WorldWideScience

Sample records for superconducting metals separated

  1. Superconductivity in transition metals.

    Science.gov (United States)

    Slocombe, Daniel R; Kuznetsov, Vladimir L; Grochala, Wojciech; Williams, Robert J P; Edwards, Peter P

    2015-03-13

    A qualitative account of the occurrence and magnitude of superconductivity in the transition metals is presented, with a primary emphasis on elements of the first row. Correlations of the important parameters of the Bardeen-Cooper-Schrieffer theory of superconductivity are highlighted with respect to the number of d-shell electrons per atom of the transition elements. The relation between the systematics of superconductivity in the transition metals and the periodic table high-lights the importance of short-range or chemical bonding on the remarkable natural phenomenon of superconductivity in the chemical elements. A relationship between superconductivity and lattice instability appears naturally as a balance and competition between localized covalent bonding and so-called broken covalency, which favours d-electron delocalization and superconductivity. In this manner, the systematics of superconductivity and various other physical properties of the transition elements are related and unified.

  2. Topological superconductivity induced by ferromagnetic metal chains

    Science.gov (United States)

    Li, Jian; Chen, Hua; Drozdov, Ilya K.; Yazdani, A.; Bernevig, B. Andrei; MacDonald, A. H.

    2014-12-01

    Recent experiments have provided evidence that one-dimensional (1D) topological superconductivity can be realized experimentally by placing transition-metal atoms that form a ferromagnetic chain on a superconducting substrate. We address some properties of this type of system by using a Slater-Koster tight-binding model to account for important features of the electronic structure of the transition-metal chains on the superconducting substrate. We predict that topological superconductivity is nearly universal when ferromagnetic transition-metal chains form straight lines on superconducting substrates and that it is possible for more complex chain structures. When the chain is weakly coupled to the substrate and is longer than superconducting coherence lengths, its proximity-induced superconducting gap is ˜Δ ESO/J where Δ is the s -wave pair potential on the chain, ESO is the spin-orbit splitting energy induced in the normal chain state bands by hybridization with the superconducting substrate, and J is the exchange splitting of the ferromagnetic chain d bands. Because of the topological character of the 1D superconducting state, Majorana end modes appear within the gaps of finite length chains. We find, in agreement with the experiment, that when the chain and substrate orbitals are strongly hybridized, Majorana end modes are substantially reduced in amplitude when separated from the chain end by less than the coherence length defined by the p -wave superconducting gap. We conclude that Pb is a particularly favorable substrate material for ferromagnetic chain topological superconductivity because it provides both strong s -wave pairing and strong Rashba spin-orbit coupling, but that there is an opportunity to optimize properties by varying the atomic composition and structure of the chain. Finally, we note that in the absence of disorder, a new chain magnetic symmetry, one that is also present in the crystalline topological insulators, can stabilize multiple

  3. Superconductivity in Layered Organic Metals

    Directory of Open Access Journals (Sweden)

    Jochen Wosnitza

    2012-04-01

    Full Text Available In this short review, I will give an overview on the current understanding of the superconductivity in quasi-two-dimensional organic metals. Thereby, I will focus on charge-transfer salts based on bis(ethylenedithiotetrathiafulvalene (BEDT-TTF or ET for short. In these materials, strong electronic correlations are clearly evident, resulting in unique phase diagrams. The layered crystallographic structure leads to highly anisotropic electronic as well as superconducting properties. The corresponding very high orbital critical field for in-plane magnetic-field alignment allows for the occurrence of the Fulde–Ferrell– Larkin–Ovchinnikov state as evidenced by thermodynamic measurements. The experimental picture on the nature of the superconducting state is still controversial with evidence both for unconventional as well as for BCS-like superconductivity.

  4. Superconducting Metallic Glass Transition-Edge-Sensors

    Science.gov (United States)

    Hays, Charles C. (Inventor)

    2013-01-01

    A superconducting metallic glass transition-edge sensor (MGTES) and a method for fabricating the MGTES are provided. A single-layer superconducting amorphous metal alloy is deposited on a substrate. The single-layer superconducting amorphous metal alloy is an absorber for the MGTES and is electrically connected to a circuit configured for readout and biasing to sense electromagnetic radiation.

  5. Superconductivity of small metal grains

    Institute of Scientific and Technical Information of China (English)

    ZHENG; Renrong; CHEN; Zhiqian; ZHU; Shunquan

    2005-01-01

    The formulas of the energy gap and superconducting critical temperature appropriate for systems with both odd and even number of electrons are derived; the bases of the derivations are BCS theory and energy level statistics. Numerical results qualitatively agree with the experimental phenomena. i.e., the superconductivity of small metallic grains will first enhance then decrease to zero when the grain are getting smaller and smaller. The calculations indicate that the above phenomena happen in the metallic grains belonging to Gaussian Orthogonal Ensemble (GOE) and Gaussian Unitary ensemble (GUE) with zero spin; The superconductivity of small metallic grains in Gaussian Symplectic Ensemble (GSE) will monotonically decrease to zero with the decreasing of the grain size. The analyses suggest that the superconductivity enhancements come from pairing and the balance of the strengths between spin-orbital coupling and external magnetic field. In order to take the latter into account, it is necessary to include the level statistics given by Random Matrix Theory (RMT) in describing small metallic grains.

  6. Superconducting RF separator for Omega Spectrometer

    CERN Multimedia

    1977-01-01

    The photo shows an Nb-deflector for the superconducting RF separator ready for installation in its cryostat (visible at the back). Each deflector was about 3 m long. L. Husson and P. Skacel (Karlsruhe) stand on the left, A. Scharding (CERN) stands on the right. This particle separator, the result of a collaboration between the Gesellshaft für Kernforschung, Karlsruhe, and CERN was installed in the S1 beam line to Omega spectrometer. (See Annual Report 1977.)

  7. Superconductivity in Metals and Alloys

    Science.gov (United States)

    1963-02-01

    sintered material (Reed, Gatos , LaFleur, and Roddy, 1962). It has great importance for any materials work, since generalizations based only on stoichio...1961),Phys. Rev. Letters 6, 597. Goodman, B. B., (1962) IBM J. Research and Development 6, 63. Gor’kov, L. P., (1960), Soy . Phys. JETP 10, 998...34Superconductivity in Metals and Alloys-Technical Documentary Report No. ASD-TDR-62-269, Contract No. AF 33(616)-640 5. Reed, T. B., Gatos , H. C., LaFleur, W. j

  8. Status Of Superconducting Radiofrequency Separator Cryogenic System

    CERN Document Server

    Ageyev, A; Kashtanov, E; Kozub, S; Muraviev, M; Orlov, A; Pimenov, P; Polkovnikov, K; Slabodchikov, P; Sytnik, V V; Zintchenko, S

    2004-01-01

    The OKA experimental complex proposing to use the technique of RF beam separation to produce a Kaon beam is under construction at IHEP. Two deflecting superconducting niobium cavities operating at 1.8 K are the basic elements of the separator. To provide cooling at this temperature commercially available 500 W, 4.5 K helium refrigerator is used to cool liquid helium bath of the satellite refrigerator. The last one is actually a big warm up heat exchanger with flow imbalance and very low pressure drop. Vacuum group consists of two stages of roots blowers and one stage of rotary slide valve pumps. Pump stages are separated by intermediate gas coolers. The schematic, thermodynamics, design capacity and current construction status of the cryogenic system are presented.

  9. Superconductivity in alkali-metal-doped picene.

    Science.gov (United States)

    Mitsuhashi, Ryoji; Suzuki, Yuta; Yamanari, Yusuke; Mitamura, Hiroki; Kambe, Takashi; Ikeda, Naoshi; Okamoto, Hideki; Fujiwara, Akihiko; Yamaji, Minoru; Kawasaki, Naoko; Maniwa, Yutaka; Kubozono, Yoshihiro

    2010-03-04

    Efforts to identify and develop new superconducting materials continue apace, motivated by both fundamental science and the prospects for application. For example, several new superconducting material systems have been developed in the recent past, including calcium-intercalated graphite compounds, boron-doped diamond and-most prominently-iron arsenides such as LaO(1-x)F(x)FeAs (ref. 3). In the case of organic superconductors, however, no new material system with a high superconducting transition temperature (T(c)) has been discovered in the past decade. Here we report that intercalating an alkali metal into picene, a wide-bandgap semiconducting solid hydrocarbon, produces metallic behaviour and superconductivity. Solid potassium-intercalated picene (K(x)picene) shows T(c) values of 7 K and 18 K, depending on the metal content. The drop of magnetization in K(x)picene solids at the transition temperature is sharp (<2 K), similar to the behaviour of Ca-intercalated graphite. The T(c) of 18 K is comparable to that of K-intercalated C(60) (ref. 4). This discovery of superconductivity in K(x)picene shows that organic hydrocarbons are promising candidates for improved T(c) values.

  10. Critical fields of liquid superconducting metallic hydrogen

    Science.gov (United States)

    Jaffe, J.; Ashcroft, N. W.

    1983-01-01

    Liquid metallic hydrogen, in a fully dissociated state, is predicted at certain densities to pass from dirty to clean and from type II to type I superconducting behavior as temperature is lowered. Previously announced in STAR as N82-29374

  11. Half-metallic superconducting triplet spin valve

    Science.gov (United States)

    Halterman, Klaus; Alidoust, Mohammad

    2016-08-01

    We theoretically study a finite-size S F1N F2 spin valve, where a normal metal (N ) insert separates a thin standard ferromagnet (F1) and a thick half-metallic ferromagnet (F2). For sufficiently thin superconductor (S ) widths close to the coherence length ξ0, we find that changes to the relative magnetization orientations in the ferromagnets can result in substantial variations in the transition temperature Tc, consistent with experimental results [Singh et al., Phys. Rev. X 5, 021019 (2015), 10.1103/PhysRevX.5.021019]. Our results demonstrate that, in good agreement with the experiment, the variations are largest in the case where F2 is in a half-metallic phase and thus supports only one spin direction. To pinpoint the origins of this strong spin-valve effect, both the equal-spin f1 and opposite-spin f0 triplet correlations are calculated using a self-consistent microscopic technique. We find that when the magnetization in F1 is tilted slightly out of plane, the f1 component can be the dominant triplet component in the superconductor. The coupling between the two ferromagnets is discussed in terms of the underlying spin currents present in the system. We go further and show that the zero-energy peaks of the local density of states probed on the S side of the valve can be another signature of the presence of superconducting triplet correlations. Our findings reveal that for sufficiently thin S layers, the zero-energy peak at the S side can be larger than its counterpart in the F2 side.

  12. Self-optimized superconductivity attainable by interlayer phase separation at cuprate interfaces.

    Science.gov (United States)

    Misawa, Takahiro; Nomura, Yusuke; Biermann, Silke; Imada, Masatoshi

    2016-07-01

    Stabilizing superconductivity at high temperatures and elucidating its mechanism have long been major challenges of materials research in condensed matter physics. Meanwhile, recent progress in nanostructuring offers unprecedented possibilities for designing novel functionalities. Above all, thin films of cuprate and iron-based high-temperature superconductors exhibit remarkably better superconducting characteristics (for example, higher critical temperatures) than in the bulk, but the underlying mechanism is still not understood. Solving microscopic models suitable for cuprates, we demonstrate that, at an interface between a Mott insulator and an overdoped nonsuperconducting metal, the superconducting amplitude is always pinned at the optimum achieved in the bulk, independently of the carrier concentration in the metal. This is in contrast to the dome-like dependence in bulk superconductors but consistent with the astonishing independence of the critical temperature from the carrier density x observed at the interfaces of La2CuO4 and La2-x Sr x CuO4. Furthermore, we identify a self-organization mechanism as responsible for the pinning at the optimum amplitude: An emergent electronic structure induced by interlayer phase separation eludes bulk phase separation and inhomogeneities that would kill superconductivity in the bulk. Thus, interfaces provide an ideal tool to enhance and stabilize superconductivity. This interfacial example opens up further ways of shaping superconductivity by suppressing competing instabilities, with direct perspectives for designing devices.

  13. Separations chemistry of toxic metals

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P.; Barr, M.; Barrans, R. [and others

    1996-04-01

    Sequestering and removing toxic metal ions from their surroundings is an increasingly active area of research and is gaining importance in light of current environmental contamination problems both within the DOE complex and externally. One method of separating metal ions is to complex them to a molecule (a ligand or chelator) which exhibits specific binding affinity for a toxic metal, even in the presence of other more benign metals. This approach makes use of the sometimes subtle differences between toxic and non-toxic metals resulting from variations in size, charge and shape. For example, toxic metals such as chromium, arsenic, and technetium exist in the environment as oxyanions, negatively charged species with a characteristic tetrahedral shape. Other toxic metals such as actinides and heavy metals are positively charged spheres with specific affinities for particular donor atoms such as oxygen (for actinides) and nitrogen (for heavy metals). In most cases the toxic metals are found in the presence of much larger quantities of less toxic metals such as sodium, calcium and iron. The selectivity of the chelators is critical to the goal of removing the toxic metals from their less toxic counterparts. The approach was to build a ligand framework that complements the unique characteristics of the toxic metal (size, charge and shape) while minimizing interactions with non-toxic metals. The authors have designed ligands exhibiting specificity for the target metals; they have synthesized, characterized and tested these ligands; and they have shown that they exhibit the proposed selectivity and cooperative binding effects.

  14. Superconducting state parameters of ternary metallic glasses

    Indian Academy of Sciences (India)

    Aditya M Vora

    2011-12-01

    The well-known empty core (EMC) model potential of Ashcroft was used to study the theoretical investigation of the superconducting state parameters (SSP) viz. electron–phonon coupling strength , Coulomb pseudopotential $\\mu^{\\ast}$, transition temperature $T_{C}$, isotope effect exponent and effective interaction strength $N_{O}V$ of some ternary metallic glasses. Most recent local field correction function due to Sarkar et al is used to study the screening influence on the aforesaid properties. Quadratic $T_{C}$ equations have been proposed and found successful. Also, the present findings are found to be in qualitative agreement with other such earlier reported data, which confirms the superconducting phase in the ternary superconductors. The pseudo-alloy-atom (PAA) model was applied for the first time instead of Vegard’s law.

  15. Karlsruhe: En route to a superconducting r.f. separator

    CERN Multimedia

    1973-01-01

    A superconducting r.f. separator is under construction at Karlsruhe for use at the SPS in the beam-line to the Omega spectrometer. Tests on a section of the first 3 m deflector have given results close to the desired parameters.

  16. Metals Separation by Liquid Extraction.

    Science.gov (United States)

    Malmary, G.; And Others

    1984-01-01

    As part of a project focusing on techniques in industrial chemistry, students carry out experiments on separating copper from cobalt in chloride-containing aqueous solution by liquid extraction with triisoctylamine solvent and search the literature on the separation process of these metals. These experiments and the literature research are…

  17. Study on industrial wastewater treatment using superconducting magnetic separation

    Science.gov (United States)

    Zhang, Hao; Zhao, Zhengquan; Xu, Xiangdong; Li, Laifeng

    2011-06-01

    The mechanism of industrial wastewater treatment using superconducting magnetic separation is investigated. Fe 3O 4 nanoparticles were prepared by liquid precipitation and characterized by X-ray diffraction (XRD). Polyacrylic acid (PAA) film was coated on the magnetic particles using plasma coating technique. Transmission electron microscope (TEM) observation and infrared spectrum measurement indicate that the particle surface is well coated with PAA, and the film thickness is around 1 nm. Practical paper factory wastewater treatment using the modified magnetic seeds in a superconducting magnet (SCM) was carried out. The results show that the maximum removal rate of chemical oxygen demand (COD) by SCM method can reach 76%.

  18. Breakdown of Superconductivity in Small Metallic Grains

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhi-Qian; ZHENG Ren-Rong

    2000-01-01

    Superconductivity in small metallic grains is carefully checked as their size is decreased to a few nm when the average level spacing d could be compared with the bulk gap Δ. Using random matrix theory to the mean field, we find that the average theoretical values of the critical level spacing for both odd and even numbers of electrons and the transition temperature Tc in three Gauss ensembles are quite different for those from the model of uniformly spaced levels. For Sz = 1/2, as grain size is reduced, the transition temperature or the granular gap decreases monotonously, and the relation 2△(0)/kB Tc ≤ 3.53 always exists.

  19. Superconductivity Series in Transition Metal Dichalcogenides by Ionic Gating

    NARCIS (Netherlands)

    Shi, Wu; Ye, Jianting; Zhang, Yijin; Suzuki, Ryuji; Yoshida, Masaro; Miyazaki, Jun; Inoue, Naoko; Saito, Yu; Iwasa, Yoshihiro

    2015-01-01

    Functionalities of two-dimensional (2D) crystals based on semiconducting transition metal dichalcogenides (TMDs) have now stemmed from simple field effect transistors (FETs) to a variety of electronic and opto-valleytronic devices, and even to superconductivity. Among them, superconductivity is the

  20. Superconducting magnetic separation of ground steel slag powder for recovery of resources

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, H. W.; Kim, J. J.; Kim, Young Hun [Andong National University, Andong (Korea, Republic of); Ha, D. W. [Korea Electrotechnology Research Institute, Changwon (Korea, Republic of); Choi, J. H. [Dept. of Environmental Engineering, Catholic University of Pusan, Pusan (Korea, Republic of)

    2017-03-15

    Steel slag has been considered as an industrial waste. A huge amount of slag is produced as a byproduct and the steel slag usually has been dumped in a landfill site. However the steel slag contains valuable resources such as iron, copper, manganese, and magnesium. Superconducting magnetic separation has been applied on recovery of the valuable resources from the steel slag and this process also has intended to reduce the waste to be dumped. Cryo-cooled Nb-Ti superconducting magnet with 100 mm bore and 600 mm of height was used as the magnetic separator. The separating efficiency was evaluated in the function of magnetic field. A steel slag was ground and analyzed for the composition. Iron containing minerals were successfully concentrated from less iron containing portion. The separation efficiency was highly dependent on the particle size giving higher separating efficiency with finer particle. The magnetic field also effects on the separation ratio. Current study showed that an appropriate grinding of slag and magnetic separation lead to the recovery of metal resources from steel slag waste rather than dumping all of the volume.

  1. Electrostatic separation of superconducting particles from non-superconducting particles and improvement in fuel atomization by electrorheology

    Science.gov (United States)

    Chhabria, Deepika

    This thesis has two major topics: (1) Electrostatic Separation of Superconducting Particles from a Mixture of Non-Superconducting Particles. (2) Improvement in fuel atomization by Electrorheology. (1) Based on the basic science research, the interactions between electric field and superconductors, we have developed a new technology, which can separate superconducting granular particles from their mixture with non-superconducting particles. The electric-field induced formation of superconducting balls is important aspect of the interaction between superconducting particles and electric field. When the applied electric field exceeds a critical value, the induced positive surface energy on the superconducting particles forces them to aggregate into balls or cling to the electrodes. In fabrication of superconducting materials, especially HTSC materials, it is common to come across materials with multiple phases: some grains are in superconducting state while the others are not. Our technology is proven to be very useful in separating superconducting grains from the rest non-superconducting materials. To separate superconducting particles from normal conducting particles, we apply a suitable strong electric field. The superconducting particles cling to the electrodes, while normal conducting particles bounce between the electrodes. The superconducting particles could then be collected from the electrodes. To separate superconducting particles from insulating ones, we apply a moderate electric field to force insulating particles to the electrodes to form short chains while the superconducting particles are collected from the middle of capacitor. The importance of this technology is evidenced by the unsuccessful efforts to utilize the Meissner effect to separate superconducting particles from nonsuperconducting ones. Because the Meissner effect is proportional to the particle volume, it has been found that the Meissner effect is not useful when the superconducting

  2. Superconducting fluctuations in organic molecular metals enhanced by Mott criticality.

    Science.gov (United States)

    Nam, Moon-Sun; Mézière, Cécile; Batail, Patrick; Zorina, Leokadiya; Simonov, Sergey; Ardavan, Arzhang

    2013-12-02

    Unconventional superconductivity typically occurs in materials in which a small change of a parameter such as bandwidth or doping leads to antiferromagnetic or Mott insulating phases. As such competing phases are approached, the properties of the superconductor often become increasingly exotic. For example, in organic superconductors and underdoped high-T(c) cuprate superconductors a fluctuating superconducting state persists to temperatures significantly above T(c). By studying alloys of quasi-two-dimensional organic molecular metals in the κ-(BEDT-TTF)₂X family, we reveal how the Nernst effect, a sensitive probe of superconducting phase fluctuations, evolves in the regime of extreme Mott criticality. We find strong evidence that, as the phase diagram is traversed through superconductivity towards the Mott state, the temperature scale for superconducting fluctuations increases dramatically, eventually approaching the temperature at which quasiparticles become identifiable at all.

  3. Superconductivity

    CERN Document Server

    Ketterson, John B

    2008-01-01

    Conceived as the definitive reference in a classic and important field of modern physics, this extensive and comprehensive handbook systematically reviews the basic physics, theory and recent advances in the field of superconductivity. Leading researchers, including Nobel laureates, describe the state-of-the-art in conventional and unconventional superconductors at a particularly opportune time, as new experimental techniques and field-theoretical methods have emerged. In addition to full-coverage of novel materials and underlying mechanisms, the handbook reflects continued intense research into electron-phone based superconductivity. Considerable attention is devoted to high-Tc superconductivity, novel superconductivity, including triplet pairing in the ruthenates, novel superconductors, such as heavy-Fermion metals and organic materials, and also granular superconductors. What’s more, several contributions address superconductors with impurities and nanostructured superconductors. Important new results on...

  4. Superconductivity of metal-induced surface reconstructions on silicon

    Science.gov (United States)

    Uchihashi, Takashi

    2016-11-01

    Recent progress in superconducting metal-induced surface reconstructions on silicon is reviewed, mainly focusing on the results of the author’s group. After a brief introduction of an ultrahigh-vacuum (UHV)-low-temperature (LT)-compatible electron transport measurement system, direct observation of the zero resistance state for the Si(111)-(\\sqrt{7} × \\sqrt{3} )-In surface is described, which demonstrates the existence of a superconducting transition in this class of two-dimensional (2D) materials. The measurement and analysis of the temperature dependence of the critical current density indicate that a surface atomic step works as a Josephson junction. This identification is further confirmed by LT-scanning tunneling microscopy (STM) observation of Josephson vortices trapped at atomic steps on the Si(111)-(\\sqrt{7} × \\sqrt{3} )-In surface. These experiments reveal unique features of metal-induced surface reconstructions on silicon that may be utilized to explore novel superconductivity.

  5. Odd-parity superconductivity in bilayer transition metal dichalcogenides

    Science.gov (United States)

    Nakamura, Yasuharu; Yanase, Youichi

    2017-08-01

    Spin-orbit coupling in transition metal dichalcogenides (TMDCs) causes spin-valley locking, giving rise to unconventional optical, transport, and superconducting properties. In this paper, we propose exotic superconductivity in bilayer group-IV TMDCs by symmetry control. The sublattice-dependent "hidden" spin-orbit coupling arising from local inversion symmetry breaking in the crystal structure may stabilize the odd-parity superconductivity by purely s -wave local pairing interaction. The stability of the odd-parity superconducting state depends on the bilayer stacking. The 2 Hb stacking in MoX2 and WX2 (X =S ,Se) favors the odd-parity superconductivity due to interlayer quantum interference. On the other hand, the odd-parity superconductivity is suppressed by the 2 Ha stacking of NbSe2. Calculating the phase diagram of the tight-binding model derived from first-principles band calculations, we conclude that the intercalated bilayer MoS2 and WS2 are candidates for a new class of odd-parity superconductors by spin-orbit coupling.

  6. Electronic spin susceptibility of metallic superconductive nano-particles

    Institute of Scientific and Technical Information of China (English)

    Li Feng; Chen Zhi-Qian; Li Qing

    2006-01-01

    We have observed the thermodynamic properties of metallic superconductive nano-particles in the grand canonical ensemble; and the level distribution and the level correlation between the discrete electronic energy levels are considered in the calculation of the electronic spin susceptibility of the ensemble numerically. The quantum effect, even-odd effect and other special effects existing in the metallic nano-particles are also studied in this article.

  7. Unconventional superconductivity in low density electron systems and conventional superconductivity in hydrogen metallic alloys

    Science.gov (United States)

    Kagan, M. Yu.

    2016-06-01

    In this short review, we first discuss the results, which are mainly devoted to the generalizations of the famous Kohn-Luttinger mechanism of superconductivity in purely repulsive fermion systems at low electron densities. In the context of repulsive- U Hubbard model and Shubin-Vonsovsky model we consider briefly the superconducting phase diagrams and the symmetries of the order parameter in novel strongly correlated electron systems including idealized monolayer and bilayer graphene. We stress that purely repulsive fermion systems are mainly the subject of unconventional low-temperature superconductivity. To get the high temperature superconductivity in cuprates (with T C of the order of 100 K) we should proceed to the t-J model with the van der Waals interaction potential and the competition between short-range repulsion and long-range attraction. Finally we note that to describe superconductivity in metallic hydrogen alloys under pressure (with T C of the order of 200 K) it is reasonable to reexamine more conventional mechanisms connected with electron-phonon interaction. These mechanisms arise in the attractive- U Hubbard model with static onsite or intersite attractive potential or in more realistic theories (which include retardation effects) such as Migdal-Eliashberg strong coupling theory or even Fermi-Bose mixture theory of Ranninger et al. and its generalizations.

  8. Superconductivity in an Inhomogeneous Bundle of Metallic and Semiconducting Nanotubes

    Directory of Open Access Journals (Sweden)

    Ilya Grigorenko

    2013-01-01

    Full Text Available Using Bogoliubov-de Gennes formalism for inhomogeneous systems, we have studied superconducting properties of a bundle of packed carbon nanotubes, making a triangular lattice in the bundle's transverse cross-section. The bundle consists of a mixture of metallic and doped semiconducting nanotubes, which have different critical transition temperatures. We investigate how a spatially averaged superconducting order parameter and the critical transition temperature depend on the fraction of the doped semiconducting carbon nanotubes in the bundle. Our simulations suggest that the superconductivity in the bundle will be suppressed when the fraction of the doped semiconducting carbon nanotubes will be less than 0.5, which is the percolation threshold for a two-dimensional triangular lattice.

  9. Superconductivity Series in Transition Metal Dichalcogenides by Ionic Gating.

    Science.gov (United States)

    Shi, Wu; Ye, Jianting; Zhang, Yijin; Suzuki, Ryuji; Yoshida, Masaro; Miyazaki, Jun; Inoue, Naoko; Saito, Yu; Iwasa, Yoshihiro

    2015-08-03

    Functionalities of two-dimensional (2D) crystals based on semiconducting transition metal dichalcogenides (TMDs) have now stemmed from simple field effect transistors (FETs) to a variety of electronic and opto-valleytronic devices, and even to superconductivity. Among them, superconductivity is the least studied property in TMDs due to methodological difficulty accessing it in different TMD species. Here, we report the systematic study of superconductivity in MoSe2, MoTe2 and WS2 by ionic gating in different regimes. Electrostatic gating using ionic liquid was able to induce superconductivity in MoSe2 but not in MoTe2 because of inefficient electron accumulation limited by electronic band alignment. Alternative gating using KClO4/polyethylene glycol enabled a crossover from surface doping to bulk doping, which induced superconductivities in MoTe2 and WS2 electrochemically. These new varieties greatly enriched the TMD superconductor families and unveiled critical methodology to expand the capability of ionic gating to other materials.

  10. Enhancement of phase separation and superconductivity in Mn-doped K0.8Fe2-yMnySe2 crystals.

    Science.gov (United States)

    Li, M T; Chen, L; Li, Z W; Ryu, G H; Lin, C T; Zhang, J C

    2013-08-21

    Single crystals of K0.8Fe2-yMnySe2 with slight Mn doping have been grown by a self-flux method. X-ray diffraction measurements show enhanced phase separation with increasing Mn doping in the compounds. The superconducting transition temperature increases to Tc,onset ∼ 46.1 K for the sample with y ∼ 0.03, as observed by electrical transport measurements. Our results demonstrate that the doping of Mn does not suppress the superconductivity, and on the contrary increases the superconducting shield fraction and transition temperature, an effect which may originate from the Mn dopant's high preference to fill into iron vacancies in the Mn-doped samples. It suggests that the Mn dopant can induce a local lattice strain or distortion that profitably modifies the microstructure of the superconducting/metallic phase, leading to superconductivity of the compound.

  11. Pressure-induced electronic phase separation of magnetism and superconductivity in CrAs.

    Science.gov (United States)

    Khasanov, Rustem; Guguchia, Zurab; Eremin, Ilya; Luetkens, Hubertus; Amato, Alex; Biswas, Pabitra K; Rüegg, Christian; Susner, Michael A; Sefat, Athena S; Zhigadlo, Nikolai D; Morenzoni, Elvezio

    2015-09-08

    The recent discovery of pressure (p) induced superconductivity in the binary helimagnet CrAs has raised questions on how superconductivity emerges from the magnetic state and on the mechanism of the superconducting pairing. In the present work the suppression of magnetism and the occurrence of superconductivity in CrAs were studied by means of muon spin rotation. The magnetism remains bulk up to p ≃ 3.5 kbar while its volume fraction gradually decreases with increasing pressure until it vanishes at p ≃ 7 kbar. At 3.5 kbar superconductivity abruptly appears with its maximum Tc ≃ 1.2 K which decreases upon increasing the pressure. In the intermediate pressure region (3.5 superconducting and the magnetic volume fractions are spatially phase separated and compete for phase volume. Our results indicate that the less conductive magnetic phase provides additional carriers (doping) to the superconducting parts of the CrAs sample thus leading to an increase of the transition temperature (Tc) and of the superfluid density (ρs). A scaling of ρs with Tc(3.2) as well as the phase separation between magnetism and superconductivity point to a conventional mechanism of the Cooper-pairing in CrAs.

  12. Superconductivity of metallic boron in MgB2.

    Science.gov (United States)

    Kortus, J; Mazin, I I; Belashchenko, K D; Antropov, V P; Boyer, L L

    2001-05-14

    Boron in MgB2 forms stacks of honeycomb layers with magnesium as a space filler. Band structure calculations indicate that Mg is substantially ionized, and the bands at the Fermi level derive mainly from B orbitals. Strong bonding with an ionic component and considerable metallic density of states yield a sizable electron-phonon coupling. Together with high phonon frequencies, which we estimate via zone-center frozen phonon calculations to be between 300 and 700 cm(-1), this produces a high critical temperature, consistent with recent experiments. Thus MgB2 can be viewed as an analog of the long sought, but still hypothetical, superconducting metallic hydrogen.

  13. Topological Superconductivity in Ferromagnetic Metal Chains: Part I

    Science.gov (United States)

    Li, Jian; Chen, Hua; Drozdov, Ilya; Yazdani, Ali; Bernevig, Bogdan; MacDonald, Allan

    2015-03-01

    Recent experiments have demonstrated superconductivity induced in ferromagnetic atomic chains as a new route to the research of Majorana physics. In this talk we discuss the theory behind these experiments. We will first present a generic picture for how superconductivity is induced in ferromagnetic metal chains through coupling to a superconductor with strong spin-orbit coupling, and explain why this hybrid system is a plausible new platform in searching for topological superconductivity. We will then present a tight-binding model associated with the existing experiments. We reveal a new chain magnetic symmetry that is able to stabilize multiple Majorana end modes in the absence of disorder, resulting in a one-dimensional crystalline topological superconductor. We show phase diagrams in terms of such topological phases and point out their relevance to the existing experiments. In the last part of this talk we will briefly discuss some other directions of research based on the new platform, including braiding Majorana quasi-particles in ferromagnetic chains, as well as realizing topological superconductivity in two-dimensional ferromagnetic thin films.

  14. Unconventional superconductivity from magnetism in transition-metal dichalcogenides

    Science.gov (United States)

    Rahimi, M. A.; Moghaddam, A. G.; Dykstra, C.; Governale, M.; Zülicke, U.

    2017-03-01

    We investigate proximity-induced superconductivity in monolayers of transition-metal dichalcogenides (TMDs) in the presence of an externally generated exchange field. A variety of superconducting order parameters is found to emerge from the interplay of magnetism and superconductivity, covering the entire spectrum of possibilities to be symmetric or antisymmetric with respect to the valley and spin degrees of freedom, as well as even or odd in frequency. More specifically, when a conventional s -wave superconductor with singlet Cooper pairs is tunnel-coupled to the TMD layer, both spin-singlet and triplet pairings between electrons from the same and opposite valleys arise due to the combined effects of intrinsic spin-orbit coupling and a magnetic-substrate-induced exchange field. As a key finding, we reveal the existence of an exotic even-frequency triplet pairing between equal-spin electrons from different valleys, which arises whenever the spin orientations in the two valleys are noncollinear. All types of superconducting order turn out to be highly tunable via straightforward manipulation of the external exchange field.

  15. Preparation of uniform mixed metal oxide and superconductive oxides

    Energy Technology Data Exchange (ETDEWEB)

    Barder, T.J.

    1991-04-30

    This paper describes a method for producing a uniform mixed metal oxide. It includes dissolving metals as their salts of a carboxylic acid in an aliphatic alcohol in the substantial absence of water, the metals are in the same proportions as in the corresponding mixed metal oxide; co-precipitating the metals as their oxalates by mixing the alcohol solution with oxalic acid; separating the co-precipitated metal oxalates and calcining the oxalates in air or oxygen above about 500{degrees} C to convert the oxalates to the corresponding metal oxides.

  16. The metallization and superconductivity of dense hydrogen sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yinwei, E-mail: yinwei-li@jsnu.edu.cn; Hao, Jian; Li, Yanling [School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116 (China); Liu, Hanyu [Department of Physics and Engineering Physics, University of Saskatchewan, Saskatchewan S7N 5E2 (Canada); Ma, Yanming, E-mail: mym@jlu.edu.cn [State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China)

    2014-05-07

    Hydrogen sulfide (H{sub 2}S) is a prototype molecular system and a sister molecule of water (H{sub 2}O). The phase diagram of solid H{sub 2}S at high pressures remains largely unexplored arising from the challenges in dealing with the pressure-induced weakening of S–H bond and larger atomic core difference between H and S. Metallization is yet achieved for H{sub 2}O, but it was observed for H{sub 2}S above 96 GPa. However, the metallic structure of H{sub 2}S remains elusive, greatly impeding the understanding of its metallicity and the potential superconductivity. We have performed an extensive structural study on solid H{sub 2}S at pressure ranges of 10–200 GPa through an unbiased structure prediction method based on particle swarm optimization algorithm. Besides the findings of candidate structures for nonmetallic phases IV and V, we are able to establish stable metallic structures violating an earlier proposal of elemental decomposition into sulfur and hydrogen [R. Rousseau, M. Boero, M. Bernasconi, M. Parrinello, and K. Terakura, Phys. Rev. Lett. 85, 1254 (2000)]. Our study unravels a superconductive potential of metallic H{sub 2}S with an estimated maximal transition temperature of ∼80 K at 160 GPa, higher than those predicted for most archetypal hydrogen-containing compounds (e.g., SiH{sub 4}, GeH{sub 4}, etc.)

  17. Metal-insulator-metal waveguides for particle trapping and separation.

    Science.gov (United States)

    Khan, Saara A; Chang, Chia-Ming; Zaidi, Zain; Shin, Wonseok; Shi, Yu; Ellerbee Bowden, Audrey K; Solgaard, Olav

    2016-06-21

    Optical particle trapping and separation are essential techniques in the fields of biology and chemistry. In many applications, it is important to identify passive separation techniques that only rely on intrinsic forces in a system with a fixed device geometry. We present a dual-waveguide sorter that utilizes the loss of metal-insulator-metal (MIM) waveguides for completely passive particle trapping and separation and is created using a unique angle sidewall deposition process. Our experiments show that an inner Au-Si3N4-Au waveguide is able to trap particles within the propagation distance of its dominant modes and release the particles into an outer Au-H2O-Au waveguide. The outer waveguide then propels the particles and separates them by size. The separation results are accurately modeled by a first-principles, analytical model.

  18. Superconductivity

    CERN Document Server

    Poole, Charles P; Farach, Horacio A

    1995-01-01

    Superconductivity covers the nature of the phenomenon of superconductivity. The book discusses the fundamental principles of superconductivity; the essential features of the superconducting state-the phenomena of zero resistance and perfect diamagnetism; and the properties of the various classes of superconductors, including the organics, the buckministerfullerenes, and the precursors to the cuprates. The text also describes superconductivity from the viewpoint of thermodynamics and provides expressions for the free energy; the Ginzburg-Landau and BCS theories; and the structures of the high

  19. Superconductivity

    CERN Document Server

    Thomas, D B

    1974-01-01

    A short general review is presented of the progress made in applied superconductivity as a result of work performed in connection with the high-energy physics program in Europe. The phenomenon of superconductivity and properties of superconductors of Types I and II are outlined. The main body of the paper deals with the development of niobium-titanium superconducting magnets and of radio-frequency superconducting cavities and accelerating structures. Examples of applications in and for high-energy physics experiments are given, including the large superconducting magnet for the Big European Bubble Chamber, prototype synchrotron magnets for the Super Proton Synchrotron, superconducting d.c. beam line magnets, and superconducting RF cavities for use in various laboratories. (0 refs).

  20. Superconducting state of metallic nanoclusters and Josephson tunneling networks

    Energy Technology Data Exchange (ETDEWEB)

    Kresin, Vladimir, E-mail: vzkresin@lbl.gov [Lawrence Berkeley Laboratory, University of California at Berkeley, CA 94720 (United States); Ovchinnikov, Yurii [L. Landau Institute for Theoretical Physics, RAN, Moscow 117334 (Russian Federation)

    2014-11-15

    Highlights: • Specific nanoclusters form a new family of high T{sub c} superconductors. • For an isolated cluster the pairing affects its energy spectrum. • Nano-based Josephson tunneling network can transfer a macroscopic superconducting current at high temperatures. • A.c. tunneling network can be synchronized and radiates as a single junction. - Abstract: Metallic nanoclusters form a new family of high temperature superconductors. In principle, the value of T{sub c} can be raised up to room temperature. In addition, one can observe the Josephson tunneling between two clusters. One can build the nanocluster-based tunneling network capable to transfer a macroscopic supercurrent at high temperatures. Such a network can be synchronized and radiate as single junction.

  1. Feasibility of turbidity removal by high-gradient superconducting magnetic separation.

    Science.gov (United States)

    Zeng, Hua; Li, Yiran; Xu, Fengyu; Jiang, Hao; Zhang, Weimin

    2015-01-01

    Several studies have focused on pollutant removal by magnetic seeding and high-gradient superconducting magnetic separation (HGSMS). However, few works reported the application of HGSMS for treating non-magnetic pollutants by an industrial large-scale system. The feasibility of turbidity removal by a 600 mm bore superconducting magnetic separation system was evaluated in this study. The processing parameters were evaluated by using a 102 mm bore superconducting magnetic separation system that was equipped with the same magnetic separation chamber that was used in the 600 mm bore system. The double-canister system was used to process water pollutants. Analytical grade magnetite was used as a magnetic seed and the turbidity of the simulated raw water was approximately 110 NTU, and the effects of polyaluminum chloride (PAC) and magnetic seeds on turbidity removal were evaluated. The use of more PAC and magnetic seeds had few advantages for the HGSMS at doses greater than 8 and 50 mg/l, respectively. A magnetic intensity of 5.0 T was beneficial for HGSMS, and increasing the flow rate through the steel wool matrix decreased the turbidity removal efficiency. In the breakthrough experiments, 90% of the turbidity was removed when 100 column volumes were not reached. The processing capacity of the 600 mm bore industry-scale superconducting magnetic separator for turbidity treatment was approximately 78.0 m(3)/h or 65.5 × 10(4) m(3)/a. The processing cost per ton of water for the 600 mm bore system was 0.1 $/t. Thus, the HGSMS separator could be used in the following special circumstances: (1) when adequate space is not available for traditional water treatment equipment, especially the sedimentation tank, and (2) when decentralized sewage treatment HGSMS systems are easier to transport and install.

  2. Metallic Membranes for High Temperature Hydrogen Separation

    DEFF Research Database (Denmark)

    Ma, Y.H.; Catalano, Jacopo; Guazzone, Federico

    2013-01-01

    Composite palladium membranes have extensively been studied in laboratories and, more recently, in small pilot industrial applications for the high temperature separation of hydrogen from reactant mixtures such as water-gas shift (WGS) reaction or methane steam reforming (MSR). Composite Pd...... membrane fabrication methods have matured over the last decades, and the deposition of very thin films (1–5 µm) of Pd over porous ceramics or modified porous metal supports is quite common. The H2 permeances and the selectivities achieved at 400–500 °C were in the order of 50–100 Nm3/m/h/bar0.5 and greater...... than 1000, respectively. This chapter describes in detail composite Pd-based membrane preparation methods, which consist of the grading of the support and the deposition of the dense metal layer, their performances, and their applications in catalytic membrane reactors (CMRs) at high temperatures (400...

  3. Superconductivity

    Science.gov (United States)

    1989-07-01

    SUPERCONDUCTIVITY HIGH-POWER APPLICATIONS Electric power generation/transmission Energy storage Acoustic projectors Weapon launchers Catapult Ship propulsion • • • Stabilized...temperature superconductive shields could be substantially enhanced by use of high-Tc materials. 27 28 NRAC SUPERCONDUCTIVITY SHIP PROPULSION APPLICATIONS...motor shown in the photograph. As a next step in the evolution of electric-drive ship propulsion technology, DTRC has proposed to scale up the design

  4. Supported Molten Metal Membranes for Hydrogen Separation

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Ravindra; Ma, Yi Hua; Yen, Pei-Shan; Deveau, Nicholas; Fishtik, Ilie; Mardilovich, Ivan

    2013-09-30

    We describe here our results on the feasibility of a novel dense metal membrane for hydrogen separation: Supported Molten Metal Membrane, or SMMM.1 The goal in this work was to develop these new membranes based on supporting thin films of low-melting, non- precious group metals, e.g., tin (Sn), indium (In), gallium (Ga), or their alloys, to provide a flux and selectivity of hydrogen that rivals the conventional but substantially more expensive palladium (Pd) or Pd alloy membranes, which are susceptible to poisoning by the many species in the coal-derived syngas, and further possess inadequate stability and limited operating temperature range. The novelty of the technology presented numerous challenges during the course of this project, however, mainly in the selection of appropriate supports, and in the fabrication of a stable membrane. While the wetting instability of the SMMM remains an issue, we did develop an adequate understanding of the interaction between molten metal films with porous supports that we were able to find appropriate supports. Thus, our preliminary results indicate that the Ga/SiC SMMM at 550 ºC has a permeance that is an order of magnitude higher than that of Pd, and exceeds the 2015 DOE target. To make practical SMM membranes, however, further improving the stability of the molten metal membrane is the next goal. For this, it is important to better understand the change in molten metal surface tension and contact angle as a function of temperature and gas-phase composition. A thermodynamic theory was, thus, developed, that is not only able to explain this change in the liquid-gas surface tension, but also the change in the solid-liquid surface tension as well as the contact angle. This fundamental understanding has allowed us to determine design characteristics to maintain stability in the face of changing gas composition. These designs are being developed. For further progress, it is also important to understand the nature of solution and

  5. Metal-insulator transition and superconductivity in heavily boron-doped diamond and related materials

    Energy Technology Data Exchange (ETDEWEB)

    Achatz, Philipp

    2009-05-15

    During this PhD project, the metal-insulator transition and superconductivity of highly boron-doped single crystal diamond and related materials have been investigated. The critical boron concentration n{sub c} for the metal-insulator transition was found to be the same as for the normal-superconductor transition. All metallic samples have been found to be superconducting and we were able to link the occurence of superconductivity to the proximity to the metal-insulator transition. For this purpose, a scaling law approach based on low temperature transport was proposed. Furthermore, we tried to study the nature of the superconductivity in highly boron doped single crystal diamond. Raman spectroscopy measurements on the isotopically substituted series suggest that the feature occuring at low wavenumbers ({approx} 500 cm{sup -1}) is the A1g vibrational mode associated with boron dimers. Usual Hall effect measurements yielded a puzzling situation in metallic boron-doped diamond samples, leading to carrier concentrations up to a factor 10 higher than the boron concentration determined by secondary ion mass spectroscopy (SIMS). The low temperature transport follows the one expected for a granular metal or insulator, depending on the interplay of intergranular and intragranular (tunneling) conductance. The metal-insulator transition takes place at a critical conductance g{sub c}. The granularity also influences significantly the superconducting properties by introducing the superconducting gap {delta} in the grain and Josephson coupling J between superconducting grains. A peak in magnetoresistance is observed which can be explained by superconducting fluctuations and the granularity of the system. Additionally we studied the low temperature transport of boron-doped Si samples grown by gas immersion laser doping, some of which yielded a superconducting transition at very low temperatures. Furthermore, preliminary results on the LO-phonon-plasmon coupling are shown for the

  6. Study on magnetic separation for decontamination of cesium contaminated soil by using superconducting magnet

    Energy Technology Data Exchange (ETDEWEB)

    Igarashi, Susumu, E-mail: igarashi@qb.see.eng.osaka-u.ac.jp; Nomura, Naoki; Mishima, Fumihito; Akiyama, Yoko, E-mail: yoko-ak@see.eng.osaka-u.ac.jp

    2014-09-15

    Highlights: • The method for the soil decontamination by the superconducting magnet is proposed. • Magnetic separation of clay minerals was performed by HGMS. • Soil separation ratio was evaluated by quantitative analysis using XRD. • It is expected that HGMS can be applied to the actual soil decontamination. - Abstract: The accident of Fukushima Daiichi nuclear power plant caused the diffusion of radioactive cesium over the wide area. We examined the possibility of applying magnetic separation method using the superconducting magnet, which can process a large amount of the soil in high speed, to the soil decontamination and volume reduction of the radioactive cesium contaminated soil. Clay minerals are classified as 2:1 and 1:1 types by the difference of their layer structures, and these types of minerals are respectively paramagnetic and diamagnetic including some exception. It is known that most of the radioactive cesium is strongly adsorbed on the clay, especially on 2:1 type clay minerals. It is expected that the method which can separate only 2:1 type clay minerals selectively from the mixture clay minerals can enormously contribute to the volume reduction of the contaminated soil. In this study, the components in the clay before and after separation were evaluated to estimate the magnetic separation efficiency by using X-ray diffraction. From the results, the decontamination efficiency and the volume reduction ratio were estimated in order to examine the appropriate separation conditions for the practical decontamination of the soil.

  7. Enhancement of local superconductivity in ferromagnetic FeCrB metallic glass by Ar{sup +} ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Okunev, V D; Samoilenko, Z A [Donetsk Physiko-Technical Institute, Ukrainian National Academy of Sciences, 83114 Donetsk (Ukraine); Szewczyk, A; Szymczak, R; Szymczak, H; Lewandowski, S J; Aleshkevych, P; Wieckowski, J [Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, 02-668 Warsaw (Poland); Khmelevskaya, V S; Antoshina, I A, E-mail: okunev@mail.fti.ac.donetsk.ua [Obninsk State Technical University of Atomic Energy, 249020 Obninsk (Russian Federation)

    2011-10-19

    We have reinforced local superconductivity in ferromagnetic Fe{sub 67}Cr{sub 18}B{sub 15} metallic glasses by ion irradiation. Superconductivity in this medium appears due to the presence of large-scale layered clusters of metallic Fe-Cr phase, 150-230A in size, with a ferromagnetic (or superparamagnetic) Fe-rich core and nonmagnetic Cr-rich superconducting shell. Here we show that due to the intensification of concentration phase separation in the Fe-Cr clusters under ion (Ar{sup +}) irradiation, the volume of the superconducting phase increases from the initial 0.4-0.5% up to 7-8%. After irradiation, the resistivity jump {Delta}{rho}/{rho} in the temperature range T = 3.1-3.6 K increases {approx}14 times, reaching 19%, as compared to 1.36% for the initial sample. In the interval of T = 3.1-3.6 K, the rate of resistance change reaches 79% K{sup -1} for the irradiated sample instead of 3.6% K{sup -1} for the initial sample. In the same temperature interval, the rate of magnetoresistance change increases from 3% K{sup -1} for the initial sample up to 70% K{sup -1} after irradiation. (paper)

  8. Superconductivity in One-atomic-layer Metal Films

    Institute of Scientific and Technical Information of China (English)

    ZHANG Tong; CHEN Xi; WANG Yayu; LIU Ying; LIN Haiqing; JIA Jinfeng; XUE Qikun; CHENG Peng; LI Wenjuan; SUN Yujie; WANG Guang; ZHU Xicgang; HE Ke; WANG Lili; MA Xucun

    2011-01-01

    @@ Superconductivity is a peculiar quantum phenomenon which originates from the pairing of conduction electrons, followed by phase coherent condensation.Since the discovery by K.Onnes in 1911, superconductivity has been one of the hottest topics in physics for an entire century, and still attracts people's great interest.One of the intriguing issues is how superconductivity appears in low dimensional system where quantum size effect and surface/interface effect that large bulk material doesn't have may become crucial.

  9. Superconductivity in One-atomic-layer Metal Films

    Institute of Scientific and Technical Information of China (English)

    ZHANG Tong; CHENG Peng; LI Wenjuan; SUN Yujie; WANG Guang; ZHU Xiegang; HE Ke; WANG Lili; MA Xucun; CHEN Xi; WANG Yayu; LIU Ying; LIN Haiqing; JIA Jinfeng; XUE Qikun

    2011-01-01

    Superconductivity is a peculiar quantum phenomenon which originates from the pairing of conduction electrons, tbllowed by phase coherent condensation, Since the discovery by K. Onnes in 1911, superconductivity has been one of the hottest topics in physics for an entire century, and still attracts people's great interest. One of the intriguing issues is how superconductivity appears in low dimensional system where quantum size effect and surface/interface effect that large bulk material doesn't have may become crucial.

  10. Separation of metal ions in nitrate solution by ultrasonic atomization

    Science.gov (United States)

    Sato, Masanori; Ikeno, Masayuki; Fujii, Toshitaka

    2004-11-01

    In the ultrasonic atomization of metal nitrate solutions, the molar ratio of metal ions is changed between solution and mist. Small molar metal ions tend to be transferred to mist by ultrasonic wave acceleration, while large molar ions tend to remain in solution. As a result, metal ions can be separated by ultrasonic atomization. We show experimental data and propose a conceptual mechanism for the ultrasonic separation of metal ions.

  11. Superconductivity in Potassium-Doped Metallic Polymorphs of MoS2.

    Science.gov (United States)

    Zhang, Renyan; Tsai, I-Ling; Chapman, James; Khestanova, Ekaterina; Waters, John; Grigorieva, Irina V

    2016-01-13

    Superconducting layered transition metal dichalcogenides (TMDs) stand out among other superconductors due to the tunable nature of the superconducting transition, coexistence with other collective electronic excitations (charge density waves), and strong intrinsic spin-orbit coupling. Molybdenum disulfide (MoS2) is the most studied representative of this family of materials, especially since the recent demonstration of the possibility to tune its critical temperature, Tc, by electric-field doping. However, just one of its polymorphs, band-insulator 2H-MoS2, has so far been explored for its potential to host superconductivity. We have investigated the possibility to induce superconductivity in metallic polytypes, 1T- and 1T'-MoS2, by potassium (K) intercalation. We demonstrate that at doping levels significantly higher than that required to induce superconductivity in 2H-MoS2, both 1T and 1T' phases become superconducting with Tc = 2.8 and 4.6 K, respectively. Unusually, K intercalation in this case is responsible both for the structural and superconducting phase transitions. By adding new members to the family of superconducting TMDs, our findings open the way to further manipulate and enhance the electronic properties of these technologically important materials.

  12. Size and symmetry of the superconducting gap in the f.c.c. Cs3C60 polymorph close to the metal-Mott insulator boundary.

    Science.gov (United States)

    Potočnik, Anton; Krajnc, Andraž; Jeglič, Peter; Takabayashi, Yasuhiro; Ganin, Alexey Y; Prassides, Kosmas; Rosseinsky, Matthew J; Arčon, Denis

    2014-03-03

    The alkali fullerides, A(3)C(60) (A = alkali metal) are molecular superconductors that undergo a transition to a magnetic Mott-insulating state at large lattice parameters. However, although the size and the symmetry of the superconducting gap, Δ, are both crucial for the understanding of the pairing mechanism, they are currently unknown for superconducting fullerides close to the correlation-driven magnetic insulator. Here we report a comprehensive nuclear magnetic resonance (NMR) study of face-centred-cubic (f.c.c.) Cs(3)C(60) polymorph, which can be tuned continuously through the bandwidth-controlled Mott insulator-metal/superconductor transition by pressure. When superconductivity emerges from the insulating state at large interfullerene separations upon compression, we observe an isotropic (s-wave) Δ with a large gap-to-superconducting transition temperature ratio, 2Δ0/k(B)T(c) = 5.3(2) [Δ0 = Δ(0 K)]. 2Δ0/k(B)T(c) decreases continuously upon pressurization until it approaches a value of ~3.5, characteristic of weak-coupling BCS theory of superconductivity despite the dome-shaped dependence of Tc on interfullerene separation. The results indicate the importance of the electronic correlations for the pairing interaction as the metal/superconductor-insulator boundary is approached.

  13. Superconducting magnetic separation of phosphate using freshly formed hydrous ferric oxide sols.

    Science.gov (United States)

    Li, Yiran; Li, Zhiyong; Xu, Fengyu; Zhang, Weimin

    2017-02-01

    Paramagnetic materials, such as ferric hydroxides, which are cost-effective and highly-efficient, have been little studied in relation to the magnetic separation process. In this study, freshly formed hydrous ferric oxide (HFO) sols were used to remove aqueous phosphate, followed by superconducting magnetic separation. The magnetization of HFO was determined to be 5.7 emu/g in 5.0 T. The particle size distributions ranged from 1 to 80 μm. Ferrihydrite was the primary mineral phase according to XRD analysis. Dissolved P (DP) was first adsorbed on HFO, and second, the P-containing HFO were separated by high gradient superconducting magnetic separation (HGSMS) to remove the Total P (TP). To obtain a P concentration of <0.05 mg/l in the effluent, 0.3, 1.0 and 1.3 g/l HFO were added to 2.5, 5 and 10 mg/l P solutions. The capacity of the HGSMS canister for capturing P-adsorbed HFO depends on the magnetic intensity and flow rate. In the 5.0 T HGSMS at a 1.0 cm/s flow rate, there were 75 column volumes in a single HGSMS cycle. The P concentration increased by 37.5 times after regeneration. Approximately 170 mg/l TP was measured in the backwash water.

  14. Superconductivity in doped insulators

    Energy Technology Data Exchange (ETDEWEB)

    Emery, V.J. [Brookhaven National Lab., Upton, NY (United States); Kivelson, S.A. [California Univ., Los Angeles, CA (United States). Dept. of Physics

    1995-12-31

    It is shown that many synthetic metals, including high temperature superconductors are ``bad metals``, with such a poor conductivity that the usual meanfield theory of superconductivity breaks down because of anomalously large classical and quantum fluctuations of the phase of the superconducting order parameter. It is argued that the supression of a first order phase transition (phase separation) by the long-range Coulomb interaction leads to high temperature superconductivity accompanied by static or dynamical charge inhomogeneIty. Evidence in support of this picture for high temperature superconductors is described.

  15. Coordinatively unsaturated metal organic frameworks for olefin separations

    OpenAIRE

    Renouf, Catherine Louise

    2013-01-01

    The research presented in this thesis aims to assess the capacity of metal organic frameworks with open metal sites for the separation of olefin mixtures. Chapter 1 provides a background to the field, including industrial separation techniques, metal organic frameworks and their applications and the current state-of-the- art for olefin separation. Chapter 3 describes the experimental techniques used in this research. Ethylene and propylene adsorption and desorption isotherms...

  16. Magnetic field dependence of the superconducting proximity effect in a two atomic layer thin metallic film

    Energy Technology Data Exchange (ETDEWEB)

    Caminale, Michael; Leon Vanegas, Augusto A.; Stepniak, Agnieszka; Oka, Hirofumi; Fischer, Jeison A.; Sander, Dirk; Kirschner, Juergen [Max-Planck-Institut fuer Mikrostrukturphysik, Halle (Germany)

    2015-07-01

    The intriguing possibility to induce superconductivity in a metal, in direct contact with a superconductor, is under renewed interest for applications and for fundamental aspects. The underlying phenomenon is commonly known as proximity effect. In this work we exploit the high spatial resolution of scanning tunneling spectroscopy at sub-K temperatures and in magnetic fields. We probe the differential conductance along a line from a superconducting 9 ML high Pb nanoisland into the surrounding two layer thin Pb/Ag wetting layer on a Si(111) substrate. A gap in the differential conductance indicates superconductivity of the Pb island. We observe an induced gap in the wetting layer, which decays with increasing distance from the Pb island. This proximity length is 21 nm at 0.38 K and 0 T. We find a non-trivial dependence of the proximity length on magnetic field. Surprisingly, we find that the magnetic field does not affect the induced superconductivity up to 0.3 T. However, larger fields of 0.6 T suppress superconductivity in the wetting layer, where the Pb island still remains superconducting. We discuss the unexpected robustness of induced superconductivity in view of the high electronic diffusivity in the metallic wetting layer.

  17. Emergence of double-dome superconductivity in ammoniated metal-doped FeSe.

    Science.gov (United States)

    Izumi, Masanari; Zheng, Lu; Sakai, Yusuke; Goto, Hidenori; Sakata, Masafumi; Nakamoto, Yuki; Nguyen, Huyen L T; Kagayama, Tomoko; Shimizu, Katsuya; Araki, Shingo; Kobayashi, Tatsuo C; Kambe, Takashi; Gu, Dachun; Guo, Jing; Liu, Jing; Li, Yanchun; Sun, Liling; Prassides, Kosmas; Kubozono, Yoshihiro

    2015-04-01

    The pressure dependence of the superconducting transition temperature (Tc) and unit cell metrics of tetragonal (NH3)yCs0.4FeSe were investigated in high pressures up to 41 GPa. The Tc decreases with increasing pressure up to 13 GPa, which can be clearly correlated with the pressure dependence of c (or FeSe layer spacing). The Tc vs. c plot is compared with those of various (NH3)yMxFeSe (M: metal atoms) materials exhibiting different Tc and c, showing that the Tc is universally related to c. This behaviour means that a decrease in two-dimensionality lowers the Tc. No superconductivity was observed down to 4.3 K in (NH3)yCs0.4FeSe at 11 and 13 GPa. Surprisingly, superconductivity re-appeared rapidly above 13 GPa, with the Tc reaching 49 K at 21 GPa. The appearance of a new superconducting phase is not accompanied by a structural transition, as evidenced by pressure-dependent XRD. Furthermore, Tc slowly decreased with increasing pressure above 21 GPa, and at 41 GPa superconductivity disappeared entirely at temperatures above 4.9 K. The observation of a double-dome superconducting phase may provide a hint for pursuing the superconducting coupling-mechanism of ammoniated/non-ammoniated metal-doped FeSe.

  18. Superconductivity at 31 K in Alkaline Metal-Doped Cobalt Oxides

    Institute of Scientific and Technical Information of China (English)

    闻海虎; 杨海朋; 鲁希锋; 闫静

    2003-01-01

    By using a simple solid reaction method, we have fabricated alkaline metal doped cobalt oxides Anx CoO2+δ(An = Na, K). The magnetic measurement shows a superconducting-like diamagnetic signal at 31 K based on a strong superparamagnetic signal. Below 31 K, the magnetization hysteresis loops contain a strong rough linear superparamagnetic background and a superconducting hysteresis. The typical magnetization hysteresis loops for a type-Ⅱ superconductor are found. Preliminary resistive data also show a fast dropping of resistance below Tc.These give indication of superconductivity below 31 K in Anx CoO2+δ (An = Na, K).

  19. Superconductivity

    CERN Document Server

    Poole, Charles P; Creswick, Richard J; Prozorov, Ruslan

    2014-01-01

    Superconductivity, Third Edition is an encyclopedic treatment of all aspects of the subject, from classic materials to fullerenes. Emphasis is on balanced coverage, with a comprehensive reference list and significant graphics from all areas of the published literature. Widely used theoretical approaches are explained in detail. Topics of special interest include high temperature superconductors, spectroscopy, critical states, transport properties, and tunneling. This book covers the whole field of superconductivity from both the theoretical and the experimental point of view. This third edition features extensive revisions throughout, and new chapters on second critical field and iron based superconductors.

  20. Mercury removal from solution by superconducting magnetic separation with nanostructured magnetic adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, T., E-mail: okamoto-takayuki@ed.tmu.ac.jp [Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397 (Japan); Tachibana, S.; Miura, O. [Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397 (Japan); Takeuchi, M. [Komazawa Jin Clinic, 1-19-8 Komazawa, Setagayaku, Tokyo 154-0012 (Japan)

    2011-11-15

    Recently, mercury Hg concentration in human blood increases due to expanding the global mercury contamination. Excess mercury bioaccumulation poses a significant health risk. In order to decrease mercury concentration in the environment and human blood, we have developed two different kinds of nanostructured magnetic adsorbents for mercury to apply them to superconducting magnetic separation instead of conventional filtration. One is magnetic beads (MBs) which have nanosize magnetite particles in the core and a lot of SH radicals on the surface to adsorb Hg ions effectively. MBs were developed mainly to remove mercury from human blood. The maximum amount of the adsorption for MBs is 6.3 mg/g in the solution in less than a minute. Dithiothreitol can easily remove mercury adsorbed to MBs, hence MBs can be reusable. The other is nanostructured magnetic activated carbon (MAC) which is activated carbon with mesopores and nanosize magnetite. The maximum amount of the adsorption for MAC is 38.3 mg/g in the solution. By heat-treatment mercury can be easily removed from MAC. We have studied superconducting magnetic separation using each adsorbent for mercury removal from solution.

  1. Superconductivity in the antiperovskite Dirac-metal oxide Sr3-xSnO

    Science.gov (United States)

    Oudah, Mohamed; Ikeda, Atsutoshi; Hausmann, Jan Niklas; Yonezawa, Shingo; Fukumoto, Toshiyuki; Kobayashi, Shingo; Sato, Masatoshi; Maeno, Yoshiteru

    2016-12-01

    Investigations of perovskite oxides triggered by the discovery of high-temperature and unconventional superconductors have had crucial roles in stimulating and guiding the development of modern condensed-matter physics. Antiperovskite oxides are charge-inverted counterpart materials to perovskite oxides, with unusual negative ionic states of a constituent metal. No superconductivity was reported among the antiperovskite oxides so far. Here we present the first superconducting antiperovskite oxide Sr3-xSnO with the transition temperature of around 5 K. Sr3SnO possesses Dirac points in its electronic structure, and we propose from theoretical analysis a possibility of a topological odd-parity superconductivity analogous to the superfluid 3He-B in moderately hole-doped Sr3-xSnO. We envision that this discovery of a new class of oxide superconductors will lead to a rapid progress in physics and chemistry of antiperovskite oxides consisting of unusual metallic anions.

  2. Recent development of high gradient superconducting magnetic separator for kaolin in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zian; Wang, Meifen; Ning, Fei Peng; Yang, Huan; Zhang, Guoqing; Hou, Zhi Long; Liu, Zhaong Xiu; Dai, Zhong [Institute of High Energy Physics and University of Chinese Academy of Sciences, Beijing (China); Li, Pei Yong; Zhang, Yiting; Wang, Zhaolian [Weifang Xinli Superconducting Technology Co.,Ltd., Weifang (China)

    2017-03-15

    A series of high gradient superconducting magnetic separator (HGMS) for kaolin has been developed. It is used for processing kaolin to increase the brightness or whiteness whether it is for paper or ceramic applications. The HGMS system mainly consists of a solenoid magnet with a zero boil-off helium cryostat, a double reciprocating canisters system, and a PLC (Process Logic Controller) fully automatic control system based on SCADA (Supervisory Control and Data Acquisition) system. We have successfully developed CGC-5.5/300 and CGC-5.0/500 HGMS systems in the recent years, and now three sets of them are on-site operation in different customers. This paper will present recent progress of the HGMS system, the results of some experiments on processing kaolin clay used HGMS, and the on-site operation.

  3. Impact of eigenvalues on the pseudopotential calculation of superconducting parameters of metals Ga, Cd and In

    Science.gov (United States)

    Yadav, Jayprakash; Rafique, S. M.; Kumari, Shanti

    2009-10-01

    In the present paper some superconducting (SC) state parameters of metals Ga, Cd and In have been studied through Harrison's First Principle [HFP] pseudopotential technique using McMillan's formalism. The impact of choosing two different sets of core energy eigenvalues viz. Herman-Skillman and Clementi (or Experimental) has been studied.

  4. Spiral magnetic order and pressure-induced superconductivity in transition metal compounds

    Science.gov (United States)

    Wang, Yishu; Feng, Yejun; Cheng, J.-G.; Wu, W.; Luo, J. L.; Rosenbaum, T. F.

    2016-10-01

    Magnetic and superconducting ground states can compete, cooperate and coexist. MnP provides a compelling and potentially generalizable example of a material where superconductivity and magnetism may be intertwined. Using a synchrotron-based non-resonant X-ray magnetic diffraction technique, we reveal a spiral spin order in MnP and trace its pressure evolution towards superconducting order via measurements in a diamond anvil cell. Judging from the magnetostriction, ordered moments vanish at the quantum phase transition as pressure increases the electron kinetic energy. Spins remain local in the disordered phase, and the promotion of superconductivity is likely to emerge from an enhanced coupling to residual spiral spin fluctuations and their concomitant suppression of phonon-mediated superconductivity. As the pitch of the spiral order varies across the 3d transition metal compounds in the MnP family, the magnetic ground state switches between antiferromagnet and ferromagnet, providing an additional tuning parameter in probing spin-fluctuation-induced superconductivity.

  5. Spiral magnetic order and pressure-induced superconductivity in transition metal compounds

    Science.gov (United States)

    Wang, Yishu; Feng, Yejun; Cheng, J.-G.; Wu, W.; Luo, J. L.; Rosenbaum, T. F.

    2016-01-01

    Magnetic and superconducting ground states can compete, cooperate and coexist. MnP provides a compelling and potentially generalizable example of a material where superconductivity and magnetism may be intertwined. Using a synchrotron-based non-resonant X-ray magnetic diffraction technique, we reveal a spiral spin order in MnP and trace its pressure evolution towards superconducting order via measurements in a diamond anvil cell. Judging from the magnetostriction, ordered moments vanish at the quantum phase transition as pressure increases the electron kinetic energy. Spins remain local in the disordered phase, and the promotion of superconductivity is likely to emerge from an enhanced coupling to residual spiral spin fluctuations and their concomitant suppression of phonon-mediated superconductivity. As the pitch of the spiral order varies across the 3d transition metal compounds in the MnP family, the magnetic ground state switches between antiferromagnet and ferromagnet, providing an additional tuning parameter in probing spin-fluctuation-induced superconductivity. PMID:27708255

  6. High-temperature interface superconductivity between metallic and insulating copper oxides.

    Science.gov (United States)

    Gozar, A; Logvenov, G; Kourkoutis, L Fitting; Bollinger, A T; Giannuzzi, L A; Muller, D A; Bozovic, I

    2008-10-09

    The realization of high-transition-temperature (high-T(c)) superconductivity confined to nanometre-sized interfaces has been a long-standing goal because of potential applications and the opportunity to study quantum phenomena in reduced dimensions. This has been, however, a challenging target: in conventional metals, the high electron density restricts interface effects (such as carrier depletion or accumulation) to a region much narrower than the coherence length, which is the scale necessary for superconductivity to occur. By contrast, in copper oxides the carrier density is low whereas T(c) is high and the coherence length very short, which provides an opportunity-but at a price: the interface must be atomically perfect. Here we report superconductivity in bilayers consisting of an insulator (La(2)CuO(4)) and a metal (La(1.55)Sr(0.45)CuO(4)), neither of which is superconducting in isolation. In these bilayers, T(c) is either approximately 15 K or approximately 30 K, depending on the layering sequence. This highly robust phenomenon is confined within 2-3 nm of the interface. If such a bilayer is exposed to ozone, T(c) exceeds 50 K, and this enhanced superconductivity is also shown to originate from an interface layer about 1-2 unit cells thick. Enhancement of T(c) in bilayer systems was observed previously but the essential role of the interface was not recognized at the time.

  7. Superconducting magnet system of in-flight separator for a heavy ion accelerator planned in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. W.; Kim, D. G.; Jo, H. C. [Institute for Basic Science, Daejeon (Korea, Republic of); Choi, Y. S. [Korea Basic Science Institute, Daejeon (Korea, Republic of); Kim, S. H. [Changwon National University, Changwon (Korea, Republic of); Sim, K. D.; Sohn, M. H. [Korea Electrotechnology Research Institute, Changwon (Korea, Republic of)

    2015-03-15

    An in-flight fragment separator, which aims to produce and study rare isotopes, consists of superferric quadrupole triplets and dipole magnets to focus and bend the beams for achromatic focusing and momentum dispersion, respectively. The separator is divided into pre and main stages, and we plan to use superconducting magnets employing high-Tc superconductor (HTS) coils in the pre-separator area, where radiation heating is high. The HTS coils will be cooled by cold He gas in 20-50 K, and in the other area, superferric magnets using low-temperature superconductor (LTS) will be used at 4 K. A few LTS coils were wound and successfully tested in a LHe dewar, and the design of cryostat has been optimized. Development of the HTS coils is ongoing in collaboration with a group at KERI. An HTS coil of racetrack shape was wound and tested in a bath and in a dewar with cryocooler. No degradation on critical current due to coil winding was found.

  8. Pressure effect on the superconductivity and the metal-insulator transition in Cu sub 1 sub sub - sub x Zn sub x Ir sub 2 S sub 4

    CERN Document Server

    Cao, G; Kitazawa, H; Isobe, M; Matsumoto, T

    2002-01-01

    The variations of the superconducting transition temperature T sub c and the metal-insulator (MI) transition temperature T sub M sub I were investigated as a function of pressure in the superconducting Cu sub 1 sub sub - sub x Zn sub x Ir sub 2 S sub 4 (0.3 <= x <= 0.5) system. The experiment was performed by measuring the temperature dependence of resistance under the pressures up to 1.5 GPa. It is shown that the external pressure destroys the superconductivity, and gives rise to the MI transitions. The result is discussed in terms of the stabilization of the insulating phase at high pressures and the phase separation associated with the charge segregation. It is proposed that the BCS Cooper pairs compete with the proposed bipolarons under certain pressures.

  9. Metal-organic framework for the separation of alkane isomers

    Science.gov (United States)

    Long, Jeffrey R.; Herm, Zoey R.; Wiers, Brian M.; Krishna, Rajamani

    2017-01-10

    A metal organic framework Fe.sub.2(bdp).sub.3 (BDP.sup.2-=1,4-benzenedipyrazolate) with triangular channels is particularly suited for C5-C7 separations of alkanes according to the number of branches in the molecule rather than by carbon number. The metal-organic framework can offer pore geometries that is unavailable in zeolites or other porous media, facilitating distinct types of shape-based molecular separations.

  10. Metal-organic framework for the separation of alkane isomers

    Energy Technology Data Exchange (ETDEWEB)

    Long, Jeffrey R.; Herm, Zoey R.; Wiers, Brian M.; Krishna, Rajamani

    2017-01-10

    A metal organic framework Fe.sub.2(bdp).sub.3 (BDP.sup.2-=1,4-benzenedipyrazolate) with triangular channels is particularly suited for C5-C7 separations of alkanes according to the number of branches in the molecule rather than by carbon number. The metal-organic framework can offer pore geometries that is unavailable in zeolites or other porous media, facilitating distinct types of shape-based molecular separations.

  11. Ligand-modified metal clusters for gas separation and purification

    Energy Technology Data Exchange (ETDEWEB)

    Okrut, Alexander; Ouyang, Xiaoying; Runnebaum, Ron; Gates, Bruce C.; Katz, Alexander

    2017-02-21

    Provided is an organic ligand-bound metal surface that selects one gaseous species over another. The species can be closely sized molecular species having less than 1 Angstrom difference in kinetic diameter. In one embodiment, the species comprise carbon monoxide and ethylene. Such organic ligand-bound metal surfaces can be successfully used in gas phase separations or purifications, sensing, and in catalysis.

  12. Recent advances in fullerene superconductivity

    CERN Document Server

    Margadonna, S

    2002-01-01

    Superconducting transition temperatures in bulk chemically intercalated fulleride salts reach 33 K at ambient pressure and in hole-doped C sub 6 sub 0 derivatives in field-effect-transistor (FET) configurations, they reach 117 K. These advances pose important challenges for our understanding of high-temperature superconductivity in these highly correlated organic metals. Here we review the structures and properties of intercalated fullerides, paying particular attention to the correlation between superconductivity and interfullerene separation, orientational order/disorder, valence state, orbital degeneracy, low-symmetry distortions, and metal-C sub 6 sub 0 interactions. The metal-insulator transition at large interfullerene separations is discussed in detail. An overview is also given of the exploding field of gate-induced superconductivity of fullerenes in FET electronic devices.

  13. Emergence of superconductivity in the canonical heavy-electron metal YbRh₂Si₂.

    Science.gov (United States)

    Schuberth, Erwin; Tippmann, Marc; Steinke, Lucia; Lausberg, Stefan; Steppke, Alexander; Brando, Manuel; Krellner, Cornelius; Geibel, Christoph; Yu, Rong; Si, Qimiao; Steglich, Frank

    2016-01-29

    The smooth disappearance of antiferromagnetic order in strongly correlated metals commonly furnishes the development of unconventional superconductivity. The canonical heavy-electron compound YbRh2Si2 seems to represent an apparent exception from this quantum critical paradigm in that it is not a superconductor at temperature T ≥ 10 millikelvin (mK). Here we report magnetic and calorimetric measurements on YbRh2Si2, down to temperatures as low as T ≈ 1 mK. The data reveal the development of nuclear antiferromagnetic order slightly above 2 mK and of heavy-electron superconductivity almost concomitantly with this order. Our results demonstrate that superconductivity in the vicinity of quantum criticality is a general phenomenon.

  14. Metal separations using aqueous biphasic partitioning systems

    Energy Technology Data Exchange (ETDEWEB)

    Chaiko, D.J.; Zaslavsky, B.; Rollins, A.N.; Vojta, Y.; Gartelmann, J.; Mego, W. [Argonne National Lab., IL (United States). Chemical Technology Div.

    1996-05-01

    Aqueous biphasic extraction (ABE) processes offer the potential for low-cost, highly selective separations. This countercurrent extraction technique involves selective partitioning of either dissolved solutes or ultrafine particulates between two immiscible aqueous phases. The extraction systems that the authors have studied are generated by combining an aqueous salt solution with an aqueous polymer solution. They have examined a wide range of applications for ABE, including the treatment of solid and liquid nuclear wastes, decontamination of soils, and processing of mineral ores. They have also conducted fundamental studies of solution microstructure using small angle neutron scattering (SANS). In this report they review the physicochemical fundamentals of aqueous biphase formation and discuss the development and scaleup of ABE processes for environmental remediation.

  15. Separating and recycling metals from mixed metallic particles of crushed electronic wastes by vacuum metallurgy.

    Science.gov (United States)

    Zhan, Lu; Xu, Zhenming

    2009-09-15

    During the treatment of electronic wastes, a crushing process is usually used to strip metals from various base plates. Several methods have been applied to separate metals from nonmetals. However, mixed metallic particles obtained from these processes are still a mixture of various metals, including some toxic heavy metals such as lead and cadmium. With emphasis on recovering copper and other precious metals, there have hitherto been no satisfactory methods to recover these toxic metals. In this paper, the criterion of separating metals from mixed metallic particles by vacuum metallurgy is built. The results show that the metals with high vapor pressure have been almost recovered completely, leading to a considerable reduction of environmental pollution. In addition, the purity of copper in mixed particles has been improved from about 80 wt % to over 98 wt %.

  16. A new technique for the growth of superconducting YBa2Cu3O6 + δ crystals completely separated from flux

    Science.gov (United States)

    Rao, S. M.; Loo, B. H.; Wang, N. P.; Kelley, R. J.

    1991-04-01

    Growth of completely flux-separated YBa2Cu3O6 + δ (referred to as 123 phase) crystals using a novel technique is described. The technique employs a modification of the seed pulling method commonly used in crystal growth. The crystals are grown in the temperature range of 960-1000°C using a BaCuO2 flux. A 123 flux ratio of 1:5 is maintained. Photographs of the crystals and photomicrograph of the surfaces are presented to show complete flux-separation of the crystals measuring 6 mm × 3 mm × 1 mm. The Raman spectra recorded on the as-grown crystals show that they are in the tetragonal phase. Magnetic susceptibility measurements on crystals annealed in an oxygen atmosphere show a superconducting transition starting at 71 K. The present technique offers a possibility of growing large, completely flux-separated crystals of 123 for superconductivity research.

  17. Superconductivity in the antiperovskite Dirac-metal oxide Sr$_3$SnO

    CERN Document Server

    Oudah, Mohamed; Yonezawa, Shingo; Fukumoto, Toshiyuki; Kobayashi, Shingo; Sato, Masatoshi; Maeno, Yoshiteru

    2016-01-01

    Oxides with perovskite-based structures have been known as essential materials for fascinating phenomena such as high-temperature and unconventional superconductivity. Discoveries of these oxide superconductors have driven the science community to vastly extend the concepts of strongly correlated electron systems. The base of these materials, the cubic perovskite oxides, $AB$O$_3$, also exhibit superconductivity with $T_{\\mathrm{c}}$ of up to 30 K, as reported for Ba$_{0.6}$K$_{0.4}$BiO$_3$. Perovskite oxides have their counterparts, antiperovskite oxides $A_3B$O (or "$B$O$A_3$"), in which the position of metal and oxygen ions are reversed and therefore metallic $B$ ions take unusual negative valence states. However, no superconductivity has been reported among antiperovskite oxides. Here, we report the discovery of the first superconducting antiperovskite oxide Sr$_3$SnO with $T_{\\mathrm{c}}$ of around 5 K. Sr$_3$SnO possesses Dirac points in its electronic structure, originating from the inversion of bands ...

  18. THE SEPARATION OF BASE METALS FROM PLATINUM METALS BY ION EXCHANGE

    Institute of Scientific and Technical Information of China (English)

    JIANGLingen; HUANGYan

    1992-01-01

    In this paper the separation of base metals Fe,Co,Ni and Cu from the platinum metals on a cation exchanger column was studies.The convenient separation conditions are 0.5mol·dm-3 NaCl,pH=2. The recovery efficiency of Rh is 98%.

  19. Process to separate alkali metal salts from alkali metal reacted hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, John Howard; Alvare, Javier; Larsen, Dennis; Killpack, Jeff

    2017-06-27

    A process to facilitate gravimetric separation of alkali metal salts, such as alkali metal sulfides and polysulfides, from alkali metal reacted hydrocarbons. The disclosed process is part of a method of upgrading a hydrocarbon feedstock by removing heteroatoms and/or one or more heavy metals from the hydrocarbon feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase containing alkali metal salts and reduced heavy metals, and an upgraded hydrocarbon feedstock. The inorganic phase may be gravimetrically separated from the upgraded hydrocarbon feedstock after mixing at a temperature between about 350.degree. C. to 400.degree. C. for a time period between about 15 minutes and 2 hours.

  20. An rf separated kaon beam from the Main Injector: Superconducting aspects

    Energy Technology Data Exchange (ETDEWEB)

    D.A. Edwards

    1998-11-01

    ThE report is intended to focus on the superconducting aspects of a potential separated kaon beam facility for the Main Injector, and most of this document reflects that emphasis. However, the RF features cannot be divorced from the overall beam requirements, and so the next section is devoted to the latter subject. The existing optics design that meets the needs of the two proposed experiments is outliied, and its layout at Fermilab is shown. The frequency and deflection gradient choices present implementation dMiculties, and the section closes with some commentary on these issues. Sec. 3 provides an introduction to cavity design considerations, and, in particular carries forward the discussion of resonator shape and frequency selection. The R&D program is the subject of Sec. 4. Provisional parameter choices will be summarized. Initial steps toward cavity fabrication based `on copper models have been taken. The next stages in cavity fabrication will be reviewed in some detail. The infrastructure needs and availability will be discussed. Sec. 5 discusses what maybe characterized as the in~edlents of a point design. At this writing, some aspects are clear and some are not. The basic systems are reasonably clear and are described. The final section presents a cost and schedule estimate for both the Ft&D and production phase. Some supporting material and elaboration is provided in the Appendices.

  1. Bound state, phase separation and superconductivity in presence of Rashba spin-orbit coupling

    Science.gov (United States)

    Kapri, Priyadarshini; Basu, Saurabh

    2017-06-01

    We have investigated the phase diagram for the t - J model at low electronic densities in presence of Rashba spin-orbit coupling (RSOC). We have rigorously derived a bound state criterion which arises out of a competition between the kinetic energy of the electrons and the exchange coupling between them. Further, we have obtained that the phase diagram consists of three phases, namely, a gas of electrons, a gas of bound pairs, and a fully phase separated state. Subsequently an extension of the pairing scenario is done at finite densities by solving a BCS gap equation. Finite superconducting correlations are observed for J values much lower than that required for the formation of a single bound pair, thereby indicating that pairing in a many particle environment requires weaker interaction strengths than that in the dilute case. We have further obtained that the RSOC increases the transition temperature for a p-wave pairing state, while it diminishes the same for an s-wave pairing correlations.

  2. Observation of double resistance anomalies and excessive resistance in mesoscopic superconducting Au0.7In0.3 rings with phase separation

    Science.gov (United States)

    Wang, H.; Rosario, M. M.; Russell, H. L.; Liu, Y.

    2007-02-01

    We have measured mesoscopic superconducting Au0.7In0.3 rings prepared by e -beam lithography and sequential deposition of Au and In at room temperature followed by a standard lift-off procedure. The majority of the samples are found to exhibit highly unusual double resistance anomalies, two resistance peaks with the peak resistances larger than the normal-state resistance, near the onset of superconductivity in the R(T) (resistance vs temperature) curves, and an h/2e resistance oscillation with a very small amplitude. A magnetic field applied perpendicular to the ring plane appears to suppress the low-temperature peak easily, but only broadens the high-temperature peak. In the intermediate-field range, the high-temperature resistance peak becomes flat down to the lowest temperature, resulting apparently in a magnetic-field-induced metallic state with its resistance higher than the normal-state resistance, referred to here as excessive resistance. The dynamical resistance vs bias current measurements carried out in samples showing double resistance anomalies suggest that there are two critical currents in these samples. We attribute the double resistance anomalies and the two critical currents to the presence of two superconducting phases originating from the phase separation of Au0.7In0.3 in which In-rich grains of AuIn precipitate in a uniform In-dilute matrix of Au0.9In0.1 . The local superconducting transition temperature of the In-rich grains is higher than that of the In-dilute matrix. The double resistance anomalies are not found in a sample showing the conventional h/2e Little-Parks (LP) resistance oscillation, which we believe is due to the absence of the phase separation in this particular sample. Finally, we argue that the h/2e resistance oscillation observed in samples showing double resistance anomalies is not the LP but rather the Altshuler-Aronov-Spivak resistance oscillation of normal electrons enhanced by superconductivity.

  3. Gas chromatographic separation of hydrogen isotopes using metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Aldridge, F.T.

    1984-05-09

    A study was made of the properties of metal hydrides which may be suitable for use in chromatographic separation of hydrogen isotopes. Sixty-five alloys were measured, with the best having a hydrogen-deuterium separation factor of 1.35 at 60/sup 0/C. Chromatographic columns using these alloys produced deuterium enrichments of up to 3.6 in a single pass, using natural abundance hydrogen as starting material. 25 references, 16 figures, 4 tables.

  4. Highly textured oxypnictide superconducting thin films on metal substrates

    Energy Technology Data Exchange (ETDEWEB)

    Iida, Kazumasa, E-mail: iida@nuap.nagoya-u.ac.jp; Kurth, Fritz; Grinenko, Vadim; Hänisch, Jens [Institute for Metallic Materials, IFW Dresden, D-01171 Dresden (Germany); Chihara, Masashi; Sumiya, Naoki; Hatano, Takafumi; Ikuta, Hiroshi [Department of Crystalline Materials Science, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Ichinose, Ataru; Tsukada, Ichiro [Central Research Institute of Electric Power Industry, 2-6-1 Nagasaka, Yokosuka, Kanagawa 240-0196 (Japan); Matias, Vladimir [iBeam Materials, Inc., 2778A Agua Fria Street, Santa Fe, New Mexico 87507 (United States); Holzapfel, Bernhard [Institute for Technical Physics, Karlsruhe Institute of Technology, Hermann von Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany)

    2014-10-27

    Highly textured NdFeAs(O,F) thin films have been grown on ion beam assisted deposition-MgO/Y{sub 2}O{sub 3}/Hastelloy substrates by molecular beam epitaxy. The oxypnictide coated conductors showed a superconducting transition temperature (T{sub c}) of 43 K with a self-field critical current density (J{sub c}) of 7.0×10{sup 4} A/cm{sup 2} at 5 K, more than 20 times higher than powder-in-tube processed SmFeAs(O,F) wires. Albeit higher T{sub c} as well as better crystalline quality than Co-doped BaFe{sub 2}As{sub 2} coated conductors, in-field J{sub c} of NdFeAs(O,F) was lower than that of Co-doped BaFe{sub 2}As{sub 2}. These results suggest that grain boundaries in oxypnictides reduce J{sub c} significantly compared to that in Co-doped BaFe{sub 2}As{sub 2} and, hence biaxial texture is necessary for high J{sub c.}.

  5. ULTRASONIC SEPARATION OF MICRO-SIZED INCLUSIONSIN MOLTEN METAL

    Institute of Scientific and Technical Information of China (English)

    X.Q. Bai; J.C. He

    2001-01-01

    The coagulation time and position of micro-sized non-metallic inclusions in molten metal during ultrasonic separation process were investigated, and the motion course of micro-sized non-metallic inclusions in an ultrasonic standing wave field was numerically simulated. The results of theoretical analysis and numerical simulation show that the movement of inclusions depends on the balance between the acoustic radiation force, effective buoyancy force and viscous drag force. It is presented that micro-sized inclusions, agglomerated at antinode-planes may be removed further with horizon tal ultrasound.``

  6. Doping effects of transition metals on superconducting properties of (Ca,RE)FeAs2

    Science.gov (United States)

    Yakita, Hiroyuki; Ogino, Hiraku; Okada, Tomoyuki; Yamamoto, Akiyasu; Kishio, Kohji; Shimoyama, Jun-Ichi; Iyo, Akira; Eisaki, Hiroshi; Sala, Alberto

    2015-03-01

    At the previous March Meeting, we reported new iron based superconductors (Ca,RE)FeAs2 (Ca112) (RE = La-Nd, Sm-Gd)[ 1 , 2 ]. Superconducting transition was observed in all samples except for Ce-doped sample, and Tc of La-doped sample exceeded 30 K. In this study, we have synthesized transition metals (TM=Mn, Co, Ni) co-doped Ca112 samples. Mn co-doping suppressed superconductivity. On the contrary, enhancement of Tc with sharp superconducting transitions was observed in most of the Co or Ni co-doped samples. Tc of Co co-doped samples decreased with a decrease in ionic radii of RE3+ from 38 K for RE = La to 29 K for RE = Gd, though Eu doped sample showed exceptionally low Tc = 21 K. Jc value of La and Co co-doped sample estimated from magnetization measurement is approximately 2.0 x 104 Acm-2at 2 K suggesting bulk superconductivity.

  7. Selective gas adsorption and separation in metal-organic frameworks.

    Science.gov (United States)

    Li, Jian-Rong; Kuppler, Ryan J; Zhou, Hong-Cai

    2009-05-01

    Adsorptive separation is very important in industry. Generally, the process uses porous solid materials such as zeolites, activated carbons, or silica gels as adsorbents. With an ever increasing need for a more efficient, energy-saving, and environmentally benign procedure for gas separation, adsorbents with tailored structures and tunable surface properties must be found. Metal-organic frameworks (MOFs), constructed by metal-containing nodes connected by organic bridges, are such a new type of porous materials. They are promising candidates as adsorbents for gas separations due to their large surface areas, adjustable pore sizes and controllable properties, as well as acceptable thermal stability. This critical review starts with a brief introduction to gas separation and purification based on selective adsorption, followed by a review of gas selective adsorption in rigid and flexible MOFs. Based on possible mechanisms, selective adsorptions observed in MOFs are classified, and primary relationships between adsorption properties and framework features are analyzed. As a specific example of tailor-made MOFs, mesh-adjustable molecular sieves are emphasized and the underlying working mechanism elucidated. In addition to the experimental aspect, theoretical investigations from adsorption equilibrium to diffusion dynamics via molecular simulations are also briefly reviewed. Furthermore, gas separations in MOFs, including the molecular sieving effect, kinetic separation, the quantum sieving effect for H2/D2 separation, and MOF-based membranes are also summarized (227 references).

  8. Separation of the metallic and non-metallic fraction from printed circuit boards employing green technology.

    Science.gov (United States)

    Estrada-Ruiz, R H; Flores-Campos, R; Gámez-Altamirano, H A; Velarde-Sánchez, E J

    2016-07-05

    The generation of electrical and electronic waste is increasing day by day; recycling is attractive because of the metallic fraction containing these. Nevertheless, conventional techniques are highly polluting. The comminution of the printed circuit boards followed by an inverse flotation process is a clean technique that allows one to separate the metallic fraction from the non-metallic fraction. It was found that particle size and superficial air velocity are the main variables in the separation of the different fractions. In this way an efficient separation is achieved by avoiding the environmental contamination coupled with the possible utilization of the different fractions obtained. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Separation of non-ferrous metals from ASR by corona electrostatic separation

    Science.gov (United States)

    Kim, Yang-soo; Choi, Jin-Young; Jeon, Ho-Seok; Han, Oh-Hyung; Park, Chul-Hyun

    2016-04-01

    Automotive shredder residue (ASR), the residual fraction of approximate 25% obtained after dismantling and shredding from waste car, consists of polymers (plastics and rubber), metals (ferrous and non-ferrous), wood, glass and fluff (textile and fiber). ASR cannot be effectively separated due to its heterogeneous materials and coated or laminated complexes and then largely deposited in land-fill sites as waste. Thus reducing a pollutant release before disposal, techniques that can improve the liberation of coated (or laminated) complexes and the recovery of valuable metals from the shredder residue are needed. ASR may be separated by a series of physical processing operations such as comminution, air, magnetic and electrostatic separations. The work deals with the characterization of the shredder residue coming from an industrial plant in korea and focuses on estimating the optimal conditions of corona electrostatic separation for improving the separation efficiency of valuable non-ferrous metals such as aluminum, copper and etc. From the results of test, the maximum separation achievable for non-ferrous metals using a corona electrostatic separation has been shown to be recovery of 92.5% at a grade of 75.8%. The recommended values of the process variables, particle size, electrode potential, drum speed, splitter position and relative humidity are -6mm, 50 kV, 35rpm, 20° and less 40%, respectively. Acknowledgments This study was supported by the R&D Center for Valuable Recycling (Global-Top R&BD Program) of the Ministry of Environment. (Project No. GT-11-C-01-170-0)

  10. Superconductivity in the antiperovskite Dirac-metal oxide Sr3−xSnO

    Science.gov (United States)

    Oudah, Mohamed; Ikeda, Atsutoshi; Hausmann, Jan Niklas; Yonezawa, Shingo; Fukumoto, Toshiyuki; Kobayashi, Shingo; Sato, Masatoshi; Maeno, Yoshiteru

    2016-01-01

    Investigations of perovskite oxides triggered by the discovery of high-temperature and unconventional superconductors have had crucial roles in stimulating and guiding the development of modern condensed-matter physics. Antiperovskite oxides are charge-inverted counterpart materials to perovskite oxides, with unusual negative ionic states of a constituent metal. No superconductivity was reported among the antiperovskite oxides so far. Here we present the first superconducting antiperovskite oxide Sr3−xSnO with the transition temperature of around 5 K. Sr3SnO possesses Dirac points in its electronic structure, and we propose from theoretical analysis a possibility of a topological odd-parity superconductivity analogous to the superfluid 3He-B in moderately hole-doped Sr3−xSnO. We envision that this discovery of a new class of oxide superconductors will lead to a rapid progress in physics and chemistry of antiperovskite oxides consisting of unusual metallic anions. PMID:27941805

  11. Metal-organic frameworks for membrane-based separations

    Science.gov (United States)

    Denny, Michael S.; Moreton, Jessica C.; Benz, Lauren; Cohen, Seth M.

    2016-12-01

    As research into metal-organic frameworks (MOFs) enters its third decade, efforts are naturally shifting from fundamental studies to applications, utilizing the unique features of these materials. Engineered forms of MOFs, such as membranes and films, are being investigated to transform laboratory-synthesized MOF powders to industrially viable products for separations, chemical sensors and catalysts. Following encouraging demonstrations of gas separations using MOF-based membranes, liquid-phase separations are now being explored in an effort to build effective membranes for these settings. In this Review, we highlight MOF applications that are in their nascent stages, specifically liquid-phase separations using MOF-based mixed-matrix membranes. We also highlight the analytical techniques that provide important insights into these materials, particularly at surfaces and interfaces, to better understand MOFs and their interactions with other materials, which will ultimately lead to their use in advanced technologies.

  12. Separation of metals from incineration wastes using mineral industry processes

    Energy Technology Data Exchange (ETDEWEB)

    Scheizer, G. [Universite de Technologie, Aix-la-Chapelle (Germany)

    1996-12-01

    The incineration of municipal wastes in Federal Republic of Germany produced about 2.7 to 2.8 millions of tons of solid wastes in 1993 which still contain huge amounts of mineral and organic pollutants. Ashes represent the largest part of wastes with about 2.4 millions of tons. Vitrification is an innovative treatment technique which allows a 90% reduction of the waste volume, the complete removal of the organic matter content, and the storage of these waste in an environmentally neutral form. However, metals must be extracted from the ashes prior to the vitrification process. Most metals fall into the 2.4-2.7 g/cm{sup 3} and > 3 g/cm{sup 3} density ranges. The lighter fraction corresponds to aluminium particles and alloys, while the high density fraction is enriched in copper, copper alloys and more particularly in brass. The treatment process, after drying, consist in the use of high intensity magnetic separation devices (permanent neodymium-bore-iron magnets) for the removal of ferrous particles, and in the use of Foucault currents separation devices for non-magnetic metals. At the pilot-scale, the distribution of the processed wastes corresponds to: 62.6 % of non-metallized ashes, 35.5 % of magnetic products, and 1.9% of non-magnetic products. The possible recycling of the metal fraction must be demonstrated by further studies. (J.S.). Abstract only.

  13. Metal-Organic Frameworks for Highly Selective Separations

    Energy Technology Data Exchange (ETDEWEB)

    Omar M. Yaghi

    2009-09-28

    This grant was focused on the study of metal-organic frameworks with these specific objectives. (1) To examine the use of MOFs with well-defined open metal sites for binding of gases and small organics. (2) To develop a strategy for producing MOFs that combine large pore size with high surface area for their use in gas adsorption and separation of polycyclic organic compounds. (3) To functionalize MOFs for the storage of inert gases such as methane. A brief outline of our progress towards these objectives is presented here as it forms part of the basis for the ideas to be developed under the present proposal.

  14. SOLVENT EXTRACTION PROCESS FOR SEPARATING ACTINIDE AND LANTHANIDE METAL VALUES

    Science.gov (United States)

    Hildebrandt, R.A.; Hyman, H.H.; Vogler, S.

    1962-08-14

    A process of countercurrently extracting an aqueous mineral acid feed solution for the separation of actinides from lanthanides dissolved therern is described. The feed solution is made acid-defrcient with alkali metal hydroxide prior to.contact with acid extractant; during extraction, however, acid is transferred from organic to aqueous solution and the aqueous solution gradually becomes acid. The acid-deficient phase ' of the process promotes the extraction of the actinides, while the latter acid phase'' of the process improves retention of the lanthanides in the aqueous solution. This provides for an improved separation. (AEC)

  15. Controlled Fabrication of Metallic Electrodes with Atomic Separation

    DEFF Research Database (Denmark)

    Morpurgo, A.; Robinson, D.; M. Marcus, C.

    1998-01-01

    We report a new technique for fabricating metallic electrodes on insulating substrates with separations on the 1 nm scale. The fabrication technique, which combines lithographic and electrochemical methods, provides atomic resolution without requiring sophisticated instrumentation. The process...... is simple, controllable, reversible, and robust, allowing rapid fabrication of electrode pairs with high yield. We expect the method to prove useful in interfacing molecular-scale structures to macroscopic probes and electronic devices ....

  16. Sol-Gel Synthesized Adsorbents for Metal Separation

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A series of organo-ceramic adsorbents have been synthesized by a sol-gel processing technique for metal ion extraction. These adsorbents generally have significantly high metal uptake capacities, good physical-chemical stabilities, and well-designed pore geometries compared to other pre-existing metalchelating ceramic-based adsorbents. This work describes the synthesis and evaluation of pyrazole and calix[4]arene crown adsorbents for selective separation of platinum, palladium, and gold and cesium ions,respectively, from solutions. These materials exhibit mesoporous properties with high surface areas and pore volumes. The sol-gel synthesis starting with precursor silanes and titania results in gel particles of desired pore characteristics and high capacity and stability. Characterization studies, such as adsorption isotherms, breakthrough curves for fixed bed operation, and material stability, show promising results for applications to metal sepation.

  17. Electron spin resonance from semiconductor-metal separated SWCNTs

    Energy Technology Data Exchange (ETDEWEB)

    Havlicek, M.; Jantsch, W. [Institut fuer Halbleiter- und Festkoerperphysik, Johannes Kepler Universitaet, 4040 Linz (Austria); Ruemmeli, M.; Schoenfelder, R. [Leibniz Institute fuer Festkoerperphysik und Werkstoffforschung, Dresden (Germany); Yanagi, K. [Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo (Japan); Miyata, Y. [Department of Chemistry, Nagoya University, Nagoya, Aichi (Japan); Kataura, H. [Nanotechnology Research Institute, AIST, 1-1-1 Higashi, Tsukuba 305-8562 (Japan); Simon, F.; Peterlik, H.; Kuzmany, H. [Fakultaet fuer Physik, Universitaet Wien, Strudlhofgasse 4, 1090 Wien (Austria)

    2010-12-15

    Electron spin resonance in the X band is reported for fully metal-semiconductor separated SWCNTs. For the experiments samples were immersed in ethanol or wrapped into a teflon foil. The response from the metallic tubes exhibits a strong asymmetry in the line shape whereas the asymmetry for the semiconducting (SC) tubes is comparatively small. In both cases the line widths are unusual small, of the order of 4 G. Particular attention is paid to SC nanotubes which exhibit a much stronger signal as compared to the metallic tubes. The signal intensity is nearly Curie like with a small enhancement beyond 1/T in the low temperature range. The 1/T behavior renders the ESR response unobservable at 300 K. The finite value for the asymmetry parameter in the SC tubes is assumed to originate from charges picked up during exposure to air or to ethanol. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Theoretical Discovery of a Superconducting Two-Dimensional Metal-Organic Framework.

    Science.gov (United States)

    Zhang, Xiaoming; Zhou, Yinong; Cui, Bin; Zhao, Mingwen; Liu, Feng

    2017-09-15

    Superconductivity is a fascinating quantum phenomenon characterized by zero electrical resistance and the Meissner effect. To date, several distinct families of superconductors (SCs) have been discovered. These include three-dimensional (3D) bulk SCs in both inorganic and organic materials as well as two-dimensional (2D) thin film SCs but only in inorganic materials. Here we predict superconductivity in 2D and 3D organic metal-organic frameworks by using first-principles calculations. We show that the highly conductive and recently synthesized Cu-benzenehexathial (BHT) is a Bardeen-Cooper-Schrieffer SC. Remarkably, the monolayer Cu-BHT has a critical temperature (Tc) of 4.43 K, while Tc of bulk Cu-BHT is 1.58 K. Different from the enhanced Tc in 2D inorganic SCs which is induced by interfacial effects, the Tc enhancement in this 2D organic SC is revealed to be the out-of-plane soft-mode vibrations, analogous to surface mode enhancement originally proposed by Ginzburg. Our findings not only shed new light on better understanding 2D superconductivity but also open a new direction to search for SCs by interface engineering with organic materials.

  19. Separation of chemical reaction intermediates by metal-organic frameworks.

    Science.gov (United States)

    Centrone, Andrea; Santiso, Erik E; Hatton, T Alan

    2011-08-22

    HPLC columns custom-packed with metal-organic framework (MOF) materials are used for the separation of four small intermediates and byproducts found in the commercial synthesis of an important active pharmaceutical ingredient in methanol. In particular, two closely related amines can be separated in the methanol reaction medium using MOFs, but not with traditional C18 columns using an optimized aqueous mobile phase. Infrared spectroscopy, UV-vis spectroscopy, X-ray diffraction, and thermogravimetric analysis are used in combination with molecular dynamic simulations to study the separation mechanism for the best-performing MOF materials. It is found that separation with ZIF-8 is the result of an interplay between the thermodynamic driving force for solute adsorption within the framework pores and the kinetics of solute diffusion into the material pores, while the separation with Basolite F300 is achieved because of the specific interactions between the solutes and Fe(3+) sites. This work, and the exceptional ability to tailor the porous properties of MOF materials, points to prospects for using MOF materials for the continuous separation and synthesis of pharmaceutical compounds.

  20. Metallic and semiconducting carbon nanotubes separation using an aqueous two-phase separation technique: a review

    Science.gov (United States)

    Tang, Malcolm S. Y.; Ng, Eng-Poh; Juan, Joon Ching; Ooi, Chien Wei; Ling, Tau Chuan; Woon, Kai Lin; Loke Show, Pau

    2016-08-01

    It is known that carbon nanotubes show desirable physical and chemical properties with a wide array of potential applications. Nonetheless, their potential has been hampered by the difficulties in acquiring high purity, chiral-specific tubes. Considerable advancement has been made in terms of the purification of carbon nanotubes, for instance chemical oxidation, physical separation, and myriad combinations of physical and chemical methods. The aqueous two-phase separation technique has recently been demonstrated to be able to sort carbon nanotubes based on their chirality. The technique requires low cost polymers and salt, and is able to sort the tubes based on their diameter as well as metallicity. In this review, we aim to provide a review that could stimulate innovative thought on the progress of a carbon nanotubes sorting method using the aqueous two-phase separation method, and present possible future work and an outlook that could enhance the methodology.

  1. Elastic properties of superconducting bulk metallic glasses; Elastische Eigenschaften von supraleitenden massiven metallischen Glaesern

    Energy Technology Data Exchange (ETDEWEB)

    Hempel, Marius

    2015-07-01

    Within the framework of this thesis the elastic properties of a superconducting bulk metallic glass between 10 mK and 300 K were first investigated. In order to measure the entire temperature range, in particular the low temperature part, new experimental techniques were developed. Using an inductive readout scheme for a double paddle oscillator it was possible to determine the internal friction and the relative change of sound velocity of bulk metallic glasses with high precision. This allowed for a detailed comparison of the data with different models. The analysis focuses on the low temperature regime where the properties of glassy materials are governed by atomic tunneling systems as described by the tunneling model. The influence of conduction electrons in the normal conducting state and quasiparticles in the superconducting state of the glass were accounted for in the theoretical description, resulting in a good agreement over a large temperature range between measured data and prediction of the tunneling model. This allowed for a direct determination of the coupling constant between electrons and tunneling systems. In the vicinity of the transition temperature Tc the data can only be described if a modified distribution function of the tunneling parameters is applied.

  2. Hydrate-based heavy metal separation from aqueous solution

    Science.gov (United States)

    Song, Yongchen; Dong, Hongsheng; Yang, Lei; Yang, Mingjun; Li, Yanghui; Ling, Zheng; Zhao, Jiafei

    2016-02-01

    A novel hydrate-based method is proposed for separating heavy metal ions from aqueous solution. We report the first batch of experiments and removal characteristics in this paper, the effectiveness and feasibility of which are verified by Raman spectroscopy analysis and cross-experiment. 88.01-90.82% of removal efficiencies for Cr3+, Cu2+, Ni2+, and Zn2+ were obtained. Further study showed that higher R141b-effluent volume ratio contributed to higher enrichment factor and yield of dissociated water, while lower R141b-effluent volume ratio resulted in higher removal efficiency. This study provides insights into low-energy, intensive treatment of wastewater.

  3. Phase separation of metallic hydrogen-helium alloys

    Science.gov (United States)

    Straus, D. M.; Ashcroft, N. W.; Beck, H.

    1977-01-01

    Calculations are presented for the thermodynamic functions and phase-separation boundaries of solid metallic hydrogen-helium alloys at temperatures between zero and 19,000 K and at pressures between 15 and 90 Mbar. Expressions for the band-structure energy of a randomly disordered alloy (including third order in the electron-ion interaction) are derived and evaluated. Short- and long-range orders are included by the quasi-chemical method, and lattice dynamics in the virtual-crystal harmonic approximation. It is concluded that at temperatures below 4000 K, there is essentially complete phase separation of hydrogen-helium alloys and that a miscibility gap remains at the highest temperatures and pressures considered. The relevance of these results to models of the deep interior of Jupiter is briefly discussed.

  4. Method and system for controlling chemical reactions between superconductors and metals in superconducting cables

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Tengming

    2016-11-15

    A method, system, and apparatus for fabricating a high-strength Superconducting cable comprises pre-oxidizing at least one high-strength alloy wire, coating at least one Superconducting wire with a protective layer, and winding the high-strength alloy wire and the Superconducting wire to form a high-strength Superconducting cable.

  5. Theoretic model and computer simulation of separating mixture metal particles from waste printed circuit board by electrostatic separator.

    Science.gov (United States)

    Li, Jia; Xu, Zhenming; Zhou, Yaohe

    2008-05-30

    Traditionally, the mixture metals from waste printed circuit board (PCB) were sent to the smelt factory to refine pure copper. Some valuable metals (aluminum, zinc and tin) with low content in PCB were lost during smelt. A new method which used roll-type electrostatic separator (RES) to recovery low content metals in waste PCB was presented in this study. The theoretic model which was established from computing electric field and the analysis of forces on the particles was used to write a program by MATLAB language. The program was design to simulate the process of separating mixture metal particles. Electrical, material and mechanical factors were analyzed to optimize the operating parameters of separator. The experiment results of separating copper and aluminum particles by RES had a good agreement with computer simulation results. The model could be used to simulate separating other metal (tin, zinc, etc.) particles during the process of recycling waste PCBs by RES.

  6. Introducing Barium in Transition Metal Oxide Frameworks: Impact upon Superconductivity, Magnetism, Multiferroism and Oxygen Diffusion and Storage.

    Science.gov (United States)

    Raveau, Bernard

    2016-11-25

    The role of barium in the structural chemistry of some transition metal oxides of the series "Cu, Mn, Fe,Co" is reviewed, based on its size effect and its particular chemical bonding. Its impact upon various properties, superconductivity, magnetism, multiferroism, oxygen storage is emphasized.

  7. Overscreened Kondo effect, (color) superconductivity and Shiba states in Dirac metals and quark matter

    CERN Document Server

    Kanazawa, Takuya

    2016-01-01

    We study the interplay between the Kondo effect and (color) superconductivity in doped Dirac metals with magnetic impurities and in quark matter with colorful impurities. We first point out that the overscreened Kondo effect arises in the normal state of these systems. Next the (color) superconducting gap is incorporated as a mean field and the phase diagram for a varying gap and temperature is constructed nonperturbatively. A rich phase structure emerges from a competition of effects unique to a multichannel system. The Kondo-screened phase is shown to disappear for a sufficiently large gap. Peculiarity of quark matter due to the confining property of non-Abelian gauge fields is noted. We also investigate the spectrum of sub-gap excited states, called Shiba states. Based on a model calculation and physical reasoning we predict that, as the coupling of the impurity to the bulk is increased, there will be more than one quantum phase transition due to level crossing among overscreened states.

  8. Study on the performance improvement of the high temperature superconducting coil with several separated coils at the edges

    Science.gov (United States)

    Ishiguri, S.; Oka, T.; Fukui, S.; Ogawa, J.; Sato, T.

    2008-09-01

    In designing high temperature superconducting (HTS) coils, it is important to secure large magnetic fields and stored energy using shorter tape length. Thus, it is necessary to improve the transport current performance of the coils. The critical current and n-value of an HTS tape depend on magnetic fields and flux angles under constant temperature. Considering these dependencies, we established a model to analyze coil critical current. This model clarifies that relatively large electric fields are generated at the coil edges. This adversely affects the transport current performance. In this study, the coil edge is separated into several coils, keeping the total tape length constant. This increases the coil critical current, stored energy, central magnetic field, and also the coil volume, which contains vacancies created by the separation. To estimate coil performance, we calculated the stored energy density, whose denominator is the increased coil volume. This stored energy density reaches its maximum value when the number of the separated coils is eight. At this optimum separation, the central magnetic field increases by 13%, and the stored energy improves by 43%, compared to a rectangular coil wound with the same tape length.

  9. Mesoscopic Transport Characteristics of a Normal-Metal-Superconducting-Grain-Superconductor System

    Institute of Scientific and Technical Information of China (English)

    冯金福; 熊诗杰

    2003-01-01

    We investigate transport properties of a normal-metal-superconducting-grain-superconductor system by the use of the equivalent single-particle multi-channel networks, taking into account the multi-level structure, the Coulomb interaction, and the pair potential on the grain. The dependence of the current on the gate voltage shows oscillating behaviour with a period related to 2e of the charge on the grain, reflecting the charge transfer in units of Cooper pairs. The conductance can be enhanced when the pairing parameter is near the Coulomb energy e2/2C, due to the resonance of the Andreev reflection through the grain. The magnitude of the Andreev reflection as a function of the bias voltage exhibits complicated structures, reflecting the multiple levels, the spin orientations, and the interaction energy on the grain.

  10. Screening-Dependent Study of Superconductivity in 3d-Transition Metals Binary Alloys Superconductors

    Institute of Scientific and Technical Information of China (English)

    Aditya M. Vora

    2009-01-01

    In the present article, we report the screening-dependent study of the superconducting state parameters (SSPs), viz. electron-phonon coupling strength A, Coulomb pseudopotential μ*, transition temperature Tc, isotope effect exponent a, and effective interaction strength NoV of 3d-band transition metals binary alloys superconductors have been made extensively in the present work using a model potential formalism and employing the pseudo-alloy-atom (PAA) model for the first time. Five local field correction functions proposed by Hartree (H), Taylor (T), Ichimaxu-Utsumi (IU), Farid et al. (F) and Sarkar et al. (S) are used in the present investigation to study the screening influence on the aforesaid properties. The present results of the SSPs obtained from H-screening are found in qualitative agreement with the available experimental data wherever exist.

  11. Unconventional superconductivity in electron-doped layered metal nitride halides MNX (M = Ti, Zr, Hf; X = Cl, Br, I)

    Energy Technology Data Exchange (ETDEWEB)

    Kasahara, Yuichi, E-mail: ykasahara@scphys.kyoto-u.ac.jp [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); Kuroki, Kazuhiko, E-mail: kuroki@phys.sci.osaka-u.ac.jp [Department of Physics, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Yamanaka, Shoji, E-mail: syamana@hiroshima-u.ac.jp [Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8527 (Japan); Taguchi, Yasujiro, E-mail: y-taguchi@riken.jp [RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198 (Japan)

    2015-07-15

    In this review, we present a comprehensive overview of superconductivity in electron-doped metal nitride halides MNX (M = Ti, Zr, Hf; X = Cl, Br, I) with layered crystal structure and two-dimensional electronic states. The parent compounds are band insulators with no discernible long-range ordered state. Upon doping tiny amount of electrons, superconductivity emerges with several anomalous features beyond the conventional electron–phonon mechanism, which stimulate theoretical investigations. We will discuss experimental and theoretical results reported thus far and compare the electron-doped layered nitride superconductors with other superconductors.

  12. Separation of heavy metals from landfill leachate by reactive liquid-liquid extraction

    Energy Technology Data Exchange (ETDEWEB)

    Mickler, W. [Potsdam Univ. (Germany). Inst. fuer Anorganische Chemie und Didaktik der Chemie

    2001-05-01

    The objective of this work was to investigate the decontamination of a model landfill leachate by simultaneous separation of heavy metals from alkaline earth metals and iron in order to obtain a leachate that can be led back to the landfill. Reactive extraction as a separation process offers the possibility of selectively separating cations, that is, of separating toxic components from less problematic ones, and also includes the possibility of electrolysis and further processes to obtain the desired metals. (orig.)

  13. Recovery of precious metals from industrial wastes using membrane separation

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jin Ki; Lee, Jae Chun; Youn, In Ju [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of)

    1995-12-01

    The purpose of the research is to develop a membrane technology for the recovery of Au by the concentration of used cyanide solution. Au and Ag have been widely used in various advanced technology due to their excellent physical and chemical properties. In most of their application, they were electrodeposited in the cyanide solution. The solution was also used as an etchant for the decorative gold alloys such as 14 K and 18 K. Due to the expanding related industry, the amount of used cyanide solution has been greatly increased. The used solution normally contains about 1-3 g/1 of Au. Due to their high prices various separation method has been developed and commercialized for long time. The concentration method which removes water offers various advantages like the reduction of used solution, the needless of additional cyanide, and the increase in the recovery rate. The main objective of the study was laid in the development of an economical recovery process for precious metals including Au from used cyanide solution. To achieve this goal related processes were reviewed comprehensively focussing on the membrane process and the concentration process. The feasibility of membrane process was evaluated by the measurement of separation efficiency and concentration efficiency of cyanide. In addition, various CN analysis was compared in order to develop a simple and routine procedure for future experiment. The process does not require additional cyanide and thus prevents further environmental contamination. It is economical because the recovery can be increased by the concentration of the solution during the recovery process. In addition, it can be applied to other metals waste system due to the reduced recovery process by concentration. The used water can also be reused. (author). 23 refs., 16 figs., 5 tabs.

  14. Development of 5 T NbTi Superconducting Magnet with 160 mm Warm Bore for Magnetic Separation

    Institute of Scientific and Technical Information of China (English)

    SHI Yi; WU Yu; LI Shaolei

    2008-01-01

    A wide-bore 5 T NbTi superconducting magnet,for magnetic separator,with an operational current of 106 A is designed and fabricated. This magnet with a φ60 mm room temperature bore is installed in a vacuum cryostat and immersed in liquid helium.A two-stage 4 K Gifford-McMahon (GM) cryocooler is used to maintain the cooling shield at 70 K and the condenser at 4 K in order to achieve the zero vaporization loss of liquid helium. The cooling power of the GM cryocooler is 1.5 W.In this paper,the design,heat leakage,stress analysis,quench protection characteristics and preliminary test results are presented.

  15. Development of superconducting high gradient magnetic separation system for scale removal from feed-water in thermal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Shibatani, Saori; Nakanishi, Motohiro; Mizuno, Nobumi [Osaka University, Osaka (Japan); and others

    2016-03-15

    A Superconducting High Gradient Magnetic Separation (HGMS) system is proposed for treatment of feed-water in thermal power plant. This is a method to remove the iron scale from feed-water utilizing magnetic force. One of the issues for practical use of HGMS system is to extend continuous operation period. In this study, we designed the magnetic filters by particle trajectory simulation and HGMS experiments in order to solve this problem. As a result, the quantity of magnetite captured by each filter was equalized and filter blockage was prevented. A design method of the magnetic filter was proposed which is suitable for the long-term continuous scale removal in the feed-water system of the thermal power plant.

  16. Fabrication of refrigerator cooled HTc superconducting magnet for magnetic separation; Jiki bunri reitoki dendo reikyaku magunetto no sakusei

    Energy Technology Data Exchange (ETDEWEB)

    Mukai, H.; Omatsu, K.; Takei, H. [Sumitomo Electric Industries, Osaka (Japan); Kumakura, H.; Ohara, T.; Kitaguchi, H.; Togano, K.; Wada, H. [National Research Inst. for Metals, Tokyo (Japan)

    2000-05-29

    In the magnetic separation application, the result that produced and evaluated high-temperature superconducting magnet of the refrigerating machine conduction cooling style, which can generate central magnetic fields 1.7T with horizontal room temperature bore of the 200mm diameter at excitation hour of 1 minute is reported. It did the double pancake coil by the react and wind method with polyimide tape for the insulation and stainless steel tape for the reinforcement in respect of Bi-2223 silver covering three 61core lines. It was placed in order to it laminate 42 pancake coils, and in order to it connect the double end, and in order to the magnet central axis level. (NEDO)

  17. Superconductivity in Ca-doped graphene laminates

    Science.gov (United States)

    Chapman, J.; Su, Y.; Howard, C. A.; Kundys, D.; Grigorenko, A. N.; Guinea, F.; Geim, A. K.; Grigorieva, I. V.; Nair, R. R.

    2016-01-01

    Despite graphene’s long list of exceptional electronic properties and many theoretical predictions regarding the possibility of superconductivity in graphene, its direct and unambiguous experimental observation has not been achieved. We searched for superconductivity in weakly interacting, metal decorated graphene crystals assembled into so-called graphene laminates, consisting of well separated and electronically decoupled graphene crystallites. We report robust superconductivity in all Ca-doped graphene laminates. They become superconducting at temperatures (Tc) between ≈4 and ≈6 K, with Tc’s strongly dependent on the confinement of the Ca layer and the induced charge carrier concentration in graphene. We find that Ca is the only dopant that induces superconductivity in graphene laminates above 1.8 K among several dopants used in our experiments, such as potassium, caesium and lithium. By revealing the tunability of the superconducting response through doping and confinement of the metal layer, our work shows that achieving superconductivity in free-standing, metal decorated monolayer graphene is conditional on an optimum confinement of the metal layer and sufficient doping, thereby bringing its experimental realization within grasp. PMID:26979564

  18. Superconductivity in Ca-doped graphene laminates

    Science.gov (United States)

    Chapman, J.; Su, Y.; Howard, C. A.; Kundys, D.; Grigorenko, A. N.; Guinea, F.; Geim, A. K.; Grigorieva, I. V.; Nair, R. R.

    2016-03-01

    Despite graphene’s long list of exceptional electronic properties and many theoretical predictions regarding the possibility of superconductivity in graphene, its direct and unambiguous experimental observation has not been achieved. We searched for superconductivity in weakly interacting, metal decorated graphene crystals assembled into so-called graphene laminates, consisting of well separated and electronically decoupled graphene crystallites. We report robust superconductivity in all Ca-doped graphene laminates. They become superconducting at temperatures (Tc) between ≈4 and ≈6 K, with Tc’s strongly dependent on the confinement of the Ca layer and the induced charge carrier concentration in graphene. We find that Ca is the only dopant that induces superconductivity in graphene laminates above 1.8 K among several dopants used in our experiments, such as potassium, caesium and lithium. By revealing the tunability of the superconducting response through doping and confinement of the metal layer, our work shows that achieving superconductivity in free-standing, metal decorated monolayer graphene is conditional on an optimum confinement of the metal layer and sufficient doping, thereby bringing its experimental realization within grasp.

  19. Superconductivity in Ca-doped graphene laminates.

    Science.gov (United States)

    Chapman, J; Su, Y; Howard, C A; Kundys, D; Grigorenko, A N; Guinea, F; Geim, A K; Grigorieva, I V; Nair, R R

    2016-03-16

    Despite graphene's long list of exceptional electronic properties and many theoretical predictions regarding the possibility of superconductivity in graphene, its direct and unambiguous experimental observation has not been achieved. We searched for superconductivity in weakly interacting, metal decorated graphene crystals assembled into so-called graphene laminates, consisting of well separated and electronically decoupled graphene crystallites. We report robust superconductivity in all Ca-doped graphene laminates. They become superconducting at temperatures (Tc) between ≈4 and ≈6 K, with Tc's strongly dependent on the confinement of the Ca layer and the induced charge carrier concentration in graphene. We find that Ca is the only dopant that induces superconductivity in graphene laminates above 1.8 K among several dopants used in our experiments, such as potassium, caesium and lithium. By revealing the tunability of the superconducting response through doping and confinement of the metal layer, our work shows that achieving superconductivity in free-standing, metal decorated monolayer graphene is conditional on an optimum confinement of the metal layer and sufficient doping, thereby bringing its experimental realization within grasp.

  20. Order-Disorder Transition and Phase Separation in the MgB2 Metallic Sublattice Induced by Al Doping.

    Science.gov (United States)

    Brutti, S; Gigli, G

    2009-07-14

    MgB2 is a superconductor constituted by alternating Mg and B planar layers: doping of both the sublattices has been observed experimentally to destroy the outstanding superconductive properties of this simple material. In this study we present the investigation by first principles methods at atomistic scale of the phase separation induced by aluminum doping in the MgB2 lattice. The calculations were performed by Density Functional Theory in generalized gradient approximation and pseudopotentials. Orthorhombic oP36 supercells derived by the primitive hR3 MgB2 cell were built in order to simulate the aluminum-magnesium substitution in the 0-50% composition range. The computational results explained the occurrence of a phase separation in the Mg1-xAlxB2 system. The miscibility gap is predicted to be induced by an order-disorder transition in the metallic sublattice at high Al concentration. Indeed at 1000 K aluminum substitution takes place on random Mg sites for concentration up to 17% of the total metallic sites, whereas at Al content larger than 31% the substitution is energetically more favorable on alternated metallic layers (Mg undoped planes alternate with Mg-Al layers). The formation of this Al-rich phase lead at 50% doping to the formation of the double omega Mg1/2Al1/2B2 ordered lattice. From 17 to 31% the two phases, the disordered Mg1-xAlxB2 (x MgB2 occurs in parallel with the collapse of the superconductive properties of the material.

  1. Mesoscopic superconductivity and high spin polarization coexisting at metallic point contacts on Weyl semimetal TaAs

    Science.gov (United States)

    Aggarwal, Leena; Gayen, Sirshendu; Das, Shekhar; Kumar, Ritesh; Süß, Vicky; Felser, Claudia; Shekhar, Chandra; Sheet, Goutam

    2017-01-01

    A Weyl semimetal is a topologically non-trivial phase of matter that hosts mass-less Weyl fermions, the particles that remained elusive for more than 80 years since their theoretical discovery. The Weyl semimetals exhibit unique transport properties and remarkably high surface spin polarization. Here we show that a mesoscopic superconducting phase with critical temperature Tc=7 K can be realized by forming metallic point contacts with silver (Ag) on single crystals of TaAs, while neither Ag nor TaAs are superconductors. Andreev reflection spectroscopy of such point contacts reveals a superconducting gap of 1.2 meV that coexists with a high transport spin polarization of 60% indicating a highly spin-polarized supercurrent flowing through the point contacts on TaAs. Therefore, apart from the discovery of a novel mesoscopic superconducting phase, our results also show that the point contacts on Weyl semimetals are potentially important for applications in spintronics.

  2. {sup 55}Co separation from proton irradiated metallic nickel

    Energy Technology Data Exchange (ETDEWEB)

    Valdovinos, H. F., E-mail: hvaldovinos@wisc.edu; Graves, S., E-mail: hvaldovinos@wisc.edu; Barnhart, T., E-mail: hvaldovinos@wisc.edu; Nickles, R. J., E-mail: hvaldovinos@wisc.edu [Department of Medical Physics, University of Wisconsin - Madison, Madison, WI (United States)

    2014-11-07

    {sup 55}Co with > 97% radionuclidic purity 24 hours after end of bombardment (EoB) was produced from the {sup 58}Ni(p,α) reaction using proton irradiations of 16 MeV on natural nickel. Two-hour irradiations with 25 μA on a 254 μm thick nickel foil generate 0.18 ± 0.01 GBq (n = 3) 24 hours after EoB. The separation of cobalt from the target material and other metallic contaminants present at trace levels is accomplished in HCl medium by two rounds of anion exchange chromatography (AG1-X8) using an automated module driven by a peristaltic pump. 80 ± 5 % (n = 3) of the activity generated at EoB is ready for labeling in 0.1 M HCl one hour after the start of separation. Using 99.999% pure Ni, the reactivity (decay corrected to EoB) with the bifunctional chelator (BFC) DOTA was 8.5 GBq/μmol; enough for radiolabeling BFC conjugated biomolecules at a nmol scale with > 90% yield. Using 99.9% pure Ni the reactivity with DOTA and NOTA was 0.19 +/− 0.09 GBq/μmol and 2.9 +/− 1.7 GBq/μmol (n = 2), respectively. Both cobalt complexes showed 100% in vitro stability in PBS and mouse serum over 41 hours at room temperature. MicroPET images of a miniature Derenzo phantom show excellent resolution where rods of 1.5 mm were separated by two times their diameter.

  3. 55Co separation from proton irradiated metallic nickel

    Science.gov (United States)

    Valdovinos, H. F.; Graves, S.; Barnhart, T.; Nickles, R. J.

    2014-11-01

    55Co with > 97% radionuclidic purity 24 hours after end of bombardment (EoB) was produced from the 58Ni ( p ,α) reaction using proton irradiations of 16 MeV on natural nickel. Two-hour irradiations with 25 μA on a 254 μm thick nickel foil generate 0.18 ± 0.01 GBq (n = 3) 24 hours after EoB. The separation of cobalt from the target material and other metallic contaminants present at trace levels is accomplished in HCl medium by two rounds of anion exchange chromatography (AG1-X8) using an automated module driven by a peristaltic pump. 80 ± 5 % (n = 3) of the activity generated at EoB is ready for labeling in 0.1 M HCl one hour after the start of separation. Using 99.999% pure Ni, the reactivity (decay corrected to EoB) with the bifunctional chelator (BFC) DOTA was 8.5 GBq/μmol; enough for radiolabeling BFC conjugated biomolecules at a nmol scale with > 90% yield. Using 99.9% pure Ni the reactivity with DOTA and NOTA was 0.19 +/- 0.09 GBq/μmol and 2.9 +/- 1.7 GBq/μmol (n = 2), respectively. Both cobalt complexes showed 100% in vitro stability in PBS and mouse serum over 41 hours at room temperature. MicroPET images of a miniature Derenzo phantom show excellent resolution where rods of 1.5 mm were separated by two times their diameter.

  4. Structural, electronic, elastic and superconducting properties of noble metal nitrides MN{sub 2} (M = Ru, Rh, Pd)

    Energy Technology Data Exchange (ETDEWEB)

    Puvaneswari, S. [Department of Physics, E.M.G. Yadava Women' s College, Madurai, Tamilnadu 625 014 (India); Rajeswarapalanichamy, R., E-mail: rrpcaspd2003@gmail.com [Department of Physics, N.M.S.S. Vellaichamy Nadar College, Madurai, Tamilnadu 625019 (India); Sudha Priyanga, G. [Department of Physics, N.M.S.S. Vellaichamy Nadar College, Madurai, Tamilnadu 625019 (India)

    2015-02-01

    The structural stability, electronic structure, elastic and superconducting properties of noble metal nitrides MN{sub 2} (M = Ru, Rh, Pd) are investigated in tetragonal (P4/mbm), fluorite (Fm3m), orthorhombic (Pnnm), pyrite (Pa-3) and hexagonal (P6/mmm) phases using first principles calculations. The calculated lattice parameters are in good agreement with other theoretical results. Among the considered structures, RhN{sub 2} and PdN{sub 2} are found to be most stable in tetragonal structure, whereas RuN{sub 2} is stable in fluorite structure. A sequence of structural phase transition is predicted under high pressure in these metal nitrides. The electronic structure reveals that these nitrides are metallic. These metal nitrides are found to be covalent, ionic and metallic in the stable phase. The observations show that these metal nitrides are mechanically stable at ambient condition. The superconducting transition temperatures for RuN{sub 2}, RhN{sub 2} and PdN{sub 2} are found to be 1.65 K, 5.01 K and 8.7 K respectively. - Highlights: • Electronic, structural and elastic properties of RuN{sub 2}, RhN{sub 2} and PdN{sub 2} are studied. • A pressure induced structural phase transition is predicted. • Electronic structure reveals that these materials exhibit metallic behavior. • High bulk modulus indicates that RuN{sub 2}, RhN{sub 2} and PdN{sub 2} are superhard materials. • Superconducting temperature values are reported.

  5. Separation of Industrially-Relevant Gas Mixtures With Metal-Organic Frameworks

    Science.gov (United States)

    Herm, Zoey Rose

    The work herein describes the investigation of metal-organic frameworks for industrial applications, specifically gas phase separations of mixtures. Metal-organic frameworks are crystalline molecular scaffolds built from cationic metal vertices and organic bridging ligands. They are porous on a molecular scale and can separate gas mixtures when one component interacts more strongly with the pore walls than others. The near-infinite combination of metals and ligands allows for optimization of metal-organic framework structures for specific separations. (Abstract shortened by UMI.)

  6. New Applications of Magnetic Separation Using Superconducting Magnets and Colloid Chemical Processes

    Science.gov (United States)

    Takeda, S.; Yu, S.-J.; Nakahira, A.; Izumi, Y.; Nishijima, S.; Watanabe, T.

    2005-07-01

    High gradient magnetic separation (HGMS) can be a promising new environmental purification technique as it produces no contaminants, such as flocculants, and could possibly treat large amounts of waste water within a short time frame. A colloid chemical process for magnetic seeding can allow us to rapidly recover a large quantity of adsorbate and to strongly magnetize individual particles in order to improve the recovery efficiency of magnetic separation. In this paper, we will report on the fundamental study of the magnetic seeding process and purification processes using HGMS, and also on studies of applications of the water treatment system for actual factories. Emphasized is a report on a system constructed for water treatment from a paper-manufacturing factory.

  7. Co-existence of superconductivity and ferromagnetism in f-electron metals.

    Science.gov (United States)

    Huxley, Andrew

    2002-03-01

    In itinerant ferromagnets a strong spin polarisation might be expected to suppress any possibility of spin-singlet superconductivity. However spin triplet superconductivity may still occur if there is an appropriate pairing interaction and the material is sufficiently clean. The experimental evidence that a bulk superconducting state is indeed realised in two different f-electron ferromagnets will be reviewed, along with the special factors that might favour such a state. For UGe_2, samples that satisfy the clean limit condition are easily prepared. The superconducting transition temperature is however closely correlated with the proximity to a critical point for a magnetic transition within the ferromagnetic state, which is achieved only at high pressure. The same factors, perhaps related to Fermi surface nesting, which give rise to this complex magnetic behaviour, therefore appear to be implicated in the superconducting pairing. Superconductivity in ferromagnetic URhGe occurs at zero pressure, which has facilitated extensive magnetisation and heat-capacity studies. These confirm both the bulk nature of the two transitions and the co-existence of the two orders (ferromagnetism and superconductivity). Further, as expected for non s-wave pairing, it is found that only samples with a sufficiently low residual resistivity show superconductivity. In contrast to UGe_2, the magnetic state in URhGe behaves in accordance with the simplest version of the Moriya-Lonzarich theory. This, as well as the recent report that that the cubic itinerant ferromagnet ZrZn2 shows a low temperature transition, interpreted as an incomplete transition to superconductivity, suggest that superconductivity could occur more commonly in clean ferromagnets. The observed superconducting properties of UGe2 and URhGe appear to be consistent with a particular symmetry of the order parameter in these lower symmetry materials. Their lower symmetries also lead to several advantages relating to the

  8. Anion separation by selective crystallization of metal-organic frameworks.

    Science.gov (United States)

    Custelcean, Radu; Haverlock, Tamara J; Moyer, Bruce A

    2006-08-07

    A novel approach for the separation of anions from aqueous mixtures was demonstrated, which involves their selective crystallization with metal-organic frameworks (MOFs) containing urea functional groups. Self-assembly of Zn2+ with the N,N'-bis(m-pyridyl)urea (BPU) linker results in the formation of one-dimensional MOFs including various anions for charge balance, which interact to different extents with the zinc nodes and the urea hydrogen-bonding groups, depending on their coordinating abilities. Thus, Cl-, Br-, I-, and SO4(2-), in the presence of BPU and Zn2+, form MOFs from water, in which the anions coordinate the zinc and are hydrogen-bonded to the urea groups, whereas NO3- and ClO4- anions either do not form MOFs or form water-soluble discrete coordination complexes under the same conditions. X-ray diffraction, FTIR, and elemental analysis of the coordination polymers precipitated from aqueous mixtures containing equivalent amounts of these anions indicated total exclusion of the oxoanions and selective crystallization of the halides in the form of solid solutions with the general composition ZnCl(x)Br(y)I(z).BPU (x + y + z = 2), with an anti-Hofmeister selectivity. The concomitant inclusion of the halides in the same structural frameworks facilitates the rationalization of the observed selectivity on the basis of the diminishing interactions with the zinc and urea acidic centers in the MOFs when going from Cl- to I-, which correlates with decreasing anionic charge density in the same order. The overall crystal packing efficiency of the coordination frameworks, which ultimately determines their solubility, also plays an important role in the anion crystallization selectivity under thermodynamic equilibration.

  9. Analysis of interdiffusion between SmFeAsO0.92F0.08 and metals for ex situ fabrication of superconducting wire

    Science.gov (United States)

    Fujioka, M.; Matoba, M.; Ozaki, T.; Takano, Y.; Kumakura, H.; Kamihara, Y.

    2011-07-01

    To find good sheath materials that react minimally with the superconducting core of iron-based superconducting wires, we investigated the reaction between polycrystalline SmFeAsO0.92F0.08 and the following seven metals: Cu, Fe, Ni, Ta, Nb, Cr and Ti. Each of the seven metals was prepared as a sheath-material candidate. The interfacial microstructures of SmFeAsO0.92F0.08 and these metal-sheath samples were analysed by an electron probe microanalyzer after annealing at 1000 °C for 20 h. Amongst the seven metal-sheath samples, we found that Cu was the best, because it reacted only very weakly with polycrystalline SmFeAsO0.92F0.08. Moreover, Cu is essential for superconducting wires as a stabilizing material. Metal sheaths made of Fe and Ni do not give rise to reaction layers, but large interdiffusion between these metals and polycrystalline SmFeAsO0.92F0.08 occurs. In contrast, metal sheaths made of Ta, Nb, Cr and Ti do form reaction layers. Their reaction layers apparently prevent electric current from flowing from the sheath material to the superconducting core. In general, through this research, Cu will be expected to be suitable not only as a stabilizing material but also as a sheath material for superconducting Sm-1111 wire fabricated by the ex situ PIT method.

  10. Method and apparatus for separating a non-ferrous metal-comprising fraction from ferrous scrap

    NARCIS (Netherlands)

    Rem, P.C.; Berkhout, S.P.M.

    2010-01-01

    Method for separating a non-ferrous metal-comprising fraction from ferrous scrap, wherein the ferrous scrap is conveyed to a processing device for separating the non-ferrous metal-comprising fraction from the remainder of the ferrous scrap. The processing device supplies a beam of water, and the fer

  11. Method and apparatus for separating a non-ferrous metal-comprising fraction from ferrous scrap

    NARCIS (Netherlands)

    Rem, P.C.; Berkhout, S.P.M.

    2010-01-01

    Method for separating a non-ferrous metal-comprising fraction from ferrous scrap, wherein the ferrous scrap is conveyed to a processing device for separating the non-ferrous metal-comprising fraction from the remainder of the ferrous scrap. The processing device supplies a beam of water, and the

  12. New Proton-Ionizable, Calixarene-Based Ligands for Selective Metal Ion Separations

    Energy Technology Data Exchange (ETDEWEB)

    Bartsch, Richard A.

    2012-06-04

    The project objective was the discovery of new ligands for performing metal ion separations. The research effort entailed the preparation of new metal ion complexing agents and polymers and their evaluation in metal ion separation processes of solvent extraction, synthetic liquid membrane transport, and sorption. Structural variations in acyclic, cyclic, and bicyclic organic ligands were used to probe their influence upon the efficiency and selectivity with which metal ion separations can be performed. A unifying feature of the ligand structures is the presence of one (or more) side arm with a pendent acidic function. When a metal ion is complexed within the central cavity of the ligand, ionization of the side arm(s) produces the requisite anion(s) for formation of an overall electroneutral complex. This markedly enhances extraction/transport efficiency for separations in which movement of aqueous phase anions of chloride, nitrate, or sulfate into an organic medium would be required. Through systematic structural variations, new ligands have been developed for efficient and selective separations of monovalent metal ions (e.g., alkali metal, silver, and thallium cations) and of divalent metal ion species (e.g., alkaline earth metal, lead, and mercury cations). Research results obtained in these fundamental investigations provide important insight for the design and development of ligands suitable for practical metal ion separation applications.

  13. Evidence for spin-triplet superconducting correlations in metal-oxide heterostructures with noncollinear magnetization

    Science.gov (United States)

    Khaydukov, Yu. N.; Ovsyannikov, G. A.; Sheyerman, A. E.; Constantinian, K. Y.; Mustafa, L.; Keller, T.; Uribe-Laverde, M. A.; Kislinskii, Yu. V.; Shadrin, A. V.; Kalaboukhov, A.; Keimer, B.; Winkler, D.

    2014-07-01

    Heterostructures composed of ferromagnetic La0.7Sr0.3MnO3, ferromagnetic SrRuO3, and superconducting YBa2Cu3O6+x were studied experimentally. Structures of composition Au /La0.7Sr0.3MnO3/SrRuO3/YBa2Cu3O6+x were prepared by pulsed laser deposition, and their high quality was confirmed by x-ray diffraction and reflectometry. A noncollinear magnetic state of the heterostructures was revealed by means of superconducting quantum interference device magnetometry and polarized neutron reflectometry. We have further observed superconducting currents in mesa structures fabricated by deposition of a second superconducting Nb layer on top of the heterostructure, followed by patterning with photolithography and ion-beam etching. Josephson effects observed in these mesa structures can be explained by the penetration of a triplet component of the superconducting order parameter into the magnetic layers.

  14. Unified picture of the doping dependence of superconducting transition temperatures in alkali metal/ammonia intercalated FeSe

    OpenAIRE

    Guterding, Daniel; Jeschke, Harald O.; Hirschfeld, P. J.; Valenti, Roser

    2014-01-01

    In the recently synthesized Li$_x$(NH$_2$)$_y$(NH$_3$)$_z$Fe$_2$Se$_2$ family of iron chalcogenides a molecular spacer consisting of lithium ions, lithium amide and ammonia separates layers of FeSe. It has been shown that upon variation of the chemical composition of the spacer layer, superconducting transition temperatures can reach $T_c\\sim 44 \\mathrm{K}$, but the relative importance of the layer separation and effective doping to the $T_c$ enhancement is currently unclear. Using state of t...

  15. Sources and speciation of heavy metals in municipal solid waste (MSW) and its effect on the separation technique

    Energy Technology Data Exchange (ETDEWEB)

    Biollaz, S.; Ludwig, Ch.; Stucki, S. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    A literature search was carried out to determine sources and speciation of heavy metals in MSW. A combination of thermal and mechanical separation techniques is necessary to achieve the required high degrees of metal separation. Metallic goods should be separated mechanically, chemically bound heavy metals by a thermal process. (author) 1 fig., 1 tab., 6 refs.

  16. Electrodialytic treatment of sewage sludge ash for the recovery of phosphorous and separation of heavy metals

    DEFF Research Database (Denmark)

    Ebbers, Benjamin; Ottosen, Lisbeth M.; Jensen, Pernille Erland;

    2012-01-01

    in separation from the ash suspension to the anode compartment. Although 96% of the recovered P was mobilized, only 55% was separated from the ash suspension. Less mobilization (m), but better separation (s), from the ash and ash suspension was observed for heavy metals, 78% (m) 69% (s) for Cd; 24% (m) 7% (s...

  17. Application of vacuum metallurgy to separate pure metal from mixed metallic particles of crushed waste printed circuit board scraps.

    Science.gov (United States)

    Zhan, Lu; Xu, Zhenming

    2008-10-15

    The principle of separating pure metal from mixed metallic particles (MMPs) byvacuum metallurgy is that the vapor pressures of various metals at the same temperature are different As a result, the metal with high vapor pressure and low boiling point can be separated from the mixed metals through distillation or sublimation, and then it can be recycled through condensation under a certain condition. The vacuum metallurgy separation (VMS) of MMPs of crushed waste printed circuit boards (WPCBs) has been studied in this paper. Theoretical analyses show that the MMPs (copper, zinc, bismuth, lead, and indium, for example) can be separated by vacuum metallurgy. The copper particles (0.15-0.20 mm) and zinc particles (<0.30 mm) were chosen to simulate the MMPs of crushed WPCBs. Experimental results show that the separated efficiency of zinc in the copper-rich particles achieves 96.19 wt % when the vacuum pressure is 0.01-0.10 Pa, the heating temperature is 1123 K, and the heating time is 105 min. Under this operation condition, the separated efficiency of zinc in the copper-rich particles from crushed WPCBs achieves 97.00 wt % and the copper purity increases from 90.68 to 99.84 wt %.

  18. Recovering metals from printed circuit board scrap by a mechanical separation process

    Institute of Scientific and Technical Information of China (English)

    XU Min; LI Guang-ming; HE Wen-zhi; LI Hui

    2008-01-01

    A mechanical separation process was developed for recovering metals from printed circuit board (PCB) scrap; it included three steps: impact crushing, sieving and fluidization separation. The mechanism of the technique was based on the difference in the crushabilities of metallic and nonmetallic materials in the PCBs that led to the concentrated distribution of metals in particles of larger sizes and nonmetals mostly in particles of smaller sizes. It was found that crushed PCB particles from 0.125 mm to 1.000 mm contained about 80% of metals in the PCBs. Metals acquired satisfactory liberation in particles smaller than 0.800 mm. The crushed PCB particles were sieved into fractions of different size ranges. Each fraction separately went through a gas-solid fluidized bed operating at a selected optimal gas velocity for the specific size range. Approximately 95% of metals in printed circuit board particles from 0.125 mm to 0.800 mm was recovered by the gas-fluidized bed separator at the selected optimal gas velocity. However, separation of metals from particles smaller than 0.125 mm was not satisfactory. Further study is needed on metal recovery from fine particles.

  19. Process for separating metallic from semiconducting single-walled carbon nanotubes

    Science.gov (United States)

    Sun, Ya-Ping (Inventor)

    2008-01-01

    A method for separating semiconducting single-walled carbon nanotubes from metallic single-walled carbon nanotubes is disclosed. The method utilizes separation agents that preferentially associate with semiconducting nanotubes due to the electrical nature of the nanotubes. The separation agents are those that have a planar orientation, .pi.-electrons available for association with the surface of the nanotubes, and also include a soluble portion of the molecule. Following preferential association of the separation agent with the semiconducting nanotubes, the agent/nanotubes complex is soluble and can be solubilized with the solution enriched in semiconducting nanotubes while the residual solid is enriched in metallic nanotubes.

  20. Theory of high gradient attractive magnetic separation of superconducting materials and its experimental verification by YBa{sub 2}Cu{sub 3}O{sub x} particles

    Energy Technology Data Exchange (ETDEWEB)

    Dessauges, L; Willems, J B; Favre, D; Bohrer, C; Helbling, F; Hulliger, J [Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, CH-3012 Berne (Switzerland)

    2006-08-15

    The calculation of trajectories for sedimenting diamagnetic particles shows that superconducting matter in the Meissner or vortex state can be captured sidewise to a ferromagnetic wire magnetized perpendicular to its length. Capture is possible for externally applied fields lower than typical critical fields H{sub c1}(c), H{sub c1}(a,b) of cuprates. For single crystalline particles in the vortex state, the magnetic anisotropy may reduce the capture force because of alignment. Theoretical predictions were confirmed experimentally for suspensions of polycrystalline and single crystalline particles of YBa{sub 2}Cu{sub 3}O{sub x} (size range: 2-125 {mu}m) in liquid nitrogen. As a general conclusion we find that for the extraction of superconducting particles out of combinatorial ceramic reaction mixtures, separation in the Meissner state might be most effective because of the presence of an excess of normal state matter featuring a much lower diamagnetic susceptibility.

  1. Nonionic metal-chelating surfactants mediated solvent-free thermo-induced separation of uranyl

    Energy Technology Data Exchange (ETDEWEB)

    Larpent, Ch.; Prevost, S. [Versailles-St-Quentin Univ., Institut Lavoisier, UMR-CNRS 8180, 78 - Versailles (France); Prevost, S.; Zemb, Th.; Testard, F. [CEA Saclay, Dept. de Recherche sur l' Etat Condense, les Atomes et les Molecules (DSM/DRECAM/SCM/LIONS), 91 - Gif sur Yvette (France); Berthon, L. [CEA Valrho, Site de Marcoule, Dept. Radiochimie et Procedes (DEN/DRCP/SCPS/LCSE), 30 (France)

    2007-08-15

    Thermo-responsive metal-chelating surfactants permit the solvent-free, cloud point extraction of uranyl nitrate and afford a real molecular economy compared to conventional separation techniques. (authors)

  2. Synthesis of Metal-Organic Zeolites with Homochirality and High Porosity for Enantioselective Separation.

    Science.gov (United States)

    Xu, Zhong-Xuan; Liu, Liyang; Zhang, Jian

    2016-07-01

    Using lactic acid derivatives as chiral ligands, a pair of unprecedented homochiral metal-organic zeolites have been synthesized that feature zeotype CAN topology and have high porosity for enantioselective separation of racemates.

  3. Separation of metal chelates and organometallic compounds by SFC and SFE/GC.

    Science.gov (United States)

    Wai, C M; Wang, S

    2000-07-05

    Supercritical fluid chromatography (SFC) combines the high diffusion coefficients of gas chromatography (GC) and the solubility properties of liquid chromatography (LC). SFC generally requires lower temperatures for chromatographic separations and thus is more suitable for analyzing thermally labile compounds including a number of metal chelates and organometallic compounds. SFC also allows interfacing between supercritical fluid extraction (SFE) and chromatographic analysis of metal-containing compounds. A large number of metal chelates and organometallic compounds can be separated by SFC. This article summarizes SFC separation of various chelates of transition metals, heavy metals, lanthanides and actinides as well as organometallic compounds of lead, mercury, and tin reported in the recent literature. This article also discusses SFC detection systems and the determination of solubility of organometallic compounds by SFC.

  4. Boosting the superconducting spin valve effect in a metallic superconductor/ferromagnet heterostructure

    Energy Technology Data Exchange (ETDEWEB)

    Leksin, Pavel [Leibniz Institute for Solid State and Materials Research Dresden, IFW Dresden (Germany); Zavoisky Physical-Technical Institute, Russian Academy of Sciences, Kazan (Russian Federation); Kamashev, Andrey; Garifullin, Ilgiz [Zavoisky Physical-Technical Institute, Russian Academy of Sciences, Kazan (Russian Federation); Schumann, Joachim; Kataev, Vladislav; Thomas, Juergen [Leibniz Institute for Solid State and Materials Research Dresden, IFW Dresden (Germany); Buechner, Bernd [Leibniz Institute for Solid State and Materials Research Dresden, IFW Dresden (Germany); Technical University Dresden (Germany)

    2016-07-01

    We demonstrate a crucial role of the morphology of the superconducting layer for the operation of the multilayer S/F1/F2 spin valve. For that, we studied two types of superconducting spin valve heterostructures, with a rough and with a smooth superconducting layer, respectively, with transmission electron microscopy in combination with transport and magnetic characterization. We have found that the quality of the S/F interface is not critical for the S/F proximity effect as regards the suppression of the critical temperature of the S layer. However, it appears to be of a paramount importance for the performance of the S/F1/F2 spin valve. The magnitude of the conventional superconducting spin valve effect significantly increases, when the morphology of the S layer is changed from the type of overlapping islands to a smooth one. We attribute this drastic effect to a homogenization of the Green function of the superconducting condensate over the S/F interface in the S/F1/F2 valve with a smooth S layer surface.

  5. Quantum-critical fluctuations in 2D metals: strange metals and superconductivity in antiferromagnets and in cuprates

    Science.gov (United States)

    Varma, Chandra M.

    2016-08-01

    The anomalous transport and thermodynamic properties in the quantum-critical region, in the cuprates, and in the quasi-two dimensional Fe-based superconductors and heavy-fermion compounds, have the same temperature dependences. This can occur only if, despite their vast microscopic differences, a common statistical mechanical model describes their phase transitions. The antiferromagnetic (AFM)-ic models for the latter two, just as the loop-current model for the cuprates, map to the dissipative XY model. The solution of this model in (2+1)D reveals that the critical fluctuations are determined by topological excitations, vortices and a variety of instantons, and not by renormalized spin-wave theories of the Landau-Ginzburg-Wilson type, adapted by Moriya, Hertz and others for quantum-criticality. The absorptive part of the fluctuations is a separable function of momentum \\mathbf{q} , measured from the ordering vector, and of the frequency ω and the temperature T which scale as \\tanh (ω /2T) at criticality. Direct measurements of the fluctuations by neutron scattering in the quasi-two-dimensional heavy fermion and Fe-based compounds, near their antiferromagnetic quantum critical point, are consistent with this form. Such fluctuations, together with the vertex coupling them to fermions, lead to a marginal fermi-liquid, with the imaginary part of the self-energy \\propto \\text{max}(ω,T) for all momenta, a resistivity \\propto T , a T\\ln T contribution to the specific heat, and other singular fermi-liquid properties common to these diverse compounds, as well as to d-wave superconductivity. This is explicitly verified, in the cuprates, by analysis of the pairing and the normal self-energy directly extracted from the recent high resolution angle resolved photoemission measurements. This reveals, in agreement with the theory, that the frequency dependence of the attractive irreducible particle-particle vertex in the d-wave channel is the same as the irreducible

  6. Metal doped hybrid silica for hydrothermally stable hydrogen separation membranes

    NARCIS (Netherlands)

    Hove, ten M.

    2016-01-01

    The research, as described in this thesis, is carrier out within the cluster "Catalysis, Membranes and Separations"(CMS) of ADEM (A green Deal in Energy Materials), which is funded by the Dutch ministry of economic affairs. The ADEM program aims to materialize innovations in energy technologies in c

  7. Metal doped hybrid silica for hydrothermally stable hydrogen separation membranes

    NARCIS (Netherlands)

    ten Hove, Marcel

    2016-01-01

    The research, as described in this thesis, is carrier out within the cluster "Catalysis, Membranes and Separations"(CMS) of ADEM (A green Deal in Energy Materials), which is funded by the Dutch ministry of economic affairs. The ADEM program aims to materialize innovations in energy technologies in c

  8. Chemically stable ceramic-metal composite membrane for hydrogen separation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fanglin; Fang, Shumin; Brinkman, Kyle S.

    2017-06-27

    A hydrogen permeation membrane is provided that can include a metal and a ceramic material mixed together. The metal can be Ni, Zr, Nb, Ta, Y, Pd, Fe, Cr, Co, V, or combinations thereof, and the ceramic material can have the formula: BaZr.sub.1-x-yY.sub.xT.sub.yO.sub.3-.delta. where 0.ltoreq.x.ltoreq.0.5, 0.ltoreq.y.ltoreq.0.5, (x+y)>0; 0.ltoreq..delta..ltoreq.0.5, and T is Sc, Ti, Nb, Ta, Mo, Mn, Fe, Co, Ni, Cu, Zn, Ga, In, Sn, or combinations thereof. A method of forming such a membrane is also provided. A method is also provided for extracting hydrogen from a feed stream.

  9. Magnetoelectric Andreev Effect due to Proximity-Induced Nonunitary Triplet Superconductivity in Helical Metals

    Science.gov (United States)

    Tkachov, G.

    2017-01-01

    Noncentrosymmetric superconductors exhibit the magnetoelectric effect, which manifests itself in the appearance of the magnetic spin polarization in response to a dissipationless electric current (supercurrent). While much attention has been dedicated to the thermodynamic version of this phenomenon (Edelstein effect), nonequilibrium transport magnetoelectric effects have not been explored yet. We propose the magnetoelectric Andreev effect (MAE), which consists in the generation of spin-polarized triplet Andreev conductance by an electric supercurrent. The MAE stems from the spin polarization of the Cooper-pair condensate due to a supercurrent-induced nonunitary triplet pairing. We propose the realization of such a nonunitary pairing and MAE in superconducting proximity structures based on two-dimensional helical metals—strongly spin-orbit-coupled electronic systems with the Dirac spectrum such as the topological surface states. Our results uncover an unexplored route towards electrically controlled superconducting spintronics and are a smoking gun for induced unconventional superconductivity in spin-orbit-coupled materials.

  10. Vitrification and Crystallization of Phase-Separated Metallic Liquid

    Directory of Open Access Journals (Sweden)

    Yun Cheng

    2017-02-01

    Full Text Available The liquid–liquid phase separation (LLPS behavior of Fe50Cu50 melt from 3500 K to 300 K with different rapid quenching is investigated by molecular dynamics (MD simulation based on the embedded atom method (EAM. The liquid undergoes metastable phase separation by spinodal decomposition in the undercooled regime and subsequently solidifies into three different Fe-rich microstructures: the interconnected-type structure is kept in the glass and crystal at a higher cooling rate, while the Fe-rich droplets are found to crystalize at a lower cooling rate. During the crystallization process, only Fe-rich clusters can act as the solid nuclei. The twinning planes can be observed in the crystal and only the homogeneous atomic stacking shows mirror symmetry along the twinning boundary. Our present work provides atomic-scale understanding of LLPS melt during the cooling process.

  11. Non-porous metal membranes for selective separation of hydrogen from gas mixtures at higher temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Winkelmann, U.; Schulten, R.; Weirich, W.; Kuegler, B.; Luecke, L.; Oertel, M.; Pietsch, M.; Schmitz, J.

    1986-10-01

    Materials for selective separation of hydrogen from gas mixtures by means of a metal membrane must have high permeability for dissolved oxygen, catalytically active surfaces, and mechanical stability in a hydrogen atmosphere. The transition metals Nb, Ta, and V have high hydrogen permeability, but they must be coated with a catalytically active Pd alloy in order to permit hydrogen permeation. The alloy TiNi can be used without a noble metal coating.

  12. Separation of tc from Uranium and development of metallic Technetium waste forms

    Science.gov (United States)

    Mausolf, Edward John

    The isotope Technetium-99 (99Tc) is a major fission product of the nuclear industry. In the last decade, approximately 20 tons of 99Tc have been produced by the US nuclear industry. Due to its long half-life (t1/2 = 214,000 yr), beta radiotoxicity, and high mobility as pertechnetate [TcO4]-, Tc represents long-term concern to the biosphere. Various options have been considered to manage 99Tc. One of them is its separation from spent fuel, conversion to the metal and incorporation into a metallic waste form for long-term disposal. After dissolution of spent fuel in nitric acid and extraction of U and Tc in organic media, previously developed methods can be used to separate Tc from U, convert the separate Tc stream to the metal and reuse the uranium component of the fuel. A variety of metallic waste forms, ranging from pure Tc metal to ternary Tc alloys combined with stainless steel (SS) and Zr are proposed. The goal of this work was to examine three major questions: What is the optimal method to separate Tc from U? After separation, what is the most efficient method to convert the Tc stream to Tc metal? Finally, what is the corrosion behavior of Tc metal, Tc-SS alloys and Tc-Zr-SS alloys in 0.01M NaCl? The goal is to predict the long term behavior of Tc metallic waste in a hypothetical storage environment. In this work, three methods have been used to separate Tc from U: anionic exchange resin, liquid-liquid extraction and precipitation. Of the three methods studied, anionic exchange resins is the most selective. After separation of Tc from U, three different methods were studied to convert the Tc stream to the metal: thermal treatment under hydrogen atmosphere, electrochemical and chemical reduction of pertechnetate in aqueous media. The thermal treatment of the Tc stream under hydrogen atmosphere is the preferred method to produce Tc metal. After Tc metal is isolated, it will be incorporated into a metal host phase. Three different waste forms were produced for

  13. Exploiting large-pore metal-organic frameworks for separations through entropic molecular mechanisms

    NARCIS (Netherlands)

    Torres-Knoop, A.; Dubbeldam, D.

    2015-01-01

    We review the molecular mechanisms behind adsorption and the separations of mixtures in metal-organic frameworks and zeolites. Separation mechanisms can be based on differences in the affinity of the adsorbate with the framework and on entropic effects. To develop next-generation adsorbents, the

  14. Exploiting large-pore metal-organic frameworks for separations through entropic molecular mechanisms

    NARCIS (Netherlands)

    A. Torres-Knoop; D. Dubbeldam

    2015-01-01

    We review the molecular mechanisms behind adsorption and the separations of mixtures in metal-organic frameworks and zeolites. Separation mechanisms can be based on differences in the affinity of the adsorbate with the framework and on entropic effects. To develop next-generation adsorbents, the sep

  15. Preorganized and Immobilized Ligands for Metal Ion Separations

    Energy Technology Data Exchange (ETDEWEB)

    Paine, Robert T. [Univ. of New Mexico, Albuquerque, NM (United States)

    2015-07-01

    The research project, in the period 2003-2015, was focused on the discovery of fundamental new principles in f-element ion coordination chemistry and the application of the new knowledge to the development of advanced detection/separations reagents and methods for these ions. The findings relate to the Nation's efforts to safely and efficiently process nuclear materials. In addition, the project provided training for young scientists needed to maintain the Nation's preeminence in nuclear science.

  16. Entangled microwaves as a resource for entangling spatially separate solid-state qubits: Superconducting qubits, nitrogen-vacancy centers, and magnetic molecules

    Science.gov (United States)

    Gómez, Angela Viviana; Rodríguez, Ferney Javier; Quiroga, Luis; García-Ripoll, Juan José

    2016-06-01

    Quantum correlations present in a broadband two-line squeezed microwave state can induce entanglement in a spatially separated bipartite system consisting of either two single qubits or two-qubit ensembles. By using an appropriate master equation for a bipartite quantum system in contact with two separate but entangled baths, the generating entanglement process in spatially separated quantum systems is thoroughly characterized. Decoherence thermal effects on the entanglement transfer are also discussed. Our results provide evidence that this entanglement transfer by dissipation is feasible, yielding to a steady-state amount of entanglement in the bipartite quantum system which can be optimized for a wide range of realistic physical systems that include state-of-the-art experiments with nitrogen-vacancy centers in diamond, superconducting qubits, or even magnetic molecules embedded in a crystalline matrix.

  17. Metal-organic frameworks for Xe/Kr separation

    Science.gov (United States)

    Ryan, Patrick J.; Farha, Omar K.; Broadbelt, Linda J.; Snurr, Randall Q.; Bae, Youn-Sang

    2014-07-22

    Metal-organic framework (MOF) materials are provided and are selectively adsorbent to xenon (Xe) over another noble gas such as krypton (Kr) and/or argon (Ar) as a result of having framework voids (pores) sized to this end. MOF materials having pores that are capable of accommodating a Xe atom but have a small enough pore size to receive no more than one Xe atom are desired to preferentially adsorb Xe over Kr in a multi-component (Xe--Kr mixture) adsorption method. The MOF material has 20% or more, preferably 40% or more, of the total pore volume in a pore size range of 0.45-0.75 nm which can selectively adsorb Xe over Kr in a multi-component Xe--Kr mixture over a pressure range of 0.01 to 1.0 MPa.

  18. Coexistence of superconductivity and density waves in quasi-two-dimensional metals

    Energy Technology Data Exchange (ETDEWEB)

    Ismer, Jan-Peter

    2011-06-03

    This dissertation deals with the high-temperature superconductivity in the hole- and electron-doped copper superconductors. In the first part, superconducting phases are investigated on a background of different types of density waves. Singlet superconductivity is studied with s- and d-wave symmetry on a background of spin, charge or D-density waves with respect to stability as well as phase structure and impulse dependence of the gap function. In the second part, the dynamic spin susceptibility for different phases is calculated and compared with experimental data extracted from results of inelastic neutron scattering experiments. The observed phases are d-wave superconductivity, D-density wave, and coexistence of the two. For d-wave superconductivity, the influence of a magnetic field parallel to the copper oxide layer and the temperature development of the susceptibility when for T >> T{sub c} a spin density wave phase is present are investigated. [German] Diese Dissertation beschaeftigt sich mit der Hochtemperatursupraleitung in den loch- und elektron-dotierten Kuprat-Supraleitern. Im ersten Teil der Arbeit werden supraleitende Phasen auf einem Hintergrund verschiedener Typen von Dichtewellen untersucht. Es wird Singlett-Supraleitung mit s- und d-Wellen-Symmetrie auf einem Hintergrund von Spin-, Ladungs- oder D-Dichtewelle hinsichtlich Stabilitaet sowie Phasenstruktur und Impulsabhaengigkeit der Gapfunktion untersucht. Im zweiten Teil wird die dynamische Spinsuszeptibilitaet fuer verschiedene Phasen berechnet und mit experimentellen Daten verglichen, die aus Ergebnissen von Inelastischen Neutronenstreuungsexperimenten extrahiert wurden. Die betrachteten Phasen sind d-Wellen-Supraleitung, D-Dichtewelle und Koexistenz der beiden. Fuer d-Wellen-Supraleitung werden der Einfluss eines Magnetfelds parallel zur Kupferoxidschicht und die Temperaturentwicklung der Suszeptibilitaet, wenn fuer T >> T{sub c} eine Spin-Dichtewelle-Phase vorliegt, untersucht.

  19. Experience with two large-scale Hell-cryostats for a superconducting RF particle separator working in closed cycle with a 300 W refrigerator

    CERN Document Server

    Barth, W

    1976-01-01

    The contribution of the Karlsruhe Institut fur Experimental Kernphysik to the RF particle separator at the SPS/CERN consists of the two superconducting deflectors and their Hell-cryostats with the cryogenic and vacuum accessories. The cryostats have to fulfil specifications concerning tightness, thermal insulation, adjustment of the cavities to the beam and reliability. Corresponding cryogenic and RF tests are performed in Karlsruhe before a 300 W refrigerator simulating normal and emergency conditions. Following a description of cryostats design the results of these measurements are compared with the specifications. Operating experience with the cryostats in closed circuit with the refrigerator are reported. (5 refs).

  20. Selective Fluorination and Separation of Metals with NF3 for Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Richard A.; Barinaga, Charles J.; McNamara, Bruce K.; Schwantes, Jon M.; Ballou, Nathan E.

    2016-03-01

    We report recent progress on the development of a new methodology based on the generation of volatile metal fluorides through the use of nitrogen trifluoride (NF3), and the separation and measurement of these metal fluorides by electron ionization mass spectrometry. Though unreactive under ambient conditions, NF3 reacts selectively at specified temperatures with various metal-containing species to form volatile metal fluorides. Utilizing these species-dependent traits, elements of a sample may be sequentially produced and thus separated on-line. Metals were reacted inside a thermogravimetric analyzer, the gas outlet of which was directly coupled to a quadrupole mass spectrometer with an electron impact ionization source via a molecular leak valve. We present results of this project including the electron ionization mass spectrum of gaseous tellurium hexafluoride.

  1. Separated metallic and semiconducting single-walled carbon nanotubes: opportunities in transparent electrodes and beyond.

    Science.gov (United States)

    Lu, Fushen; Meziani, Mohammed J; Cao, Li; Sun, Ya-Ping

    2011-04-19

    Ever since the discovery of single-walled carbon nanotubes (SWNTs), there have been many reports and predictions on their superior properties for use in a wide variety of potential applications. However, an SWNT is either metallic or semiconducting; these properties are distinctively different in electrical conductivity and many other aspects. The available bulk-production methods generally yield mixtures of metallic and semiconducting SWNTs, despite continuing efforts in metallicity-selective nanotube growth. Presented here are significant advances and major achievements in the development of postproduction separation methods, which are now capable of harvesting separated metallic and semiconducting SWNTs from different production sources with sufficiently high enrichment and quantities for satisfying at least the needs in research and technological explorations. Opportunities and some available examples for the use of metallic SWNTs in transparent electrodes and semiconducting SWNTs in various device nanotechnologies are highlighted and discussed.

  2. Enhanced Mixture Separations of Metal Adducted Tetrasaccharides Using Frequency Encoded Ion Mobility Separations and Tandem Mass Spectrometry

    Science.gov (United States)

    Morrison, Kelsey A.; Bendiak, Brad K.; Clowers, Brian H.

    2016-10-01

    Using five isomeric tetrasaccharides in combination with seven multivalent metals, the impact on mobility separations and resulting CID spectra were examined using a hybrid ion mobility atmospheric pressure drift tube system coupled with a linear ion trap. By enhancing the duty cycle of the drift tube system using a linearly chirped frequency, the collision-induced dissociation spectra were encoded in the mobility domain according to the drift times of each glycan isomer precursor. Differential fragmentation patterns correlated with precursor drift times ensured direct assignment of fragments with precursor structure whether as individual standards or in a mixture of isomers. In addition to certain metal ions providing higher degrees of separation than others, in select cases more than one arrival time distribution was observed for a single pure carbohydrate isomer. These observations suggest the existence of alternative coordination sites within a single monomeric species, but more interesting was the observation of different fragmentation ion yields for carbohydrate dimers formed through metal adduction. Positive-ion data were also compared with negative-ion species, where dimer formation did not occur and single peaks were observed for each isomeric tetrasaccharide-alditol. This enhanced analytical power has implications not only for carbohydrate molecules but also for a wide variety of complex mixtures of molecules where dissociation spectra may potentially be derived from combinations of monomeric, homodimeric, and heterodimeric species having identical nominal m/z values.

  3. Carbon Dioxide Separation with Novel Microporous Metal Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Richard Willis; Annabelle Benin; John Low; Ganesh Venimadhavan; Syed Faheem; David Lesch; Adam Matzger; Randy Snurr

    2008-02-04

    The goal of this program was to develop a low cost novel sorbent to remove carbon dioxide from flue gas and gasification streams in electric utilities. Porous materials named metal-organic frameworks (MOFs) were found to have good capacity and selectivity for the capture of carbon dioxide. Several materials from the initial set of reference MOFs showed extremely high CO{sub 2} adsorption capacities and very desirable linear isotherm shapes. Sample preparation occurred at a high level, with a new family of materials suitable for intellectual property protection prepared and characterized. Raman spectroscopy was shown to be useful for the facile characterization of MOF materials during adsorption and especially, desorption. Further, the development of a Raman spectroscopic-based method of determining binary adsorption isotherms was initiated. It was discovered that a stronger base functionality will need to be added to MOF linkers in order to enhance CO{sub 2} selectivity over other gases via a chemisorption mechanism. A concentrated effort was expended on being able to accurately predict CO{sub 2} selectivities and on the calculation of predicted MOF surface area values from first principles. A method of modeling hydrolysis on MOF materials that correlates with experimental data was developed and refined. Complimentary experimental data were recorded via utilization of a combinatorial chemistry heat treatment unit and high-throughput X-ray diffractometer. The three main Deliverables for the project, namely (a) a MOF for pre-combustion (e.g., IGCC) CO{sub 2} capture, (b) a MOF for post-combustion (flue gas) CO{sub 2} capture, and (c) an assessment of commercial potential for a MOF in the IGCC application, were completed. The key properties for MOFs to work in this application - high CO{sub 2} capacity, good adsorption/desorption rates, high adsorption selectivity for CO{sub 2} over other gases such as methane and nitrogen, high stability to contaminants, namely

  4. Superconductivity and electrical resistivity in alkali metal doped fullerides: Phonon mechanism

    Indian Academy of Sciences (India)

    Dinesh Varshney; A Dube; K K Choudhary; R K Singh

    2005-04-01

    We consider a two-peak model for the phonon density of states to investigate the nature of electron pairing mechanism for superconducting state in fullerides. We first study the intercage interactions between the adjacent C60 cages and expansion of lattice due to the intercalation of alkali atoms based on the spring model to estimate phonon frequencies from the dynamical matrix for the intermolecular alkali-C60 phonons. Electronic parameter as repulsive parameter and the attractive coupling strength are obtained within the random phase approximation. Transition temperature, c, is obtained in a situation when the free electrons in lowest molecular orbital are coupled with alkali-C60 phonons as 5 K, which is much lower as compared to reported c (≈ 20 K). The superconducting pairing is mainly driven by the high frequency intramolecular phonons and their effects enhance it to 22 K. To illustrate the usefulness of the above approach, the carbon isotope exponent and the pressure effect are also estimated. Temperature dependence of electrical resistivity is then analysed within the same model phonon spectrum. It is inferred from the two-peak model for phonon density of states that high frequency intramolecular phonon modes play a major role in pairing mechanism with possibly some contribution from alkali-C60 phonon to describe most of the superconducting and normal state properties of doped fullerides.

  5. Charge order, metallic behavior, and superconductivity in La2-xBaxCuO4 with x=1/8.

    Science.gov (United States)

    Homes, C C; Dordevic, S V; Gu, G D; Li, Q; Valla, T; Tranquada, J M

    2006-06-30

    The ab-plane optical properties of a cleaved single crystal of La2-xBaxCuO4 for x=1/8 (Tc approximately =2.4 K) have been measured over a wide frequency and temperature range. The low-frequency conductivity is Drude-like and shows a metallic response with decreasing temperature. However, below approximately =60 K, corresponding to the onset of charge-stripe order, there is a rapid loss of spectral weight below about 40 meV. The behavior is quite different from that typically associated with the pseudogap in the normal state of the cuprates. Instead, the gapping of the normal-state single-particle excitations looks surprisingly similar to that observed in superconducting La2-xSrxCuO4, including the presence of a residual Drude peak with reduced weight.

  6. Metal-Insulator Transition and Superconductivity in Spinel-Type System Cu 1-xZnxIr 2S 4

    Science.gov (United States)

    Suzuki, Hiroyuki; Furubayashi, Takao; Cao, Guanghan; Kitazawa, Hideaki; Kamimura, Akira; Hirata, Kazuto; Matsumoto, Takehiko

    1999-08-01

    The thiospinel compoundCuIr2S4 exhibits the metal-insulator (M-I) transitionaccompanied by the structural transition. In this work, compounds ofCu1-xZnxIr2S4 in the composition range 0≤x≤0.5 were synthesized to examine the effects of excess electronssupplied by replacing Cu with Zn. The samples were investigated bymeasurements of X-ray diffraction, electrical resistance and magneticsusceptibility. The M-I transition temperature T MIdecreases with increasing x. Results are discussed on the basis ofthe model of charge ordering for the insulating state. It was foundthat the samples with x≥0.3 show no M-I transition and exhibitsuperconductivity. The transition temperature T C is 2.8 Kfor x= 0.3 and 2.2 K for x= 0.5. The ground state of the systemchanges from insulating to superconducting with increasing Zncontent.

  7. Method and apparatus for separating a non-ferrous metal-comprising fraction from ferrous scrap

    OpenAIRE

    Rem, P.C.; Berkhout, S.P.M.

    2010-01-01

    Method for separating a non-ferrous metal-comprising fraction from ferrous scrap, wherein the ferrous scrap is conveyed to a processing device for separating the non-ferrous metal-comprising fraction from the remainder of the ferrous scrap. The processing device supplies a beam of water, and the ferrous scrap is conveyed and released into the waterbeam so as to cause that the ferrous scrap is allowed to fall and move further, subject to the forces of gravity and the waterbeam.

  8. Separation of C2 Hydrocarbons by Porous Materials: Metal Organic Frameworks as Platform

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Debasis; Liu, Jun; Thallapally, Praveen K.

    2014-12-22

    The effective separation of small hydrocarbon molecules (C1 – C4) is an important process for petroleum industry, determining the end price of many essential commodities in our daily lives. Current technologies for separation of these molecules rely on energy intensive fractional distillation processes at cryogenic temperature, which is particularly difficult because of their similar volatility. In retrospect, adsorptive separation using solid state adsorbents might be a cost effective alternative. Several types of solid state adsorbents (e.g. zeolite molecular sieves) were tested for separation of small hydrocarbon molecules as a function of pressure, temperature or vacuum. Among different types of plausible adsorbents, metal organic frameworks (MOFs), a class of porous, crystalline, inorganic-organic hybrid materials, is particularly promising. In this brief comment article, we discuss the separation properties of different types of solid state adsorbents, with a particular emphasis on MOF based adsorbents for separation of C2 hydrocarbon molecules.

  9. Microwave spectroscopy evidence of superconducting pairing in the magnetic-field-induced metallic state of InO(x) films at zero temperature.

    Science.gov (United States)

    Liu, Wei; Pan, LiDong; Wen, Jiajia; Kim, Minsoo; Sambandamurthy, G; Armitage, N P

    2013-08-09

    We investigate the field-tuned quantum phase transition in a 2D low-disorder amorphous InO(x) film in the frequency range of 0.05 to 16 GHz employing microwave spectroscopy. In the zero-temperature limit, the ac data are consistent with a scenario where this transition is from a superconductor to a metal instead of a direct transition to an insulator. The intervening metallic phase is unusual with a small but finite resistance that is much smaller than the normal state sheet resistance at the lowest measured temperatures. Moreover, it exhibits a superconducting response on short length and time scales while global superconductivity is destroyed. We present evidence that the true quantum critical point of this 2D superconductor metal transition is located at a field B(sm) far below the conventionally defined critical field B(cross) where different isotherms of magnetoresistance cross each other. The superfluid stiffness in the low-frequency limit and the superconducting fluctuation frequency from opposite sides of the transition both vanish at B≈B(sm). The lack of evidence for finite-frequency superfluid stiffness surviving B(cross) signifies that B(cross) is a crossover above which superconducting fluctuations make a vanishing contribution to dc and ac measurements.

  10. Microwave Spectroscopy Evidence of Superconducting Pairing in the Magnetic-Field-Induced Metallic State of InOx Films at Zero Temperature

    Science.gov (United States)

    Liu, Wei; Pan, LiDong; Wen, Jiajia; Kim, Minsoo; Sambandamurthy, G.; Armitage, N. P.

    2013-08-01

    We investigate the field-tuned quantum phase transition in a 2D low-disorder amorphous InOx film in the frequency range of 0.05 to 16 GHz employing microwave spectroscopy. In the zero-temperature limit, the ac data are consistent with a scenario where this transition is from a superconductor to a metal instead of a direct transition to an insulator. The intervening metallic phase is unusual with a small but finite resistance that is much smaller than the normal state sheet resistance at the lowest measured temperatures. Moreover, it exhibits a superconducting response on short length and time scales while global superconductivity is destroyed. We present evidence that the true quantum critical point of this 2D superconductor metal transition is located at a field Bsm far below the conventionally defined critical field Bcross where different isotherms of magnetoresistance cross each other. The superfluid stiffness in the low-frequency limit and the superconducting fluctuation frequency from opposite sides of the transition both vanish at B≈Bsm. The lack of evidence for finite-frequency superfluid stiffness surviving Bcross signifies that Bcross is a crossover above which superconducting fluctuations make a vanishing contribution to dc and ac measurements.

  11. Thin-layer chromatographie separation of alkaline earth metals on diethylaminoethyl cellulose.

    Science.gov (United States)

    Ishida, K

    1969-12-01

    Thin-layer Chromatographic behaviour of magnesium, calcium, strontium and barium on diethylaminoethyl cellulose has been investigated in methanol-nitric acid mixtures. R(f) values are in the order magnesium > calcium > strontium > barium. The differences in R(f) values are large enough to allow good separations of the four metal ions from each other. The best separation is obtained by the ascending technique with methanol-8M nitric acid (20:1, v v ).

  12. Electronic, thermal, and superconducting properties of metal nitrides (MN) and metal carbides (MC) (M=V, Nb, Ta) compounds by first principles studies

    Energy Technology Data Exchange (ETDEWEB)

    Subhashree, G.; Sankar, S.; Krithiga, R. [Anna Univ., Chennai, Tamil Nadu (India). Condensed Matter Lab.

    2015-07-01

    Structural, electronic, and superconducting properties of carbides and nitrides of vanadium (V), niobium (Nb), and tantalum (Ta) (group V transition elements) have been studied by computing their electronic band structure characteristics. The electronic band structure calculations have been carried out based on the density functional theory (DFT) within the local density approximation (LDA) by using the tight binding linear muffin tin orbital method. The NaCl-type cubic structures of MN and MC (M=V, Nb, Ta) compounds have been confirmed from the electronic total energy minimum of these compounds. The ground state properties, such as equilibrium lattice constant (a{sub 0}), bulk modulus (B), and Wigner-Seitz radius (S{sub 0}) are determined and compared with available data. The electronic density of states reveals the metallic nature of the chosen materials. The electronic specific heat coefficient, Debye temperature, and superconducting transition temperature obtained from the band structure results are found to agree well with the earlier reported literature.

  13. Characterization of Printed Circuit Boards for Metal and Energy Recovery after Milling and Mechanical Separation

    Directory of Open Access Journals (Sweden)

    Waldir A. Bizzo

    2014-06-01

    Full Text Available The proper disposal of electrical and electronic waste is currently a concern of researchers and environmental managers not only because of the large volume of such waste generated, but also because of the heavy metals and toxic substances it contains. This study analyzed printed circuit boards (PCBs from discarded computers to determine their metal content and characterized them as solid waste and fuel. The analysis showed that PCBs consist of approximately 26% metal, made up mainly of copper, lead, aluminum, iron and tin, as well as other heavy metals such as cadmium and nickel. Comparison with the results of other studies indicated that the concentration of precious metals (gold and silver has declined over time. Analysis of the leachate revealed high concentrations of cadmium and lead, giving the residue the characteristics of hazardous waste. After milling the PCBs, we found that larger amounts of metal were concentrated in smaller fractions, while the lightest fraction, obtained by density separation, had a gross calorific value of approximately 11 MJ/kg, although with a high ash content. Milling followed by density separation proved potentially useful for recovery of metals and energy-rich fractions.

  14. Characterization of Printed Circuit Boards for Metal and Energy Recovery after Milling and Mechanical Separation

    Science.gov (United States)

    Bizzo, Waldir A.; Figueiredo, Renata A.; de Andrade, Valdelis F.

    2014-01-01

    The proper disposal of electrical and electronic waste is currently a concern of researchers and environmental managers not only because of the large volume of such waste generated, but also because of the heavy metals and toxic substances it contains. This study analyzed printed circuit boards (PCBs) from discarded computers to determine their metal content and characterized them as solid waste and fuel. The analysis showed that PCBs consist of approximately 26% metal, made up mainly of copper, lead, aluminum, iron and tin, as well as other heavy metals such as cadmium and nickel. Comparison with the results of other studies indicated that the concentration of precious metals (gold and silver) has declined over time. Analysis of the leachate revealed high concentrations of cadmium and lead, giving the residue the characteristics of hazardous waste. After milling the PCBs, we found that larger amounts of metal were concentrated in smaller fractions, while the lightest fraction, obtained by density separation, had a gross calorific value of approximately 11 MJ/kg, although with a high ash content. Milling followed by density separation proved potentially useful for recovery of metals and energy-rich fractions. PMID:28788692

  15. Energetical fly ashes – separation and utilization of metallic valuable components

    Directory of Open Access Journals (Sweden)

    Michalíková Františka

    2000-12-01

    Full Text Available In the contribution, methods of separating metals – Fe, Al, Ge from energetic wastes – fly ashes are presented along with further possibilities of utilization of particular valuable components for industrial purposes.In the contribution, properties of energetic wastes are presented influencing the contents, separability, and utilizability of metal-bearing valuable components. From among physical properties these are grain size distribution and surface area. Chemical properties are characterized by elements contained in combusted coal whose content after combustion is increased 2 to 4 times, depending on the content of ash and combustible matters in original coal. Mineralogical properties of energetic wastes are determined by the combustion process conditions in the course of which mineral novelties are produced in concentrations suitable for separation.In the contribution, methods of separation and utilization of metals such as Fe, Al, Ge are described. From literature information on the processing of Fe component, as well as from results of experiments made at the Department of Mineral Processing and Environmental Protection, Technical University of Kosice follows that the highest concentration and mass yield of the component can be obtained from black coal fly ashes produced in smelting boilers. The content of Al in Slovak energetic wastes is lower than the 30 % Al2O3 limit that conditions an economic technological processing. Only in the case of black coal fly ash from TEKO Kosice and EVO Vojany was the Al2O3 content of 32.93 %. Therefore, in an indirect way – by separating the residues of uncombusted coal and magnetite Fe – the content of Al in fly ash was increased.For Ge, a principle of selective sizing has been utilized.A complex utilization of energetic wastes, that is the separation of metallic components, elimination of particular metals and the subsequent treatment of nonmetallic residue, should be an effective solution in various

  16. Superconductivity and metallic behavior in Pb{sub x}C{sub y}O{sub δ} structures prepared by focused electron beam induced deposition

    Energy Technology Data Exchange (ETDEWEB)

    Winhold, M., E-mail: winhold@Physik.uni-frankfurt.de; Weirich, P. M.; Schwalb, C. H.; Huth, M. [Physikalisches Institut, Goethe-University, 60438 Frankfurt am Main (Germany)

    2014-10-20

    Focused electron beam induced deposition as a direct-write approach possesses great potential to meet the demands for superconducting nanostructure fabrication especially regarding its 3D patterning capabilities combined with the high resolution in the nanometer regime. So far, however, it was not possible to fabricate superconducting structures with this technique. In this work, we present a lead-based superconductor prepared by focused electron beam induced deposition by dissociation of the precursor tetraethyllead. The as-grown structures exhibit metallic behavior and a minimum resistivity in the normal state of ρ = 16 μΩcm at T = 9 K followed by a superconducting transition at T{sub c} = 7.2 K.

  17. Superconductivity in the Tungsten Bronzes

    Science.gov (United States)

    Wu, Phillip; Ishii, Satoshi; Tanabe, Kenji; Munakata, Ko; Hammond, Robert H.; Tokiwa, Kazuyasu; Geballe, Theodore H.; Beasley, Malcolm R.

    2015-03-01

    Via pulsed laser deposition and post-annealing, high quality K-doped WO3-y films with reproducible transport properties are obtained. A home built two-coil mutual inductance setup is used to probe the behavior of the films in the superconducting and normal state. The inverse penetration depths and dissipation peaks are measured as a function of temperature and field. Separately, via thin film deposition techniques, we report for the first time stable crystalline hexagonal WO3 on substrates. In order to tune the physical properties of the undoped material, we utilized an ionic liquid gating technique. We observe an insulator-to-metal transition, showing the ionic liquid gate to be a viable technique to alter the electrical transport properties of this material. By comparing the alkali and ionic liquid gated WO3, we conclude with some remarks regarding how superconductivity arises in this system.

  18. Granular superconductivity in metallic and insulating nanocrystalline boron-doped diamond thin films

    Energy Technology Data Exchange (ETDEWEB)

    Willems, B L; Zhang, G; Vanacken, J; Moshchalkov, V V [INPAC-Institute for Nanoscale Physics and Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200-D, 3000-Leuven (Belgium); Janssens, S D; Haenen, K; Wagner, P, E-mail: bramleo@hotmail.co [Institute for Materials Research (IMO), Hasselt University, BE-3590 Diepenbeek (Belgium)

    2010-09-22

    The low-temperature electrical transport properties of nanocrystalline boron-doped diamond (b-NCD) thin films have been found to be strongly affected by the system's granularity. The important differences between the high and low-temperature behaviour are caused by the inhomogeneous nucleation of superconductivity in the samples. In this paper we will discuss the experimental data obtained on several b-NCD thin films, which were studied by either varying their thickness or boron concentration. It will be shown that the low-temperature properties are influenced by the b-NCD grain boundaries as well as by the appearance of an intrinsic granularity inside these granules. Moreover, superconducting effects have been found to be present even in insulating b-NCD films and are responsible for the negative magnetoresistance regime observed at low temperatures. On the other hand, the low-temperature electrical transport properties of b-NCD films show important similarities with those observed for granular superconductors.

  19. The metallic transport of (TMTSF){sub 2}X organic conductors close to the superconducting phase

    Energy Technology Data Exchange (ETDEWEB)

    Auban-Senzier, P; Jerome, D [Laboratoire de Physique des Solides, UMR 8502 CNRS Universite Paris-Sud, 91405 Orsay (France); Doiron-Leyraud, N; Rene de Cotret, S; Sedeki, A; Bourbonnais, C; Taillefer, L [Departement de Physique and RQMP, Universite de Sherbrooke, Sherbrooke, QC, J1K 2R1 (Canada); Alemany, P [Departament de Quimica Fisica and Institut de Quimica Teorica i Computacional (IQTCUB), Universitat de Barcelona, Diagonal 647, 08028 Barcelona (Spain); Canadell, E [Institut de Ciencia de Materials de Barcelona (CSIC), Campus de la UAB, 08193 Bellaterra (Spain); Bechgaard, K, E-mail: pascale.senzier@lps.u-psud.fr, E-mail: denis.jerome@lps.u-psud.fr, E-mail: ndl@physique.usherbrooke.ca, E-mail: cbourbon@physique.usherbrooke.ca, E-mail: ltaillef@physique.usherbrooke.ca, E-mail: p.alemany@ub.edu, E-mail: canadell@icmab.es [Department of Chemistry, HC Oersted Institute, Copenhagen (Denmark)

    2011-08-31

    Comparing resistivity data of the quasi-one-dimensional superconductors (TMTSF){sub 2}PF{sub 6} and (TMTSF){sub 2}ClO{sub 4} along the least conducting c*-axis and along the high conductivity a-axis as a function of temperature and pressure, a low temperature regime is observed in which a unique scattering time governs the transport along both directions of these anisotropic conductors. However, the pressure dependence of the anisotropy implies a large pressure dependence of the interlayer coupling. This is in agreement with the results of first-principles density functional theory calculations implying methyl group hyperconjugation in the TMTSF molecule. In this low temperature regime, both materials exhibit for {rho}{sub c} a temperature dependence aT + bT{sup 2}. Taking into account the strong pressure dependence of the anisotropy, the T-linear {rho}{sub c} is found to correlate with the suppression of the superconducting T{sub c}, in close analogy with {rho}{sub a} data. This work reveals the domain of existence of the three-dimensional coherent regime in the generic (TMTSF){sub 2}X phase diagram and provides further support for the correlation between T-linear resistivity and superconductivity in non-conventional superconductors. (paper)

  20. Electrodialytic Separation of Phosphorus and Heavy Metals from Two Types of Sewage Sludge Ash

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Jensen, Pernille Erland; Kirkelund, Gunvor Marie

    2014-01-01

    During sewage sludge incineration phosphorus (P) is retained in the ash in a form not directly available to plants. As P is a sparse resource, it is important to develop techniques for recovery of P from incinerated sewage sludge ashes (ISSA). Heavy metals are concentrated in ISSA and separation ...

  1. Improvements in separation of non-ferrous scrap metals using an electromagnetic sensor

    NARCIS (Netherlands)

    Mesina, M.B.; De Jong, T.P.R.; Dalmijn, W.L.

    2003-01-01

    This article describes a new method for identification and separation of non-ferrous scrap metals using an electromagnetic sensor that is based on the eddy current principle. The electromagnetic sensor (EMS) is a prototype system that has been developed by Delft University of Technology in co-operat

  2. In silico screening of metal-organic frameworks in separation applications

    NARCIS (Netherlands)

    R. Krishna; J.M. van Baten

    2011-01-01

    Porous materials such as metal-organic frameworks (MOFs) and zeolitic imidazolate frameworks (ZIFs) offer considerable potential for separating a variety of mixtures such as those relevant for CO2 capture (CO2/H2, CO2/CH4, CO2/N2), CH4/H2, alkanes/alkenes, and hydrocarbon isomers. There are basicall

  3. Separation of Hexane Isomers in a Metal-Organic Framework with Triangular Channels

    NARCIS (Netherlands)

    Herm, Z.R.; Wiers, B.M.; Mason, J.A.; van Baten, J.M.; Hudson, M.R.; Zajdel, P.; Brown, C.M.; Masciocchi, N.; Krishna, R.; Long, J.R.

    2013-01-01

    Metal-organic frameworks can offer pore geometries that are not available in zeolites or other porous media, facilitating distinct types of shape-based molecular separations. Here, we report Fe-2(BDP)(3) (BDP2- = 1,4-benzenedipyrazotate), a highly stable framework with triangular channels that effec

  4. In silico screening of metal-organic frameworks in separation applications

    NARCIS (Netherlands)

    Krishna, R.; van Baten, J.M.

    2011-01-01

    Porous materials such as metal-organic frameworks (MOFs) and zeolitic imidazolate frameworks (ZIFs) offer considerable potential for separating a variety of mixtures such as those relevant for CO2 capture (CO2/H2, CO2/CH4, CO2/N2), CH4/H2, alkanes/alkenes, and hydrocarbon isomers. There are

  5. Improvements in separation of non-ferrous scrap metals using an electromagnetic sensor

    NARCIS (Netherlands)

    Mesina, M.B.; De Jong, T.P.R.; Dalmijn, W.L.

    2003-01-01

    This article describes a new method for identification and separation of non-ferrous scrap metals using an electromagnetic sensor that is based on the eddy current principle. The electromagnetic sensor (EMS) is a prototype system that has been developed by Delft University of Technology in

  6. Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal-organic framework nanocrystals.

    Science.gov (United States)

    Bachman, Jonathan E; Smith, Zachary P; Li, Tao; Xu, Ting; Long, Jeffrey R

    2016-08-01

    The implementation of membrane-based separations in the petrochemical industry has the potential to reduce energy consumption significantly relative to conventional separation processes. Achieving this goal, however, requires the development of new membrane materials with greater selectivity, permeability and stability than available at present. Here, we report composite materials consisting of nanocrystals of metal-organic frameworks dispersed within a high-performance polyimide, which can exhibit enhanced selectivity for ethylene over ethane, greater ethylene permeability and improved membrane stability. Our results suggest that framework-polymer interactions reduce chain mobility of the polymer while simultaneously boosting membrane separation performance. The increased stability, or plasticization resistance, is expected to improve membrane utility under real process conditions for petrochemical separations and natural gas purification. Furthermore, this approach can be broadly applied to numerous polymers that encounter aggressive environments, potentially making gas separations possible that were previously inaccessible to membranes.

  7. Function of all-metal separators for waste fuels. Phase 1; Funktion av allmetallseparatorer foer avfallsbraenslen. Etapp 1

    Energy Technology Data Exchange (ETDEWEB)

    Jacoby, Juergen; Wrangensten, Lars

    2004-08-01

    Various waste incineration facilities, which use different types of waste fuels, have difficulties with a high content of non-magnetic metal, especially aluminum in their fuels. Aluminum may melt on the grate and can lead to corrosion or fouling in the furnace. Additionally, a high content of aluminum in the flyash may cause difficulties in terms of storage or further use of the ash as e.g. construction material. The industrial demand for efficient separators for non-magnetic metals from a fuel stream is rather large. There is however some uncertainty in the performance and efficiency of metal separators. Two types of separators can be found, the first type is called eddy current separator, the other type is based upon a metal detector with a sorting unit in the form of a chute or similar afterwards. An eddy current separator consists of a fast rotating drum containing several permanent magnets with alternating polarity. Due to the rotation, the change in the magnetic field induces eddy currents in conducting materials. The eddy currents cause a force in non-magnetic metal, the Lorentz force, which repels the material away from the rotating drum while all other material follows the systems flow direction. Systems equipped with a metal detector activate a mechanical sorting device, separate chute or air nozzles, when a metal particle is detected. In contrast to eddy current separators all types of metals can be detected and sorted out by systems based on metal detector. Several technical solutions for metal separation supplied by various manufacturers are described in the report. The companies have been asked to supply product information on the working principle, technical data, efficiency and limits for different types of metals. Two reference power plants have been visited and their experiences with all-metal separators are described. Haendeloeverket in Norrkoeping uses eddy current separators for separation of non-magnetic metals from household waste

  8. Carbon dots rooted agarose hydrogel hybrid platform for optical detection and separation of heavy metal ions.

    Science.gov (United States)

    Gogoi, Neelam; Barooah, Mayuri; Majumdar, Gitanjali; Chowdhury, Devasish

    2015-02-11

    A robust solid sensing platform for an on-site operational and accurate detection of heavy metal is still a challenge. We introduce chitosan based carbon dots rooted agarose hydrogel film as a hybrid solid sensing platform for detection of heavy metal ions. The fabrication of the solid sensing platform is centered on simple electrostatic interaction between the NH3+ group present in the carbon dots and the OH- groups present in agarose. Simply on dipping the hydrogel film strip into the heavy metal ion solution, in particular Cr6+, Cu2+, Fe3+, Pb2+, Mn2+, the strip displays a color change, viz., Cr6+→yellow, Cu2+→blue, Fe3+→brown, Pb2+→white, Mn2+→tan brown. The optical detection limit of the respective metal ion is found to be 1 pM for Cr6+, 0.5 μM for Cu2+, and 0.5 nM for Fe3+, Pb2+, and Mn2+ by studying the changes in UV-visible reflectance spectrum of the hydrogel film. Moreover, the hydrogel film finds applicability as an efficient filtration membrane for separation of these quintet heavy metal ions. The strategic fundamental feature of this sensing platform is the successful capability of chitosan to form colored chelates with transition metals. This proficient hybrid hydrogel solid sensing platform is thus the most suitable to employ as an on-site operational, portable, cheap colorimetric-optical detector of heavy metal ion with potential skill in their separation. Details of the possible mechanistic insight into the colorimetric detection and ion separation are also discussed.

  9. Anharmonic enhancement of superconductivity in metallic molecular Cmca  -  4 hydrogen at high pressure: a first-principles study.

    Science.gov (United States)

    Borinaga, Miguel; Riego, P; Leonardo, A; Calandra, Matteo; Mauri, Francesco; Bergara, Aitor; Errea, Ion

    2016-12-14

    First-principles calculations based on density-functional theory including anharmonicity within the variational stochastic self-consistent harmonic approximation are applied to understand how the quantum character of the proton affects the candidate metallic molecular Cmca  -  4 structure of hydrogen in the 400-450 GPa pressure range, where metallization of hydrogen is expected to occur. Anharmonic effects, which become crucial due to the zero-point motion, have a large impact on the hydrogen molecules by increasing the intramolecular distance by approximately a 6%. This induces two new electron pockets at the Fermi surface opening new scattering channels for the electron-phonon interaction. Consequently, the electron-phonon coupling constant and the superconducting critical temperature are approximately doubled by anharmonicity and Cmca  -  4 hydrogen becomes a superconductor above 200 K in all the studied pressure range. Contrary to many superconducting hydrides, where anharmoncity tends to lower the superconducting critical temperature, our results show that it can enhance superconductivity in molecular hydrogen.

  10. Superconductivity in CVD diamond films.

    Science.gov (United States)

    Takano, Yoshihiko

    2009-06-24

    A beautiful jewel of diamond is insulator. However, boron doping can induce semiconductive, metallic and superconducting properties in diamond. When the boron concentration is tuned over 3 × 10(20) cm(-3), diamonds enter the metallic region and show superconductivity at low temperatures. The metal-insulator transition and superconductivity are analyzed using ARPES, XAS, NMR, IXS, transport and magnetic measurements and so on. This review elucidates the physical properties and mechanism of diamond superconductor as a special superconductivity that occurs in semiconductors.

  11. Adsorptive removal and separation of chemicals with metal-organic frameworks: Contribution of π-complexation.

    Science.gov (United States)

    Khan, Nazmul Abedin; Jhung, Sung Hwa

    2017-03-05

    Efficient removal and separation of chemicals from the environment has become a vital issue from a biological and environmental point of view. Currently, adsorptive removal/separation is one of the most promising approaches for cleaning purposes. Selective adsorption/removal of various sulfur- and nitrogen-containing compounds, olefins, and π-electron-rich gases via π-complex formation between an adsorbent and adsorbate molecules is very competitive. Porous metal-organic framework (MOF) materials are very promising in the adsorption/separation of various liquids and gases owing to their distinct characteristics. This review summarizes the literature on the adsorptive removal/separation of various π-electron-rich compounds mainly from fuel and gases using MOF materials containing metal ions that are active for π-complexation. Details of the π-complexation, including mechanism, pros/cons, applications, and efficient ways to form the complex, are discussed systematically. For in-depth understanding, molecular orbital calculations regarding charge transfer between the π-complexing species are also explained in a separate section. From this review, readers will gain an understanding of π-complexation for adsorption and separation, especially with MOFs, to develop new insight for future research.

  12. Exploiting Diffusion Barrier and Chemical Affinity of Metal-Organic Frameworks for Efficient Hydrogen Isotope Separation.

    Science.gov (United States)

    Kim, Jin Yeong; Balderas-Xicohtencatl, Rafael; Zhang, Linda; Kang, Sung Gu; Hirscher, Michael; Oh, Hyunchul; Moon, Hoi Ri

    2017-09-23

    Deuterium plays a pivotal role in industrial and scientific research, and is irreplaceable for various applications such as isotope tracing, neutron moderation, and neutron scattering. In addition, deuterium is a key energy source for fusion reactions. Thus, the isolation of deuterium from physico-chemically almost identical isotopic mixture is a seminal challenge in modern separation technology. However, current commercial approaches suffer from extremely low separation efficiency (i.e. cryogenic distillation, selectivity of 1.5 at 24 K), requiring a cost-effective and large-scale separation technique. Herein, we report a highly effective hydrogen isotope separation system based on metal-organic frameworks (MOFs) having the highest reported separation factor as high as ~26 at 77 K by maximizing synergistic effects of the chemical affinity quantum sieving (CAQS) and kinetic quantum sieving (KQS). For this purpose, MOF-74 system having high hydrogen adsorption enthalpies due to strong open metal sites is chosen for CAQS functionality and imidazole molecules (IM) are employed to the system for enhancing the KQS effect. To the best of our knowledge, this work is not only the first attempt to implement two quantum sieving effects, KQS and CAQS, in one system but also provides experimental validation of the utility of this system for practical industrial usage by isolating high-purity D2 through direct selective separation studies using 1:1 D2/H2 mixtures.

  13. Structures and potential superconductivity in at high pressure: en route to "metallic hydrogen".

    Science.gov (United States)

    Feng, Ji; Grochala, Wojciech; Jaroń, Tomasz; Hoffmann, Roald; Bergara, Aitor; Ashcroft, N W

    2006-01-13

    A way to circumvent the high pressures needed to metallize hydrogen is to "precompress" it in hydrogen-rich molecules, a strategy probed theoretically for silane. We show that phases with tetrahedral SiH4 molecules should undergo phase transitions with sixfold- and eightfold-coordinate Si appearing above 25 GPa. The most stable structure found can be metallized at under a megabar and at a compression close to the prediction of Goldhammer-Herzfeld criterion. According to a BCS-like estimate, metallic silane should be a high-temperature superconductor.

  14. Application of Electromagnetic (EM) Separation Technology to Metal Refining Processes: A Review

    Science.gov (United States)

    Zhang, Lifeng; Wang, Shengqian; Dong, Anping; Gao, Jianwei; Damoah, Lucas Nana Wiredu

    2014-12-01

    Application of electromagnetic (EM) force to metal processing has been considered as an emerging technology for the production of clean metals and other advanced materials. In the current paper, the principle of EM separation was introduced and several schemes of imposing EM field, such as DC electric field with a crossed steady magnetic field, AC electric field, AC magnetic field, and traveling magnetic field were reviewed. The force around a single particle or multi-particles and their trajectories in the conductive liquid under EM field were discussed. Applications of EM technique to the purification of different liquid metals such as aluminum, zinc, magnesium, silicon, copper, and steel were summarized. Effects of EM processing parameters, such as the frequency of imposed field, imposed magnetic flux density, processing time, particle size, and the EM unit size on the EM purification efficiency were discussed. Experimental and theoretical investigations have showed that the separation efficiency of inclusions from the molten aluminum using EM purification could as high as over 90 pct. Meanwhile, the EM purification was also applied to separate intermetallic compounds from metal melt, such as α-AlFeMnSi-phase from the molten aluminum. And then the potential industrial application of EM technique was proposed.

  15. Upper critical fields and superconducting transition temperatures of some zirconium-base amorphous transition-metal alloys

    Science.gov (United States)

    Karkut, M. G.; Hake, R. R.

    1983-08-01

    Superconducting upper critical fields Hc2(T), transition temperatures Tc and normal-state electrical resistivities ρn have been measured in the amorphous transition-metal alloy series Zr1-xCox, Zr1-xNix, (Zr1-xTix)0.78Ni0.22, and (Zr1-xNbx)0.78Ni0.22. Structural integrity of these melt-spun alloys is indicated by x-ray, density, bend-ductility, normal-state electrical resistivity, superconducting transition width, and mixed-state flux-pinning measurements. The specimens display Tc=2.1-3.8 K, ρn=159-190 μΩ cm, and |(dHc2dT)Tc|=28-36 kG/K. These imply electron mean free paths l~2-6 Å, zero-temperature Ginzburg-Landau coherence distances ξG0~50-70 Å, penetration depths λG0~(7-10)×103 Å, and extremely high dirtiness parameters ξ0l~300-1300. All alloys display Hc2(T) curves with negative curvature and (with two exceptions) fair agreement with the standard dirty-limit theory of Werthamer, Helfand, Hohenberg, and Maki (WHHM) for physically reasonable values of spin-orbit-coupling induced, electron-spin-flip scattering time τso. This is in contrast to the anomalously elevated Hc2(T) behavior which is nearly linear in T that is observed by some, and the unphysically low-τso fits to WHHM theory obtained by others, for various amorphous alloys. Current ideas that such anomalies may be due to alloy inhomogeneity are supported by present results on two specimens for which relatively low-τso fits of Hc2(T) to WHHM theory are coupled with superconductive evidence for inhomogeneity: relatively broad transitions at Tc and Hc2 current-density-dependent transitions at Hc2 and (in one specimen) a J-dependent, high-H (>Hc2), resistive "beak effect." In the Zr1-xCox and Zr1-xNix series, Tc decreases linearly with x (and with unfilled-shell average electron-to-atom ratio in the range 5.05previous results for these systems and contrary to the Tc vs behavior of both amorphous and crystalline transition-metal alloys formed between near neighbors in the Periodic Table. Upper

  16. I. Low frequency noise in metal films at the superconducting transition. II. Resistance of superconductor - normal metal- superconductor sandwiches and the quasiparticle relaxation time

    Energy Technology Data Exchange (ETDEWEB)

    Hsiang, T.Y.

    1977-07-01

    Measurements of the noise power spectra of tin and lead films at the superconducting transition in the frequency range of 0.1 Hz to 5k Hz are reported. Two types of samples were made. Type A were evaporated directly onto glass substrate, while Type B were evaporated onto glass or sapphire substrate with a 50A aluminum underlay. The results were consistent with a thermal diffusion model which attributes the noise to the intrinsic temperature fluctuation in the metal film driven with a random energy flux source. In both types of metal films, the noise power was found to be proportional to (V-bar)/sup 2/ ..beta../sup 2//..cap omega.., where V-bar was the mean voltage across the sample, ..beta.. was the temperature coefficient of resistance and ..cap omega.. was the volume of the sample. Correlation of noises in two regions of the metal film a distance d apart was detected at frequencies less than or = D/..pi..d/sup 2/. A possible explanation of the noises using quantitative boundary conditions and implications of this work for device applications are discussed. Theoretical and experimental investigation are reported on the resistance of superconductor-normal metal-superconductor sandwiches near T/sub c/. The increase in SNS resistance is attributed to the penetration of normal electric current in the superconductor. It is proved from first principles that an electric field can exist inside the superconductor when quasiparticles are not equally populated on the two branches of the excitation spectrum, and such is the case in a current biased SNS junction. The electric field inside S decays according to a diffusion law. The diffusion length is determined by the quasiparticle ''branch-crossing'' relaxation time. The branch-crossing relaxation times were measured. Impurity-doping of tin was found to decrease this relaxation time.

  17. Separation of matrix alloy and reinforcement from aluminum metal matrix composites scrap by salt flux addition

    Indian Academy of Sciences (India)

    K R Ravi; R M Pillai; B C Pai; M Chakraborty

    2007-08-01

    Separation of matrix alloy and reinforcements from pure Al–SiCp composite scrap by salt flux addition has been theoretically predicted using interface free energies. Experiments performed confirm the theoretical prediction. Complete separation of matrix aluminum and reinforcement from metal matrix composites (MMCs) scrap has been achieved by addition of 2.05 wt% of equimolar mixture of NaCl–KCl salt flux with a metal and particle yield of 84 and 50%, respectively. By adding 5 wt% of NaF to equimolar mixture of NaCl–KCl, metal and particle yield improved to 91 and 73%, respectively. Reusability of both the matrix aluminum and the SiC separated from Al–SiCp scraps has been analysed using XRD, SEM and DTA techniques. The matrix alloy separated from Al–SiCp scraps can be used possibly as a low Si content Al–Si alloy. However, the interfacial reaction that occurred during the fabrication of the composites had degraded the SiC particles.

  18. Electrostatic separator for micronized mixtures of metals and plastics originating from waste electric and electronic equipment

    Science.gov (United States)

    Messal, Sara; Corondan, Razvan; Chetan, Ionut; Ouiddir, Rabah; Medles, Karim; Dascalescu, Lucian

    2015-10-01

    In spite of their extensive use for processing mixtures of granules exceeding 1 mm in size, very few industrial electrostatic separators are capable of handling micronized metals and plastics originating from waste electric and electronic equipment. The aim of the present work is to validate the possibility of using a novel belt-type electrostatic separator for the selective sorting of such particulate mixtures, the dimensions of which are in the order of 0.1 mm. In this type of separator, the metal particles get charged by electrostatic induction in contact with the grounded metal belt electrode, while the plastics remain uncharged in the electric field and are collected separately. The experiments are performed with 2-g samples of a mixture composed in equal proportions (50% - 50%) of Aluminium and Acrylonitrile Butadiene Styrene (ABS) particles of average diameter ranging between 125 μm and 250 μm. They enabled the evaluation of the effects and the interaction of two control variables of the process: the angle of inclination of the roll-type electrode and the high voltage applied to it.

  19. Engineering chiral porous metal-organic frameworks for enantioselective adsorption and separation

    Science.gov (United States)

    Peng, Yongwu; Gong, Tengfei; Zhang, Kang; Lin, Xiaochao; Liu, Yan; Jiang, Jianwen; Cui, Yong

    2014-07-01

    The separation of racemic molecules is of substantial significance not only for basic science but also for technical applications, such as fine chemicals and drug development. Here we report two isostructural chiral metal-organic frameworks decorated with chiral dihydroxy or -methoxy auxiliares from enantiopure tetracarboxylate-bridging ligands of 1,1‧-biphenol and a manganese carboxylate chain. The framework bearing dihydroxy groups functions as a solid-state host capable of adsorbing and separating mixtures of a range of chiral aromatic and aliphatic amines, with high enantioselectivity. The host material can be readily recycled and reused without any apparent loss of performance. The utility of the present adsorption separation is demonstrated in the large-scale resolution of racemic 1-phenylethylamine. Control experiments and molecular simulations suggest that the chiral recognition and separation are attributed to the different orientations and specific binding energies of the enantiomers in the microenvironment of the framework.

  20. Development and testing of inorganic sorbents for radionuclide and heavy metal separations

    Energy Technology Data Exchange (ETDEWEB)

    Collins, J. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    The objectives of this task are to develop, prepare, and test microspheres and granular forms of inorganic ion exchangers to remove radionuclides and heavy metals from waste streams occurring at various sites. Several inorganic materials, such as hexacyanoferrates, titanates, phosphates, and oxides have high selectivities and efficiencies for separating and removing radionuclides such as uranium, technetium, cesium and strontium, and metals such as cobalt, silver, zinc, and zirconium from aqueous waste streams. However, these sorvents frequently exist only as powders and consequently are not readily adaptable to continuous processing such as column chromatography.

  1. PERVAPORATION SEPARATION OF WATER-ACETIC ACID MIXTURES THROUGH AN-co-AA MEMBRANES TREATED WITH RARE EARTH METAL IONS

    Institute of Scientific and Technical Information of China (English)

    SHEN Zhiquan; ZHANG Fuyao; ZHANG Yifeng

    1995-01-01

    Pervaporation separation of water-acetic acid mixtures through Poly (AN-co-AA)membranes and rare earth metal ions treated Poly(AN-co-AA)membranes was investigated for the first time. The results showed that the treatment with rare earth metal ions could greatly improve the characteristics of the separation of water-acetic acid mixtures.

  2. Effect of shock pressure on the structure and superconducting properties of Y-Ba-Cu-O in explosively fabricated bulk metal-matrix composites

    Science.gov (United States)

    Murr, L. E.; Niou, C. S.; Pradhan-Advani, M.

    1991-01-01

    While it is now well established that copper-oxide-based power, or virtually any other ceramic superconductor powder, can be consolidated and encapsulated within a metal matrix by explosive consolidation, the erratic superconductivity following fabrication has posed a major problem for bulk applications. The nature of this behavior was found to arise from microstructural damage created in the shock wave front, and the residual degradation in superconductivity was demonstrated to be directly related to the peak shock pressure. The explosively fabricated or shock loaded YBa2Cu3Ox examples exhibit drastically altered rho (or R) - T curves. The deterioration in superconductivity is even more noticeable in the measurement of ac magnetic susceptibility and flux exclusion or shielding fraction which is also reduced in proportion to increasing peak shock pressure. The high frequency surface resistance (in the GHz range) is also correspondingly compromised in explosively fabricated, bulk metal-matrix composites based on YBa2Cu3O7. Transmission electron microscopy (including lattice imaging techniques) is being applied in an effort to elucidate the fundamental (microstructural) nature of the shock-induced degradation of superconductivity and normal state conductivity. One focus of TEM observations has assumed that oxygen displaced from b-chains rather than oxygen-vacancy disorder in the basal plane of oxygen deficient YBa2Cu3Ox may be a prime mechanism. Shock-wave displaced oxygen may also be locked into new positions or interstitial clusters or chemically bound to displaced metal (possibly copper) atoms to form precipitates, or such displacements may cause the equivalent of local lattice cell changes as a result of stoichiometric changes. While the shock-induced suppression of T(sub c) is not desirable in the explosive fabrication of bulk metal-matrix superconductors, it may be turned into an advantage if the atomic-scale distortion can be understood and controlled as local

  3. Electrochemical membrane reactor: In situ separation and recovery of chromic acid and metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Jeeshan; Tripathi, Bijay P.; Saxena, Arunima; Shahi, Vinod K. [Electro-Membrane Processes Division, Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat (India)

    2007-08-01

    An electrochemical membrane reactor with three compartments (anolyte, catholyte and central compartment) based on in-house-prepared cation- and anion-exchange membrane was developed to achieve in situ separation and recovery of chromic acid and metal ions. The physicochemical and electrochemical properties of the ion-exchange membrane under standard operating conditions reveal its suitability for the proposed reactor. Experiments using synthetic solutions of chromate and dichromate of different concentrations were carried out to study the feasibility of the process. Electrochemical reactions occurring at the cathode and anode under operating conditions are proposed. It was observed that metal ion migrated through the cation-exchange membrane from central compartment to catholyte and OH{sup -} formation at the cathode leads to the formation of metal hydroxide. Simultaneously, chromate ion migrated through the anion-exchange membrane from central compartment to the anolyte and formed chromic acid by combining H{sup +} produced their by oxidative water splitting. Thus a continuous decay in the concentration of chromate and metal ion was observed in the central compartment, which was recovered separately in the anolyte and catholyte, respectively, from their mixed solution. This process was completely optimized in terms of operating conditions such as initial concentration of chromate and metal ions in the central compartment, the applied cell voltage, chromate and metal ion flux, recovery percentage, energy consumption, and current efficiency. It was concluded that chromic acid and metal ions can be recovered efficiently from their mixed solution leaving behind the uncharged organics and can be reused as their corresponding acid and base apart from the purifying water for further applications. (author)

  4. [Synthesis and applications of chiral metal-organic framework in the selective separation of enantiomers].

    Science.gov (United States)

    Qi, Xiaoyue; Li, Xianjiang; Bai, Yu; Liu, Huwei

    2016-01-01

    Chirality is a universal phenomenon in nature. Chiral separation is vitally important in drug development, agricultural chemistry, pharmacology, environmental science, biology and many other fields. Chiral metal-organic frameworks (MOFs) are a new group of porous materials with special topology and designable pore structures, as well as their high specific surface area, porosity, excellent thermal stability, solvent resistance, etc. Thus, chiral MOFs are promising with various applications in the field of analytical chemistry. This review summarizes the synthesis strategies of chiral MOFs and their applications in the selective separation of enantiomers, as well as related mechanism.

  5. Hierarchical Chitin Fibers with Aligned Nanofibrillar Architectures: A Nonwoven-Mat Separator for Lithium Metal Batteries.

    Science.gov (United States)

    Kim, Joong-Kwon; Kim, Do Hyeong; Joo, Se Hun; Choi, Byeongwook; Cha, Aming; Kim, Kwang Min; Kwon, Tae-Hyuk; Kwak, Sang Kyu; Kang, Seok Ju; Jin, Jungho

    2017-06-27

    Here, we introduce regenerated fibers of chitin (Chiber), the second most abundant biopolymer after cellulose, and propose its utility as a nonwoven fiber separator for lithium metal batteries (LMBs) that exhibits an excellent electrolyte-uptaking capability and Li-dendrite-mitigating performance. Chiber is produced by a centrifugal jet-spinning technique, which allows a simple and fast production of Chibers consisting of hierarchically aligned self-assembled chitin nanofibers. Following the scrutinization on the Chiber-Li-ion interaction via computational methods, we demonstrate the potential of Chiber as a nonwoven mat-type separator by monitoring it in Li-O2 and Na-O2 cells.

  6. Detection of On-Chip Generated Weak Microwave Radiation Using Superconducting Normal-Metal SET

    Directory of Open Access Journals (Sweden)

    Behdad Jalali-Jafari

    2016-01-01

    Full Text Available The present work addresses quantum interaction phenomena of microwave radiation with a single-electron tunneling system. For this study, an integrated circuit is implemented, combining on the same chip a Josephson junction (Al/AlO x /Al oscillator and a single-electron transistor (SET with the superconducting island (Al and normal-conducting leads (AuPd. The transistor is demonstrated to operate as a very sensitive photon detector, sensing down to a few tens of photons per second in the microwave frequency range around f ∼ 100 GHz. On the other hand, the Josephson oscillator, realized as a two-junction SQUID and coupled to the detector via a coplanar transmission line (Al, is shown to provide a tunable source of microwave radiation: controllable variations in power or in frequency were accompanied by significant changes in the detector output, when applying magnetic flux or adjusting the voltage across the SQUID, respectively. It was also shown that the effect of substrate-mediated phonons, generated by our microwave source, on the detector output was negligibly small.

  7. Applied superconductivity

    CERN Document Server

    Newhouse, Vernon L

    1975-01-01

    Applied Superconductivity, Volume II, is part of a two-volume series on applied superconductivity. The first volume dealt with electronic applications and radiation detection, and contains a chapter on liquid helium refrigeration. The present volume discusses magnets, electromechanical applications, accelerators, and microwave and rf devices. The book opens with a chapter on high-field superconducting magnets, covering applications and magnet design. Subsequent chapters discuss superconductive machinery such as superconductive bearings and motors; rf superconducting devices; and future prospec

  8. Separation and Recovery of Precious Metals from Leach Liquors of Spent Electronic Wastes by Solvent Extraction

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Thi Hong; Wang, Lingyun; Lee, Man Seung [Mokpo National University, Mokpo (Korea, Republic of)

    2017-04-15

    Solvent extraction was employed to recover precious metals (Au (III), Pd (II) and Pt (IV)) from the leach solution of spent electronic wastes containing Cu (II), Cr (III) and Fe (III). First, pure Fe (III) and Au (III) were recovered by simultaneous extraction with Cyanex 923 followed by selective stripping with HCl and Na{sub 2}S{sub 2}O{sub 3}. Second, Pt (IV), Pd (II) and Cu (II) were extracted by Alamine 336 from the raffinate. After the removal of Cu (II) by stripping with weak HCl, Pd (II) and Pt (IV) were separately stripped by controlling the concentration of thiourea in the mixture with HCl. A process flow sheet for the separation of precious metals was proposed.

  9. Preparation of novel polymer–metal oxide nanocomposites with nanophase separated hierarchical structure

    Indian Academy of Sciences (India)

    K Nam; Y Tsutsumi; C Yoshikawa; Y Tanaka; R Fukaya; T Kimura; H Kobayashi; T Hanawa; A Kishida

    2011-12-01

    This article deals with preparation of nanocomposite which comprised of nanophase separated structure of polymer chains and metal oxide. By grafting poly(hydroxyethyl methacrylate), poly(HEMA) on the surface of titanium which is covered by passive titanium oxide by atom transfer radical polymerization (ATRP) and executing anodic polarization, hierarchy nanophase separated structure with controlled thickness can be obtained. The titanium ions would be cationically charged and completely filled up the unoccupied binding sites of the polymer chains via electrochemical reaction, eventually covering the polymer chains with titanium oxide. However, this structure can be obtained when the anodic polarization is executed at initial applied voltage exceeding 10 VSCE. The control of thickness is possible by controlling the initial applied voltage. These results prove that the conventional polymer can form composite structure with metal oxide without using fillers or special polymers designed for composite.

  10. A microporous metal-organic framework for selective C2H2 and CO2 separation

    Science.gov (United States)

    Lin, Rong-Guang; Lin, Rui-Biao; Chen, Banglin

    2017-08-01

    A quartzlike metal-organic framework with interesting one dimensional channel has been synthesized. It exhibits considerable acetylene and carbon dioxide uptake of 41.5 and 24.6 cm3 g-1, respectively, and relatively high selectivity for separation of C2H2/C2H4, C2H2/CH4, CO2/CH4 and CO2/N2 at ambient condition.

  11. PHOTOPHORETIC SEPARATION OF METALS AND SILICATES: THE FORMATION OF MERCURY-LIKE PLANETS AND METAL DEPLETION IN CHONDRITES

    Energy Technology Data Exchange (ETDEWEB)

    Wurm, Gerhard [Fakultaet fuer Physik, Universitaet Duisburg-Essen, Lotharstr. 1, D-47057 Duisburg (Germany); Trieloff, Mario [Institut fuer Geowissenschaften, Universitaet Heidelberg, Im Neuenheimer Feld 234-236, D-69120 Heidelberg (Germany); Rauer, Heike, E-mail: gerhard.wurm@uni-due.de [Institut fuer Planetenforschung, Extrasolare Planeten und Atmosphaeren, Deutsches Zentrum fuer Luft- und Raumfahrt (DLR), Rutherfordstrasse 2, D-12489 Berlin (Germany)

    2013-05-20

    Mercury's high uncompressed mass density suggests that the planet is largely composed of iron, either bound within metal (mainly Fe-Ni) or iron sulfide. Recent results from the MESSENGER mission to Mercury imply a low temperature history of the planet which questions the standard formation models of impact mantle stripping or evaporation to explain the high metal content. Like Mercury, the two smallest extrasolar rocky planets with mass and size determination, CoRoT-7b and Kepler-10b, were found to be of high density. As they orbit close to their host stars, this indicates that iron-rich inner planets might not be a nuisance of the solar system but be part of a general scheme of planet formation. From undifferentiated chondrites, it is also known that the metal to silicate ratio is highly variable, which must be ascribed to preplanetary fractionation processes. Due to this fractionation, most chondritic parent bodies-most of them originated in the asteroid belt-are depleted in iron relative to average solar system abundances. The astrophysical processes leading to metal silicate fractionation in the solar nebula are essentially unknown. Here, we consider photophoretic forces. As these forces particularly act on irradiated solids, they might play a significant role in the composition of planetesimals forming at the inner edge of protoplanetary disks. Photophoresis can separate high thermal conductivity materials (iron) from lower thermal conductivity solids (silicate). We suggest that the silicates are preferentially pushed into the optically thick disk. Subsequent planetesimal formation at the edge moving outward leads to metal-rich planetesimals close to the star and metal depleted planetesimals farther out in the nebula.

  12. Colossal Proximity Effect in a Superconducting Triplet Spin Valve Based on the Half-Metallic Ferromagnet CrO_{2}

    Directory of Open Access Journals (Sweden)

    A. Singh

    2015-05-01

    Full Text Available Combining superconductors (S and ferromagnets (F offers the opportunity to create a new class of superconducting spintronic devices. In particular, the S/F interface can be specifically engineered to convert singlet Cooper pairs to spin-polarized triplet Cooper pairs. The efficiency of this process can be studied using a so-called triplet spin valve (TSV, which is composed of two F layers and a S layer. When the magnetizations in the two F layers are not collinear, singlet pairs are drained from the S layer, and triplet generation is signaled by a decrease of the critical temperature T_{c}. Here, we build highly efficient TSVs using a 100% spin-polarized half-metallic ferromagnet, CrO_{2}. The application of out-of-plane magnetic fields results in an extremely strong suppression of T_{c}, by well over a Kelvin. The observed effect is an order of magnitude larger than previous studies on TSVs with standard ferromagnets. Furthermore, we clearly demonstrate that this triplet proximity effect is strongly dependent on the transparency and spin activity of the interface. Our results are particularly important in view of the growing interest in generating long-range triplet supercurrents for dissipationless spintronics.

  13. Synthetic, structural, and theoretical investigations of alkali metal germanium hydrides--contact molecules and separated ions.

    Science.gov (United States)

    Teng, Weijie; Allis, Damian G; Ruhlandt-Senge, Karin

    2007-01-01

    The preparation of a series of crown ether ligated alkali metal (M=K, Rb, Cs) germyl derivatives M(crown ether)nGeH3 through the hydrolysis of the respective tris(trimethylsilyl)germanides is reported. Depending on the alkali metal and the crown ether diameter, the hydrides display either contact molecules or separated ions in the solid state, providing a unique structural insight into the geometry of the obscure GeH3- ion. Germyl derivatives displaying M--Ge bonds in the solid state are of the general formula [M([18]crown-6)(thf)GeH3] with M=K (1) and M=Rb (4). The compounds display an unexpected geometry with two of the GeH3 hydrogen atoms closely approaching the metal center, resulting in a partially inverted structure. Interestingly, the lone pair at germanium is not pointed towards the alkali metal, rather two of the three hydrides are approaching the alkali metal center to display M--H interactions. Separated ions display alkali metal cations bound to two crown ethers in a sandwich-type arrangement and non-coordinated GeH3- ions to afford complexes of the type [M(crown ether)2][GeH3] with M=K, crown ether=[15]crown-5 (2); M=K, crown ether=[12]crown-4 (3); and M=Cs, crown ether=[18]crown-6 (5). The highly reactive germyl derivatives were characterized by using X-ray crystallography, 1H and 13C NMR, and IR spectroscopy. Density functional theory (DFT) and second-order Møller-Plesset perturbation theory (MP2) calculations were performed to analyze the geometry of the GeH3- ion in the contact molecules 1 and 4.

  14. Vapor-Particle Separation Using Microporous Metallic Membrane in Crossflow Filtration

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Mengdawn [ORNL

    2013-01-01

    Simultaneous separation of vapor and particles in industrial processes could be a key step toward manufacturing of high-quality goods. The separation is critical for successful measurement of volatile or semi-volatile aerosol particles, which no reliable technique exists. We have developed a technique for separation of vapor and particles simultaneously using a specialty microporous metallic membrane. The separator allows the thermally denuded particles traverse straight through the membrane tube, while the vapor molecules permeate through the membrane, separate from the particles and are removed subsequently. The separation technique virtually eliminates the possibility of contamination by vapor re- condensation. We tested the prototype of the vapor-particle separator (VPS) using aerosols prepared from sodium chloride to represent non-volatile aerosols. Chemical like dioctyl phthalate was chosen to represent volatile particles. The test aerosol particles were generated by an atomizer followed by a tandem differential mobility analyser to produce a stream of monodisperse particles in the size range of 10 to 100 nm. In real world particles, we tested the VPS using diesel engine particles that is a mixture of complex chemical composition. Number concentration of the nonvolatile particles reduced as the temperature increased, but the mode diameter of the aerosol population remained unchanged. Number concentration of the volatile particles was also reduced as the temperature increased, but their mode diameters became smaller as particles shrunk in diameter. Differences in the thermal behaviour of the particles were attributed to its transition energy barrier and evaporation rate. Mass balance analysis suggests the separation of vapor and test particles was reasonably complete. Thus, we conclude the VPS could provide an effective means for quantitative characterization of aerosol volatility and separation of vapors from particles.

  15. Flexible Microstrip Circuits for Superconducting Electronics

    Science.gov (United States)

    Chervenak, James; Mateo, Jennette

    2013-01-01

    Flexible circuits with superconducting wiring atop polyimide thin films are being studied to connect large numbers of wires between stages in cryogenic apparatus with low heat load. The feasibility of a full microstrip process, consisting of two layers of superconducting material separated by a thin dielectric layer on 5 mil (approximately 0.13 mm) Kapton sheets, where manageable residual stress remains in the polyimide film after processing, has been demonstrated. The goal is a 2-mil (approximately 0.051-mm) process using spin-on polyimide to take advantage of the smoother polyimide surface for achieving highquality metal films. Integration of microstrip wiring with this polyimide film may require high-temperature bakes to relax the stress in the polyimide film between metallization steps.

  16. Surface properties of metal-nitride and metal-carbide films deposited on Nb for radio-frequency superconductivity

    Science.gov (United States)

    Garwin, E. L.; King, F. K.; Kirby, R. E.; Aita, O.

    1987-02-01

    Various effects occur which can prevent attainment of the high Q's and/or the high gradient fields necessary for the operation of radio-frequency (rf) superconducting cavities. One of these effects, multipactor, both causes the cavity to detune during filling due to resonant secondary electron emission at the cavity walls, and lowers the quality factor (Q) by dissipative processes. TiN deposited onto the high-field regions of room-temperature Al cavities has been used at the Stanford Linear Accelerator Center to successfully reduce multipactor in the past. We have therefore studied TiN and its companion materials, NbN, NbC, and TiC, all on Nb substrates under several realistic conditions: (1) as-deposited, (2) exposed to air, and (3) electron bombarded. The studied films (up to 14-nm thickness) were sputter deposited onto sputter-cleaned Nb substrates. Results indicate that all the materials tested gave substantially the same results. The maximum secondary electron yields for as-deposited films were reduced to nearly the preoxidized values after electron bombardment (2-3×1017 electrons cm-2 in the case of NbN and NbC). X-ray photoelectron spectroscopy analysis showed that the oxides (e.g., TiO2 in the case of TiN films) formed during air exposure were slightly reduced (converted to lower oxides) by the electron-beam exposure. Auger electron spectroscopy (AES) showed a slight reduction in the surface O concentration following beam exposure. These results suggest that the chemical nature of top surface layers is responsible for the substantial changes in secondary electron yield observed upon electron-beam exposures and that AES does not reflect this change strongly because of the difficulty in extracting chemical (versus elemental) information from AES. The results indicate that any of these films would be poor choices if simply deposited and exposed to air, but, in fact, the in situ electron bombardment which occurs during cavity operation serves to reduce the

  17. Synthesis and superconductivity of (Agx/CuTl-1223 composites

    Directory of Open Access Journals (Sweden)

    Abdul Jabbar

    2015-06-01

    Full Text Available Series of (Agx/(Cu0.5Tl0.5Ba2Ca2Cu3O10-δ {(Agx/CuTl-1223} nano-superconductor composites were synthesized with different concentrations (i.e. x=0~4.0 wt% of silver (Ag nanoparticles. Low anisotropic CuTl-1223 superconducting matrix was prepared by solid-state reaction and Ag nanoparticles were prepared by a sol–gel method separately. The required (Agx/CuTl-1223 composition was obtained by the inclusion of Ag nanoparticles in CuTl-1223 superconducting matrix. Structural, morphological, compositional and superconducting transport properties of these composites were investigated in detail by x-ray diffraction (XRD, scanning electron microscopy (SEM, energy dispersive x-rays (EDX spectroscopy and four-point probe electrical resistivity (ρ measurements. The inclusion of Ag nanoparticles enhanced the superconducting properties without affecting the tetragonal structure of the host CuTl-1223 matrix. The improvement in superconducting properties of (Agx/CuTl-1223 composites is most likely due to enhanced inter-grains coupling and increased superconducting volume fraction after the addition of metallic Ag nanoparticles at the inter-crystallite sites in the samples. The presence of Ag nanoparticles at the grain-boundaries may increase the number of flux pinning centers, which were present in the form of weak-links in the pure CuTl-1223 superconducting matrix.

  18. In silico screening of metal-organic frameworks in separation applications.

    Science.gov (United States)

    Krishna, Rajamani; van Baten, Jasper M

    2011-06-14

    Porous materials such as metal-organic frameworks (MOFs) and zeolitic imidazolate frameworks (ZIFs) offer considerable potential for separating a variety of mixtures such as those relevant for CO(2) capture (CO(2)/H(2), CO(2)/CH(4), CO(2)/N(2)), CH(4)/H(2), alkanes/alkenes, and hydrocarbon isomers. There are basically two different separation technologies that can be employed: (1) a pressure swing adsorption (PSA) unit with a fixed bed of adsorbent particles, and (2) a membrane device, wherein the mixture is allowed to permeate through a micro-porous crystalline layer. In view of the vast number of MOFs, and ZIFs that have been synthesized there is a need for a systematic screening of potential candidates for any given separation task. Also of importance is to investigate how MOFs and ZIFs stack up against the more traditional zeolites such as NaX and NaY with regard to their separation characteristics. This perspective highlights the potency of molecular simulations in determining the choice of the best MOF or ZIF for a given separation task. A variety of metrics that quantify the separation performance, such as adsorption selectivity, working capacity, diffusion selectivity, and membrane permeability, are determined from a combination of Configurational-Bias Monte Carlo (CBMC) and Molecular Dynamics (MD) simulations. The practical utility of the suggested screening methodology is demonstrated by comparison with available experimental data. This journal is © the Owner Societies 2011

  19. Dynamics of spherical metallic particles in cylinder electrostatic separators/purifiers.

    Science.gov (United States)

    Lu, Hong-Zhou; Li, Jia; Guo, Jie; Xu, Zhen-Ming

    2008-08-15

    This paper presents a theoretical analysis of the dynamics of spherical metallic particles in electrostatic separators/purifiers (ESPs). The particle equations of motion are numerically solved in two dimensions using a computational algorithm. The ESPs consist of a pair of conductor cylinder electrodes. The upper cylinder is energized by HVdc, while the lower one is grounded and fixed horizontally on a revolvable axis. Some phenomena and aspects of separation process are explained and depicted including lifting off, impact, "motion collapse" and "sudden bouncing". The results reveal that the several phenomena depend on initial position, radius and density of the particle, curvature of the cylinder electrodes, distance between the electrodes and amplitude of the applied voltage. Optimization of the parameters is presented in order to get better separation/purification processes.

  20. Metal separators coated with carbon/resin composite layers for PEFCs

    Energy Technology Data Exchange (ETDEWEB)

    Kitta, Shigehiro [Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4 Takeda, Kofu 400-8510 (Japan); Asktechnica Corp., 1488 Ichikawadaimon, Nishi-yatsushiro 409-3601 (Japan); Uchida, Hiroyuki [Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4 Takeda, Kofu 400-8510 (Japan); Watanabe, Masahiro [Clean Energy Research Center, University of Yamanashi, 4 Takeda, Kofu 400-8510 (Japan)

    2007-12-31

    A new type of metal separator coated with corrosion-resistant and electronically conductive carbon/resin composite layers has been developed. A flat, stainless steel plate was coated with a thin composite layer, and then ribs were formed of a similar composite over the thin layer as gas flow channels. The composite consisted of graphite, epoxy resin and a phenol hardener. By optimizing the combination and composition of materials, target values for the bulk electric conductivity and the chemical stability in hot water were cleared. The separator pieces exhibited a good corrosion resistance during soaking tests in 0.1 M H{sub 2}SO{sub 4} at 90 C over 2000 h or even at 120 C over 1200 h. The area-specific resistance of the separator coated with the thin protecting layer and the rib layer was less than 13.8 m{omega} cm{sup 2}. (author)

  1. Startup and Operation of a Metal Hydride Based Isotope Separation Process

    Energy Technology Data Exchange (ETDEWEB)

    Scogin, J.H.; Poore, A.S.

    1995-02-27

    Production scale separation of tritium from other hydrogen isotopes at the Savannah River Site (SRS) in Aiken, SC, has been accomplished by several methods. These methods include thermal diffusion (1957--1986), fractional absorption (1964--1968), and cryogenic distillation (1967-present). Most recently, the Thermal Cycling Absorption Process (TCAP), a metal hydride based hydrogen isotope separation system, began production in the Replacement Tritium Facility (RTF) on April 9, 1994. TCAP has been in development at the Savannah River Technology Center since 1980. The production startup of this semi-continuous gas chromatographic separation process is a significant accomplishment for the Savannah River Site and was achieved after years of design, development, and testing.

  2. Startup and operation of a metal hydride based isotope separation process

    Energy Technology Data Exchange (ETDEWEB)

    Scogin, J.H.; Poore, A.S. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1995-10-01

    Production scale separation of tritium from other hydrogen isotopes at the Savannah River Site (SRS) in Aiken, SC, USA, has been accomplished by several methods. These methods include thermal diffusion (1957-1986), fractional absorption (1964-1968), and cryogenic distillation (1967-present). Most recently, the Thermal Cycling Absorption Process (TCAP), a metal hydride based hydrogen isotope separation system, began production in the Replacement Tritium Facility (RTF) on April 9, 1994. TCAP has been in development at the Savannah River Technology Center since 1980. The production startup of this semi-continuous gas chromatographic separation process is a significant accomplishment for the Savannah River Site and was achieved after years of design, development, and testing. 2 refs., 4 figs.

  3. Superconductive articles including cerium oxide layer

    Science.gov (United States)

    Wu, Xin D.; Muenchausen, Ross E.

    1993-01-01

    A ceramic superconductor comprising a metal oxide substrate, a ceramic high temperature superconductive material, and a intermediate layer of a material having a cubic crystal structure, said layer situated between the substrate and the superconductive material is provided, and a structure for supporting a ceramic superconducting material is provided, said structure comprising a metal oxide substrate, and a layer situated over the surface of the substrate to substantially inhibit interdiffusion between the substrate and a ceramic superconducting material deposited upon said structure.

  4. Spin-polarized tunneling currents through a ferromagnetic insulator between two metallic or superconducting leads

    OpenAIRE

    Sandschneider, N.; Nolting, W.

    2007-01-01

    Using the Keldysh formalism the tunneling current through a hybrid structure where a confined magnetic insulator (I) is sandwiched between two non-magnetic leads is calculated. The leads can be either normal metals (M) or superconductors (S). Each region is modelled as a single band in tight-binding approximation in order to understand the formation of the tunneling current as clearly as possible. The tunneling process itself is simulated by a hybridization between the lead and insulator cond...

  5. Superconductivity in aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Kubozono, Yoshihiro, E-mail: kubozono@cc.okayama-u.ac.jp [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Research Center of New Functional Materials for Energy Production, Storage and Transport, Okayama University, Okayama 700-8530 (Japan); Japan Science and Technology Agency, ACT-C, Kawaguchi 332-0012 (Japan); Goto, Hidenori; Jabuchi, Taihei [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Yokoya, Takayoshi [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Research Center of New Functional Materials for Energy Production, Storage and Transport, Okayama University, Okayama 700-8530 (Japan); Kambe, Takashi [Department of Physics, Okayama University, Okayama 700-8530 (Japan); Sakai, Yusuke; Izumi, Masanari; Zheng, Lu; Hamao, Shino; Nguyen, Huyen L.T. [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Sakata, Masafumi; Kagayama, Tomoko; Shimizu, Katsuya [Center of Science and Technology under Extreme Conditions, Osaka University, Osaka 560-8531 (Japan)

    2015-07-15

    Highlights: • Aromatic superconductor is one of core research subjects in superconductivity. Superconductivity is observed in certain metal-doped aromatic hydrocarbons. Some serious problems to be solved exist for future advancement of the research. This article shows the present status of aromatic superconductors. - Abstract: ‘Aromatic hydrocarbon’ implies an organic molecule that satisfies the (4n + 2) π-electron rule and consists of benzene rings. Doping solid aromatic hydrocarbons with metals provides the superconductivity. The first discovery of such superconductivity was made for K-doped picene (K{sub x}picene, five benzene rings). Its superconducting transition temperatures (T{sub c}’s) were 7 and 18 K. Recently, we found a new superconducting K{sub x}picene phase with a T{sub c} as high as 14 K, so we now know that K{sub x}picene possesses multiple superconducting phases. Besides K{sub x}picene, we discovered new superconductors such as Rb{sub x}picene and Ca{sub x}picene. A most serious problem is that the shielding fraction is ⩽15% for K{sub x}picene and Rb{sub x}picene, and it is often ∼1% for other superconductors. Such low shielding fractions have made it difficult to determine the crystal structures of superconducting phases. Nevertheless, many research groups have expended a great deal of effort to make high quality hydrocarbon superconductors in the five years since the discovery of hydrocarbon superconductivity. At the present stage, superconductivity is observed in certain metal-doped aromatic hydrocarbons (picene, phenanthrene and dibenzopentacene), but the shielding fraction remains stubbornly low. The highest priority research area is to prepare aromatic superconductors with a high superconducting volume-fraction. Despite these difficulties, aromatic superconductivity is still a core research target and presents interesting and potentially breakthrough challenges, such as the positive pressure dependence of T{sub c} that is clearly

  6. Separation of heavy metals from salts in multicomponent gas by a two-stage dust collection technique

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Takashi, E-mail: t-okada@u-fukui.ac.jp [Laboratory of Solid Waste Disposal Engineering, Graduate School of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628 (Japan); Headquarters for Innovative Society-Academic cooperation, Fukui University, Bunkyo 3-9-1, Fukui 910-8507 (Japan); Nishimoto, Kaoru [Laboratory of Solid Waste Disposal Engineering, Graduate School of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628 (Japan)

    2013-06-15

    Highlights: • A heavy metal separation method from salts in a multicomponent gas was studied. • A two-stage dust collection technique was used for the metal separation. • The first stage dust collection at 800 °C was better for the separation. • A reductive atmosphere also promoted the efficiency of the separation. •The collected heavy metals were extracted with water, acid, or CH{sub 3}COONH{sub 4} solution. -- Abstract: A Pb and Zn separation method from salts (Na, K, and Cl) in a simulated multicomponent gas generated by the incineration fly ash melting is studied. The heavy metals are separated using a two-stage dust collection technique. A standard reagents mixture is volatilized by heating in a lab-scale reactor to generate the simulated multicomponent gas. The volatilized salts in the gas are condensed and collected by a filter at a high temperature (600–800 °C), allowing Pb and Zn to pass through the filter as gaseous species. The gaseous heavy metals are condensed by lowering their temperature to 100 °C and collected. The metal separation is promoted by elevating the temperature used in the first-stage dust collection to 800 °C and maintaining a reductive atmosphere in the reactor. Subsequently, a sequential chemical extraction is performed on the obtained materials to evaluate the metals leaching characteristics from the materials. In the separated salts to be landfilled, a portion of toxic metals such as Pb, Cd, As, and Cr remain as water-soluble compounds. The separated Pb and Zn, to be extracted and recovered with precipitation for the metal enrichment, can be extracted using water, acid (pH 3), or CH{sub 3}COONH{sub 4} solution (1 M)

  7. Liquid chromatographic separation in metal-organic framework MIL-101: a molecular simulation study.

    Science.gov (United States)

    Hu, Zhongqiao; Chen, Yifei; Jiang, Jianwen

    2013-02-05

    A molecular simulation study is reported to investigate liquid chromatographic separation in metal-organic framework MIL-101. Two mixtures are considered: three amino acids (Arg, Phe, and Trp) in aqueous solution and three xylene isomers (p-, m-, and o-xylene) dissolved in hexane. For the first mixture, the elution order is found to be Arg > Phe > Trp. The hydrophilic Arg has the strongest interaction with the polar mobile phase (water) and the weakest interaction with the stationary phase (MIL-101), and thus transports at the fastest velocity. Furthermore, Arg forms the largest number of hydrogen bonds with water and possesses the largest hydrophilic solvent-accessible surface area. For the second mixture, the elution order is p-xylene > m-xylene > o-xylene, consistent with available experimental observation. With the largest polarity as compared to p- and m-xylenes, o-xylene interacts the most strongly with the stationary phase and exhibits the slowest transport velocity. For both mixtures, the underlying separation mechanism is elucidated from detailed energetic and structural analysis. It is revealed that the separation can be attributed to the cooperative solute-solvent and solute-framework interactions. This simulation study, for the first time, provides molecular insight into liquid chromatographic separation in a MOF and suggests that MIL-101 might be an interesting material for the separation of industrially important liquid mixtures.

  8. The ultrasonically assisted metals recovery treatment of printed circuit board waste sludge by leaching separation.

    Science.gov (United States)

    Xie, Fengchun; Li, Haiying; Ma, Yang; Li, Chuncheng; Cai, Tingting; Huang, Zhiyuan; Yuan, Gaoqing

    2009-10-15

    This paper provides a practical technique that realized industrial scale copper and iron separation from printed circuit board (PCB) waste sludge by ultrasonically assisted acid leaching in a low cost, low energy consumption and zero discharge of wastes manner. The separation efficiencies of copper and iron from acid leaching with assistance of ultrasound were compared with the one without assistance of ultrasound and the effects of the leaching procedure, pH value, and ultrasonic strength have been investigated in the paper. With the appropriate leaching procedure, a final pH of 3.0, an ultrasonic generator power of 160 W (in 1l tank), leaching time of 60 min, leaching efficiencies of copper and iron had reached 97.83% and 1.23%, respectively. Therefore the separation of copper and iron in PCB waste sludge was virtually achieved. The lab results had been successfully applied to the industrial scaled applications in a heavy metal recovery plant in city of Huizhou, China for more than two years. It has great potentials to be used in even the broad metal recovery practices.

  9. Solvothermal Metal Metathesis on a Metal-Organic Framework with Constricted Pores and the Study of Gas Separation.

    Science.gov (United States)

    Li, Liangjun; Xue, Haitao; Wang, Ying; Zhao, Pinhui; Zhu, Dandan; Jiang, Min; Zhao, Xuebo

    2015-11-18

    Metal-organic frameworks (MOFs) with constricted pores can increase the adsorbate density of gas and facilitate effective CO2 separation from flue gas or natural gas due to their enhanced overlapping of potential fields of the pores. Herein, an MOF with constricted pores, which was formed by narrow channels and blocks of functional groups, was fabricated from the assembly of a methyl-functionalized ligand and Zn(II) centers (termed NPC-7-Zn). Structural analysis of the as-synthesized NPC-7-Zn reveals a series of zigzag pores with pore diameters of ∼0.7 nm, which could be favorable for CO2 traps. For reinforcing the framework stability, a solvothermal metal metathesis on the pristine MOF NPC-7-Zn was performed, and a new Cu(II) MOF (termed NPC-7-Cu) with an identical framework was produced. The influence of the reaction temperatures on the metal metathesis process was investigated. The results show that the constricted pores in NPC-7-Zn can induce kinetic issues that largely slow the metal metathesis process at room temperature. However, this kinetic issue can be solved by applying higher reaction temperatures. The modified MOF NPC-7-Cu exhibits significant improvements in framework stability and thus leads to a permanent porosity for this framework. The constricted pore structure enables enhanced potential fields for these pores, rendering this MOF with high adsorbate densities for CO2 and high adsorption selectivity for a CO2/N2 gas mixture. The adsorption kinetic studies reveal that CH4 has a faster diffusion rate constant than CO2, showing a surface diffusion controlled mechanism for CO2 and CH4 adsorption.

  10. Superconductivity in the charge-density-wave state of the organic metal α- (BEDT-TTF)2 KHg (SCN)4

    Science.gov (United States)

    Andres, D.; Kartsovnik, M. V.; Biberacher, W.; Neumaier, K.; Schuberth, E.; Müller, H.

    2005-11-01

    The superconducting transition in the layered organic compound α-(BEDT-TTF)2KHg(SCN)4 has been studied in the two hydrostatic pressure regimes where a charge-density wave is either present or completely suppressed. Within the charge-density-wave state the experimental results reveal a network of weakly coupled superconducting regions. This is especially seen in a strong enhancement of the measured critical field and the corresponding positive curvature of its temperature dependence. Further, it is shown that on lowering the pressure into the density-wave state traces of a superconducting phase already start to appear at a much higher temperature.

  11. Influence of nanoparticle-graphene separation on the localized surface plasmon resonances of metal nanoparticles

    CERN Document Server

    Saadabad, Reza Masoudian; Shirdel-Havar, Amir Hushang; Havar, Majid Shirdel

    2015-01-01

    We develop a theory to model the interaction of graphene substrate with localized plasmon resonances in metallic nanoparticles. The influence of a graphene substrate on the surface plasmon resonances is described using an effective background permittivity that is derived from a pseudoparticle concept using the electrostatic method. For this purpose, the interaction of metal nanoparticle with graphene sheet is studied to obtain the optical spectrum of gold nanoparticles deposited on a graphene substrate. Then, we introduce a factor based on dipole approximation to predict the influence of the separation of nanoparticles and graphene on the spectral position of the localized plasmon resonance of the nanoparticles. We applied the theory for a 4 nm radius gold nanosphere placed near 1.5 nm graphene layer. It is shown that a blue shift is emerged in the position of plasmon resonance when the nanoparticle moves away from graphene.

  12. Separation and recovery of heavy metals from waste water using synergistic solvent extraction

    Science.gov (United States)

    Li, Yan; Yang, Limei; Xu, Zheng; Sun, Qi

    2017-01-01

    Heavy metal wastewater pollution is one of the three major water pollutions in the world. The zinc hydrometallurgy smelting process usually discharge large quantities of heavy metal wastewater into the environment. In this paper, a synergistic solvent extraction process has been developed to recover copper, nickel, zinc and cadmium respectively from calcium and magnesium. The synergistic organic system contained 0.50 M Versatic 10 and 0.5 M Mextral 984H in DT100. Adjusting pH to 2.0 at 40 °C, the copper will be extracted preferentially with the extraction rate more than 99%. Continuing to adjust pH to 4.2 at 40 °C, the nickel will be extracted secondly with an extraction rate more than 98%; the zinc and cadmium in raffinate could be extracted separately while pH is about 6.5.

  13. Separation of transition and heavy metals using stationary phase gradients and thin layer chromatography.

    Science.gov (United States)

    Stegall, Stacy L; Ashraf, Kayesh M; Moye, Julie R; Higgins, Daniel A; Collinson, Maryanne M

    2016-05-13

    Stationary phase gradients for chelation thin layer chromatography (TLC) have been investigated as a tool to separate a mixture of metal ions. The gradient stationary phases were prepared using controlled rate infusion (CRI) from precursors containing mono-, bi-, and tri-dentate ligands, specifically 3-aminopropyltriethoxysilane, N-[3-(trimethoxysilyl)propyl] ethylenediamine, and N-[3-(trimethoxysilyl)propyl] diethylenetriamine. The presence and the extent of gradient formation were confirmed using N1s X-ray photoelectron spectroscopy (XPS). XPS results showed that the degree of modification was dependent on the aminosilane precursor, its concentration, and the rate of infusion. The separation of four transition and heavy metals (Co(2+), Pb(2+), Cu(2+), and Fe(3+)) on gradient and uniformly modified plates was compared using a mobile phase containing a stronger chelating agent, ethylenediaminetetraacetic acid (EDTA). The retention of the metal ions was manipulated by varying the surface concentration of the chelating ligands. The order of retention on unmodified plates and on plates modified with a monodentate ligand was Fe(3+)>Cu(2+)∼Pb(2+)∼Co(2+), while the order of retention on plates modified with bi- and tri-dentate ligands was Fe(3+)>Cu(2+)>Pb(2+)∼Co(2+). Fe(3+) and Cu(2+) were much more sensitive to the concentration of chelating ligand on the surface (displaying lower Rf values with increasing ligand concentration) than Pb(2+) and Co(2+). Complete separation was achieved using a high concentration of the tridentate ligand coupled with a longer time for modification, yielding a retention order of Fe(3+)>Cu(2+)>Co(2+)>Pb(2+). Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Metal-organic and zeolite imidazolate frameworks (MOFs and ZIFs) for highly selective separations

    Energy Technology Data Exchange (ETDEWEB)

    Yaghi, Omar M

    2012-09-17

    Metal-organic and zeolite imidazolate frameworks (MOFs and ZIFs) have been investigated for the realization as separation media with high selectivity. These structures are held together with strong bonds, making them architecturally, chemically, and thermally stable. Therefore, employing well designed building units, it is possible to discover promising materials for gas and vapor separation. This grant was focused on the study of MOFs and ZIFs with these specific objectives: (i) to develop a strategy for producing MOFs and ZIFs that combine high surface areas with active sites for their use in gas adsorption and separation of small organic compounds, (ii) to introduce active sites in the framework by a post-synthetic modification and metalation of MOFs and ZIFs, and (iii) to design and synthesize MOFs with extremely high surface areas and large pore volumes to accommodate large amounts of guest molecules. By the systematic study, this effort demonstrated how to introduce active functional groups in the frameworks, and this is also the origin of a new strategy, which is termed isoreticular functionalization and metalation. However, a large pore volume is still a prerequisite feature. One of the solutions to overcome this challenge is an isoreticular expansion of a MOF's structure. With triangular organic linker and square building units, we demonstrated that MOF-399 has a unit cell volume 17 times larger than that of the first reported material isoreticular to it, and it has the highest porosity (94%) and lowest density (0.126 g cm-3) of any MOF reported to date. MOFs are not just low density materials; the guest-free form of MOF-210 demonstrates an ultrahigh porosity, whose BET surface area was estimated to be 6240 m2 g-1 by N2 adsorption measurements.

  15. Nanoscale superconducting-gap variations and lack of phase separation in optimally doped BaFe1.86Co0.14As2

    NARCIS (Netherlands)

    F. Massee; Y. Huang; R. Huisman; S. de Jong; J.B. Goedkoop; M.S. Golden

    2009-01-01

    We present tunneling data from superconducting BaFe1.86Co0.14As2 and its parent compound, BaFe2As2. In the superconductor, clear coherencelike peaks are seen across the whole field of view, and their analysis reveals nanoscale variations in the superconducting gap value, Δ. The average peak-to-peak

  16. Spin-orbit-coupled superconductivity.

    Science.gov (United States)

    Lo, Shun-Tsung; Lin, Shih-Wei; Wang, Yi-Ting; Lin, Sheng-Di; Liang, C-T

    2014-06-25

    Superconductivity and spin-orbit (SO) interaction have been two separate emerging fields until very recently that the correlation between them seemed to be observed. However, previous experiments concerning SO coupling are performed far beyond the superconducting state and thus a direct demonstration of how SO coupling affects superconductivity remains elusive. Here we investigate the SO coupling in the critical region of superconducting transition on Al nanofilms, in which the strength of disorder and spin relaxation by SO coupling are changed by varying the film thickness. At temperatures T sufficiently above the superconducting critical temperature T(c), clear signature of SO coupling reveals itself in showing a magneto-resistivity peak. When T superconductivity. By studying such magneto-resistivity peaks under different strength of spin relaxation, we highlight the important effects of SO interaction on superconductivity.

  17. Separation of heavy metals: Removal from industrial wastewaters and contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Peters, R.W.; Shem, L.

    1993-01-01

    This paper reviews the applicable separation technologies relating to removal of heavy metals from solution and from soils in order to present the state-of-the-art in the field. Each technology is briefly described and typical operating conditions and technology performance are presented. Technologies described include chemical precipitation (including hydroxide, carbonate, or sulfide reagents), coagulation/flocculation, ion exchange, solvent extraction, extraction with chelating agents, complexation, electrochemical operation, cementation, membrane operations, evaporation, adsorption, solidification/stabilization, and vitrification. Several case histories are described, with a focus on waste reduction techniques and remediation of lead-contaminated soils. The paper concludes with a short discussion of important research needs in the field.

  18. Separation of heavy metals: Removal from industrial wastewaters and contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Peters, R.W.; Shem, L.

    1993-03-01

    This paper reviews the applicable separation technologies relating to removal of heavy metals from solution and from soils in order to present the state-of-the-art in the field. Each technology is briefly described and typical operating conditions and technology performance are presented. Technologies described include chemical precipitation (including hydroxide, carbonate, or sulfide reagents), coagulation/flocculation, ion exchange, solvent extraction, extraction with chelating agents, complexation, electrochemical operation, cementation, membrane operations, evaporation, adsorption, solidification/stabilization, and vitrification. Several case histories are described, with a focus on waste reduction techniques and remediation of lead-contaminated soils. The paper concludes with a short discussion of important research needs in the field.

  19. Separations of Metal Ions Using Ionic Liquids:The Challenges of Multiple Mechanisms

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Ionic liquids are a distinct sub-set of liquids, comprising only of cations and anions, often with negligible vapor pressure. As a result of the low or non-volatility of these fluids, ionic liquids are often considered in liquid/liquid separation schemes where the goal is to replace volatile organic solvents. Unfortunately,it is often not yet recognized that the ionic nature of these solvents can result in a variety of extraction mechanisms, including solvent ion-pair extraction, ion exchange, and simultaneous combinations of these.This paper discusses current ionic liquid-based separations research where the effects of the nature of the solvent ions, ligands, and metal ion species were studied in order to be able to understand the nature of the challenges in utilizing ionic liquids for practical applications.

  20. Superconductivity in carbon nanomaterials

    Science.gov (United States)

    Dlugon, Katarzyna

    The purpose of this thesis is to explain the phenomenon of superconductivity in carbon nanomaterials such as graphene, fullerenes and carbon nanotubes. In the introductory chapter, there is a description of superconductivity and how it occurs at critical temperature (Tc) that is characteristic and different to every superconducting material. The discovery of superconductivity in mercury in 1911 by Dutch physicist Heike Kamerlingh Onnes is also mentioned. Different types of superconductors, type I and type II, low and high temperatures superconductors, as well as the BCS theory that was developed in 1957 by Bardeen, Cooper, and Schrieffer, are also described in detail. The BCS theory explains how Cooper's pairs are formed and how they are responsible for the superconducting properties of many materials. The following chapters explain superconductivity in doped fullerenes, graphene and carbon nanotubes, respectively. There is a thorough explanation followed by many examples of different types of carbon nanomaterials in which small changes in chemical structure cause significant changes in superconducting properties. The goal of this research was not only to take into consideration well known carbon based superconductors but also to search for the newest available materials such as the fullerene nanowhiskers discovered quite recently. There is also a presentation of fairly new ideas about inducing superconductivity in a monolayer of graphene which is more challenging than inducing superconductivity in graphite by simply intercalating metal atoms between its graphene sheets. An effort has been taken to look for any available information about carbon nanomaterials that have the potential to superconduct at room temperature, mainly because discovery of such materials would be a real revolution in the modern world, although no such materials have been discovered yet.

  1. Metal-organic framework-based separator for lithium-sulfur batteries

    Science.gov (United States)

    Bai, Songyan; Liu, Xizheng; Zhu, Kai; Wu, Shichao; Zhou, Haoshen

    2016-07-01

    Lithium-sulfur batteries are a promising energy-storage technology due to their relatively low cost and high theoretical energy density. However, one of their major technical problems is the shuttling of soluble polysulfides between electrodes, resulting in rapid capacity fading. Here, we present a metal-organic framework (MOF)-based battery separator to mitigate the shuttling problem. We show that the MOF-based separator acts as an ionic sieve in lithium-sulfur batteries, which selectively sieves Li+ ions while efficiently suppressing undesired polysulfides migrating to the anode side. When a sulfur-containing mesoporous carbon material (approximately 70 wt% sulfur content) is used as a cathode composite without elaborate synthesis or surface modification, a lithium-sulfur battery with a MOF-based separator exhibits a low capacity decay rate (0.019% per cycle over 1,500 cycles). Moreover, there is almost no capacity fading after the initial 100 cycles. Our approach demonstrates the potential for MOF-based materials as separators for energy-storage applications.

  2. Metal-organic framework nanosheets in polymer composite materials for gas separation

    Science.gov (United States)

    Seoane, Beatriz; Miro, Hozanna; Corma, Avelino; Kapteijn, Freek; Llabrés i Xamena, Francesc X.; Gascon, Jorge

    2014-01-01

    Composites incorporating two-dimensional nanostructures within polymeric matrices hold potential as functional components for several technologies, including gas separation. Prospectively, employing metal-organic-frameworks (MOFs) as versatile nanofillers would notably broaden the scope of functionalities. However, synthesizing MOFs in the form of free standing nanosheets has proven challenging. We present a bottom-up synthesis strategy for dispersible copper 1,4-benzenedicarboxylate MOF lamellae of micrometer lateral dimensions and nanometer thickness. Incorporating MOF nanosheets into polymer matrices endows the resultant composites with outstanding CO2 separation performance from CO2/CH4 gas mixtures, together with an unusual and highly desired increment in the separation selectivity with pressure. As revealed by tomographic focused-ion-beam scanning-electron-microscopy, the unique separation behaviour stems from a superior occupation of the membrane cross-section by the MOF nanosheets as compared to isotropic crystals, which improves the efficiency of molecular discrimination and eliminates unselective permeation pathways. This approach opens the door to ultrathin MOF-polymer composites for various applications. PMID:25362353

  3. Kinetic separation of carbon dioxide and methane on a copper metal-organic framework.

    Science.gov (United States)

    Bao, Zongbi; Alnemrat, Sufian; Yu, Liang; Vasiliev, Igor; Ren, Qilong; Lu, Xiuyang; Deng, Shuguang

    2011-05-15

    Separation of carbon dioxide and methane is an important issue in upgrading low-quality natural gas. Adsorption equilibria and kinetics of CO(2) and CH(4) on a copper metal-organic framework (MOF), Cu(hfipbb)(H(2)hfipbb)(0.5) [H(2)hfipbb=4,4'-(hexafluoroisopropylidene) bis(benzoic acid)], were investigated to evaluate the feasibility of removing CO(2) from CH(4) in a pressure swing adsorption process using this new MOF adsorbent. The heat of adsorption of CO(2) on the Cu-MOF at zero-coverage (29.7 kJ/mol) is much lower than those on a carbon molecular sieve and a zeolite 5A adsorbent; and the heat of adsorption of CH(4) on the Cu-MOF (21.4 kJ/mol) is similar to that on the zeolite 5A adsorbent and smaller than that on a carbon molecular sieve. The Cu-MOF being investigated has apertures of (~3.5 × 3.5 Å), which favors the kinetically controlled separation of CO(2) and CH(4). The kinetic selectivity is found to be 26 at 298 K, and the overall selectivity (combining the equilibrium and kinetic effects) is about 25 for an adsorption separation process. These results suggest that the Cu-MOF adsorbent is an attractive alternative adsorbent for the CO(2)/CH(4) separation.

  4. Spin dynamics in the metallic state of the high T{sub c} superconducting system YBa{sub 2}Cu{sub 3}O{sub 6+x}

    Energy Technology Data Exchange (ETDEWEB)

    Bourges, P.; Sidis, Y. [Laboratoire Leon Brillouin (LLB) - Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France); Regnault, L.P.; Henry, J.Y.; Burlet, P. [CEA Centre d`Etudes de Grenoble, 38 (France). Dept. de Recherche Fondamentale sur la Matiere Condensee; Vettier, C. [European Synchrotron Research Facility, 38 -Grenoble (France)

    1994-12-31

    The spin dynamics in single-crystals of YBa{sub 2}Cu{sub 3}O{sub 6+x} has been successfully investigated, by inelastic neutron scattering (INS) experiments, as a function of temperature in the metallic state over the whole doping range from the weakly-doped to the heavily-doped and the over-doped regimes. Dynamical AF-correlations persist in all the metallic states. The imaginary part of the magnetic susceptibility, {chi}{sup ``}, consists of two contributions which have different doping and temperature dependences. At low temperature, {chi}{sup ``} exhibits an energy gap in any superconducting samples which becomes much weaker close to the insulating-metallic transition. To emphasize the characteristic features of the spin dynamics in YBCO, INS results obtained elsewhere are compared with the experiments. Several theoretical approaches, which intend to describe the energy lineshape of the dynamical magnetic susceptibility, are also discussed. (authors). 6 figs., 51 refs.

  5. Comparison of the behavior of metal-organic frameworks and zeolites for hydrocarbon separations.

    Science.gov (United States)

    Peralta, David; Chaplais, Gérald; Simon-Masseron, Angélique; Barthelet, Karin; Chizallet, Céline; Quoineaud, Anne-Agathe; Pirngruber, Gerhard D

    2012-05-16

    The objective of this work was to study the adsorption and separation of the most important families of hydrocarbon compounds on metal-organic frameworks (MOFs), in comparison with zeolites. For this purpose, we have selected four probe molecules, each of them representing one of these families, i.e., o- and p-xylene as aromatics, 1-octene as an alkene, and n-octane as an alkane. The separation of these four molecules was studied by binary breakthrough experiments. To represent the large diversity of MOF structures, the experiments were carried out with (i) two MOFs with coordinatively unsaturated metal sites (CUS), i.e., Cu-btc (HKUST-1) and CPO-27-Ni, (ii) a MOF with an anionic framework and extraframework cations, i.e. RHO-ZMOF, and (iii) two rather apolar zeolitic imidazolate framework (ZIF) materials with different pore sizes, i.e. ZIF-8 and ZIF-76. Zeolite NaY and zeolite β were used as polar and apolar reference adsorbents, respectively. The results can be briefly summarized as follows: ZIFs (not carrying any polar functional groups) behave like apolar adsorbents and exhibit very interesting and unexpected molecular sieving properties. CUS-MOFs behave like polar adsorbents but show the specificity of preferring alkenes over aromatics. This feature is rationalized thanks to DFT+D calculations. MOFs with extraframework cations behave like polar (cationic) zeolites.

  6. Distinct superconducting states in the pressure-induced metallic structures of the nominal semimetal Bi[subscript 4]Te[subscript 3

    Energy Technology Data Exchange (ETDEWEB)

    Jeffries, J.R.; Sharma, A.L. Lima; Sharma, P.A.; Spataru, C.D.; McCall, S.K.; Sugar, J.D.; Weir, S.T.; Vohra, Y.K. (Sandia); (LLNL); (UAB)

    2011-11-07

    The end members, Bi and Bi{sub 2}Te{sub 3}, of the infinitely adaptive (Bi{sub 2})m(Bi{sub 2}Te{sub 3}){sub n} series of compounds have not only been revealed to be topological insulators under the appropriate conditions, but have also been shown to be superconductors under pressure, suggesting the potential for bulk superconductor-topological-insulator interfaces and associated quantum computing applications. Herein, we report the pressure-dependent evolution of the structure and electrical transport of the nominal semimetal Bi4Te{sub 3}, a member of the (Bi{sub 2})m(Bi{sub 2}Te{sub 3}){sub n} series. Under pressure, Bi4Te{sub 3} undergoes several structural phase transformations, ultimately yielding a metallic body-centered-cubic structure exhibiting superconductivity with a maximum T{sub c} = 8.4 K at 16.2 GPa. The occurrence of structure-dependent superconductivity in Bi{sub 4}Te{sub 3} is remarkably similar to the end members of the (Bi{sub 2})m(Bi{sub 2}Te{sub 3}){sub n} series, intimating a convergence to high-pressure universal behavior that may expose the subtle variations that lead to the topological insulating and superconducting states in these systems.

  7. Complexation-Induced Phase Separation: Preparation of Metal-Rich Polymeric Membranes

    KAUST Repository

    Villalobos Vazquez de la Parra, Luis Francisco

    2017-08-01

    The majority of state-of-the-art polymeric membranes for industrial or medical applications are fabricated by phase inversion. Complexation induced phase separation (CIPS)—a surprising variation of this well-known process—allows direct fabrication of hybrid membranes in existing facilities. In the CIPS process, a first step forms the thin metal-rich selective layer of the membrane, and a succeeding step the porous support. Precipitation of the selective layer takes place in the same solvent used to dissolve the polymer and is induced by a small concentration of metal ions. These ions form metal-coordination-based crosslinks leading to the formation of a solid skin floating on top of the liquid polymer film. A subsequent precipitation in a nonsolvent bath leads to the formation of the porous support structure. Forming the dense layer and porous support by different mechanisms while maintaining the simplicity of a phase inversion process, results in unprecedented control over the final structure of the membrane. The thickness and morphology of the dense layer as well as the porosity of the support can be controlled over a wide range by manipulating simple process parameters. CIPS facilitates control over (i) the thickness of the dense layer throughout several orders of magnitude—from less than 15 nm to more than 6 μm, (ii) the type and amount of metal ions loaded in the dense layer, (iii) the morphology of the membrane surface, and (iv) the porosity and structure of the support. The nature of the CIPS process facilitates a precise loading of a high concentration of metal ions that are located in only the top layer of the membrane. Moreover, these metal ions can be converted—during the membrane fabrication process—to nanoparticles or crystals. This simple method opens up fascinating possibilities for the fabrication of metal-rich polymeric membranes with a new set of properties. This dissertation describes the process in depth and explores promising

  8. On suitability of novel fluidised bed technique for separation of metallic powders during commercial powder metallurgical processing

    NARCIS (Netherlands)

    Ritherdon, J; Dechsiri, C; Jones, AR; Hoffmann, AC; Wright, IG

    2005-01-01

    Experiments have been performed to test the efficiency with which a novel fluidised bed technique could separate different metallic powders in terms of size and density. The overall aim was to assess the potential of this technique for the commercial separation of defective powder fractions from mec

  9. Molecular interactions in metal organic frameworks for optimized gas separation, storage and sensing applications

    Science.gov (United States)

    Nijem, Nour

    Hydrogen storage and CO2 capture are two of the most challenging problems for the development of renewable energy sources and the reduction of CO2 emission. Hydrogen storage aims at storing a high volumetric density of hydrogen at room temperature. Fundamental studies exploring molecular hydrogen interactions in storage materials are therefore important to foster further development of materials. Metal-organic Frameworks (MOFs) are promising candidates for hydrogen storage and gas separation because their high surface area, porosity and structural tailorability all contribute to selective high hydrogen and CO2 physisorption at specific sites in the structures. This work explores the incorporation of hydrogen, CO2 and hydrocarbons into various MOFs using infrared (IR) and Raman spectroscopy to characterize their interaction. IR spectroscopy can distinguish possible H2 binding sites based on the perturbation of the initially IR inactive internal H2 stretch mode. Comparative IR measurements are performed on MOFs with both saturated metal centers (e.g., M(bdc)(ted)0.5) and unsaturated metal centers (e.g., MOF-74-M with M=Zn, Mg and Ni) by varying the ligand and/or the metal center. We combine room-temperature and high-pressure with low-temperature (20--100K) measurements and use theoretical van der Waals density functional (vdW-DF) calculations to derive quantitative information from the vibrational band shifts and dipole moment strengths. In addition to H2, CO2 and hydrocarbon adsorption and selectivity in a flexible MOF system using Raman and IR spectroscopy are explored. The CO2 specific interaction with the framework and the specific connectivity of the metal to the ligands is found to be the main reason for this MOFs flexibility leading to its large CO2 selectivity, and a novel "gate opening" phenomenon. The unexpected gate opening behavior in this flexible framework upon different hydrocarbon adsorption is studied to uncover effects of specific hydrogen bonding

  10. Method for separating constituents from solution employing a recyclable Lewis acid metal-hydroxy gel

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, D.H.

    1995-12-31

    This invention permits radionuclides, heavy metals, and organics to be extracted from solution by scavenging them with an amorphous gel. In the preferred embodiment, a contaminated solution (e.g. from soil washing, decontamination, or groundwater pumping) is transferred to a reaction vessel. The contaminated solution is contacted by the sequestering reagent which might contain for example, aluminate and EDTA anions in a 2.5 M NaOH solution. The pH of the reagent bearing solution is lowered on contact with the contaminated solution, or for example by bubbling carbon dioxide through it, causing an aluminum hydroxide gel to precipitate as the solution drops below the range of 1.8 to 2.5 molar NaOH (less than pH 14). This precipitating gel scavenges waste contaminants as it settles through solution leaving a clean supernatant which is then separated from the gel residue by physical means such as centrifugation, or simple settling. The gel residue containing concentrated contaminants is then redissolved releasing contaminants for separations and processing. This is a critical point: the stabilized gel used in this invention is readily re-dissolved by merely increasing the pH above the gels phase transition to aqueous anions. Thus, concentrated contaminants trapped in the gel can be released for convenient separation from the sequestering reagent, and said reagent can then be recycled.

  11. Exoplanet albedo spectra and colors as a function of planet phase, separation, and metallicity

    CERN Document Server

    Cahoy, Kerri L; Fortney, Jonathan J

    2010-01-01

    First generation optical coronagraphic telescopes will obtain images of cool gas and ice giant exoplanets around nearby stars. The albedo spectra of exoplanets at planet-star separations larger than about 1 AU are dominated by reflected light to beyond 1 {\\mu}m and are punctuated by molecular absorption features. We consider how exoplanet albedo spectra and colors vary as a function of planet-star separation, metallicity, mass, and observed phase for Jupiter and Neptune analogs from 0.35 to 1 {\\mu}m. We model Jupiter analogs with 1x and 3x the solar abundance of heavy elements, and Neptune analogs with 10x and 30x. Our model planets orbit a solar analog parent star at separations of 0.8 AU, 2 AU, 5 AU, and 10 AU. We use a radiative-convective model to compute temperature-pressure profiles. The giant exoplanets are cloud-free at 0.8 AU, have H2O clouds at 2 AU, and have both NH3 and H2O clouds at 5 AU and 10 AU. For each model planet we compute moderate resolution spectra as a function of phase. The presence a...

  12. Superconducting transistor

    Science.gov (United States)

    Gray, Kenneth E.

    1979-01-01

    A superconducting transistor is formed by disposing three thin films of superconducting material in a planar parallel arrangement and insulating the films from each other by layers of insulating oxides to form two tunnel junctions. One junction is biased above twice the superconducting energy gap and the other is biased at less than twice the superconducting energy gap. Injection of quasiparticles into the center film by one junction provides a current gain in the second junction.

  13. The effect of magnetite nanoparticles synthesis conditions on their ability to separate heavy metal ions

    Directory of Open Access Journals (Sweden)

    Bobik Magdalena

    2017-06-01

    Full Text Available Magnetite nanoparticles have become a promising material for scientific research. Among numerous technologies of their synthesis, co-precipitation seems to be the most convenient, less time-consuming and cheap method which produces fine and pure iron oxide particles applicable to environmental issues. The aim of the work was to investigate how the co-precipitation synthesis parameters, such as temperature and base volume, influence the magnetite nanoparticles ability to separate heavy metal ions. The synthesis were conducted at nine combinations of different ammonia volumes - 8 cm3, 10 cm3, 15 cm3 and temperatures - 30°C, 60°C, 90°C for each ammonia volume. Iron oxides synthesized at each combination were examined as an adsorbent of seven heavy metals: Cr(VI, Pb(II, Cr(III, Cu(II, Zn(II, Ni(II and Cd(II. The representative sample of magnetite was characterized using XRD, SEM and BET methods. It was observed that more effective sorbent for majority of ions was produced at 30°C using 10 cm3 of ammonia. The characterization of the sample produced at these reaction conditions indicate that pure magnetite with an average crystallite size of 23.2 nm was obtained (XRD, the nanosized crystallites in the sample were agglomerated (SEM and the specific surface area of the aggregates was estimated to be 55.64 m2·g-1 (BET. The general conclusion of the work is the evidence that magnetite nanoparticles have the ability to adsorb heavy metal ions from the aqueous solutions. The effectiveness of the process depends on many factors such as kind of heavy metal ion or the synthesis parameters of the sorbent.

  14. Superconductivity and superconductive electronics

    Science.gov (United States)

    Beasley, M. R.

    1990-12-01

    The Stanford Center for Research on Superconductivity and Superconductive Electronics is currently focused on developing techniques for producing increasingly improved films and multilayers of the high-temperature superconductors, studying their physical properties and using these films and multilayers in device physics studies. In general the thin film synthesis work leads the way. Once a given film or multilayer structure can be made reasonably routinely, the emphasis shifts to studying the physical properties and device physics of these structures and on to the next level of film quality or multilayer complexity. The most advanced thin films synthesis work in the past year has involved developing techniques to deposit a-axis and c-axis YBCO/PBCO superlattices and related structures. The in-situ feature is desirable because no solid state reactions with accompanying changes in volume, morphology, etc., that degrade the quality of the film involved.

  15. Superconductivity in highly disordered dense carbon disulfide.

    Science.gov (United States)

    Dias, Ranga P; Yoo, Choong-Shik; Struzhkin, Viktor V; Kim, Minseob; Muramatsu, Takaki; Matsuoka, Takahiro; Ohishi, Yasuo; Sinogeikin, Stanislav

    2013-07-16

    High pressure plays an increasingly important role in both understanding superconductivity and the development of new superconducting materials. New superconductors were found in metallic and metal oxide systems at high pressure. However, because of the filled close-shell configuration, the superconductivity in molecular systems has been limited to charge-transferred salts and metal-doped carbon species with relatively low superconducting transition temperatures. Here, we report the low-temperature superconducting phase observed in diamagnetic carbon disulfide under high pressure. The superconductivity arises from a highly disordered extended state (CS4 phase or phase III[CS4]) at ~6.2 K over a broad pressure range from 50 to 172 GPa. Based on the X-ray scattering data, we suggest that the local structural change from a tetrahedral to an octahedral configuration is responsible for the observed superconductivity.

  16. Separation of hafnium from zirconium in their tetrachloride solution in molten alkali metal chlorides

    Energy Technology Data Exchange (ETDEWEB)

    Salyulev, A.B.; Kudyakov, V.Ya.; Smirnov, M.V.; Moskalenko, N.I. (AN SSSR, Sverdlovsk. Inst. Ehlektrokhimii)

    1984-08-01

    The coefficient of HfCl/sub 4/ and ZrCl/sub 4/ separation in the process of vapour sublimation from their solutions in molten NaCl, KCl, CsCl, NaCl-KCl and NaCl-CsCl equimolar mixtures is found to vary in the series from approximately 1.10 to approximately 1.22 and practically not to depend on the temperature (in the 600-910 deg) range and concentration (2-25 mol.% ZrCl/sub 4/+HfCl/sub 4/). HfCl/sub 4/ and ZrCl/sub 4/ are shown to form almost perfect solutions with each other, which in their turn form imperfect solutions with molten alkali metal chlorides, with the strength of hafnium complex chloride anions increasing higher than that of zirconium in the series from NaCl to CsCl.

  17. Cohesive traction–separation laws for tearing of ductile metal plates

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau; Hutchinson, John W.

    2012-01-01

    tip has advanced a distance of one or two plate thicknesses. Traction–separation laws are an essential component of finite element methods currently under development for analyzing fracture of large scale plate or shell structures. The present study resolves the sequence of failure details using......The failure process ahead of a mode I crack advancing in a ductile thin metal plate or sheet produces plastic dissipation through a sequence of deformation steps that include necking well ahead of the crack tip and shear localization followed by a slant fracture in the necked region somewhat closer....... For ductile structural materials, the dissipation generated during necking prior to the onset of shear localization is the dominant contribution; it scales with the plate thickness and is mesh-independent in the present numerical model. The energy associated with the shear localization and fracture...

  18. A metal-organic framework-based splitter for separating propylene from propane

    KAUST Repository

    Cadiau, A.

    2016-07-07

    The chemical industry is dependent on the olefin/paraffin separation, which is mainly accomplished by using energy-intensive processes. We report the use of reticular chemistry for the fabrication of a chemically stable fluorinated metal-organic framework (MOF) material (NbOFFIVE-1-Ni, also referred to as KAUST-7). The bridging of Ni(II)-pyrazine square-grid layers with (NbOF5)2- pillars afforded the construction of a three-dimensional MOF, enclosing a periodic array of fluoride anions in contracted square-shaped channels. The judiciously selected bulkier (NbOF5)2- caused the looked-for hindrance of the previously free-rotating pyrazine moieties, delimiting the pore system and dictating the pore aperture size and its maximum opening. The restricted MOF window resulted in the selective molecular exclusion of propane from propylene at atmospheric pressure, as evidenced through multiple cyclic mixed-gas adsorption and calorimetric studies.

  19. Homochiral metal-organic frameworks based on amino acid ligands for HPLC separation of enantiomers.

    Science.gov (United States)

    Zhang, Jun-Hui; Nong, Rui-Yu; Xie, Sheng-Ming; Wang, Bang-Jin; Ai, Ping; Yuan, Li-Ming

    2017-07-05

    Natural amino acids are well known to form coordination polymers with transition metal ions. In this study, six homochiral metal-organic frameworks constructed from Zn(2+) or Co(2+) ions and various enantiopure amino acid (L-tyrosine, L-histidine, L-tryptophan and L-glutamic acid), namely [Zn(L-tyr)]n (L-tyrZn), [Zn4 (btc)2 (Hbtc)(L-His)2 (H2 O)4 ]·1.5H2 O, {[Zn2 (L-trp)2 (bpe)2 (H2 O)2 ]·2H2 O·2NO3 }n , [Co2 (L-Trp)(INT)2 (H2 O)2 (ClO4 )], [Co2 (sdba)((L-Trp)2 ] and [Co(L-Glu)(H2 O)·H2 O]∞ , were synthesized according to the methods previously reported in the literature. The six homochiral MOFs were explored as the chiral stationary phases for high-performance liquid chromatographic separation of enantiomers using hexane/isopropanol or hexane/dichloromethane as mobile phase. Various types of enantiomers such as alcohols, amines, ketones, ethers, organic acids, etc. can be resolved on these homochiral MOF columns. The results revealed that the enantioseletivities of homochiral MOFs based on amino acids as chiral bridging ligands used as stationary phases are practical in HPLC. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Angle resolved photoemission spectroscopy reveals spin charge separation in metallic MoSe2 grain boundary

    Science.gov (United States)

    Ma, Yujing; Diaz, Horacio Coy; Avila, José; Chen, Chaoyu; Kalappattil, Vijaysankar; Das, Raja; Phan, Manh-Huong; Čadež, Tilen; Carmelo, José M. P.; Asensio, Maria C.; Batzill, Matthias

    2017-02-01

    Material line defects are one-dimensional structures but the search and proof of electron behaviour consistent with the reduced dimension of such defects has been so far unsuccessful. Here we show using angle resolved photoemission spectroscopy that twin-grain boundaries in the layered semiconductor MoSe2 exhibit parabolic metallic bands. The one-dimensional nature is evident from a charge density wave transition, whose periodicity is given by kF/π, consistent with scanning tunnelling microscopy and angle resolved photoemission measurements. Most importantly, we provide evidence for spin- and charge-separation, the hallmark of one-dimensional quantum liquids. Our studies show that the spectral line splits into distinctive spinon and holon excitations whose dispersions exactly follow the energy-momentum dependence calculated by a Hubbard model with suitable finite-range interactions. Our results also imply that quantum wires and junctions can be isolated in line defects of other transition metal dichalcogenides, which may enable quantum transport measurements and devices.

  1. Study on Metals Recovery from -0.074 mm Printed Circuit Boards by Enhanced Gravity Separation

    Institute of Scientific and Technical Information of China (English)

    赵跃民; 温雪峰; 施红霞; 焦红光; 陶有俊

    2006-01-01

    Nowadays study on reutilization of discarded printed circuit boards (PCBs) has great significance for achieving secondary resources recycling and preventing environmental pollution. Physical methods show great potential and advantages on discarded PCBs reutilization, compared with chemical and biological methods. However for the particles of -0.074 mm PCBs, little work has been done in the past because of lower separation efficiency and recovery. In this work, the conundrum of-0.074 mm PCBs reutilization was resolved successfully with the help of Falcon concentrator. Separation mechanism for fine particles with different mass densities in a Falcon centrifugal concentrator was analyzed. The main factors such as magnitude of rotation frequency (centrifugal acceleration), anti-charge water pressure and feeding concentration were studied,and interaction of different factors was analyzed using Design-Expert software. The experimental results show that metals grade of-0.074 mm PCBs and integration efficiency were obtained as 76.89% and 80.77% respectively when feeding concentration was 40 g/L with water pressure of 0.01 MPa and rotation frequency of 50 Hz.

  2. Redox-Active Metal-Organic Composites for Highly Selective Oxygen Separation Applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wen [Physical & Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA; Banerjee, Debasis [Physical & Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA; Liu, Jian [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Schaef, Herbert T. [Physical & Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA; Crum, Jarrod V. [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Fernandez, Carlos A. [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Kukkadapu, Ravi K. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99354 USA; Nie, Zimin [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Nune, Satish K. [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Motkuri, Radha K. [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Chapman, Karena W. [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne IL 60439 USA; Engelhard, Mark H. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99354 USA; Hayes, James C. [National Security Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA; Silvers, Kurt L. [National Security Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA; Krishna, Rajamani [Van' t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904 1098 XH Amsterdam The Netherlands; McGrail, B. Peter [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Liu, Jun [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Thallapally, Praveen K. [Physical & Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA

    2016-03-08

    Incorporating, a redox active organometallic molIncorporating, a redox active organometallic molecule within a porous matrix is a useful strategy to form redox active composite materials for emerging applications such as energy storage, electro-catalysis and electro-magnetic separation. Herein we report a new class of stable, redox active metal organic composites for oxygen/air separation with exceptional efficiency. In particular, Ferrocene impregnated in a thermally stable hierarchical porous framework showed a saturation uptake capacity of >51 mg/g for oxygen at a very low relative saturation pressure (P/Po) of 0.06. The material shows excellent O2 selectivity from air as evident from experimental and simulated breakthrough experiments. In detail structural analysis using 57Fe-Mössbauer, X-ray photoelectron spectroscopy (XPS) and pair distribution function (PDF) analysis show that of O2 adsorption affinity and selectivity originates by the formation Fe3+-O oxide due to the highly reactive nature of the organometallics imbedded in the porous matrix.

  3. Anisotropic Metal Deposition on TiO2 Particles by Electric-Field-Induced Charge Separation.

    Science.gov (United States)

    Tiewcharoen, Supakit; Warakulwit, Chompunuch; Lapeyre, Veronique; Garrigue, Patrick; Fourier, Lucas; Elissalde, Catherine; Buffière, Sonia; Legros, Philippe; Gayot, Marion; Limtrakul, Jumras; Kuhn, Alexander

    2017-09-11

    Deposition of metals on TiO2 semiconductor particles (M-TiO2 ) results in hybrid Janus objects combining the properties of both materials. One of the techniques proposed to generate Janus particles is bipolar electrochemistry (BPE). The concept can be applied in a straightforward way for the site-selective modification of conducting particles, but is much less obvious to use for semiconductors. Herein we report the bulk synthesis of anisotropic M-TiO2 particles based on the synergy of BPE and photochemistry, allowing the intrinsic limitations, when they are used separately, to be overcome. When applying electric fields during irradiation, electrons and holes can be efficiently separated, thus breaking the symmetry of particles by modifying them selectively and in a wireless way on one side with either gold or platinum. Such hybrid materials are an important first step towards high-performance designer catalyst particles, for example for photosplitting of water. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Selective Separation of Similar Metals in Chloride Solution by Sulfide Precipitation Under Controlled Potential

    Science.gov (United States)

    Liu, Weifeng; Sun, Baiqi; Zhang, Duchao; Chen, Lin; Yang, Tianzu

    2017-08-01

    A new process of sulfide precipitation under controlled potential was proposed to separate selectively similar metals in a Bis(2-ethylhexyl) phosphoric acid (P204) stripping solution of the Co extraction system. Theoretical calculations revealed that Cu2+, Co2+, Zn2+, and Mn2+ could be separated by fractional precipitation with sulfide by controlling the solution potential and pH value simultaneously. The results demonstrated a Cu precipitation ratio reaching 99.9% during sulfide precipitation of Cu at the potential of 330 mV; the Cu/Co mass ratio in the Cu precipitate was 224. The Co precipitation ratio in the xanthate precipitation of Co, at a potential of 170 mV, was 99.9%, and the Co/Zn mass ratio in the Co precipitate was 28.0. The Zn precipitation ratio reached 99.9% for sulfide precipitation of Zn at the potential of 30 mV, and the Zn/Mn mass ratio in the Zn precipitate was 1.41. The Mn precipitation ratio reached 99.9% after neutralization.

  5. Increased Oxygen Recovery from Sabatier Systems Using Plasma Pyrolysis Technology and Metal Hydride Separation

    Science.gov (United States)

    Greenwood, Zachary W.; Abney, Morgan B.; Perry, Jay L.; Miller, Lee A.; Dahl, Roger W.; Hadley, Neal M.; Wambolt, Spencer R.; Wheeler, Richard R.

    2015-01-01

    State-of-the-art life support carbon dioxide (CO2) reduction technology is based on the Sabatier reaction where less than 50% of the oxygen required for the crew is recovered from metabolic CO2. The reaction produces water as the primary product and methane as a byproduct. Oxygen recovery is constrained by the limited availability of reactant hydrogen. This is further exacerbated when Sabatier methane (CH4) is vented as a waste product resulting in a continuous loss of reactant hydrogen. Post-processing methane with the Plasma Pyrolysis Assembly (PPA) to recover hydrogen has the potential to dramatically increase oxygen recovery and thus drastically reduce the logistical challenges associated with oxygen resupply. The PPA decomposes methane into predominantly hydrogen and acetylene. Due to the highly unstable nature of acetylene, a separation system is necessary to purify hydrogen before it is recycled back to the Sabatier reactor. Testing and evaluation of a full-scale Third Generation PPA is reported and investigations into metal hydride hydrogen separation technology is discussed.

  6. High temperature interfacial superconductivity

    Science.gov (United States)

    Bozovic, Ivan [Mount Sinai, NY; Logvenov, Gennady [Port Jefferson Station, NY; Gozar, Adrian Mihai [Port Jefferson, NY

    2012-06-19

    High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting per se, is described. Depending upon the layering sequence of the bilayers, T.sub.c may be either .about.15 K or .about.30 K. This highly robust phenomenon is confined to within 2-3 nm around the interface. After exposing the bilayer to ozone, T.sub.c exceeds 50 K and this enhanced superconductivity is also shown to originate from a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi two-dimensional high T.sub.c phases and to significantly enhance superconducting properties in other superconductors. The superconducting interface may be implemented, for example, in SIS tunnel junctions or a SuFET.

  7. A new two-roll electrostatic separator for recycling of metals and nonmetals from waste printed circuit board.

    Science.gov (United States)

    Jiang, Wu; Jia, Li; Zhen-Ming, Xu

    2009-01-15

    The electrostatic separation is an effective method for recycling waste electrical and electronic equipment (WEEE). The efficiency of electrostatic separation processes depends on the ability of the separator. As a classical one, the roll-type corona-electrostatic separator has some advantages in recycling metals and plastics from waste printed circuit board (PCB). However, its industry application still faces some problems, such as: the further disposal of the middling products of the separation process; the balance of the production capacity and the good separation efficiency; the separation of the fine granular mixture and the stability of the separation process. A new "two-roll-type corona-electrostatic separator" was built to overcome the limitation of the classical one. The experimental data were discussed and the results showed that the outcome of the separation process was improved by using the new separator. Compared with the classical machine, the mass of conductive products increases 8.9% (groups 2 and 3) and10.2% (group 4) while the mass of the middling products decreases 45% (groups 2 and 3) and 31.7% (group 4), respectively. The production capacity of the new machine increases, and the stability of the separation process is enhanced.

  8. Nanoporous, Metal Carbide, Surface Diffusion Membranes for High Temperature Hydrogen Separations

    Energy Technology Data Exchange (ETDEWEB)

    Way, J.; Wolden, Colin

    2013-09-30

    Colorado School of Mines (CSM) developed high temperature, hydrogen permeable membranes that contain no platinum group metals with the goal of separating hydrogen from gas mixtures representative of gasification of carbon feedstocks such as coal or biomass in order to meet DOE NETL 2015 hydrogen membrane performance targets. We employed a dual synthesis strategy centered on transition metal carbides. In the first approach, novel, high temperature, surface diffusion membranes based on nanoporous Mo{sub 2}C were fabricated on ceramic supports. These were produced in a two step process that consisted of molybdenum oxide deposition followed by thermal carburization. Our best Mo{sub 2}C surface diffusion membrane achieved a pure hydrogen flux of 367 SCFH/ft{sup 2} at a feed pressure of only 20 psig. The highest H{sub 2}/N{sub 2} selectivity obtained with this approach was 4.9. A transport model using “dusty gas” theory was derived to describe the hydrogen transport in the Mo{sub 2}C coated, surface diffusion membranes. The second class of membranes developed were dense metal foils of BCC metals such as vanadium coated with thin (< 60 nm) Mo{sub 2}C catalyst layers. We have fabricated a Mo{sub 2}C/V composite membrane that in pure gas testing delivered a H{sub 2} flux of 238 SCFH/ft{sup 2} at 600 °C and 100 psig, with no detectable He permeance. This exceeds the 2010 DOE Target flux. This flux is 2.8 times that of pure Pd at the same membrane thickness and test conditions and over 79% of the 2015 flux target. In mixed gas testing we achieved a permeate purity of ≥99.99%, satisfying the permeate purity milestone, but the hydrogen permeance was low, ~0.2 SCFH/ft{sup 2}.psi. However, during testing of a Mo{sub 2}C coated Pd alloy membrane with DOE 1 feed gas mixture a hydrogen permeance of >2 SCFH/ft{sup 2}.psi was obtained which was stable during the entire test, meeting the permeance associated with the 2010 DOE target flux. Lastly, the Mo{sub 2}C/V composite

  9. Screening metal-organic framework-based mixed-matrix membranes for CO2/CH4 separations

    OpenAIRE

    Keskin, Seda; Eruçar, İlknur

    2011-01-01

    1 Screening Metal Organic Framework-based Mixed Matrix Membranes for CO2/CH4 Separations Ilknur Erucar† and Seda Keskin‡* †Department of Computational Sciences and Engineering, Koç University, 34450, Istanbul, Turkey ‡Department of Chemical and Biological Engineering, Koç University, 34450, Istanbul, Turkey Submitted to Ind. Eng. Chem. Res. Abstract In this study, the challenge of selecting metal organic frameworks (MOFs) as filler particles in high performance mixe...

  10. Enrichment of the metallic components from waste printed circuit boards by a mechanical separation process using a stamp mill.

    Science.gov (United States)

    Yoo, Jae-Min; Jeong, Jinki; Yoo, Kyoungkeun; Lee, Jae-Chun; Kim, Wonbaek

    2009-03-01

    Printed circuit boards incorporated in most electrical and electronic equipment contain valuable metals such as Cu, Ni, Au, Ag, Pd, Fe, Sn, and Pb. In order to employ a hydrometallurgical route for the recycling of valuable metals from printed circuit boards, a mechanical pre-treatment step is needed. In this study, the metallic components from waste printed circuit boards have been enriched using a mechanical separation process. Waste printed circuit boards shredded to milled using a stamp mill to liberate the various metallic components, and then the milled printed circuit boards were classified into fractions of 5.0mm. The fractions of milled printed circuit boards of size zig-zag classifier. The >5.0mm fraction and the heavy fraction were subjected to two-step magnetic separation. Through the first magnetic separation at 700 Gauss, 83% of the nickel and iron, based on the whole printed circuit boards, was recovered in the magnetic fraction, and 92% of the copper was recovered in the non-magnetic fraction. The cumulative recovery of nickel-iron concentrate was increased by a second magnetic separation at 3000 Gauss, but the grade of the concentrate decreased remarkably from 76% to 56%. The cumulative recovery of copper concentrate decreased, but the grade increased slightly from 71.6% to 75.4%. This study has demonstrated the feasibility of the mechanical separation process consisting of milling/size classification/gravity separation/two-step magnetic separation for enriching metallic components such as Cu, Ni, Al, and Fe from waste printed circuit boards.

  11. Numerical analysis of the non-metallic inclusions distribution and separation in a two-strand tundish

    Directory of Open Access Journals (Sweden)

    T. Merder

    2013-04-01

    Full Text Available The tundish plays an important role in the challenging task of a “clean steel” production process. The flow of the liquid steel in tundish has a crucial influence on non-metallic inclusions distribution and separation. The article presents computational studies of non-metallic inclusions separation in a two-strand industrial tundish during steady-state casting. Tundish capacity is 7,5 t. First, flow structure in the tundish was investigated using water model of the industrial tundish in a 1:2 scale. The experimental results, regarding RTD characteristics were used to validate numerical model. With validated model, particle distribution and separation in the two-strand tundish were investigated numerically. For modelling the separation of particles at the fluid surface, a modified boundary condition has been implemented.

  12. ISR Superconducting Quadrupoles

    CERN Multimedia

    1977-01-01

    Michel Bouvier is preparing for curing the 6-pole superconducting windings inbedded in the cylindrical wall separating liquid helium from vacuum in the quadrupole aperture. The heat for curing the epoxy glue was provided by a ramp of infrared lamps which can be seen above the slowly rotating cylinder. See also 7703512X, 7702690X.

  13. Removal turbidity and separation of heavy metals using electrocoagulation-electroflotation technique

    Energy Technology Data Exchange (ETDEWEB)

    Merzouk, B. [Departement d' Hydraulique, Universite Mohamed Boudiaf de M' sila (Algeria)], E-mail: mbelkov@yahoo.fr; Gourich, B. [Laboratoire de Genie des Procedes, Ecole Superieure de Technologie de Casablanca, B.P. 8012, Oasis (Morocco); Sekki, A. [Departement de Genie des Procedes, Universite Ferhat Abbas de Setif (Algeria); Madani, K.; Chibane, M. [Faculte des Sciences de la Nature et de la Vie, Universite A - Mira de Bejaia (Algeria)

    2009-05-15

    The electrocoagulation (EC) process was developed to overcome the drawbacks of conventional wastewater treatment technologies. This process is very effective in removing organic pollutants including dyestuff wastewater and allows for the reduction of sludge generation. The purposes of this study were to investigate the effects of the operating parameters, such as pH, initial concentration (C{sub 0}), duration of treatment (t), current density (j), interelectrode distance (d) and conductivity ({kappa}) on a synthetic wastewater in the batch electrocoagulation-electroflotation (EF) process. The optimal operating conditions were determined and applied to a textile wastewater and separation of some heavy metals. Initially a batch-type EC-EF reactor was operated at various current densities (11.55, 18.6, 35.94, 56.64, 74.07 and 91.5 mA/cm{sup 2}) and various interelectrode distance (1, 2 and 3 cm). For solutions with 300 mg/L of silica gel, high turbidity removal (89.54%) was obtained without any coagulants when the current density was 11.55 mA/cm{sup 2}, initial pH was 7.6, conductivity was 2.1 mS/cm, duration of treatment was 10 min and interelectrode distance was 1 cm. The application of the optimal operating parameters on a textile wastewater showed a high removal efficiency for various items: suspended solid (SS) 86.5%, turbidity 81.56%, biological oxygen demand (BOD{sub 5}) 83%, chemical oxygen demand (COD) 68%, and color over 92.5%. During the EC process under these conditions, we have studied the separation of some heavy metal ions such as iron (Fe), nickel (Ni), copper (Cu), zinc (Zn), lead (Pb) and cadmium (Cd) with different initial concentrations in the range of 50-600 mg/L and initial pH between 7.5 and 7.8. This allowed us to show that the kinetics of electrocoagulation-electroflotation is very quick (<15 min), and the removal rate reaches 95%.

  14. Metal-organic frameworks for analytical chemistry: from sample collection to chromatographic separation.

    Science.gov (United States)

    Gu, Zhi-Yuan; Yang, Cheng-Xiong; Chang, Na; Yan, Xiu-Ping

    2012-05-15

    In modern analytical chemistry researchers pursue novel materials to meet analytical challenges such as improvements in sensitivity, selectivity, and detection limit. Metal-organic frameworks (MOFs) are an emerging class of microporous materials, and their unusual properties such as high surface area, good thermal stability, uniform structured nanoscale cavities, and the availability of in-pore functionality and outer-surface modification are attractive for diverse analytical applications. This Account summarizes our research on the analytical applications of MOFs ranging from sampling to chromatographic separation. MOFs have been either directly used or engineered to meet the demands of various analytical applications. Bulk MOFs with microsized crystals are convenient sorbents for direct application to in-field sampling and solid-phase extraction. Quartz tubes packed with MOF-5 have shown excellent stability, adsorption efficiency, and reproducibility for in-field sampling and trapping of atmospheric formaldehyde. The 2D copper(II) isonicotinate packed microcolumn has demonstrated large enhancement factors and good shape- and size-selectivity when applied to on-line solid-phase extraction of polycyclic aromatic hydrocarbons in water samples. We have explored the molecular sieving effect of MOFs for the efficient enrichment of peptides with simultaneous exclusion of proteins from biological fluids. These results show promise for the future of MOFs in peptidomics research. Moreover, nanosized MOFs and engineered thin films of MOFs are promising materials as novel coatings for solid-phase microextraction. We have developed an in situ hydrothermal growth approach to fabricate thin films of MOF-199 on etched stainless steel wire for solid-phase microextraction of volatile benzene homologues with large enhancement factors and wide linearity. Their high thermal stability and easy-to-engineer nanocrystals make MOFs attractive as new stationary phases to fabricate MOF

  15. Assessment of Carbon- and Metal-Based Nanoparticle DNA Damage with Microfluidic Electrophoretic Separation Technology.

    Science.gov (United States)

    Schrand, Amanda M; Powell, Thomas; Robertson, Tiffany; Hussain, Saber M

    2015-02-01

    In this study, we examined the feasibility of extracting DNA from whole cell lysates exposed to nanoparticles using two different methodologies for evaluation of fragmentation with microfluidic electrophoretic separation. Human lung macrophages were exposed to five different carbon- and metal-based nanoparticles at two different time points (2 h, 24 h) and two different doses (5 µg/ml, 100 µg/ml). The primary difference in the banding patterns after 2 h of nanoparticle exposure is more DNA fragmentation at the higher NP concentration when examining cells exposed to nanoparticles of the same composition. However, higher doses of carbon and silver nanoparticles at both short and long dosing periods can contribute to erroneous or incomplete data with this technique. Also comparing DNA isolation methodologies, we recommend the centrifugation extraction technique, which provides more consistent banding patterns in the control samples compared to the spooling technique. Here we demonstrate that multi-walled carbon nanotubes, 15 nm silver nanoparticles and the positive control cadmium oxide cause similar DNA fragmentation at the short time point of 2 h with the centrifugation extraction technique. Therefore, the results of these studies contribute to elucidating the relationship between nanoparticle physicochemical properties and DNA fragmentation results while providing the pros and cons of altering the DNA isolation methodology. Overall, this technique provides a high throughput way to analyze subcellular alterations in DNA profiles of cells exposed to nanomaterials to aid in understanding the consequences of exposure and mechanistic effects. Future studies in microfluidic electrophoretic separation technologies should be investigated to determine the utility of protein or other assays applicable to cellular systems exposed to nanoparticles.

  16. Hierarchic Models of Turbulence, Superfluidity and Superconductivity

    CERN Document Server

    Kaivarainen, A

    2000-01-01

    New models of Turbulence, Superfluidity and Superconductivity, based on new Hierarchic theory, general for liquids and solids (physics/0102086), have been proposed. CONTENTS: 1 Turbulence. General description; 2 Mesoscopic mechanism of turbulence; 3 Superfluidity. General description; 4 Mesoscopic scenario of fluidity; 5 Superfluidity as a hierarchic self-organization process; 6 Superfluidity in 3He; 7 Superconductivity: General properties of metals and semiconductors; Plasma oscillations; Cyclotron resonance; Electroconductivity; 8. Microscopic theory of superconductivity (BCS); 9. Mesoscopic scenario of superconductivity: Interpretation of experimental data in the framework of mesoscopic model of superconductivity.

  17. Local microstructure evolution at shear bands in metallic glasses with nanoscale phase separation

    Science.gov (United States)

    He, Jie; Kaban, Ivan; Mattern, Norbert; Song, Kaikai; Sun, Baoan; Zhao, Jiuzhou; Kim, Do Hyang; Eckert, Jürgen; Greer, A. Lindsay

    2016-01-01

    At room temperature, plastic flow of metallic glasses (MGs) is sharply localized in shear bands, which are a key feature of the plastic deformation in MGs. Despite their clear importance and decades of study, the conditions for formation of shear bands, their structural evolution and multiplication mechanism are still under debate. In this work, we investigate the local conditions at shear bands in new phase-separated bulk MGs containing glassy nanospheres and exhibiting exceptional plasticity under compression. It is found that the glassy nanospheres within the shear band dissolve through mechanical mixing driven by the sharp strain localization there, while those nearby in the matrix coarsen by Ostwald ripening due to the increased atomic mobility. The experimental evidence demonstrates that there exists an affected zone around the shear band. This zone may arise from low-strain plastic deformation in the matrix between the bands. These results suggest that measured property changes originate not only from the shear bands themselves, but also from the affected zones in the adjacent matrix. This work sheds light on direct visualization of deformation-related effects, in particular increased atomic mobility, in the region around shear bands. PMID:27181922

  18. Adsorption, separation, and catalytic properties of densified metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Nandasiri, Manjula I.; Jambovane, Sachin R.; McGrail, B. Peter; Schaef, Herbert T.; Nune, Satish. K.

    2016-03-01

    Metal-organic frameworks (MOFs) are one of the widely investigated materials of 21st century due to their unique properties such as structural tailorability, controlled porosity and crystallinity. These exceptional properties make them promising candidates for various applications including gas adsorption and storage, separation, and catalysis. However, commercial applications of MOFs produced by conventional methods including solvothermal or hydrothermal synthesis are rather limited or restricted because they often produce fine powders. The use of MOF powders for industrial applications often results in pressure drop problems similar to the case with Zeolites. To realize these materials for practical applications, densification of MOFs is routinely employed to form pellets, extrudates or beads to improve the overall density, volumetric adsorption, mechanical and thermal properties. However, the improvements come with some drawbacks such as reduction in overall porosity, surface area, and gravimetric adsorption capacity. Thus, optimizing the properties of densified MOF’s by tuning the packing density is very crucial for realizing these materials for industrial applications. In this review, various methods of densification of MOFs, their properties, and applications are discussed.

  19. Local microstructure evolution at shear bands in metallic glasses with nanoscale phase separation.

    Science.gov (United States)

    He, Jie; Kaban, Ivan; Mattern, Norbert; Song, Kaikai; Sun, Baoan; Zhao, Jiuzhou; Kim, Do Hyang; Eckert, Jürgen; Greer, A Lindsay

    2016-05-16

    At room temperature, plastic flow of metallic glasses (MGs) is sharply localized in shear bands, which are a key feature of the plastic deformation in MGs. Despite their clear importance and decades of study, the conditions for formation of shear bands, their structural evolution and multiplication mechanism are still under debate. In this work, we investigate the local conditions at shear bands in new phase-separated bulk MGs containing glassy nanospheres and exhibiting exceptional plasticity under compression. It is found that the glassy nanospheres within the shear band dissolve through mechanical mixing driven by the sharp strain localization there, while those nearby in the matrix coarsen by Ostwald ripening due to the increased atomic mobility. The experimental evidence demonstrates that there exists an affected zone around the shear band. This zone may arise from low-strain plastic deformation in the matrix between the bands. These results suggest that measured property changes originate not only from the shear bands themselves, but also from the affected zones in the adjacent matrix. This work sheds light on direct visualization of deformation-related effects, in particular increased atomic mobility, in the region around shear bands.

  20. A novel pre-sintering technique for the growth of Y-Ba-Cu-O superconducting single grains from raw metal oxides

    Science.gov (United States)

    Li, Jiawei; Shi, Yun-Hua; Dennis, Anthony R.; Namburi, Devendra Kumar; Durrell, John H.; Yang, Wanmin; Cardwell, David A.

    2017-09-01

    Most established top seeded melt growth (TSMG) processes of bulk, single grain Y-Ba-Cu-O (YBCO) superconductors are performed using a mixture of pre-reacted precursor powders. Here we report the successful growth of large, single grain YBCO samples by TSMG with good superconducting properties from a simple precursor composition consisting of a sintered mixture of the raw oxides. The elimination of the requirement to synthesize precursor powders in a separate process prior to melt processing has the potential to reduce significantly the cost of bulk superconductors, which is essential for their commercial exploitation. The growth morphology, microstructure, trapped magnetic field and critical current density, J c, at different positions within the sample and maximum levitation force of the YBCO single grains fabricated by this process are reported. Measurements of the superconducting properties show that the trapped filed can reach 0.45 T and that a zero field J c of 2.5 × 104 A cm-2 can be achieved in these samples. These values are comparable to those observed in samples fabricated using pre-reacted, high purity commercial oxide precursor powders. The experimental results are discussed and the possibility of further improving the melt process using raw oxides is outlined.

  1. Mechanically driven phase separation and corresponding microhardness change in Cu60Zr20Ti20 bulk metallic glass

    DEFF Research Database (Denmark)

    Cao, Q.P.; Li, J.F.; Zhou, Y.H.

    2005-01-01

    Rolling deformation of bulk Cu60Zr20Ti20 metallic glass has been performed at cryogenic temperature. The specimens exhibit excellent ductility, and are rolled up to 97% reduction in thickness without fracture. Crystallization is suppressed during the deformation, however, phase separation...

  2. Molecular simulation investigation into the performance of Cu-BTC metal-organic frameworks for carbon dioxide-methane separations

    NARCIS (Netherlands)

    Gutiérrez-Sevillano, J.J.; Caro-Pérez, A.; Dubbeldam, D.; Calero, S.

    2011-01-01

    We report a molecular simulation study for Cu-BTC metal-organic frameworks as carbon dioxide-methane separation devices. For this study we have computed adsorption and diffusion of methane and carbon dioxide in the structure, both as pure components and mixtures over the full range of bulk gas compo

  3. Planar Mn4O cluster homochiral metal-organic framework for HPLC separation of pharmaceutically important (±)-ibuprofen racemate.

    Science.gov (United States)

    Hailili, Reshalaiti; Wang, Li; Qv, Junzhang; Yao, Ruxin; Zhang, Xian-Ming; Liu, Huwei

    2015-04-20

    A planar tetracoordinated oxygen containing a homochiral metal-organic framework (MOF) has been synthesized and characterized that can be used as a new chiral stationary phase in high-performance liquid chromatography to efficiently separate racemates such as pharmaceutically important (±)-ibuprofen and (±)-1-phenyl-1,2-ethanediol.

  4. Charge Order, Metallic Behavior, and Superconductivity in La{2-x}Ba{x}CuO{4} with x = 1/8

    Energy Technology Data Exchange (ETDEWEB)

    Homes,C.; Dordevic, S.; Gu, G.; Li, Q.; Valla, T.; Tranquada, J.

    2006-01-01

    The ab-plane optical properties of a cleaved single crystal of La{sub 2-x}Ba{sub x}CuO{sub 4} for x=1/8 (T{sub c}{approx}2.4 K) have been measured over a wide frequency and temperature range. The low-frequency conductivity is Drude-like and shows a metallic response with decreasing temperature. However, below {approx}60 K, corresponding to the onset of charge-stripe order, there is a rapid loss of spectral weight below about 40 meV. The behavior is quite different from that typically associated with the pseudogap in the normal state of the cuprates. Instead, the gapping of the normal-state single-particle excitations looks surprisingly similar to that observed in superconducting La{sub 2-x}Sr{sub x}CuO{sub 4}, including the presence of a residual Drude peak with reduced weight.

  5. All Metal Organic Deposited High-Tc Superconducting Transition Edge Bolometer on Yttria-Stabilized Zirconia Substrate

    DEFF Research Database (Denmark)

    Mohajeri, Roya; Opata, Yuri Aparecido; Wulff, Anders Christian;

    2016-01-01

    We report on the results of a YBa2Cu3O7−x (YBCO) superconductive transition edge bolometer (TEB) fabricated on a Ce0.9La0.1O2−7 (CLO) buffered single crystalline yttria-stabilized zirconia (YSZ) substrate. Metal organic deposition was used for the fabrication of both the YBCO thin film as well...... as CLO buffer layer, while standard photolithography was applied for TEB preparation. YBCO thin film properties were analysed using scanning electron microscopy (SEM), X-ray diffraction (XRD), AC susceptibility and resistance versus temperature measurements. Optical response of the TEB in terms...... of voltage amplitude and phase was analysed and measured through four-probe technique in a liquid nitrogen cooling system. An increase in voltage amplitude response was observed for the fabricated YBCO/CLO/YSZ bolometer compared to previously reported TEBs with similarly deposited YBCO thin film on a SrTiO3...

  6. Rationally tuned micropores within enantiopure metal-organic frameworks for highly selective separation of acetylene and ethylene.

    Science.gov (United States)

    Xiang, Sheng-Chang; Zhang, Zhangjing; Zhao, Cong-Gui; Hong, Kunlun; Zhao, Xuebo; Ding, De-Rong; Xie, Ming-Hua; Wu, Chuan-De; Das, Madhab C; Gill, Rachel; Thomas, K Mark; Chen, Banglin

    2011-02-22

    Separation of acetylene and ethylene is an important industrial process because both compounds are essential reagents for a range of chemical products and materials. Current separation approaches include the partial hydrogenation of acetylene into ethylene over a supported Pd catalyst, and the extraction of cracked olefins using an organic solvent; both routes are costly and energy consuming. Adsorption technologies may allow separation, but microporous materials exhibiting highly selective adsorption of C(2)H(2)/C(2)H(4) have not been realized to date. Here, we report the development of tunable microporous enantiopure mixed-metal-organic framework (M'MOF) materials for highly selective separation of C(2)H(2) and C(2)H(4). The high selectivities achieved suggest the potential application of microporous M'MOFs for practical adsorption-based separation of C(2)H(2)/C(2)H(4).

  7. Comparison of two different electrodialytic cells for separation of phosphorus and heavy metals from sewage sludge ash

    DEFF Research Database (Denmark)

    Ebbers, Benjamin; Ottosen, Lisbeth M.; Jensen, Pernille Erland

    2015-01-01

    With decreasing availability of phosphorus from primary resources its recovery from waste streams becomes increasingly more important. Sewage sludge ash is rich in phosphorus, but the direct use as fertilizer is limited because of inorganic contaminants such as heavy metals and strong bonding...... utilizing a three compartment cell setup where the anode, cathode and stirred suspension are separated by ion exchange membranes are reported. Simplifying this experimental setup by removing the anion exchange membrane brings the anode in direct contact with the stirred ash suspension. Through...... this adjustment, half-reactions at the anode contribute to the acidity of the stirred suspension resulting in increased dissolution of both phosphorus and heavy metals (Cd, Cu, Cr, Pb, Zn, Ni) and better separation of most heavy metals from the stirred ash suspension. When the ash is suspended in an acidic...

  8. The origin of multiple superconducting gaps in MgB2.

    Science.gov (United States)

    Souma, S; Machida, Y; Sato, T; Takahashi, T; Matsui, H; Wang, S-C; Ding, H; Kaminski, A; Campuzano, J C; Sasaki, S; Kadowaki, K

    2003-05-01

    Magnesium diboride, MgB2, has the highest transition temperature (T(c) = 39 K) of the known metallic superconductors. Whether the anomalously high T(c) can be described within the conventional BCS (Bardeen-Cooper-Schrieffer) framework has been debated. The key to understanding superconductivity lies with the 'superconducting energy gap' associated with the formation of the superconducting pairs. Recently, the existence of two kinds of superconducting gaps in MgB2 has been suggested by several experiments; this is in contrast to both conventional and high-T(c) superconductors. A clear demonstration of two gaps has not yet been made because the previous experiments lacked the ability to resolve the momentum of the superconducting electrons. Here we report direct experimental evidence for the two-band superconductivity in MgB2, by separately observing the superconducting gaps of the sigma and pi bands (as well as a surface band). The gaps have distinctly different sizes, which unambiguously establishes MgB2 as a two-gap superconductor.

  9. Synthesis and superconductivity of (Ag)x/CuTl-1223 composites

    Institute of Scientific and Technical Information of China (English)

    Abdul Jabbar; Irfan Qasim; M Mumtaz; K Nadeem

    2015-01-01

    Series of (Ag)x/(Cu0.5Tl0.5Ba2Ca2Cu3O10-δ) {(Ag)x/CuTl-1223} nano-superconductor composites were synthesized with different concentra-tions (i.e. x ¼ 0 ? 4.0 wt%) of silver (Ag) nanoparticles. Low anisotropic CuTl-1223 superconducting matrix was prepared by solid-state reaction and Ag nanoparticles were prepared by a sol–gel method separately. The required (Ag)x/CuTl-1223 composition was obtained by the inclusion of Ag nanoparticles in CuTl-1223 superconducting matrix. Structural, morphological, compositional and superconducting transport properties of these composites were investigated in detail by x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive x-rays (EDX) spectroscopy and four-point probe electrical resistivity (ρ) measurements. The inclusion of Ag nanoparticles enhanced the superconducting properties without affecting the tetragonal structure of the host CuTl-1223 matrix. The improvement in superconducting properties of (Ag)x/CuTl-1223 composites is most likely due to enhanced inter-grains coupling and increased superconducting volume fraction after the addition of metallic Ag nanoparticles at the inter-crystallite sites in the samples. The presence of Ag nanoparticles at the grain-boundaries may increase the number of flux pinning centers, which were present in the form of weak-links in the pure CuTl-1223 superconducting matrix.

  10. Influences of Technological Parameters on Smelting-separation Process for Metallized Pellets of Vanadium-bearing Titanomagnetite Concentrates

    Institute of Scientific and Technical Information of China (English)

    En-hui WU; Rong ZHU; Shao-li YANG; Lan MA; Jun LI; Jing HOU

    2016-01-01

    The smelting-separation process for metallized pellets of vanadium-bearing titanomagnetite concentrates was studied.The influences of smelting temperature,smelting time,and the basicity of the metallized pellet on vana-dium and iron recovery were investigated.The characteristics of titanium slag were analyzed using X-ray diffraction, energy dispersive spectroscopy,and mineralographic microscopic analysis.The results demonstrate that appropriate increases in smelting temperature and smelting time can improve the vanadium and iron recovery from metallized pel-lets and are beneficial for the slag-iron separation.Although increasing the basicity of the metallized pellet can consid-erably improve the vanadium and iron recovery,the TiO2 grade of titanium slag was decreased.Under the optimal conditions,90·17% of vanadium and 92·98% of iron in the metallized pellet were recovered,and the TiO2 grade of titanium slag was 55·01%.It was found that anosovite,augite,spinel,glassiness,and metallic iron were the main mineral phases of the titanium slag.

  11. Diffusion characteristics of specific metals at the high temperature hydrogen separation; Diffusionseigenschaften bestimmter Metalle bei der Hochtemperatur-Wasserstoffabtrennung

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Christian

    2010-09-07

    This paper evaluates the metals palladium, nickel, niobium, tantalum, titanium and vanadium according to their ability to separate hydrogen at high temperatures. This evaluation is chiefly based on a thorough consideration of the properties of diffusion for these metals. The various known hydrogen permeabilities of the metals in a temperature range from 300 to 800 C, as well as their physical and mechanical properties will be presented consistent with the current state of technology. The theory of hydrogen diffusion in metals and the mathematical basis for the calculation of diffusion will also be shown. In the empirical section of the paper, permeability measurements are taken in a temperature range of 400 to 825 C. After measurement, the formation of the oxide coating on these membranes is examined using a light-optical microscope. The results of these examinations allow a direct comparison of the different permeabilities of the various metals within the temperature range tested, and also allow for a critical evaluation of the oxide coating formed on the membranes. The final part of the paper shows the efficiency of these metals in the context of in-situ hydrogen separation in a biomass reformer. (orig.)

  12. Superconducting electronics

    NARCIS (Netherlands)

    Rogalla, Horst

    1994-01-01

    During the last decades superconducting electronics has been the most prominent area of research for small scale applications of superconductivity. It has experienced quite a stormy development, from individual low frequency devices to devices with high integration density and pico second switching

  13. Separation of metallic residues from the dissolution of a high-burnup BWR fuel using nitrogen trifluoride

    Energy Technology Data Exchange (ETDEWEB)

    McNamara, Bruce K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Buck, Edgar C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Soderquist, Chuck Z. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, Frances N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mausolf, Edward J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Scheele, Randall D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-03-23

    Nitrogen trifluoride (NF3) was used to fluorinate the metallic residue from the dissolution of a high burnup, boiling water reactor fuel (~70 MWd/kgU). The metallic residue included the noble metal phase (containing ruthenium, rhodium, palladium, technetium, and molybdenum), and smaller amounts of zirconium, selenium, tellurium, and silver. Exposing the noble metal phase to 10% NF3 in argon between 400 and 550°C, removed molybdenum and technetium near 400°C as their volatile fluorides, and ruthenium near 500C as its volatile fluoride. The events were thermally and temporally distinct and the conditions specified are a recipe to separate these transition metals from each other and from the noble metal phase nonvolatile residue. Depletion of the volatile fluorides resulted in substantial exothermicity. Thermal excursion behavior was recorded under non-adiabatic, isothermal conditions that typically minimize heat release. Physical characterization of the metallic noble phase and its thermal behavior are consistent with high kinetic velocity reactions encouraged by the nanoparticulate phase or perhaps catalytic influences of the mixed platinum metals with nearly pure phase structure. Post-fluorination, only two phases were present in the residual nonvolatile fraction. These were identified as a nano-crystalline, metallic palladium cubic phase and a hexagonal rhodium trifluoride (RhF3) phase. The two phases were distinct as the sub-µm crystallites of metallic palladium were in contrast to the RhF3 phase, which grew from the parent nano-crystalline noble-metal phase during fluorination, to acicular crystals exceeding 20-µm in length.

  14. Potential of metal-organic frameworks for separation of xenon and krypton.

    Science.gov (United States)

    Banerjee, Debasis; Cairns, Amy J; Liu, Jian; Motkuri, Radha K; Nune, Satish K; Fernandez, Carlos A; Krishna, Rajamani; Strachan, Denis M; Thallapally, Praveen K

    2015-02-17

    dissolution in solvents and physisorption on porous materials. Physisorption-based separation and adsorption on highly functional porous materials are promising alternatives to the energy-intensive cryogenic distillation process, where the adsorbents are characterized by high surface areas and thus high removal capacities and often can be chemically fine-tuned to enhance the adsorbate-adsorbent interactions for optimum selectivity. Several traditional porous adsorbents such as zeolites and activated carbon have been tested for noble gas capture but have shown low capacity, selectivity, and lack of modularity. Metal-organic frameworks (MOFs) or porous coordination polymers (PCPs) are an emerging class of solid-state adsorbents that can be tailor-made for applications ranging from gas adsorption and separation to catalysis and sensing. Herein we give a concise summary of the background and development of Xe/Kr separation technologies with a focus on UNF reprocessing and the prospects of MOF-based adsorbents for that particular application.

  15. Bulk superconductivity at 38 K in a molecular system.

    Science.gov (United States)

    Ganin, Alexey Y; Takabayashi, Yasuhiro; Khimyak, Yaroslav Z; Margadonna, Serena; Tamai, Anna; Rosseinsky, Matthew J; Prassides, Kosmas

    2008-05-01

    C(60)-based solids are archetypal molecular superconductors with transition temperatures (Tc) as high as 33 K (refs 2-4). Tc of face-centred-cubic (f.c.c.) A(3)C(60) (A=alkali metal) increases monotonically with inter C(60) separation, which is controlled by the A(+) cation size. As Cs(+) is the largest such ion, Cs(3)C(60) is a key material in this family. Previous studies revealing trace superconductivity in Cs(x)C(60) materials have not identified the structure or composition of the superconducting phase owing to extremely small shielding fractions and low crystallinity. Here, we show that superconducting Cs(3)C(60) can be reproducibly isolated by solvent-controlled synthesis and has the highest Tc of any molecular material at 38 K. In contrast to other A(3)C(60) materials, two distinct cubic Cs(3)C(60) structures are accessible. Although f.c.c. Cs(3)C(60) can be synthesized, the superconducting phase has the A15 structure based uniquely among fullerides on body-centred-cubic packing. Application of hydrostatic pressure controllably tunes A15 Cs(3)C(60) from insulating at ambient pressure to superconducting without crystal structure change and reveals a broad maximum in Tc at approximately 7 kbar. We attribute the observed Tc maximum as a function of inter C(60)separation--unprecedented in fullerides but reminiscent of the atom-based cuprate superconductors--to the role of strong electronic correlations near the metal-insulator transition onset.

  16. Polyethylene separator activated by hybrid coating improving Li+ ion transference number and ionic conductivity for Li-metal battery

    Science.gov (United States)

    Mao, Xufeng; Shi, Liyi; Zhang, Haijiao; Wang, Zhuyi; Zhu, Jiefang; Qiu, Zhengfu; Zhao, Yin; Zhang, Meihong; Yuan, Shuai

    2017-02-01

    Low Li+ ion transference number is one fatal defect of the liquid LiPF6 electrolyte for Li-metal anode based batteries. This work aims to improve Li+ ion transference number and ionic conductivity polyethylene (PE) separators. By a simple dip-coating method, the water-borne nanosized molecular sieve with 3D porous structure (ZSM-5) can be coated on PE separators. Especially, the Li+ ion transference number is greatly enhanced from 0.28 to 0.44, which should be attributed to the specific pore structure and channel environment of ZSM-5 as well as the interaction between ZSM-5 and electrolyte. Compared with the pristine PE separator, the ionic conductivity of modified separators is remarkably improved from 0.30 to 0.54 mS cm-1. As results, the C-rate capability and cycling stability are both improved. The Li-metal battery using the ZSM-5-modified PE separator keeps 94.2% capacity after 100 cycles. In contrast, the discharge capacity retention of the battery using pristine PE is only 74.7%.

  17. 金属小粒子超导电性研究%Superconductivity of Different Spin- States in Ultrasmall Metallic Grains

    Institute of Scientific and Technical Information of China (English)

    郑仁蓉; 陈志静

    2001-01-01

    Abstract We study the different spin - states of Sz = 0, 1/2, 1,3/2,2, 5/2,… of different ultrasmall metallic grains which observe the rules in Gauss orthogonal ensemble by the theory of statistic ensembles, and find there exist critical level spacings dc/△ (0) = 13.81,1.85,0.81,0.50, 0. 36, 0. 28, … , at which the superconductivity would vanish. We also find that the higher the spin - state, the smaller the critical level spacing, and for the state of Sz = 0 there actually exists the superconducting enhancement.%摘要用统计系综理论对遵从高斯正交系综的所有金属小粒子的不同自旋态Sz=0,1/2,1,3/2,2, 5/2…进行了研究.发现以上各态均存在临界能间距dc/△(0)=13.81,1.85,0.81,0.50,0.36,0.28….随着粒子尺寸的减小,其超导电性终究会消失;金属小粒子的自旋态越高,临界能间距dc越小.对自旋Sz=0的态,确实存在超导增强效应.

  18. SEPARATION OF Ca AND Fe METAL ION IN SOURCE WATER BY ADSORPTION COLUMN TECHNIC WITH LOCAL ZEOLITE AND ACTIVE CARBON

    Directory of Open Access Journals (Sweden)

    Suyanta Suyanta

    2016-04-01

    Full Text Available This research aims are to separate of Ca and Fe metal ion in source water, with local zeolite and active carbon by adsorption column technic. Efficiency of separation are control by adsorption time and size of zeolite. Method that used was column adsorption with a flow system in which sample is applied to the filtration tube containing zeolite and active carbon. Initial and final concentrations of the samples were analyzed using Atomic Adsorption Spectrophotometer instrument. The results obtained shows that ability adsorption of zeolite to Ca and Fe metal ion are a good. Zeolite 1 (10 mesh can reduce iron concentration until 93.98 % and zeolite 2 (5mesh until 98.88% for 1 – 4 week range time. Whereas reducing of calcium concentration is not good, until 2 week period time adsorption of calcium ion is about 50%.   Keywords: adsorption, zeolite, source water

  19. Assessment of heavy metals exposure, noise and thermal safety in the ambiance of a vacuum metallurgy separation system for recycling heavy metals from crushed e-wastes.

    Science.gov (United States)

    Zhan, Lu; Xu, Zhenming

    2014-12-01

    Vacuum metallurgy separation (VMS) is a technically feasible method to recover Pb, Cd and other heavy metals from crushed e-wastes. To further determine the environmental impacts and safety of this method, heavy metals exposure, noise and thermal safety in the ambiance of a vacuum metallurgy separation system are evaluated in this article. The mass concentrations of total suspended particulate (TSP) and PM10 are 0.1503 and 0.0973 mg m(-3) near the facilities. The concentrations of Pb, Cd and Sn in TSP samples are 0.0104, 0.1283 and 0.0961 μg m(-3), respectively. Health risk assessments show that the hazard index of Pb is 3.25 × 10(-1) and that of Cd is 1.09 × 10(-1). Carcinogenic risk of Cd through inhalation is 1.08 × 10(-5). The values of the hazard index and risk indicate that Pb and Cd will not cause non-cancerous effects or carcinogenic risk on workers. The noise sources are mainly the mechanical vacuum pump and the water cooling pump. Both of them have the noise levels below 80 dB (A). The thermal safety assessment shows that the temperatures of the vacuum metallurgy separation system surface are all below 303 K after adopting the circulated water cooling and heat insulation measures. This study provides the environmental information of the vacuum metallurgy separation system, which is of assistance to promote the industrialisation of vacuum metallurgy separation for recovering heavy metals from e-wastes.

  20. Adsorption and Separation of Aromatic Amino Acids from Aqueous Solutions Using Metal-Organic Frameworks.

    Science.gov (United States)

    Jonckheere, Dries; Steele, Julian A; Claes, Birgit; Bueken, Bart; Claes, Laurens; Lagrain, Bert; Roeffaers, Maarten B J; De Vos, Dirk E

    2017-09-06

    Metal-organic frameworks (MOFs) are investigated for the adsorption of aromatic amino acids l-phenylalanine (l-Phe), l-tryptophan (l-Trp), and l-tyrosine (l-Tyr) from aqueous solutions. After screening a range of water-stable MOFs, the hydrophobic Zr-MOF MIL-140C emerged as the best performing material, exhibiting uptakes of 15 wt % for l-Trp and 20 wt % for l-Phe. These uptakes are 5-10 wt % higher than those of large-pore zeolites Beta and Y. Both single-compound and competitive adsorption isotherms for l-Phe and l-Trp were experimentally obtained at the natural pH of these amino acid mixtures (pH 6.5-7) without additional pH modification. We find that the hydrophobic nature of MIL-140C and the capacity of l-Trp to form hydrogen bonds favor the uptake of l-Trp with its larger indole moiety compared to the smaller phenyl side group of l-Phe. On the basis of literature and vibrational analysis, observations of hydrogen-bonded l-Trp within the MIL-140C framework are evidenced by red- and blue-shifted -NH vibrations (3400 cm(-1)) in Fourier transform infrared spectroscopy, which were attributed to types N-Hl-Trp···πMIL-140C and N-Hl-Trp···OMIL-140C, respectively. MIL-140C is shown to be recycled at least three times for both aromatic amino acids without any loss of adsorption capacity, separation performance, or crystallinity. Desorption of aromatic amino acids proceeds easily in aqueous ethanol. Substantial coadsorption of negatively charged amino acids l-glutamate and l-aspartate (l-Glu and l-Asp) was observed from a model solution for wheat straw protein hydrolysate at pH 4.3. On the basis of these results, we conclude that MIL-140C is an interesting material for the recovery of essential aromatic amino acids l-Tyr, l-Phe, and l-Trp and of l-Glu and l-Asp from waste protein hydrolysates.

  1. China Nonferrous Metal Invested 1.3-billion in a Rare Earth Separation Project in Xinfeng,Guangdong

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>On the 9th Oct,a signing ceremony on project investment and construction was held between China Nonferrous Metal Industry’s Foreign Engineering and Construction Co.,Ltd.and the Xinfeng County Government,Guangdong.According to agreement,the company will invest RMB 1.3 billion in Xinfeng County to develop a rare earth separation project in the south,in

  2. Metal-organic frameworks for adsorption and separation of noble gases

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, Mark D.; Greathouse, Jeffery A.; Staiger, Chad

    2017-05-30

    A method including exposing a gas mixture comprising a noble gas to a metal organic framework (MOF), including an organic electron donor and an adsorbent bed operable to adsorb a noble gas from a mixture of gases, the adsorbent bed including a metal organic framework (MOF) including an organic electron donor.

  3. Redox-Active Metal-Organic Composites for Highly Selective Oxygen Separation Applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wen [Physical & Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA; Banerjee, Debasis [Physical & Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA; Liu, Jian [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Schaef, Herbert T. [Physical & Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA; Crum, Jarrod V. [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Fernandez, Carlos A. [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Kukkadapu, Ravi K. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99354 USA; Nie, Zimin [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Nune, Satish K. [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Motkuri, Radha K. [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Chapman, Karena W. [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne IL 60439 USA; Engelhard, Mark H. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99354 USA; Hayes, James C. [National Security Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA; Silvers, Kurt L. [National Security Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA; Krishna, Rajamani [Van' t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904 1098 XH Amsterdam The Netherlands; McGrail, B. Peter [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Liu, Jun [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Thallapally, Praveen K. [Physical & Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA

    2016-03-08

    A redox-active metal-organic composite material shows improved and selective O-2 adsorption over N-2 with respect to individual components (MIL-101 and ferrocene). The O-2 sensitivity of the composite material arises due to the formation of maghemite nanoparticles with the pore of the metal-organic framework material.

  4. A method for the separation of non-ferrous metal containing particles from a particle stream

    NARCIS (Netherlands)

    Van der Weijden, R.D.; Rem, P.C.

    2004-01-01

    The invention relates to a method for the recovery of non-ferrous metal-comprising particles from a particle stream. According to the invention, the particle stream is put onto a conveyor belt in the form of a monolayer such that with the aid of a liquid, at least the non-ferrous metal comprising

  5. Energy level alignment at molecule-metal interfaces from an optimally tuned range-separated hybrid functional

    Science.gov (United States)

    Liu, Zhen-Fei; Egger, David A.; Refaely-Abramson, Sivan; Kronik, Leeor; Neaton, Jeffrey B.

    2017-03-01

    The alignment of the frontier orbital energies of an adsorbed molecule with the substrate Fermi level at metal-organic interfaces is a fundamental observable of significant practical importance in nanoscience and beyond. Typical density functional theory calculations, especially those using local and semi-local functionals, often underestimate level alignment leading to inaccurate electronic structure and charge transport properties. In this work, we develop a new fully self-consistent predictive scheme to accurately compute level alignment at certain classes of complex heterogeneous molecule-metal interfaces based on optimally tuned range-separated hybrid functionals. Starting from a highly accurate description of the gas-phase electronic structure, our method by construction captures important nonlocal surface polarization effects via tuning of the long-range screened exchange in a range-separated hybrid in a non-empirical and system-specific manner. We implement this functional in a plane-wave code and apply it to several physisorbed and chemisorbed molecule-metal interface systems. Our results are in quantitative agreement with experiments, the both the level alignment and work function changes. Our approach constitutes a new practical scheme for accurate and efficient calculations of the electronic structure of molecule-metal interfaces.

  6. Perturbation theory of structure in classical liquid mixtures: Application to metallic systems near phase separation. Ph.D. Thesis

    Science.gov (United States)

    Henderson, R. L.

    1974-01-01

    The partial structure factors of classical simple liquid mixtures near phase separation are dicussed. The theory is developed for particles interacting through pair potentials, and is thus appropriate both to insulating fluids, and also to metallic systems if these may be described by an effective ion-ion pair interaction. The motivation arose from consideration of metallic liquid mixtures, in which resistive anomalies have been observed near phase separation. A mean field theory correction appropriate to 3 pair potential for the effects of correlated motions in the reference fluid is studied. The work is cast in terms of functions which are closely related to the direct correlation functions of Ornstein and Zernike. The results are qualitatively in accord with physical expectations. Quantitative agreement with experiment seems to turn on the selection of the hard core reference potential in terms of the metallic effective pair potential. It is suggested that the present effective pair potentials are perhaps not properly used to calculate the metallic structure factors at long wavelength.

  7. Adsorptive separation on metal-organic frameworks in the liquid phase.

    Science.gov (United States)

    Van de Voorde, Ben; Bueken, Bart; Denayer, Joeri; De Vos, Dirk

    2014-08-21

    While much attention of the MOF community has been devoted to adsorption and purification of gases, there is now also a vast body of data on the capability of MOFs to separate and purify liquid mixtures. Initial studies focused on separation of petrochemicals in apolar backgrounds, but the attention has moved now to the separation of complex, e.g. chiral compounds, and to the isolation of biobased compounds from aqueous media. We here give an overview of most of the existing literature, with an accent on separation mechanisms and structure-selectivity relationships.

  8. Direct observation of a helical magnetic order near the superconducting state of MnP under pressure

    Science.gov (United States)

    Wang, Yishu; Feng, Yejun; Cheng, J.-G.; Rosenbaum, T. F.

    A recent high-pressure electrical transport study of the 3d transition metal compound MnP manifested a complex pressure-temperature phase diagram of different types of magnetism and superconductivity. However, the nature of the high-pressure magnetic phase proximate to the superconducting state was not determined. We use non-resonant X-ray magnetic diffraction to probe the magnetic order in MnP under pressure. We discover incommensurate helical order in a confined region under high pressure, and ascertain the phase boundary through the pressure evolution of the lattice. Although the antiferromagnetic and superconducting phases are separated, there is no signature of a strong first-order phase transition between them. We discuss how our direct observation of a helimagnetic order in MnP helps to better understand aspects of magnetically-mediated superconductivity.

  9. Photophoretic separation of metals and silicates: the formation of Mercury like planets and metal depletion in chondrites

    CERN Document Server

    Wurm, Gerhard; Rauer, Heike

    2013-01-01

    Mercury's high uncompressed mass density suggests that the planet is largely composed of iron, either bound within metal (mainly Fe-Ni), or iron sulfide. Recent results from the MESSENGER mission to Mercury imply a low temperature history of the planet which questions the standard formation models of impact mantle stripping or evaporation to explain the high metal content. Like Mercury, the two smallest extrasolar rocky planets with mass and size determination, CoRoT-7b and Kepler-10b, were found to be of high density. As they orbit close to their host stars this indicates that iron rich inner planets might not be a nuisance of the solar system but be part of a general scheme of planet formation. From undifferentiated chondrites it is also known that the metal to silicate ratio is highly variable which must be ascribed to pre-planetary fractionation processes. Due to this fractionation most chondritic parent bodies - most of them originated in the asteroid belt - are depleted in iron relative to average solar...

  10. Global and local superconductivity in boron-doped granular diamond.

    Science.gov (United States)

    Zhang, Gufei; Turner, Stuart; Ekimov, Evgeny A; Vanacken, Johan; Timmermans, Matias; Samuely, Tomás; Sidorov, Vladimir A; Stishov, Sergei M; Lu, Yinggang; Deloof, Bart; Goderis, Bart; Van Tendeloo, Gustaaf; Van de Vondel, Joris; Moshchalkov, Victor V

    2014-04-02

    Strong granularity-correlated and intragrain modulations of the superconducting order parameter are demonstrated in heavily boron-doped diamond situated not yet in the vicinity of the metal-insulator transition. These modulations at the superconducting state (SC) and at the global normal state (NS) above the resistive superconducting transition, reveal that local Cooper pairing sets in prior to the global phase coherence.

  11. Anisotropic phase separation through the metal-insulator transition in amorphous Mo-Ge and Fe-Ge alloys

    Energy Technology Data Exchange (ETDEWEB)

    Regan, M.J.

    1993-12-01

    Since an amorphous solid is often defined as that which lacks long-range order, the atomic structure is typically characterized in terms of the high-degree of short-range order. Most descriptions of vapor-deposited amorphous alloys focus on characterizing this order, while assuming that the material is chemically homogeneous beyond a few near neighbors. By coupling traditional small-angle x-ray scattering which probes spatial variations of the electron density with anomalous dispersion which creates a species-specific contrast, one can discern cracks and voids from chemical inhomogeneity. In particular, one finds that the chemical inhomogeneities which have been previously reported in amorphous Fe{sub x}Ge{sub 1-x} and Mo{sub x}Ge{sub 1-x} are quite anisotropic, depending significantly on the direction of film growth. With the addition of small amounts of metal atoms (x<0.2), no films appear isotropic nor homogeneous through the metal/insulator transition. The results indicate that fluctuations in the growth direction play a pivotal role in preventing simple growth models of a columnar structure or one that evolves systematically as it grows. The anomalous scattering measurements identify the metal atoms (Fe or Mo) as the source of the anisotropy, with the Ge atoms distributed homogeneously. The author has developed a method for using these measurements to determine the compositions of the phase-separating species. The results indicate phase separation into an amorphous Ge and an intermetallic phase of stoichiometry close to FeGe{sub 2} or MoGe{sub 3}. Finally, by manipulating the deposited power flux and rates of growth, Fe{sub x}Ge{sub 1-x} films which have the same Fe composition x can be grown to different states of phase separation. These results may help explain the difficulty workers have had in isolating the metal/insulator transition for these and other vapor-deposited amorphous alloys.

  12. Superconducting YBa 2Cu 3O 7- δ thin film grown on metallic film evaporated on MgO

    Science.gov (United States)

    Verdyan, A.; Azoulay, J.; Lapsker, I.

    2001-03-01

    At present it is commonly accepted that thin film formation of YBa 2Cu 3O 7- δ (YBCO) on conducting substrate is one of the keys to further development of advanced devices in the microelectronic and other applications. We have grown YBCO thin films by resistive evaporation technique on MgO coated with metallic layers (Ni or Ag). A simple inexpensive vacuum system equipped with resistively heated boats for metal and precursor mixture of yttrium, copper and barium fluoride powders was used. X-ray diffraction (XRD) and scanning electron microscopy techniques were used for texture, morphology and surface analyses respectively. Electrical and magnetical properties were determined by a standard dc four-probe method. The way of heating process is shown to be critical parameter in the film quality. The physical and electrical properties of the YBCO films are discussed in light of the fact that XRD measurements done on the metallic buffer layers have revealed a multicrystalline structure.

  13. Environmental friendly crush-magnetic separation technology for recycling metal-plated plastics from end-of-life vehicles.

    Science.gov (United States)

    Xue, Mianqiang; Li, Jia; Xu, Zhenming

    2012-03-06

    Metal-plated plastics (MPP), which are important from the standpoint of aesthetics or even performance, are increasingly employed in a wide variety of situations in the automotive industry. Serious environmental problems will be caused if they are not treated appropriately. Therefore, recycling of MPP is an important subject not only for resource recycling but also for environmental protection. This work represents a novel attempt to deal with the MPP. A self-designed hammer crusher was used to liberate coatings from the plastic substrate. The size distribution of particles was analyzed and described by the Rosin-Rammler function model. The optimum retaining time of materials in the crusher is 3 min. By this time, the liberation rate of the materials can reach 87.3%. When the density of the suspension is 31,250 g/m(3), the performance of liberation is the best. Two-step magnetic separation was adopted to avoid excessive crushing and to guarantee the quality of products. Concerning both the separation efficiency and grade of products, the optimum rotational speed of the magnetic separator is 50-70 rpm. On the basis of the above studies about the liberating and separating behavior of the materials, a continuous recycling system (the technology of crush-magnetic separation) is developed. This recycling system provides a feasible method for recycling MPP efficiently, economically, and environmentally.

  14. Simple and fast fabrication of superhydrophobic metal wire mesh for efficiently gravity-driven oil/water separation.

    Science.gov (United States)

    Song, Botao

    2016-12-15

    Superhydrophobic metal wire mesh (SMWM) has frequently been applied for the selective and efficient separation of oil/water mixture due to its porous structure and special wettability. However, current methods for the modification of metal wire mesh to be superhydrophobic suffered from problems with respect to complex experimental procedures or time-consuming process. In this study, a very simple, time-saving and single-step electrospray method was proposed to fabricate SMWM and the whole procedure required about only 2min. The morphology, surface composition and wettability of the SMWM were all evaluated, and the oil/water separation ability was further investigated. In addition, a commercial available sponge covered with SMWM was fabricated as an oil adsorbent for the purpose of oil recovery. This study demonstrated a convenient and fast method to modify the metal wire mesh to be superhydrophobic and such simple method might find practical applications in the large-scale removal of oils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Study on Metallized Reduction and Magnetic Separation of Iron from Fine Particles of High Iron Bauxite Ore

    Science.gov (United States)

    Liu, Zheng-Gen; Chu, Man-Sheng; Wang, Zheng; Zhao, Wei; Tang, Jue

    2017-01-01

    High iron bauxite ore is a typical unmanageable polyparagenetic resource and owns high comprehensive utilization value. Separation of iron from fine particles of high iron bauxite ore by the process of metallized reduction and magnetic dressing was researched systemically. The effect of magnetic field intensity, reduction temperature, reduction time, mole ratio of fixed carbon to reducible oxygen (FC/O) and ore particles size on separation indexes was researched. The results show that, with the conditions of reduction temperature of 1,400 °C, reduction time of 180 min, FC/O of 2.0, ore particle size of -2.0 mm and magnetic field intensity of 40 KA/m, about 89.24 % of the iron could be removed from high iron bauxite ore as metallic iron. Meanwhile, 86.09 % of the aluminum is stayed in non-magnetic fraction as alumina. However, the formation of hercynite (FeAl2O4) limits the reduction rate of iron oxides to metallic iron. The lower reduction conditions and higher recovery ratio of iron could be achieved with adopting ore-coal composite agglomerates or adding catalyst.

  16. Separation of heavy metal from water samples--The study of the synthesis of complex compounds of heavy metal with dithiocarbamates.

    Science.gov (United States)

    Kane, Sonila; Lazo, Pranvera; Ylli, Fatos; Stafilov, Trajce; Qarri, Flora; Marku, Elda

    2016-01-01

    The toxicity and persistence of heavy metal (HM) ions may cause several problems to marine organisms and human beings. For this reason, it is growing the interest in the chemistry of sulphur donor ligands such as dithiocarbamates (DDTC), due to their applications particularly in analytical chemistry sciences. The aim of this work has been the study of heavy metal complexes with DDTC and their application in separation techniques for the preconcentration and/or removing of heavy metals from the water solutions or the water ecosystems prior to their analysis. The HM-DDTC complexes were prepared and characterized by elemental analysis, FTIR and UV-Vis spectroscopic methods. The elemental analysis and the yield of the synthesis (97.5-99.9%) revealed a good purity of the complexes. High values of complex formation yields of HM-DDTC complexes is an important parameter for quantitatively removing/and or preconcentration of heavy metal ions from water solution even at low concentration of heavy metals. Significant differences founded between the characteristic parameters of UV/Vis (λmax and ϵmax) and FTIR absorption spectra of the parent DDTC and HM-DDTC complexes revealed the complex formation. The presence of the peaks at the visible spectral zone is important to M(nd(10-m))-L electron charge transfer of the new complexes. The (C=N) (1450-1500 cm(-1)) and the un-splitting (C-S) band (950-1002 cm(-1)) in HM-DDTC FTIR spectra are important to the identification of their bidentate mode (HM[S2CNC4H10]2). The total CHCl3 extraction of trace level heavy metals from water samples after their complex formation with DDTC is reported in this article.

  17. Mechanism of metallization and superconductivity suppression in YBa2(Cu0.97 Zn0.03)3 O6.92 revealed by 67Zn NQR

    Science.gov (United States)

    Pelc, D.; Požek, M.; Despoja, V.; Sunko, D. K.

    2015-08-01

    We measure the nuclear quadrupole resonance signal on the Zn site in nearly optimally doped YBa2Cu3O6.92, when Cu is substituted by 3% of isotopically pure 67Zn. We observe that Zn creates large insulating islands, confirming two earlier conjectures: that doping provokes an orbital transition in the CuO2 plane, which is locally reversed by Zn substitution, and that the islands are antiferromagnetic. Also, we find that the Zn impurity locally induces a breaking of the D4 symmetry. Cluster and DFT calculations show that the D4 symmetry breaking is due to the same partial lifting of degeneracy of the nearest-neighbor oxygen sites as in the LTT transition in {La}{}2-xBaxCuO4, similarly well-known to strongly suppress superconductivity (SC). These results show that in-plane oxygen 2p5 orbital configurations are principally involved in the metallicity and SC of all high-Tc cuprates, and provide a qualitative symmetry-based constraint on the SC mechanism.

  18. Separation of heavy metals from water by functionalized glycidyl methacrylate poly (high internal phase emulsions).

    Science.gov (United States)

    Huš, Sebastjan; Kolar, Mitja; Krajnc, Peter

    2016-03-11

    Removal of silver, lead and cadmium ions from both model solutions and real contaminated water was achieved, in a flow through manner, by using highly porous functionalized poly(glycidyl methacrylate) materials, prepared by the polymerisation of high internal phase emulsions (polyHIPE), with significant sorption differences between metals allowing for selective removal. PolyHIPEs, initially prepared from glycidyl methacrylate as a functional monomer, were functionalized with pentaerythritol tetrakis(3-mercaptopropionate), 1,9-nonanedithiol and 2-aminobenzenethiol via the epoxy ring opening on the polymer supports and applied in a flow-through manner via encasements into dedicated disk holders. Capacity of 21.7mg Ag per gram of polymer was found for 1,9-nonanedithiol functionalized polymers, while the capacity was decreasing with the decreasing ionic radius of the metal; the dynamics of sorption also depended on metal ion size and furthermore on the thiol used for the polymer functionalization.

  19. Metal organic framework derived magnetically separable 3-dimensional hierarchical Ni@C nanocomposites: Synthesis and adsorption properties

    Science.gov (United States)

    Song, Yixuan; Qiang, Tingting; Ye, Ming; Ma, Qiuyang; Fang, Zhen

    2015-12-01

    Design an effective absorbent that has high surface area, and perfect recyclable is imperative for pollution elimination. Herein, we report a facile two-step strategy to fabricate magnetically separable 3-dimensional (3D) hierarchical carbon-coated nickel (Ni@C) nanocomposites by calcinating nickel based metal organic framework (Ni3(OH)2(C8H4O4)2(H2O)4). SEM and TEM images illuminate that the nanocomposites were constructed by 8 nm nickel nanoparticle encapsulated in 3D flake like carbon. The specific surface area of the obtained nanocomposites is up to 120.38 m2 g-1. Room temperature magnetic measurement indicates the nanocomposites show soft magnetism property, which endows the nanocomposites with an ideal fast magnetic separable property. The maximum adsorption capacity of the nanocomposites for rhodamine B is 84.5 mg g-1. Furthermore, the nanocomposites also exhibit a high adsorption capacity for heavy metal ions. The adsorbent can be very easily separated from the solution by using a common magnet without exterior energy. The as-prepared Ni@C nanocomposites can apply in waste water treatment on a large-scale as a new adsorbent with high efficiency and excellent recyclability.

  20. Giant thermopower in superconducting heterostructures with spin-active interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kalenkov, Mikhail S. [I.E. Tamm Department of Theoretical Physics, P.N. Lebedev Physical Institute, 119991 Moscow (Russian Federation); Laboratory of Cryogenic Nanoelectronics, Nizhny Novgorod State Technical University, 603950 Nizhny Novgorod (Russian Federation); Zaikin, Andrei D. [Institut für Nanotechnologie, Karlsruher Institut für Technologie (KIT), 76021 Karlsruhe (Germany); I.E. Tamm Department of Theoretical Physics, P.N. Lebedev Physical Institute, 119991 Moscow (Russian Federation)

    2015-06-01

    We predict parametrically strong enhancement of the thermoelectric effect in metallic bilayers consisting of two superconductors separated by a spin-active interface. The physical mechanism for such an enhancement is directly related to electron–hole imbalance generated by spin-sensitive quasiparticle scattering at the interface between superconducting layers. We explicitly evaluate the thermoelectric currents flowing in the system and demonstrate that they can reach maximum values comparable to the critical ones for superconductors under consideration. - Highlights: • Strong enhancement of the thermoelectric effect in superconducting heterostructures. • Generation of the electron-hole imbalance by spin-sensitive quasiparticle scattering. • Thermoelectric currents can reach maximum values comparable to the critical ones.

  1. Chromatographic separation studies of penicillins, cephalosporins and carbapenems on transition-metal silicate modified silica layers.

    Science.gov (United States)

    Singh, Dhruv K; Maheshwari, Gunjan

    2012-01-01

    The chromatographic behavior of penicillins, cephalosporins and carbapenems has been studied on the thin layers of transition-metal ion (viz. Ni(2+)/Zn(2+)/Cu(2+)/Co(2+)) silicate modified silica. Transition-metal silicate (3.92%) and silica (96.08%) were found to be optimum and resulted in spherical-compact spots and improved resolution of the analytes. The effect of various mobile phases was also investigated. The chromatograms were visualized as yellow spots by placing in an I(2)-chamber. The method has been found to be reproducible and convenient for routine analysis.

  2. A highly porous metal-organic framework for large organic molecule capture and chromatographic separation.

    Science.gov (United States)

    Li, Pei-Zhou; Su, Jie; Liang, Jie; Liu, Jia; Zhang, Yuanyuan; Chen, Hongzhong; Zhao, Yanli

    2017-03-25

    A highly porous metal-organic framework (MOF) with large pores was successfully obtained via solvothermal assembly of a "click"-extended tricarboxylate ligand and Zn(ii) ions. The inherent feature of large-molecule accessible pores endows the MOF with a unique property for utilization toward large guest molecules.

  3. Complexation induced phase separation: preparation of composite membranes with a nanometer thin dense skin loaded with metal ions

    KAUST Repository

    Villalobos Vazquez de la Parra, Luis Francisco

    2015-04-21

    We present the development of a facile phase-inversion method for forming asymmetric membranes with a precise high metal ion loading capacity in only the dense layer. The approach combines the use of macromolecule-metal intermolecular complexes to form the dense layer of asymmetric membranes with nonsolvent-induced phase separation to form the porous support. This allows the independent optimization of both the dense layer and porous support while maintaining the simplicity of a phase-inversion process. Moreover, it facilitates control over (i) the thickness of the dense layer throughout several orders of magnitude—from less than 15 nm to more than 6 μm, (ii) the type and amount of metal ions loaded in the dense layer, (iii) the morphology of the membrane surface, and (iv) the porosity and structure of the support. This simple and scalable process provides a new platform for building multifunctional membranes with a high loading of well-dispersed metal ions in the dense layer.

  4. Complexation-induced phase separation: preparation of composite membranes with a nanometer-thin dense skin loaded with metal ions.

    Science.gov (United States)

    Villalobos, Luis Francisco; Karunakaran, Madhavan; Peinemann, Klaus-Viktor

    2015-05-13

    We present the development of a facile phase-inversion method for forming asymmetric membranes with a precise high metal ion loading capacity in only the dense layer. The approach combines the use of macromolecule-metal intermolecular complexes to form the dense layer of asymmetric membranes with nonsolvent-induced phase separation to form the porous support. This allows the independent optimization of both the dense layer and porous support while maintaining the simplicity of a phase-inversion process. Moreover, it facilitates control over (i) the thickness of the dense layer throughout several orders of magnitude from less than 15 nm to more than 6 μm, (ii) the type and amount of metal ions loaded in the dense layer, (iii) the morphology of the membrane surface, and (iv) the porosity and structure of the support. This simple and scalable process provides a new platform for building multifunctional membranes with a high loading of well-dispersed metal ions in the dense layer.

  5. Characterization and mechanical separation of metals from computer Printed Circuit Boards (PCBs) based on mineral processing methods.

    Science.gov (United States)

    Sarvar, Mojtaba; Salarirad, Mohammad Mehdi; Shabani, Mohammad Amin

    2015-11-01

    In this paper, a novel mechanical process is proposed for enriching metal content of computer Printed Circuit Boards (PCBs). The PCBs are crushed and divided into three different size fractions namely: -0.59, +0.59 to 1.68 and +1.68 mm. Wet jigging and froth flotation methods are selected for metal enrichment. The coarse size fraction (+1.68 mm) is processed by jigging. The plastic free product is grinded and screened. The oversized product is separated as the first concentrate. It was rich of metal because the grinding process was selective. The undersized product is processed by froth flotation. Based on the obtained results, the middle size fraction (+0.59 to 1.68 mm) and the small size fraction (-0.59 mm) are processed by wet jigging and froth flotation respectively. The wet jigging process is optimized by investigating the effect of pulsation frequency and water flow rate. The results of examining the effect of particle size, solid to liquid ratio, conditioning time and using apolar collector showed that collectorless flotation is a promising method for separating nonmetals of PCBs. 95.6%, 97.5% and 85% of metal content of coarse size, middle size and small size fraction are recovered. The grades of obtained concentrates were 63.3%, 92.5% and 75% respectively. The total recovery is calculated as 95.64% and the grade of the final concentrate was 71.26%. Determining the grade of copper and gold in the final product reveals that 4.95% of copper and 24.46% of gold are lost during the concentration. The major part of the lost gold is accumulated in froth flotation tail. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Water-Stable Anionic Metal-Organic Framework for Highly Selective Separation of Methane from Natural Gas and Pyrolysis Gas.

    Science.gov (United States)

    Li, Lan; Wang, Xusheng; Liang, Jun; Huang, Yuanbiao; Li, Hongfang; Lin, Zujin; Cao, Rong

    2016-04-20

    A 3D water-stable anionic metal-organic framework [Zn4(hpdia)2]·[NH2(CH3)2]·3DMF·4H2O (FJI-C4) was constructed based on an elaborate phosphorus-containing ligand 5,5'-(hydroxyphosphoryl)diisophthalic acid (H5hpdia). FJI-C4 with narrow one-dimensional (1D) pore channels exhibits high selectivity of C3H8/CH4 and C2H2/CH4. It is the first time for the MOF which contains phosphorus for selective separation of methane from natural gas and pyrolysis gas.

  7. Predictive framework for shape-selective separations in three-dimensional zeolites and metal-organic frameworks.

    Science.gov (United States)

    First, Eric L; Gounaris, Chrysanthos E; Floudas, Christodoulos A

    2013-05-07

    With the growing number of zeolites and metal-organic frameworks (MOFs) available, computational methods are needed to screen databases of structures to identify those most suitable for applications of interest. We have developed novel methods based on mathematical optimization to predict the shape selectivity of zeolites and MOFs in three dimensions by considering the energy costs of transport through possible pathways. Our approach is applied to databases of over 1800 microporous materials including zeolites, MOFs, zeolitic imidazolate frameworks, and hypothetical MOFs. New materials are identified for applications in gas separations (CO2/N2, CO2/CH4, and CO2/H2), air separation (O2/N2), and chemicals (propane/propylene, ethane/ethylene, styrene/ethylbenzene, and xylenes).

  8. Selective interfacial synthesis of metal-organic frameworks on a polybenzimidazole hollow fiber membrane for gas separation.

    Science.gov (United States)

    Biswal, Bishnu P; Bhaskar, Anand; Banerjee, Rahul; Kharul, Ulhas K

    2015-04-28

    Metal-organic frameworks (MOFs) have gained immense attention as new age materials due to their tuneable properties and diverse applicability. However, efforts on developing promising materials for membrane based gas separation, and control over the crystal growth positions on polymeric hollow fiber membranes still remain key challenges. In this investigation, a new, convenient and scalable room temperature interfacial method for growing MOFs (ZIF-8 and CuBTC) on either the outer or inner side of a polybenzimidazole based hollow fiber (PBI-BuI-HF) membrane surface has been achieved in a controlled manner. This was made possible by the appropriate selection of an immiscible solvent pair and the synthetic conditions. The growth of MOFs on the PBI-BuI-HF membrane by the interfacial method was continuous and showed an appreciable gas separation performance, conveying promise for their applicability.

  9. Microporous metal-organic frameworks for storage and separation of small hydrocarbons

    NARCIS (Netherlands)

    He, Y.; Zhou, W.; Krishna, R.; Chen, B.

    2012-01-01

    Hydrocarbons are very important energy resources and raw materials for some industrially important products and fine chemicals. There is a need for the discovery of better materials that offer enhanced capacities for safe storage of hydrocarbons. Furthermore, the development of improved separation

  10. Microporous metal-organic frameworks for storage and separation of small hydrocarbons

    NARCIS (Netherlands)

    Y. He; W. Zhou; R. Krishna; B. Chen

    2012-01-01

    Hydrocarbons are very important energy resources and raw materials for some industrially important products and fine chemicals. There is a need for the discovery of better materials that offer enhanced capacities for safe storage of hydrocarbons. Furthermore, the development of improved separation t

  11. Superconducting Microelectronics.

    Science.gov (United States)

    Henry, Richard W.

    1984-01-01

    Discusses superconducting microelectronics based on the Josephson effect and its advantages over conventional integrated circuits in speed and sensitivity. Considers present uses in standards laboratories (voltage) and in measuring weak magnetic fields. Also considers future applications in superfast computer circuitry using Superconducting…

  12. Separation and preconcentration by a cloud point extraction procedure for determination of metals: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Ojeda, C.B.; Rojas, F.S. [University of Malaga, Department of Analytical Chemistry, Faculty of Sciences, Malaga (Spain)

    2009-06-15

    Recently, cloud point extraction (CPE) has been an attractive subject as an alternative to liquid-liquid extraction. The technique is based on the property of most non-ionic surfactants in aqueous solutions to form micelles and become turbid when heated to the cloud point temperature. This review covers a selection of the literature published on applications of CPE in determination of metal ions over the period between 2004 and 2008. (orig.)

  13. Synthesis of metallic and zeolite nanoparticles for catalysis and gas separation

    Directory of Open Access Journals (Sweden)

    S. Domínguez Domínguez

    2013-01-01

    Full Text Available A novel methodology has been developed for the direct incorporation of metallic nanoparticles inside mesoporous matrices, which we have named “simultaneous synthesis”. The prepared catalysts have shown excellent activity and selectivity in a selective hydrogenation reaction (phenylacetylene semihydrogenation. Catalysts prepared following the simultaneous synthesis protocol showed the highest activity values (expressed as TOF for all the analyzed samples, which clearly reveals the importance of not only the support, but also the catalyst preparation method.

  14. Gas sorption and transition-metal cation separation with a thienothiophene based zirconium metal-organic framework

    Science.gov (United States)

    SK, Mostakim; Grzywa, Maciej; Volkmer, Dirk; Biswas, Shyam

    2015-12-01

    The modulated synthesis of the thienothiophene based zirconium metal-organic framework (MOF) material having formula [Zr6O4(OH)4(DMTDC)6]·4.8DMF·10H2O (1) (H2DMTDC=3,4-dimethylthieno[2,3-b]thiophene-2,5-dicarboxylic acid; DMF=N,N'-dimethylformamide) was carried out by heating a mixture of ZrCl4, H2DMTDC linker and benzoic acid (used as a modulator) with a molar ratio of 1:1:30 in DMF at 150 °C for 24 h. Systematic investigations have been performed in order to realize the effect of ZrCl4/benzoic acid molar ratio on the crystallinity of the material. The activation (i.e., the removal of the guest solvent molecules from the pores) of as-synthesized compound was achieved by stirring it with methanol and subsequently heating under vacuum. A combination of X-ray diffraction (XRD), Fourier transform infrared (FT-IR), thermogravimetric (TG) and elemental analysis was used to examine the phase purity of the as-synthesized and thermally activated 1. The material displays high thermal stability up to 310 °C in an air atmosphere. As revealed from the XRD measurements, the compound retains its crystallinity when treated with water, acetic acid and 1 M HCl solutions. The N2 and CO2 sorption analyses suggest that the material possesses remarkably high microporosity (SBET=1236 m2 g-1; CO2 uptake=3.5 mmol g-1 at 1 bar and 0 °C). The compound also shows selective adsorption behavior for Cu2+ over Co2+ and Ni2+ ions.

  15. A rational design for the separation of metallic and semiconducting single-walled carbon nanotubes using a magnetic field

    Science.gov (United States)

    Luo, Chengzhi; Wan, Da; Jia, Junji; Li, Delong; Pan, Chunxu; Liao, Lei

    2016-06-01

    The separation of metallic (m-) and semiconducting (s-) single-walled carbon nanotubes (SWNTs) without causing contamination and damage is a major challenge for SWNT-based devices. As a facile and nondestructive tool, the use of a magnetic field could be an ideal strategy to separate m-/s-SWNTs, based on the difference of magnetic susceptibilities. Here, we designed a novel magnetic field-assisted floating catalyst chemical vapor deposition system to separate m-/s-SWNTs. Briefly, m-SWNTs are attracted toward the magnetic pole, leaving s-SWNTs on the substrate. By using this strategy, s-SWNTs with a purity of 99% could be obtained, which is enough to construct high-performance transistors with a mobility of 230 cm2 V-1 s-1 and an on/off ratio of 106. We also established a model to quantitatively calculate the percentage of m-SWNTs on the substrate and this model shows a good match with the experimental data. Furthermore, our rational design also provides a new avenue for the growth of SWNTs with specific chirality and manipulated arrangement due to the difference of magnetic susceptibilities between different diameters, chiralities, and types.The separation of metallic (m-) and semiconducting (s-) single-walled carbon nanotubes (SWNTs) without causing contamination and damage is a major challenge for SWNT-based devices. As a facile and nondestructive tool, the use of a magnetic field could be an ideal strategy to separate m-/s-SWNTs, based on the difference of magnetic susceptibilities. Here, we designed a novel magnetic field-assisted floating catalyst chemical vapor deposition system to separate m-/s-SWNTs. Briefly, m-SWNTs are attracted toward the magnetic pole, leaving s-SWNTs on the substrate. By using this strategy, s-SWNTs with a purity of 99% could be obtained, which is enough to construct high-performance transistors with a mobility of 230 cm2 V-1 s-1 and an on/off ratio of 106. We also established a model to quantitatively calculate the percentage of m

  16. Efficiencies of metal separation and recovery in ash-melting of municipal solid waste under non-oxidative atmospheres with different reducing abilities.

    Science.gov (United States)

    Okada, Takashi; Tomikawa, Hiroki

    2016-01-15

    Ash-melting of municipal solid waste produces molten metal that contains Fe and Cu, and melting furnace fly ash (MFA) that contains Pb and Zn. To recover the metal from the fly ash, Pb and Zn are extracted from the ash by water or enriched in the ash by washing out salts; this separation depends on their leachability. In this study, we investigated the effects of the reducing ability of the atmosphere on the efficiencies of metal separation during melting and metal recovery in water treatment. Different feedstocks (incineration residues) were melted under N2 or CO + N2 atmospheres. In some of the feedstock materials, volatilization of metallic Cu into MFA was promoted under the atmosphere with greater reducing ability (CO + N2). This increased volatilization inhibited the metal separation in the ash-melting process. Moreover, the higher reducing ability inhibited the formation of water-soluble lead chlorides and decreased the efficiency of metal recovery from the MFA because of the water leaching of the lead compounds. The reducing ability of the atmosphere is difficult to control uniformly in actual ash-melting plants, and we investigated appropriate melting conditions under which the effect of the reducing ability was minimized to promote metal separation and recovery. This minimization was achieved by melting incineration fly ash without additives with Cl gas treatment at 1400 °C.

  17. Crystal structures of electrospun PVDF membranes and its separator application for rechargeable lithium metal cells

    Energy Technology Data Exchange (ETDEWEB)

    Gao Kun [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)]. E-mail: gaokun@hit.edu.cn; Hu Xinguo [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Dai Chongsong [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Yi Tingfeng [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)

    2006-07-15

    An electrospinning method was used to prepare electrospun PVDF-based membranes (EPMs) for battery separators applications. The morphology of the EPMs was investigated by scanning electron microscopy (SEM). The relations between applied voltage and average fiber diameter (AFD) under certain electrospinning conditions were discussed. The thermal properties and crystal structure of the EPMs also were investigated by differential scanning calorimetry (DSC), and wide-angle X-ray diffraction (WAXD). Due to soften PVDF fibers in high temperature, the thermal treated EPMs can form an interconnected web structure, which greatly improves physical properties. Compared with Celgard{sup TM} 2400 (PP separator), the cell with EPM shows better cycling ability of CV and charge-discharge performance with little capacity loss after 50 cycles at C/2 rate.

  18. Preparation of Metallic Iron Powder from Pyrite Cinder by Carbothermic Reduction and Magnetic Separation

    Directory of Open Access Journals (Sweden)

    Hongming Long

    2016-04-01

    Full Text Available The reduction and magnetic separation procedure of pyrite cinder in the presence of a borax additive was performed for the preparation of reduced powder. The effects of borax dosage, reduction temperature, reduction time and grinding fineness were investigated. The results show that when pyrite cinder briquettes with 5% borax were pre-oxidized at 1050 °C for 10 min, and reduced at 1050 °C for 80 min, with the grinding fineness (<0.44 mm passing 81%, the iron recovery was 91.71% and the iron grade of the magnetic concentrate was 92.98%. In addition, the microstructures of the products were analyzed by optical microscope, scanning electron microscope (SEM, and mineralography, and the products were also studied by the X-ray powder diffraction technique (XRD to investigate the mechanism; the results show that the borax additive was approved as a good additive to improve the separation of iron and gangue.

  19. Single crystal growth from separated educts and its application to lithium transition-metal oxides

    Science.gov (United States)

    Freund, F.; Williams, S. C.; Johnson, R. D.; Coldea, R.; Gegenwart, P.; Jesche, A.

    2016-01-01

    Thorough mixing of the starting materials is the first step of a crystal growth procedure. This holds true for almost any standard technique, whereas the intentional separation of educts is considered to be restricted to a very limited number of cases. Here we show that single crystals of α-Li2IrO3 can be grown from separated educts in an open crucible in air. Elemental lithium and iridium are oxidized and transported over a distance of typically one centimeter. In contrast to classical vapor transport, the process is essentially isothermal and a temperature gradient of minor importance. Single crystals grow from an exposed condensation point placed in between the educts. The method has also been applied to the growth of Li2RuO3, Li2PtO3 and β-Li2IrO3. A successful use of this simple and low cost technique for various other materials is anticipated. PMID:27748402

  20. Separation of technetium and rare earth metals for co-decontamination process

    Energy Technology Data Exchange (ETDEWEB)

    Riddle, Catherine; Martin, Leigh

    2015-05-01

    Poster. In the US there are several technologies under consideration for the separation of the useful components in used nuclear fuel. One such process is the co-decontamination process to separate U, Np and Pu in a single step and produce a Np/ Pu and a U product stream. Although the behavior of the actinide elements is reasonably well defined in this system, the same is not true for the fission products, mainly Zr, Mo, Ru and Tc. As these elements are cationic and anionic they may interact with each other to extract in a manner not predicted by empirical models such as AMUSE. This poster presentation will discuss the initial results of batch contact testing under flowsheet conditions and as a function of varying acidity and flowsheet conditions to optimize recovery of Tc and minimize extraction of Mo, Zr and Ru with the goal of developing a better understanding of the behavior of these elements in the co-decontamination process.

  1. A Novel Micellar Electrokinetic Chromatographic Method for Separation of Metal-DDTC Complexes

    Directory of Open Access Journals (Sweden)

    Arfana Mallah

    2012-01-01

    Full Text Available Micellar electrokinetic chromatography (MEKC was examined for the separation and determination of Mo(VI, Cr(VI, Ni(II, Pd(II, and Co(III as diethyl dithiocarbamate (DDTC chelates. The separation was achieved from fused silica capillary (52 cm × 75 m id with effective length 40 cm, background electrolyte (BGE borate buffer pH 9.1 (25 mM, CTAB 30% (100 mM, and 1% butanol in methanol (70 : 30 : 5 v/v/v with applied voltage of −10 kV using reverse polarity. The photodiode array detection was achieved at 225 nm. The linear calibration for each of the element was obtained within 0.16–10 g/mL with a limit of detection (LOD 0.005–0.0167 g/mL. The separation and determination was repeatable with relative standard deviation (RSD within 2.4–3.3% (=4 in terms of migration time and peak height/peak area. The method was applied for the determination of Mo(VI from potatoes and almond, Ni(II from hydrogenated vegetable oil, and Co(III from pharmaceutical preparations with RSD within 3.9%. The results obtained were checked by standard addition and rechecked by atomic absorption spectrometry.

  2. Metal-organic frameworks based on rigid ligands as separator membranes in supercapacitor.

    Science.gov (United States)

    Meng, Jiang-Ping; Gong, Yun; Lin, Qiang; Zhang, Miao-Miao; Zhang, Pan; Shi, Hui-Fang; Lin, Jian-Hua

    2015-03-28

    Two thermally stable MOFs formulated as CoL(1,4-bdc)·2DMF (L = 3,5-bis(5-(pyridin-4-yl)-4H-1,2,4-triazol-3-yl)pyridine), 1,4-H2bdc = 1,4-benzenedicarboxylic acid) (1) and CdL(4,4'-bpc)·3DMF (4,4'-H2bpc = 4,4'-biphenyldicarboxylic acid) (2) have been solvothermally synthesized and exhibit a similar uninodal 6-connected 3D architecture with {4(12)·6(3)}-pcu topology. MOF1 shows a non-interpenetrated network with larger channel, whereas MOF 2 exhibits a 3-fold interpenetrating framework with smaller pore size. When the two MOFs are used as separator membranes in a supercapacitor, the equivalent series resistance (Res) is larger than the Res in the blank supercapacitor, and the smaller the current density, the more the Res. After being charged and discharged at the low current density, the supercapacitor with MOF 1 as separator membrane (denoted as 1a) possesses a much larger specific capacitance (SC) than the blank supercapacitor, and the amorphous separator membrane 1a shows a more porous morphology than the original MOF membrane 1.

  3. Unambiguous separation of the inverse spin Hall and anomalous Nernst effects within a ferromagnetic metal using the spin Seebeck effect

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Stephen M., E-mail: swu@anl.gov; Hoffman, Jason; Pearson, John E.; Bhattacharya, Anand [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2014-09-01

    The longitudinal spin Seebeck effect is measured on the ferromagnetic insulator Fe{sub 3}O{sub 4} with the ferromagnetic metal Co{sub 0.2}Fe{sub 0.6}B{sub 0.2} (CoFeB) as the spin detector. By using a non-magnetic spacer material between the two materials (Ti), it is possible to decouple the two ferromagnetic materials and directly observe pure spin flow from Fe{sub 3}O{sub 4} into CoFeB. It is shown that in a single ferromagnetic metal, the inverse spin Hall effect (ISHE) and anomalous Nernst effect (ANE) can occur simultaneously with opposite polarity. Using this and the large difference in the coercive fields between the two magnets, it is possible to unambiguously separate the contributions of the spin Seebeck effect from the ANE and observe the degree to which each effect contributes to the total response. These experiments show conclusively that the ISHE and ANE in CoFeB are separate phenomena with different origins and can coexist in the same material with opposite response to a thermal gradient.

  4. Metal ion determination by flame atomic absorption spectrometry through reagentless coacervate phase separation-extraction into lamellar vesicles.

    Science.gov (United States)

    Giokas, Dimosthenis L; Tsogas, George Z; Vlessidis, Athanasios G; Karayannis, Miltiades I

    2004-03-01

    The phase separation of lamellar vesicles of anionic surfactants in aqueous solutions and its application as a novel liquid coacervate extraction procedure was examined. Solutions of lauric acid sodium salt separate into two phases in the presence of alkaline earth metals and a water miscible cosurfactant. It is proven that the surfactant phase is built of a perplexed network of multilamellar vesicles consisting of densely packed bilayers. Several factors affecting the formation of this new phase as well as its analytical utility in the preconcentration of metallic ions were assessed on the basis of better exploitation of this new nonspecific extraction technique. In essence, although the procedure to arrive at the optimum conditions seems laborious, the delivered method is straightforward, alleviating the requirement for prereaction with a complexing agent and highly reproducible under the optimum experimental conditions. As an analytical demonstration, the method was successfully applied to the determination of Cd(2+) and Zn(2+) in natural waters. Recoveries were higher than 95%, and detection limits as low as 3 microg L(-)(1) were accomplished by preconcentrating only 10 mL of sample volume in the presence of 0.45% (w/v) anionic surfactant.

  5. Separation of metalloproteins using a novel metal ion contaminant sweeping technique and detection of protein-bound copper by a metal ion probe in polyacrylamide gel electrophoresis: distribution of copper in human serum.

    Science.gov (United States)

    Saito, Shingo; Kawashima, Mitsuyoshi; Ohshima, Hiroki; Enomoto, Kazuki; Sato, Makoto; Yoshimura, Hajime; Yoshimoto, Keitaro; Maeda, Mizuo; Shibukawa, Masami

    2013-10-21

    A polyacrylamide gel electrophoresis (PAGE)-based method has been developed, consisting of two types of gel electrophoresis, to obtain an accurate distribution of protein-bound metal ions in biological samples. First, proteins are separated by PAGE without the uptake of contaminant metal ions in the separation field and dissociation of metal ions from the proteins. This is followed by another PAGE for the separation and detection of protein-bound metal ions in small volume samples with high sensitivity in the ppt range using a fluorescent metal probe. The former is a new technique using blue-native (BN) PAGE to electrophoretically sweep all metal contaminants by employing two kinds of chelating agents. These agents form complexes with contaminants in the gel and the separation buffer solution, which migrate towards opposite pole directions, thus lowering the contaminants to below the ppt level during separation. This is termed "Metal Ion Contaminant Sweeping BN-PAGE (MICS-BN-PAGE)". After the separation of proteins under these first metal-free conditions, the metal ions in the gel fractions are eluted, followed by derivatization of copper ions into the metal probe complexes to be separated and determined by fluorescence detection in the second PAGE. In this PAGE-based method, the copper ions bound to ceruloplasmin and superoxide dismutase were quantitatively determined, in addition to the exchangeable albumin-bound copper ions. This system successfully provided distribution maps of protein-copper in human serum. The precise distribution of copper in human serum was investigated, and found to be different from that which is widely accepted.

  6. Liquid-liquid extraction and separation of total rare earth (RE) metals from polymetallic manganese nodule leaching solution

    Institute of Scientific and Technical Information of China (English)

    PK Parhi; KH Park; CW Nam; JT Park

    2015-01-01

    The study on the solvent extraction for quantitative and selective separation of total rare earth metals from the polymetallic nodule leach liquor was investigated. The typical leach liquor bearing 0. 094 g/L total rare earth, 0. 23 g/L Mn, 0.697 g/L Cu, 0.2 g/L Fe, 0.01 g/L Co and 0.735 g/L Ni was subjected to the removal iron content by precipitation method using Ca(OH)2 at pH 3.95, prior to solvent extraction of rare earth metals. Three different organo-phosphoric acid reagents (D2EHPA, PC88A, Cyanex 272) were used to ascertain their performances and selectivity towards the loading of rare earth metals in presence of other base metals. Based on the results of eq. pH effect, the performances of above three extractants followed the order as:D2EHPA>PC88A>Cyanex 272. To ensure the absence of extraction of base metals (Cu, Co, Ni), the eq. pH of the solution was optimized at the level of 2.21, though higher rare earth metal extraction efficiency was observed at higher eq. pH with either of the extractants. The complete process flow diagram for substantial recovery of total rare earth was developed using D2EHPA. Extraction isotherm plot was constructed at A:O=12:1, 3-stages and pHe=2.21, using 0.8 mol/L D2EHPA and the predicted condition of this study was further confirmed by 6-Cycles Counter Current Simulation (CCS) study. The stripping of total rare earth from loaded organic phase (LO) was conducted using HCl solution. Mc-Cabe Thiele diagram study carried out at A:O=1:5 using 4 mol/L HCl showed that three theoretical stages were needed for quantitative stripping of total rare earth. The subsequent stripped solution resulted thus led to contain total rare earth of 5.6 g/L indicating a very high enrichment of total metals by solvent extraction (SX) process.

  7. Metal-Insulator Transition and Superconductivity in Y1-xPr(Ce)xBa2Cu3O7

    Institute of Scientific and Technical Information of China (English)

    韩汝珊; 苏肇冰; 王玉鹏

    1994-01-01

    To interpret the metal-insulator transition and depression of Tc induced by Pr-and Ce-doping in YBa2Cu3O7, we propose a model of mixed local hole states which describe a strong admixture of 4f1 state with states of 4f2 plus a hole in the CuO2 planes for Y1-x-Prx-07 and 4f0 state with states of 4f1 plus a hole in Y1-xCex-O7. Our model resolves the controversy between the magnetic and spectroscopic measurements. As a natural consequence, most of the experimental results on Y1-xPrx-O7 can be explained and certain properties of Y1-xCex-O7 are predicted. The critical doping density of Pr will take the value of xc ≈0.5.

  8. Trace matrix analysis in high Purex refractory metals with matrix separation. Analisis de trazas metalicas en metales refractarios de alta pureza con separacion de la matriz

    Energy Technology Data Exchange (ETDEWEB)

    Vivas Duarte Kittel, N.E.; Seuvert, A.; Wunsch, G. (Institut fur anorganische Chemie der Universitat Hannover, Hannover (Germany))

    1994-01-01

    Microelectronics industry demands refractory metals (Ti, Ni, Ta, Cr, Mo, W) and some of their silicides in extremely high purity. Direct analysis by ICP-AES or ICP.MS is limited by different spectral interferences and unspecific matrix effects of different kind. Trace-matrix-separation including a preconcentration of the analytes is the best way to overcome these problems and to achieve the required detection limits. Fundamentals and practice of batch, column and HPLC procedures are discussed in detail. Adsorption on cellulose, precipitation with chelating agents, and cation or chelating exchange resins can be used. The analyte tracers are collected in a small volume of sample, wich can be analyzed by ICP-AES. HPLC with a nucleosil column allows a trace-matrix-separation with a direct coupling to the spectrometer. The collected traces can alternatively be separated on an additional column and determined by photometry. The procedures describe the determination of Ba, Ca, Fe, Mg, Co, Cd, Cu, Ni, Pb and Mn, Mg, Ca, Sr, Ag, In, Tl and Zn in Ta and Nb; of Co, Cd, Cu, Ni, Pb, Mn, Mg, Ca and Sr in Ti. (Author) 15 refs.

  9. Separation of macromolecular proteins and rejection of toxic heavy metal ions by PEI/cSMM blend UF membranes.

    Science.gov (United States)

    Kanagaraj, P; Nagendran, A; Rana, D; Matsuura, T; Neelakandan, S

    2015-01-01

    The charged surface modifying macromolecule (cSMM) was blended into the casting solution of poly(ether imide) (PEI) to prepare surface modified ultrafiltration membranes by phase inversion technique. The separation of proteins including bovine serum albumin, egg albumin, pepsin and trypsin was investigated by the fabricated membranes. On increasing cSMM content, solute rejection decreases whereas membrane flux increases. The pore size and surface porosity of the 5 wt% cSMM blend PEI membranes increases to 41.4 Å and 14.8%, respectively. Similarly, the molecular weight cut-off of the membranes ranged from 20 to 45 kDa, depending on the various compositions of the prepared membranes. The toxic heavy metal ions Cu(II), Cr(III), Zn(II) and Pb(II) from aqueous solutions were subjected to rejection by the prepared blended membrane with various concentration of polyethyleneimine (PETIM) as water soluble polymeric ligand. It was found that the rejection behavior of metal ion depends on the PETIM concentration and the stability complexation of metal ion with ligand.

  10. Metal-organic framework with optimally selective xenon adsorption and separation

    Science.gov (United States)

    Banerjee, Debasis; Simon, Cory M.; Plonka, Anna M.; Motkuri, Radha K.; Liu, Jian; Chen, Xianyin; Smit, Berend; Parise, John B.; Haranczyk, Maciej; Thallapally, Praveen K.

    2016-06-01

    Nuclear energy is among the most viable alternatives to our current fossil fuel-based energy economy. The mass deployment of nuclear energy as a low-emissions source requires the reprocessing of used nuclear fuel to recover fissile materials and mitigate radioactive waste. A major concern with reprocessing used nuclear fuel is the release of volatile radionuclides such as xenon and krypton that evolve into reprocessing facility off-gas in parts per million concentrations. The existing technology to remove these radioactive noble gases is a costly cryogenic distillation; alternatively, porous materials such as metal-organic frameworks have demonstrated the ability to selectively adsorb xenon and krypton at ambient conditions. Here we carry out a high-throughput computational screening of large databases of metal-organic frameworks and identify SBMOF-1 as the most selective for xenon. We affirm this prediction and report that SBMOF-1 exhibits by far the highest reported xenon adsorption capacity and a remarkable Xe/Kr selectivity under conditions pertinent to nuclear fuel reprocessing.

  11. Native SDS-PAGE: High Resolution Electrophoretic Separation of Proteins With Retention of Native Properties Including Bound Metal Ions

    Science.gov (United States)

    Nowakowski, Andrew B.; Wobig, William J.; Petering, David H.

    2014-01-01

    Sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) is commonly used to obtain high resolution separation of complex mixtures of proteins. The method initially denatures the proteins that will undergo electrophoresis. Although covalent structural features of resolved proteins can be determined with SDS-PAGE, functional properties are destroyed, including the presence of non-covalently bound metal ions. To address this shortcoming, blue-native (BN)-PAGE has been introduced. This method retains functional properties but at the cost of protein resolving power. To address the need for a high resolution PAGE method that results in the separation of native proteins, experiments tested the impact of changing the conditions of SDS-PAGE on the quality of protein separation and retention of functional properties. Removal of SDS and EDTA from the sample buffer together with omission of a heating step had no effect on the results of PAGE. Reduction of SDS in the running buffer from 0.1% to 0.0375% together with deletion of EDTA also made little impact on the quality of the electrophoretograms of fractions of pig kidney (LLC-PK1) cell proteome in comparison with that achieved with the SDS-PAGE method. The modified conditions were called native (N)SDS-PAGE. Retention of Zn2+ bound in proteomic samples increased from 26 to 98% upon shifting from standard to modified conditions. Moreover, seven of nine model enzymes, including four Zn2+ proteins that were subjected to NSDS-PAGE retained activity. All nine were active in BN-PAGE, whereas all underwent denaturation during SDS-PAGE. Metal retention after electrophoresis was additionally confirmed using laser ablation-inductively coupled plasma-mass spectrometry and in-gel Zn-protein staining using the fluorophore TSQ. PMID:24686569

  12. Superconductivity and crystal structural origins of the metal-insulator transition in Ba6 -xSrxNb10O30 tetragonal tungsten bronzes

    Science.gov (United States)

    Kolodiaznyi, Taras; Sakurai, Hiroya; Isobe, Masaaki; Matsushita, Yoshitaka; Forbes, Scott; Mozharivskyj, Yurij; Munsie, Timothy J. S.; Luke, Graeme M.; Gurak, Mary; Clarke, David R.

    2015-12-01

    Ba6 -xSrxNb10O30 solid solution with 0 ≤ x ≤6 forms the filled tetragonal tungsten bronze (TTB) structure. The Ba-end member crystallizes in the highest symmetry P 4 /m b m space group (a =b =12.5842 (18 )Å and c =3.9995 (8 )Å ) and so do all the compositions with 0 ≤ x ≤5 . The Sr-end member of the solid solution crystallizes in the tentatively assigned A m a m space group (a *=17.506 (4 )Å , b *=34.932 (7 )Å , and c *=7.7777 (2 )Å ). The latter space group is related to the parent P 4 /m b m TTB structure as a * ≈ √{2 }a ,b * ≈2 √{2 }a ,c *=2 c . Low-temperature specific heat measurements indicate that the Ba-rich compositions with x ≤2 are conventional BCS superconductors with TC ≤1.6 K and superconducting energy gaps of ≤0.38 meV. The values of the TC in the cation-filled Nb-based TTBs reported here are comparable with those of the unfilled KxWO3 and NaxWO3 TTBs having large alkali ion deficiency. As the unit cell volume decreases with increasing x , an unexpected metal-insulator transition (MIT) in Ba6 -xSrxNb10O30 occurs at x ≥3 . We discuss the possible origins of the MIT in terms of the carrier concentration, symmetry break, and Anderson localization.

  13. Molecular dynamics investigation of separation of hydrogen sulfide from acidic gas mixtures inside metal-doped graphite micropores.

    Science.gov (United States)

    Huang, Pei-Hsing

    2015-09-21

    The separation of poisonous compounds from various process fluids has long been highly intractable, motivating the present study on the dynamic separation of H2S in acidic-gas-mixture-filled micropores. The molecular dynamics approach, coupled with the isothermal-isochoric ensemble, was used to model the molecular interactions and adsorption of H2S/CO2/CO/H2O mixtures inside metal-doped graphite slits. Due to the difference in the adsorption characteristics between the two distinct adsorbent materials, the metal dopant in the graphitic micropores leads to competitive adsorption, i.e. the Au and graphite walls compete to capture free adsorbates. The effects of competitive adsorption, coupled with changes in the gas temperature, concentration, constituent ratio and slit width on the constituent separation of mixtures were systematically studied. The molecule-wall binding energies calculated in this work (those of H2S, H2O and CO on Au walls and those of H2O, CO and CO2 on graphite walls) show good agreement with those obtained using density functional theory (DFT) and experimental results. The z-directional self-diffusivities (Dz) for adsorbates inside the slit ranged from 10(-9) to 10(-7) m(2) s(-1) as the temperature was increased from 10 to 500 K. The values are comparable with those for a typical microporous fluid (10(-8)-10(-9) m(2) s(-1) in a condensed phase and 10(-6)-10(-7) m(2) s(-1) in the gaseous state). The formation of H-bonding networks and hydrates of H2S is disadvantageous for the separation of mixtures. The results indicate that H2S can be efficiently separated from acidic gas mixtures onto the Au(111) surface by (i) reducing the mole fraction of H2S and H2O in the mixtures, (ii) raising the gas temperature to the high temperature limit (≥400 K), and (iii) lowering the slit width to below the threshold dimension (≤23.26 Å).

  14. Color superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Wilczek, F. [Institute for Advanced Study, Princeton, NJ (United States)

    1997-09-22

    The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken.

  15. DISSOLUTION OF METAL OXIDES AND SEPARATION OF URANIUM FROM LANTHANIDES AND ACTINIDES IN SUPERCRITICAL CARBON DIOXIDE

    Energy Technology Data Exchange (ETDEWEB)

    Donna L. Quach; Bruce J. Mincher; Chien M. Wai

    2013-10-01

    This paper investigates the feasibility of extracting and separating uranium from lanthanides and other actinides by using supercritical fluid carbon dioxide (sc-CO2) as a solvent modified with tri-n-butylphosphate (TBP) for the development of a counter current stripping technique, which would be a more efficient and environmentally benign technology for spent nuclear fuel reprocessing compared to traditional solvent extraction. Several actinides (U, Pu, and Np) and europium were extracted in sc-CO2 modified with TBP over a range of nitric acid concentrations and then the actinides were exposed to reducing and complexing agents to suppress their extractability. According to this study, uranium/europium and uranium/plutonium extraction and separation in sc-CO2 modified with TBP is successful at nitric acid concentrations of less than 6 M and at nitric acid concentrations of less than 3 M with acetohydroxamic acid or oxalic acid, respectively. A scheme for recycling uranium from spent nuclear fuel by using sc-CO2 and counter current stripping columns is presented.

  16. Super-Resolution Mapping of Photogenerated Electron and Hole Separation in Single Metal-Semiconductor Nanocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Ji Won [Ames Laboratory; Ruberu, T. Purnima A. [Ames Laboratory; Han, Rui [Ames Laboratory; Dong, Bin [Ames Laboratory; Vela, Javier [Ames Laboratory; Fang, Ning [Ames Laboratory

    2014-01-12

    Metal–semiconductor heterostructures are promising visible light photocatalysts for many chemical reactions. Here, we use high-resolution superlocalization imaging to reveal the nature and photocatalytic properties of the surface reactive sites on single Au–CdS hybrid nanocatalysts. We experimentally reveal two distinct, incident energy-dependent charge separation mechanisms that result in completely opposite photogenerated reactive sites (e– and h+) and divergent energy flows on the hybrid nanocatalysts. We find that plasmon-induced hot electrons in Au are injected into the conduction band of the CdS semiconductor nanorod. The specifically designed Au-tipped CdS heterostructures with a unique geometry (two Au nanoparticles at both ends of each CdS nanorod) provide more convincing high-resolution single-turnover mapping results and clearly prove the two charge separation mechanisms. Engineering the direction of energy flow at the nanoscale can provide an efficient way to overcome important challenges in photocatalysis, such as controlling catalytic activity and selectivity. These results bear enormous potential impact on the development of better visible light photocatalysts for solar-to-chemical energy conversion.

  17. SUPERCONDUCTING PHOTOCATHODES.

    Energy Technology Data Exchange (ETDEWEB)

    SMEDLEY, J.; RAO, T.; WARREN, J.; SEKUTOWICZ, LANGNER, J.; STRZYZEWSKI, P.; LEFFERS, R.; LIPSKI, A.

    2005-10-09

    We present the results of our investigation of lead and niobium as suitable photocathode materials for superconducting RF injectors. Quantum efficiencies (QE) have been measured for a range of incident photon energies and a variety of cathode preparation methods, including various lead plating techniques on a niobium substrate. The effects of operating at ambient and cryogenic temperatures and different vacuum levels on the cathode QE have also been studied.

  18. Striped nanoscale phase separation at the metal-insulator transition of heteroepitaxial nickelates

    Science.gov (United States)

    Mattoni, G.; Zubko, P.; Maccherozzi, F.; van der Torren, A. J. H.; Boltje, D. B.; Hadjimichael, M.; Manca, N.; Catalano, S.; Gibert, M.; Liu, Y.; Aarts, J.; Triscone, J.-M.; Dhesi, S. S.; Caviglia, A. D.

    2016-11-01

    Nucleation processes of mixed-phase states are an intrinsic characteristic of first-order phase transitions, typically related to local symmetry breaking. Direct observation of emerging mixed-phase regions in materials showing a first-order metal-insulator transition (MIT) offers unique opportunities to uncover their driving mechanism. Using photoemission electron microscopy, we image the nanoscale formation and growth of insulating domains across the temperature-driven MIT in NdNiO3 epitaxial thin films. Heteroepitaxy is found to strongly determine the nanoscale nature of the phase transition, inducing preferential formation of striped domains along the terraces of atomically flat stepped surfaces. We show that the distribution of transition temperatures is a local property, set by surface morphology and stable across multiple temperature cycles. Our data provide new insights into the MIT of heteroepitaxial nickelates and point to a rich, nanoscale phenomenology in this strongly correlated material.

  19. Production of intense metallic ion beams in order of isotopic separations; Production de faisceaux intenses d'ions metalliques en vue de la separation des isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Sarrouy, J.L. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    We describe an isotope separator with magnetic sector of 60 deg that permits, with a process of neutralization of the space charge, to use efficiently intense ion beams. The sources of realized ions provide ionic debits of 10 mA. This present work deals who to obtain intense ion beams (10 to 15 mA), different processes of ion currents measurement, as well as the study of the phenomenon of space charge neutralization. The second part of this memory will be on the survey and the adaptation on the source of various type of oven permitting to spray and to ionize metals directly. By order of increasing difficulty of vaporization, we reached the chromium. (M.B.) [French] 0n decrit un separateur d'isotope a secteur magnetique de 60 deg qui permet, grace a un procede de neutralisation de la charge d'espace, d'utiliser efficacement des faisceaux d'ions intenses. Les sources d'ions realisees fournissent des debits ioniques de 10 mA. Ce present travail porte sur l'obtention de faisceaux d'ions faisceaux d'ions intenses (10 a 15 mA), des differents procedes de mesures des courants d'ions, ainsi que l'etude du phenomene de neutralisation de charge d'espace. La deuxieme partie de ce memoire portera sur l'etude et l'adaptation sur la source de divers type de four permettant de vaporiser et d'ioniser directement les metaux. Par ordre de difficulte croissantes de vaporisations, nous avons atteint le chrome. (M.B.)

  20. Production of intense metallic ion beams in order of isotopic separations; Production de faisceaux intenses d'ions metalliques en vue de la separation des isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Sarrouy, J.L. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    We describe an isotope separator with magnetic sector of 60 deg that permits, with a process of neutralization of the space charge, to use efficiently intense ion beams. The sources of realized ions provide ionic debits of 10 mA. This present work deals who to obtain intense ion beams (10 to 15 mA), different processes of ion currents measurement, as well as the study of the phenomenon of space charge neutralization. The second part of this memory will be on the survey and the adaptation on the source of various type of oven permitting to spray and to ionize metals directly. By order of increasing difficulty of vaporization, we reached the chromium. (M.B.) [French] 0n decrit un separateur d'isotope a secteur magnetique de 60 deg qui permet, grace a un procede de neutralisation de la charge d'espace, d'utiliser efficacement des faisceaux d'ions intenses. Les sources d'ions realisees fournissent des debits ioniques de 10 mA. Ce present travail porte sur l'obtention de faisceaux d'ions faisceaux d'ions intenses (10 a 15 mA), des differents procedes de mesures des courants d'ions, ainsi que l'etude du phenomene de neutralisation de charge d'espace. La deuxieme partie de ce memoire portera sur l'etude et l'adaptation sur la source de divers type de four permettant de vaporiser et d'ioniser directement les metaux. Par ordre de difficulte croissantes de vaporisations, nous avons atteint le chrome. (M.B.)

  1. Separation of metal ions by anion exchange in mixtures of hydrochloric acid and hydrofluoric acid

    Energy Technology Data Exchange (ETDEWEB)

    Faris, J.P.

    1978-12-01

    Distribution coefficients were determined for the adsorption of more than 40 elements on anion-exchange resins from mixtures of HCl (0.1 to 12M) and HF (0.1-8M). Two resins, Dowex 1 x 10, 200 to 400 mesh and Dowex 1 x 4, 100 to 200 mesh, were used. Distribution coefficients were also determined for the adsorption of many elements on both resins from 0.1 to 12M HCl and 0.1 to 12M HF. Anion exchange in the presence of HF was found useful for separating impurities from various materials for their subsequent determination, and specific procedures used in our spectrochemical laboratory for this purpose are outlined. The results of a literature search on the use of anion exchange in hydrofluoric acid and fluoride-containing media are presented in an extensive bibliography. 404 references, 9 tables.

  2. Report of Separate Effects Testing for Modeling of Metallic Fuel Casting Process

    Energy Technology Data Exchange (ETDEWEB)

    Crapps, Justin M. [Los Alamos National Laboratory; Galloway, Jack D. [Los Alamos National Laboratory; Decroix, David S. [Los Alamos National Laboratory; Korzekwa, David A. [Los Alamos National Laboratory; Aikin, Robert M. Jr. [Los Alamos National Laboratory; Unal, Cetin [Los Alamos National Laboratory; Fielding, R. [Idaho National Laboratory; Kennedy, R [Idaho National Laboratory

    2012-06-29

    In order to give guidance regarding the best investment of time and effort in experimental determination of parameters defining the casting process, a Flow-3D model of the casting process was used to investigate the most influential parameters regarding void fraction of the solidified rods and solidification speed for fluid flow parameters, liquid heat transfer parameters, and solid heat transfer parameters. Table 1 summarizes the most significant variables for each of the situations studied. A primary, secondary, and tertiary effect is provided for fluid flow parameters (impacts void fraction) and liquid heat transfer parameters (impacts solidification). In Table 1, the wetting angle represents the angle between the liquid and mold surface as pictured in Figure 1. The viscosity is the dynamic viscosity of the liquid and the surface tension is the property of the surface of a liquid that allows it to resist an external force. When only considering solid heat transfer properties, the variations from case to case were very small. Details on this conclusion are provided in the section considering solid heat transfer properties. The primary recommendation of the study is to measure the fluid flow parameters, specifically the wetting angle, surface tension, and dynamic viscosity, in order of importance, as well as the heat transfer parameters latent heat and specific heat of the liquid alloy. The wetting angle and surface tension can be measured simultaneously using the sessile drop method. It is unclear whether there is a temperature dependency in these properties. Thus measurements for all three parameters are requested at 1340, 1420, and 1500 degrees Celsius, which correspond to the minimum, middle, and maximum temperatures of the liquid alloy during the process. In addition, the heat transfer coefficient between the mold and liquid metal, the latent heat of transformation, and the specific heat of the liquid metal all have strong influences on solidification. These

  3. Low Loss and Magnetic Field-tuned Superconducting THz Metamaterial

    CERN Document Server

    Jin, Biaobing; Engelbrecht, Sebastian; Pimenov, Andrei; Wu, Jingbo; Xu, Qinyin; Cao, Chunhai; Chen, Jian; Xu, Weiwei; Kang, Lin; Wu, Peiheng

    2010-01-01

    Superconducting terahertz (THz) metamaterial (MM) made from superconducting Nb film has been investigated using a continuous-wave THz spectroscopy with a superconducting split-coil magnet. The obtained quality factors of the resonant modes at 132 GHz and 450 GHz are about three times as large as those calculated for a metal THz MM operating at 1 K, which indicates that superconducting THz MM is a very nice candidate to achieve low loss performance. In addition, the magnetic field-tuning on superconducting THz MM is also demonstrated, which offer an alternative tuning method apart from the existed electric, optical and thermal tuning on THz MM.

  4. Metal-insulator transition and nanoscale phase separation in a hole-doped surface reconstruction

    Science.gov (United States)

    Mulugeta, Daniel; Snijders, Paul; Weitering, Hanno

    2014-03-01

    Doping, the deliberate introduction of impurities to alter electronic or magnetic properties, has been a tremendously successful method to study and understand systems with multiple competing interactions, as reflected in both the widespread use of doped semiconductors and in the large number of emergent electronic phases in doping-dependent phase diagrams of e.g. complex oxides. In low dimensional systems, however, the perturbation to the crystal lattice by the dopant atoms can overwhelm a delicate balance of interactions in e.g. a ground state with coexisting phases. Here we introduce a modulation doping technique used to dope holes in a surface reconstruction of Sn on Si(111). Using variable and low temperature scanning tunneling microscopy and spectroscopy, we observe a doping-induced metal-insulator phase transition that is of a displacive nature, contrasting with the order-disorder nature of other surface phase transitions. Moreover, the transition leads to an intrinsic nanoscale phase coexistence at 5 K never before observed on semiconductor surfaces. Clearly, modulation doping allows us to study the delicate balance of interactions in the phase diagram of low-dimensional electronic surface systems that is otherwise experimentally inaccessible. Funded by NSF DMR.

  5. Transition Metal Polypyridine Complexes: Studies of Mediation in Dye-Sensitized Solar Cells and Charge Separation

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, C. Michael [Colorado State Univ., Fort Collins, CO (United States). Dept. of Chemistry; Prieto, Amy L. [Colorado State Univ., Fort Collins, CO (United States). Dept. of Chemistry

    2017-02-08

    The Elliott group has long been supported by DOE for studies of cobalt(II/III) trisbypiridine (DTB) mediator complexes in dye sensitized solar cells. Previous work demonstrated that Co(II/III) chemistry is sensitive to the environment, showing unprecedented electrode-surface and electrolyte dependant voltammetry. In electrolytes that have large lipophilic cations, voltammetry of the [Co(DTB)3]2+/3+ couple is nearly Nernstian in appearance on nominally oxide-free metal surfaces. In contrast, on semiconductor electrodes in electrolytes with small, hard cations such as Li+, the electron transfer rates are so slow that it is difficult to measure any Faradaic current even at overpotentials of ±1 V. These studies are of direct relevance to the operation of cobalt-based mediators in solar cells. The research has also shown that these mediators are compatible with copper phenantroline based dyes, in contrast to I- due to the insolubility of CuI.

  6. Organic Superconductor, Made without Metals.

    Science.gov (United States)

    Science News, 1980

    1980-01-01

    The discovery of a superconducting organic compound is reported. The compound, (TMTSF)-2, has no metal in its composition, and the author believes that it is the precursor of a family of superconducting organics. (Author/SA)

  7. Sensing with Superconducting Point Contacts

    Directory of Open Access Journals (Sweden)

    Argo Nurbawono

    2012-05-01

    Full Text Available Superconducting point contacts have been used for measuring magnetic polarizations, identifying magnetic impurities, electronic structures, and even the vibrational modes of small molecules. Due to intrinsically small energy scale in the subgap structures of the supercurrent determined by the size of the superconducting energy gap, superconductors provide ultrahigh sensitivities for high resolution spectroscopies. The so-called Andreev reflection process between normal metal and superconductor carries complex and rich information which can be utilized as powerful sensor when fully exploited. In this review, we would discuss recent experimental and theoretical developments in the supercurrent transport through superconducting point contacts and their relevance to sensing applications, and we would highlight their current issues and potentials. A true utilization of the method based on Andreev reflection analysis opens up possibilities for a new class of ultrasensitive sensors.

  8. Gas separation using novel materials: kinetics of gas adsorption on RPM-1 and Cu-BTC metal-organic frameworks

    Science.gov (United States)

    Lask, Kathleen; Krungleviciute, Vaiva; Migone, Aldo; Lee, J.-Y.; Li, Jing

    2007-03-01

    We have measured the adsorption kinetics of two gases, freon and argon, on two microporous metal-organic framework materials, RPM-1 (or [Co3(bpdc)3bpy].4DMF.H2O, bpdc = biphenyldicarboxylate) and Cu-BTC (or [Cu3(btc)2(H2O)3], btc = benzenetricarboxylate). The measurements were conducted at comparable values of the scaled temperatures (Tisotherm/Tcritical) for the respective gases. In our experiments, we monitor the pressure decrease as a function of time after a dose of gas is admitted into the experimental cell. The kinetics results obtained for both gases are similar on Cu-BTC, while they are significantly different in RPM-1. Our results indicate that RPM-1 has potential for gas separation for mixtures of species with dimensions similar to argon and freon; this is not the case for Cu-BTC MOF.

  9. Polymer-Metal-Organic Frameworks (polyMOFs) as Water Tolerant Materials for Selective Carbon Dioxide Separations.

    Science.gov (United States)

    Zhang, Zhenjie; Nguyen, Ha Thi Hoang; Miller, Stephen A; Ploskonka, Ann M; DeCoste, Jared B; Cohen, Seth M

    2016-01-27

    Recently, polymer-metal-organic frameworks (polyMOFs) were reported as a new class of hybrid porous materials that combine advantages of both organic polymers and crystalline MOFs. Herein, we report a bridging coligand strategy to prepare new types of polyMOFs, demonstrating that polyMOFs are compatible with additional MOF architectures besides that of the earlier reported IRMOF-1 type polyMOF. Gas sorption studies revealed that these polyMOF materials exhibited relatively high CO2 sorption but very low N2 sorption, making them promising materials for CO2/N2 separations. Moreover, these polyMOFs demonstrated exceptional water stability attributed to the hydrophobicity of polymer ligands as well as the cross-linking of the polymer chains within the MOF.

  10. Recycling metals from lithium ion battery by mechanical separation and vacuum metallurgy.

    Science.gov (United States)

    Xiao, Jiefeng; Li, Jia; Xu, Zhengming

    2017-09-15

    The large-batch application of lithium ion batteries leads to the mass production of spent batteries. So the enhancement of disposal ability of spent lithium ion batteries is becoming very urgent. This study proposes an integrated process to handle bulk spent lithium manganese (LiMn2O4) batteries to in situ recycle high value-added products without any additives. By mechanical separation, the mixed electrode materials mainly including binder, graphite and LiMn2O4 are firstly obtained from spent batteries. Then, the reaction characteristics for the oxygen-free roasting of mixed electrode materials are analyzed. And the results show that mixed electrode materials can be in situ converted into manganese oxide (MnO) and lithium carbonate (Li2CO3) at 1073K for 45min. In this process, the binder is evaporated and decomposed into gaseous products which can be collected to avoid disposal cost. Finally, 91.30% of Li resource as Li2CO3 is leached from roasted powders by water and then high value-added Li2CO3 crystals are further gained by evaporating the filter liquid. The filter residues are burned in air to remove the graphite and the final residues as manganous-manganic oxide (Mn3O4) is obtained. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Enhancing glycan isomer separations with metal ions and positive and negative polarity ion mobility spectrometry-mass spectrometry analyses

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Xueyun; Zhang, Xing; Schocker, Nathaniel S.; Renslow, Ryan S.; Orton, Daniel J.; Khamsi, Jamal; Ashmus, Roger A.; Almeida, Igor C.; Tang, Keqi; Costello, Catherine E.; Smith, Richard D.; Michael, Katja; Baker, Erin S.

    2016-09-07

    Glycomics has become an increasingly important field of research since glycans play critical roles in biology processes ranging from molecular recognition and signaling to cellular communication. Glycans often conjugate with other biomolecules such as proteins and lipids, and alter their properties and functions, so understanding the effect glycans have on cellular systems is essential. However the analysis of glycans is extremely difficult due to their complexity and structural diversity (i.e., the number and identity of monomer units, and configuration of their glycosidic linkages and connectivities). In this work, we coupled ion mobility spectrometry with mass spectrometry (IMS-MS) to characterize glycan standards and biologically important isomers of synthetic αGal-containing O-glycans including glycotopes of the protozoan parasite Trypanosoma cruzi, which is the causative agent of Chagas disease. IMS-MS results showed significant differences for the glycan structural isomers when analyzed in positive and negative polarity and complexed with different metal cations. These results suggest specific metal ions or ion polarities could be used to target and baseline separate glycan isomers of interest with IMS-MS.

  12. Foreword: Focus on Superconductivity in Semiconductors

    Directory of Open Access Journals (Sweden)

    Yoshihiko Takano

    2008-01-01

    Full Text Available Since the discovery of superconductivity in diamond, much attention has been given to the issue of superconductivity in semiconductors. Because diamond has a large band gap of 5.5 eV, it is called a wide-gap semiconductor. Upon heavy boron doping over 3×1020 cm−3, diamond becomes metallic and demonstrates superconductivity at temperatures below 11.4 K. This discovery implies that a semiconductor can become a superconductor upon carrier doping. Recently, superconductivity was also discovered in boron-doped silicon and SiC semiconductors. The number of superconducting semiconductors has increased. In 2008 an Fe-based superconductor was discovered in a research project on carrier doping in a LaCuSeO wide-gap semiconductor. This discovery enhanced research activities in the field of superconductivity, where many scientists place particular importance on superconductivity in semiconductors.This focus issue features a variety of topics on superconductivity in semiconductors selected from the 2nd International Workshop on Superconductivity in Diamond and Related Materials (IWSDRM2008, which was held at the National Institute for Materials Science (NIMS, Tsukuba, Japan in July 2008. The 1st workshop was held in 2005 and was published as a special issue in Science and Technology of Advanced Materials (STAM in 2006 (Takano 2006 Sci. Technol. Adv. Mater. 7 S1.The selection of papers describe many important experimental and theoretical studies on superconductivity in semiconductors. Topics on boron-doped diamond include isotope effects (Ekimov et al and the detailed structure of boron sites, and the relation between superconductivity and disorder induced by boron doping. Regarding other semiconductors, the superconducting properties of silicon and SiC (Kriener et al, Muranaka et al and Yanase et al are discussed, and In2O3 (Makise et al is presented as a new superconducting semiconductor. Iron-based superconductors are presented as a new series of high

  13. Enhancement of superconductivity near the pressure-induced semiconductor-metal transition in the BiS₂-based superconductors LnO₀.₅F₀.₅BiS₂ (Ln = La, Ce, Pr, Nd).

    Science.gov (United States)

    Wolowiec, C T; White, B D; Jeon, I; Yazici, D; Huang, K; Maple, M B

    2013-10-23

    Measurements of electrical resistivity were performed between 3 and 300 K at various pressures up to 2.8 GPa on the BiS2-based superconductors LnO0.5F0.5BiS2 (Ln=Pr, Nd). At lower pressures, PrO0.5F0.5BiS2 and NdO0.5F0.5BiS2 exhibit superconductivity with critical temperatures Tc of 3.5 and 3.9 K, respectively. As pressure is increased, both compounds undergo a transition at a pressure Pt from a low Tc superconducting phase to a high Tc superconducting phase in which Tc reaches maximum values of 7.6 and 6.4 K for PrO0.5F0.5BiS2 and NdO0.5F0.5BiS2, respectively. The pressure-induced transition is characterized by a rapid increase in Tc within a small range in pressure of ∼0.3 GPa for both compounds. In the normal state of PrO0.5F0.5BiS2, the transition pressure Pt correlates with the pressure where the suppression of semiconducting behaviour saturates. In the normal state of NdO0.5F0.5BiS2, Pt is coincident with a semiconductor-metal transition. This behaviour is similar to the results recently reported for the LnO0.5F0.5BiS2 (Ln=La, Ce) compounds. We observe that Pt and the size of the jump in Tc between the two superconducting phases both scale with the lanthanide element in LnO0.5F0.5BiS2 (Ln=La, Ce, Pr, Nd).

  14. Recovery of Iron from Pyrite Cinder Containing Non-ferrous Metals Using High-Temperature Chloridizing-Reduction-Magnetic Separation

    Science.gov (United States)

    Chen, Dong; Guo, Hongwei; Xu, Jifang; Lv, Yanan; Xu, Zemin; Huo, Haijiang

    2017-01-01

    This study presents a new technique that uses high-temperature chloridizing -reduction-magnetic separation to recover iron from pyrite cinder containing non-ferrous metals. The effects of the reduction temperature, reduction time, and chlorinating agent dosage were investigated. The optimized process parameters were proposed as the following: CaCl2 dosage of 2 pct, chloridizing at 1398 K (1125 °C) for 10 minutes, reducing at 1323 K (1050 °C) for 80 minutes, grinding to a particle size of 78.8 pct less than 45 μm, and magnetic field intensity of 73 mT. Under the optimized conditions, the Cu, Pb, and Zn removal rates were 45.2, 99.2, and 89.1 pct, respectively. The iron content of the magnetic concentrate was 90.6 pct, and the iron recovery rate was 94.8 pct. Furthermore, the reduction behavior and separation mechanism were determined based on microstructure and phase change analyses using X-ray powder diffraction, scanning electron microscope, and optical microscopy.

  15. Method for producing substrates for superconducting layers

    DEFF Research Database (Denmark)

    2013-01-01

    There is provided a method for producing a substrate (600) suitable for supporting an elongated superconducting element, wherein, e.g., a deformation process is utilized in order to form disruptive strips in a layered solid element, and where etching is used to form undercut volumes (330, 332......) between an upper layer (316) and a lower layer (303) of the layered solid element. Such relatively simple steps enable providing a substrate which may be turned into a superconducting structure, such as a superconducting tape, having reduced AC losses, since the undercut volumes (330, 332) may be useful...... for separating layers of material. In a further embodiment, there is placed a superconducting layer on top of the upper layer (316) and/or lower layer (303), so as to provide a superconducting structure with reduced AC losses....

  16. Free-standing oxide superconducting articles

    Science.gov (United States)

    Wu, Xin D.; Muenchausen, Ross E.

    1993-01-01

    A substrate-free, free-standing epitaxially oriented superconductive film including a layer of a template material and a layer of a ceramic superconducting material is provided together with a method of making such a substrate-free ceramic superconductive film by coating an etchable material with a template layer, coating the template layer with a layer of a ceramic superconductive material, coating the layer of ceramic superconductive material with a protective material, removing the etchable material by an appropriate means so that the etchable material is separated from a composite structure including the template lay This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).

  17. Reversible CO binding enables tunable CO/H₂ and CO/N₂ separations in metal-organic frameworks with exposed divalent metal cations.

    Science.gov (United States)

    Bloch, Eric D; Hudson, Matthew R; Mason, Jarad A; Chavan, Sachin; Crocellà, Valentina; Howe, Joshua D; Lee, Kyuho; Dzubak, Allison L; Queen, Wendy L; Zadrozny, Joseph M; Geier, Stephen J; Lin, Li-Chiang; Gagliardi, Laura; Smit, Berend; Neaton, Jeffrey B; Bordiga, Silvia; Brown, Craig M; Long, Jeffrey R

    2014-07-30

    Six metal-organic frameworks of the M2(dobdc) (M = Mg, Mn, Fe, Co, Ni, Zn; dobdc(4-) = 2,5-dioxido-1,4-benzenedicarboxylate) structure type are demonstrated to bind carbon monoxide reversibly and at high capacity. Infrared spectra indicate that, upon coordination of CO to the divalent metal cations lining the pores within these frameworks, the C-O stretching frequency is blue-shifted, consistent with nonclassical metal-CO interactions. Structure determinations reveal M-CO distances ranging from 2.09(2) Å for M = Ni to 2.49(1) Å for M = Zn and M-C-O angles ranging from 161.2(7)° for M = Mg to 176.9(6)° for M = Fe. Electronic structure calculations employing density functional theory (DFT) resulted in good agreement with the trends apparent in the infrared spectra and crystal structures. These results represent the first crystallographically characterized magnesium and zinc carbonyl compounds and the first high-spin manganese(II), iron(II), cobalt(II), and nickel(II) carbonyl species. Adsorption isotherms indicate reversible adsorption, with capacities for the Fe, Co, and Ni frameworks approaching one CO per metal cation site at 1 bar, corresponding to loadings as high as 6.0 mmol/g and 157 cm(3)/cm(3). The six frameworks display (negative) isosteric heats of CO adsorption ranging from 52.7 to 27.2 kJ/mol along the series Ni > Co > Fe > Mg > Mn > Zn, following the Irving-Williams stability order. The reversible CO binding suggests that these frameworks may be of utility for the separation of CO from various industrial gas mixtures, including CO/H2 and CO/N2. Selectivities determined from gas adsorption isotherm data using ideal adsorbed solution theory (IAST) over a range of gas compositions at 1 bar and 298 K indicate that all six M2(dobdc) frameworks could potentially be used as solid adsorbents to replace current cryogenic distillation technologies, with the choice of M dictating adsorbent regeneration energy and the level of purity of the resulting gases.

  18. Application of electric field separation to the recovery of metals from wastes of electronic industry; Aplicacion de la sepracion en campo electrico a la recuperacion de metales a partir de residuos de la industria electronica

    Energy Technology Data Exchange (ETDEWEB)

    Mendez Alvarez, M.; Mendez Aguado, J. M.; Campo del Gorostidi, J. J. [Universidad de Oviedo. Oviedo (Spain); Rodriguez Suarez, J. L.

    1998-12-31

    The continuous progress of the electronic and computer systems produce important amounts of components discarded as a waste. In this work the feasibility of a separation method to obtain a metal concentrate from the community residue was studied. The sample was reduced to below i mm size. In this condition the liberation index for the metallic fraction is higher than 90%. Further reductions in size are not recommended because the obtained increase in the liberation index does not compensate for the decrease in metal recovery. A two factorial experimental design with factors at three and four levels was implemented in metal recovery. A two factorial experimental design with factors at three and four levels was implemented in order to establish the best operating conditions of a Carpco electrodynamic cylinder separator. For the fraction 1/0.1 mm a combination of 125 rpm and 35 kV voltage allows for a 94% metal recovery rate with a 96% metal content in the metallic fraction , So, the proposed separation method is effective for the production of a concentrate suitable for metallurgical treatment in order to extract the precious metals contained in it. (Author) 5 refs.

  19. Statistic Ensemble Theory of Small Superconducting Grains

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhi-Qian; ZHENG Ren-Rong

    2001-01-01

    We apply the random matrix theory to small metallic grains in different spin states of S = 0, 1/2, 1, 3/2, 2, 5/2, .., and find that there exist theoretical critical level spacings de at which the superconductivity would breakdown. We also find that the higher the spin state, the smaller the critical level spacing, and for the state of S = 0superconducting enhancement actually exists.

  20. Two types of superconducting domes in unconventional superconductors

    Science.gov (United States)

    Das, Tanmoy; Panagopoulos, Christos

    2016-10-01

    Uncovering the origin of unconventional superconductivity is often plagued by the overwhelming material diversity with varying normal and superconducting (SC) properties. In this article, we deliver a comprehensive study of the SC properties and phase diagrams using multiple tunings (such as disorder, pressure or magnetic field in addition to doping and vice versa) across several families of unconventional superconductors, including the copper-oxides, heavy-fermions, organics and the recently discovered iron-pnictides, iron-chalcogenides, and oxybismuthides. We discover that all these families often possess two types of SC domes, with lower and higher SC transition temperatures T c, both unconventional but with distinct SC and normal states properties. The lower T c dome arises with or without a quantum critical point (QCP), and not always associated with a non-Fermi liquid (NFL) background. On the contrary, the higher-T c dome clearly stems from a NFL or strange metal phase, without an apparent intervening phase transition or a QCP. The two domes appear either fully separated in the phase diagram, or merged into one, or arise independently owing to their respective normal state characteristics. Our findings suggest that a QCP-related mechanism is an unlikely scenario for the NFL phase in these materials, and thereby narrows the possibility towards short-range fluctuations of various degrees of freedom in the momentum and frequency space. We also find that NFL physics may be a generic route to higher-T c superconductivity.

  1. Investigating the performance of a Rh metal catalyst in hydrogen–deuterium exchange reactions in methane for application in low-temperature membrane separators

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jun; Ren, Xingbi; Hu, Sheng; Yang, Chu-Ting, E-mail: yctmj@mail.ustc.edu.cn

    2014-11-15

    Highlights: • We investigated the catalytic efficiency of different noble metal catalysts. • We determined that Rh was the most effective noble metal catalyst. • We characterized the optimal conditions of Rh catalyst for H–D exchange in methane. • The results can be applied to the separation of H isotopes in plasma ash and gases. - Abstract: The development of safe, efficient, and cost effective methods to recover waste components of deuterium–tritium (D–T) plasma reactors, including hydrogen and methane, has attracted much interest in the scientific community. Typically, membrane separators are used for this process, although several problems occur when performing separations at higher temperatures. The application of noble metal catalysts may improve the reaction dynamics and allow the separation process to occur at lower temperatures. In this paper, a series of noble metal catalysts were prepared by a traditional dipping method. Based on an analysis of catalytic performance, the Rh/Al{sub 2}O{sub 3} catalyst was determined to be the most suitable for the exchange of hydrogen and deuterium in methane. The catalyst was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, and temperature programmed reduction analyses. The effects of the metal loading and experimental conditions were also investigated.

  2. Superconductivity by transition metal doping in Ca10(Fe1-xMxAs)10(Pt3As8) (M = Co, Ni, Cu)

    Science.gov (United States)

    Stürzer, Tobias; Kessler, Fabian; Johrendt, Dirk

    2014-11-01

    We report the successful substitution of cobalt, nickel and copper for iron in the 1038-phase parent compound ? yielding ?, ? and ?), respectively. Superconductivity is induced in Co and Ni doped compounds reaching critical temperatures up to 15 K, similar to known Pt substituted ?), whereas no superconductivity was detected in ?. The obtained ? phase diagrams are very similar to those of other iron arsenide superconductors indicating rather universal behaviour despite the more complex structures of the 1038-type compounds, where the physics is primarily determined by the FeAs layer.

  3. Magnetic separation: its application in mining, waste purification, medicine, biochemistry and chemistry.

    Science.gov (United States)

    Iranmanesh, M; Hulliger, J

    2017-10-02

    The use of strong magnetic field gradients and high magnetic fields generated by permanent magnets or superconducting coils has found applications in many fields such as mining, solid state chemistry, biochemistry and medical research. Lab scale or industrial implementations involve separation of macro- and nanoparticles, cells, proteins, and macromolecules down to small molecules and ions. Most promising are those attempts where the object to be separated is attached to a strong magnetic nanoparticle. Here, all kinds of specific affinity interactions are used to attach magnetic carrier particles to mainly objects of biological interest. Other attempts use a strong paramagnetic suspension for the separation of purely diamagnetic objects, such as bio-macromolecules or heavy metals. The application of magnetic separation to superconducting inorganic phases is of particular interest in combination with ceramic combinatorial chemistry to generate a library of e.g. cuprate superconductors.

  4. Itinerant Ferromagnetism and Superconductivity

    OpenAIRE

    Karchev, Naoum

    2004-01-01

    Superconductivity has again become a challenge following the discovery of unconventional superconductivity. Resistance-free currents have been observed in heavy-fermion materials, organic conductors and copper oxides. The discovery of superconductivity in a single crystal of $UGe_2$, $ZrZn_2$ and $URhGe$ revived the interest in the coexistence of superconductivity and ferromagnetism. The experiments indicate that: i)The superconductivity is confined to the ferromagnetic phase. ii)The ferromag...

  5. 100 years of superconductivity

    CERN Document Server

    Rogalla, Horst

    2011-01-01

    Even a hundred years after its discovery, superconductivity continues to bring us new surprises, from superconducting magnets used in MRI to quantum detectors in electronics. 100 Years of Superconductivity presents a comprehensive collection of topics on nearly all the subdisciplines of superconductivity. Tracing the historical developments in superconductivity, the book includes contributions from many pioneers who are responsible for important steps forward in the field.The text first discusses interesting stories of the discovery and gradual progress of theory and experimentation. Emphasizi

  6. UTSA-74: A MOF-74 Isomer with Two Accessible Binding Sites per Metal Center for Highly Selective Gas Separation.

    Science.gov (United States)

    Luo, Feng; Yan, Changsheng; Dang, Lilong; Krishna, Rajamani; Zhou, Wei; Wu, Hui; Dong, Xinglong; Han, Yu; Hu, Tong-Liang; O'Keeffe, Michael; Wang, Lingling; Luo, Mingbiao; Lin, Rui-Biao; Chen, Banglin

    2016-05-04

    A new metal-organic framework Zn2(H2O)(dobdc)·0.5(H2O) (UTSA-74, H4dobdc = 2,5-dioxido-1,4-benzenedicarboxylic acid), Zn-MOF-74/CPO-27-Zn isomer, has been synthesized and structurally characterized. It has a novel four coordinated fgl topology with one-dimensional channels of about 8.0 Å. Unlike metal sites in the well-established MOF-74 with a rod-packing structure in which each of them is in a five coordinate square pyramidal coordination geometry, there are two different Zn(2+) sites within the binuclear secondary building units in UTSA-74 in which one of them (Zn1) is in a tetrahedral while another (Zn2) in an octahedral coordination geometry. After activation, the two axial water molecules on Zn2 sites can be removed, generating UTSA-74a with two accessible gas binding sites per Zn2 ion. Accordingly, UTSA-74a takes up a moderately high and comparable amount of acetylene (145 cm(3)/cm(3)) to Zn-MOF-74. Interestingly, the accessible Zn(2+) sites in UTSA-74a are bridged by carbon dioxide molecules instead of being terminally bound in Zn-MOF-74, so UTSA-74a adsorbs a much smaller amount of carbon dioxide (90 cm(3)/cm(3)) than Zn-MOF-74 (146 cm(3)/cm(3)) at room temperature and 1 bar, leading to a superior MOF material for highly selective C2H2/CO2 separation. X-ray crystal structures, gas sorption isotherms, molecular modeling, and simulated and experimental breakthroughs comprehensively support this result.

  7. UTSA-74: A MOF-74 Isomer with Two Accessible Binding Sites per Metal Center for Highly Selective Gas Separation

    KAUST Repository

    Luo, Feng

    2016-04-26

    A new metal-organic framework Zn2(H2O)-(dobdc)·0.5(H2O) (UTSA-74, H4dobdc = 2,5-dioxido-1,4-benzenedicarboxylic acid), Zn-MOF-74/CPO-27-Zn isomer, has been synthesized and structurally characterized. It has a novel four coordinated fgl topology with one-dimensional channels of about 8.0 Å. Unlike metal sites in the wellestablished MOF-74 with a rod-packing structure in which each of them is in a five coordinate square pyramidal coordination geometry, there are two different Zn2+ sites within the binuclear secondary building units in UTSA-74 in which one of them (Zn1) is in a tetrahedral while another (Zn2) in an octahedral coordination geometry. After activation, the two axial water molecules on Zn2 sites can be removed, generating UTSA-74a with two accessible gas binding sites per Zn2 ion. Accordingly, UTSA-74a takes up a moderately high and comparable amount of acetylene (145 cm3/cm3) to Zn-MOF-74. Interestingly, the accessible Zn2+ sites in UTSA-74a are bridged by carbon dioxide molecules instead of being terminally bound in Zn-MOF-74, so UTSA-74a adsorbs a much smaller amount of carbon dioxide (90 cm3/cm3) than Zn-MOF-74 (146 cm3/cm3) at room temperature and 1 bar, leading to a superior MOF material for highly selective C2H2/CO2 separation. X-ray crystal structures, gas sorption isotherms, molecular modeling, and simulated and experimental breakthroughs comprehensively support this result. © 2016 American Chemical Society.

  8. Excellent cycle life of lithium-metal anodes in lithium-ion batteries with mussel-inspired polydopamine-coated separators

    Energy Technology Data Exchange (ETDEWEB)

    Ryou, Myung-Hyun; Park, Jung-Ki [Department of Chemical and Biomolecular Engineering and Graduated School of EEWS (WCU), Korea Advanced Institute of Science and Technology, Daejeon, 305-701 (Korea, Republic of); Lee, Dong Jin; Lee, Je-Nam [Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 305-701 (Korea, Republic of); Lee, Yong Min [Department of Applied Chemistry, Hanbat National University, Daejeon, 305-719 (Korea, Republic of); Choi, Jang Wook [Graduated School of EEWS (WCU), Korea Advanced Institute of Science and Technology, Daejeon, 305-701 (Korea, Republic of)

    2012-06-15

    An excellent cycle life (150 cycles with 80% retention) for lithium-metal anodes in lithium-ion batteries is achieved by employing mussel-inspired polydopamine-treated-polyethylene separators. This originates from the polydopamine coating, which enables a uniform ionic flux, as well as mussel-inspired catecholic adhesion of the separators onto the lithium surfaces. Additionally, the polydopamine coating improves the thermal-shrinkage properties of polyethylene separators. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. High field superconducting magnets

    Science.gov (United States)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  10. CO{sub 2} adsorption-based separation by metal organic framework (Cu-BTC) versus zeolite (13X)

    Energy Technology Data Exchange (ETDEWEB)

    Zhijian Liang; Marc Marshall; Alan L. Chaffee [Monash University, Vic. (Australia). Cooperative Research Centre for Greenhouse Gas Technology (CO2CRC) and School of Chemistry

    2009-05-15

    The potential for the metal organic framework (MOF) Cu-BTC to selectively adsorb and separate CO{sub 2} is considered. Isotherms for CO{sub 2}, CH{sub 4}, and N{sub 2} were measured from 0 to 15 bar and at temperatures between 25 and 105{sup o}C. The isotherms suggest a much higher working capacity (x4) for CO{sub 2} adsorption on Cu-BTC relative to the benchmark zeolite 13X over the same pressure range. Higher CO{sub 2}/N{sub 2} and CO{sub 2}/CH{sub 4} selectivities in the higher pressure range (1-15 bar) and with lower heats of adsorption were also demonstrated. Cu-BTC was observed to be stable in O{sub 2} at 25{sup o}C, but its crystallinity was reduced in humid environments. The CO{sub 2} adsorption capacity was progressively reduced upon cyclic exposure to water vapor at low relative humidity (<30%), but leveled out at 75% of its original value after several water adsorption/desorption cycles. 27 refs., 1 fig.

  11. Pronounced Plasticity Caused by Phase Separation and β-relaxation Synergistically in Zr-Cu-Al-Mo Bulk Metallic Glasses.

    Science.gov (United States)

    Wang, Tuo; Wang, Lu; Wang, Qinjia; Liu, Yanhui; Hui, Xidong

    2017-04-27

    Bulk metallic glasses (BMGs) are known to have extraordinary merits such as ultrahigh strength and dynamic toughness etc. but tied to the detrimental brittleness, which has become a critical issue to the engineering application and understanding the glass nature. In this article, we report a new class of Zr-Cu-Al-Mo BMGs with extraordinary plastic strain above 20%. "Work-hardening" effect after yielding in a wide range of plastic deformation process has been detected for this kind of BMGs. Compositional heterogeneity, which can be classified into ZrMo- and Cu-rich zones, was differentiated in this kind of BMG. Pronounced humps have been observed on the high frequency kinetic spectrum in Mo containing BMGs, which is the indicator of β-relaxation transition. The underlying mechanism for the excellent plastic deforming ability of this class of BMGs is ascribed to the synergistic effects of soft ZrMo-rich glass formed through phase separation and abundant flow units which related to β-relaxation.

  12. Influence of monovalent alkaline metal cations on binder-free nano-zeolite X in para-xylene separation

    Institute of Scientific and Technical Information of China (English)

    Milad Rasouli; Nakisa Yaghobi; Hossein Atashi; Majid Rasouli

    2015-01-01

    The adsorption process was studied for separating para-xylene from xylene mixture on modified nano-zeolite X in a breakthrough system. Nano-zeolitic adsorbent with different ratios of SiO2/Al2O3 was synthesized through hydrothermal process and ion-exchanged with alkaline metal cations like lithium, sodium and potassium. The product was characterized by X-ray diffraction, scanning electron microscopy (SEM), nitrogen adsorption, transform electron microscopy (TEM) and in situ Fourier transform infrared (FTIR) spectroscopy. The influence of nano-zeolite water content and desorbent type on the selectivity of para-xylene toward other C8 aromatic isomers was studied. The optimization of adsorption process was also investigated under variable operation conditions. The isotherm for each isomer of C8 aromatics and the desorbents possess the adsorption characteristics of Langmuir type. The selectivity factor of para-xylene relative to each of meta-xylene, ortho-xylene and ethylben-zene under the optimum conditions obtained to be 5.36, 2.43 and 3.22, in the order given.

  13. Triboelectric separation technology for removing inorganics from non-metallic fraction of waste printed circuit boards: Influence of size fraction and process optimization.

    Science.gov (United States)

    Zhang, Guangwen; Wang, Haifeng; He, Yaqun; Yang, Xing; Peng, Zhen; Zhang, Tao; Wang, Shuai

    2017-02-01

    Removing inorganics from non-metallic fraction (NMF) of waste printed circuit boards (WPCBs) is an effective mean to improve its usability. The effect of size fraction on the triboelectric separation of NMF of WPCBs was investigated in a lab triboelectric separation system and the separation process was optimized in this paper. The elements distribution in raw NMF collected from typical WPCBs recycling plant and each size fraction obtained by sieving were analyzed by X-ray fluorescence (XRF). The results show that the main inorganic elements in NMF are P, Ba, Mn, Sb, Ti, Pb, Zn, Sn, Mg, Fe, Ca, Cu, Al and Si. The inorganic content of each size fraction increased with the size decreasing. The metal elements are mainly distributed in -0.2mm size fraction, and concentrated in middle product of triboelectric separation. The loss on ignition (LOI) of positive product and negative product is higher than that of the middle product for the -0.355mm size fraction, while the LOI presents gradually increasing trend from negative to positive plate for the +0.355mm size fraction. Based on the separation results and mineralogical characterizations of each size fraction of NMF, the pretreatment process including several mineral processing operations was added before triboelectric separation and better separation result was obtained. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Entropic separations of mixtures of aromatics by selective face-to-face molecular stacking in one-dimensional channels of metal-organic frameworks and zeolites.

    Science.gov (United States)

    Torres-Knoop, Ariana; Balestra, Salvador R G; Krishna, Rajamani; Calero, Sofía; Dubbeldam, David

    2015-02-23

    Separation of challenging mixtures using metal-organic frameworks can be achieved by an entropy-driven mechanism, where one of the components can arrange into a "face-to-face" stacking, thus reducing its "footprint" and reaching a higher saturation loading.

  15. Study of the physicochemical effects on the separation of the non-metallic fraction from printed circuit boards by inverse flotation.

    Science.gov (United States)

    Flores-Campos, R; Estrada-Ruiz, R H; Velarde-Sánchez, E J

    2017-09-06

    Recycling printed circuit boards using green technology is increasingly important due to the metals these contain and the environmental care that must be taken when separating the different materials. Inverse flotation is a process that can be considered a Green Technology, which separates metallic from non-metallic fractions. The degree of separation depends on how much material is adhered to air bubbles. The contact angle measurement allows to determine, in an easy way, whether the flotation process will occur or not and thus establish a material as hydrophobic or not. With the material directly obtained from the milling process, it was found that the contact angle of the non-metallic fraction-liquid-air system increases as temperature increases. In the same way, the increments in concentration of frother in the liquid increase the contact angle of the non-metallic fraction-liquid-air system. 10ppm of Methyl Isobutyl Carbinol provides the highest contact angle as well as the highest material charging in the bubble. Copyright © 2017. Published by Elsevier Ltd.

  16. Superconductivity in layered binary silicides: A density functional theory study

    Science.gov (United States)

    Flores-Livas, José A.; Debord, Régis; Botti, Silvana; San Miguel, Alfonso; Pailhès, Stéphane; Marques, Miguel A. L.

    2011-11-01

    A class of metal disilicides (of the form XSi2, where X is a divalent metal) crystallizes in the EuGe2 structure, formed by hexagonal corrugated silicon planes intercalated with metal atoms. These compounds are superconducting like other layered superconductors, such as MgB2. Moreover, their properties can be easily tuned either by external pressure or by negative chemical pressure (i.e., by changing the metal), which makes disilicides an ideal testbed to study superconductivity in layered systems. In view of this, we present an extensive density functional theory study of the electronic and phonon band structures as well as the electron-phonon interaction of metal disilicides. Our results explain the variation of the superconducting transition temperature with pressure and the species of the intercalating atom, and allow us to predict superconductivity for compounds not yet synthesized belonging to this family.

  17. Theory of superconductivity

    CERN Document Server

    Crisan, Mircea

    1989-01-01

    This book discusses the most important aspects of the theory. The phenomenological model is followed by the microscopic theory of superconductivity, in which modern formalism of the many-body theory is used to treat most important problems such as superconducting alloys, coexistence of superconductivity with the magnetic order, and superconductivity in quasi-one-dimensional systems. It concludes with a discussion on models for exotic and high temperature superconductivity. Its main aim is to review, as complete as possible, the theory of superconductivity from classical models and methods up t

  18. Demonstration of superconducting micromachined cavities

    Energy Technology Data Exchange (ETDEWEB)

    Brecht, T., E-mail: teresa.brecht@yale.edu; Reagor, M.; Chu, Y.; Pfaff, W.; Wang, C.; Frunzio, L.; Devoret, M. H.; Schoelkopf, R. J. [Department of Applied Physics, Yale University, New Haven, Connecticut 06511 (United States)

    2015-11-09

    Superconducting enclosures will be key components of scalable quantum computing devices based on circuit quantum electrodynamics. Within a densely integrated device, they can protect qubits from noise and serve as quantum memory units. Whether constructed by machining bulk pieces of metal or microfabricating wafers, 3D enclosures are typically assembled from two or more parts. The resulting seams potentially dissipate crossing currents and limit performance. In this letter, we present measured quality factors of superconducting cavity resonators of several materials, dimensions, and seam locations. We observe that superconducting indium can be a low-loss RF conductor and form low-loss seams. Leveraging this, we create a superconducting micromachined resonator with indium that has a quality factor of two million, despite a greatly reduced mode volume. Inter-layer coupling to this type of resonator is achieved by an aperture located under a planar transmission line. The described techniques demonstrate a proof-of-principle for multilayer microwave integrated quantum circuits for scalable quantum computing.

  19. Superconductivity in Al/Al2O3 interface

    Science.gov (United States)

    Palnichenko, A. V.; Vyaselev, O. M.; Mazilkin, A. A.; Khasanov, S. S.

    2016-06-01

    Metastable superconductivity at Tc ≈ 65 K has been observed in Al foil subjected to special oxidation process, according to the ac magnetic susceptibility and electrical resistance measurements. Comparison of the ac susceptibility and the dc magnetization measurements infers that the superconductivity arises within the interfacial granular layer formed during the oxidation process between metallic aluminum and its oxide.

  20. Magnetic trapping of superconducting submicron particles produced by laser ablation in superfluid helium

    Science.gov (United States)

    Takahashi, Yuta; Suzuki, Junpei; Yoneyama, Naoya; Tokawa, Yurina; Suzuki, Nobuaki; Matsushima, Fusakazu; Kumakura, Mitsutaka; Ashida, Masaaki; Moriwaki, Yoshiki

    2017-02-01

    We produced spherical superconducting submicron particles by laser ablation of their base metal tips in superfluid helium, and trapped them using a quadrupole magnetic field owing to the diamagnetism caused by the Meissner effect. We also measured their critical temperatures of superconductivity, by observing the threshold temperatures for the confinement of superconducting submicron particles in the trap.

  1. Dependences on RE of superconducting properties of transition metal co-doped (Ca, RE)FeAs2 with RE = La-Gd

    Science.gov (United States)

    Yakita, H.; Ogino, H.; Sala, A.; Okada, T.; Yamamoto, A.; Kishio, K.; Iyo, A.; Eisaki, H.; Shimoyama, J.

    2015-11-01

    Dependence of superconducting properties of (Ca, RE)(Fe, TM)As2 [(Ca, RE)112, TM: Co, Ni)] on RE elements (RE = La-Gd) was systematically investigated. Improvement of superconducting properties by Co or Ni co-doping was observed for all (Ca, RE)112, which is similar to Co-co-doped (Ca, La)112 or (Ca, Pr)112. Tc of Co-co-doped samples decreased from 38 K for RE = La to 29 K for RE = Gd with decreasing ionic radii of RE3+. However, Co-co-doped (Ca, Eu)112 showed exceptionally low Tc = 21 K probably due to the co-existence of Eu3+ and Eu2+ suggested by longer interlayer distance dFe-Fe of (Ca, Eu)112 than other (Ca, RE)112.

  2. Development of a four-zone carousel process packed with metal ion-imprinted polymer for continuous separation of copper ions from manganese ions, cobalt ions, and the constituent metal ions of the buffer solution used as eluent.

    Science.gov (United States)

    Jo, Se-Hee; Park, Chanhun; Yi, Sung Chul; Kim, Dukjoon; Mun, Sungyong

    2011-08-19

    A three-zone carousel process, in which Cu(II)-imprinted polymer (Cu-MIP) and a buffer solution were employed as adsorbent and eluent respectively, has been developed previously for continuous separation of Cu²⁺ (product) from Mn²⁺ and Co²⁺ (impurities). Although this process was reported to be successful in the aforementioned separation task, the way of using a buffer solution as eluent made it inevitable that the product stream included the buffer-related metal ions (i.e., the constituent metal ions of the buffer solution) as well as copper ions. For a more perfect recovery of copper ions, it would be necessary to improve the previous carousel process such that it can remove the buffer-related metal ions from copper ions while maintaining the previous function of separating copper ions from the other 2 impure heavy-metal ions. This improvement was made in this study by proposing a four-zone carousel process based on the following strategy: (1) the addition of one more zone for performing the two-step re-equilibration tasks and (2) the use of water as the eluent of the washing step in the separation zone. The operating conditions of such a proposed process were determined on the basis of the data from a series of single-column experiments. Under the determined operating conditions, 3 runs of carousel experiments were carried out. The results of these experiments revealed that the feed-loading time was a key parameter affecting the performance of the proposed process. Consequently, the continuous separation of copper ions from both the impure heavy-metal ions and the buffer-related metal ions could be achieved with a purity of 91.9% and a yield of 92.8% by using the proposed carousel process based on a properly chosen feed-loading time.

  3. Nanoscale-phase-separated Pd-Rh boxes synthesized via metal migration: an archetype for studying lattice strain and composition effects in electrocatalysis.

    Science.gov (United States)

    Sneed, Brian T; Brodsky, Casey N; Kuo, Chun-Hong; Lamontagne, Leo K; Jiang, Ying; Wang, Yong; Tao, Franklin Feng; Huang, Weixin; Tsung, Chia-Kuang

    2013-10-02

    Developing syntheses of more sophisticated nanostructures comprising late transition metals broadens the tools to rationally design suitable heterogeneous catalysts for chemical transformations. Herein, we report a synthesis of Pd-Rh nanoboxes by controlling the migration of metals in a core-shell nanoparticle. The Pd-Rh nanobox structure is a grid-like arrangement of two distinct metal phases, and the surfaces of these boxes are {100} dominant Pd and Rh. The catalytic behaviors of the particles were examined in electrochemistry to investigate strain effects arising from this structure. It was found that the trends in activity of model fuel cell reactions cannot be explained solely by the surface composition. The lattice strain emerging from the nanoscale separation of metal phases at the surface also plays an important role.

  4. Separators for Li-Ion and Li-Metal Battery Including Ionic Liquid Based Electrolytes Based on the TFSI− and FSI− Anions

    Directory of Open Access Journals (Sweden)

    Marija Kirchhöfer

    2014-08-01

    Full Text Available The characterization of separators for Li-ion or Li-metal batteries incorporating hydrophobic ionic liquid electrolytes is reported herein. Ionic liquids made of N-butyl-N-methylpyrrolidinium (PYR14+ or N-methoxyethyl-N-methylpyrrolidinium (PYR12O1+, paired with bis(trifluoromethanesulfonylimide (TFSI− or bis(fluorosulfonylimide (FSI− anions, were tested in combination with separators having different chemistries and morphologies in terms of wetting behavior, Gurley and McMullin number, as well as Li/(Separator + Electrolyte interfacial properties. It is shown that non-functionalized microporous polyolefin separators are poorly wetted by FSI−-based electrolytes (contrary to TFSI−-based electrolytes, while the ceramic coated separator Separion® allows good wetting with all electrolytes. Furthermore, by comparing the lithium solid electrolyte interphase (SEI resistance evolution at open circuit and during cycling, depending on separator morphologies and chemistries, it is possible to propose a scale for SEI forming properties in the order: PYR12O1FSI > PYR14FSI > PYR14TFSI > PYR12O1TFSI. Finally, the impact the separator morphology is evidenced by the SEI resistance evolution and by comparing Li electrodes cycled using separators with two different morphologies.

  5. Separation of transition metals on a poly-iminodiacetic acid grafted polymeric resin column with post-column reaction detection utilising a paired emitter-detector diode system.

    Science.gov (United States)

    Barron, Leon; O'Toole, Martina; Diamond, Dermot; Nesterenko, Pavel N; Paull, Brett

    2008-12-05

    The selectivity, retention and separation of transition metals on a short (2 mm x 50 mm) column packed with a poly-iminodiacetic acid functionalised polymer 10 microm resin (Dionex ProPac IMAC-10) are presented. This stationary phase, typically used for the separation of proteins, is composed of long chain poly-iminodiacetic acid groups grafted to a hydrophilic layer surrounding a 10 microm polymeric bead. Through the use of a combination of a multi-step pH and picolinic acid gradient, the separation of magnesium, iron, cobalt, cadmium, zinc, lead and copper was possible, followed by post-column reaction with 4-(2-pyridylazo) resorcinol (PAR) and absorbance detection at 510 nm using a novel and inexpensive optical detector, comprised of two light emitting diodes with one acting as a light source and the other as a detector. Column efficiency for selective transition metals was in excess of N=10,000, with the baseline separation of seven metal cations in <3 min possible under optimised conditions. Detection limits of between 5 and 81 microg/L were possible based upon a 50 microL injection volume.

  6. Simple Superconducting "Permanent" Electromagnet

    Science.gov (United States)

    Israelson, Ulf E.; Strayer, Donald M.

    1992-01-01

    Proposed short tube of high-temperature-superconducting material like YBa2Cu3O7 acts as strong electromagnet that flows as long as magnetic field remains below critical value and temperature of cylinder maintained sufficiently below superconducting-transition temperature. Design exploits maximally anisotropy of high-temperature-superconducting material.

  7. Basic principle of superconductivity

    OpenAIRE

    De Cao, Tian

    2007-01-01

    The basic principle of superconductivity is suggested in this paper. There have been two vital wrong suggestions on the basic principle, one is the relation between superconductivity and the Bose-Einstein condensation (BEC), and another is the relation between superconductivity and pseudogap.

  8. The Study about Application of Transportation System of the Superconductive Electromagnetism Propulsion in the Harbor

    OpenAIRE

    涌井, 和也; 荻原, 宏康

    1999-01-01

    Electromagnetic propulsion is promising technique for a linear motor car, a ship and a space ship, in future. W. A Rice developed an electromagnetic pump for the liquid metal transfer. There are two electromagnetic propulsions : a superconductive electricity propulsion and a superconductive electromagnetic propulsion. A superconductive electricity propulsion ship uses a screw driven by a superconducting motor. This technique has merits of excellent navigation-ability, and the free degree of t...

  9. Demonstrating superconductivity at liquid nitrogen temperatures

    Science.gov (United States)

    Early, E. A.; Seaman, C. L.; Yang, K. N.; Maple, M. B.

    1988-07-01

    This article describes two demonstrations of superconductivity at the boiling temperature of liquid nitrogen (77 K) using the 90 K superconductor YBa2Cu3O7-δ(δ≊0.2). Both demonstrations involve the repulsion of a permanent magnet by a superconductor due to the expulsion of the magnetic field from the interior of the latter. In the first demonstration, the repulsion is manifested in the separation of a permanent magnet and a superconductor that are suspended from separate threads, while in the second it results in the levitation of a permanent magnet above a flat superconducting disk.

  10. High-Tc Superconductivity and Raman Scattering Study of the phonon properties of electron doped (transition metal, rare-earth) - Oxygen-Free CaFeAsF and compared with RFeAsO system

    Science.gov (United States)

    Sasmal, Kalyan; Hadjiev, Viktor; Chu, C. W.(Paul)

    Quaternary CaFeAsF has ZrCuSiAs-type structure,(RO)δ+ layer in RFeAsO replaced by (CaF)δ+ layer,with tetragonal (P4/nmm)-orthorhombic (Cmma) phase transition at 134K,while magnetic order,SDW sets in at 114K. Partial replacement of Fe with Co/Ni is direct electron doping to (FeAs)δ+ layer.Tc ~15K in CaFe0.9Ni0.1AsF.Substitution of rare earth metal for alkaline earth metal suppresses anomaly in resistivity & induces superconductivity.Tc ~52K in Ca0.5Pr0.5FeAsF.Characterized by resistivity, susceptibility,XRD & EDX-SEM.Upper critical field estimated from magneto resistance.Bulk superconductivity proved by DC magnetization. Hall coefficient RH revealed hole-like charge carriers in parent compound CaFeAsF, while electron-type (RH in normal state is -Ve) for Ca0.5Pr0.5FeAsF.Evolution of Raman active phonons of Ca1-xPrxFeAsF measured with polarized Raman spectroscopy at room temperature from absurfaces of impurity-free microcrystals.Spectra exhibit sharp phonon lines on very weak electronic scattering background.Frequency and symmetry of Raman phonons involving out-of-plane atomic vibrations are found at 162.5 cm-1 (A1 g, Pr), 201 cm-1 (A1 g, As), 215.5 cm-1 (B1 g, Fe), 265 cm-1 (Eg, Fe) and 334 cm-1 (B1 g, F) for Ca0.5Pr0.5FeAsF.Observations are compared with RFeAsO unconventional superconductors also possibly related to magnetic fluctuations

  11. Ethene/ethane and propene/propane separation via the olefin and paraffin selective metal-organic framework adsorbents CPO-27 and ZIF-8.

    Science.gov (United States)

    Böhme, Ulrike; Barth, Benjamin; Paula, Carolin; Kuhnt, Andreas; Schwieger, Wilhelm; Mundstock, Alexander; Caro, Jürgen; Hartmann, Martin

    2013-07-09

    Two types of metal-organic frameworks (MOFs) have been synthesized and evaluated in the separation of C2 and C3 olefins and paraffins. Whereas Co2(dhtp) (=Co-CPO-27 = Co-MOF-74) and Mg2(dhtp) show an adsorption selectivity for the olefins ethene and propene over the paraffins ethane and propane, the zeolitic imidazolate framework ZIF-8 behaves in the opposite way and preferentially adsorbs the alkane. Consequently, in breakthrough experiments, the olefins or paraffins, respectively, can be separated.

  12. Superconductivity in Medicine

    Science.gov (United States)

    Alonso, Jose R.; Antaya, Timothy A.

    2012-01-01

    Superconductivity is playing an increasingly important role in advanced medical technologies. Compact superconducting cyclotrons are emerging as powerful tools for external beam therapy with protons and carbon ions, and offer advantages of cost and size reduction in isotope production as well. Superconducting magnets in isocentric gantries reduce their size and weight to practical proportions. In diagnostic imaging, superconducting magnets have been crucial for the successful clinical implementation of magnetic resonance imaging. This article introduces each of those areas and describes the role which superconductivity is playing in them.

  13. Enhanced superconductivity of fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Washington, II, Aaron L.; Teprovich, Joseph A.; Zidan, Ragaiy

    2017-06-20

    Methods for enhancing characteristics of superconductive fullerenes and devices incorporating the fullerenes are disclosed. Enhancements can include increase in the critical transition temperature at a constant magnetic field; the existence of a superconducting hysteresis over a changing magnetic field; a decrease in the stabilizing magnetic field required for the onset of superconductivity; and/or an increase in the stability of superconductivity over a large magnetic field. The enhancements can be brought about by transmitting electromagnetic radiation to the superconductive fullerene such that the electromagnetic radiation impinges on the fullerene with an energy that is greater than the band gap of the fullerene.

  14. Superconducting microfabricated ion traps

    CERN Document Server

    Wang, Shannon X; Labaziewicz, Jaroslaw; Dauler, Eric; Berggren, Karl; Chuang, Isaac L

    2010-01-01

    We fabricate superconducting ion traps with niobium and niobium nitride and trap single 88Sr ions at cryogenic temperatures. The superconducting transition is verified and characterized by measuring the resistance and critical current using a 4-wire measurement on the trap structure, and observing change in the rf reflection. The lowest observed heating rate is 2.1(3) quanta/sec at 800 kHz at 6 K and shows no significant change across the superconducting transition, suggesting that anomalous heating is primarily caused by noise sources on the surface. This demonstration of superconducting ion traps opens up possibilities for integrating trapped ions and molecular ions with superconducting devices.

  15. Superconducting material development

    Science.gov (United States)

    1987-09-01

    A superconducting compound was developed that showed a transition to a zero-resistance state at 65 C, or 338 K. The superconducting material, which is an oxide based on strontium, barium, yttrium, and copper, continued in the zero-resistance state similar to superconductivity for 10 days at room temperature in the air. It was also noted that measurements of the material allowed it to observe a nonlinear characteristic curve between current and voltage at 65 C, which is another indication of superconductivity. The research results of the laboratory experiment with the superconducting material will be published in the August edition of the Japanese Journal of Applied Physics.

  16. Crossover from a pseudogap state to a superconducting state

    Institute of Scientific and Technical Information of China (English)

    Cao Tian-De

    2010-01-01

    This paper deduces that the particular electronic structure of cuprate superconductors confines Cooper pairs to be first formed in the antinodal region which is far from the Fermi surface, and these pairs are incoherent and result in the pseudogap state. With the change of doping or temperature, some pairs are formed in the nodal region which locates the Fermi surface, and these pairs are coherent and lead to superconductivity. Thus the coexistence of the pseudogap and the superconducting gap is explained when the two kinds of gaps are not all on the Fermi surface. It also shows that the symmetry of the pseudogap and the superconducting gap are determined by the electronic structure, and non-s wave symmetry gap favours the high-temperature superconductivity. Why the high-temperature superconductivity occurs in the metal region near the Mott metal-insulator transition is also explained.

  17. Protective link for superconducting coil

    Science.gov (United States)

    Umans, Stephen D.

    2009-12-08

    A superconducting coil system includes a superconducting coil and a protective link of superconducting material coupled to the superconducting coil. A rotating machine includes first and second coils and a protective link of superconducting material. The second coil is operable to rotate with respect to the first coil. One of the first and second coils is a superconducting coil. The protective link is coupled to the superconducting coil.

  18. Itinerant ferromagnetism, phase separation and first-order paramagnetic metal to antiferromagnetic insulator transitions—novel insights to the frustrated Hubbard model

    Science.gov (United States)

    Zitzler, R.; Pruschke, Th.; Bulla, R.

    2004-05-01

    We discuss the magnetic phase diagram for the Hubbard model with magnetic frustration obtained within the dynamical mean-field theory. Most interesting is the appearance of a first-order paramagnetic metal to antiferromagnetic insulator transition for the magnetically frustrated lattice at half filling. For finite doping the antiferromagnetic phase is susceptible to phase separation and competes with an itinerant ferromagnetic phase (Nagaoka ferromagnetism), leading to an unexpectedly rich magnetic phase diagram.

  19. Itinerant ferromagnetism, phase separation and first-order paramagnetic metal to antiferromagnetic insulator transitions--novel insights to the frustrated Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Zitzler, R.; Pruschke, Th. E-mail: pruschke@theorie.physik.uni-goettingen.de; Bulla, R

    2004-05-01

    We discuss the magnetic phase diagram for the Hubbard model with magnetic frustration obtained within the dynamical mean-field theory. Most interesting is the appearance of a first-order paramagnetic metal to antiferromagnetic insulator transition for the magnetically frustrated lattice at half filling. For finite doping the antiferromagnetic phase is susceptible to phase separation and competes with an itinerant ferromagnetic phase (Nagaoka ferromagnetism), leading to an unexpectedly rich magnetic phase diagram.

  20. Optical properties of single-walled carbon nanotubes highly separated in semiconducting and metallic tubes functionalized with poly(vinylidene fluoride)

    Science.gov (United States)

    Matea, A.; Baibarac, M.; Baltog, I.

    2017-02-01

    In this paper, the interaction of poly(vinylidene fluoride) (PVDF) with single-walled carbon nanotubes (SWNTs) highly separated in metallic (M) and semiconducting (S) tubes is studied by resonant Raman scattering and FTIR spectroscopy. In this order, the PVDF/SWNTs membranes were prepared by the evaporation of dimethylformamide (DMF) from PVDF solutions containing i) the as-prepared SWNTs samples, i.e., as mixtures of metallic (33%) and semiconducting (66%) tubes (M + S-SWNTs), ii) SWNTs highly separated in metallic tubes (98%, M-SWNTs), and iii) SWNTs highly separated in semiconducting tubes (99%, S-SWNTs). An increase in the PVDF β phase weight, highlighted by the increase in the absorbance of IR band at 843 cm-1, is reported to take place in the presence of M + S-SWNTs and S-SWNTs. An increase of the PVDF γ crystalline phase weight is reported for the PVDF/M + S-SWNTs, PVDF/M-SWNTs and PVDF/S-SWNTs membranes. Using Raman scattering, a donor-acceptor interaction is invoked to take place at the interface PVDF/M + S-SWNTs and PVDF/S-SWNTs. In the case of the membranes based on PVDF and M-SWNTs, the changes reported in Raman spectra of the two constituents are explained on the base induction-interaction forces between the permanent dipole of PVDF and induced dipole of M-SWNTs.

  1. Superconducting phase domains for memory applications

    NARCIS (Netherlands)

    Bakurskiy, S.V.; Klenov, N.V.; Soloviev, I.I.; Kupriyanov, M..Y.; Golubov, A.

    2016-01-01

    In this work, we study theoretically the properties of S-F/N-sIS type Josephson junctions in the frame of the quasiclassical Usadel formalism. The structure consists of two superconducting electrodes (S), a tunnel barrier (I), a combined normal metal/ferromagnet (N/F) interlayer, and a thin supercon

  2. Controlling superconductivity by tunable quantum critical points.

    Science.gov (United States)

    Seo, S; Park, E; Bauer, E D; Ronning, F; Kim, J N; Shim, J-H; Thompson, J D; Park, Tuson

    2015-03-04

    The heavy fermion compound CeRhIn5 is a rare example where a quantum critical point, hidden by a dome of superconductivity, has been explicitly revealed and found to have a local nature. The lack of additional examples of local types of quantum critical points associated with superconductivity, however, has made it difficult to unravel the role of quantum fluctuations in forming Cooper pairs. Here, we show the precise control of superconductivity by tunable quantum critical points in CeRhIn5. Slight tin-substitution for indium in CeRhIn5 shifts its antiferromagnetic quantum critical point from 2.3 GPa to 1.3 GPa and induces a residual impurity scattering 300 times larger than that of pure CeRhIn5, which should be sufficient to preclude superconductivity. Nevertheless, superconductivity occurs at the quantum critical point of the tin-doped metal. These results underline that fluctuations from the antiferromagnetic quantum criticality promote unconventional superconductivity in CeRhIn5.

  3. Nonlocal transport in superconducting oxide nanostructures

    Science.gov (United States)

    Veazey, Joshua; Cheng, Guanglei; Lu, Shicheng; Tomczyk, Michelle; Irvin, Patrick; Huang, Mengchen; Wung Bark, Chung; Ryu, Sangwoo; Eom, Chang-Beom; Levy, Jeremy

    2013-03-01

    We report nonlocal transport signatures in the superconducting state of nanostructures formed[2] at the LaAlO3/SrTiO3 interface using conductive AFM lithography. Nonlocal resistances (nonlocal voltage divided by current) are as large as 200 Ω when 2-10 μm separate the current-carrying segments from the voltage-sensing leads. The nonlocal resistance reverses sign at the local critical current of the superconducting state. Features observed in the nonlocal V-I curves evolve with back gate voltage and magnetic field, and are correlated with the local four-terminal V-I curves. We discuss how nonlocal and local transport effects in LaAlO3/SrTiO3 nanostructures may result from the electronic phase separation and superconducting inhomogeneity reported by others in planar structures[3]. This work is supported by AFOSR (FA9550-10-1-0524) and NSF DMR-0906443

  4. Monolithic metal-organic framework MIL-53(Al)-polymethacrylate composite column for the reversed-phase capillary liquid chromatography separation of small aromatics.

    Science.gov (United States)

    Yusuf, Kareem; Badjah-Hadj-Ahmed, Ahmed Yacine; Aqel, Ahmad; ALOthman, Zeid Abdullah

    2016-03-01

    A monolithic capillary column containing a composite of metal-organic framework MIL-53(Al) incorporated into hexyl methacrylate-co-ethylene dimethacrylate was prepared to enhance the separation of mixtures of small aromatic compounds by using capillary liquid chromatography. The addition of 10 mg/mL MIL-53(Al) microparticles increased the micropore content in the monolithic matrix and increased the Brunauer-Emmett-Teller surface area from 26.92 to 85.12 m(2) /g. The presence of 1,4-benzenedicarboxylate moieties within the structure of MIL-53(Al) as an organic linker greatly influenced the separation of aromatic mixtures through π-π interactions. High-resolution separation was obtained for a series of alkylbenzenes (with resolution factors in the range 0.96-1.75) in less than 8 min, with 14 710 plates/m efficiency for propylbenzene, using a binary polar mobile phase of water/acetonitrile in isocratic mode. A reversed-phase separation mechanism was indicated by the increased retention factor and resolution as the water percentage in the mobile phase increased. A stability study on the composite column showed excellent mechanical stability under various conditions. The higher resolution and faster separation observed at increased temperature indicated an exothermic separation, whereas the negative values for the free energy change of transfer indicated a spontaneous process.

  5. An adsorbent performance indicator as a first step evaluation of novel sorbents for gas separations: application to metal-organic frameworks.

    Science.gov (United States)

    Wiersum, Andrew D; Chang, Jong-San; Serre, Christian; Llewellyn, Philip L

    2013-03-12

    An adsorbent performance indicator (API) is proposed in an effort to initially highlight porous materials of potential interest for PSA separation processes. This expression takes into account working capacities, selectivities, and adsorption energies and additionally uses weighting factors to reflect the specific requirements of a given process. To demonstrate the applicability of the API, we have performed the adsorption of carbon dioxide and methane at room temperature on a number of metal-organic frameworks, a zeolite and a molecular sieve carbon. The API is calculated for two different CO2/CH4 separation case scenarios: "bulk separation" and "natural gas purification". This comparison highlights how the API can be more versatile than previously proposed comparison factors for an initial indication of potential adsorbent performance.

  6. [The action of 232Th separately and in combination with heavy and alkaline metal salts on Tradescantia (clone 02)].

    Science.gov (United States)

    Evseeva, T I; Geras'kin, S A

    2000-01-01

    The action of 232Th-nitrate in concentration 0.09, 0.18 and 0.36 mg/l (counting on 232Th ion) on water cultures of Tradescantia (clone 02) was investigated. It was found that all investigated concentrations of 232Th showed statistically significant genotoxic effect and increased level of morphological abnormal cells in the stamen hairs of Tradescantia in the absence of modifying action of other metal ions. Synergistic toxic interaction was found between the 232Th in concentration 0.18 mg/l and metal ions for all samples of thawed water. Synergistic genotoxic effect of the combined action of these factors was revealed only at the low total contents of ions of heavy and alkaline metals in thawed water samples. The observed synergistic effects of the combined action of 232Th and metal ions should be taken into account when controlling the radionuclide level in the environment.

  7. Attainable gravimetric and volumetric energy density of Li-S and li ion battery cells with solid separator-protected Li metal anodes.

    Science.gov (United States)

    McCloskey, Bryan D

    2015-11-19

    As a result of sulfur's high electrochemical capacity (1675 mA h/gs), lithium-sulfur batteries have received significant attention as a potential high-specific-energy alternative to current state-of-the-art rechargeable Li ion batteries. For Li-S batteries to compete with commercially available Li ion batteries, high-capacity anodes, such as those that use Li metal, will need to be enabled to fully exploit sulfur's high capacity. The development of Li metal anodes has focused on eliminating Coulombically inefficient and dendritic Li cycling, and to this end, an interesting direction of research is to protect Li metal by employing mechanically stiff solid-state Li(+) conductors, such as garnet phase Li7La3Zr2O12 (LLZO), NASICON-type Li1+xAlxTi2-x(PO4)3 (LATP), and Li2S-P2S5 glasses (LPS), as electrode separators. Basic calculations are used to quantify useful targets for solid Li metal protective separator thickness and cost to enable Li metal batteries in general and Li-S batteries specifically. Furthermore, maximum electrolyte-to-sulfur ratios that allow Li-S batteries to compete with Li ion batteries are calculated. The results presented here suggest that controlling the complex polysulfide speciation chemistry in Li-S cells with realistic, minimal electrolyte loading presents a meaningful opportunity to develop Li-S batteries that are competitive on a specific energy basis with current state-of-the-art Li ion batteries.

  8. The role of phase separation for self-organized surface pattern formation by ion beam erosion and metal atom co-deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hofsaess, H.; Zhang, K.; Pape, A.; Bobes, O.; Broetzmann, M. [Georg-August University Goettingen, II. Institute of Physics, Goettingen (Germany)

    2013-05-15

    We investigate the ripple pattern formation on Si surfaces at room temperature during normal incidence ion beam erosion under simultaneous deposition of different metallic co-deposited surfactant atoms. The co-deposition of small amounts of metallic atoms, in particular Fe and Mo, is known to have a tremendous impact on the evolution of nanoscale surface patterns on Si. In previous work on ion erosion of Si during co-deposition of Fe atoms, we proposed that chemical interactions between Fe and Si atoms of the steady-state mixed Fe{sub x} Si surface layer formed during ion beam erosion is a dominant driving force for self-organized pattern formation. In particular, we provided experimental evidence for the formation of amorphous iron disilicide. To confirm and generalize such chemical effects on the pattern formation, in particular the tendency for phase separation, we have now irradiated Si surfaces with normal incidence 5 keV Xe ions under simultaneous gracing incidence co-deposition of Fe, Ni, Cu, Mo, W, Pt, and Au surfactant atoms. The selected metals in the two groups (Fe, Ni, Cu) and (W, Pt, Au) are very similar regarding their collision cascade behavior, but strongly differ regarding their tendency to silicide formation. We find pronounced ripple pattern formation only for those co deposited metals (Fe, Mo, Ni, W, and Pt), which are prone to the formation of mono and disilicides. In contrast, for Cu and Au co-deposition the surface remains very flat, even after irradiation at high ion fluence. Because of the very different behavior of Cu compared to Fe, Ni and Au compared to W, Pt, phase separation toward amorphous metal silicide phases is seen as the relevant process for the pattern formation on Si in the case of Fe, Mo, Ni, W, and Pt co-deposition. (orig.)

  9. Magnetic and Superconducting Materials at High Pressures

    Energy Technology Data Exchange (ETDEWEB)

    Struzhkin, Viktor V. [Carnegie Inst. of Washington, Washington, DC (United States)

    2015-03-24

    The work concentrates on few important tasks in enabling techniques for search of superconducting compressed hydrogen compounds and pure hydrogen, investigation of mechanisms of high-Tc superconductivity, and exploring new superconducting materials. Along that route we performed several challenging tasks, including discovery of new forms of polyhydrides of alkali metal Na at very high pressures. These experiments help us to establish the experimental environment that will provide important information on the high-pressure properties of hydrogen-rich compounds. Our recent progress in RIXS measurements opens a whole field of strongly correlated 3d materials. We have developed a systematic approach to measure major electronic parameters, like Hubbard energy U, and charge transfer energy Δ, as function of pressure. This technique will enable also RIXS studies of magnetic excitations in iridates and other 5d materials at the L edge, which attract a lot of interest recently. We have developed new magnetic sensing technique based on optically detected magnetic resonance from NV centers in diamond. The technique can be applied to study superconductivity in high-TC materials, to search for magnetic transitions in strongly correlated and itinerant magnetic materials under pressure. Summary of Project Activities; development of high-pressure experimentation platform for exploration of new potential superconductors, metal polyhydrides (including newly discovered alkali metal polyhydrides), and already known superconductors at the limit of static high-pressure techniques; investigation of special classes of superconducting compounds (high-Tc superconductors, new superconducting materials), that may provide new fundamental knowledge and may prove important for application as high-temperature/high-critical parameter superconductors; investigation of the pressure dependence of superconductivity and magnetic/phase transformations in 3d transition metal compounds, including

  10. Quantum Magnetomechanics with Levitating Superconducting Microspheres

    CERN Document Server

    Romero-Isart, O; Navau, C; Sanchez, A; Cirac, J I

    2011-01-01

    We show that by magnetically trapping a superconducting microsphere close to a quantum circuit, it is experimentally feasible to perform ground state cooling and to prepare quantum superpositions of the center-of-mass motion of the microsphere. Due to the absence of clamping losses and time dependent electromagnetic fields, the mechanical motion of micrometer-sized metallic spheres in the Meissner state is predicted to be extremely well isolated from the environment. Hence, we propose to combine the technology of magnetic mictrotraps and superconducting qubits to bring relatively large objects to the quantum regime.

  11. Superconducting Detectors for Superlight Dark Matter.

    Science.gov (United States)

    Hochberg, Yonit; Zhao, Yue; Zurek, Kathryn M

    2016-01-08

    We propose and study a new class of superconducting detectors that are sensitive to O(meV) electron recoils from dark matter-electron scattering. Such devices could detect dark matter as light as the warm dark-matter limit, m(X)≳1  keV. We compute the rate of dark-matter scattering off of free electrons in a (superconducting) metal, including the relevant Pauli blocking factors. We demonstrate that classes of dark matter consistent with terrestrial and cosmological or astrophysical constraints could be detected by such detectors with a moderate size exposure.

  12. Manufacturing of superconductive silver/ceramic composites

    DEFF Research Database (Denmark)

    Seifi, Behrouz; Bech, Jakob Ilsted; Eriksen, Morten

    2000-01-01

    Manufacturing of superconducting metal/ceramic composites is a rather new discipline within materials forming processes. High Temperature SuperConductors, HTSC, are manufactured applying the Oxide-Powder-In-Tube process, OPIT. A ceramic powder containing lead, calcium, bismuth, strontium...... and current leading properties of the final superconducting fibres. The present work describes studies on alternative packing geometries and process parameters in the flat rolling operations. The aim is to obtain homogenous filaments with advantageous geometry and good texture while avoiding potential defects...

  13. Frontiers in Superconducting Materials

    CERN Document Server

    Narlikar, Anant V

    2005-01-01

    Frontiers in Superconducting Materials gives a state-of-the-art report of the most important topics of the current research in superconductive materials and related phenomena. It comprises 30 chapters written by renowned international experts in the field. It is of central interest to researchers and specialists in Physics and Materials Science, both in academic and industrial research, as well as advanced students. It also addresses electronic and electrical engineers. Even non-specialists interested in superconductivity might find some useful answers.

  14. Superconducting energy recovery linacs

    Science.gov (United States)

    Ben-Zvi, Ilan

    2016-10-01

    High-average-power and high-brightness electron beams from a combination of laser photocathode electron guns and a superconducting energy recovery linac (ERL) is an emerging accelerator science with applications in ERL light sources, high repetition rate free electron lasers , electron cooling, electron ion colliders and more. This paper reviews the accelerator physics issues of superconducting ERLs, discusses major subsystems and provides a few examples of superconducting ERLs.

  15. High-Temperature Superconductivity

    Science.gov (United States)

    Tanaka, Shoji

    2006-12-01

    A general review on high-temperature superconductivity was made. After prehistoric view and the process of discovery were stated, the special features of high-temperature superconductors were explained from the materials side and the physical properties side. The present status on applications of high-temperature superconductors were explained on superconducting tapes, electric power cables, magnets for maglev trains, electric motors, superconducting quantum interference device (SQUID) and single flux quantum (SFQ) devices and circuits.

  16. Superconducting electron and hole lenses

    Science.gov (United States)

    Cheraghchi, H.; Esmailzadeh, H.; Moghaddam, A. G.

    2016-06-01

    We show how a superconducting region (S), sandwiched between two normal leads (N), in the presence of barriers, can act as a lens for propagating electron and hole waves by virtue of the so-called crossed Andreev reflection (CAR). The CAR process, which is equivalent to Cooper pair splitting into two N electrodes, provides a unique possibility of constructing entangled electrons in solid state systems. When electrons are locally injected from an N lead, due to the CAR and normal reflection of quasiparticles by the insulating barriers at the interfaces, sequences of electron and hole focuses are established inside another N electrode. This behavior originates from the change of momentum during electron-hole conversion beside the successive normal reflections of electrons and holes due to the barriers. The focusing phenomena studied here are fundamentally different from the electron focusing in other systems, such as graphene p-n junctions. In particular, due to the electron-hole symmetry of the superconducting state, the focusing of electrons and holes is robust against thermal excitations. Furthermore, the effects of the superconducting layer width, the injection point position, and barrier strength are investigated on the focusing behavior of the junction. Very intriguingly, it is shown that by varying the barrier strength, one can separately control the density of electrons or holes at the focuses.

  17. Unconventional high-Tc superconductivity in fullerides.

    Science.gov (United States)

    Takabayashi, Yasuhiro; Prassides, Kosmas

    2016-09-13

    A3C60 molecular superconductors share a common electronic phase diagram with unconventional high-temperature superconductors such as the cuprates: superconductivity emerges from an antiferromagnetic strongly correlated Mott-insulating state upon tuning a parameter such as pressure (bandwidth control) accompanied by a dome-shaped dependence of the critical temperature, Tc However, unlike atom-based superconductors, the parent state from which superconductivity emerges solely by changing an electronic parameter-the overlap between the outer wave functions of the constituent molecules-is controlled by the C60 (3-) molecular electronic structure via the on-molecule Jahn-Teller effect influence of molecular geometry and spin state. Destruction of the parent Mott-Jahn-Teller state through chemical or physical pressurization yields an unconventional Jahn-Teller metal, where quasi-localized and itinerant electron behaviours coexist. Localized features gradually disappear with lattice contraction and conventional Fermi liquid behaviour is recovered. The nature of the underlying (correlated versus weak-coupling Bardeen-Cooper-Schrieffer theory) s-wave superconducting states mirrors the unconventional/conventional metal dichotomy: the highest superconducting critical temperature occurs at the crossover between Jahn-Teller and Fermi liquid metal when the Jahn-Teller distortion melts.This article is part of the themed issue 'Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene'.

  18. Ab initio determination of the traction-separation curve for a metal grain boundary: a critical assessment of strategies

    Science.gov (United States)

    Ehlers, F. J. H.; Seydou, M.; Tingaud, D.; Maurel, F.; Charles, Y.; Queyreau, S.

    2016-12-01

    We have performed a uniaxial tensile test on the Σ5 [1 0 0] 36.87° twist grain boundary (GB) in face-centred cubic Al within the framework of density functional theory in order to derive an atomistic cohesive traction-separation law. Addressing the importance of kinetics to GB breakage, we accompanied our energy-separation curve calculations by two additional studies. Firstly, using the nudged elastic band method, we determined for a series of GB separations the heights of the zero temperature barriers separating intact and broken GB configurations. Secondly, a representative subset of these transition paths was examined at finite temperature with ab initio molecular dynamics. Contrasting prevalent conclusions on GB breakage behaviour, our results suggest that the GB likely stays intact at room temperature well into the range of separations where a broken GB represents the thermodynamically favourable configuration. Given the non-negligible resulting influence on critical tensile stress and work of separation, our findings may be viewed as stressing the need for a kinetic analysis in a general first principles based uniaxial tensile test.

  19. Strongly Enhanced Superconductivity in Coupled t-J Segments.

    Science.gov (United States)

    Reja, Sahinur; van den Brink, Jeroen; Nishimoto, Satoshi

    2016-02-12

    The t-J Hamiltonian is one of the cornerstones in the theoretical study of strongly correlated copper-oxide based materials. Using the density-matrix renormalization group method we obtain the phase diagram of the one-dimensional t-J chain in the presence of a periodic hopping modulation, as a prototype of coupled-segment models. While in the uniform 1D t-J model the near half-filling superconducting state dominates only at unphysically large values of the exchange coupling constant J/t>3; we show that a small hopping and exchange modulation very strongly reduces the critical coupling to be as low as J/t∼1/3--well within the physical regime. The phase diagram as a function of the electron filling also exhibits metallic, insulating line phases and regions of phase separation. We suggest that a superconducting state is easily stabilized if t-J segments creating local spin-singlet pairing are coupled to each other--another example is the ladder system.

  20. Fundamentals of Superconducting Nanoelectronics

    CERN Document Server

    Sidorenko, Anatolie

    2011-01-01

    This book demonstrates how the new phenomena in superconductivity on the nanometer scale (FFLO state, triplet superconductivity, Crossed Andreev Reflection, synchronized generation etc.) serve as the basis for the invention and development of novel nanoelectronic devices and systems. It demonstrates how rather complex ideas and theoretical models, like odd-pairing, non-uniform superconducting state, pi-shift etc., adequately describe the processes in real superconducting nanostructues and novel devices based on them. The book is useful for a broad audience of readers, researchers, engineers, P

  1. Superconductive imaging surface magnetometer

    Science.gov (United States)

    Overton, Jr., William C.; van Hulsteyn, David B.; Flynn, Edward R.

    1991-01-01

    An improved pick-up coil system for use with Superconducting Quantum Interference Device gradiometers and magnetometers involving the use of superconducting plates near conventional pick-up coil arrangements to provide imaging of nearby dipole sources and to deflect environmental magnetic noise away from the pick-up coils. This allows the practice of gradiometry and magnetometry in magnetically unshielded environments. One embodiment uses a hemispherically shaped superconducting plate with interior pick-up coils, allowing brain wave measurements to be made on human patients. another embodiment using flat superconducting plates could be used in non-destructive evaluation of materials.

  2. Superconducting optical modulator

    Science.gov (United States)

    Bunt, Patricia S.; Ference, Thomas G.; Puzey, Kenneth A.; Tanner, David B.; Tache, Nacira; Varhue, Walter J.

    2000-12-01

    An optical modulator based on the physical properties of high temperature superconductors has been fabricated and tested. The modulator was constructed form a film of Yttrium Barium Copper Oxide (YBCO) grown on undoped silicon with a buffer layer of Yttria Stabilized Zirconia. Standard lithographic procedures were used to pattern the superconducting film into a micro bridge. Optical modulation was achieved by passing IR light through the composite structure normal to the micro bridge and switching the superconducting film in the bridge region between the superconducting and non-superconducting states. In the superconducting state, IR light reflects from the superconducting film surface. When a critical current is passed through the micro bridge, it causes the film in this region to switch to the non-superconducting state allowing IR light to pass through it. Superconducting materials have the potential to switch between these two states at speeds up to 1 picosecond using electrical current. Presently, fiber optic transmission capacity is limited by the rate at which optical data can be modulated. The superconducting modulator, when combined with other components, may have the potential to increase the transmission capacity of fiber optic lines.

  3. Basic Study of Superconductive Actuator

    OpenAIRE

    涌井, 和也; 荻原, 宏康

    2000-01-01

    There are two kinds of electromagnetic propulsion ships : a superconductive electromagnetic propulsion ship and a superconductive electricity propulsion ship. A superconductive electromagnetic propulsion ship uses the electromagnetic force (Lorenz force) by the interaction between a magnetic field and a electric current. On the other hand, a superconductive electricity propulsion ship uses screws driven by a superconductive motor. A superconductive propulsion ship technique has the merits of ...

  4. SEPARATION OF METAL IONS AS CHELATES OF 1N2,7O3,6S IN THE PRESENCE OR ABSSENCE OF TBA+ BY CAPILLARY ELECTROPHORESIS

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Separation and determination of metal ions based on the formation of chelate anions with 1-Nitroso-2,7-dihydrexynaphthalene-3,6-di sulfonic acid(1N2,7O3,6S) was studied by using HPCE of the nine metal ions exami ned, the ions that can be detected sensitively with 1-Nitroso-2,7-dihydrexyna phtha lene-3,6-disulfonic acid were Fe2+,Co2+,Cu2+,Ni2+,Zn 2+ and Pd2+. The cobalt chelate could exist in two oxidation stat es of cobalt. When TBA+ were added in electrophoretic solutions, the drastic c ha nges in electrophoretic mobilities of chelate were observed, which was due to th e ion association between chelates anions and TBA+. The ion association consta nts of chelate anions with TBA+ were determined by using the change in electro p horetic mobilities of chelates, metal ions tested were separated within 10 min u sing 30cm silica capillary(50 m i.d).

  5. Long Lived Photo-induced Charge Separation in a Trinuclear Iron-{mu}3-oxo-based Metal-Organic Framework

    Energy Technology Data Exchange (ETDEWEB)

    Hanna, Lauren; Kucheryavy, Pavel; Liu, Cunming; Zhang, Xiaoyi; Lockard, Jenny V.

    2017-06-29

    The presence of long-lived charge-separated excited states in metal-organic frameworks (MOFs) can enhance their photocatalytic activity by decreasing the probability that photogenerated electrons and holes recombine before accessing adsorbed reactants. Detecting these charge separated states via optical transient absorption, however, can be challenging when they lack definitive optical signatures. Here, we investigate the long-lived excited state of a MOF with such vague optical properties, MIL-100(Fe), comprised of Fe3-μ3-oxo clusters and trimesic acid linkers using Fe K-edge X-ray transient absorption (XTA) spectroscopy, to unambiguously determine its ligand-to-metal charge transfer character. Spectra measured at time delays up to 3.6 μs confirm the long lived nature of the charge separated excited state. Several trinuclear iron μ3- oxo carboxylate complexes, which model the trinuclear cores of the MOF structure, are measured for comparison using both steady state XAS and XTA to further support this assignment and corresponding decay time. The MOF is prepared as a colloidal nanoparticle suspension for these measurements so both its fabrication and particle size analysis are presented, as well.

  6. Hexavalent chromium recovery by liquid–liquid extraction with 2-octylaminopyridine from acidic chloride media and its sequential separation from other heavy toxic metal ions

    Directory of Open Access Journals (Sweden)

    C.P. Mane

    2016-11-01

    Full Text Available A systematic study of extraction of chromium(VI with 2-octylaminopyridine (2-OAP in xylene at room temperature has been conducted. Quantitative extraction of chromium(VI was observed in the 0.4–0.8 M concentration range of hydrochloric acid. From the extracted complex species in the organic phase, chromium(VI was back extracted with 7 N ammonia (3 × 10 mL, and was determined by spectrophotometric method. Various parameters such as 2-OAP concentration, equilibrium period, effect of various diluents, aqueous: organic volume ratio, acidity and diverse ions were studied. The extraction reaction proceeds with ion-pair formation and the stoichiometry of extracted species was found to be [(2OAPH+ CrO3Cl−](org. The separation and determination of chromium(VI from associated and toxic metals in binary, ternary and multicomponent mixture were carried out. The method permits the sequential separation of chromium(VI from other toxic metals and has been used to separate and determine chromium(VI from alloys, and effluent water samples from tannery industries.

  7. Anisotropic effect of appearing superconductivity on the electron transport in FeSe

    Science.gov (United States)

    Grigoriev, P. D.; Sinchenko, A. A.; Kesharpu, K. K.; Shakin, A.; Mogilyuk, T. I.; Orlov, A. P.; Frolov, A. V.; Lyubshin, D. S.; Chareev, D. A.; Volkova, O. S.; Vasiliev, A. N.

    2017-06-01

    A theoretical model has been proposed to describe the conductivity of a layered anisotropic normal metal containing small superconducting inclusions at an arbitrary eccentricity of spheroidal superconducting islands. The electron transport and magnetic properties of FeSe single crystals have been measured. The results indicate the existence of superconductivity at temperatures much higher than the critical superconducting transition temperature corresponding to vanishing electrical resistance. Within the proposed model, quantitative agreement has been achieved between the volume fraction of superconducting inclusions and its temperature dependence determined from the transport and magnetic measurements.

  8. Use of tube radial distribution of ternary mixed carrier solvents for introduction of absorption reagent for metal ion separation and online detection into capillary.

    Science.gov (United States)

    Fujinaga, Satoshi; Jinno, Naoya; Hashimoto, Masahiko; Tsukagoshi, Kazuhiko

    2011-10-01

    When ternary mixed solvents consisting of water-hydrophilic/hydrophobic organic solvents are fed into a micro-space under laminar flow conditions, the solvent molecules are radially distributed in the micro-space. The specific fluidic behavior of the solvents is called the "tube radial distribution phenomenon (TRDP)". A novel capillary chromatography method was developed based on the TRDP that creates the inner major and outer minor phases in a tube, where the outer phase acts as a pseudo-stationary phase. This is called "tube radial distribution chromatography (TRDC)". In this study, Chrome Azurol S as an absorption reagent was introduced into the TRDC system for metal ion separation and online detection. The fused-silica capillary tube (75 μm id and 110 cm length) and water-acetonitrile-ethyl acetate mixture (3:8:4 volume ratio) including 20 mM Chrome Azurol S as a carrier solution were used. Metal ions, i.e. Co(II), Cu(II), Ni(II), Al(III), and Fe(III), as models were injected into the present TRDC system. Characteristic individual absorption characteristics and elution times were obtained as the result of complex formation between the metal ions and Chrome Azurol S in the water-acetonitrile-ethyl acetate mixture solution. The elution times of the metal ions were examined based on their absorption behavior; Co(II), Ni(II), Al(III), Fe(III), and Cu(II) were eluted in this order over the elution times of 4.7-6.8 min. The elution orders were determined from the molar ratios of metal ion to Chrome Azurol S and Irving-Williams series for bivalent metal ions. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Rational Synthesis of Imprinted Organofunctional Sol-Gel Materials for Toxic Metal Separation - Final Report - 09/15/1997 - 09/14/2001

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Ziling (Ben); Barnes, Craig E.; Dai, Shang

    2001-09-14

    . Success in this research will lead to a novel class of materials tailored for toxic metal recognition/separation with enhanced capacity and selectivity. It will also provide the scientific basis for such recognition and the development of a new generation of technologies for more efficient toxic metal removal. Furthermore, these research results should be directly applicable to DOE Environmental Management (EM) missions.

  10. Nutrient and heavy metal accumulation in municipal organic waste from separate collection during anaerobic digestion in a two-stage laboratory biogas plant.

    Science.gov (United States)

    Knoop, Christine; Dornack, Christina; Raab, Thomas

    2017-09-01

    Municipal organic waste (MOW) is a promising feedstock for biogas plants and separate collection will increase available quantities. To close nutrient circles digestates shall be redistributed to arable land. However, less is known about digestate properties and how they are influenced during digestion. Therefore, changes in nutrient and heavy metal concentration in the solid digestate were investigated during anaerobic treatment of MOW in a two-stage laboratory biogas plant. Results show that the solid digestate is exposed to element accumulation, except for N, P and Mg. The loss of initial N, P and Mg load accounts up to 45%, which must be redistributed elsewhere in the digester system. K load of feedstock was completely rediscovered in the solid digestate. Heavy metal concentration in the digestate increases by factor 1.6 at average. The results emphasize that element retention in the digester system has a decisive impact on nutrient content of digestates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Metal-organic frameworks constructed from d-camphor acid: bifunctional properties related to luminescence sensing and liquid-phase separation.

    Science.gov (United States)

    Wen, Lili; Xu, Xiaoyue; Lv, Kangle; Huang, Yumei; Zheng, Xiaofang; Zhou, Li; Sun, Renqiang; Li, Dongfeng

    2015-02-25

    Three metal-organic frameworks (MOFs) [M2(d-cam)2(bimb)2]n · 3.5nH2O (M = Mn for 1, Co for 2) and [Cd8(d-cam)8(bimb)4]n (3) (d-H2cam = d-camphor acid, bimb = 4,4'-bis(1-imidazolyl)biphenyl), solvothermally synthesized, exhibit structural diversity. The charming aspect of these frameworks is that compound 3 is the very first MOF-based sensor for quantitatively detecting three different types of analytes (metal ions, aromatic molecules, and pesticides). And also, both compounds 2 and 3 show rapid uptake and ready regeneration for methyl orange (MO) and can selectively bind MO over methylene blue (MB) with high MO/MB separation ratio.

  12. Superconductivity in heavily boron-doped silicon carbide

    Directory of Open Access Journals (Sweden)

    Markus Kriener, Takahiro Muranaka, Junya Kato, Zhi-An Ren, Jun Akimitsu and Yoshiteru Maeno

    2008-01-01

    Full Text Available The discoveries of superconductivity in heavily boron-doped diamond in 2004 and silicon in 2006 have renewed the interest in the superconducting state of semiconductors. Charge-carrier doping of wide-gap semiconductors leads to a metallic phase from which upon further doping superconductivity can emerge. Recently, we discovered superconductivity in a closely related system: heavily boron-doped silicon carbide. The sample used for that study consisted of cubic and hexagonal SiC phase fractions and hence this led to the question which of them participated in the superconductivity. Here we studied a hexagonal SiC sample, free from cubic SiC phase by means of x-ray diffraction, resistivity, and ac susceptibility.

  13. Chemical separation and ICP-AES determination of 22 metallic elements in U and Pu matrices using cyanex-923 extractant and studies on stripping of U and Pu.

    Science.gov (United States)

    Argekar, A A; Kulkarni, M J; Mathur, J N; Page, A G

    2002-03-11

    Comprehensive studies have been carried out on the extraction behavior of uranium and plutonium matrices using cyanex-923 extractant. The near total extraction of U/Pu and quantitative separation of 22 metallic elements at trace levels has been established using inductively coupled plasma-atomic emission spectrometry (ICP-AES). The studies carried out on back extraction of U/Pu from organic phase have established the near total recovery of these matrices into the aqueous phase using 1 M Na(2)CO(3) and saturated oxalic acid, respectively.

  14. Graphene: Carbon's superconducting footprint

    Science.gov (United States)

    Vafek, Oskar

    2012-02-01

    Graphene exhibits many extraordinary properties, but superconductivity isn't one of them. Two theoretical studies suggest that by decorating the surface of graphene with the right species of dopant atoms, or by using ionic liquid gating, superconductivity could yet be induced.

  15. Superconducting cavities for LEP

    CERN Multimedia

    1983-01-01

    Above: a 350 MHz superconducting accelerating cavity in niobium of the type envisaged for accelerating electrons and positrons in later phases of LEP. Below: a small 1 GHz cavity used for investigating the surface problems of superconducting niobium. Albert Insomby stays on the right. See Annual Report 1983 p. 51.

  16. Academic training: Applied superconductivity

    CERN Multimedia

    2007-01-01

    LECTURE SERIES 17, 18, 19 January from 11.00 to 12.00 hrs Council Room, Bldg 503 Applied Superconductivity : Theory, superconducting Materials and applications E. PALMIERI/INFN, Padova, Italy When hearing about persistent currents recirculating for several years in a superconducting loop without any appreciable decay, one realizes that we are dealing with a phenomenon which in nature is the closest known to the perpetual motion. Zero resistivity and perfect diamagnetism in Mercury at 4.2 K, the breakthrough during 75 years of several hundreds of superconducting materials, the revolution of the "liquid Nitrogen superconductivity"; the discovery of still a binary compound becoming superconducting at 40 K and the subsequent re-exploration of the already known superconducting materials: Nature discloses drop by drop its intimate secrets and nobody can exclude that the last final surprise must still come. After an overview of phenomenology and basic theory of superconductivity, the lectures for this a...

  17. [PHEMA/PEI]-Cu(II) based immobilized metal affinity chromatography cryogels: Application on the separation of IgG from human plasma.

    Science.gov (United States)

    Bakhshpour, Monireh; Derazshamshir, Ali; Bereli, Nilay; Elkak, Assem; Denizli, Adil

    2016-04-01

    The immobilized metal-affinity chromatography (IMAC) has gained significant interest as a widespread separation and purification tool for therapeutic proteins, nucleic acids and other biological molecules. The enormous potential of IMAC for proteins with natural surface exposed-histidine residues and for recombinant proteins with histidine clusters. Cryogels as monolithic materials have recently been proposed as promising chromatographic adsorbents for the separation of biomolecules in downstream processing. In the present study, IMAC cryogels have been synthesized and utilized for the adsorption and separation of immunoglobulin G (IgG) from IgG solution and whole human plasma. For this purpose, Cu(II)-ions were coupled to poly(hydroxyethyl methacrylate) PHEMA using poly(ethylene imine) (PEI) as the chelating ligand. In this study the cryogels formation optimized by the varied proportion of PEI from 1% to 15% along with different amounts of Cu (II) as chelating metal. The prepared cryogels were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The [PHEMA/PEI]-Cu(II) cryogels were assayed for their capability to bind the human IgG from aqueous solutions. The IMAC cryogels were found to have high affinity toward human IgG. The adsorption of human IgG was investigated onto the PHEMA/PEI cryogels with (10% PEI) and the concentration of Cu (II) varied as 10, 50, 100 and 150 mg/L. The separation of human IgG was achieved in one purification step at pH7.4. The maximum adsorption capacity was observed at the [PHEMA/PEI]-Cu(II) (10% PEI) with 72.28 mg/g of human IgG. The purification efficiency and human IgG purity were investigated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE).

  18. Effective solutions for monitoring the electrostatic separation of metal and plastic granular waste from electric and electronic equipment.

    Science.gov (United States)

    Senouci, Khouira; Medles, Karim; Dascalescu, Lucian

    2013-02-01

    The variability of the quantity and purity of the recovered materials is a serious drawback for the application of electrostatic separation technologies to the recycling of granular wastes. In a series of previous articles we have pointed out how capability and classic control chart concepts could be employed for better mastering the outcome of such processes. In the present work, the multiple exponentially weighted moving average (MEWMA) control chart is introduced and shown to be more effective than the Hotelling T2 chart for monitoring slow varying changes in the electrostatic separation of granular mixtures originating from electric and electronic equipment waste. The operation of the industrial process was simulated by using a laboratory roll-type electrostatic separator and granular samples resulting from shredded electric cable wastes. The 25 tests carried out during the observation phase enabled the calculation of the upper and lower control limits for the two control charts considered in the present study. The 11 additional tests that simulated the monitoring phase pointed out that the MEWMA chart is more effective than Hotelling's T(2) chart in detecting slow varying changes in the outcome of a process. As the reverse is true in the case of abrupt alterations of monitored process performances, simultaneous usage of the two control charts is strongly recommended. While this study focused on a specific electrostatic separation process, using the MEWMA chart together with the well known Hotelling's T(2) chart should be applicable to the statistical control of other complex processes in the field of waste processing.

  19. Exploring reverse shape selectivity and molecular sieving effect of metal-organic framework UIO-66 coated capillary column for gas chromatographic separation.

    Science.gov (United States)

    Chang, Na; Yan, Xiu-Ping

    2012-09-28

    Metal-organic frameworks (MOFs) which offer a variety of topologies, porous networks and high surface areas are promising and have potential for the applications of specific adsorption, isomerization, catalysis and separation. UIO-66 is the first MOF that has been observed to have reverse shape selectivity. However, such reverse shape selectivity of MOFs has never been explored for capillary gas chromatographic separation. Here we report the fabrication of MOF UIO-66 coated capillary column and exploration of the reverse shape selectivity and molecular sieving effect of such column for capillary gas chromatographic separation of alkane isomers and benzene homologues with excellent selectivity and precision. The adsorption enthalpies and entropies on the interaction between hydrocarbons and UIO-66 were measured to illustrate the energy effect on the separation of alkane isomers and benzene homologues on the UIO-66 coated capillary column. UIO-66 coated capillary column gave preferential retention of branched alkane isomers over their linear isomer, showing reverse shape selectivity, making UIO-66 coated capillary column attractive for capillary gas chromatographic separation of alkane isomers. iso-Propylbenzene (branched) eluted after n-propylbenzene on the UIO-66 coated capillary column again shows reverse shape selectivity. However, much bulkier 1,3,5-trimethylbenzene eluted earlier than n-propylbenzene and iso-propylbenzene on the UIO-66 coated capillary column, exhibiting molecular sieving effect. The combination of reverse shape selectivity with molecular sieving effect makes the UIO-66 coated capillary column promising for the separation of structural isomers. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. System efficiency for two-step metal oxide solar thermochemical hydrogen production – Part 2: Impact of gas heat recuperation and separation temperatures

    KAUST Repository

    Ehrhart, Brian D.

    2016-09-22

    The solar-to-hydrogen (STH) efficiency is calculated for various operating conditions for a two-step metal oxide solar thermochemical hydrogen production cycle using cerium(IV) oxide. An inert sweep gas was considered as the O2 removal method. Gas and solid heat recuperation effectiveness values were varied between 0 and 100% in order to determine the limits of the effect of these parameters. The temperature at which the inert gas is separated from oxygen for an open-loop and recycled system is varied. The hydrogen and water separation temperature was also varied and the effect on STH efficiency quantified. This study shows that gas heat recuperation is critical for high efficiency cycles, especially at conditions that require high steam and inert gas flowrates. A key area for future study is identified to be the development of ceramic heat exchangers for high temperature gas-gas heat exchange. Solid heat recuperation is more important at lower oxidation temperatures that favor temperature-swing redox processing, and the relative impact of this heat recuperation is muted if the heat can be used elsewhere in the system. A high separation temperature for the recycled inert gas has been shown to be beneficial, especially for cases of lower gas heat recuperation and increased inert gas flowrates. A higher water/hydrogen separation temperature is beneficial for most gas heat recuperation effectiveness values, though the overall impact on optimal system efficiency is relatively small for the values considered. © 2016 Hydrogen Energy Publications LLC.

  1. Normal zone propagation in adiabatic superconducting magnets: Pt. 1; Normal zone propagation velocity in superconducting composites

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Z.P.; Iwasa, Y. (Massachusetts Inst. of Tech., Cambridge, MA (United States). Francis Bitter National Magnet Lab. Massachusetts Inst. of Tech., Cambridge, MA (United States). Plasma Fusion Center)

    1991-09-01

    A normal zone propagation model has been developed for superconducting composites under adiabatic conditions. It is based on the Whetstone-Roos model, originally developed for normal zone propagation in adiabatic wires of unclad superconductor. The model takes into account the temperature and magnetic field dependent material properties, for both superconductor and matrix metal. Analytical results agree well with experimental data. (author).

  2. Superconducting gap anomaly in heavy fermion systems

    Indian Academy of Sciences (India)

    G C Rout; M S Ojha; S N Behera

    2008-04-01

    The heavy fermion system (HFS) is described by the periodic Anderson model (PAM), treating the Coulomb correlation between the -electrons in the mean-field Hartree-Fock approximation. Superconductivity is introduced by a BCS-type pairing term among the conduction electrons. Within this approximation the equation for the superconducting gap is derived, which depends on the effective position of the energy level of the -electrons relative to the Fermi level. The latter in turn depends on the occupation probability f of the -electrons. The gap equation is solved self-consistently with the equation for f; and their temperature dependences are studied for different positions of the bare -electron energy level, with respect to the Fermi level. The dependence of the superconducting gap on the hybridization leads to a re-entrant behaviour with increasing strength. The induced pairing between the -electrons and the pairing of mixed conduction and -electrons due to hybridization are also determined. The temperature dependence of the hybridization parameter, which characterizes the number of electrons with mixed character and represents the number of heavy electrons is studied. This number is shown to be small. The quasi-particle density of states (DOS) shows the existence of a pseudo-gap due to superconductivity and the signature of a hybridization gap at the Fermi level. For the choice of the model parameters, the DOS shows that the HFS is a metal and undergoes a transition to the gap-less superconducting state.

  3. Segmented superconducting tape having reduced AC losses and method of making

    Science.gov (United States)

    Foltyn, Stephen R.; Jia, Quanxi; Arendt, Paul N.; Holesinger, Terry G.; Wang, Haiyan

    2009-09-22

    A superconducting tape having reduced AC losses. The tape has a high temperature superconductor layer that is segmented. Disruptive strips, formed in one of the tape substrate, a buffer layer, and the superconducting layer create parallel discontinuities in the superconducting layer that separate the current-carrying elements of the superconducting layer into strips or filament-like structures. Segmentation of the current-carrying elements has the effect of reducing AC current losses. Methods of making such a superconducting tape and reducing AC losses in such tapes are also disclosed.

  4. Effect of Pressure on Magneto-Transport Properties in the Superconducting and Normal Phases of the Metallic Double Chain Compound Pr2Ba4Cu7O15-δ

    Science.gov (United States)

    Kuwabara, Masayoshi; Matsukawa, Michiaki; Sugawara, Keisuke; Taniguchi, Haruka; Matsushita, Akiyuki; Hagiwara, Makoto; Sano, Kazuhiro; Ōno, Yoshiaki; Sasaki, Takahiko

    2016-12-01

    To examine the electronic phase diagram of superconducting CuO double chains, we report the effect of external pressure on the magneto-transport properties in superconducting and non-superconducting polycrystalline samples of Pr2Ba4Cu7O15-δ at low temperatures (1.8-40 K) under various magnetic fields (up to 14 T). In the as-sintered non-superconducting sample, the magneto-resistance (MR) follows a power law of H3/2 at low temperatures, which is in no agreement with the H2 dependence of MR in the PrBa2Cu4O8 system. The negative pressure dependence of the superconducting phase is qualitatively consistent with a theoretical prediction on the basis of the Tomonaga-Luttinger liquid theory. The 48-h-reduced superconducting sample at ambient pressure exhibits no clear increase in MR for T > Tc,on = 26.5 K. In contrast, with the application of pressure to the superconducting sample, the MR effects reappear and are also well fitted by H3/2. The model of slightly warped Fermi surfaces explains not only the MR effect of the non-superconducting sample, but is also related to the reasons for the pressure-induced MR phenomena of the superconducting sample.

  5. Deterministic phase slips in mesoscopic superconducting rings

    Science.gov (United States)

    Petković, I.; Lollo, A.; Glazman, L. I.; Harris, J. G. E.

    2016-11-01

    The properties of one-dimensional superconductors are strongly influenced by topological fluctuations of the order parameter, known as phase slips, which cause the decay of persistent current in superconducting rings and the appearance of resistance in superconducting wires. Despite extensive work, quantitative studies of phase slips have been limited by uncertainty regarding the order parameter's free-energy landscape. Here we show detailed agreement between measurements of the persistent current in isolated flux-biased rings and Ginzburg-Landau theory over a wide range of temperature, magnetic field and ring size; this agreement provides a quantitative picture of the free-energy landscape. We also demonstrate that phase slips occur deterministically as the barrier separating two competing order parameter configurations vanishes. These results will enable studies of quantum and thermal phase slips in a well-characterized system and will provide access to outstanding questions regarding the nature of one-dimensional superconductivity.

  6. A metal-organic framework/α-alumina composite with a novel geometry for enhanced adsorptive separation.

    Science.gov (United States)

    Wang, Chenghong; Lee, Melanie; Liu, Xinlei; Wang, Bo; Paul Chen, J; Li, Kang

    2016-07-07

    The development of a metal-organic framework/α-alumina composite leads to a novel concept: efficient adsorption occurs within a plurality of radial micro-channels with no loss of the active adsorbents during the process. This composite can effectively remediate arsenic contaminated water producing potable water recovery, whereas the conventional fixed bed requires eight times the amount of active adsorbents to achieve a similar performance.

  7. Separation of inclusions from liquid metal contained in a triangle/square pipe by travelling magnetic field

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    By using plug flow and trajectory model, the elimination efficiency of the inclusions from liquid metals purifiedby travelling magnetic field (TMF) in either a triangle or a square pipe was analyzed theoretically. The ways to improvethe elimination efficiency were suggested. The results using different kinds of pipes were reciprocally compared. It is de-termined that by means of TMF to eliminate inclusions the efficiency is affected by the diameter of the inclusions, inwhich the inclusions can be removed most efficiently, is optimized

  8. Targeting high value metals in lithium-ion battery recycling via shredding and size-based separation.

    Science.gov (United States)

    Wang, Xue; Gaustad, Gabrielle; Babbitt, Callie W

    2016-05-01

    Development of lithium-ion battery recycling systems is a current focus of much research; however, significant research remains to optimize the process. One key area not studied is the utilization of mechanical pre-recycling steps to improve overall yield. This work proposes a pre-recycling process, including mechanical shredding and size-based sorting steps, with the goal of potential future scale-up to the industrial level. This pre-recycling process aims to achieve material segregation with a focus on the metallic portion and provide clear targets for subsequent recycling processes. The results show that contained metallic materials can be segregated into different size fractions at different levels. For example, for lithium cobalt oxide batteries, cobalt content has been improved from 35% by weight in the metallic portion before this pre-recycling process to 82% in the ultrafine (6mm). However, size fractions across multiple battery chemistries showed significant variability in material concentration. This finding indicates that sorting by cathode before pre-treatment could reduce the uncertainty of input materials and therefore improve the purity of output streams. Thus, battery labeling systems may be an important step towards implementation of any pre-recycling process.

  9. Induced spectral gap and pairing correlations from superconducting proximity effect

    Science.gov (United States)

    Chiu, Ching-Kai; Cole, William S.; Das Sarma, S.

    2016-09-01

    We theoretically consider superconducting proximity effect, using the Bogoliubov-de Gennes (BdG) theory, in heterostructure sandwich-type geometries involving a normal s -wave superconductor and a nonsuperconducting material with the proximity effect being driven by Cooper pairs tunneling from the superconducting slab to the nonsuperconducting slab. Applications of the superconducting proximity effect may rely on an induced spectral gap or induced pairing correlations without any spectral gap. We clarify that in a nonsuperconducting material the induced spectral gap and pairing correlations are independent physical quantities arising from the proximity effect. This is a crucial issue in proposals to create topological superconductivity through the proximity effect. Heterostructures of three-dimensional topological insulator (TI) slabs on conventional s -wave superconductor (SC) substrates provide a platform, with proximity-induced topological superconductivity expected to be observed on the "naked" top surface of a thin TI slab. We theoretically study the induced superconducting gap on this naked surface. In addition, we compare against the induced spectral gap in heterostructures of SC with a normal metal or a semiconductor with strong spin-orbit coupling and a Zeeman splitting potential (another promising platform for topological superconductivity). We find that for any model for the non-SC metal (including metallic TI) the induced spectral gap on the naked surface decays as L-3 as the thickness (L ) of the non-SC slab is increased in contrast to the slower 1 /L decay of the pairing correlations. Our distinction between proximity-induced spectral gap (with its faster spatial decay) and pairing correlation (with its slower spatial decay) has important implications for the currently active search for topological superconductivity and Majorana fermions in various superconducting heterostructures.

  10. Superconductivity of heavy fermions in the Kondo lattice model

    Energy Technology Data Exchange (ETDEWEB)

    Sykora, Steffen [IFW Dresden (Germany); Becker, Klaus W. [Institut fuer Theoretische Physik, Technische Universitaet Dresden (Germany)

    2015-07-01

    Understanding of the origin of superconductivity in strongly correlated electron systems is one of the basic unresolved problems in physics. Examples for such systems are the cuprates and also the heavy-fermion metals, which are compounds with 4f and 5f electrons. In all these materials the superconducting pairing interaction is often believed to be predominantly mediated by spin fluctuations and not by phonons as in normal metals. For the Kondo-lattice model we present results, which are derived within the Projective Renormalization Method (PRM). Based on a recent study of the one-particle spectral function for the normal state we first derive an effective Hamiltonian which describes heavy fermion quasiparticle bands close to the Fermi surface. An extension to the superconducting phase leads to d-wave solutions for the superconducting order parameter in agreement with recent STM measurements.

  11. Evaluation of a novel PTFE material for separation and preconcentration of trace levels of metal ions in sequential injection (SI) and sequential injection lab-on-valve (SI-LOV) systems interfaced with detection by ETAAS

    DEFF Research Database (Denmark)

    Long, Xiangbao; Chomchoei, Roongrat; Gała, Piotr

    The operational characteristics of a novel PTFE bead material, granular Algoflon®, used for separation and preconcentration of metal ions via adsorption of on-line generated non-charged metal complexes, were evaluated in a sequential injection (SI) system furnished with an external packed column...

  12. Superconductivity above 10 K in Non-Cuprate Oxides

    OpenAIRE

    Johnston, David C.

    2010-01-01

    Beginning in 1973, several non-cuprate transition metal and non-transition metal oxides were discovered with superconducting transition temperatures between 10 and 30 K. Retrospectives about these discoveries in spinel structure LiTi2O4 and perovskite structure (Ba,K)(Bi,Pb)O3 are given.

  13. Investigation of the usefulness of NTA, EDTA and DTPA in separation of some platinum metals on cellulose exchangers.

    Science.gov (United States)

    Brajter, K; Słonawska, K

    1980-09-01

    The possibility of using NTA, EDTA and DTPA as complexing agents for separation of some platinum group ions on cellulose ion-exchangers has been investigated. The greatest differences in the affinities of Pd(II) and Pt(IV) toward the cellulose ion-exchangers are obtained in the presence of DPTA, Cellex D (as ion-exchanger) in hydroxide form. The column separation of Pd(II) from Pt(IV), Rh(III) from Pd(II) and of a Rh(III)Pd(II)Pt(IV) mixture can be achieved with DPTA and chloride solutions. The method can be for determination of the components of RhPdPt alloys.

  14. Superconductivity in ZrCuxTe2

    Science.gov (United States)

    Baptista, Naiara; Grant, Ted; Renosto, Sergio; Fisck, Zack; Jefferson Machado, Antonio

    2012-02-01

    Layered transition metal dichalcogenides of the type MX2 (M is transition metal, X = S, Se, Te) have been studied for their electronic properties due to low dimensionality. In these materials each layer correspond to the hexagonal transition metal intercalated by two similar chalcogen sheets. In ZrTe2 the prototype structure is CdI2. The interaction of layers is weak as van der Walls bonding between chalcogen element (X). In general charge density wave and superconductivity coexist in these of materials. Indeed, various compounds of this material class exhibits this coexistence such as 2H-TaS2, 2H-NbS2 etc. Some results reported in literature about the electrical properties of ZrTe2 show that this material presents metallic behavior at a temperature interval from 4.0 K to 300 K. Thus, in this work we present results about intercalation of Cu in the ZrTe2 compound. The results suggest that the intercalation of Cu is able to induce superconductivity in this compound. The superconducting critical temperature close to 10.2 K is revealed through of magnetization and resistivity measurements. The x-ray result reveals a new compound, originating from Cu intercalation and crystallizes in the LiCrS2 prototype structure.

  15. Heat Dissipation of Resonant Absorption in Metal Nanoparticle-Polymer Films Described at Particle Separation Near Resonant Wavelength

    Directory of Open Access Journals (Sweden)

    Jeremy R. Dunklin

    2017-01-01

    Full Text Available Polymer films containing plasmonic nanostructures are of increasing interest for development of responsive energy, sensing, and therapeutic systems. The present work evaluates heat dissipated from power absorbed by resonant gold (Au nanoparticles (NP with negligible Rayleigh scattering cross sections randomly dispersed in polydimethylsiloxane (PDMS films. Finite element analysis (FEA of heat transport was coordinated with characterization of resonant absorption by Mie theory and coupled dipole approximation (CDA. At AuNP particle separation greater than resonant wavelength, correspondence was observed between measured and CDA-predicted optical absorption and FEA-derived power dissipation. At AuNP particle separation less than resonant wavelength, measured extinction increased relative to predicted values, while FEA-derived power dissipation remained comparable to CDA-predicted power absorption before lagging observed extinguished power at higher AuNP content and resulting particle separation. Effects of isolated particles, for example, scattering, and particle-particle interactions, for example, multiple scattering, aggregation on observed optothermal activity were evaluated. These complementary approaches to distinguish contributions to resonant heat dissipation from isolated particle absorption and interparticle interactions support design and adaptive control of thermoplasmonic materials for a variety of implementations.

  16. Prediction of superconductivity in Li-intercalated bilayer phosphorene

    Energy Technology Data Exchange (ETDEWEB)

    Huang, G. Q. [Department of Physics, Nanjing Normal University, Nanjing 210023 (China); National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Xing, Z. W., E-mail: zwxing@nju.edu.cn [National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Xing, D. Y. [National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Collaborative Innovation Center of Advanced Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China)

    2015-03-16

    It is shown that bilayer phosphorene can be transformed from a direct-gap semiconductor to a BCS superconductor by intercalating Li atoms. For the Li-intercalated bilayer phosphorene, we find that the electron occupation of Li-derived band is small and superconductivity is intrinsic. With increasing the intercalation of Li atoms, both increased metallicity and strong electron-phonon coupling are favorable for the enhancement of superconductivity. The obtained electron-phonon coupling λ can be larger than 1 and the superconducting temperature T{sub c} can be increased up to 16.5 K, suggesting that phosphorene may be a good candidate for a nanoscale superconductor.

  17. Direct Imaging of the Coexistence of Ferromagnetism and Superconductivity at the LaA1O3/SrTiO3 Interface

    Energy Technology Data Exchange (ETDEWEB)

    Bert, Julie

    2011-08-12

    LaAlO{sub 3} and SrTiO{sub 3} are insulating, nonmagnetic oxides, yet the interface between them exhibits a two-dimensional electron system with high electron mobility, superconductivity at low temperatures, and electric-field-tuned metal-insulator and superconductor-insulator phase transitions. Bulk magnetization and magnetoresistance measurements also suggest some form of magnetism depending on preparation conditions and suggest a tendency towards nanoscale electronic phase separation. Here we use local imaging of the magnetization and magnetic susceptibility to directly observe a landscape of ferromagnetism, paramagnetism, and superconductivity. We find submicron patches of ferromagnetism in a uniform background of paramagnetism, with a nonuniform, weak diamagnetic superconducting susceptibility at low temperature. These results demonstrate the existence of nanoscale phase separation as suggested by theoretical predictions based on nearly degenerate interface subbands associated with the Ti orbitals. The magnitude and temperature dependence of the paramagnetic response suggests that the vast majority of the electrons at the interface are localized, and do not contribute to transport measurements. In addition to the implications for magnetism, the existence of a 2D superconductor at an interface with highly broken inversion symmetry and a ferromagnetic landscape in the background suggests the potential for exotic superconducting phenomena.

  18. Study on separation of platinum group metals from high level liquid waste using macroporous (MOTDGA-TOA)/SiO{sub 2}-P silica-based absorbent

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Tatsuya [Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Japan Atomic Energy Agency, Tokai-mura Naka-gun, Ibarak319-1195 (Japan); Kim, Seong-Yun; Xu, Yuanlai; Hitomi, Keitaro [Cyclotron and Radioisotope Center, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578 (Japan); Ishii, Keizo [Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Nagaishi, Ryuji; Kimura, Takaumi [Japan Atomic Energy Agency, Tokai-mura Naka-gun, Ibarak319-1195 (Japan)

    2013-07-01

    The recovery of platinum group metals (PGMs) from high level liquid waste (HLLW) by macroporous silica-based adsorbent, (MOTDGA-TOA)/SiO{sub 2}-P has been developed by impregnating two extractants of N,N'-dimethyl-N,N'-di-n-octyl-thio-diglycolamide (MOTDGA) and tri-n-octylamine (TOA) into a silica/polymer composite support (SiO{sub 2}-P). The adsorption of Ru(III), Rh(III) and Pd(II) have been investigated in simulated HLLW by batch method. The adsorbent has shown good uptake property for Pd(II). In addition, the combined use of MOTDGA and TOA improved the adsorption of Ru(III) and Rh(III) better than the individual use of them. The usability of adsorbent in radiation fields was further confirmed by irradiation experiments. The adsorbent remained to have the uptake capability for PGMs over the absorbed dose of 100 kGy, corresponding with one really adsorbed by the adsorbent, and showed good retention capability for Pd(II) even at the absorbed dose of 800 kGy. The chromatographic separation of metal ions was demonstrated with the adsorbent packed column, there is no influence of Re(VII) (instead of Tc) on the excellent separation behavior of Pd(II). (authors)

  19. Adsorptive separation and photocatalytic degradation of methylene blue dye on titanate nanotube powders prepared by hydrothermal process using metal Ti particles as a precursor.

    Science.gov (United States)

    Hu, Keshui; Xiao, Xin; Cao, Xiufang; Hao, Rong; Zuo, Xiaoxi; Zhang, Xiaojing; Nan, Junmin

    2011-08-30

    Titanate nanotube powders (TNTPs) with the twofold removal ability, i.e. adsorptive separation and photocatalytic degradation, are synthesized under hydrothermal conditions using metal Ti particles as a precursor in the concentrated alkaline solution, and their morphology, structure, adsorptive and photocatalytic properties are investigated. Under hydrothermal conditions, the titanate nanotubes (TNTs) with pore diameter of 3-4nm are produced on the surface of metal Ti particles, and stacked together to form three-dimensional (3D) network with porous structure. The TNTPs synthesized in the autoclave at 130°C for 24h exhibits a maximum adsorption capability of about 197mg g(-1) in the neutral methylene blue (MB) solution (40mg L(-1)) within 90min, the adsorption process can be described by pseudo second-order kinetics model. Especially, in comparison with the adsorptive and the photocatalytic processes are performed in turn, about 50min can be saved through synchronously utilizing the double removal ability of TNTPs when the removal ratio of MB approaches 95% in MB solution (40mg L(-1)) at a solid-liquid (S/L) ratio of 1:8 under ultraviolet (UV) light irradiation. These 3D TNTPs with the twofold removal properties and easier separation ability for recycling use show promising prospect for the treatment of dye pollutants from wastewaters in future industrial application.

  20. Galaxy Pairs in the Sloan Digital Sky Survey - V. Tracing changes in star formation rate and metallicity out to separations of 80 kpc

    CERN Document Server

    Scudder, Jillian M; Torrey, Paul; Patton, David R; Mendel, J Trevor

    2012-01-01

    We present a sample of 1899 galaxies with a close companion taken from the SDSS DR7. The galaxy pairs are selected to have velocity differences < 300 km/s, projected separations (rp) < 80 kpc/h, mass ratios between 0.1 and 10, and robust measurements of star formation rates and gas-phase metallicities. We match the galaxies in total stellar mass, redshift, and local density to a set of 10 control galaxies per pair galaxy. For each pair galaxy we can therefore calculate the statistical change in star formation rate (SFR) and metallicity associated with the interaction process. Relative to the control sample, we find that galaxies in pairs show typical SFR enhancements that are, on average, 60% higher than the control sample at rp < 30 kpc/h. In addition, the pairs demonstrate more modest SFR enhancements of ~30% out to at least 80 kpc/h (the widest separations in our sample). Galaxies in both major and minor mergers show significant SFR enhancements at all rp, although the strongest starbursts (with S...

  1. Investigating the Materials Limits on Coherence in Superconducting Charge Qubits

    Science.gov (United States)

    2014-12-04

    mesoscopic effects in superconductors on the coherence of qubits and on losses in superconducting films , and comparing these to experiment. This...on the superconducting films themselves, or at the metal-substrate interfaces) was the main limitation on qubit lifetimes, which were then in the...quality. We also developed and tested the “vertical transmon” design, where the transmon capacitors are formed through the bulk thickness of the

  2. FROM THE HISTORY OF PHYSICS: Two classic experiments in superconductivity

    Science.gov (United States)

    Meĭlikhov, E. Z.

    1988-05-01

    Two experiments of I. K. Kikoin—the correlation between superconductivity and the galvanomagnetic properties of metals (1933), and the gyromagnetic effect in superconductors (1938)—which were carried out long before the appearance of the microscopic theory of superconductivity, anticipated two of its principal conclusions. Established were: 1) the determining role of electron-phonon interaction; 2) the orbital nature of diamagnetism in superconductors.

  3. Casimir Energy and Vacua vor Superconducting Ball in Supergravity

    CERN Document Server

    Burinskii, A

    2002-01-01

    Casimir energy for solid conducting ball is considered on the base of some finite models. One model is physical and built of a battery of parallel metallic plates. Two finite models are based on the Higgs model of superconductivity. One of them is supersymmetric and based on the Witten field model for superconducting strings. Treatment shows that contribution of Casimir energy can be very essential for superdence state in the neutron stars and nuclear matter.

  4. Gas adsorption/separation properties of metal directed self-assembly of two coordination polymers with 5-nitroisophthalate

    Energy Technology Data Exchange (ETDEWEB)

    Arıcı, Mürsel [Department of Chemistry, Faculty of Arts and Sciences, Eskişehir Osmangazi University, 26480 Eskişehir (Turkey); Yeşilel, Okan Zafer, E-mail: yesilel@ogu.edu.tr [Department of Chemistry, Faculty of Arts and Sciences, Eskişehir Osmangazi University, 26480 Eskişehir (Turkey); Keskin, Seda [Department of Chemical and Biological Engineering, Koç University, İstanbul (Turkey); Şahin, Onur [Scientific and Technological Research Application and Research Center, Sinop University, 57010 Sinop (Turkey)

    2014-02-15

    Two new coordination polymers, namely, [Co(µ-nip)(µ-bpe)]{sub n} (1) and [Zn(µ-nip)(µ-bpe)]{sub n} (2) (nip: 5-nitroisophthalate, bpe: 1,2-bis(4-pyridyl)ethane) were hydrothermally synthesized and structurally characterized by single crystal X-ray diffraction, IR spectroscopy, elemental analysis and thermal analysis. Moreover, atomically detailed simulation studies of complex 2 for CO{sub 2}/CH{sub 4} adsorption and separation were performed. Complex 1 consists of two dimensional (2D) (4,4) grid networks with the point symbol of 4{sup 4}.6{sup 2}. Complex 2 exhibits a 3-fold interpenetrating 3D framework with 6{sup 5}.8-dmp topology. Thermal properties of the complexes showed that both complexes were stable over 320 °C. Simulation studies demonstrated that complex 2 can separate CO{sub 2} from CH{sub 4} at low pressures at 273 K. - Graphical abstract: In this study, two new coordination polymers, namely, [Co(µ-nip)(µ-bpe)]{sub n} (1) and [Zn(µ-nip)(µ-bpe)]{sub n} (2) (nip: 5-nitroisophthalate, bpe: 1,2-bis(4-pyridyl)ethane) were hydrothermally synthesized and structurally characterized by single crystal X-ray diffraction, IR spectroscopy, elemental analysis and thermal analysis. Moreover, atomically detailed simulation studies of complex 2 for CO{sub 2}/CH{sub 4} adsorption and separation were performed. Complex 1 consists of two dimensional (2D) (4,4) grid networks with the point symbol of 4{sup 4}.6{sup 2}. Complex 2 exhibits a 3-fold interpenetrating 3D framework with 6{sup 5}.8-dmp topology. Simulation studies demonstrated that complex 2 can separate CO{sub 2} from CH{sub 4} at low pressures at 273 K. Display Omitted - Highlights: • Two new coordination polymers with 5-nitroisophthalate and 1,2-bis(4-pyridyl)ethane. • Atomically detailed simulation studies of the complexes. • Complex 2 can be proposed as molecular sieve to separate CO{sub 2} from CH{sub 4} at low pressures.

  5. Microporous Metal-Organic Framework Based on Ligand-Truncation Strategy with High Performance for Gas Adsorption and Separation.

    Science.gov (United States)

    Liu, Jianqiang; Wang, Wenjing; Luo, Zhidong; Li, Baohong; Yuan, Daqiang

    2017-09-05

    By using the ligand-truncation strategy, a microporous metal-organic framework (1) with high surface area was designedly synthesized. MOF 1 shows a new (4, 4)-connected net with a Schläfli symbol of (4(4).6(2))(4(3).6(2).8)2(4(2).8(2).10(2)) and exhibits a high H2 capture capacity (193 cm(3) g(-1) at 1 atm and 77 K) and selectivities for CO2 over N2 and CH4 at low pressure.

  6. Demonstration of Removal, Separation, and Recovery of Heavy Metals from Industrial Wastestreams Using Molecular Recognition Technology (MRT)

    Science.gov (United States)

    2002-11-01

    then covalently attached to solid supports such as silica or polyacrylate and the resulting products is trademarked as Superlig®. The applications...gal) Diethythiorea (lbs) Rodine-50 (gal Detergent (gal) Water 85.3 F Oz/G 0.53 Oz/G 0.14 F Oz/G 0.12 F Oz/G Balance Chromium Metal...the conversion factor may vary, i.e.: for silica supported Superlig® it is 0.45 kilograms/liter and for polyacrylates supported 0.21 kilograms/liter

  7. Proximity Effects and Nonequilibrium Superconductivity in Transition-Edge Sensors

    Science.gov (United States)

    Sadleir, John E.; Smith, Stephen J.; Robinson, Ian K.; Finkbeiner, Fred M.; Chervenak, James A.; Bandler, Simon R.; Eckart, Megan E.; Kilbourne, Caroline A.

    2011-01-01

    We have recently shown that normal-metal/superconductor (N/S) bilayer TESs (superconducting Transition-Edge Sensors) exhibit weak-link behavior.l Here we extend our understanding to include TESs with added noise-mitigating normal-metal structures (N structures). We find TESs with added Au structures also exhibit weak-link behavior as evidenced by exponential temperature dependence of the critical current and Josephson-like oscillations of the critical current with applied magnetic field. We explain our results in terms of an effect converse to the longitudinal proximity effect (LoPE) 1, the lateral inverse proximity effect (LaiPE), for which the order parameter in the N/S bilayer is reduced due to the neighboring N structures. Resistance and critical current measurements are presented as a function of temperature and magnetic field taken on square Mol Au bilayer TESs with lengths ranging from 8 to 130 {\\mu}m with and without added N structures. We observe the inverse proximity effect on the bilayer over in-plane distances many tens of microns and find the transition shifts to lower temperatures scale approximately as the inverse square of the in- plane N-structure separation distance, without appreciable broadening of the transition width. We also present evidence for nonequilbrium superconductivity and estimate a quasiparticle lifetime of 1.8 \\times 10-10 s for the bilayer. The LoPE model is also used to explain the increased conductivity at temperatures above the bilayer's steep resistive transition.

  8. Stability, sub-gap current, 1/f-noise, and elemental depth profiling of annealed Al:Mn-AlOX-Al normal metal-insulator-superconducting tunnel junctions

    Science.gov (United States)

    Julin, J. K.; Chaudhuri, S.; Laitinen, M.; Sajavaara, T.; Maasilta, I. J.

    2016-12-01

    In this paper we report a study of the effect of vacuum annealing at 400°C on the properties of normal metal-insulator-superconductor (NIS) tunnel junctions, with manganese doped aluminium (Al:Mn) as the normal metal, aluminum as the superconductor and amorphous aluminum oxide as the tunneling barrier (Al:Mn-AlOx-Al). The annealing treatment improves the stability of the junctions, increases their tunneling resistance and does not have a negative impact on the low-temperature current-voltage characteristics. The measured 1/f resistance noise of the junctions also changes after annealing, in the best case decreasing by over an order of magnitude. All these observations show that annealing is a viable route to improve NIS junction devices after the sample has been fabricated.

  9. The superconducting spin valve and triplet superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Garifullin, I.A., E-mail: ilgiz_garifullin@yahoo.com [Zavoisky Physical-Technical Institute, Kazan Scientific Center of Russian Academy of Sciences, 420029 Kazan (Russian Federation); Leksin, P.V.; Garif' yanov, N.N.; Kamashev, A.A. [Zavoisky Physical-Technical Institute, Kazan Scientific Center of Russian Academy of Sciences, 420029 Kazan (Russian Federation); Fominov, Ya.V. [L. D. Landau Institute for Theoretical Physics RAS, 119334 Moscow (Russian Federation); Moscow Institute of Physics and Technology, 141700 Dolgoprudny (Russian Federation); Schumann, J.; Krupskaya, Y.; Kataev, V.; Schmidt, O.G. [Leibniz Institute for Solid State and Materials Research IFW Dresden, D-01171 Dresden (Germany); Büchner, B. [Leibniz Institute for Solid State and Materials Research IFW Dresden, D-01171 Dresden (Germany); Institut für Festkörperphysik, Technische Universität Dresden, D-01062 Dresden (Germany)

    2015-01-01

    A review of our recent results on the spin valve effect is presented. We have used a theoretically proposed spin switch design F1/F2/S comprising a ferromagnetic bilayer (F1/F2) as a ferromagnetic component, and an ordinary superconductor (S) as the second interface component. Based on it we have prepared and studied in detail a set of multilayers CoO{sub x}/Fe1/Cu/Fe2/S (S=In or Pb). In these heterostructures we have realized for the first time a full spin switch effect for the superconducting current, have observed its sign-changing oscillating behavior as a function of the Fe2-layer thickness and finally have obtained direct evidence for the long-range triplet superconductivity arising due to noncollinearity of the magnetizations of the Fe1 and Fe2 layers. - Highlights: • We studied a spin switch design F1/F2/S. • We prepared a set of multilayers CoOx/Fe1/Cu/Fe2/S (S=In or Pb). • The full spin switch effect for the superconducting current was realized. • We observed its oscillating behavior as a function of the Fe2-layer thickness. • We obtained direct evidence for the long-range triplet superconductivity.

  10. Separation tests of heavy metals in samples of industrial wastes through flotation; Pruebas de separacion de metales pesados en muestras de residuos industriales mediante flotacion

    Energy Technology Data Exchange (ETDEWEB)

    Abrego L, J

    1995-12-15

    Samples of residual muds, taken at the exit of the filter-press of the water treatment plant of a galvanoplastics industry in Lerma, Estado de Mexico, its were prepared for its qualitative and quantitative analysis. Likewise, the residual waters of the cistern located at the end of the electrodeposition process, was subjected to qualitative chemical analysis for the neutron activation technique and to quantitative analysis by atomic absorption spectrometry. The samples were treated by a flotation process by means of the one which it was studied the heavy metals removal. The results show that the AP-845 collector is the one that better it fulfilled the objectives since, it solves the problem, unless by the copper that although their concentration in the residual waters drop a lot, it was not inside the standard. (Author)

  11. Separation of rhenium from molybdenum, tungsten, vanadium, platinum metals and other elements by reduction and solvent extraction.

    Science.gov (United States)

    Yatirajam, V; Kakkar, L R

    1970-08-01

    Reduction in 1 M H(2)SO(4) with liquid zinc amalgam and extraction with isopentanol from 3M H(2)SO(4), separates rhenium from almost all the interfering elements of importance in rhenium determination. The small amounts of Mo, U, Fe and Ru still accompanying rhenium are removed by the thiocyanate-pentyl acetate or the oxine-chloroform extraction. The method is simple, rapid and of very wide applicability. It is particularly useful in the determination of rhenium in various alloys and tungsten-containing samples.

  12. [PHEMA/PEI]–Cu(II) based immobilized metal affinity chromatography cryogels: Application on the separation of IgG from human plasma

    Energy Technology Data Exchange (ETDEWEB)

    Bakhshpour, Monireh; Derazshamshir, Ali; Bereli, Nilay [Department of Chemistry, Biochemistry Division, Hacettepe University, Ankara (Turkey); Elkak, Assem [Laboratory of “Valorisation des Ressources Naturelles et Produits de Santé (VRNPS)”, Doctoral School of Sciences and Technology, Lebanese University, Rafic Hariri University Campus, Hadath (Lebanon); Denizli, Adil, E-mail: denizli@hacettepe.edu [Department of Chemistry, Biochemistry Division, Hacettepe University, Ankara (Turkey)

    2016-04-01

    The immobilized metal-affinity chromatography (IMAC) has gained significant interest as a widespread separation and purification tool for therapeutic proteins, nucleic acids and other biological molecules. The enormous potential of IMAC for proteins with natural surface exposed-histidine residues and for recombinant proteins with histidine clusters. Cryogels as monolithic materials have recently been proposed as promising chromatographic adsorbents for the separation of biomolecules in downstream processing. In the present study, IMAC cryogels have been synthesized and utilized for the adsorption and separation of immunoglobulin G (IgG) from IgG solution and whole human plasma. For this purpose, Cu(II)-ions were coupled to poly(hydroxyethyl methacrylate) PHEMA using poly(ethylene imine) (PEI) as the chelating ligand. In this study the cryogels formation optimized by the varied proportion of PEI from 1% to 15% along with different amounts of Cu (II) as chelating metal. The prepared cryogels were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The [PHEMA/PEI]–Cu(II) cryogels were assayed for their capability to bind the human IgG from aqueous solutions. The IMAC cryogels were found to have high affinity toward human IgG. The adsorption of human IgG was investigated onto the PHEMA/PEI cryogels with (10% PEI) and the concentration of Cu (II) varied as 10, 50, 100 and 150 mg/L. The separation of human IgG was achieved in one purification step at pH 7.4. The maximum adsorption capacity was observed at the [PHEMA/PEI]–Cu(II) (10% PEI) with 72.28 mg/g of human IgG. The purification efficiency and human IgG purity were investigated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). - Highlights: • Cu(II)-ions were coupled to PHEMA using PEI as the chelating ligand. • Cu(II) chelated [PHEMA/PEI] cryogels for IgG separation were produced. • Maximum IgG adsorption capacity

  13. Tunneling in superconducting structures

    Science.gov (United States)

    Shukrinov, Yu. M.

    2010-12-01

    Here we review our results on the breakpoint features in the coupled system of IJJ obtained in the framework of the capacitively coupled Josephson junction model with diffusion current. A correspondence between the features in the current voltage characteristics (CVC) and the character of the charge oscillations in superconducting layers is demonstrated. Investigation of the correlations of superconducting currents in neighboring Josephson junctions and the charge correlations in neighboring superconducting layers reproduces the features in the CVC and gives a powerful method for the analysis of the CVC of coupled Josephson junctions. A new method for determination of the dissipation parameter is suggested.

  14. Combining field-amplified sample stacking with moving reaction boundary electrophoresis on a paper chip for the preconcentration and separation of metal ions.

    Science.gov (United States)

    Ouyang, Liangfei; Liu, Qian; Liang, Heng

    2017-02-01

    A common drawback of paper-based separation devices is their poor detection limit. In this study, we combined field-amplified sample stacking with moving reaction boundary electrophoresis on a paper chip with six array channels for the parallel separation and concentration of multiple samples. With a new hyphenated technique, the brown I2 from the Fe(3+) /I(-) oxidation-reduction reaction emerged near the boundary between the dilute ethylene diamine tetraacetic acid and potassium iodide and highly concentrated KCl solutions. For the separation and concentration of three components, Cr(3+) , Cu(2+) , and Fe(3+) , the Fe(3+) detection limit was improved at least 266-fold by comparing the hyphenated technique with moving reaction boundary electrophoresis. The detection limit of Fe(3+) was found to be as low as 0.34 ng (20 μM) on the paper chip. We also demonstrated the analysis of a real sample of four metal ions, with detection limits as follows: 0.16 μg Cr(3+) , 1.5 μg Ni(2+) , 0.64 μg Cu(2+) , and 1.5 μg Co(2+) . The synergy of field-amplified sample stacking and moving reaction boundary electrophoresis in the micron paper-based array channels dramatically improved the detection limit and throughput of paper-based electrophoresis.

  15. 2D superconductivity by ionic gating

    Science.gov (United States)

    Iwasa, Yoshi

    2D superconductivity is attracting a renewed interest due to the discoveries of new highly crystalline 2D superconductors in the past decade. Superconductivity at the oxide interfaces triggered by LaAlO3/SrTiO3 has become one of the promising routes for creation of new 2D superconductors. Also, the MBE grown metallic monolayers including FeSe are also offering a new platform of 2D superconductors. In the last two years, there appear a variety of monolayer/bilayer superconductors fabricated by CVD or mechanical exfoliation. Among these, electric field induced superconductivity by electric double layer transistor (EDLT) is a unique platform of 2D superconductivity, because of its ability of high density charge accumulation, and also because of the versatility in terms of materials, stemming from oxides to organics and layered chalcogenides. In this presentation, the following issues of electric filed induced superconductivity will be addressed; (1) Tunable carrier density, (2) Weak pinning, (3) Absence of inversion symmetry. (1) Since the sheet carrier density is quasi-continuously tunable from 0 to the order of 1014 cm-2, one is able to establish an electronic phase diagram of superconductivity, which will be compared with that of bulk superconductors. (2) The thickness of superconductivity can be estimated as 2 - 10 nm, dependent on materials, and is much smaller than the in-plane coherence length. Such a thin but low resistance at normal state results in extremely weak pinning beyond the dirty Boson model in the amorphous metallic films. (3) Due to the electric filed, the inversion symmetry is inherently broken in EDLT. This feature appears in the enhancement of Pauli limit of the upper critical field for the in-plane magnetic fields. In transition metal dichalcogenide with a substantial spin-orbit interactions, we were able to confirm the stabilization of Cooper pair due to its spin-valley locking. This work has been supported by Grant-in-Aid for Specially

  16. Superconductivity from insulating elements under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Katsuya

    2015-07-15

    Highlights: • Even insulating molecule can become metal and superconductor by pressure with relatively high T{sub c}. • The highest T{sub c} is observed in sulfur with 17 K at 160 GPa. • Hydrogen is the best candidate of the highest T{sub c} element. - Abstract: The insulating and superconducting states would seem to have very different characteristics. Can any insulator become a superconductor? One proven method, doping an insulating material with carriers, can create itinerant states inside the gap between the conduction and valence bands. Another method is to squeeze the structure by applying pressure. Pressure can expand the bandwidth and also narrow the energy band gap. So the first step to turn an insulator into a superconductor is to make it metallic. Here we review our experimental research and results on superconductivity induced by applying pressure to insulating molecular systems such as elemental molecules.

  17. Impact of Lewis base on chemical reactivity and separation efficiency for hydrated fourth-row transition metal (II) complexes: an ONIOM DFT/MM study.

    Science.gov (United States)

    He, Dingsheng; Ma, Ming

    2014-04-24

    In this paper, two-layer ONIOM combinations of high-level quantum mechanics (QM) and inexpensive molecular mechanics (MM) are successfully used to investigate the structural characters of metal (M, all the transition metals in the fourth period)-H2O-Lewis base (A(-)) complexes. Global and local descriptors of chemical reactivity and selectivity from conceptual density functional theory are employed to show the properties of the active complexes of M(H2O)2A2 and to study the effect of the Lewis base for the separation of transition metal ions. It is shown that chemical potential, hardness, electrophilicity, as well as the dual and multiphilic descriptors are adequate for characterizing the global and local reactivity trends of the M(H2O)2A2 complex. It is found that the reactivity is well localized at the metallic center in M(H2O)2A2 and the dual descriptor (ΔfM(r)) can also be used to characterize the directional attack of the electrophile and nucleophile except for the selectivity of the reaction. On the basis of the values of ωM and Δsk, and the sign of ΔfM(r), the selectivity of the nucleophilic reagent (R(-)) for M(II) in M(H2O)2A2 (from high to low) follows this order: Cu(II) > Ni(II) > Co(II) > Fe(II) ≫ Mn(II) > Zn(II) > Cr(II). The Lewis base (A(-)) improves chemical reactivity and selectivity because of changing the reaction path and forming an intermediate, which possesses the higher antibonding character and the larger HOMO/LUMO gap. NBO or AIMALL analysis and Frontier orbital theory results presented here provided more theoretical support for the above reactivity and selectivity studies.

  18. Polymer composites and porous materials prepared by thermally induced phase separation and polymer-metal hybrid methods

    Science.gov (United States)

    Yoon, Joonsung

    The primary objective of this research is to investigate the morphological and mechanical properties of composite materials and porous materials prepared by thermally induced phase separation. High melting crystallizable diluents were mixed with polymers so that the phase separation would be induced by the solidification of the diluents upon cooling. Theoretical phase diagrams were calculated using Flory-Huggins solution thermodynamics which show good agreement with the experimental results. Porous materials were prepared by the extraction of the crystallized diluents after cooling the mixtures (hexamethylbenzene/polyethylene and pyrene/polyethylene). Anisotropic structures show strong dependence on the identity of the diluents and the composition of the mixtures. Anisotropic crystal growth of the diluents was studied in terms of thermodynamics and kinetics using DSC, optical microscopy and SEM. Microstructures of the porous materials were explained in terms of supercooling and dendritic solidification. Dual functionality of the crystallizable diluents for composite materials was evaluated using isotactic polypropylene (iPP) and compatible diluents that crystallize upon cooling. The selected diluents form homogeneous mixtures with iPP at high temperature and lower the viscosity (improved processability), which undergo phase separation upon cooling to form solid particles that function as a toughening agent at room temperature. Tensile properties and morphology of the composites showed that organic crystalline particles have the similar effect as rigid particles to increase toughness; de-wetting between the particle and iPP matrix occurs at the early stage of deformation, followed by unhindered plastic flow that consumes significant amount of fracture energy. The effect of the diluents, however, strongly depends on the identity of the diluents that interact with the iPP during solidification step, which was demonstrated by comparing tetrabromobisphenol-A and

  19. Development and characterization of a metallic substrat for nanostructured membranes in the separation of gas mixtures; Entwicklung und Charakterisierung eines metallischen Substrats fuer nanostrukturierte Gastrennmembranen

    Energy Technology Data Exchange (ETDEWEB)

    Brands, Katharina

    2010-07-01

    In order to minimize the further increase of CO{sub 2}-content in the atmosphere, efforts are made to separate and store CO{sub 2} from exhaust gases of fossil power plants. Beside well-established separation techniques like chemical scrubber, the application of membrane technology is intensively investigated. One focus of this thesis is the development of metal supported substrates for microporous ceramic gas separation membranes, which are expected to have a higher mechanical stability than ceramic supported substrates. Starting with commercial porous steel substrates, interlayers are applied by wet powder spraying. For the interlayers the materials 1.4404-stainless steel and TiO{sub 2} or 1.4845-stainless steel and yttria stabilized zirconia (8YSZ) are chosen. The interlayers have to be defect-free, as minimal defects can deteriorate the membrane performance. By a subsequent mechanical treatment and an adjustment of the viscosity of the 8YSZ-suspension, the surface quality is considerably increased. At the same time the limits of the wet powder spraying process become obvious, as sporadic agglomerates, which are formed during the spraying process, cannot be totally avoided. The metal supported substrates are characterized regarding to the interaction between steel and ceramic, the roughness of the layers compared to polished ceramic substrates, the mechanical properties and the flow through the substrates. Furthermore microporous ceramic gas separation membranes are deposited on wet powder sprayed and dip coated substrates. The selectivity of these membranes is above Knudsen selectivity. The other focus of the thesis is the exposure of substrates and membranes to real flue gas conditions. Beside microporous ceramic membranes polymer membranes are analysed as a reference, which show a higher state of development compared to microporous ceramic membranes. For this purpose a test bed is built up in the EnBW ''Rheinhafendampfkraftwerk RDK 7&apos

  20. Formation cross-sections and chromatographic separation of protactinium isotopes formed in proton-irradiated thorium metal

    Energy Technology Data Exchange (ETDEWEB)

    Radchenko, Valery; Engle, Jonathan W.; Wilson, Justin J.; Maassen, Joel R.; Nortier, Meiring F.; Birnbaum, Eva R.; John, Kevin D.; Fassbender, Michael E. [Los Alamos National Laboratory, NM (United States)

    2016-08-01

    Targeted alpha therapy (TAT) is a treatment method of increasing interest to the clinical oncology community that utilizes α-emitting radionuclides conjugated to biomolecules for the selective killing of tumor cells. Proton irradiation of thorium generates a number of α-emitting radionuclides with therapeutic potential for application via TAT. In particular, the radionuclide {sup 230}Pa is formed via the {sup 232}Th(p, 3n) nuclear reaction and partially decays to {sup 230}U, an α emitter which has recently received attention as a possible therapy nuclide. In this study, we estimate production yields for {sup 230}Pa and other Pa isotopes from proton-irradiated thorium based on cross section measurements. We adopt existing methods for the chromatographic separation of protactinium isotopes from proton irradiated thorium matrices to combine and optimize them for effective fission product decontamination.