauleg@unam.mx [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, México D.F. 04510 (Mexico)

    2013-12-05

    Highlights: •XPS was used to investigate chemical shift in the Nb{sub 2}SnC and Nb{sub 2}SC compounds. •Valence band of the Nb{sub 2}SnC and Nb{sub 2}SC compounds was studied by XPS. •Positive and negative chemical shift are observed in the Nb{sub 2}SnC and Nb{sub 2}SC. •The charge transfer model can be applicable to the Nb{sub 2}SnC and Nb{sub 2}SC compounds. •The decrease of the N(E{sub F}) of Nb{sub 2}SC respect to Nb{sub 2}SnC explain the decrease of T{sub c}. -- Abstract: X-ray photoelectron spectroscopy (XPS) was used to investigate the binding energies and valence band of the Nb{sub 2}SnC and Nb{sub 2}SC compounds. The Nb 3d{sub 5/2}, Sn 3d{sub 5/2}, S 2p{sub 3/2} and C 1s core levels associated with the chemical states of Nb{sub 2}SnC and Nb{sub 2}SC were identified. The spectra for Nb{sub 2}SnC revealed Nb and Sn oxides on the surface of the sample, mainly Nb{sub 2}O{sub 5} and SnO{sub 2}, while the Nb{sub 2}SC only Nb{sub 2}O{sub 5} oxide. After Ar{sup +} ion etching the intensity of the oxides decreased in both samples. Comparing the Nb 3d, Sn 3d, S 2p and C 1s core levels with metallic Nb, Sn, S and C reference materials, we observed a positive chemical shift for Nb 3d{sub 5/2} and a negative chemical shift for C 1s in both samples. These results suggest that the charge transfer model can be applicable to the Nb{sub 2}SnC and Nb{sub 2}SC compounds. Finally, the decrease in the T{sub c} in the Nb{sub 2}SC compound respect to Nb{sub 2}SnC might be associated to decrease in the density of states N(E{sub F})

  14. Suppression of superconductivity in superconductor/ferromagnet multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, T. J.; Kim, D. H. [Yeungnam University, Gyeongsan (Korea, Republic of)

    2016-03-15

    Suppression of the superconducting transition temperature (Tc) of NbN thin films in superconductor/ferromagnet multilayers has been investigated. Both superconducting NbN and ferromagnetic FeN layers were deposited on thermally oxidized Si substrate at room temperature by using reactive magnetron sputtering in an Ar-N2 gas mixture. The thickness of FeN films was fixed at 20 nm, while the thickness of NbN films was varied from 3 nm to 90 nm. Tc suppression was clearly observed in NbN layers up to 70 nm thickness when NbN layer was in proximity with FeN layer. For a given thickness of NbN layer, the magnitude of Tc suppression was increased in the order of Si/FeN/NbN, Si/NbN/FeN, and Si/FeN/NbN/FeN structure. This result can be used to design a spin switch whose operation is based on the proximity effect between superconducting and ferromagnetic layers.

  15. Superconducting notch filter

    Energy Technology Data Exchange (ETDEWEB)

    Pang, C S; Falco, C M; Kampwirth, R T; Schuller, I K; Hudak, J J; Anastasio, T A

    1979-01-01

    Results of a preliminary investigation of a superconducting notch filter for possible application in the 2 to 30 MHz high frequency (HF) communication band are presented. The circuit was successfully implemented using planar geometry so that closed cycle refrigeration could be used to cool circuits fabricated from high T/sub c/ Nb/sub 3/Sn or Nb/sub 3/Ge thin films. In the present design, circuit Q's of about 2 x 10/sup 3/ were obtained with 50-ohm source and output impedance. (TFD)

  16. Proposal to negotiate a collaboration agreement related to the application of novel cavity fabrication techniques and Nb/Cu sputter coating technology in the field of superconducting RF for the Future Circular Collider (FCC) study

    CERN Document Server

    2015-01-01

    Proposal to negotiate a collaboration agreement related to the application of novel cavity fabrication techniques and Nb/Cu sputter coating technology in the field of superconducting RF for the Future Circular Collider (FCC) study

  17. Vortex configurations in high-{Tc} superconducting films

    Energy Technology Data Exchange (ETDEWEB)

    Kaper, H.G.; Kwong, M.K.

    1992-11-23

    This article addresses the Ginzburg-Landau (GL) model for high-temperature superconductivity in thin films (two-dimensional periodic domains). A new gauge is defined to reduce the coupling between the equations for the nonzero components of the vector potential. The GL equations are written in a novel form by means of continuous link variables; this form is symmetric and has particular advantages for numerical analysis. The continuous GL model is approximated by a discrete model, which is shown to be second-order accurate. Two methods are used for the numerical solution of the discrete model - a modified Newton`s method, in combination with a sweeping algorithm for the solution of the linear system, and a time-like integration method based on gradient flow. Numerical experiments demonstrate that the discrete GL model leads to asymmetric solutions in the plane; symmetry is recovered only in the limit as the mesh size goes to zero. The results of computational experiments to find the upper critical field and establish an empirical power law for vortex interactions are given.

  18. Highly textured oxypnictide superconducting thin films on metal substrates

    Energy Technology Data Exchange (ETDEWEB)

    Iida, Kazumasa, E-mail: iida@nuap.nagoya-u.ac.jp; Kurth, Fritz; Grinenko, Vadim; Hänisch, Jens [Institute for Metallic Materials, IFW Dresden, D-01171 Dresden (Germany); Chihara, Masashi; Sumiya, Naoki; Hatano, Takafumi; Ikuta, Hiroshi [Department of Crystalline Materials Science, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Ichinose, Ataru; Tsukada, Ichiro [Central Research Institute of Electric Power Industry, 2-6-1 Nagasaka, Yokosuka, Kanagawa 240-0196 (Japan); Matias, Vladimir [iBeam Materials, Inc., 2778A Agua Fria Street, Santa Fe, New Mexico 87507 (United States); Holzapfel, Bernhard [Institute for Technical Physics, Karlsruhe Institute of Technology, Hermann von Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany)

    2014-10-27

    Highly textured NdFeAs(O,F) thin films have been grown on ion beam assisted deposition-MgO/Y{sub 2}O{sub 3}/Hastelloy substrates by molecular beam epitaxy. The oxypnictide coated conductors showed a superconducting transition temperature (T{sub c}) of 43 K with a self-field critical current density (J{sub c}) of 7.0×10{sup 4} A/cm{sup 2} at 5 K, more than 20 times higher than powder-in-tube processed SmFeAs(O,F) wires. Albeit higher T{sub c} as well as better crystalline quality than Co-doped BaFe{sub 2}As{sub 2} coated conductors, in-field J{sub c} of NdFeAs(O,F) was lower than that of Co-doped BaFe{sub 2}As{sub 2}. These results suggest that grain boundaries in oxypnictides reduce J{sub c} significantly compared to that in Co-doped BaFe{sub 2}As{sub 2} and, hence biaxial texture is necessary for high J{sub c.}.

  19. An increase in Tc under hydrostatic pressure in the superconducting doped topological insulator Nb 0.25 Bi 2 Se 3

    Energy Technology Data Exchange (ETDEWEB)

    Smylie, M. P.; Willa, K.; Ryan, K.; Claus, H.; Kwok, W. -K.; Qiu, Y.; Hor, Y. S.; Welp, U.

    2017-12-01

    We report a positive hydrostatic pressure derivative of the superconducting transition temperature in the doped topological insulator Nb0.25Bi2Se3 via dc SQUID magnetometry in pressures up to 0.6 GPa. This result is contrary to reports on the homologues CuxBi2Se3 and SrxBi2Se3 where smooth suppression of T-c is observed. This difference may be attributable to an electronic structure composed of multiple bands whereas the other materials in the superconducting doped Bi2Se3 family are believed to be single-band.

  20. Extreme magnetic anisotropy and multiple superconducting transition signatures in a [Nb(23 nm)/Ni(5 nm)]{sub 5} multilayer

    Energy Technology Data Exchange (ETDEWEB)

    De Long, L.E. [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506-0055 (United States)], E-mail: delong@pa.uky.edu; Kryukov, S.A. [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506-0055 (United States); Joshi, Amish G. [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506-0055 (United States); National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi 110 012 (India); Xu Wentao; Bosomtwi, A. [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506-0055 (United States); Kirby, B.J. [Lujan Neutron Scattering Center, Los Alamos National Laboratory, MS805, Los Alamos, NM 87545 (United States); Center for Neutron Research, National Institutes of Standards and Technology, Gaithersburg, MD 20899-8562 (United States); Fitzsimmons, M.R. [Lujan Neutron Scattering Center, Los Alamos National Laboratory, MS805, Los Alamos, NM 87545 (United States)

    2008-04-01

    We have applied polarized neutron reflectometry, and novel SQUID and vibrating reed magnetometry to probe a [Nb(23 nm)/Ni(5 nm)]{sub 5} multilayer (ML) whose superconducting state magnetic anisotropy is dominated by confined (in-plane) supercurrents in DC magnetic fields, H, applied nearly parallel to the ML plane. The upper critical field exhibits abrupt shifts (0.1-0.6 K) in near-parallel fields, but is field-independent for {mu}{sub 0}H < 0.8 T when the ML is exactly aligned with the DC field, indicating suppression of orbital pairbreaking and the possible presence of unconventional superconducting pairing states.

  1. An increase in Tc under hydrostatic pressure in the superconducting doped topological insulator Nb0.25Bi2Se3

    Science.gov (United States)

    Smylie, M. P.; Willa, K.; Ryan, K.; Claus, H.; Kwok, W.-K.; Qiu, Y.; Hor, Y. S.; Welp, U.

    2017-12-01

    We report a positive hydrostatic pressure derivative of the superconducting transition temperature in the doped topological insulator Nb0.25Bi2Se3 via dc SQUID magnetometry in pressures up to 0.6 GPa. This result is contrary to reports on the homologues CuxBi2Se3 and SrxBi2Se3 where smooth suppression of Tc is observed. This difference may be attributable to an electronic structure composed of multiple bands whereas the other materials in the superconducting doped Bi2Se3 family are believed to be single-band.

  2. Atomic layer deposition of (K,Na)(Nb,Ta)O{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sønsteby, Henrik Hovde, E-mail: henrik.sonsteby@kjemi.iuio.no; Nilsen, Ola; Fjellvåg, Helmer [Department of Chemistry, University of Oslo, Sem Sælands vei 26, 0371 Oslo (Norway)

    2016-07-15

    Thin films of complex alkali oxides are frequently investigated due to the large range of electric effects that are found in this class of materials. Their piezo- and ferroelectric properties also place them as sustainable lead free alternatives in optoelectronic devices. Fully gas-based routes for deposition of such compounds are required for integration into microelectronic devices that need conformal thin films with high control of thickness- and composition. The authors here present a route for deposition of materials in the (K,Na)(Nb,Ta)O{sub 3}-system, including the four end members NaNbO{sub 3}, KNbO{sub 3}, NaTaO{sub 3}, and KTaO{sub 3}, using atomic layer deposition with emphasis on control of stoichiometry in such mixed quaternary and quinary compunds.

  3. Epitaxial antiperovskite superconducting CuNNi3 thin films synthesized by chemical solution deposition.

    Science.gov (United States)

    Hui, Zhenzhen; Tang, Xianwu; Shao, Dingfu; Lei, Hechang; Yang, Jie; Song, Wenhai; Luo, Hongmei; Zhu, Xuebin; Sun, Yuping

    2014-10-28

    Epitaxial antiperovskite superconducting CuNNi3 thin films have been grown by chemical solution deposition. The film is a type II superconductor and shows a Tc of 3.2 K with a transition of 0.13 K. The Hc2(0) and ξ0 are estimated to be 8.1 kOe and 201 Å, respectively.

  4. Generation of coherent electromagnetic radiation by superconducting films at nitrogen temperatures

    CERN Document Server

    Lykov, A N

    2001-01-01

    One detected generation of coherent electromagnetic radiation by GdBa sub 2 Cu sub 3 O sub 7 sub - sub x superconducting films within 1-10 MHz range at temperature of liquid nitrogen boiling. This type generation is caused by synchronization realized due to the feedback of abrupt changes of the Abrikosov's vortices produced by the external low-frequency magnetic field. Possibility to reach more intensive radiation due to increase of the area of superconducting film, as well as, via increase of amplitude and of frequency of electromagnetic field exciting a vortex system in films is the most important advantage of the given technique of generation

  5. Superconductivity

    CERN Document Server

    Thomas, D B

    1974-01-01

    A short general review is presented of the progress made in applied superconductivity as a result of work performed in connection with the high-energy physics program in Europe. The phenomenon of superconductivity and properties of superconductors of Types I and II are outlined. The main body of the paper deals with the development of niobium-titanium superconducting magnets and of radio-frequency superconducting cavities and accelerating structures. Examples of applications in and for high-energy physics experiments are given, including the large superconducting magnet for the Big European Bubble Chamber, prototype synchrotron magnets for the Super Proton Synchrotron, superconducting d.c. beam line magnets, and superconducting RF cavities for use in various laboratories. (0 refs).

  6. Amplitude distributions of dark counts and photon counts in NbN superconducting single-photon detectors integrated with the HEMT readout

    Energy Technology Data Exchange (ETDEWEB)

    Kitaygorsky, J. [Kavli Institute of Nanoscience Delft, Delft University of Technology, 2600 GA Delft (Netherlands); Department of Electrical and Computer Engineering and Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14627-0231 (United States); Słysz, W., E-mail: wslysz@ite.waw.pl [Institute of Electron Technology, PL-02 668 Warsaw (Poland); Shouten, R.; Dorenbos, S.; Reiger, E.; Zwiller, V. [Kavli Institute of Nanoscience Delft, Delft University of Technology, 2600 GA Delft (Netherlands); Sobolewski, Roman [Department of Electrical and Computer Engineering and Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14627-0231 (United States)

    2017-01-15

    Highlights: • A new operation regime of NbN superconducting single-photon detectors (SSPDs). • A better understanding of the origin of dark counts generated by the detector. • A promise of PNR functionality in SSPD measurements. - Abstract: We present a new operation regime of NbN superconducting single-photon detectors (SSPDs) by integrating them with a low-noise cryogenic high-electron-mobility transistor and a high-load resistor. The integrated sensors are designed to get a better understanding of the origin of dark counts triggered by the detector, as our scheme allows us to distinguish the origin of dark pulses from the actual photon pulses in SSPDs. The presented approach is based on a statistical analysis of amplitude distributions of recorded trains of the SSPD photoresponse transients. It also enables to obtain information on energy of the incident photons, as well as demonstrates some photon-number-resolving capability of meander-type SSPDs.

  7. Induced superconductivity in Nb/InAs-hybrid structures in parallel and perpendicular magnetic fields; Induzierte Supraleitung in Nb/InAs-Hybridstrukturen in parallelen und senkrechten Magnetfeldern

    Energy Technology Data Exchange (ETDEWEB)

    Rohlfing, Franziska

    2007-07-15

    The thesis in hand investigates experimentally Josephson contacts based on Nb/InAs-hybrid structures. The experiments discussed here were done on samples of different width of the Josephson contacts (between 500 nm and 2000 nm). They were realized by means of different methods of the semiconductor technology. The length of the Josephson contacts was about 600 nm and, as superconducting material, niobium was used. Both critical current and characteristics in the resistive regime (excess-current and multiple Andreev reflection) are studied as a function of temperature and external magnetic fields. Measurements in perpendicular and parallel magnetic fields with respect to the plain of the two-dimensional electron gas, are presented. The Andreev reflection amplitude determining the supercurrent is calculated by means of the Greens functions of the two-dimensional electron gas beneath the superconductors which is modified by the proximity effect. From the fit to the data with this model, the transparency of the boundary between the superconductor and the two-dimensional electron gas can be estimated to be about 0.1. The transparency of the point contacts in the two-dimensional electrons gas can be determined independently from the Josephson junction width dependence of the normal resistance (T=10 K). This transparency amounts to about 0.8 in the examined samples. The measurements of the critical current in a magnetic field perpendicular to the two-dimensional electron gas show a Fraunhofer pattern. In order to study the transition from perpendicular orientation into parallel orientation, measurements of the critical current as a function of the magnetic field were done for different angles. In the resistive regime, the excess current measurements in the magnetic field show a very interesting behaviour: In parallel magnetic fields, the excess current becomes zero at about 2.5 T. In perpendicular magnetic field however, the excess current is strongly suppressed below 30 m

  8. The role of defects in the electrical properties of NbO2 thin film vertical devices

    Directory of Open Access Journals (Sweden)

    Toyanath Joshi

    2016-12-01

    Full Text Available Epitaxial NbO2 thin films were grown on Si:GaN layers deposited on Al2O3 substrates using pulsed laser deposition. Pulsed current-voltage (IV curves and self-sustained current oscillations were measured across a 31 nm NbO2 film and compared with a similar device made from polycrystalline NbO2 film grown on TiN-coated SiO2/Si substrate. Crystal quality of the as grown films was determined from x-ray diffractometry, x-ray photoelectron spectroscopy and atomic force microscopy data. The epitaxial film device was found to be more stable than the defect-rich polycrystalline sample in terms of current switching and oscillation behaviors.

  9. High Temperature Superconducting Films and Multilayers for Electronics

    Science.gov (United States)

    1994-04-19

    High-Tc Superconductors," 1yal hio Discussion Leader at the Gordon Research Conference on Superconductivity, Oxnard, January 1994. 36...34 IEEE Trans. AppI. Supeirmd., vol. 3, 2295 (1993). 25. Harry Kroger and Uttam Ghoshal , "Can Superconductive digital Systems Compete with Semiconductor

  10. Resistive states created in superconducting NbTiN filaments by an electrical current pulse

    Directory of Open Access Journals (Sweden)

    K. Harrabi

    2015-03-01

    Full Text Available We have observed as a function of the time the appearance of the voltage caused by a larger-than-critical (I > Ic step-pulse of current in narrow NbTiN strips at 4.2 K. Different current intensities produced either phase-slip centres characterized by a voltage saturating with the time, or ever expanding hot spots. These dissipative structures occur after a measurable delay time, whose dependence upon the ratio I/Ic can be analysed through a Ginzburg-Landau theory to yield a unique adjustable time constant.

  11. A review of basic phenomena and techniques for sputter-deposition of high temperature superconducting films

    Energy Technology Data Exchange (ETDEWEB)

    Auciello, O. (Microelectronics Center of North Carolina, Research Triangle Park, NC (USA) North Carolina State Univ., Raleigh, NC (USA). Dept. of Materials Science and Engineering); Ameen, M.S.; Kingon, A.I.; Lichtenwalner, D.J. (North Carolina State Univ., Raleigh, NC (USA). Dept. of Materials Science and Engineering); Krauss, A.R. (Argonne National Lab., IL (USA))

    1990-01-01

    The processes involved in plasma and ion beam sputter-deposition of high temperature superconducting thin films are critically reviewed. Recent advances in the development of these techniques are discussed in relation to basic physical phenomena, specific to each technique, which must be understood before high quality films can be produced. Control of film composition is a major issue in sputter-deposition of multicomponent materials. Low temperature processing of films is a common goal for each technique, particularly in relation to integrating high temperature superconducting films with the current microelectronics technology. It has been understood for some time that for Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7} deposition, the most intensely studied high-{Tc} compound, incorporation of sufficient oxygen into the film during deposition is necessary to produce as-deposited superconducting films at relatively substrate temperatures. Recent results have shown that with the use of suitable buffer layers, high quality Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7} sputtered films can be obtained on Si substrates without the need for post-deposition anneal processing. This review is mainly focussed on issues related to sputter-deposition of Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7} thin films, although representative results concerning the bismuth and thallium based compounds are included. 143 refs., 11 figs.

  12. Thermal, Electrical and Mechanical Response to a Quench in Nb3SnSuperconducting Coils

    Energy Technology Data Exchange (ETDEWEB)

    Ferracin, F.; Caspi, S.; Chiesa, L.; Gourlay, S.A.; Hafalia,R.R.; Imbasciati, L.; Lietzke, A.F.; Sabbi, G.; Scanlan, R.M.

    2003-11-10

    During a quench, significant temperatures can arise as a magnet's stored energy is dissipated in the normal zone. Temperature gradients during this process give rise to localized strains within the coil. Reactive forces in the magnet structure balance the electromagnetic and thermal forces and maintain on equilibrium. In this paper we present a complete 3D finite element analysis of a racetrack coil. Specifically, the analysis focuses on thermal, electrical and mechanical conditions in a 10 T Nb{sub 3}Sn coil built and tested as part of LBNL's Subscale Magnet Program. The study attempts to simulate time history of the temperature and voltage rise during quench propagation. The transient thermal stress after the quench is then evaluated and discussed.

  13. Thermal, Electrical and Mechanical Response to a Quench in Nb3Sn Superconducting Coils

    Energy Technology Data Exchange (ETDEWEB)

    Ferracin, P.; Caspi, S.; Chiesa, L.; Gourlay, S.A.; Hafalia, R.r.; Imbasciati, L.; Lietzke, A.F.; Sabbi, G.; Scanlan, R.M.

    2003-10-01

    During a quench, significant temperatures can arise as a magnet's stored energy is dissipated in the normal zone. Temperature gradients during this process give rise to localized strains within the coil. Reactive forces in the magnet structure balance the electromagnetic and thermal forces and maintain on equilibrium. In this paper we present a complete 3D finite element analysis of a racetrack coil. Specifically, the analysis focuses on thermal, electrical and mechanical conditions in a 10T Nb{sub 3}Sn coil built and tested as part of LBNL's Subscale Magnet Program. The study attempts to simulate time history of the temperature and voltage rise during quench propagation. The transient thermal stress after the quench is then evaluated and discussed.

  14. Tailoring the surface chemical bond states of the NbN films by doping Ag: Achieving hard hydrophobic surface

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Ping; Zhang, Kan; Du, Suxuan [Department of Materials Science, State Key Laboratory of Superhard Materials, and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun, 130012 (China); Meng, Qingnan [College of Construction Engineering, Jilin University, Changchun, 130026 (China); He, Xin [Department of Materials Science, State Key Laboratory of Superhard Materials, and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun, 130012 (China); Wang, Shuo [Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871 (China); Wen, Mao, E-mail: wenmao225@jlu.edu.cn [Department of Materials Science, State Key Laboratory of Superhard Materials, and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun, 130012 (China); Zheng, Weitao, E-mail: WTZheng@jlu.edu.cn [Department of Materials Science, State Key Laboratory of Superhard Materials, and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun, 130012 (China)

    2017-06-15

    Highlights: • Intrinsically hydrophilic NbN films can transfer to hydrophobic Nb-Ag-N films by doping Ag atoms into NbN sublattice. • Solute Ag can promote that the hydrophobic Ag{sub 2}O groups formed on the Nb-Ag-N film surface through self-oxidation. • The present work may provide a straightforward approach for the production of robust hydrophobic ceramic surfaces. - Abstract: Robust hydrophobic surfaces based on ceramics capable of withstanding harsh conditions such as abrasion, erosion and high temperature, are required in a broad range of applications. The metal cations with coordinative saturation or low electronegativity are commonly chosen to achieve the intrinsically hydrophobic ceramic by reducing Lewis acidity, and thus the ceramic systems are limited. In this work, we present a different picture that robust hydrophobic surface with high hardness (≥20 GPa) can be fabricated through doping Ag atoms into intrinsically hydrophilic ceramic film NbN by reactive co-sputtering. The transition of wettability from hydrophilic to hydrophobic of Nb-Ag-N films induced by Ag doping results from the appearance of Ag{sub 2}O groups on the films surfaces through self-oxidation, because Ag cations (Ag{sup +}) in Ag{sub 2}O are the filled-shell (4d{sup 10}5S{sup 0}) electronic structure with coordinative saturation that have no tendency to interact with water. The results show that surface Ag{sub 2}O benefited for hydrophobicity comes from the solute Ag atoms rather than precipitate metal Ag, in which the more Ag atoms incorporated into Nb-sublattice are able to further improve the hydrophobicity, whereas the precipitation of Ag nanoclusters would worsen it. The present work opens a window for fabricating robust hydrophobic surface through tailoring surface chemical bond states by doping Ag into transition metal nitrides.

  15. Superconductivity in amorphous+crystalline Ti-(Nb or V)-Si-B ductile alloys obtained by rapid quenching from the melt

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, A.; Takahashi, Y.; Hoshi, A.; Suryanarayana, C.; Masumoto, T.

    1981-07-01

    Ductile superconductors with a duplex structure consisting of amorphous and bcc phases have been found in rapidly quenched alloys of the Ti/sub 70-x/Nb/sub 30/(Si-B)/sub x/ and Ti/sub 60hyphenx/V/sub 40/(Si-B)/sub x/ quaternary systems. Continuous ribbons of these alloys were produced in the form of about 1-mm width and 0.02-mm thickness using a modified single roller quenching apparatus. The silicon content in these duplex alloys was limited to the range between about 7 and 19 at. % and the boron content was in the range of about 0 to 9 at. %. The superconducting transition temperature T/sub c/ increased with decreasing metalloid content and/or with replacement of silicon by boron. The highest values obtained were 7.3 K for Ti/sub 57/Nb/sub 30/Si/sub 10/B/sub 3/ and 4.7 K for Ti/sub 45/V/sub 40/Si/sub 8/B/sub 7/, which are much higher than those of Ti-Nb and Ti-V base amorphous superconductors. The upper critical magnetic field H/sub c/2 and the critical current density J/sub c/ for the Ti/sub 55/Nb/sub 30/Si/sub 7/B/sub 8/ alloy were about 5.1 x 10/sup 6/ A/m at 4.2 K and of the order 3.5 x 10/sup 4/ A/cm/sup 2/ at zero applied field and 4.2 K. Although the superconducting properties of the duplex alloys are still insufficient for practical use, the information that the duplex structure produces a remarkable improvement in the superconducting properties without a detectable change or loss of ductility seems to be very important from the technological point of view.

  16. AC stabilities in superconducting magnetic shielding body with shorted low AC loss Nb{sub 3}Sn coil; Nb{sub 3}Sn kansen jiki shaheitai no koryu anteisei

    Energy Technology Data Exchange (ETDEWEB)

    Aizawa, N.; Nii, A.; Ito, Y.; Onishi, T. [Hokkaido Univ., Hokkaido (Japan); Shibuya, M. [Engineering Research Association for Superconductive Genertion Equipment and Materials, Osaka (Japan)

    1999-06-07

    In this study, the superconducting magnetic shielding body conductively cooled by the small refrigerating machine at the intermediate temperature (10K-14K) was examined with the aim of a magnetic shielding type superconducting current limiter as closed as maintenance-free. Nb{sub 3}Sn coil closed the two ends was an object as a magnetic shielding body. In case of such a cooling system, the research of the stability was indispensable because of possible normal conduction transition in addition of disturbance into tapes. Then, the method to use the thyristor bypass circuit was examined in order to establish the stabilization method. As for the simulation, the normal conduction transition of the low AC loss Nb{sub 3}Sn coil which AC transferred in the constant-voltage power source, and the recovery characteristics of superconductivity were analyzed in the liquid helium. As a result of evaluating the stability in the constant-voltage power source, it was shown that the current attenuated by the resistance, and the exothermic reaction was controlled even if the disturbance happened and quenched. From these results, it was clarified that the stabilization method to establish the thyristor bypass circuit was effective for improvement on the stability of the superconductor. (NEDO)

  17. Structural, electrical, and optical properties of polycrystalline NbO{sub 2} thin films grown on glass substrates by solid phase crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Nakao, Shoichiro [Kanagawa Academy of Science and Technology (KAST), Kawasaki (Japan); Kamisaka, Hideyuki [Department of Chemistry, The University of Tokyo (Japan); Hirose, Yasushi; Hasegawa, Tetsuya [Kanagawa Academy of Science and Technology (KAST), Kawasaki (Japan); Department of Chemistry, The University of Tokyo (Japan)

    2017-03-15

    We investigated the structural, electrical, and optical properties of polycrystalline NbO{sub 2} thin films on glass substrates. The NbO{sub 2} films were crystallized from amorphous precursor films grown by pulsed laser deposition at various oxygen partial pressures (P{sub O2}). The electrical and optical properties of the precursor films systematically changed with P{sub O2}, demonstrating that the oxygen content of the precursor films can be finely controlled with P{sub O2}. The precursors were crystallized into polycrystalline NbO{sub 2} films by annealing under vacuum at 600 C. The NbO{sub 2} films possessed extremely flat surfaces with branching patterns. Even optimized films showed a low resistivity (ρ) of 2 x 10{sup 2} Ω cm, which is much lower than the bulk value of 1 x 10{sup 4} Ω cm, probably because of the inferior crystallinity of the films compared with that of a bulk NbO{sub 2} crystal. Both oxygen-rich and -poor NbO{sub 2} films showed lower ρ than that of the stoichiometric film. The NbO{sub 2} film with the highest ρ showed an indirect bandgap of 0.7 eV. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Superconductivity

    Science.gov (United States)

    Yeo, Yung K.

    Many potential high-temperature superconductivity (HTS) military applications have been demonstrated by low-temperature superconductivity systems; they encompass high efficiency electric drives for naval vessels, airborne electric generators, energy storage systems for directed-energy weapons, electromechanical launchers, magnetic and electromagnetic shields, and cavity resonators for microwave and mm-wave generation. Further HST applications in militarily relevant fields include EM sensors, IR focal plane arrays, SQUIDs, magnetic gradiometers, high-power sonar sources, and superconducting antennas and inertial navigation systems. The development of SQUID sensors will furnish novel magnetic anomaly detection methods for ASW.

  19. Chemical method to prepare YBa{sub 2}Cu{sub 3}O{sub 7-x} (YBCO) films by dipping onto SrTi(Nb)O{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Benavidez, E.; Gonzalez Oliver, C.J.R. [Centro Atomico Bariloche (Argentina). Unidad de Actividades Tecnologia de Materiales y Dispositivos; Caruso, R.; De Sanctis, O. [Laboratorio de Materiales Ceramicos, Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Universidad Nacional de Rosario, Av. Pellegrini 250, (2000), Rosario (Argentina)

    2000-01-14

    Superconductor films of YBa{sub 2}Cu{sub 3}O{sub 7-x} (YBCO or 123) were formed by dip-coating onto SrTiO{sub 3} and Nb-doped SrTiO{sub 3} ceramic substrates. The precursor solution was based on Y-acetate, Ba-alcoholate in 2-methoxyethanol and Cu-butyrate, in an alcoholic solvent. Different heat treatments, up to a maximum temperature of 870 C, were performed under oxygen and nitrogen atmosphere. The films onto Nb-doped SrTiO{sub 3} ceramic exhibit less reaction with the substrate as well as better superconducting properties. The best superconducting properties (T{sub c,onset} = 91 K) were obtained in YBCO films, which were initially treated under N{sub 2} flow up to 625 C, then under O{sub 2} up to 870 C, and subsequently reheated thoroughly under oxygen atmosphere with an annealing at 450 C. (orig.)

  20. Plasma-enhanced chemical vapor deposition for YBCO film fabrication of superconducting fault-current limiter

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Byung Hyuk; Kim, Chan Joong

    2006-05-15

    Since the high-temperature superconductor of oxide type was founded, many researches and efforts have been performed for finding its application field. The YBCO superconducting film fabricated on economic metal substrate with uniform critical current density is considered as superconducting fault-current limiter (SFCL). There are physical and chemical processes to fabricate superconductor film, and it is understood that the chemical methods are more economic to deposit large area. Among them, chemical vapor deposition (CVD) is a promising deposition method in obtaining film uniformity. To solve the problems due to the high deposition temperature of thermal CVD, plasma-enhanced chemical vapor deposition (PECVD) is suggested. This report describes the principle and fabrication trend of SFCL, example of YBCO film deposition by PECVD method, and principle of plasma deposition.

  1. Growth and characterization of superconducting spinel oxide LiTiO thin films

    Science.gov (United States)

    Chopdekar, Rajesh V.; Wong, Franklin J.; Takamura, Yayoi; Arenholz, Elke; Suzuki, Yuri

    2009-11-01

    Epitaxial films of LiTiO on single crystalline substrates of MgAlO, MgO, and SrTiO provide model systems to systematically explore the effects of lattice strain and microstructural disorder on the superconducting state. Lattice strain that affects bandwidth gives rise to variations in the superconducting and normal state properties. Microstructural disorder, such as antiphase boundaries that give rise to Ti network disorder, reduces the critical temperature, and Ti network disorder combined with Mg interdiffusion lead to a much more dramatic effect on the superconducting state. Surface sensitive X-ray absorption spectroscopy has identified Ti to retain site symmetry and average valence of the bulk material regardless of film thickness.

  2. Superconductivity

    CERN Document Server

    Ketterson, John B

    2008-01-01

    Conceived as the definitive reference in a classic and important field of modern physics, this extensive and comprehensive handbook systematically reviews the basic physics, theory and recent advances in the field of superconductivity. Leading researchers, including Nobel laureates, describe the state-of-the-art in conventional and unconventional superconductors at a particularly opportune time, as new experimental techniques and field-theoretical methods have emerged. In addition to full-coverage of novel materials and underlying mechanisms, the handbook reflects continued intense research into electron-phone based superconductivity. Considerable attention is devoted to high-Tc superconductivity, novel superconductivity, including triplet pairing in the ruthenates, novel superconductors, such as heavy-Fermion metals and organic materials, and also granular superconductors. What’s more, several contributions address superconductors with impurities and nanostructured superconductors. Important new results on...

  3. Effect of forming-gas annealing on the resistance switching effect of heteroepitaxial Nb:SrTiO3 film on Si substrate

    Science.gov (United States)

    Xiang, Wenfeng; Hu, Minghao; Liu, Yi

    2017-12-01

    The influence of forming-gas annealing (FGA) on the resistance switching effect of epitaxial Nb:SrTiO3 [Nb-doped strontium titanates (NbSTO)] films on Si substrate has been investigated. The resistance values at low and high resistance states for NbSTO films after FGA are about two orders of magnitude lower than those of the as-deposited sample, which may effectively decrease the power dissipation of devices. Hysteretic I-V characteristic curves show that the stability of FGA sample was improved. The resistance ratio of NbSTO films measured via pulse voltage increased from 1.0-1.2 to 3.2-3.6 after FGA. Moreover, the resistance ratio of the FGA sample gradually increased with increasing number of cycles. These results indicate that FGA improves the resistance switching characteristics of NbSTO films. In addition, the underlying mechanism was discussed.

  4. Dielectric properties of Li doped Li-Nb-O thin films

    Energy Technology Data Exchange (ETDEWEB)

    Perentzis, G.; Horopanitis, E.E.; Papadimitriou, L. [Aristotle University of Thessaloniki, Department of Physics, 54124 Thessaloniki (Greece); Durman, V.; Saly, V.; Packa, J. [Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava (Slovakia)

    2007-03-15

    Lithium niobate LiNbO{sub 3} was prepared as a thin film layered structure deposited on stainless steel substrate using e-gun evaporation. The Li doping was provided for by the formation of Li-Nb-O/Li/LiNb-O sandwich structure and annealing at about 250 C. AC impedance spectroscopy measurements were performed on the samples at temperatures from the interval between 28 and 165 C and in a frequency range of 10{sup -3} to 10{sup 6} Hz. Using the values Z' and Z'' at different frequencies, the dielectric parameters - parts of the complex permittivity {epsilon}' and {epsilon}'' and loss tangent tan {delta} were calculated. The results prove validity of the proposed equivalent circuit containing parallel RC elements connected in series where the first RC element represents the bulk of material and the second RC element belongs to the double layer at the metal interface. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Buffer layers for REBCO films for use in superconducting devices

    Science.gov (United States)

    Goyal, Amit; Wee, Sung-Hun

    2014-06-10

    A superconducting article includes a substrate having a biaxially textured surface. A biaxially textured buffer layer, which can be a cap layer, is supported by the substrate. The buffer layer includes a double perovskite of the formula A.sub.2B'B''O.sub.6, where A is rare earth or alkaline earth metal and B' and B'' are different transition metal cations. A biaxially textured superconductor layer is deposited so as to be supported by the buffer layer. A method of making a superconducting article is also disclosed.

  6. Development of Strontium Titanate Thin films on Technical Substrates for Superconducting Coated Conductors

    DEFF Research Database (Denmark)

    Pallewatta, Pallewatta G A P; Yue, Zhao; Grivel, Jean-Claude

    2012-01-01

    SrTiO3 is a widely studied perovskite material due to its advantages as a template for high temperature superconducting tapes. Heteroepitaxial SrTiO3 thin films were deposited on Ni/W tapes using dip-coating in a precursor solution followed by drying and annealing under reducing conditions. Nearl...

  7. Superconducting thin films of Bi-Sr-Ca-Cu-O by laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Bedekar, M.M.; Safari, A. (Dept. of Ceramics, Rutgers Univ., Piscataway, NJ (United States)); Wilber, W. (US Army Electronics Technology and Devices Lab., Forth Monmouth, NJ (United States))

    1992-11-01

    Superconducting thin films of Bi-Sr-Ca-Cu-O have been deposited by KrF excimer laser ablation. The best in situ films showed a T[sub c] [sub onset] of 110 K and a T[sub c(0)] of 76 K. A study of the laser plume revealed the presence of two distinct regimes. The forward directed component increased with fluence and the film composition was stoichiometric in this region. This is in agreement with the results on the 123 system by Venkatesan et al. [1]. The film properties were found to be critically dependent on the substrate temperature and temperatures close to melting gave rise to 2212 and 2223 phases. At lower temperatures, 2201 and amorphous phases were obtained. The film morphology and superconducting properties were a function of the target to substrate distance and the oxygen pressure during deposition and cooling. An increase in the target to substrate distance led to a deterioration of the properties due to the energy considerations for the formation of 2212 and 2223 phases. The best films were obtained using cooling pressures of 700 Torr. The microwave surface resistance of the films measured at 35 GHz droped below that of copper at 30 K. Film growth was studied using X-ray diffraction and STM/AFM. This work is a discussion of the role of the different variables on the film properties. (orig.).

  8. Superconducting thin films of Bi-Sr-Ca-Cu-O by laser ablation

    Science.gov (United States)

    Bedekar, M. M.; Safari, A.; Wilber, W.

    1992-11-01

    Superconducting thin films of Bi-Sr-Ca-Cu-O have been deposited by KrF excimer laser ablation. The best in situ films showed a Tc onset of 110 K and a Tc(0) of 76 K. A study of the laser plume revealed the presence of two distinct regimes. The forward directed component increased with fluence and the film composition was stoichiometric in this region. This is in agreement with the results on the 123 system by Venkatesan et al. [1]. The film properties were found to be critically dependent on the substrate temperature and temperatures close to melting gave rise to 2212 and 2223 phases. At lower temperatures, 2201 and amorphous phases were obtained. The film morphology and superconducting properties were a function of the target to substrate distance and the oxygen pressure during deposition and cooling. An increase in the target to substrate distance led to a deterioration of the properties due to the energy consideration for the formation of 2212 and 2223 phases. The best films were obtained using cooling pressures of 700 Torr. The microwave surface resistance of the films measured at 35 GHz dropped below that of copper at 30 K. Film growth was studied using X-ray diffraction and STM/AFM. This work is a discussion of the role of the different variables on the film properties.

  9. Superconducting detectors for semiconductor quantum photonics

    Energy Technology Data Exchange (ETDEWEB)

    Reithmaier, Guenther M.

    2015-05-07

    In this thesis we present the first successful on-chip detection of quantum light, thereby demonstrating the monolithic integration of superconducting single photon detectors with individually addressable semiconductor quantum dots in a prototypical quantum photonic circuit. Therefore, we optimized both the deposition of high quality superconducting NbN thin films on GaAs substrates and the fabrication of superconducting detectors and successfully integrated these novel devices with GaAs/AlGaAs ridge waveguides loaded with self-assembled InGaAs quantum dots.

  10. Mechanical and physical properties of Bi-2223 and Nb3Sn superconducting materials between 300 K and 7 K

    Science.gov (United States)

    Nyilas, Arman; Osamura, Kozo; Sugano, Michinaka

    2003-09-01

    Within the framework of IEC/TC90-WG5 and VAMAS/TWA16, superconducting (SC) materials are investigated with respect to their mechanical properties between 300 K and 7 K. Besides the mechanical tests, physical and electrical properties are also determined for high Tc SC-tapes. The mechanical tests comprised the characterization of tensile properties at ambient temperature as well as at 7 K of Nb3Sn-reacted strands, Bi2223 tapes, pure silver tapes, silver bars, silver alloy tapes and bare filaments extracted from Bi-2223 tapes. All these investigations are carried out using a variable temperature helium gas flow cryostat equipped with a servo hydraulic tensile machine (MTS, model 810). For the load measurements specially developed, highly sensitive cryogenic proof in situ working load cells are used. For the strain determination of the wires, a high resolution ultra-light double extensometer system with a specially developed low noise signal conditioner is used. The engineering parameters such as yield strength and elastic modulus are evaluated using the obtained data with newly developed software. For the tiny and brittle filaments load versus displacement data are obtained. A determined master line (Young's modulus versus machine compliance) established by thin 0.125 mm Ø wires of different pure metals is used for the Young's modulus estimation of filaments. For the 4 K electrical voltage-current measurements under magnetic fields of up to 13 T, an existing test facility is used for the high Tc tapes. No dependency between applied strain up to 0.3% and the critical current under magnetic field could be observed for the selected specific Bi-2223 tapes. In addition, thermal expansion curves of Bi-2223 tapes along with pure silver and silver alloy (AgMg) are determined between 290 K and 7 K using in situ working extensometers. The coefficient of thermal expansion is evaluated by the determined thermal expansion versus temperature curve.

  11. Terahertz electrical and optical properties of LiNbO3 single crystal thin films

    Science.gov (United States)

    Dutta, Moumita; Ellis, Carol; Peralta, Xomalin G.; Bhalla, Amar; Guo, Ruyan

    2015-08-01

    A study of Terahertz response of single crystal LiNbO3 thin films subjected to different structural and experimental configuration has been conducted in this work. In this work z-cut and x-cut ion-sliced Lithium Niobate thin films with and without embedded electrodes have been studied employing both Transmission and Reflection mode of Terahertz Spectroscopy along with z-cut single crystal in bulk form. The measurements have been performed in room temperature to probe distinctive THz-material interactions in the frequency range of 0.1-3 THz (3.34cm-1 - 100cm-1). The information thus obtained from the experimental investigation has been used to deduce a conclusive study on the influence of different polar domains on electrical and optical properties in THz frequency regime. Single Lorentzian oscillator model has also been used to define the THz signature thus acquired.

  12. A Humidity Sensor Based on Nb-doped Nanoporous TiO2 Thin Film

    Directory of Open Access Journals (Sweden)

    Mansoor Anbia

    2011-11-01

    Full Text Available The humidity sensing properties of the sensor fabricated from Nb-doped nanoporous TiO2 by screen-printing on the alumina substrate with Ag-Pd interdigital electrodes have been investigated. The nanoporous thin film has been prepared by sol-gel technique. The product has been characterized by X-ray diffraction and scanning electron microscopy to analyze the structure and its morphology. It is found that the impedance of this sensor changes more than four orders of magnitude in the relative humidity (RH range of 11–95 % at 25 °C. The response and recovery time of the sensor are about 19 and 25 s, respectively, during the RH variation from 11 to 95 %. The sensor shows high humidity sensitivity, rapid response and recovery, prominent stability, good repeatability and narrow hysteresis loop. These results indicate that Nb-doped nanoporous TiO2 thin films have a great potential for humidity sensing applications in room temperature operations.

  13. Superconducting joint for MgB2 thin films by sol-gel method

    Science.gov (United States)

    Chen, Yiling; Liao, Xuebin; Cai, Xinwei; Yang, Can; Guo, Zhengshan; Niu, Ruirui; Zhang, Yan; Jia, Chunyan; Feng, Qingrong

    2017-11-01

    MgB2 has shown great potential in making medium strength superconducting magnet using electronic refrigeration without liquid helium. One of the major problem in building the MgB2 superconducting magnet is the joints in the coils. An effective method of building a superconducting joint is crucial. In this work, we have demonstrated a novel process of building a superconducting joint utilizing sol-gel method. Two HPCVD MgB2 thin film on SiC substrate is pasted face-to-face with Mg(BH4)2•Et2O gel. After annealing in Mg vapor, Mg(BH4)2•Et2O gel decomposed and turned to MgB2 superconducting joint. The joint showed good connectivity between the two films and has a good TC of 34 K. Infield measurement of the joint showed that the joint work well at 20 K with the applied magnetic field up to 4 T.

  14. Superconducting properties of magnesium diboride thin film measured by using coplanar waveguide resonator

    Energy Technology Data Exchange (ETDEWEB)

    Žemlička, M., E-mail: martin.zemlic@gmail.com [Department of Experimental Physics, Comenius University, SK-84248 Bratislava (Slovakia); Neilinger, P.; Trgala, M.; Gregor, M.; Plecenik, T.; Ďurina, P. [Department of Experimental Physics, Comenius University, SK-84248 Bratislava (Slovakia); Grajcar, M. [Department of Experimental Physics, Comenius University, SK-84248 Bratislava (Slovakia); Institute of Physics of Slovak Academy of Science, Dúbravská cesta, Bratislava (Slovakia)

    2014-09-01

    Highlights: • Study of the superconducting properties of granular disordered superconductor magnesium diboride (MgB{sub 2}). • Microwave measurements transmission properties of high-quality superconducting coplanar waveguide (CPW) resonator. • Temperature dependence of quality and resonant frequency of CPW resonator. • Hysteresis detuning of resonant frequency in changing magnetic field of artificially created RF superconducting quantum interference device (SQUID) coupled to CPW resonator. • SQUID-like behavior of CPW resonators made of granular disordered superconductors without any artificial structures in it. - Abstract: In this paper we demonstrate the superconducting properties of MgB{sub 2} coplanar waveguide resonator patterned from 300 nm thin film fabricated by vapor deposition. We measured the temperature dependence of the quality factor and the resonant frequency of the resonator. Surprisingly, we also observed hysteretic periodic response of resonance frequency to external magnetic field, which is characteristic of bistable systems with double-well potential, such as superconducting RF SQUID or phase-slip flux qubits. This property seems to be peculiar for granular and disordered superconductors where a superconducting loop of large effective diameter with weak links can be formed.

  15. Structural and superconducting properties of sputter-deposited niobium films for applications in RF accelerating cavities

    CERN Document Server

    Peck, M A

    2000-01-01

    The present work presents the results of a systematic study of superconducting and structural properties of niobium films sputter deposited onto the inner walls of radiofrequency copper resonators. The measured superconducting quantities include the surface resistance, the critical temperature, the penetration depth and the upper and lower critical fields. In addition to films grown with different discharge gases (Xe, Kr, Ar, Ne and Ar-Ne mixtures) and to films grown on substrates prepared under different conditions, the study also includes massive niobium cavities. The surface resistance is analysed in terms of its dependence on the temperature and on the rf field amplitude and, when possible, compared to theoretical predictions. In general, good agreement with BCS theory is observed. All experimental results are presented in the form of a simple, but adequate parameterisation. The residual resistance is observed to be essentially uncorrelated with the other variables, but strongly dependent on the macroscop...

  16. Molecular-Beam Epitaxially Grown MgB2 Thin Films and Superconducting Tunnel Junctions

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Laloë

    2011-01-01

    Full Text Available Since the discovery of its superconducting properties in 2001, magnesium diboride has generated terrific scientific and engineering research interest around the world. With a of 39 K and two superconducting gaps, MgB2 has great promise from the fundamental point of view, as well as immediate applications. Several techniques for thin film deposition and heterojunction formation have been established, each with its own advantages and drawbacks. Here, we will present a brief overview of research based on MgB2 thin films grown by molecular beam epitaxy coevaporation of Mg and B. The films are smooth and highly crystalline, and the technique allows for virtually any heterostructure to be formed, including all-MgB2 tunnel junctions. Such devices have been characterized, with both quasiparticle and Josephson tunneling reported. MgB2 remains a material of great potential for a multitude of further characterization and exploration research projects and applications.

  17. Superconductivity

    CERN Document Server

    Poole, Charles P; Creswick, Richard J; Prozorov, Ruslan

    2014-01-01

    Superconductivity, Third Edition is an encyclopedic treatment of all aspects of the subject, from classic materials to fullerenes. Emphasis is on balanced coverage, with a comprehensive reference list and significant graphics from all areas of the published literature. Widely used theoretical approaches are explained in detail. Topics of special interest include high temperature superconductors, spectroscopy, critical states, transport properties, and tunneling. This book covers the whole field of superconductivity from both the theoretical and the experimental point of view. This third edition features extensive revisions throughout, and new chapters on second critical field and iron based superconductors.

  18. Characterisation of amorphous molybdenum silicide (MoSi) superconducting thin films and nanowires

    Science.gov (United States)

    Banerjee, Archan; Baker, Luke J.; Doye, Alastair; Nord, Magnus; Heath, Robert M.; Erotokritou, Kleanthis; Bosworth, David; Barber, Zoe H.; MacLaren, Ian; Hadfield, Robert H.

    2017-08-01

    We report on the optimisation of amorphous molybdenum silicide thin film growth for superconducting nanowire single-photon detector (SNSPD) applications. Molybdenum silicide was deposited via co-sputtering from Mo and Si targets in an Ar atmosphere. The superconducting transition temperature (T c) and sheet resistance (R s) were measured as a function of thickness and compared to several theoretical models for disordered superconducting films. Superconducting and optical properties of amorphous materials are very sensitive to short- (up to 1 nm) and medium-range order (˜1-3 nm) in the atomic structure. Fluctuation electron microscopy studies showed that the films assumed an A15-like medium-range order. Electron energy loss spectroscopy indicates that the film stoichiometry was close to Mo83Si17, which is consistent with reports that many other A15 structures with the nominal formula A 3 B show a significant non-stoichiometry with A:B > 3:1. Optical properties from ultraviolet (270 nm) to infrared (2200 nm) wavelengths were measured via spectroscopic ellipsometry for 5 nm thick MoSi films indicating high long wavelength absorption. We also measured the current density as a function of temperature for nanowires patterned from a 10 nm thick MoSi film. The current density at 3.6 K is 3.6 × 105 A cm-2 for the widest wire studied (2003 nm), falling to 2 × 105 A cm-2 for the narrowest (173 nm). This investigation confirms the excellent suitability of MoSi for SNSPD applications and gives fresh insight into the properties of the underlying materials.

  19. Dissipation in thin superconducting current biased films due to vortex motion

    Energy Technology Data Exchange (ETDEWEB)

    Bulaevskii, Lev N [Los Alamos National Laboratory

    2009-01-01

    Recently, the problem of dissipation in thin superconducting films with thickness d on the order of the coherence length {zeta}, and width {omega} much narrower than the Pearl length, {Lambda} >> {omega} >> {zeta}, was discussed as the main cause for the behavior of I-V characteristics observed in thin high-temperature superconducting films. In thin and narrow films or strips with width w >> {zeta} the barrier for phase slips by creation of temporary normal regions across the entire film width is too big, thus phase slips become highly improbable. Instead, we consider a vortex crossing the strip from one edge to the other, perpendicular to the bias current, as the dominant mechanism for generalized phase slips resulting in detectable voltage pulses. We derive the rate of vortex crossings using the general theory of transition rates between metastable states. In mean field theory, the saddle point solution of the rate equation gives the vortex position inside the strip, where the kinetic energy of supercurrents is maximum. However, the free energy barrier derived in such an approach is strongly renormalized by superconducting fluctuations and this effect was not accounted for previously. They drastically reduce the rate of vortex crossings and, consequently, dissipation. We present results for the amplitude and duration of voltage pulses induced by vortex motion and their consequences on I-V characteristics, when heating due to vortex crossings is negligible. We found ohmic behavior at low bias currents, power law behavior at intermediate currents and exponential I-V characteristics at currents close to the critical one. The impact of vortex motion in superconducting strips on the observation of so-called dark counts (voltage pulses) in superconducting nanowire single-photon detectors is discussed.

  20. Strain Engineered CaBi2Nb2O9 Thin Films with Enhanced Electrical Properties.

    Science.gov (United States)

    Zhang, Yunxiang; Ouyang, Jun; Zhang, Jincan; Li, Yao; Cheng, Hongbo; Xu, Huiwen; Liu, Menglin; Cao, Zhao-Peng; Wang, Chun-Ming

    2016-07-06

    In this work, strain engineered polycrystalline thin films (∼250 nm) of bismuth layer-structured ferroelectric (BLSF) CaBi2Nb2O9 (CBNO) were prepared by using a radio frequency (RF) magnetron sputtering technique. XRD analysis revealed that the films were (200)/(020) and (00l) textured with a large in-plane tensile stress. Cross-sectional TEM analyses confirmed the bismuth layered-structure, as well as crystalline orientations and a strain-controlled growth mode of the grains. Result of a quantitative XPS analysis revealed that the composition of the film is close to the chemical stoichiometry. Excellent electrical properties were achieved in the CBNO films, including a high dielectric constant (∼280 @5 kHz), a small dielectric loss (tgδ ≤ 1.6% up to an applied electric field of ∼1200 kV/cm) and a large polarization (Pr ≈ 14 μC/cm(2) @ 1 kHz).

  1. Superconductivity:

    Science.gov (United States)

    Sacchetti, N.

    In this paper a short historical account of the discovery of superconductivity and of its gradual development is given. The physical interpretation of its various aspects took about forty years (from 1911 to 1957) to reach a successful description of this phenomenon in terms of a microscopic theory At the very end it seemed that more or less everything could be reasonably interpreted even if modifications and refinements of the original theory were necessary. In 1986 the situation changed abruptly when a cautious but revolutionary paper appeared showing that superconductivity was found in certain ceramic oxides at temperatures above those up to then known. A rush of frantic experimental activity started world-wide and in less than one year it was shown that superconductivity is a much more widespread phenomenon than deemed before and can be found at temperatures well above the liquid air boiling point. The complexity and the number of the substances (mainly ceramic oxides) involved call for a sort of modern alchemy if compounds with the best superconducting properties are to be manufactured. We don't use the word alchemy in a deprecatory sense but just to emphasise that till now nobody can say why these compounds are what they are: superconductors.

  2. Growth and physical properties of highly oriented La-doped (K,Na)NbO{sub 3} ferroelectric thin films

    Energy Technology Data Exchange (ETDEWEB)

    Vendrell, X., E-mail: xavier.vendrell@ub.edu [Departament de Química Inorgànica, Universitat de Barcelona, 08028 Barcelona (Spain); Raymond, O. [Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, AP 14, Ensenada 22860, Baja California (Mexico); Ochoa, D.A.; García, J.E. [Department of Applied Physics, Universitat Politècnica de Catalunya — BarcelonaTech, 08034 Barcelona (Spain); Mestres, L. [Departament de Química Inorgànica, Universitat de Barcelona, 08028 Barcelona (Spain)

    2015-02-27

    Lead-free (K,Na)NbO{sub 3} (KNN) and La doped (K,Na)NbO{sub 3} (KNN-La) thin films are grown on SrTiO{sub 3} substrates using the chemical solution deposition method. The effect of adding different amounts of Na and K excess (0–20 mol%) is investigated. The results confirm the necessity of adding 20 mol% excess amounts of Na and K precursor solutions in order to avoid the formation of the secondary phase, K{sub 4}Nb{sub 6}O{sub 17}, as confirmed by X-ray diffraction and Raman spectroscopy. Moreover, when adding a 20 mol% of alkaline metal excess, the thin films are highly textured with out-of-plane preferential orientation in the [100] direction of the [100] orientation of the substrate. Doping with lanthanum results in a decrease of the leakage current density at low electric field, and an increase in the dielectric permittivity across the whole temperature range (80–380 K). Although the (100)-oriented KNN and KNN-La films exhibited rounded hysteresis loops, at low temperatures the films show the typical ferroelectric hysteresis loops. - Highlights: • (K{sub 0.5}Na{sub 0.5})NbO{sub 3} and [(K{sub 0.5}Na{sub 0.5}){sub 0.985}La{sub 0.005}]NbO{sub 3} thin films have been prepared. • The obtained thin films show an excellent (100) preferred orientation. • Doping with lanthanum results in a decrease of the leakage current density. • The dielectric properties are enhanced when doping with lanthanum.

  3. Contribution to the design of superconducting Nb{sub 3}Sn dipole windings for particle accelerator; Contribution a la conception des bobinages supraconducteurs de type dipolaire en Nb{sub 3}Sn pour les accelerateurs de particules

    Energy Technology Data Exchange (ETDEWEB)

    Felice, H

    2006-10-15

    Improvement of particle accelerators relies on complex technologies such as the design and fabrication of superconducting magnets. A key parameter in magnet design is the mechanical pre-stress, applied at room temperature to insure compression of the coil during excitation. In dipole magnets, high field and high mechanical stresses in windings combined with the Nb{sub 3}Sn stress sensitivity ask the question of the limit of the mechanical stress that the Nb{sub 3}Sn can undergo without degradation. This limit estimated around 150 MPa is still discussed and has to be investigated. Whatever its value, preliminary studies show that conventional cosine theta design induces mechanical stresses (> 200 MPa) in large aperture (> 130 mm) and high field configurations, which underscore the need of alternative coil arrangements. The first part of this thesis gives an introduction to the issues and challenges encountered by the designers of superconducting ma nets. The second part is devoted to the study of large aperture (88, 130 and 160 mm) and high field (13 T) dipoles based on intersecting ellipses. After a theoretical study, a 2D magnetic design is detailed for each aperture and a mechanical study is developed for the 130 mm aperture dipole. In the last part, an experimental device dedicated to the study of the influence of the pre-stress on the training of sub-scale Nb{sub 3}Sn dipole and to the investigation of the mechanical stress limit is presented. The design of this magnet is detailed and the result of the first test carried out with the structure is reported. (author)

  4. Effect of Nb doping on the structural, morphological, optical and electrical properties of RF magnetron sputtered In{sub 2}O{sub 3} nanostructured films

    Energy Technology Data Exchange (ETDEWEB)

    Reshmi Krishnan, R.; Chalana, S.R.; Suresh, S.; Sudheer, S.K.; Mahadevan Pillai, V.P. [Department of Optoelectronics, University of Kerala (India); Sudarsanakumar, C. [School of Pure and Applied Physics, Mahatma Gandhi University, Kerala (India); Santhosh Kumar, M.C. [Optoelectronic Materials and Devices Lab, Department of Physics, National Institute of Technology, Tiruchirappalli (India)

    2017-01-15

    Undoped and niobium (Nb) doped indium oxide (In{sub 2}O{sub 3}) thin films are prepared by radio frequency magnetron sputtering technique. The effect of Nb on the structural, morphological, optical and electrical properties of In{sub 2}O{sub 3}films are analyzed using techniques such as X-ray diffraction (XRD), micro-Raman spectroscopy, X-ray photoelectron spectroscopy, atomic force microscopy, field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy, UV-visible spectroscopy, spectroscopic ellipsometry, photoluminescence spectroscopy and Hall effect measurements. XRD analysis reveals that the as-deposited undoped and Nb doped films are polycrystalline in nature with cubic bixbyite structure. Raman analysis supports the presence of cubic bixbyite structure of In{sub 2}O{sub 3}in the films. XPS analysis shows a decrease of oxygen deficiency due to Nb and the existence of Nb as Nb{sup 4+} in the In{sub 2}O{sub 3}lattice. The band gap energy of the films increases with increase in Nb concentration. PL spectra reveal intense UV and visible emissions in all the films. Optical constants of the films are determined using spectroscopic ellipsometry. The thickness of films estimated using FESEM and ellipsometry are in good agreement. The carrier concentration, mobility and nature of carriers are measured using Hall measurement technique in Van der Pauw configuration at room temperature. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Studies on superconducting thin films for SRF applications

    Energy Technology Data Exchange (ETDEWEB)

    Tajima, Tsuyoshi [Los Alamos National Laboratory; Haberkorn, Nestor [Los Alamos National Laboratory; Civale, Leonardo [Los Alamos National Laboratory; Hawley, Marilyn [Los Alamos National Laboratory; Schulze, Roland [Los Alamos National Laboratory; Zocco, Adam [Los Alamos National Laboratory; Eremeev, Grigory [TJNAF; Guo, Jiquan [SLAC; Dolgashev, Valery [SLAC; Martin, David [SLAC; Tantawi, Sami [SLAC; Yoneda, Charles [SLAC; Doi, Toshiya [KAGOSHIMA UNIV.; Matsumoto, Akiyoshi [NIMS

    2010-09-09

    In order to overcome the fundamental limit of Nb's critical magnetic field ({approx} 200 mT) that corresponds to E{sub acc} {approx}50 MV/m, an idea of coating several thin layers of a superconductor has been proposed. MgB{sub 2}, a superconductor that has a T{sub c} of {approx}39 K, has been studied to explore the effect of coating in terms of DC and RF critical magnetic fields, and RF surface losses. MgB{sub 2} has shown an excellent behavior, although there is some discrepancy between DC and RF measurements.

  6. Influence of target-substrate distance during pulsed laser deposition on properties of LiNbO3 thin films

    Science.gov (United States)

    Vakulov, Z.; Zamburg, E.; Golosov, D. A.; Zavadskiy, S. M.; Dostanko, A. P.; Miakonkikh, A. V.; Klemente, I. E.; Rudenko, K. V.; Ageev, O. A.

    2017-11-01

    This paper shows the results of studying the influence of target-substrate distance during pulsed laser deposition on electrical properties of LiNbO3 thin films. It has been shown that changing the target-substrate distance we can obtain thin films with a different composition. EDX spectra indicate that the LiNbO3 thin films fabricated under 120 mm target-substrate distance depleted Nb (0.7 atm. %) compare to LiNbO3 films fabricated under 20 mm target-substrate distance (11.0 atm. %). Varying target-substrate distance in the range from 20 mm to 120 mm charge carrier mobility increasing from 24 cm2/V·s to 395 cm2/V·s and concentration of charge carrier decreasing from 3·1013 cm-3 to 1·1012 cm-3. Obtained results can be used under development and fabrication of integral acousto-optic and surface acoustic wave (SAW) devices.

  7. Effects of phase fraction on superconductivity of low-valence eutectic titanate films

    Science.gov (United States)

    Kurokawa, Hikaru; Yoshimatsu, Kohei; Sakata, Osami; Ohtomo, Akira

    2017-08-01

    Creation and characterization of mixed valence states in transition-metal oxides are a fundamental approach to search for the unprecedented electronic and magnetic properties. In contrast to complex oxides, mixed-valence simple oxides tend to form binary or ternary phases, and turning a valence from one to next must be accompanied by structural transformations owing to a lower tolerance for oxygen non-stoichiometry. In this paper, epitaxial growth and transport properties of low-valence titanate thin films are reported to shed light on recently discovered superconducting γ-phase Ti3O5 (γ-Ti3O5). Single-phase TiO and Ti2O3 films and eutectic films including TiO, Ti2O3, and γ-Ti3O5 phases were independently grown on α-Al2O3 (0001) substrates by using pulsed-laser deposition. The X-ray diffraction measurements revealed clear epitaxial relationships with substrates and among three eutectic phases. Temperature dependence of the resistivity revealed that the γ-Ti3O5-rich films exhibited superconductivity with a maximum of transition temperature (TC) of 6.3 K. Distinct effects of the phase fraction on TC are found between TiO- and Ti2O3-enriched samples, suggesting the complex mechanisms of the superconducting proximity effect.

  8. The effects of heat treatment on optical, structural, electrochromic and bonding properties of Nb{sub 2}O{sub 5} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Coşkun, Özlem Duyar, E-mail: duyar@hacettepe.edu.tr [Hacettepe University, Department of Physics Engineering, Thin Film Preparation and Characterization Laboratory, Ankara (Turkey); Demirel, Selen, E-mail: nymph24@gmail.com [Hacettepe University, Department of Physics Engineering, Thin Film Preparation and Characterization Laboratory, Ankara (Turkey); Hacettepe University, Nanotechnology and Nanomedicine Department, Ankara (Turkey); Atak, Gamze, E-mail: gbaser@hacettepe.edu.tr [Hacettepe University, Department of Physics Engineering, Thin Film Preparation and Characterization Laboratory, Ankara (Turkey)

    2015-11-05

    Nb{sub 2}O{sub 5} thin films were deposited onto heated glass substrates by RF magnetron sputtering using a Nb{sub 2}O{sub 5} target. The films were annealed in air at temperatures between 400 and 700 °C for 6 h. Effects of the crystalline structure on optical, structural, electrochromic and bonding properties of the Nb{sub 2}O{sub 5} thin films were investigated by X-ray diffraction, atomic force microscopy, X-ray photoelectron spectroscopy, optical spectrophotometry and electrochemical measurements. The film refractive index varied between 2.09 and 2.22 at the wavelength of 550 nm depending on the annealing temperature. The decrease of the optical band gap revealed for the films with increasing annealing temperature is attributed to oxygen-ion vacancies in the film structure. The orthorhombic structure of Nb{sub 2}O{sub 5} films resulted in good electrochromic properties with high colouration efficiencies of 19.56 cm{sup 2}/C and 53.24 cm{sup 2}/C at 550 nm and 1000 nm, respectively. The optical, structural and electrochromic properties of the different crystalline polymorphic forms of the Nb{sub 2}O{sub 5} films make them attractive for optical applications. - Highlights: • Stoichiometric Nb{sub 2}O{sub 5} films prepared using RF magnetron sputtering technique. • The different crystalline forms of Nb{sub 2}O{sub 5} thin films obtained by annealing. • The optical, structural and electrochromic properties of the films were investigated. • The optical band gap decreased with increasing annealing temperature. • The orthorhombic T-Nb{sub 2}O{sub 5} films exhibited a higher colouration efficiency.

  9. Acoustic emission induced from an NbTi ac superconducting coil and quenching pattern; NbTi koryu koiru no AE tokusei to kuenchi patan

    Energy Technology Data Exchange (ETDEWEB)

    Arai, K.; Yamaguchi, H.; Kaiho, K. [Electrotechnical Laboratory, Tsukuba (Japan); Ninomiya, A.; Ishigooka, T. [Seikei Univ., Tokyo (Japan); Fuji, H.; Sadakata, N.; Saito, T. [Fujikura Ltd., Tokyo (Japan)

    1999-11-10

    Alternating current superconducting magnet is easy to receive movement, alternating current loss, drift, effect of the longitudinal magnetic-field effect of the line, and these become the lowering factor of the stability. We carry out the research on stability and state estimation of alternating current superconducting magnet, coil using the AE signal. Sensor itself does not become a cause of the disturbance, because the measurement is possible for the AE measurement in superconducting magnet, coil for the sensor, while it is unique of two, and while it is no contacting with the superconductive winding. And, it is detectable by one sensor in respect of wide information of the superconducting coil. Necessary information for the analysis of the alternating current phenomenon from the AE signal is extracted, and it seems to be important to examine the correspondence with the condition of the coil. This time, it was possible that the undulate pattern of the AE signal observed the characteristic phenomenon in proportion to the situation of the quenching. (NEDO)

  10. Domain formation and polarization reversal under atomic force microscopy-tip voltages in ion-sliced LiNbO{sub 3} films on SiO{sub 2}/LiNbO{sub 3} substrates

    Energy Technology Data Exchange (ETDEWEB)

    Gainutdinov, R. V.; Volk, T. R. [Shubnikov Institute of Crystallography RAS, 119333 Moscow (Russian Federation); Zhang, H. H. [Jinan Jingzheng Electronics Co., Ltd., 250101 Jinan (China)

    2015-10-19

    We report on studies on writing of micro- and nanodomains and specified domain patterns by AFM-tip voltages U{sub DC} in thin (0.5 μm thick) ion-sliced LiNbO{sub 3} films embedded to SiO{sub 2}/LiNbO{sub 3} substrates. A peculiar feature is an overlapping of domains as the distance between them decreases. Piezoelectric hysteresis loops were measured in a wide range of U{sub DC} pulse durations. Domain dynamics and characteristics of hysteresis loops reveal marked distinctions from those observed so far in LiNbO{sub 3} films and bulk crystals.

  11. Ferroelectric properties of lead-free polycrystalline CaBi2Nb2O9 thin films on glass substrates

    Science.gov (United States)

    Ahn, Yoonho; Jang, Joonkyung; Son, Jong Yeog

    2016-03-01

    CaBi2Nb2O9 (CBNO) thin film, a lead-free ferroelectric material, was prepared on a Pt/Ta/glass substrate via pulsed laser deposition. The Ta film was deposited on the glass substrate for a buffer layer. A (115) preferred orientation of the polycrystalline CBNO thin film was verified via X-ray diffraction measurements. The CBNO thin film on a glass substrate exhibited good ferroelectric properties with a remnant polarization of 4.8 μC/cm2 (2Pr ˜9.6 μC/cm2), although it had lower polarization than the epitaxially c-oriented CBNO thin film reported previously. A mosaic-like ferroelectric domain structure was observed via piezoresponse force microscopy. Significantly, the polycrystalline CBNO thin film showed much faster switching behavior within about 100 ns than that of the epitaxially c-oriented CBNO thin film.

  12. Resistive Switching Characteristics of 10-nm-Thick Amorphous HoScO x Films Doped with Nb and Zn

    Science.gov (United States)

    Wang, Sea-Fue; Hsu, Chia-Chun; Chu, Jinn P.; Liu, Yi-Xin; Chen, Liang-Wei

    2017-03-01

    In this study, 10-nm rare-earth metal-oxide (REMO) films, namely, pure HoScO x (HSO) and HoScO x doped with Nb (HSO-Nb) and Zn (HSO-Zn), were deposited to build resistive random access memory (RRAM) devices with a Pt/REMO/Pt structure using radio frequency magnetron sputtering. The results of x-ray diffraction and transmission electron microscopy showed that all as-deposited REMO films are featureless microstructures lacking long-range order. In all RRAM devices, layer structures were well adhered to each other with relatively smooth interfaces and no cracks or holes were observed. Hall measurements demonstrated n-type conduction in the as-deposited films. The addition of Nb and Zn increased carrier concentration and mobility of the HSO films and reduced electrical resistivity. The former was possibly caused by the electronic compensation of NbSc ··, thereby triggering the formation of polarons, and the latter was probably due to the increase in concentration of oxygen vacancies associated with acceptor doping. The RRAM devices revealed unipolar switching behavior characterized by a resistance ratio of more than three orders of magnitude, good endurance, and a long retention time. The switching behavior of the RRAM with amorphous HSO films was altered by the doping species. Doping with Nb and Zn decreased the forming voltage, facilitated the use of a smaller switching voltage, and increased the resistance ratio of high- and low-resistance states. The conduction mechanisms for the low resistive state and high resistive state were dominated by Ohmic conduction and trap-controlled space-charge-limited current mechanisms, respectively.

  13. Superconducting energy scales and anomalous dissipative conductivity in thin films of molybdenum nitride

    Energy Technology Data Exchange (ETDEWEB)

    Simmendinger, Julian; Pracht, Uwe S.; Daschke, Lena; Proslier, Thomas; Klug, Jeffrey A.; Dressel, Martin; Scheffler, Marc

    2016-08-01

    We report investigations of molybdenum nitride (MoN) thin films with different thickness and disorder and with superconducting transition temperature 9.89K >= T-c >= 2.78 K. Using terahertz frequency-domain spectroscopy we explore the normal and superconducting charge carrier dynamics for frequencies covering the range from 3 to 38 cm(-1) (0.1 to 1.1 THz). The superconducting energy scales, i.e., the critical temperature T-c, the pairing energy Delta, and the superfluid stiffness J, and the superfluid density n(s) can be well described within the Bardeen-Cooper-Schrieffer theory for conventional superconductors. At the same time, we find an anomalously large dissipative conductivity, which cannot be explained by thermally excited quasiparticles, but rather by a temperature-dependent normal-conducting fraction, persisting deep into the superconducting state. Our results on this disordered system constrain the regime, where discernible effects stemming from the disorder-induced superconductor-insulator transition possibly become relevant, to MoN films with a transition temperature lower than at least 2.78 K.

  14. Ceramic insulation for superconducting Nb{sub 3}Sn cables; Isolation ceramique pour cables supraconducteurs en Nb{sub 3}Sn

    Energy Technology Data Exchange (ETDEWEB)

    Puigsegur, A

    2005-01-15

    Nb{sub 3}Sn is the best superconductor candidate for the realization of high field magnets (>11 Tesla), its implementation remains delicate because of the great brittleness of material after the heat treatment necessary to the formation of Nb{sub 3}Sn compounds. The conventional insulation for Nb{sub 3}Sn requires to perform, after the heat treatment, a vacuum resin impregnation, which adds to the cost and raises failure risk. We have proposed an innovating ceramic insulation deposited directly on the unreacted conducting cable. After the heat treatment of the niobium tin, we obtain a coil having a mechanical cohesion, while maintaining a proper conductor positioning and a suitable electric insulation. After a rheological study, to characterize the impregnated suspension, we have shown that using this insulation in a coil manufacture process does not affect the electrical properties of the Nb{sub 3}Sn wires. A solenoid of small dimensions was tested with success in high external magnetic fields and has produced a magnetic field of 3.8 T under 740 A. (author)

  15. Transport properties of β-Ga2O3 nanoparticles embedded in Nb thin films

    Directory of Open Access Journals (Sweden)

    L.S. Vaidhyanathan

    2015-01-01

    Full Text Available The origin of ferromagnetism in nanoparticles of nonmagnetic oxides is an interesting area of research. In the present work, transport properties of niobium thin films, with β-Ga2O3 nanoparticles embedded within them, are presented. Nanoparticles of β-Ga2O3 embedded in a Nb matrix were prepared at room temperature by radio frequency co-sputtering technique on Si (100 and glass substrates held at room temperature. The thin films deposited on Si substrates were subjected to Ar annealing at a temperature range of 600-650 C for 1 hour. Films were characterized by X-ray diffraction (XRD, Micro-Raman and elemental identification was performed with an Energy Dispersive X-ray Spectroscopy (EDS. Transport measurements were performed down to liquid helium temperatures by four-probe contact technique, showed characteristics analogous to those observed in the context of a Kondo system. A comparison of the experimental data with the theoretical formalism of Kondo and Hamann is presented. It is suggested that this behavior arises from the existence of magnetic moments associated with the oxygen vacancy defects in the nanoparticles of the nonmagnetic oxide Ga2O3.

  16. Thermo-optical investigations of NaNbO{sub 3} thin films by spectral ellipsometry

    Energy Technology Data Exchange (ETDEWEB)

    Dejneka, Alexandr; Lynnyk, Anna [Institute of Physics, Academy of Science, Na Slovance 2, 182 21 Prague 8 (Czech Republic); Zauls, Vismants; Kundzins, Maris [Institute of Solid State Physics, University of Latvia, Kengaraga 8, 1063, Riga (Latvia); Aulika, Ilze

    2009-12-15

    In this work a spectroscopic ellipsometry was applied to the thermo-optical investigations of sodium niobate NaNbO{sub 3} (NN) thin films at the wide temperature range of 5-820 K. The temperature dependence of complex refractive index dispersions and optical bang energy of the direct allowed electron transitions were evaluated. Additionally dynamic scans of the main ellipsometric angles at the several fixed wave lengths of 300, 400, 500 and 635 nm were performed to acquire more detailed temperature dependences of the refractive index and extinction coefficient. Pronounced minima/maxima and substantial jumps in the temperature dependence of complex refractive index and band gap energy were found and corresponded to the structural phase transition temperatures of NN single crystals and ceramics. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. NbN/MgO/NbN edge-geometry tunnel junctions

    Science.gov (United States)

    Hunt, B. D.; Leduc, H. G.; Cypher, S. R.; Stern, J. A.; Judas, A.

    1989-01-01

    The fabrication and low-frequency testing of the first edge-geometry NbN/MgO/NbN superconducting tunnel junctions are reported. The use of an edge geometry allows very small junction areas to be obtained, while the all-NbN electrodes permit operation at 8-10 K with a potential maximum operating frequency above 1 THz. Edge definition in the base NbN film was accomplished utilizing Ar ion milling with an Al2O3 milling mask, followed by a lower energy ion cleaning step. This process has produced all-refractory-material tunnel junctions with areas as small as 0.1 sq micron, resistance-area products less than 21 ohm sq micron, and subgap to normal state resistance ratios larger than 18.

  18. Fatigue-damage evolution and damage-induced reduction of critical current of a Nb{sub 3}Al superconducting composite

    Energy Technology Data Exchange (ETDEWEB)

    Ochiai, S [International Innovation Center, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan); Sekino, F [Graduate School of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan); Sawada, T [Graduate School of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan); Ohno, H [Graduate School of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan); Hojo, M [Graduate School of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan); Tanaka, M [Graduate School of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan); Okuda, H [International Innovation Center, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan); Koganeya, M [Sumitomo Electric Industries, Ltd, Konohana-ku, Osaka 590-0024 (Japan); Hayashi, K [Sumitomo Electric Industries, Ltd, Konohana-ku, Osaka 590-0024 (Japan); Yamada, Y [Sumitomo Electric Industries, Ltd, Konohana-ku, Osaka 590-0024 (Japan); Ayai, N [Sumitomo Electric Industries, Ltd, Konohana-ku, Osaka 590-0024 (Japan); Watanabe, K [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2003-09-01

    We have studied the fatigue-damage mechanism of a Nb{sub 3}Al superconducting composite at room temperature, and the influences of the fatigue damages introduced at room temperature on the critical current at 4.2 K and the residual strength at room temperature. The main (largest) fatigue crack arose first in the clad copper and then extended into the inner core with an increasing number of stress cycles. The cracking of the Nb{sub 3}Al filaments in the core region occurred at a late stage (around 60-90% of the fatigue life). Once the fracture of the core occurred, it extended very quickly, resulting in a quick reduction in critical current and the residual strength with increasing stress cycles. Such a behaviour was accounted for by the crack growth calculated from the S-N curves (the relation of the maximum stress to the number of stress cycles at failure) combined with the Paris law. The size and distribution of the subcracks along the specimen length, and therefore the reduction in critical current of the region apart from the main crack, were dependent on the maximum stress level. The large subcracks causing fracture of the Nb{sub 3}Al filaments were formed when the maximum stress was around 300-460 MPa, resulting in large reduction in critical current, but not when the maximum stress was outside such a stress range.

  19. Reactive sputtering methods used for the preparation of high critical temperature superconducting thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bruyere, J.C.; Escribe-Filippini, C.; Marcus, J.; Reydet, P.L.; Cabaret, B.

    1988-06-01

    Among the synthesis methods of metallic oxides, the reactive sputtering methods seem to be the most attractive, with the possibilities to get the right composition and even the suitable crystalline structure. In this paper, we discuss many specific chemical and physical reactions which appear during the deposition process. Finally, we show preliminary results obtained in our laboratory in the preparation of high critical temperature superconducting thin films.

  20. Direct detection of the Josephson radiation emitted from superconducting thin-film microbridges

    DEFF Research Database (Denmark)

    Pedersen, Niels Falsig; Sørensen, O. H.; Mygind, Jesper

    1976-01-01

    We report direct measurements of the Josephson radiation emitted in X band from a superconducting thin-film microbridge coupled to a resonance cavity. Power is emitted if one of the harmonics of the Josephson frequency is in the bandwidth of the receiver. The maximum power emitted during our expe...... experiment was 10−13 W. The Josephson radiation could easily be detected at frequencies off resonance. Applied Physics Letters is copyrighted by The American Institute of Physics....

  1. The Investigation of the Zr-doped LaNbO4 Thin Ceramic Films by Electrochemical Impedance Spectroscopy

    Directory of Open Access Journals (Sweden)

    Darius Virbukas

    2015-09-01

    Full Text Available Thin Zr-doped lanthanum niobium oxide (LaNb1-xZrxO4 films were formed on the optical quartz (SiO2 substrates using magnetron sputtering technique. Formed LaNb1-xZrxO4 thin films were characterized using different techniques: X-ray diffraction (XRD, scanning electron microscope (SEM and impedance spectroscopy. Electrical parameters of LaNb1-xZrxO4 thin ceramic were investigated in the frequency range from 0.1 Hz to 1.0 MHz in temperature range from 773 to 1173 K.It was determined that LaNb1-xZrxO4 thin ceramic films have the tetragonal structure and non-Debye type of relaxation. The activation energy was estimated from the relaxation time of impedance, electric modulus and conductivity resulting the activation energies vary from 1.12 ± 1 eV (Zr 1.99at.%, to 1.24 eV±1 eV (Zr 0.62at.%.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.9535

  2. Effect of post-treatment on photocatalytic oxidation activity of (111 oriented NaNbO3 film

    Directory of Open Access Journals (Sweden)

    Feng Zhang

    2015-10-01

    Full Text Available We investigate the impact of post-treatment on photocatalytic oxidation activity of (111 oriented NaNbO3 film prepared by pulse laser deposition. Some impurities such as Na2Nb4O11 and bigger particles appear in the treated samples. The activity of rhodamine B degradation with N2 purge increases with the amount of ⋅OH, the sample treated under H2/Ar(7% being the highest activity, followed by under air and untreated one; the opposite trend is observed when the system was without N2 purge.

  3. Hydrostatic pressure effect on the transport properties in TiO superconducting thin films

    Science.gov (United States)

    Liu, X.; Zhang, C.; Hao, F. X.; Wang, T. Y.; Fan, Y. J.; Yin, Y. W.; Li, X. G.

    2017-09-01

    The superconducting properties of the TiO epitaxial thin films were systematically investigated under hydrostatic pressures (P ) up to 2.13 GPa. At ambient pressure, the normal state resistivity increases with decreasing temperature, and steeply increases below Tkink˜ 115 K . With further reducing temperature to Tc˜ 5.99 K , the thin film enters into a superconducting state. Interestingly, the superconducting temperature Tc gradually decreases upon increasing P , and the decreasing rate of Tc with P is much larger than the McMillan theoretical expectation. In contrast, Tkink increases with P and a remarkable resistivity enhancement was observed in the temperature range between Tkink and Tc. The variations of Tc,Tkink , and normal state resistivity under high pressure may be induced by the charge localization related to the atomic vacancies rearrangement in TiO thin film. Furthermore, the temperature dependencies of the upper critical field Hc 2(T ) indicate that both the orbital and Pauli-paramagnetic pair-breaking effects should be taken into account. Finally, the thermally activated flux flow investigations under different pressures suggest that the pressure will suppress the thermal activate energy.

  4. Test up to 80 kA of an Al-Stabilized NbTi Cable With the Upgraded Saclay Superconducting Transformer

    CERN Document Server

    Berriaud, C; Donati, A; Gharib, A; Peiro, G; Willering, G

    2014-01-01

    An ATLAS Barrel Toroid conductor was tested in the Saclay High Current Test Facility. The conductor is a Nb-Ti Rutherford cable imbedded in a high purity aluminum stabilizer. The conductor's width was reduced from 57 mm to 30 mm in order to be able to use an existing sample holder. We tried to measure the critical current in background fields of up to 3 T. The field was produced by a 0.8 m long superconducting dipole magnet. The test station was equipped with a superconducting transformer transferring maximum primary and secondary currents of respectively 174 A and 80 kA. The secondary current was measured with flux coils and with a superconducting Direct Control Current Transducer (DCCT), a modified version of the ``Macc+{''} 600 A commercial DCCT from Hitec, which was operated at currents of up to 57 kA. This paper reports on the performance of the test station, on the results of the quench current measurements performed on the stabilized ATLAS conductor and on the difficulties to measure the critical curre...

  5. Stationary states and dynamics of superconducting thin films

    DEFF Research Database (Denmark)

    Ögren, Magnus; Sørensen, Mads Peter; Pedersen, Niels Falsig

    The Ginzburg-Landau (GL) theory is a celebrated tool for theoretical modelling of superconductors [1]. We elaborate on different partial differential equations (PDEs) and boundary conditions for GL theory, formulated within the finite element method (FEM) [2]. Examples of PDEs for the calculation...... of stationary states with the GL equation and with the time-dependent GL equation are given. Moreover we study real time evolution with the so called Schrödinger-GL equation [3]. For simplicity we here present numerical data for a twodimensional rectangular geometry, but we emphasize that our FEM formulation...... can handle complex geometries also in a three-dimensional superconducting structure. To include external currents in our modelling we discuss the role of the boundary conditions for the external magnetic field [4]. Finally we show results for the pinning of vortices with controlled impurities....

  6. MgB{sub 2} superconducting thin films sequentially fabricated using DC magnetron sputtering and thermionic vacuum arc method

    Energy Technology Data Exchange (ETDEWEB)

    Okur, S. [Physics Department, Izmir Institute of Technology (Turkey)], E-mail: salihokur@iyte.edu.tr; Kalkanci, M. [Material Science Program, Izmir Institute of Technology (Turkey); Pat, S.; Ekem, N.; Akan, T. [Physics Department, Osmangazi University (Turkey); Balbag, Z. [Department of Science and Mathematics Education, Osmangazi University (Turkey); Musa, G. [Plasma and Radiation, National Institute for Physics of Laser (Romania); Tanoglu, M. [Mechanical Engineering Department, Izmir Institute of Technology (Turkey)

    2007-11-01

    In this work, we discuss fabrication and characterization of MgB{sub 2} thin films obtained by sequential deposition and annealing of sandwich like Mg/B/Mg thin films on glass substrates. Mg and B films were prepared using DC magnetron sputtering and thermionic vacuum arc techniques, respectively. The MgB{sub 2} thin films showed superconducting critical transition at 33 K after annealing at 650 deg. C.

  7. Enhanced superconductivity and superconductor to insulator transition in nano-crystalline molybdenum thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Shilpam; Amaladass, E.P. [Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Sharma, Neha [Surface & Nanoscience Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Harimohan, V. [Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Amirthapandian, S. [Materials Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Mani, Awadhesh, E-mail: mani@igcar.gov.in [Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2017-06-01

    Disorder driven superconductor to insulator transition via intermediate metallic regime is reported in nano-crystalline thin films of molybdenum. The nano-structured thin films have been deposited at room temperature using DC magnetron sputtering at different argon pressures. The grain size has been tuned using deposition pressure as the sole control parameter. A variation of particle sizes, room temperature resistivity and superconducting transition has been studied as a function of deposition pressure. The nano-crystalline molybdenum thin films are found to have large carrier concentration but very low mobility and electronic mean free path. Hall and conductivity measurements have been used to understand the effect of disorder on the carrier density and mobilities. Ioffe-Regel parameter is shown to correlate with the continuous metal-insulator transition in our samples. - Highlights: • Thin films of molybdenum using DC sputtering have been deposited on glass. • Argon background pressure during sputtering was used to tune the crystallite sizes of films. • Correlation in deposition pressure, disorder and particle sizes has been observed. • Disorder tuned superconductor to insulator transition along with an intermediate metallic phase has been observed. • Enhancement of superconducting transition temperature and a dome shaped T{sub C} vs. deposition pressure phase diagram has been observed.

  8. Research in LPE of Doped LiNbO3 and LiTaO3 Thin Films.

    Science.gov (United States)

    1981-06-01

    garnet films grown on single crystal garnet substrates by the LPE technique for magnetic bubble applica- tions. The choice of substrate and film are...34 Appl. Phys. Lett. 19, 486 (1971). 9. L. Ghes and E.A. Geiss, "Temperature Dependence of Garnet LPE Growth Kinetics," J. Cryst. Growth 27, 221 (1974). 10...11Fk 15. S. Kondo, S. Miyazawa, S. Fushimi and K. Sugi, " LPE Growth of Single Crystal LiNbO 3 Thin Films," Appl. Phys. Lett. 26, 489 (1975). 16. R.R

  9. Pulsed laser deposition of niobium nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Farha, Ashraf Hassan, E-mail: ahass006@odu.edu; Elsayed-Ali, Hani E., E-mail: helsayed@odu.edu [Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23529 (United States); Applied Research Center, Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Department of Physics, Faculty of Science, Ain Shams University, Cairo 11566 (Egypt); Ufuktepe, Yüksel, E-mail: ufuk@cu.edu.tr [Department of Physics, University of Cukurova, 01330 Adana (Turkey); Myneni, Ganapati, E-mail: rao@jlab.org [Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 (United States)

    2015-12-04

    Niobium nitride (NbN{sub x}) films were grown on Nb and Si(100) substrates using pulsed laser deposition. NbN{sub x} films were deposited on Nb substrates using PLD with a Q-switched Nd:YAG laser (λ = 1064 nm, ∼40 ns pulse width, and 10 Hz repetition rate) at different laser fluences, nitrogen background pressures and deposition substrate temperatures. When all the fabrication parameters are fixed, except for the laser fluence, the surface roughness, nitrogen content, and grain size increase with increasing laser fluence. Increasing nitrogen background pressure leads to a change in the phase structure of the NbN{sub x} films from mixed β-Nb{sub 2}N and cubic δ-NbN phases to single hexagonal β-Nb{sub 2}N. The substrate temperature affects the preferred orientation of the crystal structure. The structural and electronic, properties of NbN{sub x} deposited on Si(100) were also investigated. The NbN{sub x} films exhibited a cubic δ-NbN with a strong (111) orientation. A correlation between surface morphology, electronic, and superconducting properties was found. The observations establish guidelines for adjusting the deposition parameters to achieve the desired NbN{sub x} film morphology and phase.

  10. Josephson soliton oscillators in a superconducting thin film resonator

    DEFF Research Database (Denmark)

    Holm, J.; Mygind, Jesper; Pedersen, Niels Falsig

    1993-01-01

    . Different modes of half-wave resonances in the thin-film structure impose different magnetic field configurations at the boundaries of the junctions. The DC I-V characteristic shows zero-field steps with a number of resonator-induced steps. These structures are compared to RF-induced steps generated...

  11. Synthesis of KCa2Nb3O10 crystals with varying grain sizes and their nanosheet monolayer films as seed layers for piezoMEMS applications

    NARCIS (Netherlands)

    Yuan, H.; Nguyen, Duc Minh; Hammer, Tom; Koster, Gertjan; Rijnders, Augustinus J.H.M.; ten Elshof, Johan E.

    2015-01-01

    The layered perovskite-type niobate KCa2Nb3O10 and its derivatives show advantages in several fields, such as templated film growth and (photo)catalysis. Conventional synthesis routes generally yield crystal size smaller than 2 μm. We report a flux synthesis method to obtain KCa2Nb3O10 crystals with

  12. Surface phenomena of hydroxyapatite film on the nanopore formed Ti-29Nb-xZr alloy by anodization for bioimplants.

    Science.gov (United States)

    Kim, Eun-Ju; Jeong, Yong-Hoon; Choe, Han-Cheol

    2013-03-01

    In this study, surface phenomena of hydroxyapatite (HA) film on the nanopore formed Ti-29Nb-xZr alloy by anodization for bioimplants have been investigated by electron beam physical vapor deposition (EB-PVD), field emission scanning electron microscope (FE-SEM), X-ray diffractometer (XRD), potentiostat and contact angle. The microstructure of Ti-29Nb-xZr alloys exhibited equiaxed structure and alpha" phase decreased, whereas beta phase increased as Zr content increased. The increment of Zr contents in HA coated nanotubular Ti-29Nb-xZr alloys showed good corrosion potential in 0.9% NaCI solution. The wettability of HA coated nanotubular surface was higher than that of non-coated samples.

  13. Ferroelectric domain structures of epitaxial CaBi2Nb2O9 thin films on single crystalline Nb doped (1 0 0) SrTiO3 substrates

    Science.gov (United States)

    Ahn, Yoonho; Seo, Jeong Dae; Son, Jong Yeog

    2015-07-01

    Epitaxial CaBi2Nb2O9 (CBNO) thin films were deposited on Nb-doped SrTiO3 substrates. The CBNO thin films as a lead-free ferroelectric material exhibit a good ferroelectric property with the remanent polarization of 10.6 μC/cm2. In the fatigue resistance test, the CBNO thin films have no degradation in polarization up to 1×1012 switching cycles, which is applicable for non-volatile ferroelectric random access memories (FeRAMs). Furthermore, piezoresponse force microscopy study (PFM) reveals that the CBNO thin films have larger ferroelectric domain structures than those of PbTiO3 thin films. From the Landau, Lifshiftz, and Kittel's scaling law, it is inferred that the domain wall energy of CBNO thin films is probably very similar to that of the PbTiO3 thin films.

  14. Superconducting (Li,Fe)OHFeSe Film of High Quality and High Critical Parameters

    Science.gov (United States)

    Huang, Yulong; Feng, Zhongpei; Ni, Shunli; Li, Jun; Hu, Wei; Liu, Shaobo; Mao, Yiyuan; Zhou, Huaxue; Zhou, Fang; Jin, Kui; Wang, Huabing; Yuan, Jie; Dong, Xiaoli; Zhao, Zhongxian

    2017-06-01

    A superconducting film of (Li1-x Fe x )OHFeSe is reported for the first time. The thin film exhibits a small in-plane crystal mosaic of 0.22°, in terms of the full width at half maximum of the x-ray rocking curve, and an excellent out-of-plane orientation by x-ray φ-scan. Its bulk superconducting transition temperature {T}{{c}} of 42.4 K is characterized by both zero electrical resistance and diamagnetization measurements. The upper critical field {H}{{c}2} is estimated to be 79.5 T and 443 T for the magnetic field perpendicular and parallel to the ab plane, respectively. Moreover, a large critical current density {J}{{c}} of a value over 0.5 MA/cm2 is achieved at ˜20 K. Such a (Li1-x Fe x )OHFeSe film is therefore not only important to the fundamental research for understanding the high-{T}{{c}} mechanism, but also promising in the field of high-{T}{{c}} superconductivity application, especially in high-performance electronic devices and large scientific facilities such as superconducting accelerator. Supported by the National Basic Research Program of China under Grant No 2017YFA0303000, the National Natural Science Foundation of China under Grant Nos 11574370, 11234006 and 61501220, the Strategic Priority Research Program and Key Research Program of Frontier Sciences of the Chinese Academy of Sciences under Grant Nos QYZDY-SSW-SLH001, QYZDY-SSW-SLH008 and XDB07020100.

  15. Pulsed-laser deposition of vicinal and c-axis oriented high temperature superconducting thin films

    CERN Document Server

    Rössler, R

    2000-01-01

    respect to the temperature, oxygen pressure and laser fluence. (Re,Hg)Ba sub 2 Ca sub ( n-1)Cu sub n O sub x films are synthesized on (001) and vicinal SrTiO sub 3 substrates in a two step process employing pulsed-laser deposition of Hg-free precursor films and Hg-vapour annealing in a sealed quartz tube. The sealed quartz tube technique is described in detail and the thermodynamics and the phase formation are discussed. The influence of the Hg-vapour pressure and the annealing temperature on the film properties are investigated. The influence of Hg-vapour annealing on Bi sub 2 Sr sub 2 CaCu sub 2 O sub x films is described. YBa sub 2 Cu sub 3 O sub x films with thicknesses 20 to 480 nm are deposited on vicinal SrTiO sub 3 substrates (10 degrees tilt angle). Variation of the resistivities and changes in the film morphology depending on film thickness are described. The influence of post-annealing treatments on the film properties is discussed. Pulsed-laser deposition (PLD) of high temperature superconducting ...

  16. Possibility of Superconductivity in a Layered Perovskite Niobate, KCa_2Nb_3O_<10>, Synthesized by an Ion Exchange Reaction

    OpenAIRE

    竹澤, 幸; 寺西, 喬; 石川, 宏典; 徳光, 俊章; 戸田, 健司; 上松, 和義; 佐藤, 峰夫; Takezawa, Sachi; Teranishi, Takashi; Ishikawa, Hironori; Tokumitsu, Toshiaki; Toda, Kenji; Uematsu, Kazuyoshi; Sato, Mineo

    2006-01-01

    We prepared low temperature phase of triple layered perovksite KCa_2Nb_3O_ by an ion-exchange reaction. Li-intercalated low temperature phase, Li_KCa_2Nb_3O_, shows strong diamagnetic signal around at 7.8 K. The magnetic phase transition temperature of Li-intercalated low temperature phase is higher than that of Li-intercalated high temperature phase.

  17. Pulsed Laser Deposition of High Tc Superconducting Thin Films

    Science.gov (United States)

    1992-04-15

    California 94304 A.M. VIAND ** XEROX, Palo Alto Research Center, Palo Alto, California 94304 Physics Dept., Santa Clara University, California 95053 T.H...incommensurate (or commensurate quality since it is dependent on film thickness. The peak at some rational spacing) phase transformation within a...and/or kinetic limits on the transformation during cooling introduces displacements growth, the order in which the overlayer constituents and

  18. Caracterização de filmes finos de Nb2O5 com propriedades eletrocrômicas Caracterization of OF Nb2O5 thin films with electrochromic properties

    Directory of Open Access Journals (Sweden)

    C. O. Avellaneda

    1998-06-01

    Full Text Available The sols for thin electrochromic coatings of Nb2O5 were obtained by synthesis of the niobium butoxide from BuONa and NbCl5. The ~300nm thick films were deposited by dip-coating technique from the alkoxide solution and calcined at 560ºC in O2 atmosphere during 3 hours. The particles size of niobium oxide (V powder (~20mm was obtained from x-ray diffraction using the Scherrer equation. The coatings were characterized by cyclic voltammetry and cronoamperommetry techniques. The spectral variation of the optical transmittance were determined in situ as a function of the cyclical potencial and memory effect. The insertion process of lithium is reversible and change the film color from transparent (T=80% to dark blue (T=20%.

  19. Anisotrophic currents and flux jumps in high-T-c superconducting films with self-organized arrays of planar defects

    DEFF Research Database (Denmark)

    Yurchenko, V.V.; Qviller, A.J.; Mozhaev, P.B.

    2010-01-01

    Regular arrays of planar defects with a period of a few nanometers can be introduced in superconducting YBa2Cu3O7-delta (YBCO) thin films by depositing them on vicinal (also called miscut or tilted) substrates. This results in the anisotropy of critical currents flowing in the plane of the film. ...

  20. Effect of laser fluence on c-axis orientation of LiNbO{sub 3} piezoelectric films on nanocrystalline diamond by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xinchang [Key Laboratory of Material Physics Ministry Education, and School of Physics and Engineering, Zhengzhou University, Zhengzhou (China); State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou (China); Tian, Sifang; Jia, Jianfeng; Shi, Xinwei [Key Laboratory of Material Physics Ministry Education, and School of Physics and Engineering, Zhengzhou University, Zhengzhou (China); Man, Weidong [Hubei Province Key Laboratory of Plasma Chemsitry and Advanced Materaials, Wuhan Institute of Technology, Wuhan (China)

    2012-07-15

    Completely c-axis oriented LiNbO{sub 3} piezoelectric films have been deposited on nanocrystalline diamond (NCD)/Si substrates with SiO{sub 2} buffer layer by pulsed laser deposition. The amorphous SiO{sub 2} buffer layer was formed on NCD/Si substrates by sol-gel method. The c-axis orientation and crystallinity of LiNbO{sub 3} films are strongly dependent on the laser fluence, and the laser fluence 3.6 J/cm{sup 2} is found to be the optimal value for the growth of oriented LiNbO{sub 3} film, which has a smooth surface with composed of a large mount of uniform grains. The average surface roughness of LiNbO{sub 3} films is about 6.7 nm. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Superconductivity in transparent zinc-doped In2O3 films having low carrier density

    Directory of Open Access Journals (Sweden)

    Kazumasa Makise, Nobuhito Kokubo, Satoshi Takada, Takashi Yamaguti, Syunsuke Ogura, Kazumasa Yamada, Bunjyu Shinozaki, Koki Yano, Kazuyoshi Inoue and Hiroaki Nakamura

    2008-01-01

    Full Text Available Thin polycrystalline zinc-doped indium oxide (In2O3–ZnO films were prepared by post-annealing amorphous films with various weight concentrations x of ZnO in the range 0≤x ≤0.06. We have studied the dependences of the resistivity ρ and Hall coefficient on temperature T and magnetic field H in the range 0.5≤T ≤300 K, H≤6 Tfor 350 nm films annealed in air. Films with 0≤x≤0.03 show the superconducting resistive transition. The transition temperature Tc is below 3.3 K and the carrier density n is about 1025–1026 m−3. The annealed In2O3–ZnO films were examined by transmission electron microscopy and x-ray diffraction analysis revealing that the crystallinity of the films depends on the annealing time. We studied the upper critical magnetic field Hc2 (T for the film with x = 0.01. From the slope of dHc2 /dT, we obtain the coherence length ξ (0 ≈ 10 nm at T = 0 K and a coefficient of electronic heat capacity that is small compared with those of other oxide materials.

  2. NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature

    CERN Document Server

    Zhang, W J; Li, H; Huang, J; Lv, C L; Zhang, L; Liu, X Y; Wu, J J; Wang, Z; Xie, X M

    2016-01-01

    The fast development of superconducting nanowire single photon detector (SNSPD) in the past decade has enabled many advances in quantum information technology. The best system detection efficiency (SDE) record at 1550 nm wavelength was 93% obtained from SNSPD made of amorphous WSi which usually operated at sub-kelvin temperatures. We first demonstrate SNSPD made of polycrystalline NbN with SDE of 90.2% for 1550 nm wavelength at 2.1K, accessible with a compact cryocooler. The SDE saturated to 92.1% when the temperature was lowered to 1.8K. The results lighten the practical and high performance SNSPD to quantum information and other high-end applications.

  3. IR emission and electrical conductivity of Nd/Nb-codoped TiO{sub x} (1.5 < x < 2) thin films grown by pulsed-laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Tchiffo-Tameko, C.; Cachoncinlle, C. [GREMI, UMR 7344 CNRS-Université Orléans, 45067 Orléans Cedex 2 (France); Perriere, J. [Sorbonne Universités, UPMC Université Paris 06, UMR 7588, INSP, 75005 Paris (France); CNRS, UMR 7588, INSP, 75005 Paris (France); Nistor, M. [NILPRP, L 22 P.O. Box MG-36, 77125 Bucharest-Magurele (Romania); Petit, A.; Aubry, O. [GREMI, UMR 7344 CNRS-Université Orléans, 45067 Orléans Cedex 2 (France); Pérez Casero, R. [Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Millon, E., E-mail: eric.millon@univ-orleans.fr [GREMI, UMR 7344 CNRS-Université Orléans, 45067 Orléans Cedex 2 (France)

    2016-12-15

    Highlights: • Nd/Nb-codoped TiO{sub 2} PLD films are electrically insulating and transparent in the UV visible NIR spectral domain. • Nd/Nb-codoped oxygen deficient TiO{sub x} (x ≈ 1.5) films are conductive and absorbent. • IR emission of Nd{sup 3+} in codoped TiO{sub x} films is quenched due to oxygen deficiency. • High Nb-doping rate decreases the IR emission of Nd{sup 3+} in Nd/Nb-codoped TiO{sub 2} films. - Abstract: The effect of the co-doping with Nd and Nb on electrical and optical properties of TiO{sub x} films is reported. The role of oxygen vacancies on the physical properties is also evidenced. The films are grown by pulsed-laser deposition onto (001) sapphire and (100) silicon substrates. The substrate temperature was fixed at 700 °C. To obtain either stoichiometric (TiO{sub 2}) or highly oxygen deficient (TiO{sub x} with x < 1.6) thin films, the oxygen partial pressure was adjusted at 10{sup −1} and 10{sup −6} mbar, respectively. 1%Nd-1%Nb, 1%Nd-5%Nb and 5%Nd-1%Nb co-doped TiO{sub 2} were used as bulk ceramic target. Composition, structural and morphological properties of films determined by Rutherford backscattering spectroscopy, X-ray diffraction and scanning electron microscopy, are correlated to their optical (UV–vis transmission and photoluminescence) and electrical properties (resistivity at room temperature). The most intense Nd{sup 3+} emission in the IR domain is obtained for stoichiometric films. Codoping Nd-TiO{sub x} films by Nb{sup 5+} ions is found to decrease the photoluminescence efficiency. The oxygen pressure during the growth allows to tune the optical and electrical properties: insulating and highly transparent (80% in the visible range) Nd/Nb codoped TiO{sub 2} films are obtained at high oxygen pressure, while conductive and absorbent films are grown under low oxygen pressure (10{sup −6} mbar).

  4. Bibliography of high-T/sub c/ superconducting films

    Energy Technology Data Exchange (ETDEWEB)

    Talvacchio, J.

    1989-01-01

    This document represents an effort to make bibliographic information on high-T/sub c/ superconductor films available to those who cannot access the on-line database at the Westinghouse R and D Center. The database contains a growing list of references -- approaching 5000 -- each of which is identified by a set of two-letter keywords. The database is used the same way as as INSPEC's, but its fixed set of standard keywords enables the user to obtain a complete list of references on keyworded topics. Since a single keyword (or search term) such as ''sputtering'' creates a bibliography that is too long for practical use, the database is used most effectively by combining a series of keywords using Boolean algebra to identify a handful of relevant references. The structure of this document is intended to present the subset of papers concerning high-T/sub c/ films (725 papers) in a compact format as a substitute for on-line searches. Rather than listing separate bibliographies for each of the 185 keywords, a single list of all the references is contained in Section 6, and indices based on the keywords are contained in Sections 3--5. This report is a true bibliography and does not contain any informative text. 725 refs.

  5. Magnetic state controllable critical temperature in epitaxial Ho/Nb bilayers

    Directory of Open Access Journals (Sweden)

    Yuanzhou Gu

    2014-04-01

    Full Text Available We study the magnetic properties of Ho thin films with different crystallinity (either epitaxial or non-epitaxial and investigate their proximity effects with Nb thin films. Magnetic measurements show that epitaxial Ho has large anisotropy in two different crystal directions in contrast to non-epitaxial Ho. Transport measurements show that the superconducting transition temperature (Tc of Nb thin films can be significantly suppressed at zero field by epitaxial Ho compared with non-epitaxial Ho. We also demonstrate a direct control over Tc by changing the magnetic states of the epitaxial Ho layer, and attribute the strong proximity effects to exchange interaction.

  6. Phase modification and morphological evolution in Nb2O5 thin films and its influence in dye- sensitized solar cells

    Science.gov (United States)

    Suresh, S.; Unni, Gautam E.; Ni, Chensheng; Sreedharan, R. Sreeja; Krishnan, R. Reshmi; Satyanarayana, M.; Shanmugam, Mariyappan; Pillai, V. P. Mahadevan

    2017-10-01

    Thermal energy plays a crucial role on the phase evolution of niobium oxide (Nb2O5) thin films and when employed as a blocking layer these films can manoeuvre charge transfer process in a dye sensitized solar cell (DSSC). Niobium oxide film, prepared by RF magnetron sputtering process, endured phase transitions successively from amorphous to orthorhombic and finally to monoclinic phases when subjected to post-deposition annealing. The co-existence of orthorhombic and monoclinic phases with an interesting surface morphology is perceived at an annealing temperature of 900 °C. Nb2O5 blocking layer at the FTO/TiO2 interface strongly influenced the photovoltaic parameters of the DSSC and the blocking layer in the orthorhombic phase is found to be most effective in suppressing charge recombination and delivered a maximum efficiency of 7.33%. The improvement in open circuit voltage can be foreseeable as shifting of the Fermi level towards the conduction band edge of the TiO2 as a result of structural modification of the Nb2O5 blocking layer. The thermal stability of the FTO is also investigated and found that the electrical and optical properties of FTO were remarkably stable up to 600 °C and begin to change appreciably from 700 °C onwards.

  7. Study of Nb{sub 3}Sn cables for superconducting quadrupoles; Etude de cables Nb{sub 3}Sn pour quadripoles supraconducteurs

    Energy Technology Data Exchange (ETDEWEB)

    Otmani, R

    1999-10-01

    In particle physics, the quest for higher energies may be satisfied by the use of niobium-tin superconducting magnets. Such magnets are made of Rutherford type cables which are wound from superconducting strands. The strands are made by the 'internal tin' method. The aim of this study is to determine the main parameters for the fabrication of a quadrupole. The two main requirements the cable must fulfill are high critical current and low losses. The main parameters were determined from different measurements and models. Thus, the key parameters for the current transport capacity are the number and the diameter of the filaments, the number of sub-elements, the surface of superconductor and the copper-to-non-copper ratio. For the hysteresis losses, the main parameters appear to be the effective filament diameter and the spacing of the filaments. For intra-strand losses, the main parameters appear to be the filaments' diameter, the filament spacing, the nature of the diffusion barrier and the Residual Resistivity Ratio (RRR) of the copper. The interstrand resistances for the cable are the key parameters for the losses. Thus, the nature of the strands coating or the presence of a stainless steel core can strongly diminish the cable losses. Finally, a design, for the strands and the cables for the fabrication of a quadrupole is proposed. (author)

  8. Doped niobium superconducting nanowire single-photon detectors

    Science.gov (United States)

    Jia, Tao; Kang, Lin; Zhang, Labao; Zhao, Qingyuan; Gu, Min; Qiu, Jian; Chen, Jian; Jin, Biaobing

    2014-09-01

    We designed and fabricated a special doped niobium (Nb*) superconducting nanowire single-photon detector (SNSPD) on MgO substrate. The superconductivity of this ultra-thin Nb* film was further improved by depositing an ultra-thin aluminum nitride protective layer on top. Compared with traditional Nb films, Nb* films present higher T C and J C. We investigated the dependence of the characteristics of devices, such as cut-off wavelength, response bandwidth, and temperature, on their geometrical dimensions. Results indicate that reduction in both the width and thickness of Nb* nanowires extended the cut-off wavelength and improved the sensitivity. The Nb* SNSPD (50 nm width and 4.5 nm thickness) exhibited single-photon sensitivities at 1,310, 1,550, and 2,010 nm. We also demonstrated an enhancement in the detection efficiency by a factor of 10 in its count rate by lowering the working temperature from 2.26 K to 315 mK.

  9. Highly tunable microwave stub resonator on ferroelectric KTa0.5Nb0.5O3 thin film

    Science.gov (United States)

    Simon, Q.; Corredores, Y.; Castel, X.; Benzerga, R.; Sauleau, R.; Mahdjoubi, K.; Le Febvrier, A.; Députier, S.; Guilloux-Viry, M.; Zhang, L.; Laurent, P.; Tanné, G.

    2011-08-01

    A coplanar waveguide (CPW) stub resonator has been fabricated on a pulsed-laser deposited KTa0.5Nb0.5O3 (KTN) thin film (600 nm-thick) onto a r-plane sapphire substrate. It was designed to operate at 10 GHz when the applied bias voltage is zero. We show experimentally that the resonance frequency is shifted by 44% under a 70 kV/cm DC applied electric field. In addition, the dielectric characteristics of the KTN film have been assessed through post-processed measurements of CPW 50-Ω transmission lines using the conformal mapping method.

  10. Aspects of passive magnetic levitation based on high-T(sub c) superconducting YBCO thin films

    Science.gov (United States)

    Schoenhuber, P.; Moon, F. C.

    1995-01-01

    Passive magnetic levitation systems reported in the past were mostly confined to bulk superconducting materials. Here we present fundamental studies on magnetic levitation employing cylindrical permanent magnets floating above high-T(sub c) superconducting YBCO thin films (thickness about 0.3 mu m). Experiments included free floating rotating magnets as well as well-established flexible beam methods. By means of the latter, we investigated levitation and drag force hysteresis as well as magnetic stiffness properties of the superconductor-magnet arrangement. In the case of vertical motion of the magnet, characteristic high symmetry of repulsive (approaching) and attractive (withdrawing) branches of the pronounced force-displacement hysteresis could be detected. Achievable force levels were low as expected but sufficient for levitation of permanent magnets. With regard to magnetic stiffness, thin films proved to show stiffness-force ratios about one order of magnitude higher than bulk materials. Phenomenological models support the measurements. Regarding the magnetic hysteresis of the superconductor, the Irie-Yamafuji model was used for solving the equation of force balance in cylindrical coordinates allowing for a macroscopic description of the superconductor magnetization. This procedure provided good agreement with experimental levitation force and stiffness data during vertical motion. For the case of (lateral) drag force basic qualitative characteristics could be recovered, too. It is shown that models, based on simple asymmetric magnetization of the superconductor, describe well asymptotic transition of drag forces after the change of the magnet motion direction. Virgin curves (starting from equilibrium, i.e. symmetric magnetization) are approximated by a linear approach already reported in literature only. This paper shows that basic properties of superconducting thin films allow for their application to magnetic levitation or - without need of levitation

  11. Thermal resistant efficiency of Nb-doped TiO2 thin film based glass window

    Directory of Open Access Journals (Sweden)

    Luu Manh Quynh

    2017-09-01

    Full Text Available The proportional relationship between the infrared (IR transmittance of a transparent material and its IR-induced heat transfer can be explained via a simple model. An agreement between the theory and the experimental work was examined by measuring the temperature rising inside a heat-insulated box with glass windows under IR irradiation, where the material of the glass windows was modified from corning glass (CG to 9 at% Nb-doped TiO2 (TNO fabricated by sputtering deposition. The fabricated TNO thin film was mostly transparent in a visible region and had a low transparency in the IR region, which, in turn, produced the self-cooling effect inside the insulated box. In comparison to the window glass made by CG, the temperature increase inside the box would be 24% less if the window was made by CG coated by TNO (TNO on CG. This suggests the possibility of manufacturing products with desirable features in the energy-cut cooling. The energy-cut was found to decline proportionally to the decrease of the glass window area.

  12. Properties of SrBi sub 2 Nb sub 2 O sub 9 thin films on Pt-coated Si

    CERN Document Server

    Avila, R E; Martin, V D C; Fernandez, L M; Sylvester, G S; Retuert, P J; Gramsch, E

    2002-01-01

    SrBi sub 2 Nb sub 2 O sub 9 powders and thin films, on Pt-coated Si, were synthesised by the sol-gel method. Three-layer thin films appear homogeneous down to the 100 nm scale, polycrystalline in the tetragonal Aurivillius phase, at a average thickness of 40 nm per layer. The index of refraction at the center of the visible range increases with the sintering temperature from roughly 2.1 (at 400 Centigrade) to 2.5 (at 700 Centigrade). The expression n sup 2 -1 increases linearly with the relative density of the thin films, in similar fashion as previous studies in PbTiO sub 3 thin films. The dielectric constant in quasistatic and high frequency (1 MHz) modes, is between 160 and 230. (Author)

  13. The origin of superconductivity in nominally 'undoped' T'-La2-xYxCuO4 films

    Science.gov (United States)

    Zhao, L.; Liu, R. H.; Wu, G.; Wang, G. Y.; Wu, T.; Luo, X. G.; Chen, X. H.

    2008-06-01

    We have systematically studied the transport properties of La2-xYxCuO4 (LYCO) films with T'-phase (0.05acquired in a certain Y doping range (0.10resistivity, Hall coefficient in normal states and resistive critical field (Hc2ρ) in superconducting states of the T'-LYCO films show similar behavior as the known Ce-doped n-type cuprate superconductors, indicating the intrinsic electron doping nature. The charge carriers are thought to be induced by oxygen deficiency. Non-superconducting Y-doped Pr- or Nd-based T'-phase cuprate films were also investigated for comparison, suggesting a crucial role of the radii of A-site cations in the origin of superconductivity in the nominally 'undoped' cuprates. A reasonable scenario is put forward for the microscopic reduction process to explain the experimental observations.

  14. Commensurate vortex configurations in thin superconducting films nanostructured by square lattice of magnetic dots

    Science.gov (United States)

    Milošević, M. V.; Peeters, F. M.

    2004-05-01

    Within the phenomenological Ginzburg-Landau (GL) theory, we investigate the vortex structure of a thin superconducting film (SC) with a regular matrix of ferromagnetic dots (FD) deposited on top of it. The vortex pinning properties of such a magnetic lattice are studied, and the field polarity dependent votex pinning is observed. The exact vortex configuration depends on the size of the magnetic dots, their polarity, periodicity of the FD-rooster and the properties of the SC expressed through the effective Ginzburg-Landau parameter κ*.

  15. Commensurate vortex configurations in thin superconducting films nanostructured by square lattice of magnetic dots

    Energy Technology Data Exchange (ETDEWEB)

    Milosevic, M.V.; Peeters, F.M

    2004-05-01

    Within the phenomenological Ginzburg-Landau (GL) theory, we investigate the vortex structure of a thin superconducting film (SC) with a regular matrix of ferromagnetic dots (FD) deposited on top of it. The vortex pinning properties of such a magnetic lattice are studied, and the field polarity dependent votex pinning is observed. The exact vortex configuration depends on the size of the magnetic dots, their polarity, periodicity of the FD-rooster and the properties of the SC expressed through the effective Ginzburg-Landau parameter {kappa}*.

  16. Self-assembled artificial pinning centres in thick YBCO superconducting films

    Energy Technology Data Exchange (ETDEWEB)

    Mikheenko, P; Abell, J S; Sarkar, A; Dang, V S; Kechik, M M Awang; Tanner, J L; Crisan, A [School of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT (United Kingdom); Paturi, P; Huhtinen, H [Wihuri Physical Laboratory, Department of Physics and Astronomy, FI-20014 University of Turku (Finland); Babu, N Hari; Cardwell, D A, E-mail: p.mikheenko@bham.ac.u [Department of Engineering, Cambridge University, Cambridge CB2 1PZ (United Kingdom)

    2010-06-01

    Strong, artificial pinning centres are required in superconducting films of large thickness for power applications in high magnetic fields. One of the methods for the introduction of pinning centres in such films is substrate decoration, i.e., growing nanoscale islands of certain materials on the substrate prior to the deposition of the superconducting film. Two other methods are building up a layered distribution of a second phase and homogeneous incorporation of second phase inclusions from a compositional target. In this paper, we compare the effectiveness of these methods in terms of the type of the self-assembly of nanoparticles. The comparison is made over a large set of YBa{sub 2}Cu{sub 3}O{sub 7} films of thickness up to 6.6 {mu}m deposited with Au, Ag, Pd, LaNiO{sub 3}, PrBa{sub 2}Cu{sub 3}O{sub 7}, YBCO, BaZrO{sub 3} and Gd{sub 2}Ba{sub 4}CuWO{sub y} nanoparticles. It is found that substrate-decoration self-assembly is able to provide higher critical current in low magnetic field than the incorporation of homogeneous second phase in the sample microstructure. By specific modification of substrate decoration we achieved the self-field critical current per centimetre of width of 896 A/cm at 77.3 K and 1620 A/cm at 65 K in a film of thickness of 4.8 {mu}m.

  17. Characterization of superconducting multilayers samples

    CERN Document Server

    Antoine, C Z; Berry, S; Bouat, S; Jacquot, J F; Villegier, J C; Lamura, G; Gurevich, A

    2009-01-01

    Best RF bulk niobium accelerating cavities have nearly reached their ultimate limits at rf equatorial magnetic field H  200 mT close to the thermodynamic critical field Hc. In 2006 Gurevich proposed to use nanoscale layers of superconducting materials with high values of Hc > HcNb for magnetic shielding of bulk niobium to increase the breakdown magnetic field inside SC RF cavities [1]. Depositing good quality layers inside a whole cavity is rather difficult but we have sputtered high quality samples by applying the technique used for the preparation of superconducting electronics circuits and characterized these samples by X-ray reflectivity, dc resistivity (PPMS) and dc magnetization (SQUID). Dc magnetization curves of a 250 nm thick Nb film have been measured, with and without a magnetron sputtered coating of a single or multiple stack of 15 nm MgO and 25 nm NbN layers. The Nb samples with/without the coating clearly exhibit different behaviors. Because SQUID measurements are influenced by edge an...

  18. High-quality monolayer superconductor NbSe2grown by chemical vapour deposition.

    Science.gov (United States)

    Wang, Hong; Huang, Xiangwei; Lin, Junhao; Cui, Jian; Chen, Yu; Zhu, Chao; Liu, Fucai; Zeng, Qingsheng; Zhou, Jiadong; Yu, Peng; Wang, Xuewen; He, Haiyong; Tsang, Siu Hon; Gao, Weibo; Suenaga, Kazu; Ma, Fengcai; Yang, Changli; Lu, Li; Yu, Ting; Teo, Edwin Hang Tong; Liu, Guangtong; Liu, Zheng

    2017-08-30

    The discovery of monolayer superconductors bears consequences for both fundamental physics and device applications. Currently, the growth of superconducting monolayers can only occur under ultrahigh vacuum and on specific lattice-matched or dangling bond-free substrates, to minimize environment- and substrate-induced disorders/defects. Such severe growth requirements limit the exploration of novel two-dimensional superconductivity and related nanodevices. Here we demonstrate the experimental realization of superconductivity in a chemical vapour deposition grown monolayer material-NbSe 2 . Atomic-resolution scanning transmission electron microscope imaging reveals the atomic structure of the intrinsic point defects and grain boundaries in monolayer NbSe 2 , and confirms the low defect concentration in our high-quality film, which is the key to two-dimensional superconductivity. By using monolayer chemical vapour deposited graphene as a protective capping layer, thickness-dependent superconducting properties are observed in as-grown NbSe 2 with a transition temperature increasing from 1.0 K in monolayer to 4.56 K in 10-layer.Two-dimensional superconductors will likely have applications not only in devices, but also in the study of fundamental physics. Here, Wang et al. demonstrate the CVD growth of superconducting NbSe2 on a variety of substrates, making these novel materials increasingly accessible.

  19. Comportamiento de corrosión-erosión en recubrimientos de NbN depositados mediante sputtering magnetrón Erosion-corrosion behavior of magnetron sputtered NbN films

    Directory of Open Access Journals (Sweden)

    A Cáceres

    2012-08-01

    Full Text Available En la nueva generación de recubrimientos de uso industrial se incluye el nitruro de niobio (NbN debido a sus propiedades fisicoquímicas tales como: alta conductividad eléctrica, buenas propiedades mecánicas, alto punto de fusión e inercia química y además por ser un superconductor con temperatura crítica de 16 K. En este trabajo se reporta el efecto del sinergismo corrosión y erosión sobre recubrimientos de NbN depositados sobre acero inoxidable 304 y silicio usando los sistemas de sputtering con magnetrón balanceado y desbalanceado. Los experimentos de erosión-corrosión se estudiaron en un sistema que varió la velocidad y el ángulo de impacto de las partículas de erosión. Para ello se utilizó un lodo de partículas de SiO2 en una solución de 0,5M de H2SO4 + 3,5% NaCl y una concentración de 30% en peso de partículas de SiO2. La microestructura, morfología y composición química de las películas fueron analizadas con difracción de rayos X (DRX, microscopía electrónica de barrido (MEB y espectroscopia de fotoelectrones generados por rayos X (EFRX, respectivamente. Los resultados muestran que la resistencia a la erosión-corrosión de los recubiertos de NbN fue superior al sustrato y los mecanismos de desgaste sobre el recubrimiento dependen del ángulo de impacto y la velocidad de las partículas de erosión. Posibles razones de este comportamiento son discutidas en este trabajo.New generation PVD coatings for industrial applications include the niobium nitride (NbN due to its excellent properties such as high chemical inertness, excellent mechanical properties, high electrical conductivity, high melting point, and a superconducting transition temperature around 16 K. In this work we reported the results the study of corrosion and erosion effect on niobium nitride coatings deposited on AISI304 stainless steel using unbalanced and balanced magnetron sputtering and then it were compared to the uncoated tool steel substrate

  20. Calculations of superconducting parametric amplifiers performances

    Science.gov (United States)

    Goto, T.; Takeda, M.; Saito, S.; Shimakage, H.

    2017-07-01

    A superconducting parametric amplifier is an electromagnetic wave amplifier with high-quality characteristics such as a wide bandwidth, an extremely low noise, and a high dynamic range. In this paper, we report on the estimations of a YBCO superconducting parametric amplifier characteristic. The YBCO thin films were deposited on an MgO substrate by a pulsed laser deposition method. Based on the measured YBCO thin film parameters, theoretical calculations were implemented for evaluations of kinetic inductance nonlinearities and parametric gains. The nonlinearity of the YBCO thin film was estimated to be stronger than a single crystal NbTiN thin film. It is indicated that the YBCO parametric amplifier has a potential to be realized the amplifier with the high parametric gain. It is also expected that it could be operated in the range of the high frequency band, at the high temperature, and low applied current.

  1. Characterization of 3-dimensional superconductive thin film components for gravitational experiments in space

    Energy Technology Data Exchange (ETDEWEB)

    Hechler, S.; Nawrodt, R.; Nietzsche, S.; Vodel, W.; Seidel, P. [Friedrich-Schiller-Univ. Jena (Germany). Inst. fuer Festkoerperphysik; Dittus, H. [ZARM, Univ. Bremen (Germany); Loeffler, F. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany)

    2007-07-01

    Superconducting quantum interference devices (SQUIDs) are used for high precise gravitational experiments. One of the most impressive experiments is the satellite test of the equivalence principle (STEP) of NASA/ESA. The STEP mission aims to prove a possible violation of Einstein's equivalence principle at an extreme level of accuracy of 1 part in 10{sup 18} in space. In this contribution we present an automatically working measurement equipment to characterize 3-dimensional superconducting thin film components like i.e. pick-up coils and test masses for STEP. The characterization is done by measurements of the transition temperature between the normal and the superconducting state using a special built anti-cryostat. Above all the setup was designed for use in normal LHe transport Dewars. The sample chamber has a volume of 150 cm{sup 3} and can be fully temperature controlled over a range from 4.2 K to 300 K with a resolution of better then 100 mK. (orig.)

  2. Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon

    NARCIS (Netherlands)

    Tanner, M.G.; Natarajan, C.M.; Pottapenjara, V.K.; O'Connor, J.A.; Warburton, R.J.; Hadfield, R.H.; Baek, B.; Nam, S.; Dorenbos, S.N.; Bermúdez Ureña, E.; Zijlstra, T.; Klapwijk, T.M.; Zwiller, V.

    2010-01-01

    Superconducting nanowire single-photon detectors (SNSPDs) have emerged as a highly promising infrared single-photon detector technology. Next-generation devices are being developed with enhanced detection efficiency (DE) at key technological wavelengths via the use of optical cavities. Furthermore,

  3. Superconductivity in dense Mg1–xMxB2 (M = Zr, Nb, Mo; x = 0⋅05 ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Dense compacts of superconducting MgB2 material have been produced by sintering under 3 GPa pressure and 900°C using a cubic anvil apparatus. The starting material was produced by the powder in tube. (PIT) method at low pressure and in argon atmosphere. The effect of substitution of Mg sites with non-.

  4. 3D X-ray micro-tomography for modeling of NB{sub 3}SN multifilamentary superconducting wires

    Energy Technology Data Exchange (ETDEWEB)

    Tiseanu, Ion [National Institute for Lasers, Plasma and Radiation Physics (NILPRP), Bucharest-Magurele (Romania); Craciunescu, Teddy [National Institute for Lasers, Plasma and Radiation Physics (NILPRP), Bucharest-Magurele (Romania)], E-mail: teddy@infim.ro; Petrisor, Traian [Technical University of Cluj-Napoca (Romania); Corte, Antonio Della [ENEA Frascati (Italy)

    2007-10-15

    Practical superconducting cables used in large scale applications (e.g. magnets for fusion reactor) consist in superconducting filaments embedded in a normal-conducting matrix. The common technique to reduce the eddy-current losses is to twist the wire and the filaments during the manufacture. This also reduces the time-independent proximity effect between the filaments and its associated loss. Currently, the only method for measuring the twist-pitch consists in evidencing the twisted structure by etching techniques. This method is destructive and does not permit the visualization of the filaments. It is proved in this paper that X-ray micro-tomography permit the non-destructive reconstruction of the 3D image of the ITER-type multifilamentary wire enabling the determination of the number of inter-filament contacts on unite lengths well as the twist-pitch parameter. This can be used to develop a more complex model of the multifilamentary superconducting wire in order to explain the role of the internal wire structure on the superconducting transport properties.

  5. [Influence of Cu and Nb additives on specific surface properties and biological activity of transparent TiO2 thin-film coatings].

    Science.gov (United States)

    Wojcieszak, Damian; Kaczmarek, Danuta; Adamiak, Bogdan; Domaradzki, Jarosław; Mazur, Michał; Jankowska, Dominika; Gamian, Andrzej; Antosiak, Aleksandra; Szponar, Bogumiła

    2013-01-01

    Titanium dioxide is widely used as a bacteriostatic and non-toxic material. It is important, therefore, to modify its properties, for greater biological activity. The aim of this study was comparison of the specific surface properties and the biological activity of TiO2 and TiO2 with niobium and copper additives--TiO2:(Nb,Cu) thin films. TiO2 and TiO2:(Nb,Cu) thin films were prepared by high-energy magnetron sputtering of metallic Ti-Nb-Cu target in oxygen atmosphere. Films that have been deposited on glass substrates were investigated by transmission method and with the aid of optical profiler transparent. Besides, wettability measurements and antibacterial testes with Pseudomonas aeruginosa (PCM2058) were performed. The light transmission characteristics have shown that the film with niobium and copper additives was less transparent than undoped titanium dioxide. Studies of surface geometric structure, performed with the aid of optical profilometer, have shown that coatings were uniform and the surface roughness had several nanometers. The roughness of TiO2:(Nb, Cu) was higher compared to the film of undoped TiO2. The wettability measurements have shown that (Nb, Cu) additives cause a significant reduction in the degree of surface wettability relative to TiO2 and the change of properties from hydrophilic to hydrophobic. The results of the microbiological tests have shown that the TiO2:(Nb, Cu) film had a very good antibacterial properties, while the undoped TiO2 did not exhibit such properties. The analysis of all results of carried investigations has shown that manufactured TiO2:(Nb,Cu) thin films can be used as a transparent antibacterial coating.

  6. Gold nanocrystals in high-temperature superconducting films: Creation of pinning patterns of choice

    Energy Technology Data Exchange (ETDEWEB)

    Katzer, Christian; Michalowski, Peter; Schmidl, Frank; Seidel, Paul [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, 07743 Jena (Germany); Stahl, Claudia; Treiber, Sebastian; Schuetz, Gisela [Max-Planck-Institut fuer Intelligente Systeme, Heisenbergstrasse 3, 70569 Stuttgart (Germany); Christiani, Georg [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, 70569 Stuttgart (Germany); Albrecht, Joachim [Hochschule Aalen, Beethovenstrasse 1, 73430 Aalen (Germany)

    2013-07-01

    Many superconducting thin film devices require a spatially resolved current carrying capability due to different boundary conditions. On the one hand, the critical current density and the pinning of flux lines respectively should be high to reduce flux noise in the antenna regions of gradiometers; on the other hand, the critical current density of the Josephson junctions itself must not be too high to ensure a proper functionality. We report that adding gold nanoparticles during the preparation process of epitaxial YBa{sub 2}Cu{sub 3}O{sub 7-δ} thin films offers the possibility of creating spatially varying flux pinning properties, thus allowing to locally enhance the critical current density up to a factor of two. Magneto-optical investigations as well as transport measurements will be presented, indicating that an Au particle induced modification of the YBCO pinning properties allows the engineering of the critical current landscape on the sub-micrometre scale.

  7. Electronic origin of structure and mechanical properties in Y and Nb alloyed Ti-Al-N thin films

    Energy Technology Data Exchange (ETDEWEB)

    Rachbauer, Richard; Holec, David; Mayrhofer, Paul H. [Montanuniversitaet Leoben (Austria). Dept. of Physical Metallurgy and Materials Testing; Lattemann, Martina [Technical Univ. Darmstadt (Germany). Joint Research Laboratory Nanomaterials; Karlsruhe Inst. of Tech. (KIT), Karlsruhe (Germany); Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. of Nanotechnology; Hultman, Lars [Linkoeping Univ. (Sweden). Thin Film Physics Div.

    2011-06-15

    Ti{sub 1-x}Al{sub x}N thin films are industrially well established protective coatings, whose beneficial mechanical properties are mainly based on the formation of a metastable microstructure and local composition during film synthesis. Alloying of a transition metal (TM) to Ti{sub 1-x}Al{sub x}N is a promising approach to reach yet higher oxidation and corrosion resistance in high-temperature environments, while maintaining a high intrinsic hardness and elasticity, being essential for a good wear performance. In order to study the effect of alloying with Y and Nb on the structure and mechanical properties of the industrially preferred cubic (c) Ti{sub 1-x}Al{sub x}N system, quaternary Ti{sub 1-x-z}Al{sub x}Y{sub z}N and Ti{sub 1-x-z}Al{sub x}Nb{sub z}N films were deposited by means of plasma-assisted reactive magnetron sputtering and investigated using X-ray diffraction, transmission electron microscopy and nanoindentation. It is shown that Y addition to c-Ti{sub 0.42}Al{sub 0.58}N changes its structure towards single phase wurtzite (w) Ti{sub 0.36}Al{sub 0.55}Y{sub 0.09}N, with deteriorated mechanical properties. In contrast, by the addition of Nb the structure remains cubic up to the studied composition of c-Ti{sub 0.35}Al{sub 0.57}Nb{sub 0.08}N and the film hardness increases from 30.1 to 39.5 GPa. Ab initio studies show that the effect of Y and Nb alloying on structure and mechanical properties of quaternary Ti{sub 1-x-z}Al{sub x}TM{sub z}N is not only correlated with strain increase due to lattice mismatch, but rather the changed electronic configuration. (orig.)

  8. Investigation of the bulk pinning force in YBCO superconducting films with nano-engineered pinning centres

    Energy Technology Data Exchange (ETDEWEB)

    Crisan, A., E-mail: I.A.Crisan@bham.ac.uk [School of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT (United Kingdom); National Institute of Materials Physics, Bucharest 077125 (Romania); Dang, V.S.; Yearwood, G.; Mikheenko, P. [School of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT (United Kingdom); Huhtinen, H.; Paturi, P. [Wihuri Physical Laboratory, Department of Physics and Astronomy, University of Turku, Turku FI-20014 (Finland)

    2014-08-15

    Highlights: • Pinning centres in YBCO films increase critical current density and pinning force. • Normalised pinning force vs. reduced field give information on their nature. • Dew-Hughes model was used to analyse various nanostructured YBCO films. • Main pinning mechanism is normal surface pinning. - Abstract: For practical applications of superconducting materials in applied magnetic fields, artificial pinning centres in addition to natural ones are required to oppose the Lorentz force. These pinning centres are actually various types of defects in the superconductor matrix. The pinning centres can be categorised on their dimension (volume, surface, or point) and on their character (normal cores or Δκ cores). We have used the Dew Hughes approach to determine the types of pinning centres present in various samples, with various thicknesses, temperatures and nanostructured additions to the superconducting matrix. Results show that normal surface pinning centres are present throughout almost all the samples, as dominant pinning mechanism. Such 2D extended pinning centres are mainly due to dislocations, grain boundaries, nanorods. Strong normal point pinning centres were found to be common in BZO doped YBCO samples. Other types of pinning centres, in various (minor) concentrations were also found in some of the samples.

  9. Properties of La and Nb-modified PZT thin films grown by radio frequency assisted pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Verardi, P. [CNR-Istituto di Acustica, Via del Fosso del Cavaliere 100, I-00133 Rome (Italy); Craciun, F. [CNR-Istituto dei Sistemi Complessi, Via del Fosso del Cavaliere 100, I-00133 Rome (Italy); Dinescu, M. [NILPRP, Bucharest, PO Box MG-16, RO-76900 (Romania)]. E-mail: dinescum@ifin.nipne.ro; Scarisoreanu, N. [NILPRP, Bucharest, PO Box MG-16, RO-76900 (Romania); Moldovan, A. [NILPRP, Bucharest, PO Box MG-16, RO-76900 (Romania); Purice, A. [NILPRP, Bucharest, PO Box MG-16, RO-76900 (Romania); Galassi, C. [CNR-ISTEC, Via Granarolo 64, I 48018 Faenza (Italy)

    2005-04-25

    Lead zirconate titanate ferroelectric thin films added with La and Nb has been grown by radio frequency assisted pulsed laser deposition on Pt/Si, starting from sintered targets. The dielectric properties were measured in a large frequency range and their dependence on the a.c. driving field amplitude has been investigated. A linear decreasing of the dielectric permittivity with frequency logarithm increasing has been evidenced. The most important factor for the driving field amplitude influence on the dielectric properties is the type of vacancies introduced by La and Nb substitutions, which indicates that the dynamics involved in a.c. field behavior is controlled by interaction mechanisms between ferroelectric domain or nanodomain walls and pinning (vacancies) centers.

  10. Nanostructured thin film formation on femtosecond laser-textured Ti-35Nb-xZr alloy for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yong-Hoon [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Brantley, William A. [Division of Restorative and Prosthetic Dentistry and Primary Care, College of Dentistry, Ohio State University, Columbus, OH (United States)

    2011-05-31

    The aim of this study was to investigate the nanostructured thin film formation on femtosecond (FS) laser-textured Ti-35Nb-xZr alloy for biomedical applications. The initial surface roughening treatment involved irradiation with the FS laser in ambient air. After FS laser texturing, nanotubes were formed on the alloy surface using a potentiostat and a 1 M H{sub 3}PO{sub 4} solution containing 0.8 wt.% NaF with an applied cell voltage of 10 V for 2 h. The surface phenomena were investigated by FE-SEM, EDS, XRD, XPS and a cell proliferation test. It was found that nanostructured Ti-35Nb-xZr alloys after FS laser texturing had a hybrid surface topography with micro and nano scale structures, which should provide very effective osseointegration.

  11. Direct current field adjustable ferroelectric behaviour in (Pb, Nb)(Zr, Sn, Ti)O{sub 3} antiferroelectric thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zhai Jiwei [Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong (China); Chen, Haydn [Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong (China); Colla, Eugene V [Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL (United States); Wu, T B [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan (China)

    2003-02-19

    (Pb, Nb)(Zr, Sn, Ti)O{sub 3} antiferroelectric (AFE) thin films have been fabricated on LaNiO{sub 3}/Pt/Ti/SiO{sub 2}/Si wafers using a sol-gel process. The electric field-induced antiferroelectric-to-ferroelectric (AFE-FE) phase transformation behaviour and its dependence on the temperature were examined by investigating the dielectric constant and dielectric loss versus temperature and electrical field. The AFE-FE phase transformation temperature can be adjusted as a function of the DC bias field and the thickness of the thin film. With increasing DC bias field, the FE phase region was enlarged, the AFE-FE transformation temperature shifted to lower temperature, and the ferroelectric-to-paraelectric transformation temperature shifted to higher temperature. With increasing film thickness, the modulation effect of the DC bias field on the AFE-FE phase transformation temperature is increased.

  12. Heat Transfer Measurements through Thermally Enhanced Insulation Schemes for Nb-Ti Superconducting Magnets operating in He-II

    CERN Document Server

    Granieri, P P

    2011-01-01

    Superconducting magnets submitted to large heat loads, as the low-β quadrupoles for the LHC luminosity upgrade, need the development of new concepts of cable electrical insulation featuring a He-II porous wrapping scheme. This paper reports and discusses recent results of dedicated heat transfer measurements performed on different variants of such schemes, with emphasis on the heat transfer enhancements achievable with respect to the state-of-the-art insulation used for the main LHC magnets.

  13. Status Of The Work On The Base Directions Of The "rf Superconductivity For Accelerators" Program At The Federate Problem Lab At Ihep

    CERN Document Server

    Sevryukova, L

    2004-01-01

    In this report result of the study of electrophysical phenomena on the superconducting cavity surface, including plasma, bifurcation, hysteresis, emission and diffusion phenomena are considered. Science intensive recourse -saving technologies of superconducting cavities are being studied on the base of these phenomena. The superconducting cavities are made of Nb and Nb film, alloy film or HTC ceramics, which cover the working surface of the weldless copper shells using ion-plasma technologies (axial and planar magnetron sputtering). Quality monitoring (optical, emission, electrochemical and high frequency) of the working surface condition of superconducting cavities is developed under the realization of new technologies. The brief review of the experimental equipment is used as training base for individual students, post-graduate students and research staff in the field of technologies that use superconductivity phenomenon and ionic-plasma, electrochemical and high-vacuum technologies as well. For realizat...

  14. HiPIMS: a New Generation of Film Deposition Techniques for SRF Applications

    Energy Technology Data Exchange (ETDEWEB)

    Valente-Feliciano, Anne-Marie [JLAB

    2013-09-01

    Over the years, Nb/Cu technology, despite its shortcomings due to the commonly used magnetron sputtering, has positioned itself as an alternative route for the future of accelerator superconducting structures. Avenues for the production of thin films tailored for Superconducting RF (SRF) applications are showing promise with recent developments in ionized PVD coating techniques, i.e. vacuum deposition techniques using energetic ions. Among these techniques, High power impulse magnetron sputtering (HiPIMS) is a promising emerging technique which combines magnetron sputtering with a pulsed power approach. This contribution describes the benefits of energetic condensation for SRF films and the characteristics of the HiPIMS technology. It describes the on-going efforts pursued in different institutions to exploit the potential of this technology to produce bulk-like Nb films and go beyond Nb performance with the development of film systems, based on other superconducting materials and multilayer structures.

  15. Fabrication of superconducting MgB{sub 2} thin films and characterization by THz-transmission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fabretti, Savio; Thomas, Patrick; Thomas, Andy [Thin Films and Physics of Nanostructures, Bielefeld University (Germany); Scheuch, Martin; Kampfrath, Tobias; Frischkorn, Christian; Wolf, Martin [Fritz-Haber-Institut, MPG, Faradayweg 4-6, 14195 Berlin (Germany)

    2011-07-01

    Superconducting MgB{sub 2} thin films were fabricated by magnetron rf and dc co-sputtering on heated silicon and diamond substrates. They were annealed ex-situ for one hour at 650 C. The superconducting phase transition was characterized contactless by means of terahertz time-domain spectroscopy in the frequency range from 0.8 to 4 THz. For this purpose, amplitude- and phase-resolved transmission measurements of the MgB{sub 2} films for temperatures between 5 and 50 K were performed to extract the complex conductivity. The data show that both samples are homogeneous on a length scale of millimeters and superconducting below a transition temperature of about 22 K. This paves the way to investigate charge-carrier dynamics in MgB{sub 2} with time-resolved THz spectroscopy.

  16. Single-step in-situ preparation of magnesium diboride superconducting thin films by dc magnetron sputtering

    CERN Document Server

    Ma, P; Zhang Sheng Yuan; Wang Xin; Xie Fei Xiang; Deng Peng; Nie Rui Juan; Wang Shou Zheng; Dai Yuan Dong; Wang Fu Ren

    2002-01-01

    In a single-step in-situ procedure, the superconducting MgB sub 2 (101) highly oriented thin films have been successfully grown on the SrTiO sub 3 (100) substrates by using the synthesised MgB sub 2 target and controlling the magnetron sputtering working at the state of abnormal glow discharge or arc discharge. The films have a zero resistance transition temperature of 15 K and an onset transition temperature of 33 K

  17. In-Situ Preparation of Ytterbium-Barium - Superconducting Thin Films Using Pure Ozone Vapor Oxidation

    Science.gov (United States)

    Berkley, Dale Dane

    A new process for preparing thin films of the YBa_2Cu_3O _{rm 7-x} high transition temperature superconducting oxide completely in-situ, without the need for a post-evaporation anneal has been developed. This work is a significant advancement in the effort to achieve a fully mature, high quality thin film-making process for scientific and technical applications. A pure ozone vapor, derived from the distilled liquid, is used to oxidize the co-evaporated metallic constituents during deposition to nucleate the superconducting phase in the vacuum chamber. Films exhibiting zero resistance transition temperatures at 85 K have been grown on strontium titanate substrates using a substrate temperature of 700 ^circC. Background evaporation pressures of 2 x 10^{-7}Torr are employed during film growth. Films prepared using this process contain primarily mixed a- and c-axis oriented grains which, as evidenced by Transmission Electron Microscopy, exhibit a high degree of epitaxial order with the substrate. Processing at lower substrate temperatures results in a depression of T _{rm c} consistent with the behavior observed for other in-situ techniques. It is unclear at this time whether this depression can be attributed to an oxygen deficiency or an expanded c-axis lattice parameter which is always associated with lower temperature processing. Measurements of the critical current of a prototype YBa_2Cu_3O _{rm 7-x}/Au/Pb proximity tunneling junction prepared in-situ using the ozone process do not exhibit the expected magnetic field and temperature dependence. This observation may be the result of a poorly defined tunneling geometry subject to the vagaries of edge effects or filamentary electrical shorts through the normal metal layer. Important implications for the investigation of an isotope effect in the high T_{rm c} superconductors is made possible by the development of the ozone technique. By distilling the ^{18}O gas into a "heavy ozone," thin films can be efficiently

  18. Influence of Fe Buffer Layer on Co-Doped BaFe2As2 Superconducting Thin Films

    Directory of Open Access Journals (Sweden)

    C. Bonavolontà

    2015-01-01

    Full Text Available A systematic characterization of Co-doped BaFe2As2 (Ba-122 thin films has been carried out. Two samples were available, one grown on CaF2 substrate and the other on MgO with an Fe buffer layer. The goal was to investigate films’ magnetic and superconducting properties, their reciprocal interplay, and the role played by the Fe buffer layer in modifying them. Morphological characterization and Energy Dispersive X-ray analyses on the Fe-buffered sample demonstrate the presence of diffused Fe close to the Co-doped Ba-122 outer surface as well as irregular holes in the overlying superconducting film. These results account for hysteresis loops obtained with magneto-optic Kerr effect measurements and observed at both room and low temperatures. The magnetic pattern was visualized by magneto-optical imaging with an indicator film. Moreover, we investigated the onset of superconductivity through a measure of the superconducting energy gap. The latter is strictly related to the decay time of the excitation produced by an ultrashort laser pulse and has been determined in a pump-probe transient reflectivity experiment. A comparison of results relative to Co-doped Ba-122 thin films with and without Fe buffer layer is finally reported.

  19. Interaction of super high frequency radiation with superconducting Bi(Pb)-Sr-Ca-Cu-O thin-film structures

    Science.gov (United States)

    Bondar, V. D.; Vasyliv, M. Ya.; Davydov, V. M.; Lutsiv, R. V.; Pustylnik, O. D.; Khymenko, O. A.

    2002-05-01

    High temperature superconducting thin films Bi(Pb)-Sr-Ca-Cu-O system were obtained by RFmagnetron ion-plasma sputtering. The detecting bridge-like elements 100-500 mkm wide have been fabricated with laser scribing. The detecting effect was investigated in super high frequency radiation field of 137 GHz.

  20. Application of a phenomenological model for the surface impedance in high temperature superconducting films

    Energy Technology Data Exchange (ETDEWEB)

    Mosquera, A.S. [Grupo de Nuevos Materiales, Universidad del Magdalena, Santa Marta (Colombia); Landinez Tellez, D.A.; Roa-Rojas, J. [Grupo de Fisica de Nuevos Materiales, Departamento de Fisica, Universidad Nacional de Colombia, A.A. 14490, Bogota DC (Colombia)

    2007-07-01

    We report the application of a phenomenological model for the microwave surface impedance in high temperature superconducting films. This model is based on the modified two-fluid model, in which the real and imaginary parts of the surface impedance use the modelling parameter {gamma}. This is responsible for the superconducting and normal charge carrier density and is used for the description of the temperature dependence of the London penetration depth {lambda}{sub L}(T) including {lambda}{sub L}(0). The relaxation time model also uses the {gamma} parameter in combination with the residual resistance parameter {alpha}. The parameter {delta}{sub 1}<<1 provides a finite value of the relaxation time at T=0. The normal conductivity is described by the metals conduction model and the phenomenological description of the normal conductivity contains four parameters: {delta}{sub 1}, {gamma}, {alpha}, and {delta}{sub 2}. The parameter {delta}{sub 2}<<1 is responsible for the non-pairing part of the charge carrier at T=0. Temperature dependence of {sigma}{sub n}(T) is a result of the competition between the increase of the relaxation time and the decrease of the normal charge-carrier density. We applied this model to analyze experimental results of MgB{sub 2}, YBa{sub 2}Cu{sub 3}O {sub 7-{delta}} and GdBa{sub 2}Cu{sub 3}O{sub 7-{delta}} superconducting material. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. l/f Noise in the Superconducting Transition of a MgB2 Thin Film

    Science.gov (United States)

    Lakew, B.; Aslam, S.; Jones, H.; Stevenson, T.; Cao, N.

    2010-01-01

    The noise voltage spectral density in the superconducting transition of a MgB2 thin film on a SiN-coated Si thick substrate was measured over the frequency range 1 Hz-to-1 KHz. Using established bolometer noise theory the theoretical noise components due to Johnson, 1/f(excess) and phonon noise are modeled to the measured data. It is shown that for the case of a MgB2 thin film in the vicinity of the mid-point of transition, coupled to a heat sink via a fairly high thermal conductance (approximately equal to 10(sup -1) W/K)) that the measured noise voltage spectrum is 1/f limited and exhibits lit dependence with a varying between 0.3 and 0.5 in the measured frequency range. At a video frame rate frequency of 30 Hz the measured noise voltage density in the film is approximately equal to 61 nV /the square root of HZ, using this value an upper limit of electrical NEP approximately equal to 0.67pW / the square root of Hz is implied for a practical MgB2 bolometer operating at 36.1 K.

  2. Superconducting tunneling on thin film gold nanowires - a platform for searching Majorana fermions

    Science.gov (United States)

    Wei, Peng; Lee, Patrick; Moodera, Jagadeesh

    The metallic surface states of (111)-oriented gold thin film has been theoretically shown to be a superior candidate for Majorana fermions (MF) due to its orders of magnitude stronger spin-orbit coupling compared to semiconductor nanowires. We experimentally demonstrate an ideal platform using heterostructure based nanowires for achieving this, and exploit quantum tunneling to probe the MFs forming at the end of the nanowires. By controlling the material properties of the tunnel barrier, we explore the peculiar behaviors of superconducting gold surface states in both pair tunneling (Josephson like) and quasiparticle tunneling regimes that may hint the signatures of MFs. Additionally, in the mesoscopic 1D gold nanowire superconductor, we observe a new superconducting phase with an energy gap much larger than any of the superconductors in the tunneling device, hinting possible unknown pairing mechanism. Our approach directly demonstrates a crucial step in achieving realistic fault-tolerant quantum computation devices based on non-abelian particles. We acknowledge John Templeton Foundation Grant-39944, NSF DMR-1207469 and ONR N00014-13-1-0301.

  3. Characterization of superconducting nanometric multilayer samples for superconducting rf applications: First evidence of magnetic screening effect

    Directory of Open Access Journals (Sweden)

    C. Z. Antoine

    2010-12-01

    Full Text Available The best rf bulk niobium accelerating cavities have nearly reached their ultimate limits at rf equatorial magnetic field H≈200  mT close to the thermodynamic critical field H_{c}. In 2006 Gurevich proposed to use nanoscale layers of superconducting materials with high values of H_{c}>H_{c}^{Nb} for magnetic shielding of bulk niobium to increase the breakdown magnetic field of superconducting rf cavities. Depositing good quality layers inside a whole cavity is rather difficult, so as a first step, characterization of single layer coating and multilayers was conducted on high quality sputtered samples by applying the technique used for the preparation of superconducting electronics circuits. The samples were characterized by x-ray reflectivity, dc resistivity (PPMS, and dc magnetization (SQUID measurements. Dc magnetization curves of a 250 nm thick Nb film have been measured, with and without a magnetron sputtered coating of a single or multiple stack of 15 nm MgO and 25 nm NbN layers. The Nb samples with/without the coating exhibit different behaviors and clearly show an enhancement of the magnetic penetration field. Because SQUID measurements are influenced by edge and shape effects, we propose to develop a specific local magnetic measurement of H_{C1} based on ac third harmonic analysis in order to reveal the true screening effect of multilayers.

  4. Epitaxial growth of superconducting MgB2 thin films with a Mg buffer layer at 110 °C

    Science.gov (United States)

    Shishido, Hiroaki; Nakagami, Takatoshi; Yoshida, Takuya; Ishida, Takekazu

    2017-07-01

    Since the discovery of MgB2, its application to superconducting electronics has been limited by the absent of proper microfabrication techniques. In this study, we grew crystalline MgB2 thin films using molecular beam epitaxy at a low substrate temperature of 110 °C under ultra-high vacuum of about 10-6 Pa. MgB2 thin films were deposited with an epitaxial Mg buffer layer on c-plane 4H-SiC or sapphire substrates. In spite of the low growth temperature, superior crystallinity and surface flatness were confirmed by in situ reflection high-energy electron diffraction and X-ray diffraction measurements. Moreover, we successfully confirmed the occurrence of a sharp superconducting transition at 27 K. The present growth temperature was lower than any in prior reports on superconducting MgB2 thin films, and is lower than the applicable temperature of an organic-based lift-off resist. Our new MgB2 thin film growth process is promising for the development of an alternative nanofabrication technique for MgB2 thin films by means of a standard lift-off process with an organic resist.

  5. Monitoring of Spectral Map Changes from Normal State to Superconducting State in High-TC Superconductor Films Using Raman Imaging

    Directory of Open Access Journals (Sweden)

    J. L. González-Solís

    2015-01-01

    Full Text Available We have explored the chemical structure of TlBa2Ca2Cu3O9 high-TC superconductor films with Tl-1223 phase to monitor spectral map changes from normal state to superconducting state using the technique of Raman imaging. Raman images were performed for 12 different temperatures in the 77–293 K range. At room temperature, the Raman images were characterized by a single color but as the temperature dropped a new color appeared and when the temperature of 77 K is reached and the superconducting state is assured, the Raman images were characterized by the red, green, and blue colors. Our study could suggest that the superconducting state emerged around 133 K, in full agreement with those reported in the literature. A cross-checking was done applying principal component analysis (PCA to other sets of Raman spectra of our films measured at different temperatures. PCA result showed that the spectra can be grouped into two temperature ranges, one in the 293–153 K range and the other in the 133–77 K range suggesting that transition to the superconducting state occurred at some temperature around 133 K. This is the first report of preliminary results evaluating the usefulness of Raman imaging in determination of transition temperature of superconductor films.

  6. Effect of ultrasonic cavitation on the diffusivity of a point defect in the passive film on formed Nb in 0.5 M HCl solution.

    Science.gov (United States)

    Li, D G

    2015-11-01

    This work primarily focused on the influence of ultrasonic cavitation on the transport property of the point defect in the passive film on formed Nb in 0.5M HCl solution via electrochemical techniques based on the point defect model (PDM). The influence of ultrasonic cavitation on the composition and structure of the passive film was detected by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). The transport property of a point defect in the passive film was characterized by the diffusivity of the point defect (D0). The influences of the ultrasonic cavitation power, passivated time and the distance between horn bottom and sample surface on D0 were analyzed. The results demonstrated that the passive film formed on Nb was an n-type semiconductor with a donor density (ND) ranging from 10(19) cm(-3) to 10(20) cm(-3) in the case of static state, while the order of ND increased one to two times by applying ultrasonic cavitation during film formation. The diffusivity of the point defect (D0) in the passive film formed on Nb at 0.5 V for 1 h in a 0.5 M HCl solution in the static state was calculated to be 9.704×10(-18) cm(2) s(-1), and it increased to 1.255×10(-16) cm(2) s(-1), 7.259×10(-16) cm(2) s(-1) and 7.296×10(-15) cm(2) s(-1) when applying the 180 W, 270 W and 450 W ultrasonic cavitation powers during film formation. D0 increased with the increment of the ultrasonic cavitation power, and decreased with the increased in formation time and distance between the horn bottom and sample surface. AES results showed the film structure and composition were changed by applying the ultrasonic cavitation. XPS results revealed that the passive film was mainly composed of Nb2O5 in the static state, and the low valence Nb-oxide (NbO) appeared in the passive film except Nb2O5 in the case of applying a 270 W ultrasonic cavitation power. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Preparation and properties of the (Sr,BaNb2O6 thin films by using the sputtering method

    Directory of Open Access Journals (Sweden)

    Diao Chien-Chen

    2017-01-01

    Full Text Available Strontium barium niobate (Sr0.3Ba0.7Nb2O6, SBN thin films were deposited on silicon substrate by using the radio frequency magnetron sputtering and under different deposition power and time at room temperature. Surface morphology and thicknesses of the SBN thin films were characterized by field emission scanning electron microscopy. The crystallization films at different deposition power and time were analyzed by X-ray diffraction (XRD using CuKα radiation from a Rigaku rotating anode with an incident angle of 2°. The remnant polarization (Pr, saturation polarization (Ps, and minimum coercive field (Ec properties of the metal-ferroelectric-metal (MFM structure were measured using ferroelectric material test instrument. The SBN thin films deposited at 90 min and 125 W had the maximum Pr, Ps, and minimum Ec of 1.26 μC/cm2, 2.41 μC/cm2, and 201.6 kV/cm, respectively. From above results, it knows that the SBN thin films suit for application on ferroelectric random access memory (FeRAM.

  8. Resistance fluctuations in insulating silicon films with superconducting nanoprecipitates – superconductor-to-metal or vortex matter phase transition?

    Directory of Open Access Journals (Sweden)

    V. Heera

    2015-11-01

    Full Text Available Silicon films with Ga-rich nanoprecipitates are superconductors or insulators in dependence on their normal state resistance. Even in the insulating state of the film superconducting nanoprecipitates exist below the critical temperature of 7 K and determine its complex transport behavior. In this range sometimes large, random resistance jumps appear that are accompanied by little temperature changes. The resistance fluctuates between a well-defined low-resistance value and a broader band of higher resistances. Jumps to higher resistance are associated with a temperature decrease and vice versa. We present experimental results on these fluctuations and suppose a first order phase transition in the film as probable origin.

  9. Fabry-Perot Interferometer-Based Electrooptic Modulator using LiNbO3 and Organic Thin Films

    Science.gov (United States)

    Banks, C.; Frazier, D.; Penn, B.; Abdeldayem, H.; Sharma, A.; Yelleswarapu, C.; Leyderman, Alexander; Correa, Margarita; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    We report the study of a Fabry-Perot electro-optical modulator using thin crystalline film NPP, and Crystalline LiNbO3. We are able to observe 14, and 60 percent degree of modulation. Measurements were carried using a standard lock-in amplifier with a silicon detector. The proposal to design a Fabry-Perot electro-optic modulator with an intracavity electro-optically active organic material was based on the initial results using poled polymer thin films. The main feature of the proposed device is the observation that in traditional electrooptic modulators like a Packets cell, it requires few kilovolts of driving voltage to cause a 3 dB modulation even in high figure-of-merit electrooptic materials like LiNbO3. The driving voltage for the modulator can be reduced to as low as 10 volts by introducing the electrooptic material inside die resonant cavity of a Fabry-Perot modulator. This is because the transmission of the Fabry-Perot cavity varies nonlinearly with the change of refractive index or phase of light due to applied electric field.

  10. Effect of Si addition on the structure and corrosion behavior of NbN thin films deposited by unbalanced magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Velasco, L. [Universidad Nacional de Colombia, Departamento de Ingenieria Mecanica y Mecatronica, Facultad de Ingenieria, Bogota (Colombia); University of Southern California, Department of Chemical Engineering and Materials Science, Los Angeles, CA (United States); Olaya, J.J. [Universidad Nacional de Colombia, Departamento de Ingenieria Mecanica y Mecatronica, Facultad de Ingenieria, Bogota (Colombia); Rodil, S.E. [Universidad Nacional Autonoma de Mexico, Instituto de Investigaciones en Materiales, Mexico, D. F. (Mexico)

    2016-02-15

    In this work, nanostructured Nb{sub x}Si{sub y}N{sub z} thin films were deposited onto stainless steel AISI 304 substrates by co-sputtering a Nb target with Si additions while using unbalanced magnetron sputtering. The microstructure was analyzed by X-ray diffraction, and the chemical composition was identified by X-ray photoelectron spectroscopy. The hardness was measured by nanoindentation, and the corrosion resistance was studied by potentiodynamic polarization curves and electrochemical impedance spectroscopy using a 3 wt% NaCl solution. The addition of Si in the NbN thin films changed the microstructure from a crystalline to an amorphous phase. The chemical analysis showed the presence of both Si{sub 3}N{sub 4} and NbN phases. The hardness decreased from 20 GPa (NbN) to 15 GPa for the film with the highest Si concentration (28.6 at.%). Nevertheless, the corrosion properties were significantly improved as the Si concentration increased; the polarization resistance after 168 h of immersion was two orders of magnitude larger in comparison with the substrate. (orig.)

  11. BaTiO3 FILMS DEPOSITED ONTO TiNb AND Ti SUBSTRATES - AMOUNT AND STABILITY OF BARIUM

    Directory of Open Access Journals (Sweden)

    Kamila Moriová

    2017-06-01

    Full Text Available BaTiO3 films deposited onto TiNb and Ti substrates using hydrothermal synthesis method were studied in the presented work. These films are supposed to improve properties of bone implants due to their ferroelectric behaviour, because ferroelectrics induce improved bone formation. A great question is the chemical stability of the used material. It can be crucial for its biocompatibility and possible in vivo application. We studied chemical composition of prepared samples, especially concentration of Ba and Ti and trends of these concentrations stimulated by a solution saline action. The Ba and Ti concentrations were determined by XPS under ultra - high vacuum condition. The BaTiO3 films were investigated as received after the preparation procedure as well as after a long - time treatment in solution saline. Every sample was introduced to the solution saline at first for 1 and later for 3 weeks. Ti concentration almost does not change during our experiments while a meaningful Ba decrease is observed. Nevertheless, barium release seems to slow down with respect to the time of solution saline action. Stability of barium titanate films in a period of several months and an absolute amount of the released barium will be a subject of the next research.

  12. High Curie point CaBi2Nb2O9 thin films: A potential candidate for lead-free thin-film piezoelectrics

    Science.gov (United States)

    Simões, A. Z.; Ries, A.; Riccardi, C. S.; Gonzalez, A. H. M.; Longo, E.; Varela, J. A.

    2006-10-01

    CaBi2Nb2O9 (CBNO) thin films deposited on platinum coated silicon substrates by the polymeric precursor method exhibited good structural, dielectric, and piezoelectric characteristics. Capacitance-voltage measurements indicated good ferroelectric polarization switching characteristics. Remanent polarization and drive voltage values were 4.2μC /cm2 and 1.7V for a maximum applied voltage of 10V. The film has a piezoelectric coefficient d33 equal to 60pm/V, current density of 0.7μA/cm2, and Curie temperature of 940°C. The polar-axis-oriented CBNO is a promising candidate for use in lead-free high Curie point in ferroelectric and piezoelectric devices.

  13. Protection of high temperature superconducting thin-films in a semiconductor processing environment

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yizi; Fiske, R.; Sanders, S.C.; Ekin, J.W. [National Institute of Standards and Technology, Boulder, CO (United States)

    1996-12-31

    Annealing studies have been carried out for high temperature superconductor YBaCuO{sub 7{minus}{delta}} in a reducing ambient, in order to identify insulator layer(s) that will effectively protect the superconducting film in the hostile environment. While a layer of magnesium oxide (MgO) sputter deposited directly on YBaCuO{sub 7{minus}{delta}} film provides some degree of protection, the authors found that a composite structure of YBCO/SrTiO{sub 3}/MgO, where the SrTiO{sub 3} was grown by laser ablation immediately following YBCO deposition (in-situ process), was much more effective. They also address the need for a buffer layer between YBCO and aluminum (Al) during annealing. Al is most commenly used for semiconductor metalization, but is known to react readily with YBCO at elevated temperatures. The authors found that the most effective buffer layers are platinum (Pt) and gold/platinum (Au/Pt).

  14. Enhancing the Critical Current of a Superconducting Film in a Wide Range of Magnetic Fields with a Conformal Array of Nanoscale Holes

    OpenAIRE

    Wang, Yong-Lei; Latimer, M. L.; Xiao, Zhi-Li; Divan, R.; Ocola, L. E.; Crabtree, G. W.; Kwok, Wai-Kwong

    2013-01-01

    The maximum current (critical current) a type-II superconductor can transmit without energy loss is limited by the motion of the quantized magnetic flux penetrating into a superconductor. Introducing nanoscale holes into a superconducting film has been long pursued as a promising way to increase the critical current. So far the critical current enhancement was found to be mostly limited to low magnetic fields. Here we experimentally investigate the critical currents of superconducting films w...

  15. Pr0.5Ca0.5MnO3 thin films deposited on LiNbO3 substrates

    Directory of Open Access Journals (Sweden)

    Araújo J. P.

    2013-01-01

    Full Text Available Thin films of Pr0.5Ca0.5MnO3 have been deposited on z-cut LiNbO3 by pulsed laser ablation. The Xray diffraction measurements showed that the films have grown highly oriented on LiNbO3, with a pseudocubic (111 preferred growth direction. The thicknesses of the films, measured by low angle X-ray reflectivity, are between 13 and 140 nm. Their electrical resistivity present a semiconducting-like behaviour with an anomaly around 240 K, that corresponds to the charge ordering transition. The temperature of the transition (TCO was estimated from ln ρ vs. (1/T plots. The charge ordering temperature was found to be dependent on the strain induced by the lattice mismatch on the films.

  16. New Methods for Thin Film Deposition and First Investigations of the use of High Temperature Superconductors for Thin Film Cavities

    CERN Document Server

    Gustafsson, Anna; Vollenberg, Wilhelmus; Seviour, Rebecca

    2010-01-01

    Niobium thin film cavities have shown good and reliable performance for LEP and LHC, although there are limitations to overcome if this technique should be used for new accelerators such as the ILC. New coating techniques like High Power Impulse Magnetron Sputtering (HiPIMS) has shown very promising results and we will report on its possible improvements for Nb thin film cavity performance. Current materials used in accelerator Superconducting Radio Frequency (SRF) technologies operate at temperatures below 4 K, which require complex cryogenic systems. Researchers have investigated the use of High Temperature Superconductors (HTS) to form RF cavities, with limited success. We propose a new approach to achieve a high-temperature SRF cavity based on the superconducting ’proximity effect’. The superconducting proximity effect is the effect through which a superconducting material in close proximity to a non-superconducting material induces a superconducting condensate in the latter. Using this effect we hope...

  17. Common electronic origin of superconductivity in (Li,Fe)OHFeSe bulk superconductor and single-layer FeSe/SrTiO3 films.

    Science.gov (United States)

    Zhao, Lin; Liang, Aiji; Yuan, Dongna; Hu, Yong; Liu, Defa; Huang, Jianwei; He, Shaolong; Shen, Bing; Xu, Yu; Liu, Xu; Yu, Li; Liu, Guodong; Zhou, Huaxue; Huang, Yulong; Dong, Xiaoli; Zhou, Fang; Liu, Kai; Lu, Zhongyi; Zhao, Zhongxian; Chen, Chuangtian; Xu, Zuyan; Zhou, X J

    2016-02-08

    The mechanism of high-temperature superconductivity in the iron-based superconductors remains an outstanding issue in condensed matter physics. The electronic structure plays an essential role in dictating superconductivity. Recent revelation of distinct electronic structure and high-temperature superconductivity in the single-layer FeSe/SrTiO3 films provides key information on the role of Fermi surface topology and interface in inducing or enhancing superconductivity. Here we report high-resolution angle-resolved photoemission measurements on the electronic structure and superconducting gap of an FeSe-based superconductor, (Li0.84Fe0.16)OHFe0.98Se, with a Tc at 41 K. We find that this single-phase bulk superconductor shows remarkably similar electronic behaviours to that of the superconducting single-layer FeSe/SrTiO3 films in terms of Fermi surface topology, band structure and the gap symmetry. These observations provide new insights in understanding high-temperature superconductivity in the single-layer FeSe/SrTiO3 films and the mechanism of superconductivity in the bulk iron-based superconductors.

  18. 11B-NMR study in boron-doped diamond films

    Directory of Open Access Journals (Sweden)

    H. Mukuda, T. Tsuchida, A. Harada, Y. Kitaoka, T. Takenouchi, Y. Takano, M. Nagao, I. Sakaguchi and H. Kawarada

    2006-01-01

    Full Text Available We have investigated an origin of the superconductivity discovered in boron (B-doped diamonds by means of 11B-NMR on heteroepitaxially grown (1 1 1 and (1 0 0 films and polycrystalline film. The characteristic difference of B-NMR spectral shape for the (1 1 1 and (1 0 0 thin films is demonstrated as arising from the difference in the concentration (nB(1 of boron substituted for carbon. It is revealed from a scaling between a superconducting transition temperature Tc and nB(1 that the holes doped into diamond via the substitution of boron for carbon are responsible for the onset of superconductivity. The result suggests that the superconductivity in boron-doped diamond is mediated by the electron–phonon interaction brought about a high Debye temperature ~1860 K characteristic for the diamond structure.

  19. Subharmonic energy gap structure in the Josephson radiation at 35 GHz from a superconducting thin-film microbridge

    DEFF Research Database (Denmark)

    Hansen, Jørn Bindslev; Levinsen, M. T.; Lindelof, Poul Erik

    1979-01-01

    Nonresonant detection of the Josephson radiation 35 GHz from a superconducting thin-film microbridge is reported. The high frequency and the accuracy of these measurements lead to a new important observation: subharmonic energy gap structure in the detected integral power. The maximum integral po...... power measured was as large as 8×10−11 W. Applied Physics Letters is copyrighted by The American Institute of Physics....

  20. A study of two-level system defects in dielectric films using superconducting resonators

    Science.gov (United States)

    Khalil, Moe Shwan

    In this dissertation I describe measurements of dielectric loss at microwave frequencies due to two level systems (TLS) using superconducting resonators. Most measurements were performed in a dilution refrigerator at temperatures between 30 and 200 mK and all resonators discussed were fabricated with thin-film superconducting aluminum. I derive the transmission through a non-ideal (mismatched) resonant circuit and find that in general the resonance line-shape is asymmetric. I describe an analysis method for extracting the internal quality factor (Q i), the diameter correction method (DCM), and compare it to a commonly used phenomenological method, the phi rotation method (phiRM). I analytically find that the phiRM deterministically overestimates Qi when the asymmetry of the resonance line-shape is high. Four coplanar resonator geometries were studied, with frequencies spanning 5-7 GHz. They were all superconducting aluminum fabricated on sapphire and silicon substrates. These include a quasi-lumped element resonator, a coplanar strip transmission line resonator, and two hybrid designs that contain both a coplanar strip and a quasi-lumped element. Measured Qi's were as high as 2 x 105 for single photon excitations and there was no systematic variation in loss between quasi-lumped and coplanar strip resonance modes. I also measured the microwave loss tangent of several atomic layer deposition (ALD) grown dielectrics and obtained secondary ion mass spectrometry (SIMS) measurements of the same films. I found that hydrogen defect concentrations were correlated with low temperature microwave loss. In amorphous films that showed excess hydrogen defects on the surface, two independent TLS distributions were required to fit the loss tangent, one for the surface and one for the bulk. In crystalline dielectrics where hydrogen contamination was uniform throughout the bulk, a single bulk TLS distribution was sufficient. Finally, I measured the TLS loss in 250 nm thick HD

  1. Surface wave investigations of Se amorphous thin films deposited on LiNbO/sub 3/

    Energy Technology Data Exchange (ETDEWEB)

    Kostial, P. (Technical University of Transport and Communication Engineering, Zilina (Czechoslovakia). Dept. of Physics)

    1982-03-16

    A study is presented of the temperature dependence between 300 and 350 K of the ultrasound attenuation and velocity of Rayleigh surface waves propagating in Se amorphous layers deposited on Y-cut LiNbO/sub 3/. The possibility of utilization of Rayleigh surface waves for the study of visco-elastic properties of thin layers deposited on a piezoelectric substrate is discussed.

  2. Fabricating superconducting interfaces between artificially grown LaAlO3 and SrTiO3 thin films

    Directory of Open Access Journals (Sweden)

    Danfeng Li

    2014-01-01

    Full Text Available Realization of a fully metallic two-dimensional electron gas (2DEG at the interface between artificially grown LaAlO3 and SrTiO3 thin films has been an exciting challenge. Here we present for the first time the successful realization of a superconducting 2DEG at interfaces between artificially grown LaAlO3 and SrTiO3 thin films. Our results highlight the importance of two factors—the growth temperature and the SrTiO3 termination. We use local friction force microscopy and transport measurements to determine that in normal growth conditions the absence of a robust metallic state at low temperature in the artificially grown LaAlO3/SrTiO3 interface is due to the nanoscale SrO segregation occurring on the SrTiO3 film surface during the growth and the associated defects in the SrTiO3 film. By adopting an extremely high SrTiO3 growth temperature, we demonstrate a way to realize metallic, down to the lowest temperature, and superconducting 2DEG at interfaces between LaAlO3 layers and artificially grown SrTiO3 thin films. This study paves the way to the realization of functional LaAlO3/SrTiO3 superlattices and/or artificial LaAlO3/SrTiO3 interfaces on other substrates.

  3. Superconductor (Nb)-charge density wave (NbSe sub 3) point-contact spectroscopy

    CERN Document Server

    Sinchenko, A A

    2003-01-01

    Measurements of differential current-voltage (I-V) characteristics of point contacts between Nb and the charge density wave (CDW) conductor NbSe sub 3 formed along the conducting chain direction are reported. Below the superconducting transition of Nb, we have clearly observed Andreev reflection of the gapless electrons of NbSe sub 3. Analysis of the spectra obtained indicates that when the energy of injected particles exceeds the superconducting energy gap, the superconductivity near the S-CDW interface is suppressed because of non-equilibrium effects.

  4. Spin texture on top of flux avalanches in Nb/Al 2 O 3 /Co thin film heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, R. F.; Carmo, D.; Colauto, F.; Ortiz, W. A.; de Andrade, A. M. H.; Johansen, T. H.; Baggio-Saitovitch, E.; Pureur, P.

    2017-01-07

    We report on magneto-optical imaging, magnetization, Hall effect, and magneto-resistance experiments in Nb/Al2O3/Co thin film heterostructures. The magneto-transport measurements were performed in samples where electrical contacts were placed on the Co layer. The magnetic field is applied perpendicularly to the plane of the film and gives rise to abrupt flux penetration of dendritic form. A magnetization texture is imprinted in the Co layer in perfect coincidence with these ramifications. The spin domains that mimic the vortex dendrites are stable upon the field removal. Moreover, the imprinted spin structure remains visible up to room temperature. In the region of the field-temperature diagram where flux instabilities are known to occur in bare Nb films, irregular jumps are observed in the magnetic hysteresis and large amplitude noise is detected in the magneto-resistance and Hall resistivity data when measured as a function of the field. Published by AIP Publishing.

  5. High temperature superconducting thin films and quantum interference devices (SQUIDs) for gradiometers

    CERN Document Server

    Graf zu Eulenburg, A

    1999-01-01

    the best balance and gradient sensitivity at 1kHz were 3x10 sup - sup 3 and 222fT/(cm sq root Hz))) respectively. The measured spatial response to a current carrying wire was in good agreement with a theoretical model. A significant performance improvement was obtained with the development of a single layer gradiometer with 13mm baseline, fabricated on 30x10mm sup 2 bicrystals. For such a device, the gradient sensitivity at 1kHz was 50fT/(cm sq root Hz)) and the gradiometer was used successfully for unshielded magnetocardiography. A parasitic effective area compensation scheme was employed with two neighbouring SQUIDs coupled in an opposite sense to the same gradiometer loop. This improved the balance from the intrinsic value of 10 sup - sup 3 to 3x10 sup - sup 5. This thesis describes several aspects of the development of gradiometers using high temperature Superconducting Quantum Interference Devices (SQUID). The pulsed laser deposition of thin films of YBa sub 2 Cu sub 3 O sub 7 sub - subdelta (YBCO) on Sr...

  6. Superconducting properties of internally stabilized Nb{sub 3}Al wires fabricated by rapid-quenched and transformed process; Naibu anteika kyunetsu kyurei{center_dot}hentai ho Nb{sub 3}Al senzai no chodendo tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Tagawa, K. [Hitachi Cable, Ltd., Tokyo (Japan); National Research Institute for Metals, Tokyo (Japan); Japan Science and Technology Corp., Saitama (Japan); Nakagawa, K. [Hitachi Cable, Ltd., Tokyo (Japan); Takeuchi, T.; Banno, N.; Kiyoshi, T.; Ito, K.; Wada, H. [National Research Institute for Metals, Tokyo (Japan); Yuyama, M.; Kosuge, M. [National Research Institute for Metals, Tokyo (Japan)

    2000-05-29

    Nb{sub 3}AL wire using Ag coated by Nb as stabilizer was manufactured as trial and the critical current density Jc was examined. Compared Ag with Nb as fill-in core bar, Jc of wire using silver filament core bar was higher than one using Nb filament core. It was considered that uniform current in Ag caused to produce homogeneous solid solution. Jc also increased by about 45% following processing of decreasing area after rapid heating and quench. N value also showed at least a value above and equal to 25 at the 21 T magnetic field. (NEDO)Nb{sub 3}AL wire using Ag coated by Nb as stabilizer was manufactured as trial and the critical current density Jc was examined. Compared Ag with Nb as fill-in core bar, Jc of wire using silver filament core bar was higher than one using Nb filament core. It was considered that uniform current in Ag caused to produce homogeneous solid solution. Jc also increased by about 45% following processing of decreasing area after rapid heating and quench. N value also showed at least a value above and equal to 25 at the 21 T magnetic field. (NEDO)

  7. Process for production of solution-derived (Pb,La)(Nb,Sn,Zr,Ti)O.sub.3 thin films and powders

    Science.gov (United States)

    Boyle, Timothy J.

    1999-01-01

    A simple and rapid process for synthesizing (Pb,La)(Nb,Sn,Zr,Ti)O.sub.3 precursor solutions and subsequent ferroelectric thin films and powders of the perovskite phase of these materials has been developed. This process offers advantages over standard methods, including: rapid solution synthesis (solution synthesis. For lanthanum-doped ferroelectric materials, the lanthanum source can be added with total synthesis time less than 10 minutes. Films and powders are crystallized at approximately 650.degree. C. and exhibit ferroelectric properties comparable to films and powders produced by other techniques which require higher crystallization temperatures.

  8. Process for production of solution-derived (Pb,La)(Nb,Sn,Zr,Ti)O{sub 3} thin films and powders

    Science.gov (United States)

    Boyle, T.J.

    1999-01-12

    A simple and rapid process for synthesizing (Pb,La)(Nb,Sn,Zr,Ti)O{sub 3} precursor solutions and subsequent ferroelectric thin films and powders of the perovskite phase of these materials has been developed. This process offers advantages over standard methods, including: rapid solution synthesis (solution synthesis. For lanthanum-doped ferroelectric materials, the lanthanum source can be added with total synthesis time less than 10 minutes. Films and powders are crystallized at approximately 650 C and exhibit ferroelectric properties comparable to films and powders produced by other techniques which require higher crystallization temperatures. 2 figs.

  9. Combined impact of strain and stoichiometry on the structural and ferroelectric properties of epitaxially grown N a1 +xNb O3 +δ films on (110) NdGa O3

    Science.gov (United States)

    Cai, Biya; Schwarzkopf, J.; Feldt, C.; Sellmann, J.; Markurt, T.; Wördenweber, R.

    2017-05-01

    We demonstrate that the strain of an epitaxially grown film, which is induced by the lattice mismatch between the crystalline substrate and film and relaxes with increasing film thickness, can be conserved beyond the critical thickness of plastic relaxation of the respective film/substrate heterostructure system by adding epitaxially embedded nanoprecipitates and/or nanopillars of a secondary phase. By doing so we modify the ferroelectric properties of the film in a very controlled way. For this purpose, strained N a1 +xNb O3 +δ films are epitaxially grown on (110 ) NdGa O3 and their structural and electronic properties are investigated. X-ray diffraction and transmission electron microscopy analysis indicate that in addition to the epitaxially grown majority phase NaNb O3 , a second phase N ayNb O3 +δ is present in the films and forms crystalline precipitates and vertically aligned pillars a few nanometers in diameter. For large enough concentrations, this secondary phase appears to be able to suppress the plastic relaxation of the NaNb O3 matrix. In contrast to stoichiometric films and films with small Na excess, which demonstrate strain relaxation for film thickness exceeding a few nanometers and relaxor-type ferroelectric behavior, the N a1 +xNb O3 +δ film with the largest off-stoichiometry (grown from a target with x =17 % ) exhibits the "classic" ferroelectric behavior of unstrained NaNb O3 with a hysteretic structural and ferroelectric transition. However, the temperature of this hysteretic transition is shifted from 616 K to 655 K for unstrained material to room temperature for the strained N a1 +xNb O3 +δ film grown from the off-stoichiometric target.

  10. Study of the influence of Nb buffer layer on the exchange coupling induced at the Co/IrMn interface

    Energy Technology Data Exchange (ETDEWEB)

    Merino, I.L.C., E-mail: isabel5cas@gmail.com [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro 22290-180 (Brazil); Figueiredo, L.C. [Instituto de Física, Universidade de Brasília, Brasília 70910-900 (Brazil); Passamani, E.C.; Nascimento, V.P. [Departamento de Física, Universidade Federal do Espírito Santo, Vitória 29075-910 (Brazil); Pelegrini, F. [Instituto de Física, Universidade Federal de Goiás, Goiânia 74560-900 (Brazil); Baggio Saitovitch, E. [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro 22290-180 (Brazil)

    2017-06-15

    Highlights: • Nb buffer layer favors smooth/rough Co/IrMn interfaces, depending on its thickness. • Double and single-like hysteresis loop features depend on the Nb thickness. • Co uniaxial anisotropy induced exchange-bias in as-deposited sample. • Uniaxial and exchange-bias anisotropy directions depend on the Nb thickness. • Thicker Nb favors non-collinear anisotropies, while thinner Nb favors collinear. - Abstract: Hybrid Nb(t{sub Nb})/Co(10 nm)/IrMn(15 nm)/Nb(10 nm) heterostructured materials were prepared by DC Magnetron Sputtering and systematically studied by X-ray, magnetization and ferromagnetic resonance techniques. For thinner Nb buffer layer (≤10 nm), it was found that there is an inter-diffusion at Co/IrMn interface, which favors double-like hysteresis loop. For thicker Nb layers, however, a gradual transition from double to single-like hysteresis loops is observed and it is associated with the reduction of the Nb roughness, which also enhances the exchange coupling at the Co/IrMn interface. Nb grown on IrMn layer induces the formation of an NbIrMn alloy layer, while no evidence of inter-diffusion at the Co/Nb interface is observed. For rougher Nb buffer layers (t{sub Nb} < 50 nm), exchange bias and Co uniaxial anisotropies are pointing at the same direction (β∼zero), but for smoother Nb buffer layer (t{sub Nb} = 50 nm) a β angle of 150{sup o} is found. Exchange bias effect was measured in as-prepared and in field-cooled samples; being its presence, in as-prepared sample, attributed to the unidirectional anisotropy of the Co layer (its intensity is modified in case of sample with a CoIrMn alloy layer). Considering that the Si/Nb/Co/IrMn interfaces have different β values (t{sub Nb} = 35 and 50 nm), a study of the influence of magnetization direction, governed by exchange-biased layers, on superconducting properties of Nb films can be successfully done in this hybrid system.

  11. Fabrication of superconducting MgB{sub 2} thin films by magnetron co-sputtering on (001) MgO substrates

    Energy Technology Data Exchange (ETDEWEB)

    Fabretti, Savio; Thomas, Patrick; Meinert, Markus; Thomas, Andy [Bielefeld University (Germany)

    2011-07-01

    We fabricated superconducting MgB{sub 2} thin films on (001) MgO substrates. The samples were prepared by magnetron rf and dc co-sputtering on heated substrates. They were annealed ex-situ for one hour at temperatures between 450 C and 750 C. We will show that the substrate temperature during the sputtering process and the post annealing temperatures play a crucial role in forming MgB{sub 2} superconducting thin films. We achieved a critical onset temperature of 27.1 K for a film thickness of 30 nm. The crystal structures were measured by x-ray diffraction.

  12. Layer-by-layer shuttered molecular-beam epitaxial growth of superconducting Sr{sub 1-x}La{sub x}CuO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Maritato, L. [Dipartimento di Ingegneria dell' Informazione, Ingegneria Elettrica e Matematica Applicata-DIEM,University of Salerno and CNR-SPIN, 84084 Fisciano (Italy); Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853 (United States); Galdi, A.; Orgiani, P. [Dipartimento di Ingegneria dell' Informazione, Ingegneria Elettrica e Matematica Applicata-DIEM, University of Salerno and CNR-SPIN, 84084 Fisciano (Italy); Harter, J. W. [Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, New York 14853 (United States); Schubert, J. [Forschungszentrum Julich, Institute of Bio- and Nano-systems IBN, D-52425 Julich (Germany) and Forschungszentrum Julich, JARA Fundamentals of Future Information Technology, D-52425 Julich (Germany); Shen, K. M. [Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, New York 14853 (United States); Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853 (United States); Schlom, D. G. [Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853 (United States); Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853 (United States)

    2013-02-07

    Superconducting Sr{sub 1-x}La{sub x}CuO{sub 2} thin films have been grown on GdScO{sub 3} substrates by reflection high-energy electron diffraction calibrated layer-by-layer molecular-beam epitaxy. X-ray diffraction analysis has confirmed the infinite layer structure after an in situ vacuum annealing step. In situ photoemission spectroscopy indicates that the vacuum annealing step employed immediately after film growth to achieve superconducting films results in oxygen loss from the films. The superconducting critical temperature depends on the La content x, with the highest value obtained for x{approx}0.10. Resistivity as a function of temperature {rho}(T) curves of optimally doped samples show a T{sup 2} temperature dependence characteristic of a scattering process where electron-electron interactions dominate.

  13. Hydrogenation behavior of Ti-implanted Zr-1Nb alloy with TiN films deposited using filtered vacuum arc and magnetron sputtering

    Science.gov (United States)

    Kashkarov, E. B.; Nikitenkov, N. N.; Sutygina, A. N.; Bezmaternykh, A. O.; Kudiiarov, V. N.; Syrtanov, M. S.; Pryamushko, T. S.

    2018-02-01

    More than 60 years of operation of water-cooled reactors have shown that local or general critical hydrogen concentration is one of the basic limiting criteria of zirconium-based fuel element claddings. During the coolant radiolysis, released hydrogen penetrates and accumulates in zirconium alloys. Hydrogenation of zirconium alloys leads to degradation of their mechanical properties, hydride cracking and stress corrosion cracking. In this research the effect of titanium nitride (TiN) deposition on hydrogenation behavior of Ti-implanted Zr-1Nb alloy was described. Ti-implanted interlayer was fabricated by plasma immersion ion implantation (PIII) at the pulsed bias voltage of 1500 V to improve the adhesion of TiN and reduce hydrogen penetration into Zr-1Nb alloy. We conducted the comparative analysis on hydrogenation behavior of the Ti-implanted alloy with sputtered and evaporated TiN films by reactive dc magnetron sputtering (dcMS) and filtered cathodic vacuum arc deposition (FVAD), respectively. The crystalline structure and surface morphology were investigated using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The elemental distribution was analyzed using glow-discharge optical emission spectroscopy (GD-OES). Hydrogenation was performed from gas atmosphere at 350 °C and 2 atm hydrogen pressure. The results revealed that TiN films as well as Ti implantation significantly reduce hydrogen absorption rate of Zr-1Nb alloy. The best performance to reduce the rate of hydrogen absorption is Ti-implanted layer with evaporated TiN film. Morphology of the films impacted hydrogen permeation through TiN films: the denser film the lower hydrogen permeation. The Ti-implanted interface plays an important role of hydrogen accumulation layer for trapping the penetrated hydrogen. No deterioration of adhesive properties of TiN films on Zr-1Nb alloy with Ti-implanted interface occurs under high-temperature hydrogen exposure. Thus, the fabrication of Ti

  14. Anomalous behavior of B1g mode in highly transparent anatase nano-crystalline Nb-doped Titanium Dioxide (NTO thin films

    Directory of Open Access Journals (Sweden)

    Subodh K. Gautam

    2015-12-01

    Full Text Available The effect of Niobium doping and size of crystallites on highly transparent nano-crystalline Niobium doped Titanium Dioxide (NTO thin films with stable anatase phase are reported. The Nb doping concentration is varied within the solubility limit in TiO2 lattice. Films were annealed in controlled environment for improving the crystallinity and size of crystallites. Elemental and thickness analysis were carried out using Rutherford backscattering spectrometry and cross sectional field emission scanning electron microscopy. Structural characteristics reveal a substitutional incorporation of Nb+5 in the TiO2 lattice which inhibits the anatase crystallites growth with increasing the doping percentage. The micro-Raman (MR spectra of films with small size crystallites shows stiffening of about 4 cm−1 for the Eg(1 mode and is ascribed to phonon confinement and non-stoichiometry. In contrast, B1g mode exhibits a large anomalous softening of 20 cm−1 with asymmetrical broadening; which was not reported for the case of pure TiO2 crystallites. This anomalous behaviour is explained by contraction of the apical Ti-O bonds at the surface upon substitutional Nb5+ doping induced reduction of Ti4+ ions also known as hetero-coordination effect. The proposed hypotheses is manifested through studying the electronic structure and phonon dynamics by performing the near edge x-ray absorption fine structure (NEXAFS and temperature dependent MR down to liquid nitrogen temperature on pure and 2.5 at.% doped NTO films, respectively.

  15. Electrical-transport properties and microwave device performance of sputtered TlCaBaCuO superconducting thin films

    Science.gov (United States)

    Subramanyam, G.; Kapoor, V. J.; Chorey, C. M.; Bhasin, K. B.

    1992-01-01

    The paper describes the processing and electrical transport measurements for achieving reproducible high-Tc and high-Jc sputtered TlCaBaCuO thin films on LaAlO3 substrates, for microelectronic applications. The microwave properties of TlCaBaCuO thin films were investigated by designing, fabricating, and characterizing microstrip ring resonators with a fundamental resonance frequency of 12 GHz on 10-mil-thick LaAlO3 substrates. Typical unloaded quality factors for a ring resonator with a superconducting ground plane of 0.3 micron-thickness and a gold ground plane of 1-micron-thickness were above 1500 at 65 K. Typical values of penetration depth at 0 K in the TlCaBaCuO thin films were between 7000 and 8000 A.

  16. Fluctuation conductivity of thin films and nanowires near a parallel-field-tuned superconducting quantum phase transition.

    Science.gov (United States)

    Lopatin, A V; Shah, N; Vinokur, V M

    2005-01-28

    We calculate the fluctuation correction to the normal state conductivity in the vicinity of a quantum phase transition from a superconducting to a normal state, induced by applying a magnetic field parallel to a dirty thin film or a nanowire with thickness smaller than the superconducting coherence length. We find that at zero temperature, where the correction comes purely from quantum fluctuations, the positive "Aslamazov-Larkin" contribution, the negative "density of states" contribution, and the "Maki-Thompson" interference contribution are all of the same order and the total correction is negative. Further, we show that, based on how the quantum critical point is approached, there are three regimes that show different temperature and field dependencies which should be experimentally accessible.

  17. Soft X-ray angle-resolved photoemission spectroscopy of heavily boron-doped superconducting diamond films

    Directory of Open Access Journals (Sweden)

    T. Yokoya, T. Nakamura, T. Matushita, T. Muro, H. Okazaki, M. Arita, K. Shimada, H. Namatame, M. Taniguchi, Y. Takano, M. Nagao, T. Takenouchi, H. Kawarada and T. Oguchi

    2006-01-01

    Full Text Available We have performed soft X-ray angle-resolved photoemission spectroscopy (SXARPES of microwave plasma-assisted chemical vapor deposition diamond films with different B concentrations in order to study the origin of the metallic behavior of superconducting diamond. SXARPES results clearly show valence band dispersions with a bandwidth of ~23 eV and with a top of the valence band at gamma point in the Brillouin zone, which are consistent with the calculated valence band dispersions of pure diamond. Boron concentration-dependent band dispersions near the Fermi level (EF exhibit a systematic shift of EF, indicating depopulation of electrons due to hole doping. These SXARPES results indicate that diamond bands retain for heavy boron doping and holes in the diamond band are responsible for the metallic states leading to superconductivity at low temperature. A high-resolution photoemission spectroscopy spectrum near EF of a heavily boron-doped diamond superconductor is also presented.

  18. Pressure-induced superconductivity in the semiconducting metal-cluster compounds Ga(Ta,Nb) sub 4 (Se,S) sub 8

    CERN Document Server

    Ni Bing Fa

    2002-01-01

    The effect of pressure on the electronic and structural properties of GaNb sub 4 Se sub 8 , GaNb sub 4 S sub 8 and GaTa sub 4 Se sub 8 has been investigated. Measurements of the magnetic susceptibility and electrical resistance at ambient pressure showed anomalies at low temperatures (GaNb sub 4 Se sub 8 and GaNb sub 4 S sub 8 : 35 K; GaTa sub 4 Se sub 8 : 55 K). These are suggested to be related to a structural distortion of a lower symmetry which results in a change of the population of spin states. The analysis of the temperature dependence of the electrical resistance as a function of increasing pressure shows a transition from semiconducting to metallic behavior in GaNb sub 4 Se sub 8 (p>22.5 GPa) and in GaTa sub 4 Se sub 8 (p>13 GPa) but not in GaNb sub 4 S sub 8 up to p=31 GPa. This has been explained to be due to stronger localized Nb(4d)-states (larger energy gap) than in GaNb sub 4 Se sub 8 and Ta(5d)-states in GaTa sub 4 Se sub 8. Most interesting is the observation of a pressure-induced supercondu...

  19. Fabrication of Nb/Pb structures through ultrashort pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gontad, Francisco; Lorusso, Antonella, E-mail: antonella.lorusso@le.infn.it; Perrone, Alessio [Dipartimento di Matematica e Fisica “E. De Giorgi,” Università del Salento and Istituto Nazionale di Fisica Nucleare, 73100 Lecce (Italy); Klini, Argyro; Fotakis, Costas [Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), 100 N. Plastira St., GR 70013 Heraklion, Crete (Greece); Broitman, Esteban [Thin Film Physics Division, IFM, Linköping University, 581-83 Linköping (Sweden)

    2016-07-15

    This work reports the fabrication of Nb/Pb structures with an application as photocathode devices. The use of relatively low energy densities for the ablation of Nb with ultrashort pulses favors the reduction of droplets during the growth of the film. However, the use of laser fluences in this ablation regime results in a consequent reduction in the average deposition rate. On the other hand, despite the low deposition rate, the films present a superior adherence to the substrate and an excellent coverage of the irregular substrate surface, avoiding the appearance of voids or discontinuities on the film surface. Moreover, the low energy densities used for the ablation favor the growth of nanocrystalline films with a similar crystalline structure to the bulk material. Therefore, the use of low ablation energy densities with ultrashort pulses for the deposition of the Nb thin films allows the growth of very adherent and nanocrystalline films with adequate properties for the fabrication of Nb/Pb structures to be included in superconducting radiofrequency cavities.

  20. Leakage current behavior in lead-free ferroelectric (K,Na)NbO3-LiTaO3-LiSbO3 thin films

    Science.gov (United States)

    Abazari, M.; Safari, A.

    2010-12-01

    Conduction mechanisms in epitaxial (001)-oriented pure and 1 mol % Mn-doped (K0.44,Na0.52,Li0.04)(Nb0.84,Ta0.1,Sb0.06)O3 (KNN-LT-LS) thin films on SrTiO3 substrate were investigated. Temperature dependence of leakage current density was measured as a function of applied electric field in the range of 200-380 K. It was shown that the different transport mechanisms dominate in pure and Mn-doped thin films. In pure (KNN-LT-LS) thin films, Poole-Frenkel emission was found to be responsible for the leakage, while Schottky emission was the dominant mechanism in Mn-doped thin films at higher electric fields. This is a remarkable yet clear indication of effect of 1 mol % Mn on the resistive behavior of such thin films.

  1. Improved ferroelectric property and domain structure of highly a-oriented polycrystalline CaBi2Nb2O9 thin film

    Science.gov (United States)

    Ahn, Yoonho; Son, Jong Yeog

    2015-12-01

    A Lead-free ferroelectric CaBi2Nb2O9 (CBNO) thin film was deposited on Si substrate by pulsed laser deposition. TiO2 buffer layer was employed and Pt electrode was used for nano-scale capacitor. The x-ray diffraction reveals that the CBNO thin film has highly a-oriented polycrystalline structure. The highly a-oriented polycrystalline CBNO thin film significantly exhibit the enhanced ferroelectric property with a remnant polarization of 10 μC/cm2 compared to other values reported previously. In particular, the highly a-oriented polycrystalline CBNO thin film show faster ferroelectric switching characteristics than the epitaxially c-oriented CBNO thin film.

  2. The Interface Structure of FeSe Thin Film on CaF2 Substrate and its Influence on the Superconducting Performance.

    Science.gov (United States)

    Qiu, Wenbin; Ma, Zongqing; Patel, Dipak; Sang, Lina; Cai, Chuanbing; Shahriar Al Hossain, Mohammed; Cheng, Zhenxiang; Wang, Xiaolin; Dou, Shi Xue

    2017-10-25

    The investigations into the interfaces in iron selenide (FeSe) thin films on various substrates have manifested the great potential of showing high-temperature-superconductivity in this unique system. In present work, we obtain FeSe thin films with a series of thicknesses on calcium fluoride (CaF2) (100) substrates and glean the detailed information from the FeSe/CaF2 interface by using scanning transmission electron microscopy (STEM). Intriguingly, we have found the universal existence of a calcium selenide (CaSe) interlayer with a thickness of approximate 3 nm between FeSe and CaF2 in all the samples, which is irrelevant to the thickness of FeSe layers. A slight Se deficiency occurs in the FeSe layer due to the formation of CaSe interlayer. This Se deficiency is generally negligible except for the case of the ultrathin FeSe film (8 nm in thickness), in which the stoichiometric deviation from FeSe is big enough to suppress the superconductivity. Meanwhile, in the overly thick FeSe layer (160 nm in thickness), vast precipitates are found and recognized as Fe-rich phases, which brings about degradation in superconductivity. Consequently, the thickness dependence of superconducting transition temperature (Tc) of FeSe thin films is investigated and one of our atmosphere-stable FeSe thin film (127 nm) possesses the highest Tconset/Tczero as 15.1 K/13.4 K on record to date in the class of FeSe thin film with practical thickness. Our results provide a new perspective for exploring the mechanism of superconductivity in FeSe thin film via high-resolution STEM. Moreover, approaches that might improve the quality of FeSe/CaF2 interfaces are also proposed for further enhancing the superconducting performance in this system.

  3. Broadband sum-frequency generation using d33 in periodically poled LiNbO3 thin film in the telecommunications band.

    Science.gov (United States)

    Li, Guangzhen; Chen, Yuping; Jiang, Haowei; Chen, Xianfeng

    2017-03-01

    We demonstrate the first, to the best of our knowledge, type-0 broadband sum-frequency generation (SFG) based on single-crystal periodically poled LiNbO3 (PPLN) thin film. The broad bandwidth property was largely tuned from mid-infrared region to the telecommunications band by engineering the thickness of PPLN from bulk crystal to nanoscale. It provides SFG a solution with both broadband and high efficiency by using the highest nonlinear coefficient d33 instead of d31 in type-I broadband SFG or second-harmonic generation. The measured 3 dB upconversion bandwidth is about 15.5 nm for a 4 cm long single crystal at 1530 nm wavelength. It can find applications in chip-scale spectroscopy, quantum information processing, LiNbO3-thin-film-based microresonator and optical nonreciprocity devices, etc.

  4. Properties of Superconducting Mo, Mo2n and Trilayer Mo2n-Mo-Mo2n Thin Films

    Science.gov (United States)

    Barrentine, E. M.; Stevenson, T. R.; Brown, A. D.; Lowitz, A. E.; Noroozian, O.; U-Yen, K.; Eshan, N.; Hsieh, W. T.; Moseley, S. H.; Wollack, E. J.

    2014-01-01

    We present measurements of the properties of thin film superconducting Mo, Mo2N and Mo2N/Mo/Mo2N trilayers of interest for microwave kinetic inductance detector (MKID) applications. Using microwave resonator devices, we investigate the transition temperature, energy gaps, kinetic inductance, and internal quality factors of these materials. We present an Usadel-based interpretation of the trilayer transition temperature as a function of trilayer thicknesses, and a 2-gap interpretation to understand the change in kinetic inductance and internal resonance quality factor (Q) as a function of temperature.

  5. Origin of in Situ Domain Formation of Heavily Nb-Doped Pb(Zr,Ti)O3Thin Films Sputtered on Ir/TiW/SiO2/Si Substrates for Mobile Sensor Applications.

    Science.gov (United States)

    Han, Chan Su; Park, Kyu Sik; Choi, Hong Je; Cho, Yong Soo

    2017-06-07

    High-quality piezoelectric thin films have recently been in demand for mobile sensor applications. An investigation was conducted to understand the improvements in the piezoelectric and imprint characteristics of heavily Nb-doped lead zirconate titanate thin films with an extensive range of Nb content (up to 14 mol %) beyond the typical solid solubility limit of Nb. The positive effects produced by the unusual doping of Nb were realized by utilizing an in situ sputtering process that did not require a subsequent annealing and poling procedure. An enhanced piezoelectric coefficient, -e 31 , of -12.87 C/m 2 and a stronger shift in the coercive field, E c,shift , of ∼20 kV/cm, which are ideally useful for mobile sensor applications, were obtained for the 12 mol % Nb-doped films deposited on nonconventional buffer electrodes of Ir/TiW. The reduced oxygen vacancy concentration and preferred domain orientation with a stronger piezoresponse induced by the Nb donor doping contributed to the enhancement of the piezoelectric properties. Potential defect dipoles aligned by a residual stress gradient along columnar structures seemed to induce an internal electric field in the Nb-doped films, leading to the preferred domain orientation, as well as the strong imprint behavior due to a clamping of domain walls.

  6. Synthesis of BiFeO3 thin films on single-terminated Nb : SrTiO3 (111 substrates by intermittent microwave assisted hydrothermal method

    Directory of Open Access Journals (Sweden)

    Ivan Velasco-Davalos

    2016-06-01

    Full Text Available We report on a simple and fast procedure to create arrays of atomically flat terraces on single crystal SrTiO3 (111 substrates and the deposition of ferroelectric BiFeO3 thin films on such single-terminated surfaces. A microwave-assisted hydrothermal method in deionized water and ammonia solution selectively removes either (SrO34− or Ti4+ layers to ensure the same chemical termination on all terraces. Measured step heights of 0.225 nm (d111 and uniform contrast in the phase image of the terraces confirm the single termination in pure and Nb doped SrTiO3 single crystal substrates. Multiferroic BiFeO3 thin films were then deposited by the same microwave assisted hydrothermal process on Nb : SrTiO3 (111 substrates. Bi(NO33 and Fe(NO33 along with KOH served as the precursors solution. Ferroelectric behavior of the BiFeO3 films on Nb : SrTiO3 (100 substrates was verified by piezoresponse force microscopy.

  7. Properties of Nb-doped ZnO transparent conductive thin films ...

    Indian Academy of Sciences (India)

    Administrator

    , M H JIANG* and X Y LIU ... However, high cost and scarce resources of In limit its usage in these devices. This has led researchers to ... has been attempted by many groups, resulting in high-quality, highly conductive n-type ZnO films (Cao.

  8. Processing and properties of Pb(Mg(1/3)Nb(2/3))O3--PbTiO3 thin films by pulsed laser deposition

    Science.gov (United States)

    Tantigate, C.; Lee, J.; Safari, A.

    1995-03-01

    The objectives of this study were to prepare in situ Pb(Mg(1/3)Nb(2/3))O3 (PMN) and PMN-PT thin films by pulsed laser deposition and to investigate the electrical features of thin films for possible dynamic random access memory (DRAM) and microactuator applications. The impact of processing parameters such compositions, substrate temperature, and oxygen pressure on perovskite phase formation and dielectric characteristics were reported. It was found that the highest dielectric constant, measured at room temperature and 10 kHz, was attained from the PMN with 99% perovskite.

  9. Enhanced flux pinning properties in superconducting YBa{sub 2}Cu{sub 3}O{sub 7−z} films by a novel chemical doping approach

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.T., E-mail: wtwang@swjtu.edu.cn [Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Southwest Jiaotong University, Mail Stop 165, Chengdu, Sichuan 610031 (China); Pu, M.H.; Lei, M.; Zhang, H.; Wang, Z. [Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Southwest Jiaotong University, Mail Stop 165, Chengdu, Sichuan 610031 (China); Zhang, H. [Department of Physics, Peking University, Beijing 100871 (China); Cheng, C.H. [Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Southwest Jiaotong University, Mail Stop 165, Chengdu, Sichuan 610031 (China); Superconductivity Research Group, School of Materials Science and Engineering, University of New South Wale, Sydney, 2052 NSW (Australia); Zhao, Y., E-mail: yzhao@swjtu.edu.cn [Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Southwest Jiaotong University, Mail Stop 165, Chengdu, Sichuan 610031 (China); Superconductivity Research Group, School of Materials Science and Engineering, University of New South Wale, Sydney, 2052 NSW (Australia)

    2013-10-15

    Highlights: • Pure and Co-doped YBCO films were prepared by newly-developed chemical method. • The doped films have much denser and smoother surface microstructures. • Significantly enhanced fux-pinning properties have been obtained for dilute Co-doped flm. -- Abstract: Pure and cobalt-doped superconducting YBa{sub 2}Cu{sub 3}O{sub 7−z} (YBCO) films were prepared on (0 0 l) LaAlO{sub 3} substrate by a newly developed polymer-assisted metal organic deposition method. The cobalt-doped YBCO films display much denser and smoother surface microstructures and the superconducting transition temperature T{sub c} spans a small range of 1.7 K with the doping levels. Significantly enhanced flux-pinning properties have been obtained for dilute cobalt-doped film. This may be attributed to the good grain connections and the effective flux pinning centers introduced by cobalt doping.

  10. Hard superconducting nitrides

    Science.gov (United States)

    Chen, Xiao-Jia; Struzhkin, Viktor V.; Wu, Zhigang; Somayazulu, Maddury; Qian, Jiang; Kung, Simon; Christensen, Axel Nørlund; Zhao, Yusheng; Cohen, Ronald E.; Mao, Ho-kwang; Hemley, Russell J.

    2005-01-01

    Detailed study of the equation of state, elasticity, and hardness of selected superconducting transition-metal nitrides reveals interesting correlations among their physical properties. Both the bulk modulus and Vickers hardness are found to decrease with increasing zero-pressure volume in NbN, HfN, and ZrN. The computed elastic constants from first principles satisfy c11 > c12 > c44 for NbN, but c11 > c44 > c12 for HfN and ZrN, which are in good agreement with the neutron scattering data. The cubic δ-NbN superconducting phase possesses a bulk modulus of 348 GPa, comparable to that of cubic boron nitride, and a Vickers hardness of 20 GPa, which is close to sapphire. Theoretical calculations for NbN show that all elastic moduli increase monotonically with increasing pressure. These results suggest technological applications of such materials in extreme environments. PMID:15728352

  11. Comparison of interface structure of BCC metallic (Fe, V and Nb) films on MgO (100) substrate

    Energy Technology Data Exchange (ETDEWEB)

    Du, J.L. [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Zhang, L.Y. [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, 710049 (China); Fu, E.G., E-mail: efu@pku.edu.cn [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Ding, X., E-mail: dingxd@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, 710049 (China); Yu, K.Y., E-mail: kyyu@cup.edu.cn [Department of Materials Science and Engineering, China University of Petroleum, Beijing 102249 (China); Wang, Y.G. [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Wang, Y.Q.; Baldwin, J.K. [Experimental Physical Sciences Directorate, Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Wang, X.J. [State Key Laboratory of Advanced Optical Communication Systems and Networks, Peking University, Beijing 100871 (China); Xu, P. [Department of Chemistry, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 (China)

    2017-07-15

    Highlights: • The difference of BCC metal/MgO(100) interface configuration with various lattice mismatches is identified by experiments and simulations in terms of dislocations and work of separation. • The strength of bonds along interface is found to be the fundamental factor to determine the interface configurations between BCC metal and MgO substrate. • The combination of experiments and simulations shows that the O-atop model is the actual match type between BCC metal and MgO substrate. - Abstract: This study systematically investigates the interface structure of three body-centered-cubic (BCC) metallic (Fe, V and Nb) films grown on MgO(100) substrates through experiments and simulations. Orientation relationships of their interfaces with the different lattice mismatches exhibit cube-on-cube configurations. The misfit dislocations at these three interfaces exhibit different characteristics. High resolution TEM (HRTEM), combined with first principle calculations, demonstrates the O-atop match type between metal atoms and MgO substrates for the first time. The fundamental mechanism in determining the interface configuration is discussed in terms of the work of separation and delocalization of atomic charge density.

  12. Improved superconducting properties of MgB2 thin films fabricated by ultrasonic spray pyrolysis method at high temperature

    Science.gov (United States)

    Yakinci, M. Eyyuphan; Yakinci, Z. Deniz; Aksan, M. Ali; Balci, Yakup

    2012-12-01

    High quality MgB2 superconducting thin films have been successfully prepared by 2.4 MHz ultrasonic spray pyrolysis (USP) system on single crystal Al2O3 (0 0 1) substrates. The microstructure, electrical and magnetic properties of approximately 500-600 nm thick films were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) in conjunction with the energy dispersive X-ray analysis (EDX), resistance versus temperature (R-T) and magnetization measurements (M-H) under different magnetic fields and transport critical current density (Jc). Films were first heat treated in situ in the spraying chamber with an extra Mg powder during deposition to compensate excess evaporation of Mg from the films and then additionally heat treated in Ar atmosphere at 700 °C for a short time. According to the results obtained, orientation on any particular direction for the crystal growth was not seen. Homogeneous, highly dense and highly smooth surface morphology and low resistance have been achieved under optimum conditions. Optimally treated films exhibited relatively high transport critical current density of 2.37 × 105 A cm-2. These results have been also compared with the Jcmag results calculated from the M-H curves. The electrical resistance property of the best samples was obtained to be 39.5 and 37.4 K for Tc and Tzero, respectively.

  13. Impact of oxygen atmosphere on piezoelectric properties of CaBi{sub 2}Nb{sub 2}O{sub 9} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Simoes, A.Z. [Laboratorio Interdisciplinar em Ceramica, Departamento de Fi' sico-Qui' mica, Instituto de Qui' mica, Universidade Estadual Paulista, R. Francisco Degni, P.O. Box 355, 14801-907, Araraquara, SP (Brazil); Riccardi, C.S. [School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA 30332-0400 (United States); Cavalcante, L.S. [Laboratorio Interdisciplinar de Eletroquimica e Ceramica, Departamento de Quimica, Universidade Federal de Sao Carlos, P.O. Box 676, 13565-905, Sao Carlos, SP (Brazil); Longo, E. [Laboratorio Interdisciplinar em Ceramica, Departamento de Fi' sico-Qui' mica, Instituto de Qui' mica, Universidade Estadual Paulista, R. Francisco Degni, P.O. Box 355, 14801-907, Araraquara, SP (Brazil)]. E-mail: elson@iq.unesp.br; Varela, J.A. [Laboratorio Interdisciplinar em Ceramica, Departamento de Fi' sico-Qui' mica, Instituto de Qui' mica, Universidade Estadual Paulista, R. Francisco Degni, P.O. Box 355, 14801-907, Araraquara, SP (Brazil); Mizaikoff, B. [School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA 30332-0400 (United States)

    2007-08-15

    CaBi{sub 2}Nb{sub 2}O{sub 9} (CBNO) thin films were deposited on platinum-coated silicon substrates by the polymeric precursor method, and were annealed in air and in an oxygen atmosphere. The structure, surface morphology and electrical properties of CBNO thin films have been investigated. The presence of an oxygen atmosphere during crystallization of the films affected the structure perfection and morphology, as well as ferroelectric and piezoelectric properties. A reduction in P {sub r} and piezoelectric coefficient, an increase of V {sub c} and displacement of the Curie point is evident in the films crystallized in an oxygen atmosphere. The impact of exposure to the oxygen atmosphere on the creation of defects caused by bismuth and oxygen vacancies between layers was also investigated by X-ray photoelectron spectroscopy.

  14. Laser ablation of YBCO targets and optical-breakdown-assisted PLD for high Tc superconducting thin films deposition

    Science.gov (United States)

    Apostol, Ileana; Stoian, Razvan; Luculescu, C.; Dabu, Razvan V.; Stratan, Aurel; Udrea, S.; Flacau, Catalin

    1998-07-01

    We report a YBa2Cu3O7 PLD method designed to reduce the oxygen deficiency in the as deposited YBCO superconducting thin films.OPtical dissociation of O2 buffer gas in front of the plume using a second IR laser pulse simultaneously with the UV laser beam producing the ablation plasma is proposed as a method for oxidation enhancement and oxygen enrichment in the deposited film. Oxides enhancement measurements were performed by optical spectroscopy on YO, BaO and CuO lines at large distances from the target surface. Temporal evolution of ionic, neutral and oxide lines was analyzed in 400-620 nm region, in correlation with plasma expansion in the ambient gas.

  15. Tunability of resonance frequencies in a superconducting microwave resonator by using SrTiO sub 3 ferroelectric films

    CERN Document Server

    Sok, J; Lee, E H

    1998-01-01

    An applied dc voltage varies the dielectric constant of ferroelectric SrTiO sub 3 films. A tuning mechanism for superconducting microwave resonators was realized by using the variation in the dielectric constant of SrTiO sub 3 films. In order to estimate the values of the capacitance, C, and the loss tangent, tan delta, of SrTiO sub 3 ferroelectric capacitors, we used high-temperature superconducting microwave resonators which were composed of two ports, two poles, and dc bias circuits at the zero-field points. SrTiO sub 3 ferroelectric capacitors successfully controlled the resonant frequency of the resonator. Resonant frequencies of 3.98 GHz and 4.20 GHz were measured at bias voltages of 0 V and 50 V which correspond to capacitance values of 0.94 pF and 0.7pF, respectively. The values of the loss tangent, tan delta sub e sub f sub f , obtained in this measurements, were about 0.01.

  16. Photocathode quantum efficiency of ultrathin Cs2Te layers on Nb substrates

    Science.gov (United States)

    Yusof, Zikri; Denchfield, Adam; Warren, Mark; Cardenas, Javier; Samuelson, Noah; Spentzouris, Linda; Power, John; Zasadzinski, John

    2017-12-01

    The quantum efficiencies (QE) of photocathodes consisting of bulk Nb substrates coated with thin films of Cs2Te are reported. Using the standard recipe for Cs2Te deposition developed for Mo substrates (220 Å Te thickness), a QE ˜11 % - 13 % at light wavelength of 248 nm is achieved for the Nb substrates, consistent with that found on Mo. Systematic reduction of the Te thickness for both Mo and Nb substrates reveals a surprisingly high residual QE ˜6 % for a Te layer as thin as 15 Å. A phenomenological model based on the Spicer three-step model along with a solution of the Fresnel equations for reflectance, R , leads to a reasonable fit of the thickness dependence of QE and suggests that layers thinner than 15 Å may still have a relatively high QE. Preliminary investigation suggests an increased operational lifetime as well. Such an ultrathin, semiconducting Cs2Te layer may be expected to produce minimal Ohmic losses for rf frequencies ˜1 GHz . The result thus opens the door to the potential development of a Nb (or Nb3Sn ) superconducting photocathode with relatively high QE and minimal rf impedance to be used in a superconducting radiofrequency (SRF) photoinjector.

  17. Photocathode quantum efficiency of ultrathin Cs_{2}Te layers on Nb substrates

    Directory of Open Access Journals (Sweden)

    Zikri Yusof

    2017-12-01

    Full Text Available The quantum efficiencies (QE of photocathodes consisting of bulk Nb substrates coated with thin films of Cs_{2}Te are reported. Using the standard recipe for Cs_{2}Te deposition developed for Mo substrates (220 Å Te thickness, a QE∼11%–13% at light wavelength of 248 nm is achieved for the Nb substrates, consistent with that found on Mo. Systematic reduction of the Te thickness for both Mo and Nb substrates reveals a surprisingly high residual QE∼6% for a Te layer as thin as 15 Å. A phenomenological model based on the Spicer three-step model along with a solution of the Fresnel equations for reflectance, R, leads to a reasonable fit of the thickness dependence of QE and suggests that layers thinner than 15 Å may still have a relatively high QE. Preliminary investigation suggests an increased operational lifetime as well. Such an ultrathin, semiconducting Cs_{2}Te layer may be expected to produce minimal Ohmic losses for rf frequencies ∼1  GHz. The result thus opens the door to the potential development of a Nb (or Nb_{3}Sn superconducting photocathode with relatively high QE and minimal rf impedance to be used in a superconducting radiofrequency (SRF photoinjector.

  18. An XPS method for layer profiling of NbN thin films

    Directory of Open Access Journals (Sweden)

    Lubenchenko A.V.

    2017-01-01

    Full Text Available Layer chemical and phase profiling of niobium nitride thin films on a silicon substrate oxidized on air was performed with the help of a method designed by us. The method includes: a new method of background subtraction of multiple inelastically scattered photoelectrons considering depth inhomogeneity of electron inelastic scattering; a new method of photoelectron line decomposition into component peaks considering physical nature of different decomposition parameters; joint solution of the background subtraction and photoelectron line decomposition problems; control of line decomposition accuracy with the help of a suggested performance criterion; calculation of layer thicknesses for a multilayer target using a simple formula.

  19. Superconducting transmission line particle detector

    Science.gov (United States)

    Gray, Kenneth E.

    1989-01-01

    A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non-superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slow electromagnetic wave propogating in a superconducting transmission line are used to resolve N.sup.2 ambiguity of charged particle events.

  20. Superconductivity of Ta{sub 34}Nb{sub 33}Hf{sub 8}Zr{sub 14}Ti{sub 11} high entropy alloy from first principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Jasiewicz, K.; Wiendlocha, B.; Korben, P.; Kaprzyk, S.; Tobola, J. [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, 30-059, Krakow (Poland)

    2016-05-15

    The Korringa-Kohn-Rostoker method with the coherent potential approximation (KKR-CPA) is applied to study the first superconducting high entropy alloy (HEA) Ta{sub 34}Nb{sub 33}Hf{sub 8}Zr{sub 14}Ti{sub 11} (discovered in 2014 with T{sub c}=7.3 K), focusing on estimations of the electron-phonon coupling constant λ. The electronic part of λ has been calculated using the rigid muffin-tin approximation (RMTA), while the phonon part has been approximated using average atomic mass and experimental Debye temperature. The estimated λ=1.16 is close to the value determined from specific heat measurements, λ=0.98, and suggests rather strong electron-phonon coupling in this material. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Heteroepitaxial growth and interface structure of pyrochlore (Ca,Ti)2(Nb,Ti)2O7 thin films on (1 1 0) NdGaO3 substrates

    Science.gov (United States)

    Jin, Xiao-Wei; Chen, Yue-Hua; Lu, Lu; Mi, Shao-Bo; Jin, Lei; Jing, Hong-Mei; Wang, Hong; Jia, Chun-Lin

    2018-02-01

    Epitaxial thin films of (Ca,Ti)2(Nb,Ti)2O7 with pyrochlore structure have been successfully fabricated on orthorhombic (1 1 0) NdGaO3 substrates by a magnetron sputtering system. By analysis of selected-area electron diffraction patterns, the film-substrate orientation relationship is determined to be 〈0 0 1〉{1 0 0}film//[0 0 1](1 1 0)substrate. Atomic-scale structure investigations of the heterointerface by means of advanced electron microscopy reveal that a perovskite-type Ca(Ti,Nb)O3 layer with a thickness of several unit cells forms between the (Ca,Ti)2(Nb,Ti)2O7 films and the NdGaO3 substrates. The formation of the Ca(Ti,Nb)O3 layer results from the demand for accommodation of the crystal structure mismatching between the pyrochlore film and the perovskite-type substrate, which favors the epitaxial growth of the (Ca,Ti)2(Nb,Ti)2O7 films on the NdGaO3 substrates.

  2. Characterization and corrosion resistance of anodic electrodeposited titanium oxide/phosphate films on Ti-20Nb-10Zr-5Ta bioalloy

    Energy Technology Data Exchange (ETDEWEB)

    Popa, Monica; Vasilescu, Cora; Drob, Silviu I.; Osiceanu, Petre; Anastasescu, Mihai; Calderon-Moreno, Jose M., E-mail: josecalderonmoreno@yahoo.com [Institute of Physical Chemistry ' Ilie Murgulescu' of the Romanian Academy, Bucharest (Romania)

    2013-07-15

    In this work, the anodic galvanostatic electrodeposition of an oxidation film containing phosphates on Ti-20Nb-10Zr-5Ta alloy from orthophosphoric acid solution is presented. Its composition was determined by X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR) and Raman micro-spectroscopy, and its topography by atomic force microscopy (AFM). The corrosion resistance of the coated alloy in simulated human fluid (by linear polarization method and monitoring of open circuit potentials, corresponding open circuit potential gradients) as well as the characterization of the coating (by Raman spectroscopy and depth profile X-ray photoelectron spectroscopy (XPS)) deposited in a period of 300 h soaking in simulated human body fluid were studied. The electrodeposited film was composed of amorphous titanium dioxide and contained phosphate groups. The corrosion resistance of the coated Ti-20Nb-10Zr-5Ta alloy in neutral and alkaline Ringer's solutions was higher than that of the bare alloy due to the protective properties of the electrodeposited film. The corrosion parameters improved over time as result of the thickening of the surface film by the deposition from the physiological solution. The deposited coating presented a variable composition in depth: at the deeper layer nucleated nanocrystalline hydroxyapatite and at the outer layer amorphous calcium phosphate. (author)

  3. Duality picture of Superconductor-insulator transitions on Superconducting nanowire.

    Science.gov (United States)

    Makise, Kazumasa; Terai, Hirotaka; Tominari, Yukihiro; Tanaka, Shukichi; Shinozaki, Bunju

    2016-06-17

    In this study, we investigated the electrical transport properties of niobium titanium nitride (NbTiN) nanowire with four-terminal geometries to clarify the superconducting phase slip phenomena and superconducting-insulator transitions (SIT) for one-dimensional superconductors. We fabricated various nanowires with different widths and lengths from epitaxial NbTiN films using the electron beam lithography method. The temperature dependence of resistance R(T) below the superconducting transition temperature Tc was analyzed using thermal activation phase slip (TAPS) and quantum phase slip (QPS) theories. Although the accuracy of experimental data at low temperatures can deviate when using the TAPS model, the QPS model thoroughly represents the R(T) characteristic with resistive tail at low temperatures. From the analyses of data on Tc, we found that NbTiN nanowires exhibit SIT because of the change in the ratio of kinetic inductance energy and QPS amplitude energy with respect to the flux-charge duality theory.

  4. On Mossbauer dynamics in Nb3Sn

    Indian Academy of Sciences (India)

    Before the advent of high temperature oxide superconductivity, several intermetallic com- pounds possessing A15 crystal structure [1] have been known to be good superconductors; namely V3Si (Мc=17.1 K), V3Ga (Мc=16.8 K), Nb3Sn (Мc=18 K), Nb3Al (Мc=18.5 K) and Nb3Alo75 Geo75 (Мc=20 K). A15 group of ...

  5. High-temperature conductivity evaluation of Nb doped SrTiO{sub 3} thin films: Influence of strain and growth mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Aguesse, Frédéric [Imperial College London, Department of Materials and London Centre for Nanotechnology, Exhibition Road, SW7 2AZ, London (United Kingdom); CIC ENERGIGUNE, Parque Tecnológico de Alaba, Albert Einstein 48, ED.CIC, 01510, Miñano (Spain); Axelsson, Anna-Karin [Imperial College London, Department of Materials and London Centre for Nanotechnology, Exhibition Road, SW7 2AZ, London (United Kingdom); Reinhard, Patrick [Nonmetallic Inorganic Materials, ETH Zürich, Wolfgang-Pauli-Str. 10, HCI G539, CH-8093, Zürich (Switzerland); Tileli, Vasiliki [Imperial College London, Department of Materials and London Centre for Nanotechnology, Exhibition Road, SW7 2AZ, London (United Kingdom); Rupp, Jennifer L.M. [Massachusetts Institute of Technology (MIT), Department of Materials Science and Engineering and Department of Nuclear Science and Engineering, Cambridge, MA 02139 (United States); Alford, Neil McN [Imperial College London, Department of Materials and London Centre for Nanotechnology, Exhibition Road, SW7 2AZ, London (United Kingdom)

    2013-07-31

    Doped SrTiO{sub 3} thin films, 55 nm thick, were epitaxially grown by Pulsed Laser Deposition with niobium contents ranging from 2 to 5 mol% on SrTiO{sub 3} and LaAlO{sub 3} substrates. The different templates result in different growth defects, film growth mechanism and therefore a different volume fraction of uniformly strained film under the critical thickness. The investigation of the conductivity reveals a significant difference between the two substrate choices, but only at elevated temperatures with conductivity values up to 30% larger for films on SrTiO{sub 3} substrates compared with LaAlO{sub 3}. Whereas in bulk ceramics the niobium level dictates the total conductivity, here it was found that the substrate choice had a greater influence for thin films, in particular at temperatures over 400 °C. This finding provides important information on conductive layers in complex heterostructures where strain and defects could work cooperatively. - Highlights: • Relation between growth mechanisms of Nb-SrTiO{sub 3} thin films with substrate mismatch • Strain dependence of the conductivity revealed by high temperature measurements • Increase of conductivity for films deposited on SrTiO{sub 3} compared to LaAlO{sub 3} substrates • Conductivity mechanisms depend on the mechanical strain applied by the substrate.

  6. Ferroelectric properties of lead-free polycrystalline CaBi{sub 2}Nb{sub 2}O{sub 9} thin films on glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Yoonho, E-mail: yahn@khu.ac.kr; Son, Jong Yeog, E-mail: jyson@khu.ac.kr [Department of Applied Physics and Institute of Natural Sciences, Kyung Hee University, Yongin 446-701 (Korea, Republic of); Jang, Joonkyung [Department of Nanoenergy Engineering, Pusan National University, Busan 609-735 (Korea, Republic of)

    2016-03-15

    CaBi{sub 2}Nb{sub 2}O{sub 9} (CBNO) thin film, a lead-free ferroelectric material, was prepared on a Pt/Ta/glass substrate via pulsed laser deposition. The Ta film was deposited on the glass substrate for a buffer layer. A (115) preferred orientation of the polycrystalline CBNO thin film was verified via X-ray diffraction measurements. The CBNO thin film on a glass substrate exhibited good ferroelectric properties with a remnant polarization of 4.8 μC/cm{sup 2} (2P{sub r} ∼9.6 μC/cm{sup 2}), although it had lower polarization than the epitaxially c-oriented CBNO thin film reported previously. A mosaic-like ferroelectric domain structure was observed via piezoresponse force microscopy. Significantly, the polycrystalline CBNO thin film showed much faster switching behavior within about 100 ns than that of the epitaxially c-oriented CBNO thin film.

  7. Structural characterization and ferroelectric properties of strontium barium niobate (Sr xBa1-xNb2O6 thin films

    Directory of Open Access Journals (Sweden)

    R.G. Mendes

    2001-01-01

    Full Text Available Strontium barium niobate (SBN thin films of good quality were deposited on Pt/Ti/SiO2/Si substrate using a polymeric resin containing metallic ions. Films were crystallized at different temperatures and for different duration of time. The structure of these films was studied using X-ray diffraction. The coexistence of SrNb2O6 (SN and SBN was observed in films crystallized at 700 °C. The amount of SN decreases when the crystallization time increases. Ferroelectric properties were determined for films crystallized at 700 °C for 1 and 5 h. For SBN film crystallized at 700 °C for 1 h, the remanent polarization (Pr and the coercive field (Ec were 2.6 muC/cm² and 71.9 kV/cm, respectively. For the film crystallized at 700 °C for 5 h these parameters were Pr = 1.1 muC/cm² and Ec = 50.5 kV/cm.

  8. Highly oriented ferroelectric CaBi2Nb2O9 thin films deposited on Si(100) by pulsed laser deposition

    Science.gov (United States)

    Desu, S. B.; Cho, H. S.; Joshi, P. C.

    1997-03-01

    We report the successful deposition of highly c-axis oriented CaBi2Nb2O9 (CBN) thin films directly on p-type Si(100) substrates by pulsed laser deposition. The CBN thin films exhibited good structural, dielectric, and CBN/Si interface characteristics. The electrical measurements were conducted on CBN thin films in a metal-ferroelectric-semiconductor (MFS) capacitor configuration. The typical measured small signal dielectric constant and the dissipation factor at a frequency of 100 kHz were 80 and 0.051, respectively. The leakage current of the MFS capacitor structure was governed by the Schottky barrier conduction mechanism and the leakage current density was lower than 10-7A/cm2 at an applied electric field of 100 kV/cm. The capacitance-voltage measurements on MFS capacitors established good ferroelectric polarization switching characteristics.

  9. Large critical current densities and pinning forces in CSD-grown superconducting GdBa2Cu3O7-x -BaHfO3 nanocomposite films

    Science.gov (United States)

    Cayado, Pablo; Erbe, Manuela; Kauffmann-Weiss, Sandra; Bühler, Carl; Jung, Alexandra; Hänisch, Jens; Holzapfel, Bernhard

    2017-09-01

    GdBa2Cu3O7-x -BaHfO3 (GdBCO-BHO) nanocomposite (NC) films containing 12 mol% BHO nanoparticles were prepared by chemical solution deposition (CSD) following the TFA route on SrTiO3 (STO) single crystals and buffered metallic tapes supplied by two different companies: Deutsche Nanoschicht GmbH and SuperOx. We optimized the preparation of our GdBCO-BHO solutions with acetylacetone making the film synthesis very robust and reproducible, and obtained 220 nm films with excellent superconducting properties. We show the structural, morphological and superconducting properties of the films after a careful optimization of the processing parameters (growth temperature, oxygen partial pressure and heating ramp). The films reach critical temperatures (T c) of ˜94 K, self-field critical current densities (J c) of >7 MA cm- 2 and maximum pinning force densities (F p) of ˜16 GN m- 3 at 77 K on STO and T c of ˜94.5 K and J c > 1.5 MA cm- 2 on buffered metallic tapes. The transport properties under applied magnetic fields are significantly improved with respect to the pristine GdBCO films. The GdBCO-BHO NC films on STO present epitaxial c-axis orientation with excellent out-of-plane and in-plane texture. The films are, in general, very dense with a low amount of pores and only superficial indentations. On the other hand, we present, for the first time, a systematic study of CSD-grown GdBCO-BHO NC films on buffered metallic tapes. We have used the optimized growth conditions for STO as a reference and identified some limitations on the film synthesis that should be overcome for further improvement of the films’ superconducting properties.

  10. Dielectric and Optical Characterization of RF Sputtered Ba5Nb4O15-BaWO4 Composite Films for Electronic and Smart Window Applications

    Science.gov (United States)

    Anil Kumar, C.; Pamu, D.

    2016-06-01

    We demonstrate the deposition of Ba5Nb4O15-BaWO4 (BNO-BWO) composite thin films by radio frequency (RF) magnetron sputtering under different oxygen mixing percentages (OMP). Significantly, the x-ray diffractometer revealed the coexistence of both BNO hexagonal perovskite structure with BWO scheelite structure. The microstructures of the composite films reveal two types of grains: BNO exhibited small rod-shaped grains, whereas the BWO showed large hexagonal grains, and the chemical compositions of these grains are confirmed using energy dispersive spectroscopy analysis. The optical transmittance of the as-deposited films show the transmittance above 90% and after annealing they exhibit pale yellow color, and this response may be due to the electrochromic response of these films. The refractive index of the films decreases for the films deposited above 25% OMP, whereas the optical bandgap increases with an increase in OMP. The dielectric response of Ag/BNO-BWO Pt/Ti/SiO2/Si thin film capacitors showed that the obtained dielectric properties are independent of measured frequency and temperature. The split-post dielectric resonator method was used to measure dielectric properties at discrete microwave frequencies (5, 10, and 15 GHz) and are in the range of ɛ r = 22.47-49.81 and tan δ = 0.0038-0.0010, for annealed films. The activation energies of the composite films obtained from the Arrhenius relation are in the range of 0.021-0.008 eV. BNO-BWO nanocomposite films find applications in integrated electronic devices, smart windows, and information display applications.

  11. Superconductors for superconducting magnets

    Science.gov (United States)

    Larbalestier, David

    2011-03-01

    Even in 1913 Kamerlingh Onnes envisioned the use of superconductors to create powerful magnetic fields well beyond the capability provided by cooling normal metals with liquid helium. Only some ``bad places'' in his Hg and Pb wires seemed to impede his first attempts at this dream, one that he imagined would be resolved in a few weeks of effort. In fact, of course, resolution required another 50 years and development of both a true understanding of the difference between type I and type II superconductors and the discovery of compounds such as Nb 3 Sn that could remain superconducting to fields as high as 30 T. And then indeed, starting in the 1960s, Onnes's dreams were comfortably surpassed. In the last 45 years virtually all superconducting magnets have been made from just two Nb-base materials, Nb-Ti and Nb 3 Sn. Now it seems that a new generation of magnets based on cuprate high temperature superconductors with fields well above 30 T are possible using Bi-Sr-Ca-Cu-O and the RE-Ba-Cu-O compounds. We hope that a first demonstration of this possibility will be an all-superconducting 32 T magnet with RE-Ba-Cu-O insert that we are building for NHMFL users. The magnet application potential of this new generation of superconducting conductors will be discussed.

  12. Niobium superconducting cavity

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    This 5-cell superconducting cavity, made from bulk-Nb, stems from the period of general studies, not all directed towards direct use at LEP. This one is dimensioned for 1.5 GHz, the frequency used at CEBAF and also studied at Saclay (LEP RF was 352.2 MHz). See also 7908227, 8007354, 8209255, 8210054, 8312339.

  13. Vortex Pinning in Superconducting MoGe Films Containing Conformal Arrays of Nanoscale Holes and Magnetic Dots

    Science.gov (United States)

    Wang, Y. L.; Latimer, M. L.; Xiao, Z. L.; Ocola, L. E.; Divan, R.; Welp, U.; Crabtree, G. W.; Kwok, W. K.

    2013-03-01

    Recent numerical simulations by Ray et al. predict that a conformal pinning array can produce stronger vortex pinning effect than other pinning structures with an equivalent density of pinning sites. Here we present experimental investigations on conformal pinning structures. Direct and conformal pinning arrays of triangular and square lattices were introduced into MoGe superconducting films using focused-ion-beam milling or electron-beam lithography. Transport measurements on critical currents and magnetoresistances were carried out on these samples to reveal the advantages of conformal pinnings. Effects of random pinnings with the same average density were also studied for comparison. Details on sample fabrications and effects of pinning types (holes versus magnetic dots) will be presented. Work supported by the US DoE-BES funded Energy Frontier Research Center (YLW), and by Department of Energy, Office of Science, Office of Basic Energy Sciences (MLL, ZLX, LEO, RD, UW, WKK), under Contract No. DE-AC02-06CH11357

  14. Sinterização de filmes finos de LiNbO3 em forno microondas: estudo da influência da direção do fluxo de calor Sintering of LiNbO3 thin films in microwave furnace: study of the influence of the heat flow direction

    Directory of Open Access Journals (Sweden)

    N. S. L. S. Vasconcelos

    2004-06-01

    Full Text Available Filmes finos de LiNbO3 foram preparados pelo método dos precursores poliméricos e depositados por "spin coating" sobre substratos de safira (0001. Os filmes foram tratados em forno microondas doméstico a 400 ºC por 15 e 20 min. Um material com alta perda dielétrica (susceptor de SiC foi usado para absorver energia das microondas e transformá-la em calor. Este calor foi transferido para o filme a fim de promover a sua cristalização. O susceptor foi posicionado acima do filme ou embaixo do substrato. Desta forma, a influência da direção do fluxo de calor na cristalização das amostras foi verificada. Os filmes foram caracterizados por difração de raios X, microscopia de força atômica e espectrofotometria (transmitância na região UV-visível e o índice de refração foi determinado por elipsometria. O crescimento epitaxial foi observado para o filme com susceptor posicionado embaixo do substrato. Verificou-se que os grãos apresentaram crescimento aleatório quando o susceptor foi posicionado acima do filme. Os filmes apresentaram-se relativamente densos, homogêneos e lisos, com boas propriedades ópticas.LiNbO3 thin films were prepared using a polymeric precursor solution deposited by spin coating on (0001 sapphire substrate. Heat treatment of the films was carried out in a microwave oven at 400 ºC for 15 and 20 min. A SiC susceptor (material with high dielectric loss was used to absorb microwave energy and transfer the heat to the film in order to promote crystallization. The susceptor was placed above the film or below the substrate. Thus, the influence of the heat flux direction on the sample crystallization was verified. The films were characterized by X-ray diffraction, atomic force microscopy and spectrophotometry (transmittance in the UV-Visible region and the refractive index was determined with an ellipsometer. The epitaxial growth was observed for the film with the susceptor placed below the substrate. Random growth

  15. Surface structures and osteoblast response of hydrothermally produced CaTiO{sub 3} thin film on Ti-13Nb-13Zr alloy

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin-Woo, E-mail: jinwoo@knu.ac.kr [Department of Periodontology, School of Dentistry, Kyungpook National University, 188-1, Samduk 2Ga, Jung-Gu, Daegu 700-412 (Korea, Republic of); Tustusmi, Yusuke [Department of Metals, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental Univeristy, Tokyo 101-0062 (Japan); Lee, Chong Soo; Park, Chan Hee [Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Kim, Youn-Jeong; Jang, Je-Hee [Department of Periodontology, School of Dentistry, Kyungpook National University, 188-1, Samduk 2Ga, Jung-Gu, Daegu 700-412 (Korea, Republic of); Khang, Dongwoo; Im, Yeon-Min [School of Materials Science and Engineering, Gyeongsang National University, Jinju 600-701 (Korea, Republic of); Doi, Hisashi; Nomura, Naoyuki; Hanawa, Takao [Department of Metals, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental Univeristy, Tokyo 101-0062 (Japan)

    2011-06-15

    This study investigated the surface characteristics and in vitro biocompatibility of a titanium (Ti) oxide layer incorporating calcium ions (Ca) obtained by hydrothermal treatment with or without post heat-treatment in the Ti-13Nb-13Zr alloy. The surface characteristics were evaluated by scanning electron microscopy, thin-film X-ray diffractometry, X-ray photoelectron spectroscopy, atomic force microscopy and contact angle measurements. In vitro biocompatibility of the Ca-containing surfaces was assessed in comparison with untreated surfaces using a pre-osteoblast cell line. Hydrothermal treatment produced a crystalline CaTiO{sub 3} layer. Post heat-treatment at 400 deg. C for 2 h in air significantly decreased water contact angles in the CaTiO{sub 3} layer (p < 0.001). The Ca-incorporated alloy surfaces displayed markedly increased cell viability and ALP activity compared with untreated surfaces (p < 0.001), and also an upregulated expression of various integrin genes ({alpha}1, {alpha}2, {alpha}5, {alpha}v, {beta}1 and {beta}3) at an early incubation time-point. Post heat-treatment further increased attachment and ALP activity in cells grown on Ca-incorporated Ti-13Nb-13Zr alloy surfaces. The results indicate that the Ca-incorporated oxide layer produced by hydrothermal treatment and a simple post heat-treatment may be effective in improving bone healing in Ti-13Nb-13Zr alloy implants by enhancing the viability and differentiation of osteoblastic cells.

  16. SUBMM heterodyne mixing using NbCN/Nb SIS tunnel junctions.

    NARCIS (Netherlands)

    vandeStadt, H; Mees, J; Barber, Z; Blamire, M; Dieleman, P; deGraauw, T

    We describe heterodyne mixing experiments with NbCN/Nb quasi-particle tunnel junctions at submillimeter wavelengths. In this wavelength range junctions with niobium nitride as superconducting material are promising because of the high gap voltage, about 5.7 mV, as compared to 3 mV for the more

  17. Magnetic and superconducting properties of a heavy-fermion CeCoIn5 epitaxial film probed by nuclear quadrupole resonance

    Science.gov (United States)

    Yamanaka, Takayoshi; Shimozawa, Masaaki; Shishido, Hiroaki; Kitagawa, Shunsaku; Ikeda, Hiroaki; Shibauchi, Takasada; Terashima, Takahito; Matsuda, Yuji; Ishida, Kenji

    2017-08-01

    Since the progress in the fabrication techniques of thin films of exotic materials such as strongly correlated heavy-fermion compounds, microscopic studies of the magnetic and electronic properties inside the films have been needed. Herein, we report the observation of 115In nuclear quadrupole resonance (NQR) in an epitaxial film of the heavy-fermion superconductor CeCoIn5, for which the microscopic field gradient within the unit cell as well as magnetic and superconducting properties at zero field are evaluated. We find that the nuclear spin-lattice relaxation rate in the film is in excellent agreement with that of bulk crystals, whereas the NQR spectra show noticeable shifts and significant broadening indicating a change in the electric-field distribution inside the film. The analysis implies a displacement of In layers in the film, which, however, does not affect the magnetic fluctuations and superconducting pairing. This implies that inhomogeneity of the electronic field gradient in the film sample causes no pair-breaking effect.

  18. Epitaxial superconducting GdBa2Cu3O7‑δ /Gd2O3 nanocomposite thin films from advanced low-fluorine solutions

    Science.gov (United States)

    Cayado, Pablo; Mundet, Bernat; Eloussifi, Hichem; Vallés, Ferrán; Coll, Mariona; Ricart, Susagna; Gázquez, Jaume; Palau, Anna; Roura, Pere; Farjas, Jordi; Puig, Teresa; Obradors, Xavier

    2017-12-01

    We have employed the CSD method to synthesize GdBCO and GdBCO–Gd2O3 nanocomposite 250–300 nm thin films. For this we have designed a new low-fluorine solution never used before in the synthesis of GdBCO thin films that allows us to reduce the HF release by 80% and increase the reproducibility of the pyrolysis process. The growth of these thin films required a new thermal process to be designed, which we refer to as ‘flash-heating’, where the heating rate is extremely fast (∼600 °C min‑1). The structure and the superconducting properties of the pristine GdBCO films are excellent, showing a (00 l) epitaxial orientation of the GdBCO grains and T c values that reach 92.8 K, which means an enhancement of more than 1 K with respect to standard YBCO films. The calculated J c inside the grains ({J}{{c}}{{G}}) also presents remarkable values: {J}{{c}}{{G}}(5 K) ∼ 40 MA cm‑2 and {J}{{c}}{{G}}(77 K) ∼ 3.3 MA cm‑2. Finally, the GdBCO–Gd2O3 nanocomposites films, with a 20% mol of Gd2O3, exhibit superior superconducting properties and pinning performances with respect to GdBCO pristine films.

  19. What determines the interfacial configuration of Nb/Al2O3 and Nb/MgO interface

    Science.gov (United States)

    Du, J. L.; Fang, Y.; Fu, E. G.; Ding, X.; Yu, K. Y.; Wang, Y. G.; Wang, Y. Q.; Baldwin, J. K.; Wang, P. P.; Bai, Q.

    2016-01-01

    Nb films are deposited on single crystal Al2O3 (110) and MgO(111) substrates by e-beam evaporation technique. Structure of Nb films and orientation relationships (ORs) of Nb/Al2O3 and Nb/MgO interface are studied and compared by the combination of experiments and simulations. The experiments show that the Nb films obtain strong (110) texture, and the Nb film on Al2O3(110) substrate shows a higher crystalline quality than that on MgO(111) substrate. First principle calculations show that both the lattice mismatch and the strength of interface bonding play major roles in determining the crystalline perfection of Nb films and ORs between Nb films and single crystal ceramic substrates. The fundamental mechanisms for forming the interfacial configuration in terms of the lattice mismatch and the strength of interface bonding are discussed. PMID:27698458

  20. Synthesis and Characterization of Pb(Zr., Ti.)O-Pb(Nb/, Zn/)O Thin Film Cantilevers for Energy Harvesting Applications

    KAUST Repository

    Fuentes-Fernandez, E. M. A.

    2012-01-18

    A complete analysis of the morphology, crystallographic orientation, and resulting electrical properties of Pb(Zr0.53,Ti0.47) Pb(Nb1/3, Zn2/3)O3 (PZT-PZN) thin films, as well as the electrical behavior when integrated in a cantilever for energy harvesting applications, is presented. The PZT-PZN films were deposited using sol-gel methods. We report that using 20% excess Pb, a nucleation layer of PbTiO3 (PT), and a fast ramp rate provides large grains, as well as denser films. The PZT-PZN is deposited on a stack of TiO2/PECVD SiO2/Si3N4/thermal SiO2/Poly-Si/Si. This stack is designed to allow wet-etching the poly-Si layer to release the cantilever structures. It was also found that the introduction of the poly-Si layer results in larger grains in the PZT-PZN film. PZT-PZN films with a dielectric constant of 3200 and maximum polarization of 30 μC/cm2 were obtained. The fabricated cantilever devices produced ~300–400 mV peak-to-peak depending on the cantilever design. Experimental results are compared with simulations.

  1. Pinning enhancement in MgB2 superconducting thin films by ...

    Indian Academy of Sciences (India)

    in magnesium vapour. In order to investigate the effect of Fe2O3 nanoparticles on the structural and magnetic properties of films, MgB2 films were coated with different concentrations of Fe2O3 nanoparticles by spin coating process. The magnetic field dependence of the critical current density Jc was calculated from the M–H ...

  2. The development of Tl-2212 based superconducting thin films for microwave applications

    CERN Document Server

    Hyland, D M C

    2001-01-01

    This thesis attempts to develop the understanding of the two-stage ex-situ processing of Tl sub 2 Ba sub 2 CaCu sub 2 O (Tl-2212) thin films on LaAlO sub 3 substrates. Initially a thallium-free precursor film is deposited by sputtering, this is then annealed in a sealed crucible containing a thallium source to produce the final crystalline film. An investigation into the correlation of physical characteristics of the films with their microwave properties is presented. High reproducibility of processing was achieved for 1cm sup 2 size films with measured R sub s < 0.5m OMEGA. Strong dependence of the microwave properties was found with film thickness and growth morphology of the crystalline film. A good correlation of R sub s was seen with defect density, greater numbers of defects giving higher R sub s values. Problems were encountered in scaling up the process to fabricate 2-inch diameter films, initially limited by the increased defect density associated with a larger surface area. Additionally when usin...

  3. Superconductivity in the A15 structure

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, G.R.

    2015-07-15

    Highlights: • Review of A-15 structure superconductors. • Comparison of A-15 superconductors with other superconducting classes. • Characteristic physical properties of A-15 superconductors. - Abstract: The cubic A15 structure metals, with over 60 distinct member compounds, held the crown of highest T{sub c} superconductor starting in 1954 with the discovery of T{sub c} = 18 K in Nb{sub 3}Sn. T{sub c} increased over the next 20 years until the discovery in 1973 of T{sub c} = 22.3 K (optimized to ≈23 K a year later) in sputtered films of Nb{sub 3}Ge. Attempts were made to produce – via explosive compression – higher (theorized to be 31–35 K) transition temperatures in not-stable-at-ambient-conditions A15 Nb{sub 3}Si. However, the effort to continue the march to higher T{sub c}’s in A15 Nb{sub 3}Si only resulted in a defect-suppressed T{sub c} of 19 K by 1981. Focus in superconductivity research partially shifted with the advent of heavy Fermion superconductors (CeCu{sub 2}Si{sub 2}, UBe{sub 13}, and UPt{sub 3} discovered in 1979, 1983 and 1984 respectively) and further shifted away from A15’s with the discovery of the perovskite structure cuprate superconductors in 1986 with T{sub c} = 35 K. However, the A15 superconductors – and specifically doped Nb{sub 3}Sn – are still the material of choice today for most applications where high critical currents (e.g. magnets with dc persistent fields up to 21 T) are required. Thus, this article discusses superconductivity, and the important physical properties and theories for the understanding thereof, in the A15’s which held the record T{sub c} for the longest time (32 years) of any known class of superconductor since the discovery of T{sub c} = 4.2 K in Hg in 1911. The discovery in 2008 of T{sub c} = 38 K at 7 kbar in A15 Cs{sub 3}C{sub 60} (properly a member of the fullerene superconductor class), which is an insulator at 1 atm pressure and otherwise also atypical of the A15 class of superconductors

  4. First Demonstration of Electron Beam Generation and Characterization with an All Superconducting Radio-frequency (SRF) Photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Kamps, T; Barday, R; Jankowiak, A; Knobloch, J; Kugeler, O; Matveenko, A N; Neumann, A; Quast, T; Rudolph, J; Schubert, S G; Volker, J; Kneisel, P; Nietubyc, R; Sekutowicz, J K; Smedley, J; Volkov, V; Weinberg, G

    2011-09-01

    In preparation for a high brightness, high average current electron source for the energy-recovery linac BERLinPro an all superconducting radio-frequency photoinjector is now in operation at Helmholtz-Zentrum Berlin. The aim of this experiment is beam demonstration with a high brightness electron source able to generate sub-ps pulse length electron bunches from a superconducting (SC) cathode film made of Pb coated on the backwall of a Nb SRF cavity. This paper describes the setup of the experiment and first results from beam measurements.

  5. Fourcross shaped metamaterial filters fabricated from high temperature superconducting YBCO and Au thin films for terahertz waves

    Science.gov (United States)

    Demirhan, Y.; Alaboz, H.; Nebioğlu, M. A.; Mulla, B.; Akkaya, M.; Altan, H.; Sabah, C.; Ozyuzer, L.

    2017-07-01

    In this study, we present a new, unique fourcross shaped metamaterial terahertz (THz) filter fabricated from both gold thin films and YBa2Cu3O7-d high T c superconducting thin films. A commercial electromagnetic simulation software, CST Microwave Studio, is used to design and optimize the metamaterial filter structures. The proposed fourcross shaped rectangular filter structure consists of periodic metallic rings where strip lines are located at the sides of the ring. Fourcross metamaterial filters are fabricated by using e-beam lithography and ion beam etching techniques. Terahertz time-domain spectroscopy measurements validated the design predictions for both the center frequencies and bandwidths of the resonances due to the fourcross structures. The resonance switching of the transmission spectra was investigated by lowering the temperature below the critical transition temperature. This resonance switching effect is not observed in filters made up of metals. This novel fourcross rectangular resonator with a temperature-dependent resonance behavior holds great potential for active, tunable and low loss THz devices for imaging, sensing, and detection applications.

  6. Correlative study of R{sub s} and J{sub c} for 123 superconducting thin films

    Energy Technology Data Exchange (ETDEWEB)

    Murugesan, M; Obara, H; Mawatari, Y; Yamasaki, H; Kosaka, S [AIST, Energy Technology Research Institute, Tsukuba Central 2, 1-1-1 Higashi, Tsukuba 305-8568, Ibaraki (Japan)

    2005-06-01

    We have studied the relationship between the microwave surface resistance, R{sub s} (measured by a dielectric resonator technique at 22?GHz), and the critical current density, J{sub c} (obtained via a transport method), for various superconducting thin films belonging to the 123 family. It is found that R{sub s} = 4.29 x 10{sup 7}J{sub c}{sup -0.98} for YBa{sub 2}Cu{sub 3}O{sub z} (YBCO) films on MgO, which is in good agreement with the reported value (R{sub s,22?GHz} = 1.8 ? 10{sup 7}J{sub c}{sup -1}) for YBCO on BaSnO{sub 3} buffered MgO. On the other hand, we observed R{sub s} = 6.8 x 10{sup 23}J{sub c}{sup -2.55} and R{sub s} = 2.2 x 10{sup 5}J{sub c}{sup -0.76}, respectively, for Y{sub 0.90}Ca{sub 0.10}Ba{sub 2}Cu{sub 3}O{sub z} on MgO and Dy{sub 0.40}Ho{sub 0.60}Ba{sub 2}Cu{sub 3}O{sub z} ((D, H)BCO) on LaAlO{sub 3} films, where R{sub s} is in {omega} and J{sub c} is in A m{sup -2}. The observed deviation in the R{sub s}-J{sub c} relations (from the simple R{sub s} = J{sub c}{sup -1} relation, which holds good for pure YBCO films) for (D, H)BCO films may be attributed to the existing different temperature dependence of R{sub s} for these films. On the other hand, in the case of Y{sub 1-x}Ca{sub x}Ba{sub 2}Cu{sub 3}O{sub z} (YCBCO) films, the very low J{sub c} and the microstructural imperfections are considered a plausible cause for the observed deviation from the simple R{sub s} = J{sub c}{sup -1} relation. Though the pre-exponential factor, m, in R{sub s} = mJ{sub c}{sup -n} is believed to be highly sample dependent, it is inferred from the correlative results (obtained from eight films, i.e., YBCO (two films); (D, H)BCO (three films); YCBCO (three films with x = 0.02, 0.05, 0.10)) that m and n in the R{sub s} = mJ{sub c}{sup -n} correlation are related to each other in such a way that log(m) varies linearly with n. An m value of the order of 10{sup 7} is observed typically when the n value is 1.

  7. High-Tc superconducting EuBa2Cu3O(y) thin films on MgO and YAlO3 for coplanar devices

    Science.gov (United States)

    Asano, H.; Satoh, M.; Konaka, T.

    1993-03-01

    The authors have studied the microwave properties of high-Tc superconducting EuBa2Cu3Oy (EBCO) films on MgO and YAlO3 substrates with low dielectric constants and a low loss tangent. Measurements of surface resistance Rs at 50 GHz in a cavity show that EBCO films exhibit low Rs values (77 K) of 2-10 micro-ohm. A microstructural study using transmission electron microscopy showed that crystal defects related to the in-plane misorientation are observed for films with higher Rs values. The Rs values of the patterned films were measured in a coplanar transmission line resonator. A typical value for patterned films was 28 micro-ohms at 4 GHz and 28 K.

  8. Incorporation of self-organised gold nano crystals in YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} thin films: Modification of superconducting properties

    Energy Technology Data Exchange (ETDEWEB)

    Katzer, Christian; Michalowski, Peter; Westerhausen, Markus; Koch, Stefanie; Schmidl, Frank; Seidel, Paul [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Helmholtzweg 5, 07743 Jena (Germany); Treiber, Sebastian [Max-Planck-Institut fuer Intelligente Systeme, Heisenbergstrasse 3, 70569 Stuttgart (Germany); Albrecht, Joachim [Hochschule Aalen, Beethovenstrasse 1, 73430 Aalen (Germany)

    2012-07-01

    Using pulsed laser deposition we are able to fabricate and examine Yttrium-Barium-Copper-Oxide (YBCO) thin films of high quality. A particular point of interest thereby is the influence of a pre-deposited gold layer with a well-defined film thickness. During the growth of the YBCO thin film the intermediate gold layer self assembles into crystalline nano particles, which modify the growth conditions and hence the physical properties of the growing YBCO. We report on the modification of structural and superconducting properties of our YBCO thin films (such as rocking curve widths, critical temperature T{sub c} and critical current density j{sub c}) comparing conventional to Au added YBCO. The temperature dependence of the critical current density thereby was determined using transport measurements as well as magneto-optical measurements. Furthermore investigations of the flux noise of our gold modified YBCO films are presented.

  9. Structure and Superconducting Properties of TlCan-1Ba2CunO2n+3 Thin Films with Zero Resistance at Temperatures above 100 K

    Science.gov (United States)

    Huang, T. C.; Lee, W. Y.; Lee, V. Y.; Karimi, R.

    1988-08-01

    New superconducting TlCan-1Ba2CunO2n+3 thin films have been analyzed by the X-ray diffraction and four-point probe techniques. The films consist mainly of a single TlCa2Ba2Cu3O9 phase or a mixture of the TlCa2Ba2O9 and TlCaBa2Cu2O7 phases with the c-axis preferentially oriented perpendicular to the film surface. The TlCa2Ba2Cu3O9 film grown on an asymmetrically cut yttrium-stabilized ZrO2 (YSZ) substrate has the highest superconducting transition with on-set Tc near 120 K and zero resistance at 116 K. The TlCa2Ba2Cu3O9 film deposited on a SrTiO3 (100) substrate has a slightly lower transition with zero resistance at 104 K probably because of stacking faults. The film composed of both the TlCa2Ba2Cu3O9 and TlCaBa2Cu2O7 phases and grown on YSZ has a double transition with on-set Tc near 118 K and 107 K, and zero resistance at 102 K.

  10. Optical constants of DC sputtering derived ITO, TiO 2 and TiO 2 :Nb thin films characterized by spectrophotometry and spectroscopic ellipsometry for optoelectronic devices

    Science.gov (United States)

    Rasheed, Mohammed; Barillé, Régis

    2017-11-01

    Thin films of inorganic materials as Tin-doped indium oxide, titanium oxide, Niobium doped titanium oxide, were deposited for comparison on glass and Polyethylene terephthalate (PET) substrates with a DC sputtering method. These thin films have been characterized by different techniques: Dektak Surface Profilometer, X-ray diffraction (XRD), SEM, (UV/Vis/NIR) spectrophotometer and spectroscopic ellipsometry (SE). The optical parameters of these films such as transmittance, reflectance, refractive index, extinction coefficient, energy gap obtained with different electronic transitions, real and imaginary ({\\epsilon}_r,{\\epsilon}_i) dielectric constants, were determined in the wavelengths range of (200 - 2200) nm. The results were compared with SE measurements in the ranges of (0.56- 6.19) eV by a new amorphous model with steps of 1 nm. SE measurements of optical constant have been examined and confirm the accuracy of the (UV/Vis/NIR) results. The optical properties indicate an excellent transmittance in the visible range of (400 - 800) nm. The average transmittance of films on glass is about (86%, 91%, 85%) for (ITO, TiO2, TiO2:Nb (NTO)) respectively and decreases to about (85%, 81%, 82%) for PET substrates. For all these materials the optical band gap for direct transition was (3.53, 3.3, 3.6) eV on glass substrates and on PET substrates using two methods (UV and SE). A comparison between optical constants and thickness of these ultrathin films observed gives an excellent agreement with the UV results. The deposited films were also analyzed by XRD and showed an amorphous structure. The structural morphology of these thin films has been investigated and compared.

  11. Structures and superconducting propertied of RHQT-Processed Nb{sub 3}Al multifilamentary wires; Kyunetsu kyurei{center_dot}hentai ho Nb{sub 3}Al tashin senzai no soshiki to chodendo tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, A.; Iijima, Y.; Inoue, K. [National Research Institute for Metals, Tokyo (Japan)

    2000-05-29

    Pinning point of Nb{sub 3}Al wire with superior J{sub c}-B property obtained by rapid heating/quenching and transforming method was examined. Structures obtained additional heat treatment at 800 degrees of centigrade for 12 h after rapid heating/quenching at various maximum attained temperatures were examined. As the result, it was found that in formed A15 phase by transforming of supersaturated solid solution, many defects existed with hierarchical structure consisting of laminated defects (10-20 nm), small tilt sub-grain boundary (about 100 nm) and large tilt crystalline grain boundary (about 1 {mu}m). The possibility that this laminated defects is a pinning point is high. (NEDO)

  12. Development of 1kA-class A.C. Nb-Ti superconducting coils; 1kA kyu koryuyo Nb-Ti dotai wo mochiita koryu koiru no tsuden tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Yumura, H.; Koganeya, M.; Hayashi, K.; Takei, H. [Sumitomo Electric Industries, Ltd., Osaka (Japan); Kasu, O. [Engineering Research Association for Superconductive Generation Equipment and Materials, Osaka (Japan)

    1999-11-10

    Again, the development of the little-loss large-capacity Nb-Ti conductor for the alternating current with the aim of the application to transformer and shunt reactor is advanced. And, capacity enlargement technology and large-capacity conductor design technology have been established through this development. However, the characteristic evaluation in coil shape seems to be finally important for these conductors, since coil shape does and will use the winding, when the application to electric power equipment is considered. Then, the coil using the 1kA secondary twist line conductor was produced this time and experimentally, and it tested on the energization characteristics, and comparison examination with characteristics of the short length level was carried out. (NEDO)

  13. Advanced photon detectors using superconducting MgB2 films Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The goals of the proposed work are to Investigate the film thickness (10–50 nm), substrate material (c-plane sapphire, MgO), and temperature (20-35 K)...

  14. Superconducting spin valves based on epitaxial Fe/V-hybrid thin film heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, Gregor

    2010-12-10

    This study presents a systematic investigation of the SSV effect in FM/SC/FM and FM/N/FM/SC heterostructures. Before investigating the actual SSV effect, we first pre-analyzed structural, magnetic and superconducting properties of the Fe/V system. In these preliminary studies we demonstrated, that epitaxial Fe/V heterostructures of superior crystalline quality can be grown by DC sputter deposition. With a Fe/V interface thickness of only one monolayer, the chemical separation of the Fe and V layers is extremely sharp. Moreover, the magnetic investigation showed that from thicknesses of two Fe(001) monolayers on the Fe layers in the superlattice possess a magnetic moment. Furthermore, we demonstrated the interlayer exchange coupling as oscillatory function of the V interlayer thickness. The investigations of the superconducting parameters of the Fe/V system revealed a non-monotonic T{sub S} vs. d{sub Fe} dependence in sample series (1). This observation proves the presence of the FM/SC proximity effect. The studies of various heterostructures of the design AFM/FM/SC/FM revealed a strong counteracting influence on the SSV effect, the stray field effect. The sample containing Fe{sub 25}V{sub 75} alloy layers, has the highest ratio of Cooper pair coherence length and superconductor thickness (ξ{sub S})/(d{sub S}), and its superconducting transition temperature is comparable to the sample with Fe{sub 35}V{sub 65} alloy layers. Nevertheless, the SSV effect in sample Fe{sub 25}V{sub 75} with alloy layers is much smaller than in sample with Fe{sub 35}V{sub 65} alloy layers. For a high-performance superconducting spin valve based on a FM1/SC/FM2 heterostructure at least four parameters have to be optimized simultaneously. 1. The magnetic domain size in FM1 and FM2 has to be as large as possible in order to reduce the stray field effect resulting from magnetization components in the FM domain walls perpendicular to the SC layer. 2. When using ferromagnetic alloys as

  15. The relationship between open volume defects and deposition conditions of superconducting thin-film YBa sub 2 Cu sub 3 O sub 7 sub - sub x

    CERN Document Server

    Zhou, X Y; Jiang, H; Bauer-Kugelmann, W; Duffy, J A; Koegel, G; Triftshaeuser, W

    1997-01-01

    The relationship between the open volume defects and the deposition conditions of superconducting thin-film YBa sub 2 Cu sub 3 O sub 7 sub - sub x was studied by the position lifetime technique. Using a low-energy pulsed positron system, positron lifetime as a function of implantation energy was measured on epitaxial superconducting thin-film YBa sub 2 Cu sub 3 O sub 7 sub - sub x deposited on yttrium stabilized cubic zirconia substrates (YSZ) with pulsed laser deposition in a partial pressure of air under different conditions. The results show that the type of open volume defect is independent of deposition conditions such as the substrate temperature, T sub s , and the air pressure, P sub a. The defect concentration increases with decreasing T sub s and increasing P sub a. (author). Letter-to-the-editor

  16. Enhancing the critical current of a superconducting film in a wide range of magnetic fields with a conformal array of nanoscale holes

    Science.gov (United States)

    Wang, Y. L.; Latimer, M. L.; Xiao, Z. L.; Divan, R.; Ocola, L. E.; Crabtree, G. W.; Kwok, W. K.

    2013-06-01

    The maximum current (critical current) a type-II superconductor can transmit without energy loss is limited by the motion of the quantized magnetic flux penetrating into a superconductor. Introducing nanoscale holes into a superconducting film has been long pursued as a promising way to increase the critical current. So far the critical current enhancement was found to be mostly limited to low magnetic fields. Here we experimentally investigate the critical currents of superconducting films with a conformal array of nanoscale holes that have nonuniform density while preserving the local ordering. We find that the conformal array of nanoscale holes provides a more significant critical current enhancement at high magnetic fields. The better performance can be attributed to its arching effect that not only gives rise to the gradient in hole density for pinning vortices with a wide range of densities but also prevents vortex channeling occurring in samples with a regular lattice of holes.

  17. Localized superconductivity in the quantum-critical region of the disorder-driven superconductor-insulator transition in TiN thin films.

    Science.gov (United States)

    Baturina, T I; Mironov, A Yu; Vinokur, V M; Baklanov, M R; Strunk, C

    2007-12-21

    We investigate low-temperature transport properties of thin TiN superconducting films in the vicinity of the disorder-driven superconductor-insulator transition. In a zero magnetic field, we find an extremely sharp separation between superconducting and insulating phases, evidencing a direct superconductor-insulator transition without an intermediate metallic phase. At moderate temperatures, in the insulating films we reveal thermally activated conductivity with the magnetic field-dependent activation energy. At very low temperatures, we observe a zero-conductivity state, which is destroyed at some depinning threshold voltage V{T}. These findings indicate the formation of a distinct collective state of the localized Cooper pairs in the critical region at both sides of the transition.

  18. The growth of thin film epitaxial oxide-metal heterostructures

    CERN Document Server

    Wang, C

    1998-01-01

    films with lowest IR emissivity are those made from the purest targets despite their having comparable roughnesses to films from lower purity targets. The lowest emissivity achieved was in the range of 1.64% to 1.72% measured at 3.8 mu m for 1.5 to 1.8 mu m thick films. Modifications to standard idealized Drude theory have been made which, in a phenomenological way, take account of imperfections in the sputtered Al film, oxidation state and roughness. in electric properties of the Nb film and the reduction in crystalline quality of the MgO layer. The reduction of transition temperature to the superconducting state, Tc, and the similarly systematic increase in the Nb lattice parameter were observed consistent with oxygen content data reported in the literature, as the Nb became heavily oxidized. Examination of the surface of clean and oxidized Nb by atomic force microscopy, and deposition of MgO in UHV onto a previously oxidized Nb surface, suggested that the decrease in crystalline quality of the MgO can be a...

  19. KTa0.65Nb0.35O3 thin films epitaxially grown by pulsed laser deposition on metallic and oxide epitaxial electrodes

    Science.gov (United States)

    Bouyasfi, A.; Mouttalie, M.; Demange, V.; Gautier, B.; Grandfond, A.; Députier, S.; Ollivier, S.; Hamedi, L.'H.; Guilloux-Viry, M.

    2012-09-01

    Ferroelectric KTa0.65Nb0.35O3 (KTN) thin films were grown by pulsed laser deposition on Pt and LaNiO3 epitaxial electrodes, on (1 0 0) and (1 1 0) SrTiO3 substrates. The effect of the nature of the electrode on structural and microstructural quality of KTN films was investigated. While epitaxial KTN thin films were successfully obtained on both electrodes, two orientations compete on Pt, whatever the main orientation of Pt is (1 0 0) or (1 1 0). On LaNiO3 in contrast, pure (1 0 0) and (1 1 0) oriented KTN films were achieved with a high crystalline quality illustrated by narrow ω-scans (Δω = 0.56° and Δω = 0.80° for (1 0 0) and (1 1 0) KTN, to be compared to 0.048° and 0.22° for (1 0 0) and (1 1 0) LaNiO3, respectively). Electrical measurements performed in tunneling atomic force microscopy (TUNA mode) on a KTN/Pt heterostructure showed a high asymmetry of the conduction mechanisms when a positive or a negative bias is applied on the sample. In particular leakage currents appear even at very low positive applied voltage. TUNA imaging operated at a moderate negative applied voltage of -3 V shows that some areas corresponding to grain boundaries seem to be more leaky than others.

  20. Proceedings of the 55th Meeting on Cryogenics and Superconductivity; Dai 55 kai 1996 nendo shuki teion kogaku chodendo gakkai koen gaiyoshu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-06

    This is a proceedings of the 55th Meeting on Cryogenics and Superconductivity. As for wires, made public were Bi-system 2223, Y-system NbTi, NbSn, Nb3Al, etc. As to oxide superconductors, some of them are promising. The study of those characteristics and the developmental application to the electric power field such as coils and cables were introduced. Beside wires, multilayer film superconductors were also introduced. With relation to fundamentals and theories, became topics were pinning characteristics, NbTi proximity effects, magnetic flux and visualization, stability, etc. About the application, large refrigerators are discussed in the refrigeration field in addition to GM/pulse tube refrigerators. Concerning cooling technology, made public were the development of a floating railroad use 80K cooling system, etc. Also studied were power leads, superconducting magnet, control action characteristics, etc. SMES (superconducting magnetic energy storage) also became a topic, and the element coil energization experiment, stability and mechanical properties were described. The paper also touched on accelerators, large superconducting devices such as LHD (large helical device) and ITER (international thermal-nuclear experimental reactor) as well as generators and current limiters. The cryogenetic engineering was also reported such as fracture toughness and superfluidity of cryostats and structural materials for extremely low temperatures.

  1. Superconducting coplanar waveguide resonators for electron spin resonance applications

    Science.gov (United States)

    Sigillito, A. J.; Jock, R. M.; Tyryshkin, A. M.; Malissa, H.; Lyon, S. A.

    2013-03-01

    Superconducting coplanar waveguide (CPW) resonators are a promising alternative to conventional volume resonators for electron spin resonance (ESR) experiments where the sample volume and thus the number of spins is small. However, the magnetic fields required for ESR could present a problem for Nb superconducting resonators, which can be driven normal. Very thin Nb films (50 nm) and careful alignment of the resonators parallel to the magnetic field avoid driving the Nb normal, but flux trapping can still be an issue. Trapped flux reduces the resonator Q-factor, can lead to resonant frequency instability, and can lead to magnetic field inhomogeneities. At temperatures of 1.9 K and in a magnetic field 0.32 T, we have tested X-band resonators fabricated directly on the surface of a silicon sample. Q-factors in excess of 15,000 have been obtained. A thin layer of GE varnish applied directly to the resonator has been used to glue a sapphire wafer to its surface, and we still find Q-factors of 16,000 or more in the 0.32 T field. ESR applications of these resonators will be discussed. Supported in part by the ARO.

  2. Magnetic and superconductivity studies on (In{sub 1−x}Fe{sub x}){sub 2}O{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sai Krishna, N. [Thin Films Laboratory, School of Advanced Sciences, VIT University, Vellore 632 014, Tamil Nadu (India); Kaleemulla, S., E-mail: skaleemulla@gmail.com [Thin Films Laboratory, School of Advanced Sciences, VIT University, Vellore 632 014, Tamil Nadu (India); Amarendra, G. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu (India); UGC-DAE-CSR, Kalpakkam Node, Kokilamedu 603 104, Tamil Nadu (India); Madhusudhana Rao, N.; Krishnamoorthi, C.; Rigana Begam, M. [Thin Films Laboratory, School of Advanced Sciences, VIT University, Vellore 632 014, Tamil Nadu (India); Omkaram, I. [Department of Electronics and Radio Engineering, Kyung Hee University, Yongin-si Gyeonggi-do 446-701 (Korea, Republic of); Sreekantha Reddy, D. [Department of Physics and Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2015-07-15

    Highlights: • Fe doped In{sub 2}O{sub 3} thin films deposited using electron beam evaporation technique. • Characterization of the samples using XRD, SEM, EDAX, AES, Raman spectroscopy, FT-IR, VSM and magnetoresistance. • All Fe doped In{sub 2}O{sub 3} thin films exhibited the cubic structure of In{sub 2}O{sub 3}. • Pure and Fe doped In{sub 2}O{sub 3} samples exhibited room temperature ferromagnetism and superconductivity at 2 K. - Abstract: Magnetic, magnetoresistivity and superconductivity studies were carried out on (In{sub 1−x}Fe{sub x}){sub 2}O{sub 3} (x = 0.00, 0.03, 0.05 and 0.07) thin films (2D structures) grown on glass substrate by electron beam evaporation technique at 350 °C. The films have an average size of 120 nm particles. All the samples shown soft ferromagnetic hysteresis loops at room temperature and saturation magnetization increased with iron dopant concentration. Observed magnetization could be best interpreted by F-center mediated magnetic exchange interaction in the samples. Temperature dependent resistivity of the sample (x = 0.00 and 0.07) showed metallic behavior down to very low temperatures and superconductivity at 2 K for undoped In{sub 2}O{sub 3} whereas the In{sub 1.86}Fe{sub 0.14}O{sub 3} sample shows superconductivity below 2 K in the absence of magnetic fields. The reduction in transition temperature was attributed to increase electrical disorder with iron doping. Both samples showed positive magnetoresistivity (MR) in superconducting state due to increase of resistivity resulting from breaking of superconducting Cooper pairs upon application of magnetic field. In addition, both the samples show feeble negative MR in normal electrical state. The observed MR in normal state is not due to spin polarized tunneling instead it is due to suppression of scattering of charge carrier by single occupied localized states.

  3. Study of Si-coupled superconducting FETs using microfabrication technologies

    Science.gov (United States)

    Hatano, Mutsuko; Nishino, Toshikazu; Hasegawa, Haruhiro; Murai, Fumio; Kure, Tokuo; Nakane, Hideaki

    1990-10-01

    The coherence length in Si is estimated by the measurements of the Nb-Si bilayer superconducting transition temperature and the Nb-Si-Nb weak link superconducting critical current. The coherence length is shown to increase with an increase in the carrier concentration n as a function of n"3 . This result agreed with the numerical result derived from the Seto-Van Duzer's theory. The change in pair potential for the Al-Nb proximity system can be reconstructed by measuring the dependence of differential resistance on incident energy and the bound state levels using lithographic point-contact on Al-Nb bilayer.

  4. Maximum screening fields of superconducting multilayer structures

    Science.gov (United States)

    Gurevich, Alex

    2015-01-01

    It is shown that a multilayer comprised of alternating thin superconducting and insulating layers on a thick substrate can fully screen the applied magnetic field exceeding the superheating fields Hs of both the superconducting layers and the substrate, the maximum Meissner field is achieved at an optimum multilayer thickness. For instance, a dirty layer of thickness ˜0.1 μm at the Nb surface could increase Hs ≃ 240 mT of a clean Nb up to Hs ≃ 290 mT. Optimized multilayers of Nb3Sn, NbN, some of the iron pnictides, or alloyed Nb deposited onto the surface of the Nb resonator cavities could potentially double the rf breakdown field, pushing the peak accelerating electric fields above 100 MV/m while protecting the cavity from dendritic thermomagnetic avalanches caused by local penetration of vortices.

  5. Electrical dissipation and material properties of in-plane anisotropic superconducting YBCO films

    CERN Document Server

    Czerwinka, P S

    2001-01-01

    vortex liquid-to-glass phase transition model (VG). In all cases, the data can be successfully collapsed when scaled under the VG algorithm forming the expected master curves for temperatures above and below the vortex-glass 'transition' temperature T sub V sub G (B). However, between film systems we observe wide variations of the critical exponent z(theta,B) and T sub V sub G (B) as a function of field strength (B) and field orientation (theta). This lack of 'universality' does not allow interpretation of the scaling as evidence for a vortex liquid-to-glass phase transition. We find quantitative evidence in support of alternative scaling models which are based upon conventional flux-flow/creep theories and distributions of vortex-pinning strength. We investigate the growth, material and electrical properties of a wide variety of YBa sub 2 Cu sub 3 O sub 7 sub - subdelta films (40-480nm). The films range from c-axis normal to c-axis parallel to the film plane and were grown upon SrTiO sub 3 (STO) and LaSrGaO ...

  6. Local detection efficiency of a NbN superconducting single photon detector explored by a scattering scanning near-field optical microscope.

    Science.gov (United States)

    Wang, Qiang; Renema, Jelmer J; Engel, Andreas; van Exter, Martin P; de Dood, Michiel J A

    2015-09-21

    We propose an experiment to directly probe the local response of a superconducting single photon detector using a sharp metal tip in a scattering scanning near-field optical microscope. The optical absorption is obtained by simulating the tip-detector system, where the tip-detector is illuminated from the side, with the tip functioning as an optical antenna. The local detection efficiency is calculated by considering the recently introduced position-dependent threshold current in the detector. The calculated response for a 150 nm wide detector shows a peak close to the edge that can be spatially resolved with an estimated resolution of ∼ 20 nm, using a tip with parameters that are experimentally accessible.

  7. Superconducting magnetic quadrupole

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.W.; Shepard, K.W.; Nolen, J.A.

    1995-08-01

    A design was developed for a 350 T/m, 2.6-cm clear aperture superconducting quadrupole focussing element for use in a very low q/m superconducting linac as discussed below. The quadrupole incorporates holmium pole tips, and a rectangular-section winding using standard commercially-available Nb-Ti wire. The magnet was modeled numerically using both 2D and 3D codes, as a basis for numerical ray tracing using the quadrupole as a linac element. Components for a prototype singlet are being procured during FY 1995.

  8. Structural, ferroelectric and leakage current properties of Bi{sub 3.96}Pr{sub 0.04}Ti{sub 2.95}Nb{sub 0.05}O{sub 12} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kao, Ming-Cheng, E-mail: kmc@mail.hust.edu.tw [Department of Electronic Engineering, Hsiuping University of Science and Technology, Taichung 412, Taiwan (China); Chen, Hone-Zern, E-mail: hzc@mail.hust.edu.tw [Department of Electronic Engineering, Hsiuping University of Science and Technology, Taichung 412, Taiwan (China); Young, San-Lin [Department of Electronic Engineering, Hsiuping University of Science and Technology, Taichung 412, Taiwan (China); Kao, Ming-Hui [Department of Electronic Engineering, Chung Chou University of Science and Technology, Changhua 510, Taiwan (China)

    2014-11-03

    Praseodymium and niobium-substituted bismuth titanate (Bi{sub 3.96}Pr{sub 0.04}Ti{sub 2.95}Nb{sub 0.05}O{sub 12}, BPTNO) thin films were deposited on Pt(111)/Ti/SiO{sub 2}/Si(100) substrates by a sol–gel technology. The effects of annealing temperature (500 ∼ 800 °C) on microstructure and electric properties of thin films were investigated. X-ray diffraction analysis shows that the BPTNO thin films have a bismuth-layered perovskite structure with preferred (117) orientation. The intensities of (117) peak increases with increasing annealing temperature. With the increase of annealing temperature from 500 °C to 800 °C, the grain size of BPTNO thin films increases. The highly (117)-oriented BPTNO thin films exhibits a high remnant polarization (2P{sub r}) of 48 μC/cm{sup 2} and a low coercive field (2E{sub c}) of 110 kV/cm, fatigue free characteristics up to > 10{sup 8} switching cycles. A small leakage current density (J) was 6.23 × 10{sup −8} A/cm{sup 2} at 200 kV/cm. The leakage current mechanisms were controlled by Poole–Frenkel emission in the low electric field region and by Schottky emission in the high field region. - Highlights: • Bi{sub 3.96}Pr{sub 0.04}Ti{sub 2.95}Nb{sub 0.05}O{sub 12} thin films were prepared by sol–gel technology. • Films show preferred (117) orientation. • The Pr and Nb-doping decrease the oxygen vacancy concentration. • The Pr and Nb-doping improved the ferroelectric and leakage current properties.

  9. Local hysteresis and grain size effect in Pb(Mg1/3Nb2/3)O3- PbTiO3 thin films

    Science.gov (United States)

    Shvartsman, V. V.; Emelyanov, A. Yu.; Kholkin, A. L.; Safari, A.

    2002-07-01

    The local piezoelectric properties of relaxor ferroelectric films of solid solutions 0.9Pb(Mg1/3Nb2/3)O3- 0.1PbTiO3 were investigated by scanning force microscopy (SFM) in a piezoelectric contact mode. The piezoelectric hysteresis loops were acquired in the interior of grains of different sizes. A clear correlation between the values of the effective piezoelectric coefficients, deff, and the size of the respective grains is observed. Small grains exhibit slim piezoelectric hysteresis loops with low remanent deff, whereas relatively strong piezoelectric activity is characteristic of larger grains. Part of the grains (approx20-25%) is strongly polarized without application of a dc field. The nature of both phenomena is discussed in terms of the internal bias field and grain size effects on the dynamics of nanopolar clusters.

  10. Pinning enhancement in MgB2 superconducting thin films by ...

    Indian Academy of Sciences (India)

    MgB2 thin films were fabricated on -plane Al2O3 (1 1 ¯ 02) substrates. First, deposition of boron was performed by rf magnetron sputtering on Al2O3 substrates and followed by a post-deposition annealing at 850 °C in magnesium vapour. In order to investigate the effect of Fe2O3 nanoparticles on the structural and ...

  11. Stencil lithography of superconducting contacts on MBE-grown topological insulator thin films

    Science.gov (United States)

    Schüffelgen, Peter; Rosenbach, Daniel; Neumann, Elmar; Stehno, Martin P.; Lanius, Martin; Zhao, Jialin; Wang, Meng; Sheehan, Brendan; Schmidt, Michael; Gao, Bo; Brinkman, Alexander; Mussler, Gregor; Schäpers, Thomas; Grützmacher, Detlev

    2017-11-01

    Topological insulator (Bi0.06Sb0.94)2Te3 thin films grown by molecular beam epitaxy have been capped in-situ with a 2 nm Al film to conserve the pristine topological surface states. Subsequently, a shadow mask - structured by means of focus ion beam - was in-situ placed underneath the sample to deposit a thick layer of Al on well-defined microscopically small areas. The 2 nm thin Al layer fully oxidizes after exposure to air and in this way protects the TI surface from degradation. The thick Al layer remains metallic underneath a 3-4 nm thick native oxide layer and therefore serves as (super-) conducting contacts. Superconductor-Topological Insulator-Superconductor junctions with lateral dimensions in the nm range have then been fabricated via an alternative stencil lithography technique. Despite the in-situ deposition, transport measurements and transmission electron microscope analysis indicate a low transparency, due to an intermixed region at the interface between topological insulator thin film and metallic Al.

  12. Magnetic moment jumps in flat and nanopatterned Nb thin-walled cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Tsindlekht, M.I., E-mail: mtsindl@vms.huji.ac.il [The Racah Institute of Physics, The Hebrew University of Jerusalem, 91904 Jerusalem (Israel); Genkin, V.M.; Felner, I.; Zeides, F.; Katz, N. [The Racah Institute of Physics, The Hebrew University of Jerusalem, 91904 Jerusalem (Israel); Gazi, Š.; Chromik, Š. [The Institute of Electrical Engineering SAS, Dúbravská cesta 9, 84104 Bratislava (Slovakia); Dobrovolskiy, O.V. [Physikalisches Institut, Goethe University, 60438 Frankfurt am Main (Germany); Physics Department, V. Karazin Kharkiv National University, 61077 Kharkiv (Ukraine); Sachser, R.; Huth, M. [Physikalisches Institut, Goethe University, 60438 Frankfurt am Main (Germany)

    2017-02-15

    Highlights: • Magnetization curves of as-prepared and patterned thin-walled cylinders were measured in magnetic fields applied parallel to cylinders axis. • Magnetic moment jumps were observed in magnetic fields lower and above Hc1. • Critical current density in isthmus between two antidots is higher than in a film itself. - Abstract: Penetration of magnetic flux into hollow superconducting cylinders is investigated by magnetic moment measurements. The magnetization curves of a flat and a nanopatterned thin-walled superconducting Nb cylinders with a rectangular cross section are reported for the axial field geometry. In the nanopatterned sample, a row of micron-sized antidots (holes) was milled in the film along the cylinder axis. Magnetic moment jumps are observed for both samples at low temperatures for magnetic fields not only above H{sub c1}, but also in fields lower than H{sub c1}, i. e., in the vortex-free regime. The positions of the jumps are not reproducible and they change from one experiment to another, resembling vortex lattice instabilities usually observed for magnetic fields larger than H{sub c1}. At temperatures above 0.66T{sub c} and 0.78T{sub c} the magnetization curves become smooth for the patterned and the as-prepared sample, respectively. The magnetization curve of a reference flat Nb film in the parallel field geometry does not exhibit jumps in the entire range of accessible temperatures.

  13. Smooth surfaces in very thin GdBa{sub 2}Cu{sub 3}O{sub 7−δ} films for application in superconducting tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, H., E-mail: henrynavarro@cab.cnea.gov.ar [Instituto Balseiro, Universidad Nacional de Cuyo & CNEA, 8400 Bariloche (Argentina); Centro Atómico Bariloche, Comisión Nacional de Energía Atómica. Av. Bustillo 9500, 8400 San Carlos de Bariloche (Argentina); Sirena, M. [Instituto Balseiro, Universidad Nacional de Cuyo & CNEA, 8400 Bariloche (Argentina); Centro Atómico Bariloche, Comisión Nacional de Energía Atómica. Av. Bustillo 9500, 8400 San Carlos de Bariloche (Argentina); Kim, Jeehoon [Department of Physics, Pohang University of Science and Technology, Pohang (Korea, Republic of); CALDES, Institute for Basic Science, Pohang (Korea, Republic of); Haberkorn, N. [Instituto Balseiro, Universidad Nacional de Cuyo & CNEA, 8400 Bariloche (Argentina); Centro Atómico Bariloche, Comisión Nacional de Energía Atómica. Av. Bustillo 9500, 8400 San Carlos de Bariloche (Argentina)

    2015-03-15

    Highlights: • A detailed study of the morphological properties of GdBa{sub 2}Cu{sub 3}O{sub 7−δ} thin films was realized. • The inclusion of a very thin SrTiO{sub 3} buffer layer modifies the surface of the SrTiO{sub 3} substrates. • The inclusion of the buffer layer suppress the three dimensional nucleation in the GdBa{sub 2}Cu{sub 3}O{sub 7−δ} film. • GdBa{sub 2}Cu{sub 3}O{sub 7−δ} films with large areas free of topological defects and T{sub c} close to liquid nitrogen can be obtained. - Abstract: This paper provides a systematic analysis of the morphology and the superconducting critical temperature obtained in very thin GdBa{sub 2}Cu{sub 3}O{sub 7−δ} films grown on (0 0 1) SrTiO{sub 3} substrates by DC sputtering. We find that the use of a very thin SrTiO{sub 3} buffer layer (≈2 nm) modify the nucleation of GdBa{sub 2}Cu{sub 3}O{sub 7−δ} on the surface of the substrate reducing the formation of 3 dimensional clusters. Our results demonstrate that 16 nm thick GdBa{sub 2}Cu{sub 3}O{sub 7−δ} films with an average root-mean-square (RMS) smaller than 1 nm and large surface areas (up 10 μm{sup 2}) free of 3 dimensional topological defects can be obtained. In films thinner than 24 nm the onset (zero resistance) of superconducting transition of the films is reduced, being close to liquid nitrogen. This fact can be associated with stress reducing the orthorhombicity and slightly drop in oxygen stoichiometry.

  14. Thin Film Coating Optimization For HIE-ISOLDE SRF Cavities: Coating Parameters Study and Film Characterization

    CERN Document Server

    Sublet, A; Calatroni, S; Costa Pinto, P; Jecklin, N; Prunet, S; Sapountzis, A; Venturini Delsolaro, W; Vollenberg, W

    2013-01-01

    The HIE-ISOLDE project at CERN requires the production of 32 superconducting Quarter Wave Resonators (QWRs) in order to increase the energy of the beam up to 10 MeV/u. The cavities, of complex cylindrical geometry (0.3m diameter and 0.8m height), are made of copper and are coated with a thin superconducting layer of niobium. In the present phase of the project the aim is to obtain a niobium film, using the DC bias diode sputtering technique, providing adequate high quality factor of the cavities and to ensure reproducibility for the future series production. After an overview of the explored coating parameters (hardware and process), the resulting film characteristics, thickness profile along the cavity, structure and morphology and Residual Resistivity Ratio (RRR) of the Nb film will be shown. The effect of the sputtering gas process pressure and configuration of the coating setup will be highlighted.

  15. Determination of structural, mechanical and corrosion properties of Nb{sub 2}O{sub 5} and (Nb{sub y}Cu{sub 1−y})O{sub x} thin films deposited on Ti6Al4V alloy substrates for dental implant applications

    Energy Technology Data Exchange (ETDEWEB)

    Mazur, M. [Wroclaw University of Technology, Faculty of Microsystem Electronics and Photonics, Janiszewskiego 11/17, 50-372 Wroclaw (Poland); Kalisz, M., E-mail: malgorzata.kalisz@its.waw.pl [Motor Transport Institute, Jagiellońska 80, 03-301 Warsaw (Poland); Wojcieszak, D. [Wroclaw University of Technology, Faculty of Microsystem Electronics and Photonics, Janiszewskiego 11/17, 50-372 Wroclaw (Poland); Grobelny, M. [Motor Transport Institute, Jagiellońska 80, 03-301 Warsaw (Poland); Mazur, P. [Wroclaw University, Institute of Experimental Physics, Max Born 9, 50-204 Wroclaw (Poland); Kaczmarek, D.; Domaradzki, J. [Wroclaw University of Technology, Faculty of Microsystem Electronics and Photonics, Janiszewskiego 11/17, 50-372 Wroclaw (Poland)

    2015-02-01

    In this paper comparative studies on the structural, mechanical and corrosion properties of Nb{sub 2}O{sub 5}/Ti and (Nb{sub y}Cu{sub 1−y})O{sub x}/Ti alloy systems have been investigated. Pure layers of niobia and niobia with a copper addition were deposited on a Ti6Al4V titanium alloy surface using the magnetron sputtering method. The physicochemical properties of the prepared thin films were examined with the aid of XRD, XPS SEM and AFM measurements. The mechanical properties (i.e., nanohardness, Young's modulus and abrasion resistance) were performed using nanoindentation and a steel wool test. The corrosion properties of the coatings were determined by analysis of the voltammetric curves. The deposited coatings were crack free, exhibited good adherence to the substrate, no discontinuity of the thin film was observed and the surface morphology was homogeneous. The hardness of pure niobium pentoxide was ca. 8.64 GPa. The obtained results showed that the addition of copper into pure niobia resulted in the preparation of a layer with a lower hardness of ca. 7.79 GPa (for niobia with 17 at.% Cu) and 7.75 GPa (for niobia with 25 at.% Cu). The corrosion properties of the tested thin films deposited on the surface of titanium alloy depended on the composition of the thin layer. The addition of copper (i.e. a noble metal) to Nb{sub 2}O{sub 5} film increased the corrosion resistance followed by a significant decrease in the value of corrosion currents and, in case of the highest Cu content, the shift of corrosion potential towards the noble direction. The best corrosion properties were obtained from a sample of Ti6Al4V coated with (Nb{sub 0.75}Cu{sub 0.25})O{sub x} thin film. It seems that the tested materials could be used in the future as protection coatings for Ti alloys in biomedical applications such as implants. - Highlights: • Nb{sub 2}O{sub 5} and Nb{sub 2}O{sub 5}:Cu thin films were deposited on a Ti–Al–V surface using the magnetron sputtering.

  16. Development of Energy-Efficient Cryogenic Leads with High Temperature Superconducting Films on Ceramic Substrates

    Science.gov (United States)

    Pan, A. V.; Fedoseev, S. A.; Shcherbakova, O. V.; Golovchanskiy, I. A.; Zhou, S.; Dou, S. X.; Webber, R. J.; Mukhanov, O. A.; Yamashita, T.; Taylor, R.

    High temperature superconductor (HTS) material can be used for the implementation of high-speed low-heat conduction data links to transport digital data from 4 K superconductor integrated circuits to higher-temperature parts of computing systems. In this work, we present a conceptual design of energy efficient interface and results in fabricating such HTS leads. Initial calculations have shown that the microstrip line cable geometry for typical materials employed in production of HTS thin films can be a two-layered film for which the two layers of about 10 cm long are separated by an insulation layer with as low permittivity as possible. With this architecture in mind, the pulsed laser deposition process has been designed in a 45 cm diameter vacuum chamber to incorporate an oscillating sample holder with homogeneous substrate heating up to 900°C, while the laser plume is fixed. This design has allowed us to produce 200 nm to 500 nm thick, 7 cm to 10 cm long YBa2Cu3O7 thin films with the homogeneous critical temperature (Tc) of about 90 K. The critical current density (Jc) of the short samples obtained from the long sample is of (2 ± 1) × 1010 A/m2. Lines of 3-100 μm wide have been successfully patterned along the length of the samples in order to directly measure the Tc and Jc values over the entire length of the samples, as well as to attempt the structuring of multichannel data lead prototype.

  17. Characterization of superconducting nanometric multilayer samples for SRF applications: first evidence of magnetic screening effect

    CERN Document Server

    Antoine, C Z; Bouat, S; Jacquot, J-F; Villegier, J-C; Lamura, G; Gurevich, A

    2010-01-01

    Best rf bulk niobium accelerating cavities have nearly reached their ultimate limits at rf equatorial magnetic field H ~ 200 mT close to the thermodynamic critical field Hc. In 2006 Gurevich proposed to use nanoscale layers of superconducting materials with high values of Hc > HcNb for magnetic shielding of bulk niobium to increase the breakdown magnetic field of SC rf cavities 1. Depositing good quality layers inside a whole cavity is rather difficult So as a first step, characterization of single layer coating and multilayers was conducted on high quality sputtered samples by applying the technique used for the preparation of superconducting electronics circuits. The samples were characterized by X-ray reflectivity, dc resistivity (PPMS) and dc magnetization (SQUID) measurements. Dc magnetization curves of a 250 nm thick Nb film have been measured, with and without a magnetron sputtered coating of a single or multiple stack of 15 nm MgO and 25 nm NbN layers. The Nb samples with/without the coatin...

  18. Influence of substrate type on transport properties of superconducting FeSe{sub 0.5}Te{sub 0.5} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Feifei [IFW, Dresden (Germany); Southeast University, Nanjing (China); Iida, Kazumasa [IFW, Dresden (Germany); Nagoya University, Nagoya (Japan); Langer, Marco; Haenisch, Jens [IFW, Dresden (Germany); KIT, Eggenstein-Leopoldshafen (Germany); Huehne, Ruben; Schultz, Ludwig [IFW, Dresden (Germany)

    2016-07-01

    FeSe{sub 0.5}Te{sub 0.5} thin films were grown by pulsed laser deposition on CaF{sub 2}, AlO{sub 3} and MgO substrates and structurally and electro-magnetically characterized in order to study the influence of the substrate on their transport properties. The in-plane lattice mismatch between FeSe{sub 0.5}Te{sub 0.5} bulk and the substrate shows no influence on the lattice parameters of the films, whereas the type of substrate affects the crystalline quality of the films and, therefore, the superconducting properties. The film on MgO showed an extra peak in the angular dependence of critical current density J{sub c} at θ = 180 (H//c), which arises from c-axis defects as confirmed by transmission electron microscopy. In contrast, no J{sub c} peaks for H//c were observed in films on CaF{sub 2} and LaAlO{sub 3}. J{sub c}(θ) can be scaled successfully for both films without c-axis correlated defects by the anisotropy Ginzburg-Landau approach with appropriate anisotropy ratio γ. The scaling parameter γ is decreasing with decreasing temperature, which is different from what we observed in FeSe{sub 0.5}Te{sub 0.5} films on Fe-buffered MgO substrates.

  19. {ital C}-axis oriented (Hg,Ti)-based superconducting films with {ital T}{sub {ital c}}{approx_gt}125 K

    Energy Technology Data Exchange (ETDEWEB)

    Foong, F.; Bedard, B.; Xu, Q.L.; Liou, S.H. [Behler Laboratories of Physics and Center for Materials Research and Analysis, University of Nebraska, Lincoln, Nebraska 68588-0111 (United States)

    1996-02-01

    Thin films with mostly (Hg,Tl){sub 1}Ba{sub 2}Ca{sub 3}Cu{sub 2}O{sub 8+{delta}} [(Hg,Tl)-1223] phase have been fabricated by radio frequency magnetron sputtering of precursor films and post-annealing method. The doping of a small amount of thallium in the film is helpful to the formation of the three-layer CuO{sub 2} compound. These films have a highly oriented structure with the {ital c}-axis perpendicular to the film surface. Resistivity measurements show that the films after annealing at 300{degree}C for 1 h in O{sub 2} have the superconducting transition temperature of {ital T}{sub {ital c}}(onset)=133 K and {ital T}{sub {ital c}}(zero)=127 K. Scanning electron micrographs of the film reveal platelike micrometer-size grains coalesce to cover the substrate surface. {copyright} {ital 1996 American Institute of Physics.}

  20. Dielectric properties of BaMg1/3Nb2/3O3 doped Ba0.45Sr0.55Tio3 thin films for tunable microwave applications

    Science.gov (United States)

    Alema, Fikadu; Pokhodnya, Konstantin

    2015-11-01

    Ba(Mg1/3Nb2/3)O3 (BMN) doped and undoped Ba0.45Sr0.55TiO3 (BST) thin films were deposited via radio frequency magnetron sputtering on Pt/TiO2/SiO2/Al2O3 substrates. The surface morphology and chemical state analyses of the films have shown that the BMN doped BST film has a smoother surface with reduced oxygen vacancy, resulting in an improved insulating properties of the BST film. Dielectric tunability, loss, and leakage current (LC) of the undoped and BMN doped BST thin films were studied. The BMN dopant has remarkably reduced the dielectric loss (˜38%) with no significant effect on the tunability of the BST film, leading to an increase in figure of merit (FOM). This is attributed to the opposing behavior of large Mg2+ whose detrimental effect on tunability is partially compensated by small Nb5+ as the two substitute Ti4+ in the BST. The coupling between MgTi″ and VO•• charged defects suppresses the dielectric loss in the film by cutting electrons from hopping between Ti ions. The LC of the films was investigated in the temperature range of 300-450K. A reduced LC measured for the BMN doped BST film was correlated to the formation of defect dipoles from MgTi″, VO•• and NbTi• charged defects. The carrier transport properties of the films were analyzed in light of Schottky thermionic emission (SE) and Poole-Frenkel (PF) emission mechanisms. The result indicated that while the carrier transport mechanism in the undoped film is interface limited (SE), the conduction in the BMN doped film was dominated by bulk processes (PF). The change of the conduction mechanism from SE to PF as a result of BMN doping is attributed to the presence of uncoupled NbTi• sitting as a positive trap center at the shallow donor level of the BST.

  1. Reactive magnetron sputtering of Nb-doped TiO{sub 2} films: Relationships between structure, composition and electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Seeger, Stefan, E-mail: seeger@out-ev.de [Optotransmitter-Umweltschutz-Technologie e.V., Köpenicker Str. 325, 12555 Berlin (Germany); Ellmer, Klaus [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Weise, Michael [Optotransmitter-Umweltschutz-Technologie e.V., Köpenicker Str. 325, 12555 Berlin (Germany); Gogova, Daniela [Central Lab of Solar Energy and New Energy Sources at the Bulg. Acad. Sci., Blvd. Tzarigradsko shose 72, Sofia (Bulgaria); Abou-Ras, Daniel [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Mientus, Rainald [Optotransmitter-Umweltschutz-Technologie e.V., Köpenicker Str. 325, 12555 Berlin (Germany)

    2016-04-30

    Niobium-doped TiO{sub 2} films as highly transparent conducting oxides for electrical contacts were investigated. As-deposited films were amorphous and exhibited high resistivities ranging from 10 to 10{sup 5} Ω cm. A slight oxygen deficiency in as-deposited films was essential to gain low resistivities (10{sup −3} Ω cm) and low optical absorption coefficients (α{sub 550} {sub nm} < 2 × 10{sup 3} cm{sup −1}) in the annealed films. Therefore, we controlled the oxygen stoichiometry during the film deposition by adjusting the magnetron discharge voltage, while the oxygen gas flow was kept constant. The Hall mobility of degenerately doped films (electron concentration > 10{sup 20} cm{sup −3}) increased with decreasing substrate temperature owing to metal-like phonon scattering in these samples. - Highlights: • Slight oxygen deficient as-deposited films were highly conductive after annealing. • Control of oxygen stoichiometry by adjusting the discharge voltage during deposition • Electron mobility at room temperature is limited due to scattering at phonons. • Films exhibited large average crystallite sizes with planar structural defects.

  2. Metallurgical analysis and RF losses in superconducting niobium thin film cavities

    CERN Document Server

    Bloess, D; Mahner, E; Nakai, H; Weingarten, Wolfgang; Bosland, P; Mayer, J; Van Loyen, L

    1996-01-01

    Copper cavities with a thin niobium film as used in the large electron positron collider LEP would be also attractive for future linear colliders, provided the decrease of the Q-value with the accelerating gradient can be reduced. We aim at extracting the important parameters that govern this decrease. The dependence on the RF frequency is studied by exciting 500 MHz and 1500 MHz cavities in different modes. In addition we combined RF measurements for two 1500 MHz cavities of different RF performance with microscopic tests (AFM, TEM) on samples cut out of the same cavities. Their micro-structural characterisation in plan-view allows to extract the grain size and the defect densities.

  3. Synchrotron X-ray scattering study of the substrate effects on relaxor Pb(Mg sub 1 sub / sub 3 Nb sub 2 sub / sub 3 sub -delta)O sub 3 /SrTiO sub 3 thin films

    CERN Document Server

    Seo, S H; Noh, D Y; Yamada, Y; Wasa, K

    2002-01-01

    Perovskite Pb(Mg sub 1 sub / sub 3 Nb sub 2 sub / sub 3 sub - subdelta)O sub 3 (PMN) thin films are grown epitaxially on on-axis SrTiO sub 3 (001) (STO), vicinal SrTiO sub 3 (001), and MgO (001) substrates by radio-frequency magnetron sputtering. The substrate effects on the structure of PMN thin films have been studied using synchrotron X-ray scattering technique. Initially PMN films grow in two-dimensional planar layers on the STO substrates, while they grow in the form of three-dimensional (3D) islands on the MgO substrate. The surface steps on the vicinal STO encourage the 3D island growth as the film thickness increases. We also found an unexpected monoclinic phase in PMN/STO and PMN/vicinal-STO films, which has been reported in bulk Pb(Mg sub 1 sub / sub 3 Nb sub 2 sub / sub 3)O sub 3 -35%PbTiO sub 3 solid solution. With increasing the film thickness, the unit cell structure of PMN films transforms from tetragonal to other structures as the strain relaxes. (author)

  4. Superconducting metamaterial transmission line

    Science.gov (United States)

    Rouxinol, Francisco; Wang, Haozhi; Plourde, B. L. T.

    2014-03-01

    Left-handed metamaterials are artificial composite structures with unusual properties. Such systems have a wide range of potential applications in photonics. We are developing transmission lines composed of superconducting metamaterials using thin-film lumped circuit elements. Such structures allow for the possibility of generating novel transmission spectra with a high density of modes in some frequency ranges and stop-bands in others. We discuss possible couplings of these lines to superconducting qubits in circuit QED architectures.

  5. Downward self-polarization of lead-free (K{sub 0.5}Na{sub 0.5})(Mn{sub 0.005}Nb{sub 0.995})O{sub 3} ferroelectric thin films on Nb:SrTiO{sub 3} substrate

    Energy Technology Data Exchange (ETDEWEB)

    Seog, Hae Jin; Ahn, Chang Won; Cho, Shinuk; Kim, Ill Won [Department of Physics and Energy Harvest-Storage Research Center, University of Ulsan (Korea, Republic of); Kim, Kwang-Eun; Yang, Chan-Ho [Department of Physics, KAIST, Daejion (Korea, Republic of); Koo, Tae Yeong [Pohang Accelerator Laboratory, Pohang, Gyungbuk (Korea, Republic of); Lee, Sun-Young; Kim, Jong Pil [Division of Analysis and Research, Korea Basic Science Institute, Busan (Korea, Republic of)

    2017-01-15

    Spontaneously appearing macroscopic polarization (self-polarization) in ferroelectrics without an electrode or an external electric field would enable the freedom to design many ferroelectric heterostructures and devices. The (K{sub 0.5}Na{sub 0.5})(Mn{sub 0.005}Nb{sub 0.995})O{sub 3} (KNMN) thin film was grown on Nb:SrTiO{sub 3} single-crystal substrate and the resultant self-polarization behavior due to strain relaxation was investigated. The lattice mismatch and difference in TEC between the KNMN thin film and the Nb:SrTiO{sub 3} substrate creates a compressive strain. The compressive strain gradient may be the main cause for the observed downward self-polarization. The downward self-polarization of the KNMN thin film can be explained by the strong inhomogeneous compressive strain caused by strain relaxation. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Applied superconductivity

    CERN Document Server

    Newhouse, Vernon L

    1975-01-01

    Applied Superconductivity, Volume II, is part of a two-volume series on applied superconductivity. The first volume dealt with electronic applications and radiation detection, and contains a chapter on liquid helium refrigeration. The present volume discusses magnets, electromechanical applications, accelerators, and microwave and rf devices. The book opens with a chapter on high-field superconducting magnets, covering applications and magnet design. Subsequent chapters discuss superconductive machinery such as superconductive bearings and motors; rf superconducting devices; and future prospec

  7. Influence of short coherence length on the superconducting proximity effect of silicon-coupled junctions

    Science.gov (United States)

    Hatano, M.; Nishino, T.; Murai, F.; Kawabe, U.

    1988-08-01

    NbN-Si-NbN and Nb-Si-Nb junctions with coplanar structure were fabricated using electron beam lithography. The critical superconducting current of the NbN-SI-NbN junction decreased exponentially with increasing temperature above 4.2 K. The current also decayed exponentially with increasing spacing between superconducting electrodes for both Nb and NbN junctions. It was found that the coherence length in the semiconductor is determined only by the physical properties of the semiconductor, and it is independent of the condition at the superconductor-semiconductor interface and of the superconducting electrode material with a short coherence length. The coherence length in the semiconductor obtained from the experimental results agreed with the calculated value derived from the model of Seto and Van Duzer (1972).

  8. Absolute magnetometer based on the high-frequency modulation of the kinetic inductance of a superconducting thin film

    Science.gov (United States)

    Ayela, F.; Bret, J. L.; Chaussy, J.

    1995-07-01

    The high-frequency thermal modulation of a superconducting closed loop just below its critical temperature gives rise to a spectacular divergence of its kinetic inductance. It is shown that this periodic divergence due to that of the London penetration length λ permits very fine magnetic measurements. A superconducting magnetometer has been designed that can detect the absolute intensity of weak magnetic fields, with a noise level of 10-12 T/√Hz. This absolute level was reached by the double thermal modulation of a superconducting disk around its critical temperature and of a neighboring superconducting closed loop. As a consequence of the Meissner effect, the superconducting disk gives an estimation of the applied perpendicular magnetic field and removes any incertitude about the number of flux quantums inside the loop. Then, the modulation of the temperature of the loop increases the absolute sensitivity. The detection is performed by a very low-loss superconducting LC resonator set at the input of a cryogenic preamplifier. The thermal modulation is performed by pigtailed laser diodes. Practical limitations and further improvements are discussed.

  9. ASC 84: applied superconductivity conference. Final program and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    Abstracts are given of presentations covering: superconducting device fabrication; applications of rf superconductivity; conductor stability and losses; detectors and signal processing; fusion magnets; A15 and Nb-Ti conductors; stability, losses, and various conductors; SQUID applications; new applications of superconductivity; advanced conductor materials; high energy physics applications of superconductivity; electronic materials and characterization; general superconducting electronics; ac machinery and new applications; digital devices; fusion and other large scale applications; in-situ and powder process conductors; ac applications; synthesis, properties, and characterization of conductors; superconducting microelectronics. (LEW)

  10. Enhanced Field Emission Studies on Niobium Surfaces Relevant to High Field Superconducting Radio-Frequency Devices

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tong [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2002-09-18

    address concerns on the effect of natural air drying process on EFE, a comparative study was conducted on Nb and the results showed insignificant difference under the experimental conditions. Nb thin films deposited on Cu present a possible alternative to bulk Nb in superconducting cavities. The EFE performance of a preliminary energetically deposited Nb thin film sample are presented.

  11. Laser stimulated kinetics effects on the phase transition of the ferromagnetic/superconducting MgB{sub 2}/(CrO{sub 2}) bilayer thin films

    Energy Technology Data Exchange (ETDEWEB)

    AlZayed, N.S. [Physics and Astronomy Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Kityk, I.V., E-mail: ikityk@el.pcz.czest.pl [Faculty of Electrical Engineering, Czestochowa University Technology, Armii Krajowej 17, PL-42201 Czestochowa (Poland); Soltan, S. [Max Planck Institute, Solid State Research, D-70569 Stuttgart (Germany); Physics Department, Faculty of Science, Helwan University, 11798 Helwan, Cairo (Egypt); Wojciechowski, A. [Faculty of Electrical Engineering, Czestochowa University Technology, Armii Krajowej 17, PL-42201 Czestochowa (Poland); Fedorchuk, A.O. [Department of Inorganic and Organic Chemistry, Lviv National University of Veterinary Medicine and Biotechnologies, Pekarska St., 50, 79010 Lviv (Ukraine); Lakshminarayana, G. [Materials Science and Technology Division (MST-7), Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Shahabuddin, M. [Physics and Astronomy Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia)

    2014-05-01

    Graphical abstract: Dependence of resistance versus temperature for different power densities. The nonzero value is generated from the bottom CrO{sub 2} resistive layer. The onset transition temperature is our reference for the enhancement value. - Highlights: • Photoinduced enhancement of critical temperature in MgB{sub 2}–Cr{sub 2}O{sub 3} films was found. • Crucail role of electron–phonon interacton was shown. • Optimal ratio fundamental/SHG intensities was varied within 4:1 and 6:1. - Abstract: Using bicolor laser treatment by Nd:YAG 20 ns laser (1064–532 nm) and 180 ns CO{sub 2} laser beams (10.6–5.3 μm) it was shown a possibility of critical temperature enhancement in ferromagnetic superconducting MgB{sub 2}/CrO{sub 2} bilayer films. The role of the phonon sub-system effectively interacting with 3d Cr originating localized trapping levels is discussed. The pump–probe laser kinetics for the probing second harmonic generation at 1064 nm is explored in details to show principal role of the localized trapping levels. The relaxation of the processes after the switching off the photo inducing beams show the disappearance of the enhanced superconductivity after the 20–30 s. The temperature dependence of the resistance show nonlinear dependence versus the pumping power and different optimal fundamental to writing power density beams ratio.

  12. CHARGE-IMBALANCE RELAXATION IN THE PRESENCE OF A PAIR-BREAKING INTERACTION IN SUPERCONDUCTING AlEr FILMS

    Energy Technology Data Exchange (ETDEWEB)

    Lemberger, T.R.; Clarke, J.

    1980-07-01

    The charge-imbalance relaxation rate, 1/F*{sub T{sub Q*}}, has been measured in dirty superconducting AlEr films in which Er is a pair-breaking magnetic impurity that induces charge relaxation through elastic exchange scattering. Measurements were made in the range 0.1 {approx}< {Delta}(T)/k{sub B}T{sub c} {approx}< 1.4 for Er concentrations varying from 21 to 1660 at. ppm that produced estimated exchange scattering rates, {tau}{sub S}{sup -1}, from about 10{sup 9} sec{sup -1} to 5 x 10{sup 10} sec{sup -1}. Measured values of 1/F*{sub T{sub Q*}} were in good agreement with the Schmid-Schoen expression, 1/F*{sub T{sub Q*}}=({pi}{Delta}/4k{sub B}T{sub c}{tau}{sub E}) x (1+2{tau}{sub E}/{tau}{sub S}){sup 1/2}, for {Delta}/k{sub B}T{sub c} {approx}< 0.8, where {tau}{sub E}{sup -1} is the electron-phonon scattering rate estimated from the measured transition temperature. For larger values of {Delta}/k{sub B}T{sub c}, the relaxation rate increased less rapidly with {Delta}. The appropriate Boltzmann equation was solved on a computer to obtain values for 1/F*{sub T{sub Q*}} in the range 0.5 {approx}< T/T{sub c} {approx}< 0.999999. The computed values of 1/F*{sub T{sub Q*}} agreed with several analytic expressions valid for {Delta}/k{sub B}T{sub c} << 1, but not with the experimental data: The computed curves increased more rapidly than linearly with {Delta}/k{sub B}T{sub c} near T{sub c}, and the shape of the 1/F*{sub T{sub Q*}} vs {Delta}/k{sub B}T{sub c} curves was qualitatively different. This discrepancy suggests that either the generally accepted expression for exchange charge relaxation is incorrect, or that the Boltzmann equation is inappropriate for these calculations.

  13. Superconducting metamaterials and qubits

    Science.gov (United States)

    Plourde, B. L. T.; Wang, Haozhi; Rouxinol, Francisco; LaHaye, M. D.

    2015-05-01

    Superconducting thin-film metamaterial resonators can provide a dense microwave mode spectrum with potential applications in quantum information science. We report on the fabrication and low-temperature measurement of metamaterial transmission-line resonators patterned from Al thin films. We also describe multiple approaches for numerical simulations of the microwave properties of these structures, along with comparisons with the measured transmission spectra. The ability to predict the mode spectrum based on the chip layout provides a path towards future designs integrating metamaterial resonators with superconducting qubits.

  14. Phase transitions and optical characterization of lead-free piezoelectric (K0.5Na0.5)0.96Li0.04(Nb 0.8Ta0.2)O3 thin films

    KAUST Repository

    Yao, Yingbang

    2013-06-01

    Lead-free piezoelectric thin films, (K0.5Na0.5) 0.96Li0.04(Nb0.8Ta0.2)O 3, were epitaxially grown on MgO(001) and Nb-doped SrTiO 3(001) substrates using pulsed laser deposition. The optimum deposition temperature was found to be 600 C. Two types of in-plane orientations were observed in the films depending on the substrates used. The transmittance and photoluminescence spectra as well as the dielectric and ferroelectric properties of the films were measured. The measured band-gap energy was found to be decreased with the deposition temperature. The dielectric constant decreased from 550 to 300 as the frequency increased from 100 Hz to 1 MHz. The measured remnant polarization and coercive field were 4 μC/cm2 and 68 kV/cm, respectively. The phase transitions of the films were studied by Raman spectroscopy. Two distinct anomalies originating from the cubic-to-tetragonal (TC-T ~ 300 C) and tetragonal-to-orthorhombic (TT-O ~ 120 C) phase transitions were observed. Our results show that Raman spectroscopy is a powerful tool in identifying the phase transitions in ferroelectric thin films. © 2013 Elsevier B.V.

  15. Low-field Instabilities in Nb3Sn Multifilamentary Wires the Possible Role of Unreacted Nb

    CERN Document Server

    Devred, A; Celentano, G; Fabbricatore, P; Ferdeghini, C; Greco, M; Gambardella, U

    2007-01-01

    We report an experimental study aiming to demonstrate the not negligible role of unreacted Nb on the magnetic instabilities in superconducting Nb3Sn multifilamentary wires, observable through partial flux jumps at magnetic field values below 0.5 T. The analysed wires were recently developed for use as dipoles required in future high-energy proton accelerators and are based on powder-in-tube technology. We studied both unreacted (only involving Nb filaments) and reacted wires, finding flux jump instabilities in both cases when performing magnetic measurements. The results can be interpreted on the basis of the critical state model and are coherent with the intrinsic stability criterion.

  16. Hydrogen absorption in epitaxial Nb-films. A STM-study; Wasserstoffabsorption in epitaktischen Niobschichten. Eine STM-Studie

    Energy Technology Data Exchange (ETDEWEB)

    Noerthemann, K.

    2006-07-01

    In this work the phase transition of the system Niobium Hydrogen in thin films was investigated. The epitaxial Niobium films were fabricated using ion sputtering on sapphire substrates. The changes due to the hydrogen loading were observed with the scanning tunnel microscope (STM). With this method it is possible to detect the changes in the nanometer scale. With help of theoretical models it was possible to establish volume changes through the measured surface data. This is possible due to the linear relationship between hydrogen concentration and volume expansion. Comparisons between experimental data and calculations, which were done using the 'finite element method', allows to establish that the hydride precipitates are of cylindrical form. Thereafter the time continuously measurements of nuclei formation and precipitations growth was investigated. The growth is described through a 'Johnson-Mehl-Avrami' kinetic. Whereas coherent precipitations at first stage were observed, afterwards at higher Hydrogen concentration these transformed to incoherent. This coherent - incoherent transition occur at precipitation sizes which shows a film thickness dependency. (orig.)

  17. Determination of structural, mechanical and corrosion properties of Nb2O5 and (NbyCu 1-y)Ox thin films deposited on Ti6Al4V alloy substrates for dental implant applications.

    Science.gov (United States)

    Mazur, M; Kalisz, M; Wojcieszak, D; Grobelny, M; Mazur, P; Kaczmarek, D; Domaradzki, J

    2015-02-01

    In this paper comparative studies on the structural, mechanical and corrosion properties of Nb2O5/Ti and (NbyCu1-y)Ox/Ti alloy systems have been investigated. Pure layers of niobia and niobia with a copper addition were deposited on a Ti6Al4V titanium alloy surface using the magnetron sputtering method. The physicochemical properties of the prepared thin films were examined with the aid of XRD, XPS SEM and AFM measurements. The mechanical properties (i.e., nanohardness, Young's modulus and abrasion resistance) were performed using nanoindentation and a steel wool test. The corrosion properties of the coatings were determined by analysis of the voltammetric curves. The deposited coatings were crack free, exhibited good adherence to the substrate, no discontinuity of the thin film was observed and the surface morphology was homogeneous. The hardness of pure niobium pentoxide was ca. 8.64GPa. The obtained results showed that the addition of copper into pure niobia resulted in the preparation of a layer with a lower hardness of ca. 7.79 GPa (for niobia with 17 at.% Cu) and 7.75 GPa (for niobia with 25 at.% Cu). The corrosion properties of the tested thin films deposited on the surface of titanium alloy depended on the composition of the thin layer. The addition of copper (i.e. a noble metal) to Nb2O5 film increased the corrosion resistance followed by a significant decrease in the value of corrosion currents and, in case of the highest Cu content, the shift of corrosion potential towards the noble direction. The best corrosion properties were obtained from a sample of Ti6Al4V coated with (Nb0.75Cu0.25)Ox thin film. It seems that the tested materials could be used in the future as protection coatings for Ti alloys in biomedical applications such as implants. Copyright © 2014. Published by Elsevier B.V.

  18. Superconducting properties of EuBa 2Cu 3O 7 thin films on thick Sm 2O 3 buffer layers

    Science.gov (United States)

    Kimura, Y.; Ota, Y.; Michikami, O.

    2007-10-01

    There has been a tendency for micro-cracks to be generated in superconducting films deposited on R-Al2O3 substrates with buffer layers. Thickening the buffer layer is one method for suppressing the generation of micro-cracks. When Sm2O3 buffer layers were thickened, surface roughness (Rz) of Sm2O3 and EuBa2Cu3O7 (EBCO) films increased and the critical current density (Jc) deteriorated with increase in Sm2O3 buffer layer thickness (tSm). Then, the improvement of Sm2O3 buffer layers on surface morphology and increment of Jc of EBCO thin films deposited on the thick Sm2O3 buffer layers were carried out. The surface roughness (Rz) of Sm2O3 buffer layers became small by optimizing sputtering conditions. Rz of EBCO thin films decreased depending on that of Sm2O3 buffer layers. The critical temperature (Tce) was 90 K and Jc showed a high value of 1.6 MA/cm2 at 77.3 K when tSm was 2000 Å.

  19. Temperature dependence of the superconducting proximity effect quantified by scanning tunneling spectroscopy

    Directory of Open Access Journals (Sweden)

    A. Stępniak

    2015-01-01

    Full Text Available Here, we present the first systematic study on the temperature dependence of the extension of the superconducting proximity effect in a 1–2 atomic layer thin metallic film, surrounding a superconducting Pb island. Scanning tunneling microscopy/spectroscopy (STM/STS measurements reveal the spatial variation of the local density of state on the film from 0.38 up to 1.8 K. In this temperature range the superconductivity of the island is almost unaffected and shows a constant gap of a 1.20 ± 0.03 meV. Using a superconducting Nb-tip a constant value of the proximity length of 17 ± 3 nm at 0.38 and 1.8 K is found. In contrast, experiments with a normal conductive W-tip indicate an apparent decrease of the proximity length with increasing temperature. This result is ascribed to the thermal broadening of the occupation of states of the tip, and it does not reflect an intrinsic temperature dependence of the proximity length. Our tunneling spectroscopy experiments shed fresh light on the fundamental issue of the temperature dependence of the proximity effect for atomic monolayers, where the intrinsic temperature dependence of the proximity effect is comparably weak.

  20. Graphene-Based Superconducting Weak Links in Low Magnetic Field

    Science.gov (United States)

    Mills, Scott; Kumaravadivel, Piranavan; Du, Xu

    The impact of magnetic field on Andreev reflection is studied in graphene-based superconducting weak links. We found, through studying weak links with different adhesion layers and superconducting leads (including Graphene-Ti/Au-Nb, Graphene-Ti/Pd-Nb, Graphene-V-Nb, Graphene-Ti-Nb, Graphene-Ti/Pd-NbN), that in low field (B graphene-superconductor interface. As the effective gap of the weak link approaches the intrinsic gap of the superconducting leads, a remnant of Andreev reflection can survive into the quantum Hall regime, allowing study of the interplay between the quantum Hall effect and Andreev reflection in high quality suspended graphene-superconductor weak links.

  1. Sample of superconducting wiring (Niobium Titanium)

    CERN Multimedia

    About NbTi cable: The cable consists of 36 strands of superconducting wire, each strand has a diameter of 0.825 mm and houses 6300 superconducting filaments of niobium-titanium (Nb-Ti, a superconducting alloy). Each filament has a diameter of about 0.006 mm, i.e. 10 times smaller than a typical human hair. The filaments are embedded in a high-purity copper matrix. Copper is a normal conducting material. The filaments are in the superconductive state when the temperature is below about -263ºC (10.15 K). When the filaments leave the superconductive state, the copper acts as conductor transports the electrical current. Each strand of The NbTi cable (at superconducting state) has a current density of up to above 2000 A/mm2 at 9 T and -271ºC (2.15 K). A cable transport a current of about 13000 A at 10 T and -271ºC (2.15 K). About LHC superconducting wiring: The high magnetic fields needed for the LHC can only be reached using superconductors. At very low temperatures, superconductors have no electrical resista...

  2. Sample of superconducting wiring (Niobium Titanium)

    CERN Multimedia

    About NbTi cable: The cable consists of 36 strands of superconducting wire, each strand has a diameter of 0.825 mm and houses 6300 superconducting filaments of niobium-titanium (Nb-Ti, a superconducting alloy). Each filament has a diameter of about 0.006 mm, i.e. 10 times smaller than a typical human hair. The filaments are embedded in a high-purity copper matrix. Copper is a normal conducting material. The filaments are in the superconductive state when the temperature is below about -263ºC (10.15 K). When the filaments leave the superconductive state, the copper acts as conductor transports the electrical current. Each strand of The NbTi cable (at superconducting state) has a current density of up to above 2000 A/mm2 at 9 T and -271ºC (2.15 K). A cable transport a current of about 13000 A at 10 T and -271ºC (2.15 K). About LHC superconducting wiring: The high magnetic fields needed for the LHC can only be reached using superconductors. At very low temperatures, superconductors have no electrical resistan...

  3. Synthesis from separate oxide targets of high quality La2-xSrxCuO4 thin films and dependence with doping of their superconducting transition width

    Science.gov (United States)

    Cotón, N.; Mercey, B.; Mosqueira, J.; Ramallo, M. V.; Vidal, F.

    2013-07-01

    A series of superconducting La2-xSrxCuO4 thin films, with 0.09 ≲ x ≲ 0.22, is grown over (100)SrTiO3 substrates by means of a novel pulsed laser deposition method devised to increase the homogeneity and control of doping. We employ two separate parent oxide targets that receive ablation shots at arbitrary computer-controlled relative rates, instead of the conventional procedure that uses a single target whose doping determines the one of the film. We characterize the films both through conventional techniques (XRD, SEM, AFM and EDX) and by measuring their superconducting transition with a high-sensitivity SQUID magnetometer. The latter allows one to determine not only their average critical temperatures {\\bar {T}}_{{c}}(x) but also their dispersions due to inhomogeneities, ΔTc(x). For {\\bar {T}}_{{c}}(x) we obtain the conventional parabolic law centered at x = 0.16, plus a Gaussian depression near x = 1/8 with a {\\bar {T}}_{{c}}-height of about 5 K and x-width about 0.03. For ΔTc(x) we obtain, for all the dopings, values among the lowest reported up to now for La2-xSrxCuO4. The ΔTc(x) dependence can be explained in terms of the unavoidable randomness of the positioning of the Sr ions (the so-called intrinsic chemical inhomogeneity) and a separate residual Tc-inhomogeneity contribution of the order of 0.5 K, this last associated with the samples’ structural inhomogeneities and films’ substrate.

  4. Investigation of Microscopic Materials Limitations of Superconducting RF Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Anlage, Steven [Univ. of Maryland, College Park, MD (United States)

    2014-07-23

    The high-field performance of SRF cavities is often limited by breakdown events below the intrinsic limiting surface fields of Nb, and there is abundant evidence that these breakdown events are localized in space inside the cavity. Also, there is a lack of detailed understanding of the causal links between surface treatments and ultimate RF performance at low temperatures. An understanding of these links would provide a clear roadmap for improvement of SRF cavity performance, and establish a cause-and-effect ‘RF materials science’ of Nb. We propose two specific microscopic approaches to addressing these issues. First is a spatially-resolved local microwave-microscope probe that operates at SRF frequencies and temperatures to discover the microscopic origins of breakdown, and produce quantitative measurements of RF critical fields of coatings and films. Second, RF Laser Scanning Microscopy (LSM) has allowed visualization of RF current flow and sources of nonlinear RF response in superconducting devices with micro-meter spatial resolution. The LSM will be used in conjunction with surface preparation and characterization techniques to create definitive links between physical and chemical processing steps and ultimate cryogenic microwave performance. We propose to develop RF laser scanning microscopy of small-sample Nb pieces to establish surface-processing / RF performance relations through measurement of RF current distributions on micron-length scales and low temperatures.

  5. Effect of the laser sputtering parameters on the orientation of a cerium oxide buffer layer on sapphire and the properties of a YBa2Cu3Ox superconducting film

    DEFF Research Database (Denmark)

    Mozhaev, P. B.; Ovsyannikov, G. A.; Skov, Johannes

    1999-01-01

    The effect of the laser sputtering parameters on the crystal properties of CeO2 buffer layers grown on a (1 (1) under bar 02) sapphire substrate and on the properties of superconducting YBa2Cu3Ox thin films are investigated. It is shown that (100) and (111) CeO2 growth is observed, depending...

  6. High-Jc YBa2Cu3O7-x-Ag superconducting thin films synthesized through a fluorine-free MOD method

    DEFF Research Database (Denmark)

    Tang, Xiao; Yue, Zhao; Wu, W.

    2015-01-01

    Obtaining a high critical current density (Jc) remains the main challenge in developing fluorine-free metal organic deposition (MOD) methods to fabricate YBCO superconducting thin films. Silver addition was used to raise the Jc values in this research work. By reacting with propionic acid and amm...

  7. Influence of initial pH on the microstructure of YBa2Cu3O7−x superconducting thin films derived from DEA-aqueous sol–gel method

    DEFF Research Database (Denmark)

    Xiao, Tang; Yue, Zhao; Grivel, Jean-Claude

    2013-01-01

    A fluorine-free aqueous sol–gel technique was used to fabricate YBCO superconducting thin films. Acetic acid was added in order to modify the complexation process taking place between the metal cations and the organic chelating agents. The electrical resistance and the pH value were used...

  8. Control of superconductivity by means of electric-field-induced strain in superconductor/piezoelectric hybrids

    Science.gov (United States)

    Stamopoulos, D.; Zeibekis, M.; Zhang, S. J.

    2018-01-01

    The controlled modification of superconductivity by any means, specifically in hybrid systems, has attracted much interest in the recent decades. Here, we present experimental data and phenomenological modeling on the control of TC of superconducting (SC) Nb thin films, with thickness 3 nm ≤ dN b≤50 nm, under the application of in-plane strain, S(Eex) induced by an external out-of-plane electric field, Eex to piezoelectric (PE) single crystals, namely, ( 1 -x )Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-xPT), with x = 0.27 and 0.31. We report experimental modification of TC of Nb by Eex, accurately described by a phenomenological model that incorporates the constitutive relation S(Eex) of PMN-xPT. The systematic experimental-phenomenological modeling approach introduced here is generic and paves the way for an understanding of the underlying physical mechanisms in any SC/PE hybrid.

  9. Towards inducing superconductivity into graphene

    Science.gov (United States)

    Efetov, Dmitri K.

    dependent effective Debey temperature - the so-called Bloch-Gruneisen temperature theta BG. We also probe the transport properties of the high energy sub-bands in bilayer graphene by electrolyte gating. Furthermore we demonstrate that electrolyte gates can be used to drive intercalation reactions in graphite and present an all optical study of the reaction kinetics during the creation of the graphene derived graphite intercalation compound LiC 6, and show the general applicability of the electrolyte gates to other 2-dimensional materials such as thin films of complex oxides, where we demonstrate gating dependent conductance changes in the spin-orbit Mott insulator Sr 2IrO4. Another, entirely different approach to induce superconducting correlations into graphene is by bringing it into proximity to a superconductor. Although not intrinsic to graphene, Cooper pairs can leak in from the superconductor and exist in graphene in the form of phase-coherent electron-hole states, the so-called Andreev states. Here we demonstrate a new way of fabricating highly transparent graphene/superconductor junctions by vertical stacking of graphene and the type-II van der Waals superconductor NbSe2. Due to NbSe2's high upper critical field of Hc2=4T we are able to test a long proposed and yet not well understood regime, where proximity effect and quantum Hall effect coexist.

  10. Superconducting metamaterials and qubits

    OpenAIRE

    Plourde, B. L. T.; Wang, Haozhi; Rouxinol, Francisco; LaHaye, M. D.

    2015-01-01

    Superconducting thin-film metamaterial resonators can provide a dense microwave mode spectrum with potential applications in quantum information science. We report on the fabrication and low-temperature measurement of metamaterial transmission-line resonators patterned from Al thin films. We also describe multiple approaches for numerical simulations of the microwave properties of these structures, along with comparisons with the measured transmission spectra. The ability to predict the mode ...

  11. Experimental realization of superconducting quantum interference devices with topological insulator junctions

    NARCIS (Netherlands)

    Veldhorst, M.; Molenaar, C.G.; Wang, X.L.; Hilgenkamp, H.; Brinkman, Alexander

    2012-01-01

    We demonstrate topological insulator (Bi2Te3) dc SQUIDs, based on superconductingNb leads coupled to nano-fabricated Nb-Bi2Te3-Nb Josephson junctions. The high reproducibility and controllability of the fabrication process allow the creation of dc SQUIDs with parameters that are in agreement with

  12. Coexistence of Weak Ferromagnetism and Polar Lattice Distortion in Epitaxial NiTiO3 thin films of the LiNbO3-Type Structure

    Energy Technology Data Exchange (ETDEWEB)

    Varga, Tamas [Environmental Molecular Sciences Lab., Richland, WA (United States); Droubay, Timothy C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bowden, Mark E. [Environmental Molecular Sciences Lab., Richland, WA (United States); Colby, Robert J. [Environmental Molecular Sciences Lab., Richland, WA (United States); Manandhar, Sandeep [Environmental Molecular Sciences Lab., Richland, WA (United States); Shutthanandan, Vaithiyalingam [Environmental Molecular Sciences Lab., Richland, WA (United States); Hu, Dehong [Environmental Molecular Sciences Lab., Richland, WA (United States); Kabius, Bernd C. [Environmental Molecular Sciences Lab., Richland, WA (United States); Apra, Edoardo [Environmental Molecular Sciences Lab., Richland, WA (United States); Shelton, William A. [Environmental Molecular Sciences Lab., Richland, WA (United States); Chambers, Scott A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-04-15

    We report the magnetic and structural characteristics of epitaxial NiTiO3 films grown by pulsed laser deposition that are isostructural with acentric LiNbO3 (space group R3c). Optical second harmonic generation and magnetometry demonstrate lattice polarization at room temperature and weak ferromagnetism below 250 K, respectively. These results appear to be consistent with earlier predictions from first-principles calculations of the coexistence of ferroelectricity and weak ferromagnetism in a series of transition metal titanates crystallizing in the LiNbO3 structure. This acentric form of NiTiO3 is believed to be one of the rare examples of ferroelectrics exhibiting weak ferromagnetism generated by a Dzyaloshinskii-Moriya interaction.

  13. Nonlinearities in Microwave Superconductivity

    OpenAIRE

    Ledenyov, Dimitri O.; Ledenyov, Viktor O.

    2012-01-01

    The research is focused on the modeling of nonlinear properties of High Temperature Superconducting (HTS) thin films, using Bardeen, Cooper, Schrieffer and Lumped Element Circuit theories, with purpose to enhance microwave power handling capabilities of microwave filters and optimize design of microwave circuits in micro- and nano- electronics.

  14. Survey of high field superconducting material for accelerator magnets

    Energy Technology Data Exchange (ETDEWEB)

    Scahlan, R.; Greene, A.F.; Suenaga, M.

    1986-05-01

    The high field superconductors which could be used in accelerator dipole magnets are surveyed, ranking these candidates with respect to ease of fabrication and cost as well as superconducting properties. Emphasis is on Nb/sub 3/Sn and NbTi. 27 refs., 2 figs. (LEW)

  15. Optical, ferroelectric and magnetic properties of multiferroelectric BiFeO3-(K0.5Na0.5)0.4(Sr 0.6Ba0.4)0.8Nb2O6 thin films

    KAUST Repository

    Yao, Yingbang

    2014-02-01

    Multiferroic BiFeO3-(K0.5Na0.5) 0.4(Sr0.6Ba0.4)0.8Nb 2O6 (BFO-KNSBN) trilayer thin films, were epitaxially grown on MgO(0 0 1) and SrTiO3(0 0 1) by using pulsed laser deposition (PLD). Their ferroelectric, magnetic, dielectric and optical properties were investigated. It was found that both ferroelectric polarization and dielectric constant of the films were enhanced by introducing KNSBN as a barrier layer. Meanwhile, ferromagnetism of BFO was maintained. More interestingly, a double hysteresis magnetic loop was observed in the KNSBN-BFO-KNSBN trilayer films, where exchange bias and secondary phase in the BFO layer played crucial roles. Interactions between adjacent layers were revealed by temperature-dependent Raman spectroscopic measurements. © 2013 Elsevier B.V. All rights reserved.

  16. Carrier tuning the metal-insulator transition of epitaxial La0.67Sr0.33MnO3 thin film on Nb doped SrTiO3 substrate

    Directory of Open Access Journals (Sweden)

    J. M. Zhan

    2016-04-01

    Full Text Available La0.67Sr0.33MnO3 (LSMO thin films were deposited on (001SrTiO3(STO and n-type doped Nb:SrTiO3(NSTO single crystal substrates respectively. The metal to insulator transition temperature(TMI of LSMO film on NSTO is lower than that on STO, and the TMI of LSMO can be tuned by changing the applied current in the LSMO/NSTO p-n junction. Such behaviors were considered to be related to the carrier concentration redistribution in LSMO film caused by the change of depletion layer thickness in p-n junction which depends greatly on the applied electric field. The phenomenon could be used to configure artificial devices and exploring the underlying physics.

  17. KTa{sub 0.65}Nb{sub 0.35}O{sub 3} thin films epitaxially grown by pulsed laser deposition on metallic and oxide epitaxial electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Bouyasfi, A.; Mouttalie, M. [Sciences Chimiques de Rennes, UMR 6226 CNRS/Universite de Rennes 1/UEB, Campus de Beaulieu, 263 avenue du general Leclerc CS 74205, 35042 Rennes Cedex (France); Laboratoire de Compatibilite Electromagnetique, Maintenance Industrielle et Nanostructures (LCEMINAS), Faculte des Sciences et Techniques, Route d' Imouzzer B.P. 2202 Fes 30000 (Morocco); Demange, V. [Sciences Chimiques de Rennes, UMR 6226 CNRS/Universite de Rennes 1/UEB, Campus de Beaulieu, 263 avenue du general Leclerc CS 74205, 35042 Rennes Cedex (France); Gautier, B.; Grandfond, A. [Institut des Nanotechnologies de Lyon/INSA, 7 Avenue Capelle, 69621 Villeurbanne Cedex (France); Deputier, S.; Ollivier, S. [Sciences Chimiques de Rennes, UMR 6226 CNRS/Universite de Rennes 1/UEB, Campus de Beaulieu, 263 avenue du general Leclerc CS 74205, 35042 Rennes Cedex (France); Hamedi, L' H. [Laboratoire de Compatibilite Electromagnetique, Maintenance Industrielle et Nanostructures (LCEMINAS), Faculte des Sciences et Techniques, Route d' Imouzzer B.P. 2202 Fes 30000 (Morocco); Guilloux-Viry, M., E-mail: maryline.guilloux-viry@univ-rennes1.fr [Sciences Chimiques de Rennes, UMR 6226 CNRS/Universite de Rennes 1/UEB, Campus de Beaulieu, 263 avenue du general Leclerc CS 74205, 35042 Rennes Cedex (France)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Ferroelectric KTa{sub 0.65}Nb{sub 0.35}O{sub 3} thin films grown by pulsed laser deposition. Black-Right-Pointing-Pointer KTa{sub 0.65}Nb{sub 0.35}O{sub 3} epitaxially grown on Pt and LaNiO{sub 3} epitaxial electrodes. Black-Right-Pointing-Pointer Influence of oxide vs. metal electrode on ferroelectric's structural properties. Black-Right-Pointing-Pointer AFM/TUNA mode investigation of KTa{sub 0.65}Nb{sub 0.35}O{sub 3}/Pt heterostructure. Black-Right-Pointing-Pointer Asymmetry of the conduction mechanisms (positive vs. negative applied voltage). - Abstract: Ferroelectric KTa{sub 0.65}Nb{sub 0.35}O{sub 3} (KTN) thin films were grown by pulsed laser deposition on Pt and LaNiO{sub 3} epitaxial electrodes, on (1 0 0) and (1 1 0) SrTiO{sub 3} substrates. The effect of the nature of the electrode on structural and microstructural quality of KTN films was investigated. While epitaxial KTN thin films were successfully obtained on both electrodes, two orientations compete on Pt, whatever the main orientation of Pt is (1 0 0) or (1 1 0). On LaNiO{sub 3} in contrast, pure (1 0 0) and (1 1 0) oriented KTN films were achieved with a high crystalline quality illustrated by narrow {omega}-scans ({Delta}{omega} = 0.56 Degree-Sign and {Delta}{omega} = 0.80 Degree-Sign for (1 0 0) and (1 1 0) KTN, to be compared to 0.048 Degree-Sign and 0.22 Degree-Sign for (1 0 0) and (1 1 0) LaNiO{sub 3}, respectively). Electrical measurements performed in tunneling atomic force microscopy (TUNA mode) on a KTN/Pt heterostructure showed a high asymmetry of the conduction mechanisms when a positive or a negative bias is applied on the sample. In particular leakage currents appear even at very low positive applied voltage. TUNA imaging operated at a moderate negative applied voltage of -3 V shows that some areas corresponding to grain boundaries seem to be more leaky than others.

  18. Superconducting nanowire single photon detectors fabricated from an amorphous Mo{sub 0.75}Ge{sub 0.25} thin film

    Energy Technology Data Exchange (ETDEWEB)

    Verma, V. B.; Lita, A. E.; Vissers, M. R.; Marsili, F.; Pappas, D. P.; Mirin, R. P.; Nam, S. W. [National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305 (United States)

    2014-07-14

    We present the characteristics of superconducting nanowire single photon detectors (SNSPDs) fabricated from amorphous Mo{sub 0.75}Ge{sub 0.25} thin-films. Fabricated devices show a saturation of the internal detection efficiency at temperatures below 1 K, with system dark count rates below 500 cps. Operation in a closed-cycle cryocooler at 2.5 K is possible with system detection efficiencies exceeding 20% for SNSPDs which have not been optimized for high detection efficiency. Jitter is observed to vary between 69 ps at 250 mK and 187 ps at 2.5 K using room temperature amplifiers.

  19. Growth of InAs on EuBa2Cu3O(7-y) superconducting thin films with SrF2 interlayers

    Science.gov (United States)

    Watanabe, Y.; Maeda, F.; Oshima, M.; Michikami, O.

    1992-08-01

    In order to prevent reactions at the superconducting EuBa2Cu3O(7-y) (EBCO) and InAs interface, SrF2 interlayers were grown on EBCO thin films. X-ray photoemission spectroscopy study demonstrates the effectiveness of SrF2 interlayers in suppressing both removal of oxygen from the EBCO surface and oxidation of the InAs overgrown at room temperature. To crystallize InAs, a two-step growth process was applied. X-ray diffraction results show the 1-micron-thick InAs to be mainly 111 plane oriented crystalline. The Tc (zero)'s for InAs-deposited EBCO and annealed EBCO (300 C) are 73 and 82 K, respectively, implying that the use of an interlayer and two-step growth process is promising for depositing InAs layers without disruption of the underlying EBCO.

  20. Tunable electromagnetically induced transparency from a superconducting terahertz metamaterial

    Science.gov (United States)

    Zhang, Caihong; Wu, Jingbo; Jin, Biaobing; Jia, Xiaoqing; Kang, Lin; Xu, Weiwei; Wang, Huabing; Chen, Jian; Tonouchi, Masoyoshi; Wu, Peiheng

    2017-06-01

    We demonstrate in this paper the tunable electromagnetically induced transparency (EIT) made from a superconducting (SC) niobium nitride (NbN) film induced by an intense terahertz (THz) field. As the variation of the incident THz field alters the intrinsic ohmic loss of the SC NbN film, the field-dependent transmittance is observed. To elaborate the role of the bright and dark modes, a hybrid coupling model is introduced to fit the experimental transmission spectra and extract the characteristic parameters of each mode. It is shown that the resonator for the bright mode is altered greatly due to strong direct coupling to the incident intense THz field, whereas the dark mode resonator has little interaction with the incident THz field via a weak near-filed coupling to the bright-mode resonator. This implies that we can partially control a mode or a part of metamaterial by introducing the intense THz field, which offers an effective manner to selectively control the electromagnetic property of the metamaterial. This work may bring many potential applications for the tunable EIT-like metamaterial.

  1. Strain-induced nanostructure of Pb(Mg1/3Nb2/3)O3-PbTiO3 on SrTiO3 epitaxial thin films with low PbTiO3 concentration

    Science.gov (United States)

    Kiguchi, Takanori; Fan, Cangyu; Shiraishi, Takahisa; Konno, Toyohiko J.

    2017-10-01

    The singularity of the structure in (1 - x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-xPT) (x = 0-50 mol %) epitaxial thin films of 100 nm thickness was investigated from the viewpoint of the localized residual strain in the nanoscale. The films were deposited on SrTiO3 (STO) (001) single-crystal substrates by chemical solution deposition (CSD) using metallo-organic decomposition (MOD) solutions. X-ray and electron diffraction patterns revealed that PMN-xPT thin films included a single phase of the perovskite-type structure with the cube-on-cube orientation relationship between PMN-xPT and STO: (001)Film ∥ (001)Sub, [100]Film ∥ [100]Sub. X-ray reciprocal space maps showed an in-plane tensile strain in all the compositional ranges considered. Unit cells in the films were strained from the rhombohedral (pseudocubic) (R) phase to a lower symmetry crystal system, the monoclinic (MB) phase. The morphotropic phase boundary (MPB) that split the R and tetragonal (T) phases was observed at x = 30-35 for bulk crystals of PMN-xPT, whereas the strain suppressed the transformation from the R phase to the T phase in the films up to x = 50. High-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) analysis and its related local strain analysis revealed that all of the films have a bilayer morphology. The nanoscale strained layer formed only above the film/substrate semi-coherent interface. The misfit dislocations generated the localized and periodic strain fields deformed the unit cells between the dislocation cores from the R to an another type of the monoclinic (MA) phase. Thus, the singular and localized residual strains in the PMN-xPT/STO (001) epitaxial thin films affect the phase stability around the MPB composition and result in the MPB shift phenomena.

  2. Aluminum-stabilized NB3SN superconductor

    Science.gov (United States)

    Scanlan, Ronald M.

    1988-01-01

    An aluminum-stabilized Nb.sub.3 Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb.sub.3 Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials.

  3. Superconducting critical temperature in FeN-based superconductor/ferromagnet bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, T. J.; Kim, D. H. [Yeungnam University, Gyeongsan (Korea, Republic of)

    2016-06-15

    We present an experimental investigation of the superconducting transition temperatures, Tc, of superconductor/ferromagnet bilayers with varying the thickness of ferromagnetic layer. FeN was used for the ferromagnetic (F) layer, and NbN and Nb were used for the superconducting (S) layer. The results were obtained using three different-thickness series of the S layer of the S/F bilayers: NbN/FeN with NbN thickness, dNbN ≈ 9.3 nm and dNbN ≈ 10 nm, and Nb/FeN with Nb thickness dNb ≈ 15 nm. Tc drops sharply with increasing thickness of the ferromagnetic layer, dFeN, before maximal suppression of superconductivity at dFeN ≈6.3 nm for dNbN ≈10 nm and at dFeN ≈2.5 nm for dNb ≈ 15 nm, respectively. After shallow minimum of Tc, a weak Tc oscillation was observed in NbN/FeN bilayers, but it was hardly observable in Nb/FeN bilayers.

  4. Improved ferroelectric and photovoltaic properties of BiMnO3 modified lead-free K0.5Na0.5NbO3 solid-solution films

    Science.gov (United States)

    Sun, Yizhu; Guo, Fei; Chen, Jieyu; Zhao, Shifeng

    2017-12-01

    Lead-free K0.5Na0.5NbO3/BiMnO3 solid-solution films were deposited on Pt/Ti/SiO2/Si substrates by solution-gelation methods. The effects of the BiMnO3 addition on the electric, bandgap, and photovoltaic properties were investigated systematically. It is shown that, compared with traditional K0.5Na0.5NbO3 films, BiMnO3 modification obviously enhances the ferroelectric properties due to the depression of the leakage current and the improvement of the domain. More importantly, the ferroelectric photovoltaic effect is observed with a large short-circuit current and open-circuit voltage in the lead-free solution films, which is ascribed to the excellent ferroelectric properties and photovoltaic response in the visible region derived from the narrow bandgap modified by BiMnO3. The present work provides strong candidates to be applied in environmentally friendly lead-free ferroelectric photovoltaic solar cell and information storage devices.

  5. Large-Scale Industrial Production of Superconducting Cavities

    CERN Document Server

    Chiaveri, Enrico

    1996-01-01

    Many laboratories around the world, notably CEBAF, CERN, DESY and KEK, after a period of research and development, are presently or have recently been involved in the industrial production of a large number of RF superconducting cavities. CERN, instead of using the standard bulk niobium technique, has developed a new Nb/Cu technology (niobium film deposited by magnetron sputtering on copper). The aim of this paper is to present the transfer of this technology to three European firms [Ansaldo, CERCA and Siemens (now ACCEL)]. Emphasis will be placed on the major challenges to industry of mastering the very complex procedure (which requires high quality control at every stage of the production) needed to achieve a very demanding final RF performance [Q(6 MV/m) = 3.4¥109 at 4.5 K].

  6. Buffered Electropolishing – A New Way for Achieving Extremely Smooth Surface Finish on Nb SRF Cavities to be Used in Particle Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Hui Tian, Charles Reece, Michael Kelley

    2009-05-01

    Future accelerators require unprecedented cavity performance, which is strongly influenced by interior surface nano-smoothness. Electropolishing (EP) is the technique of choice to be developed for high-field superconducting radio frequency (SRF) cavities. Electrochemical impedance spectroscopy (EIS) and related techniques point to the electropolishing mechanism of Nb in a sulphuric and hydrofluoric acid electrolyte controlled by a compact surface salt film under F- diffusion-limited mass transport control. These and other findings are guiding a systematic characterization to form the basis for cavities process optimization.

  7. Fabrication and characterization of Pb(Zr 0.53,Ti 0.47)O 3-Pb(Nb 1/3,Zn 2/3)O 3 thin films on cantilever stacks

    KAUST Repository

    Fuentes-Fernandez, E. M A

    2010-11-18

    0.9Pb(Zr 0.53,Ti 0.47)O 3-0.1Pb(Zn 1/3,Nb 2/3)O 3 (PZT-PZN) thin films and integrated cantilevers have been fabricated. The PZT-PZN films were deposited on SiO 2/Si or SiO 2/Si 3N 4/SiO 2/poly-Si/Si membranes capped with a sol-gel-derived ZrO 2 buffer layer. It is found that the membrane layer stack, lead content, existence of a template layer of PbTiO 3 (PT), and ramp rate during film crystallization are critical for obtaining large-grained, single-phase PZT-PZN films on the ZrO 2 surface. By controlling these parameters, the electrical properties of the PZT-PZN films, their microstructure, and phase purity were significantly improved. PZT-PZN films with a dielectric constant of 700 to 920 were obtained, depending on the underlying stack structure. © 2010 TMS.

  8. Superconducting materials suitable for magnets

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit

    2002-01-01

    The range of materials available for superconducting magnets is steadily expanding, even as the choice of material becomes potentially more complex. When virtually all magnets were cooled by helium at ~2-5 K it was easy to separate the domain of Nb-Ti from those of Nb3Sn applications and very little surprise that more than 90% of all magnets are still made from Nb-Ti. But the development of useful conductors of the Bi-Sr-Ca-Cu-O and YBa2Cu3Ox high temperature superconductors, coupled to the recent discovery of the 39 K superconductor MgB2 and the developing availability of cryocoolers suggests that new classes of higher temperature, medium field magnets based on other than Nb-based conductors could become available in the next 5-10 years. My talks will discuss the essential physics and materials science of these 5 classes of material - Nb-Ti, Nb3Sn, MgB2, Bi-Sr-Ca-Cu-O and YBa2Cu3Ox - in the context of those aspects of their science, properties and fabrication properties, which circumscribe their applications...

  9. Tensile strain induced narrowed bandgap of TiO{sub 2} films: Utilizing the two-way shape memory effect of TiNiNb substrate and in-situ mechanical bending

    Energy Technology Data Exchange (ETDEWEB)

    Du, Minshu, E-mail: dms1223@126.com [Department of Materials Science and Engineering, China University of Petroleum at Beijing, Beijing, 102249 (China); Center for Electrochemistry, Department of Chemistry, The University of Texas at Austin, Austin, Texas, 78712 (United States); Cui, Lishan; Wan, Qiong [Department of Materials Science and Engineering, China University of Petroleum at Beijing, Beijing, 102249 (China)

    2016-05-15

    Graphical abstract: - Highlights: • Imposed tensile strain to anatase TiO{sub 2} nanofilm by using the two-way shape memory effect of NiTiNb substrate. • Imposed tensile strain to rutile TiO{sub 2} thin film by in-situ mechanical bending. • Tauc plot based on the PEC-tested auction spectrum was utilized to precisely determine the bandgap of TiO{sub 2}. • Tensile strain narrowed the bandgap of anatase TiO{sub 2} by 60 meV and rutile TiO{sub 2} by 70 meV. • Tensile strain contributes to a 1.5 times larger photocurrent for the water oxidation reaction. - Abstract: Elastic strain is one of the methods to alter the band gap of semiconductors. However, relevant experimental work is limited due to the difficulty in imposing strain. Two new methods for imposing tensile strain to TiO{sub 2} film were introduced here. One is by utilizing the two-way shape memory effect of NiTiNb substrate, and the other method is in-situ mechanical bending. The former method succeeded in imposing 0.4% tensile strain to anatase TiO{sub 2} nanofilm, and strain narrowed the bandgap of TiO{sub 2} by 60 meV. The latter method enabled rutile TiO{sub 2} thin film under the 0.5% biaxially tensile-strained state, which contributes to a narrowed bandgap with ΔE{sub g} of 70 meV. Also, photocurrents of both strained TiO{sub 2} films increased by 1.5 times compared to the strain-free films, which indirectly verified the previous DFT prediction proposed by Thulin and Guerra in 2008 that tensile strain could improve the mobility and separation of photo-excite carriers.

  10. The Future of Superconducting Technology for Particle Accelerators

    CERN Document Server

    Yamamoto, Akira

    2015-01-01

    Introduction: - Colliders constructed and operated - Future High Energy Colliders under Study - Superconducting Phases and Applications - Possible Choices among SC Materials Superconducting Magnets and the Future - Advances in SC Magnets for Accelerators - Nb3Sn for realizing Higher Field - NbTi to Nb3Sn for realizing High Field (> 10 T) - HL-LHC as a critical milestone for the Future of Acc. Magnet Technology - Nb3Sn Superconducting Magnets (> 11 T)and MgB2 SC Links for HL-LHC - HL-LHC, 11T Dipole Magnet - Nb3Sn Quadrupole (MQXF) at IR - Future Circular Collider Study - Conductor development (1998-2008) - Nb3Sn conductor program - 16 T Dipole Options and R&D sharing - Design Study and Develoment for SppC in China - High-Field Superconductor and Magnets - HTS Block Coil R&D for 20 T - Canted Cosine Theta (CCT) Coil suitable with Brittle HTS Conductor - A topic at KEK: S-KEKB IRQs just integrated w/ BELLE-II ! Superconducting RF and the Future - Superconducting Phases and Applications - Poss...

  11. Substrate strain effect of EuBa 2Cu 3O 7- δ film: interplay between dislocations, precipitates and superconductivity

    Science.gov (United States)

    Liao, Y. C.; Wu, M. K.; Chi, C. C.

    2004-12-01

    Our previous study showed that there is always a substantial resistive tail below the bulk TC of EuBa 2Cu 3O 7- δ and SmBa 2Cu 3O 7- δ (RBCO) films deposited on nearly perfect lattice matched SrTiO 3 (STO) substrates, which is in contrast to the same films deposited on less well-matched substrates, e.g., LaAlO 3 (LAO), under similar conditions. Although the lattice match is poorer, the latter films have a sharp resistive transition without any tail. The present study examines the evolution of precipitate density and intergranular coupling with increasing film thickness, revealing that dislocations induced from the release of strain affect the precipitation of off-stoichiometric phases. We propose a model that indicates induced dislocations attract off-stoichiometric phases and thus lead to tower-like precipitates. The precipitates segregate the potential impurities out from grain boundaries. Therefore, the intergranular coupling of RBCO film grown on LAO improves with increasing thickness. Meanwhile, in the absence of precipitates, off-stoichiometric materials in the film on STO coat each columnar grain. This model is consistent with the observed evolution of film morphology, TC and JC with thickness, and the theoretical fitting of the measured χ( t) curves.

  12. Vortex core deformation and stepper-motor ratchet behavior in a superconducting aluminum film containing an array of holes.

    Science.gov (United States)

    Van de Vondel, J; Gladilin, V N; Silhanek, A V; Gillijns, W; Tempere, J; Devreese, J T; Moshchalkov, V V

    2011-04-01

    We investigated experimentally the frequency dependence of a superconducting vortex ratchet effect by means of electrical transport measurements and modeled it theoretically using the time-dependent Ginzburg-Landau formalism. We demonstrate that the high frequency vortex behavior can be described as a discrete motion of a particle in a periodic potential, i.e., the so-called stepper-motor behavior. Strikingly, in the more conventional low frequency response a transition takes place from an Abrikosov vortex rectifier to a phase slip line rectifier. This transition is characterized by a strong increase in the rectified voltage and the appearance of a pronounced hysteretic behavior. © 2011 American Physical Society

  13. Picosecond and subpicosecond pulsed laser deposition of Pb thin films

    Directory of Open Access Journals (Sweden)

    F. Gontad

    2013-09-01

    Full Text Available Pb thin films were deposited on Nb substrates by means of pulsed laser deposition (PLD with UV radiation (248 nm, in two different ablation regimes: picosecond (5 ps and subpicosecond (0.5 ps. Granular films with grain size on the micron scale have been obtained, with no evidence of large droplet formation. All films presented a polycrystalline character with preferential orientation along the (111 crystalline planes. A maximum quantum efficiency (QE of 7.3×10^{-5} (at 266 nm and 7 ns pulse duration was measured, after laser cleaning, demonstrating good photoemission performance for Pb thin films deposited by ultrashort PLD. Moreover, Pb thin film photocathodes have maintained their QE for days, providing excellent chemical stability and durability. These results suggest that Pb thin films deposited on Nb by ultrashort PLD are a noteworthy alternative for the fabrication of photocathodes for superconductive radio-frequency electron guns. Finally, a comparison with the characteristics of Pb films prepared by ns PLD is illustrated and discussed.

  14. Reconfigurable superconducting vortex pinning potential for magnetic disks in hybrid structures.

    Science.gov (United States)

    Marchiori, Estefani; Curran, Peter J; Kim, Jangyong; Satchell, Nathan; Burnell, Gavin; Bending, Simon J

    2017-03-24

    High resolution scanning Hall probe microscopy has been used to directly visualise the superconducting vortex behavior in hybrid structures consisting of a square array of micrometer-sized Py ferromagnetic disks covered by a superconducting Nb thin film. At remanence the disks exist in almost fully flux-closed magnetic vortex states, but the observed cloverleaf-like stray fields indicate the presence of weak in-plane anisotropy. Micromagnetic simulations suggest that the most likely origin is an unintentional shape anisotropy. We have studied the pinning of added free superconducting vortices as a function of the magnetisation state of the disks, and identified a range of different phenomena arising from competing energy contributions. We have also observed clear differences in the pinning landscape when the superconductor and the ferromagnet are electron ically coupled or insulated by a thin dielectric layer, with an indication of non-trivial vortex-vortex interactions. We demonstrate a complete reconfiguration of the vortex pinning potential when the magnetisation of the disks evolves from the vortex-like state to an onion-like one under an in-plane magnetic field. Our results are in good qualitative agreement with theoretical predictions and could form the basis of novel superconducting devices based on reconfigurable vortex pinning sites.

  15. Structural and optical properties of Bi{sub 1.5}ZnNb{sub 1.5}O{sub 7} pyrochlore thin films prepared by chemical method

    Energy Technology Data Exchange (ETDEWEB)

    Zanetti, S.M. [Laboratorio Associado de Sensores e Materiais, Instituto Nacional de Pesquisas Espaciais (INPE), Av. dos Astronautas, 1758, Jd. Da Granja, 12227-010 Sao Jose dos Campos-SP (Brazil)]. E-mail: zanetti@las.inpe.br; Silva, S.A. da [Departamento de Quimica, Instituto Tecnologico de Aeronautica (ITA), Pca. Mal. Eduardo Gomes, 50, Vila das Acacias-12228-900 Sao Jose dos Campos-SP (Brazil)

    2006-02-21

    The Bi{sub 1.5}ZnNb{sub 1.5}O{sub 7} pyrochlore was prepared by the polymeric precursor method. The films were deposited by dip coating on fluorine-doped tin oxide (FTO)-coated glass, fused quartz, and Pt/Ti/SiO{sub 2}/Si(100) substrates. The films deposited on FTO-coated glass were annealed at temperatures ranging from 400 to 550 deg. C and from 500 to 800 deg. C, for fused quartz and Pt/Ti/SiO{sub 2}/Si(100) substrates. Atomic force microscopy images revealed the surface morphology of the films as a function of the annealing temperature. X-ray diffraction detected the cubic pyrochlore in films treated above 450 deg. C, and full crystallization occurred at 700 deg. C. The films showed a high [111] orientation independently of the substrate, whereas those deposited on fused quartz showed the highest orientation. The optical band gap, calculated from the transmission measurements, ranged from 3.9 to 3.2 eV as a function of the temperature and the crystallite size.

  16. Can the Lateral Proximity Effect Be Used to Create the Superconducting Transition of a Micron-Sized TES?

    Science.gov (United States)

    Barrentine, E. M.; Brandl, D. E.; Brown, A. D.; Denis, K. L.; Fionkbeiner, F. M.; Hsieh, W. T.; Nagler, P. C.; Stevenson, T. R.; Timble, P. T.; U-Yen, K.

    2012-01-01

    Recent measurements of micron-sized Mo/Au bilayer Transition Edge Sensors (TESs) have demonstrated that the TES can behave like an S-S'-S weak link due to the lateral proximity effect from superconducting leads. In this regime the Tc is a function of bias current, and the effective Tc shifts from the bilayer Tc towards the lead Tc. We explore the idea that a micron-sized S-N-S weak link could provide a new method to engineer the TES Tc. This method would be particularly useful when small size requirements for a bilayer TES (such as for a hot-electron microbolometer) lead to undesirable shifts in the bilayer Te. We present measurements of a variety of micron-sized normal Au 'TES' devices with Nb leads. We find no evidence of a superconducting transition in the Au film of these devices, in dramatic contrast to the strong lateral proximity effect seen in micron-sized Mo/Au bilayer devices. The absence of a transition in these devices is also in disagreement with theoretical predictions for S-N-S weak links. We hypothesize that a finite contact resistance between the Nb and Au may be weakening the effect. We conclude that the use of the lateral proximity effect to create a superconducting transition will be difficult given current fabrication procedures.

  17. Scanning Tunneling Spectroscopy of Proximity Superconductivity in Epitaxial Multilayer Graphene

    OpenAIRE

    Natterer, Fabian D.; Ha, Jeonghoon; Baek, Hongwoo; Zhang, Duming; Cullen, William; Zhitenev, Nikolai B.; Kuk, Young; Stroscio, Joseph A.

    2016-01-01

    We report on spatial measurements of the superconducting proximity effect in epitaxial graphene induced by a graphene-superconductor interface. Superconducting aluminum films were grown on epitaxial multilayer graphene on SiC. The aluminum films were discontinuous with networks of trenches in the film morphology reaching down to exposed graphene terraces. Scanning tunneling spectra measured on the graphene terraces show a clear decay of the superconducting energy gap with increasing separatio...

  18. Superconductivity committee planning report

    Energy Technology Data Exchange (ETDEWEB)

    1988-11-01

    The recent discovery of superconductors that operate at relatively high temperatures has generated a large amount of research which promises to have applications in almost all branches of high technology, notably those in which high electric current densities are used. After a background description of the properties of superconductors, the market for superconductor technology is described from the Canadian perspective. Worldwide markets are growing rapidly and are estimated to total $920 million by 1990, considering only conventional low-temperature superconductors. Applications for superconductivity include the use of thin films and microelectronics, low loss signal transmission, tunnel injections, and sensitive magnetic detectors. Superconducting magnets find application in magnetic separation, magnetic levitation and propulsion, and for energy storage and transmission by power utilities. Research in superconductivity in British Columbia, reviewed in this report, has been under way at 3 universities and 4 or 5 compaines, where a small group of qualified researchers and some high-technology laboratories are focusing on thin-film and electonic applications. The potential market for superconductivity is felt to warrant more effort in British Columbia, and a number of recommendations are made for coordinating and promoting research, funding joint university-industry projects for innovative applications, and facilitating technology transfer.

  19. Rotational Symmetry Breaking in a Trigonal Superconductor Nb-doped Bi_{2}Se_{3}

    Directory of Open Access Journals (Sweden)

    Tomoya Asaba

    2017-01-01

    Full Text Available The search for unconventional superconductivity has been focused on materials with strong spin-orbit coupling and unique crystal lattices. Doped bismuth selenide (Bi_{2}Se_{3} is a strong candidate, given the topological insulator nature of the parent compound and its triangular lattice. The coupling between the physical properties in the superconducting state and its underlying crystal symmetry is a crucial test for unconventional superconductivity. In this paper, we report direct evidence that the superconducting magnetic response couples strongly to the underlying trigonal crystal symmetry in the recently discovered superconductor with trigonal crystal structure, niobium (Nb-doped Bi_{2}Se_{3}. As a result, the in-plane magnetic torque signal vanishes every 60°. More importantly, the superconducting hysteresis loop amplitude is enhanced along one preferred direction, spontaneously breaking the rotational symmetry. This observation indicates the presence of nematic order in the superconducting ground state of Nb-doped Bi_{2}Se_{3}.

  20. Relationship between superconducting properties of EuBa 2Cu 3O 7 thin films and surface morphology of CeO 2 buffer layers on R-Al 2O 3

    Science.gov (United States)

    Ota, Y.; Sakuma, J.; Kimura, Y.; Michikami, O.

    2006-10-01

    We examined the effects of off-center distance (Doff) between the substrate and CeO2 target on surface morphology and crystallinity of 300-nm-thick CeO2 buffer layers and on superconducting properties of EBCO thin films. The surface roughness (Rz) of the CeO2 buffer layer rapidly increased with an increase in Doff. The orientation of an EBCO thin film was dependent on Doff of the buffer layer. At Doff = 0-30 mm, only (0 0 l) peaks of an EBCO thin film were observed by X-ray diffraction patterns. At Doff values over 40 mm, (1 1 0) or (1 0 3) peaks in addition to (0 0 l) peaks were observed. At Doff = 30 mm, EBCO thin films exhibited critical temperatures (Tce) of approximately 89 K and critical current densities (Jc) of 3.5 MA/cm2 at 77.3 K.

  1. Experimental setup to detect superconducting wire motion

    OpenAIRE

    K. Ruwali; A. Yamanaka; Y. Teramoto; K. Nakanishi; K. Hosoyama

    2009-01-01

    An experimental setup was designed and fabricated to study superconducting wire motion under the influence of electromagnetic force. Experiments were conducted at 4.2 K by varying the experimental conditions such as the tension to the superconducting wire and different insulating materials at the interface of the superconducting wire and head part. The insulating materials used in the experiments were polyimide film and a high strength polyethylene fiber cloth, Dyneema. Details of the experim...

  2. Structure and Electrical Properties of (111) Oriented Pb(Mg1/3Nb2/3)O3–PbZrO3–PbTiO3 Thin Film for High Frequency Transducer Applications

    Science.gov (United States)

    Zhu, B. P.; Guo, W. K.; Shen, G. Z.; Zhou, Q. F.; Shung, K. K.

    2011-01-01

    Ternary lead magnesium niobate-lead zirconate titanate system 0.4Pb(Mg1/3Nb2/3)O3–0.25PbZrO3–0.35PbTiO3 (40PMN-25PZ-35PT) thin film with a thickness of 1.5 μm was grown on Pt(111)/Ti/SiO2/Si substrate via chemical solution deposition. XRD and TEM (spell out) results suggested the film obtained was highly (111)-oriented. The remanent polarization and coercive electric field of the film were found to be 25.5 μC/cm2 and 51 kV/cm, respectively. In addition, at 1 kHz, the dielectric constant was measured to be 1960 and the dielectric loss 0.036. The film was observed to undergo a diffuse ferroelectric-to-paraelectric phase transition at around 209°C. The leakage current appeared to depend on the voltage polarity. If the Au electrode was biased positively, the leakage current was dominated by Schottky emission mechanism. When the Pt electrode was biased positively, the conduction current curve showed an ohmic behavior at a low electric field and space-charge-limited current characteristics at a high electric field. PMID:21937332

  3. AC susceptibility in NbTi multifilamentary wires; NbTi gokusai tashinsen no koryu taijiritsu

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, R.; Muranaka, T.; Akune, T.; Sakamoto, N. [Kyushu Sangyo Univ., Fukuoka (Japan). Dept. of Electrical Engineering

    1999-06-07

    In the superfine polycore line, the matrix shows the weakness superconductivity by affection broth of the electron pair from the NbTi filament. The filament of the polycore line is made to combine by this, and we cause magnetization and ac losses, increase in magnetic flux creep, etc.. It is possible to obtain superconductive critical current density J{sub cp} of the matrix by the proximity effect from twist pitch l{sub p} dependence of magnetization M. Here, the relation with the peak in the imaginary part of ac magnetic susceptibility is reported on evaluation and result of examining. (NEDO)

  4. Interaction of vortices with different types of pinning centers in MgB{sub 2} superconducting films

    Energy Technology Data Exchange (ETDEWEB)

    Zadorosny, R; Ortiz, W A [Grupo de Supercondutividade e Magnetismo, Departamento de Fisica, Universidade Federal de Sao Carlos, 13.565-905, CP 676, Sao Carlos, SP (Brazil); Seong, W K; Kang, W N, E-mail: rafazad@df.ufscar.b [BK21 Division and Department of Physics, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2009-03-01

    This contribution reports on the magnetic response of two MgB{sub 2} films with 600 nm of thickness. These films were grown using the hybrid physical chemical vapor deposition (HPCVD) method under different temperatures. One of the films, grown at 580 deg. C, has a micro structure with columnar grains, a rough surface and small grain size. The other, grown at 650 deg. C, has a smooth surface and larger grains. A double transition is present in the columnar sample. The lower transition temperature is due to currents tunneling through the intergrain material and the higher one is associated with the transition of the grains to the normal state. Magnetic phase diagrams in tilted geometries, with the applied fields (AC and DC) forming angles in the range (0 deg., 90 deg.) with the plane of the film, were determined to verify the influence of the perpendicular component of the AC field on pinned vortices. Hysteresis loops of magnetization versus applied field were also measured for both samples. The columnar sample exhibits jumps in the decreasing field branch of the magnetization, indicating that vortices pinned by the columnar microstructures leave the sample in bundles.

  5. Direct angle resolved photoelectron spectroscopy (DARPES) on high-T{sub c} films: doping, strains, Fermi surface topology and superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Pavuna, D; Ariosa, D; Cancellieri, C; Cloetta, D; Abrecht, M [Institute of Physics of Complex Matter, FSB, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)], E-mail: davor.pavuna@epfl.ch

    2008-03-15

    Since 1997 we systematically perform Direct ARPES ( = DARPES) on in-situ grown, non-cleaved, ultra-thin (<25nm) cuprate films. Specifically, we probe low energy electronic structure and properties of high-T{sub c} films under different degree of epitaxial (compressive vs tensile) strain. In overdoped in-plane compressed La{sub 2-x}Sr{sub x}CuO{sub 4} (LSCO) thin films we double T{sub c} from 20K to 40K, yet the Fermi surface (FS) remains essentially 2-dimensional (2D). In contrast, tensile strained films show 3-dimensional (3D) dispersion, while T{sub c} is drastically reduced. It seems that the in-plane compressive strain tends to push the apical oxygen far away from the CuO{sub 2} plane, enhances the 2D character of the dispersion and increases T{sub c}, while the tensile strain seems to act exactly in the opposite direction and the resulting dispersion is 3D. We have the FS topology for both cases. As the actual lattice of cuprates is 'Napoleon-cake' -like i.e. rigid CuO{sub 2} planes alternate with softer 'reservoir' (that strains distort differently) our results tend to rule out 2D rigid lattice mean field models. Finally, we briefly discuss recent successful determination of the FS topology from the observed wavevector quantization by DARPES in cuprate films thinner than 18 units cells (<24nm). Such an approach is of broader interest as it can be extended to other similar confined (ultra-thin) functional oxide systems.

  6. Anomalies in vortex lattice dynamics driven by induced ac currents in superconducting films with magnetic arrays of two-fold symmetry

    Science.gov (United States)

    Moreno, A. J.; Chiliotte, C. E.; Pasquini, G.; Bekeris, V.; Gomez, A.; del Valle, J.; Gonzalez, E. M.; Prieto, J. L.; Vicent, J. L.

    2015-01-01

    We study the dynamics of the vortex lattice driven by ac induced currents in the critical state regime, for T > 0.70 TC. The samples are superconducting films grown on top of two-fold symmetry array of magnetic dots. In these heterostructures, the induced ac currents flow parallel to the short and to the long side of the pinning array in different areas of the samples simultaneously. This behavior produces remarkable effects in the vortex lattice dynamics. First of all, periodic features are observed in the ac susceptibility versus applied magnetic field measurements which are related to matching effects between the vortex lattices and the magnetic array. However, the vortex lattice reconfiguration observed in magnetotransport experiments is absent. Some of these features are revealed as maxima instead of being minima, indicating higher mobility at certain matching fields. Competing unstable vortex configurations could lead to increase vortex mobility precluding the reconfiguration transition. At high temperatures, where the matching effects show up, the magnetic permeability of the dots is the mechanism that governs the JC(T) behavior. Moreover, the temperature dependence of the pinning force FP(T) shows a temperature crossover related to an unexpected enhancement in vortex mobility. Vortex-vortex interaction and the interplay between trapped and interstitial vortices are a hint to explain these phenomena.

  7. Film Synthesis and New Superconductors.

    Science.gov (United States)

    1983-05-01

    Physics, Hacienda Cocoyoc, Mexico, (January 1982). - 20 - 70. "Growth Morphology of Superconducting Nb-Si: The Effects of Oxygen and Substrate Temperature...Meeting on Low Temperature Physics, in Hacienda Cocoyoc, Morelas, Me.:ico, January 13-15, 1982. 26. "Empirical Approach to Superconductivity," by T. H

  8. Superconducting Continuous Graphene Fibers via Calcium Intercalation.

    Science.gov (United States)

    Liu, Yingjun; Liang, Hui; Xu, Zhen; Xi, Jiabin; Chen, Genfu; Gao, Weiwei; Xue, Mianqi; Gao, Chao

    2017-04-25

    Superconductors are important materials in the field of low-temperature magnet applications and long-distance electrical power transmission systems. Besides metal-based superconducting materials, carbon-based superconductors have attracted considerable attention in recent years. Up to now, five allotropes of carbon, including diamond, graphite, C60, CNTs, and graphene, have been reported to show superconducting behavior. However, most of the carbon-based superconductors are limited to small size and discontinuous phases, which inevitably hinders further application in macroscopic form. Therefore, it raises a question of whether continuously carbon-based superconducting wires could be accessed, which is of vital importance from viewpoints of fundamental research and practical application. Here, inspired by superconducting graphene, we successfully fabricated flexible graphene-based superconducting fibers via a well-established calcium (Ca) intercalation strategy. The resultant Ca-intercalated graphene fiber (Ca-GF) shows a superconducting transition at ∼11 K, which is almost 2 orders of magnitude higher than that of early reported alkali metal intercalated graphite and comparable to that of commercial superconducting NbTi wire. The combination of lightness and easy scalability makes Ca-GF highly promising as a lightweight superconducting wire.

  9. Thin films sputtered from Ba{sub 2}NdFeNb{sub 4}O{sub 15} multiferroic targets on BaFe{sub 12}O{sub 19} coated substrates

    Energy Technology Data Exchange (ETDEWEB)

    Bodeux, Romain [CNRS, ICMCB, UPR 9048, F-33600 Pessac (France); Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France); Michau, Dominique, E-mail: dominique.michau@icmcb.cnrs.fr [CNRS, ICMCB, UPR 9048, F-33600 Pessac (France); Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France); Maglione, Mario; Josse, Michaël [CNRS, ICMCB, UPR 9048, F-33600 Pessac (France); Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France)

    2016-09-15

    Highlights: • Synthesis of Ba{sub 2}NdFeNb{sub 4}O{sub 15}/BaFe{sub 12}O{sub 19} (BaM) heterostructures by RF magnetron sputtering. • Growth of TTB layer were retained regardless of the underlayer (Pt bottom electrode or BaM). • Dielectric and magnetic properties were obtained from the Pt/TTB/BaM/Pt stacks. - Abstract: Ba{sub 2}NdFeNb{sub 4}O{sub 15} tetragonal tungsten bronze (TTB)/BaFe{sub 12}O{sub 19} (BaM) hexaferrite bilayers have been grown by RF magnetron sputtering on Pt/TiO{sub 2}/SiO{sub 2}/Si (PtS) substrates. The BaM layer is textured along (0 0 1) while the TTB layer is multioriented regardless of the PtS or BaM/PtS substrate. Dielectric properties of TTB films are similar to those of bulk, i.e., ε ∼ 150 and a magnetic hysteresis loop is obtained from TTB/BaM bilayers, thanks to the BaM component. This demonstrates the possibility of transferring to 2 dimensional structures the composite multiferroic system TTB/BaM previously identified in 3 dimensional bulk ceramics.

  10. Impact of thickness on microscopic and macroscopic properties of Fe-Te-Se superconductor thin films

    Directory of Open Access Journals (Sweden)

    N. Zhang

    2015-04-01

    Full Text Available A series of iron based Fe-Te-Se superconductor thin films depositing on 0.7wt% Nb-doped SrTiO3 at substrate temperatures in the 250°C -450°C range by pulsed laser ablation of a constituents well defined precursor FeTe0.55Se0.55 target sample. We study the possible growth mechanism and its influence on the superconductor properties. Experimental results indicate the superconductive and non-superconductive properties are modulated only by the thickness of the thin films through the temperature range. The films appear as superconductor whenever the thickness is above a critical value ∼30nm and comes to be non-superconductor below this value. Relative ratios of Fe to (Te+Se in the films retained Fe/(Te+Se1 for non-superconductor no matter what the film growth temperature was. The effect of film growth temperature takes only the role of modulating the ratio of Te/Se and improving crystallinity of the systems. According to the experimental results we propose a sandglass film growth mechanism in which the interfacial effect evokes to form a Fe rich area at the interface and Se or Te starts off a consecutive filling up process of chalcogenide elements defect sides, the process is significant before the film thickness reaches at ∼30nm.

  11. Electron-microscopy study of the A15 Nb/sub 3/Ge substrate interface

    Energy Technology Data Exchange (ETDEWEB)

    Antonovsky, A.; Toth, L.E.; Bradford, B.; Goldman, A.M.

    1980-02-01

    Electron microscopy has been used to study very thin Nb-Ge films sputtered-deposited onto copper substrates. Micrographs and selected-area electron-diffraction patterns reveal an interface region between the substrate and the first A15 Nb/sub 3/Ge to form. This interface consists of microcrystalline Nb-N-O and a two-phase region consisting of Nb-N-O grains and an unidentifiable tetragonal Nb-Ge phase. The A15 Nb/sub 3/Ge grains which form later in the growth of the film exhibit the same grain size and shape as the Nb-N-O grains. From the results a model for the role of the interface in the initial formation of A15 Nb/sub 3/Ge is proposed.

  12. Characterizing nanoscale electromechanical fatigue in Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-PbTiO{sub 3} thin films by piezoresponse force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gatoux, A. [Univ Lille Nord de France, F-59000 Lille (France); UArtois, UCCS, F-62300 Lens (France); CNRS, UMR 8181, F-59650 Villeneuve d' Ascq (France); Ferri, A., E-mail: anthony.ferri@univ-artois.fr [Univ Lille Nord de France, F-59000 Lille (France); UArtois, UCCS, F-62300 Lens (France); CNRS, UMR 8181, F-59650 Villeneuve d' Ascq (France); Detalle, M. [IMEC, Kapeldreef 75, B-3001 Louvain (Belgium); Remiens, D. [Univ Lille Nord de France, F-59000 Lille (France); CNRS-UMR 8520, F-59655 Villeneuve d' Ascq (France); Institut d' Electronique de Microelectronique et de Nanotechnologie (IEMN), Departement d' Opto-Acousto-Electronique (DOAE)-Equipe MIMM (France); Desfeux, R. [Univ Lille Nord de France, F-59000 Lille (France); UArtois, UCCS, F-62300 Lens (France); CNRS, UMR 8181, F-59650 Villeneuve d' Ascq (France)

    2011-10-31

    Fatigue of piezoelectric properties was investigated at the grain scale using piezoresponse force microscopy in 0.7Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-0.3PbTiO{sub 3} (PMN-PT) thin films grown on platinum and LaNiO{sub 3} electrodes. Single grains were fatigued then electromechanical activity was probed by the nanoscale probe tip of the atomic force microscope. Local fatigue phenomenon with switching cycles is observed whatever the metallic or oxide bottom electrode nature. However, better fatigue resistance is clearly evidenced when the ferroelectric layer is deposited on oxide electrode. Fatigue effect starts at 10{sup 8} switching cycles for grains grown on platinum while 4 x 10{sup 8} on LaNiO{sub 3}. Such improvement of fatigue endurance is mainly attributed to the oxide nature of the LaNiO{sub 3} electrode, which acts as an oxygen source for the film during fatigue process. Effect of electrode nature on piezoelectric fatigue in such 70/30 PMN-PT ferroelectric films is evidenced at the nanometer scale level.

  13. Properties of epitaxial, (001)- and (110)-oriented (PbMg1/3Nb2/3O3)2/3-(PbTiO3)1/3 films on silicon described by polarization rotation.

    Science.gov (United States)

    Boota, Muhammad; Houwman, Evert P; Dekkers, Matthijn; Nguyen, Minh D; Vergeer, Kurt H; Lanzara, Giulia; Koster, Gertjan; Rijnders, Guus

    2016-01-01

    Epitaxial (PbMg1/3Nb2/3O3)2/3-(PbTiO3)1/3 (PMN-PT) films with different out-of-plane orientations were prepared using a CeO2/yttria stabilized ZrO2 bilayer buffer and symmetric SrRuO3 electrodes on silicon substrates by pulsed laser deposition. The orientation of the SrRuO3 bottom electrode, either (110) or (001), was controlled by the deposition conditions and the subsequent PMN-PT layer followed the orientation of the bottom electrode. The ferroelectric, dielectric and piezoelectric properties of the (SrRuO3/PMN-PT/SrRuO3) ferroelectric capacitors exhibit orientation dependence. The properties of the films are explained in terms of a model based on polarization rotation. At low applied fields domain switching dominates the polarization change. The model indicates that polarization rotation is easier in the (110) film, which is ascribed to a smaller effect of the clamping on the shearing of the pseudo-cubic unit cell compared to the (001) case.

  14. Vortex interaction enhanced saturation number and caging effect in a superconducting film with a honeycomb array of nanoscale holes.

    Energy Technology Data Exchange (ETDEWEB)

    Latimer, M. L.; Berdiyorov, G. R.; Xiao, Z. L.; Kwok, W. K.; Peeters, F. M. (Materials Science Division); (Northern Illinois Univ.); (Universiteit Antwerpen)

    2012-01-01

    The electrical transport properties of a MoGe thin film with a honeycomb array of nanoscale holes are investigated. The critical current of the system shows nonmatching anomalies as a function of applied magnetic field, enabling us to distinguish between multiquanta vortices trapped in the holes and interstitial vortices located between the holes. The number of vortices trapped in each hole is found to be larger than the saturation number predicted for an isolated hole and shows a nonlinear field dependence, leading to the caging effect as predicted from the Ginzburg-Landau (GL) theory. Our experimental results are supplemented by numerical simulations based on the GL theory.

  15. SmBa2NbO6 Nanopowders, an Effective Percolation Network Medium for YBCO Superconductors

    Directory of Open Access Journals (Sweden)

    S. Vidya

    2013-01-01

    Full Text Available The percolation behavior of superconductor-insulator composite, YBa2Cu3O7–δ, and nano SmBa2NbO2 synthesized by modified combustion technique was studied. Particle size of nano SmBa2NBO6 was determined using transmission electron microscopy. The chemical nonreactivity of nano SmBa2NbO6 with YBCO is evident from the X-Ray diffraction study which makes it a suitable nanoceramic substrate material for high temperature superconducting films. A systematic increase in the sintered density, approaching the optimum value of the insulating nanophase is clearly observed, as the vol.% of YBCO in the composite decreases. SEM micrograph showed uniform distribution of nanopowder among the large clusters of YBCO. The obtained percolation threshold is ~26 vol% of YBCO in the composite. All the composites below the threshold value showed TC(0~92 K even though the room resistivity increases with increase in vol.% of nano SmBa2NbO6. The values of critical exponents obtained matches well with the theoretically expected ones for an ideal superconductor-insulator system.

  16. Meissner effect in superconducting microtraps

    Energy Technology Data Exchange (ETDEWEB)

    Cano, Daniel

    2009-04-30

    This thesis investigates the impact of the Meissner effect on magnetic microtraps for ultracold atoms near superconducting microstructures. This task has been accomplished both theoretically and experimentally. The Meissner effect distorts the magnetic fields near superconducting surfaces, thus altering the parameters of magnetic microtraps. Both computer simulations and experimental measurements demonstrate that the Meissner effect shortens the distance between the magnetic microtrap and the superconducting surface, reduces the magnetic-field gradients and dramatically lowers the trap depth. A novel numerical method for calculating magnetic fields in atom chips with superconducting microstructures has been developed. This numerical method overcomes the geometrical limitations of other calculation techniques and can solve superconducting microstructures of arbitrary geometry. The numerical method has been used to calculate the parameters of magnetic microtraps in computer-simulated chips containing thin-film wires. Simulations were carried out for both the superconducting and the normal-conducting state, and the differences between the two cases were analyzed. Computer simulations have been contrasted with experimental measurements. The experimental apparatus generates a magnetic microtrap for ultracold Rubidium atoms near a superconducting Niobium wire of circular cross section. The design and construction of the apparatus has met the challenge of integrating the techniques for producing atomic quantum gases with the techniques for cooling solid bodies to cryogenic temperatures. By monitoring the position of the atom cloud, one can observe how the Meissner effect influences the magnetic microtrap. (orig.)

  17. Nb 3Sn material development in Russia

    Science.gov (United States)

    Pantsyrny, V.; Shikov, A.; Vorobieva, A.

    2008-07-01

    In the USSR and later in Russia, the main activities in technical superconductivity were concentrated in the institutes that belonged to the Ministry of Atomic Energy (Minatom). The development of new technologies shortly transferred to the large-scale industrial production of NbTi and Nb 3Sn superconductors in early 1970s. Two main technologies for multifilamentary Nb 3Sn strands were under investigation during that time - bronze-process and internal tin method. More than 25 ton of Nb 3Sn bronze-processed strands were produced for the fabrication of 90 ton of conductors for application in the magnet system of first in the world fusion facility (tokamak T-15) with magnet system based on the intermetallic compound. The characteristics of these strands and conductors have been briefly described. The requirements for the Nb 3Sn strands constantly increased and the main R&D on the enhancement of critical current density have been reviewed. For bronze-processed strands the increase of the tin content in large ingots was the crucial factor. The artificial doping of niobium filaments by niobium-titanium alloy was invented, which enabled to improve the workability of Nb 3Sn strands, with enhanced critical current density in high fields. For internal tin Nb 3Sn strands the main R&D were concentrated on the optimization of the layouts of the strand and on the multistage heat treatment because of the inevitable liquid phase formation which could result in severe distortion of the geometrical arrangement of the filaments and even in destruction of the whole strand. The main results of these investigations have been presented. The corresponding impact of these R&D on the design of bronze-processed and internal tin strands has been analyzed. The quantitative estimations of the grain size were made for bronze-processed and internal tin strands. It was shown that in bronze-processed and internal tin strands subjected to the standard ITER heat treatment characterized by two stages

  18. Comparative study of heat transfer from Nb-Ti and Nb_{3}Sn coils to He II

    Directory of Open Access Journals (Sweden)

    Marco La China

    2008-08-01

    Full Text Available In superconducting magnets, the energy deposited or generated in the coil must be evacuated to prevent temperature rise and consequent transition of the superconductor to the resistive state. The main barrier to heat extraction is represented by the electric insulation wrapped around superconducting cables. In the LHC, insulation improvement is a key point in the development of interaction region magnets and injector chain fast-pulsed magnets for luminosity upgrade; the high heat load of these magnets, in fact, is not compatible with the use of current insulation schemes. We review the standard insulation schemes for Nb-Ti and Nb_{3}Sn technology from the thermal point of view. We implement, in an analytical model, the strongly nonlinear thermal resistances of the different coil components including the permeability to superfluid helium of Nb-Ti insulations, measured during the LHC main dipole development. We use such a model to compare Nb-Ti and Nb_{3}Sn technologies by taking into account their specific operating margin in different working conditions. Finally, we propose an insulation scheme to enhance the heat transfer capability of Nb-Ti coils.

  19. Realization of Artificial Ice Systems for Magnetic Vortices in a Superconducting MoGe Thin Film with Patterned Nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Latimer, M. L.; Berdiyorov, G. R.; Xiao, Z. L.; Peeters, F. M.; Kwok, W. K.

    2013-08-05

    We report an anomalous matching effect in MoGe thin films containing pairs of circular holes arranged in such a way that four of those pairs meet at each vertex point of a square lattice. A remarkably pronounced fractional matching was observed in the magnetic field dependences of both the resistance and the critical current. At the half matching field the critical current can be even higher than that at zero field. This has never been observed before for vortices in superconductors with pinning arrays. Numerical simulations within the nonlinear Ginzburg-Landau theory reveal a square vortex ice configuration in the ground state at the half matching field and demonstrate similar characteristic features in the field dependence of the critical current, confirming the experimental realization of an artificial ice system for vortices for the first time.

  20. Germanium Lift-Off Masks for Thin Metal Film Patterning

    Science.gov (United States)

    Brown, Ari

    2012-01-01

    A technique has been developed for patterning thin metallic films that are, in turn, used to fabricate microelectronics circuitry and thin-film sensors. The technique uses germanium thin films as lift-off masks. This requires development of a technique to strip or undercut the germanium chemically without affecting the deposited metal. Unlike in the case of conventional polymeric lift-off masks, the substrate can be exposed to very high temperatures during processing (sputter deposition). The reason why polymeric liftoff masks cannot be exposed to very high temperatures (greater than 100 C) is because (a) they can become cross linked, making lift-off very difficult if not impossible, and (b) they can outgas nitrogen and oxygen, which then can react with the metal being deposited. Consequently, this innovation is expected to find use in the fabrication of transition edge sensors and microwave kinetic inductance detectors, which use thin superconducting films deposited at high temperature as their sensing elements. Transition edge sensors, microwave kinetic inductance detectors, and their circuitry are comprised of superconducting thin films, for example Nb and TiN. Reactive ion etching can be used to pattern these films; however, reactive ion etching also damages the underlying substrate, which is unwanted in many instances. Polymeric lift-off techniques permit thin-film patterning without any substrate damage, but they are difficult to remove and the polymer can outgas during thin-film deposition. The outgassed material can then react with the film with the consequence of altered and non-reproducible materials properties, which, in turn, is deleterious for sensors and their circuitry. The purpose of this innovation was to fabricate a germanium lift-off mask to be used for patterning thin metal films.

  1. Superconducting RF Cavities Past, Present and Future

    CERN Document Server

    Chiaveri, Enrico

    2003-01-01

    In the last two decades many laboratories around the world, notably Argonne (ANL), TJNAF (formerly CEBAF), CERN, DESY and KEK, decided to develop the technology of superconducting (SC) accelerating cavities. The aim was either to increase the accelerator energy or to save electrical consumption or both. This technology has been used extensively in the operating machines showing good performances and strong reliability. At present, the technology using bulk niobium (Nb) or Nb coated on copper (Cu) is mature enough to be applied for many different applications, such as synchrotron light sources and spallation neutron drivers. Results, R&D work and future projects will be presented with emphasis on application to linear accelerators.

  2. Effect of fabrication conditions on phase formation and properties of epitaxial (PbMg1/3Nb2/3O3)0.67-(PbTiO3)0.33 thin films on (001) SrTiO3

    OpenAIRE

    Muhammad Boota; Houwman, Evert P.; Minh D. Nguyen; Giulia Lanzara; Guus Rijnders

    2016-01-01

    The pulsed laser deposition process of 300nm thick films of Pb(Mg1/3Nb2/3)O3)0.67-(PbTiO3)0.33 on (001)-oriented SrTiO3 was studied by varying deposition pressure, substrate deposition temperature, laser fluence on the target and target-substrate distance. Perovskite phase pure, (001)-oriented, epitaxial smooth films were obtained in a narrow range of deposition parameters. The ferroelectric and dielectric properties of films fabricated within this parameter range still vary significantly. Th...

  3. Enhanced 77 K vortex-pinning in Y Ba2Cu3O7−x films with Ba2Y TaO6 and mixed Ba2Y TaO6 + Ba2Y NbO6 nano-columnar inclusions with irreversibility field to 11 T

    Directory of Open Access Journals (Sweden)

    F. Rizzo

    2016-06-01

    Full Text Available Pulsed laser deposited thin Y Ba2Cu3O7−x (YBCO films with pinning additions of 5 at. % Ba2Y TaO6 (BYTO were compared to films with 2.5 at. % Ba2Y TaO6 + 2.5 at. % Ba2Y NbO6 (BYNTO additions. Excellent magnetic flux-pinning at 77 K was obtained with remarkably high irreversibility fields greater than 10 T (YBCO-BYTO and 11 T (YBCO-BYNTO, representing the highest ever achieved values in YBCO films.

  4. Magnetism in structures with ferromagnetic and superconducting layers

    Energy Technology Data Exchange (ETDEWEB)

    Zhaketov, V. D.; Nikitenko, Yu. V., E-mail: nikiten@nf.jinr.ru [Joint Institute for Nuclear Research (Russian Federation); Radu, F. [Helmholtz-Zentrum Berlin für Materialen un Energie (Germany); Petrenko, A. V. [Joint Institute for Nuclear Research (Russian Federation); Csik, A. [MTA Atomki, Institute for Nuclear Research (Hungary); Borisov, M. M.; Mukhamedzhanov, E. Kh. [Russian Research Centre Kurchatov Institute (Russian Federation); Aksenov, V. L. [Russian Research Centre Kurchatov Institute, Konstantinov St. Petersburg Nuclear Physics Institute (Russian Federation)

    2017-01-15

    The influence of superconductivity on ferromagnetism in the layered Ta/V/Fe{sub 1–x}V{sub x}/V/Fe{sub 1–x}V{sub x}/Nb/Si structures consisting of ferromagnetic and superconducting layers is studied using polarized neutron reflection and scattering. It is experimentally shown that magnetic structures with linear sizes from 5 nm to 30 μm are formed in these layered structures at low temperatures. The magnetization of the magnetic structures is suppressed by superconductivity at temperatures below the superconducting transition temperatures in the V and Nb layers. The magnetic states of the structures are shown to undergo relaxation over a wide magnetic-field range, which is caused by changes in the states of clusters, domains, and Abrikosov vortices.

  5. Improved superconducting hot-electron bolometer devices for the THz range

    NARCIS (Netherlands)

    Klapwijk, T.M.; Barends, R.; Gao, J.R.; Hajenius, M.; Baselmans, J.J.A.

    2004-01-01

    Improved and reproducible heterodyne mixing (noise temperatures of 950 K at 2.5 THz) has been realized with NbN based hot-electron superconducting devices with low contact resistances. A distributed temperature numerical model of the NbN bridge, based on a local electron and a phonon temperature,

  6. Microstructure and nanoscale piezoelectric/ferroelectric properties in La{sub 2}Ti{sub 2}O{sub 7} thin films grown on (110)-oriented doped Nb:SrTiO{sub 3} substrates

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Zhenmian [Universite Lille Nord de France, F-59000 Lille (France); CNRS, UMR 8181, F-59650 Villeneuve d' Ascq (France); Universite d' Artois, UCCS, F-62300 Lens (France); USTL, ENSCL, UCCS, F-59652 Villeneuve d' Ascq (France); Saitzek, Sebastien; Ferri, Anthony; Bruyer, Emilie; Sayede, Adlane; Desfeux, Rachel [Universite Lille Nord de France, F-59000 Lille (France); CNRS, UMR 8181, F-59650 Villeneuve d' Ascq (France); Universite d' Artois, UCCS, F-62300 Lens (France); Roussel, Pascal [Unite de Catalyse et de Chimie du Solide, UCCS CNRS UMR 8181, F-59652 Villeneuve d' Ascq (France); Universite Lille Nord de France, F-59000 Lille (France); CNRS, UMR 8181, F-59650 Villeneuve d' Ascq (France); USTL, ENSCL, UCCS, F-59652 Villeneuve d' Ascq (France); Rguiti, Mohamed [Universite Lille Nord de France, F-59000 Lille (France); Universite de Valenciennes et du Hainaut-Cambresis, LMCPA, EA 2443, F-59600 Maubeuge (France); Mentre, Olivier [Universite Lille Nord de France, F-59000 Lille (France); CNRS, UMR 8181, F-59650 Villeneuve d' Ascq (France); USTL, ENSCL, UCCS, F-59652 Villeneuve d' Ascq (France)

    2011-10-15

    (00l)-Oriented La{sub 2}Ti{sub 2}O{sub 7} (LTO) thin films with monoclinic perovskite-layer structure [a = 7.806(2)A, b = 5.552(3)A, c = 13.015(5)A, {beta} = 98.62(2) ] have been grown by a sol-gel route on conducting (110)-oriented doped Nb:SrTiO{sub 3} (STO) substrates. The narrow rocking curves (0.24 width for 004{sub LTO} peak) demonstrate the sharp mosaicity of the films. Using high-resolution X-ray diffraction (HR-XRD), epitaxial relationships between the LTO, and the STO substrate are given. In addition, HR-XRD evidences the existence of (212)-oriented crystallites 1.5 disoriented with respect to the plane of the substrate. We confirm, by DFT calculations, that the polarization vector lies in the b-axis of the LTO cell and consequently, the existence of these (212)-oriented crystallites enables to explain the origin of the various contrasts observed both on the in-plane and out-of-plane images when collected by piezoresponse force microscopy. Finally, both successful poling experiments performed via the tip of atomic force microscope and the existence of local piezoloops within the domains, unambiguously confirm the ferroelectric state of the films at the nanoscale level. Once again, this study demonstrates that a clear understanding of nanoscale piezoelectric/ferroelectric phenomena in oriented thin films passes through a carefully structural analysis as performed by HR-XRD. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Fabrication of a superconducting cable for construction of Hi-Lumi Magnet

    CERN Multimedia

    2016-01-01

    A Rutherford cabling machine is operated in the superconducting laboratory in building 163. The machine was used for the production of the Nb-Ti cables in the LHC magnets. Today, it is operated for the assembly of the high-performance cables made from state-of-the-art Nb3Sn conductor. The video shows the production of a long length Nb3Sn cable that will be use in a 11 T High Luminosity LHC dipole magnet.

  8. Mechanical Design and Fabrication Studies for SPL Superconducting RF Cavities

    CERN Document Server

    Atieh, S; Aviles Santillana, I; Capatina, O; Renaglia, T; Tardy, T; Valverde Alonso, N; Weingarten, W

    2011-01-01

    CERN’s R&D programme on the Superconducting Proton Linac’s (SPL) superconducting radio frequency (SRF) elliptical cavities made from niobium sheets explores new mechanical design and consequently new fabrication methods, where several opportunities for improved optimization were identified. A stainless steel helium vessel is under design rather than a titanium helium vessel using an integrated brazed transition between Nb and the SS helium vessel. Different design and fabrication aspects were proposed and the results are discussed hereafter.

  9. X-ray investigation of Nb/O interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Delheusy, Melissa

    2008-07-07

    X-ray free electron lasers and the future International Linear Collider project are based on the performance of niobium superconducting rf cavities for efficient particle acceleration. A remarkable increase of the rf accelerating field is usually achieved by low-temperature annealing of the cavities (T<150 C, several hours). The microscopic origin of this effect has remained unclear; however, it has been argued that a redistribution of subsurface interstitial oxygen into niobium is involved. In this study, the near surface structure of oxidized niobium single crystals and its evolution upon vacuum annealing has been studied by means of non-destructive in-situ surface sensitive X-ray techniques: X-ray reflectivity (XRR), grazing incidence X-ray diffraction (GIXD), diffuse scattering (GIDXS), crystal truncation rods measurements (CTRs), and high-resolution core-level spectroscopy (HRCLS). A first insight into the interplay between the oxide formation/dissolution and the occurrence of subsurface interstitial oxygen has been given. The natural oxide on Nb(110) and Nb(100) surfaces is constituted of Nb{sub 2}O{sub 5}, NbO{sub 2} and NbO, from the surface to the interface. It reduces progressively upon heating from Nb{sub 2}O{sub 5} to NbO{sub 2} at low temperatures, and to NbO at 300 C. The Nb(110)/NbO(111) interface presents a Nishiyama-Wassermann epitaxial orientation relationship. The depth-distribution of interstitial oxygen has been established indicating that most of the oxygen is located in the direct vicinity of the oxide/niobium interface. No evidence of oxygen depletion below the oxide layer has been observed for the low temperature thermal treatments and surface preparations investigated in this study. (orig.)

  10. Analysis of Nb3Sn Rutherford cable production and strand deformations

    CERN Document Server

    Peggiani, Sonia; Beghi, Marco

    The development of cutting-edge 11-12 T superconducting magnets made from Nb3Sn technology is one of the major milestones for the upgrade of the Large Hadron Collider at CERN. The upgrade, called High Luminosity LHC Project, was planned in order to reach higher luminosity and discover new particles. Replacing the NbTi superconductor with the Nb3Sn makes it possible to reach a practical operating magnetic field limit of up to 16 T. The superconducting coils are formed by Nb3Sn Rutherford cables with a trapezoidal cross section and composed of 40 strands. Since the superconducting phase of Nb3Sn is very brittle and it is reached after a thermal cycle, the Nb3Sn Rutherford cable needs to be wound in a coil before the thermal treatment. The cabling process is a delicate step in the production of high performing cables that need different systems to control their quality. This work aims to provide practical tools to analyze the Nb3Sn Rutherford cable production and the strands deformations due to the high aspec...

  11. Superconductive tunnel junctions for X-ray spectroscopy

    Science.gov (United States)

    de Korte, P. A. J.; van den Berg, M. L.; Bruijn, M. P.; Frericks, M.; Le Grand, J. B.; Gijsbertsen, J. G.; Houwman, E. P.; Flokstra, J.

    1992-10-01

    Superconductive tunnel junctions are under development as detectors for X-ray astronomy in the 0.5 - 10 keV energy range, because of their potentially high energy resolution in combination with high detection efficiency. Absorber-junction combinations offer the prospect of high energy resolution detectors with a high detection efficiency and a reasonable (about 1/sq cm) size. The proximity effect between the Nb absorber and the Al trapping layer plays a dominant role. A study of the proximity effect in Nb/Al/Al2O3/Al/Nb junctions with different Al-layer, the trapping layer, thicknesses is presented.

  12. Superconducting RF separator for Omega Spectrometer

    CERN Multimedia

    1977-01-01

    The photo shows an Nb-deflector for the superconducting RF separator ready for installation in its cryostat (visible at the back). Each deflector was about 3 m long. L. Husson and P. Skacel (Karlsruhe) stand on the left, A. Scharding (CERN) stands on the right. This particle separator, the result of a collaboration between the Gesellshaft für Kernforschung, Karlsruhe, and CERN was installed in the S1 beam line to Omega spectrometer. (See Annual Report 1977.)

  13. PREFACE: Superconducting materials Superconducting materials

    Science.gov (United States)

    Charfi Kaddour, Samia; Singleton, John; Haddad, Sonia

    2011-11-01

    The discovery of superconductivity in 1911 was a great milestone in condensed matter physics. This discovery has resulted in an enormous amount of research activity. Collaboration among chemists and physicists, as well as experimentalists and theoreticians has given rise to very rich physics with significant potential applications ranging from electric power transmission to quantum information. Several superconducting materials have been synthesized. Crucial progress was made in 1987 with the discovery of high temperature superconductivity in copper-based compounds (cuprates) which have revealed new fascinating properties. Innovative theoretical tools have been developed to understand the striking features of cuprates which have remained for three decades the 'blue-eyed boy' for researchers in superconductor physics. The history of superconducting materials has been notably marked by the discovery of other compounds, particularly organic superconductors which despite their low critical temperature continue to attract great interest regarding their exotic properties. Last but not least, the recent observation of superconductivity in iron-based materials (pnictides) has renewed hope in reaching room temperature superconductivity. However, despite intense worldwide studies, several features related to this phenomenon remain unveiled. One of the fundamental key questions is the mechanism by which superconductivity takes place. Superconductors continue to hide their 'secret garden'. The new trends in the physics of superconductivity have been one of the two basic topics of the International Conference on Conducting Materials (ICoCoM2010) held in Sousse,Tunisia on 3-7 November 2010 and organized by the Tunisian Physical Society. The conference was a nice opportunity to bring together participants from multidisciplinary domains in the physics of superconductivity. This special section contains papers submitted by participants who gave an oral contribution at ICoCoM2010

  14. Comparative Study of Heat Transfer from Nb-Ti and Nb$_3$Sn coils to He II

    CERN Document Server

    La China, M

    2008-01-01

    In superconducting magnets, the energy deposited or generated in the coil must be evacuated to prevent temperature rise and consequent transition of the superconductor to the resistive state. The main barrier to heat extraction is represented by the electric insulation wrapped around superconducting cables. In the LHC, insulation improvement is a key point in the development of interaction region magnets and injector chain fast-pulsed magnets for luminosity upgrade; the high heat load of these magnets, in fact, is not compatible with the use of current insulation schemes. We review the standard insulation schemes for Nb-Ti and Nb3Sn technology from the thermal point of view. We implement, in an analytical model, the strongly nonlinear thermal resistances of the different coil components including the permeability to superfluid helium of Nb-Ti insulations, measured during the LHC main dipole development. We use such a model to compare Nb-Ti and Nb3Sn technologies by taking into account their specific operating...

  15. Strand critical current degradation in $Nb_{3}$ Sn Rutherford cables

    CERN Document Server

    Barzi, E; Higley, H C; Scanlan, R M; Yamada, R; Zlobin, A V

    2001-01-01

    Fermilab is developing 11 Tesla superconducting accelerator magnets based on Nb/sub 3/Sn superconductor. Multifilamentary Nb/sub 3/Sn strands produced using the modified jelly roll, internal tin, and powder-in-tube technologies were used for the development and test of the prototype cable. To optimize the cable geometry with respect to the critical current, short samples of Rutherford cable with packing factors in the 85 to 95% range were fabricated and studied. In this paper, the results of measurements of critical current, n-value and RRR made on the round virgin strands and on the strands extracted from the cable samples are presented. (5 refs).

  16. Aluminum-stabilized Nb/sub 3/Sn superconductor

    Science.gov (United States)

    Scanlan, R.M.

    1984-02-10

    This patent discloses an aluminum-stabilized Nb/sub 3/Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb/sub 3/Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials.

  17. Aluminum-stabilized Nb[sub 3]Sn superconductor

    Science.gov (United States)

    Scanlan, R.M.

    1988-05-10

    Disclosed are an aluminum-stabilized Nb[sub 3]Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb[sub 3]Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials. 4 figs.

  18. Superconductive silicon nanowires using gallium beam lithography.

    Energy Technology Data Exchange (ETDEWEB)

    Henry, Michael David; Jarecki, Robert Leo,

    2014-01-01

    This work was an early career LDRD investigating the idea of using a focused ion beam (FIB) to implant Ga into silicon to create embedded nanowires and/or fully suspended nanowires. The embedded Ga nanowires demonstrated electrical resistivity of 5 m-cm, conductivity down to 4 K, and acts as an Ohmic silicon contact. The suspended nanowires achieved dimensions down to 20 nm x 30 nm x 10 m with large sensitivity to pressure. These structures then performed well as Pirani gauges. Sputtered niobium was also developed in this research for use as a superconductive coating on the nanowire. Oxidation characteristics of Nb were detailed and a technique to place the Nb under tensile stress resulted in the Nb resisting bulk atmospheric oxidation for up to years.

  19. Modeling of planar quasi-TEM superconducting transmission lines

    Science.gov (United States)

    Antsos, Dimitrios; Chew, Wilbert; Riley, A. L.; Hunt, Brian D.; Foote, Marc C.; Bajuk, Louis J.; Rascoe, Daniel L.; Cooley, Thomas W.

    1992-01-01

    An application of the phenomenological loss equivalence method (Lee and Itoh, 1989) in modeling the microwave behavior of planar quasi-TEM superconducting transmission lines is presented. For validation of the model, data are used from measurements of a YBCO superconducting thin-film coplanar-waveguide lowpass filter on a lanthanum aluminate substrate. Measured and modeled S-parameters of an existing superconducting coplanar waveguide lowpass filter agree to within 0.3 dB in magnitude and 0.5 radians in phase. Extracted values for penetration depth and real part of the conductivity of the superconducting film are within 10 percent of other researchers' findings.

  20. Industrial and scientific technology research and development project in fiscal 1997 commissioned by the New Energy and Industrial Technology Development Organization. Research and development of superconducting materials and transistors (report on overall investigation of superconductive devices); 1997 nendo sangyo kagaku gijutsu kenkyu kaihatsu jigyo Shin energy Sangyo Gijutsu Sogo Kaihatsu Kiko itaku. Chodendo zairyo chodendo soshi no kenkyu kaihatsu (chodendo soshika gijutsu kaihatsu seika hokokusho)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This paper describes development of superconducting new function transistors. Fiscal 1997 as the final year of the project advanced improvement in such transistor-using processes as formation and micro-processing of superconducting thin films to show enhancement in characteristics of high-temperature superconducting transistors and possibility of their application utilizing their high speed motions. Furthermore, fundamental technologies were studied with an aim on junction transistors to be applied as circuits. For field effect transistors, evaluation was performed on critical current distribution of step-type particle boundary junction to make it possible to evaluate characteristics of hundreds of transistors. At the same time, a magnetic flux quantum parametron gate with three-layer structure was fabricated to identify its operation. In superconducting-base transistors, strong reflection was recognized on temperature dependence of permittivity of an Nb-doped strontium titanate substrate used for collectors, by which barrier height was reduced. In the junction transistor and circuit technology, isotropic ramp-edge junctions were fabricated, and so was a frequency divider circuit with single magnetic flux quantum mode operation for evaluating high-speed response characteristics. High time resolution current was observed successfully by using a high-temperature superconducting sampler system. 148 refs., 127 figs., 4 tabs.