WorldWideScience

Sample records for superconducting microwave cavity

  1. Wave Dynamical Chaos in Superconducting Microwave Cavities

    CERN Document Server

    Rehfeld, H; Dembowski, C; Gräf, H D; Hofferbert, R; Richter, A; Lengeler, Herbert

    1997-01-01

    During the last few years we have studied the chaotic behavior of special Euclidian geometries, so-called billiards, from the quantum or in more general sense "wave dynamical" point of view. Due to the equivalence between the stationary Schroedinger equation and the classical Helmholtz equation in the two-dimensional case (plain billiards), it is possible to simulate "quantum chaos" with the help of macroscopic, superconducting microwave cavities. Using this technique we investigated spectra of three billiards from the family of Pascal's Snails (Robnik-Billiards) with a different chaoticity in each case in order to test predictions of standard stochastical models for classical chaotic systems.

  2. Mechanically Amplified Piezoelectric Tunable 3D Microwave Superconducting Cavity

    CERN Document Server

    Carvalho, N C; Tobar, M E

    2016-01-01

    In the context of hybrid quantum systems, there is a demand for superconducting tunable devices able to operate in the single-photon regime. In this work, we developed a 3D microwave reentrant cavity with such characteristics ready to provide a very fine-tuning of a high-Q resonant mode over a large dynamic range. This system has an electronic tuning mechanism based on a mechanically amplified piezoelectric actuator, which can set the cavity resonance with a large dynamic range of order 1 GHz at 10 mK. At elevated microwave power, nonlinear thermal e effects were observed to destroy the superconductivity of the cavity due to the large electric fields generated in the small gap of the reentrant cavity.

  3. A 3D printed superconducting aluminium microwave cavity

    Science.gov (United States)

    Creedon, Daniel L.; Goryachev, Maxim; Kostylev, Nikita; Sercombe, Timothy B.; Tobar, Michael E.

    2016-07-01

    3D printing of plastics, ceramics, and metals has existed for several decades and has revolutionized many areas of manufacturing and science. Printing of metals, in particular, has found a number of applications in fields as diverse as customized medical implants, jet engine bearings, and rapid prototyping in the automotive industry. Although many techniques are used for 3D printing metals, they commonly rely on computer controlled melting or sintering of a metal alloy powder using a laser or electron beam. The mechanical properties of parts produced in such a way have been well studied, but little attention has been paid to their electrical properties. Here we show that a microwave cavity (resonant frequencies 9.9 and 11.2 GHz) 3D printed using an Al-12Si alloy exhibits superconductivity when cooled below the critical temperature of aluminium (1.2 K), with a performance comparable with the common 6061 alloy of aluminium. Superconducting cavities find application in numerous areas of physics, from particle accelerators to cavity quantum electrodynamics experiments. The result is achieved even with a very large concentration of non-superconducting silicon in the alloy of 12.18%, compared with Al-6061, which has between 0.4% and 0.8%. Our results may pave the way for the possibility of 3D printing superconducting cavity configurations that are otherwise impossible to machine.

  4. A 3D Printed Superconducting Aluminium Microwave Cavity

    CERN Document Server

    Creedon, Daniel L; Kostylev, Nikita; Sercombe, Tim; Tobar, Michael E

    2016-01-01

    3D printing of plastics, ceramics, and metals has existed for several decades and has revolutionized many areas of manufacturing and science. Printing of metals in particular has found a number of novel applications in fields as diverse as customized medical implants, jet engine bearings, and rapid prototyping in the automotive industry. Whilst many techniques can be used for 3D printing metals, they commonly rely on computer controlled melting or sintering of a metal alloy powder using a laser or electron beam. The mechanical properties of parts produced in such a way have been well studied, but little attention has been paid to their electrical properties. Here we show that a resonant microwave cavity 3D printed using an Al-12Si alloy exhibits superconductivity when cooled below the critical temperature of aluminium (1.2 K), with a performance comparable to the common 6061 alloy of aluminium. Superconducting cavities find application in numerous areas of physics, from particle accelerators to cavity quantum...

  5. Introduction of DC line structures into a superconducting microwave 3D cavity

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Wei-Cheng; Deng, Guang-Wei; Li, Shu-Xiao; Li, Hai-Ou; Cao, Gang; Xiao, Ming; Guo, Guo-Ping, E-mail: gpguo@ustc.edu.cn [Key Laboratory of Quantum Information, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026, China and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2015-02-15

    We report a technique that can noninvasively add multiple DC wires into a 3D superconducting microwave cavity for electronic devices that require DC electrical terminals. We studied the influence of our DC lines on the cavity performance systematically. We found that the quality factor of the cavity is reduced if any of the components of the electrical wires cross the cavity equipotential planes. Using this technique, we were able to incorporate a quantum dot (QD) device into a 3D cavity. We then controlled and measured the QD transport signal using the DC lines. We have also studied the heating effects of the QD by the microwave photons in the cavity.

  6. Gain and Efficiency of a Superconducting Microwave Compressor with a Switching Cavity in an Interference Switch

    Science.gov (United States)

    Artemenko, S. N.; Samoylenko, G. M.

    2016-11-01

    We study the processes of radiation output from a microwave storage cavity through a superconducting interference switch, which is based on a H-junction with a superconducting switching cavity connected to the side branch of the junction for various ways of controlling the parameters of the switching cavity. It is shown that efficient control over radiation output in such a switch can be achieved by varying the resonance frequency or Q-factor of the switching cavity, as well as by varying these parameters simultaneously. It is found that in the case of controlling the resonance frequency of the switching cavity, there exists an optimal interval of the frequency variation, within which the total efficiency and extraction efficiency are maximum. When the Q-factor of the switching cavity changes, the dependence of the total efficiency and extraction efficiency on the Q-factor has the monotonic character. The mixed regime of radiation output control is also studied. The envelopes of the output compressor pulses are plotted on the basis of recurrent relationships between the amplitudes of the waves in the system for three regimes of switch operation. It is shown that pulses with an almost rectangular shape of the envelope can be formed in the regime of controlling the switching cavity by varying the Q-factor. An example of possible realization of the switching cavity is considered.

  7. InSb nanowire double quantum dots coupled to a superconducting microwave cavity

    Science.gov (United States)

    Wang, R.; Deacon, R. S.; Car, D.; Bakkers, E. P. A. M.; Ishibashi, K.

    2016-05-01

    By employing a micrometer precision mechanical transfer technique, we embed individual InSb nanowires into a superconducting coplanar waveguide resonator. We investigate the characteristics of a double quantum dot formed in an InSb nanowire interacting with a single mode microwave field. The charge stability diagram can be obtained from the amplitude and phase response of the resonator independently from the dc transport measurement. As the charge transits between dot-dot, or dot-lead, the change of resonator transmission is compared and the charge-cavity coupling strength is extracted to be in the magnitude of several MHz.

  8. InSb nanowire double quantum dots coupled to a superconducting microwave cavity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, R. [Advanced Device Laboratory, RIKEN, Wako, Saitama 351-0198 (Japan); Deacon, R. S., E-mail: russell@riken.jp; Ishibashi, K. [Advanced Device Laboratory, RIKEN, Wako, Saitama 351-0198 (Japan); Center for Emergent Matter Science (CEMS), RIKEN, Wako, Saitama 351-0198 (Japan); Car, D. [Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Bakkers, E. P. A. M. [Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Kavli Institute, Quantum Transport Group, Delft University of Technology, 2628 CJ Delft (Netherlands)

    2016-05-16

    By employing a micrometer precision mechanical transfer technique, we embed individual InSb nanowires into a superconducting coplanar waveguide resonator. We investigate the characteristics of a double quantum dot formed in an InSb nanowire interacting with a single mode microwave field. The charge stability diagram can be obtained from the amplitude and phase response of the resonator independently from the dc transport measurement. As the charge transits between dot-dot, or dot-lead, the change of resonator transmission is compared and the charge-cavity coupling strength is extracted to be in the magnitude of several MHz.

  9. Pulsed, High Power Microwave Processing of Field Emission in Superconducting Cavities

    Energy Technology Data Exchange (ETDEWEB)

    I.E. Campisi

    1992-08-03

    The phenomenon of field emission is very well known: electrons are extracted from within the solid state potential well of a metal and are emitted from the metal's surface under the presence of an accelerating potential. In many accelerators, electromagnetic energy is delivered to charged particles by means of microwave cavities excited in modes with electric field components aligned along the particles trajectory. If the mode used is of the TM type (most accelerators operate in the TM{sub 010} mode), then a surface electric field inside the cavities exists which can produce field emitted electrons when allowed by the phase of the fields. These field emitted currents can cause considerable current loading and bremsstrahlung radiation in normal conducting cavities (mostly copper), but in superconducting cavities they have the additional effect of locally heating the superconducting material above its transition temperature and causing performance degradation of the cavities and eventually quenches (transition to the normal conducting state). At present this phenomenon constitutes the limiting factor in superconducting cavity performance, and is receiving a great deal of attention. Several diagnostic methods have been developed to detect, locate and characterize the sources of field-emitted electrons. Methods have also been proposed and tested which decrease the incidence of field emission sites on metal surfaces, but the most effective method to date requires high temperature firing of the superconducting structures in an ultra high vacuum. This can be done only if the cavities are completely removed from their cryostat, a lengthy and costly process. In this paper the properties and advantages are examined of a different method for field emission processing, which does not require a cavity disassembly and which can be performed in situ. The method described makes use of short, high peak power RF pulses to reach high electric fields for a short time. At the same

  10. Microwave power coupler for a superconducting multiple-cell cavity for accelerator application and its testing procedures

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jianjian [Illinois Inst. of Technology, Chicago, IL (United States)

    2008-12-01

    Superconducting cavity resonators offer the advantage of high field intensity for a given input power, making them an attractive contender for particle accelerator applications. Power coupling into a superconducting cavity employed in a particle accelerator requires unique provisions to maintain high vacuum and cryogenic temperature on the cavity side, while operating with ambient conditions on the source side. Components introduced to fulfill mechanical requirements must show negligible obstruction of the propagation of the microwave with absence of critical locations that may give rise to electron multipaction, leading to a multiple section design, instead of an aperture, a probe, or a loop structure as found in conventional cavities. A coaxial power coupler for a superconducting multiple-cell cavity at 3.9 GHz has been developed. The cavity is intended to be employed as an accelerator to provide enhanced electron beam quality in a free-electron laser in Hamburg (FLASH) user facility. The design of the coupler called for two windows to sustain high vacuum in the cavity and two bellows to accommodate mechanical dimensional changes resulting from cryogenics. Suppression of multipacting was accomplished by the choice of conductor dimensions and materials with low second yield coefficients. Prior to integration with the cavity, the coupler was tested for intrinsic properties in a back-to-back configuration and conditioned for high-power operation with increasing power input. Maximum incident power was measured to be 61 kW. When integrated with the superconducting cavity, a loaded quality factor of 9 x 10 5 was measured by transient method. Coupler return loss and insertion loss were estimated to be around -21 dB and -0.2 dB, respectively.

  11. Superconducting cavities for LEP

    CERN Multimedia

    1983-01-01

    Above: a 350 MHz superconducting accelerating cavity in niobium of the type envisaged for accelerating electrons and positrons in later phases of LEP. Below: a small 1 GHz cavity used for investigating the surface problems of superconducting niobium. Albert Insomby stays on the right. See Annual Report 1983 p. 51.

  12. Decrease of the surface resistance in superconducting niobium resonator cavities by the microwave field

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, Gianluigi [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Dhakal, Pashupati [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Gurevich, Alexander V. [Old Dominion University, Norfolk, VA (United States)

    2014-03-03

    Measurements of the quality factor, Q, of Nb superconducting microwave resonators often show that Q increases by {approx_equal} 10%–30% with increasing radio-frequency (rf) field, H, up to {approx} 15-20 mT. Recent high temperature heat treatments can amplify this rf field-induced increase of Q up to {approx_equal} 50%–100% and extend it to much higher fields, but the mechanisms of the enhancement of Q(H) remain unclear. Here, we suggest a method to reveal these mechanisms by measuring temperature dependencies of Q at different rf field amplitudes. We show that the increase of Q(H) does not come from a field dependent quasi-particles activation energy or residual resistance, but rather results from the smearing of the density of state by the rf field.

  13. Nonlinearities in Microwave Superconductivity

    OpenAIRE

    Ledenyov, Dimitri O.; Ledenyov, Viktor O.

    2012-01-01

    The research is focused on the modeling of nonlinear properties of High Temperature Superconducting (HTS) thin films, using Bardeen, Cooper, Schrieffer and Lumped Element Circuit theories, with purpose to enhance microwave power handling capabilities of microwave filters and optimize design of microwave circuits in micro- and nano- electronics.

  14. LEP superconducting cavity

    CERN Multimedia

    1995-01-01

    Engineers work in a clean room on one of the superconducting cavities for the upgrade to the LEP accelerator, known as LEP-2. The use of superconductors allow higher electric fields to be produced so that higher beam energies can be reached.

  15. Niobium superconducting cavity

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    This 5-cell superconducting cavity, made from bulk-Nb, stems from the period of general studies, not all directed towards direct use at LEP. This one is dimensioned for 1.5 GHz, the frequency used at CEBAF and also studied at Saclay (LEP RF was 352.2 MHz). See also 7908227, 8007354, 8209255, 8210054, 8312339.

  16. Demonstration of superconducting micromachined cavities

    Energy Technology Data Exchange (ETDEWEB)

    Brecht, T., E-mail: teresa.brecht@yale.edu; Reagor, M.; Chu, Y.; Pfaff, W.; Wang, C.; Frunzio, L.; Devoret, M. H.; Schoelkopf, R. J. [Department of Applied Physics, Yale University, New Haven, Connecticut 06511 (United States)

    2015-11-09

    Superconducting enclosures will be key components of scalable quantum computing devices based on circuit quantum electrodynamics. Within a densely integrated device, they can protect qubits from noise and serve as quantum memory units. Whether constructed by machining bulk pieces of metal or microfabricating wafers, 3D enclosures are typically assembled from two or more parts. The resulting seams potentially dissipate crossing currents and limit performance. In this letter, we present measured quality factors of superconducting cavity resonators of several materials, dimensions, and seam locations. We observe that superconducting indium can be a low-loss RF conductor and form low-loss seams. Leveraging this, we create a superconducting micromachined resonator with indium that has a quality factor of two million, despite a greatly reduced mode volume. Inter-layer coupling to this type of resonator is achieved by an aperture located under a planar transmission line. The described techniques demonstrate a proof-of-principle for multilayer microwave integrated quantum circuits for scalable quantum computing.

  17. The Superconducting TESLA Cavities

    CERN Document Server

    Aune, B.; Bloess, D.; Bonin, B.; Bosotti, A.; Champion, M.; Crawford, C.; Deppe, G.; Dwersteg, B.; Edwards, D.A.; Edwards, H.T.; Ferrario, M.; Fouaidy, M.; Gall, P-D.; Gamp, A.; Gössel, A.; Graber, J.; Hubert, D.; Hüning, M.; Juillard, M.; Junquera, T.; Kaiser, H.; Kreps, G.; Kuchnir, M.; Lange, R.; Leenen, M.; Liepe, M.; Lilje, L.; Matheisen, A.; Möller, W-D.; Mosnier, A.; Padamsee, H.; Pagani, C.; Pekeler, M.; Peters, H-B.; Peters, O.; Proch, D.; Rehlich, K.; Reschke, D.; Safa, H.; Schilcher, T.; Schmüser, P.; Sekutowicz, J.; Simrock, S.; Singer, W.; Tigner, M.; Trines, D.; Twarowski, K.; Weichert, G.; Weisend, J.; Wojtkiewicz, J.; Wolff, S.; Zapfe, K.

    2000-01-01

    The conceptional design of the proposed linear electron-positron colliderTESLA is based on 9-cell 1.3 GHz superconducting niobium cavities with anaccelerating gradient of Eacc >= 25 MV/m at a quality factor Q0 > 5E+9. Thedesign goal for the cavities of the TESLA Test Facility (TTF) linac was set tothe more moderate value of Eacc >= 15 MV/m. In a first series of 27industrially produced TTF cavities the average gradient at Q0 = 5E+9 wasmeasured to be 20.1 +- 6.2 MV/m, excluding a few cavities suffering fromserious fabrication or material defects. In the second production of 24 TTFcavities additional quality control measures were introduced, in particular aneddy-current scan to eliminate niobium sheets with foreign material inclusionsand stringent prescriptions for carrying out the electron-beam welds. Theaverage gradient of these cavities at Q0 = 5E+9 amounts to 25.0 +- 3.2 MV/mwith the exception of one cavity suffering from a weld defect. Hence only amoderate improvement in production and preparation technique...

  18. Engineering topological materials in microwave cavity arrays

    CERN Document Server

    Anderson, Brandon M; Owens, Clai; Schuster, David I; Simon, Jonathan

    2016-01-01

    We present a scalable architecture for the exploration of interacting topological phases of photons in arrays of microwave cavities, using established techniques from cavity and circuit quantum electrodynamics. A time-reversal symmetry breaking (non-reciprocal) flux is induced by coupling the microwave cavities to ferrites, allowing for the production of a variety of topological band structures including the $\\alpha=1/4$ Hofstadter model. Effective photon-photon interactions are included by coupling the cavities to superconducting qubits, and are sufficient to produce a $\

  19. Multipartite entanglement in the interaction system between a single-mode microwave cavity field and superconducting charge qubits

    Institute of Scientific and Technical Information of China (English)

    Shi Zhen-Gang; Chen Xiong-Wen; Zhu Xi-Xiang; Song Ke-Hui

    2007-01-01

    This paper proposes a method of generating multipartite entanglement through using d. c. superconducting quantum interference devices (SQUID) inside a standing wave cavity. In this scheme, the d. c. SQUID works in the charge region. It is shown that, a large number of important multipartite entangled states can be generated by a controllable interaction between a cavity field and qubits. It is even possible to produce entangled states involving different cavity modes based on the measurement of charge qubits states. After such superpositions states are created, the interaction can be switched off by the classical magnetic field through the SQUID, and there is no information transfer between the cavity field and the charge qubits.

  20. Superconducting cavity model for LEP

    CERN Multimedia

    1979-01-01

    A superconducting cavity model is being prepared for testing in a vertical cryostat.At the top of the assembly jig is H.Preis while A.Scharding adjusts some diagnostic equipment to the cavity. See also photo 7912501X.

  1. Superconducting quantum node for entanglement and storage of microwave radiation.

    Science.gov (United States)

    Flurin, E; Roch, N; Pillet, J D; Mallet, F; Huard, B

    2015-03-06

    Superconducting circuits and microwave signals are good candidates to realize quantum networks, which are the backbone of quantum computers. We have realized a quantum node based on a 3D microwave superconducting cavity parametrically coupled to a transmission line by a Josephson ring modulator. We first demonstrate the time-controlled capture, storage, and retrieval of an optimally shaped propagating microwave field, with an efficiency as high as 80%. We then demonstrate a second essential ability, which is the time-controlled generation of an entangled state distributed between the node and a microwave channel.

  2. Superconducting Quantum Node for Entanglement and Storage of Microwave Radiation

    Science.gov (United States)

    Flurin, E.; Roch, N.; Pillet, J. D.; Mallet, F.; Huard, B.

    2015-03-01

    Superconducting circuits and microwave signals are good candidates to realize quantum networks, which are the backbone of quantum computers. We have realized a quantum node based on a 3D microwave superconducting cavity parametrically coupled to a transmission line by a Josephson ring modulator. We first demonstrate the time-controlled capture, storage, and retrieval of an optimally shaped propagating microwave field, with an efficiency as high as 80%. We then demonstrate a second essential ability, which is the time-controlled generation of an entangled state distributed between the node and a microwave channel.

  3. Diagram of a LEP superconducting cavity

    CERN Multimedia

    1991-01-01

    This diagram gives a schematic representation of the superconducting radio-frequency cavities at LEP. Liquid helium is used to cool the cavity to 4.5 degrees above absolute zero so that very high electric fields can be produced, increasing the operating energy of the accelerator. Superconducting cavities were used only in the LEP-2 phase of the accelerator, from 1996 to 2000.

  4. TESLA superconducting RF cavity development

    Energy Technology Data Exchange (ETDEWEB)

    Koepke, K. [Fermi National Accelerator Lab., Batavia, IL (United States); TESLA Collaboration

    1995-05-01

    The TESLA collaboration has made steady progress since its first official meeting at Cornell in 1990. The infrastructure necessary to assemble and test superconducting rf cavities has been installed at the TESLA Test Facility (TTF) at DESY. 5-cell, 1.3 GHz cavities have been fabricated and have reached accelerating fields of 25 MV/m. Full sized 9-cell copper cavities of TESLA geometry have been measured to verify the higher order modes present and to evaluate HOM coupling designs. The design of the TESLA 9-cell cavity has been finalized and industry has started delivery. Two prototype 9-cell niobium cavities in their first tests have reached accelerating fields of 10 MV/m and 15 MV/m in a vertical dewar after high peak power (HPP) conditioning. The first 12 m TESLA cryomodule that will house 8 9-cell cavities is scheduled to be delivered in Spring 1995. A design report for the TTF is in progress. The TTF test linac is scheduled to be commissioned in 1996/1997. (orig.).

  5. Quantum and wave dynamical chaos in superconducting microwave billiards

    Energy Technology Data Exchange (ETDEWEB)

    Dietz, B., E-mail: dietz@ikp.tu-darmstadt.de; Richter, A., E-mail: richter@ikp.tu-darmstadt.de [Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt (Germany)

    2015-09-15

    Experiments with superconducting microwave cavities have been performed in our laboratory for more than two decades. The purpose of the present article is to recapitulate some of the highlights achieved. We briefly review (i) results obtained with flat, cylindrical microwave resonators, so-called microwave billiards, concerning the universal fluctuation properties of the eigenvalues of classically chaotic systems with no, a threefold and a broken symmetry; (ii) summarize our findings concerning the wave-dynamical chaos in three-dimensional microwave cavities; (iii) present a new approach for the understanding of the phenomenon of dynamical tunneling which was developed on the basis of experiments that were performed recently with unprecedented precision, and finally, (iv) give an insight into an ongoing project, where we investigate universal properties of (artificial) graphene with superconducting microwave photonic crystals that are enclosed in a microwave resonator, i.e., so-called Dirac billiards.

  6. The ADMX Microwave Cavity: Present and future

    Science.gov (United States)

    Woollett, Nathan; ADMX Collaboration

    2017-01-01

    The Axion Dark Matter eXperiment (ADMX), a direct-detection axion search, uses a tunable resonant cavity to enhance axion to photon conversion rates to a detectable level when the cavity resonance matches the mass of the axion. It has successfully taken data in the 460 - 890 MHz frequency range and is now probing a similar range with much higher sensitivity. However the axion mass is unknown and may be at higher frequencies than the currently operating system. In anticipation of future runs with an increased mass range, ADMX is conducting extensive research and development of microwave cavities. These developments include photonic band-gap cavities, multi-vane cavities, partitioned cavities, in-phase coupled cavities, and superconducting hybrid cavities. Many of these projects are in different stages between simulations and testing of physical prototypes. The status and current objectives of these projects will be presented. Supported by DOE Grants DE-SC0010280, DE-FG02-96ER40956, DE-AC52-07NA27344, DE-AC03-76SF00098, the Heising-Simons Foundation and the LLNL, FNAL and PNNL LDRD program.

  7. Multimode Strong Coupling in Superconducting Cavity Piezo-electromechanics

    CERN Document Server

    Han, Xu; Tang, Hong X

    2016-01-01

    High frequency mechanical resonators subjected to low thermal phonon occupancy are easier to be prepared to the ground state by direct cryogenic cooling. Their extreme stiffness, however, poses a significant challenge for external interrogations. Here we demonstrate a superconducting cavity piezo-electromechanical system in which multiple modes of a bulk acoustic resonator oscillating at $10\\,\\textrm{GHz}$ are coupled to a planar microwave superconducting resonator with a cooperativity exceeding $2\\times10^{3}$, deep in the strong coupling regime. By implementation of the non-contact coupling scheme to reduce mechanical dissipation, the system exhibits excellent coherence characterized by a frequency-quality factor product of $7.5\\times10^{15}\\,\\textrm{Hz}$. Interesting dynamics of temporal oscillations of the microwave energy is observed, implying the coherent conversion between phonons and photons. The demonstrated high frequency cavity piezo-electromechanics is compatible with superconducting qubits, repre...

  8. Comment on the "Decrease of the surface resistance in superconducting niobium resonator cavities by the microwave field"

    CERN Document Server

    Romanenko, A

    2014-01-01

    In a recent publication [Appl. Phys. Lett. 104, 092601 (2014)] Ciovati et al. claim that: 1) thermal effects were disregarded in our original work [*]; 2) increase of $Q$ at $T=2$ K up to about $B\\sim$100 mT in nitrogen doped cavities is just an extended low field $Q$ slope observed in non-doped cavities, which is furthermore attributed to the decrease of the "BCS" component of surface resistance. Here we show that both claims are wrong and the conclusions of Ciovati et al. are incorrect. [*] A. Romanenko and A. Grassellino, Appl. Phys. Lett. 102, 252603 (2013)

  9. Superconducting Microwave Electronics at Lewis Research Center

    Science.gov (United States)

    Warner, Joseph D.; Bhasin, Kul B.; Leonard, Regis F.

    1991-01-01

    Over the last three years, NASA Lewis Research Center has investigated the application of newly discovered high temperature superconductors to microwave electronics. Using thin films of YBa2Cu3O7-delta and Tl2Ca2Ba2Cu3Ox deposited on a variety of substrates, including strontium titanate, lanthanum gallate, lanthanum aluminate and magnesium oxide, a number of microwave circuits have been fabricated and evaluated. These include a cavity resonator at 60 GHz, microstrip resonators at 35 GHz, a superconducting antenna array at 35 GHz, a dielectric resonator at 9 GHz, and a microstrip filter at 5 GHz. Performance of some of these circuits as well as suggestions for other applications are reported.

  10. Theory and technology for superconducting cavities

    CERN Document Server

    Lengeler, Herbert

    1993-01-01

    The course will address Physicist and Engineers who are newcomers in the field of accelerators and accelerating cavities. The elements of RF-Superconductivity will be presented with special relevance to accelerating cavities. The present ststus of achievable accelerating fields and RF losses will be given and their link to the special technologies for cavity fabrication and surface treatments will be stressed. Cavity auxiliaries like main couplers, higher order mode couplers and frequency tuners will be described.

  11. Generation of an Entangled State of Two Three-Level Superconducting Quantum Interference Devices in Cavity

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    We propose a scheme for generating a maximally entangled state of two three-level superconducting quantum interference devices (SQUIDs) by using a quantized cavity field and classical microwave pluses in cavity. In this scheme, no quantum information will be transferred from the SQUIDs to the cavity since the cavity field is only virtually excited. Thus, the cavity decay is suppressed during the entanglement generation.

  12. Compact superconducting coplanar microwave beam splitters

    Energy Technology Data Exchange (ETDEWEB)

    Baust, Alexander; Haeberlein, Max; Goetz, Jan; Hoffmann, Elisabeth; Menzel, Edwin P.; Schwarz, Manuel J.; Wulschner, Friedrich; Zhong, Ling; Deppe, Frank; Marx, Achim; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TUM, Garching (Germany); Kalb, Norbert; Losinger, Thomas [Physik-Department, TUM, Garching (Germany)

    2012-07-01

    The recent evolution of circuit quantum electrodynamics systems making use of standing-wave microwave modes towards setups for propagating quantum microwaves has triggered the need for low-loss superconducting microwave beam splitters. Such a device should have ports compatible with the coplanar geometry relevant for circuit QED and, at the same time, be compact allowing for scalability. This combination presents fundamental and technological challenges. In this work, we present the fabrication and characterization of various compact superconducting coplanar microwave beam splitters. In addition, we discuss efforts towards a tunable beam splitter.

  13. Niobium films for superconducting accelerating cavities

    Energy Technology Data Exchange (ETDEWEB)

    Benvenuti, C.; Circelli, N.; Hauer, M.

    1984-09-01

    Superconducting accelerating cavities made of Nb-coated copper were produced. Niobium films of a thickness ranging from 1.4 to 4 ..mu..m were deposited onto the inside of 3-GHz cavities and 500-MHz frequency by bias diode sputtering. A maximum accelerating field of 8.6 MV m/sup -1/ was reached without quench which is attributed to the large thermal conductivity of copper at liquid helium temperatures.

  14. RF cavity design for KIRAMS-430 superconducting cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Jung, In Su, E-mail: jis@kirams.re.kr [Korea Institute of Radiological & Medical Sciences (KIRMAS), 75 Nowon-Gil, Nowon-Gu, Seoul 139-706 (Korea, Republic of); Hong, Bong Hwan; Kang, Joonsun; Kim, Hyun Wook; Kim, Chang Hyeuk [Korea Institute of Radiological & Medical Sciences (KIRMAS), 75 Nowon-Gil, Nowon-Gu, Seoul 139-706 (Korea, Republic of); Kwon, Key Ho [School of Information and Communication Engineering, Natural Sciences Campus, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2015-03-21

    The Korea Heavy Ion Medical Accelerator (KHIMA) has developed a superconducting cyclotron for the carbon therapy, which is called KIRAMS-430. The cyclotron is designed to accelerate only {sup 12}C{sup 6+} ions up to the energy of 430 MeV/u. It uses two normal conducting RF cavities. The RF frequency is about 70.76 MHz. The nominal dee voltage is 70 kV at the center and 160 kV at the extraction. The RF cavity was designed with 4 stems by using CST microwave studio (MWS). In this paper, we represent the simulation results and the optimized design of the RF cavity for the KIRAMS-430.

  15. CERN Developments for 704 MHz Superconducting Cavities

    CERN Document Server

    Capatina, O; Aviles Santillana, I; Arnau Izquierdo, G; Bonomi, R; Calatroni, S; Chambrillon, J; Gerigk, F; Garoby, R; Guinchard, M; Junginger, T; Malabaila, M; Marques Antunes Ferreira, L; Mikulas, S; Parma, V; Pillon, F; Renaglia, T; Schirm, K; Tardy, T; Therasse, M; Vacca, A; Valverde Alonso, N; Vande Craen, A

    2013-01-01

    The Superconducting Proton Linac (SPL) is an R&D effort coordinated by CERN in partnership with other international laboratories. It is aiming at developing key technologies for the construction of a multi-megawatt proton linac based on state-of-the-art RF superconducting technology, which would serve as a driver in new physics facilities for neutrinos and/or Radioactive Ion Beam (RIB). Amongst the main objectives of this R&D effort, is the development of 704 MHz bulk niobium beta=1 elliptical cavities, operating at 2 K with a maximum accelerating gradient of 25 MV/m, and the testing of a string of cavities integrated in a machine-type cryomodule. The cavity together with its helium tank had to be carefully designed in coherence with the innovative design of the cryomodule. New fabrication methods have also been explored. Five such niobium cavities and two copper cavities are in fabrication. The key design aspects are discussed, the results of the alternative fabrication methods presented and the stat...

  16. Instrumentation for localized superconducting cavity diagnostics

    Science.gov (United States)

    Conway, Z. A.; Ge, M.; Iwashita, Y.

    2017-03-01

    Superconducting accelerator cavities are now routinely operated at levels approaching the theoretical limit of niobium. To achieve these operating levels more information than is available from the RF excitation signal is required to characterize and determine fixes for the sources of performance limitations. This information is obtained using diagnostic techniques which complement the analysis of the RF signal. In this paper we describe the operation and select results from three of these diagnostic techniques: the use of large scale thermometer arrays, second sound wave defect location and high precision cavity imaging with the Kyoto camera.

  17. BNl 703 MHz superconducting RF cavity testing

    Energy Technology Data Exchange (ETDEWEB)

    Sheehy, B.; Altinbas, Z.; Burrill, A.; Ben-Zvi, I.; Gassner, D.; Hahn, H.; Hammons, L.; Jamilkowski, J.; Kayran, D.; Kewisch, J.; Laloudakis, N.; Lederle, D.; Litvinenko, V.; McIntyre, G.; Pate, D.; Phillips, D.; Schultheiss, C.; Seda,T.; Than, R.; Xu, W.; Zaltsman, A.; Schultheiss, T.

    2011-03-28

    The BNL 5-cell, 703 MHz superconducting accelerating cavity has been installed in the high-current ERL experiment. This experiment will function as a proving ground for the development of high-current machines in general and is particularly targeted at beam development for an electron-ion collider (eRHIC). The cavity performed well in vertical tests, demonstrating gradients of 20 MV/m and a Q{sub 0} of 1e10. Here we will present its performance in the horizontal tests, and discuss technical issues involved in its implementation in the ERL.

  18. Instrumentation for localized superconducting cavity diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Conway, Z. A. [Argonne National Lab. (ANL), Argonne, IL (United States). Physics Division; Ge, M. [Cornell Lab. for Accelerator-Based Sciences and Education, Ithaca, NY (United States); Iwashita, Y. [Kyoto Univ. (Japan)

    2017-01-12

    Superconducting accelerator cavities are now routinely operated at levels approaching the theoretical limit of niobium. To achieve these operating levels more information than is available from the RF excitation signal is required to characterize and determine fixes for the sources of performance limitations. This information is obtained using diagnostic techniques which complement the analysis of the RF signal. In this paper we describe the operation and select results from three of these diagnostic techniques: the use of large scale thermometer arrays, second sound wave defect location and high precision cavity imaging with the Kyoto camera.

  19. Study of multipacting effect in superconducting cavity

    Institute of Scientific and Technical Information of China (English)

    ZHANG Meng; ZHAO Ming-Hua

    2008-01-01

    A number of superconducting cavities of axis-symmetric geometry have been considered to study the effect in order to achieve the desired performance.It is shown that the multipacting effect is strongly dependent on the condition of the RF surface and can be suppressed with reconsideration of the geometry.The simulation result is compared with the result of the semi-analytical model in the end.

  20. Magnetic shielding for superconducting RF cavities

    Science.gov (United States)

    Masuzawa, M.; Terashima, A.; Tsuchiya, K.; Ueki, R.

    2017-03-01

    Magnetic shielding is a key technology for superconducting radio frequency (RF) cavities. There are basically two approaches for shielding: (1) surround the cavity of interest with high permeability material and divert magnetic flux around it (passive shielding); and (2) create a magnetic field using coils that cancels the ambient magnetic field in the area of interest (active shielding). The choice of approach depends on the magnitude of the ambient magnetic field, residual magnetic field tolerance, shape of the magnetic shield, usage, cost, etc. However, passive shielding is more commonly used for superconducting RF cavities. The issue with passive shielding is that as the volume to be shielded increases, the size of the shielding material increases, thereby leading to cost increase. A recent trend is to place a magnetic shield in a cryogenic environment inside a cryostat, very close to the cavities, reducing the size and volume of the magnetic shield. In this case, the shielding effectiveness at cryogenic temperatures becomes important. We measured the permeabilities of various shielding materials at both room temperature and cryogenic temperature (4 K) and studied shielding degradation at that cryogenic temperature.

  1. New Method to Improve the Accelerating Gradient of Superconducting Cavity

    CERN Document Server

    Liu, Zhenchao

    2013-01-01

    Quench is a common phenomenon in a superconducting cavity and often limits the accelerating gradient of the cavity. Accurate location of the quench site can be located by second sound detection. For multi-cell superconducting cavity, one defect may cause the cell with defect quenches and then the whole cavity quenches. Now we proposed a new method to eliminate the bad influence of the quench cell to the whole cavity.

  2. LEP superconducting accelerating cavity module

    CERN Multimedia

    With its 27-kilometre circumference, the Large Electron-Positron (LEP) collider was – and still is – the largest electron-positron accelerator ever built. The excavation of the LEP tunnel was Europe’s largest civil-engineering project prior to the Channel Tunnel. Three tunnel-boring machines started excavating the tunnel in February 1985 and the ring was completed three years later. In its first phase of operation, LEP consisted of 5176 magnets and 128 accelerating cavities. CERN’s accelerator complex provided the particles and four enormous detectors, ALEPH, DELPHI, L3 and OPAL, observed the collisions. LEP was commissioned in July 1989 and the first beam circulated in the collider on 14 July. The collider's initial energy was chosen to be around 91 GeV, so that Z bosons could be produced. The Z boson and its charged partner the W boson, both discovered at CERN in 1983, are responsible for the weak force, which drives the Sun, for example. Observing the creation and decay of the short-lived Z boson w...

  3. Investigation of Microscopic Materials Limitations of Superconducting RF Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Anlage, Steven [Univ. of Maryland, College Park, MD (United States)

    2014-07-23

    The high-field performance of SRF cavities is often limited by breakdown events below the intrinsic limiting surface fields of Nb, and there is abundant evidence that these breakdown events are localized in space inside the cavity. Also, there is a lack of detailed understanding of the causal links between surface treatments and ultimate RF performance at low temperatures. An understanding of these links would provide a clear roadmap for improvement of SRF cavity performance, and establish a cause-and-effect ‘RF materials science’ of Nb. We propose two specific microscopic approaches to addressing these issues. First is a spatially-resolved local microwave-microscope probe that operates at SRF frequencies and temperatures to discover the microscopic origins of breakdown, and produce quantitative measurements of RF critical fields of coatings and films. Second, RF Laser Scanning Microscopy (LSM) has allowed visualization of RF current flow and sources of nonlinear RF response in superconducting devices with micro-meter spatial resolution. The LSM will be used in conjunction with surface preparation and characterization techniques to create definitive links between physical and chemical processing steps and ultimate cryogenic microwave performance. We propose to develop RF laser scanning microscopy of small-sample Nb pieces to establish surface-processing / RF performance relations through measurement of RF current distributions on micron-length scales and low temperatures.

  4. Plasma processing of superconducting radio frequency cavities

    Science.gov (United States)

    Upadhyay, Janardan

    The development of plasma processing technology of superconducting radio frequency (SRF) cavities not only provides a chemical free and less expensive processing method, but also opens up the possibility for controlled modification of the inner surfaces of the cavity for better superconducting properties. The research was focused on the transition of plasma etching from two dimensional flat surfaces to inner surfaces of three dimensional (3D) structures. The results could be applicable to a variety of inner surfaces of 3D structures other than SRF cavities. Understanding the Ar/Cl2 plasma etching mechanism is crucial for achieving the desired modification of Nb SRF cavities. In the process of developing plasma etching technology, an apparatus was built and a method was developed to plasma etch a single cell Pill Box cavity. The plasma characterization was done with the help of optical emission spectroscopy. The Nb etch rate at various points of this cavity was measured before processing the SRF cavity. Cylindrical ring-type samples of Nb placed on the inner surface of the outer wall were used to measure the dependence of the process parameters on plasma etching. The measured etch rate dependence on the pressure, rf power, dc bias, temperature, Cl2 concentration and diameter of the inner electrode was determined. The etch rate mechanism was studied by varying the temperature of the outer wall, the dc bias on the inner electrode and gas conditions. In a coaxial plasma reactor, uniform plasma etching along the cylindrical structure is a challenging task due to depletion of the active radicals along the gas flow direction. The dependence of etch rate uniformity along the cylindrical axis was determined as a function of process parameters. The formation of dc self-biases due to surface area asymmetry in this type of plasma and its variation on the pressure, rf power and gas composition was measured. Enhancing the surface area of the inner electrode to reduce the

  5. Analysis of superconducting cavity quench events at SSRF

    Institute of Scientific and Technical Information of China (English)

    HOU Hong-Tao; LI Zheng; LIU Jian-Fei; ZHAO Yu-Bin; ZHAO Shen-jie; ZHANG Zhi-Gang; LUO Chen; FENG Zi-Qiang; MAO Dong-Qing; ZHENG Xiang

    2011-01-01

    Quench is important and dangerous to superconducting RF cavities. This paper illustrates the mechanism of quench and how a quench detector works, and analyzes the quench events happening during beam operations and cavity conditioning. We find that the quench protection is mostly triggered by some reasons such as fluctuation of cavity voltage, multipacting or arc, rather than a real cavity thermal breakdown. The results will be beneficial to optimize the operation parameters of superconducting cavities, to discover the real reasons for beam trip by quench interlock, and to improve the operation stability of superconducting RF systems.

  6. Superconducting on-chip microwave interferometers

    Energy Technology Data Exchange (ETDEWEB)

    Menzel, Edwin P.; Fischer, Michael; Schneider, Christian; Baust, Alexander; Eder, Peter; Goetz, Jan; Haeberlein, Max; Schwarz, Manuel; Wulschner, Karl Friedrich; Xie, Edwar; Zhong, Ling; Deppe, Frank; Fedorov, Kirill; Huebl, Hans; Marx, Achim; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany)

    2015-07-01

    In the realm of all-microwave quantum computation, information is encoded in itinerant microwave photons propagating along transmission lines. In such a system unitary operations are implemented by linear elements such as beam splitters or interferometers. However, for two-qubit operations non-linear gates, e.g., c-phase gates are required. In this work, we investigate superconducting interferometers as a building block of a c-phase gate. We experimentally characterize their scattering properties and compare them to simulation results. Finally, we discuss our progress towards the realization of a c-phase gate.

  7. Theory of RF superconductivity for resonant cavities

    Science.gov (United States)

    Gurevich, Alex

    2017-03-01

    An overview of a theory of electromagnetic response of superconductors in strong radio-frequency (RF) electromagnetic fields is given with the emphasis on applications to superconducting resonant cavities for particle accelerators. The paper addresses fundamentals of the BCS surface resistance, the effect of subgap states and trapped vortices on the residual surface resistance at low RF fields, and a nonlinear surface resistance at strong fields, particularly the effect of the RF field suppression of the surface resistance. These issues are essential for the understanding of the field dependence of high quality factors Q({B}a)∼ {10}10{--}{10}11 achieved on the Nb cavities at 1.3–2 K in strong RF fields B a close to the depairing limit, and the extended Q({B}a) rise which has been observed on Ti and N-treated Nb cavities. Possible ways of further increase of Q({B}a) and the breakdown field by optimizing impurity concentration at the surface and by multilayer nanostructuring with materials other than Nb are discussed.

  8. a Next-Generation Cavity Microwave Experiment to Search for Dark-Matter Axions

    Science.gov (United States)

    Bibber, K. Van; Stöffl, W.; Anthony, P. L.; Sikivie, P.; Sullivan, N. S.; Tanner, D. B.; Železný, V.; Golubev, N. A.; Kazachenko, O. V.; Kravchuk, L. V.; Kuzmin, V.; Romanov, G. V.; Sekachev, I. V.; Rosenberg, L. J.; Hagmann, C.; Moltz, D. M.; Nezrick, F.; Turner, M. S.; Villa, F.

    We propose a large-scale experimental search for dark-matter axions which may constitute an important fraction of our own galactic halo. As shown by Sikivie,1 dark-matter axions may be detected by their stimulated conversion into monochromatic microwave photons in a tunable high-Q cavity inside a strong magnetic field. The principal improvement in power sensitivity over two earlier pilot experiments (×25) derives from the large-volume high field superconducting magnet (the NASA SUMMA coils). The improvement in mass range (1.5 to 12.6 μeV) will result from the use of several microwave cavity arrays, of 2n cavities each, over the course of the experimental program, rather than a single cavity. We are participating in a joint venture with the Institute for Nuclear Research of the Russian Academy of Sciences to do R&D on metalized precision-formed ceramic microwave cavities for the axion search.

  9. One-step implementation of maximally entangled states of many three-level atoms in microwave cavity QED

    Science.gov (United States)

    Zou, Xubo; Mathis, W.

    2004-09-01

    We propose an experimental scheme for one-step implementation of maximally entangled states of many three-level atoms in microwave cavity QED. In the scheme, many three-level atoms initially prepared in the same superposition states are simultaneously sent through one superconducting cavity, and maximally entangled states can be generated without requiring the measurement and individual addressing of the atoms.

  10. Multipacting Analysis of the Superconducting Parallel-bar Cavity

    Energy Technology Data Exchange (ETDEWEB)

    S.U. De Silva, J.R. Delayen,

    2011-03-01

    The superconducting parallel-bar cavity is a deflecting/crabbing cavity with attractive properties, compared to other conventional designs, that is being considered for a number of applications. Multipacting can be a limiting factor to the performance of in any superconducting structure. In the parallel-bar cavity the main contribution to the deflection is due to the transverse deflecting voltage, between the parallel bars, making the design potentially prone to multipacting. This paper presents the results of analytical calculations and numerical simulations of multipacting in the parallel-bar cavity with resonant voltage, impact energies and corresponding particle trajectories.

  11. Superconducting spoke cavities for high-velocity applications

    Energy Technology Data Exchange (ETDEWEB)

    Hopper, Christopher S. [Old Dominion U.; Delayen, Jean R. [Old Dominion U., JLAB

    2013-10-01

    To date, superconducting spoke cavities have been designed, developed, and tested for particle velocities up to {beta}{sub 0}~0.6, but there is a growing interest in possible applications of multispoke cavities for high-velocity applications. We have explored the design parameter space for low-frequency, high-velocity, double-spoke superconducting cavities in order to determine how each design parameter affects the electromagnetic properties, in particular the surface electromagnetic fields and the shunt impedance. We present detailed design for cavities operating at 325 and 352 MHz and optimized for {beta}{sub 0}~=0.82 and 1.

  12. Aging of residual surface resistance of superconducting lead cavities

    DEFF Research Database (Denmark)

    Danielsen, M.

    1972-01-01

    Measurements of the residual surface resistance of superconducting lead cavities as a function of time during a period of a month showed an oscillating variation. An explanation of the ageing curves is proposed. ©1972 The American Institute of Physics......Measurements of the residual surface resistance of superconducting lead cavities as a function of time during a period of a month showed an oscillating variation. An explanation of the ageing curves is proposed. ©1972 The American Institute of Physics...

  13. Coupling InSb quantum dots to a superconducting microwave resonator

    Science.gov (United States)

    Cassidy, Maja; Kammhuber, Jakob; Car, Diana; Plissard, Sebastien; Bakkers, Erik; Dicarlo, Leo; Kouwenhoven, Leo

    2014-03-01

    We present measurements of a superconducting half-wave resonator coupled to two InSb nanowire quantum dots. Precise nanowire alignment at the electric field antinodes at opposite ends of the microwave cavity allows for a maximal electric field along the wire axis, without compromising the intrinsic quality factor of the cavity. This architecture may be useful for reaching the strong coupling limit between a single spin and a microwave photon, paving the way to on-chip coupling of single spins for quantum information processing.

  14. Superconducting RF cavity R&D for future accelerators

    CERN Document Server

    Ginsburg, C M

    2009-01-01

    High-beta superconducting radiofrequency (SRF) elliptical cavities are being developed for several accelerator projects including Project X, the European XFEL, and the International Linear Collider (ILC). Fermilab has recently established an extensive infrastructure for SRF cavity R&D for future accelerators, including cavity surface processing and testing and cavity assembly into cryomodules. Some highlights of the global effort in SRF R&D toward improving cavity performance, and Fermilab SRF cavity R&D in the context of global projects are reviewed.

  15. Cavity Microwave Searches for Cosmological Axions

    Energy Technology Data Exchange (ETDEWEB)

    Carosi, G; van Bibber, K

    2007-01-22

    This chapter will cover the search for dark matter axions based on microwave cavity experiments proposed by Pierre Sikivie. We will start with a brief overview of halo dark matter and the axion as a candidate. The principle of resonant conversion of axions in an external magnetic field will be described as well as practical considerations in optimizing the experiment as a signal-to-noise problem. A major focus of this chapter will be the two complementary strategies for ultra-low noise detection of the microwave photons--the 'photon-as-wave' approach (i.e. conventional heterojunction amplifiers and soon to be quantum-limited SQUID devices), and 'photon-as-particle' (i.e. Rydberg-atom single-quantum detection). Experimental results will be presented; these experiments have already reached well into the range of sensitivity to exclude plausible axion models, for limited ranges of mass. The section will conclude with a discussion of future plans and challenges for the microwave cavity experiment.

  16. Updating of Optical Inspection System for 6 GHz Superconducting Cavities

    Institute of Scientific and Technical Information of China (English)

    YU; Guo-long

    2013-01-01

    As a validation tool for the material properties and the surface treatment process,6 GHz superconducting cavity needs complex surface treatment process during its manufacture.It is verynecessary to record and monitor the statues of the internal surface of the cavity after each surface treatment,such as ultrasonic washing,mechanical polishing,electronic polishing(EP),buffered chemical

  17. 1.3 GHz superconducting RF cavity program at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Ginsburg, C.M.; Arkan, T.; Barbanotti, S.; Carter, H.; Champion, M.; Cooley, L.; Cooper, C.; Foley, M.; Ge, M.; Grimm, C.; Harms, E.; /Fermilab

    2011-03-01

    At Fermilab, 9-cell 1.3 GHz superconducting RF (SRF) cavities are prepared, qualified, and assembled into cryomodules (CMs) for Project X, an International Linear Collider (ILC), or other future projects. The 1.3 GHz SRF cavity program includes targeted R&D on 1-cell 1.3 GHz cavities for cavity performance improvement. Production cavity qualification includes cavity inspection, surface processing, clean assembly, and one or more cryogenic low-power CW qualification tests which typically include performance diagnostics. Qualified cavities are welded into helium vessels and are cryogenically tested with pulsed high-power. Well performing cavities are assembled into cryomodules for pulsed high-power testing in a cryomodule test facility, and possible installation into a beamline. The overall goals of the 1.3 GHz SRF cavity program, supporting facilities, and accomplishments are described.

  18. Liquid hydrogen densitometer utilizes open-ended microwave cavity

    Science.gov (United States)

    Smetana, J.; Wenger, N. C.

    1967-01-01

    Open-ended microwave cavity directly measures the density of flowing liquid, gaseous, or two-phase hydrogen. Its operation is based on derived relations between the cavity resonant frequency and the dielectric constant and density of hydrogen.

  19. First prototype Copper-Niobium RF Superconducting Cavity

    CERN Multimedia

    1983-01-01

    This is the first RF superconducting cavity made of copper with a very thin layer of pure niobium deposited on the inner wall by sputtering. This new developpment lead to a considerable increase of performance and stability of superconducting cavities and to non-negligible economy. The work was carried out in the ISR workshop. This technique was adopted for the LEP II accelerating cavities. At the centre is Cristoforo Benvenuti, inventor of this important technology, with his assistants, Nadia Circelli and Max Hauer, carrying the sputtering electrode. See also 8209255, 8312339.

  20. Quantum Gate Operations in Decoherence-Free Subspace with Superconducting Charge Qubits inside a Cavity

    Institute of Scientific and Technical Information of China (English)

    WANG Yi-Min; ZHOU Yan-Li; LIANG Lin-Mei; LI Cheng-Zu

    2009-01-01

    We propose a feasible scheme to achieve universal quantum gate operations in decoherence-free subspace with superconducting charge qubits placed in a microwave cavity.Single-logic-qubit gates can be realized with cavity assisted interaction, which possesses the advantages of unconventional geometric gate operation.The two-logic-qubit controlled-phase gate between subsystems can be constructed with the help of a variable electrostatic transformer, The collective decoherence can be successfully avoided in our well-designed system.Moreover, GHZ state for logical qubits can also be easily produced in this system.

  1. The Test of LLRF control system on superconducting cavity

    CERN Document Server

    Zhu, Zhenglong; Wen, Lianghua; Chang, Wei; Zhang, Ruifeng; Gao, Zheng; Chen, Qi

    2014-01-01

    The first generation Low-Level radio frequency(LLRF) control system independently developed by IMPCAS, the operating frequency is 162.5MHz for China ADS, which consists of superconducting cavity amplitude stability control, phase stability control and the cavity resonance frequency control. The LLRF control system is based on four samples IQ quadrature demodulation technique consisting an all-digital closed-loop feedback control. This paper completed the first generation of ADS LLRF control system in the low-temperature superconducting cavities LLRF stability and performance online tests. Through testing, to verify the performance of LLRF control system, to analysis on emerging issues, and in accordance with the experimental data, to summarize LLRF control system performance to accumulate experience for the future control of superconducting cavities.

  2. Application of superconducting magnesium diboride (MGB2) in superconducting radio frequency cavities

    Science.gov (United States)

    Tan, Teng

    The superconductivity in magnesium diboride (MgB2) was discovered in 2001. As a BCS superconductor, MgB2 has a record-high Tc of 39 K, high Jc of > 107 A/cm2 and no weak link behavior across the grain boundary. All these superior properties endorsed that MgB2 would have great potential in both power applications and electronic devices. In the past 15 years, MgB2 based power cables, microwave devices, and commercial MRI machines emerged and the next frontier are superconducting radio frequency (SRF) cavities. SRF cavities are one of the leading accelerator technologies. In SRF cavities, applied microwave power generates electrical fields that accelerate particle beams. Compared with other accelerator techniques, SRF cavity accelerators feature low loss, high acceleration gradients and the ability to accelerate continuous particle beams. However, current SRF cavities are made from high-purity bulk niobium and work at 2 K in superfluid helium. The construction and operational cost of SRF cavity accelerators are very expensive. The demand for SRF cavity accelerators has been growing rapidly in the past decade. Therefore, a lot of effort has been devoted to the enhancement of the performance and the reduction of cost of SRF cavities. In 2010, an acceleration gradient of over 50 MV/m has been reported for a Nb-based SRF cavity. The magnetic field at the inner surface of such a cavity is ~ 1700 Oe, which is close to the thermodynamic critical field of Nb. Therefore, new materials and technologies are required to raise the acceleration gradient of future SRF cavity accelerators. Among all the proposed approaches, using MgB2 thin films to coat the inner surface of SRF cavities is one of the promising tactics with the potential to raise both the acceleration gradient and the operation temperature of SRF cavity accelerators. In this work, I present my study on MgB2 thin films for their application in SRF cavities. C-epitaxial MgB2 thin films grown on SiC(0001) substrates

  3. Characterization of a superconducting Pb photocathode in a superconducting rf photoinjector cavity

    CERN Document Server

    Barday, R; Jankowiak, A; Kamps, T; Knobloch, J; Kugeler, O; Matveenko, A; Neumann, A; Schmeißer, M; Volker, J; Kneisel, P; Nietubyc, R; Schubert S; Smedley J; Sekutowicz, J; Will, I

    2014-01-01

    Photocathodes are a limiting factor for the next generation of ultrahigh brightness photoinjectors. We studied the behavior of a superconducting Pb cathode in the cryogenic environment of a superconducting rf gun cavity to measure the quantum efficiency, its spatial distribution, and the work function. We will also discuss how the cathode surface contaminants modify the performance of the photocathode as well as the gun cavity and we discuss the possibilities to remove these contaminants.

  4. Complex envelope control of pulsed accelerating fields in superconducting cavities

    CERN Document Server

    Czarski, T

    2010-01-01

    A digital control system for superconducting cavities of a linear accelerator is presented in this work. FPGA (Field Programmable Gate Arrays) based controller, managed by MATLAB, was developed to investigate a novel firmware implementation. The LLRF - Low Level Radio Frequency system for FLASH project in DESY is introduced. Essential modeling of a cavity resonator with signal and power analysis is considered as a key approach to the control methods. An electrical model is represented by the non-stationary state space equation for the complex envelope of the cavity voltage driven by the current generator and the beam loading. The electromechanical model of the superconducting cavity resonator including the Lorentz force detuning has been developed for a simulation purpose. The digital signal processing is proposed for the field vector detection. The field vector sum control is considered for multiple cavities driven by one klystron. An algebraic, complex domain model is proposed for the system analysis. The c...

  5. An RF input coupler for a superconducting single cell cavity

    Energy Technology Data Exchange (ETDEWEB)

    Fechner, B.; Ouchi, Nobuo; Kusano, Joichi; Mizumoto, Motoharu; Mukugi, Ken [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Krawczyk, F.

    1999-03-01

    Japan Atomic Energy Research Institute proposes a high intensity proton accelerator for the Neutron Science Project. A superconducting linac is a main option for the high energy part of the accelerator. Design and development work for the superconducting accelerating cavities (resonant frequency of 600 MHz) is in progress. Superconducting cavities have an advantage of very high accelerating efficiency because RF wall loss is very small and much of the RF power fed to the cavity is consumed for the beam acceleration. On the other hand, an RF input coupler for the superconducting cavity has to be matched to the beam loading. Therefore, estimation of coupling coefficient or external quality factor (Qext) of the RF input coupler is important for the design of the couplers. In this work, Qext`s were calculated by the electromagnetic analysis code (MAFIA) and were compared with those by the measurements. A {beta} (ratio of the particle velocity to the light velocity) = 0.5 single-cell cavity with either axial coupler or side coupler was used in this work. In the experiments, a model cavity made by copper is applied. Both 2- and 3-dimensional calculations were performed in the axial coupler geometry and the results were compared. The agreements between calculated and measured values are good and this method for calculation of Qext is confirmed to be proper for the design of the RF input couplers. (author)

  6. Microwave cavity diagnostics of microwave breakdown plasmas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Eckstrom, D.J.; Williams, M.S. [SRI International, Menlo Park, CA (United States)

    1989-08-01

    We have performed microwave cavity perturbation measurements in the LLNL AIM facility using a 329-MHz cavity that allow us to examine in detail the plasma formation and decay processes for electron densities between approximately 10{sup 5} and 10{sup 7}/cm{sup 3}. We believe these to be the lowest density plasmas ever studied in microwave breakdown experiments, and as such they allow us to determine the power and energy required to produce plasmas suitable for HF radar reflection as well as the effective lifetimes of these plasmas before re-ionization is required. Analyses of these results leads to the following conclusions. (1) For microwave breakdown pulses varying from 0.6 to 2.4 {mu}s, the threshold power required to produce measurable plasmas is 30 to 12 MW/m{sup 2} at 0.01 torr, decreasing to 3.5 to 1.8 MW/m{sup 2} at 1 to 3 torr, and then increasing to 5 to 3.5 MW/m{sup 2} at 30 torr. The threshold power in each case decreases with increasing pulse length, but the required pulse energy increases with decreasing power or increasing pulse length. (2) The effective electron density decay rates are approximately 100/s for 0.1 to 1 torr, after which they increase linearly with pressure. Thus, the useful plasma lifetimes are in the range of 20 to 40 ms at the lower pressures and decrease to about 1 ms at 30 torr. These decay rates and lifetimes are comparable to those that would exist for artificially ionized regions in the upper atmosphere. (3) The collision frequencies measured at pressures of 1 torr and above correspond to electron temperatures of 800 K or less. In fact, the inferred temperatures for p > 3 torr are below room temperature. This may be due to a contribution to the measured conductivity by negative ions.

  7. Fabrication and characterization of aluminum airbridges for superconducting microwave circuits

    Science.gov (United States)

    Chen, Zijun; Megrant, A.; Kelly, J.; Barends, R.; Bochmann, J.; Chen, Yu; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Mutus, J. Y.; O'Malley, P. J. J.; Neill, C.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Cleland, A. N.; Martinis, John M.

    2014-02-01

    Superconducting microwave circuits based on coplanar waveguides (CPW) are susceptible to parasitic slotline modes which can lead to loss and decoherence. We motivate the use of superconducting airbridges as a reliable method for preventing the propagation of these modes. We describe the fabrication of these airbridges on superconducting resonators, which we use to measure the loss due to placing airbridges over CPW lines. We find that the additional loss at single photon levels is small, and decreases at higher drive powers.

  8. Fabrication and characterization of aluminum airbridges for superconducting microwave circuits

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zijun; Kelly, J.; Barends, R.; Bochmann, J.; Chen, Yu; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Mutus, J. Y.; O' Malley, P. J. J.; Neill, C.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C. [Department of Physics, University of California, Santa Barbara, California 93106-9530 (United States); Megrant, A. [Department of Physics, University of California, Santa Barbara, California 93106-9530 (United States); Department of Materials, University of California, Santa Barbara, California 93106 (United States); Cleland, A. N.; Martinis, John M., E-mail: martinis@physics.ucsb.edu [Department of Physics, University of California, Santa Barbara, California 93106-9530 (United States); California NanoSystems Institute, University of California, Santa Barbara, California 93106-9530 (United States)

    2014-02-03

    Superconducting microwave circuits based on coplanar waveguides (CPW) are susceptible to parasitic slotline modes which can lead to loss and decoherence. We motivate the use of superconducting airbridges as a reliable method for preventing the propagation of these modes. We describe the fabrication of these airbridges on superconducting resonators, which we use to measure the loss due to placing airbridges over CPW lines. We find that the additional loss at single photon levels is small, and decreases at higher drive powers.

  9. Improved surface treatment of the superconducting TESLA cavities

    Energy Technology Data Exchange (ETDEWEB)

    Lilje, L. E-mail: lutz.lilje@desy.de; Antoine, C.; Benvenuti, C.; Bloess, D.; Charrier, J.-P.; Chiaveri, E.; Ferreira, L.; Losito, R.; Matheisen, A.; Preis, H.; Proch, D.; Reschke, D.; Safa, H.; Schmueser, P.; Trines, D.; Visentin, B.; Wenninger, H

    2004-01-11

    The proposed linear electron-positron collider TESLA is based on 1.3 GHz superconducting niobium cavities for particle acceleration. For a centre-of-mass energy of 500 GeV, an accelerating field of 23.4 MV/m is required which is reliably achieved with a niobium surface preparation by chemical etching. An upgrade of the collider to 800 GeV requires an improved cavity preparation technique. In this paper, results are presented on single-cell cavities which demonstrate that fields of up to 40 MV/m are accessible by electrolytic polishing of the inner surface of the cavity.

  10. Improved surface treatment of the superconducting TESLA cavities

    Science.gov (United States)

    Lilje, L.; Antoine, C.; Benvenuti, C.; Bloess, D.; Charrier, J.-P.; Chiaveri, E.; Ferreira, L.; Losito, R.; Matheisen, A.; Preis, H.; Proch, D.; Reschke, D.; Safa, H.; Schmüser, P.; Trines, D.; Visentin, B.; Wenninger, H.

    2004-01-01

    The proposed linear electron-positron collider TESLA is based on 1.3 GHz superconducting niobium cavities for particle acceleration. For a centre-of-mass energy of 500 GeV, an accelerating field of 23.4 MV/m is required which is reliably achieved with a niobium surface preparation by chemical etching. An upgrade of the collider to 800 GeV requires an improved cavity preparation technique. In this paper, results are presented on single-cell cavities which demonstrate that fields of up to 40 MV/m are accessible by electrolytic polishing of the inner surface of the cavity.

  11. Improved surface treatment of the superconducting TESLA cavities

    Energy Technology Data Exchange (ETDEWEB)

    Lilje, L.; Matheisen, A.; Proch, D.; Reschke, D.; Trines, D.; Antoine, C.; Charrier, J.P.; Safa, H.; Visentin, B. [CEA Saclay, DAPHNIA, Gif-sur-Yvette (France); Benvenuti, C.; Bloess, D.; Chiaveri, E.; Ferreira, L.; Losito, R.; Preis, H.; Wenninger, H. [CERN, Geneva (Switzerland); Schmueser, P. [Hamburg Univ. (Germany)

    2004-01-01

    The proposed linear electron-positron collider TESLA is based on 1.3 GHz superconducting niobium cavities for particle acceleration. For a center-of-mass energy of 500 GeV an accelerating field of 23.4 MV/m is required which is reliably achieved with a niobium surface preparation by chemical etching. An upgrade of the collider to 800 GeV requires an improved cavity preparation technique. In this paper results are presented on single-cell cavities which demonstrate that fields of up to 40 MV/m are accessible by electrolytic polishing of the inner surface of the cavity. (orig.)

  12. Mechanical Design and Fabrication Studies for SPL Superconducting RF Cavities

    CERN Document Server

    Atieh, S; Aviles Santillana, I; Capatina, O; Renaglia, T; Tardy, T; Valverde Alonso, N; Weingarten, W

    2011-01-01

    CERN’s R&D programme on the Superconducting Proton Linac’s (SPL) superconducting radio frequency (SRF) elliptical cavities made from niobium sheets explores new mechanical design and consequently new fabrication methods, where several opportunities for improved optimization were identified. A stainless steel helium vessel is under design rather than a titanium helium vessel using an integrated brazed transition between Nb and the SS helium vessel. Different design and fabrication aspects were proposed and the results are discussed hereafter.

  13. Development of superconducting acceleration cavity technology for free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Min; Lee, Byung Cheol; Kim, Sun Kook; Jeong, Young Uk; Cho, Sung Oh

    2000-10-01

    As a result of the cooperative research between the KAERI and Peking University, the key technologies of superconducting acceleration cavity and photoelectron gun have been developed for the application to high power free electron lasers. A 1.5-GHz, 1-cell superconducting RF cavity has been designed and fabricated by using pure Nb sheets. The unloaded Q values of the fabricated superconducting cavity has been measured to be 2x10{sup 9} at 2.5K, and 8x10{sup 9} at 1.8K. The maximum acceleration gradient achieved was 12 MeV/m at 2.5K, and 20MV/m at 1.8 K. A cryostat for the 1-cell superconducting cavity has been designed. As a source of electron beam, a DC photocathode electron gun has been designed and fabricated, which is composed of a photocathode evaporation chamber and a 100-keV acceleration chamber. The efficiency of the Cs2Te photocathode is 3% nominally at room temperature, 10% at 290 deg C. The superconducting photoelectron gun system developed has been estimated to be a good source of high-brightness electron beam for high-power free electron lasers.

  14. High fidelity qubit readout with the superconducting low-inductance undulatory galvanometer microwave amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Hover, D.; Zhu, S.; Thorbeck, T.; Ribeill, G. J.; McDermott, R., E-mail: rfmcdermott@wisc.edu [Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States); Sank, D.; Kelly, J.; Barends, R.; Martinis, John M. [Department of Physics, University of California, Santa Barbara, California 93106 (United States)

    2014-04-14

    We describe the high fidelity dispersive measurement of a superconducting qubit using a microwave amplifier based on the Superconducting Low-inductance Undulatory Galvanometer (SLUG). The SLUG preamplifier achieves gain of 19 dB and yields a signal-to-noise ratio improvement of 9 dB over a state-of-the-art HEMT amplifier. We demonstrate a separation fidelity of 99% at 700 ns compared to 59% with the HEMT alone. The SLUG displays a large dynamic range, with an input saturation power corresponding to 700 photons in the readout cavity.

  15. High fidelity qubit readout with the superconducting low-inductance undulatory galvanometer microwave amplifier

    Science.gov (United States)

    Hover, D.; Zhu, S.; Thorbeck, T.; Ribeill, G. J.; Sank, D.; Kelly, J.; Barends, R.; Martinis, John M.; McDermott, R.

    2014-04-01

    We describe the high fidelity dispersive measurement of a superconducting qubit using a microwave amplifier based on the Superconducting Low-inductance Undulatory Galvanometer (SLUG). The SLUG preamplifier achieves gain of 19 dB and yields a signal-to-noise ratio improvement of 9 dB over a state-of-the-art HEMT amplifier. We demonstrate a separation fidelity of 99% at 700 ns compared to 59% with the HEMT alone. The SLUG displays a large dynamic range, with an input saturation power corresponding to 700 photons in the readout cavity.

  16. Magnetic Flux Dynamics in Horizontally Cooled Superconducting Cavities

    CERN Document Server

    Martinello, M; Grassellino, A; Crawford, A C; Melnychuk, O; Romanenko, A; Sergatkov, D A

    2015-01-01

    Previous studies on magnetic flux expulsion as a function of cooling details have been performed for superconducting niobium cavities with the cavity beam axis placed parallel respect to the helium cooling flow, and findings showed that for sufficient cooling thermogradients all magnetic flux could be expelled and very low residual resistance could be achieved. In this paper we investigate the flux trapping and its impact on radio frequency surface resistance when the resonators are positioned perpendicularly to the helium cooling flow, which is representative of how superconducting radio-frequency (SRF) cavities are cooled in an accelerator. We also extend the studies to different directions of applied magnetic field surrounding the resonator. Results show that in the cavity horizontal configuration there is a different impact of the various field components on the final surface resistance, and that several parameters have to be considered to understand flux dynamics. A newly discovered phenomenon of concent...

  17. Superconducting accelerating four-cell cavity

    CERN Multimedia

    1980-01-01

    A close view of the four-cell cavity. This was a prototype designed for LEP2 (LEP1 had warm copper cavities as accelerating elements). The first successful tests were made in December 1980 - reaching a Q = 10^6. (see photo 8012650X)

  18. A microwave cavity search for axions

    Science.gov (United States)

    Tanner, D. B.

    2007-04-01

    The mass of the axion, a hypothetical elementary particle proposed as a solution to the ``strong-CP'' problem, is constrained by experimental and astrophysical considerations to a range where the axion is a very plausible cold dark matter candidate. This weakly-interacting dark matter particle could constitute the halo of our galaxy. In the Axion Dark Matter eXperiment (ADMX), halo axions flow through a microwave resonant cavity permeated by a static magnetic field, where some convert into microwave photons. These photons are detected by an ultralow-noise receiver. The ADMX Collaboration has set limits on the axion-to-photon coupling and/or local axion halo mass density for axion mass between 1.9 and 3.3 μeV. Consideration of phase-space structure of the axion flow, which predicts extremely sharp peaks in the axion kinetic-energy spectrum, improves the limit. Presently underway is an upgrade to the experiment, using SQUID RF amplifiers, which will improve the performance by more than a factor of 10.Work done with L.D. Duffy, P. Sikivie, University of Florida, S.J. Asztalos, G. Carosi, D. Carter, C. Hagmann, D. Kinion, L.J. Rosenberg, K. van Bibber, LLNL, D.B. Yu, MIT, and R.F. Bradley, NRAO.

  19. The ``Q disease'' in Superconducting Niobium RF Cavities

    Science.gov (United States)

    Knobloch, J.

    2003-07-01

    Superconducting niobium cavities can achieve quality (Q0) factors of 1010-1011, more than six orders of magnitude higher than conventional copper cavities. However, to maintain this performance at high accelerating gradient (20 MV/m) the radio-frequency (rf) surface must be damage and dust free. Cavity preparation techniques therefore routinely include a chemical etch or electropolishing. Under certain conditions, these (and other) treatments can contaminate the niobium with hydrogen. Hydrides may then form when the cavity is cooled through 150 K, even if only a few atomic percent hydrogen are present. If hydrides are formed, the cavity quality can degrade substantially (Q disease). A rapid cooldown often inhibits the hydride formation. Other "cures" include degassing cavities at 900 °C to eliminate the hydrogen. A historical review of the Q disease is provided here, with the emphasis being placed on its discovery, symptoms, mechanism, and cures.

  20. 3D microwave cavity with magnetic flux control and enhanced quality factor

    Energy Technology Data Exchange (ETDEWEB)

    Reshitnyk, Yarema [The University of Queensland, School of Mathematics and Physics, St Lucia (Australia); Jerger, Markus [The University of Queensland, ARC Centre of Excellence for Engineered Quantum Systems, 4072 (Australia); Fedorov, Arkady [The University of Queensland, School of Mathematics and Physics, St Lucia (Australia); The University of Queensland, ARC Centre of Excellence for Engineered Quantum Systems, 4072 (Australia)

    2016-12-15

    Three-dimensional (3D) microwave cavities have been extensively used for coupling and interacting with superconducting quantum bits (qubits), providing a versatile platform for quantum control experiments and for realizing hybrid quantum systems. While having high quality factors (>10{sup 6}) superconducting cavities do not permit magnetic field control of qubits. In contrast, cavities made of normal metals are transparent to magnetic fields, but experience lower quality factors (∝10{sup 4}). We have created a hybrid cavity which is primarily composed of aluminium but also contains a small copper insert reaching the internal quality factor of ≅10{sup 5}, an order of magnitude improvement over all previously tested normal metal cavities. In order to demonstrate precise magnetic control, we performed spectroscopy of three superconducting qubits, where individual control of each qubit's frequency was exerted with small external wire coils. An improvement in quality factor and magnetic field control makes this 3D hybrid cavity an attractive new element for circuit quantum electrodynamics experiments. (orig.)

  1. Early prototype of a superconducting RF cavity for LEP

    CERN Multimedia

    1979-01-01

    As early as 1979, before LEP became an approved project, studies were located in the ISR Division. Although Cu-cavities were foreseen, certainly for the 1st energy-stage, superconducting cavities were explored as a possible alternative for the 2nd energy-stage. This began with very basic studies of manufacture and properties of Nb-cavities. This one, held by Mr.Girel, was made from bulk Nb-sheet, 2.5 mm thick. It was dimensioned for tests at 500 MHz (LEP accelerating RF was 352.2 MHz). See also 8004204, 8007354, 8209255, 8210054, 8312339.

  2. R&D of BEPCII 500 MHz superconducting cavity

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Beijing Electron-Positron Collider Upgrade (BEPCII) adopts two 500 MHz superconducting cavities (SCCs) in each ring for higher accelerated gradient, higher Q and lower impedance (Wang et al. The proceedings of SRF’07). There’s no spare cavity due to the limited time and funding during BEPCII construction. If any serious trouble happened on either one of the two cavities and could not be recovered in a short time, the operation of BEPCII facility will be affected. Therefore, since 2009 three spare cavities have been fabricated in China to ensure reliable operation, and two of them have been successfully vertically tested in January and July 2011. This paper will briefly present the manufacture, post-process and vertical test performance of the 500 MHz spare cavities.

  3. Temperature Mapping of Nitrogen-doped Niobium Superconducting Radiofrequency Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Makita, Junki [Old Dominion Univ., Norfolk, VA (United States); Ciovati, Gianluigi [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Dhakal, Pashupati [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2015-09-01

    It was recently shown that diffusing nitrogen on the inner surface of superconducting radiofrequency (SRF) cavities at high temperature can improve the quality factor of the niobium cavity. However, a reduction of the quench field is also typically found. To better understand the location of rf losses and quench, we used a thermometry system to map the temperature of the outer surface of ingot Nb cavities after nitrogen doping and electropolishing. Surface temperature of the cavities was recorded while increasing the rf power and also during the quenching. The results of thermal mapping showed no precursor heating on the cavities and quenching to be ignited near the equator where the surface magnetic field is maximum. Hot-spots at the equator area during multipacting were also detected by thermal mapping.

  4. Encoding quantum information in a stabilized manifold of a superconducting cavity

    Science.gov (United States)

    Touzard, S.; Leghtas, Z.; Mundhada, S. O.; Axline, C.; Reagor, M.; Chou, K.; Blumoff, J.; Sliwa, K. M.; Shankar, S.; Frunzio, L.; Schoelkopf, R. J.; Mirrahimi, M.; Devoret, M. H.

    In a superconducting Josephson circuit architecture, we activate a multi-photon process between two modes by applying microwave drives at specific frequencies. This creates a pairwise exchange of photons between a high-Q cavity and the environment. The resulting open dynamical system develops a two-dimensional quasi-energy ground state manifold. Can we encode, protect and manipulate quantum information in this manifold? We experimentally investigate the convergence and escape rates in and out of this confined subspace. Finally, using quantum Zeno dynamics, we aim to perform gates which maintain the state in the protected manifold at all times. Work supported by: ARO, ONR, AFOSR and YINQE.

  5. Fundamental Research in Superconducting RF Cavity Design

    Energy Technology Data Exchange (ETDEWEB)

    Georg Hoffstaetter

    2012-11-13

    This is a 3-year SRF R&D proposal with two main goals: 1) to benefit near term high gradient SRF applications by understanding the causes of quench at high fields in present-day niobium cavities 2) to open the long-range prospects for SRF applications by experimentally verifying the recent exciting theoretical predication for new cavity materials such as Nb3Sn and MgB2. These predictions shwo that ultimately gradients of 100Mv/m to 200MV/m may become possible as material imperfections are overcome.

  6. Benchmarking Microwave Cavity Dark Matter Searches using a Radioactive Source

    CERN Multimedia

    Caspers, F

    2014-01-01

    A radioactive source is proposed as a calibration device to verify the sensitivity of a microwave dark matter search experiment. The interaction of e.g., electrons travelling in an arbitrary direction and velocity through an electromagnetically “empty” microwave cavity can be calculated numerically. We give an estimation of the energy deposited by a charged particle into a particular mode. Numerical examples are given for beta emitters and two particular cases: interaction with a field free cavity and interaction with a cavity which already contains an electromagnetic field. Each particle delivers a certain amount of energy related to the modal R/Q value of the cavity. The transferred energy is a function of the particles trajectory and its velocity. It results in a resonant response of the cavity, which can be observed using a sensitive microwave receiver, provided that the deposited energy is significantly above the single photon threshold.

  7. High-Fidelity Qubit Measurement using a Superconducting Low-Inductance Undulatory Galvanometer Microwave Amplifier

    Science.gov (United States)

    Thorbeck, Ted; Hover, David; Zhu, Shaojiang; Ribeill, Guilhem; Sank, Daniel; Barends, Rami; Martinis, John; McDermott, Robert

    2014-03-01

    We describe a high-fidelity dispersive measurement of a superconducting Xmon qubit using a microwave amplifier based on the Superconducting Low-inductance Undulatory Galvanometer (SLUG). We will show a qubit measurement fidelity of 99% in 700 ns with the SLUG, compared to 60% without the SLUG. The SLUG amplifier has a gain of 19 dB at 6.6 GHZ. It also improves the signal-to-noise ratio by 9 dB, compared the same circuit without the SLUG. Also, the SLUG amplifier has a large dynamic range, with an input saturation power corresponding to around 600 photons in the readout cavity. All of these properties make the SLUG a promising microwave amplifier for more complex quantum circuits.

  8. Minimization of power consumption during charging of superconducting accelerating cavities

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, Anirban Krishna, E-mail: anirban.bhattacharyya@physics.uu.se; Ziemann, Volker; Ruber, Roger; Goryashko, Vitaliy

    2015-11-21

    The radio frequency cavities, used to accelerate charged particle beams, need to be charged to their nominal voltage after which the beam can be injected into them. The standard procedure for such cavity filling is to use a step charging profile. However, during initial stages of such a filling process a substantial amount of the total energy is wasted in reflection for superconducting cavities because of their extremely narrow bandwidth. The paper presents a novel strategy to charge cavities, which reduces total energy reflection. We use variational calculus to obtain analytical expression for the optimal charging profile. Energies, reflected and required, and generator peak power are also compared between the charging schemes and practical aspects (saturation, efficiency and gain characteristics) of power sources (tetrodes, IOTs and solid state power amplifiers) are also considered and analysed. The paper presents a methodology to successfully identify the optimal charging scheme for different power sources to minimize total energy requirement.

  9. Minimization of power consumption during charging of superconducting accelerating cavities

    Science.gov (United States)

    Bhattacharyya, Anirban Krishna; Ziemann, Volker; Ruber, Roger; Goryashko, Vitaliy

    2015-11-01

    The radio frequency cavities, used to accelerate charged particle beams, need to be charged to their nominal voltage after which the beam can be injected into them. The standard procedure for such cavity filling is to use a step charging profile. However, during initial stages of such a filling process a substantial amount of the total energy is wasted in reflection for superconducting cavities because of their extremely narrow bandwidth. The paper presents a novel strategy to charge cavities, which reduces total energy reflection. We use variational calculus to obtain analytical expression for the optimal charging profile. Energies, reflected and required, and generator peak power are also compared between the charging schemes and practical aspects (saturation, efficiency and gain characteristics) of power sources (tetrodes, IOTs and solid state power amplifiers) are also considered and analysed. The paper presents a methodology to successfully identify the optimal charging scheme for different power sources to minimize total energy requirement.

  10. RF Characterization of Niobium Films for Superconducting Cavities

    CERN Document Server

    Aull† , S; Doebert, S; Junginger, T; Ehiasarian, AP; Knobloch, J; Terenziani, G

    2013-01-01

    The surface resistance RS of superconductors shows a complex dependence on the external parameters such as temperature, frequency or radio-frequency (RF) field. The Quadrupole Resonator modes of 400, 800 and 1200 MHz allow measurements at actual operating frequencies of superconducting cavities. Niobium films on copper substrates have several advantages over bulk niobium cavities. HIPIMS (High-power impulse magnetron sputtering) is a promising technique to increase the quality and therefore the performance of niobium films. This contribution will introduce CERNs recently developed HIPIMS coating apparatus. Moreover, first results of niobium coated copper samples will be presented, revealing the dominant loss mechanisms.

  11. Characterization of Superconducting Cavities for HIE-ISOLDE

    CERN Document Server

    Martinello, Martina

    2013-01-01

    In this report the radiofrequency measurements done for the superconducting cavities developed at CERN for the HIE-ISOLDE project are analyzed. The purpose of this project is improve the energy of the REX-ISOLDE facility by means of a superconducting LINAC. In this way it will be possible to reach higher accelerating gradients, and so higher particle energies (up to 10MeV/u). At this purpose the Niobium thin film technology was preferred to the Niobium bulk technology because of the technical advantages like the higher thermal conductivity of Copper and the higher stiffness of the cavities which are less sentitive to mechanical vibrations. The Niobium coating is being optimized on test prototypes which are qualified by RF measurements at cold.

  12. Niobium superconducting rf cavity fabrication by electrohydraulic forming

    CERN Document Server

    Cantergiani, E.; Léaux, F.; Perez Fontenla, A.T.; Prunet, S.; Dufay-Chanat, L.; Koettig, T.; Bertinelli, F.; Capatina, O.; Favre, G.; Gerigk, F.; Jeanson, A. C.; Fuzeau, J.; Avrillaud, G.; Alleman, D.; Bonafe, J.; Marty, P.

    2016-01-01

    Superconducting rf (SRF) cavities are traditionally fabricated from superconducting material sheets or made of copper coated with superconducting material, followed by trim machining and electron-beam welding. An alternative technique to traditional shaping methods, such as deep-drawing and spinning, is electrohydraulicforming (EHF). InEHF, half-cells areobtainedthrough ultrahigh-speed deformation ofblank sheets, using shockwaves induced in water by a pulsed electrical discharge. With respect to traditional methods, such a highly dynamic process can yield interesting results in terms of effectiveness, repeatability, final shape precision, higher formability, and reduced springback. In this paper, the first results of EHFon high purity niobium are presented and discussed. The simulations performed in order to master the multiphysics phenomena of EHF and to adjust its process parameters are presented. The microstructures of niobium half- cells produced by EHFand by spinning have been compared in terms of damage...

  13. Sensitivity of Niobium Superconducting RF Cavities to Magnetic Field

    CERN Document Server

    Gonnella, Dan

    2015-01-01

    Future particle accelerators such as the the SLAC "Linac Coherent Light Source-II" (LCLS-II) and the proposed Cornell Energy Recovery Linac (ERL) require hundreds of superconducting RF (SRF) cavities operating in continuous wave (CW) mode. In order to achieve economic feasibility of projects such as these, the cavities must achieve a very high intrinsic quality factor (Q0). In order to reach these high Q0's in the case of LCLS-II, nitrogen-doping has been proposed as a cavity preparation technique. When dealing with Q0's greater than 1x10^10, the effects of ambient magnetic field on Q0 become significant. Here we show that the sensitivity that a cavity has to ambient magnetic field is highly dependent on the cavity preparation. Specifically, standard electropolished and 120C baked cavities show a sensitivity of ~0.8 and ~0.6 nOhm/mG trapped, respectively, while nitrogen-doped cavities show a sensitivity of ~2 to 5 nOhm/mG trapped. Less doping results in weaker sensitivity. This difference in sensitivities is ...

  14. Surface processing for bulk niobium superconducting radio frequency cavities

    Science.gov (United States)

    Kelly, M. P.; Reid, T.

    2017-04-01

    The majority of niobium cavities for superconducting particle accelerators continue to be fabricated from thin-walled (2–4 mm) polycrystalline niobium sheet and, as a final step, require material removal from the radio frequency (RF) surface in order to achieve performance needed for use as practical accelerator devices. More recently bulk niobium in the form of, single- or large-grain slices cut from an ingot has become a viable alternative for some cavity types. In both cases the so-called damaged layer must be chemically etched or electrochemically polished away. The methods for doing this date back at least four decades, however, vigorous empirical studies on real cavities and more fundamental studies on niobium samples at laboratories worldwide have led to seemingly modest improvements that, when taken together, constitute a substantial advance in the reproducibility for surface processing techniques and overall cavity performance. This article reviews the development of niobium cavity surface processing, and summarizes results of recent studies. We place some emphasis on practical details for real cavity processing systems which are difficult to find in the literature but are, nonetheless, crucial for achieving the good and reproducible cavity performance. New approaches for bulk niobium surface treatment which aim to reduce cost or increase performance, including alternate chemical recipes, barrel polishing and ‘nitrogen doping’ of the RF surface, continue to be pursued and are closely linked to the requirements for surface processing.

  15. Quasi-Optical Cavity Virtual Cathode Oscillator for Microwave Generation

    Institute of Scientific and Technical Information of China (English)

    凌根深; 陈波; 周津娟

    2003-01-01

    A new configuration of a virtual cathode oscillator(VCO),i.e.,a quasi-optical cavity VCO,is proposed for highpower microwave generation.The analysis and simulation are carried out to investigate the characteristics of this configuration.In the numerical simulation,the microwave output power of 2.93 GW is obtained with an electron beam of 610 keV in electron energy and 26.7kA in the beam current.The beam-to-microwave power efficiency is 18%.The frequency is 17.5 GHz,and the output microwave mode is TEM10.

  16. The ESS Superconducting RF Cavity and Cryomodule Cryogenic Processes

    Science.gov (United States)

    Darve, C.; Elias, N.; Molloy, S.; Bosland, P.; Renard, B.; Bousson, S.; Olivier, G.; Reynet, D.; Thermeau, J. P.

    The European Spallation Source (ESS) is one of Europe's largest research infrastructures, tobring new insights to the grand challenges of science and innovation in fields as diverse as material and life sciences, energy, environmental technology, cultural heritage,solid-state and fundamental physics by the end of the decade. The collaborative project is funded by a collaboration of 17 European countries and is under design and construction in Lund, Sweden. A 5 MW, long pulse proton accelerator is used to reach this goal. The pulsed length is 2.86 ms and the repetition frequency is 14 Hz (4% duty cycle). The choice of SRF technology is a key element in the development of the ESS linear accelerator (linac). The superconducting linacis composed of one section of spoke cavity cryomodules(352.21 MHz) and two sections of elliptical cavity cryomodules (704.42 MHz). These cryomodules contain niobium SRF cavities operating at 2 K, cooled by the accelerator cryoplantthrough the cryogenic distribution system. This paper presents the superconducting RF cavity and cryomodule cryogenic processes, which are developed for the technology demonstrators and to be ultimately integrated for the ESS tunnel operation.

  17. A vertical test system for China-ADS project injector II superconducting cavities

    Science.gov (United States)

    Chang, Wei; He, Yuan; Wen, Liang-Hua; Li, Chun-Long; Xue, Zong-Heng; Song, Yu-Kun; Zhang, Rui; Zhu, Zheng-Long; Gao, Zheng; Zhang, Cong; Sun, Lie-Peng; Yue, Wei-Ming; Zhang, Sheng-Hu; You, Zhi-Ming; Thomas, Joseph Powers(Tom Powers

    2014-05-01

    To test superconducting cavities, a vertical test system has been designed and set up at the Institute of Modern Physics (IMP). The system design is based on VCO-PLL hardware and the NI Labview software. The test of the HWR010#2 superconducting cavity shows that the function of this test system is satisfactory for testing the low frequency cavity.

  18. RF Processing of the Couplers for the SNS Superconducting Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Y.Kang; I.E. Campisi; D. Stout; A. Vassioutchenko; M. Stirbet; M. Drury; T. Powers

    2005-07-10

    All eighty-one fundamental power couplers for the 805 MHz superconducting cavities of the SNS linac have been RF conditioned and installed in the cryomodules successfully. The couplers were RF processed at JLAB or at the SNS in ORNL: more than forty couplers have been RF conditioned in the SNS RF Test Facility (RFTF) after the first forty couplers were conditioned at JLAB. The couplers were conditioned up to 650 kW forward power at 8% duty cycle in traveling and standing waves. They were installed on the cavities in the cryomodules and then assembled with the airside waveguide transitions. The couplers have been high power RF tested with satisfactory accelerating field gradients in the cooled cavities.

  19. SUPERCONDUCTING RF-DIPOLE DEFLECTING AND CRABBING CAVITIES

    Energy Technology Data Exchange (ETDEWEB)

    Delayen, Jean [ODU, JLAB; De Silva, Paygalage Subashini [ODU, JLAB

    2013-09-01

    Recent interests in designing compact deflecting and crabbing structures for future accelerators and colliders have initiated the development of novel rf structures. The superconducting rf-dipole cavity is one of the first compact designs with attractive properties such as higher gradients, higher shunt impedance, the absence of lower order modes and widely separated higher order modes. Two rf-dipole designs of 400 MHz and 499 MHz have been designed, fabricated and tested as proof-of-principle designs of compact deflecting and crabbing cavities for the LHC high luminosity upgrade and Jefferson Lab 12 GeV upgrade. The first rf tests have been performed on the rf-dipole geometries at 4.2 K and 2.0 K in a vertical test assembly with excellent results. The cavities have achieved high gradients with high intrinsic quality factors, and multipacting levels were easily processed.

  20. Microscopic Investigation of Materials Limitations of Superconducting RF Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Anlage, Steven [Univ. of Maryland, College Park, MD (United States)

    2017-08-04

    Our overall goal is to contribute to the understanding of defects that limit the high accelerating gradient performance of Nb SRF cavities. Our approach is to develop a microscopic connection between materials defects and SRF performance. We developed a near-field microwave microscope to establish this connection. The microscope is based on magnetic hard drive write heads, which are designed to create very strong rf magnetic fields in very small volumes on a surface.

  1. A SQUID-based microwave cavity search for dark-matter axions

    Energy Technology Data Exchange (ETDEWEB)

    Asztalos, S J; Carosi, G; Hagmann, C; Kinion, D; van Bibber, K; Hotz, M; Rosenberg, L; Rybka, G; Hoskins, J; Hwang, J; Sikivie, P; Tanner, D B; Bradley, R; Clarke, J

    2009-10-21

    Axions in the {mu}eV mass range are a plausible cold dark matter candidate and may be detected by their conversion into microwave photons in a resonant cavity immersed in a static magnetic field. The first result from such an axion search using a superconducting first-stage amplifier (SQUID) is reported. The SQUID amplifier, replacing a conventional GaAs field-effect transistor amplifier, successfully reached axion-photon coupling sensitivity in the band set by present axion models and sets the stage for a definitive axion search utilizing near quantum-limited SQUID amplifiers.

  2. Microwave study of superconducting Sn films above and below percolation

    Science.gov (United States)

    Beutel, Manfred H.; Ebensperger, Nikolaj G.; Thiemann, Markus; Untereiner, Gabriele; Fritz, Vincent; Javaheri, Mojtaba; Nägele, Jonathan; Rösslhuber, Roland; Dressel, Martin; Scheffler, Marc

    2016-08-01

    The electronic properties of superconducting Sn films ({T}{{c}}≈ 3.8 {{K}}) change significantly when reducing the film thickness down to a few {nm}, in particular close to the percolation threshold. The low-energy electrodynamics of such Sn samples can be probed via microwave spectroscopy, e.g. with superconducting stripline resonators. Here we study Sn thin films, deposited via thermal evaporation—ranging in thickness between 38 and 842 {nm}—which encompasses the percolation transition. We use superconducting Pb stripline resonators to probe the microwave response of these Sn films in a frequency range between 4 and 20 {GHz} at temperatures from 7.2 down to 1.5 {{K}}. The measured quality factor of the resonators decreases with rising temperature due to enhanced losses. As a function of the sample thickness we observe three regimes with significantly different properties: samples below percolation, i.e. ensembles of disconnected superconducting islands, exhibit dielectric properties with negligible losses, demonstrating that macroscopic current paths are required for appreciable dynamical conductivity of Sn at GHz frequencies. Thick Sn films, as the other limit, lead to low-loss resonances both above and below T c of Sn, as expected for bulk conductors. But in an intermediate thickness regime, just above percolation and with labyrinth-like morphology of the Sn, we observe a quite different behavior: the superconducting state has a microwave response similar to the thicker, completely covering films with low microwave losses; but the metallic state of these Sn films is so lossy that resonator operation is suppressed completely.

  3. Nonlinear RF spurious in a cylindrical cavity with superconducting endplates

    Science.gov (United States)

    Mateu, Jordi; Collado, Carlos; Shaw, Timothy J.; O'Callaghan, Juan M.

    2002-08-01

    We have developed a method to calculate the distribution of fundamental and spurious fields in a metallic cylindrical cavity with superconducting endplates in which signals at two different frequencies are injected. The nonlinearity in the superconductor produces the typical intermodulation effects if the frequencies of the injected signals are sufficiently close to each other and near a resonant mode. Our method uses harmonic balance to match the fields in the cavity with the currents on the endplates. The method can be used for a variety of nonlinear models of the superconducting endplate, and could be the base for a nondestructive procedure to extract the nonlinear parameters of an HTS sample from RF measurements. Our analysis is restricted to the TE0 1 1 mode, but the method can be applied to any propagating mode in the cylindrical cavity. Closed-form equations for the case of square-law nonlinearities in the superconductor are derived and used to check the validity of the harmonic balance calculation.

  4. Superconducting Accelerating Cavity Pressure Sensitivity Analysis and Stiffening

    Energy Technology Data Exchange (ETDEWEB)

    Rodnizki, J [Soreq NRC, Yavne, Israel; Ben Aliz, Y [Soreq NRC, Yavne, Israel; Grin, A [Soreq NRC, Yavne, Israel; Horvitz, Z [Soreq NRC, Yavne, Israel; Perry, A [Soreq NRC, Yavne, Israel; Weissman, L [Soreq NRC, Yavne, Israel; Davis, G Kirk [JLAB; Delayen, Jean R. [Old Dominion Universtiy

    2014-12-01

    The Soreq Applied Research Accelerator Facility (SARAF) design is based on a 40 MeV 5 mA light ions superconducting RF linac. Phase-I of SARAF delivers up to 2 mA CW proton beams in an energy range of 1.5 - 4.0 MeV. The maximum beam power that we have reached is 5.7 kW. Today, the main limiting factor to reach higher ion energy and beam power is related to the HWR sensitivity to the liquid helium coolant pressure fluctuations. The HWR sensitivity to helium pressure is about 60 Hz/mbar. The cavities had been designed, a decade ago, to be soft in order to enable tuning of their novel shape. However, the cavities turned out to be too soft. In this work we found that increasing the rigidity of the cavities in the vicinity of the external drift tubes may reduce the cavity sensitivity by a factor of three. A preliminary design to increase the cavity rigidity is presented.

  5. Microwave multiplex readout for superconducting sensors

    Science.gov (United States)

    Ferri, E.; Becker, D.; Bennett, D.; Faverzani, M.; Fowler, J.; Gard, J.; Giachero, A.; Hays-Wehle, J.; Hilton, G.; Maino, M.; Mates, J.; Puiu, A.; Nucciotti, A.; Reintsema, C.; Schmidt, D.; Swetz, D.; Ullom, J.; Vale, L.

    2016-07-01

    The absolute neutrino mass scale is still an outstanding challenge in both particle physics and cosmology. The calorimetric measurement of the energy released in a nuclear beta decay is a powerful tool to determine the effective electron-neutrino mass. In the last years, the progress on low temperature detector technologies has allowed to design large scale experiments aiming at pushing down the sensitivity on the neutrino mass below 1 eV. Even with outstanding performances in both energy (~ eV on keV) and time resolution (~ 1 μs) on the single channel, a large number of detectors working in parallel is required to reach a sub-eV sensitivity. Microwave frequency domain readout is the best available technique to readout large array of low temperature detectors, such as Transition Edge Sensors (TESs) or Microwave Kinetic Inductance Detectors (MKIDs). In this way a multiplex factor of the order of thousands can be reached, limited only by the bandwidth of the available commercial fast digitizers. This microwave multiplexing system will be used to readout the HOLMES detectors, an array of 1000 microcalorimeters based on TES sensors in which the 163Ho will be implanted. HOLMES is a new experiment for measuring the electron neutrino mass by means of the electron capture (EC) decay of 163Ho. We present here the microwave frequency multiplex which will be used in the HOLMES experiment and the microwave frequency multiplex used to readout the MKID detectors developed in Milan as well.

  6. Design Topics for Superconducting RF Cavities and Ancillaries

    CERN Document Server

    Padamsee, H

    2014-01-01

    RF superconductivity has become a major subfield of accelerator science. There has been an explosion in the number of accelerator applications and in the number of laboratories engaged. The first lecture at this meeting of the CAS presented a review of fundamental design principles to develop cavity geometries to accelerate velocity-of-light particles (β = v/c ~ 1), moving on to the corresponding design principles for medium-velocity (medium-β) and low-velocity (low-β) structures. The lecture included mechanical design topics. The second lecture dealt with input couplers, higher-order mode extraction couplers with absorbers, and tuners of both the slow and fast varieties.

  7. Future Directions in the Microwave Cavity Search for Dark Matter Axions

    CERN Document Server

    Shokair, T M; Van Bibber, K A; Brubaker, B; Gurevich, Y V; Cahn, S B; Lamoreaux, S K; Anil, M A; Lehnert, K W; Mitchell, B K; Reed, A; Carosi, G

    2014-01-01

    The axion is a light pseudoscalar particle which suppresses CP-violating effects in strong interactions and also happens to be an excellent dark matter candidate. Axions constituting the dark matter halo of our galaxy may be detected by their resonant conversion to photons in a microwave cavity permeated by a magnetic field. The current generation of the microwave cavity experiment has demonstrated sensitivity to plausible axion models, and upgrades in progress should achieve the sensitivity required for a definitive search, at least for low mass axions. However, a comprehensive strategy for scanning the entire mass range, from 1-1000 $\\mu$eV, will require significant technological advances to maintain the needed sensitivity at higher frequencies. Such advances could include sub-quantum-limited amplifiers based on squeezed vacuum states, bolometers, and/or superconducting microwave cavities. The Axion Dark Matter eXperiment at High Frequencies (ADMX-HF) represents both a pathfinder for first data in the 20-10...

  8. Magnetic hysteresis effects in superconducting coplanar microwave resonators

    Energy Technology Data Exchange (ETDEWEB)

    Bothner, D.; Gaber, T.; Kemmler, M.; Gruenzweig, M.; Ferdinand, B.; Koelle, D.; Kleiner, R. [Universitaet Tuebingen (Germany); Wuensch, S.; Siegel, M. [Karlsruher Institut fuer Technologie (Germany); Mikheenko, P.; Johansen, T.H. [University of Oslo (Norway)

    2013-07-01

    We present experimental data regarding the impact of external magnetic fields on quality factor and resonance frequency of superconducting microwave resonators in a coplanar waveguide geometry. In particular we focus on the influence of magnetic history and show with the assistance of numerical calculations that the found hysteretic behaviour can be well understood with a highly inhomogeneous microwave current density in combination with established field penetration models for type-II superconducting thin films. Furthermore we have used magneto-optical imaging techniques to check the field distribution which we have assumed in our calculations. Finally, we demonstrate that and how the observed hysteretic behaviour can be used to optimize and tune the resonator performance for possible hybrid quantum sytems in magnetic fields.

  9. Unconventional Geometric Phase-Shift Gates Based on Superconducting Quantum Interference Devices Coupled to a Single-Mode Cavity

    Institute of Scientific and Technical Information of China (English)

    SONG Ke-Hui; ZHOU Zheng-Wei; GUO Guang-Can

    2006-01-01

    We present a scheme to realize geometric phase-shift gate for two superconducting quantum interference device (SQUID) qubits coupled to a single-mode microwave field. The geometric phase-shift gate operation is performed transitions during the gate operation. Thus, the docoherence due to energy spontaneous emission based on the levels of SQUIDs are suppressed. The gate is insensitive to the cavity decay throughout the operation since the cavity mode is displaced along a circle in the phase space, acquiring a phase conditional upon the two lower flux states of the SQUID qubits, and the cavity mode is still in the original vacuum state. Based on the SQUID qubits interacting with the cavity mode, our proposed approach may open promising prospects for quantum logic in SQUID-system.

  10. Towards chains of tunable and nonlinear superconducting microwave resonators

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Michael; Wulschner, Friedrich; Schaumburger, Udo; Haeberlein, Max; Fedorov, Kirill; Goetz, Jan; Xie, Edwar [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Schwarz, Manuel; Eder, Peter; Menzel, Edwin; Zhong, Ling; Deppe, Frank; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany); Marx, Achim [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany)

    2015-07-01

    We present an experimental feasibility study of chains of tunable and nonlinear superconducting microwave resonators within the realm of circuit QED. We describe the fabrication and experimental characterization of the components required to realize nonlinear resonators with tunable anharmonicity, capacitively coupled resonator chains and on-chip parallel plate capacitors. We discuss possible error sources in the fabrication and characterization processes. Furthermore, simulations based on existing theories are performed to identify accessible parameter ranges.

  11. Cryostat for Testing HIE-Isolde Superconducting RF Cavities

    CERN Document Server

    Capatina, O; Cuccuru, G; Pasini, M; Renaglia, T; Therasse, M; Vullierme, B

    2011-01-01

    The High Intensity and Energy ISOLDE (HIE-ISOLDE) project is a major upgrade of the existing ISOLDE and REX-ISOLDE facilities at CERN [1], with the objective of increasing the energy and intensity of the delivered radioactive ion beams (RIB). This project aims to fill the request for a more energetic post-accelerated beam by means of a new superconducting (SC) linac based on Quarter Wave Resonators (QWR). A research and development (R&D) programme looking at all the different aspects of the SC linac started in 2008 and continued throughout 2010. The R&D effort has particularly focused on the development of the high β cavities (β = 10.3%) for which the Nb sputtered on Cu substrate technology has been adopted. Two prototype cavities were manufactured and are undergoing RF cold tests. The pre-series cavity manufacturing is under way using 3D forged Cu billets. A single vacuum cryostat was designed and built to test these cavities at liquid helium temperatures. This paper details the main design concep...

  12. Broadband sample holder for microwave spectroscopy of superconducting qubits.

    Science.gov (United States)

    Averkin, A S; Karpov, A; Shulga, K; Glushkov, E; Abramov, N; Huebner, U; Il'ichev, E; Ustinov, A V

    2014-10-01

    We present a practical design and implementation of a broadband sample holder suitable for microwave experiments with superconducting integrated circuits at millikelvin temperatures. Proposed design can be easily integrated in standard dilution cryostats, has flat pass band response in a frequency range from 0 to 32 GHz, allowing the RF testing of the samples with substrate size up to 4 × 4 mm(2). The parasitic higher modes interference in the holder structure is analyzed and prevented via design considerations. The developed setup can be used for characterization of superconducting parametric amplifiers, bolometers, and qubits. We tested the designed sample holder by characterizing of a superconducting flux qubit at 20 mK temperature.

  13. Niobium superconducting rf cavity fabrication by electrohydraulic forming

    Science.gov (United States)

    Cantergiani, E.; Atieh, S.; Léaux, F.; Perez Fontenla, A. T.; Prunet, S.; Dufay-Chanat, L.; Koettig, T.; Bertinelli, F.; Capatina, O.; Favre, G.; Gerigk, F.; Jeanson, A. C.; Fuzeau, J.; Avrillaud, G.; Alleman, D.; Bonafe, J.; Marty, P.

    2016-11-01

    Superconducting rf (SRF) cavities are traditionally fabricated from superconducting material sheets or made of copper coated with superconducting material, followed by trim machining and electron-beam welding. An alternative technique to traditional shaping methods, such as deep-drawing and spinning, is electrohydraulic forming (EHF). In EHF, half-cells are obtained through ultrahigh-speed deformation of blank sheets, using shockwaves induced in water by a pulsed electrical discharge. With respect to traditional methods, such a highly dynamic process can yield interesting results in terms of effectiveness, repeatability, final shape precision, higher formability, and reduced springback. In this paper, the first results of EHF on high purity niobium are presented and discussed. The simulations performed in order to master the multiphysics phenomena of EHF and to adjust its process parameters are presented. The microstructures of niobium half-cells produced by EHF and by spinning have been compared in terms of damage created in the material during the forming operation. The damage was assessed through hardness measurements, residual resistivity ratio (RRR) measurements, and electron backscattered diffraction analyses. It was found that EHF does not worsen the damage of the material during forming and instead, some areas of the half-cell have shown lower damage compared to spinning. Moreover, EHF is particularly advantageous to reduce the forming time, preserve roughness, and to meet the final required shape accuracy.

  14. FDTD modeling of EM field inside microwave cavities

    CERN Document Server

    Narayan, Shiv; Kanth, V Krushna

    2017-01-01

    This book deals with the EM analysis of closed microwave cavities based on a three-dimensional FDTD method. The EM analysis is carried out for (i) rectangular microwave ovens and (ii) hybrid-cylindrical microwave autoclaves at 2.45 GHz. The field distribution is first estimated inside domestic rectangular ovens in xy-, yz-, and zx-plane. Further, the RF leakage from the oven door is determined to study the effect of leakage radiation on wireless communication at 2.45 GHz. Furthermore, the EM analysis of the autoclave is carried out based on 3D FDTD using staircase approximation. In order to show the capability of autoclaves (excited with five source) for curing the aerospace components and materials, the field distribution inside autoclave cavity is studied in presence of aerospace samples. The FDTD based modelling of oven and autoclave are explained with the appropriate expressions and illustrations.

  15. Effect of mild baking on superconducting niobium cavities investigated by sequential nanoremoval

    Directory of Open Access Journals (Sweden)

    A. Romanenko

    2013-01-01

    Full Text Available The near-surface nanostructure of niobium determines the performance of superconducting microwave cavities. Subtle variations in surface nanostructure lead to yet unexplained phenomena such as the dependence of the quality factor of these resonating structures on the magnitude of rf fields—an effect known as the “Q slopes”. Understanding and controlling the Q slopes is of great practical importance for particle accelerators. Here we investigate the mild baking effect—120°C vacuum baking for 48 hours—which strongly affects the Q slopes. We used a hydrofluoric acid rinse alternating with oxidation in water as a tool for stepwise material removal of about 2  nanometers/step from the surface of superconducting niobium cavities. Applying removal cycles on mild baked cavities and measuring the quality factor dependence on the rf fields after one or several such cycles allowed us to explore the distribution of lossy layers within the first several tens of nanometers from the surface. We found that a single HF rinse results in the increase of the cavity quality factor. The low field Q slope was shown to be mostly controlled by the material structure within the first six nanometers from the surface. The medium field Q slope evolution was fitted using linear (∝B peak surface magnetic field and quadratic (∝B^{2} terms in the surface resistance and it was found that best fits do not require the quadratic term. We found that about 10 nanometers of material removal are required to bring back the high field Q slope and about 20–50 nanometers to restore the onset field to the prebaking value.

  16. Ultrarapid microwave synthesis of superconducting refractory carbides

    Energy Technology Data Exchange (ETDEWEB)

    Vallance, Simon R. [Department of Chemical and Environmental Engineering, University of Nottingham (United Kingdom); School of Chemistry, University Nottingham (United Kingdom); Round, David M. [School of Chemistry, University Nottingham (United Kingdom); Ritter, Clemens [Institut Laue-Langevin, Grenoble (France); Cussen, Edmund J. [WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow (United Kingdom); Kingman, Sam [Department of Chemical and Environmental Engineering, University of Nottingham (United Kingdom); Gregory, Duncan H. [WestCHEM, Department of Chemistry, University of Glasgow (United Kingdom)

    2009-11-26

    Nb{sub 1-x}Ta{sub x}C Carbides can be synthesized by high power MW methods in less than 30 s. In situ and ex situ techniques probing changes in temperature and dielectric properties with time demonstrate that the reactions self-terminate as the loss tangent of the materials decreases. The resulting carbides are carbon deficient and superconducting; T{sub c} correlates linearly to unit cell volume, reaching a maximum at NbC. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  17. A general approach for the calculation of intermodulation distortion in cavities with superconducting endplates

    Science.gov (United States)

    Mateu, J.; Collado, C.; Menéndez, O.; O'Callaghan, J. M.

    2003-01-01

    We report on a general procedure to calculate intermodulation distortion in cavities with superconducting endplates that is applicable to the dielectric-loaded cavities currently used for measurement of surface resistance in high-temperature superconductors. The procedure would enable the use such cavities for intermodulation characterization of unpatterned superconducting films, and would remove the uncertainty of measuring intermodulation on patterned devices, in which the effect of patterning damage might influence the outcome of the measurements. We have verified the calculation method by combining superconducting and copper endplates in a rutile-loaded cavity.

  18. Superstrong coupling of thin film magnetostatic waves with microwave cavity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xufeng; Tang, Hong X., E-mail: hong.tang@yale.edu [Department of Electrical Engineering, Yale University, New Haven, Connecticut 06511 (United States); Zou, Changling [Department of Electrical Engineering, Yale University, New Haven, Connecticut 06511 (United States); Department of Applied Physics, Yale University, New Haven, Connecticut 06511 (United States); Jiang, Liang [Department of Applied Physics, Yale University, New Haven, Connecticut 06511 (United States)

    2016-01-14

    We experimentally demonstrated the strong coupling between a microwave cavity and standing magnetostatic magnon modes in a yttrium iron garnet film. Such strong coupling can be observed for various spin wave modes under different magnetic field bias configurations, with a coupling strength inversely proportional to the transverse mode number. A comb-like spectrum can be obtained from these high order modes. The collectively enhanced magnon-microwave photon coupling strength is comparable with the magnon free spectral range and therefore leads to the superstrong coupling regime. Our findings pave the road towards designing a new type of strongly hybridized magnon-photon system.

  19. Design and Development of Superconducting Parallel-Bar Deflecting/Crabbing Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Payagalage Subashini Uddi De Silva, Jean Delayen

    2012-07-01

    The superconducting parallel-bar cavity is a deflecting/crabbing cavity with attractive properties that is being considered for a number of applications. We present the designs of a 499 MHz deflecting cavity developed for the Jefferson Lab 12 GeV Upgrade and a 400 MHz crabbing cavity for the LHC High Luminosity Upgrade. Prototypes of these two cavities are now under development and fabrication.

  20. Universal statistics of the scattering coefficient of chaotic microwave cavities.

    Science.gov (United States)

    Hemmady, Sameer; Zheng, Xing; Antonsen, Thomas M; Ott, Edward; Anlage, Steven M

    2005-05-01

    We consider the statistics of the scattering coefficient S of a chaotic microwave cavity coupled to a single port. We remove the nonuniversal effects of the coupling from the experimental S data using the radiation impedance obtained directly from the experiments. We thus obtain the normalized scattering coefficient whose probability density function (PDF) is predicted to be universal in that it depends only on the loss (quality factor) of the cavity. We compare experimental PDFs of the normalized scattering coefficients with those obtained from random matrix theory (RMT), and find excellent agreement. The results apply to scattering measurements on any wave chaotic system.

  1. Superconductivity

    CERN Document Server

    Thomas, D B

    1974-01-01

    A short general review is presented of the progress made in applied superconductivity as a result of work performed in connection with the high-energy physics program in Europe. The phenomenon of superconductivity and properties of superconductors of Types I and II are outlined. The main body of the paper deals with the development of niobium-titanium superconducting magnets and of radio-frequency superconducting cavities and accelerating structures. Examples of applications in and for high-energy physics experiments are given, including the large superconducting magnet for the Big European Bubble Chamber, prototype synchrotron magnets for the Super Proton Synchrotron, superconducting d.c. beam line magnets, and superconducting RF cavities for use in various laboratories. (0 refs).

  2. Lorentzian crater in superconducting microwave resonators with inserted nanowires

    Science.gov (United States)

    Bezryadin, Alexey; Brenner, Matthew W.; Gopalakrishnan, Sarang; Ku, Jaseung; Shah, Nayana; Goldbart, Paul M.

    2011-03-01

    We report on observations of nonequilibrium pulsing states in microwave (i.e., GHz) coplanar waveguide(CPW) resonators consisting of superconducting MoGe strips interrupted by a trench and connected by one or more suspended superconducting nanowires. The Lorentzian resonance peak shows a ``crater'' when driven past the critical current of the nanowire, leading to a ``pulsing'' state. In the pulsing state, the supercurrent grows until it reaches the critical current, at which point all stored energy quickly dissipates through Joule heating. We develop a phenomenological model of resonator-nanowire systems, which explains the experimental data quantitatively. For the case of resonators comprising two parallel nanowires and subject to an external magnetic field, we find field-driven oscillations of the onset power for crater formation, as well as the occurrence of a new state, in which the periodic pulsing effect is such that only the weaker wire participates in the dissipation process.

  3. Deterministic entanglement of photons in two superconducting microwave resonators

    CERN Document Server

    Wang, H; Bialczak, Radoslaw C; Lenander, M; Lucero, Erik; Neeley, M; O'Connell, A; Sank, D; Weides, M; Wenner, J; Yamamoto, T; Yin, Y; Zhao, J; Martinis, John M; Cleland, A N

    2010-01-01

    Quantum entanglement, one of the defining features of quantum mechanics, has been demonstrated in a variety of nonlinear spin-like systems. Quantum entanglement in linear systems has proven significantly more challenging, as the intrinsic energy level degeneracy associated with linearity makes quantum control more difficult. Here we demonstrate the quantum entanglement of photon states in two independent linear microwave resonators, creating N-photon NOON states as a benchmark demonstration. We use a superconducting quantum circuit that includes Josephson qubits to control and measure the two resonators, and we completely characterize the entangled states with bipartite Wigner tomography. These results demonstrate a significant advance in the quantum control of linear resonators in superconducting circuits.

  4. Observation of light emissions in superconducting cavities; Observation d`emissions lumineuses dans une cavite supraconductrice

    Energy Technology Data Exchange (ETDEWEB)

    Caruette, A.; Fouaidy, M.; Hammoudi, N.; Junquera, T.; Le Goff, A.; Lesrel, J.; Maissa, S. [Services Techniques, Inst. de Physique Nucleaire, Paris-11 Univ., 91 - Orsay (France)

    1999-11-01

    In order to investigate the light emissions associated to the electron emission in a superconducting RF cavity, an optical observation system is mounted on the `mushroom` cavity. After an intentional contamination of the cavity with alumina particles, stable luminous spots are observed around the contaminated area. (authors) 3 refs., 2 figs.

  5. Hydrogen density measurements using an open-ended microwave cavity.

    Science.gov (United States)

    Wenger, N. C.; Smetana, J.

    1972-01-01

    The density measurement of liquid hydrogen and two-phase mixtures of liquid and gaseous hydrogen is considered. This paper describes a complete prototype system that uses an open-ended microwave cavity for making dynamic density measurements of flowing hydrogen in a transfer line. The theory of operation along with test results for both the single- and two-phase cases are presented and discussed.

  6. Preparation of Greenberger-Horne-Zeilinger entangled states with multiple superconducting quantum-interference device qubits or atoms in cavity QED

    Science.gov (United States)

    Yang, Chui-Ping; Han, Siyuan

    2004-12-01

    A scheme is proposed for generating Greenberger-Horne-Zeilinger (GHZ) entangled states of multiple superconducting quantum-interference device (SQUID) qubits by the use of a microwave cavity. The scheme operates essentially by creating a single photon through an auxiliary SQUID built in the cavity and performing a joint multiqubit phase shift with assistance of the cavity photon. It is shown that entanglement can be generated using this method, deterministic and independent of the number of SQUID qubits. In addition, we show that the present method can be applied to preparing many atoms in a GHZ entangled state, with tolerance to energy relaxation during the operation.

  7. Superconducting Low-Inductance Undulatory Galvanometer Microwave Amplifier

    OpenAIRE

    Hover, D.; Chen, Y.-F.; Ribeill, G. J.; Zhu, S; Sendelbach, S; McDermott, R.

    2011-01-01

    We describe a microwave amplifier based on the Superconducting Low-inductance Undulatory Galvanometer (SLUG). The SLUG is embedded in a microstrip resonator, and the signal current is injected directly into the device loop. Measurements at 30 mK show gains of 25 dB at 3 GHz and 15 dB at 9 GHz. Amplifier performance is well described by a simple numerical model based on the Josephson junction phase dynamics. We expect optimized devices based on high critical current junctions to achieve gain g...

  8. Analysis of superconducting microstrip resonator at various microwave power levels

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, G.P.; Jacob, M.V.; Jayakumar, M.; Bhatnagar, P.K. [Department of Electronic Science, University of Delhi, South Campus, Benito Juarez Road, New Delhi 110021 (India); Kataria, N.D. [National Physical Laboratory, K. S. Krishnan Road, New Delhi 110 012 (India)

    1997-05-01

    The real and imaginary parts of the surface impedance of YBCO superconductors have been studied at different microwave power levels. Using the relations for the critical current density and the grain boundary resistance, a relation for calculating the power dependence of the surface resistance has been obtained. Also, a relation to find the resonant frequency of a superconducting microstrip resonator at various input power levels has been derived. Measurements have been carried out on various microstrip resonators to study the variation of surface resistance and resonant frequency at different rf power levels. The experimental results are in good agreement with theoretical results. {copyright} {ital 1997 American Institute of Physics.}

  9. Continuous ammonia monitor using a Stark microwave cavity resonator.

    Science.gov (United States)

    Uehara, H; Ijuuin, Y; Morino, Y; Kamidate, T; Nakamura, A; Imai, H

    1980-03-01

    An ammonia monitor has been made by using a rectangular Stark microwave cavity tightly coupled through an iris to a Gunn oscillator. The Stark electrode installed inside the cavity is provided with a 100 kHz sinusoidal modulation voltage and a dc sweep voltage. The oscillation of the Gunn diode is tuned with the coupled Stark cavity to a frequency near a J,K=3,3 transition (23870.1 MHz) of ammonia. By fixing the Stark dc bias to a voltage which gives a peak intensity of the derivative output of the electric-resonance signal, ammonia is continuously monitored. An extremely good long-term stability is obtained. The noise level corresponds to 0.08 ppm of ammonia.

  10. Microphonics detuning compensation in 3.9 GHZ superconducting RF cavities

    Energy Technology Data Exchange (ETDEWEB)

    Ruben Carcagno et al.

    2003-10-20

    Mechanical vibrations can detune superconducting radio frequency (SCRF) cavities unless a tuning mechanism counteracting the vibrations is present. Due to their narrow operating bandwidth and demanding mechanical structure, the 13-cell 3.9GHz SCRF cavities for the Charged Kaons at Main Injector (CKM) experiment at Fermilab are especially susceptible to this microphonic phenomena. We present early results correlating RF frequency detuning with cavity vibration measurements for CKM cavities; initial detuning compensation results with piezoelectric actuators are also presented.

  11. Radio frequency cavity analysis, measurement, and calibration of absolute Dee voltage for K-500 superconducting cyclotron at VECC, Kolkata

    Science.gov (United States)

    Som, Sumit; Seth, Sudeshna; Mandal, Aditya; Paul, Saikat; Duttagupta, Anjan

    2013-02-01

    Variable Energy Cyclotron Centre has commissioned a K-500 superconducting cyclotron for various types of nuclear physics experiments. The 3-phase radio-frequency system of superconducting cyclotron has been developed in the frequency range 9-27 MHz with amplitude and phase stability of 100 ppm and ±0.20, respectively. The analysis of the RF cavity has been carried out using 3D Computer Simulation Technology (CST) Microwave Studio code and various RF parameters and accelerating voltages ("Dee" voltage) are calculated from simulation. During the RF system commissioning, measurement of different RF parameters has been done and absolute Dee voltage has been calibrated using a CdTe X-ray detector along with its accessories and known X-ray source. The present paper discusses about the measured data and the simulation result.

  12. Study of Cavity Imperfection Impact on RF-Parameters and Multipole Components in a Superconducting RF-Dipole Cavity

    CERN Document Server

    Olave, R G; Delayen, Jean Roger; De Silva, S U; Li, Z

    2014-01-01

    The ODU/SLAC superconducting rf-dipole cavity is under consideration for the crab-crossing system in the upcoming LHC luminosity upgrade. While the proposed cavity complies well within the rf-parameters and multipolar component restrictions for the LHC system, cavity imperfections arising from cavity fabrication, welding and frequency tuning may have a significant effect in these parameters. We report on an initial study of the impact of deviation from the ideal shape on the cavity’s performance in terms of rf-parameters and multipolar components.

  13. MEASUREMENT OF THE TRANSVERSE BEAM DYNAMICS IN A TESLA-TYPE SUPERCONDUCTING CAVITY

    Energy Technology Data Exchange (ETDEWEB)

    Halavanau, A. [NICADD, DeKalb; Eddy, N. [Fermilab; Edstrom, D. [Fermilab; Lunin, A. [Fermilab; Piot, P. [NICADD, DeKalb; Ruan, J. [Fermilab; Solyak, N. [Fermilab

    2016-09-26

    Superconducting linacs are capable of producing intense, ultra-stable, high-quality electron beams that have widespread applications in Science and Industry. Many project are based on the 1.3-GHz TESLA-type superconducting cavity. In this paper we provide an update on a recent experiment aimed at measuring the transfer matrix of a TESLA cavity at the Fermilab Accelerator Science and Technology (FAST) facility. The results are discussed and compared with analytical and numerical simulations.

  14. Qualification of niobium materials for superconducting radio frequency cavity applications: View of a condensed matter physicist

    Energy Technology Data Exchange (ETDEWEB)

    Roy, S. B., E-mail: sbroy@rrcat.gov.in [Magnetic & Superconducting Materials Section, Materials & Advanced Accelerator Sciences Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Myneni, G. R., E-mail: rao@jlab.org [Thomas Jefferson National Accelerator Facility, Newport News, Virginia (United States)

    2015-12-04

    We address the issue of qualifications of the niobium materials to be used for superconducting radio frequency (SCRF) cavity fabrications, from the point of view of a condensed matter physicist/materials scientist. We focus on the particular materials properties of niobium required for the functioning a SCRF cavity, and how to optimize the same properties for the best SCRF cavity performance in a reproducible manner. In this way the niobium materials will not necessarily be characterized by their purity alone, but in terms of those materials properties, which will define the limit of the SCRF cavity performance and also other related material properties, which will help to sustain this best SCRF cavity performance. Furthermore we point out the need of standardization of the post fabrication processing of the niobium-SCRF cavities, which does not impair the optimized superconducting and thermal properties of the starting niobium-materials required for the reproducible performance of the SCRF cavities according to the design values.

  15. Multiphysics Analysis of Frequency Detuning in Superconducting RF Cavities for Proton Particle Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Awida, M. H. [Fermilab; Gonin, I. [Fermilab; Passarelli, D. [Fermilab; Sukanov, A. [Fermilab; Khabiboulline, T. [Fermilab; Yakovlev, V. [Fermilab

    2016-01-22

    Multiphysics analyses for superconducting cavities are essential in the course of cavity design to meet stringent requirements on cavity frequency detuning. Superconducting RF cavities are the core accelerating elements in modern particle accelerators whether it is proton or electron machine, as they offer extremely high quality factors thus reducing the RF losses per cavity. However, the superior quality factor comes with the challenge of controlling the resonance frequency of the cavity within few tens of hertz bandwidth. In this paper, we investigate how the multiphysics analysis plays a major role in proactively minimizing sources of frequency detuning, specifically; microphonics and Lorentz Force Detuning (LFD) in the stage of RF design of the cavity and mechanical design of the niobium shell and the helium vessel.

  16. Technical training: RF superconductivity and accelerator cavity applications

    CERN Multimedia

    Technical Training

    2016-01-01

    We are happy to announce a new training course organised by the TE-VSC group in the field of the physics and applications of superconductors. The course provides an overview and update of the theory of radiofrequency and superconductors:   RF Superconductivity and Accelerator Cavity Applications https://cern.ch/course/?164VAC19 One timetable only:  Tuesday, 8 March 2016: from 2 p.m. to 4 p.m. Wednesday, 9 March 2016: from 9.30 a.m to 11.30 a.m. Thursday, 10 March 2016: from 9.30 a.m to 11.30 a.m. Monday, 14 March 2016: from 9.30 a.m to 11.30 a.m. Tuesday, 15 March 2016: from 9.30 a.m to 11.30 a.m. Wednesday, 16 March 2016: from 9.30 a.m to 11.30 a.m. Thursday, 17 March 2016: from 9.30 a.m to 11.30 a.m. Target audience: Experts in radiofrequency or solid state physics (PhD level). Pre-requisites: Basic knowledge of quantum physics and superc...

  17. Development of superconducting crossbar-H-mode cavities for proton and ion accelerators

    Directory of Open Access Journals (Sweden)

    F. Dziuba

    2010-04-01

    Full Text Available The crossbar-H-mode (CH structure is the first superconducting multicell drift tube cavity for the low and medium energy range operated in the H_{21} mode. Because of the large energy gain per cavity, which leads to high real estate gradients, it is an excellent candidate for the efficient acceleration in high power proton and ion accelerators with fixed velocity profile. A prototype cavity has been developed and tested successfully with a gradient of 7  MV/m. A few new superconducting CH cavities with improved geometries for different high power applications are under development at present. One cavity (f=325  MHz, β=0.16, seven cells is currently under construction and studied with respect to a possible upgrade option for the GSI UNILAC. Another cavity (f=217  MHz, β=0.059, 15 cells is designed for a cw operated energy variable heavy ion linac application. Furthermore, the EUROTRANS project (European research program for the transmutation of high level nuclear waste in an accelerator driven system, 600 MeV protons, 352 MHz is one of many possible applications for this kind of superconducting rf cavity. In this context a layout of the 17 MeV EUROTRANS injector containing four superconducting CH cavities was proposed by the Institute for Applied Physics (IAP Frankfurt. The status of the cavity development related to the EUROTRANS injector is presented.

  18. Resonance widths in open microwave cavities studied by harmonic inversion.

    Science.gov (United States)

    Kuhl, U; Höhmann, R; Main, J; Stöckmann, H-J

    2008-06-27

    From the measurement of a reflection spectrum of an open microwave cavity, the poles of the scattering matrix in the complex plane have been determined. The resonances have been extracted by means of the harmonic inversion method. By this, it became possible to resolve the resonances in a regime where the linewidths exceed the mean level spacing up to a factor of 10, a value inaccessible in experiments up to now. The obtained experimental distributions of linewidths were found to be in perfect agreement with predictions from random matrix theory when wall absorption and fluctuations caused by couplings to additional channels are considered.

  19. Resonance widths in open microwave cavities studied by harmonic inversion

    OpenAIRE

    Kuhl, U; Hoehmann, R.; Main, J.; Stoeckmann, H. -J.

    2007-01-01

    From the measurement of a reflection spectrum of an open microwave cavity the poles of the scattering matrix in the complex plane have been determined. The resonances have been extracted by means of the harmonic inversion method. By this it became possible to resolve the resonances in a regime where the line widths exceed the mean level spacing up to a factor of 10, a value inaccessible in experiments up to now. The obtained experimental distributions of line widths were found to be in perfec...

  20. Spatio-temporal wavefront shaping in a microwave cavity

    CERN Document Server

    del Hougne, Philipp; Fink, Mathias; Lerosey, Geoffroy

    2016-01-01

    Controlling waves in complex media has become a major topic of interest, notably through the concepts of time reversal and wavefront shaping. Recently, it was shown that spatial light modulators can counter-intuitively focus waves both in space and time through multiple scattering media when illuminated with optical pulses. In this letter we transpose the concept to a microwave cavity using flat arrays of electronically tunable resonators. We prove that maximizing the Green's function between two antennas at a chosen time yields diffraction limited spatio-temporal focusing. Then, changing the photons' dwell time inside the cavity, we modify the relative distribution of the spatial and temporal degrees of freedom (DoF), and we demonstrate that it has no impact on the field enhancement: wavefront shaping makes use of all available DoF, irrespective of their spatial or temporal nature. Our results prove that wavefront shaping using simple electronically reconfigurable arrays of reflectors is a viable approach to...

  1. One Innovation of Mechanical Polishing Apparatus for Surface Treatment of 6 GHz TESLA Superconducting Cavity

    Institute of Scientific and Technical Information of China (English)

    YU; Guo-long; A.A.Rossi; R.K.Thakur; V.Palmieri

    2013-01-01

    6 GHz spinning seamless superconducting radio frequency(SRF)cavities are a very useful tool for testing alternative surface treatments in the fabrication of TESLA cavity.However,the surface is damaged in internal part for the using of the collapsible mandrel during spinning.The first important step of the

  2. Generation of Entangled States of Multiple Superconducting Quantum Interference Devices in Cavity

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    We propose a scheme for generating the maximally entangled states of many superconducting quantum interference devices (SQUIDs) by using a quantized cavity field and classicalmicrowave pulses in cavity. In the scheme,the maximally entangled states can be generated without requiring the measurement and individual addressing of the SQUIDs.

  3. Loss mechanisms in superconducting thin film microwave resonators

    Energy Technology Data Exchange (ETDEWEB)

    Goetz, Jan, E-mail: jan.goetz@wmi.badw.de; Haeberlein, Max; Wulschner, Friedrich; Zollitsch, Christoph W.; Meier, Sebastian; Fischer, Michael; Fedorov, Kirill G.; Menzel, Edwin P. [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany); Physik-Department, Technische Universität München, 85748 Garching (Germany); Deppe, Frank; Eder, Peter; Xie, Edwar; Gross, Rudolf, E-mail: rudolf.gross@wmi.badw.de [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany); Physik-Department, Technische Universität München, 85748 Garching (Germany); Nanosystems Initiative Munich (NIM), Schellingstraße 4, 80799 München (Germany); Marx, Achim [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany)

    2016-01-07

    We present a systematic analysis of the internal losses of superconducting coplanar waveguide microwave resonators based on niobium thin films on silicon substrates. In particular, we investigate losses introduced by Nb/Al interfaces in the center conductor, which is important for experiments where Al based Josephson junctions are integrated into Nb based circuits. We find that these interfaces can be a strong source for two-level state (TLS) losses, when the interfaces are not positioned at current nodes of the resonator. In addition to TLS losses, for resonators including Al, quasiparticle losses become relevant above 200 mK. Finally, we investigate how losses generated by eddy currents in conductive material on the backside of the substrate can be minimized by using thick enough substrates or metals with high conductivity on the substrate backside.

  4. A coaxial HOM coupler for a superconducting RF cavity and its low-power measurement results

    Institute of Scientific and Technical Information of China (English)

    SUN An; TANG Ya-Zhe; ZHANG Li-Ping; LI Ying-Min; Han-Sung Kim

    2011-01-01

    A resonant buildup of beam-induced fields in a superconducting radio frequency(RF)cavity may make a beam unstable or a superconducting RF cavity quench. Higher-order mode(HOM)couplers are used for damping higher-order modes to avoid such a resonant buildup. A coaxial HOM coupler based on the TTF (TESLA Test Facility)HOM coupler has been designed for the superconducting RF cavities at the Proton Engineering Frontier Project(PEFP)in order to overcome notch frequency shift and feed-through tip melting issues. In order to confirm the HOM coupler design and finalize its structural dimensions, two prototype HOM couplers have been fabricated and tested. Low-power testing and measurement of the HOM couplers has shown that the HOM coupler has good filter properties and can fully meet the damping requirements of the PEFP low-beta superconducting RF linac.

  5. Operation of the 56 MHz superconducting RF cavity in RHIC during run 14

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Q. [Brookhaven National Lab. (BNL), Upton, NY (United States); Belomestnykh, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); Ben-Zvi, I. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hayes, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Mernick, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Severino, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Smith, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zaltsman, A. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-09-11

    A 56 MHz superconducting RF cavity was designed and installed in the Relativistic Heavy Ion Collider (RHIC). It is the first superconducting quarter wave resonator (QWR) operating in a high-energy storage ring. We discuss herein the cavity operation with Au+Au collisions, and with asymmetrical Au+He3 collisions. The cavity is a storage cavity, meaning that it becomes active only at the energy of experiment, after the acceleration cycle is completed. With the cavity at 300 kV, an improvement in luminosity was detected from direct measurements, and the bunch length has been reduced. The uniqueness of the QWR demands an innovative design of the higher order mode dampers with high-pass filters, and a distinctive fundamental mode damper that enables the cavity to be bypassed during the acceleration stage.

  6. Cryogenic Test of a Proof-of-Principle Superconducting RF-Dipole Deflecting and Crabbing Cavity

    CERN Document Server

    De Silva, S U; Delayen, Jean Roger

    2013-01-01

    Recent applications in need of compact low-frequency deflecting and crabbing cavities have initiated the design and development of new superconducting structures operating at high gradients with low losses. Previously, TM$_{110}$ -type deflecting and crabbing cavities were developed and have also been operated successfully. However, these geometries are not favorable designs for low operating frequencies. The superconducting rf-dipole cavity is the first compact deflecting and crabbing geometry that has demonstrated high gradients and high shunt impedance. Since the fundamental operating mode is the lowest mode and is widely separated from the nearest higher order mode, the rf-dipole design is an attractive geometry for effective damping of the higher order modes in high current applications. A 400 MHz rf-dipole cavity was designed, fabricated, and tested as a proof-of-principle cavity. The cavity achieved high operating gradients, and the multipacting levels were easily processed and did not reoccur.

  7. Coherent oscillations in a superconducting flux qubit without microwave pulses

    Energy Technology Data Exchange (ETDEWEB)

    Poletto, Stefano; Lisenfeld, Juergen; Lukashenko, Alexander; Ustinov, Alexey V. [Physikalisches Institut III, Universitaet Erlangen-Nuernberg (Germany); Castellano, Maria Gabriella; Chiarello, Fabio [Istituto di Fotonica e Nanotecnologie del CNR, Roma (Italy); Cosmelli, Carlo [Dipartimento di Fisica and INFN, Universita' di Roma La Sapienza (Italy); Carelli, Pasquale [Universita' degli Studi dell' Acquila (Italy)

    2008-07-01

    We report on observation of coherent oscillations in a superconducting flux qubit by using no microwave excitation but only nanosecond-long dc flux pulses. The investigated circuit is a double-SQUID consisting of a superconducting loop interrupted by a small dc-SQUID, which we control via two bias fluxes {phi}{sub c} and {phi}{sub x}. The potential energy profile of the qubit has the shape of a double well, where the flux {phi}{sub c} controls the height of the barrier between the two minima and the flux {phi}{sub x} changes the potential symmetry. The two computational states of the qubit are identified with the two energy minima and physically correspond to clockwise or anticlockwise circulating currents in the double-SQUID main loop. We observed coherent oscillations, in the frequency range between 8 and 20 GHz, induced by fast pulses of the control flux {phi}{sub c} modulating the barrier between the two potential wells. The quantum dynamics that leads to this kind of oscillations is composed of a non-adiabatic and adiabatic evolution of the two lowest energy states.

  8. Spatiotemporal Wave Front Shaping in a Microwave Cavity

    Science.gov (United States)

    del Hougne, Philipp; Lemoult, Fabrice; Fink, Mathias; Lerosey, Geoffroy

    2016-09-01

    Controlling waves in complex media has become a major topic of interest, notably through the concepts of time reversal and wave front shaping. Recently, it was shown that spatial light modulators can counterintuitively focus waves both in space and time through multiple scattering media when illuminated with optical pulses. In this Letter, we transpose the concept to a microwave cavity using flat arrays of electronically tunable resonators. We prove that maximizing the Green's function between two antennas at a chosen time yields diffraction limited spatiotemporal focusing. Then, changing the photons' dwell time inside the cavity, we modify the relative distribution of the spatial and temporal degrees of freedom (DOF), and we demonstrate that it has no impact on the field enhancement: wave front shaping makes use of all available DOF, irrespective of their spatial or temporal nature. Our results prove that wave front shaping using simple electronically reconfigurable arrays of reflectors is a viable approach to the spatiotemporal control of microwaves, with potential applications in medical imaging, therapy, telecommunications, radar, or sensing. They also offer new fundamental insights regarding the coupling of spatial and temporal DOF in complex media.

  9. First cold test of TESLA superconducting RF cavity in horizontal cryostat (CHECHIA)

    Energy Technology Data Exchange (ETDEWEB)

    Kuzminski, J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); TESLA Collaboration

    1996-04-01

    In the framework of the TESLA project, the horizontal cryostat (CHECHIA) was built to test a superconducting RF cavity equipped with its helium vessel, magnetic shielding, cold tuner, main coupler and higher order modes couplers under realistic conditions before final assembly of eight cavities into TESLA Test Facility cryo-module. The results of the first cold tests in CHECHIA, performed at DESY with a 9-cell cavity (C19) to be used in the TTF injector are presented. (author). 3 refs.

  10. A novel protection layer of superconducting microwave circuits toward a hybrid quantum system

    CERN Document Server

    Lee, Jongmin

    2014-01-01

    We propose a novel multilayer structure based on Bragg layers that can protect a superconducting microwave resonator from photons and blackbody radiation and have little effect on its quality factor. We also discuss a hybrid quantum system exploiting a superconducting microwave circuit and a two-color evanescent field atom trap, where surface-scattered photons and absorption-induced broadband blackbody radiation might deteriorate the system.

  11. Great progress in developing 500 MHz single cell superconducting cavity in China

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Superconducting cavities have been adopted in many kinds of accelerator facilities such as synchrotron radiation light source, hard X-ray free electron laser linac, colliders and energy recovery linacs (ERL). The 500 MHz superconducting cavities will be a candidate to be installed in the high current accelerators and high current ERLs for their large beam aperture, low higher order modes impedance and high current threshold value. This paper presents great progress in the whole sequence of developing 500 MHz superconducting cavity in China. It describes the first in-house successful development of 500 MHz single cell superconducting cavity including the deep-drawing of niobium half cells, electron beam wielding of cavity, surface preparations and vertical testing. The highest accelerating gradient of the fabricated cavity #SCD-02 higher than 10 MV/m was obtained while the quality factor was better than 4×108 at 4.2 K, which has reached the world level of the same kind of cavities.

  12. Defect Detection in Superconducting Radiofrequency Cavity Surface Using C + + and OpenCV

    Science.gov (United States)

    Oswald, Samantha; Thomas Jefferson National Accelerator Facility Collaboration

    2014-03-01

    Thomas Jefferson National Accelerator Facility (TJNAF) uses superconducting radiofrequency (SRF) cavities to accelerate an electron beam. If theses cavities have a small particle or defect, it can degrade the performance of the cavity. The problem at hand is inspecting the cavity for defects, little bubbles of niobium on the surface of the cavity. Thousands of pictures have to be taken of a single cavity and then looked through to see how many defects were found. A C + + program with Open Source Computer Vision (OpenCV) was constructed to reduce the number of hours searching through the images and finds all the defects. Using this code, the SRF group is now able to use the code to identify defects in on-going tests of SRF cavities. Real time detection is the next step so that instead of taking pictures when looking at the cavity, the camera will detect all the defects.

  13. Development of the superconducting 3.9-GHz accelerating cavity at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Arkan, T.; Bauer, P.; Bellantoni, L.; Boffo, C.; Borissov, E.; Carter, H.; Edwards, H.; Foley, M.; Gonin, I.; Khabibouline, T.; Mishra, S.; Mitchell, D.; Polubotko, V.; Rowe, A.; Solyak, N.; Terechkine, I.; /Fermilab

    2005-05-01

    A superconducting third harmonic 3.9 GHz accelerating cavity was proposed to improve the beam quality in the TTF-like photoinjector [1]. Fermilab has developed, built and tested several prototypes, including two copper 9-cell cavities, one niobium 3-cell cavity, and one 9-cell cavity. The helium vessel and frequency tuner for the 9-cell cavity was built and tested as well. In cold tests, we achieved a peak surface magnetic field of {approx}100mT, well above the 70mT specification. The accelerating gradient was likely limited by thermal breakdown. Studies of the higher order modes in the cavity revealed that the existing cavity design with two HOM couplers will provide sufficient damping of these modes. In this paper we discuss the cavity design, results of the studies and plans for further development.

  14. Capture cavity cryomodule for quantum beam experiment at KEK superconducting RF test facility

    Science.gov (United States)

    Tsuchiya, K.; Hara, K.; Hayano, H.; Kako, E.; Kojima, Y.; Kondo, Y.; Nakai, H.; Noguchi, S.; Ohuchi, N.; Terashima, A.; Horikoshi, A.; Semba, T.

    2014-01-01

    A capture cavity cryomodule was fabricated and used in a beam line for quantum beam experiments at the Superconducting RF Test Facility (STF) of the High Energy Accelerator Research Organization in Japan. The cryomodule is about 4 m long and contains two nine-cell cavities. The cross section is almost the same as that of the STF cryomodules that were fabricated to develop superconducting RF cavities for the International Linear Collider. An attempt was made to reduce the large deflection of the helium gas return pipe (GRP) that was observed in the STF cryomodules during cool-down and warm-up. This paper briefly describes the structure and cryogenic performance of the captures cavity cryomodule, and also reports the measured displacement of the GRP and the cavity-containing helium vessels during regular operation.

  15. Capture cavity cryomodule for quantum beam experiment at KEK superconducting RF test facility

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, K.; Hara, K.; Hayano, H.; Kako, E.; Kojima, Y.; Kondo, Y.; Nakai, H.; Noguchi, S.; Ohuchi, N.; Terashima, A. [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Horikoshi, A.; Semba, T. [Hitachi, Ltd., Hitachi Works, Hitachi, Ibaraki 317-8511 (Japan)

    2014-01-29

    A capture cavity cryomodule was fabricated and used in a beam line for quantum beam experiments at the Superconducting RF Test Facility (STF) of the High Energy Accelerator Research Organization in Japan. The cryomodule is about 4 m long and contains two nine-cell cavities. The cross section is almost the same as that of the STF cryomodules that were fabricated to develop superconducting RF cavities for the International Linear Collider. An attempt was made to reduce the large deflection of the helium gas return pipe (GRP) that was observed in the STF cryomodules during cool-down and warm-up. This paper briefly describes the structure and cryogenic performance of the captures cavity cryomodule, and also reports the measured displacement of the GRP and the cavity-containing helium vessels during regular operation.

  16. Microwave-induced excess quasiparticles in superconducting resonators measured through correlated conductivity fluctuations

    NARCIS (Netherlands)

    De Visser, P.J.; Baselmans, J.J.A.; Yates, S.J.C.; Diener, P.; Endo, A.; Klapwijk, T.M.

    2012-01-01

    We have measured the number of quasiparticles and their lifetime in aluminium superconducting microwave resonators. The number of excess quasiparticles below 160 mK decreases from 72 to 17 μm−3 with a 6 dB decrease of the microwave power. The quasiparticle lifetime increases accordingly from 1.4 to

  17. Eigenmode simulations of third harmonic superconducting accelerating cavities for FLASH and the European XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pei [Manchester Univ. (United Kingdom). School of Physics and Astronomy; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Baboi, Nicoleta [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Jones, Roger M. [Manchester Univ. (United Kingdom). School of Physics and Astronomy; The Cockcroft Institute, Daresbury, Warrington (United Kingdom)

    2012-06-15

    The third harmonic nine-cell cavity (3.9 GHz) for FLASH and the European XFEL has been investigated using simulations performed with the computer code CST Microwave Studio registered. The band structure of monopole, dipole, quadrupole and sextupole modes for an ideal cavity has been studied. The higher order modes for the nine-cell structure are compared with that of the cavity mid-cell. The R/Q of these eigenmodes are calculated.

  18. Analysis of HOM Properties of Superconducting Parallel-Bar Deflecting/Crabbing Cavities

    Energy Technology Data Exchange (ETDEWEB)

    S.U. De Silva, J.R. Delayen

    2011-07-01

    The superconducting parallel-bar cavity is currently being considered for a number of deflecting and crabbing applications due to improved properties and compact design geometries. The 499 MHz deflecting cavity proposed for the Jefferson Lab 12 GeV upgrade and the 400 MHz crab cavity for the proposed LHC luminosity upgrade are two of the major applications. For high current applications the higher order modes must be damped to acceptable levels to eliminate any beam instabilities. The frequencies and R/Q of the HOMs and mode separation are evaluated and compared for different parallel-bar cavity designs.

  19. Method for determining hydrogen mobility as a function of temperature in superconducting niobium cavities

    Science.gov (United States)

    May, Robert

    2008-03-11

    A method for determining the mobility of hydrogen as a function of temperature in superconducting niobium cavities comprising: 1) heating a cavity under test to remove free hydrogen; 2) introducing hydrogen-3 gas into the cavity; 3) cooling the cavity to allow absorption of hydrogen-3; and 4) measuring the amount of hydrogen-3 by: a) cooling the cavity to about 4.degree. K while flowing a known and regulated amount of inert carrier gas such as argon or helium into the cavity; b) allowing the cavity to warm at a stable rate from 4.degree. K to room temperature as it leaves the chamber; and c) directing the exit gas to an ion chamber radiation detector.

  20. The Rise of Ingot Niobium as a Material for Superconducting Radiofrequency Accelerating Cavities

    CERN Document Server

    Kneisel, P; Dhakal, P; Saito, K; Singer, W; Singer, X; Myneni, G R

    2013-01-01

    As a result of a collaboration between Jefferson Lab and niobium manufacturer CBMM, ingot niobium was explored as a possible material for superconducting radiofrequency (SRF) cavity fabrication. The first single cell cavity from large grain high purity niobium was fabricated and successfully tested at Jefferson Lab in 2004. This pioneering work triggered research activities in other SRF laboratories around the world. Large grain niobium became not only an interesting alternative material for cavity builders, but also material scientists and surface scientists were eager to participate in the development of this material. Most of the original expectations for this material of being less costly and allowing less expensive fabrication and treatment procedures at the same performance levels in cavities have been met. Many single cell cavities made from material of different suppliers have been tested successfully and several multi-cell cavities have shown the performances comparable to the best cavities made from...

  1. Superconducting Pb stripline resonators in parallel magnetic field and their application for microwave spectroscopy

    Science.gov (United States)

    Ebensperger, Nikolaj G.; Thiemann, Markus; Dressel, Martin; Scheffler, Marc

    2016-11-01

    Planar superconducting microwave resonators are key elements in a variety of technical applications and also act as sensitive probes for microwave spectroscopy of various materials of interest in present solid state research. Here superconducting Pb is a suitable material as a basis for microwave stripline resonators. To utilize Pb stripline resonators in a variable magnetic field (e.g. in ESR measurements), the electrodynamics of such resonators in a finite magnetic field has to be fully understood. Therefore we performed microwave transmission measurements (with ample applied power to work in linear response) on superconducting Pb stripline resonators in a variable, parallel magnetic field. We determined surface resistance, penetration depth, as well as real and imaginary parts, {σ }1 and {σ }2, of the complex conductivity of superconducting Pb as a function of a magnetic field. Here we find features reminiscent of those in temperature-dependent measurements, such as a maximum in {σ }1 (coherence peak). At magnetic fields above the critical field of this type-I superconductor we still find a low-loss microwave response, which we assign to remaining superconductivity in the form of filaments within the Pb. Hysteresis effects are found in the quality factor of resonances once the swept magnetic field has exceeded the critical magnetic field. This is due to normal conducting areas that are pinned and can therefore persist in the superconducting phase. Besides zero-field-cooling we show an alternative way to eliminate these even at T\\lt {T}c. Based on our microwave data, we also determine the critical magnetic field and the critical temperature of Pb in a temperature range between 1.6 K and 6.5 K and magnetic fields up to 140 mT, showing good agreement with BCS predictions. We also study a Sn sample in a Pb resonator to demonstrate the applicability of superconducting Pb stripline resonators in the experimental study of other (super-)conducting materials in a

  2. Eigenfunction Images of a Wave Chaotic Microwave Cavity

    Science.gov (United States)

    Gokirmak, Ali; Anlage, Steven

    1996-03-01

    We study the eigenfunctions of the Helmholtz equation in a two-dimensional region of space defined by the intersection of four circles forming a bow-tie. In this geometry, all typical ray-trajectory orbits are chaotic and all periodic orbits are isolated. The experiments are performed in a thin microwave resonator analog made from copper-plated brass which is excited with electric field probes entering through the top plate. (Paul So, S. M. Anlage, E. Ott, and R. N. Oerter, Phys. Rev. Lett.74), 2662 (1995). A quantity proportional to the local electric field squared is measured by dragging a small metallic perturbation about the interior of the cavity and noting the change in resonant frequency of the entire cavity. Images of the eigenmodes are constructed, and calculations of two-point correlation functions are performed on these images. We shall discuss several different imaging methods and explore how the size and the shape of the perturbation affects the resulting images. Supported by NSF NYI grant DMR-9258183.

  3. Development of Infrastructure Facilities for Superconducting RF Cavity Fabrication, Processing and 2 K Characterization at RRCAT

    Science.gov (United States)

    Joshi, S. C.; Raghavendra, S.; Jain, V. K.; Puntambekar, A.; Khare, P.; Dwivedi, J.; Mundra, G.; Kush, P. K.; Shrivastava, P.; Lad, M.; Gupta, P. D.

    2017-02-01

    An extensive infrastructure facility is being established at Raja Ramanna Centre for Advanced Technology (RRCAT) for a proposed 1 GeV, high intensity superconducting proton linac for Indian Spallation Neutron Source. The proton linac will comprise of a large number of superconducting Radio Frequency (SCRF) cavities ranging from low beta spoke resonators to medium and high beta multi-cell elliptical cavities at different RF frequencies. Infrastructure facilities for SCRF cavity fabrication, processing and performance characterization at 2 K are setup to take-up manufacturing of large number of cavities required for future projects of Department of Atomic Energy (DAE). RRCAT is also participating in a DAE’s approved mega project on “Physics and Advanced technology for High intensity Proton Accelerators” under Indian Institutions-Fermilab Collaboration (IIFC). In the R&D phase of IIFC program, a number of high beta, fully dressed multi-cell elliptical SCRF cavities will be developed in collaboration with Fermilab. A dedicated facility for SCRF cavity fabrication, tuning and processing is set up. SCRF cavities developed will be characterized at 2K using a vertical test stand facility, which is already commissioned. A Horizontal Test Stand facility has also been designed and under development for testing a dressed multi-cell SCRF cavity at 2K. The paper presents the infrastructure facilities setup at RRCAT for SCRF cavity fabrication, processing and testing at 2K.

  4. 3D multiphysics modeling of superconducting cavities with a massively parallel simulation suite

    Directory of Open Access Journals (Sweden)

    Oleksiy Kononenko

    2017-10-01

    Full Text Available Radiofrequency cavities based on superconducting technology are widely used in particle accelerators for various applications. The cavities usually have high quality factors and hence narrow bandwidths, so the field stability is sensitive to detuning from the Lorentz force and external loads, including vibrations and helium pressure variations. If not properly controlled, the detuning can result in a serious performance degradation of a superconducting accelerator, so an understanding of the underlying detuning mechanisms can be very helpful. Recent advances in the simulation suite ace3p have enabled realistic multiphysics characterization of such complex accelerator systems on supercomputers. In this paper, we present the new capabilities in ace3p for large-scale 3D multiphysics modeling of superconducting cavities, in particular, a parallel eigensolver for determining mechanical resonances, a parallel harmonic response solver to calculate the response of a cavity to external vibrations, and a numerical procedure to decompose mechanical loads, such as from the Lorentz force or piezoactuators, into the corresponding mechanical modes. These capabilities have been used to do an extensive rf-mechanical analysis of dressed TESLA-type superconducting cavities. The simulation results and their implications for the operational stability of the Linac Coherent Light Source-II are discussed.

  5. Ultimate Gradient Limitation in Niobium Superconducting Accelerating Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Checchin, Mattia [Illinois Inst. of Technology, Chicago, IL (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Grassellino, Anna [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Martinello, Martina [Illinois Inst. of Technology, Chicago, IL (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Posen, Sam [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Romanenko, Alexander [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Zasadzinski, John [Illinois Inst. of Technology, Chicago, IL (United States)

    2016-06-01

    The present study is addressed to the theoretical description of the ultimate gradient limitation in SRF cavities. Our intent is to exploit experimental data to confirm models which provide feed-backs on how to improve the current state-of-art. New theoretical insight on the cavities limiting factor can be suitable to improve the quench field of N-doped cavities, and therefore to take advantage of high Q0 at high gradients.

  6. Ultimate Gradient Limitation in Niobium Superconducting Accelerating Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Checchin, Mattia [IIT, Chicago; Grassellino, Anna [Fermilab; Martinello, Martina [Fermilab; Posen, Sam [Fermilab; Romanenko, Alexander [Fermilab; Zasadzinski, John [IIT, Chicago (main)

    2016-06-01

    The present study is addressed to the theoretical description of the ultimate gradient limitation in SRF cavities. Our intent is to exploit experimental data to confirm models which provide feed-backs on how to improve the current state-of-art. New theoretical insight on the cavities limiting factor can be suitable to improve the quench field of N-doped cavities, and therefore to take advantage of high Q0 at high gradients.

  7. A Cosmic Microwave Background Radiation Polarimeter Using Superconducting Bearings

    CERN Document Server

    Hanany, S; Johnson, B; Jones, T; Hull, J R; Ma, K B

    2003-01-01

    Measurements of the polarization of the cosmic microwave background (CMB) radiation are expected to significantly increase our understanding of the early universe. We present a design for a CMB polarimeter in which a cryogenically cooled half wave plate rotates by means of a high-temperature superconducting (HTS) bearing. The design is optimized for implementation in MAXIPOL, a balloon-borne CMB polarimeter. A prototype bearing, consisting of commercially available ring-shaped permanent magnet and an array of YBCO bulk HTS material, has been constructed. We measured the coefficient of friction as a function of several parameters including temperature between 15 and 80 K, rotation frequency between 0.3 and 3.5 Hz, levitation distance between 6 and 10 mm, and ambient pressure between 10^{-7} and 1 torr. The low rotational drag of the HTS bearing allows rotations for long periods of time with minimal input power and negligible wear and tear thus making this technology suitable for a future satellite mission.

  8. Higher Order Mode Properties of Superconducting Two-Spoke Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Hopper, C. S.; Delayen, J. R.; Olave, R. G.

    2011-07-01

    Multi-Spoke cavities lack the cylindrical symmetry that many other cavity types have, which leads to a more complex Higher Order Mode (HOM) spectrum. In addition, spoke cavities offer a large velocity acceptance which means we must perform a detailed analysis of the particle velocity dependence for each mode's R/Q. We present here a study of the HOM properties of two-spoke cavities designed for high-velocity applications. Frequencies, R/Q and field profiles of HOMs have been calculated and are reported.

  9. On active disturbance rejection based control design for superconducting RF cavities

    Science.gov (United States)

    Vincent, John; Morris, Dan; Usher, Nathan; Gao, Zhiqiang; Zhao, Shen; Nicoletti, Achille; Zheng, Qinling

    2011-07-01

    Superconducting RF (SRF) cavities are key components of modern linear particle accelerators. The National Superconducting Cyclotron Laboratory (NSCL) is building a 3 MeV/u re-accelerator (ReA3) using SRF cavities. Lightly loaded SRF cavities have very small bandwidths (high Q) making them very sensitive to mechanical perturbations whether external or self-induced. Additionally, some cavity types exhibit mechanical responses to perturbations that lead to high-order non-stationary transfer functions resulting in very complex control problems. A control system that can adapt to the changing perturbing conditions and transfer functions of these systems would be ideal. This paper describes the application of a control technique known as "Active Disturbance Rejection Control" (ARDC) to this problem.

  10. Coupling erbium spins to a three-dimensional superconducting cavity at zero magnetic field

    CERN Document Server

    Chen, Yu-Hui; Longdell, Jevon J

    2015-01-01

    We experimentally demonstrate the coupling of an erbium doped crystal to a three-dimensional superconducting cavity of a $10^5$ $Q$-factor at zero magnetic field. A tunable loop-gap resonator is used to match the cavity frequency to the hyperfine transitions of an erbium sample. The observed spectrum differs from what predicted by the published spin Hamiltonian parameters. The narrow cavity linewidth also enables the observations of asymmetric lineshapes of these hyperfine transitions, which are understood as the super-hyperfine interactions between the erbium ions and their adjacent yttrium ions. Such a broadly tunable superconducting cavity architecture, from 1.6 GHz to 4.0 GHz in the current design, is promising in building hybrid quantum systems.

  11. Open Microwave Cavity for use in a Purcell Enhancement Cooling Scheme

    CERN Document Server

    Evetts, N; Bizzotto, D; Longuevergne, D; Hardy, W N

    2016-01-01

    A microwave cavity is described which can be used to cool lepton plasmas for potential use in synthesis of antihydrogen. The cooling scheme is an incarnation of the Purcell Effect: when plasmas are coupled to a microwave cavity, the plasma cooling rate is resonantly enhanced through increased spontaneous emission of cyclotron radiation. The cavity forms a three electrode section of a Penning-Malmberg trap and has a bulged cylindrical geometry with open ends aligned with the magnetic trapping axis. This allows plasmas to be injected and removed from the cavity without the need for moving parts while maintaining high quality factors for resonant modes. The cavity includes unique surface preparations for adjusting the cavity quality factor and achieving anti-static shielding using thin layers of nichrome and colloidal graphite respectively. Geometric design considerations for a cavity with strong cooling power and low equilibrium plasma temperatures are discussed. Cavities of this weak-bulge design will be appli...

  12. On the Field Dependent Surface Resistance Observed in Superconducting Niobium Cavities

    CERN Document Server

    Weingarten, W

    2009-01-01

    A quantitative description is presented of the non-linear current-voltage response in superconducting niobium cavities for accelerator application. It is based on a fit for a large sample of data from cavity tests of different kind. Trial functions for the surface resistance describing this non-linear relation are established by a least square data fit. Those trial functions yielding the best fit are quantitatively explained by basic physics.

  13. Quantum search via superconducting quantum interference devices in a cavity

    Institute of Scientific and Technical Information of China (English)

    Lu Yan; Dong Ping; Xue Zheng-Yuan; Cao Zhuo-Liang

    2007-01-01

    We propose a scheme for implementing the Grover search algorithm with two superconducing quantum interference devices (SQUIDs) in a cavity. Our scheme only requires single resonant interaction of the SQUID-cavity system and the required interaction time is very short. The simplicity of the process and the reduction of the interaction time are important for restraining decoherence.

  14. Design, prototyping and testing of a compact superconducting double quarter wave crab cavity

    CERN Document Server

    Xiao, Binping; Belomestnykh, Sergey; Ben-Zvi, Ilan; Calaga, Rama; Cullen, Chris; Capatina, Ofelia; Hammons, Lee; Li, Zenghai; Marques, Carlos; Skaritka, John; Verdú-Andres, Silvia; Wu, Qiong

    2015-01-01

    A novel design of superconducting Crab Cavity was proposed and designed at Brookhaven National Laboratory. The new cavity shape is a Double Quarter Wave or DQWCC. After fabrication and surface treatments, the niobium proof-of-principle cavity was cryogenically tested in a vertical cryostat. The cavity is extremely compact yet has a low frequency of 400 MHz, an essential property for service for the Large Hadron Collider luminosity upgrade. The electromagnetic properties of the cavity are also well matched for this demanding task. The demonstrated deflecting voltage of 4.6 MV is well above the requirement for a crab cavity in the future High Luminosity LHC of 3.34 MV. In this paper we present the design, prototyping and test results of the DQWCC.

  15. Three-dimensional self-consistent simulations of multipacting in superconducting radio frequency cavities

    Energy Technology Data Exchange (ETDEWEB)

    Chet Nieter

    2010-12-01

    Superconducting radio frequency (SRF) cavities are a popular choice among researchers designing new accelerators because of the reduced power losses due to surface resistance. However, SRF cavities still have unresolved problems, including the loss of power to stray electrons. Sources of these electrons are field emission from the walls and ionization of background gas, but the predominant source is secondary emission yield (SEY) from electron impact. When the electron motion is in resonance with the cavity fields the electrons strike the cavity surface repeatedly creating a resonant build up of electrons referred to as multipacting. Cavity shaping has successfully reduced multipacting for cavities used in very high energy accelerators. However, multipacting is still a concern for the cavity power couplers, where shaping is not possible, and for cavities used to accelerate particles at moderate velocities. This Phase II project built upon existing models in the VORPAL simulation framework to allow for simulations of multipacting behavior in SRF cavities and their associated structures. The technical work involved allowed existing models of secondary electron generation to work with the complex boundary conditions needed to model the cavity structures. The types of data produced by VORPAL were also expanded to include data common used by cavity designers to evaluate cavity performance. Post-processing tools were also modified to provide information directly related to the conditions that produce multipacting. These new methods were demonstrated by running simulations of a cavity design being developed by researchers at Jefferson National Laboratory to attempt to identify the multipacting that would be an issue for the cavity design being considered. These simulations demonstrate that VORPAL now has the capabilities to assist researchers working with SRF cavities to understand and identify possible multipacting issues with their cavity designs.

  16. Wakefield calculation for superconducting TM110 cavity without azimuthal symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Bellantoni, Leo; /Fermilab; Burt, Graeme; /Lancaster U.

    2006-08-01

    The 3.9GHz TM{sub 110} mode deflecting cavity developed at FNAL has many applications, including use as a longitudinal bunch profile diagnostic, and as a crab cavity candidate for the ILC. These applications involve beams with substantial time structure. For the 13-cell version intended for the bunch profile application, long-range wakes have been evaluated in the frequency domain and short-range wakes have been evaluated in the time domain. Higher-order interactions of the main field in the cavity with the beam have also been parameterized. Pedagogic derivations are included as appendices.

  17. Design and simulation of 3½-cell superconducting gun cavity and beam dynamics studies of the SASE-FEL System at the Institute of Accelerator Technologies at Ankara University

    Science.gov (United States)

    Yildiz, H. Duran; Cakir, R.; Porsuk, D.

    2015-06-01

    Design and simulation of a superconducting gun cavity with 3½ cells have been studied in order to give the first push to the electron beam for the linear accelerating system at The Institute of Accelerator Technologies at Ankara University. Electrons are accelerated through the gun cavity with the help of the Radiofrequency power suppliers from cryogenic systems. Accelerating gradient should be as high as possible to accelerate electron beam inside the cavity. In this study, electron beam reaches to 9.17 MeV energy at the end of the gun cavity with the accelerating gradient; Ec=19.21 MV/m. 1.3 GHz gun cavity consists of three TESLA-like shaped cells while the special designed gun-cell includes a cathode plug. Optimized important beam parameters inside the gun cavity, average beam current 3 mA, transverse emittance 2.5 mm mrad, repetition rate 30 MHz and other parameters are obtained for the SASE-FEL System. The Superfish/Poisson program is used to design each cell of the superconducting cavity. Superconducting gun cavity and Radiofrequency properties are studied by utilizing 2D Superfish/Poisson, 3D Computer Simulation Technology Microwave Studio, and 3D Computer Simulation Technology Particle Studio. Superfish/Poisson is also used to optimize the geometry of the cavity cells to get the highest accelerating gradient. The behavior of the particles along the beamline is included in this study. ASTRA Code is used to track the particles.

  18. The secondary electron emission coefficient of the material for the superconducting cavity input coupler

    CERN Document Server

    Kijima, Y; Furuya, T; Michizono, S I; Mitsunobu, S; Noer, R J

    2002-01-01

    The secondary electron emission (SEE) coefficients have been measured, for materials used in the coupler for KEKB superconducting cavities, i.e. Copper, Stainless steel plated with Copper, Niobium and Ceramic. We show that the electron bombardment is effective in decreasing the SEE coefficient of the metal surfaces, and the TiN coating and window fabrication processes influence the secondary electron yield. (author)

  19. Plasma treatment of bulk niobium surface for superconducting rf cavities: Optimization of the experimental conditions on flat samples

    Directory of Open Access Journals (Sweden)

    M. Rašković

    2010-11-01

    Full Text Available Accelerator performance, in particular the average accelerating field and the cavity quality factor, depends on the physical and chemical characteristics of the superconducting radio-frequency (SRF cavity surface. Plasma based surface modification provides an excellent opportunity to eliminate nonsuperconductive pollutants in the penetration depth region and to remove the mechanically damaged surface layer, which improves the surface roughness. Here we show that the plasma treatment of bulk niobium (Nb presents an alternative surface preparation method to the commonly used buffered chemical polishing and electropolishing methods. We have optimized the experimental conditions in the microwave glow discharge system and their influence on the Nb removal rate on flat samples. We have achieved an etching rate of 1.7  μm/min⁡ using only 3% chlorine in the reactive mixture. Combining a fast etching step with a moderate one, we have improved the surface roughness without exposing the sample surface to the environment. We intend to apply the optimized experimental conditions to the preparation of single cell cavities, pursuing the improvement of their rf performance.

  20. Theoretical estimates of maximum fields in superconducting resonant radio frequency cavities: Stability theory, disorder, and laminates

    CERN Document Server

    Liarte, Danilo B; Transtrum, Mark K; Catelani, Gianluigi; Liepe, Matthias; Sethna, James P

    2016-01-01

    We review our work on theoretical limits to the performance of superconductors in high magnetic fields parallel to their surfaces. These limits are of key relevance to current and future accelerating cavities, especially those made of new higher-$T_c$ materials such as Nb$_3$Sn, NbN, and MgB$_2$. We summarize our calculations of the so-called superheating field $H_{\\mathrm{sh}}$, beyond which flux will spontaneously penetrate even a perfect superconducting surface and ruin the performance. We briefly discuss experimental measurements of the superheating field, comparing to our estimates. We explore the effects of materials anisotropy and disorder. Will we need to control surface orientation in the layered compound MgB$_2$? Can we estimate theoretically whether dirt and defects make these new materials fundamentally more challenging to optimize than niobium? Finally, we discuss and analyze recent proposals to use thin superconducting layers or laminates to enhance the performance of superconducting cavities. T...

  1. Development of niobium spoke cavities for a superconducting light-ion Linac.

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K. W.

    1998-11-18

    This paper reports the development of 350 MHz niobium superconducting cavities for the velocity range 0.2< v/c <0.6. Such cavities could be used to form a linac of exceptional flexibility, capable of efficiently accelerating beams of either protons, deuterons, or any of a wide range of light ions, at intensities sufficient for a production beam for a radioactive beam facility. Results of numerical modeling for several resonator geometries are presented. The design and construction status of prototype niobium cavities is discussed.

  2. Development of niobium spoke cavities for a superconducting light-ion linac

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K W; Kedzie, M; Delayen, J R; Piller, C

    1998-08-01

    This paper reports the development of 350 MHz niobium superconducting cavities for the velocity range 0.2 < v/c < 0.6. Such cavities could be used to form a linac of exceptional flexibility, capable of efficiently accelerating beams of either protons, deuterons, or any of a wide range of ions, at intensities sufficient for a production beam for a radioactive facility. Results of numerical modeling for several resonator geometries are presented. The design and construction status of prototype niobium cavities is discussed.

  3. First cold test of TESLA superconducting RF cavity in horizontal cryostat (CHECHIA)

    Energy Technology Data Exchange (ETDEWEB)

    Kuzminski, J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); TESLA Collaboration

    1996-01-01

    In the framework of the TESLA project, the horizontal cryostat (CHECHIA) was built to test a superconducting RF cavity equipped with its helium vessel, magnetic shielding, cold tuner, main coupler and higher order modes couplers under realistic conditions before final assembly of eight cavities into TESLA Test Facility cryo-module. The results of the first cold tests in CHECHIA, performed at DESY with a 9-cell cavity (C19) to be used in the TTF injector are presented. Additional measurements of mechanical stability under RF operation (frequency variation with He pressure, Lorentz detuning) and cryogenic and electric measurements of power dissipation are presented. (author). 3 refs.

  4. Multipole Field Effects for the Superconducting Parallel-Bar Deflecting/Crabbing Cavities

    Energy Technology Data Exchange (ETDEWEB)

    De Silva, Payagalage Subashini Uddika [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States) and Old Dominion University, Norfolk, VA (United States); Delayen, Jean Roger [Old Dominion University, Norfolk, VA (United States)

    2012-09-01

    The superconducting parallel-bar deflecting/crabbing cavity is currently being considered as one of the design options in rf separation for the Jefferson Lab 12 GeV upgrade and for the crabbing cavity for the proposed LHC luminosity upgrade. Knowledge of multipole field effects is important for accurate beam dynamics study of rf structures. The multipole components can be accurately determined numerically using the electromagnetic surface field data in the rf structure. This paper discusses the detailed analysis of those components for the fundamental deflecting/crabbing mode and higher order modes in the parallel-bar deflecting/crabbing cavity.

  5. Comparison of high order modes damping techniques for 800 MHz single cell superconducting cavities

    CERN Document Server

    Shashkov, Ya V; Zobov, M M

    2014-01-01

    Currently, applications of 800 MHz harmonic cavities in both bunch lengthening and shortening regimes are under consideration and discussion in the framework of the High Luminosity LHC project. In this paper we study electromagnetic characteristics of high order modes (HOM) for a single cell 800 MHz superconducting cavity and arrays of such cavities connected by drifts tubes. Different techniques for the HOM damping such as beam pipe grooves, coaxial-notch loads, fluted beam pipes etc. are investigated and compared. The influence of the sizes and geometry of the drift tubes on the HOM damping is analyzed.

  6. Investigation on the fabrication of the 3rd harmonic superconducting cavity for the SSRF storage ring

    Institute of Scientific and Technical Information of China (English)

    MA Zhen-Yu; MA Guang-Ming; YU Hai-Bo; MAO Dong-Qing; FENG Zi-Qiang; HOU Hong-Tao; LIU Jian-Fei

    2009-01-01

    A third harmonic superconducting niobium cavity has been proposed for installation in the Shang-hai Synchrotron Radiation Facility (SSRF) storage ring to improve the Touschek lifetime. In order to investigate the feasibility of the superconducting cavity fabrication indigenously and the possibility to master the fabrica-tion techniques, cavities were fabricated from copper and niobium sheets by deep drawing and electron-beam welding, and a series of measurements, such as resonant frequency, shape dimensions and wall thickness, were carried out during this process. After analysis of various problems existing in the fabrication process, tech-nique improvements were proposed, and finally the precise shape as designed and resonant frequency within 1.2 MHz were achieved for the new completed cavities. In addition, full annealing was finally proved to be a good cure for niobium sheets' tearing up during deep drawing. By fabricating niobium cavities successfully, some problems to the next step were cleared. This paper introduces the process of cavity fabrication and its technique improvements towards forming, and the initial vertical test result of niobium cavity is also presented.

  7. Review of ingot niobium as a material for superconducting radiofrequency accelerating cavities

    Energy Technology Data Exchange (ETDEWEB)

    Kneisel, P., E-mail: kneisel@jlab.org [Jefferson Lab, Newport News, VA 23606 (United States); Ciovati, G.; Dhakal, P. [Jefferson Lab, Newport News, VA 23606 (United States); Saito, K. [Michigan State University, East Lansing, MI 48824 (United States); Singer, W.; Singer, X. [DESY, Notkestrasse 85, D-22607 Hamburg (Germany); Myneni, G.R., E-mail: rao@jlab.org [Jefferson Lab, Newport News, VA 23606 (United States)

    2015-02-21

    As a result of collaboration between Jefferson Lab and niobium manufacturer Companhia Brasileira de Metalurgia e Mineração (CBMM), ingot niobium was explored as a possible material for superconducting radiofrequency (SRF) cavity fabrication. The first single cell cavity from large-grain high purity niobium was fabricated and successfully tested at Jefferson Lab in 2004. This work triggered research activities in other SRF laboratories around the world. Large-grain (LG) niobium became not only an interesting alternative material for cavity builders, but also material scientists and surface scientists were eager to participate in the development of this technology. Many single cell cavities made from material of different suppliers have been tested successfully and several multi-cell cavities have shown performances comparable to the best cavities made from standard fine-grain niobium. Several 9-cell cavities fabricated by Research Instruments and tested at DESY exceeded the best performing fine grain cavities with a record accelerating gradient of E{sub acc}=45.6 MV/m. The quality factor of those cavities was also higher than that of fine-grain (FG) cavities processed with the same methods. Such performance levels push the state-of-the art of SRF technology and are of great interest for future accelerators. This contribution reviews the development of ingot niobium technology and highlights some of the differences compared to standard FG material and opportunities for further developments.

  8. Review of ingot niobium as a material for superconducting radiofrequency accelerating cavities

    Science.gov (United States)

    Kneisel, P.; Ciovati, G.; Dhakal, P.; Saito, K.; Singer, W.; Singer, X.; Myneni, G. R.

    2015-02-01

    As a result of collaboration between Jefferson Lab and niobium manufacturer Companhia Brasileira de Metalurgia e Mineração (CBMM), ingot niobium was explored as a possible material for superconducting radiofrequency (SRF) cavity fabrication. The first single cell cavity from large-grain high purity niobium was fabricated and successfully tested at Jefferson Lab in 2004. This work triggered research activities in other SRF laboratories around the world. Large-grain (LG) niobium became not only an interesting alternative material for cavity builders, but also material scientists and surface scientists were eager to participate in the development of this technology. Many single cell cavities made from material of different suppliers have been tested successfully and several multi-cell cavities have shown performances comparable to the best cavities made from standard fine-grain niobium. Several 9-cell cavities fabricated by Research Instruments and tested at DESY exceeded the best performing fine grain cavities with a record accelerating gradient of Eacc=45.6 MV/m. The quality factor of those cavities was also higher than that of fine-grain (FG) cavities processed with the same methods. Such performance levels push the state-of-the art of SRF technology and are of great interest for future accelerators. This contribution reviews the development of ingot niobium technology and highlights some of the differences compared to standard FG material and opportunities for further developments.

  9. Coupling erbium spins to a three-dimensional superconducting cavity at zero magnetic field

    Science.gov (United States)

    Chen, Yu-Hui; Fernandez-Gonzalvo, Xavier; Longdell, Jevon J.

    2016-08-01

    We experimentally demonstrate the coupling at zero magnetic field of an isotopically pure erbium-doped yttrium orthosilicate crystal (167Er:YSO ) to a three-dimensional superconducting cavity with a Q factor of 105. A tunable loop-gap resonator is used and its resonance frequency is tuned to observe the hyperfine transitions of the erbium sample. The observed spectrum differs from what is predicted by the published spin Hamiltonian parameters. The narrow cavity linewidth also enables the observation of asymmetric line shapes for these hyperfine transitions. Such a broadly tunable superconducting cavity (from 1.6 to 4.0 GHz in the current design) is a promising device for building hybrid quantum systems.

  10. Cryomodule tests of four Tesla-like cavities in the Superconducting RF Test Facility at KEK

    Directory of Open Access Journals (Sweden)

    Eiji Kako

    2010-04-01

    Full Text Available A 6-m cryomodule including four Tesla-like cavities was developed, and was tested in the Superconducting RF Test Facility phase-I at KEK. The performance as a total superconducting cavity system was checked in the cryomodule tests at 2 K with high rf power. One of the four cavities achieved a stable pulsed operation at 32  MV/m, which is higher than the operating accelerating gradient in the ILC. The maximum accelerating gradient (E_{acc,max⁡} obtained in the vertical cw tests was maintained or slightly improved in the cryomodule tests operating in a pulse mode. Compensation of the Lorentz force detuning at 31  MV/m was successfully demonstrated by a piezo tuner and predetuning.

  11. Nanostructural features affecting superconducting radio frequency niobium cavities revealed using TEM and EELS

    CERN Document Server

    Trenikhina, Y; Kwon, J; Zuo, J -M; Zasadzinski, J F

    2015-01-01

    Nanoscale defect structure within the magnetic penetration depth of ~100nm is key to the performance limitations of niobium superconducting radio frequency (SRF) cavities. Using a unique combination of advanced thermometry during cavity RF measurements, and TEM structural and compositional characterization of the samples extracted from cavity walls, we discover the existence of nanoscale hydrides in electropolished cavities limited by the high field Q slope, and show the decreased hydride formation in the electropolished cavity after 120C baking. Furthermore, we demonstrate that adding 800C hydrogen degassing followed by light buffered chemical polishing restores the hydride formation to the pre-120C bake level. We also show absence of niobium oxides along the grain boundaries and the modifications of the surface oxide upon 120C bake.

  12. Superconductivity applications for infrared and microwave devices; Proceedings of the Meeting, Orlando, FL, Apr. 19, 20, 1990

    Science.gov (United States)

    Bhasin, Kul B. (Editor); Heinen, Vernon O. (Editor)

    1990-01-01

    Various papers on superconductivity applications for IR and microwave devices are presented. The individual topics addressed include: pulsed laser deposition of Tl-Ca-Ba-Cu-O films, patterning of high-Tc superconducting thin films on Si substrates, IR spectra and the energy gap in thin film YBa2Cu3O(7-delta), high-temperature superconducting thin film microwave circuits, novel filter implementation utilizing HTS materials, high-temperature superconductor antenna investigations, high-Tc superconducting IR detectors, high-Tc superconducting IR detectors from Y-Ba-Cu-O thin films, Y-Ba-Cu0-O thin films as high-speed IR detectors, fabrication of a high-Tc superconducting bolometer, transition-edge microbolometer, photoresponse of YBa2Cu3O(7-delta) granular and epitaxial superconducting thin films, fast IR response of YBCO thin films, kinetic inductance effects in high-Tc microstrip circuits at microwave frequencies.

  13. A coupled microwave-cavity system in the Rydberg-atom cavity detector for dark matter axions

    CERN Document Server

    Tada, M; Shibata, M; Kominato, K; Ogawa, I; Funahashi, H; Yamamoto, K; Matsuki, S

    2001-01-01

    A coupled microwave-cavity system of cylindrical TM$_{010}$ single-mode has been developed to search for dark matter axions around 10 $\\mu {\\rm eV}$(2.4 GHz) with the Rydberg-atom cavity detector at 10 mK range temperature. One component of the coupled cavity (conversion cavity) made of oxygen-free high-conductivity copper is used to convert an axion into a single photon with the Primakoff process in the strong magnetic field, while the other component (detection cavity) made of Nb is utilized to detect the converted photons with Rydberg atoms passed through it without magnetic field. Top of the detection cavity is attached to the bottom flange of the mixing chamber of a dilution refrigerator, thus the whole cavity is cooled down to 10 mK range to reduce the background thermal blackbody-photons in the cavity. The cavity resonant frequency is tunable over $\\sim$ 15% by moving dielectric rods inserted independently into each part of the cavities along the cylindrical axis. In order to reduce the heat load from ...

  14. Development of a compact cylindrical reaction cavity for a microwave dielectric heating system.

    Science.gov (United States)

    Kim, Myungsik; Kim, Kwangsoo

    2012-03-01

    This paper describes a compact reaction cavity for a microwave-assisted synthesis system. The microwave dielectric heating is a key technology to improve synthesizing yield, however, the large size of the microwave generation and reaction parts in an all-in-one system is a major obstacle when applying the technique to various systems, of which the installation space is limited. For this particular problem, a compact stand-alone cylindrical reaction cavity was developed in the current study. A microwave excited from a monopole probe, which is inserted into the side of the cavity, is transferred to a reaction mixture through the upper hole of the cavity. The cavity is miniaturized by filling it with an alumina ceramic dielectric. Fine-tuning of the resonance frequency becomes available by controlling the length of the inserted screw between the probe and the upper hole. The physical properties of the cavity were simulated using high frequency structural simulator (HFSS) and the produced cavity was tested using an Agilent E8357A network analyzer. The test results show that the developed cavity is able to send enough energy to various solvents.

  15. Multipacting phenomenon at high electric fields of superconducting cavities

    Institute of Scientific and Technical Information of China (English)

    Zhu Feng; D.Proch; Hao Jian-Kui

    2005-01-01

    Recently multipacting(MP) recalculation of the TeV Energy Superconductiong Linear Accelerator (TESLA)resonator was performed. In addition to the normal MP which occurs at a peak electric field of around 40MV/m for the TESLA cavity, another type of multipacting with resonant electron trajectory that is far from the equator is also seen.It occurs at a gradient around 60MV/m to 70MV/m. This result seems to explain some experimental observations.

  16. Fiber Optic Based Thermometry System for Superconducting RF Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Kochergin, Vladimir [Microxact Inc.

    2013-05-06

    Thermometry is recognized as the best technique to identify and characterize losses in SRF cavities. The most widely used and reliable apparatus for temperature mapping at cryogenic temperatures is based on carbon resistors (RTDs). The use of this technology on multi-cell cavities is inconvenient due to the very large number of sensors required to obtain sufficient spatial resolution. Recent developments make feasible the use of multiplexible fiber optic sensors for highly distributed temperature measurements. However, sensitivity of multiplexible cryogenic temperature sensors was found extending only to 12K at best and thus was not sufficient for SRF cavity thermometry. During the course of the project the team of MicroXact, JLab and Virginia Tech developed and demonstrated the multiplexible fiber optic sensor with adequate response below 20K. The demonstrated temperature resolution is by at least a factor of 60 better than that of the best multiplexible fiber optic temperature sensors reported to date. The clear path toward at least 10times better temperature resolution is shown. The first to date temperature distribution measurements with ~2.5mm spatial resolution was done with fiber optic sensors at 2K to4K temperatures. The repeatability and accuracy of the sensors were verified only at 183K, but at this temperature both parameters significantly exceeded the state of the art. The results of this work are expected to find a wide range of applications, since the results are enabling the whole new testing capabilities, not accessible before.

  17. Application of International Linear Collider superconducting cavities for acceleration of protons

    Directory of Open Access Journals (Sweden)

    P. N. Ostroumov

    2007-12-01

    Full Text Available Beam acceleration in the International Linear Collider (ILC will be provided by 9-cell 1300 MHz superconducting (SC cavities. The cavities are designed for effective acceleration of charged particles moving with the speed of light and are operated on π-mode to provide a maximum accelerating gradient. A significant research and development effort has been devoted to develop ILC SC technology and its rf system which resulted in excellent performance of ILC cavities. Therefore, the proposed 8-GeV proton driver in Fermilab is based on ILC cavities above ∼1.2  GeV. The efficiency of proton beam acceleration by ILC cavities drops fast for lower velocities and it was proposed to develop squeezed ILC-type (S-ILC cavities operating at 1300 MHz and designed for β_{G}=0.81, geometrical beta, to accelerate protons or H^{-} from ∼420  MeV to 1.2 GeV. This paper discusses the possibility of avoiding the development of new β_{G}=0.81 cavities by operating ILC cavities on 8/9π-mode of standing wave oscillations.

  18. Design and simulation of a new type of 500 MHz single-cell superconducting RF cavity

    Institute of Scientific and Technical Information of China (English)

    LU Chang-Wang; ZHANG Zhi-Gang; ZHENG Xiang; WEI Ye-Long; YU Hai-Bo; LI Zheng; XU Kai; LIU Jian-Fei; HOU Hong-Tao; MA Zhen-Yu; MAO Dong-Qing; FENG Zi-Qiang; ZHAO Shen-Jie; LUO Chen; ZHAO Yu-Bin

    2012-01-01

    This paper illustrates the design and simulation of a unique 500 MHz single-cell superconducting radio frequency cavity with a fluted beam pipe and a coaxial-type fundamental power coupler.The simulation results show that the cavity has a high r/Q value,a low peak surface field and a large beam aperture,so it can be a candidate cavity for high current accelerators.With the help of a fluted beam tube,almost all the higher order modes can propagate out of the cavity,especially the first two dipole modes,TE111 and TM110,and the first higher monopole mode,TM011.The external quality factor of the coaxial fundamental power coupler is optimized to 1.2× 105,which will be useful when it is applied in the light source storage ring.

  19. Nb3Sn superconducting radiofrequency cavities: fabrication, results, properties, and prospects

    Science.gov (United States)

    Posen, S.; Hall, D. L.

    2017-03-01

    A microns-thick film of Nb3Sn on the inner surface of a superconducting radiofrequency (SRF) cavity has been demonstrated to substantially improve cryogenic efficiency compared to the standard niobium material, and its predicted superheating field is approximately twice as high. We review in detail the advantages of Nb3Sn coatings for SRF cavities. We describe the vapor diffusion process used to fabricate this material in the most successful experiments, and we compare the differences in the process used at different labs. We overview results of Nb3Sn SRF coatings, including CW and pulsed measurements of cavities as well as microscopic measurements. We discuss special considerations that must be practised when using Nb3Sn cavities in applications. Finally, we conclude by summarizing the state-of-the-art and describing the outlook for this alternative SRF material.

  20. Flux pinning characteristics in cylindrical ingot niobium used in superconducting radio frequency cavity fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Dhavale Ashavai, Pashupati Dhakal, Anatolii A Polyanskii, Gianluigi Ciovati

    2012-04-01

    We present the results of from DC magnetization and penetration depth measurements of cylindrical bulk large-grain (LG) and fine-grain (FG) niobium samples used for the fabrication of superconducting radio frequency (SRF) cavities. The surface treatment consisted of electropolishing and low temperature baking as they are typically applied to SRF cavities. The magnetization data were fitted using a modified critical state model. The critical current density Jc and pinning force Fp are calculated from the magnetization data and their temperature dependence and field dependence are presented. The LG samples have lower critical current density and pinning force density compared to FG samples which implies a lower flux trapping efficiency. This effect may explain the lower values of residual resistance often observed in LG cavities than FG cavities.

  1. A new 2 Kelvin Superconducting Half-Wave Cavity Cryomodule for PIP-II

    Science.gov (United States)

    Conway, Z. A.; Barcikowski, A.; Cherry, G. L.; Fischer, R. L.; Gerbick, S. M.; Jansma, W. G.; Kedzie, M. J.; Kelly, M. P.; Kim, S.-h.; Lebedev, V. A.; MacDonald, S. W. T.; Nicol, T. H.; Ostroumov, P. N.; Reid, T. C.; Shepard, K. W.; White, M. J.

    2015-12-01

    Argonne National Laboratory has developed and is implementing a novel 2 K superconducting cavity cryomodule operating at 162.5 MHz. This cryomodule is designed for the acceleration of 2 mA H-/proton beams from 2.1 to 10 MeV as part of the Fermilab Proton Improvement Project-II (PIP-II). This work is an evolution of techniques recently implemented in two previous heavy-ion accelerator cryomodules now operating at Argonne National Laboratory. The 2 K cryomodule is comprised of 8 half-wave cavities operated in the continuous wave mode with 8 superconducting magnets, one in front of each cavity. All of the solenoids and cavities operate off of a single gravity fed 2 K helium cryogenic system expected to provide up to 50 W of 2 K cooling. Here we review the mechanical design of the cavities and cryomodule which were developed using methods similar to those required in the ASME Boiler and Pressure Vessel Code. This will include an overview of the cryomodule layout, the alignment of the accelerator components via modifications of the cryomodule vacuum vessel and provide a status report on the cryomodule assembly.

  2. Superconducting, energy variable heavy ion linac with constant β, multicell cavities of CH-type

    Directory of Open Access Journals (Sweden)

    S. Minaev

    2009-12-01

    Full Text Available An energy variable ion linac consisting of multigap, constant-β cavities was developed. The effect of phase sliding, unavoidable in any constant-β section, is leading to a coherent rf phase motion, which fits well to the H-type structures with their long π-mode sections and separated lenses. The exact periodicity of the cell lengths within each cavity results in technical advantages, such as higher calculation accuracy when only one single period can be simulated, simpler manufacturing, and tuning. This is most important in the case of superconducting cavities. By using this concept, an improved design for a 217 MHz cw superconducting heavy ion linac with energy variation has been worked out. The small output energy spread of ±3  AkeV is provided over the whole range of energy variation from 3.5 to 7.3 AMeV. These capabilities would allow for a competitive research in the field of radiochemistry and for a production of super heavy elements (SHE, especially. A first 19-cell cavity of that type was designed, built, and rf tested successfully at the Institute for Applied Physics (IAP Frankfurt. A 325.224 MHz, seven-cell cavity with constant β=0.16 is under development and will be operated in a frequency controlled mode. It will be equipped with a power coupler and beam tests with Unilac beams at GSI are foreseen.

  3. A technique for monitoring fast tuner piezoactuator preload forces for superconducting rf cavities

    Energy Technology Data Exchange (ETDEWEB)

    Pischalnikov, Y.; Branlard, J.; Carcagno, R.; Chase, B.; Edwards, H.; Orris, D.; Makulski, A.; McGee, M.; Nehring, R.; Poloubotko, V.; Sylvester, C.; /Fermilab

    2007-06-01

    The technology for mechanically compensating Lorentz Force detuning in superconducting RF cavities has already been developed at DESY. One technique is based on commercial piezoelectric actuators and was successfully demonstrated on TESLA cavities [1]. Piezo actuators for fast tuners can operate in a frequency range up to several kHz; however, it is very important to maintain a constant static force (preload) on the piezo actuator in the range of 10 to 50% of its specified blocking force. Determining the preload force during cool-down, warm-up, or re-tuning of the cavity is difficult without instrumentation, and exceeding the specified range can permanently damage the piezo stack. A technique based on strain gauge technology for superconducting magnets has been applied to fast tuners for monitoring the preload on the piezoelectric assembly. The design and testing of piezo actuator preload sensor technology is discussed. Results from measurements of preload sensors installed on the tuner of the Capture Cavity II (CCII)[2] tested at FNAL are presented. These results include measurements during cool-down, warmup, and cavity tuning along with dynamic Lorentz force compensation.

  4. Coherent-state storage and retrieval between superconducting cavities using parametric frequency conversion

    Energy Technology Data Exchange (ETDEWEB)

    Sirois, A. J. [National Institute of Standard and Technology, Boulder, Colorado 80305 (United States); University of Colorado - Boulder, Colorado 80309 (United States); Castellanos-Beltran, M. A.; DeFeo, M. P.; Ranzani, L.; Lecocq, F.; Simmonds, R. W.; Teufel, J. D.; Aumentado, J. [National Institute of Standard and Technology, Boulder, Colorado 80305 (United States)

    2015-04-27

    In superconducting quantum information, machined aluminum superconducting cavities have proven to be a well-controlled, low-dissipation electromagnetic environment for quantum circuits such as qubits. They can possess large internal quality factors, Q{sub int} > 10{sup 8}, and present the possibility of storing quantum information for times far exceeding those of microfabricated circuits. However, in order to be useful as a storage element, these cavities require a fast “read/write” mechanism—in other words, they require tunable coupling between other systems of interest such as other cavity modes and qubits, as well as any associated readout hardware. In this work, we demonstrate these qualities in a simple dual cavity architecture in which a low-Q “readout” mode is parametrically coupled to a high-Q “storage” mode, allowing us to store and retrieve classical information. Specifically, we employ a flux-driven Josephson junction-based coupling scheme to controllably swap coherent states between two cavities, demonstrating full, sequenced control over the coupling rates between modes.

  5. Fast 704 MHz Ferroelectric Tuner for Superconducting Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Jay L. Hirshfield

    2012-04-12

    The Omega-P SBIR project described in this Report has as its goal the development, test, and evaluation of a fast electrically-controlled L-band tuner for BNL Energy Recovery Linac (ERL) in the Electron Ion Collider (EIC) upgrade of the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). The tuner, that employs an electrically-controlled ferroelectric component, is to allow fast compensation to cavity resonance changes. In ERLs, there are several factors which significantly affect the amount of power required from the wall-plug to provide the RF-power level necessary for the operation. When beam loading is small, the power requirements are determined by (i) ohmic losses in cavity walls, (ii) fluctuations in amplitude and/or phase for beam currents, and (iii) microphonics. These factors typically require a substantial change in the coupling between the cavity and the feeding line, which results in an intentional broadening of the cavity bandwidth, which in turn demands a significant amount of additional RF power. If beam loading is not small, there is a variety of beam-drive phase instabilities to be managed, and microphonics will still remain an issue, so there remain requirements for additional power. Moreover ERL performance is sensitive to changes in beam arrival time, since any such change is equivalent to phase instability with its vigorous demands for additional power. In this Report, we describe the new modular coaxial tuner, with specifications suitable for the 704 MHz ERL application. The device would allow changing the RF-coupling during the cavity filling process in order to effect significant RF power savings, and also will provide rapid compensation for beam imbalance and allow for fast stabilization against phase fluctuations caused by microphonics, beam-driven instabilities, etc. The tuner is predicted to allow a reduction of about ten times in the required power from the RF source, as compared to a compensation system

  6. SQUID based cryogenic current comparator for measurements of the dark current of superconducting cavities

    Energy Technology Data Exchange (ETDEWEB)

    Vodel, W.; Nietzsche, S.; Neubert, R.; Nawrodt, R. [Friedrich Schiller Univ. Jena (Germany); Peters, A. [GSI Darmstadt (Germany); Knaack, K.; Wendt, M.; Wittenburg, K. [DESY Hamburg (Germany)

    2005-07-01

    The linear accelerator technology, based on super-conducting L-band (1.3 GHz) is currently under study at DESY (Hamburg, Germany). The two 10 km long main Linacs will be equipped with a total of nearly 20.000 cavities. The dark current due to the emission of electrons in these high gradient field super-conducting cavities is an unwanted particle source. A newly high performance SQUID based measurement system for detecting dark currents is proposed. It makes use of the Cryogenic Current Comparator principle and senses dark currents in the pA range with a measurement bandwidth of up to 70 kHz. The use of a cryogenic current comparator as dark current sensor has some important advantages: -) the measurement of the absolute value of the dark current, -) the non-dependence on the electron trajectories, -) the accurate absolute calibration with an additional wire loop, and -) extremely high resolution.

  7. Modifications of Superconducting Properties of Niobium Caused by Nitrogen Doping Recipes for High Q Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Vostrikov, Alexander [Fermilab; Checchin, Mattia [Fermilab; Grassellino, Anna [Fermilab; Kim, Young-Kee [U. Chicago (main); Romanenko, Alexander [Fermilab

    2015-06-01

    A study is presented on the superconducting properties of niobium used for the fabrication of the SRF cavities after treating by recently discovered nitrogen doping methods. Cylindrical niobium samples have been subjected to the standard surface treatments applied to the cavities (electro-polishing, l 20°C bake) and compared with samples treated by additional nitrogen doping recipes routinely used to reach ultra-high quality factor values (>3· 1010 at 2 K, 16 MV/m). The DC magnetization curves and the complex magnetic AC susceptibility have been measured. Evidence for the lowered field of first flux penetration after nitrogen doping is found suggesting a correlation with the lowered quench fields. Superconducting critical temperatures Tc = 9.25 K are found to be in agreement with previous measurements, and no strong effect on the critical surface field (Bd) from nitrogen doping was found.

  8. Development of superconducting Klystron cavity for the Mario Schenberg gravitational wave detector

    CERN Document Server

    Liccardo, Vincenzo; de França, Enrique Klai

    2015-01-01

    Superconducting reentrant cavities can be used in parametric transducers for Gravitational Wave antennas. The Mario Schenberg detector, which is being built by the GRAVITON group at Instituto Nacional de Pesquisas Espaciais (INPE), basically consists of a resonant mass (ball) and a set of parametric transducers in order to monitor the fundamental modes of vibration. When coupled to the antenna, the transducer-sphere system will work as a mass-spring system. In this work the main task is the development of parametric transducers consisting of reentrant superconducting cavity with high performance to be implemented in the Mario Schenberg detector. Many geometries, materials and designs have been tested and compared to optimize parameters such as electric and mechanical Q-factor. The aim is the construction of a complete set of nine parametric transducers that, attached to the spherical antenna, will possibly reach the sensitivity $h$ $\\sim$ 10$^{-22}$ $Hz$$^{-1/2}$ in the near future.

  9. Isogeometric Simulation of Lorentz Detuning in Superconducting Accelerator Cavities

    CERN Document Server

    Corno, Jacopo; De Gersem, Herbert; Schöps, Sebastian

    2016-01-01

    Cavities in linear accelerators suffer from eigenfrequency shifts due to mechanical deformation caused by the electromagnetic radiation pressure, a phenomenon known as Lorentz detuning. Estimating the frequency shift up to the needed accuracy by means of standard Finite Element Methods, is a complex task due to the non exact representation of the geometry and due to the necessity for mesh refinement when using low order basis functions. In this paper, we use Isogeometric Analysis for discretising both mechanical deformations and electromagnetic fields in a coupled multiphysics simulation approach. The combined high-order approximation of both leads to high accuracies at a substantially lower computational cost.

  10. Influence of a superconducting lead on orbital entanglement production in chaotic cavities

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Perez, Sergio [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Escola de Ciencias e Tecnologia; Novaes, Marcel, E-mail: sergio.rodriguez@ect.ufrn.br [Universidade Federal de Uberlandia (UFU), MG (Brazil). Instituto de Fisica

    2015-10-15

    We study orbital entanglement production in a chaotic cavity connected to four single-channel normal metal leads and one superconducting lead, assuming the presence of time-reversal symmetry and within a random matrix theory approach. The scattered state of two incident electrons is written as the superposition of several two-outgoing quasi-particle components, four of which are orbitally entangled in a left-right bipartition. We calculate numerically the mean value of the squared norm of each entangled component, as functions of the number of channels in the superconducting lead. Its behavior is explained as resulting from the proximity effect. We also study statistically the amount of entanglement carried by each pair of outgoing quasi-particles. When the influence of the superconductor is more intense, the device works as an entangler of electron-hole pairs, and the average entanglement is found to be considerably larger than that obtained without the superconducting lead. (author)

  11. Microwave dependence of subharmonic gap structure in superconducting junctions

    DEFF Research Database (Denmark)

    Sørensen, O. Hoffman; Kofoed, Bent; Pedersen, Niels Falsig

    1974-01-01

    with the superconducting energy gap itself. The location in voltage of all these structures is given by eV=(2Δ±nh ν) / m, where 2Δ is the superconducting energy gap, ν is the applied frequency, h is Planck's constant, e is the magnitude of the electronic charge, V is the dc voltage drop across the junction, and m and n...

  12. High temperature superconducting thin films for microwave filters

    Institute of Scientific and Technical Information of China (English)

    ZHAO; Xinjie(赵新杰); LI; Lin(李林); LEI; Chong(雷冲); TIAN; Ybngjun(田永军)

    2002-01-01

    YBa2Cu3O7-δ and Tl2Ba2CaCu2O8 thin films for microwave filters were synthesized by pulsed laser deposition and the two-step thalliation process. Substrate quality requirements and the relation of thin film morphology, microstructure with microwave surface resistance were discussed.

  13. Quantum phase-slips in superconducting AlO{sub x} nanowire arrays at microwave frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Skacel, Sebastian T.; Pfirrmann, Marco; Voss, Jan N.; Muenzberg, Julian; Radtke, Lucas; Probst, Sebastian; Rotzinger, Hannes [Physikalisches Institut, Karlsruhe Institute of Technology, D-76131 Karlsruhe (Germany); Weides, Martin [Physikalisches Institut, Karlsruhe Institute of Technology, D-76131 Karlsruhe (Germany); Institute of Physics, Johannes Gutenberg University Mainz, D-55128 Mainz (Germany); Mooij, Hans E. [Physikalisches Institut, Karlsruhe Institute of Technology, D-76131 Karlsruhe (Germany); Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft (Netherlands); Ustinov, Alexey V. [Physikalisches Institut, Karlsruhe Institute of Technology, D-76131 Karlsruhe (Germany); Russian Quantum Center, 100 Novaya St., Skolkovo, Moscow region, 143025 (Russian Federation)

    2015-07-01

    Superconducting nanowires in the quantum phase slip (QPS) regime allow to study the flux and phase dynamics in duality to Josephson junction systems. However, due to the vanishing self-capacitance of the nanowires, the microwave response significantly differs. We experimentally study parallel arrays of nanowires which are embedded in a resonant circuit at GHz frequencies. The samples are probed at ultra-low microwave power and applied magnetic field at mK temperatures. The AlO{sub x} nanowires, with a sheet resistance in the kΩ range, are fabricated by sputter deposition of aluminium in a controlled oxygen atmosphere. The wires are defined with conventional electron beam lithography down to a width of approximately 15 nm. We present the fabrication of the nanowire arrays and measurement results for arrays coupled to superconducting microwave resonators.

  14. Development of microwave superconducting microresonators for neutrino mass measurement in the HOLMES framework

    CERN Document Server

    Giachero, A; Falferi, P; Faverzani, M; Ferri, E; Giordano, C; Maino, M; Margesin, B; Mezzena, R; Nizzolo, R; Nucciotti, A; Puiu, A; Zanetti, L

    2015-01-01

    The European Research Council has recently funded HOLMES, a project with the aim of performing a calorimetric measurement of the electron neutrino mass measuring the energy released in the electron capture decay of \\textsuperscript{163}Ho. The baseline for HOLMES are microcalorimeters coupled to Transition Edge Sensors (TESs) read out with rf-SQUIDs, for microwave multiplexing purposes. A promising alternative solution is based on superconducting microwave resonators, that have undergone rapid development in the last decade. These detectors, called MKIDs (Microwave Kinetic Inductance Detectors), are inherently multiplexed in the frequency domain and suitable for even larger-scale pixel arrays, with theoretical high energy resolution and fast response. The aim of our activity is to develop arrays of microresonator detectors for X-ray spectroscopy and suitable for the calorimetric measurement of the energy spectra of \\textsuperscript{163}Ho. Superconductive multilayer films composed by a sequence of pure Titani...

  15. Development of the superconducting rf 2-cell cavity for cERL injector at KEK

    Science.gov (United States)

    Watanabe, K.; Noguchi, S.; Kako, E.; Umemori, K.; Shishido, T.

    2013-06-01

    An injector cryomodule for the compact energy recovery linac (cERL) is under development at KEK. This injector cryomodule has 3 L-band 2-cell superconducting rf cavities. The cERL is required to accelerate a 10-mA CW electron beam to 5 MeV. The required accelerating gradient per cavity is 7.5-12.5 MV/m at ˜30 kW input power to the cavity and the beam. The operational frequency is 1300 MHz at 2 K and the mode of operation is CW. In this application, the critical hardware components are not the cavities, but the rf input couplers and higher-order-mode (HOM) dampers. Initially, a TESLA-style coaxial HOM coupler was chosen for HOM damping of the injector cavities. However, this HOM coupler had a heating problem at low gradients (a few MV/m) in CW operation. The components heated in the accelerating mode were the HOM body and the feedthrough that extracts HOM power from the cavity. To control the heating problem, a new HOM coupler was designed based on a TESLA-style coaxial HOM coupler, and the feedthrough was also modified based on a Kyocera N-R type connector to have better thermal conductivity. A prototype 2-cell cavity and 3 other 2-cell cavities with 5 new HOM couplers for actual operation were fabricated through May 2011. Vertical tests of these cavities were carried out after standard surface preparation at the KEK Superconducting Accelerator Test Facility (KEK-STF) through March 2012. The accelerating gradient achieved exceeded 50 MV/m without quenching during the vertical test using the prototype 2-cell cavity and feedthroughs. The magnetic field at the cell equator was 2127 Oe. Three 2-cell cavities passing the criteria of the High Pressure Gas Safety Institute of Japan exceeded 25 MV/m without field emissions. The cavities with the best performance were prepared in March 2012 for the cERL injector. The designs of the HOM couplers and feedthroughs and the results of the vertical tests to evaluate their performance are reported here.

  16. Hybrid Physical Chemical Vapor Deposition of Superconducting Magnesium Diboride Coatings for Large Scale Radio Frequency Cavities

    Science.gov (United States)

    Lee, Namhoon; Withanage, Wenura; Tan, Teng; Wolak, Matthaeus; Xi, Xiaoxing

    2016-03-01

    Magnesium diboride (MgB2) is considered to be a great candidate for next generation superconducting radio frequency (SRF) cavities due to its higher critical temperature Tc (40 K) and increased thermodynamic critical field Hc compared to other conventional superconductors. These properties significantly reduce the BCS surface resistance (RsBCS)and residual resistance (Rres) according to theoretical studies and suggest the possibility of an enhanced accelerating field (Eacc) . We have investigated the possibility of coating the inner surface of a 3 GHz SRF cavity with MgB2 by using a hybrid physical-vapor deposition (HPCVD) system which was modified for this purpose. To simulate a real 3 GHz SRF cavity, a stainless steel mock cavity has been employed for the study. The film quality was characterized on small substrates that were placed at selected locations within the cavity. MgB2 films on stainless steel foils, niobium pieces and SiC substrates showed transition temperatures of above 36 K. Dielectric resonance measurements resulted in promising Q values as obtained for the MgB2 films grown on the various substrates. By employing the HPCVD technique, a uniform film was achieved across the cavity interior, demonstrating the feasibility of HPCVD for MgB2 coatings for SRF cavities.

  17. Determination of surface resistance and magnetic penetration depth of superconducting YBa2Cu3O(7-delta) thin films by microwave power transmission measurements

    Science.gov (United States)

    Bhasin, K. B.; Warner, J. D.; Miranda, F. A.; Gordon, W. L.; Newman, H. S.

    1991-01-01

    A novel waveguide power transmission measurement technique was developed to extract the complex conductivity of superconducting thin films at microwave frequencies. The microwave conductivity was taken of two laser ablated YBa2Cu3O(7-delta) thin films on LaAlO3 with transition temperatures of approximately 86.3 and 82 K, respectively, in the temperature range 25 to 300 K. From the conductivity values, the penetration depth was found to be approximately 0.54 and 0.43 micron, and the surface resistance (R sub s) to be approximately 24 and 36 micro-Ohms at 36 GHz and 76 K for the two films under consideration. The R sub s values were compared with those obtained from the change in the Q-factor of a 36 GHz Te sub 011-mode (OFHC) copper cavity by replacing one of its end walls with the superconducting sample. This technique allows noninvasive characterization of high transition superconducting thin films at microwave frequencies.

  18. Determination of surface resistance and magnetic penetration depth of superconducting YBa2Cu3O(7-delta) thin films by microwave power transmission measurements

    Science.gov (United States)

    Bhasin, K. B.; Warner, J. D.; Miranda, F. A.; Gordon, W. L.; Newman, H. S.

    1991-01-01

    A novel waveguide power transmission measurement technique was developed to extract the complex conductivity of superconducting thin films at microwave frequencies. The microwave conductivity was taken of two laser ablated YBa2Cu3O(7-delta) thin films on LaAlO3 with transition temperatures of approximately 86.3 and 82 K, respectively, in the temperature range 25 to 300 K. From the conductivity values, the penetration depth was found to be approximately 0.54 and 0.43 micron, and the surface resistance (R sub s) to be approximately 24 and 36 micro-Ohms at 36 GHz and 76 K for the two films under consideration. The R sub s values were compared with those obtained from the change in the Q-factor of a 36 GHz Te sub 011-mode (OFHC) copper cavity by replacing one of its end walls with the superconducting sample. This technique allows noninvasive characterization of high transition superconducting thin films at microwave frequencies.

  19. Nitrogen heat treatments of superconducting niobium radio frequency cavities: a pathway to highly efficient accelerating structures

    CERN Document Server

    Grassellino, A; Melnychuk, O; Trenikhina, Y; Crawford, A; Rowe, A; Wong, M; Sergatskov, D; Khabiboulline, T; Barkov, F

    2013-01-01

    We report the experimental finding of a new surface treatment that systematically improves the quality factor of niobium radio frequency cavities for particle acceleration. A combination of annealing in a partial pressure of nitrogen and subsequent electropolishing of the niobium cavity surface leads to extremely low values of the cavities microwave surface resistance, and an improvement in the efficiency of these accelerating structures up to a factor of 3 compared to standard surface treatments, significantly reducing the cryogenic load of SRF cavities for both pulsed and continuous duty cycles. The field dependence of the Mattis-Bardeen/BCS surface resistance RBCS is reversed compared to that of standard chemically polished niobium with dRBCS/dB < 0 in the full range of investigated fields. This treatment can lead to even larger efficiency gains at increasing operating frequencies, and potentially to even larger cost savings by reducing the size of the accelerating structures.

  20. Superconductivity in LiTi2O4 Prepared by Hybrid Microwave Method

    Institute of Scientific and Technical Information of China (English)

    YANG Li-Hong; DONG Cheng; SONG Hui-Hua; GUO Juan; FU Guang-Cai

    2005-01-01

    @@ The well-known superconducting oxide LiTi2 O4 has a structural phase transition from spinel to ramsdellite around 900 ℃. We have successfully obtained the superconducting spinel phase and the non-superconducting ramsdellite phase of LiTi2O4 using a hybrid microwave method. The samples are characterized by x-ray powder diffraction, scanning electron microscopy, and measurements of resistivity and magnetic susceptibility. The results show that the low-temperature spinel phase is a superconductor with Tc = 13 K, while the high-temperature ramsdellite phase is a semiconductor. By comparison between the crystal structures of the spinel and the ramsdellite phases, it is suggested that the geometrical frustration plays an important role in the superconductivity of the spinel LiTi2 O4.

  1. High- T_c superconducting thin film/GaAs MESFET hybrid microwave oscillator

    Institute of Scientific and Technical Information of China (English)

    金飚兵; 康琳; 伍瑞新; 张健羽; 程其恒; 吴培亨; 经东; 焦刚; 邵凯; 蒋明明; 张家宗; 孙敏松; 王蕴仪; 周岳亮; 吕惠宾; 许世发; 何萌; 王小平; 杨秉川; 卢剑; 张其邵

    1997-01-01

    A high- Tc superconducting (HTSC) thin film/GaAs MESFET hybrid microwave oscillator operated at 10 6 GHz has been designed, fabricated and characterized. Microstrip line structures were used throughout the circuit with superconducting thin film YBaiCuiO7 8(YBCO) as the conductor material. The YBCO thin films were deposited on 15 mm×10 mm×0. 5 mm LaAlO3 substrates. The oscillator was common-source, series feedback type using a GaAs-MESFET (NE72084) as the active device and a superconducting microstrip resonator as the frequency stabilizing element. By improving the unloaded quality factor Q0 of the superconducting microstrip resonator and adjusting the coupling coefficient between the resonator and the gate of the MESFET, the phase noise of the oscillator was decreased At 77 K, the phase noise of the oscillator at 10 kHz offset from carrier was - 87 dBc/Hz.

  2. Exploring the physics of superconducting qubits strongly coupled to microwave frequency photons

    Energy Technology Data Exchange (ETDEWEB)

    Wallraff, Andreas [ETH Zurich (Switzerland)

    2013-07-01

    Using modern micro and nano-fabrication techniques combined with superconducting materials we realize electronic circuits the properties of which are governed by the laws of quantum mechanics. In such circuits the strong interaction of photons with superconducting quantum two-level systems allows us to probe fundamental quantum properties of light and to develop components for applications in quantum information technology. Here, I present experiments in which we have created and probed entanglement between stationary qubits and microwave photons freely propagating down a transmission line. In these experiments we use superconducting parametric amplifiers realized in our lab to detect both qubit and photon states efficiently. Using similar techniques we aim at demonstrating a deterministic scheme for teleportation of quantum states in a macroscopic system based on superconducting circuits.

  3. Niobium Coatings for the HIE-ISOLDE QWR Superconducting Accelerating Cavities

    CERN Document Server

    Jecklin, N; Delaup, B; Ferreira, L; Mondino, I; Sublet, A; Therasse, M; Venturini Desolaro, W

    2013-01-01

    The HIE-ISOLDE (High Intensity and Energy at ISOLDE) project is the upgrade of the existing ISOLDE (Isotope Separator On Line DEvice) facility at CERN, which is dedicated to the production of a large variety of radioactive ion beams for nuclear physics experiments. A new linear accelerator made of 20 ȕ=10.3% and 12 ȕ=6.3% quarter-wave resonators (QWR) superconducting (SC) accelerating cavities at 101 MHz will be built, and in a first phase two cryomodules of 5 high-ȕ cavities each are scheduled to accelerate first beams in 2015. The cavities are made of a copper substrate, with a sputter-coated superconductive niobium (Nb) layer, operated at 4.5 K with an accelerating field of 6 MV/m at 10W Radio-Frequency (RF) losses (Q=4.5· 108). In this paper we will discuss the baseline surface treatment and coating procedure which allows obtaining the required performance, as well as the steps undertaken in order to prepare series production of the required number of cavities guaranteeing their quality and functional...

  4. Progress on the Development of a Superconducting Connection for Niobium Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Peter Kneisel, Gianluigi Ciovati, Jacek Sekutowicz ,Larry Turlington

    2009-06-01

    The availability of a superconducting connection between adjacent niobium radio-frequency (RF) cavities with the capability to carry up to 30 mT of the magnetic flux would be particularly of great benefit to layouts of long accelerators like the International Linear Collider (ILC). It would shorten the distances between structures and therefore the total length of an accelerator with the associated cost reductions. In addition, the superconducting connection would be ideal for a superstructure – two multi-cell cavities connected through a half wavelength long beam pipe providing the coupling. Two single-cell niobium cavities have been designed with Nb-1Zr flanges welded to one of the irises to allow a connection between them with a niobium gasket. A transition to the normal-conducting state of the connection due to the applied RF field causes a reduction of the cavities’ quality factor. The cavity design will be presented in this contribution along with possible choices of materials for the joint.

  5. Analysis and Measurement of the Transfer Matrix of a 9-cell 1.3-GHz Superconducting Cavity

    Energy Technology Data Exchange (ETDEWEB)

    Halavanau, A. [Fermilab; Eddy, N. [Fermilab; Edstrom, D. [Fermilab; Harms, E. [Fermilab; Lunin, A. [Fermilab; Piot, P. [Fermilab; Romanov, A. [Fermilab; Ruan, J. [Fermilab; Solyak, N. [Fermilab; Shiltsev, V. [Fermilab

    2017-01-27

    Superconducting linacs are capable of producing intense, stable, high-quality electron beams that have found widespread applications in science and industry. The 9-cell 1.3-GHz superconducting standing-wave accelerating RF cavity originally developed for $e^+/e^-$ linear-collider applications [B. Aunes, {\\em et al.} Phys. Rev. ST Accel. Beams {\\bf 3}, 092001 (2000)] has been broadly employed in various superconducting-linac designs. In this paper we discuss the transfer matrix of such a cavity and present its measurement performed at the Fermilab Accelerator Science and Technology (FAST) facility. The experimental results are found to be in agreement with analytical calculations and numerical simulations.

  6. Tunable resonance cavity control in a near-field scanning microwave microscope

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Hyuk; Kim, Joo Young; Lee, Kre Jin [Sogang Univ., Seoul (Korea, Republic of); Kim, Jin Tae [KRISS, Daejon (Korea, Republic of); Cha, Deok Joon [Kunsan National Univ., Kunsan (Korea, Republic of); Lee, Yong San [Daejin Univ., Pochon (Korea, Republic of)

    2002-05-01

    We report a microwave surface imaging technique using a near-field scanning microwave microscope with a tunable resonance cavity. By tuning the resonance cavity, we could demonstrate improved sensitivity and spatial resolution of the near-field image of YBa{sub 2}Cu{sub 3}O{sub y} thin films on MgO substrates. By measuring the shift in the resonant frequency and the change in the quality factor, we obtained near-field scanning microwave images with a spatial resolution better than 4 {mu}m at an operating frequency of f=1-1.5 GHz. The principal of operation can be explained by using the perturbation theory of a coaxial resonant cavity, considering the radius of the probe tip and the sample-tip distance.

  7. Studies of the superconducting traveling wave cavity for high gradient LINAC

    CERN Document Server

    Avrakhov, Pavel; Kanareykin, Alexei; Solyak, Nikolay; Yakovlev, Vyacheslav P

    2015-01-01

    Use of a traveling wave (TW) accelerating structure with a small phase advance per cell instead of standing wave may provide a significant increase of accelerating gradient in a superconducting linear accelerator. The TW section achieves an accelerating gradient 1.2-1.4 larger than TESLA-shaped standing wave cavities for the same surface electric and magnetic fields. Recent tests of an L-band single-cell cavity with a waveguide feedback demonstrated an accelerating gradient comparable to the gradient in a single-cell ILC-type cavity from the same manufacturer. This article presents the next stage of the 3- cell TW resonance ring development which will be tested in the traveling wave regime. The main simulation results of the microphonics and Lorentz Force Detuning (LFD) are also considered.

  8. Summary of performance of superconducting radio-frequency cavities built from CBMM niobium ingots

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, Gianluigi, E-mail: gciovati@jlab.org; Dhakal, Pashupati, E-mail: dhakal@jlab.org; Kneisel, Peter, E-mail: kneisel@jlab.org; Myneni, Ganapati R., E-mail: rao@jlab.org [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States)

    2015-12-04

    Several Nb ingots have been provided by CBMM to Jefferson Lab since 2004 as part of an R&D collaboration aimed at evaluating the performance of superconducting radio-frequency cavities built from ingots with different purity, as a results of different ingot production processes. Approximately 32 multi- and single-cell cavities with resonant frequency between ∼1.3-2.3 GHz were built, treated and tested at 2 K at Jefferson Lab between 2004 and 2014. The average peak surface field achieved in cavities made of RRR∼260 and RRR∼100-150 ingots was (119 ± 4) mT and (100 ± 8) mT, respectively. Higher quality factor values at 2.0 K have been measured in medium-purity, compared to higher purity material.

  9. Cryogenic Test of a 750 MHz Superconducting RF Dipole Crabbing Cavity

    Energy Technology Data Exchange (ETDEWEB)

    Castilla, Alejandro [ODU; Delayen, Jean R. [ODU, JLAB; Park, HyeKyoung [JLAB

    2014-07-01

    A superconducting rf dipole cavity has been designed to address the challenges of a high repetition rate (750 MHz), high current for both electron/ion species (0.5/3 A per bunch), and large crossing angle (50 mrad) at the interaction points (IPs) crabbing system for the Medium Energy Electron-Ion Collider (MEIC) proposed by Jefferson Lab. The cavity prototype built at Niowave, Inc. has been tested at the Jefferson Lab facilities. In this work we present a detailed analysis of the prototype cavity performance at 4 K and 2 K, corroborating the absence of hard multipacting barriers that could limit the desired transverse fields, along with the surface resistance (Rs) temperature dependency.

  10. Cavity-assisted dynamical quantum phase transition in superconducting quantum simulators

    Science.gov (United States)

    Tian, Lin

    Coupling a quantum many-body system to a cavity can create bifurcation points in the phase diagram, where the many-body system switches between different phases. Here I will discuss the dynamical quantum phase transitions at the bifurcation points of a one-dimensional transverse field Ising model coupled to a cavity. The Ising model can be emulated with various types of superconducting qubits connected in a chain. With a time-dependent Bogoliubov method, we show that an infinitesimal quench of the driving field can cause gradual evolution of the transverse field on the Ising spins to pass through the quantum critical point. Our calculation shows that the cavity-induced nonlinearity plays an important role in the dynamics of this system. Quasiparticles can be excited in the Ising chain during this process, which results in the deviation of the system from its adiabatic ground state. This work is supported by the National Science Foundation under Award Number 0956064.

  11. Physics of Limiting Phenomena in Superconducting Microwave Resonators: Vortex Dissipation, Ultimate Quench and Quality Factor Degradation Mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Checchin, Mattia [IIT, Chicago

    2016-01-01

    Superconducting niobium accelerating cavities are devices operating in radio-frequency and able to accelerate charged particles up to energy of tera-electron-volts. Such accelerating structures are though limited in terms of quality factor and accelerating gradient, that translates--in some cases--in higher capital costs of construction and operation of superconducting rf accelerators. Looking forward for a new generation of more affordable accelerators, the physical description of limiting mechanisms in superconducting microwave resonators is discussed. In particular, the physics behind the dissipation introduced by vortices in the superconductor, the ultimate quench limitations and the quality factor degradation mechanism after a quench are described in detail. One of the limiting factor of the quality factor is the dissipation introduced by trapped magnetic flux vortices. The radio-frequency complex response of trapped vortices in superconductors is derived by solving the motion equation for a magnetic flux line, assuming a bi-dimensional and mean free path-dependent Lorentzian-shaped pinning potential. The resulting surface resistance shows the bell-shaped trend as a function of the mean free path, in agreement with the experimental data observed. Such bell-shaped trend of the surface resistance is described in terms of the interplay of the two limiting regimes identified as pinning and flux flow regimes, for low and large mean free path values respectively. The model predicts that the dissipation regime--pinning- or flux-flow-dominated--can be tuned either by acting on the frequency or on the electron mean free path value. The effect of different configurations of pinning sites and strength on the vortex surface resistance are also discussed. Accelerating cavities are also limited by the quench of the superconductive state, which limits the maximum accelerating gradient achievable. The accelerating field limiting factor is usually associate d to the

  12. Physics of Limiting Phenomena in Superconducting Microwave Resonators: Vortex Dissipation, Ultimate Quench and Quality Factor Degradation Mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Checchin, Mattia [Illinois Inst. of Technology, Chicago, IL (United States)

    2016-12-01

    Superconducting niobium accelerating cavities are devices operating in radio-frequency and able to accelerate charged particles up to energy of tera-electron-volts. Such accelerating structures are though limited in terms of quality factor and accelerating gradient, that translates--in some cases--in higher capital costs of construction and operation of superconducting rf accelerators. Looking forward for a new generation of more affordable accelerators, the physical description of limiting mechanisms in superconducting microwave resonators is discussed. In particular, the physics behind the dissipation introduced by vortices in the superconductor, the ultimate quench limitations and the quality factor degradation mechanism after a quench are described in detail. One of the limiting factor of the quality factor is the dissipation introduced by trapped magnetic flux vortices. The radio-frequency complex response of trapped vortices in superconductors is derived by solving the motion equation for a magnetic flux line, assuming a bi-dimensional and mean free path-dependent Lorentzian-shaped pinning potential. The resulting surface resistance shows the bell-shaped trend as a function of the mean free path, in agreement with the experimental data observed. Such bell-shaped trend of the surface resistance is described in terms of the interplay of the two limiting regimes identified as pinning and flux flow regimes, for low and large mean free path values respectively. The model predicts that the dissipation regime--pinning- or flux-flow-dominated--can be tuned either by acting on the frequency or on the electron mean free path value. The effect of different configurations of pinning sites and strength on the vortex surface resistance are also discussed. Accelerating cavities are also limited by the quench of the superconductive state, which limits the maximum accelerating gradient achievable. The accelerating field limiting factor is usually associate d to the

  13. Design and performance of a new induction furnace for heat treatment of superconducting radiofrequency niobium cavities

    Energy Technology Data Exchange (ETDEWEB)

    Pashupati Dhakal, Gianluigi Ciovati, Wayne Rigby, John Wallace, Ganapati Rao Myneni

    2012-06-01

    Superconducting radio frequency (SRF) cavities made of high purity niobium (Nb) are the building blocks of many modern particle accelerators. The fabrication process includes several cycles of chemical and heat treatment at low ({approx}120 deg C) and high ({approx}800 deg C) temperatures. In this contribution, we describe the design and performance of an ultra-high-vacuum furnace which uses an induction heating system to heat treat SRF cavities. Cavities are heated by radiation from the Nb susceptor. By using an all-niobium hot zone, contamination of the Nb cavity by foreign elements during heat treatment is minimized and allows avoiding subsequent chemical etching. The furnace was operated up to 1400 deg C with a maximum pressure of {approx}1 x 10{sup -5} Torr and the maximum achievable temperature is estimated to be higher than 2000 deg C. Initial results on the performance of a single cell 1.5 GHz cavity made of ingot Nb heat treated at 1200 deg C using this new induction furnace and without subsequent chemical etching showed a reduction of the RF losses by a factor of {approx}2 compared to cavities made of fine-grain Nb which underwent standard chemical and heat treatments.

  14. Plasma cleaning: A new possible treatment for niobium superconducting cavity after nitrogen doping

    CERN Document Server

    Yang, Ziqin; Xie, Datao; Lin, Lin; Zhou, Kui; Zhao, Jifei; Yang, Deyu; Tan, Weiwei

    2015-01-01

    Nitrogen doping treatment with the subsequent electropolishing (EP) of the niobium superconducting cavity can significantly increase the cavity's quality factor up to a factor of 3. But the process of the EP removal may reintroduce hydrogen in the cavity surface, which may influence the cavity's radio frequency performance. Plasma cleaning study on niobium samples with gas mixtures of argon and oxgen intended to remove contaminations (hydrocarbons and micronicdust particles) from cavity surface to avoid field emission, was performed in Peking University. The niobium samples have been analyzed using the time of flight secondary ion mass spectrometry (TOF-SIMS) to measure the depth profiles of H, C, O, F, P and Nb. The measuring results show that the plasma cleaning with gas mixtures of argon and oxgen and conditions of about 20Pa and 100W can remarkably reduce the contents of impurity elements in the depth of about 30 nm without introducing hydrogen in the cavity surface. So plasma cleaning has been proposed t...

  15. Analysis and active compensation of microphonics in continuous wave narrow-bandwidth superconducting cavities

    Science.gov (United States)

    Neumann, A.; Anders, W.; Kugeler, O.; Knobloch, J.

    2010-08-01

    Many proposals for next generation light sources based on single pass free electron lasers or energy recovery linac facilities require a continuous wave (cw) driven superconducting linac. The effective beam loading in such machines is very small and in principle the cavities can be operated at a bandwidth of a few Hz and with less than a few kW of rf power. However, a power reserve is required to ensure field stability. A major error source is the mechanical microphonics detuning of the niobium cavities. To understand the influence of cavity detuning on longitudinal beam stability, a measurement program has been started at the horizontal cavity test facility HoBiCaT at HZB to study TESLA-type cavities. The microphonics detuning spectral content, peak detuning values, and the driving terms for these mechanical oscillations have been analyzed. In combination with the characterization of cw-adapted fast tuning systems based on the piezoelectric effect this information has been used to design a detuning compensation algorithm. It has been shown that a compensation factor between 2-7 is achievable, reducing the typical detuning of 2-3 Hz rms to below 0.5 Hz rms. These results were included in rf-control simulations of the cavities, and it was demonstrated that a phase stability below 0.02° can be achieved.

  16. Comparative Simulation Studies of Multipacting in Higher-Order-Mode Couplers of Superconducting RF Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y. M. [Peking University, Beijing (China); Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Liu, Kexin [Peking University, Beijing (China); Geng, Rongli [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2014-02-01

    Multipacting (MP) in higher-order-mode (HOM) couplers of the International Linear Collider (ILC) baseline cavity and the Continuous Electron Beam Accelerator Facility (CEBAF) 12 GeV upgrade cavity is studied by using the ACE3P suites, developed by the Advanced Computations Department at SLAC. For the ILC cavity HOM coupler, the simulation results show that resonant trajectories exist in three zones, corresponding to an accelerating gradient range of 0.6-1.6 MV/m, 21-34 MV/m, 32-35 MV/m, and > 40MV/m, respectively. For the CEBAF 12 GeV upgrade cavity HOM coupler, resonant trajectories exist in one zone, corresponding to an accelerating gradient range of 6-13 MV/m. Potential implications of these MP barriers are discussed in the context of future high energy pulsed as well as medium energy continuous wave (CW) accelerators based on superconducting radio frequency cavities. Frequency scaling of MP's predicted in HOM couplers of the ILC, CBEAF upgrade, SNS and FLASH third harmonic cavity is given and found to be in good agreement with the analytical result based on the parallel plate model.

  17. A Scanned Perturbation Technique For Imaging Electromagnetic Standing Wave Patterns of Microwave Cavities

    CERN Document Server

    Gokirmak, A; Bridgewater, A; Anlage, S M; Gokirmak, Ali; Wu, Dong-Ho; Anlage, Steven M.

    1998-01-01

    We have developed a method to measure the electric field standing wave distributions in a microwave resonator using a scanned perturbation technique. Fast and reliable solutions to the Helmholtz equation (and to the Schrodinger equation for two dimensional systems) with arbitrarily-shaped boundaries are obtained. We use a pin perturbation to image primarily the microwave electric field amplitude, and we demonstrate the ability to image broken time-reversal symmetry standing wave patterns produced with a magnetized ferrite in the cavity. The whole cavity, including areas very close to the walls, can be imaged using this technique with high spatial resolution over a broad range of frequencies.

  18. Holonomic quantum computation with superconducting charge-phase qubits in a cavity

    Energy Technology Data Exchange (ETDEWEB)

    Feng Zhibo [National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093 (China) and Institute for Condensed Matter Physics, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510631 (China)], E-mail: zbfeng010@163.com; Zhang Xinding [Institute for Condensed Matter Physics, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510631 (China)

    2008-03-03

    We theoretically propose a feasible scheme to realize holonomic quantum computation with charge-phase qubits placed in a microwave cavity. By appropriately adjusting the controllable parameters, each charge-phase qubit is set as an effective four-level subsystem, based on which a universal set of holonomic quantum gates can be realized. Further analysis shows that our system is robust to the first-order fluctuation of the gate charges, and the intrinsic leakages between energy levels can be ignored.

  19. High Fidelity Qubit Readout with the Superconducting Low-Inductance Undulatory Galvanometer Microwave Amplifier

    OpenAIRE

    Hover, D.; Zhu, S; Thorbeck, T.; Ribeill, G. J.; Sank, D.; Kelly, J; Barends, R.; Martinis, John M.; McDermott, R.

    2013-01-01

    We describe the high fidelity dispersive measurement of a superconducting qubit using a microwave amplifier based on the Superconducting Low-inductance Undulatory Galvanometer (SLUG). The SLUG preamplifier achieves gain of 19 dB and yields a signal-to-noise ratio improvement of 9 dB over a state-of-the-art HEMT amplifier. We demonstrate a separation fidelity of 99% at 700 ns compared to 59% with the HEMT alone. The SLUG displays a large dynamic range, with an input saturation power correspond...

  20. WAFER TEST CAVITY -Linking Surface Microstructure to RF Performance: a ‘Short-­Sample Test Facility’ for characterizing superconducting materials for SRF cavities.

    Energy Technology Data Exchange (ETDEWEB)

    Pogue, Nathaniel; Comeaux, Justin; McIntyre, Peter

    2014-05-30

    The Wafer Test cavity was designed to create a short sample test system to determine the properties of the superconducting materials and S-I-S hetero-structures. The project, funded by ARRA, was successful in accomplishing several goals to achieving a high gradient test system for SRF research and development. The project led to the design and construction of the two unique cavities that each severed unique purposes: the Wafer test Cavity and the Sapphire Test cavity. The Sapphire Cavity was constructed first to determine the properties of large single crystal sapphires in an SRF environment. The data obtained from the cavity greatly altered the design of the Wafer Cavity and provided the necessary information to ascertain the Wafer Test cavity’s performance.

  1. Theoretical estimates of maximum fields in superconducting resonant radio frequency cavities: stability theory, disorder, and laminates

    Science.gov (United States)

    Liarte, Danilo B.; Posen, Sam; Transtrum, Mark K.; Catelani, Gianluigi; Liepe, Matthias; Sethna, James P.

    2017-03-01

    Theoretical limits to the performance of superconductors in high magnetic fields parallel to their surfaces are of key relevance to current and future accelerating cavities, especially those made of new higher-T c materials such as Nb3Sn, NbN, and MgB2. Indeed, beyond the so-called superheating field {H}{sh}, flux will spontaneously penetrate even a perfect superconducting surface and ruin the performance. We present intuitive arguments and simple estimates for {H}{sh}, and combine them with our previous rigorous calculations, which we summarize. We briefly discuss experimental measurements of the superheating field, comparing to our estimates. We explore the effects of materials anisotropy and the danger of disorder in nucleating vortex entry. Will we need to control surface orientation in the layered compound MgB2? Can we estimate theoretically whether dirt and defects make these new materials fundamentally more challenging to optimize than niobium? Finally, we discuss and analyze recent proposals to use thin superconducting layers or laminates to enhance the performance of superconducting cavities. Flux entering a laminate can lead to so-called pancake vortices; we consider the physics of the dislocation motion and potential re-annihilation or stabilization of these vortices after their entry.

  2. Raising gradient limitations in 2.1 GHz superconducting photonic band gap accelerator cavities

    Energy Technology Data Exchange (ETDEWEB)

    Simakov, Evgenya I., E-mail: smirnova@lanl.gov; Arsenyev, Sergey A.; Haynes, W. Brian; Shchegolkov, Dmitry Yu.; Suvorova, Natalya A.; Tajima, Tsuyoshi [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545 (United States); Boulware, Chase H.; Grimm, Terry L. [Niowave, Inc., 1012 North Walnut Street, Lansing, Michigan 48906 (United States)

    2014-06-16

    We report results from recent 2.1 GHz superconducting radio frequency (SRF) photonic band gap (PBG) resonator experiments at Los Alamos. Two 2.1 GHz PBG cells with elliptical rods were fabricated and tested at high power in a liquid helium bath at the temperatures of 4 K and below 2 K. The described SRF PBG cells were designed with a particular emphasis on changing the shape of the PBG rods to reduce peak surface magnetic fields and at the same time to preserve its effectiveness at damping higher-order-modes. The superconducting PBG cavities have great potential for damping long-range wakefields in SRF accelerator structures without affecting the fundamental accelerating mode. The cells performed in accordance with simulation's predictions and the maximum achieved accelerating gradient was 18.3 MV/m. This represents a 30% increase over gradients previously demonstrated in superconducting PBG cavities with round rods.

  3. Open microwave cavity for use in a Purcell enhancement cooling scheme

    Science.gov (United States)

    Evetts, N.; Martens, I.; Bizzotto, D.; Longuevergne, D.; Hardy, W. N.

    2016-10-01

    A microwave cavity is described which can be used to cool lepton plasmas for potential use in synthesis of antihydrogen. The cooling scheme is an incarnation of the Purcell effect: when plasmas are coupled to a microwave cavity, the plasma cooling rate is resonantly enhanced through increased spontaneous emission of cyclotron radiation. The cavity forms a three electrode section of a Penning-Malmberg trap and has a bulged cylindrical geometry with open ends aligned with the magnetic trapping axis. This allows plasmas to be injected and removed from the cavity without the need for moving parts while maintaining high quality factors for resonant modes. The cavity includes unique surface preparations for adjusting the cavity quality factor and achieving anti-static shielding using thin layers of nichrome and colloidal graphite, respectively. Geometric design considerations for a cavity with strong cooling power and low equilibrium plasma temperatures are discussed. Cavities of this weak-bulge design will be applicable to many situations where an open geometry is required.

  4. Superconductivity applications for infrared and microwave devices II; Proceedings of the Meeting, Orlando, FL, Apr. 4, 5, 1991

    Science.gov (United States)

    Heinen, Vernon O. (Editor); Bhasin, Kul B. (Editor)

    1991-01-01

    Topics discussed include thin-film technology, microwave transmission lines and resonators, microwave devices and circuits, infrared detectors and bolometers, and superconducting junctions. Papers are presented on possible enhancement in bolometric response using free-standing film of YBa2Cu3O(x), aging and surface instability in high-Tc superconductors, epitaxial Tl2Ba2CaCu2O8 thin films on LaAlO3 and their microwave device properties, the performance of stripline resonators using sputtered YBCO films, and a coplanar waveguide microwave filter of YBa2Cu3O7. Attention is also given to the performance characteristics of Y-Ba-Cu-O microwave superconducting detectors, high-Tc bolometer developments for planetary missions, infrared detectors from YBaCuO thin films, high-temperature superconductor junction technology, and submillimeter receiver components using superconducting tunnel junctions.

  5. Quantum dynamics of a microwave driven superconducting phase qubit coupled to a two-level system

    Science.gov (United States)

    Sun, Guozhu; Wen, Xueda; Mao, Bo; Zhou, Zhongyuan; Yu, Yang; Wu, Peiheng; Han, Siyuan

    2010-10-01

    We present an analytical and comprehensive description of the quantum dynamics of a microwave resonantly driven superconducting phase qubit coupled to a microscopic two-level system (TLS), covering a wide range of the external microwave field strength. Our model predicts several interesting phenomena in such an ac driven four-level bipartite system including anomalous Rabi oscillations, high-contrast beatings of Rabi oscillations, and extraordinary two-photon transitions. Our experimental results in a coupled qubit-TLS system agree quantitatively very well with the predictions of the theoretical model.

  6. Resistivity changes in superconducting-cavity-grade Nb following high-energy proton irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Snead, C.L. Jr.; Hanson, A.; Greene, G.A. [and others

    1997-12-01

    Niobium superconducting rf cavities are proposed for use in the proton LINAC accelerators for spallation-neutron applications. Because of accidental beam loss and continual halo losses along the accelerator path, concern for the degradation of the superconducting properties of the cavities with accumulating damage arises. Residual-resistivity-ratio (RRR) specimens of Nb, with a range of initial RRR`s were irradiated at room temperature with protons at energies from 200 to 2000 MeV. Four-probe resistance measurements were made at room temperature and at 4.2 K both prior to and after irradiation. Nonlinear increases in resistivity simulate expected behavior in cavity material after extended irradiation, followed by periodic anneals to room temperature: For RRR = 316 material, irradiations to (2 - 3) x 10{sup 15} p/cm{sup 2} produce degradations up to the 10% level, a change that is deemed operationally acceptable. Without. periodic warming to room temperature, the accumulated damage energy would be up to a factor of ten greater, resulting in unacceptable degradations. Likewise, should higher-RRR material be used, for the same damage energy imparted, relatively larger percentage changes in the RRR will result.

  7. Analysis of Nb{sub 3}Sn surface layers for superconducting radio frequency cavity applications

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Chaoyue [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616 (United States); Posen, Sam; Hall, Daniel Leslie [Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York 14853 (United States); Groll, Nickolas; Proslier, Thomas, E-mail: prolier@anl.gov [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Cook, Russell [Nanoscience and Technology Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Schlepütz, Christian M. [X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Liepe, Matthias [Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York 14853 (United States); Department of Physics, Cornell University, Ithaca, New York 14853 (United States); Pellin, Michael [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Zasadzinski, John [Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616 (United States)

    2015-02-23

    We present an analysis of Nb{sub 3}Sn surface layers grown on a bulk Niobium (Nb) coupon prepared at the same time and by the same vapor diffusion process used to make Nb{sub 3}Sn coatings on 1.3 GHz Nb cavities. Tunneling spectroscopy reveals a well-developed, homogeneous superconducting density of states at the surface with a gap value distribution centered around 2.7 ± 0.4 meV and superconducting critical temperatures (T{sub c}) up to 16.3 K. Scanning transmission electron microscopy performed on cross sections of the sample's surface region shows an ∼2 μm thick Nb{sub 3}Sn surface layer. The elemental composition map exhibits a Nb:Sn ratio of 3:1 and reveals the presence of buried sub-stoichiometric regions that have a ratio of 5:1. Synchrotron x-ray diffraction experiments indicate a polycrystalline Nb{sub 3}Sn film and confirm the presence of Nb rich regions that occupy about a third of the coating volume. These low T{sub c} regions could play an important role in the dissipation mechanisms occurring during RF tests of Nb{sub 3}Sn-coated Nb cavities and open the way for further improving a very promising alternative to pure Nb cavities for particle accelerators.

  8. SQUID Based Cryogenic Current Comparator for Measurements of the Dark Current of Superconducting Cavities

    CERN Document Server

    Vodel, W; Neubert, R; Nietzsche, S

    2005-01-01

    This contribution presents a LTS-SQUID based Cryogenic Current Comparator (CCC) for detecting dark currents, generated e.g. by superconducting cavities for the upcoming X-FEL project at DESY. To achieve the maximum possible energy the gradients of the superconducting RF cavities should be pushed close to the physical limit of 50 MV/m. The measurement of the undesired field emission of electrons (the so-called dark current) in correlation with the gradient will give a proper value to compare and classify the cavities. The main component of the CCC is a high performance LTS-DC SQUID system which is able to measure extremely low magnetic fields, e.g. caused by the extracted dark current. For this reason the input coil of the SQUID is connected across a special designed toroidal niobium pick-up coil (inner diameter: about 100 mm) for the passing electron beam. A noise limited current resolution of nearly 2 pA/√(Hz) with a measurement bandwidth of up to 70 kHz was achieved without the pick-up coil. Now, ...

  9. A novel approach to characterizing the surface topography of niobium superconducting radio frequency (SRF) accelerator cavities

    Energy Technology Data Exchange (ETDEWEB)

    Tian Hui [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Applied Sci. Dept., College of William and Mary, Williamsburg, VA 23185 (United States); Ribeill, Guilhem [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Dept. of Physics, North Carolina State University, Raleigh, NC 27695 (United States); Xu Chen [Applied Sci. Dept., College of William and Mary, Williamsburg, VA 23185 (United States); Reece, Charles E. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Kelley, Michael J., E-mail: mkelley@jlab.org [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Applied Sci. Dept., College of William and Mary, Williamsburg, VA 23185 (United States)

    2011-03-15

    As superconducting niobium radio-frequency (SRF) cavities approach fundamental material limits, there is increased interest in understanding the details of topographical influences on realized performance limitations. Micro- and nano-roughness are implicated in both direct geometrical field enhancements as well as complications of the composition of the 50 nm surface layer in which the super-currents typically flow. Interior surface chemical treatments such as buffered chemical polishing (BCP) and electropolishing (EP) used to remove mechanical damage leave surface topography, including pits and protrusions of varying sharpness. These may promote RF magnetic field entry, locally quenching superconductivity, so as to degrade cavity performance. A more incisive analysis of surface topography than the widely used average roughness is needed. In this study, a power spectral density (PSD) approach based on Fourier analysis of surface topography data acquired by both stylus profilometry and atomic force microscopy (AFM) is introduced to distinguish the scale-dependent smoothing effects, resulting in a novel qualitative and quantitative description of Nb surface topography. The topographical evolution of the Nb surface as a function of different steps of well-controlled EP is discussed. This study will greatly help to identify optimum EP parameter sets for controlled and reproducible surface levelling of Nb for cavity production.

  10. A novel approach to characterizing the surface topography of niobium superconducting radio frequency (SRF) accelerator cavities

    Energy Technology Data Exchange (ETDEWEB)

    Hui Tian, Guilhem Ribeill, Chen Xu, Charles E. Reece, Michael J. Kelley

    2011-03-01

    As superconducting niobium radio-frequency (SRF) cavities approach fundamental material limits, there is increased interest in understanding the details of topographical influences on realized performance limitations. Micro- and nano-roughness are implicated in both direct geometrical field enhancements as well as complications of the composition of the 50 nm surface layer in which the super-currents typically flow. Interior surface chemical treatments such as buffered chemical polishing (BCP) and electropolishing (EP) used to remove mechanical damage leave surface topography, including pits and protrusions of varying sharpness. These may promote RF magnetic field entry, locally quenching superconductivity, so as to degrade cavity performance. A more incisive analysis of surface topography than the widely used average roughness is needed. In this study, a power spectral density (PSD) approach based on Fourier analysis of surface topography data acquired by both stylus profilometry and atomic force microscopy (AFM) is introduced to distinguish the scale-dependent smoothing effects, resulting in a novel qualitative and quantitative description of Nb surface topography. The topographical evolution of the Nb surface as a function of different steps of well-controlled EP is discussed. This study will greatly help to identify optimum EP parameter sets for controlled and reproducible surface levelling of Nb for cavity production.

  11. Updating the CSNS injector linac to 250 MeV with superconducting double-spoke cavities

    CERN Document Server

    Zhi-Hui, LI

    2014-01-01

    In order to update the beam power from 100 kW to 250 kW in China spallation neutron source (CSNS) Phase II, one of the important measures is to replace the 80 meters long beam transport line between the present 80 MeV linac injector and the RCS to another kind of acceleration structure. In this paper, we proposed a scheme based on 324 MHz double-spoke superconducting cavities. Unlike the superconducting elliptical cavity and normal conducting CCL structure, the double-spoke cavity belongs to TE mode structure and has smaller transvers dimension compared with that of TH mode one. It can work at base frequency as the DTL section, so that the cost and complexity of the RF system will be much decreased, and the behaviors of the beam dynamics are also improved significantly because of the low charge density and larger longitudinal acceptance. Furthermore, because of the relatively longer interactive length between charged particle and the electromagnetic field per cell, it needs relatively less cell numbers and it...

  12. Noise and Directionality in a SLUG Microwave Amplifier for Superconducting Qubit Readout

    Science.gov (United States)

    Thorbeck, Ted; Zhu, Shaojiang; Leonard, Edward; McDermott, Robert

    2015-03-01

    Josephson parametric amplifiers have been widely used for low-noise dispersive readout of superconducting qubits. However, multiple stages of cryogenic isolation are required to protect the qubit from the strong microwave pump tone and from the high temperature noise of downstream gain stages. We want to remove circulators and isolators from the measurement chain because they are bulky, expensive, and magnetic. The SLUG (superconducting low-inductance undulatory galvanometer) is a microwave amplifier that achieves broad bandwidth, low added noise, and high gain. In this talk we discuss measurements of the SLUG added noise (less than photon system added noise). We describe theoretical and experimental investigations of the SLUG reverse isolation. Finally, we discuss backaction of the SLUG on the measured qubit, and we present strategies for the suppression of SLUG backaction.

  13. In-situ Broadband Cryogenic Calibration for Two-port Superconducting Microwave Resonators

    CERN Document Server

    Yeh, Jen-Hao

    2012-01-01

    In this paper we introduce an improved microwave calibration method for use in a cryogenic environment, based on a traditional three-standard calibration, the Thru-Reflection-Line (TRL) calibration. The modified calibration method takes advantage of additional information from multiple measurements of an ensemble of realizations of a superconducting resonator, as a new pseudo-Open standard, to correct errors in the TRL calibration. We also demonstrate an experimental realization of this in-situ broadband cryogenic calibration system utilizing cryogenic switches. All calibration measurements are done in the same thermal cycle as the measurement of the resonator (requiring only an additional 20 minutes), thus avoiding 4 additional thermal cycles for traditional TRL calibration (which would require an additional 12 days). The experimental measurements on a wave chaotic microwave billiard verify that the new method significantly improves the measured scattering matrix of a high-quality-factor superconducting reso...

  14. In situ broadband cryogenic calibration for two-port superconducting microwave resonators.

    Science.gov (United States)

    Yeh, Jen-Hao; Anlage, Steven M

    2013-03-01

    We introduce an improved microwave calibration method for use in a cryogenic environment, based on a traditional three-standard calibration, the Thru-Reflect-Line (TRL) calibration. The modified calibration method takes advantage of additional information from multiple measurements of an ensemble of realizations of a superconducting resonator, as a new pseudo-Open standard, to correct errors in the TRL calibration. We also demonstrate an experimental realization of this in situ broadband cryogenic calibration system utilizing cryogenic switches. All calibration measurements are done in the same thermal cycle as the measurement of the resonator (requiring only an additional 20 min), thus avoiding 4 additional thermal cycles for traditional TRL calibration (which would require an additional 12 days). The experimental measurements on a wave-chaotic microwave billiard verify that the new method significantly improves the measured scattering matrix of a high-quality-factor superconducting resonator.

  15. New results of development on high efficiency high gradient superconducting rf cavities

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Rongli [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Li, Z. K. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hao, Z. K. [Peking Univ., Beijing (China); Liu, K. X. [Peking Univ., Beijing (China); Zhao, H. Y. [OTIC, Ningxia (China); Adolphsen, C. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-09-01

    We report on the latest results of development on high-efficiency high-gradient superconducting radio frequency (SRF) cavities. Several 1-cell cavities made of large-grain niobium (Nb) were built, processed and tested. Two of these cavities are of the Low Surface Field (LSF) shape. Series of tests were carried out following controlled thermal cycling. Experiments toward zero-field cooling were carried out. The best experimentally achieved results are Eacc = 41 MV/m at Q0 = 6.5×1010 at 1.4 K by a 1-cell 1.3 GHz large-grain Nb TTF shape cavity and Eacc = 49 MV/m at Q0 = 1.5×1010 at 1.8 K by a 1-cell 1.5 GHz large-grain Nb CEBAF upgrade low-loss shape cavity.

  16. A preliminary quadrupole asymmetry study of a β=0.12 superconducting single spoke cavity

    Science.gov (United States)

    Yang, Zi-Qin; Lu, Xiang-Yang; Yang, Liu; Luo, Xing; Zhou, Kui; Quan, Sheng-Wen

    2014-10-01

    An Accelerator Driven System (ADS) has been launched in China for nuclear waste transmutation. For the application of high intensity proton beam acceleration, the quadrupole asymmetry effect needs to be carefully evaluated for cavities. Single spoke cavities are the main accelerating structures in the low energy front-end. The single spoke cavity has small transverse electromagnetic field asymmetry, which may lead to transverse RF defocusing asymmetry and beam envelope asymmetry. A superconducting single spoke resonator (PKU-2 Spoke) of β=0.12 and f=325 MHz with a racetrack-shaped inner conductor has been designed at Peking university. The study of its RF field quadrupole asymmetry and its effect on transverse momentum change has been performed. The quadrupole asymmetry study has also been performed on a β=0.12 and f=325 MHz ring-shaped single spoke cavity. Our results show that the quadrupole asymmetry is very small for both the racetrack-shaped and the ring-shaped single spoke cavity.

  17. Automated optical inspection and image analysis of superconducting radio-frequency cavities

    Energy Technology Data Exchange (ETDEWEB)

    Wenskat, Marc

    2017-04-15

    The inner surface of superconducting cavities plays a crucial role to achieve highest accelerating fields and low losses. For an investigation of this inner surface of more than 100 cavities within the cavity fabrication for the European XFEL and the ILC HiGrade Research Project, an optical inspection robot OBACHT was constructed. To analyze up to 2325 images per cavity, an image processing and analysis code was developed and new variables to describe the cavity surface were obtained. The accuracy of this code is up to 97% and the PPV 99% within the resolution of 15.63 μm. The optical obtained surface roughness is in agreement with standard profilometric methods. The image analysis algorithm identified and quantified vendor specific fabrication properties as the electron beam welding speed and the different surface roughness due to the different chemical treatments. In addition, a correlation of ρ=-0.93 with a significance of 6σ between an obtained surface variable and the maximal accelerating field was found.

  18. Effect of non-uniform surface resistance on the quality factor of superconducting niobium cavity

    Science.gov (United States)

    Tan, Weiwei; Lu, Xiangyang; Yang, Ziqin; Zhao, Jifei; Yang, Deyu; Yang, Yujia

    2016-08-01

    The formula Rs = G /Q0 is commonly used in the calculation of the surface resistance of radio frequency niobium superconducting cavities. The applying of such equation is under the assumption that surface resistance is consistent over the cavity. However, the distribution of the magnetic field varies over the cavity. The magnetic field in the equator is much higher than that in the iris. According to Thermal Feedback Theory, it leads non-uniform distribution of the density of heat flux, which results in a different temperature distribution along the cavity inter surface. The BCS surface resistance, which depends largely on the temperature, is different in each local inner surface. In this paper, the effect of surface non-uniform resistance on the quality factor has been studied, through the calculation of Q0 in the original definition of it. The results show that it is necessary to consider the non-uniform distribution of magnetic field when the accelerating field is above 20 MV/m for TESLA cavities. Also, the effect of inhomogeneity of residual resistance on the quality factor is discussed. Its distribution barely affects the quality factor.

  19. Frequency control in the process of a multicell superconducting cavity production.

    Science.gov (United States)

    Shemelin, Valery; Carriere, Paul

    2012-04-01

    Modifications in the geometry of a superconducting RF cavity due to various processing procedures are presented in a convenient matrix formulation. Specifically, the effect of chemical etching, cooling down, and preloading are characterized, while the corresponding frequency shifts are calculated with a reliable software. This matrix method was used in the fabrication of the first cornell energy recovery linac (ERL) 7-cell cavity. Cavity fabrication can be broken down into three main stages: deep-drawing cups, welding the cups in pairs to obtain "dumbbells" and end groups, and, finally, welding the obtained components into a completed cavity. Frequency measurements and precise machining were implemented after the second stage. A custom RF fixture and data acquisition system were designed and validated for this purpose. The system comprised of a mechanical press with RF contacts, a network analyzer, a load cell and custom LABVIEW and MATLAB scripts. To extract the individual frequencies of the cups from these measurements, the established algorithm of calculations was analysed and corrected. Corrections for the ambient environment were also incorporated into the measurement protocol. Using the procedure presented, the frequency deviation of the completed 1.3 GHz 7-cell cavity was 360 kHz, corresponding to an average error about 75 μm in length for every cell.

  20. Steady-state thermal studies on the HIE-ISOLDE high-$\\beta$ superconducting cavities

    CERN Document Server

    Alberty, L

    2013-01-01

    The activity of the High Intensity and Energy ISOLDE (HIE-ISOLDE) project aims to construct a superconducting linac based on 101.28 MHz niobium sputtered Quarter Wave Resonators (QWRs). For this, several prototypes of superconducting cavities are currently being developed at CERN using OFE copper as substrate material for Niobium film coating. Two main concepts are currently under development: one consists of rolled, machined, deepdrawed and welded parts; the other is based on machined parts which are put together using electron beam welding. This study presents the results of simulations carried out in order to assess the thermal performance of different designs. The interest for such analysis was raised up before launching the manufacture of the first industrial series, since both rolled and bulk approaches seemed possible.

  1. Superconducting hot-electron nanobolometer with microwave bias and readout

    CERN Document Server

    Kuzmin, A A; Shitov, S V; Abramov, N N; Ermakov, A B; Arndt, M; Wuensch, S H; Ilin, K S; Ustinov, A V; Siegel, M

    2014-01-01

    We propose a new detection technique based on radio-frequency (RF) bias and readout of an antenna-coupled superconducting nanobolometer. This approach is suitable for Frequency-Division-Multiplexing (FDM) readout of large arrays using broadband low-noise RF amplifier. We call this new detector RFTES. This feasibility study was made on demonstrator devices which are made in all-Nb technology and operate at 4.2 K. The studied RFTES devices consist of an antenna-coupled superconducting nanobolometer made of ultrathin niobium films with transition temperature Tc = 5.2 K. The 0.65-THz antenna and nanobolometer are embedded as a load into a GHz-range coplanar niobium resonator (Tc = 8.9 K, Q = 4000). To heat the superconducting Nb nanobolometer close to the Tc, the RF power at resonator frequency f = 5.8 GHz is applied via a transmission line which is weakly coupled (-11 dB) to the loaded resonator. The THz-antenna of RFTES was placed in the focus of a sapphire immersion lens inside a He4-cryostat equipped with an ...

  2. Interfering with decay of a single photon in microwave cavities through SP-QND

    CERN Document Server

    De Faria, J G P; De Toledo di Piza, A F R; Nemes, M C

    2000-01-01

    The decay of a single photon in a microwave cavity is shown to be retarded by interaction with a resonant two-level atom in the experimental setup recently developed by Nogues and co-workers [see G. Nogues, A. Rauschenbeutel, S. Osnaghi, M. Brune, J. M. Raimond and S. Haroche, Nature vol 400, 239(1999)]. The effect may be interpreted in terms of the temporary removal of the photon from the cavity thereby protecting it from the effects of the environment to wich the cavity is coupled. Realistic parameters lead to a 10% increase of the survival probability of the photon subsequently to the monitoring interaction.

  3. Space applications of superconducting microwave electronics at NASA Lewis Research Center

    Science.gov (United States)

    Leonard, R. F.; Bhasin, K. B.; Romanofsky, R. R.; Cubbage, C. D.; Chorey, C. Z.

    1993-01-01

    Since the discovery of high temperature superconductivity in 1987, NASA Lewis Research Center has been involved in efforts to demonstrate its advantages for applications involving microwave electronics in space, especially space communications. The program included thin film fabrication by means of laser ablation. Specific circuitry which was investigated includes microstrip ring resonators at 32 GHz, phase shifters which utilize a superconducting, optically activated switch, an 8x8 32 GHz superconducting microstrip antenna array, and an HTS-ring-resonator stabilized oscillator at 8 GHz. The latter two components are candidates for use in space experiments which are described in other papers. Experimental data on most of the circuits are presented as well as, in some cases, a comparison of their performance with an identical circuit utilizing gold or copper metallization.

  4. Two-dimensional imaging of optical emission in a multicusp-ECR microwave resonant cavity

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, C.B.; Brake, M.L. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Nuclear Engineering

    1996-02-01

    Optical emission of the electron-cyclotron resonant (ECR) region of a multicusp microwave resonant cavity plasma source has been imaged onto a two-dimensional charge-coupled device (CCD) camera. The technique provides a real-time diagnostic of the plasma emission around the ECR region within a wavelength region defined by low-bandpass filters.

  5. Feasibility, engineering aspects and physics reach of microwave cavity experiments searching for hidden photons and axions

    CERN Document Server

    Caspers, Friedhelm; Ringwald, A

    2009-01-01

    Using microwave cavities one can build a resonant “light-shining-through-walls” experiment to search for hidden sector photons and axion like particles, predicted in many extensions of the standard model. In this note we make a feasibility study of the sensitivities which can be reached using state of the art technology.

  6. Feasibility, engineering aspects and physics reach of microwave cavity experiments searching for hidden photons and axions

    Energy Technology Data Exchange (ETDEWEB)

    Caspers, F. [CERN, Geneva (Switzerland); Jaeckel, J. [Univ. of Durham, Inst. for Particle Physics and Phenomenology (United Kingdom); Ringwald, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2009-08-15

    Using microwave cavities one can build a resonant ''light-shining-through-walls'' experiment to search for hidden sector photons and axion like particles, predicted in many extensions of the standard model. In this note we make a feasibility study of the sensitivities which can be reached using state of the art technology. (orig.)

  7. Superconducting Switch for Fast On-Chip Routing of Quantum Microwave Fields

    Science.gov (United States)

    Pechal, M.; Besse, J.-C.; Mondal, M.; Oppliger, M.; Gasparinetti, S.; Wallraff, A.

    2016-08-01

    A switch capable of routing microwave signals at cryogenic temperatures is a desirable component for state-of-the-art experiments in many fields of applied physics, including but not limited to quantum-information processing, communication, and basic research in engineered quantum systems. Conventional mechanical switches provide low insertion loss but disturb operation of dilution cryostats and the associated experiments by heat dissipation. Switches based on semiconductors or microelectromechanical systems have a lower thermal budget but are not readily integrated with current superconducting circuits. Here we design and test an on-chip switch built by combining tunable transmission-line resonators with microwave beam splitters. The device is superconducting and as such dissipates a negligible amount of heat. It is compatible with current superconducting circuit fabrication techniques, operates with a bandwidth exceeding 100 MHz, is capable of handling photon fluxes on the order of 1 05 μ s-1 , equivalent to powers exceeding -90 dBm , and can be switched within approximately 6-8 ns. We successfully demonstrate operation of the device in the quantum regime by integrating it on a chip with a single-photon source and using it to route nonclassical itinerant microwave fields at the single-photon level.

  8. Broadband microwave response of superconducting NbN and TaN thin films

    Energy Technology Data Exchange (ETDEWEB)

    Felger, M. Maximilian; Pracht, Uwe S.; Dressel, Martin; Scheffler, Marc [1. Physikalisches Institut, Universitaet Stuttgart, D-70669 Stuttgart (Germany); Ilin, Konstantin; Siegel, Michael [Institut fuer Mikro- und Nanoelektronische Systeme, Karlsruher Institut fuer Technologie, D-76187 Karlsruhe (Germany)

    2015-07-01

    Ultrathin NbN and TaN films with their peculiar superconducting behavior are of interest both for fundamental physics (e.g. concerning the superconductor-insulator transition) and novel applications (e.g. for single-photon detectors). Here microwave spectroscopy is a powerful tool to characterize essential superconducting properties and to investigate the charge dynamics (Cooper pairs and quasiparticles). We have prepared by sputtering thin films of NbN (thickness between 3 nm and 20 nm; T{sub c} between 5 K and 13 K) and TaN (thickness 5 nm; T{sub c} between 8.5 K and 9.5 K) on sapphire substrates. We performed broadband microwave spectroscopy on these samples using a Corbino spectrometer at temperatures down to 1.1 K and at frequencies up to 50 GHz. From these data we determine the superconducting penetration depth and we evaluate the frequency-dependent conductivity. While many of the observed features can be described within expectations of conventional BCS theory, we also find deviations that are caused by fluctuations near the superconducting transition.

  9. Insights to Superconducting Radio-Frequency Cavity Processing from First Principles Calculations and Spectroscopic Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Denise Christine [Northwestern Univ., Evanston, IL (United States)

    2013-03-01

    Insights to the fundamental processes that occur during the manufacturing of niobium superconducting radio-frequency (SRF) cavities are provided via analyses of density functional theory calculations and Raman, infrared, and nuclear magnetic resonance (NMR) spectra. I show that during electropolishing fluorine is bound and released by the reaction of the acid components in the solution: HF + H2SO4 <-> HFSO3 + H2O. This result implies that new recipes can possibly be developed on the principle of controlled release of fluorine by a chemical reaction. I also show that NMR or Raman spectroscopy can be used to monitor the free fluorine when polishing with the standard electropolishing recipe. Density functional theory was applied to calculate the properties of common processing impurities – hydrogen, oxygen, nitrogen, and carbon – in the niobium. These impurities lower the superconducting transition temperature of niobium, and hydride precipitates are at best weakly superconducting. I modeled several of the niobium hydride phases relevant to SRF cavities, and explain the phase changes in the niobium hydrogen system based on the charge transfer between niobium and hydrogen and the strain field inside of the niobium. I also present evidence for a niobium lattice vacancy serving as a nucleation center for hydride phase formation. In considering the other chemical impurities in niobium, I show that the absorption of oxygen into a niobium lattice vacancy is preferred over the absorption of hydrogen, which indicates that oxygen can block these phase nucleation centers. I also show that dissolved oxygen atoms can trap dissolved hydrogen atoms to prevent niobium hydride phase formation. Nitrogen and carbon were studied in less depth, but behaved similarly to oxygen. Based on these results and a literature survey, I propose a mechanism for the success of the low-temperature anneal applied to niobium SRF cavities. Finally, I

  10. Electron Bunch Train Excited Higher-Order Modes in a Superconducting RF Cavity

    CERN Document Server

    Gao, Yongfeng; Wang, Fang; Feng, Liwen; Zhuang, Dehao; Lin, Lin; Zhu, Feng; Hao, Jiankui; Quan, Shengwen; Liu, Kexin

    2016-01-01

    Higher-order mode (HOM) based intra-cavity beam diagnostics has been proved effectively and conveniently in superconducting radio-frequency (SRF) accelerators. Our recent research shows that the beam harmonics in the bunch train excited HOM spectrum, which have much higher signal-to-noise ratio than the intrinsic HOM peaks, may also be useful for beam diagnostics. In this paper, we will present our study on bunch train excited HOMs, including the theoretic model and recent experiments carried out based on the DC-SRF photoinjector and SRF linac at Peking University.

  11. High power conditioning of the input coupler for BEPCⅡ superconducting cavity

    Institute of Scientific and Technical Information of China (English)

    PAN Wei-Min; HUANG Tong-Ming; MA Qiang; WANG Guang-Wei; SUN Yi; SHA Peng; LI Zhong-Quan; LIN Hai-Ying; XU Bo

    2008-01-01

    High power conditioning of the input coupler for BEPCⅡ supercOnducting cavity has been performed.After room temperature conditioning,the RF power of 150 kW with continuous wave at standing wave mode passed through the coupler without any problem.Meanwhile,a series of methods have also been studied to improve the performance of the coupler during the beam operation.Up to now,the input coupler can feed a RF power up to 100 kW stably with high current of 250 mA at 2.5 GeV.

  12. Characterization of ferromagnetic perovskites for magnetically tunable microwave superconducting resonators

    Science.gov (United States)

    Wosik, J.; Xie, L.-M.; Strikovski, M.; Przyslupski, P.; Kamel, M.; Srinivasu, V. V.; Long, S. A.

    2002-04-01

    An investigation of electrical, magnetic, and microwave properties is presented for Nd1-xSrxMnO3-y (NSMO) thin films. The NSMO thin films were deposited on (100)-oriented LaAlO3 substrates using both high-pressure sputtering and laser-ablation methods. Several films with different doping concentration ranging from 0.17 to 0.33 were tested for microwave loss and their frequency dependence on the dc magnetic field. The films exhibited Curie temperatures ranging from 220 to 60 K, and saturation magnetization from 0.3 to 0.1 T. The feasibility of applications of magnetic perovskites for magnetic tuning of resonators is analyzed and discussed.

  13. Application of FPGA technology for control of superconducting TESLA cavities in free electron laser

    Science.gov (United States)

    Pozniak, Krzysztof T.

    2006-10-01

    Contemporary fundamental research in physics, biology, chemistry, pharmacology, material technology and other uses frequently methods basing on collision of high energy particles or penetration of matter with ultra-short electromagnetic waves. Kinetic energy of involved particles, considerably greater than GeV, is generated in accelerators of unique construction. The paper presents a digest of working principles of accelerators. There are characterized research methods which use accelerators. A method to stabilize the accelerating EM field in superconducting (SC) resonant cavity was presented. An example was given of usage of TESLA cavities in linear accelerator propelling the FLASH free electron laser (FEL) in DESY, Hamburg. Electronic and photonic control system was debated. The system bases on advanced FPGA circuits and cooperating fast DSP microprocessor chips. Examples of practical solutions were described. Test results of the debated systems in the real-time conditions were given.

  14. A Fast Switchyard for the TESLA FEL-Beam Using a Superconducting Transverse Mode Cavity

    CERN Document Server

    Wanzenberg, R

    2000-01-01

    In the present design of the TESLA Linear Collider with integrated X-ray Laser Facility it is necessary that 1 ms long bunch trains with about 10000 bunches are generated and distributed to several free electron laser (FEL) beam lines. The different scientific applications of the X-ray FELs need specific filling patterns of the bunches in the bunch train. It is shown that a fast switch-yard based on a superconducting transverse mode cavity can be used to generate the required bunch pattern in a flexible way while keeping the beam loading in the main linear accelerator constant. The conceptual design of the beam optics and the transverse mode cavity are presented.

  15. Biased HiPIMS technology for superconducting rf accelerating cavities coating

    CERN Document Server

    G. Rosaz, G.; Sonato, D.; Calatroni, S.; Ehiasarian, A.; Junginger, T.; Taborelli, M.

    2016-01-01

    In the last few years the interest of the thin film science and technology community on High Impulse Power Magnetron Sputtering (HIPIMS) coatings has steadily increased. HIPIMS literature shows that better thin film morphology, denser and smoother films can be achieved when compared with standard dc Magnetron Sputtering (dcMS) coating technology. Furthermore the capability of HIPIMS to produce a high quantity of ionized species can allow conformal coatings also for complex geometries. CERN already studied the possibility to use such a coating method for SRF accelerating cavities. Results are promising but not better from a RF point of view than dcMS coatings. Thanks to these results the next step is to go towards a biased HiPIMS approach. However the geometry of the cavities leads to complex changes in the coating setup in order to apply a bias voltage. Coating system tweaking and first superconducting properties of biased samples are presented.

  16. Performance analysis of superconducting rf cavities for the CERN rare isotope accelerator

    Science.gov (United States)

    Calatroni, S.; Miyazaki, A.; Rosaz, G.; Sublet, A.; Venturini Delsolaro, W.; Vaglio, R.; Palmieri, V.

    2016-09-01

    The first cryomodule of the new HIE-ISOLDE rare isotope accelerator has recently been commissioned with beam at CERN, with the second cryomodule ready for installation. Each cryomodule contains five superconducting low-beta quarter wave cavities, produced with the technology of sputtering a thin niobium film onto the copper substrate (Nb /Cu ). This technology has several benefits compared to the bulk niobium solution, but also drawbacks among which the most relevant is the increase of surface resistance with accelerating field. Recent work has established the possible connection of this phenomenon to local defects in the Nb /Cu interface, which may lead to increased thermal impedance and thus local thermal runaway. We have analyzed the performance of the HIE-ISOLDE cavities series production, as well as of a few prototypes', in terms of this model, and found a strong correlation between the rf properties and one of the model characteristic quantities, namely the total surface having increased interface thermal impedance.

  17. Superconducting qubit in a nonstationary transmission line cavity: Parametric excitation, periodic pumping, and energy dissipation

    Science.gov (United States)

    Zhukov, A. A.; Shapiro, D. S.; Remizov, S. V.; Pogosov, W. V.; Lozovik, Yu. E.

    2017-02-01

    We consider a superconducting qubit coupled to the nonstationary transmission line cavity with modulated frequency taking into account energy dissipation. Previously, it was demonstrated that in the case of a single nonadiabatical modulation of a cavity frequency there are two channels of a two-level system excitation which are due to the absorption of Casimir photons and due to the counterrotating wave processes responsible for the dynamical Lamb effect. We show that the parametric periodical modulation of the resonator frequency can increase dramatically the excitation probability. Remarkably, counterrotating wave processes under such a modulation start to play an important role even in the resonant regime. Our predictions can be used to control qubit-resonator quantum states as well as to study experimentally different channels of a parametric qubit excitation.

  18. Electric Field Prediction using Micro-plasma Inside a Microwave Cavity for Soot Oxidation

    Directory of Open Access Journals (Sweden)

    Al-Wakeel Haitham B.

    2014-07-01

    Full Text Available The reduction of the harmful emission soot is necessary in recent years due to the environmental protection regulation. Soot is a carbonaceous matter and a strong absorber of microwave energy. Microwave heating offers the advantage over conventional heating to oxide soot. Where plasma is high electric field that leads to instantaneous temperature rising. This paper proposes a recent concept for soot oxidation using micro-plasma in a microwave cavity. The concept was presented by simulating the electric field using microwave heating and thin metal object. Five cases were examined numerically in a mono-mode TE10 microwave cavity WR430 having closed surfaces of perfect electric conductors working under 2.45 GHz frequency and 1500 W power supply to predict the electric field and dissipated heat distribution. The methodology of prediction was implemented using ANSYS based on FEM. The present prediction results showed higher electric field (400 kV/m and high dissipated heat (3.7×1010 W/m3 can be obtained for a soot sample backed with metal rods inserted vertically with gaps not exceeding 1.5 mm between the rods tips. Also increasing the number of metal rods, from 8 to 14 increases the maximum value of electric field formed in the soot sample to 575 kV/m. The simulation results revealed the ability of achieving high electric field by using microwave heating with the assistance of metal objects.

  19. Non-Destructive Testing for Black Heart Cavities in Potatoes with Microwave Radiation

    CERN Document Server

    Mohamed, Imran; Gregory, Andrew; Mouthaan, Ralf; Tian, Zhengrong; Andrews, Paul; Mellonie, Andrew

    2016-01-01

    A first investigation into the use of microwaves for the non-destructive testing for the presence of black heart cavities is presented. Additionally a potato's complex permittivity data between 0.5 GHz to 20 GHz measured using a coaxial sensor and the recipe for a potato phantom are also presented. Electromagnetic finite-difference time-domain simulations of potatoes show that changes to how microwaves propagate through a potato caused by a cavity can produce measurable changes in S21 at the potato's surface of up to 26 dB. Lab-based readings of the change in S21 caused by a phantom cavity submerged in a potato phantom liquid confirms the results of the simulation, albeit at a much reduced magnitude in the order of 0.1 dB.

  20. Linear beam dynamics and ampere class superconducting RF cavities at RHIC

    Science.gov (United States)

    Calaga, Rama R.

    The Relativistic Heavy Ion Collider (RHIC) is a hadron collider designed to collide a range of ions from protons to gold. RHIC operations began in 2000 and has successfully completed five physics runs with several species including gold, deuteron, copper, and polarized protons. Linear optics and coupling are fundamental issues affecting the collider performance. Measurement and correction of optics and coupling are important to maximize the luminosity and sustain stable operation. A numerical approach, first developed at SLAC, was implemented to measure linear optics from coherent betatron oscillations generated by ac dipoles and recorded at multiple beam position monitors (BPMs) distributed around the collider. The approach is extended to a fully coupled 2D case and equivalence relationships between Hamiltonian and matrix formalisms are derived. Detailed measurements of the transverse coupling terms are carried out at RHIC and correction strategies are applied to compensate coupling both locally and globally. A statistical approach to determine BPM reliability and performance over the past three runs and future improvements also discussed. Aiming at a ten-fold increase in the average heavy-ion luminosity, electron cooling is the enabling technology for the next luminosity upgrade (RHIC II). Cooling gold ion beams at 100 GeV/nucleon requires an electron beam of approximately 54 MeV and a high average current in the range of 50-200 mA. All existing e-Coolers are based on low energy DC accelerators. The only viable option to generate high current, high energy, low emittance CW electron beam is through a superconducting energy-recovery linac (SC-ERL). In this option, an electron beam from a superconducting injector gun is accelerated using a high gradient (˜ 20 MV/m) superconducting RF (SRF) cavity. The electrons are returned back to the cavity with a 180° phase shift to recover the energy back into the cavity before being dumped. A design and development of a half

  1. Beam position diagnostics with higher order modes in third harmonic superconducting accelerating cavities

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pei

    2013-02-15

    various dipole modes on the oset of the excitation beam were subsequently studied using a spectrum analyzer. Various data analysis methods were used: modal identication, direct linear regression, singular value decomposition and k-means clustering. These studies lead to three modal options promising for beam position diagnostics, upon which a set of test electronics has been built. The experiments with these electronics suggest a resolution of 50 micron accuracy in predicting local beam position in the cavity and a global resolution of 20 micron over the complete module. This constitutes the first demonstration of HOM-based beam diagnostics in a third harmonic 3.9 GHz superconducting cavity module. These studies have finalized the design of the online HOM-BPM for 3.9 GHz cavities at FLASH.

  2. First-principles calculations of niobium hydride formation in superconducting radio-frequency cavities

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Denise C.; Cooley, Lance D.; Seidman, David N.

    2013-09-01

    Niobium hydride is suspected to be a major contributor to degradation of the quality factor of niobium superconducting radio-frequency (SRF) cavities. In this study, we connect the fundamental properties of hydrogen in niobium to SRF cavity performance and processing. We modeled several of the niobium hydride phases relevant to SRF cavities and present their thermodynamic, electronic, and geometric properties determined from calculations based on density-functional theory. We find that the absorption of hydrogen from the gas phase into niobium is exothermic and hydrogen becomes somewhat anionic. The absorption of hydrogen by niobium lattice vacancies is strongly preferred over absorption into interstitial sites. A single vacancy can accommodate six hydrogen atoms in the symmetrically equivalent lowest-energy sites and additional hydrogen in the nearby interstitial sites affected by the strain field: this indicates that a vacancy can serve as a nucleation center for hydride phase formation. Small hydride precipitates may then occur near lattice vacancies upon cooling. Vacancy clusters and extended defects should also be enriched in hydrogen, potentially resulting in extended hydride phase regions upon cooling. We also assess the phase changes in the niobium-hydrogen system based on charge transfer between niobium and hydrogen, the strain field associated with interstitial hydrogen, and the geometry of the hydride phases. The results of this study stress the importance of not only the hydrogen content in niobium, but also the recovery state of niobium for the performance of SRF cavities.

  3. Superconducting 500 MHz accelerating copper cavities sputter-coated with niobium films

    Energy Technology Data Exchange (ETDEWEB)

    Benvenuti, C.; Circelli, N.; Hauer, M.; Weingarten, W.

    1985-03-01

    Thermal breakdown induced either by electron loading or by local defects of enhanced RF losses limits the accelerating field of superconducting niobium cavities. Replacing niobium with a material of higher thermal conductivity would be highly desirable to increase the maximum field. Therefore, cavities made of OFHC copper were coated by D.C. bias sputtering with a thin niobium film (1.5 to 5 ..mu..). Accelerating fields up to 8.6 MVm/sup -1/ were obtained without observing any field breakdown, the limitation being due to the available rf power. The Q values achieved at 4.2 K and low field were similar to those of niobium sheet cavities (i.e. about 2 x 10/sup 9/), but a fast initial decrease of Q to about 10/sup 9/ was reproducibly experienced. Subsequent inspection of regions of enhanced rf losses revealed defects the origin of which is under study. The apparatus used for coating the cavities and the results obtained are presented and discussed.

  4. An Efficient Scheme for Implementing an N-Qubit Toffoli Gate with Superconducting Quantum-Interference Devices in Cavity QED

    Institute of Scientific and Technical Information of China (English)

    ZHENG An-Shou; LIU Ji-Bing; XIANG Dong; LIU Cui-Lan; YUAN Hong

    2007-01-01

    An alternative approach is proposed to realize an n-qubit Toffoli gate with superconducting quantum-interference devices (SQUIDs) in cavity quantum electrodynamics (QED). In the proposal, we represent two logical gates of a qubit with the two lowest levels of a SQUID while a higher-energy intermediate level of each SQUID is utilized for the gate manipulation. During the operating process, because the cavity field is always in vacuum state, the requirement on the cavity is greatly loosened and there is no transfer of quantum information between the cavity and SQUIDs.

  5. Microwave Imaging Using a Disordered Cavity with a Dynamically Tunable Impedance Surface

    Science.gov (United States)

    Sleasman, Timothy; Imani, Mohammadreza F.; Gollub, Jonah N.; Smith, David R.

    2016-11-01

    We perform microwave imaging using a dynamically reconfigurable aperture based on a tunable disordered cavity. The electrically large cavity is cubic with a spherical deformation and supports a multitude of distinct electromagnetic modes that vary as a function of excitation frequency. With a set of irises introduced into one wall of the cavity, the cavity modes couple to spatially distinct radiative modes that vary as a function of the driving frequency. To increase the diversity of the radiated fields, we replace one of the cavity walls with a variable impedance surface consisting of a set of varactor-populated mushroom structures grouped into pixels. The reflection phase of each pixel is independently changed with application of a voltage bias, effectively altering the surface impedance. We demonstrate high-fidelity imaging and examine the role of the impedance-tunable boundary condition, revealing superior performance in comparison with just frequency-diverse measurements. We also demonstrate single-frequency imaging, which can significantly reduce the demands on the required microwave source. The dynamic cavity imager may find relevance in security screening, through-wall imaging, biomedical diagnostics, and radar applications.

  6. Quantum analysis of a nonlinear microwave cavity-embedded dc SQUID displacement detector

    Science.gov (United States)

    Nation, P. D.; Blencowe, M. P.; Buks, E.

    2008-09-01

    We carry out a quantum analysis of a dc superconducting quantum interference device (SQUID) mechanical displacement detector, comprising a SQUID with mechanically compliant loop segment, which is embedded in a microwave transmission line resonator. The SQUID is approximated as a nonlinear current-dependent inductance, inducing an external flux tunable nonlinear Duffing self-interaction term in the microwave resonator mode equation. Motion of the compliant SQUID loop segment is transduced inductively through changes in the external flux threading SQUID loop, giving a ponderomotive radiation pressure-type coupling between the microwave and mechanical resonator modes. Expressions are derived for the detector signal response and noise, and it is found that a soft-spring Duffing self-interaction enables a closer approach to the displacement detection standard quantum limit, as well as cooling closer to the ground state.

  7. Progress on applications of high temperature superconducting microwave filters

    Science.gov (United States)

    Chunguang, Li; Xu, Wang; Jia, Wang; Liang, Sun; Yusheng, He

    2017-07-01

    In the past two decades, various kinds of high performance high temperature superconducting (HTS) filters have been constructed and the HTS filters and their front-end subsystems have been successfully applied in many fields. The HTS filters with small insertion loss, narrow bandwidth, flat in-band group delay, deep out-of-band rejection, and steep skirt slope are reviewed. Novel HTS filter design technologies, including those in high power handling filters, multiband filters and frequency tunable filters, are reviewed, as well as the all-HTS integrated front-end receivers. The successful applications to various civilian fields, such as mobile communication, radar, deep space detection, and satellite technology, are also reviewed.

  8. Superconducting Vacuum-Gap Crossovers for High Performance Microwave Applications

    CERN Document Server

    Denis, Kevin L; Chang, Meng-Ping; Hu, Ron; U-Yen, Kongpop; Wollack, Edward

    2016-01-01

    The design and fabrication of low-loss wide-bandwidth superconducting vacuum-gap crossovers for high performance millimeter wave applications are described. In order to reduce ohmic and parasitic losses at millimeter wavelengths a vacuum gap is preferred relative to dielectric spacer. Here, vacuum-gap crossovers were realized by using a sacrificial polymer layer followed by niobium sputter deposition optimized for coating coverage over an underlying niobium signal layer. Both coplanar waveguide and microstrip crossover topologies have been explored in detail. The resulting fabrication process is compatible with a bulk micro-machining process for realizing waveguide coupled detectors, which includes sacrificial wax bonding, and wafer backside deep reactive ion etching for creation of leg isolated silicon membrane structures. Release of the vacuum gap structures along with the wax bonded wafer after DRIE is implemented in the same process step used to complete the detector fabrication

  9. Theoretical Study of Wood Microwave Pretreatment in Rectangular Cavity for Fabricating Wood-Based Nanocomposites

    Directory of Open Access Journals (Sweden)

    Yongfeng Luo

    2014-01-01

    Full Text Available Modifying wood by high intensive microwave pretreatment method is widely researched for the fabrication of wood-based nanocomposites, but the temperature uniformity and energy efficiency of microwave pretreatment have not reached the ideal state. In this study, the pretreated wood in rectangular cavity by high intensive microwave is theoretically studied by the finite element method based on the Maxwell electromagnetic field equations and the heat and mass transfer theory. The results show that the temperature uniformity and energy efficiency are related to the microwave feeding modes. Compared with the single-port and the two-port feeding mode, the four-port feeding mode is the best case on temperature uniformity and energy efficiency. The optimized parameters of cavity to pretreatment wood are achieved, which are that the height of cavities is between 0.08 m and 0.11 m in the four-port feeding mode when the thickness of wood is 0.06 m.

  10. Electron density and collision frequency of microwave resonant cavity produced discharges. [Progress report

    Energy Technology Data Exchange (ETDEWEB)

    McColl, W.; Brooks, C.; Brake, M.L.

    1992-12-31

    This progress report consists of an article, the abstract of which follows, and apparently the references and vita from a proposal. A review of perturbation diagnostics applied to microwave resonant cavity discharges is presented. The classical microwave perturbation technique examines the shift in the resonant frequency and cavity quality factor of the resonant cavity caused by low electron density discharges. However, modifications presented here allow the analysis to be applied to discharges with electron densities beyond the limit predicted by perturbation theory. An {open_quote}exact{close_quote} perturbation analysis is presented which models the discharge as a separate dielectric, thereby removing the restrictions on electron density imposed by the classical technique. The {open_quote}exact{close_quote} method also uses measurements of the shifts in the resonant conditions of the cavity. Thirdly, an electromagnetic analysis is presented which uses a characteristic equation, based upon Maxwell`s laws, and predicts the discharge conductivity based upon measurements of a complex axial wave number. By allowing the axial wave number of the electromagnetic fields to be complex, the fields are experimentally and theoretically shown to be spatially attenuated. The diagnostics are applied to continuous-wave microwave (2.45 GHz) discharges produced in an Asmussen resonant cavity. Double Langmuir probes, placed directly in the discharge at the point where the radial electric field is zero, act as a comparison with the analytic diagnostics. Microwave powers ranging from 30 to 100 watts produce helium and nitrogen discharges with pressures ranging from 0.5 to 6 torr. Analysis of the data predicts electron temperatures from 5 to 20 eV, electron densities from 10{sup 11} to 3 {times} 10{sup 12} cm{sup {minus}3}, and collision frequencies from 10{sup 9} to 10{sup 11} sec{sup {minus}1}.

  11. Characterization method of dielectric properties of free falling drops in a microwave processing cavity and its application in microwave internal gelation

    Science.gov (United States)

    Cabanes-Sempere, M.; Catalá-Civera, J. M.; Peñaranda-Foix, F. L.; Cozzo, C.; Vaucher, S.; Pouchon, M. A.

    2013-09-01

    Microwave internal gelation (MIG) is a chemical process proposed for the production of nuclear particle fuel. The internal gelation reaction is triggered by a temperature increase of aqueous droplets falling by gravity by means of non-contact microwave heating. Due to the short residence time of a solution droplet in a microwave heating cavity, a detailed knowledge of the interaction between microwaves and chemical solution (shaped in small drops) is required. This paper describes a procedure that enables the measurement of the dielectric properties of aqueous droplets that freely fall through a microwave cavity. These measurements provide the information to determine the optimal values of the parameters (such as frequency and power) that dictate the heating of such a material under microwaves.

  12. Improving the quality factor of microwave cavities for axion search experiments

    Science.gov (United States)

    Ahn, Saebyeok; Jung, Junu; Youn, Sungwoo; Semertzidis, Yannis

    2017-01-01

    In cavity-based axion search experiments, the quality factor (Q) of microwave resonant cavities is an important parameter to be sensitive to faint signal from the axion-to-photon conversion. One of the R&D efforts conducted at the Center for Axion and Precision Physics Research (CAPP) of the Institute for Basic Science (IBS) is to improve the quality factor of resonant cavities by employing two approaches - pure material and heat treatment. Using a 4K cryocooler and liquid helium, we measure the temperature dependence of Q value to find the effect of material purity and an optimal condition of heat treatment. The measurements are performed on Cu and Al cavities and the results are shown in this presentation.

  13. Gain-assisted superluminal microwave pulse propagation via four-wave mixing in superconducting phase quantum circuits

    CERN Document Server

    Sabegh, Z Amini; Maleki, M A; Mahmoudi, M

    2015-01-01

    We study the propagation and amplification of a microwave field in a four-level cascade quantum system which is realized in a superconducting phase quantum circuit. It is shown that by increasing the microwave pump tones feeding the system, the normal dispersion switches to the anomalous and the gain-assisted superluminal microwave propagation is obtained in this system. Moreover, it is demonstrated that the stimulated microwave field is generated via four-wave mixing without any inversion population in the energy levels of the system (amplification without inversion) and the group velocity of the generated pulse can be controlled by the external oscillating magnetic fluxes. We also show that in some special set of parameters, the absorption-free superluminal generated microwave propagation is obtained in superconducting phase quantum circuit system.

  14. Measurement of the Goos-Haenchen shift in a microwave cavity

    Energy Technology Data Exchange (ETDEWEB)

    Unterhinninghofen, J; Wiersig, J [Institut fuer Theoretische Physik, Otto-von-Guericke-Universitaet Magdeburg, Postfach 4120, D-39106 Magdeburg (Germany); Kuhl, U; Stoeckmann, H-J [Fachbereich Physik, Philipps-Universitaet Marburg, Renthof 5, D-35032 Marburg (Germany); Hentschel, M, E-mail: julia.unterhinninghofen@ovgu.de [Max-Planck-Institut fuer Physik komplexer Systeme, Noethnitzer Strasse 38, D-01187 Dresden (Germany)

    2011-02-15

    We present our measurements of the Goos-Haenchen shift (GHS) in a two-dimensional dielectric microwave cavity. Microwave beams are generated by a suitable superposition of the spherical waves generated by an array of antennas; the resulting beams are then reflected at a planar interface. By measuring the electric field including its phase, Poynting vectors of the incoming and reflected beams can be extracted, which in turn are used to find the incoming angle and the positions where the beam hits the interface and where it is reflected. These positions directly yield the GHS. The results are compared to the classical Artmann result and a numerical calculation using Gaussian beams.

  15. Characterization of Nb coating in HIE-ISOLDE QWR superconducting accelerating cavities by means of SEM-FIB and TEM

    CERN Document Server

    Bartova, Barbora; Taborelli, M; Aebersold, A B; Alexander, D T L; Cantoni, M; Calatroni, Sergio; CERN. Geneva. ATS Department

    2015-01-01

    The Quarter Wave Resonators (QWR) high-β cavities (0.3 m diameter and 0.9 m height) are made from OFE 3D-forged copper and are coated by DC-bias diode sputtering with a thin superconducting layer of niobium. The Nb film thickness, morphology, purity and quality are critical parameters for RF performances of the cavity. They have been investigated in a detailed material study.

  16. Development of Microwave Superconducting Microresonators for Neutrino Mass Measurement in the Holmes Framework

    Science.gov (United States)

    Giachero, A.; Day, P. K.; Falferi, P.; Faverzani, M.; Ferri, E.; Giordano, C.; Maino, M.; Margesin, B.; Mezzena, R.; Nizzolo, R.; Nucciotti, A.; Puiu, A.; Zanetti, L.

    2016-07-01

    The European Research Council has recently funded HOLMES, a project with the aim of performing a calorimetric measurement of the electron neutrino mass measuring the energy released in the electron capture decay of 163Ho. The baseline for HOLMES are microcalorimeters coupled to transition edge sensors read-out with rf-SQUIDs, for microwave multiplexing purposes. A promising alternative solution is based on superconducting microwave resonators that have undergone rapid development in the last decade. These detectors, called Microwave Kinetic Inductance Detectors (MKIDs), are inherently multiplexed in the frequency domain and suitable for even larger-scale pixel arrays, with theoretical high energy resolution and fast response. The aim of our activity is to develop arrays of microresonator detectors for X-ray spectroscopy and suitable for the calorimetric measurement of the energy spectra of 163Ho. Superconductive multilayer films composed by a sequence of pure Titanium and stoichiometric TiN layers show many ideal properties for MKIDs, such as low loss, large sheet resistance, large kinetic inductance, and tunable critical temperature T_c. We developed Ti/TiN multilayer microresonators with T_c within the range from 70 mK to 4.5 K and with good uniformity. In this contribution, we present the design solutions adopted, the fabrication processes, and the characterization results.

  17. Correlation functions of scattering matrix elements in microwave cavities with strong absorption

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, R [Fachbereich Physik, Philipps-Universitaet Marburg, Renthof 5, D-35032 Marburg (Germany); Gorin, T [Theoretische Quantendynamik, Fakultaet fuer Physik, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Seligman, T H [Centro de Ciencias Fisicas, Universidad Nacional Autonoma de Mexico, Campus Morelos, CP 62251, Cuernavaca, Morelos (Mexico); Stoeckmann, H-J [Fachbereich Physik, Philipps-Universitaet Marburg, Renthof 5, D-35032 Marburg (Germany)

    2003-03-28

    The scattering matrix was measured for microwave cavities with two antennae. It was analysed in the regime of overlapping resonances. The theoretical description in terms of a statistical scattering matrix and the rescaled Breit-Wigner approximation has been applied to this regime. The experimental results for the auto-correlation function show that the absorption in the cavity walls yields an exponential decay. This behaviour can only be modelled using a large number of weakly coupled channels. In comparison to the auto-correlation functions, the cross-correlation functions of the diagonal S-matrix elements display a more pronounced difference between regular and chaotic systems.

  18. Correlation functions of scattering matrix elements in microwave cavities with strong absorption

    Science.gov (United States)

    Schäfer, R.; Gorin, T.; Seligman, T. H.; Stöckmann, H.-J.

    2003-03-01

    The scattering matrix was measured for microwave cavities with two antennae. It was analysed in the regime of overlapping resonances. The theoretical description in terms of a statistical scattering matrix and the rescaled Breit-Wigner approximation has been applied to this regime. The experimental results for the auto-correlation function show that the absorption in the cavity walls yields an exponential decay. This behaviour can only be modelled using a large number of weakly coupled channels. In comparison to the auto-correlation functions, the cross-correlation functions of the diagonal S-matrix elements display a more pronounced difference between regular and chaotic systems.

  19. Extracting superconducting parameters from surface resistivity by using inside temperatures of SRF cavities

    CERN Document Server

    Ge, M; Padamsee, H; Shemelin, V

    2014-01-01

    The surface resistance of an RF superconductor depends on the surface temperature, the residual resistance and various superconductor parameters, e.g. the energy gap, and the electron mean free path. These parameters can be determined by measuring the quality factor Q0 of a SRF cavity in helium-baths of different temperatures. The surface resistance can be computed from Q0 for any cavity geometry, but it is not trivial to determine the temperature of the surface when only the temperature of the helium bath is known. Traditionally, it was approximated that the surface temperature on the inner surface of the cavity was the same as the temperature of the helium bath. This is a good approximation at small RF-fields on the surface, but to determine the field dependence of Rs, one cannot be restricted to small field losses. Here we show the following: (1) How computer simulations can be used to determine the inside temperature Tin so that Rs(Tin) can then be used to extract the superconducting parameters. The compu...

  20. Superconducting Cavity Cryomodule Designs for the Next Generation of CW Linacs: Challenges and Options

    Energy Technology Data Exchange (ETDEWEB)

    Nicol, Thomas [Fermilab; Orlov, Yuriy [Fermilab; Peterson, Thomas [Fermilab; Yakovlev, Vyacheslav [Fermilab

    2014-07-01

    The designs of nearly all superconducting RF (SRF) linacs over the last several years, with one notable exception being CEBAF at Jefferson Lab, have assumed pulsed beam operation with relatively low duty factors. These include the XFEL at DESY, the ILC, the original configuration for Project X at Fermilab, as well as several others. Recently proposed projects, on the other hand, including the LCLS-II at SLAC, the newly configured low and medium energy sections for Project X, and FRIB at Michigan State, to name a few, assume continuous wave or CW operation on quite a large scale with ambitious gradients and cavity performance requirements. This has implications in the cavity design as well as in many parts of the overall cryomodule due to higher dynamic heat loads in the cavities themselves and higher heat loads in the input and high-order-mode (HOM) couplers. Piping internal to the cryomodule, the effectiveness of thermal intercepts, the size of integrated heat exchangers, and many other aspects of the overall design are also affected. This paper will describe some of these design considerations as we move toward the next generation of accelerator projects.

  1. Gifford McMahon Machine Used for Precooling of Two Superconducting Cavities at ESRF

    Science.gov (United States)

    Rossat, M.; Bredy, P.; Jacob, J.; Torrecillas, F.; Boilot, D.; Bruas, E.

    2004-06-01

    A cryo-module housing two superconducting 352 MHz-cavities has been developed within the framework of the SOLEIL project design phase. In 2002, the prototype was installed on the ESRF storage ring and tested with beam in the accelerating regime at 4.5 K with the cavities cooled by liquid helium from Dewars. Four such tests have been carried out at the end of scheduled shutdowns. In order not to disturb the ESRF machine performance during the user mode of operation, the cavities were maintained detuned at room temperature in a passive regime, where they remained transparent to the beam. Less than 100 W of heat generated by the beam had then to be evacuated by a helium gas flow. The week of shut down before each test period was used to pre-cool the module by means of helium gas at a flow rate of 12.5 Nm3/h, the helium being cooled by a Gifford McMahon machine AL300 built by Cryomech (USA). The aim of this poster is to show the special design of the cold head and the way of cooling down the system.

  2. Physical Properties of Niobium and Specifications for Fabrication of Superconducting Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Antoine, C.; Foley, M.; Dhanaraj, N.; /Fermilab

    2011-07-01

    It is important to distinguish among the properties of niobium, the ones that are related to the cavity's SRF performances, the formability of the material, and the mechanical behavior of the formed cavity. In general, the properties that dictate each of the above mentioned characteristics have a detrimental effect on one another and in order to preserve the superconducting properties without subduing the mechanical behavior, a balance has to be established. Depending on the applications, some parameters become less important and an understanding of the physical origin of the requirements might help in this optimization. SRF applications require high purity niobium (high RRR), but pure niobium is very soft from fabrication viewpoint. Moreover conventional fabrication techniques tend to override the effects of any metallurgical process meant to strengthen it. As those treatments dramatically affect the forming of the material they should be avoided. These unfavorable mechanical properties have to be accounted for in the design of the cavities rather than in the material specification. The aim of this paper is to review the significance of the important mechanical properties used to characterize niobium and to present the optimal range of values. Most of the following information deals with the specification of sheets for cell forming unless otherwise noted.

  3. Design and development progress of a LLRF control system for a 500 MHz superconducting cavity

    Science.gov (United States)

    Lee, Y. S.; Kim, H. W.; Song, H. S.; Lee, J. H.; Park, K. H.; Yu, I. H.; Chai, J. S.

    2012-07-01

    The LLRF (low-level radio-frequency) control system which regulates the amplitude and the phase of the accelerating voltage inside a RF cavity is essential to ensure the stable operation of charged particle accelerators. Recent advances in digital signal processors and data acquisition systems have allowed the LLRF control system to be implemented in digitally and have made it possible to meet the higher demands associated with the performance of LLRF control systems, such as stability, accuracy, etc. For this reason, many accelerator laboratories have completed or are completing the developments of digital LLRF control systems. The digital LLRF control system has advantages related with flexibility and fast reconfiguration. This paper describes the design of the FPGA (field programmable gate array) based LLRF control system and the status of development for this system. The proposed LLRF control system includes an analog front-end, a digital board (ADC (analog to digital converter), DAC (digital to analog converter), FPGA, etc.) and a RF & clock generation system. The control algorithms will be implemented by using the VHDL (VHSIC (very high speed integrated circuits) hardware description language), and the EPICS (experiment physics and industrial control system) will be ported to the host computer for the communication. In addition, the purpose of this system is to control a 500 MHz RF cavity, so the system will be applied to the superconducting cavity to be installed in the PLS storage ring, and its performance will be tested.

  4. Thermal design studies in superconducting rf cavities: Phonon peak and Kapitza conductance

    Directory of Open Access Journals (Sweden)

    A. Aizaz

    2010-09-01

    Full Text Available Thermal design studies of superconducting radio frequency (SRF cavities involve two thermal parameters, namely the temperature dependent thermal conductivity of Nb at low temperatures and the heat transfer coefficient at the Nb-He II interface, commonly known as the Kapitza conductance. During the fabrication process of the SRF cavities, Nb sheet is plastically deformed through a deep drawing process to obtain the desired shape. The effect of plastic deformation on low temperature thermal conductivity as well as Kapitza conductance has been studied experimentally. Strain induced during the plastic deformation process reduces the thermal conductivity in its phonon transmission regime (disappearance of phonon peak by 80%, which may explain the performance limitations of the defect-free SRF cavities during their high field operations. Low temperature annealing of the deformed Nb sample could not recover the phonon peak. However, moderate temperature annealing during the titanification process recovered the phonon peak in the thermal conductivity curve. Kapitza conductance measurements for the Nb-He II interface for various surface topologies have also been carried out before and after the annealing. These measurements reveal consistently increased Kapitza conductance after the annealing process was carried out in the two temperature regimes.

  5. Fidelity amplitude of the scattering matrix in microwave cavities

    Science.gov (United States)

    Schäfer, R.; Gorin, T.; Seligman, T. H.; Stöckmann, H.-J.

    2005-06-01

    The concept of fidelity decay is discussed from the point of view of the scattering matrix, and the 'scattering fidelity' is introduced as the parametric cross-correlation of a given S-matrix element, taken in the time domain, normalized by the corresponding autocorrelation function. We show that for chaotic systems, this quantity represents the usual fidelity amplitude, if appropriate ensemble and/or energy averages are taken. We present a microwave experiment where the scattering fidelity is measured for an ensemble of chaotic systems. The results are in excellent agreement with random matrix theory for the standard fidelity amplitude. The only parameter, namely the perturbation strength, could be determined independently from level dynamics of the system, thus providing agreement between theory and experiment without any free fit parameter.

  6. Fidelity amplitude of the scattering matrix in microwave cavities

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, R [Fachbereich Physik, Philipps-Universitaet Marburg, Renthof 5, D-35032 Marburg (Germany); Gorin, T [Max-Planck-Institut fuer Physik komplexer Systeme, Noethnitzer Str. 38, D-01187 Dresden (Germany); Seligman, T H [Centro de Ciencias FIsicas, Universidad Nacional Autonoma de Mexico, Campus Morelos, C. P. 62251, Cuernavaca, Morelos (Mexico); Stoeckmann, H-J [Fachbereich Physik, Philipps-Universitaet Marburg, Renthof 5, D-35032 Marburg (Germany)

    2005-06-01

    The concept of fidelity decay is discussed from the point of view of the scattering matrix, and the 'scattering fidelity' is introduced as the parametric cross-correlation of a given S-matrix element, taken in the time domain, normalized by the corresponding autocorrelation function. We show that for chaotic systems, this quantity represents the usual fidelity amplitude, if appropriate ensemble and/or energy averages are taken. We present a microwave experiment where the scattering fidelity is measured for an ensemble of chaotic systems. The results are in excellent agreement with random matrix theory for the standard fidelity amplitude. The only parameter, namely the perturbation strength, could be determined independently from level dynamics of the system, thus providing agreement between theory and experiment without any free fit parameter.

  7. Non-linear classical dynamics in a superconducting circuit containing a cavity and a Josephson junction

    Energy Technology Data Exchange (ETDEWEB)

    Meister, Selina; Kubala, Bjoern; Gramich, Vera; Mecklenburg, Michael; Stockburger, Juergen T.; Ankerhold, Joachim [Institute for Complex Quantum Systems, Ulm University, Albert-Einstein-Allee 11, 89069 Ulm (Germany)

    2015-07-01

    Motivated by recent experiments a superconducting hybrid circuit consisting of a voltage biased Josephson junction in series with a resonator is studied. For strong driving the dynamics of the system can be very complex, even in the classical regime. Studying the dissipative dynamics within a Langevin-type description, we obtain well-defined dynamical steady states. In contrast to the well-known case of anharmonic potentials, like the Duffing or parametric oscillator, in our case the non-linearity stems from the peculiar way the external drive couples to the system [2]. We investigate the resonance behaviour of this non-linear hybrid system, in particular when driving at higher- or subharmonics. The resulting down- and up-conversions can be observed both, as resonances in the I-V curve, and in the emitted microwave radiation, which yields additional spectral information.

  8. Femtosecond filament initiated, microwave heated cavity-free nitrogen laser in air

    Science.gov (United States)

    Kartashov, Daniil; Shneider, Mikhail N.

    2017-03-01

    We present the results of numerical modeling of the igniter-heater concept for initiation of standoff, cavity free lasing action in the atmosphere when a femtosecond laser filament is used for plasma generation (igniter) and a microwave heater provides electron-collision pumping of electronic states in molecular nitrogen. By solving numerically the kinetic equation for the energy distribution function of electrons, generated in a femtosecond laser filament and heated by a microwave beam, we identify the conditions enabling single-pass, standoff UV-laser from molecular nitrogen in the atmosphere. The plasma density, the minimum amplitude of the microwave field, and the small-signal gain, necessary to achieve the lasing, are determined. We demonstrate that lasing build up time can be minimized and efficiency improved by using elliptically polarized laser pulses for filamentation. It is shown that realization of the filament-igniter, microwave-heater concept of the sky laser at low altitudes would require a microwave source of hundreds of kilowatt-megawatt power. The required microwave power can be reduced by several orders of magnitude when the igniter-heater scheme is used at the 10-30 km range of altitudes.

  9. Microwave observation of magnetic field penetration of high-T/sub c/ superconducting oxides

    Energy Technology Data Exchange (ETDEWEB)

    Khachaturyan, K.; Weber, E.R.; Tejedor, P.; Stacy, A.M.; Portis, A.M.

    1987-12-01

    Microwave methods, using a conventional EPR spectrometer, have been applied to a study of magnetic field penetration of the high-T/sub c/ superconducting oxides La/sub 1.85/Sr/sub 0.15/CuO/sub 4/, YBa/sub 2/Cu/sub 3/O/sub 7/, and EuBa/sub 2/Cu/sub 3/O/sub 7/. Signals over 10/sup 5/ times the sensitivity limit of the EPR spectrometer were obtained. Huge low-field peaks were observed in the superconducting phase for magnetic fields below 10 G. The peak signal decreased exponentially with temperature just below T/sub c/. These observations are taken as evidence of the spin-glass features of these materials and of fluxoid penetration of intrinsic Josephson junctions.

  10. Design and Analysis on a Cryogenic Current Amplifier with a Superconducting Microwave Resonator

    CERN Document Server

    Okazaki, Yuma

    2015-01-01

    We propose a new type of cryogenic current amplifiers, in which low-frequency power spectrum of current can be measured through a measurement of microwave response of a superconducting resonant circuit shunted by a series array of Josephson junctions. From numerical analysis on the equivalent circuit, the numerical value of the input-referred current noise of the proposed amplifier is found to be two orders of magnitude lower than the noise floor measured with the conventional cryogenic current amplifiers based on high-electron-mobility transistors or superconducting quantum interference devices. Our proposal can open new avenues for investigating low-temperature solid-state devices that require lower noise and wider bandwidth power spectrum measurements of current.

  11. A microwave exciter for Cs frequency standards based on a sapphire-loaded cavity oscillator.

    Science.gov (United States)

    Koga, Y; McNeilage, C; Searls, J H; Ohshima, S

    2001-01-01

    A low noise and highly stable microwave exciter system has been built for Cs atomic frequency standards using a tunable sapphire-loaded cavity oscillator (SLCO), which works at room temperature. This paper discusses the successful implementation of a control system for locking the SLCO to a long-term reference signal and reports an upper limit of the achieved frequency tracking error 6 x 10(-15) at tau = 1 s.

  12. Multilayer coating for higher accelerating fields in superconducting radio-frequency cavities: a review of theoretical aspects

    Science.gov (United States)

    Kubo, Takayuki

    2017-02-01

    The theory of the superconductor-insulator-superconductor (SIS) multilayer structure for application in superconducting accelerating cavities is reviewed. The theoretical field limit, optimum layer thicknesses and material combination, and surface resistance are discussed for the SIS structure and are also reviewed for the superconductor-superconductor bilayer structure.

  13. First demonstration and performance of an injection locked continuous wave magnetron to phase control a superconducting cavity

    Energy Technology Data Exchange (ETDEWEB)

    A.C. Dexter, G. Burt, R.G. Carter, I. Tahir, H. Wang, K. Davis, R. Rimmer

    2011-03-01

    The applications of magnetrons to high power proton and cw electron linacs are discussed. An experiment is described where a 2.45 GHz magnetron has been used to drive a single cell superconducting cavity. With the magnetron injection locked, a modest phase control accuracy of 0.95° rms has been demonstrated. Factors limiting performance have been identified.

  14. Analysis and measurement of the transfer matrix of a 9-cell, 1.3-GHz superconducting cavity

    Science.gov (United States)

    Halavanau, A.; Eddy, N.; Edstrom, D.; Harms, E.; Lunin, A.; Piot, P.; Romanov, A.; Ruan, J.; Solyak, N.; Shiltsev, V.

    2017-04-01

    Superconducting linacs are capable of producing intense, stable, high-quality electron beams that have found widespread applications in science and industry. The 9-cell, 1.3-GHz superconducting standing-wave accelerating rf cavity originally developed for e+/e- linear-collider applications [B. Aunes, et al. Phys. Rev. ST Accel. Beams 3, 092001 (2000), 10.1103/PhysRevSTAB.3.092001] has been broadly employed in various superconducting-linac designs. In this paper we discuss the transfer matrix of such a cavity and present its measurement performed at the Fermilab Accelerator Science and Technology (FAST) facility. The experimental results are found to be in agreement with analytical calculations and numerical simulations.

  15. Feedhorn-Coupled Transition-Edge Superconducting Bolometer Arrays for Cosmic Microwave Background Polarimetry

    Science.gov (United States)

    Hubmayr, J.; Austermann, J.; Beall, J.; Becker, D.; Cho, H.-M.; Datta, R.; Duff, S. M.; Grace, E.; Halverson, N.; Henderson, S. W.; hide

    2015-01-01

    NIST produces large-format, dual-polarization-sensitive detector arrays for a broad range of frequencies (30-1400 GHz). Such arrays enable a host of astrophysical measurements. Detectors optimized for cosmic microwave background observations are monolithic, polarization-sensitive arrays based on feedhorn and planar Nb antenna-coupled transition-edge superconducting (TES) bolometers. Recent designs achieve multiband, polarimetric sensing within each spatial pixel. In this proceeding, we describe our multichroic, feedhorn-coupled design; demonstrate performance at 70-380 GHz; and comment on current developments for implementation of these detector arrays in the advanced Atacama Cosmology Telescope receiver

  16. One-Step Realization of SWAP Gate with Superconducting Quantum-Interference Devices and Atoms in Cavity QED

    Institute of Scientific and Technical Information of China (English)

    ZHAN Zhi-Ming

    2008-01-01

    We put forward a simple scheme for one-step realization of a two-qubit SWAP gate with SQUIDs (super-conducting quantum-interference devices) in cavity QED via Raman transition. In this scheme, the cavity field is only virtually excited and thus the cavity decay is suppressed. The SWAP gate is realized by using only two lower flux states of the SQUID system and the excited state would not be excited. Therefore, the effect of decoherence caused from the levels of the SQUID system is possibly minimized. The scheme can also be used to implement the SWAP gate with atoms.

  17. Characterization of Nb Superconducting Radio Frequency Cavities Based On In-Situ STEM And EELS

    Science.gov (United States)

    Tao, Runzhe

    Niobium, a 4d transition metal, has the highest superconducting transition temperature (Tc=9.2K) of any elemental superconductor as type II superconductor with coherent length, sigma approximately that of the penetration length, lambda. Pure niobium is grey in color and very soft, which makes this metal easily fabricable into different shapes for superconducting radio- frequency (SRF) cavities. Such cavities are used in some modern accelerators (SNS, CEBAF, XFEL), and are intended for usage in the next generation of particle accelerators, such as ILC. Since the crucial part of the cavities is top 100 nm of Nb near the inner cavity surface, considering the penetration depth is around 40 nm, it has attracted more and more attention in improving the surface process for optimizing the performance of the cavities. Nowadays, the main treatment of the Nb surface includes electro polishing (EP), buffered chemical polishing (BCP), high temperature baking (800 °C, 1000 °C and 1200 °C) and mild baking (120 °C). Firstly, the two half cells are welded together and the weld line is quite rough; there exists a lot of visible pits and defects on the inner shell of cavities. In this Ph.D. thesis, novel techniques in a scanning transmission electron microscope (STEM) that can be used to analyze the atomic scale structure-property relationship, both at room tem- perature and high/LN 2 temperature, are explored. Specifically, by using correlated Z-contrast imaging and electron energy loss spectrum (EELS), the structure, composition and bonding can be characterized directly on the atomic scale, also, light atoms, like H, O and C, are visible in ABF images. For the examining the defect behavior on the cavity surface, heating and cold stages are involved to simulate the baking treatment and low-temperature environments. These studies will serve as an important reference for qualifying different surface treatments to further improve SRF cavities' performance. The experimental results

  18. 24 GHz microwave mode converter optimized for superconducting ECR ion source SECRAL

    Energy Technology Data Exchange (ETDEWEB)

    Guo, J. W., E-mail: jwguo@impcas.ac.cn [Institute of Modern Physics (IMP), Chinese Academy of Science, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Sun, L.; Zhang, X. Z.; Lu, W.; Zhang, W. H.; Feng, Y. C.; Zhao, H. W. [Institute of Modern Physics (IMP), Chinese Academy of Science, Lanzhou 730000 (China); Niu, X. J. [University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2016-02-15

    Over-sized round waveguide with a diameter about Ø33.0 mm excited in the TE{sub 01} mode has been widely adopted for microwave transmission and coupling to the ECR (Electron Cyclotron Resonance) plasma with the superconducting ECR ion sources operating at 24 or 28 GHz, such as SECRAL and VENUS. In order to study the impact of different microwave modes on ECRH (Electron Cyclotron Resonance Heating) efficiency and especially the production of highly charged ions, a set of compact and efficient TE{sub 01}-HE{sub 11} mode conversion and coupling system applicable to 24 GHz SECRAL whose overall length is 330 mm has been designed, fabricated and tested. Good agreements between off-line tests and calculation results have been achieved, which indicates the TE{sub 01}-HE{sub 11} converter meets the application design. The detailed results of the optimized coupling system will be presented in the paper.

  19. 24 GHz microwave mode converter optimized for superconducting ECR ion source SECRAL.

    Science.gov (United States)

    Guo, J W; Sun, L; Niu, X J; Zhang, X Z; Lu, W; Zhang, W H; Feng, Y C; Zhao, H W

    2016-02-01

    Over-sized round waveguide with a diameter about Ø33.0 mm excited in the TE01 mode has been widely adopted for microwave transmission and coupling to the ECR (Electron Cyclotron Resonance) plasma with the superconducting ECR ion sources operating at 24 or 28 GHz, such as SECRAL and VENUS. In order to study the impact of different microwave modes on ECRH (Electron Cyclotron Resonance Heating) efficiency and especially the production of highly charged ions, a set of compact and efficient TE01-HE11 mode conversion and coupling system applicable to 24 GHz SECRAL whose overall length is 330 mm has been designed, fabricated and tested. Good agreements between off-line tests and calculation results have been achieved, which indicates the TE01-HE11 converter meets the application design. The detailed results of the optimized coupling system will be presented in the paper.

  20. Intensity-intensity and intensity-amplitude correlation of microwave photons from a superconducting artificial atom

    Science.gov (United States)

    Wang, Fei; Feng, Xunli; Oh, C. H.

    2016-10-01

    We investigate the dynamics of the microwave-frequency nonclassical correlations in a three-level Δ -configuration artificial atom, which is realized by superconducting quantum circuits. The intensity-intensity correlation and intensity field are strongly dependent on the relative phase Φ of the driven fields. It is found that two interference loops are formed in the dressed state picture at Φ =0 or π, which are responsible for the generation of nonclassical microwave photons. When the phase is changed into Φ =π /2 or 3π /2 , the temporal correlation functions exhibit different oscillating behaviors. The phase-sensitive nonclassical correlations of fluorescence photons may find practical application in the design of all-optical switches and quantum information processing.

  1. Nonlinear manipulation of tunable microwave amplification and attenuation in superconducting circuits

    Science.gov (United States)

    Li, Hai-Chao; Zhang, Hai-Yang; He, Qing; Ge, Guo-Qin

    2016-09-01

    We demonstrate the controllable nonlinear microwave modulation in a cyclically driven three-level superconducting Josephson system. By designing two subtle matched conditions in the △-type atom-field configuration, a new physical mechanism - combined action of nonlinear wave mixing and wave interference - is developed and leads to not only amplification but also attenuation for two microwave signals. Our results show that such a nonlinear manipulation of the signal transition from enhancement to damping can be tuned in a large scope by controlling the relative phase and the driving-field frequency and thus the solid-state Josephson system can act as a phase- and frequency-controlled amplitude modulator. Our study opens up a fascinating perspective for its widespread applications in nonlinear optics and quantum information science.

  2. Fabrication of the high power input coupler for BEPCⅡ superconducting cavities

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The BEPCII storage ring adopts two 500 MHz superconducting cavities (SCC). Each one is equipped with a 500 MHz input power coupler. The coupler is to feed 150 kW power in continuous wave (CW) mode with both standing and traveling wave modes. Due to high power feeding and high frequency of the coupler, its fabrication is a big challenge. The fabrication started with two key components, the window and the antenna. Up to now, two sets including windows and antennas have beam made by IHEP. And a 270 kW RF power in CW has passed through the coupler during the high power test. The fabrication details are presented in this paper.

  3. Influence of Intrinsic Decoherence on Entanglement of Superconducting Charge Qubit in a Resonant Cavity

    Institute of Scientific and Technical Information of China (English)

    LIU Xiao-Nan; SHAO Bin; ZOU Jian

    2005-01-01

    @@ Taking the intrinsic decoherence effect into account, we investigate the entanglement dynamics of a superconducting charge qubit in a single-mode optical cavity. Concurrence, as the measure of entanglement of the coupled field-junction system, is calculated. In comparison, we also consider the entanglement of the system by using the entanglement parameter based on the ratio between mutual entropy and partial Von-Neumann entropy to investigate how the intrinsic decoherence affects the entanglement of the coupling system. Our results show that the evolution of the entanglement parameter has the behaviour similar to the concurrence and it is thus the well measure of entanglement for the mixed state in such a coupling system.

  4. Reclamation of niobium compounds from ionic liquid electrochemical polishing of superconducting radio frequency cavities

    Energy Technology Data Exchange (ETDEWEB)

    Wixtrom, Alex I. [Christopher Newport University, Newport News, VA (United States); Buhler, Jessica E. [Christopher Newport University, Newport News, VA (United States); Reece, Charles E. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Abdel-Fattah, Tarek M. [Christopher Newport University, Newport News, VA (United States)

    2013-06-01

    Recent research has shown that choline chloride (vitamin B4)-based solutions can be used as a greener alternative to acid-based electrochemical polishing solutions. This study demonstrated a successful method for electrochemical deposition of niobium compounds onto the surface of copper substrates using a novel choline chloride-based ionic liquid. Niobium ions present in the ionic liquid solution were dissolved into the solution prior to deposition via electrochemical polishing of solid niobium. A black coating was clearly visible on the surface of the Cu following deposition. This coating was analyzed using scanning electron microscopy (SEM), electron dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), and X-ray fluorescence spectroscopy (XRF). This ionic liquid-based electrochemical deposition method effectively recycles previously dissolved niobium from electrochemical polishing of superconducting radio frequency (SRF) cavities.

  5. Low temperature laser scanning microscopy of a superconducting radio-frequency cavity.

    Science.gov (United States)

    Ciovati, G; Anlage, Steven M; Baldwin, C; Cheng, G; Flood, R; Jordan, K; Kneisel, P; Morrone, M; Nemes, G; Turlington, L; Wang, H; Wilson, K; Zhang, S

    2012-03-01

    An apparatus was developed to obtain, for the first time, 2D maps of the surface resistance of the inner surface of an operating superconducting radio-frequency niobium cavity by a low-temperature laser scanning microscopy technique. This allows identifying non-uniformities of the surface resistance with a spatial resolution of about 2.4 mm and surface resistance resolution of ~1 μΩ at 3.3 GHz. A signal-to-noise ratio of about 10 dB was obtained with 240 mW laser power and 1 Hz modulation frequency. The various components of the apparatus, the experimental procedure and results are discussed in detail in this contribution.

  6. Microwave characterization of normal and superconducting states of MOCVD made YBCO tapes

    Science.gov (United States)

    Wosik, Jarek; Krupka, Jerzy; Qin, Kuang; Ketharnath, Dhivya; Galstyan, Eduard; Selvamanickam, Venkat

    2017-03-01

    We have used a microwave, non-contact, non-destructive, dielectric resonator (DR) technique to characterize complex conductivity of different quality YBCO/Hastelloy tapes for the purpose of exploring such a technique as a potential quality control method for fabrication of YBCO tapes. The tapes were deposited at different temperatures on Hastelloy-supported oxide buffer layers using the MOCVD technique. The buffer stack consisted of aluminum oxide (Al2O3), yttrium oxide (Y2O3), and textured ion beam assisted deposition-MgO and LaMnO3 layers. Two dielectric resonators (DRs), the single post DR, consisting of high-permittivity barium zirconium titanate ceramic operating at 13 GHz in quasi-TE01δ mode, and the rod DR, consisting of rutile single crystal disk operating at 9.4 GHz in-TE011 mode, were designed to meet sensitivity requirements for characterization of conductivity of the superconductor at normal and superconducting states, respectively. For calculations of complex conductivity from experimental data of Q-factor and resonant frequency shift, a commercial electromagnetic simulator HFSS, based on finite elements analysis, was used. The theoretical Q-factor and resonant frequency on conductivity functions obtained from full wave numerical simulations of microwave fields were matched with the experimental data to determine conductivity of the YBCO tapes in both normal and superconducting states. In addition, for comparison purposes, 280 nm thick high-quality YBCO epitaxial film deposited on a dielectric substrate was also characterized, including frequency dependence of the complex conductivity. Discussion about feasibility of using DR microwave techniques as a quality control tool via measurements of conductivity versus temperature slope of the YBCO/Hastelloy tape in normal state is included. Also, microwave conductivity values of Hastelloy substrate as a function of temperature are reported.

  7. Detection of On-Chip Generated Weak Microwave Radiation Using Superconducting Normal-Metal SET

    Directory of Open Access Journals (Sweden)

    Behdad Jalali-Jafari

    2016-01-01

    Full Text Available The present work addresses quantum interaction phenomena of microwave radiation with a single-electron tunneling system. For this study, an integrated circuit is implemented, combining on the same chip a Josephson junction (Al/AlO x /Al oscillator and a single-electron transistor (SET with the superconducting island (Al and normal-conducting leads (AuPd. The transistor is demonstrated to operate as a very sensitive photon detector, sensing down to a few tens of photons per second in the microwave frequency range around f ∼ 100 GHz. On the other hand, the Josephson oscillator, realized as a two-junction SQUID and coupled to the detector via a coplanar transmission line (Al, is shown to provide a tunable source of microwave radiation: controllable variations in power or in frequency were accompanied by significant changes in the detector output, when applying magnetic flux or adjusting the voltage across the SQUID, respectively. It was also shown that the effect of substrate-mediated phonons, generated by our microwave source, on the detector output was negligibly small.

  8. Complex wave-interference phenomena: From the atomic nucleus to mesoscopic systems to microwave cavities

    Indian Academy of Sciences (India)

    Pier A Mello

    2001-02-01

    Universal statistical aspects of wave scattering by a variety of physical systems ranging from atomic nuclei to mesoscopic systems and microwave cavities are described. A statistical model for the scattering matrix is employed to address the problem of quantum chaotic scattering. The model, introduced in the past in the context of nuclear physics, discusses the problem in terms of a prompt and an equilibrated component: it incorporates the average value of the scattering matrix to account for the prompt processes and satisfies the requirements of flux conservation, causality and ergodicity. The main application of the model is the analysis of electronic transport through ballistic mesoscopic cavities: it describes well the results from the numerical solutions of the Schrödinger equation for two-dimensional cavities.

  9. Defect detection inside superconducting 1.3 GHz cavities by means of x-ray fluorescence spectroscopy

    Science.gov (United States)

    Bertucci, M.; Michelato, P.; Moretti, M.; Navitski, A.; Pagani, C.

    2016-01-01

    X-ray fluorescence probe for detection of foreign material inclusions on the inner surface of superconducting cavities has been developed and tested. The setup detects trace element content such as a few micrograms of impurities responsible for thermal breakdown phenomena limiting the cavity performance. The setup has been customized for the geometry of 1.3 GHz TESLA-type niobium cavities and focuses on the surface of equator area at around 103 mm from the centre axis of the cavities with around 20 mm detection spot. More precise localization of inclusions can be reconstructed by means of angular or lateral displacement of the cavity. Preliminary tests confirmed a very low detection limit for elements laying in the high efficiency spectrum zone (from 5 to 10 keV), and a high angular resolution allowing an accurate localization of defects within the equator surface.

  10. Microwave spectral taxonomy: A semi-automated combination of chirped-pulse and cavity Fourier-transform microwave spectroscopy

    Science.gov (United States)

    Crabtree, Kyle N.; Martin-Drumel, Marie-Aline; Brown, Gordon G.; Gaster, Sydney A.; Hall, Taylor M.; McCarthy, Michael C.

    2016-03-01

    Because of its structural specificity, rotational spectroscopy has great potential as an analytical tool for characterizing the chemical composition of complex gas mixtures. However, disentangling the individual molecular constituents of a rotational spectrum, especially if many of the lines are entirely new or unknown, remains challenging. In this paper, we describe an empirical approach that combines the complementary strengths of two techniques, broadband chirped-pulse Fourier transform microwave spectroscopy and narrowband cavity Fourier transform microwave spectroscopy, to characterize and assign lines. This procedure, called microwave spectral taxonomy, involves acquiring a broadband rotational spectrum of a rich mixture, categorizing individual lines based on their relative intensities under series of assays, and finally, linking rotational transitions of individual chemical compounds within each category using double resonance techniques. The power of this procedure is demonstrated for two test cases: a stable molecule with a rich spectrum, 3,4-difluorobenzaldehyde, and products formed in an electrical discharge through a dilute mixture of C2H2 and CS2, in which spectral taxonomy has enabled the identification of propynethial, HC(S)CCH.

  11. Development of a cryogenic radiation detector for mapping radio frequency superconducting cavity field emissions

    Energy Technology Data Exchange (ETDEWEB)

    Danny Dotson; John Mammosser

    2005-05-01

    Field emissions in a super conducting helium cooled RF cavity and the production of radiation (mostly X-Rays) have been measured externally on cryomodules at Jefferson Lab since 1991. External measurements are limited to radiation energies above 100 keV due to shielding of the stainless steel cryogenic body. To measure the onset of and to map field emissions from a superconducting cavity requires the detecting instrument be inside the shield and within the liquid Helium. Two possible measurement systems are undergoing testing at JLab. A CsI detector array set on photodiodes and an X-Ray film camera with a fixed aperture. Several devices were tested in the cell with liquid Helium without success. The lone survivor, a CsI array, worked but saturated at high power levels due to backscatter. The array was encased in a lead shield with a slit opening set to measure the radiation emitted directly from the cell eliminating a large portion of the backscatter. This is a work in progress and te sting should be complete before the PAC 05. The second system being tested is passive. It is a shielded box with an aperture to expose radiation diagnostic film located inside to direct radiation from the cell. Developing a technique for mapping field emissions in cryogenic cells will assist scientists and engineers in pinpointing any surface imperfections for examination.

  12. Dynamic compensation of an rf cavity failure in a superconducting linac

    Directory of Open Access Journals (Sweden)

    Jean-Luc Biarrotte

    2008-07-01

    Full Text Available An accelerator driven system (ADS for transmutation of nuclear waste typically requires a 600 MeV–1 GeV accelerator delivering a proton flux of a few mA for demonstrators, and of a few tens of mA for large industrial systems. Such a machine belongs to the category of the high-power proton accelerators, with an additional requirement for exceptional “reliability”: because of the induced thermal stress to the subcritical core, the number of unwanted “beam trips” should not exceed a few per year, a specification that is several orders of magnitude above usual performance. In order to meet this extremely high reliability, the accelerator needs to implement, to the maximum possible extent, a fault-tolerance strategy that would allow beam operation in the presence of most of the envisaged faults that could occur in its beam line components, and in particular rf systems’ failures. This document describes the results of the simulations performed for the analysis of the fault-tolerance capability of the XT-ADS superconducting linac in the case of an rf cavity failure. A new simulation tool, mixing transient rf behavior of the accelerating cavities with full 6D description of the beam dynamics, has been developed for this purpose. Fast fault-recovery scenarios are proposed, and required research and development is identified.

  13. Trimming algorithm of frequency modulation for CIAE-230 MeV proton superconducting synchrocyclotron model cavity

    Science.gov (United States)

    Li, Pengzhan; Zhang, Tianjue; Ji, Bin; Hou, Shigang; Guo, Juanjuan; Yin, Meng; Xing, Jiansheng; Lv, Yinlong; Guan, Fengping; Lin, Jun

    2017-01-01

    A new project, the 230 MeV proton superconducting synchrocyclotron for cancer therapy, was proposed at CIAE in 2013. A model cavity is designed to verify the frequency modulation trimming algorithm featuring a half-wave structure and eight sets of rotating blades for 1 kHz frequency modulation. Based on the electromagnetic (EM) field distribution analysis of the model cavity, the variable capacitor works as a function of time and the frequency can be written in Maclaurin series. Curve fitting is applied for theoretical frequency and original simulation frequency. The second-order fitting excels at the approximation given its minimum variance. Constant equivalent inductance is considered as an important condition in the calculation. The equivalent parameters of theoretical frequency can be achieved through this conversion. Then the trimming formula for rotor blade outer radius is found by discretization in time domain. Simulation verification has been performed and the results show that the calculation radius with minus 0.012 m yields an acceptable result. The trimming amendment in the time range of 0.328-0.4 ms helps to reduce the frequency error to 0.69% in Simulation C with an increment of 0.075 mm/0.001 ms, which is half of the error in Simulation A (constant radius in 0.328-0.4 ms). The verification confirms the feasibility of the trimming algorithm for synchrocyclotron frequency modulation.

  14. Flux trapping in superconducting accelerating cavities during cooling down with a spatial temperature gradient

    CERN Document Server

    Kubo, Takayuki

    2016-01-01

    During the cool-down of a superconducting accelerating cavity, a magnetic flux is trapped as quantized vortices, which yield additional dissipation and contribute to the residual resistance. Recently, cooling down with a large spatial temperature gradient attracts much attention for successful reductions of trapped vortices. The purpose of the present paper is to propose a model to explain the observed efficient flux expulsions and the role of spatial temperature gradient during the cool-down of cavity. In the vicinity of a region with a temperature close to the critical temperature Tc,the critical fields are strongly suppressed and can be smaller than the ambient magnetic field. A region with a lower critical field smaller than the ambient field is in the vortex state. As a material is cooled down, a region with a temperature close Tc associating the vortex state domain sweeps and passes through the material. In this process, vortices contained in the vortex state domain are trapped by pinning centers that r...

  15. Wirebond crosstalk and cavity modes in large chip mounts for superconducting qubits

    Energy Technology Data Exchange (ETDEWEB)

    Wenner, J; Neeley, M; Bialczak, Radoslaw C; Lenander, M; Lucero, Erik; O' Connell, A D; Sank, D; Wang, H; Weides, M; Cleland, A N; Martinis, John M, E-mail: martinis@physics.ucsb.edu [Department of Physics, University of California, Santa Barbara, CA 93106 (United States)

    2011-06-15

    We analyze the performance of a microwave chip mount that uses wirebonds to connect the chip and mount grounds. A simple impedance ladder model predicts that transmission crosstalk between two feedlines falls off exponentially with distance at low frequencies, but rises to near unity above a resonance frequency set by the chip to ground capacitance. Using SPICE simulations and experimental measurements of a scale model, the basic predictions of the ladder model were verified. In particular, by decreasing the capacitance between the chip and box grounds, the resonance frequency increased and transmission decreased. This model then influenced the design of a new mount that improved the isolation to - 65 dB at 6 GHz, even though the chip dimensions were increased to 1 cm x 1 cm, three times as large as our previous devices. We measured a coplanar resonator in this mount as preparation for larger qubit chips, and were able to identify cavity, slotline, and resonator modes.

  16. Design and Operational Experience of a Microwave Cavity Axion Detector for the 20-100 micro-eV Range

    CERN Document Server

    Kenany, S Al; Backes, K M; Brubaker, B M; Cahn, S B; Carosi, G; Gurevich, Y V; Kindel, W F; Lamoreaux, S K; Lehnert, K W; Lewis, S M; Malnou, M; Palken, D A; Rapidis, N M; Root, J R; Simanovskaia, M; Shokair, T M; Urdinaran, I; van Bibber, K A; Zhong, L

    2016-01-01

    We describe a dark matter axion detector designed, constructed, and operated both as an innovation platform for new cavity and amplifier technologies and as a data pathfinder in the $5 - 25$ GHz range ($\\sim20-100\\: \\mu$eV). The platform is small but flexible to facilitate the development of new microwave cavity and amplifier concepts in an operational environment. The experiment has recently completed its first data production; it is the first microwave cavity axion search to deploy a Josephson parametric amplifier and a dilution refrigerator to achieve near-quantum limited performance.

  17. Design and operational experience of a microwave cavity axion detector for the 20 - 100 μeV range

    Science.gov (United States)

    Al Kenany, S.; Anil, M. A.; Backes, K. M.; Brubaker, B. M.; Cahn, S. B.; Carosi, G.; Gurevich, Y. V.; Kindel, W. F.; Lamoreaux, S. K.; Lehnert, K. W.; Lewis, S. M.; Malnou, M.; Palken, D. A.; Rapidis, N. M.; Root, J. R.; Simanovskaia, M.; Shokair, T. M.; Urdinaran, I.; van Bibber, K. A.; Zhong, L.

    2017-05-01

    We describe a dark matter axion detector designed, constructed, and operated both as an innovation platform for new cavity and amplifier technologies and as a data pathfinder in the 5-25 GHz range (∼ 20 - 100 μeV) . The platform is small but flexible to facilitate the development of new microwave cavity and amplifier concepts in an operational environment. The experiment has recently completed its first data production; it is the first microwave cavity axion search to deploy a Josephson parametric amplifier and a dilution refrigerator to achieve near-quantum limited performance.

  18. Highly Sensitive Measurements of the Dark Current of Superconducting Cavities for TESLA Using a SQUID Based Cryogenic Current Comparator

    CERN Document Server

    Vodel, W; Nietzsche, S

    2004-01-01

    This contribution presents a Cryogenic Current Comparator (CCC) as an excellent tool for detecting dark currents generated, e.g. by superconducting cavities for the upcoming TESLA project (X-FEL) at DESY. To achieve the maximum possible energy the gradient of the superconducting RF cavities should be pushed close to the physical limit of 50 MV/m. The undesired field emission of electrons (so-called dark current) of the superconducting RF cavities at strong fields may limit the maximum gradient. The absolute measurement of the dark current in correlation with the gradient will give a proper value to compare and classify the cavities. The main component of the CCC is a highly sensitive LTS-DC SQUID system which is able to measure extremely low magnetic fields, e.g. caused by the dark current. For this reason the input coil of the SQUID is connected across a special designed toroidal niobium pick-up coil for the passing electron beam. A noise limited current resolution of nearly 2 pA/√(Hz) with a measu...

  19. Theoretical and experimental research on microwave cavity dielectric perturbation technique to measure steam wetness

    Science.gov (United States)

    Qian, Jiangbo; Han, Zhonghe; Yan, Xiaozhe; Li, Hengfan

    2014-04-01

    The accurate measurement of steam wetness is important to the safe, economic operation and optimized design for turbine. The relationship between complex permittivity and static dielectric parameters, frequency of alternating electric field was substituted into the Maxwell-Wagner non-homogeneous dielectric theory. An equivalent complex permittivity model of wet steam was established. The complex permittivity distribution of dry saturated steam and wet steam with wavelength and temperature changing was obtained. According to the dielectric properties of wet steam mixture, using microwave cavity dielectric perturbation theory, a relationship of cylindrical cavity for wetness measurement in TE011 mode was established. Thermal properties of wet steam, temperature (pressure), resonance frequency and relative frequency deviation of the cavity would affect the wetness measurement. Wetness measurement increases with temperature (pressure) decreasing, cavity resonant frequency and relative frequency deviation increasing, vice versa. The accuracy of wetness measurement increases with resonance frequency decreasing and temperature increasing. This suggests that the appropriate cavity resonance frequency for steam wetness measurements should be between 5˜10 GHz. The experiment for measuring exhaust wetness in a 200MW steam turbine was carried out and the results agreed well with the theoretical calculation results.

  20. Fluid and microfluidic dielectric measurement using a cavity perturbation method at microwave C-band

    Science.gov (United States)

    Asghari, Aref

    The utilization of cavity perturbation technique in dielectric property measurement of fluid and micro-fluid is investigated in this thesis to better assist the ever-growing needs of science and technology for analysis and characterization of such materials in various applications from genetics, MEMS devices, to consumer product industry. Development of different techniques for measuring complex dielectric properties of fluid and micro-fluids at Giga (10 9)-Hz frequencies is of significant importance as their usage is increasingly coupled with infrared and microwave electromagnetic wavelengths. Conventional cavity perturbation method could provide a sensitive and convenient system for measuring fluids of low (e.g., epsilonr ionic (DI) water as test specimens, to evaluate the influence of sample's container, volume, dimension, and temperature on the sensitivity and reliability of microwave dielectric measurement. The cavity perturbation measurement of DI water in a 1 mm diameter capillary tube showed well-defined temperature dependence of dielectric permittivity and loss coefficients of water. Observation of a permittivity peak in temperature range tested at 4GHz around -10 °C implies an important relaxation in low temperatures at microwave C-band, which corresponds to a critical slowing down of polarization reorientation in crystallized (icy) H2O. Numerical simulations using Finite Element Analysis (FEA) COMSOL suites were conducted to established the optimum amount of liquid water for cavity perturbation testing at microwave C-band (in perfectly conducting condition). The results showed at TE103 mode the tube D4= 4mm diameter (272 muL liquid volume capacity) provides the best measurement sensitivity in terms of resonant shift and low loss while for TE105 the 2mm 68 (muL liquid volume capacity) tube is the most promising. The experimental results yielded a shape factor of around 2 and 1 for epsilon' and epsilon", respectively. The examination of epsilon' and

  1. Superconductivity

    CERN Document Server

    Poole, Charles P; Farach, Horacio A

    1995-01-01

    Superconductivity covers the nature of the phenomenon of superconductivity. The book discusses the fundamental principles of superconductivity; the essential features of the superconducting state-the phenomena of zero resistance and perfect diamagnetism; and the properties of the various classes of superconductors, including the organics, the buckministerfullerenes, and the precursors to the cuprates. The text also describes superconductivity from the viewpoint of thermodynamics and provides expressions for the free energy; the Ginzburg-Landau and BCS theories; and the structures of the high

  2. Applied superconductivity

    CERN Document Server

    Newhouse, Vernon L

    1975-01-01

    Applied Superconductivity, Volume II, is part of a two-volume series on applied superconductivity. The first volume dealt with electronic applications and radiation detection, and contains a chapter on liquid helium refrigeration. The present volume discusses magnets, electromechanical applications, accelerators, and microwave and rf devices. The book opens with a chapter on high-field superconducting magnets, covering applications and magnet design. Subsequent chapters discuss superconductive machinery such as superconductive bearings and motors; rf superconducting devices; and future prospec

  3. Circuit QED with 3D cavities

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Edwar; Baust, Alexander; Zhong, Ling; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany); Anderson, Gustav; Wang, Lujun; Eder, Peter; Fischer, Michael; Goetz, Jan; Haeberlein, Max; Schwarz, Manuel; Wulschner, Karl Friedrich; Deppe, Frank; Fedorov, Kirill; Huebl, Hans; Menzel, Edwin [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Marx, Achim [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany)

    2015-07-01

    In typical circuit QED systems on-chip superconducting qubits are coupled to integrated coplanar microwave resonators. Due to the planar geometry, the resonators are often a limiting factor regarding the total coherence of the system. Alternatively, similar hybrid systems can be realized using 3D microwave cavities. Here, we present design considerations for the 3D microwave cavity as well as the superconducting transmon qubit. Moreover, we show experimental data of a high purity aluminum cavity demonstrating quality factors above 1.4 .10{sup 6} at the single photon level and a temperature of 50 mK. Our experiments also demonstrate that the quality factor is less dependent on the power compared to planar resonator geometries. Furthermore, we present strategies for tuning both the cavity and the qubit individually.

  4. Surface polishing of niobium for superconducting radio frequency (SRF) cavity applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Liang [College of William and Mary, Williamsburg, VA (United States)

    2014-08-01

    Niobium cavities are important components in modern particle accelerators based on superconducting radio frequency (SRF) technology. The interior of SRF cavities are cleaned and polished in order to produce high accelerating field and low power dissipation on the cavity wall. Current polishing methods, buffered chemical polishing (BCP) and electro-polishing (EP), have their advantages and limitations. We seek to improve current methods and explore laser polishing (LP) as a greener alternative of chemical methods. The topography and removal rate of BCP at different conditions (duration, temperature, sample orientation, flow rate) was studied with optical microscopy, scanning electron microscopy (SEM), and electron backscatter diffraction (EBSD). Differential etching on different crystal orientations is the main contributor to fine grain niobium BCP topography, with gas evolution playing a secondary role. The surface of single crystal and bi-crystal niobium is smooth even after heavy BCP. The topography of fine grain niobium depends on total removal. The removal rate increases with temperature and surface acid flow rate within the rage of 0~20 °C, with chemical reaction being the possible dominate rate control mechanism. Surface flow helps to regulate temperature and avoid gas accumulation on the surface. The effect of surface flow rate on niobium EP was studied with optical microscopy, atomic force microscopy (AFM), and power spectral density (PSD) analysis. Within the range of 0~3.7 cm/s, no significant difference was found on the removal rate and the macro roughness. Possible improvement on the micro roughness with increased surface flow rate was observed. The effect of fluence and pulse accumulation on niobium topography during LP was studied with optical microscopy, SEM, AFM, and PSD analysis. Polishing on micro scale was achieved within fluence range of 0.57~0.90 J/cm2, with pulse accumulation adjusted accordingly. Larger area treatment was proved possible by

  5. FDTD simulation of microwave sintering in large (500/4000 liter) multimode cavities

    Energy Technology Data Exchange (ETDEWEB)

    Subirats, M.; Iskander, M.F.; White, M.J. [Univ. of Utah, Salt Lake City, UT (United States). Electrical Engineering Dept.; Kiggans, J. [Oak Ridge National Lab., TN (United States)

    1996-12-31

    To help develop large-scale microwave-sintering processes and to explore the feasibility of the commercial utilization of this technology, the authors used the recently developed multi-grid 3D Finite-Difference Time-Domain (FDTD) code and the 3D Finite-Difference Heat-Transfer (FDHT) code to determine the electromagnetic (EM) fields, the microwave power deposition, and temperature-distribution patterns in layers of samples processed in large-scale multimode microwave cavities. This paper presents results obtained from the simulation of realistic sintering experiments carried out in both 500 and 4,000 liter furnaces operating at 2.45 GHz. The ceramic ware being sintered is placed inside a cubical crucible box made of rectangular plates of various ceramic materials with various electrical and thermal properties. The crucible box can accommodate up to 5 layers of ceramic samples with 16 to 20 cup-like samples per layer. Simulation results provided guidelines regarding selection of crucible-box materials, crucible-box geometry, number of layers, shelf material between layers, and the fraction volume of the load vs. that of the furnace. Results from the FDTD and FDHT simulations will be presented and various tradeoffs involved in designing an effective microwave-processing system will be compared graphically.

  6. HF power couplers for pulsed superconducting cavity resonators; Coupleurs de puissance HF pour cavites supraconductrices en mode pulse

    Energy Technology Data Exchange (ETDEWEB)

    Jenhani, Hassen [Laboratoire de l' Accelerateur Lineaire, IN2P3-CNRS et Universite de Paris-Sud, BP 34, F-91898 Orsay Cedex (France)

    2006-11-15

    Recent years have seen an impressive improvement in the accelerating gradients obtained in superconducting cavities. Consequently, such cavities have become attractive candidates for large superconducting linear accelerator projects such as the European XFEL and the International Linear Collider (ILC). As a result, there is a strong interest in reducing RF conditioning time and improving the performance of the input power couplers for these cavities. The so-called TTF-III input power coupler, adopted for the XFEL superconducting RF cavities are complex components. In order to better understand the behavior of this component we have performed a series of experiments on a number of such couplers. Initially, we developed a fully automated RF high power test stand for coupler conditioning procedure. Following this, we performed a series of coupler conditioning tests. This has allowed the study of the coupler behavior during processing. A number of experiments were carried out to evaluate the in-situ baking effect on the conditioning time. Some of the conditioned couplers were sent to DESY in order to be tested on 9-cells TESLA cavities under cryogenic conditions. These tests have shown that the couplers in no way limit the cavity performance, even up to gradients of 35 MV/m. The main objective of our coupler studies was the reduction of their conditioning time, which represents one of the most important criteria in the choice of coupler for high energy linacs. Excellent progress in reducing the conditioning time has been demonstrated by making appropriate modifications to the conditioning procedure. Furthermore, special attention was paid to electron generation processes in the couplers, via multipacting. Simulations of this process were made on both the TTF-III coupler and on a new coupler prototype, TTF-V. Experiments aimed at suppressing multipacting were also successfully achieved by using a DC bias on the inner conductor of the co-axial coupler. (author)

  7. Measurement of the Goos-H\\"anchen shift in a microwave cavity

    CERN Document Server

    Unterhinninghofen, Julia; Wiersig, Jan; Stöckmann, Hans-Jürgen; Hentschel, Martina

    2010-01-01

    We present measurements of the Goos-H\\"anchen shift in a two-dimensional dielectric microwave cavity. Microwave beams are generated by a suitable superposition of the spherical waves generated by an array of antennas; the resulting beams are then reflected at a planar interface. By measuring the electric field including its phase, Poynting vectors of the incoming and reflected beams can be extracted, which in turn are used to find the incoming angle and the positions where the beam hits the interface and where it is reflected. These positions directly yield the Goos-H\\"anchen shift. The results are compared to the classical Artmann result and a numerical calculation using Gaussian beams.

  8. Electrically detected magnetic resonance in a W-band microwave cavity

    Energy Technology Data Exchange (ETDEWEB)

    Lang, V.; Lo, C. C.; George, R. E.; Lyon, S. A.; Bokor, J.; Schenkel, T.; Ardavan, A.; Morton, J. J. L.

    2011-01-14

    We describe a low-temperature sample probe for the electrical detection of magnetic resonance in a resonant W-band (94 GHz) microwave cavity. The advantages of this approach are demonstrated by experiments on silicon field-effect transistors. A comparison with conventional low-frequency measurements at X-band (9.7 GHz) on the same devices reveals an up to 100-fold enhancement of the signal intensity. In addition, resonance lines that are unresolved at X-band are clearly separated in the W-band measurements. Electrically detected magnetic resonance at high magnetic fields and high microwave frequencies is therefore a very sensitive technique for studying electron spins with an enhanced spectral resolution and sensitivity.

  9. Enzyme inactivation analyses for industrial blanching applications employing 2450 Mhz monomode microwave cavities.

    Science.gov (United States)

    Sánchez-Hernández, D; Devece, C; Catalá, J M; Rodríguez-López, J N; Tudela, J; García-Cánovas, F; de los Reyes, E

    1999-01-01

    Browning reactions in fruits and vegetables are recognized as a serious problem for the European food industry, particularly for the mushroom sector. The major enzyme responsible for the browning reaction is polyphenoloxidase (PPO). In this paper considerable reduction has been achieved in both the time and temperature required for complete microwave enzyme inactivation compared to conventional hot-water treatments, which can be translated into both increased benefits and enhanced quality products for the food industry. Furthermore, the short exposure time required for complete inactivation of aqueous solutions of PPO irradiated with microwaves within monomode cavities is very important to reduce the browning rate of mushroom extracts, and could lead to a much greater product profitability when treating whole processed mushrooms.

  10. Final Report - Development of a Multi-Spoke Superconducting Cavity for Nuclear Physics, Light Sources, and Driven Systems Applications (ODU Contribution)

    Energy Technology Data Exchange (ETDEWEB)

    Delayen, Jean [Old Dominion Univ., Norfolk, VA (United States)

    2014-11-14

    This report summarizes the work done by Old Dominion University, in collaboration with the Thomas Jefferson National Accelerator Facility toward the development of high-velocity superconducting spoke cavities.

  11. Study of quality and field limitation of superconducting 1.3 GHz 9-Cell RF-cavities at DESY

    Energy Technology Data Exchange (ETDEWEB)

    Schlander, Felix

    2013-01-15

    The European XFEL and the International Linear Collider are based on superconducting rf cavities made of niobium. Their advantages are low ohmic losses which allow high duty cycles and the possibility to use a large beam aperture which is substantial to prevent wake fields at high current accelerators. To reach the theoretical limits of superconducting cavities, it is required to understand the present performance limitations. These are field emission, thermal breakdown (quench) and the ohmic losses dependent on the accelerating field, which are expressed in the quality factor. As the limiting mechanisms themselves are understood in general, the origin of the quench is often unclear. To determine the quench locations, a localisation tool for thermal breakdown using the second sound in superfluid helium has been installed at the cavity test facility at DESY and the results for a sample of about 30 cavities have been examined. The features of the distribution of the quench locations have been analysed and it has been found that the quench locations are in the area of the highest surface magnetic field and not necessarily at the equator of the cells. The data sample has been extended in an attempt to characterise the average behaviour of the quality factor related to the accelerating field. An analysis of the surface resistance of individual cavities shows that a recently developed model for the surface resistance of niobium is not able to describe the measurement in all detail, but the application of an additional mechanism showed promising results.

  12. A scanning Auger electron spectrometer for internal surface analysis of Large Electron Positron 2 superconducting radio-frequency cavities

    Energy Technology Data Exchange (ETDEWEB)

    Benvenuti, C.; Cosso, R.; Genest, J.; Hauer, M.; Lacarrere, D.; Rijllart, A.; Saban, R. [CERN, 1211 Geneva 23 (Switzerland)

    1996-08-01

    A computer-controlled surface analysis instrument, incorporating static Auger electron spectroscopy, scanning Auger mapping, and secondary electron imaging, has been designed and built at CERN to study and characterize the inner surface of superconducting radio-frequency cavities to be installed in the Large Electron Positron collider. A detailed description of the instrument, including the analytical head, the control system, and the vacuum system is presented. Some recent results obtained from the cavities provide examples of the instrument{close_quote}s capabilities. {copyright} {ital 1996 American Institute of Physics.}

  13. Design and calibration of the 34 GHz Yale microwave cavity experiment

    Energy Technology Data Exchange (ETDEWEB)

    Slocum, P.L., E-mail: penny.slocum@yale.edu [Department of Physics, Yale University, PO Box 208120, New Haven, CT 06520 (United States); Baker, O.K. [Department of Physics, Yale University, PO Box 208120, New Haven, CT 06520 (United States); Hirshfield, J.L. [Department of Physics, Yale University, PO Box 208120, New Haven, CT 06520 (United States); Omega-P, Inc., 291 Whitney Ave., Suite 401, New Haven, CT 06511 (United States); Jiang, Y.; Malagon, A.T.; Martin, A.J.; Shchelkunov, S. [Department of Physics, Yale University, PO Box 208120, New Haven, CT 06520 (United States); Szymkowiak, A. [Department of Physics, Yale University, PO Box 208120, New Haven, CT 06520 (United States); Department of Astronomy, Yale University, PO Box 208101, New Haven, CT 06520 (United States)

    2015-01-11

    Several proposed models of the cold dark matter in the universe include light neutral bosons with sub-eV masses. In many cases their detection hinges on their infrequent interactions with Standard Model photons at sub-eV energies. We describe the design and performance of an experiment to search for aberrations from the broadband noise power associated with a 5 K copper resonant cavity in the vicinity of 34 GHz (0.1 meV). The cavity, microwave receiver, and data reduction are described. Several configurations of the experiment are discussed in terms of their impact on the sensitivity of the search for axion-like particles and hidden sector photons.

  14. Design and Calibration of the 34 GHz Yale Microwave Cavity Experiment

    CERN Document Server

    Slocum, P L; Hirshfield, J L; Jiang, Y; Malagon, A T; Martin, A J; Shchelkunov, S; Szymkowiak, A

    2014-01-01

    Several proposed models of the cold dark matter in the universe include light neutral bosons with sub-eV masses. In many cases their detection hinges on their infrequent interactions with Standard Model photons at sub-eV energies. We describe the design and performance of an experiment to search for aberrations from the broadband noise power associated with a 5 K copper resonant cavity in the vicinity of 34 GHz (0.1 meV). The cavity, microwave receiver, and data reduction are described. Several configurations of the experiment are discussed in terms of their impact on the sensitivity of the search for axion-like particles and hidden sector photons.

  15. Preparation of Schrödinger cat states of a cavity field via coupling to a superconducting charge qubit

    Science.gov (United States)

    Freitas, Dagoberto S.; Nemes, M. C.

    2014-05-01

    We extend the approach in Ref. 5 [Y.-X. Liu, L. F. Wei and F. Nori, Phys. Rev. A 71 (2005) 063820] for preparing superposition states of a cavity field interacting with a superconducting charge qubit. We study effects of the nonlinearity on the creation of such states. We show that the main contribution of nonlinear effects is to shorten the time necessary to build the superposition.

  16. Cavity perturbation techniques for measurement of the microwave conductivity and dielectric constant of a bulk semiconductor material.

    Science.gov (United States)

    Eldumiati, I. I.; Haddad, G. I.

    1972-01-01

    Cavity perturbation techniques offer a very sensitive and highly versatile means for studying the complex microwave conductivity of a bulk material. A knowledge of the cavity coupling factor in the absence of perturbation, together with the change in the reflected power and the cavity resonance frequency shift, are adequate for the determination of the material properties. This eliminates the need to determine the Q-factor change with perturbation which may lead to appreciable error, especially in the presence of mismatch loss. The measurement accuracy can also be improved by a proper choice of the cavity coupling factor prior to the perturbation.

  17. Implementation of Deutsch-Jozsa Algorithm with Superconducting Quantum-Interference Devices via Raman Transition

    Institute of Scientific and Technical Information of China (English)

    ZHAN Zhi-Ming

    2009-01-01

    In this paper, a theoretical scheme is proposed to implement the Deutsch-Jozsa algorithm with SQUIDs (superconducting quantum-interference devices) in cavity via Raman transition. The scheme only requires a quantized cavity field and classical microwave pulses. In this scheme, no transfer of quantum information between the SQUIDs and the cavity is required, the cavity field is only virtually excited and thus the cavity decay is suppressed.

  18. The Path to High Q-Factors in Superconducting Accelerating Cavities: Flux Expulsion and Surface Resistance Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Martinello, Martina [Illinois Inst. of Technology, Chicago, IL (United States)

    2016-12-01

    Accelerating cavities are devices resonating in the radio-frequency (RF) range used to accelerate charged particles in accelerators. Superconducting accelerating cavities are made out of niobium and operate at the liquid helium temperature. Even if superconducting, these resonating structures have some RF driven surface resistance that causes power dissipation. In order to decrease as much as possible the power losses, the cavity quality factor must be increased by decreasing the surface resistance. In this dissertation, the RF surface resistance is analyzed for a large variety of cavities made with different state-of-the-art surface treatments, with the goal of finding the surface treatment capable to return the highest Q-factor values in a cryomodule-like environment. This study analyzes not only the superconducting properties described by the BCS surface resistance, which is the contribution that takes into account dissipation due to quasi-particle excitations, but also the increasing of the surface resistance due to trapped flux. When cavities are cooled down below their critical temperature inside a cryomodule, there is always some remnant magnetic field that may be trapped increasing the global RF surface resistance. This thesis also analyzes how the fraction of external magnetic field, which is actually trapped in the cavity during the cooldown, can be minimized. This study is performed on an elliptical single-cell horizontally cooled cavity, resembling the geometry of cavities cooled in accelerator cryomodules. The horizontal cooldown study reveals that, as in case of the vertical cooldown, when the cooling is performed fast, large thermal gradients are created along the cavity helping magnetic flux expulsion. However, for this geometry the complete magnetic flux expulsion from the cavity equator is more difficult to achieve. This becomes even more challenging in presence of orthogonal magnetic field, that is easily trapped on top of the cavity equator

  19. The interaction between a beam and a superconducting cavity module: Measurements in CESR and CESR-Phase 3 goals

    Energy Technology Data Exchange (ETDEWEB)

    Belomestnykh, S.; Flynn, G.; Hartung, W.; Kirchgessner, J.; Moffat, D.; Muller, H.; Padamsee, H.; Pisharody, M.; Veshcherevich, V. [Cornell Univ., Ithaca, NY (United States). Lab. of Nuclear Studies

    1996-08-01

    Plans for the next generation of electron-positron colliders (B-factories and B-factory-like machines) call for high beam currents to produce luminosities of the order of 10 (exp 33). To store these high currents in a machine, special attention must be paied to the interaction of the beam with discontinuities in the surrounding vacuum chamber. RF cavities are among the biggest perturbations in accelerator vacuum chambers and are therefore among the biggest sources of beam instabilities. Accelerating structures of new machines are being designed to have smaller impedance to reduce the beam-cavity interaction. Prototypes for the cavity, input coupler, cryostat, and higher-order mode (HOM) loads were subjected and are tested in CESR. A superconducting (SRF) cavity was installed in addition to the four five-cell normal conducting cavities. As a result, the calorimetry and RF power results agree with predictions up to their respective uncertainties. The results of wake potential sampling suggested that the wake fields of the SRF cavity will not limit the performance of CESR in bunch train operation. No beam instabilities or dangerous HOMs were encountered while sweeping the HOM frequencies using the cavity tuner or while exciting multipole HOMs by displacing the beam off axis. (G.K.)

  20. Characterization of a high-temperature superconducting bearing for use in a cosmic microwave background polarimeter

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R [Energy Technology Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Hanany, Shaul [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Matsumura, Tomotake [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Johnson, Bradley [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Jones, Terry [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)

    2005-02-01

    We have previously presented a design for a cosmic microwave background (CMB) polarimeter in which a cryogenically cooled half-wave plate rotates by means of a high-temperature superconducting (HTS) bearing. Here, a prototype bearing, consisting of a commercially available ring-shaped permanent magnet and an array of YBCO bulk HTS material, has been constructed. We measured its coefficient of friction and vibrational property as a function of several parameters, including temperature between 15 and 83 K, rotation frequency between 0.3 and 3.5 Hz, levitation distance between 6 and 10 mm and ambient pressure of {approx}10{sup -7} Torr. We concluded that the low rotational drag of the HTS bearing would allow rotations for long periods with minimal input power and negligible wear and tear, thus making this technology suitable for a future satellite mission.

  1. Characterization of a high-temperature superconducting bearing for use in a cosmic microwave background polarimeter

    Science.gov (United States)

    Hull, John R.; Hanany, Shaul; Matsumura, Tomotake; Johnson, Bradley; Jones, Terry

    2005-02-01

    We have previously presented a design for a cosmic microwave background (CMB) polarimeter in which a cryogenically cooled half-wave plate rotates by means of a high-temperature superconducting (HTS) bearing. Here, a prototype bearing, consisting of a commercially available ring-shaped permanent magnet and an array of YBCO bulk HTS material, has been constructed. We measured its coefficient of friction and vibrational property as a function of several parameters, including temperature between 15 and 83 K, rotation frequency between 0.3 and 3.5 Hz, levitation distance between 6 and 10 mm and ambient pressure of {\\sim }10^{- 7} Torr. We concluded that the low rotational drag of the HTS bearing would allow rotations for long periods with minimal input power and negligible wear and tear, thus making this technology suitable for a future satellite mission.

  2. Algorithm for spectral response analysis of superconducting microwave transmission-line resonator

    CERN Document Server

    Hanif, Muhammad

    2013-01-01

    It has always been a challenge for researchers to efficiently and accurately post process experimental data which is distorted by the noise. Superconducting microwave devices e.g. resonators, directional filters, beam-splitters etc. operate at frequency of several GHz to THz and temperatures well below critical temperature (Tc) with few exceptions like transition edge sensors where devices are operated at temperatures close to Tc. These devices are measured usually with vector network analyser in terms of scattering parameters. Two kinds of errors, systematic and drift can easily be removed from the measurements taken with VNA. However, random errors are not easy to address and remove due to their unpredictability and randomness. In this manuscript we will present an algorithm to post process experimental data to cope with measurements that have been corrupted or useful spectral response is buried in spurious signal. We have developed a robust and efficient algorithm, implemented in MATLAB, to detect peaks in...

  3. Epitaxial Al2O3 capacitors for low microwave loss superconducting quantum circuits

    Directory of Open Access Journals (Sweden)

    K.-H. Cho

    2013-10-01

    Full Text Available We have characterized the microwave loss of high-Q parallel plate capacitors fabricated from thin-film Al/Al2O3/Re heterostructures on (0001 Al2O3 substrates. The superconductor-insulator-superconductor trilayers were grown in situ in a hybrid deposition system: the epitaxial Re base and polycrystalline Al counterelectrode layers were grown by sputtering, while the epitaxial Al2O3 layer was grown by pulsed laser deposition. Structural analysis indicates a highly crystalline epitaxial Al2O3 layer and sharp interfaces. The measured intrinsic (low-power, low-temperature quality factor of the resonators is as high as 3 × 104. These results indicate that low-loss grown Al2O3 is an attractive candidate dielectric for high-fidelity superconducting qubit circuits.

  4. Appropriate microwave frequency selection for biasing superconducting hot electron bolometers as terahertz direct detectors

    Science.gov (United States)

    Jiang, S. L.; Li, X. F.; Jia, X. Q.; Kang, L.; Jin, B. B.; Xu, W. W.; Chen, J.; Wu, P. H.

    2017-04-01

    Terahertz (THz) direct detectors based on superconducting niobium nitride (NbN) hot electron bolometers (HEBs) and biased by a simple microwave (MW) source have been studied. The frequency and power of the MW are selected by measuring the MW responses of the current–voltage (I–V) curves and resistance–temperature (R–T) curves of the NbN HEBs. The non-uniform absorption theory is used to explain the current jumps in the I–V curves and the resistance jumps in the R–T curves. Compared to the thermal biasing, the MW biasing method can improve the sensitivity, make the readout system much easier and consumes less liquid helium, which is important for long lasting experiments. The noise equivalent power (NEP) of 1.6 pW Hz‑1/2 and the response time of 86 ps are obtained for the detectors working at 4.2 K and 0.65 THz.

  5. Atom-probe tomography analyses of niobium superconducting RF cavity materials

    Energy Technology Data Exchange (ETDEWEB)

    Sebastian, J.T. [Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208-3108 (United States); Seidman, D.N. [Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208-3108 (United States); Yoon, K.E. [Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208-3108 (United States)]. E-mail: megabass@northwestern.edu; Bauer, P. [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Reid, T. [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Boffo, C. [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Norem, J. [Argonne National Laboratory, Argonne, IL 60439 (United States)

    2006-07-15

    We present the first atom-probe tomographic (APT) measurements of niobium superconducting RF (SCRF) cavity materials. APT involves the atom-by-atom dissection of sharply pointed niobium tips, along with their niobium oxide coatings, via the application of a high-pulsed electric field and the measurement of each ion's mass-to-charge state ratio (m/n) with time-of-flight (TOF) mass spectrometry. The resulting atomic reconstructions, typically containing at least 10{sup 5} atoms and with typical dimensions of 10{sup 5} nm{sup 3} (or less), show the detailed, nanoscale chemistry of the niobium oxide coatings, and of the underlying high-purity niobium metal. Our initial results show a nanochemically smooth transition through the oxide layer from near-stoichiometric Nb{sub 2}O{sub 5} at the surface to near-stoichiometric Nb{sub 2}O as the underlying metal is approached (after {approx}10 nm of surface oxide). The underlying metal, in the near-oxide region, contains a significant amount of interstitially dissolved oxygen ({approx}5-10 at.%), as well as a considerable amount of dissolved hydrogen. The experimental results are interpreted in light of current models of oxide and sub-oxide formation in the Nb-O system.

  6. Surface studies of niobium chemically polished under conditions for superconducting radiofrequency cavity production

    Energy Technology Data Exchange (ETDEWEB)

    Hui Tian; Michael Kelley; Charles Reece

    2005-11-14

    The performance of niobium superconducting radiofrequency accelerator cavities is strongly impacted by the topmost several nanometers of the active (interior) surface, especially by the final surface conditioning treatments. We examined the effect of the most commonly employed treatment, buffered chemical polishing (BCP), on polycrystalline niobium sheet over a range of realistic solution flow rates using electron back scatter diffraction (EBSD), stylus profilometry, atomic force microscopy, laboratory XPS and synchrotron (variable photon energy) XPS, seeking to collect statistically significant data sets. We found that the predominant general surface orientation is (100), but others are also present and at the atomic-level details of surface plane orientation are more complex. The post-etch surface exhibits micron-scale roughness, whose extent does not change with treatment conditions. The outermost surface consists of a few-nm thick layer of niobium pentoxide, whose thickness increases with solution flow rate to a maximum of 1.3 - 1.4 times that resulting from static solution. The standard deviation of the roughness measurements is ?? 30% and that of the surface composition is ?? 5%.

  7. Surface studies of niobium chemically polished under conditions for superconducting radio frequency (SRF) cavity production

    Energy Technology Data Exchange (ETDEWEB)

    Tian Hui [Thomas Jefferson National Accelerator Facility and College of William and Mary (United States); Reece, Charles E. [Thomas Jefferson National Accelerator Facility and College of William and Mary (United States); Kelley, Michael J. [Thomas Jefferson National Accelerator Facility and College of William and Mary (United States)]. E-mail: mkelley@jlab.org; Wang Shancai [Department of Physics, Boston University (United States); Plucinski, Lukasz [Department of Physics, Boston University (United States); Smith, Kevin E. [Department of Physics, Boston University (United States); Nowell, Matthew M. [EDAX TSL (United States)

    2006-11-30

    The performance of niobium superconducting radiofrequency (SRF) accelerator cavities is strongly impacted by the topmost several nanometers of the active (interior) surface, especially as influenced by the final surface conditioning treatments. We examined the effect of the most commonly employed treatment, buffered chemical polishing (BCP), on polycrystalline niobium sheet over a range of realistic solution flow rates using electron back scatter diffraction (EBSD), stylus profilometry, atomic force microscopy, laboratory XPS and synchrotron (variable photon energy) XPS, seeking to collect statistically significant datasets. We found that the predominant general surface orientation is (1 0 0), but others are also present and at the atomic-level details of surface plane orientation are more complex. The post-etch surface exhibits micron-scale roughness, whose extent does not change with treatment conditions. The outermost surface consists of a few-nm thick layer of niobium pentoxide, whose thickness increases with solution flow rate to a maximum of 1.3-1.4 times that resulting from static solution. The standard deviation of the roughness measurements is {+-}30% and that of the surface composition is {+-}5%.

  8. Suppression of multipacting in high power RF couplers operating with superconducting cavities

    Science.gov (United States)

    Ostroumov, P. N.; Kazakov, S.; Morris, D.; Larter, T.; Plastun, A. S.; Popielarski, J.; Wei, J.; Xu, T.

    2017-06-01

    Capacitive input couplers based on a 50 Ω coaxial transmission line are frequently used to transmit RF power to superconducting (SC) resonators operating in CW mode. It is well known that coaxial transmission lines are prone to multipacting phenomenon in a wide range of RF power level and operating frequency. The Facility for Rare Isotope Beams (FRIB) being constructed at Michigan State University includes two types of quarter wave SC resonators (QWR) operating at 80.5 MHz and two types of half wave SC resonators (HWR) operating at 322 MHz. As was reported in ref. [1] a capacitive input coupler used with HWRs was experiencing strong multipacting that resulted in a long conditioning time prior the cavity testing at design levels of accelerating fields. We have developed an insert into 50 Ω coaxial transmission line that provides opportunity to bias the RF coupler antenna and protect the amplifier from the bias potential in the case of breakdown in DC isolation. Two of such devices have been built and are currently used for the off-line testing of 8 HWRs installed in the cryomodule.

  9. A Two-stage injection-locked magnetron for accelerators with superconducting cavities

    CERN Document Server

    Kazakevich, Grigory; Flanagan, Gene; Marhauser, Frank; Neubauer, Mike; Yakovlev, Vyacheslav; Chase, Brian; Nagaitsev, Sergey; Pasquinelli, Ralph; Solyak, Nikolay; Tupikov, Vitali; Wolff, Daniel

    2013-01-01

    A concept for a two-stage injection-locked CW magnetron intended to drive Superconducting Cavities (SC) for intensity-frontier accelerators has been proposed. The concept considers two magnetrons in which the output power differs by 15-20 dB and the lower power magnetron being frequency-locked from an external source locks the higher power magnetron. The injection-locked two-stage CW magnetron can be used as an RF power source for Fermilab's Project-X to feed separately each of the 1.3 GHz SC of the 8 GeV pulsed linac. We expect output/locking power ratio of about 30-40 dB assuming operation in a pulsed mode with pulse duration of ~ 8 ms and repetition rate of 10 Hz. The experimental setup of a two-stage magnetron utilising CW, S-band, 1 kW tubes operating at pulse duration of 1-10 ms, and the obtained results are presented and discussed in this paper.

  10. Lithium-argon discharges in a multicusp-ECR microwave resonant cavity

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, C.B.; Brake, M.L. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Nuclear Engineering

    1995-12-01

    A newly designed multicusp-ECR microwave resonant cavity is being used as a lithium plasma source. Lithium plasma sources have a variety of applications in nuclear fusion research. As a source of ions or neutrals for beams, they are utilized in diagnostics and fueling of magnetic confinement fusion. Argon and lithium-argon discharges have been created in a multicusp-ECR microwave resonant cavity. A double Langmuir probe has been used to determine discharge characteristics, indicating ion densities of 10{sup 10}--10{sup 11} cm{sup {minus}3} and electron temperatures of about 3 eV with operating pressures of 4--20 mtorr and input powers of 100--250 W. Lithium is introduced to the system in the form of lithium chloride or lithium carbonate which is then heated by a background argon discharge allowing dissociation of lithium. The dissociation is evidenced by the observation of strong Li-I lines in the discharge using optical emission spectroscopy. LiCl was found to give a strong Li-I optical signal for about 15 min run time whereas Li{sub 2}CO{sub 3} gave lower intensity lines, but for about 60 min run time.

  11. R-matrix theory of driven electromagnetic cavities.

    Science.gov (United States)

    Beck, F; Dembowski, C; Heine, A; Richter, A

    2003-06-01

    The resonances of cylindrical symmetric microwave cavities are analyzed in R-matrix theory, which transforms the input channel conditions to the output channels. Single and interfering double resonances are studied and compared with experimental results obtained with superconducting microwave cavities. Because of the equivalence of the two-dimensional Helmholtz and the stationary Schrödinger equations, the results give insight into the resonance structure of regular and chaotic quantum billiards.

  12. Perturbative scanning probe microscopy on a Kagome lattice of superconducting microwave resonators

    Science.gov (United States)

    Underwood, Devin; Shanks, Will; Li, Andy C. Y.; Koch, Jens; Houck, Andrew

    2015-03-01

    Microwave photons confined to a lattice of coupled resonators, each coupled to its own superconducting qubit have been predicted to exhibit matter like quantum phases. Realizing such a lattice-based quantum simulator presents a daunting experimental challenge; as such, new tools and measurement techniques are a necessary precursor. Here, we present measurements of the internal mode structure of microwave photons on a 49-site Kagome lattice of capacitively coupled coplanar waveguide resonators without qubits. By scanning a probe with a sapphire tip over the surface of a single lattice site, the resonant frequency was detuned, thus forming a local defect in the lattice. This perturbation resulted in measurable shifts in the lattice spectrum, which were used to extract the mode weights at the perturbed site. By perturbing each lattice site it was possible to reconstruct a complete map of different normal mode weights within the entire lattice. Additionally we present experimental evidence of a frustrated flat band that arises from the Kagome lattice geometry.

  13. Multiple-output microwave single-photon source using superconducting circuits with longitudinal and transverse couplings

    Science.gov (United States)

    Wang, Xin; Miranowicz, Adam; Li, Hong-Rong; Nori, Franco

    2016-11-01

    Single-photon devices at microwave frequencies are important for applications in quantum information processing and communication in the microwave regime. In this work we describe a proposal of a multioutput single-photon device. We consider two superconducting resonators coupled to a gap-tunable qubit via both its longitudinal and transverse degrees of freedom. Thus, this qubit-resonator coupling differs from the coupling in standard circuit quantum-electrodynamic systems described by the Jaynes-Cummings model. We demonstrate that an effective quadratic coupling between one of the normal modes and the qubit can be induced and this induced second-order nonlinearity is much larger than that for conventional Kerr-type systems exhibiting photon blockade. Assuming that a coupled normal mode is resonantly driven, we observe that the output fields from the resonators exhibit strong sub-Poissonian photon-number statistics and photon antibunching. Contrary to previous studies on resonant photon blockade, the first-excited state of our device is a pure single-photon Fock state rather than a polariton state, i.e., a highly hybridized qubit-photon state. In addition, it is found that the optical state truncation caused by the strong qubit-induced nonlinearity can lead to an entanglement between the two resonators, even in their steady state under the Markov approximation.

  14. In-situ electron paramagnetic resonance studies of paramagnetic point defects in superconducting microwave resonators

    Science.gov (United States)

    Zhang, Shengke; Kopas, Cameron; Wagner, Brian; Queen, Daniel; Newman, N.

    2016-09-01

    The physical nature and concentration of paramagnetic point defects in the dielectrics of superconducting planar microwave resonators have been determined using in-situ electron paramagnetic resonance spectroscopy. To perform this work, the quality factor of parallel plate and stripline resonators was measured as a function of the magnitude of a magnetic-field applied parallel to the electrode surfaces. YBa2Cu3O7-δ thin film electrodes proved to be a preferred choice over Nb and MgB2 because they are readily available and have a small surface resistance (Rs) up to high temperatures (˜77 K) and magnetic fields (i.e., dielectric, Co2+-doped Ba(Zn1/3Nb2/3)O3, are shown to have losses dominated by d-electron spin-excitations in exchange-coupled Co2+ point-defect clusters, even in the absence of an applied magnetic field. A significant enhanced microwave loss in stripline and parallel plate resonators is found to correlate with the presence of paramagnetic Mn2+ dopants in Ba(Zn1/3Ta2/3)O3 ceramics and dangling bond states in amorphous Si thin films, although the identification of the dominant loss mechanism(s) in these dielectrics requires further investigation.

  15. Etching of Niobium Sample Placed on Superconducting Radio Frequency Cavity Surface in Ar/CL2 Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Janardan Upadhyay, Larry Phillips, Anne-Marie Valente

    2011-09-01

    Plasma based surface modification is a promising alternative to wet etching of superconducting radio frequency (SRF) cavities. It has been proven with flat samples that the bulk Niobium (Nb) removal rate and the surface roughness after the plasma etchings are equal to or better than wet etching processes. To optimize the plasma parameters, we are using a single cell cavity with 20 sample holders symmetrically distributed over the cell. These holders serve the purpose of diagnostic ports for the measurement of the plasma parameters and for the holding of the Nb sample to be etched. The plasma properties at RF (100 MHz) and MW (2.45 GHz) frequencies are being measured with the help of electrical and optical probes at different pressures and RF power levels inside of this cavity. The niobium coupons placed on several holders around the cell are being etched simultaneously. The etching results will be presented at this conference.

  16. Analysis and estimation of the threshold for a microwave "pellicle mirror" parametric oscillator, via energy conservation

    CERN Document Server

    Chiao, Raymond Y

    2012-01-01

    An experiment is proposed to observe the dynamical Casimir effect by means of two tandem, high Q, superconducting microwave cavities, which are separated from each other by only a very thin wall consisting of a flexible superconducting membrane that can be driven into motion by means of resonant "pump" microwaves injected into the left cavity. Degenerate "signal" and "idler" microwave signals can then be generated by the exponential amplification of vacuum fluctuations in the initially empty right cavity, above a certain threshold. The purpose of this paper is calculate the threshold for this novel kind of opto-mechanical parametric oscillation, using energy considerations.

  17. Proof-of-principle demonstration of Nb3Sn superconducting radiofrequency cavities for high Q0 applications

    Science.gov (United States)

    Posen, S.; Liepe, M.; Hall, D. L.

    2015-02-01

    Many future particle accelerators require hundreds of superconducting radiofrequency (SRF) cavities operating with high duty factor. The large dynamic heat load of the cavities causes the cryogenic plant to make up a significant part of the overall cost of the facility. This contribution can be reduced by replacing standard niobium cavities with ones coated with a low-dissipation superconductor such as Nb3Sn. In this paper, we present results for single cell cavities coated with Nb3Sn at Cornell. Five coatings were carried out, showing that at 4.2 K, high Q0 out to medium fields was reproducible, resulting in an average quench field of 14 MV/m and an average 4.2 K Q0 at quench of 8 × 109. In each case, the peak surface magnetic field at quench was well above Hc1, showing that it is not a limiting field in these cavities. The coating with the best performance had a quench field of 17 MV/m, exceeding gradient requirements for state-of-the-art high duty factor SRF accelerators. It is also shown that—taking into account the thermodynamic efficiency of the cryogenic plant—the 4.2 K Q0 values obtained meet the AC power consumption requirements of state-of-the-art high duty factor accelerators, making this a proof-of-principle demonstration for Nb3Sn cavities in future applications.

  18. Status of Higher Order Mode Beam Position Monitors in 3.9 GHz Superconducting Accelerating Cavities at FLASH

    CERN Document Server

    Zhang, P; Flisgen, T; van Rienen, U; Jones, R M; Shinton, I R R

    2013-01-01

    Higher order mode (HOM) beam position monitors (BPM) are being developed for the 3.9 GHz third harmonic superconducting accelerating cavities at FLASH. The transverse beam position in a cavity can be determined utilizing beam-excited HOMs based on dipole components. The existing couplers used for HOM suppression provide necessary signals. The diagnostics principle is similar to a cavity BPM, but requires no additional vacuum instruments on the linac. The challenges of HOM-BPM for 3.9 GHz cavities lie in the dense HOM spectrum arising from the coupling of the majority HOMs amongst the four cavities in the cryo-module ACC39. HOMs with particularly promising diagnostics features were evaluated using a spectrum analyzer and custom-built test electronics with various data analysis techniques, data reduction was focused on. After careful theoretical and experimental assessment of the HOM spectrum, multi-cavity modes in the region of 5 GHz were chosen to provide a global position over the complete module with superi...

  19. Status of higher order mode beam position monitors in 3.9 GHz superconducting accelerating cavities at FLASH

    CERN Document Server

    Zhang, P; Jones, R M; Flisgen, T; Van Rienen, U; Shinton, I R R

    2013-01-01

    Higher order mode (HOM) beam position monitors (BPM) are being developed for the 3.9 GHz third harmonic superconducting accelerating cavities at FLASH. The transverse beam position in a cavity can be determined utilizing beam-excited HOMs based on dipole components. The existing couplers used for HOM suppression provide necessary signals. The diagnostics principle is similar to a cavity BPM, but requires no additional vacuum instruments on the linac. The challenges of HOM-BPM for 3.9 GHz cavities lie in the dense HOM spectrum arising from the coupling of the majority HOMs amongst the four cavities in the cryo-module ACC39. HOMs with particularly promising diagnostics features were evaluated using a spectrum analyzer and custom-built test electronics with various data analysis techniques, data reduction was focused on. After careful theoretical and experimental assessment of the HOM spectrum, multi-cavity modes in the region of 5 GHz were chosen to provide a global position over the complete module with superi...

  20. Development of a Solid State RF Amplifier in the kW Regime for Application with Low Beta Superconducting RF Cavities

    CERN Document Server

    Piel, Christian; Borisov, A; Kolesov, Sergej; Piel, Helmut

    2005-01-01

    Projects based on the use of low beta superconducting cavities for ions are under operation or development at several labs worldwide. Often these cavities are individually driven by RF power sources in the kW regime. For an ongoing project a modular 2 kW, 176 MHz unconditionally stable RF amplifier for CW and pulsed operation was designed, built, and tested. Extended thermal analysis was used to develop a water cooling system in order to optimize the performance of the power transistors and other thermally loaded components. The paper will outline the design concept of the amplifier and present first results on the test of the amplifier with a superconducting cavity.

  1. Superconductivity

    Science.gov (United States)

    1989-07-01

    SUPERCONDUCTIVITY HIGH-POWER APPLICATIONS Electric power generation/transmission Energy storage Acoustic projectors Weapon launchers Catapult Ship propulsion • • • Stabilized...temperature superconductive shields could be substantially enhanced by use of high-Tc materials. 27 28 NRAC SUPERCONDUCTIVITY SHIP PROPULSION APPLICATIONS...motor shown in the photograph. As a next step in the evolution of electric-drive ship propulsion technology, DTRC has proposed to scale up the design

  2. Impact of nitrogen doping of niobium superconducting cavities on the sensitivity of surface resistance to trapped magnetic flux

    Science.gov (United States)

    Gonnella, Dan; Kaufman, John; Liepe, Matthias

    2016-02-01

    Future particle accelerators such as the SLAC "Linac Coherent Light Source-II" (LCLS-II) and the proposed Cornell Energy Recovery Linac require hundreds of superconducting radio-frequency (SRF) niobium cavities operating in continuous wave mode. In order to achieve economic feasibility of projects such as these, the cavities must achieve a very high intrinsic quality factor (Q0) to keep cryogenic losses within feasible limits. To reach these high Q0's in the case of LCLS-II, nitrogen-doping of niobium cavities has been selected as the cavity preparation technique. When dealing with Q0's greater than 1 × 1010, the effects of ambient magnetic field on Q0 become significant. Here, we show that the sensitivity to RF losses from trapped magnetic field in a cavity's walls is strongly dependent on the cavity preparation. Specifically, standard electropolished and 120 °C baked cavities show a sensitivity of residual resistance from trapped magnetic flux of ˜0.6 and ˜0.8 nΩ/mG trapped, respectively, while nitrogen-doped cavities show a higher sensitivity of residual resistance from trapped magnetic flux of ˜1 to 5 nΩ/mG trapped. We show that this difference in sensitivities is directly related to the mean free path of the RF surface layer of the niobium: shorter mean free paths lead to less sensitivity of residual resistance to trapped magnetic flux in the dirty limit (ℓ ≪ ξ0), while longer mean free paths lead to lower sensitivity of residual resistance to trapped magnetic flux in the clean limit (ℓ ≫ ξ0). These experimental results are also shown to have good agreement with recent theoretical predictions for pinned vortex lines oscillating in RF fields.

  3. Generation and detection of gravitational waves at microwave frequencies by means of a superconducting two-body system

    CERN Document Server

    Chiao, Raymond Y

    2007-01-01

    The 2-body system of a superconducting sphere levitated in the magnetic field generated by a persistent current in a superconducting ring, can possibly convert gravitational waves into electromagnetic waves, and vice versa. Faraday's law of induction implies that the time-varying distance between the sphere and the ring caused by the tidal force of an incident gravitational wave induces time-varying electrical currents, which are the source of an electromagnetic wave at the same frequency as the incident gravitational wave. At sufficiently low temperatures, the internal degrees of freedom of the superconductors are frozen out because of the superconducting energy gap, and only external degrees of freedom, which are coupled to the radiation fields, remain. Hence this wave-conversion process is loss-free and therefore efficient, and by time-reversal symmetry, so is the reverse process. A Hertz-like experiment at microwave frequencies should therefore be practical to perform. This would open up observations of t...

  4. A Study of Dynamic Lorentz Force Detuning of 650 MHz {\\beta}g= 0.9 Superconducting Radiofrequency Cavity

    CERN Document Server

    Kumar, Abhay

    2013-01-01

    The small bandwidth of superconducting cavities makes the study of dynamic Lorentz force detuning and its compensation indispensable in case of pulsed mode operation of high gradient accelerators. In this paper, we present the study of this detuning and also propose an optimized design for five cell 650 MHz {\\beta}g= 0.9 elliptic superconducting cavities, which will be used in the high energy section of the 1 GeV H-LINAC for the proposed Indian Spallation Neutron Source project, by suitably inserting the inter-cell stiffeners. The paper presents a sequential design methodology which starts with study of static Lorentz force detuning and tunability; and progresses to find out the structural modes and related dynamic detuning values by performing transient calculations. The developed methodology is general in nature and can be used for a three dimensional model of any geometry. The work will be useful for optimizing the design against dynamic Lorentz force detuning of SRF cavities of any shape.

  5. Magnetic and mechanical properties of a finite-thickness superconducting strip with a cavity in oblique magnetic fields

    Science.gov (United States)

    Huang, Chen-Guang; Liu, Jun

    2017-01-01

    This paper presents an investigation of the mechanical response of a finite-thickness superconducting strip containing an elliptical cavity in oblique magnetic fields. After the Bean critical state model and the minimum magnetic energy variation procedure are employed, the dependency of the magnetic and mechanical properties on the aspect ratio of the strip and the tilt angles of the applied field and elliptical cavity is discussed. The results show that for a strip in an oblique magnetic field, the current front penetrates non-monotonically from the surface inwards in the initial stage. The magnetization of the strip and the applied field are not collinear, and the angle between them becomes smaller with increasing field. Simultaneously, the strip suffers from a torque produced by the electromagnetic force and then has a tendency to rotate. Compared with the defect-free case, the appearance of the elliptical cavity affects the magnetic property of the strip and further causes significant stress concentration. If the tilt angle of the elliptical cavity is small, a position of stable mechanical equilibrium will exist for the strip. It is interesting that due to the elliptical cavity effect, an oblique magnetization and a non-zero torque are generated even if the applied field is perpendicular or parallel to the strip.

  6. A new measurement tool for characterization of superconducting rf accelerator cavities using high-performance LTS SQUIDs

    Energy Technology Data Exchange (ETDEWEB)

    Vodel, W [Friedrich-Schiller-University Jena, Helmholtzweg 5, 07743 Jena (Germany); Neubert, R [Friedrich-Schiller-University Jena, Helmholtzweg 5, 07743 Jena (Germany); Nietzsche, S [Friedrich-Schiller-University Jena, Helmholtzweg 5, 07743 Jena (Germany); Seidel, P [Friedrich-Schiller-University Jena, Helmholtzweg 5, 07743 Jena (Germany); Knaack, K [DESY Hamburg (Germany); Wittenburg, K [DESY Hamburg (Germany); Peters, A [Heidelberger Ionenstrahl-Therapiezentrum, Heidelberg (Germany)

    2007-11-15

    This paper presents a new system to measure very low currents in an accelerator environment, using a cryogenic current comparator (CCC). In principle a CCC is a conventional current transformer using the high-performance SQUID technology to sense the magnetic fields caused by the beam current. Since the system is sensitive on a pA level, it is an optimum device to detect dark currents of superconducting cavities. The system presented here is designed for the test facilities of the superconducting accelerator modules for the European XFEL at the Deutsches Elektronen-Synchrotron (DESY) in Hamburg. Measurements in a quiet environment showed that an intrinsic noise level of the CCC of 40 pA Hz{sup -1/2} could be achieved.

  7. Topographic power spectral density study of the effect of surface treatment processes on niobium for superconducting radio frequency accelerator cavities

    Energy Technology Data Exchange (ETDEWEB)

    Charles Reece, Hui Tian, Michael Kelley, Chen Xu

    2012-04-01

    Microroughness is viewed as a critical issue for attaining optimum performance of superconducting radio frequency accelerator cavities. The principal surface smoothing methods are buffered chemical polish (BCP) and electropolish (EP). The resulting topography is characterized by atomic force microscopy (AFM). The power spectral density (PSD) of AFM data provides a more thorough description of the topography than a single-value roughness measurement. In this work, one dimensional average PSD functions derived from topography of BCP and EP with different controlled starting conditions and durations have been fitted with a combination of power law, K correlation, and shifted Gaussian models to extract characteristic parameters at different spatial harmonic scales. While the simplest characterizations of these data are not new, the systematic tracking of scale-specific roughness as a function of processing is new and offers feedback for tighter process prescriptions more knowledgably targeted at beneficial niobium topography for superconducting radio frequency applications.

  8. Effects of Electric and Magnetic Fields on the Performance of a Superconducting Cavity

    Energy Technology Data Exchange (ETDEWEB)

    Gianluigi Ciovati; Peter Kneisel; Jacek Sekutowicz; Waldemar Singer

    2005-05-01

    A special two-cell cavity was designed to obtain surface field distributions suitable for investigation of electric and magnetic field effects on cavity performance. The cavity design and preliminary results were presented in a previous contribution. The bulk niobium cavity was heat-treated in a vacuum furnace at 1250 C to improve thermal conductivity. Three seamless hydroformed Nb/Cu cavities of the same design were fabricated to investigate the role of the electron beam welds located in high field areas. This paper will present RF test results at 2 K for the bulk niobium and one of the seamless cavities.

  9. Microwave properties of YBa2Cu3O(7-delta) high-transition-temperature superconducting thin films measured by the power transmission method

    Science.gov (United States)

    Miranda, F. A.; Gordon, W. L.; Bhasin, K. B.; Heinen, V. O.; Warner, J. D.

    1991-01-01

    The microwave response of YBa2Cu3O(7-delta) superconducting thin films deposited on LaAlO3, MgO, YSZ, and LaGaO3 substrates are studied. It is found that the microwave transmission properties are very weakly dependent on temperature in the normal state but change drastically upon transition to the superconducting state. In particular, the transmission decreases and there is a negative phase shift with respect to the phase at room temperature when the sample is cooled through its transition temperature. The magnetic penetration depth for all the films was determined from the surface reactance of the films. The microwave complex conductivity is determined in both the normal and the superconducting state. It is observed that both sigma1 and sigma2 increase in transition to the superconducting state. The surface resistivity is calculated for all the films.

  10. Cold RF test and associated mechanical features correlation of a TESLA-style 9-cell superconducting niobium cavity built in China

    Institute of Scientific and Technical Information of China (English)

    DAIJing; JIN Song; WANG Fang; LIU Ke-Xin; R. L.Geng; ZHAO Kui; LU Xiang-Yang; QUAN Sheng-Wen; ZHANG Bao-Cheng; LIN Lin; HAO Jian-Kui; ZHU Feng; XU Wen-Can; HE Fei-Si

    2012-01-01

    The RF performance of a 1.3 G Hz 9-cell superconducting niobium cavity was evaluated at cryogenic temperatures following surface processing by using the standard ILC-style recipe.The cavity is a TESLA-style 9-ccll superconducting niobium cavity,with complete end group components including a higher order mode coupler,built in China for practical applications.An accelerating gradient of 28.6 MV/m was achieved at an unloaded quality factor of 4 × 109.The morphological property of mechanical features on the RF surface of this cavity was characterized through optical inspection.Correlation between the observed mechanical features and the RF performance of the cavity is attempted.

  11. Tunable High Q Superconducting Microwave Resonator for Hybrid System with ^87Rb atoms

    Science.gov (United States)

    Kim, Zaeill; Voigt, K. D.; Lee, Jongmin; Hoffman, J. E.; Grover, J. A.; Ravets, S.; Zaretskey, V.; Palmer, B. S.; Hafezi, M.; Taylor, J. M.; Anderson, J. R.; Dragt, A. J.; Lobb, C. J.; Orozco, L. A.; Rolston, S. L.; Wellstood, F. C.

    2012-02-01

    We have developed a frequency tuning system for a ``lumped-element'' thin-film superconducting Al microwave resonator [1] on sapphire intended for coupling to hyperfine ground states of cold trapped ^87Rb atoms, which are separated by about fRb=6.83 GHz. At T=12 mK and on resonance at 6.81 GHz, the loaded quality factor was 120,000. By moving a carefully machined Al pin towards the inductor of the resonator using a piezo stage, we were able to tune the resonance frequency over a range of 35 MHz and within a few kHz of fRb. While measuring the power dependent response of the resonator at each tuned frequency, we observed anomalous decreases in the quality factor at several frequencies. These drops were more pronounced at lower power. We discuss our results, which suggest these resonances are attributable to discrete two-level systems.[4pt] [1] Z. Kim et al., AIP ADVANCES 1, 042107 (2011).

  12. Superconductivity

    CERN Document Server

    Ketterson, John B

    2008-01-01

    Conceived as the definitive reference in a classic and important field of modern physics, this extensive and comprehensive handbook systematically reviews the basic physics, theory and recent advances in the field of superconductivity. Leading researchers, including Nobel laureates, describe the state-of-the-art in conventional and unconventional superconductors at a particularly opportune time, as new experimental techniques and field-theoretical methods have emerged. In addition to full-coverage of novel materials and underlying mechanisms, the handbook reflects continued intense research into electron-phone based superconductivity. Considerable attention is devoted to high-Tc superconductivity, novel superconductivity, including triplet pairing in the ruthenates, novel superconductors, such as heavy-Fermion metals and organic materials, and also granular superconductors. What’s more, several contributions address superconductors with impurities and nanostructured superconductors. Important new results on...

  13. Cryopol: a superconducting magnetostatic cavity for a sup 3 He neutron spin filter

    CERN Document Server

    Dreyer, J; Bourgeat-Lami, E; Lelievre-Berna, E; Pujol, S; Thomas, F; Thomas, M; Tasset, F

    2000-01-01

    We present a device called 'Cryopol' that provides a clean magnetic environment for a sup 3 He spin filter cell, even in the presence of strong magnetic stray fields like those of a superconducting magnet.

  14. Engineering three-dimensional maximally entangled states for two modes in a bimodal cavity

    Institute of Scientific and Technical Information of China (English)

    Yang Zhen-Biao; Su Wan-Jun

    2007-01-01

    An alternative scheme is proposed for engineering three-dimensional maximally entangled states for two modes of a superconducting microwave cavity. In this scheme, an appropriately prepared four-level atom is sent through a bimodal cavity. During its passing through the cavity, the atom is coupled resonantly with two cavity modes simultaneously and addressed by a classical microwave pulse tuned to the required transition. Then the atomic states are detected to collapse two modes onto a three-dimensional maximally entangled state. The scheme is different from the previous one in which two nonlocal cavities are used. A comparison between them is also made.

  15. A high gradient test of a single-cell superconducting radio frequency cavity with a feedback waveguide

    Science.gov (United States)

    Kostin, Roman; Avrakhov, Pavel; Kanareykin, Alexei; Solyak, Nikolay; Yakovlev, Vyacheslav; Kazakov, Sergey; Wu, Genfa; Khabiboulline, Timergali; Rowe, Allan; Rathke, John

    2015-09-01

    The most severe problem of the international linear collider (ILC-type) is its high cost, resulting in part from the enormous length of the collider. This length is determined mainly by the achievable accelerating gradient in the RF system of the collider. In current technology, the maximum acceleration gradient in superconducting (SC) structures is determined mainly by the value of the surface RF magnetic field. In order to increase the gradient, a superconducting traveling wave accelerating (STWA) structure is suggested. Utilization of STWA structure with small phase advance per cell for future high energy linear colliders such as ILCs may provide an accelerating gradient 1.2-1.4 times larger [1] than a standing wave structure. However, STWA structure requires a feedback waveguide for power redirecting from the end of the structure back to the front end of accelerating structure. Recent tests of a 1.3 GHz model of a single-cell cavity with waveguide feedback demonstrated an accelerating gradient comparable to the gradient of a single-cell ILC-type cavity from the same manufacturer [2]. In the present paper, high gradient test results are presented.

  16. A two-fluid model description of the Q-slope and Q-drop as observed in niobium superconducting accelerating cavities

    CERN Document Server

    Weingarten, W

    2011-01-01

    Superconducting cavities made from niobium allow accelerating gradients of about 50 MV/m close to the theoretical limit. Quite often, however, the RF losses increase with the gradient faster than quadratic. This observation is equivalent with a decrease of the quality factor Q with the gradient, called “Q-slope” for intermediate gradients, and “Q-drop” for larger ones. The paper provides an explanation by an elementary model based on the London two fluid theory of RF superconductivity and compares the model with experimental data for a large variety of cavity tests.

  17. High-power Microwave Pulse Compression of Klystrons by Phase-Modulation of High-Q Storage Cavities

    CERN Document Server

    Bossart, Rudolf; Mourier, J; Syratchev, I V; Tanner, L

    2004-01-01

    At the CERN linear electron accelerators LIL and CTF, the peak RF power from the 3GHz-klystrons was doubled by means of LIPS microwave pulse compressors. To produce constant RF power from the cavity-based pulse compressors, the klystrons were driven by a fast RF-phase modulation program. For the CLIC Test Facility CTF3, a new type of a Barrel Open Cavity (BOC) with a high quality factor Q0 has been developed. Contrary to LIPS with two resonant cavities, BOC operates with a single cavity supporting two orthogonal resonant modes TM 10,1,1 in the same cavity. For both LIPS and BOC storage cavities, it is important that the RF power reflected back to the klystron is minimal. This implies that the resonant frequencies, Q-factors and coupling factors of the two resonant modes of a pulse compressor are closely matched, and that the resonant frequencies are accurate to within a few KHz. The effects of small differences between the two orthogonal modes of the BOC cavity have been investigated. The dynamic pulse respon...

  18. Superconductivity

    CERN Document Server

    Poole, Charles P; Creswick, Richard J; Prozorov, Ruslan

    2014-01-01

    Superconductivity, Third Edition is an encyclopedic treatment of all aspects of the subject, from classic materials to fullerenes. Emphasis is on balanced coverage, with a comprehensive reference list and significant graphics from all areas of the published literature. Widely used theoretical approaches are explained in detail. Topics of special interest include high temperature superconductors, spectroscopy, critical states, transport properties, and tunneling. This book covers the whole field of superconductivity from both the theoretical and the experimental point of view. This third edition features extensive revisions throughout, and new chapters on second critical field and iron based superconductors.

  19. Intensity-only measurement of partially uncontrollable transmission matrix: demonstration with wave-field shaping in a microwave cavity

    CERN Document Server

    del Hougne, Philipp; Daudet, Laurent; Lerosey, Geoffroy

    2016-01-01

    Transmission matrices (TMs) have become a powerful and widely used tool to describe and control wave propagation in complex media. In certain scenarios the TM is partially uncontrollable, complicating its identification and use. In standard optical wavefront shaping experiments, uncontrollable reflections or additional sources may be the cause; in reverberating cavities, uncontrollable reflections off the walls have that effect. Here we employ phase retrieval techniques to identify such a partially uncontrollable system's TM solely based on random intensity-only reference measurements. We demonstrate the feasibility of our method by focusing both on a single target as well as on multiple targets in a microwave cavity, using a phase-binary Spatial-Microwave-Modulator.

  20. Engineering of a Superconducting 400 MHz Crabbing Cavity for the LHC HiLumi Upgrade

    CERN Document Server

    Gorelov, D; De Silva, S U; Delayen, Jean Roger

    2012-01-01

    The recently developed new simplified design for the 400 MHz LHC crabbing cavity presents attractive properties compared to conventional designs. The proposed approach can be equally compact in both transverse dimensions and allows horizontal as well as vertical deflection of the beam in the collider. The significant modification of the parallel-bar design with the bars merged to the side walls of the cavity gives improved properties, such as better mode separation and reduced surface fields*. A transverse deflecting voltage of 3 to 5 MV in a single cavity can be expected with the peak surface electric field lower then 50 MV/m and peak magnetic field below 100 mT. This paper presents engineering issues of the proof-of-concept crabbing cavity d esign and discusses the manufacturing techniques. The paper discusses present status of the project including fabrication of the niobium cavity, as well as room temperature and cryogenic testing.

  1. Production of Seamless Superconducting Radio Frequency Cavities from Ultra-fine Grained Niobium, Phase II Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Roy Crooks, Ph.D., P.E.

    2009-10-31

    The positron and electron linacs of the International Linear Collider (ILC) will require over 14,000, nine-cell, one meter length, superconducting radio frequency (SRF) cavities [ILC Reference Design Report, 2007]. Manufacturing on this scale will benefit from more efficient fabrication methods. The current methods of fabricating SRF cavities involve deep drawing of the halves of each of the elliptical cells and joining them by high-vacuum, electron beam welding, with at least 19 circumferential welds per cavity. The welding is costly and has undesirable effects on the cavity surfaces, including grain-scale surface roughening at the weld seams. Hydroforming of seamless tubes avoids welding, but hydroforming of coarse-grained seamless tubes results in strain-induced surface roughening. Surface roughness limits accelerating fields, because asperities prematurely exceed the critical magnetic field and become normal conducting. This project explored the technical and economic feasibility of an improved processing method for seamless tubes for hydroforming. Severe deformation of bulk material was first used to produce a fine structure, followed by extrusion and flow-forming methods of tube making. Extrusion of the randomly oriented, fine-grained bulk material proceeded under largely steady-state conditions, and resulted in a uniform structure, which was found to be finer and more crystallographically random than standard (high purity) RRR niobium sheet metal. A 165 mm diameter billet of RRR grade niobium was processed into five, 150 mm I.D. tubes, each over 1.8 m in length, to meet the dimensions used by the DESY ILC hydroforming machine. Mechanical properties met specifications. Costs of prototype tube production were approximately twice the price of RRR niobium sheet, and are expected to be comparable with economies of scale. Hydroforming and superconducting testing will be pursued in subsequent collaborations with DESY and Fermilab. SRF Cavities are used to construct

  2. Large-Grain Superconducting Gun Cavity Testing Program Phase One Closing Report

    Energy Technology Data Exchange (ETDEWEB)

    Hammons, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Bellavia, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Belomestnykh, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ben-Zvi, I. [Brookhaven National Lab. (BNL), Upton, NY (United States); Cullen, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Dai, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Degen, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hahn, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Masi, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); McIntyre, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Schultheiss, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Seda, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kellerman, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tallerico, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Todd, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tuozzolo, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Xu, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Than, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2013-10-31

    This report details the experimental configuration and RF testing results for the first phase of a large-grained niobium electron gun cavity testing program being conducted in the Small Vertical Testing Facility in the Collider-Accelerator Department. This testing is meant to explore multi-pacting in the cavity and shed light on the behavior of a counterpart cavity of identical geometry installed in the Energy Recovery LINAC being constructed in the Collider-Accelerator Department at Brookhaven National Laboratory. This test found that the Q of the large-grained cavity at 4 K reached ~6.5 × 108 and at 2 K reached a value of ~6 × 109. Both of these values are about a factor of 10 lower than would be expected for this type of cavity given the calculated surface resistance and the estimated geometry factor for this half-cell cavity. In addition, the cavity reached a peak voltage of 0.6 MV before there was sig-nificant decline in the Q value and a substantial increase in field emission. This relatively low volt-age, coupled with the low Q and considerable field emission suggest contamination of the cavity interior, possibly during experimental assembly. The results may also suggest that additional chemical etching of the interior surface of the cavity may be beneficial. Throughout the course of testing, various challenges arose including slow helium transfer to the cryostat and cable difficulties. These difficulties and others were eventually resolved, and the re-port discusses the operating experience of the experiment thus far and the plans for future work aimed at exploring the nature of multipacting with a copper cathode inserted into the cavity.

  3. Implementation of a Controlled-Phase Gate and Deutsch-Jozsa Algorithm with Superconducting Charge Qubits in a Cavity

    Institute of Scientific and Technical Information of China (English)

    SONG Ke-Hui; ZHOU Zheng-Wei; GUO Guang-Can

    2007-01-01

    Based on superconducting quantum interference devices (SQUIDs) coupled to a cavity, we propose a scheme for implementing a quantum controlled-phase gate (QPG) and Deutsch-Jozsa (DJ) algorithm by a controllable interaction. In the present scheme, the SQUID works in the charge regime, and the cavity field is ultilized as quantum data-bus, which is sequentially coupled to only one qubit at a time. The interaction between the selected qubit and the data bus, such as resonant and dispersive interaction, can be realized by turning the gate capacitance of each SQUID.Especially, the busis not excited and thus the cavity decay is suppressed during the implementation of DJ algorithm.For the QPG operation, the mode of the bus is unchanged in the end of the operation, although its mode is really excited during the operations. Finally, for typical experiment data, we analyze simply the experimental feasibility of the proposed scheme. Based on the simple operation, our scheme may be realized in this solid-state system, and our idea may be realized in other systems.

  4. Perfluorobutyric Acid and its Monohydrate: a Chirped Pulse and Cavity Based Fourier Transform Microwave Spectroscopic Study

    Science.gov (United States)

    Thomas, Javix; Serrato, Agapito, III; Lin, Wei; Jaeger, Wolfgang; Xu, Yunjie

    2014-06-01

    Perfluorobutyric acid (PFBA) is highly soluble in water and is a molecule of environmental importance. Rotational spectra of PFBA and its monohydrate were studied using a broadband chirped pulse and a narrow band cavity based Fourier transform microwave spectrometers and high level ab initio calculations. Extensive conformational search was performed for both the acid and its monohydrate at the MP2/6-311++G(2d,p) level of theory. Two and three conformers were predicted for PFBA and its monohydrate, respectively. One set of rotational transitions of PFBA and its mono-hydrate in each case was observed and assigned. Based on the broadband spectra obtained, one can confidently conclude that only one dominate conformer exists in each case. The orientation of the hydroxyl group in PFBA was determined using isotopic analysis. Comparison of the observed transition intensities and the calculated electric dipole moment components allowed one to identify the most stable monohydrate conformation which takes on the insertion hydrogen-bonding topology. Comparison to the shorter chain analogues, i.e. trifluoroacetic acid, perfluoropropionic acid, and their monohydrates, was made to elucidate the general trend in their conformational preference and binding topologies.

  5. Perfluorobutyric acid and its monohydrate: a chirped pulse and cavity based fourier transform microwave spectroscopic study.

    Science.gov (United States)

    Thomas, Javix; Serrato, Agapito; Lin, Wei; Jäger, Wolfgang; Xu, Yunjie

    2014-05-12

    Rotational spectra of perfluorobutyric acid (PFBA) and its monohydrate were studied with a broadband chirped pulse and a narrow-band cavity based Fourier transform microwave spectrometer, and high-level ab initio calculations. Extensive conformational searches were performed for both the acid and its monohydrate at the MP2/6-311++G(2d,p) level of theory. Two and three conformers were predicted to exist for PFBA and its monohydrate, respectively. One set of rotational transitions was observed and assigned for each, PFBA and its monohydrate. Based on the measured broadband spectra, we confidently conclude that only one dominant conformer exists in each case. The orientation of the hydroxyl group in PFBA was determined by using isotopic analysis. Comparison of the observed transition intensities and the calculated electric dipole moment components allowed us to identify the most stable monohydrate conformation, which takes on an insertion hydrogen-bonding topology. Comparisons to the shorter chain analogues, that is, trifluoroacetic acid, perfluoropropionic acid, and their monohydrates, are made to elucidate the general trend in their conformational preference and binding topologies.

  6. Fullerene C60 Simulated with a Superconducting Microwave Resonator and Test of the Atiyah-Singer Index Theorem

    Science.gov (United States)

    Dietz, B.; Klaus, T.; Miski-Oglu, M.; Richter, A.; Bischoff, M.; von Smekal, L.; Wambach, J.

    2015-07-01

    We report first experiments with a macroscopic-size superconducting microwave resonator that has the geometric structure of the C60 fullerene molecule. Our high-resolution measurements reveal the exceptional spectral properties that stem from the icosahedral symmetry of its carbon lattice. In particular, they allow us to determine the number of zero-energy modes, i.e., of modes with energy values at the Dirac point existent in the band structure due to the hexagonal arrangements of the carbon atoms, and to test the Atiyah-Singer index theorem which relates this number to the topology of the curved carbon lattice.

  7. Electromagnetic wave properties of polymer blends of single wall carbon nanotubes using a resonant microwave cavity as a probe

    Science.gov (United States)

    Roberts, J. A.; Imholt, T.; Ye, Z.; Dyke, C. A.; Price, D. W.; Tour, J. M.

    2004-04-01

    A resonant microwave cavity operating in the TM010 mode was used to determine the microwave susceptibility of single walled carbon nanotubes (SWNT) that are blended in polymer matricies. The frequencies of the probe signal were 9.8, 11.4, and 35.93 GHz. Samples of 3%-19% blends of SWNT in polycarbonate were tested to determine the best blends for shielding of devices from microwaves at these frequencies. It appears that blends of 9%-11% are very effective in shielding the electric vector of electromagnetic waves. Both the electric vector and the magnetic vectors were probed by the process to determine the nature of coupling between the SWNTs and the applied fields. Some details are given about the apparatus design that enables computer collection and processing of the data to be achieved. An electronic differentiation technique was used to allow the second derivative of the cavity absorption profile to be displayed for precise measurement. Data are presented to show the relative microwave absorption for different blends of the SWNTs with polycarbonates.

  8. Microwave Response of MgB2/Al2O3 Superconducting Thin Films by Microstrip Resonator Technique

    Institute of Scientific and Technical Information of China (English)

    SHI Li-Bin; ZHENG Yan; REN Jun-Yuan; LI Ming-Biao; ZHANG Feng-Yun; LI Bo-Xin; DONG Hai-Kuan

    2007-01-01

    Double-sided superconducting MgB2 thin films are deposited onto c-Al2O3 substrates by the hybrid physical chemical vapour deposition method. The microwave response of MgBz/Al2O3 is investigated by microstrip resonator technique. A grain-size model is introduced to the theory of microstrip resonators to analyse microwave properties of the films. We obtain effective penetration depth of the films at 0K (λe0 = 463 nm) and surface resistance (R3 = 1.52mΩ at 11 K and 8.73 GHz) by analysing the resonant frequency and unload quality factor of the microstrip resonator, which suggests that the impurities and disorders of grain boundaries of MgB2/Al2O3 result in increasing penetration depth and surface resistance of the films.

  9. Development of Fundamental Power Coupler for C-ADS Superconducting Elliptical cavities

    CERN Document Server

    Gu, Kui-Xiang; Pan, Wei-Min; Huang, Tong-Ming; Ma, Qiang; Meng, Fan-Bo

    2016-01-01

    5-cell elliptical cavities are chosen for the main linac of China Accelerator Driven sub-critical System in the medium energy section. Each cavity is driven by one fundamental power coupler delivering RF power up to 150 kW. A single window, coaxial type coupler satisfying high power requirements, class 10 clean room assembly with cavity and low heat load simultaneously was designed. This paper gives the details of RF design, external Q calculation and thermal analysis as well as multipacting simulations of the coupler.

  10. High fidelity readout of a transmon qubit using a superconducting low-inductance undulatory galvanometer microwave amplifier

    Science.gov (United States)

    Liu, Yanbing; Srinivasan, Srikanth J.; Hover, D.; Zhu, Shaojiang; McDermott, R.; Houck, A. A.

    2014-11-01

    We report high-fidelity, quantum non-demolition, single-shot readout of a superconducting transmon qubit using a dc-biased superconducting low-inductance undulatory galvanometer (SLUG) amplifier. The SLUG improves the system signal-to-noise ratio by 6.5 dB in a 20 MHz window compared with a bare high electron mobility transistor amplifier. An optimal cavity drive pulse is chosen using a genetic search algorithm, leading to a maximum combined readout and preparation fidelity of 91.9% with a measurement time of {{T}meas}=200 ns. Using post-selection to remove preparation errors caused by heating, we realize a combined preparation and readout fidelity of 94.3%.

  11. Low-temperature deposition of transparent diamond films with a microwave cavity plasma reactor

    Science.gov (United States)

    Ulczynski, Michael J.

    1998-10-01

    Low-temperature diamond deposition with Microwave Cavity Plasma Reactor (MCPR) technology was investigated for application to temperature sensitive substrates. The substrate temperature during most CVD diamond deposition processes is typically greater then 600 C; however, there are some applications where temperature sensitive materials are used and the deposition temperature must be maintained below 550 C. These applications include materials like boro-silicate glass, which has a relatively low strain-point temperature, and integrated circuits that contain low melting point components. Experiments were conducted in three areas. The first area was MCPR development, the second was benchmark deposition and characterization of diamond films on silicon substrates and the third was deposition and characterization of diamond films on boro-silicate glass substrates. MCPR development included an investigation of various MCPR configurations that were designed and adapted for uniform, low-temperature diamond deposition over areas as large as 80-cm2. Reactors were investigated with end-feed microwave excitation and side-feed microwave excitation for maximum deposition area and uniformity. Various substrate receptor configurations were also investigated including a substrate heater and cooler. From these investigations, deposition parameters such as substrate temperature, deposition rate, deposition area and deposition uniformity were characterized. The benchmark silicon diamond deposition experiments were conducted for comparison to previous high temperature, >550 C, MCPR research and growth models. Here deposition results such as deposition rate and film quality were compared with applications of diamond growth models by Harris-Goodwin and Bachmann. Additionally, characterization experiments were conducted to investigate film attributes that are critical to optical applications, such as film surface roughness and deposition uniformity. Included as variables in these

  12. Cavities

    Science.gov (United States)

    ... may pass these bacteria to a child through kissing, sampling the child's food, or sharing eating utensils. ... pass decay-causing bacteria to their children through kissing or sharing eating utensils. Symptoms of Cavities Whether ...

  13. Spatially-resolved spectral image of a microwave-induced plasma with Okamoto-cavity for nitridation of steel substrate.

    Science.gov (United States)

    Sato, Shigeo; Arai, Yuuki; Wagatsuma, Kazuaki

    2014-01-01

    When a nitrogen microwave-induced plasma produced with an Okamoto-cavity was employed as a source for the nitridation of steel samples, the characteristics of the plasma were investigated by analyzing a spatially-resolved emission image of nitrogen excited species obtained with a two-dimensionally imaging spectrograph. Our previous study had reported on an excellent performance of the Okamoto-cavity microwave-induced plasma (MIP), enabling a nitrided layer having a several-micrometer-thickness to form on an iron substrate, even if the treatment is completed within 1 min, which is superior to a conventional plasma nitriding using low-pressure glow discharges requiring a prolonged treatment time. In this paper, the reason for this is discussed based on a spectrometric investigation. The emission images of band heads of nitrogen molecule and nitrogen molecule ion extended toward the axial/radial directions of the plasma at larger microwave powers supplied to the MIP, thus elevating the number density of the excited species of nitrogen, which would activate any chemical reaction on the iron substrate. However, a drastic increase in the growth rate of the nitrided layer when increasing the microwave power from 600 to 700 W, which had been observed in our previous study, could not be explained only from such a variation in the excited species of nitrogen. This result is probably because the growth process is dominantly controlled by thermal diffusion of nitrogen atom after it enters into the iron substrate, where the substrate temperature is the most important parameter concerning the mobility in the iron lattice. Therefore, the Okamoto-cavity MIP could contribute to a thermal source through radiative heating as well as a source of nitrogen excited species, especially in the growth process of the nitrided layer.

  14. Tunability of resonance frequencies in a superconducting microwave resonator by using SrTiO sub 3 ferroelectric films

    CERN Document Server

    Sok, J; Lee, E H

    1998-01-01

    An applied dc voltage varies the dielectric constant of ferroelectric SrTiO sub 3 films. A tuning mechanism for superconducting microwave resonators was realized by using the variation in the dielectric constant of SrTiO sub 3 films. In order to estimate the values of the capacitance, C, and the loss tangent, tan delta, of SrTiO sub 3 ferroelectric capacitors, we used high-temperature superconducting microwave resonators which were composed of two ports, two poles, and dc bias circuits at the zero-field points. SrTiO sub 3 ferroelectric capacitors successfully controlled the resonant frequency of the resonator. Resonant frequencies of 3.98 GHz and 4.20 GHz were measured at bias voltages of 0 V and 50 V which correspond to capacitance values of 0.94 pF and 0.7pF, respectively. The values of the loss tangent, tan delta sub e sub f sub f , obtained in this measurements, were about 0.01.

  15. Nanostructural features degrading the performance of superconducting radio frequency niobium cavities revealed by transmission electron microscopy and electron energy loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Trenikhina, Y., E-mail: yuliatr@fnal.gov [Physics Department, Illinois Institute of Technology, Chicago, Illinois 60616 (United States); Fermi National Accelerator Laboratory, Batavia, Illinois 60510 (United States); Romanenko, A., E-mail: aroman@fnal.gov [Fermi National Accelerator Laboratory, Batavia, Illinois 60510 (United States); Kwon, J.; Zuo, J.-M. [Materials Science and Engineering Department, University of Illinois, Urbana, Illinois 61801 (United States); Zasadzinski, J. F. [Physics Department, Illinois Institute of Technology, Chicago, Illinois 60616 (United States)

    2015-04-21

    Nanoscale defect structure within the magnetic penetration depth of ∼100 nm is key to the performance limitations of niobium superconducting radio frequency cavities. Using a unique combination of advanced thermometry during cavity RF measurements, and TEM structural and compositional characterization of the samples extracted from cavity walls, we discover the existence of nanoscale hydrides in electropolished cavities limited by the high field Q slope, and show the decreased hydride formation in the electropolished cavity after 120 °C baking. Furthermore, we demonstrate that adding 800 °C hydrogen degassing followed by light buffered chemical polishing restores the hydride formation to the pre-120 °C bake level. We also show absence of niobium oxides along the grain boundaries and the modifications of the surface oxide upon 120 °C bake.

  16. R&D for the Post-EP Processes of Superconducting RF Cavity

    Energy Technology Data Exchange (ETDEWEB)

    Saeki, Takayuki [KEK; Funahashi, Y. [KEK; Hayano, H. [KEK; Kato, Seigo [KEK; Nishiwaki, Michiru [KEK; Sawabe, Motoaki [KEK; Ueno, Kenji [KEK; Watanabe, K. [KEK; Antoine, Claire [CEA, Gif-sur-Yvette; Berry, Stefurn [CEA, Gif-sur-Yvette; Eozenou, F. [CEA, Gif-sur-Yvette; Gasser, Y. [CEA, Gif-sur-Yvette; Visentin, B. [CEA, Gif-sur-Yvette; Clemens, William A. [JLAB; Geng, Rongli [JLAB; Manus, Robert [JLAB; Tyagi, Puneet [GUAS/AS, Ibaraki

    2009-11-01

    The Electro-Polishing (EP) process is the best candidate of final surface treatment for the production of ILC cavities. Nevertheless, the broad distribution of the gradient caused by field emitters in cavities is sitll a serious problem for the EP process. A candidate source of field emitter is the sulfur component which is produced in the EP process and remains the inner-surface of cavities. We studied the effect of Ethanole- and degreaser-rinse processes after the EP process by a unique method. Moreover, we tried to test the sponge cleaning as the post-EP process to remove the field emitter inside the cavcity. This article describe the results of series tests of the post-EP process at KEK.

  17. Field limit and nano-scale surface topography of superconducting radio-frequency cavity made of extreme type II superconductor

    CERN Document Server

    Kubo, Takayuki

    2014-01-01

    The field limit of superconducting radio-frequency cavity made of type II superconductor with a large Ginzburg-Landau parameter is studied with taking effects of nano-scale surface topography into account. If the surface is ideally flat, the field limit is imposed by the superheating field. On the surface of cavity, however, nano-defects almost continuously distribute and suppress the superheating field everywhere. The field limit is imposed by an effective superheating field given by the product of the superheating field for ideal flat surface and a suppression factor that contains effects of nano-defects. A nano-defect is modeled by a triangular groove with a depth smaller than the penetration depth. An analytical formula for the suppression factor of bulk and multilayer superconductors are derived in the framework of the London theory. As an immediate application, the suppression factor of the dirty Nb processed by the electropolishing is evaluated by using results of surface topographic study. The estimat...

  18. The Importance of the Electron Mean Free Path for Superconducting RF Cavities

    CERN Document Server

    Maniscalco, J T; Liepe, M

    2016-01-01

    Impurity-doping is an exciting new technology in the field of SRF, producing cavities with record-high quality factor $Q_0$ and BCS surface resistance that decreases with increasing RF field. Recent theoretical work has offered a promising explanation for this anti-Q-slope, but the link between the decreasing surface resistance and the short mean free path of doped cavities has remained elusive. In this work we investigate this link, finding that the magnitude of this decrease varies directly with the mean free path: shorter mean free paths correspond with stronger anti-Q-slopes. We draw a theoretical connection between the mean free path and the overheating of the quasiparticles, which leads to the reduction of the anti-Q-slope towards the normal Q-slope of long-mean-free-path cavities. We also investigate the sensitivity of the residual resistance to trapped magnetic flux, a property which is greatly enhanced for doped cavities, and calculate an optimal doping regime for a given amount of trapped flux. We f...

  19. Beam position diagnostics with higher order modes in third harmonic superconducting accelerating cavities

    CERN Document Server

    Zhang, P; Baboi, Nicoleta

    2012-01-01

    Higher order modes (HOM) are electromagnetic resonant fields. They can be excited by an electron beam entering an accelerating cavity, and constitute a component of the wakefield. This wakefield has the potential to dilute the beam quality and, in the worst case, result in a beam-break-up instability. It is therefore important to ensure that these fields are well suppressed by extracting energy through special couplers. In addition, the effect of the transverse wakefield can be reduced by aligning the beam on the cavity axis. This is due to their strength depending on the transverse offset of the excitation beam. For suitably small offsets the dominant components of the transverse wakefield are dipole modes, with a linear dependence on the transverse offset of the excitation bunch. This fact enables the transverse beam position inside the cavity to be determined by measuring the dipole modes extracted from the couplers, similar to a cavity beam position monitor (BPM), but requires no additional vacuum instrum...

  20. Effect of microwave-enhanced superconductivity in YBa{sub 2}Cu{sub 3}O{sub 7} bi-crystalline grain boundary weak-links

    Energy Technology Data Exchange (ETDEWEB)

    Fu, C.M.; Chen, C.M.; Lin, H.C. [National Chiao-Tung Univ., Taiwan (China)] [and others

    1994-12-31

    We have studied systematically the effect of microwave irradiation on the temperature dependent resistivity R(T) and the current-voltage (I-V) characteristics of YBa{sub 2}Cu{sub 3}O{sub 7-x} (YBCO) bicrystalline grain boundary weak-links (GBWLs), with grain boundary of three different tilt angles. The superconducting transition temperature, T{sub c}, has significant enhancement upon microwave irradiation. The microwave enhanced T{sub c} is increased as a function of incidence microwave power, but limited to an optimum power level. The GBWLs of 45{degrees} tilt boundary has shown to be most sensitive to the microwave irradiation power, and the GBWLs of 36.8{degrees} tilt boundary has displayed a moderate response. In contrast, no enhancement of T{sub c} was observed in the GBWLs of 24{degrees} tilt boundary, as well as in the uniform films. Under the microwave irradiation, the R(T) dependence is hysteretic as the transition taken from superconducting state to normal state and vice versa. Mechanisms associated with the redistribution of nonequilibrium quasiparticles under microwave irradiation are discussed.

  1. Non-intrusive tunable resonant microwave cavity for optical detected magnetic resonance of NV centres in nanodiamonds

    Science.gov (United States)

    Le Floch, Jean-Michel; Bradac, Carlo; Volz, Thomas; Tobar, Michael E.; Castelletto, Stefania

    2013-12-01

    Optically detected magnetic resonance (ODMR) in nanodiamond nitrogen-vacancy (NV) centres is usually achieved by applying a microwave field delivered by micron-size wires, strips or antennas directly positioned in very close proximity (~ μm) of the nanodiamond crystals. The microwave field couples evanescently with the ground state spin transition of the NV centre (2.87 GHz at zero magnetic field), which results in a reduction of the centre photoluminescence. We propose an alternative approach based on the construction of a dielectric resonator. We show that such a resonator allows for the efficient detection of NV spins in nanodiamonds without the constraints associated to the laborious positioning of the microwave antenna next to the nanodiamonds, providing therefore improved flexibility. The resonator is based on a tunable Transverse Electric Mode in a dielectric-loaded cavity, and we demonstrate that the resonator can detect single NV centre spins in nanodiamonds using less microwave power than alternative techniques in a non-intrusive manner. This method can achieve higher precision measurement of ODMR of paramagnetic defects spin transition in the micro to millimetre-wave frequency domain. Our approach would permit the tracking of NV centres in biological solutions rather than simply on the surface, which is desirable in light of the recently proposed applications of using nanodiamonds containing NV centres for spin labelling in biological systems with single spin and single particle resolution.

  2. Spectral hole burning and its application in microwave photonics

    Science.gov (United States)

    Putz, Stefan; Angerer, Andreas; Krimer, Dmitry O.; Glattauer, Ralph; Munro, William J.; Rotter, Stefan; Schmiedmayer, Jörg; Majer, Johannes

    2017-01-01

    Spectral hole burning, used in inhomogeneously broadened emitters, is a well-established optical technique, with applications from spectroscopy to slow light and frequency combs. In microwave photonics, electron spin ensembles are candidates for use as quantum memories with potentially long storage times. Here, we demonstrate long-lived collective dark states by spectral hole burning in the microwave regime. The coherence time in our hybrid quantum system (nitrogen-vacancy centres strongly coupled to a superconducting microwave cavity) becomes longer than both the ensemble's free-induction decay and the bare cavity dissipation rate. The hybrid quantum system thus performs better than its individual subcomponents. This opens the way for long-lived quantum multimode memories, solid-state microwave frequency combs, spin squeezed states, optical-to-microwave quantum transducers and novel metamaterials. Beyond these, new cavity quantum electrodynamics experiments will be possible where spin-spin interactions and many-body phenomena are directly accessible.

  3. Study of field-limiting defects in superconducting RF cavities for electron-accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Aderhold, Sebastian

    2015-02-15

    Superconducting radio-frequency resonators made from niobium are an integral part of many accelerator projects. Their main advantage are the low ohmic losses resulting in the possibility for a long pulse structure and high duty cycles up to continous wave (cw) operation. The European X-Ray Free-Electron Laser (XFEL) and the International Linear Collider (ILC) are based on this technology. In some cases the resonators reach accelerating electric fields close to the theoretical limit of bulk niobium. Yet most resonators are limited at lower fields and mass production for large scale accelerator projects suffers from the spread in the achievable gradient per resonator. The main limitations are field emission and the breakdown of superconductivity (quench). While field emission is mostly attributed to the overall surface cleanliness of the resonator, quench is usually associated with local defects. Optical inspection of the inner surface of the resonators with unprecedented resolution, accuracy and a special illumination has been established at DESY and used to study such local surface defects. More than 30 resonators have been inspected. Distinctive features from these inspections have been catalogued and assessed for their potential risk for the performance of the resonator. Several confirmed quenching defects could be extracted for further analysis and could be traced back to likely origins in the production process. A new, automated set-up for optical inspection of large series of resonators, named OBACHT, has been developed and successfully commissioned. Its design includes the minimal need for operator interference, reproducibility, robustness and versatility, in order to fit the requirements for application both in a laboratory and in a production environment. To facilitate the comparison of the results obtained during the global R and D effort on resonators for the ILC, the ILC global yield database has been established. The yield and selection rules for the

  4. Realization of the Greenberg-Horne (ghz) State and Swap Gate with Superconducting Quantum-Interference Devices in a Cavity via Adiabatic Passage

    Science.gov (United States)

    Zheng, An-Shou; Cheng, Yong-Jin; Liu, Ji-Bing; Li, Tie-Ping

    We propose an alternative scheme to prepare the Greenberg-Horne-Zeilinger (GHZ) state and realize a SWAP gate by using Superconducting Quantum-interference devices (SQUIDs) coupled to a cavity. The present scheme, based on the adiabatic evolution of dark state, constitutes a decoherence-free method in the sense that spontaneous emission and cavity damping are avoided. Besides, the standard GHZ state can be directly obtained without measurement or any auxiliary SQUIDs and the construction of the SWAP gate does not require a composition of elementary gates from a universal set. Thus the procedure is simplified and decoherence is greatly suppressed.

  5. Non-resonant microwave absorption studies of superconducting MgB2 and MgB2 + MgO

    Indian Academy of Sciences (India)

    Janhavi P Joshi; Subhasis Sarangi; A K Sood; Dilip Pal; S V Bhat

    2002-02-01

    Non-resonant microwave absorption (NRMA) studies of superconducting MgB2 and a sample containing ∼ 10% by weight of MgO in MgB2 are reported. The NRMA results indicate near absence of intergranular weak links in the pure MgB2 sample. A linear temperature dependence of the lower critical field c1 is observed indicating a non- wave superconductivity. However, the phase reversal of the NRMA signal which could suggest wave symmetry is also not observed. In the MgB2 + MgO sample, much larger low field dependent absorption is observed indicating the presence of intergranular weak links. The hysteretic behavior of NRMA is compared and contrasted in the two samples. In the pure MgB2 sample, a large hysteresis is observed between the forward and the reverse scans of the magnetic field indicating strong pinning of flux lines. This hysteresis saturates a few degrees below c while in the MgB2 + MgO sample, a much slower increase of hysteresis with decreasing temperature is observed, a signature of weaker pinning.

  6. Coherent oscillations in a superconducting tunable flux qubit manipulated without microwaves

    Energy Technology Data Exchange (ETDEWEB)

    Poletto, S; Lisenfeld, J; Lukashenko, A; Ustinov, A V [Physikalisches Institut, Universitaet Karlsruhe (Thailand), D-76131 Karlsruhe (Germany); Chiarello, F; Castellano, M G; Torrioli, G [Istituto di Fotonica e Nanotecnologie, CNR, 00156 Roma (Italy); Cosmelli, C [Dipartimento Fisica, Universita di Roma La Sapienza, 00185 Roma (Italy); Carelli, P [Dipartimento Ingegneria Elettrica, Universita dell' Aquila, 67040 Monteluco di Roio (Italy)], E-mail: ustinov@physik.uni-karlsruhe.de

    2009-01-15

    We experimentally demonstrate coherent oscillations of a tunable superconducting flux qubit by manipulating its energy potential with a nanosecond-long pulse of magnetic flux. The occupation probabilities of two persistent current states oscillate at a frequency ranging from 6 GHz to 21 GHz, tunable by changing the amplitude of the flux pulse. The demonstrated operation mode could allow quantum gates to be realized in less than 100 ps, which is much shorter than gate times attainable in other superconducting qubits. Another advantage of this type of qubit is its immunity to both thermal and magnetic field fluctuations.

  7. Stability and Resolution Studies of HOMBPMs for the 1.3 GHz Superconducting Accelerating Cavities at FLASH

    CERN Document Server

    Shi, Liangliang; Jones, Roger

    2015-01-01

    HOMBPMs (HOM based Beam Position Monitors) are installed at the FLASH facility at DESY, Hamburg. These are aimed at aligning the beam and monitoring the beam position. Over time, the accuracy of beam position prediction is degraded. This is due to instability issues in the 1.3 GHz and 3.9 GHz superconducting cavities and associated electronics. In this paper, we demonstrate for the first time a measurement technique which is stable and can be relied upon over a period of three months with unprecedented resolution (below 4 μm horizontally and 2 μm vertically). We attribute this improvement in stability to a focused campaign on various signal processing and analysis techniques. These techniques include SVD (Singular Value Decomposition), ANN (Artificial Neural Network) and PLS (Partial Least Square). We found the best resolution and computational power using the latter method, PLS. These techniques are directly applicable to the HOMBPM system at the European XFEL that is currently under construction. However,...

  8. Conceptual Design Of An Ideal Variable Coupler For Superconducting Radiofrequency 1.3GHz Cavities

    CERN Document Server

    Xu, Chen

    2014-01-01

    Inspired by the development of over-moded RF component as an undulator, we explored another over-moded structure that could serve the variable coupling for SRF purpose. This application is to fulfill variation of S11 from 0 to -20db with CW power of 7 KW. The static heat loss in the coupler is trivial from calculation. An advantage of this coupler is that the thermal isolation between the 2K and 300K section is considerable by vacuum separation. Within this coupler, only a single propagation mode is allowed at each section, and thus, the fact that no energy is converted to high order mode bring almost full match without loss. The analytical and numerical calculation for a two window variable coupler is designed and optimized. A RF power variation is illustrated in the scattering matrix and coupling to cavity is also discussed.

  9. Measures of maximum magnetic field in 3 GHz radio frequency superconducting cavities; Mesures du gradient accelerateur maximum dans des cavites supraconductrices en regime impulsionnel a 3 GHz

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Catherine [Paris-11 Univ., 91 Orsay (France)

    2000-01-19

    Theoretical models have shown that the maximum magnetic field in radio frequency superconducting cavities is the superheating field H{sub sh}. For niobium, H{sub sh} is 25 - 30% higher than the thermodynamical H{sub c} field: H{sub sh} within (240 - 274) mT. However, the maximum magnetic field observed so far is in the range H{sub c,max} = 152 mT for the best 1.3 GHz Nb cavities. This field is lower than the critical field H{sub c1} above which the superconductor breaks up into divided normal and superconducting zones (H{sub c1}{<=}H{sub c}). Thermal instabilities are responsible for this low value. In order to reach H{sub sh} before thermal breakdown, high power short pulses are used. The cavity needs then to be strongly over-coupled. The dedicated test bed has been built from the collaboration between Istituto Nazionale di Fisica Nucleare (INFN) - Sezione di Genoa, and the Service d'Etudes et Realisation d'Accelerateurs (SERA) of Laboratoire de l'Accelerateur Lineaire (LAL). The maximum magnetic field, H{sub rf,max}, measurements on INFN cavities give lower results than the theoretical speculations and are in agreement with previous results. The superheating magnetic fields is linked to the magnetic penetration depth. This superconducting characteristic length can be used to determine the quality of niobium through the ratio between the resistivity measured at 300 K and 4.2 K in the normal conducting state (RRR). Results have been compared to previous ones and agree pretty well. They show that the RRR measured on cavities is superficial and lower than the RRR measured on samples which concerns the volume. (author)

  10. Quantum magnonics: The magnon meets the superconducting qubit

    Science.gov (United States)

    Tabuchi, Yutaka; Ishino, Seiichiro; Noguchi, Atsushi; Ishikawa, Toyofumi; Yamazaki, Rekishu; Usami, Koji; Nakamura, Yasunobu

    2016-08-01

    The techniques of microwave quantum optics are applied to collective spin excitations in a macroscopic sphere of a ferromagnetic insulator. We demonstrate, in the single-magnon limit, strong coupling between a magnetostatic mode in the sphere and a microwave cavity mode. Moreover, we introduce a superconducting qubit in the cavity and couple the qubit with the magnon excitation via the virtual photon excitation. We observe the magnon-vacuum-induced Rabi splitting. The hybrid quantum system enables generation and characterization of non-classical quantum states of magnons. xml:lang="fr"

  11. Frequency dependence of the microwave surface resistance of MgB{sub 2} by coaxial cavity resonator

    Energy Technology Data Exchange (ETDEWEB)

    Agliolo Gallitto, A., E-mail: aurelio.agliologallitto@unipa.it [CNISM and Dipartimento di Fisica e Chimica, Università di Palermo, via Archirafi 36, 90123 Palermo (Italy); Camarda, P.; Li Vigni, M. [CNISM and Dipartimento di Fisica e Chimica, Università di Palermo, via Archirafi 36, 90123 Palermo (Italy); Figini Albisetti, A. [EDISON SpA Research and Development Division, Foro Buonaparte 31, 20121 Milano (Italy); Giunchi, G. [Freelance Consultant, via Teodosio 8, 20131 Milano (Italy)

    2014-08-15

    Highlights: • We investigate the microwave properties of a bulk MgB{sub 2} rod 94.3 mm long. • The MgB{sub 2} rod is used as inner conductor of a coaxial cavity. • The mw surface resistance vs. frequency is studied in the range 1–9 GHz. • R{sub s} vs. f curves follow a f{sup n} law, with n decreasing with the temperature. • Deviations from the quadratic law are highlighted at relatively low temperatures. - Abstract: We report on the microwave (mw) properties of a cylindrical MgB{sub 2} rod prepared by the reactive liquid Mg infiltration technology. The MgB{sub 2} rod, 94.3 mm long, is used as inner conductor of a coaxial cavity having a Cu tube as external conductor. By analyzing the resonance curves of the cavity in the different resonant modes and at different temperatures, we have determined the temperature dependence of the mw surface resistance, R{sub s}, of the MgB{sub 2} material, at fixed frequencies, and the frequency dependence of R{sub s}, at fixed temperatures. Our results show that the R{sub s}(f) curves follow a f{sup n} law, where n decreases on increasing the temperature, starting from n≈2, at T=4.2K, down to n≈0.7 at T⩾T{sub c}. The double-gap nature of MgB{sub 2} manifests itself in the presence of a wide low-T tail in the R{sub s}(T) curves, which can be ascribed to the quasiparticles thermally excited through the π gap even at relatively low temperatures.

  12. On-chip microwave-to-optical quantum coherent converter based on a superconducting resonator coupled to an electro-optic microresonator

    Science.gov (United States)

    Javerzac-Galy, C.; Plekhanov, K.; Bernier, N. R.; Toth, L. D.; Feofanov, A. K.; Kippenberg, T. J.

    2016-11-01

    We propose a device architecture capable of direct quantum coherent electro-optical conversion of microwave-to-optical photons. The hybrid system consists of a planar superconducting microwave circuit coupled to an integrated whispering-gallery-mode microresonator made from an electro-optical material. We show that by exploiting the large vacuum electric field of the planar microwave resonator, electro-optical (vacuum) coupling strengths g0 as large as ˜2 π O (10 -100 ) kHz are achievable with currently available technology—a more than 3 orders of magnitude improvement over prior designs and realizations. Operating at millikelvin temperatures, such a converter would enable high-efficiency conversion of microwave-to-optical photons. We analyze the added noise and show that maximum quantum coherent conversion efficiency is achieved for a multiphoton cooperativity of unity which can be reached with optical power as low as O (1 ) mW.

  13. On-chip microwave-to-optical quantum coherent converter based on a superconducting resonator coupled to an electro-optic microresonator

    CERN Document Server

    Javerzac-Galy, Clément; Bernier, Nathan; Toth, Laszlo D; Feofanov, Alexey K; Kippenberg, Tobias J

    2015-01-01

    We propose a device architecture capable of direct quantum electro-optical conversion of microwave to optical photons. The hybrid system consists of a planar superconducting microwave circuit coupled to an integrated whispering-gallery-mode microresonator made from an electro-optical material. We show that electro-optical (vacuum) coupling rates $g_0$ as large as$\\sim 2\\pi \\, \\mathcal{O}(10-100)$ kHz are achievable with currently available technology, due to the small mode volume of the planar microwave resonator. Operating at millikelvin temperatures, such a converter would enable high-efficiency conversion of microwave to optical photons. We analyze the added noise, and show that maximum conversion efficiency is achieved for a multi-photon cooperativity of unity which can be reached with optical power as low as $ \\mathcal{O}(1)\\,\\mathrm{mW} $.

  14. Cavity piezomechanical strong coupling and frequency conversion on an aluminum nitride chip

    CERN Document Server

    Zou, Chang-Ling; Jiang, Liang; Tang, Hong X

    2016-01-01

    Schemes to achieve strong coupling between mechanical modes of aluminum nitride microstructures and microwave cavity modes due to the piezoelectric effect are proposed. We show that the strong coupling regime is feasible for an on-chip aluminum nitride device that is either enclosed by a three-dimensional microwave cavity or integrated with a superconducting coplanar resonator. Combining with optomechanics, the piezomechanical strong coupling permits coherent conversion between microwave and optical modes with high efficiency. Hence, the piezomechanical system will be an efficient transducer for applications in hybrid quantum systems.

  15. A study of beam position diagnostics using beam-excited dipole modes in third harmonic superconducting accelerating cavities at a free-electron laser

    CERN Document Server

    Zhang, P; Jones, R M; Shinton, I R R; Flisgen, T; Glock, H W

    2012-01-01

    We investigate the feasibility of beam position diagnostics using Higher Order Mode (HOM) signals excited by an electron beam in the third harmonic 3.9 GHz superconducting accelerating cavities at FLASH. After careful theoretical and experimental assessment of the HOM spectrum, three modal choices have been narrowed down to fulfill different diagnostics requirements. These are localized dipole beam-pipe modes, trapped cavity modes from the fifth dipole band and propagating modes from the first two dipole bands. These modes are treated with various data analysis techniques: modal identification, direct linear regression (DLR) and singular value decomposition (SVD). Promising options for beam diagnostics are found from all three modal choices. This constitutes the first prediction, subsequently confirmed by experiments, of trapped HOMs in third harmonic cavities, and also the first direct comparison of DLR and SVD in the analysis of HOM-based beam diagnostics.

  16. A study of beam position diagnostics using beam-excited dipole modes in third harmonic superconducting accelerating cavities at a free-electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Pei [School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Deutsches Elektronen-Synchrotron (DESY), 22607 Hamburg (Germany); Baboi, Nicoleta [Deutsches Elektronen-Synchrotron (DESY), 22607 Hamburg (Germany); Jones, Roger M.; Shinton, Ian R. R. [School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Cockcroft Institute, Cheshire WA4 4AD (United Kingdom); Flisgen, Thomas; Glock, Hans-Walter [Institut fuer Allgemeine Elektrotechnik, Universitaet Rostock, 18051 Rostock (Germany)

    2012-08-15

    We investigate the feasibility of beam position diagnostics using higher order mode (HOM) signals excited by an electron beam in the third harmonic 3.9 GHz superconducting accelerating cavities at FLASH. After careful theoretical and experimental assessment of the HOM spectrum, three modal choices have been narrowed down to fulfill different diagnostics requirements. These are localized dipole beam-pipe modes, trapped cavity modes from the fifth dipole band, and propagating modes from the first two dipole bands. These modes are treated with various data analysis techniques: modal identification, direct linear regression (DLR), and singular value decomposition (SVD). Promising options for beam diagnostics are found from all three modal choices. This constitutes the first prediction, subsequently confirmed by experiments, of trapped HOMs in third harmonic cavities, and also the first direct comparison of DLR and SVD in the analysis of HOM-based beam diagnostics.

  17. Measurement of groove features and dimensions of the vertical test cathode and the choke joint of the superconducting electron gun cavity of the Energy Recovery LINAC

    Energy Technology Data Exchange (ETDEWEB)

    Hammons, L.; Ke, M.

    2011-10-13

    A testing program for the superconducting electron gun cavity that has been designed for the Energy Recovery LINAC is being planned. The goal of the testing program is to characterize the RF properties of the gun cavity at superconducting temperatures and, in particular, to study multipacting that is suspected to be occurring in the choke joint of the cavity where the vertical test cathode is inserted. The testing program will seek to understand the nature and cause of this multipacting and attempt to eliminate it, if possible, by supplying sufficient voltage to the cavity. These efforts are motivated by the multipacting issues that have been observed in the processing of the fine-grain niobium gun cavity. This cavity, which is being processed at Thomas Jefferson National Laboratory for Brookhaven, has encountered multipacting at a gradient of approximately 3 MV/m and, to date, has resisted efforts at elimination. Because of this problem, a testing program is being established here in C-AD that will use the large-grain niobium gun cavity that currently resides at Brookhaven and has been used for room-temperature measurements. The large-grain and fine-cavities are identical in every aspect of construction and only differ in niobium grain size. Thus, it is believed that testing and conditioning of the large-grain cavity should yield important insights about the fine-grain cavity. One element of this testing program involves characterizing the physical features of the choke joint of the cavity where the multipacting is believed to be occurring and, in particular the grooves of the joint. The configuration of the cavity and the vertical test cathode is shown in Figure 1. In addition, it is important to characterize the groove of the vertical test cathode. The grooved nature of these two components was specifically designed to prevent multipacting. However, it is suspected that, because of the chemical processing that the fine-grain gun cavity underwent along with the

  18. Contributions To The 9th Workshop On Rf Superconductivity, Accelerator Technology For The 21st Century (rf Superconductivity Activities At Lal Accelerating Field Measurement In 3 Ghz Pulsed Cavities Design And Test Of A 1.3 Ghz Travelling Wave Window

    CERN Document Server

    Le Duff, J; Thomas, C

    2000-01-01

    Contributions To The 9th Workshop On Rf Superconductivity, Accelerator Technology For The 21st Century (rf Superconductivity Activities At Lal Accelerating Field Measurement In 3 Ghz Pulsed Cavities Design And Test Of A 1.3 Ghz Travelling Wave Window

  19. Small Cavity Nonresonant Tunable Microwave-Frequency Alternating Current Scanning Tunneling Microscope

    Science.gov (United States)

    1994-10-10

    Optical Components, Vol. 1, K. Chang, ed. (John Wiley, New York, 1989), pp. 60-117. 32. The ARRL Handbook for Radio Amateurs, 70t ed. (The American Radio...H. W. Jamieson and T. E. Robbins, Proc. IRE, 32, 695 (1944); N. Marcuvitz, ed., Waveguide Handbook (McGraw-Hill, New York, 1951); T. S. Saad, ed...Microwave Engineer’s Handbook Vol. 1, (Artech House, Dedham, 1971); K. C. Gupta, "Transmission-Line Discontinuities," in Handbook of Microwave and

  20. Strong Coupling of the Cyclotron Motion of Surface Electrons on Liquid Helium to a Microwave Cavity

    Science.gov (United States)

    Abdurakhimov, L. V.; Yamashiro, R.; Badrutdinov, A. O.; Konstantinov, D.

    2016-07-01

    The strong coupling regime is observed in a system of two-dimensional electrons whose cyclotron motion is coupled to an electromagnetic mode in a Fabry-Perot cavity resonator. Rabi splitting of eigenfrequencies of the coupled motion is observed both in the cavity reflection spectrum and ac current of the electrons, the latter probed by measuring their bolometric photoresponse. Despite the fact that similar observations of Rabi splitting in many-particle systems have been described as a quantum-mechanical effect, we show that the observed splitting can be explained completely by a model based on classical electrodynamics.

  1. Measurement of Local Reactive and Resistive Photoresponse of a Superconducting Microwave Device

    Science.gov (United States)

    Anlage, Steven M.; Zhuravel, Alexander P.; Ustinov, Alexey V.

    2006-03-01

    Despite the voluminous work on the nature of nonlinear effects in high-temperature superconductors (HTS), the causes are not completely clear and remain under debate. The Laser Scanning Microscope (LSM) is a spatially-resolved method that can simultaneously measure optical and high frequency properties of HTS devices. Earlier results showed high resolution images of non-uniform microwave current distributions near the edge of a patterned transmission line structure [A. P. Zhuravel, A. V. Ustinov, K. S. Harshavardhan, and S. M. Anlage, Appl. Phys. Lett. 81, 4979 (2002)]. We have developed a new operational mode in which the microscope separately images the resistive and inductive components of the bolometric photoresponse. The two images show interesting and dramatic differences, leading to new insights about linear and nonlinear properties of HTS microwave devices.

  2. radiofrequency cavity

    CERN Multimedia

    1988-01-01

    The pulse of a particle accelerator. 128 of these radio frequency cavities were positioned around CERN's 27-kilometre LEP ring to accelerate electrons and positrons. The acceleration was produced by microwave electric oscillations at 352 MHz. The electrons and positrons were grouped into bunches, like beads on a string, and the copper sphere at the top stored the microwave energy between the passage of individual bunches. This made for valuable energy savings as it reduced the heat generated in the cavity.

  3. The microwave cavity perturbation technique for contact-free and in situ electrical conductivity measurements in catalysis and materials science.

    Science.gov (United States)

    Eichelbaum, Maik; Stösser, Reinhard; Karpov, Andrey; Dobner, Cornelia-Katharina; Rosowski, Frank; Trunschke, Annette; Schlögl, Robert

    2012-01-21

    We have developed a noncontact method to probe the electrical conductivity and complex permittivity of single and polycrystalline samples in a flow-through reactor in the temperature range of 20-500 °C and in various gas atmospheres. The method is based on the microwave cavity perturbation technique and allows the simultaneous measurement of microwave conductivity, permittivity and of the catalytic performance of heterogeneous catalysts without any need for contacting the sample with electrodes. The sensitivity of the method towards changes in bulk properties was proven by the investigation of characteristic first-order phase transitions of the ionic conductor rubidium nitrate in the temperature range between 20 and 320 °C, and by studying the temperature dependence of the complex permittivity and conductivity of a niobium(V)-doped vanadium-phosphorous-oxide catalyst for the selective oxidation of n-butane to maleic anhydride. Simultaneously, the catalytic performance was probed by on line GC analysis of evolving product gases making the technique a real in situ method enabling the noninvasive investigation of electronic structure-function relationships.

  4. Study of the mechanical stability of superconducting cavities and stiffening of these cavities by copper coating performed with thermal spray techniques; Etudes de la stabilite mecanique des cavites supraconductrices et de la methode de rigidification par projection thermique de cuivre

    Energy Technology Data Exchange (ETDEWEB)

    Gassot, H

    2001-12-01

    Today's research in nuclear physics and in particle physics needs high energy or high intensity accelerators; the use of superconducting cavities constitutes a very important technological advance for the design of such facilities, allowing high accelerating gradient with few dissipation. One of the major problems is the frequency shift under Lorentz forces: since the quality factor of the superconducting cavities is much higher than the external factor depending on the beam charge, their bandwidths are very narrow (several Hertz). Even very small mechanical deformations under Lorentz forces could induce a frequency shift which exceeds the bandwidth when the accelerating gradient becomes very high. The contribution of this thesis consists at first in a numerical analysis of this problem, then in a mechanical study of a new method for stiffening superconducting cavities: a copper coating over their external surface by thermal spray techniques. As it was a new experiment, the choice of the process and the optimization of the parameters have been carried out. An important part of this thesis has been dedicated to the systematic mechanical characterizations of the copper coatings since they are indispensable for the evaluation of the stiffening efficiency, some links between copper coating properties and thermal projection parameters have been established. The mechanical calculations are a prerequisite to obtain an effective reduction of mechanical deformations under Lorentz forces: they permit to localize the maximum deformations, to find the ideal position and the optimised shape of the stiffener. The methods implemented in this thesis allow to compare the different kinds of coating design and then to propose an interesting solution. Finally, an original approach concerning the frequency shift in pulsed mode has been developed recently, allowing to interpret some experimental observations. (author)

  5. Microwave Field Strength Measurement in a Rubidium Clock Cavity via Adiabatic Rapid Passage.

    Science.gov (United States)

    2014-09-26

    axis. J is the Bessel function of order 1, while L and R are the length and radius , respectively, of the cavity. As a first measurement, the laser beam...enemy-induced environments. Space Sciences Laboratory: Nagnetospheric, auroral and cosmic ray phys- ics, wave-particle interactions, magnetospheric

  6. Determination of the dipole moment of OCS with a microwave absorption cavity

    NARCIS (Netherlands)

    Dijkerman, H.A.; Ruitenberg, G.

    1969-01-01

    The electric dipole moment of OCS has been measured with a resonance cavity as a Stark absorption cell. The result: μOCS = 0.7149 ± 0.0003. Debye agrees well with the dipole moment data obtained with an electric resonance beam experiment.

  7. Phase shift experiments identifying Kramers doublets in a chaotic superconducting microwave billiard of threefold symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Dembowski, C.; Dietz, B.; Graef, H.D.; Heine, A.; Leyvraz, F.; Miski-Oglu, M.; Richter, A.; Seligman, T.H.

    2002-11-01

    The spectral properties of a two-dimensional microwave billiard showing threefold symmetry have been studied with a new experimental technique. This method is based on the behavior of the eigenmodes under variation of a phase shift between two input channels, which strongly depends on the symmetries of the eigenfunctions. Thereby a complete set of 108 Kramers doublets has been identified by a simple and purely experimental method. This set clearly shows Gaussian unitary ensemble statistics, although the system is time-reversal invariant. (orig.)

  8. Field induced microwave absorption in single crystal Bi (2212): Evidence for a superconductive glass state

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, S.; Gould, A.; Bhagat, S.M. (Centre for Research on Superconductivity, Dept. of Physics, Univ. of Maryland, College Park (USA)); Manheimer, M.A. (Lab. for Physical Sciences, College Park, MD (USA))

    1989-12-01

    The field induced microwave absorption P(H) at 35 GHz in Bi 2212 micaceous single crystals exhibits remarkable variations as temperature is increased from 1.3 K to Tc. For T< or approx.16 K, the hysteresis loops are highly reminiscent of those observed in spin glasses. At 30< or approx.T< or approx.50 K, they resemble those of a Type II superconductor. As suggested by the magnetization data, the micaceous nature causes a large enhancement in P(H) for 50

  9. Fabrication of cavities in low loss LTCC materials for microwave applications

    Science.gov (United States)

    Malecha, Karol

    2012-12-01

    A method of buried cavity fabrication in low loss DP951 and new DP9K7 LTCC (low-temperature co-fired ceramic) materials is described in this paper. Laser micromachining and method based on sacrificial volume material (SVM) are studied. Cavities are fabricated in LTCC materials using two different SVMs—cetyl alcohol and carbon tape. The influence of laser system parameters on cutting quality of the LTCC materials is studied. Moreover, thermal properties of the LTCCs and used SVMs are analyzed using combined thermo-gravimetric analysis, differential thermal analysis and differential thermo-gravimetry. Geometries of the LTCC test structures fabricated using different SVMs are analyzed using a scanning electron microscope and x-ray tomography. Energy dispersive spectroscopy and surface wettability measurements are used to analyze changes in LTCC materials atomic composition after co-firing with SVMs.

  10. Possible influence of surface oxides on the optical response of high-purity niobium material used in the fabrication of superconducting radio frequency cavity

    Science.gov (United States)

    Singh, Nageshwar; Deo, M. N.; Roy, S. B.

    2016-09-01

    We have investigated the possible influence of surface oxides on the optical properties of a high-purity niobium (Nb) material for fabrication of superconducting radio frequency (SCRF) cavities. Various peaks in the infrared region were identified using Fourier transform infrared and Raman spectroscopy. Optical response functions such as complex refractive index, dielectric and conductivity of niobium were compared with the existing results on oxides free Nb and Cu. It was observed that the presence of a mixture of niobium-oxides, and probably near other surface impurities, appreciably influence the conducting properties of the material causing deviation from the typical metallic characteristics. In this way, the key result of this work is the observation, identification of vibrational modes of some of surface complexes and study of its influences on the optical responses of materials. This method of spectroscopic investigation will help in understanding the origin of degradation of performance of SCRF cavities.

  11. Possible influence of surface oxides on the optical response of high-purity niobium material used in the fabrication of superconducting radio frequency cavity

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Nageshwar [Magnetic and Superconducting Materials Section, Raja Ramanna Centre for Advanced Technology, Indore 452013, M.P. (India); Deo, M.N. [High Pressure & Synchrotron Radiation Physics Division, BARC, Mumbai 400085 (India); Roy, S.B. [Magnetic and Superconducting Materials Section, Raja Ramanna Centre for Advanced Technology, Indore 452013, M.P. (India)

    2016-09-11

    We have investigated the possible influence of surface oxides on the optical properties of a high-purity niobium (Nb) material for fabrication of superconducting radio frequency (SCRF) cavities. Various peaks in the infrared region were identified using Fourier transform infrared and Raman spectroscopy. Optical response functions such as complex refractive index, dielectric and conductivity of niobium were compared with the existing results on oxides free Nb and Cu. It was observed that the presence of a mixture of niobium-oxides, and probably near other surface impurities, appreciably influence the conducting properties of the material causing deviation from the typical metallic characteristics. In this way, the key result of this work is the observation, identification of vibrational modes of some of surface complexes and study of its influences on the optical responses of materials. This method of spectroscopic investigation will help in understanding the origin of degradation of performance of SCRF cavities.

  12. The development of Tl-2212 based superconducting thin films for microwave applications

    CERN Document Server

    Hyland, D M C

    2001-01-01

    This thesis attempts to develop the understanding of the two-stage ex-situ processing of Tl sub 2 Ba sub 2 CaCu sub 2 O (Tl-2212) thin films on LaAlO sub 3 substrates. Initially a thallium-free precursor film is deposited by sputtering, this is then annealed in a sealed crucible containing a thallium source to produce the final crystalline film. An investigation into the correlation of physical characteristics of the films with their microwave properties is presented. High reproducibility of processing was achieved for 1cm sup 2 size films with measured R sub s < 0.5m OMEGA. Strong dependence of the microwave properties was found with film thickness and growth morphology of the crystalline film. A good correlation of R sub s was seen with defect density, greater numbers of defects giving higher R sub s values. Problems were encountered in scaling up the process to fabricate 2-inch diameter films, initially limited by the increased defect density associated with a larger surface area. Additionally when usin...

  13. From chaos to disorder: Statistics of the eigenfunctions of microwave cavities

    Indian Academy of Sciences (India)

    Prabhakar Pradhan; S Sridhar

    2002-02-01

    We study the statistics of the experimental eigenfunctions of chaotic and disordered microwave billiards in terms of the moments of their spatial distributions, such as the inverse participation ratio (IPR) and density-density auto-correlation. A path from chaos to disorder is described in terms of increasing IPR. In the chaotic, ballistic limit, the data correspond well with universal results from random matrix theory. Deviations from universal distributions are observed due to disorder induced localization, and for the weakly disordered case the data are well-described by including finite conductance and mean free path contributions in the framework of nonlinear sigma models of supersymmetry.

  14. Cryogenic testing of the 2.1 GHz five-cell superconducting RF cavity with a photonic band gap coupler cell

    Energy Technology Data Exchange (ETDEWEB)

    Arsenyev, Sergey A., E-mail: arsenyev@mit.edu; Temkin, Richard J. [Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, Massachusetts 02139 (United States); Haynes, W. Brian; Shchegolkov, Dmitry Yu.; Simakov, Evgenya I.; Tajima, Tsuyoshi [Los Alamos National Laboratory, PO Box 1663, Los Alamos, New Mexico 87545 (United States); Boulware, Chase H.; Grimm, Terrence L.; Rogacki, Adam R. [Niowave, Inc., 1012 North Walnut Street, Lansing, Michigan 48906 (United States)

    2016-05-30

    We present results from cryogenic tests of the multi-cell superconducting radio frequency (SRF) cavity with a photonic band gap (PBG) coupler cell. Achieving high average beam currents is particularly desirable for future light sources and particle colliders based on SRF energy-recovery-linacs (ERLs). Beam current in ERLs is limited by the beam break-up instability, caused by parasitic higher order modes (HOMs) interacting with the beam in accelerating cavities. A PBG cell incorporated in an accelerating cavity can reduce the negative effect of HOMs by providing a frequency selective damping mechanism, thus allowing significantly higher beam currents. The multi-cell cavity was designed and fabricated of niobium. Two cryogenic (vertical) tests were conducted. The high unloaded Q-factor was demonstrated at a temperature of 4.2 K at accelerating gradients up to 3 MV/m. The measured value of the unloaded Q-factor was 1.55 × 10{sup 8}, in agreement with prediction.

  15. Development of microwave-multiplexed superconductive detectors for the HOLMES experiment

    Science.gov (United States)

    Giachero, A.; Becker, D.; Bennett, D. A.; Faverzani, M.; Ferri, E.; Fowler, J. W.; Gard, J. D.; Hays-Wehle, J. P.; Hilton, G. C.; Maino, M.; Mates, J. A. B.; Puiu, A.; Nucciotti, A.; Reintsema, C. D.; Swetz, D. S.; Ullom, J. N.; Vale, L. R.

    2016-05-01

    In recent years, the progress on low temperature detector technologies has allowed design of large scale experiments aiming at pushing down the sensitivity on the neutrino mass below 1 eV. Even with outstanding performances in both energy (~eV on keV) and time resolution (~ 1 μs) on the single channel, a large number of detectors working in parallel is required to reach a sub-eV sensitivity. HOLMES is a new experiment to directly measure the neutrino mass with a sensitivity as low as 2eV. HOLMES will perform a calorimetric measurement of the energy released in the electron capture (EC) decay of 163 Ho. In its final configuration, HOLMES will deploy 1000 detectors of low temperature microcalorimeters with implanted 163 Ho nuclei. The baseline sensors for HOLMES are Mo/Cu TESs (Transition Edge Sensors) on SiNx membrane with gold absorbers. The readout is based on the use of rf-SQUIDs as input devices with flux ramp modulation for linearization purposes; the rf-SQUID is then coupled to a superconducting lambda/4-wave resonator in the GHz range, and the modulated signal is finally read out using the homodyne technique. The TES detectors have been designed with the aim of achieving an energy resolution of a few eV at the spectrum endpoint and a time resolution of a few micro-seconds, in order to minimize pile-up artifacts.

  16. Microwave band gap and cavity mode in spoof-insulator-spoof waveguide with multiscale structured surface

    CERN Document Server

    Zhang, Qiang; Han, Dezhuan; Qin, Fei Fei; Zhang, Xiao Ming; Yao, Yong

    2015-01-01

    We propose a multiscale spoof-insulator-spoof (SIS) waveguide by introducing periodic geometry modulation in the wavelength scale to a SIS waveguide made of perfect electric conductor. The MSIS consists of multiple SIS subcells. The dispersion relationship of the fundamental guided mode of the spoof surface plasmon polaritons (SSPPs) is studied analytically within the small gap approximation. It is shown that the multiscale SIS possesses microwave band gap (MBG) due to the Bragg scattering. The "gap maps" in the design parameter space are provided. We demonstrate that the geometry of the subcells can efficiently adjust the effective refraction index of the elementary SIS and therefore further control the width and the position of the MBG. The results are in good agreement with numerical calculations by the finite element method (FEM). For finite-sized MSIS of given geometry in the millimeter scale, FEM calculations show that the first-order symmetric SSPP mode has zero transmission in the MBG within frequency...

  17. Microwave spectroscopy evidence of superconducting pairing in the magnetic-field-induced metallic state of InO(x) films at zero temperature.

    Science.gov (United States)

    Liu, Wei; Pan, LiDong; Wen, Jiajia; Kim, Minsoo; Sambandamurthy, G; Armitage, N P

    2013-08-09

    We investigate the field-tuned quantum phase transition in a 2D low-disorder amorphous InO(x) film in the frequency range of 0.05 to 16 GHz employing microwave spectroscopy. In the zero-temperature limit, the ac data are consistent with a scenario where this transition is from a superconductor to a metal instead of a direct transition to an insulator. The intervening metallic phase is unusual with a small but finite resistance that is much smaller than the normal state sheet resistance at the lowest measured temperatures. Moreover, it exhibits a superconducting response on short length and time scales while global superconductivity is destroyed. We present evidence that the true quantum critical point of this 2D superconductor metal transition is located at a field B(sm) far below the conventionally defined critical field B(cross) where different isotherms of magnetoresistance cross each other. The superfluid stiffness in the low-frequency limit and the superconducting fluctuation frequency from opposite sides of the transition both vanish at B≈B(sm). The lack of evidence for finite-frequency superfluid stiffness surviving B(cross) signifies that B(cross) is a crossover above which superconducting fluctuations make a vanishing contribution to dc and ac measurements.

  18. Microwave Spectroscopy Evidence of Superconducting Pairing in the Magnetic-Field-Induced Metallic State of InOx Films at Zero Temperature

    Science.gov (United States)

    Liu, Wei; Pan, LiDong; Wen, Jiajia; Kim, Minsoo; Sambandamurthy, G.; Armitage, N. P.

    2013-08-01

    We investigate the field-tuned quantum phase transition in a 2D low-disorder amorphous InOx film in the frequency range of 0.05 to 16 GHz employing microwave spectroscopy. In the zero-temperature limit, the ac data are consistent with a scenario where this transition is from a superconductor to a metal instead of a direct transition to an insulator. The intervening metallic phase is unusual with a small but finite resistance that is much smaller than the normal state sheet resistance at the lowest measured temperatures. Moreover, it exhibits a superconducting response on short length and time scales while global superconductivity is destroyed. We present evidence that the true quantum critical point of this 2D superconductor metal transition is located at a field Bsm far below the conventionally defined critical field Bcross where different isotherms of magnetoresistance cross each other. The superfluid stiffness in the low-frequency limit and the superconducting fluctuation frequency from opposite sides of the transition both vanish at B≈Bsm. The lack of evidence for finite-frequency superfluid stiffness surviving Bcross signifies that Bcross is a crossover above which superconducting fluctuations make a vanishing contribution to dc and ac measurements.

  19. Optimization of infrared and magnetic shielding of superconducting TiN and Al coplanar microwave resonators

    Science.gov (United States)

    Kreikebaum, J. M.; Dove, A.; Livingston, W.; Kim, E.; Siddiqi, I.

    2016-10-01

    We present a systematic study of the effects of shielding on the internal quality factors ({Q}{{i}}) of Al and TiN microwave resonators designed for use in quantum coherent circuits. Measurements were performed in an adiabatic demagnetization refrigerator, where typical magnetic fields of 200 μT are present at the unshielded sample stage. Radiation shielding consisted of 100 and 500 mK Cu cans coated with infrared absorbing epoxy. Magnetic shields consisted of Cryoperm 10 and Sn plating of the Cu cans. A 2.7 K radiation can and coaxial thermalization filters were present in all measurements. TiN samples with {Q}{{i}}=1.3 × {10}6 at 100 mK exhibited no significant variation in quality factor when tested with limited shielding. In contrast, Al resonators showed improved {Q}{{i}} with successive shielding, with the largest gains obtained from the addition of the first radiation and magnetic shields and saturating before the addition of Sn plating infrared absorbing epoxy.

  20. Optimization of infrared and magnetic shielding of superconducting TiN and Al coplanar microwave resonators

    CERN Document Server

    Kreikebaum, John Mark; Livingston, William; Kim, Eunseong; Siddiqi, Irfan

    2016-01-01

    We present a systematic study of the effects of shielding on the internal quality factors (Qi) of Al and TiN microwave resonators designed for use in quantum coherent circuits. Measurements were performed in an adiabatic demagnetization refrigerator, where typical magnetic fields of 200 {\\mu}T are present at the unshielded sample stage. Radiation shielding consisted of 100 mK and 500 mK Cu cans coated with infrared absorbing epoxy. Magnetic shields consisted of Cryoperm 10 and Sn plating of the Cu cans. A 2.7 K radiation can and coaxial thermalization filters were present in all measurements. TiN samples with Qi = $1.3*10^6$ at 100 mK exhibited no significant variation in quality factor when tested with limited shielding. In contrast, Al resonators showed improved Qi with successive shielding, with the largest gains obtained from the addition of the first radiation and magnetic shields and saturating before the addition of Sn plating infrared absorbing epoxy.

  1. 微波组件设计中的腔体效应%Cavity effects in the design of microwave modules

    Institute of Scientific and Technical Information of China (English)

    韩军

    2011-01-01

    The problems of self-excitation and worsening of S-Parameter caused by structure of microwave active module always happen in the design of microwave circuits. Up to now, there ia no complete theory to support the design of cavity. This study presented a theoretical analysis of the cavity effect of microwave module, in which microwave was transferred by microstrip lines. The microwave module with microstrip lines was simulated by High Frequency Structure Simulator(HFSS). a powerful full-wave simulation tool. A microwave module of X-band was designed according to the results of simulation and measurements of S-Parameters. The measured results agree well with the simulated resulta.%微波有源模块因为腔体的原因造成自激和传输参数的恶化一直是微波电路设计的难点之一.目前没有完整的理论来支持微波有源电路模块的腔体设计.本文从理论上分析了以微带线作为主要微波传输载体的微波组件的腔体效应,借助电磁场仿真工具HFSS对装有微带电路的微波组件进行了仿真.根据仿真结果设计X波段微波组件,并对S参数进行了测试,测试结果与仿真结果吻合,证明该方法是有效的.

  2. Ultra-high quality factors in superconducting niobium cavities in ambient magnetic fields up to 190 mG

    CERN Document Server

    Romanenko, A; Crawford, A C; Sergatskov, D A; Melnychuk, O

    2014-01-01

    Ambient magnetic field, if trapped in the penetration depth, leads to the residual resistance and therefore sets the limit for the achievable quality factors in superconducting niobium resonators for particle accelerators. Here we show that a complete expulsion of the magnetic flux can be performed and leads to: 1) record quality factors $Q > 2\\times10^{11}$ up to accelerating gradient of 22 MV/m; 2) $Q\\sim3\\times10^{10}$ at 2 K and 16 MV/m in up to 190 mG magnetic fields. This is achieved by large thermal gradients at the normal/superconducting phase front during the cooldown. Our findings open up a way to ultra-high quality factors at low temperatures and show an alternative to the sophisticated magnetic shielding implemented in modern superconducting accelerators.

  3. The twin paradox with macroscopic clocks in superconducting circuits

    CERN Document Server

    Lindkvist, Joel; Fuentes, Ivette; Dragan, Andrzej; Svensson, Ida-Maria; Delsing, Per; Johansson, Göran

    2014-01-01

    Time dilation, a striking prediction of Einstein's relativity, plays an important role in applications such as the Global Positioning System. One of the most compelling consequences of time dilation is known as the twin paradox, where a twin at rest ages more than her sibling travelling at relativistic speeds. In this paper, we propose an implementation of the twin paradox in superconducting circuits with velocities as large as a few percent of the speed of light. Ultrafast modulation of the boundary conditions for the electromagnetic field in a microwave cavity simulates a clock moving at relativistic speeds. While previous demonstrations of this effect involve point-like clocks, our superconducting cavity has a finite length, allowing us to investigate the role of clock size as well as interesting quantum effects on time dilation. In particular, our theoretical results show that the travelling twin ages slower for larger cavity lengths and that quantum particle creation, known in this context as the dynamic...

  4. Statistical methods for transverse beam position diagnostics with higher order modes in third harmonic 3.9 GHz superconducting accelerating cavities at FLASH

    CERN Document Server

    Zhang, P; Jones, R M

    2014-01-01

    Beam-excited higher order modes (HOM) can be used to provide beam diagnostics. Here we focus on 3.9 GHz superconducting accelerating cavities. In particular we study dipole mode excitation and its application to beam position determinations. In order to extract beam position information, linear regression can be used. Due to a large number of sampling points in the waveforms, statistical methods are used to effectively reduce the dimension of the system, such as singular value decomposition (SVD) and k-means clustering. These are compared with the direct linear regression (DLR) on the entire waveforms. A cross-validation technique is used to study the sample independent precisions of the position predictions given by these three methods. A RMS prediction error in the beam position of approximately 50 micron can be achieved by DLR and SVD, while k-means clustering suggests 70 micron.

  5. accelerating cavity

    CERN Multimedia

    On the inside of the cavity there is a layer of niobium. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment.

  6. High brightness microwave lamp

    Science.gov (United States)

    Kirkpatrick, Douglas A.; Dolan, James T.; MacLennan, Donald A.; Turner, Brian P.; Simpson, James E.

    2003-09-09

    An electrodeless microwave discharge lamp includes a source of microwave energy, a microwave cavity, a structure configured to transmit the microwave energy from the source to the microwave cavity, a bulb disposed within the microwave cavity, the bulb including a discharge forming fill which emits light when excited by the microwave energy, and a reflector disposed within the microwave cavity, wherein the reflector defines a reflective cavity which encompasses the bulb within its volume and has an inside surface area which is sufficiently less than an inside surface area of the microwave cavity. A portion of the reflector may define a light emitting aperture which extends from a position closely spaced to the bulb to a light transmissive end of the microwave cavity. Preferably, at least a portion of the reflector is spaced from a wall of the microwave cavity. The lamp may be substantially sealed from environmental contamination. The cavity may include a dielectric material is a sufficient amount to require a reduction in the size of the cavity to support the desired resonant mode.

  7. Design and Performance of (Au,Yb)/ZnS/InSe/C Heterojunctions as Plasmon Resonators, Photodetectors and Microwave Cavities

    Science.gov (United States)

    Khusayfan, Najla M.; Khanfar, Hazem K.

    2016-12-01

    In this study, we concentrate on the design and characterization of the hybrid isotype (Au, Yb)/ZnS/InSe/C devices. The thin film devices that are prepared by using the vacuum deposition technique are characterized by means of x-ray diffraction, energy dispersive x-ray analysis, optical and dielectric spectroscopy, current-voltage characteristics and impedance spectroscopy techniques. The techniques allow determining the preferred crystallinity at the interfaces, the lattice match/mismatch ratios, the atomic compositions, the energy band gap shifts, the valence and conduction band offsets, the barrier heights at the Schottky shoulders (Au/ZnS and InSe/C) of the hybrid structure and the plasmonic interaction at the ZnS/InSe and (Au, Yb)/ZnS/InSe interfaces. The hybrid isotype device is found to exhibit photosensing features presented by a responsivity of ˜2.0 A/W, external quantum efficiencies (EQE) and internal quantum efficiencies (IQE) of 395% and 2493%, at basing voltage of 0.3 V, respectively. In addition, the dielectric spectra modeling reveals a plasmon-electron interaction of resonance frequencies in the range of 0.31-5.26 GHz and drift mobility of ˜212 cm2/Vs and 106 cm2/Vs for the Au/ZnS/InSe and Yb/ZnS/InSe, respectively. Moreover, the impedance spectroscopy studies confirm the correctness of the dielectric modeling nominating the Yb/ZnS/InSe/C devices as photodetectors, plasmon resonators and microwave cavities.

  8. Design and Performance of (Au,Yb)/ZnS/InSe/C Heterojunctions as Plasmon Resonators, Photodetectors and Microwave Cavities

    Science.gov (United States)

    Khusayfan, Najla M.; Khanfar, Hazem K.

    2017-03-01

    In this study, we concentrate on the design and characterization of the hybrid isotype (Au, Yb)/ZnS/InSe/C devices. The thin film devices that are prepared by using the vacuum deposition technique are characterized by means of x-ray diffraction, energy dispersive x-ray analysis, optical and dielectric spectroscopy, current-voltage characteristics and impedance spectroscopy techniques. The techniques allow determining the preferred crystallinity at the interfaces, the lattice match/mismatch ratios, the atomic compositions, the energy band gap shifts, the valence and conduction band offsets, the barrier heights at the Schottky shoulders (Au/ZnS and InSe/C) of the hybrid structure and the plasmonic interaction at the ZnS/InSe and (Au, Yb)/ZnS/InSe interfaces. The hybrid isotype device is found to exhibit photosensing features presented by a responsivity of ˜2.0 A/W, external quantum efficiencies (EQE) and internal quantum efficiencies (IQE) of 395% and 2493%, at basing voltage of 0.3 V, respectively. In addition, the dielectric spectra modeling reveals a plasmon-electron interaction of resonance frequencies in the range of 0.31-5.26 GHz and drift mobility of ˜212 cm2/Vs and 106 cm2/Vs for the Au/ZnS/InSe and Yb/ZnS/InSe, respectively. Moreover, the impedance spectroscopy studies confirm the correctness of the dielectric modeling nominating the Yb/ZnS/InSe/C devices as photodetectors, plasmon resonators and microwave cavities.

  9. Optimizing the configuration of a superconducting photonic band gap accelerator cavity to increase the maximum achievable gradients

    Science.gov (United States)

    Simakov, Evgenya I.; Kurennoy, Sergey S.; O'Hara, James F.; Olivas, Eric R.; Shchegolkov, Dmitry Yu.

    2014-02-01

    We present a design of a superconducting rf photonic band gap (SRF PBG) accelerator cell with specially shaped rods in order to reduce peak surface magnetic fields and improve the effectiveness of the PBG structure for suppression of higher order modes (HOMs). The ability of PBG structures to suppress long-range wakefields is especially beneficial for superconducting electron accelerators for high power free-electron lasers (FELs), which are designed to provide high current continuous duty electron beams. Using PBG structures to reduce the prominent beam-breakup phenomena due to HOMs will allow significantly increased beam-breakup thresholds. As a result, there will be possibilities for increasing the operation frequency of SRF accelerators and for the development of novel compact high-current accelerator modules for the FELs.

  10. Eberhard Widmann (Stefan Meyer Institute, Vienna) and Silke Federmann (Ph.D. Student from Vienna in the CERN-Austrian Ph.D. program) together with a microwave cavity developed by Silke at CERN. The cavity will be used for the first time to look for spin-flip transitions of antihydrogen atoms later this year.

    CERN Multimedia

    Maximilien Brice

    2011-01-01

    Eberhard Widmann (Stefan Meyer Institute, Vienna) and Silke Federmann (Ph.D. Student from Vienna in the CERN-Austrian Ph.D. program) together with a microwave cavity developed by Silke at CERN. The cavity will be used for the first time to look for spin-flip transitions of antihydrogen atoms later this year.

  11. Voltage plateaus on V( I) curves of long quasi-one-dimensional superconducting wires (without microwave irradiation)

    Science.gov (United States)

    Kuznetsov, V. I.; Firsov, A. A.

    2016-11-01

    Segments of an almost constant voltage (plateaus) on the V( I) curves of long quasi-one-dimensional superconducting aluminum wires placed in a magnetic field are found slightly below T c, which are unexpected at the parameters and geometry considered in this work. These plateaus are assumingly attributed to subharmonics of the superconducting gap and are due to multiple Andreev reflection and strong quasiparticle heating, which occur in the nonequilibrium region of a wire. The plateaus indicate the coexistence of superconductivity and dissipation in these wires. These results cannot be described by the existing theories.

  12. Second and third peaks in the non-resonant microwave absorption spectra of superconducting Bi2212 crystals

    CSIR Research Space (South Africa)

    Srinivasu, V V

    2010-04-01

    Full Text Available Non-resonant microwave absorption (NMA) measurements at liquid nitrogen temperature with systematic microwave power variation showed a two-peak structure in the Bi-2212 textured crystals, similar to that observed in the Bi-2212 single crystals...

  13. High-Q 3D coaxial resonators for cavity QED

    Science.gov (United States)

    Yoon, Taekwan; Owens, John C.; Naik, Ravi; Lachapelle, Aman; Ma, Ruichao; Simon, Jonathan; Schuster, David I.

    Three-dimensional microwave resonators provide an alternative approach to transmission-line resonators used in most current circuit QED experiments. Their large mode volume greatly reduces the surface dielectric losses that limits the coherence of superconducting circuits, and the well-isolated and controlled cavity modes further suppress coupling to the environment. In this work, we focus on unibody 3D coaxial cavities which are only evanescently coupled and free from losses due to metal-metal interfaces, allowing us to reach extremely high quality-factors. We achieve quality-factor of up to 170 million using 4N6 Aluminum at superconducting temperatures, corresponding to an energy ringdown time of ~4ms. We extend our methods to other materials including Niobium, NbTi, and copper coated with Tin-Lead solder. These cavities can be further explored to study their properties under magnetic field or upon coupling to superconducting Josephson junction qubits, e.g. 3D transmon qubits. Such 3D cavity QED system can be used for quantum information applications, or quantum simulation in coupled cavity arrays.

  14. Dielectric relaxation studies in 5CB nematic liquid crystal at 9 GHz under the influence of external magnetic field using microwave cavity spectrometer

    Indian Academy of Sciences (India)

    Manoj Johri; Abhay Saxena; S Johri; S Saxena; D P Singh

    2011-04-01

    Resonance width, shift in resonance frequency, relaxation time and activation energy of 5CB nematic liquid crystal are measured using microwave cavity technique under the influence of an external magnetic field at 9 GHz and at different temperatures. The dielectric response in liquid crystal at different temperatures and the effects of applied magnetic field on transition temperatures are studied in the present work. The technique needs a small quantity (< 0.001 cm3) of the sample and provides fruitful information about the macroscopic structure of the liquid crystal.

  15. European infrastructures for R&D and test of superconducting radio-frequency cavities and cryo-modules

    CERN Document Server

    Weingarten, W

    2011-01-01

    The volume is copyright CERN and can be distributed under CC-BY license. The need for a European facility to build and test superconducting RF accelerating structures and cryo‐modules (SRF test facility) was extensively discussed during the preparation of EuCARD [1,2]. It comprised a distributed network of equipment across Europe to be assessed and, if needed, completed by hardware. It also addressed the quest for a deeper basic understanding, a better control and optimisation of the manufacture of superconducting RF structures with the aim of a substantial improvement of the accelerating gradient, a reduction of its spread and a cost minimisation. However, consequent to EU budget restrictions, the proposal was not maintained. Instead, a more detailed analysis was requested by a sub‐task inside the EuCARD Network [3] AccNet ‐ RFTech [4]. The main objective of this “SRF sub‐task” consists of intensifying a collaborative effort between European accelerator labs. The aim focused on planning and later...

  16. Field-induced microwave absorption in high- T sub c superconducting powders: Evidence for a superconducting glass phase at low T

    Energy Technology Data Exchange (ETDEWEB)

    Gould, A.; Bhagat, S.M. (Department of Physics, University of Maryland, College Park, Maryland 20742-4111 (USA)); Manheimer, M.A. (Laboratory for Physical Sciences, 4928 College Avenue, College Park, Maryland 20740 (USA)); Tyagi, S. (Department of Physics and Atmospheric Science, Drexel University, Philadelphia, Pennsylvania 19104 (USA))

    1990-05-01

    Measurements of the magnetic-field-induced microwave absorption, {ital P}({ital H}), in micron-sized powders of the high-temperature superconductor Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7} at several microwave frequencies for 1.3 K{le}{ital T}{le}{ital T}{sub {ital c}} are reported. The hysteresis loops ({ital P}({ital H}) vs {ital H}) observed at low temperatures ({ital T}{le}16 K) indicate the presence of spontaneous circulating currents within the sample. These hysteresis loops and dc magnetization data (taken for both field-cooled and zero-field-cooled states) combine to suggest that the magnetic moments of these loops are in a spin-glass-like'' state.

  17. Towards achieving strong coupling in three-dimensional-cavity with solid state spin resonance

    Science.gov (United States)

    Le Floch, J.-M.; Delhote, N.; Aubourg, M.; Madrangeas, V.; Cros, D.; Castelletto, S.; Tobar, M. E.

    2016-04-01

    We investigate the microwave magnetic field confinement in several microwave three-dimensional (3D)-cavities, using a 3D finite-element analysis to determine the best design and achieve a strong coupling between microwave resonant cavity photons and solid state spins. Specifically, we design cavities for achieving strong coupling of electromagnetic modes with an ensemble of nitrogen vacancy (NV) defects in diamond. We report here a novel and practical cavity design with a magnetic filling factor of up to 4 times (2 times higher collective coupling) than previously achieved using one-dimensional superconducting cavities with a small mode volume. In addition, we show that by using a double-split resonator cavity, it is possible to achieve up to 200 times better cooperative factor than the currently demonstrated with NV in diamond. These designs open up further opportunities for studying strong and ultra-strong coupling effects on spins in solids using alternative systems with a wider range of design parameters. The strong coupling of paramagnetic spin defects with a photonic cavity is used in quantum computer architecture, to interface electrons spins with photons, facilitating their read-out and processing of quantum information. To achieve this, the combination of collective coupling of spins and cavity mode is more feasible and offers a promising method. This is a relevant milestone to develop advanced quantum technology and to test fundamental physics principles.

  18. Entangled microwaves as a resource for entangling spatially separate solid-state qubits: Superconducting qubits, nitrogen-vacancy centers, and magnetic molecules

    Science.gov (United States)

    Gómez, Angela Viviana; Rodríguez, Ferney Javier; Quiroga, Luis; García-Ripoll, Juan José

    2016-06-01

    Quantum correlations present in a broadband two-line squeezed microwave state can induce entanglement in a spatially separated bipartite system consisting of either two single qubits or two-qubit ensembles. By using an appropriate master equation for a bipartite quantum system in contact with two separate but entangled baths, the generating entanglement process in spatially separated quantum systems is thoroughly characterized. Decoherence thermal effects on the entanglement transfer are also discussed. Our results provide evidence that this entanglement transfer by dissipation is feasible, yielding to a steady-state amount of entanglement in the bipartite quantum system which can be optimized for a wide range of realistic physical systems that include state-of-the-art experiments with nitrogen-vacancy centers in diamond, superconducting qubits, or even magnetic molecules embedded in a crystalline matrix.

  19. Realization of a Binary-Outcome Projection Measurement of a Three-Level Superconducting Quantum System

    Science.gov (United States)

    Jerger, Markus; Macha, Pascal; Hamann, Andrés Rosario; Reshitnyk, Yarema; Juliusson, Kristinn; Fedorov, Arkady

    2016-07-01

    Binary-outcome measurements allow one to determine whether a multilevel quantum system is in a certain state while preserving quantum coherence between all orthogonal states. In this paper, we explore different regimes of the dispersive readout of a three-level superconducting quantum system coupled to a microwave cavity in order to implement binary-outcome measurements. By designing identical cavity-frequency shifts for the first and second excited states of the system, we realize strong projective binary-outcome measurements onto its ground state with a fidelity of 94.3%. Complemented with standard microwave control and low-noise parametric amplification, this scheme enables the quantum nondemolition detection of leakage errors and can be used to create sets of compatible measurements to reveal the contextual nature of superconducting circuits.

  20. Development of Control System for Fast Frequency Tuners of Superconducting Resonant Cavities for FLASH and XFEL Experiments

    CERN Document Server

    Przygoda, K

    2011-01-01

    This dissertation covers the recent research and development (R&D) activities of control systems for the fast frequency tuners of TESLA cavities and predicts the implications foreseen for large scale machines such as the FLASH and the planned XFEL. In particular, the framework of the presented activities is the effort toward the: 1. R&D of the driving circuit, 2. R&D of the control algorithm, 3. R&D of the control system. The main result of these activities is the permanent installation of the target piezo control system and its commissioning for 40 cavities divided into 5 accelerating modules at the DESY FLASH facility. The author’s contribution was the study of possible designs of high-voltage, high-current power amplifiers, used for driving the fast frequency tuners, shows that several parameters of such a device needs to be considered. The most important parameter is the input and output power estimation. This arises from the fact that the estimation is the most crucial issue for both po...

  1. Coherent controlization using superconducting qubits.

    Science.gov (United States)

    Friis, Nicolai; Melnikov, Alexey A; Kirchmair, Gerhard; Briegel, Hans J

    2015-01-01

    Coherent controlization, i.e., coherent conditioning of arbitrary single- or multi-qubit operations on the state of one or more control qubits, is an important ingredient for the flexible implementation of many algorithms in quantum computation. This is of particular significance when certain subroutines are changing over time or when they are frequently modified, such as in decision-making algorithms for learning agents. We propose a scheme to realize coherent controlization for any number of superconducting qubits coupled to a microwave resonator. For two and three qubits, we present an explicit construction that is of high relevance for quantum learning agents. We demonstrate the feasibility of our proposal, taking into account loss, dephasing, and the cavity self-Kerr effect.

  2. Reduction of helium loss from a superconducting accelerating cavity during initial cool-down and cryostat exchange by pre-cooling the re-condensing cryostat

    Science.gov (United States)

    O'Rourke, B. E.; Minehara, E. J.; Hayashizaki, N.; Oshima, N.; Suzuki, R.

    2015-03-01

    A Zero-Boil-Off (ZBO) cryostat is designed to realize a compact, stand-alone cryogenic system for the AIST superconducting accelerator (SCA). Under normal operation there is no evaporative helium loss from the cryomodule and therefore operating costs associated with the supply of liquid helium can be eliminated. The only significant loss of helium from the module occurs during the initial cavity cool-down procedure or when the re-condensing cryostat is replaced. It takes about 3 h to cool down the cryostat head from room temperature (300 K) to 4 K. During this time around 100 L of liquid helium is lost due to evaporation. By pre-cooling the cryostat inside a low heat load vacuum tube before transfer to the cryomodule, this evaporative loss could be essentially eliminated, significantly reducing the volume of liquid helium required for the initial cryomodule cool-down. The pre-cooling system also provides an efficient method to test the cryostat prior to use.

  3. A Laboratory Test Setup for in Situ Measurements of the Dielectric Properties of Catalyst Powder Samples under Reaction Conditions by Microwave Cavity Perturbation: Set up and Initial Tests

    Directory of Open Access Journals (Sweden)

    Markus Dietrich

    2014-09-01

    Full Text Available The catalytic behavior of zeolite catalysts for the ammonia-based selective catalytic reduction (SCR of nitrogen oxides (NOX depends strongly on the type of zeolite material. An essential precondition for SCR is a previous ammonia gas adsorption that occurs on acidic sites of the zeolite. In order to understand and develop SCR active materials, it is crucial to know the amount of sorbed ammonia under reaction conditions. To support classical temperature-programmed desorption (TPD experiments, a correlation of the dielectric properties with the catalytic properties and the ammonia sorption under reaction conditions appears promising. In this work, a laboratory test setup, which enables direct measurements of the dielectric properties of catalytic powder samples under a defined gas atmosphere and temperature by microwave cavity perturbation, has been developed. Based on previous investigations and computational simulations, a resonator cavity and a heating system were designed, installed and characterized. The resonator cavity is designed to operate in its TM010 mode at 1.2 GHz. The first measurement of the ammonia loading of an H-ZSM-5 zeolite confirmed the operating performance of the test setup at constant temperatures of up to 300 °C. It showed how both real and imaginary parts of the relative complex permittivity are strongly correlated with the mass of stored ammonia.

  4. A laboratory test setup for in situ measurements of the dielectric properties of catalyst powder samples under reaction conditions by microwave cavity perturbation: set up and initial tests.

    Science.gov (United States)

    Dietrich, Markus; Rauch, Dieter; Porch, Adrian; Moos, Ralf

    2014-09-10

    The catalytic behavior of zeolite catalysts for the ammonia-based selective catalytic reduction (SCR) of nitrogen oxides (NOX) depends strongly on the type of zeolite material. An essential precondition for SCR is a previous ammonia gas adsorption that occurs on acidic sites of the zeolite. In order to understand and develop SCR active materials, it is crucial to know the amount of sorbed ammonia under reaction conditions. To support classical temperature-programmed desorption (TPD) experiments, a correlation of the dielectric properties with the catalytic properties and the ammonia sorption under reaction conditions appears promising. In this work, a laboratory test setup, which enables direct measurements of the dielectric properties of catalytic powder samples under a defined gas atmosphere and temperature by microwave cavity perturbation, has been developed. Based on previous investigations and computational simulations, a resonator cavity and a heating system were designed, installed and characterized. The resonator cavity is designed to operate in its TM010 mode at 1.2 GHz. The first measurement of the ammonia loading of an H-ZSM-5 zeolite confirmed the operating performance of the test setup at constant temperatures of up to 300 °C. It showed how both real and imaginary parts of the relative complex permittivity are strongly correlated with the mass of stored ammonia.

  5. Study of thermal phenomena in niobium superconducting cavities when stiffened by thermal spray coating; Etude des phenomenes thermiques dans les cavites acceleratrices supraconductrices en niobium rigidifiees par projection thermique

    Energy Technology Data Exchange (ETDEWEB)

    Bousson, S

    2000-02-01

    The first objective of this thesis is to study a new superconducting cavity stiffening method based on thermal spraying. The principle is to add on the cavity external walls a copper layer using the thermal spraying process. Several tests on samples allowed to measure the thermal and mechanical properties of the layers deposited by several different processes. Measurements performed on 3 and 1.3 GHz niobium cavities, before and after copper deposition, proved the interest and feasibility of the method. The study showed the need to have very dense layers (porosity reduced to the minimum in order to have good mechanical characteristics), and not oxidised (to reduce the coating thermal resistance). As a conclusion, the spraying process performed under controlled atmosphere seems to be the most suited for superconducting cavity stiffening. The tools and analysing methods which have been developed for this study allowed to investigate other phenomena involved in the cavity thermal stability, and particularly the quench, a phenomenon often studied but not in its dynamic. A model is proposed in this thesis to analyse the quench dynamic behaviour using only the fast RF signal measurement during a quench. It has been shown that the quench propagation velocity depends essentially on the accelerating field and the niobium thermal conductivity. A study on the thermometer response time used as diagnostics on cavities proved that the transients during a quench are not efficiently measured with Allen-Bradley sensors: for this application Cernox thermometers are to be preferred due to their lower time response. The development of a thermometer acquisition device for the 3 GHz cavities, used for the study on cavity stiffening, has been adapted for anomalous heating measurements on high gradient 1.3 GHz cavities. It has been possible to prove that anomalous RF losses are responsible of the quality factor degradation, that they are not localised in a small of the cavity, but

  6. Fluid phase thermodynamics : I) nucleate pool boiling of oxygen under magnetically enhanced gravity and II) superconducting cavity resonators for high-stability frequency references and precision density measurements of helium-4 gas

    Science.gov (United States)

    Corcovilos, Theodore Allen

    Although fluids are typically the first systems studied in undergraduate thermodynamics classes, we still have only a rudimentary phenomenological understanding of these systems outside of the classical and equilibrium regimes. Two experiments will be presented. First, we present progress on precise measurements of helium-4 gas at low temperatures (1 K-5 K). We study helium because at low densities it is an approximately ideal gas but at high densities the thermodynamic properties can be predicted by numerical solutions of Schroedinger's equation. By utilizing the high resolution and stability in frequency of a superconducting microwave cavity resonator we can measure the dielectric constant of helium-4 to parts in 109, corresponding to an equivalent resolution in density. These data will be used to calculate the virial coefficients of the helium gas so that we may compare with numerical predictions from the literature. Additionally, our data may allow us to measure Boltzmann's constant to parts in 108, a factor of 100 improvement over previous measurements. This work contains a description of the nearly-completed apparatus and the methods of operation and data analysis for this experiment. Data will be taken by future researchers.The second experiment discussed is a study of nucleate pool boiling. To date, no adequate quantitative model exists of this everyday phenomenon. In our experiment, we vary one parameter inaccessible to most researchers, gravity, by applying a magnetic force to our test fluid, oxygen. Using this technique, we may apply effective gravities of 0-80 times Earth's gravitational acceleration (g). In this work we present heat transfer data for the boiling of oxygen at one atmosphere ambient pressure for effective gravity values between 1g and 16g . Our data describe two relationships between applied heat flux and temperature differential: at low heat flux the system obeys a power law and at high heat flux the behavior is linear. We find that the

  7. Study of a spoke-type superconducting cavity for high power proton accelerators; Etude d'une cavite acceleratrice supraconductrice Spoke pour les accelerateurs de protons de forte intensite

    Energy Technology Data Exchange (ETDEWEB)

    Olry, G

    2003-04-01

    Since a few years, a lot of projects (especially dedicated to transmutation, radioactive beams production, spallation neutron sources or neutrinos factories) are based on high power proton linear accelerators. It has been demonstrated, thanks to their excellent RF performances, that superconducting elliptical cavities represent the best technological solution for the high energy part of these linacs (proton energy from typically 100 MeV). On the contrary, between 5 and 100 MeV, nothing is clearly settled and intensive studies on low-beta cavities are under progress. The main objective of this thesis is the study of a new low-beta cavity, called 'spoke', which could be used in the low energy part of European XADS (experimental accelerator driven system) and EURISOL (European isotope separation on-line) accelerators projects. A complete study of a beta 0.35 spoke cavity has been done: from its electromagnetic and mechanical optimization to warm and, above all, cold experimental tests: an accelerating field of 12.2 MV/m has been reached at T=4.2 K, that is to say one of the best value among the spoke cavities performances in the world. It has been shown that the specific ratio of a third, between the spoke bar diameter and the cavity length, led to optimize the surface electromagnetic fields. Moreover, spoke cavities can be used without any trouble, in the low energy part, due to their good rigidity. The experimental measurements performed on the cavity have confirmed the theoretical calculations, especially, concerning the expected frequency and mechanical behavior. Another study, performed on elliptical cavities, gave an explanation of the discrepancies between the measured and calculated frequencies thanks to a precise 3-dimensional geometrical control. (author)

  8. Radiometric temperature reading of a hot ellipsoidal object inside the oral cavity by a shielded microwave antenna put flush to the cheek

    Science.gov (United States)

    Klemetsen, Øystein; Jacobsen, Svein; Birkelund, Yngve

    2012-05-01

    A new scheme for detection of vesicoureteral reflux (VUR) in children has recently been proposed in the literature. The idea is to warm bladder urine via microwave exposure to at least fever temperatures and observe potential urine reflux from the bladder back to the kidney(s) by medical radiometry. As a preliminary step toward realization of this detection device, we present non-invasive temperature monitoring by use of microwave radiometry in adults to observe temperature dynamics in vivo of a water-filled balloon placed within the oral cavity. The relevance of the approach with respect to detection of VUR in children is motivated by comparing the oral cavity and cheek tissue with axial CT images of young children in the bladder region. Both anatomical locations reveal a triple-layered tissue structure consisting of skin-fat-muscle with a total thickness of about 8-10 mm. In order to mimic variations in urine temperature, the target balloon was flushed with water coupled to a heat exchanger, that was moved between water baths of different temperatures, to induce measurable temperature gradients. The applied radiometer has a center frequency of 3.5 GHz and provides a sensitivity (accuracy) of 0.03 °C for a data acquisition time of 2 s. Three different scenarios were tested and included observation through the cheek tissue with and without an intervening water bolus compartment present. In all cases, radiometric readings observed over a time span of 900 s were shown to be highly correlated (R ˜ 0.93) with in situ temperatures obtained by fiberoptic probes.

  9. Reduction of RF accelerating voltage of Pohang Light Source-II superconducting RF cavity for stable top-up mode operation

    Science.gov (United States)

    Joo, Y.; Yu, I.; Park, I.; Chun, M. H.; Sohn, Y.

    2017-03-01

    The Pohang Light Source-II (PLS-II) is currently providing a top-up mode user-service operation with maximum available beam current of 400 mA and a beam emittance of below 10 nm-rad. The dimension of the beam bunch shortened to accomplish a low beam emittance of below 10 nm-rad from a high beam current of 400 mA increases the bunch charge density. As a result, the electron beam lifetime is significantly degraded and a high gradient of power is lost in the vacuum components of the storage ring. A study on how to reduce the bunch charge density without degrading beam emittance found that reducing the RF accelerating voltage (Vacc) can lower the bunch charge density by lengthening the bunch in the longitudinal direction. In addition, the Vacc required for stable operation with beam current of 400 mA can be reduced by lowering the external cavity quality factors (Qext values) of the superconducting cavities (SCs). To control the Qext values of SCs gradually without accessing the accelerator tunnel, a remote control motorized three-probe-tuner was installed in the transmission line of each SC. The optimum installation position of the three-probe-tuner was determined by using a finite-difference time-domain (FDTD) simulation and by experimenting on various installation positions of the three-probe-tuner. The Qext values of all the SCs were lowered to 1.40 × 105, and then, the Vacc required to store the beam current of 400 mA was decreased from 4.8 MV to 4.2 MV, which corresponds to 10% lengthening of the beam bunches. The stable operation with the reduced Vacc was confirmed during a 400 mA ten-day top-up mode user-service. Currently, the RF system of the PLS-II storage ring delivers the user-service operation with lowered Qext values to reduce the power loss at the vacuum components as well as the cryogenic heat load of SCs, and no significant problems have been found. This method of reducing the Vacc may also be applied in other synchrotron facilities.

  10. Data Acquisition System of Superconducting Cavity Test Based on Labview%基于 Labview 的超导腔测试数据采集系统

    Institute of Scientific and Technical Information of China (English)

    张娟; 戴建枰; 黄泓; 徐波; 林海英; 孙毅; 潘卫民

    2013-01-01

    设计了基于Labview的超导腔测试数据采集系统,该系统应用于超导腔垂直和水平测试的数据采集,实现了测量仪器、本地机及远程机的数据通讯,于国内首次实现了Q0~Eacc曲线及辐射剂量曲线的实时显示,并使得Labview采集的数据与EPICS之间互相连通。该数据采集系统根据被测数据带宽及精度的不同,灵活选择不同的传输接口,采集功率计、频率计、温度计、辐射剂量探测器等仪器的信号,实时地传输、处理并存储所有数据。 Spoke012超导腔垂直测试实验结果表明,该系统运行稳定可靠,易于维护,界面友好,同时具有很好的可移植性,可在其他类型的超导腔测试中获得广泛应用。%The data acquisition system based on Labview is designed .The system is applied to the vertical and horizontal test experiment .It is in charge of communications of the measuring instruments , the local machine and the remote machine .It realizes the real-time display of Q0 ~Eacc and radiation dose curve for the first time in China.The data connection between Labview and EPICS is also implemented .The DAQ system chooses dif-ferent transmission interfaces according to the different bandwidths and precisions of the measured data .It col-lects data of instruments such as power meter , frequency counter , thermometer and radiation dosimeter .All of these data should be acquired , transmitted, processed and stored synchronously and in real time .The result for Spoke012 cavity vertical test has shown that the DAQ system in operation performs stably and reliably as expec -ted.It also has a friendly interface and can be transplanted to other superconducting cavity tests easily and con -veniently .

  11. Frittage micro-ondes en cavité monomode de biocéramiques Microwaves sintering of bioceramics in a single mode cavity

    Directory of Open Access Journals (Sweden)

    Savary Etienne

    2013-11-01

    Full Text Available Le but premier de cette étude est de montrer la faisabilité du frittage direct en cavité micro-ondes monomode de deux biomatériaux céramiques : l'hydroxyapatite et le phosphate tri-calcique. Ainsi, cette étude montre que ce procédé a permis d'obtenir, en des temps très courts, inférieurs à 20 minutes, des échantillons denses présentant des microstructures fines. Les caractérisations mécaniques sur les échantillons frittés par micro-ondes ont révélé des valeurs de module d'élasticité et de dureté supérieures à celles généralement obtenues sur des échantillons frittés de manière conventionnelle. Ces résultats sont discutés en fonction de la microstructure obtenue et des différents paramètres expérimentaux : granulométrie des poudres, température de frittage, temps d'irradiation micro-ondes. The main purpose of this study consists in investigating the direct microwaves sintering in a single mode cavity of two bioceramics: hydroxyapatite and tri-calcium phosphate. Thus, dense samples presenting fine microstructures are successfully obtained in less than 20 minutes of irradiation. The resulting mechanical characterizations on microwaves sintered samples evidence higher Young's modulus and hardness values than those usually reported on conventionally sintered samples. Those results are discussed according to the microstructures observed and the experimental parameters such as powders granulometries, sintering temperatures, microwaves irradiation times.

  12. Hybrid circuit cavity quantum electrodynamics with a micromechanical resonator.

    Science.gov (United States)

    Pirkkalainen, J-M; Cho, S U; Li, Jian; Paraoanu, G S; Hakonen, P J; Sillanpää, M A

    2013-02-14

    Hybrid quantum systems with inherently distinct degrees of freedom have a key role in many physical phenomena. Well-known examples include cavity quantum electrodynamics, trapped ions, and electrons and phonons in the solid state. In those systems, strong coupling makes the constituents lose their individual character and form dressed states, which represent a collective form of dynamics. As well as having fundamental importance, hybrid systems also have practical applications, notably in the emerging field of quantum information control. A promising approach is to combine long-lived atomic states with the accessible electrical degrees of freedom in superconducting cavities and quantum bits (qubits). Here we integrate circuit cavity quantum electrodynamics with phonons. Apart from coupling to a microwave cavity, our superconducting transmon qubit, consisting of tunnel junctions and a capacitor, interacts with a phonon mode in a micromechanical resonator, and thus acts like an atom coupled to two different cavities. We measure the phonon Stark shift, as well as the splitting of the qubit spectral line into motional sidebands, which feature transitions between the dressed electromechanical states. In the time domain, we observe coherent conversion of qubit excitation to phonons as sideband Rabi oscillations. This is a model system with potential for a quantum interface, which may allow for storage of quantum information in long-lived phonon states, coupling to optical photons or for investigations of strongly coupled quantum systems near the classical limit.

  13. Beam cavity interaction

    CERN Document Server

    Gamp, A

    2011-01-01

    We begin by giving a description of the rf generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, rf feedback, and feed-forward are described. Examples of digital rf phase and amplitude control for the special case of superconducting cavities are also given. Finally, a dedicated phase loop for damping synchrotron oscillations is discussed.

  14. LEP copper accelerating cavities

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    These copper cavities were used to generate the radio frequency electric field that was used to accelerate electrons and positrons around the 27-km Large Electron-Positron (LEP) collider at CERN, which ran from 1989 to 2000. The copper cavities were gradually replaced from 1996 with new superconducting cavities allowing the collision energy to rise from 90 GeV to 200 GeV by mid-1999.

  15. Liquid helium-free cryostat and hermetically sealed cryogenic microwave cavity for hyperfine spectroscopy of antiprotonic helium.

    Science.gov (United States)

    Massiczek, O; Friedreich, S; Juhász, B; Widmann, E; Zmeskal, J

    2011-12-11

    The design and properties of a new cryogenic set-up for laser-microwave-laser hyperfine structure spectroscopy of antiprotonic helium - an experiment performed at the CERN-Antiproton Decelerator (AD), Geneva, Switzerland - are described. Similar experiments for (4)He have been performed at the AD for several years. Due to the usage of a liquid helium operated cryostat and therefore necessary refilling of coolants, a loss of up to 10% beamtime occurred. The decision was made to change the cooling system to a closed-circuit cryocooler. New hermetically sealed target cells with minimised (3)He gas volume and different dimensions of the microwave resonator for measuring the (3)He transitions were needed. A new set-up has been designed and tested at Stefan Meyer Institute in Vienna before being used for the 2009 and 2010 beamtimes at the AD.

  16. Liquid helium-free cryostat and hermetically sealed cryogenic microwave cavity for hyperfine spectroscopy of antiprotonic helium

    Energy Technology Data Exchange (ETDEWEB)

    Massiczek, O., E-mail: oswald.massiczek@cern.ch [Stefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna (Austria); Friedreich, S.; Juhasz, B.; Widmann, E.; Zmeskal, J. [Stefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna (Austria)

    2011-12-11

    The design and properties of a new cryogenic set-up for laser-microwave-laser hyperfine structure spectroscopy of antiprotonic helium - an experiment performed at the CERN-Antiproton Decelerator (AD), Geneva, Switzerland - are described. Similar experiments for {sup 4}He have been performed at the AD for several years. Due to the usage of a liquid helium operated cryostat and therefore necessary refilling of coolants, a loss of up to 10% beamtime occurred. The decision was made to change the cooling system to a closed-circuit cryocooler. New hermetically sealed target cells with minimised {sup 3}He gas volume and different dimensions of the microwave resonator for measuring the {sup 3}He transitions were needed. A new set-up has been designed and tested at Stefan Meyer Institute in Vienna before being used for the 2009 and 2010 beamtimes at the AD.

  17. Dispersive Response of a Disordered Superconducting Quantum Metamaterial

    Directory of Open Access Journals (Sweden)

    Dmitriy S. Shapiro

    2015-04-01

    Full Text Available We consider a disordered quantum metamaterial formed by an array of superconducting flux qubits coupled to microwave photons in a cavity. We map the system on the Tavis-Cummings model accounting for the disorder in frequencies of the qubits. The complex transmittance is calculated with the parameters taken from state-of-the-art experiments. We demonstrate that photon phase shift measurements allow to distinguish individual resonances in the metamaterial with up to 100 qubits, in spite of the decoherence spectral width being remarkably larger than the effective coupling constant. Our simulations are in agreement with the results of the recently reported experiment.

  18. Controlling spin relaxation with a cavity

    Science.gov (United States)

    Bienfait, A.; Pla, J. J.; Kubo, Y.; Zhou, X.; Stern, M.; Lo, C. C.; Weis, C. D.; Schenkel, T.; Vion, D.; Esteve, D.; Morton, J. J. L.; Bertet, P.

    2016-03-01

    Spontaneous emission of radiation is one of the fundamental mechanisms by which an excited quantum system returns to equilibrium. For spins, however, spontaneous emission is generally negligible compared to other non-radiative relaxation processes because of the weak coupling between the magnetic dipole and the electromagnetic field. In 1946, Purcell realized that the rate of spontaneous emission can be greatly enhanced by placing the quantum system in a resonant cavity. This effect has since been used extensively to control the lifetime of atoms and semiconducting heterostructures coupled to microwave or optical cavities, and is essential for the realization of high-efficiency single-photon sources. Here we report the application of this idea to spins in solids. By coupling donor spins in silicon to a superconducting microwave cavity with a high quality factor and a small mode volume, we reach the regime in which spontaneous emission constitutes the dominant mechanism of spin relaxation. The relaxation rate is increased by three orders of magnitude as the spins are tuned to the cavity resonance, demonstrating that energy relaxation can be controlled on demand. Our results provide a general way to initialize spin systems into their ground state and therefore have applications in magnetic resonance and quantum information processing. They also demonstrate that the coupling between the magnetic dipole of a spin and the electromagnetic field can be enhanced up to the point at which quantum fluctuations have a marked effect on the spin dynamics; as such, they represent an important step towards the coherent magnetic coupling of individual spins to microwave photons.

  19. Spectral investigation of hot-spot and cavity resonance effects on the terahertz radiation emitted from high-Tc superconducting Bi2Sr2CaCu2O8+δ single crystal mesa structures

    Science.gov (United States)

    Kadowaki, Kazuo; Watanabe, Chiharu; Minami, Hidetoshi; Yamamoto, Takashi; Kashiwagi, Takanari; Klemm, Richard

    2014-03-01

    Terahertz (THz) electromagnetic radiation emitted from high-Tc superconducting Bi2Sr2CaCu2O8+δ mesa structures in the case of single mesa and series-connected mesas is investigated by the FTIR spectroscopic technique while observing its temperature distribution simultaneously by a SiC photoluminescence technique. Changing the bias level, sudden jumps of the hot-spot position were clearly observed. Although the radiation intensity changes drastically associated with the jump of the hot spot position, the frequency is unaffected as long as the voltage per junction is kept constant. Since the frequency of the intense radiation satisfies the cavity resonance condition, we confirmed that the cavity resonance is of primarily importance for the synchronization of whole intrinsic Josephson junctions in the mesa for high power radiation. This work was supported in part by the Grant-in-Aid for challenging Exploratory Research, the Ministry of Education, Culture, Sports, Science & Technology (MEXT).

  20. A 29.3-GHz cavity-enclosed aperture-coupled circular-patch antenna for microwave circuit integration

    Science.gov (United States)

    Navarro, Julio A.; Chang, Kai; Tolleson, Joseph; Sanzgiri, Shashi; Lee, R. Q.

    1991-01-01

    A circular patch antenna fed by an aperture-coupled microstrip line has been demonstrated at 29.3 GHz. The patch was enclosed by a cavity to reduce surface-wave interactions in an array environment and to improve heat dissipation when using active devices. The antenna exhibited a 2:1 input VSWR (voltage standing wave ratio) over a bandwidth of 12 percent from 27.52 to 30.95 GHz. The antenna should have applications in conformal phased arrays at millimeter-wave frequencies.