WorldWideScience

Sample records for superconducting layered systems

  1. A novel protection layer of superconducting microwave circuits toward a hybrid quantum system

    CERN Document Server

    Lee, Jongmin

    2014-01-01

    We propose a novel multilayer structure based on Bragg layers that can protect a superconducting microwave resonator from photons and blackbody radiation and have little effect on its quality factor. We also discuss a hybrid quantum system exploiting a superconducting microwave circuit and a two-color evanescent field atom trap, where surface-scattered photons and absorption-induced broadband blackbody radiation might deteriorate the system.

  2. Superconductivity in Layered Organic Metals

    Directory of Open Access Journals (Sweden)

    Jochen Wosnitza

    2012-04-01

    Full Text Available In this short review, I will give an overview on the current understanding of the superconductivity in quasi-two-dimensional organic metals. Thereby, I will focus on charge-transfer salts based on bis(ethylenedithiotetrathiafulvalene (BEDT-TTF or ET for short. In these materials, strong electronic correlations are clearly evident, resulting in unique phase diagrams. The layered crystallographic structure leads to highly anisotropic electronic as well as superconducting properties. The corresponding very high orbital critical field for in-plane magnetic-field alignment allows for the occurrence of the Fulde–Ferrell– Larkin–Ovchinnikov state as evidenced by thermodynamic measurements. The experimental picture on the nature of the superconducting state is still controversial with evidence both for unconventional as well as for BCS-like superconductivity.

  3. Superconductive articles including cerium oxide layer

    Science.gov (United States)

    Wu, Xin D.; Muenchausen, Ross E.

    1993-01-01

    A ceramic superconductor comprising a metal oxide substrate, a ceramic high temperature superconductive material, and a intermediate layer of a material having a cubic crystal structure, said layer situated between the substrate and the superconductive material is provided, and a structure for supporting a ceramic superconducting material is provided, said structure comprising a metal oxide substrate, and a layer situated over the surface of the substrate to substantially inhibit interdiffusion between the substrate and a ceramic superconducting material deposited upon said structure.

  4. Method for producing substrates for superconducting layers

    DEFF Research Database (Denmark)

    2013-01-01

    There is provided a method for producing a substrate (600) suitable for supporting an elongated superconducting element, wherein, e.g., a deformation process is utilized in order to form disruptive strips in a layered solid element, and where etching is used to form undercut volumes (330, 332......) between an upper layer (316) and a lower layer (303) of the layered solid element. Such relatively simple steps enable providing a substrate which may be turned into a superconducting structure, such as a superconducting tape, having reduced AC losses, since the undercut volumes (330, 332) may be useful...... for separating layers of material. In a further embodiment, there is placed a superconducting layer on top of the upper layer (316) and/or lower layer (303), so as to provide a superconducting structure with reduced AC losses....

  5. Superconductivity in layered binary silicides: A density functional theory study

    Science.gov (United States)

    Flores-Livas, José A.; Debord, Régis; Botti, Silvana; San Miguel, Alfonso; Pailhès, Stéphane; Marques, Miguel A. L.

    2011-11-01

    A class of metal disilicides (of the form XSi2, where X is a divalent metal) crystallizes in the EuGe2 structure, formed by hexagonal corrugated silicon planes intercalated with metal atoms. These compounds are superconducting like other layered superconductors, such as MgB2. Moreover, their properties can be easily tuned either by external pressure or by negative chemical pressure (i.e., by changing the metal), which makes disilicides an ideal testbed to study superconductivity in layered systems. In view of this, we present an extensive density functional theory study of the electronic and phonon band structures as well as the electron-phonon interaction of metal disilicides. Our results explain the variation of the superconducting transition temperature with pressure and the species of the intercalating atom, and allow us to predict superconductivity for compounds not yet synthesized belonging to this family.

  6. Superconducting nano-layer coating without insulator

    CERN Document Server

    Kubo, Takayuki

    2014-01-01

    The superconducting nano-layer coating without insulator layer is studied. The magnetic-field distribution and the forces acting on a vortex are derived. Using the derived forces, the vortex-penetration field and the lower critical magnetic field can be discussed. The vortex-penetration field is identical with the multilayer coating, but the lower critical magnetic field is not. Forces acting on a vortex from the boundary of two superconductors play an important role in evaluations of the free energy.

  7. Large Superconducting Magnet Systems

    CERN Document Server

    Védrine, P.

    2014-07-17

    The increase of energy in accelerators over the past decades has led to the design of superconducting magnets for both accelerators and the associated detectors. The use of Nb−Ti superconducting materials allows an increase in the dipole field by up to 10 T compared with the maximum field of 2 T in a conventional magnet. The field bending of the particles in the detectors and generated by the magnets can also be increased. New materials, such as Nb3Sn and high temperature superconductor (HTS) conductors, can open the way to higher fields, in the range 13–20 T. The latest generations of fusion machines producing hot plasma also use large superconducting magnet systems.

  8. Topological superconductivity in bilayer Rashba system.

    Science.gov (United States)

    Nakosai, Sho; Tanaka, Yukio; Nagaosa, Naoto

    2012-04-06

    We theoretically study a possible topological superconductivity in the interacting two layers of Rashba systems, which can be fabricated by the heterostructures of semiconductors and oxides. The hybridization, which induces the gap in the single particle dispersion, and the electron-electron interaction between the two layers leads to the novel phase diagram of the superconductivity. It is found that the topological superconductivity without breaking time-reversal symmetry is realized when (i) the Fermi energy is within the hybridization gap, and (ii) the interlayer interaction is repulsive, both of which can be satisfied in realistic systems. Edge channels are studied in a tight-binding model numerically, and the several predictions on experiments are also given.

  9. Cryogenic Systems and Superconductive Power

    Science.gov (United States)

    The report defines, investigates, and experimentally evaluates the key elements of a representative crogenic turborefrigerator subsystem suitable for providing reliable long-lived cryogenic refrigeration for a superconductive ship propulsion system.

  10. Method and system for controlling chemical reactions between superconductors and metals in superconducting cables

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Tengming

    2016-11-15

    A method, system, and apparatus for fabricating a high-strength Superconducting cable comprises pre-oxidizing at least one high-strength alloy wire, coating at least one Superconducting wire with a protective layer, and winding the high-strength alloy wire and the Superconducting wire to form a high-strength Superconducting cable.

  11. Magnetism in structures with ferromagnetic and superconducting layers

    Energy Technology Data Exchange (ETDEWEB)

    Zhaketov, V. D.; Nikitenko, Yu. V., E-mail: nikiten@nf.jinr.ru [Joint Institute for Nuclear Research (Russian Federation); Radu, F. [Helmholtz-Zentrum Berlin für Materialen un Energie (Germany); Petrenko, A. V. [Joint Institute for Nuclear Research (Russian Federation); Csik, A. [MTA Atomki, Institute for Nuclear Research (Hungary); Borisov, M. M.; Mukhamedzhanov, E. Kh. [Russian Research Centre Kurchatov Institute (Russian Federation); Aksenov, V. L. [Russian Research Centre Kurchatov Institute, Konstantinov St. Petersburg Nuclear Physics Institute (Russian Federation)

    2017-01-15

    The influence of superconductivity on ferromagnetism in the layered Ta/V/Fe{sub 1–x}V{sub x}/V/Fe{sub 1–x}V{sub x}/Nb/Si structures consisting of ferromagnetic and superconducting layers is studied using polarized neutron reflection and scattering. It is experimentally shown that magnetic structures with linear sizes from 5 nm to 30 μm are formed in these layered structures at low temperatures. The magnetization of the magnetic structures is suppressed by superconductivity at temperatures below the superconducting transition temperatures in the V and Nb layers. The magnetic states of the structures are shown to undergo relaxation over a wide magnetic-field range, which is caused by changes in the states of clusters, domains, and Abrikosov vortices.

  12. Buffer layers for REBCO films for use in superconducting devices

    Science.gov (United States)

    Goyal, Amit; Wee, Sung-Hun

    2014-06-10

    A superconducting article includes a substrate having a biaxially textured surface. A biaxially textured buffer layer, which can be a cap layer, is supported by the substrate. The buffer layer includes a double perovskite of the formula A.sub.2B'B''O.sub.6, where A is rare earth or alkaline earth metal and B' and B'' are different transition metal cations. A biaxially textured superconductor layer is deposited so as to be supported by the buffer layer. A method of making a superconducting article is also disclosed.

  13. Superconductivity in One-atomic-layer Metal Films

    Institute of Scientific and Technical Information of China (English)

    ZHANG Tong; CHEN Xi; WANG Yayu; LIU Ying; LIN Haiqing; JIA Jinfeng; XUE Qikun; CHENG Peng; LI Wenjuan; SUN Yujie; WANG Guang; ZHU Xicgang; HE Ke; WANG Lili; MA Xucun

    2011-01-01

    @@ Superconductivity is a peculiar quantum phenomenon which originates from the pairing of conduction electrons, followed by phase coherent condensation.Since the discovery by K.Onnes in 1911, superconductivity has been one of the hottest topics in physics for an entire century, and still attracts people's great interest.One of the intriguing issues is how superconductivity appears in low dimensional system where quantum size effect and surface/interface effect that large bulk material doesn't have may become crucial.

  14. Superconductivity in One-atomic-layer Metal Films

    Institute of Scientific and Technical Information of China (English)

    ZHANG Tong; CHENG Peng; LI Wenjuan; SUN Yujie; WANG Guang; ZHU Xiegang; HE Ke; WANG Lili; MA Xucun; CHEN Xi; WANG Yayu; LIU Ying; LIN Haiqing; JIA Jinfeng; XUE Qikun

    2011-01-01

    Superconductivity is a peculiar quantum phenomenon which originates from the pairing of conduction electrons, tbllowed by phase coherent condensation, Since the discovery by K. Onnes in 1911, superconductivity has been one of the hottest topics in physics for an entire century, and still attracts people's great interest. One of the intriguing issues is how superconductivity appears in low dimensional system where quantum size effect and surface/interface effect that large bulk material doesn't have may become crucial.

  15. Superconductivity in Electric Double Layer Capacitor under Pressure

    Science.gov (United States)

    McCann, Duncan; Misek, Martin; Kamenev, Konstantin; Huxley, Andrew

    2015-03-01

    Chemical doping generally provides the most common method for tuning into the superconducting state of a material yet can be difficult to control and also potentially introduces structural disorder complicating the underlying physics. Electric Double Layer devices however provide a means to electrostatically dope materials with high electric fields allowing continuous tuning of a 2D superconducting state thus avoiding such issues. One such device is the Electric Double Layer Capacitor which can detect the onset of superconductivity through AC magnetisation measurements. We make use of a similar device in an attempt to electrostatically dope and tune the superconductivity in the cuprate compound La1.93Sr0.07CuO4 as well as investigating whether application of pressure improves its efficiency.

  16. Electronic origin of high-temperature superconductivity in single-layer FeSe superconductor.

    Science.gov (United States)

    Liu, Defa; Zhang, Wenhao; Mou, Daixiang; He, Junfeng; Ou, Yun-Bo; Wang, Qing-Yan; Li, Zhi; Wang, Lili; Zhao, Lin; He, Shaolong; Peng, Yingying; Liu, Xu; Chen, Chaoyu; Yu, Li; Liu, Guodong; Dong, Xiaoli; Zhang, Jun; Chen, Chuangtian; Xu, Zuyan; Hu, Jiangping; Chen, Xi; Ma, Xucun; Xue, Qikun; Zhou, X J

    2012-07-03

    The recent discovery of high-temperature superconductivity in iron-based compounds has attracted much attention. How to further increase the superconducting transition temperature (T(c)) and how to understand the superconductivity mechanism are two prominent issues facing the current study of iron-based superconductors. The latest report of high-T(c) superconductivity in a single-layer FeSe is therefore both surprising and significant. Here we present investigations of the electronic structure and superconducting gap of the single-layer FeSe superconductor. Its Fermi surface is distinct from other iron-based superconductors, consisting only of electron-like pockets near the zone corner without indication of any Fermi surface around the zone centre. Nearly isotropic superconducting gap is observed in this strictly two-dimensional system. The temperature dependence of the superconducting gap gives a transition temperature T(c)~ 55 K. These results have established a clear case that such a simple electronic structure is compatible with high-T(c) superconductivity in iron-based superconductors.

  17. Method for Producing Substrates for Superconducting Layers

    DEFF Research Database (Denmark)

    2015-01-01

    There is provided a method for producing a substrate suitable for supporting an elongated superconducting element, wherein one or more elongated strips of masking material are placed on a solid element (202) so as to form one or more exposed elongated areas being delimited on one or two sides...... by elongated strip of masking material, and placing filling material on the solid element so that each exposed elongated area within the one or more exposed elongated areas is covered by a portion of filling material (318a-c) where each portion of filling material also covers at least a portion of the adjacent...... the portion of filling material and the solid element. The method may further comprise placing buffer material (640) and or superconducting material (642, 644, 646)) on the substrate, so as to provide a superconducting structure (601) with reduced AC losses....

  18. Magnetic order close to superconductivity in the iron-based layered LaO1-xFxFeAs systems.

    Science.gov (United States)

    de la Cruz, Clarina; Huang, Q; Lynn, J W; Li, Jiying; Ratcliff, W; Zarestky, J L; Mook, H A; Chen, G F; Luo, J L; Wang, N L; Dai, Pengcheng

    2008-06-12

    Following the discovery of long-range antiferromagnetic order in the parent compounds of high-transition-temperature (high-T(c)) copper oxides, there have been efforts to understand the role of magnetism in the superconductivity that occurs when mobile 'electrons' or 'holes' are doped into the antiferromagnetic parent compounds. Superconductivity in the newly discovered rare-earth iron-based oxide systems ROFeAs (R, rare-earth metal) also arises from either electron or hole doping of their non-superconducting parent compounds. The parent material LaOFeAs is metallic but shows anomalies near 150 K in both resistivity and d.c. magnetic susceptibility. Although optical conductivity and theoretical calculations suggest that LaOFeAs exhibits a spin-density-wave (SDW) instability that is suppressed by doping with electrons to induce superconductivity, there has been no direct evidence of SDW order. Here we report neutron-scattering experiments that demonstrate that LaOFeAs undergoes an abrupt structural distortion below 155 K, changing the symmetry from tetragonal (space group P4/nmm) to monoclinic (space group P112/n) at low temperatures, and then, at approximately 137 K, develops long-range SDW-type antiferromagnetic order with a small moment but simple magnetic structure. Doping the system with fluorine suppresses both the magnetic order and the structural distortion in favour of superconductivity. Therefore, like high-T(c) copper oxides, the superconducting regime in these iron-based materials occurs in close proximity to a long-range-ordered antiferromagnetic ground state.

  19. Magnetic order close to superconductivity in the iron-based layered LaO1-xFxFeAs systems

    Energy Technology Data Exchange (ETDEWEB)

    de la Cruz, Clarina [University of Tennessee, Knoxville (UTK); Huang, Q. [National Institute of Standards and Technology (NIST); Lynn, J. W. [National Institute of Standards and Technology (NIST); Li, Jiying [ORNL; RatcliffIII, W [National Institute of Standards and Technology (NIST); Zarestky, Jerel L. [Ames Laboratory; Mook Jr, Herbert A [ORNL; Chen, G. F, [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics; Luo, J. L. [Chinese Academy of Sciences; Wang, N. L. [Chinese Academy of Sciences; Dai, Pengcheng [ORNL

    2008-01-01

    Since the discovery of long-range antiferromagnetic (AF) order in the parent compounds of high-transition temperature (high-Tc) copper oxides,1,2 there have been tremendous efforts to understand the role of magnetism in the superconducting mechanism because superconductivity occurs when mobile electrons or holes are doped into the AF parent compounds. Much like high-Tc copper oxides, superconductivity in the newly discovered the rare-earth (R) ironbased oxide systems [ROFeAs] are derived from either electron3,4,5,6,7 or hole 8 doping of their nonsuperconducting parent compounds. The parent (nonsuperconducting)LaOFeAs material is metallic but shows anomalies near 150 K in both resistivity and dc magnetic susceptibility3. While optical conductivity and theoretical calculations suggest that LaOFeAs exhibits a spin-density-wave(SDW)instability that is suppressed by doping electrons to form superconductivity9, there has been no direct evidence of SDW order. Here we use neutron scattering to demonstrate that LaOFeAs undergoes an abrupt structural distortion below ~150 K, changing the symmetry from tetragonal (space group P4/nmm) to monoclinic (space group P112/n) at low temperatures, and then followed by the development of long range SDW-type AF order at ~137 K with a small moment but simple magnetic structure9. Doping the system with flourine suppresses both the magnetic order and structural distortion in favor of superconductivity. Therefore, much like high-Tc copper oxides, the superconducting regime in these Fe-based materials occurs in close proximity to a long-range ordered AF ground state.

  20. Magnetic Exchange Between Superconducting and Ferromagnetic Oxide Layers

    Science.gov (United States)

    Giblin, Sean; Taylor, Jon; Duffy, Jon; Dugdale, Stephen; Nakamura, T.; Santamaria, Jacobo

    2012-02-01

    The origins of high temperature superconductivity and the rich phase diagrams in complex oxides are still a matter of contention that have stimulated many novel experimental studies and observations. Recently the improvement of layer by layer growth techniques of thin films has enabled investigations of both bulk and surface properties. For most common superconductors the order parameter is thought to be antagonistic to that of the exchange mechanism in ferromagnets. Accurately grown thin fllms have enabled these competing interactions to be probed experimentally. In particular, the growth of epitaxial oxide layers, with well-characterized atomically flat interfaces, consisting of superconducting layers of YBa2Cu3O7 (YBCO) and lattice-matched ferromagnetic La2/3Ca1/3MnO3 (LCMO) has flourished. Using XMCD we demonstrate that the known superexchange between Mn and Cu across the YBCO/LCMO is modified when an apparent critical thickness of the superconducting layer is reduced. All samples show an apparent exchange below the superconducting transition but above it is dependent on the YBCO thickness. Possible origins of this behaviour will be discussed.

  1. Imprinting superconducting vortex footsteps in a magnetic layer.

    Science.gov (United States)

    Brisbois, Jérémy; Motta, Maycon; Avila, Jonathan I; Shaw, Gorky; Devillers, Thibaut; Dempsey, Nora M; Veerapandian, Savita K P; Colson, Pierre; Vanderheyden, Benoît; Vanderbemden, Philippe; Ortiz, Wilson A; Nguyen, Ngoc Duy; Kramer, Roman B G; Silhanek, Alejandro V

    2016-06-06

    Local polarization of a magnetic layer, a well-known method for storing information, has found its place in numerous applications such as the popular magnetic drawing board toy or the widespread credit cards and computer hard drives. Here we experimentally show that a similar principle can be applied for imprinting the trajectory of quantum units of flux (vortices), travelling in a superconducting film (Nb), into a soft magnetic layer of permalloy (Py). In full analogy with the magnetic drawing board, vortices act as tiny magnetic scribers leaving a wake of polarized magnetic media in the Py board. The mutual interaction between superconducting vortices and ferromagnetic domains has been investigated by the magneto-optical imaging technique. For thick Py layers, the stripe magnetic domain pattern guides both the smooth magnetic flux penetration as well as the abrupt vortex avalanches in the Nb film. It is however in thin Py layers without stripe domains where superconducting vortices leave the clearest imprints of locally polarized magnetic moment along their paths. In all cases, we observe that the flux is delayed at the border of the magnetic layer. Our findings open the quest for optimizing magnetic recording of superconducting vortex trajectories.

  2. Magnetotransport in spin-valve systems with amorphous magnetic and superconducting partial layers; Magnetotransport in Spinventil-Systemen mit amorphen magnetischen und supraleitenden Teilschichten

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, Roland Johannes

    2006-04-27

    The first part of this work deals with the fabrication and characterisation of spin valves with an amorphous FeB layer acting as a weak ferromagnet embedded into the structure. In the second part of this work ferromagnet/superconductor hybrid structures are fabricated and the relevant magnetic field dependent transport phenomena are analyzed. The interlayer of a conventional spin valve was replaced by a superconducting niobium layer. Small applied fields close to the coercivity field of the involved ferromagnets - and thus far below the critical magnetic field of the superconductor - affected the critical temperature of the niobium layer. Measurements of the field dependent resistance and the critical temperature of a FM/SC/FMsystem showed a local maximum in the T{sub c}(H)- and the R(H)-curve. (orig.)

  3. Embedding dynamical mean-field theory for superconductivity in layered materials and heterostructures

    Science.gov (United States)

    Petocchi, Francesco; Capone, Massimo

    2016-06-01

    We study layered systems and heterostructures of s -wave superconductors by means of a suitable generalization of dynamical mean-field theory. In order to reduce the computational effort, we consider an embedding scheme in which a relatively small number of active layers is embedded in an effective potential accounting for the effect of the rest of the system. We introduce a feedback of the active layers on the embedding potential that improves on previous approaches and essentially eliminates the effects of the finiteness of the active slab allowing for cheap computation of very large systems. We extend the method to the superconducting state, and we benchmark the approach by means of simple paradigmatic examples showing some examples on how an interface affects the superconducting properties. As examples, we show that superconductivity can penetrate from an intermediate coupling superconductor into a weaker coupling one for around ten layers, and that the first two layers of a system with repulsive interaction can turn superconducting by proximity effects even when charge redistribution is inhibited.

  4. PREFACE: Superconductivity in ultrathin films and nanoscale systems Superconductivity in ultrathin films and nanoscale systems

    Science.gov (United States)

    Bianconi, Antonio; Bose, Sangita; Garcia-Garcia, Antonio Miguel

    2012-12-01

    systems. In addition, the role of thermodynamic fluctuations on superconducting properties has been extensively studied in the context of nanoparticles and nanowires both experimentally and theoretically. In the past decade, a lot of work has been initiated in the area of interface superconductivity where different techniques have been demonstrated to tune Tc. Although the progress in this field has deepened our understanding of nanoscale superconductors, there are several open and key questions which need to be addressed. Some of these are: (1) can superconductivity be enhanced and Tc increased in nanostructures with respect to the bulk limit and if so, how can it be controlled? (2) What are the theoretical and experimental limits for the enhancement and control of superconductivity? (3) Can the phenomena identified in conventional nanostructures shed light on phenomena in high Tc superconductors and vice versa? (4) How will the new fundamental physics of superconductivity at the nanoscale promote advances in nanotechnology applications and vice versa? The papers in this focus section reflect the advances made in this field, in particular in nanowires and nanofilms, but also attempt to answer some of the key open questions outlined above. The theoretical papers explore unconventional quantum phenomena such as the role of confinement in the dynamics of single Cooper pairs in isolated grains [1] and Fano resonances in superconducting gaps in multi-condensate superconductors near a 2.5 Lifshitz transition [2]. Here a new emerging class of quantum phenomena of fundamental physics appear at the Bose-BCS crossover in multi-condensate superconductors [2]. Nanosize effects can now be manipulated by controlling defects in layered oxides [3]. A new approach is provided by controlling the self-organization of oxygen interstitials in layered copper oxides that show an intrinsic nanoscale phase separation [4]. In this case a non-trivial distribution of superconducting nanograins

  5. Downsized superconducting magnetic energy storage systems

    Science.gov (United States)

    Palmer, David N.

    Scaled-down superconductive magnetic energy storage systems (DSMES) and superconductive magnetic energy power sources (SMEPS) are proposed for residential, commercial/retail, industrial off-peak and critical services, telephone and other communication systems, computer operations, power back-up/energy storages, power sources for space stations, and in-field military logistics/communication systems. Recent advances in high-Tc superconducting materials technology are analyzed. DSMES/SMEPS concepts are presented, and design, materials, and systems requirements are discussed. Problems ar identified, and possible solutions are offered. Comparisons are made with mechanical and primary and secondary energy storage and conversion systems.

  6. Suppression of superconductivity in a single Pb layer on Ag/Si(111)

    Energy Technology Data Exchange (ETDEWEB)

    Leon-Vanegas, Augusto; Kirschner, Juergen [Max Plank Instituet fuer Mikrostukturphysik (Germany); Martin Luther Univeristaet, Halle-Wittenberg (Germany); Caminale, Michael; Stepniak, Agnieszka; Oka, Hirofumi; Sanna, Antonio; Linscheid, Andreas; Sander, Dirk [Max Plank Instituet fuer Mikrostukturphysik (Germany)

    2015-07-01

    Recently, superconductivity was reported in a single layer of Pb on Si(111) with a critical temperature of 1.83 K. It has been proposed that the interaction of Pb with the Si substrate provides the electron phonon coupling to support superconductivity in this system. We have used a {sup 3}He-cooled STM with a vector magnetic field to study the effect of insertion of a Ag interlayer on the superconducting properties of a single Pb layer on Si(111). In contrast to the experiments on Pb/Si(111), the differential conductance of Pb/Ag/Si(111) does not show a gap indicative of superconductivity even at the lowest experimental temperature of 0.38 K. We ascribe this to the suppression of superconductivity. This result is explained by means of ab-initio calculations, showing that the effect of a chemical hybridization between Pb and Ag/Si occurring at the Fermi level dramatically reduces the strength of the electron phonon coupling. This contrasts with the case of Pb/Si(111), where no overlap between Pb and Si electronic states at the Fermi level is found in the calculations.

  7. High Temperature Superconducting Maglev Measurement System

    OpenAIRE

    Wang, Jia-Su; Wang, Su-Yu

    2010-01-01

    Three high temperature superconducting (HTS) Maglev measurement systems were successfully developed in the Applied Superconductivity Laboratory (ASCLab) of Southwest Jiaotong University, P. R. China. These systems include liquid nitrogen vessel, Permanent Magnet Guideway (PMG), data collection and processing, mechanical drive and Autocontrol features. This chapter described the three different measuring systems along with their theory of operations and workflow. The SCML-01 HTS Maglev measure...

  8. Superconducting magnet system for PERC

    Energy Technology Data Exchange (ETDEWEB)

    Drescher, Carmen [Physikalisches Institut, Universitaet Heidelberg (Germany); Collaboration: PERC-Collaboration

    2012-07-01

    The new PERC (Proton Electron Radiation Channel) instrument will be an extremely bright and versatile source of neutron decay products. It will feed several novel precision experiments of spectra and correlation measurements in neutron decay. Its main component is a more than 11 m long superconducting magnet system. The neutron decay volume is located inside an 8 m long neutron guide in a strong longitudinal magnetic field of 1.5 T. A variable magnetic barrier of 3 T to 6 T serves to precisely limit the phase space of the emerging electrons and protons to control systematic errors on the 10{sup -4}level. The instrument is currently under development and will be installed at the neutron-beamline Mephisto at the FRM II, Garching. In this talk we give an overview on the special characteristics and advantages of PERC's field design. We show that with our design we can prevent magnetic traps in magnetic field and achieve a clean separation of neutrons and decay-products.

  9. Charging of Superconducting Layers and Novel Type of Hysteresis in Coupled Josephson Junctions

    OpenAIRE

    Shukrinov, Yu M.; Gaafar, Ma. A.

    2011-01-01

    A manifestation of a novel type of hysteresis related to the parametric resonance in the system of coupled Josephson junctions is demonstrated. Opposite to McCumber and Steward hysteresis, we find that the width of this hysteresis is inversely proportional to the McCumber parameter and depends also on coupling between junctions and the boundary conditions. An investigation of time dependence of the electric charge in superconducting layers allow us to explain the origin of this hysteresis by ...

  10. Superconducting linear accelerator system for NSC

    Indian Academy of Sciences (India)

    P N Prakash; T S Datta; B P Ajith Kumar; J Antony; P Barua; J Chacko; A Choudhury; G K Chadhari; S Ghosh; S Kar; S A Krishnan; Manoj Kumar; Rajesh Kumar; A Mandal; D S Mathuria; R S Meena; R Mehta; K K Mistri; A Pandey; M V Suresh Babu; B K Sahu; A Sarkar; S S K Sonti; A Rai; S Venkatramanan; J Zacharias; R K Bhowmik; A Roy

    2002-11-01

    This paper reports the construction of a superconducting linear accelerator as a booster to the 15 UD Pelletron accelerator at Nuclear Science Centre, New Delhi. The LINAC will use superconducting niobium quarter wave resonators as the accelerating element. Construction of the linear accelerator has progressed sufficiently. Details of the entire accelerator system including the cryogenics facility, RF electronics development, facilities for fabricating niobium resonators indigenously, and present status of the project are presented.

  11. Superconducting composite with multilayer patterns and multiple buffer layers

    Science.gov (United States)

    Wu, Xin D.; Muenchausen, Ross E.

    1993-01-01

    An article of manufacture including a substrate, a patterned interlayer of a material selected from the group consisting of magnesium oxide, barium-titanium oxide or barium-zirconium oxide, the patterned interlayer material overcoated with a secondary interlayer material of yttria-stabilized zirconia or magnesium-aluminum oxide, upon the surface of the substrate whereby an intermediate article with an exposed surface of both the overcoated patterned interlayer and the substrate is formed, a coating of a buffer layer selected from the group consisting of cerium oxide, yttrium oxide, curium oxide, dysprosium oxide, erbium oxide, europium oxide, iron oxide, gadolinium oxide, holmium oxide, indium oxide, lanthanum oxide, manganese oxide, lutetium oxide, neodymium oxide, praseodymium oxide, plutonium oxide, samarium oxide, terbium oxide, thallium oxide, thulium oxide, yttrium oxide and ytterbium oxide over the entire exposed surface of the intermediate article, and, a ceramic superco n FIELD OF THE INVENTION The present invention relates to the field of superconducting articles having two distinct regions of superconductive material with differing in-plane orientations whereby the conductivity across the boundary between the two regions can be tailored. This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).

  12. Effect of layer thickness on the superconducting properties in ultrathin Pb films

    Science.gov (United States)

    Durajski, A. P.

    2015-09-01

    Recently, superconductivity was found in one atomic layer of Pb film, promising a new field of research where superconductors can be studied on the atomic level. In the presented paper, we report a theoretical study of the superconductivity in ultrathin Pb films consisting of five to ten monolayers. Using the strong coupling Eliashberg formalism we reproduced the experimental values of critical temperature (TC) and we estimated the superconducting energy gap (Δ (0)), thermodynamic critical field (HC) and the specific heat jump at critical temperature (Δ C≤ft({T}{{C}}\\right)\\equiv {C}{{S}}≤ft({T}{{C}}\\right)-{C}{{N}}≤ft({T}{{C}}\\right)) for a wide range of film thicknesses. In these systems, we found an oscillatory behaviour of the above thermodynamic properties modulated by quantum size effects. Moreover, the large values of 2Δ (0){/k}{{B}}{T}{{C}} and Δ C≤ft({T}{{C}}\\right)/{C}{{N}}≤ft({T}{{C}}\\right), and the small values of {T}{{C}}{C}{{N}}≤ft({T}{{C}}\\right)/{H}{{C}}2(0) prove that the thermodynamic properties of Pb films cannot be correctly described using the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity due to the strong coupling and retardation effects.

  13. Superconducting gap anomaly in heavy fermion systems

    Indian Academy of Sciences (India)

    G C Rout; M S Ojha; S N Behera

    2008-04-01

    The heavy fermion system (HFS) is described by the periodic Anderson model (PAM), treating the Coulomb correlation between the -electrons in the mean-field Hartree-Fock approximation. Superconductivity is introduced by a BCS-type pairing term among the conduction electrons. Within this approximation the equation for the superconducting gap is derived, which depends on the effective position of the energy level of the -electrons relative to the Fermi level. The latter in turn depends on the occupation probability f of the -electrons. The gap equation is solved self-consistently with the equation for f; and their temperature dependences are studied for different positions of the bare -electron energy level, with respect to the Fermi level. The dependence of the superconducting gap on the hybridization leads to a re-entrant behaviour with increasing strength. The induced pairing between the -electrons and the pairing of mixed conduction and -electrons due to hybridization are also determined. The temperature dependence of the hybridization parameter, which characterizes the number of electrons with mixed character and represents the number of heavy electrons is studied. This number is shown to be small. The quasi-particle density of states (DOS) shows the existence of a pseudo-gap due to superconductivity and the signature of a hybridization gap at the Fermi level. For the choice of the model parameters, the DOS shows that the HFS is a metal and undergoes a transition to the gap-less superconducting state.

  14. Calculation of AC loss in two-layer superconducting cable with equal currents in the layers

    Science.gov (United States)

    Erdogan, Muzaffer

    2016-12-01

    A new method for calculating AC loss of two-layer SC power transmission cables using the commercial software Comsol Multiphysics, relying on the approach of the equal partition of current between the layers is proposed. Applying the method to calculate the AC-loss in a cable composed of two coaxial cylindrical SC tubes, the results are in good agreement with the analytical ones of duoblock model. Applying the method to calculate the AC-losses of a cable composed of a cylindrical copper former, surrounded by two coaxial cylindrical layers of superconducting tapes embedded in an insulating medium with tape-on-tape and tape-on-gap configurations are compared. A good agreement between the duoblock model and the numerical results for the tape-on-gap cable is observed.

  15. Magnetic field dependence of the superconducting proximity effect in a two atomic layer thin metallic film

    Energy Technology Data Exchange (ETDEWEB)

    Caminale, Michael; Leon Vanegas, Augusto A.; Stepniak, Agnieszka; Oka, Hirofumi; Fischer, Jeison A.; Sander, Dirk; Kirschner, Juergen [Max-Planck-Institut fuer Mikrostrukturphysik, Halle (Germany)

    2015-07-01

    The intriguing possibility to induce superconductivity in a metal, in direct contact with a superconductor, is under renewed interest for applications and for fundamental aspects. The underlying phenomenon is commonly known as proximity effect. In this work we exploit the high spatial resolution of scanning tunneling spectroscopy at sub-K temperatures and in magnetic fields. We probe the differential conductance along a line from a superconducting 9 ML high Pb nanoisland into the surrounding two layer thin Pb/Ag wetting layer on a Si(111) substrate. A gap in the differential conductance indicates superconductivity of the Pb island. We observe an induced gap in the wetting layer, which decays with increasing distance from the Pb island. This proximity length is 21 nm at 0.38 K and 0 T. We find a non-trivial dependence of the proximity length on magnetic field. Surprisingly, we find that the magnetic field does not affect the induced superconductivity up to 0.3 T. However, larger fields of 0.6 T suppress superconductivity in the wetting layer, where the Pb island still remains superconducting. We discuss the unexpected robustness of induced superconductivity in view of the high electronic diffusivity in the metallic wetting layer.

  16. Superconductivity

    CERN Document Server

    Poole, Charles P; Farach, Horacio A

    1995-01-01

    Superconductivity covers the nature of the phenomenon of superconductivity. The book discusses the fundamental principles of superconductivity; the essential features of the superconducting state-the phenomena of zero resistance and perfect diamagnetism; and the properties of the various classes of superconductors, including the organics, the buckministerfullerenes, and the precursors to the cuprates. The text also describes superconductivity from the viewpoint of thermodynamics and provides expressions for the free energy; the Ginzburg-Landau and BCS theories; and the structures of the high

  17. Field-Induced Superconductivity in Electric Double Layer Transistors

    NARCIS (Netherlands)

    Ueno, Kazunori; Shimotani, Hidekazu; Yuan, Hongtao; Ye, Jianting; Kawasaki, Masashi; Iwasa, Yoshihiro

    2014-01-01

    Electric field tuning of superconductivity has been a long-standing issue in solid state physics since the invention of the field-effect transistor (FET) in 1960. Owing to limited available carrier density in conventional FET devices, electric-field-induced superconductivity was believed to be possi

  18. Loss and Inductance Investigations in a 4-layer Superconducting Prototype Cable Conductor

    DEFF Research Database (Denmark)

    Tønnesen, Ole; Olsen, Søren Krüger; Kühle (fratrådt), Anders Van Der Aa;

    1999-01-01

    One important issue in the design and optimization of a superconducting cable conductor is the control of the current distribution between single tapes and layers. This presentation is based on a number of experiments performed on a 4-layer three meter long prototype superconducting cable conductor......-losses are measured as a function of transport current and a given current distribution and compared with the monoblock model. Recommendations for design of future cable conductor prototypes are given....

  19. CeO2 as insulation layer in HTc superconducting multilayer and cross over structures

    NARCIS (Netherlands)

    Wijck, van M.A.A.M.; Verhoeven, M.A.J.; Reuvekamp, E.M.C.M.; Gerritsma, G.J.; Blank, D.H.A.; Rogalla, H.

    1996-01-01

    We present a study of the electrical properties of insulating CeO2 layers in combination with superconducting (Y/Dy) Ba2Cu3O7-delta (RBCO) films over ramps and in crossover structures. CeO2 is frequently used as a buffer layer, or template layer for biepitaxial grain boundary junctions, but can als

  20. Superconducting bulk magnets for magnetic levitation systems

    Science.gov (United States)

    Fujimoto, H.; Kamijo, H.

    2000-06-01

    The major applications of high-temperature superconductors have mostly been confined to products in the form of wires and thin films. However, recent developments show that rare-earth REBa 2Cu 3O 7- x and light rare-earth LREBa 2Cu 3O 7- x superconductors prepared by melt processes have a high critical-current density at 77 K and high magnetic fields. These superconductors will promote the application of bulk high-temperature superconductors in high magnetic fields; the superconducting bulk magnet for the Maglev train is one possible application. We investigated the possibility of using bulk magnets in the Maglev system, and examined flux-trapping characteristics of multi-superconducting bulks arranged in array.

  1. Superconducting Quantum Arrays for Broadband RF Systems

    Science.gov (United States)

    Kornev, V.; Sharafiev, A.; Soloviev, I.; Kolotinskiy, N.; Mukhanov, O.

    2014-05-01

    Superconducting Quantum Arrays (SQAs), homogenous arrays of Superconducting Quantum Cells, are developed for implementation of broadband radio frequency (RF) systems capable of providing highly linear magnetic signal to voltage transfer with high dynamic range, including active electrically small antennas (ESAs). Among the proposed quantum cells which are bi-SQUID and Differential Quantum Cell (DQC), the latter delivered better performance for SQAs. A prototype of the transformer-less active ESA based on a 2D SQA with nonsuperconducting electric connection of the DQCs was fabricated using HYPRES niobium process with critical current density 4.5 kA/cm2. The measured voltage response is characterized by a peak-to-peak swing of ~100 mV and steepness of ~6500 μV/μT.

  2. Superconductivity

    CERN Document Server

    Thomas, D B

    1974-01-01

    A short general review is presented of the progress made in applied superconductivity as a result of work performed in connection with the high-energy physics program in Europe. The phenomenon of superconductivity and properties of superconductors of Types I and II are outlined. The main body of the paper deals with the development of niobium-titanium superconducting magnets and of radio-frequency superconducting cavities and accelerating structures. Examples of applications in and for high-energy physics experiments are given, including the large superconducting magnet for the Big European Bubble Chamber, prototype synchrotron magnets for the Super Proton Synchrotron, superconducting d.c. beam line magnets, and superconducting RF cavities for use in various laboratories. (0 refs).

  3. Improvement and protection of niobium surface superconductivity by atomic layer deposition and heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Proslier, T.; /IIT, Chicago /Argonne; Zasadzinski, J.; /IIT, Chicago; Moore, J.; Pellin, M.; Elam, J.; /Argonne; Cooley, L.; /Fermilab; Antoine, C.; /Saclay

    2008-11-01

    A method to treat the surface of Nb is described, which potentially can improve the performance of superconducting rf cavities. We present tunneling and x-ray photoemission spectroscopy measurements at the surface of cavity-grade niobium samples coated with a 3 nm alumina overlayer deposited by atomic layer deposition. The coated samples baked in ultrahigh vacuum at low temperature degraded superconducting surface. However, at temperatures above 450 C, the tunneling conductance curves show significant improvements in the superconducting density of states compared with untreated surfaces.

  4. Local magnetic order vs superconductivity in a layered cuprate

    Science.gov (United States)

    Ichikawa; Uchida; Tranquada; Niemoller; Gehring; Lee; Schneider

    2000-08-21

    We report on the phase diagram for charge-stripe order in La1.6-xNd0. 4SrxCuO4, determined by neutron and x-ray scattering studies and resistivity measurements. From an analysis of the in-plane resistivity motivated by recent nuclear-quadrupole-resonance studies, we conclude that the transition temperature for local charge ordering decreases monotonically with x, and hence that local antiferromagnetic order is uniquely correlated with the anomalous depression of superconductivity at x approximately 1 / 8. This result is consistent with theories in which superconductivity depends on the existence of charge-stripe correlations.

  5. Electronic structure and superconductivity of multi-layered organic charge transfer salts

    Energy Technology Data Exchange (ETDEWEB)

    Jeschke, Harald O.; Altmeyer, Michaela; Guterding, Daniel; Valenti, Roser [Institut fuer Theoretische Physik, Goethe-Universitaet Frankfurt, 60438 Frankfurt (Germany)

    2015-07-01

    We examine the electronic properties of polymorphs of (BEDT-TTF){sub 2}Ag(CF{sub 3}){sub 4}(TCE) (1,1,2-trichloroethane) within density functional theory (DFT). While a phase with low superconducting transition temperature T{sub c}=2.6 K exhibits a κ packing motif, two high T{sub c} phases are layered structures consisting of α{sup '} and κ packed layers. We determine the electronic structures and discuss the influence of the insulating α{sup '} layer on the conducting κ layer. In the κ-α{sub 1}{sup '} dual-layered compound, we find that the stripes of high and low charge in the α{sup '} layer correspond to a stripe pattern of hopping parameters in the κ layer. Based on the different underlying Hamiltonians, we study the superconducting properties and try to explain the differences in T{sub c}.

  6. Research in Superconducting Radiofrequency Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hoffstaetter, Georg

    2012-02-01

    The aim of the program is to transfer our successes in single cell high gradient R&D to multi-cell cavities of advanced shapes. We have also developed a new technique for electropolishing (EP) which is much less expensive than the standard EP technique used at other labs. Our aim is to apply this technique to multi-cell cavities of advanced shapes. The scientific program of this grant was concluded in 2010. An extension of this grant al-lowed us to receive ARRA funding, which we used to improve the helium-liquefier system in Cornell's SRF laboratory. Part of this system had been purchased and installed by another grant. The extension to grant DE-FG02-04ER41354 was proposed to extend this system to sufficient power so that helium can be recovered from SRF-cavity test and simultaneously can be liquefied. This significantly increased the number of cavities we can test per week. This upgrade project was finished in the spring of 2010 and has been in regular use ever since.

  7. Charging of superconducting layers and resonance-related hysteresis in the current-voltage characteristics of coupled Josephson junctions

    Science.gov (United States)

    Shukrinov, Yu. M.; Gaafar, M. A.

    2011-09-01

    A manifestation of a resonance-type hysteresis related to the parametric resonance in the system of coupled Josephson junctions is demonstrated. In contrast with the McCumber and Steward hysteresis, we find that the width of this hysteresis is inversely proportional to the McCumber parameter and it also depends on the coupling between junctions and the boundary conditions. Investigation of the time dependence of the electric charge in superconducting layers allows us to explain the origin of this hysteresis by different charge dynamics for increasing and decreasing bias current processes. The effect of the wavelength of the longitudinal plasma wave created at the resonance on the charging of superconducting layers is demonstrated. We find a strong effect of the dissipation in the system on the amplitude of the charge oscillations at the resonance.

  8. Superconductivity

    Science.gov (United States)

    1989-07-01

    SUPERCONDUCTIVITY HIGH-POWER APPLICATIONS Electric power generation/transmission Energy storage Acoustic projectors Weapon launchers Catapult Ship propulsion • • • Stabilized...temperature superconductive shields could be substantially enhanced by use of high-Tc materials. 27 28 NRAC SUPERCONDUCTIVITY SHIP PROPULSION APPLICATIONS...motor shown in the photograph. As a next step in the evolution of electric-drive ship propulsion technology, DTRC has proposed to scale up the design

  9. Superconducting qubit-resonator-atom hybrid system

    Science.gov (United States)

    Yu, Deshui; Kwek, Leong Chuan; Amico, Luigi; Dumke, Rainer

    2017-09-01

    We propose a hybrid quantum system where an LC resonator inductively interacts with a flux qubit and is capacitively coupled to a Rydberg atom. Varying the external magnetic flux bias controls the flux qubit flipping and the flux qubit-resonator interface. The atomic spectrum is tuned via an electrostatic field, manipulating the qubit-state transition of atom and the atom-resonator coupling. Different types of entanglement of superconducting, photonic and atomic qubits can be prepared via simply tuning the flux bias and electrostatic field, leading to the implementation of three-qubit Toffoli logic gate.

  10. Development of superconducting magnetic bearing with superconducting coil and bulk superconductor for flywheel energy storage system

    Science.gov (United States)

    Arai, Y.; Seino, H.; Yoshizawa, K.; Nagashima, K.

    2013-11-01

    We have been developing superconducting magnetic bearing for flywheel energy storage system to be applied to the railway system. The bearing consists of a superconducting coil as a stator and bulk superconductors as a rotor. A flywheel disk connected to the bulk superconductors is suspended contactless by superconducting magnetic bearings (SMBs). We have manufactured a small scale device equipped with the SMB. The flywheel was rotated contactless over 2000 rpm which was a frequency between its rigid body mode and elastic mode. The feasibility of this SMB structure was demonstrated.

  11. Local Magnetic Order vs Superconductivity in a Layered Cuprate

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, N. [Department of Superconductivity, School of Engineering, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, (Japan); Uchida, S. [Department of Superconductivity, School of Engineering, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, (Japan); Tranquada, J. M. [Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000 (United States); Niemoeller, T. [Hamburger Synchrotronstrahlungslabor HASYLAB at Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22603 Hamburg, (Germany); Gehring, P. M. [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Lee, S.-H. [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); University of Maryland, College Park, Maryland 20742 (United States); Schneider, J. R. [Hamburger Synchrotronstrahlungslabor HASYLAB at Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22603 Hamburg, (Germany)

    2000-08-21

    We report on the phase diagram for charge-stripe order in La{sub 1.6-x} Nd{sub 0.4}Sr {sub x}CuO{sub 4} , determined by neutron and x-ray scattering studies and resistivity measurements. From an analysis of the in-plane resistivity motivated by recent nuclear-quadrupole-resonance studies, we conclude that the transition temperature for local charge ordering decreases monotonically with x , and hence that local antiferromagnetic order is uniquely correlated with the anomalous depression of superconductivity at x{approx_equal}(1/8) . This result is consistent with theories in which superconductivity depends on the existence of charge-stripe correlations. (c) 2000 The American Physical Society.

  12. Tuning the superconductivity in single-layer FeSe/oxides by interface engineering

    Science.gov (United States)

    Peng, Rui

    2015-03-01

    The discovery of high Tc in single-layer FeSe films has enormous implications for both searching new high Tc superconductors and exploring the important factors for high temperature superconductivity. In this talk, I will show our recent angle-resolved photoemission studies on various FeSe-based heterostructures grown by molecular beam epitaxy. We systematically studied the electronic structures and superconducting properties of FeSe with varied strain, different interfacial oxide materials and different thicknesses, and uncover that electronic correlations and superconducting gap-closing temperatures are tuned by interfacial effects. We exclude the direct relation between superconductivity and tensile strain, or the energy of an interfacial phonon mode, and demonstrate the crucial and non-trivial role of FeSe/oxide interface on the high pairing temperature. By tuning the interface, superconducting pairing temperature reaches up to 75K in FeSe/Nb:BaTiO3/KTaO3 with the in-plane lattice of 3.99 Å, which sets a new superconducting-gap-closing temperature record for iron-based superconductors, and may paves the way to more cost-effective applications of ultra-thin superconductors. Besides, in extremely tensile-strained single-layer FeSe films, we found that the Fermi surfaces consist of two elliptical electron pockets at the zone corner, without detectable hybridization. The lifting of degeneracy is clearly observed for the first time for the iron-based superconductors with only electron Fermi surfaces. Intriguingly, the superconducting gap distribution is anisotropic but nodeless around the electron pockets, with minima at the crossings of the two pockets. Our results provide important experimental foundations for understanding the interfacial superconductivity and the pairing symmetry puzzle of iron-based superconductors, and also provide clues for further enhancing Tc through interface engineering.

  13. Cryogenic system for a superconducting spectrometer

    Science.gov (United States)

    Porter, J.

    1983-03-01

    The Heavy Ion Spectrometer System (HISS) relies upon superconducting coils of cryostable, pool boiling design to provide a maximum particle bending field of 3 tesla. The cryogenic facility including helium refrigeration, gas management, liquid nitrogen system, and the overall control strategy are described. The system normally operates with a 4 K heat load of 150 watts; the LN2 circuits absorb an additional 4000 watts. The 80K intercept control is by an LSI 11 computer. Total available refrigeration at 4K is 400 watts using reciprocating expanders at the 20K and 4K level. The minicomputer has the capability of optimizing overall utility input cost by varying operating points. A hybrid of pneumatic, analog, and digital control is successful in providing full time unattended operation. The 7m diameter magnet/cryostat assembly is rotatable through 180 degrees to provide a variety of spectrometer orientations.

  14. Conceptual study of superconducting urban area power systems

    Science.gov (United States)

    Noe, Mathias; Bach, Robert; Prusseit, Werner; Willén, Dag; Gold-acker, Wilfried; Poelchau, Juri; Linke, Christian

    2010-06-01

    Efficient transmission, distribution and usage of electricity are fundamental requirements for providing citizens, societies and economies with essential energy resources. It will be a major future challenge to integrate more sustainable generation resources, to meet growing electricity demand and to renew electricity networks. Research and development on superconducting equipment and components have an important role to play in addressing these challenges. Up to now, most studies on superconducting applications in power systems have been concentrated on the application of specific devices like for example cables and current limiters. In contrast to this, the main focus of our study is to show the consequence of a large scale integration of superconducting power equipment in distribution level urban power systems. Specific objectives are to summarize the state-of-the-art of superconducting power equipment including cooling systems and to compare the superconducting power system with respect to energy and economic efficiency with conventional solutions. Several scenarios were considered starting from the replacement of an existing distribution level sub-grid up to a full superconducting urban area distribution level power system. One major result is that a full superconducting urban area distribution level power system could be cost competitive with existing solutions in the future. In addition to that, superconducting power systems offer higher energy efficiency as well as a number of technical advantages like lower voltage drops and improved stability.

  15. Development of superconducting magnet systems for HIFExperiments

    Energy Technology Data Exchange (ETDEWEB)

    Sabbi, Gian Luca; Faltens, A.; Leitzke, A.; Seidl, P.; Lund, S.; Martovets ky, N.; Chiesa, L.; Gung, C.; Minervini, J.; Schultz, J.; Goodzeit, C.; Hwang, P.; Hinson, W.; Meinke, R.

    2004-07-27

    The U.S. Heavy Ion Fusion program is developing superconducting focusing quadrupoles for near-term experiments and future driver accelerators. Following the fabrication and testing of several models, a baseline quadrupole design was selected and further optimized. The first prototype of the optimized design achieved a conductor-limited gradient of 132 T/m in a 70 mm bore, with measured field harmonics within 10 parts in 10{sup 4}. In parallel, a compact focusing doublet was fabricated and tested using two of the first-generation quadrupoles. After assembly in the cryostat, both magnets reached their conductor-limited quench current. Further optimization steps are currently underway to improve the performance of the magnet system and reduce its cost. They include the fabrication and testing of a new prototype quadrupole with reduced field errors as well as improvements of the cryostat design for the focusing doublet. The prototype units will be installed in the HCX beamline at LBNL, to perform accelerator physics experiments and gain operational experience. Successful results in the present phase will make superconducting magnets a viable option for the next generation of integrated beam experiments.

  16. Damping and support in high-temperature superconducting levitation systems

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Sammamish, WA); McIver, Carl R. (Everett, WA); Mittleider, John A. (Kent, WA)

    2009-12-15

    Methods and apparatuses to provide improved auxiliary damping for superconducting bearings in superconducting levitation systems are disclosed. In a superconducting bearing, a cryostat housing the superconductors is connected to a ground state with a combination of a damping strip of material, a set of linkage arms to provide vertical support, and spring washers to provide stiffness. Alternately, the superconducting bearing may be supported by a cryostat connected to a ground state by posts constructed from a mesh of fibers, with the damping and stiffness controlled by the fiber composition, size, and mesh geometry.

  17. Damping and support in high-temperature superconducting levitation systems

    Science.gov (United States)

    Hull, John R.; McIver, Carl R.; Mittleider, John A.

    2009-12-15

    Methods and apparatuses to provide improved auxiliary damping for superconducting bearings in superconducting levitation systems are disclosed. In a superconducting bearing, a cryostat housing the superconductors is connected to a ground state with a combination of a damping strip of material, a set of linkage arms to provide vertical support, and spring washers to provide stiffness. Alternately, the superconducting bearing may be supported by a cryostat connected to a ground state by posts constructed from a mesh of fibers, with the damping and stiffness controlled by the fiber composition, size, and mesh geometry.

  18. Buffer layers on metal alloy substrates for superconducting tapes

    Science.gov (United States)

    Jia, Quanxi; Foltyn, Stephen R.; Arendt, Paul N.; Groves, James R.

    2004-06-29

    An article including a substrate, a layer of an inert oxide material upon the surface of the substrate, a layer of an amorphous oxide or oxynitride material upon the inert oxide material layer, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the amorphous oxide material layer, and a layer of a SrRuO.sub.3 buffer material upon the oriented cubic oxide material layer is provided together with additional layers such as a HTS top-layer of YBCO directly upon the layer of a SrRuO.sub.3 buffer material layer. With a HTS top-layer of YBCO upon at least one layer of the SrRuO.sub.3 buffer material in such an article, J.sub.c 's of up to 1.3.times.10.sup.6 A/cm.sup.2 have been demonstrated with projected IC's of over 200 Amperes across a sample 1 cm wide.

  19. The superconducting magnet system for the Wendelstein7-X stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Sapper, J. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Teilinstitut Greifswald, D-17489 Greifswald (Germany)

    2000-05-01

    The superconducting magnet system for the new stellarator Wendelstein7-X, to be located at Greifswald, Germany, consists of 50 non-planar and 20 planar large magnet coils. The conductor used is a cable-in-conduit type, composed of copper stabilized NbTi strands and enveloped by an aluminium alloy jacket (CICC). The individual winding packs are built up from six (three) double layers, glass insulated and resin impregnated. A cast steel casing encapsulates each winding pack to achieve sufficient mechanical stiffness. The toroidal set-up of the coil system weighs 400 tons and has a diameter of 11 metres. Operation will be at 6 T and a coil current of 1.75 MA. Cooling is provided by supercritical helium. A fast de-energizing system protects the magnet from overheating in the case of a quench. (author)

  20. Superconductivity

    CERN Document Server

    Ketterson, John B

    2008-01-01

    Conceived as the definitive reference in a classic and important field of modern physics, this extensive and comprehensive handbook systematically reviews the basic physics, theory and recent advances in the field of superconductivity. Leading researchers, including Nobel laureates, describe the state-of-the-art in conventional and unconventional superconductors at a particularly opportune time, as new experimental techniques and field-theoretical methods have emerged. In addition to full-coverage of novel materials and underlying mechanisms, the handbook reflects continued intense research into electron-phone based superconductivity. Considerable attention is devoted to high-Tc superconductivity, novel superconductivity, including triplet pairing in the ruthenates, novel superconductors, such as heavy-Fermion metals and organic materials, and also granular superconductors. What’s more, several contributions address superconductors with impurities and nanostructured superconductors. Important new results on...

  1. Growth and characterization of epitaxial aluminum layers on gallium-arsenide substrates for superconducting quantum bits

    Science.gov (United States)

    Tournet, J.; Gosselink, D.; Miao, G.-X.; Jaikissoon, M.; Langenberg, D.; McConkey, T. G.; Mariantoni, M.; Wasilewski, Z. R.

    2016-06-01

    The quest for a universal quantum computer has renewed interest in the growth of superconducting materials on semiconductor substrates. High-quality superconducting thin films will make it possible to improve the coherence time of superconducting quantum bits (qubits), i.e., to extend the time a qubit can store the amplitude and phase of a quantum state. The electrical losses in superconducting qubits highly depend on the quality of the metal layers the qubits are made from. Here, we report on the epitaxy of single-crystal Al (011) layers on GaAs (001) substrates. Layers with 110 nm thickness were deposited by means of molecular beam epitaxy at low temperature and monitored by in situ reflection high-energy electron diffraction performed simultaneously at four azimuths. The single-crystal nature of the layers was confirmed by ex situ high-resolution x-ray diffraction. Differential interference contrast and atomic force microscopy analysis of the sample’s surface revealed a featureless surface with root mean square roughness of 0.55 nm. A detailed in situ study allowed us to gain insight into the nucleation mechanisms of Al layers on GaAs, highlighting the importance of GaAs surface reconstruction in determining the final Al layer crystallographic orientation and quality. A highly uniform and stable GaAs (001)-(2× 4) reconstruction reproducibly led to a pure Al (011) phase, while an arsenic-rich GaAs (001)-(4× 4) reconstruction yielded polycrystalline films with an Al (111) dominant orientation. The near-atomic smoothness and single-crystal character of Al films on GaAs, in combination with the ability to trench GaAs substrates, could set a new standard for the fabrication of superconducting qubits.

  2. Layered Systems Engineering Engines

    Science.gov (United States)

    Breidenthal, Julian C.; Overman, Marvin J.

    2009-01-01

    A notation is described for depicting the relationships between multiple, contemporaneous systems engineering efforts undertaken within a multi-layer system-of-systems hierarchy. We combined the concepts of remoteness of activity from the end customer, depiction of activity on a timeline, and data flow to create a new kind of diagram which we call a "Layered Vee Diagram." This notation is an advance over previous notations because it is able to be simultaneously precise about activity, level of granularity, product exchanges, and timing; these advances provide systems engineering managers a significantly improved ability to express and understand the relationships between many systems engineering efforts. Using the new notation, we obtain a key insight into the relationship between project duration and the strategy selected for chaining the systems engineering effort between layers, as well as insights into the costs, opportunities, and risks associated with alternate chaining strategies.

  3. Electric-Field-Induced Superconductivity Detected by Magnetization Measurements of an Electric-Double-Layer Capacitor

    NARCIS (Netherlands)

    Kasahara, Yuichi; Nishijima, Takahiro; Sato, Tatsuya; Takeuchi, Yuki; Ye, Jianting; Yuan, Hongtao; Shimotani, Hidekazu; Iwasa, Yoshihiro

    We report evidence for superconductivity induced by the application of strong electric fields onto the surface of a band insulator, ZrNCl, provided by the observation of a shielding diamagnetic signal. We introduced an electric-double-layer capacitor configuration and in situ magnetization

  4. Electric-Field-Induced Superconductivity Detected by Magnetization Measurements of an Electric-Double-Layer Capacitor

    NARCIS (Netherlands)

    Kasahara, Yuichi; Nishijima, Takahiro; Sato, Tatsuya; Takeuchi, Yuki; Ye, Jianting; Yuan, Hongtao; Shimotani, Hidekazu; Iwasa, Yoshihiro

    2011-01-01

    We report evidence for superconductivity induced by the application of strong electric fields onto the surface of a band insulator, ZrNCl, provided by the observation of a shielding diamagnetic signal. We introduced an electric-double-layer capacitor configuration and in situ magnetization measureme

  5. Electric-Field-Induced Superconductivity Detected by Magnetization Measurements of an Electric-Double-Layer Capacitor

    NARCIS (Netherlands)

    Kasahara, Yuichi; Nishijima, Takahiro; Sato, Tatsuya; Takeuchi, Yuki; Ye, Jianting; Yuan, Hongtao; Shimotani, Hidekazu; Iwasa, Yoshihiro

    2011-01-01

    We report evidence for superconductivity induced by the application of strong electric fields onto the surface of a band insulator, ZrNCl, provided by the observation of a shielding diamagnetic signal. We introduced an electric-double-layer capacitor configuration and in situ magnetization measureme

  6. Status Of Superconducting Radiofrequency Separator Cryogenic System

    CERN Document Server

    Ageyev, A; Kashtanov, E; Kozub, S; Muraviev, M; Orlov, A; Pimenov, P; Polkovnikov, K; Slabodchikov, P; Sytnik, V V; Zintchenko, S

    2004-01-01

    The OKA experimental complex proposing to use the technique of RF beam separation to produce a Kaon beam is under construction at IHEP. Two deflecting superconducting niobium cavities operating at 1.8 K are the basic elements of the separator. To provide cooling at this temperature commercially available 500 W, 4.5 K helium refrigerator is used to cool liquid helium bath of the satellite refrigerator. The last one is actually a big warm up heat exchanger with flow imbalance and very low pressure drop. Vacuum group consists of two stages of roots blowers and one stage of rotary slide valve pumps. Pump stages are separated by intermediate gas coolers. The schematic, thermodynamics, design capacity and current construction status of the cryogenic system are presented.

  7. Insulation systems for superconducting transmission cables

    DEFF Research Database (Denmark)

    Tønnesen, Ole

    1996-01-01

    the electrical insulation is placed outside both the superconducting tube and the cryostat. The superconducting tube is cooled by liquid nitrogen which is pumped through the hollow part of the tube.2) The cryogenic dielectric design, where the electrical insulation is placed inside the cryostat and thus is kept...

  8. Detection of hypersonics by a superconducting layer in condenser form

    Energy Technology Data Exchange (ETDEWEB)

    Martin, M.; Desmons, J.Y.

    1973-11-19

    Longitudinal waves were detected using a tin layer in condenser form. The detection cannot be explained by a pure bolometric effect. The voltage impulse corresponding to the incident hypersonic impulse on the layer can change signs as a function of temperature and current polarization. 4 references.

  9. Interface high-temperature superconductivity

    Science.gov (United States)

    Wang, Lili; Ma, Xucun; Xue, Qi-Kun

    2016-12-01

    Cuprate high-temperature superconductors consist of two quasi-two-dimensional (2D) substructures: CuO2 superconducting layers and charge reservoir layers. The superconductivity is realized by charge transfer from the charge reservoir layers into the superconducting layers without chemical dopants and defects being introduced into the latter, similar to modulation-doping in the semiconductor superlattices of AlGaAs/GaAs. Inspired by this scheme, we have been searching for high-temperature superconductivity in ultra-thin films of superconductors epitaxially grown on semiconductor/oxide substrates since 2008. We have observed interface-enhanced superconductivity in both conventional and unconventional superconducting films, including single atomic layer films of Pb and In on Si substrates and single unit cell (UC) films of FeSe on SrTiO3 (STO) substrates. The discovery of high-temperature superconductivity with a superconducting gap of ∼20 meV in 1UC-FeSe/STO has stimulated tremendous interest in the superconductivity community, for it opens a new avenue for both raising superconducting transition temperature and understanding the pairing mechanism of unconventional high-temperature superconductivity. Here, we review mainly the experimental progress on interface-enhanced superconductivity in the three systems mentioned above with emphasis on 1UC-FeSe/STO, studied by scanning tunneling microscopy/spectroscopy, angle-resolved photoemission spectroscopy and transport experiments. We discuss the roles of interfaces and a possible pairing mechanism inferred from these studies.

  10. Dissipative dynamics of superconducting hybrid qubit systems

    Energy Technology Data Exchange (ETDEWEB)

    Montes, Enrique; Calero, Jesus M; Reina, John H, E-mail: enriquem@univalle.edu.c, E-mail: j.reina-estupinan@physics.ox.ac.u [Departamento de Fisica, Universidad del Valle, A.A. 25360, Cali (Colombia)

    2009-05-01

    We perform a theoretical study of composed superconducting qubit systems for the case of a coupled qubit configuration based on a hybrid qubit circuit made of both charge and phase qubits, which are coupled via a sigma{sub x} x sigma{sub z} interaction. We compute the system's eigen-energies in terms of the qubit transition frequencies and the strength of the inter-qubit coupling, and describe the sensitivity of the energy crossing/anti-crossing features to such coupling. We compute the hybrid system's dissipative dynamics for the cases of i) collective and ii) independent decoherence, whereby the system interacts with one common and two different baths of harmonic oscillators, respectively. The calculations have been performed within the Bloch-Redfield formalism and we report the solutions for the populations and the coherences of the system's reduced density matrix. The dephasing and relaxation rates are explicitly calculated as a function of the heat bath temperature.

  11. Experience with the LEP Superconducting RF Accelerating System

    CERN Document Server

    Geschonke, Günther

    1998-01-01

    CERN is presently upgrading the large Electron Positron Collider (LEP) to higher energy by installing superconducting RF accelerating cavities. For a total installed circumferential voltage of about 2800 MV, 272 cavities operating at 352 MHz will be needed, representing an active length of 462 m and a cold surface of more than 1600 m2. The series production cavities are made out of copper, sputter-coated with a thin layer of niobium and cooled with liquid He to 4.5 K. The cavities are produced by industry and the acceptance testing is done at CERN. In 1996, 176 cavities had been installed and run successfully at their design gradient of 6 MV/m during physics at a beam energy of 86 GeV. As RF power sources 36 klystrons will finally be installed with a nominal RF output power of 1 MW each. In this paper the superconducting accelerating system in LEP will be described and experience gained during operation for physics as well as new developments will be presented.

  12. Damping in high-temperature superconducting levitation systems

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R.

    2009-12-15

    Methods and apparatuses for improved damping in high-temperature superconducting levitation systems are disclosed. A superconducting element (e.g., a stator) generating a magnetic field and a magnet (e.g. a rotor) supported by the magnetic field are provided such that the superconducting element is supported relative to a ground state with damped motion substantially perpendicular to the support of the magnetic field on the magnet. Applying this, a cryostat housing the superconducting bearing may be coupled to the ground state with high damping but low radial stiffness, such that its resonant frequency is less than that of the superconducting bearing. The damping of the cryostat may be substantially transferred to the levitated magnetic rotor, thus, providing damping without affecting the rotational loss, as can be derived applying coupled harmonic oscillator theory in rotor dynamics. Thus, damping can be provided to a levitated object, without substantially affecting the rotational loss.

  13. Damping in high-temperature superconducting levitation systems

    Science.gov (United States)

    Hull, John R.

    2009-12-15

    Methods and apparatuses for improved damping in high-temperature superconducting levitation systems are disclosed. A superconducting element (e.g., a stator) generating a magnetic field and a magnet (e.g. a rotor) supported by the magnetic field are provided such that the superconducting element is supported relative to a ground state with damped motion substantially perpendicular to the support of the magnetic field on the magnet. Applying this, a cryostat housing the superconducting bearing may be coupled to the ground state with high damping but low radial stiffness, such that its resonant frequency is less than that of the superconducting bearing. The damping of the cryostat may be substantially transferred to the levitated magnetic rotor, thus, providing damping without affecting the rotational loss, as can be derived applying coupled harmonic oscillator theory in rotor dynamics. Thus, damping can be provided to a levitated object, without substantially affecting the rotational loss.

  14. Superconductivity

    CERN Document Server

    Poole, Charles P; Creswick, Richard J; Prozorov, Ruslan

    2014-01-01

    Superconductivity, Third Edition is an encyclopedic treatment of all aspects of the subject, from classic materials to fullerenes. Emphasis is on balanced coverage, with a comprehensive reference list and significant graphics from all areas of the published literature. Widely used theoretical approaches are explained in detail. Topics of special interest include high temperature superconductors, spectroscopy, critical states, transport properties, and tunneling. This book covers the whole field of superconductivity from both the theoretical and the experimental point of view. This third edition features extensive revisions throughout, and new chapters on second critical field and iron based superconductors.

  15. Cooperating systems: Layered MAS

    Science.gov (United States)

    Rochowiak, Daniel

    1990-01-01

    Distributed intelligent systems can be distinguished by the models that they use. The model developed focuses on layered multiagent system conceived of as a bureaucracy in which a distributed data base serves as a central means of communication. The various generic bureaus of such a system is described and a basic vocabulary for such systems is presented. In presenting the bureaus and vocabularies, special attention is given to the sorts of reasonings that are appropriate. A bureaucratic model has a hierarchy of master system and work group that organizes E agents and B agents. The master system provides the administrative services and support facilities for the work groups.

  16. Unconventional superconductivity in low density electron systems and conventional superconductivity in hydrogen metallic alloys

    Science.gov (United States)

    Kagan, M. Yu.

    2016-06-01

    In this short review, we first discuss the results, which are mainly devoted to the generalizations of the famous Kohn-Luttinger mechanism of superconductivity in purely repulsive fermion systems at low electron densities. In the context of repulsive- U Hubbard model and Shubin-Vonsovsky model we consider briefly the superconducting phase diagrams and the symmetries of the order parameter in novel strongly correlated electron systems including idealized monolayer and bilayer graphene. We stress that purely repulsive fermion systems are mainly the subject of unconventional low-temperature superconductivity. To get the high temperature superconductivity in cuprates (with T C of the order of 100 K) we should proceed to the t-J model with the van der Waals interaction potential and the competition between short-range repulsion and long-range attraction. Finally we note that to describe superconductivity in metallic hydrogen alloys under pressure (with T C of the order of 200 K) it is reasonable to reexamine more conventional mechanisms connected with electron-phonon interaction. These mechanisms arise in the attractive- U Hubbard model with static onsite or intersite attractive potential or in more realistic theories (which include retardation effects) such as Migdal-Eliashberg strong coupling theory or even Fermi-Bose mixture theory of Ranninger et al. and its generalizations.

  17. Phase diagram and electronic indication of high-temperature superconductivity at 65 K in single-layer FeSe films.

    Science.gov (United States)

    He, Shaolong; He, Junfeng; Zhang, Wenhao; Zhao, Lin; Liu, Defa; Liu, Xu; Mou, Daixiang; Ou, Yun-Bo; Wang, Qing-Yan; Li, Zhi; Wang, Lili; Peng, Yingying; Liu, Yan; Chen, Chaoyu; Yu, Li; Liu, Guodong; Dong, Xiaoli; Zhang, Jun; Chen, Chuangtian; Xu, Zuyan; Chen, Xi; Ma, Xucun; Xue, Qikun; Zhou, X J

    2013-07-01

    The recent discovery of possible high-temperature superconductivity in single-layer FeSe films has generated significant experimental and theoretical interest. In both the cuprate and the iron-based high-temperature superconductors, superconductivity is induced by doping charge carriers into the parent compound to suppress the antiferromagnetic state. It is therefore important to establish whether the superconductivity observed in the single-layer sheets of FeSe--the essential building blocks of the Fe-based superconductors--is realized by undergoing a similar transition. Here we report the phase diagram for an FeSe monolayer grown on a SrTiO3 substrate, by tuning the charge carrier concentration over a wide range through an extensive annealing procedure. We identify two distinct phases that compete during the annealing process: the electronic structure of the phase at low doping (N phase) bears a clear resemblance to the antiferromagnetic parent compound of the Fe-based superconductors, whereas the superconducting phase (S phase) emerges with the increase in doping and the suppression of the N phase. By optimizing the carrier concentration, we observe strong indications of superconductivity with a transition temperature of 65±5 K. The wide tunability of the system across different phases makes the FeSe monolayer ideal for investigating not only the physics of superconductivity, but also for studying novel quantum phenomena more generally.

  18. Magnetism and superconductivity in heavy fermion systems

    Energy Technology Data Exchange (ETDEWEB)

    Flouquet, J. (DRFMC, C.E.N.G., 38 - Grenoble (France)); Brison, J.P.; Hasselbach, K.; Taillefer, L. (C.N.R.S., 38 - Grenoble (France)); Behnia, K.; Jaccard, D. (DPMC, Geneva Univ. (Switzerland)); Visser, A. de (Natuurkundig Lab., Univ. van Amsterdam (Netherlands))

    1991-12-01

    The normal and superconducting properties of heavy fermion compounds are reviewed. The discussion is focus on the three uranium compounds: UBe{sub 13}, UPt{sub 3} and URu{sub 2}Si{sub 2}. Special attention is given: 1) to unusual (H.T) superconducting phase diagram as discovered in UPt{sub 3} where two successive superconducting phases seem to occur in zero magnetic field; 2) to the role of long range ordering as found in URu{sub 2}Si{sub 2} and UPt{sub 3}. (orig.).

  19. Novel Approach to Linear Accelerator Superconducting Magnet System

    Energy Technology Data Exchange (ETDEWEB)

    Kashikhin, Vladimir; /Fermilab

    2011-11-28

    Superconducting Linear Accelerators include a superconducting magnet system for particle beam transportation that provides the beam focusing and steering. This system consists of a large number of quadrupole magnets and dipole correctors mounted inside or between cryomodules with SCRF cavities. Each magnet has current leads and powered from its own power supply. The paper proposes a novel approach to magnet powering based on using superconducting persistent current switches. A group of magnets is powered from the same power supply through the common, for the group of cryomodules, electrical bus and pair of current leads. Superconducting switches direct the current to the chosen magnet and close the circuit providing the magnet operation in a persistent current mode. Two persistent current switches were fabricated and tested. In the paper also presented the results of magnetic field simulations, decay time constants analysis, and a way of improving quadrupole magnetic center stability. Such approach substantially reduces the magnet system cost and increases the reliability.

  20. System and method for cooling a superconducting rotary machine

    Science.gov (United States)

    Ackermann, Robert Adolf; Laskaris, Evangelos Trifon; Huang, Xianrui; Bray, James William

    2011-08-09

    A system for cooling a superconducting rotary machine includes a plurality of sealed siphon tubes disposed in balanced locations around a rotor adjacent to a superconducting coil. Each of the sealed siphon tubes includes a tubular body and a heat transfer medium disposed in the tubular body that undergoes a phase change during operation of the machine to extract heat from the superconducting coil. A siphon heat exchanger is thermally coupled to the siphon tubes for extracting heat from the siphon tubes during operation of the machine.

  1. High-pressure study of the new Y-Ba-Cu-O superconducting compound system

    Science.gov (United States)

    Hor, P. H.; Gao, L.; Meng, R. L.; Huang, Z. J.; Wang, Y. Q.

    1987-01-01

    Hydrostatic effects on the superconducting transition temperature of the Y-Ba-Cu-O compound system, resistively, up to 19 kbar are investigated. It is found that pressure has little effect on the superconducting state of Y-Ba-Cu-O, in marked contrast to the behavior of the K2NiF4-phase La-Ba-Cu-O and La-Sr-Cu-O systems. It is suggested that this effect may be due to chemical pressure associated with the smaller Y atoms already present in Y-Ba-Cu-O. X-ray powder-diffraction studies show that the high-temperature superconductivity in Y-Ba-Cu-O can only be attributed to one or more phases with structures different from the cubic perovskite or tetragonal layered ones.

  2. Gossamer superconductivity near antiferromagnetic Mott insulator in layered organic conductors.

    Science.gov (United States)

    Gan, J Y; Chen, Yan; Su, Z B; Zhang, F C

    2005-02-18

    Layered organic superconductors are on the verge of the Mott insulator. We use the Gutzwiller variational method to study a two-dimensional Hubbard model including a spin exchange coupling term as a minimal model for the compounds. The ground state is found to be a Gossamer superconductor at small on-site Coulomb repulsion U and an antiferromagnetic Mott insulator at large U, separated by a first order phase transition. Our theory is qualitatively consistent with major experiments reported in organic superconductors.

  3. Superconducting and hybrid systems for magnetic field shielding

    Science.gov (United States)

    Gozzelino, L.; Gerbaldo, R.; Ghigo, G.; Laviano, F.; Truccato, M.; Agostino, A.

    2016-03-01

    In this paper we investigate and compare the shielding properties of superconducting and hybrid superconducting/ferromagnetic systems, consisting of cylindrical cups with an aspect ratio of height/radius close to unity. First, we reproduced, by finite-element calculations, the induction magnetic field values measured along the symmetry axis in a superconducting (MgB2) and in a hybrid configuration (MgB2/Fe) as a function of the applied magnetic field and of the position. The calculations are carried out using the vector potential formalism, taking into account simultaneously the non-linear properties of both the superconducting and the ferromagnetic material. On the basis of the good agreement between the experimental and the computed data we apply the same model to study the influence of the geometric parameters of the ferromagnetic cup as well as of the thickness of the lateral gap between the two cups on the shielding properties of the superconducting cup. The results show that in the considered non-ideal geometry, where the edge effect in the flux penetration cannot be disregarded, the superconducting shield is always the most efficient solution at low magnetic fields. However, a partial recovery of the shielding capability of the hybrid configuration occurs if a mismatch in the open edges of the two cups is considered. In contrast, at high magnetic fields the hybrid configurations are always the most effective. In particular, the highest shielding factor was found for solutions with the ferromagnetic cup protruding over the superconducting one.

  4. A superconducting transformer system for high current cable testing.

    Science.gov (United States)

    Godeke, A; Dietderich, D R; Joseph, J M; Lizarazo, J; Prestemon, S O; Miller, G; Weijers, H W

    2010-03-01

    This article describes the development of a direct-current (dc) superconducting transformer system for the high current test of superconducting cables. The transformer consists of a core-free 10,464 turn primary solenoid which is enclosed by a 6.5 turn secondary. The transformer is designed to deliver a 50 kA dc secondary current at a dc primary current of about 50 A. The secondary current is measured inductively using two toroidal-wound Rogowski coils. The Rogowski coil signal is digitally integrated, resulting in a voltage signal that is proportional to the secondary current. This voltage signal is used to control the secondary current using a feedback loop which automatically compensates for resistive losses in the splices to the superconducting cable samples that are connected to the secondary. The system has been commissioned up to 28 kA secondary current. The reproducibility in the secondary current measurement is better than 0.05% for the relevant current range up to 25 kA. The drift in the secondary current, which results from drift in the digital integrator, is estimated to be below 0.5 A/min. The system's performance is further demonstrated through a voltage-current measurement on a superconducting cable sample at 11 T background magnetic field. The superconducting transformer system enables fast, high resolution, economic, and safe tests of the critical current of superconducting cable samples.

  5. High-T{sub c} superconducting rectangular microstrip patch covered with a dielectric layer

    Energy Technology Data Exchange (ETDEWEB)

    Bedra, Sami, E-mail: s_bedra@yahoo.fr [Department of Industrial Engineering, University of Khenchela, 40004 Khenchela (Algeria); Fortaki, Tarek [Electronics Department, University of Batna, 05000 Batna (Algeria)

    2016-05-15

    Highlights: • We model a microstrip antenna with a dielectric cover and superconductor patch. • The extended full-wave analysis is used to solve for the antenna characteristics • The accuracy of the method is checked by comparing our results with published data • The superconducting patch affects the resonant characteristics of the antenna • Patch on substrate–superstrate configuration is more advantageous than the one on single layer. - Abstract: This paper presents a full-wave method to calculate the resonant characteristics of rectangular microstrip antenna with and without dielectric cover, to explain the difference of performance with temperature between superconducting and normal conducting antenna. Especially the characteristics of high temperature superconducting (HTS) antenna were almost ideal around the critical temperature (T{sub c}). The dyadic Green's functions of the considered structure are efficiently determined in the vector Fourier transform domain. The effect of the superconductivity of the patch is taken into account using the concept of the complex resistive boundary condition. The computed results are found to be in good agreement with results obtained using other methods. Also, the effects of the superstrate on the resonant frequency and bandwidth of rectangular microstrip patch in a substrate–superstrate configuration are investigated. This type of configuration can be used for wider bandwidth by proper selection of superstrate thickness and its dielectric constants.

  6. Growth of single-crystal Al layers on GaAs and Si substrates for microwave superconducting resonators

    Science.gov (United States)

    Tournet, J.; Gosselink, D.; Jaikissoon, M.; Miao, G.-X.; Langenberg, D.; Mariantoni, M.; Wasilewski, Zr

    Thin Al layers on dielectrics are essential building blocks of circuits used in the quest for scalable quantum computing systems. While molecular beam epitaxy (MBE) has been shown to produce the highest quality Al layers, further reduction of losses in superconducting resonators fabricated from them is highly desirable. Defects at the Al-substrate interface are likely the key source of losses. Here we report on the optimization of MBE growth of Al layers on GaAs and Si substrates. Si surfaces were prepared by in-situ high temperature substrate annealing. For GaAs, defects typically remaining on the substrate surfaces after oxide desorption were overgrown with GaAs or GaAs/AlAs superlattice buffer layers. Such surface preparation steps were followed by cooling process to below 0°C, precisely controlled to obtain targeted surface reconstructions. Deposition of 110 nm Al layers was done at subzero temperatures and monitored with RHEED at several azimuths simultaneously. The resulting layers were characterized by HRXRD, AFM and Nomarski. Single crystal, near-atomically smooth layers of Al(110) were demonstrated on GaAs(001)-2x4 surface whereas Al(111) of comparable quality was formed on Si(111)-1x1 and 7x7 surfaces.

  7. The Test of LLRF control system on superconducting cavity

    CERN Document Server

    Zhu, Zhenglong; Wen, Lianghua; Chang, Wei; Zhang, Ruifeng; Gao, Zheng; Chen, Qi

    2014-01-01

    The first generation Low-Level radio frequency(LLRF) control system independently developed by IMPCAS, the operating frequency is 162.5MHz for China ADS, which consists of superconducting cavity amplitude stability control, phase stability control and the cavity resonance frequency control. The LLRF control system is based on four samples IQ quadrature demodulation technique consisting an all-digital closed-loop feedback control. This paper completed the first generation of ADS LLRF control system in the low-temperature superconducting cavities LLRF stability and performance online tests. Through testing, to verify the performance of LLRF control system, to analysis on emerging issues, and in accordance with the experimental data, to summarize LLRF control system performance to accumulate experience for the future control of superconducting cavities.

  8. submitter Thermal, Hydraulic, and Electromagnetic Modeling of Superconducting Magnet Systems

    CERN Document Server

    Bottura, L

    2016-01-01

    Modeling techniques and tailored computational tools are becoming increasingly relevant to the design and analysis of large-scale superconducting magnet systems. Efficient and reliable tools are useful to provide an optimal forecast of the envelope of operating conditions and margins, which are difficult to test even when a prototype is available. This knowledge can be used to considerably reduce the design margins of the system, and thus the overall cost, or increase reliability during operation. An integrated analysis of a superconducting magnet system is, however, a complex matter, governed by very diverse physics. This paper reviews the wide spectrum of phenomena and provides an estimate of the time scales of thermal, hydraulic, and electromagnetic mechanisms affecting the performance of superconducting magnet systems. The analysis is useful to provide guidelines on how to divide the complex problem into building blocks that can be integrated in a design and analysis framework for a consistent multiphysic...

  9. Novel superconductivity: from bulk to nano systems

    Science.gov (United States)

    Das, M. P.; Wilson, B. J.

    2015-03-01

    We begin with an introduction of superconductivity by giving a brief history of the phenomenon. The phenomenological Ginzburg-Landau theory and the microscopic theory of Bardeen, Cooper and Schrieffer are outlined. In view of recently available multi-band superconductors, relevant theories of both types are discussed. Unlike the traditional GL theory an extended GL theory is developed relevant to temperatures below the critical temperature. Superconductivity in a nanosystem is the highlight of the remaining part of the paper. Theories and experiments are discussed to give an interested reader an updated account and overview of what is new in this active area of research. Keynote talk at the 7th International Workshop on Advanced Materials Science and Nanotechnology IWAMSN2014, 2-6 November, 2014, Ha Long, Vietnam

  10. p-wave triggered superconductivity in single-layer graphene on an electron-doped oxide superconductor

    Science.gov (United States)

    di Bernardo, A.; Millo, O.; Barbone, M.; Alpern, H.; Kalcheim, Y.; Sassi, U.; Ott, A. K.; de Fazio, D.; Yoon, D.; Amado, M.; Ferrari, A. C.; Linder, J.; Robinson, J. W. A.

    2017-01-01

    Electron pairing in the vast majority of superconductors follows the Bardeen-Cooper-Schrieffer theory of superconductivity, which describes the condensation of electrons into pairs with antiparallel spins in a singlet state with an s-wave symmetry. Unconventional superconductivity was predicted in single-layer graphene (SLG), with the electrons pairing with a p-wave or chiral d-wave symmetry, depending on the position of the Fermi energy with respect to the Dirac point. By placing SLG on an electron-doped (non-chiral) d-wave superconductor and performing local scanning tunnelling microscopy and spectroscopy, here we show evidence for a p-wave triggered superconducting density of states in SLG. The realization of unconventional superconductivity in SLG offers an exciting new route for the development of p-wave superconductivity using two-dimensional materials with transition temperatures above 4.2 K.

  11. p-wave triggered superconductivity in single-layer graphene on an electron-doped oxide superconductor.

    Science.gov (United States)

    Di Bernardo, A; Millo, O; Barbone, M; Alpern, H; Kalcheim, Y; Sassi, U; Ott, A K; De Fazio, D; Yoon, D; Amado, M; Ferrari, A C; Linder, J; Robinson, J W A

    2017-01-19

    Electron pairing in the vast majority of superconductors follows the Bardeen-Cooper-Schrieffer theory of superconductivity, which describes the condensation of electrons into pairs with antiparallel spins in a singlet state with an s-wave symmetry. Unconventional superconductivity was predicted in single-layer graphene (SLG), with the electrons pairing with a p-wave or chiral d-wave symmetry, depending on the position of the Fermi energy with respect to the Dirac point. By placing SLG on an electron-doped (non-chiral) d-wave superconductor and performing local scanning tunnelling microscopy and spectroscopy, here we show evidence for a p-wave triggered superconducting density of states in SLG. The realization of unconventional superconductivity in SLG offers an exciting new route for the development of p-wave superconductivity using two-dimensional materials with transition temperatures above 4.2 K.

  12. Ir doping-induced superconductivity in the SmFeAsO system.

    Science.gov (United States)

    Chen, Yong Liang; Cheng, Cui Hua; Cui, Ya Jing; Zhang, Han; Zhang, Yong; Yang, Ye; Zhao, Yong

    2009-08-05

    The 5d transition metal Ir is successfully doped for Fe in SmFeAsO to induce superconductivity with T(c) = 16 K at a doping level of approximately 15 atom %. Ir doping decreases the As-Fe-As bond angle, beta; this behavior is different from the change in beta for the system with doping charges in the charge-reservoir layers.

  13. Cryogenic system for VECC K500 superconducting cyclotron

    CERN Document Server

    Pal, G; Bhattacharyya, T K; Bhandari, R K

    2009-01-01

    VEC Centre, Kolkata in India is at an advanced stage of commissioning a K500 superconducting cyclotron. The superconducting coil of the magnet for cyclotron is cooled by liquid helium. Three liquid helium cooled cryopanels, placed inside the Dees of the radiofrequency system, maintain the vacuum in the acceleration region of the superconducting cyclotron. The cryogenic system for magnet for cyclotron has been tested by cooling the coil and energizing the magnet. The cryogenic system for cryopanels has also been tested. Heater and temperature sensor were placed on the liquid helium cold head for cryopanel. The temperature of the cold head was observed to be below 20 K upto a heat load of 11.7 watt.

  14. Heating rate and spin flip lifetime due to near field noise in layered superconducting atom chips

    CERN Document Server

    Fermani, Rachele; Zhang, Bo; Lim, Michael J; Dumke, Rainer

    2009-01-01

    We theoretically investigate the heating rate and spin flip lifetimes due to near field noise for atoms trapped close to layered superconducting structures. In particular, we compare the case of a gold layer deposited above a superconductor with the case of a bare superconductor. We study a niobium-based and a YBCO-based chip. For both niobium and YBCO chips at a temperature of 4.2 K, we find that the deposition of the gold layer can have a significant impact on the heating rate and spin flip lifetime, as a result of the increase of the near field noise. At a chip temperature of 77 K, this effect is less pronounced for the YBCO chip.

  15. Superconducting fluctuations in systems with Rashba-spin-orbit coupling

    Energy Technology Data Exchange (ETDEWEB)

    Beyl, Stefan [Institut fuer Theoretische Physik und Astrophysik, Universitaet Wuerzburg (Germany); Orth, Peter P.; Scheurer, Mathias; Schmalian, Joerg [Institut fuer Theorie der Kondensierten Materie, Karlsruher Institut fuer Technologie (Germany)

    2015-07-01

    We investigate the BEC-BCS crossover in a two-dimensional system with Rashba-spin-orbit coupling. To include the effects of phase and amplitude fluctuations of the superconducting order parameter we perform a loop expansion of the effective field theory. We analyze in particular the probability of a low density superconducting quantum phase transition. The theory is relevant to LaAlO{sub 3}/SrTiO{sub 3} interfaces and two-dimensional cold atom systems with synthetic gauge fields.

  16. Using Superconducting Qubit Circuits to Engineer Exotic Lattice Systems

    Science.gov (United States)

    Tsomokos, Dimitris; Ashhab, Sahel; Nori, Franco

    2011-03-01

    We propose an architecture based on superconducting qubits and resonators for the implementation of a variety of exotic lattice systems, such as spin and Hubbard models in higher or fractal dimensions and higher-genus topologies. Spin systems are realized naturally using qubits, while superconducting resonators can be used for the realization of Bose-Hubbard models. Fundamental requirements for these designs, such as controllable interactions between arbitrary qubit pairs, have recently been implemented in the laboratory, rendering our proposals feasible with current technology.

  17. The design considerations for a superconducting magnetic bearing system

    Science.gov (United States)

    Cansiz, Ahmet; Yildizer, Irfan

    2014-09-01

    In this paper a high temperature superconducting magnetic bearing is studied with various design considerations. The design of the bearing consists of a rotor with 7.5 kg mass. The stable levitation of the rotor is provided with the Evershed type and superconducting components. The dynamic stability of the rotor is strengthened with the electromagnetic and electrodynamic levitation techniques. The force on the rotor is predicted in terms of semi-analytical frozen image model. The designed driving system sustains stable levitation during the rotation of the rotor and achieves higher rotational speed than that of the torque driver. The results indicate that the designed rotor and driving system have potential solutions for the development of the superconducting flywheel energy storage.

  18. Proposed hybrid superconducting fault current limiter for distribution systems

    Energy Technology Data Exchange (ETDEWEB)

    Elmitwally, A. [Elect. Eng. Dept., Mansoura University, Mansoura 35516 (Egypt)

    2009-11-15

    In this paper, a new hybrid fault current limiter is proposed for primary distribution systems. It incorporates a high temperature superconducting element in parallel with other two branches. The first is an inductive impedance to share the fault current with. The second branch is a gate-turn-off thyristor switch controlled to work in either of two modes. For the main mode, it controls the temperature of the superconducting element and protect it against damaging excessive heating. Instead, it keeps the device applicable without that superconducting element in the auxiliary operation mode. The design, control and operation of the device is addressed. Its performance in 11 kV distribution systems with DG is investigated. The factors affecting the device behavior for different scenarios are explored. (author)

  19. Tunneling in superconducting structures

    Science.gov (United States)

    Shukrinov, Yu. M.

    2010-12-01

    Here we review our results on the breakpoint features in the coupled system of IJJ obtained in the framework of the capacitively coupled Josephson junction model with diffusion current. A correspondence between the features in the current voltage characteristics (CVC) and the character of the charge oscillations in superconducting layers is demonstrated. Investigation of the correlations of superconducting currents in neighboring Josephson junctions and the charge correlations in neighboring superconducting layers reproduces the features in the CVC and gives a powerful method for the analysis of the CVC of coupled Josephson junctions. A new method for determination of the dissipation parameter is suggested.

  20. Development of superconducting magnetic bearing for flywheel energy storage system

    Science.gov (United States)

    Miyazaki, Yoshiki; Mizuno, Katsutoshi; Yamashita, Tomohisa; Ogata, Masafumi; Hasegawa, Hitoshi; Nagashima, Ken; Mukoyama, Shinichi; Matsuoka, Taro; Nakao, Kengo; Horiuch, Shinichi; Maeda, Tadakazu; Shimizu, Hideki

    2016-12-01

    We have been developing a superconducting magnetic bearing (SMB) that has high temperature superconducting (HTS) coils and bulks for a flywheel energy storage system (FESS) that have an output capability of 300 kW and a storage capacity of 100 kW h (Nagashima et al., 2008, Hasegawa et al., 2015) [1,2]. The world largest-class FESS with a SMB has been completed and test operation has started. A CFRP flywheel rotor that had a diameter of 2 m and weight of 4000 kg had a capability to be rotated at a maximum speed of 6000 min-1. The SMB using superconducting material both for its rotor and stator is capable of supporting the flywheel that had the heavy weight and the high seed rotation mentioned above. This paper describes the design of the SMB and results of the cooling test of the SMB.

  1. Applications of the superconducting lossless resistor in electric power systems

    Energy Technology Data Exchange (ETDEWEB)

    Qian Ping; Chen Jiyan; Hua Rong; Chen Zhongming

    2003-04-15

    The main features and some very useful applications of the superconducting lossless resistor (LLR) in electric power systems are introduced in this paper. According our opinion, there are two different kinds of LLR, i.e., the time-variant LLR (Tv-LLR) and the time-invariant LLR (Ti-LLR). First, Tv-LLR is well suited for developing new type of the fault-current limiter (FCL) since it has no heat energy dissipated from its superconducting element during current-limiting process. Second, it may be used to produce the high voltage circuit breaker with current limiting ability. While Ti-LLR may be used to manufacture a new type of the superconducting transformer, with compact volume, lightweight and with continuously regulated turn-ratio (so it familiarized as time-variable transformer, TVT)

  2. Test equipment for a flywheel energy storage system using a magnetic bearing composed of superconducting coils and superconducting bulks

    Science.gov (United States)

    Ogata, M.; Matsue, H.; Yamashita, T.; Hasegawa, H.; Nagashima, K.; Maeda, T.; Matsuoka, T.; Mukoyama, S.; Shimizu, H.; Horiuchi, S.

    2016-05-01

    Energy storage systems are necessary for renewable energy sources such as solar power in order to stabilize their output power, which fluctuates widely depending on the weather. Since ‘flywheel energy storage systems’ (FWSSs) do not use chemical reactions, they do not deteriorate due to charge or discharge. This is an advantage of FWSSs in applications for renewable energy plants. A conventional FWSS has capacity limitation because of the mechanical bearings used to support the flywheel. Therefore, we have designed a superconducting magnetic bearing composed of a superconducting coil stator and a superconducting bulk rotor in order to solve this problem, and have experimentally manufactured a large scale FWSS with a capacity of 100 kWh and an output power of 300 kW. The superconducting magnetic bearing can levitate 4 tons and enables the flywheel to rotate smoothly. A performance confirmation test will be started soon. An overview of the superconducting FWSS is presented in this paper.

  3. Superconducting transistor

    Science.gov (United States)

    Gray, Kenneth E.

    1979-01-01

    A superconducting transistor is formed by disposing three thin films of superconducting material in a planar parallel arrangement and insulating the films from each other by layers of insulating oxides to form two tunnel junctions. One junction is biased above twice the superconducting energy gap and the other is biased at less than twice the superconducting energy gap. Injection of quasiparticles into the center film by one junction provides a current gain in the second junction.

  4. Mirror Fusion Test Facility: Superconducting magnet system cost analysis

    Energy Technology Data Exchange (ETDEWEB)

    1977-07-01

    At the request of Victor Karpenko, Project manager for LLL`s Mirror Fusion Test Facility, EG&G has prepared this independent cost analysis for the proposed MFTF Superconducting Magnet System. The analysis has attempted to show sufficient detail to provide adequate definition for a basis of estimating costs.

  5. Dichotomy of the electronic structure and superconductivity between single-layer and double-layer FeSe/SrTiO3 films.

    Science.gov (United States)

    Liu, Xu; Liu, Defa; Zhang, Wenhao; He, Junfeng; Zhao, Lin; He, Shaolong; Mou, Daixiang; Li, Fangsen; Tang, Chenjia; Li, Zhi; Wang, Lili; Peng, Yingying; Liu, Yan; Chen, Chaoyu; Yu, Li; Liu, Guodong; Dong, Xiaoli; Zhang, Jun; Chen, Chuangtian; Xu, Zuyan; Chen, Xi; Ma, Xucun; Xue, Qikun; Zhou, X J

    2014-09-23

    The latest discovery of possible high-temperature superconductivity in the single-layer FeSe film grown on a SrTiO3 substrate has generated much attention. Initial work found that, while the single-layer FeSe/SrTiO3 film exhibits a clear signature of superconductivity, the double-layer film shows an insulating behaviour. Such a marked layer-dependent difference is surprising and the underlying origin remains unclear. Here we report a comparative angle-resolved photoemission study between the single-layer and double-layer FeSe/SrTiO3 films annealed in vacuum. We find that, different from the single-layer FeSe/SrTiO3 film, the double-layer FeSe/SrTiO3 film is hard to get doped and remains in the semiconducting/insulating state under an extensive annealing condition. Such a behaviour originates from the much reduced doping efficiency in the bottom FeSe layer of the double-layer FeSe/SrTiO3 film from the FeSe-SrTiO3 interface. These observations provide key insights in understanding the doping mechanism and the origin of superconductivity in the FeSe/SrTiO3 films.

  6. Analysis of Nb{sub 3}Sn surface layers for superconducting radio frequency cavity applications

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Chaoyue [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616 (United States); Posen, Sam; Hall, Daniel Leslie [Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York 14853 (United States); Groll, Nickolas; Proslier, Thomas, E-mail: prolier@anl.gov [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Cook, Russell [Nanoscience and Technology Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Schlepütz, Christian M. [X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Liepe, Matthias [Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York 14853 (United States); Department of Physics, Cornell University, Ithaca, New York 14853 (United States); Pellin, Michael [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Zasadzinski, John [Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616 (United States)

    2015-02-23

    We present an analysis of Nb{sub 3}Sn surface layers grown on a bulk Niobium (Nb) coupon prepared at the same time and by the same vapor diffusion process used to make Nb{sub 3}Sn coatings on 1.3 GHz Nb cavities. Tunneling spectroscopy reveals a well-developed, homogeneous superconducting density of states at the surface with a gap value distribution centered around 2.7 ± 0.4 meV and superconducting critical temperatures (T{sub c}) up to 16.3 K. Scanning transmission electron microscopy performed on cross sections of the sample's surface region shows an ∼2 μm thick Nb{sub 3}Sn surface layer. The elemental composition map exhibits a Nb:Sn ratio of 3:1 and reveals the presence of buried sub-stoichiometric regions that have a ratio of 5:1. Synchrotron x-ray diffraction experiments indicate a polycrystalline Nb{sub 3}Sn film and confirm the presence of Nb rich regions that occupy about a third of the coating volume. These low T{sub c} regions could play an important role in the dissipation mechanisms occurring during RF tests of Nb{sub 3}Sn-coated Nb cavities and open the way for further improving a very promising alternative to pure Nb cavities for particle accelerators.

  7. Onset of two-dimensional superconductivity in space charge doped few-layer molybdenum disulfide.

    Science.gov (United States)

    Biscaras, Johan; Chen, Zhesheng; Paradisi, Andrea; Shukla, Abhay

    2015-11-03

    Atomically thin films of layered materials such as molybdenum disulfide (MoS2) are of growing interest for the study of phase transitions in two-dimensions through electrostatic doping. Electrostatic doping techniques giving access to high carrier densities are needed to achieve such phase transitions. Here we develop a method of electrostatic doping which allows us to reach a maximum n-doping density of 4 × 10(14) cm(-2) in few-layer MoS2 on glass substrates. With increasing carrier density we first induce an insulator to metal transition and subsequently an incomplete metal to superconductor transition in MoS2 with critical temperature ≈10 K. Contrary to earlier reports, after the onset of superconductivity, the superconducting transition temperature does not depend on the carrier density. Our doping method and the results we obtain in MoS2 for samples as thin as bilayers indicates the potential of this approach.

  8. Development of a cooling system for superconducting wind turbine generator

    Science.gov (United States)

    Furuse, Mitsuho; Fuchino, Shuichiro; Okano, Makoto; Natori, Naotake; Yamasaki, Hirofumi

    2016-12-01

    This paper deals with the cooling system for high-Tc superconducting (HTS) generators for large capacity wind turbines. We have proposed a cooling system with a heat exchanger and circulation pumps to cool HTS field windings designed for 10 MW-class superconducting generators. In the cooling system, the refrigerants in the stationary and rotational systems are completely separated; heat between the two systems exchanges using a rotational-stationary heat exchanger. The refrigerant in rotational system is circulated by highly reliable pumps. We designed the rotational-stationary heat exchanger based on a conventional shell-and tube type heat exchanger. We also demonstrated that heat exchange in cryogenic temperature is possible with a commercially available heat exchanger. We devised a novel and highly reliable cryogenic helium circulation pump with magnetic reciprocating rotation system and verified its underlying principle with a small-scale model.

  9. Absence of superconductivity in ultrathin layers of FeSe synthesized on a topological insulator

    Science.gov (United States)

    Eich, Andreas; Rollfing, Nils; Arnold, Fabian; Sanders, Charlotte; Ewen, Pascal R.; Bianchi, Marco; Dendzik, Maciej; Michiardi, Matteo; Mi, Jian-Li; Bremholm, Martin; Wegner, Daniel; Hofmann, Philip; Khajetoorians, Alexander A.

    2016-09-01

    The structural and electronic properties of FeSe ultrathin layers on B i2S e3 have been investigated with a combination of scanning tunneling microscopy and spectroscopy and angle-resolved photoemission spectroscopy. The FeSe multilayers, which are predominantly 3-5 monolayers (MLs) thick, exhibit a hole pocket-like electron band at Γ ¯ and a dumbbell-like feature at M ¯, similar to multilayers of FeSe on SrTi O3 . Moreover, the topological state of the B i2S e3 is preserved beneath the FeSe layer, as indicated by a heavily n-doped Dirac cone. Low temperature scanning tunneling spectroscopy does not exhibit a superconducting gap for any investigated thickness down to a temperature of 5 K.

  10. New power-conditioning systems for superconducting magnetic energy storage

    Science.gov (United States)

    Han, Byung Moon

    1992-06-01

    This dissertation presents the development of new power-conditioning systems for superconducting magnetic energy storage (SMES), which can regulate fast and independently the active and reactive powers demanded in the ac network. Three new power-conditioning systems were developed through a systematic approach to match the requirements of the superconducting coil and the ac power network. Each of these new systems is composed of ten 100-MW modules connected in parallel to handle the large current through the superconducting coil. The first system, which was published in the IEEE Transactions on Energy Conversion, consists of line-commutated 24-pulse converter, a thyristor-switched tap-changing transformer, and a thyristor-switched capacitor bank. The second system, which was accepted for publication in the IEEE Transactions on Energy Conversion, consists of a 12-pulse GTO (gate turn-off thyristor) converter and a thyristor-switched tap-changing transformer. The third system, which was submitted to the International Journal of Energy System, consists of a dc chopper and a voltage-source PWM (pulse width modulation) converter. The operational concept of each new system is verified through mathematical analyses and computer simulations. The dynamic interaction of each new system with the ac network and the superconducting coil is analyzed using a simulation model with EMTP (electro-magnetic transients program). The analysis results prove that each new system is feasible and realizable. Each system can regulate the active and reactive powers of the utility network rapidly and independently, and each offer a significant reduction of the system rating by reducing the reactive power demand in the converter. Feasible design for each new system was introduced using a modular design approach based on the 1000 MW/5000 MWH plant, incorporating commercially available components and proven technologies.

  11. Unconventional superconductivity in electron-doped layered metal nitride halides MNX (M = Ti, Zr, Hf; X = Cl, Br, I)

    Energy Technology Data Exchange (ETDEWEB)

    Kasahara, Yuichi, E-mail: ykasahara@scphys.kyoto-u.ac.jp [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); Kuroki, Kazuhiko, E-mail: kuroki@phys.sci.osaka-u.ac.jp [Department of Physics, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Yamanaka, Shoji, E-mail: syamana@hiroshima-u.ac.jp [Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8527 (Japan); Taguchi, Yasujiro, E-mail: y-taguchi@riken.jp [RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198 (Japan)

    2015-07-15

    In this review, we present a comprehensive overview of superconductivity in electron-doped metal nitride halides MNX (M = Ti, Zr, Hf; X = Cl, Br, I) with layered crystal structure and two-dimensional electronic states. The parent compounds are band insulators with no discernible long-range ordered state. Upon doping tiny amount of electrons, superconductivity emerges with several anomalous features beyond the conventional electron–phonon mechanism, which stimulate theoretical investigations. We will discuss experimental and theoretical results reported thus far and compare the electron-doped layered nitride superconductors with other superconductors.

  12. Type-1.5 superconductivity in multicomponent systems

    Science.gov (United States)

    Babaev, E.; Carlström, J.; Silaev, M.; Speight, J. M.

    2017-02-01

    In general a superconducting state breaks multiple symmetries and, therefore, is characterized by several different coherence lengths ξi, i = 1 , … , N . Moreover in multiband material even superconducting states that break only a single symmetry are nonetheless described, under certain conditions by multi-component theories with multiple coherence lengths. As a result of that there can appear a state where some coherence lengths are smaller and some are larger than the magnetic field penetration length λ: ξ1 ≤ξ2 … recently termed "type-1.5" superconductivity. This breakdown of type-1/type-2 dichotomy is rather generic near a phase transition between superconducting states with different symmetries. The examples include the transitions between U(1) and U(1) × U(1) states or between U(1) and U(1) × Z2 states. The later example is realized in systems that feature transition between s-wave and s + is states. The extra fundamental length scales have many physical consequences. In particular in these regimes vortices can attract one another at long range but repel at shorter ranges. Such a system can form vortex clusters in low magnetic fields. The vortex clustering in the type-1.5 regime gives rise to many physical effects, ranging from macroscopic phase separation in domains of different broken symmetries, to unusual transport properties. Prepared for the proceedings of Vortex IX conference, Rhodes 12-17 September 2015.

  13. Control and data acquisition systems for high field superconducting wigglers

    CERN Document Server

    Batrakov, A; Karpov, G; Kozak, V; Kuzin, M; Kuper, E; Mamkin, V; Mezentsev, N A; Repkov, V V; Selivanov, A; Shkaruba, V A

    2001-01-01

    This paper describes the control and DAQ system of superconducting wigglers with magnetic field range up to 10.3 T. The first version of the system controls a 7 T superconducting wiggler prepared for installation at Bessy-II (Germany). The second one controls a 10 T wiggler which is under testing now at the SPring-8 site (Japan). Both systems are based on VME apparatus. The set of specialized VME modules is elaborated to arrange wiggler power supply control, full time wiggler monitoring, and magnetic field high accuracy measurement and field stabilization. The software for the control of the wigglers is written in C language for VxWorks operation system for a Motorola-162 VME controller. The task initialization, stops and acquisition of the data can be done from the nearest personal computer (FTP host for VME), or from the remote system as well.

  14. Magnetoelastic instabilities and vibrations of superconducting-magnet systems

    Energy Technology Data Exchange (ETDEWEB)

    Moon, F.C.

    1982-03-01

    This report describes the research accomplished under Depatment of Energy/NSF grants associated with the structural design of superconducting magnets for magnetic fusion reactors. The main results pertain to magnetomechanical instabilities in toroidal and poloidal field magnets for proposed fusion reactors. One major accomplishment was the building and testing of a 1/75th scale superconducting structural model of a 16 coil Tokamak reactor. Using this model the buckling of toroidal and poloidal field coils under different constraints was observed. A series of dynamic tests were performed, including the effect of currents on natural frequencies, poloidal-toroidal coil interaction, and buckling induced superconducting-normal quench of the coils. The stability of poloidal coils in a toroidal magnet field were investigated with the 16 coil torus. A superconducting poloidal coil was observed to become statically unstable or buckle as the current approached a certain value. Magnetoelastic buckling of other magnet systems such as a yin-yang pair of magnets, Ioffe coils, and discrete coil solenoids were also studied.

  15. Josephson coupling between superconducting islands on single- and bi-layer graphene

    Science.gov (United States)

    Mancarella, Francesco; Fransson, Jonas; Balatsky, Alexander

    2016-05-01

    We study the Josephson coupling of superconducting (SC) islands through the surface of single-layer graphene (SLG) and bilayer graphene (BLG) in the long-junction regime, as a function of the distance between the grains, temperature, chemical potential and external (transverse) gate-voltage. For SLG, we provide a comparison with existing literature. The proximity effect is analyzed through a Matsubara Green’s function approach. This represents the first step in a discussion of the conditions for the onset of a granular superconductivity within the film, made possible by Josephson currents flowing between superconductors. To ensure phase coherence over the 2D sample, a random spatial distribution can be assumed for the SC islands on the SLG sheet (or intercalating the BLG sheets). The tunable gate-voltage-induced band gap of BLG affects the asymptotic decay of the Josephson coupling-distance characteristic for each pair of SC islands in the sample, which results in a qualitatively strong field dependence of the relation between Berezinskii-Kosterlitz-Thouless transition critical temperature and gate voltage.

  16. A fully superconducting bearing system for flywheel applications

    Science.gov (United States)

    Xu, Ke-xi; Wu, Dong-jie; Jiao, Y. L.; Zheng, M. H.

    2016-06-01

    A fully superconducting magnetic suspension structure has been designed and constructed for the purpose of superconducting bearing applications in flywheel energy storage systems. A thrust type bearing and two journal type bearings, those that are composed of melt textured high-Tc superconductor YBCO bulks and Nd-Fe-B permanent magnets, are used in the bearing system. The rotor dynamical behaviors, including critical speeds and rotational loss, are studied. Driven by a variable-frequency three-phase induction motor, the rotor shaft attached with a 25 kg flywheel disc can be speeded up to 15 000 rpm without serious resonance occurring. Although the flywheel system runs stably in the supercritical speeds region, very obvious rotational loss is unavoidable. The loss mechanism has been discussed in terms of eddy current loss and hysteresis loss.

  17. Non-Markovian entanglement dynamics in coupled superconducting qubit systems

    CERN Document Server

    Cui, Wei; Pan, Yu

    2010-01-01

    We theoretically analyze the entanglement generation and dynamics by coupled Josephson junction qubits. Considering a current-biased Josephson junction (CBJJ), we generate maximally entangled states. In particular, the entanglement dynamics is considered as a function of the decoherence parameters, such as the temperature, the ratio $r\\equiv\\omega_c/\\omega_0$ between the reservoir cutoff frequency $\\omega_c$ and the system oscillator frequency $\\omega_0$, % between $\\omega_0$ the characteristic frequency of the %quantum system of interest, and $\\omega_c$ the cut-off frequency of %Ohmic reservoir and the energy levels split of the superconducting circuits in the non-Markovian master equation. We analyzed the entanglement sudden death (ESD) and entanglement sudden birth (ESB) by the non-Markovian master equation. Furthermore, we find that the larger the ratio $r$ and the thermal energy $k_BT$, the shorter the decoherence. In this superconducting qubit system we find that the entanglement can be controlled and t...

  18. Preparation of very thin superconducting films of Y-Ba-Cu-O by a layer-by-layer resistive evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Azoulay, J.; Goldschmidt, D. (Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel, and Center for Technological Education, Holon, P.O. Box 305, Holon 58680, Israel (IL)); Brener, R. (Solid State Institute, Technion, Israel Institute of Technology, Haifa 3200, Israel)

    1989-10-15

    We report here on 1/4 -{mu}m-thick superconducting Y-Ba-Cu-O films, produced by a sequential layer-by-layer deposition of Cu, BaF{sub 2}, and YF{sub 3}, utilizing solely resistive evaporation from tungsten boats onto SrTiO{sub 3} substrates. The films are composed primarily of quasioriented elongated grains and have, on the average, the correct stoichiometry. A transition onset at 75 K and width of {similar to}25 K have been observed in these films. The shape of the current-voltage curve indicates that Josephson-coupled weak links limit the transport in these films. However, the magnitude of critical current (3000 A/cm{sup 2} at {similar to}10 K) is larger than that found in bulk ceramic superconductors. The origin of weak links in these films is probably in the regions of contact between the elongated grains. The relatively large critical current density, as compared to regular bulk ceramic superconductors, is presumably related to the quasioriented nature of the film.

  19. Contextuality without nonlocality in a superconducting quantum system

    Science.gov (United States)

    Jerger, Markus; Reshitnyk, Yarema; Oppliger, Markus; Potočnik, Anton; Mondal, Mintu; Wallraff, Andreas; Goodenough, Kenneth; Wehner, Stephanie; Juliusson, Kristinn; Langford, Nathan K.; Fedorov, Arkady

    2016-10-01

    Classical realism demands that system properties exist independently of whether they are measured, while noncontextuality demands that the results of measurements do not depend on what other measurements are performed in conjunction with them. The Bell-Kochen-Specker theorem states that noncontextual realism cannot reproduce the measurement statistics of a single three-level quantum system (qutrit). Noncontextual realistic models may thus be tested using a single qutrit without relying on the notion of quantum entanglement in contrast to Bell inequality tests. It is challenging to refute such models experimentally, since imperfections may introduce loopholes that enable a realist interpretation. Here we use a superconducting qutrit with deterministic, binary-outcome readouts to violate a noncontextuality inequality while addressing the detection, individual-existence and compatibility loopholes. This evidence of state-dependent contextuality also demonstrates the fitness of superconducting quantum circuits for fault-tolerant quantum computation in surface-code architectures, currently the most promising route to scalable quantum computing.

  20. Competing ferromagnetism and superconductivity on FeAs layers in EuFe2(As0.73P0.27)2.

    Science.gov (United States)

    Ahmed, Aamir; Itou, M; Xu, Shenggao; Xu, Zhu'an; Cao, Guanghan; Sakurai, Y; Penner-Hahn, James; Deb, Aniruddha

    2010-11-12

    We have measured the spin-polarized electron momentum density distributions of EuFe2(As0.73P0.27)2 by magnetic Compton scattering (MCS) measurements. For the first time, we show direct evidence of competing ferromagnetism and superconductivity (SC) on FeAs layers in this iron pnictide system. The MCS orbitalwise decomposition of the density distributions reveals that between 16 and 19 K, the spin-polarized Fe-3d character is enhanced (as the ferromagnetic character supersedes superconducting character), where the resistivity shows a maximum, reentrant SC-like peak, at 18 K. The spin polarization of the Fe-3d orbital, enhanced by ferromagnetic Eu ions, suppresses the SC around 18 K, while at other temperatures the system indeed exhibits SC where the Fe-3d spin polarization is suppressed or collapses.

  1. Optimum design of flywheel storage system using superconducting magnetic bearings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Soo Hun; Kim, Jong Soo; Kim, Jung Guen [Ajou University, Suwon (Korea)

    1999-03-01

    The flywheel energy storage system using superconducting magnetic bearings is a device to store electrical energy as rotational kinetic energy by motor and to convert it to electrical energy by generator when it is necessary. An analytical model of the SMB-FESS is necessary to identify the system behavior. At first, we have to model the superconducting magnetic bearings that have different characteristics from mechanical and the electric magnetic bearing. Modeling the SMB is same as estimating the bearing parameter. The theoretical modal parameter is calculated through the equation of motion and the experimental modal parameter is estimated through the impact testing (modal testing). The bearing parameter is searched by using the non-linear least square method until the theoretical result corresponds to the experimental result. The suggested modeling method is verified by comparing experimental and analytical frequency response function. The loss mechanisms associated with the combined effects of magnetic unbalance and hysteretic damping in the superconducting flywheel system have been modeled under the assumption that dynamic characteristics of the bearing can be approximated by a linear, elastic anisotropic spring with complex stiffness. Theoretical energy loss model effected by unbalance is derived from generalized rotational model including gyroscopic effect and generalized response. The validity of suggested energy loss model is confirmed by comparing experimental deceleration curve. (author). 12 refs., 28 figs., 10 tabs.

  2. A control system for and a method of controlling a superconductive rotating electrical machine

    DEFF Research Database (Denmark)

    2014-01-01

    This invention relates to a method of controlling and a control system (100) for a superconductive rotating electric machine (200) comprising at least one superconductive winding (102; 103), where the control system (100) is adapted to control a power unit (101) supplying during use the at least...... one superconductive winding (102; 103) with power or receiving during use power from the at least one superconductive winding (102; 103), wherein the control system (100) is further adapted to, for at least one superconductive winding (102; 103), dynamically receive one or more representations of one...... superconductive winding (102; 103) by the power unit (101) where the one or more electrical current values is/are derived taking into account the received one or more actual values (110, 111). In this way,greater flexibility and more precise control of the performance of the superconducting rotating electrical...

  3. Influence of Fe Buffer Layer on Co-Doped BaFe2As2 Superconducting Thin Films

    Directory of Open Access Journals (Sweden)

    C. Bonavolontà

    2015-01-01

    Full Text Available A systematic characterization of Co-doped BaFe2As2 (Ba-122 thin films has been carried out. Two samples were available, one grown on CaF2 substrate and the other on MgO with an Fe buffer layer. The goal was to investigate films’ magnetic and superconducting properties, their reciprocal interplay, and the role played by the Fe buffer layer in modifying them. Morphological characterization and Energy Dispersive X-ray analyses on the Fe-buffered sample demonstrate the presence of diffused Fe close to the Co-doped Ba-122 outer surface as well as irregular holes in the overlying superconducting film. These results account for hysteresis loops obtained with magneto-optic Kerr effect measurements and observed at both room and low temperatures. The magnetic pattern was visualized by magneto-optical imaging with an indicator film. Moreover, we investigated the onset of superconductivity through a measure of the superconducting energy gap. The latter is strictly related to the decay time of the excitation produced by an ultrashort laser pulse and has been determined in a pump-probe transient reflectivity experiment. A comparison of results relative to Co-doped Ba-122 thin films with and without Fe buffer layer is finally reported.

  4. Application concepts of small regenerative cryocoolers in superconducting magnet systems

    Science.gov (United States)

    van der Laan, M. T. G.; Tax, R. B.; ten Kate, H. H. J.

    Superconducting magnets are in growing use outside laboratories for example MRI scanners in hospitals. Other applications under development are magnet systems for separation, levitated trains and ship propulsion. The application of cryocoolers can make these systems more practical. Interfacing these cryocoolers to the magnets can be designed in several different ways. The four basic methods will be dealt with. Test results of a realized GM cryocooler-SC magnet system will be shown. It handles about a 1:3 scale MRI magnet of which one of the six coils has been successfully tested at temperatures between 10 and 14 K.

  5. Superconducting YBa2Cu3O(7-delta) thin films on GaAs with conducting indium-tin-oxide buffer layers

    Science.gov (United States)

    Kellett, B. J.; Gauzzi, A.; James, J. H.; Dwir, B.; Pavuna, D.

    1990-12-01

    Superconducting YBa2Cu3O(7-delta) (YBCO) thin films have been grown in situ on GaAs with conducting indium-tin-oxide (ITO) buffer layers. Superconducting onset is about 92 K with zero resistance at 60 K. ITO buffer layers usually form Schottky-like barriers on GaAs. The YBCO film and ITO buffer layer, grown by ion beam sputter codeposition, are textured and polycrystalline with a combined room-temperature resistivity of about 1 milliohm cm.

  6. Goos-Hänchen shift at the reflection of light from the complex structures composed of superconducting and dielectric layers

    Science.gov (United States)

    Dadoenkova, Yu. S.; Dadoenkova, N. N.; Lyubchanskii, I. L.; Lee, Y. P.

    2015-12-01

    The Goos-Hänchen effect of light reflected from sandwich (three-layered) structures composed of a superconducting YBa2Cu3O7 film and two different dielectric films is investigated theoretically. It has been shown that optical anisotropy of YBa2Cu3O7 film, as well as its positions in the three-layer specimen, strongly effects on the lateral shift values. We have shown that, for all positions of the superconducting film in the three-layered structure, variation of temperature makes possible to control the values of the lateral shift of TE-polarized light at the incidence angles close to pseudo-Brewster angles, whereas for TM-polarized light the lateral shift is only significant at grazing incidence.

  7. Superconducting instability of a non-centrosymmetric system

    Science.gov (United States)

    Grzybowska, Dorota; Harań, Grzegorz

    2017-03-01

    The Fermi gas approach to the weak-coupling superconductivity in the non-centrosymmetric systems lead to a conclusion of an approximately spin-orbit coupling independent critical temperature of the singlet states as well as the triplet states defined by the order parameter aligned with the antisymmetric spin-orbit coupling vector. We indicate that the above results follow from a simplified approximation of a density of states by a constant Fermi surface value. Such a scenario does not properly account for the spin-split quasiparticle energy spectrum and reduces the spin-orbit coupling influence on superconductivity to the bare pair-breaking effect of a lifted spin degeneracy. Applying the tight-binding model, which captures the primary features of the spin-split energy band, i.e., its enhanced width and the spin-orbit coupling induced redistribution of the spectral weights in the density of states, we calculate the critical temperature of a non-centrosymmetric superconductor. We report a general tendency of the critical temperature to be suppressed by the antisymmetric spin-orbit coupling. We indicate that, the monotonic decrease of the critical temperature may be altered by the spin-orbit coupling induced van Hove singularities which, when driven to the Fermi level, generate maxima in the phase diagram. Extending our considerations to the intermediate-coupling superconductivity we point out that the spin-orbit coupling induced change of the critical temperature depends on the structure of the electronic energy band and both - the strength and symmetry of the pair potential. Finally, we discuss the mixed singlet-triplet state superconducting instability and establish conditions concerning the symmetry of the singlet and triplet counterparts as well as the range of the spin-orbit coupling energy which make such a phase transition possible.

  8. Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3.

    Science.gov (United States)

    Ge, Jian-Feng; Liu, Zhi-Long; Liu, Canhua; Gao, Chun-Lei; Qian, Dong; Xue, Qi-Kun; Liu, Ying; Jia, Jin-Feng

    2015-03-01

    Recent experiments on FeSe films grown on SrTiO3 (STO) suggest that interface effects can be used as a means to reach superconducting critical temperatures (Tc) of up to 80 K (ref. ). This is nearly ten times the Tc of bulk FeSe and higher than the record value of 56 K for known bulk Fe-based superconductors. Together with recent studies of superconductivity at oxide heterostructure interfaces, these results rekindle the long-standing idea that electron pairing at interfaces between two different materials can be tailored to achieve high-temperature superconductivity. Subsequent angle-resolved photoemission spectroscopy measurements of the FeSe/STO system revealed an electronic structure distinct from bulk FeSe (refs , ), with an energy gap vanishing at around 65 K. However, ex situ electrical transport measurements have so far detected zero resistance-the key experimental signature of superconductivity-only below 30 K. Here, we report the observation of superconductivity with Tc above 100 K in the FeSe/STO system by means of in situ four-point probe electrical transport measurements. This finding confirms FeSe/STO as an ideal material for studying high-Tc superconductivity.

  9. Operating System Abstraction Layer (OSAL)

    Science.gov (United States)

    Yanchik, Nicholas J.

    2007-01-01

    This viewgraph presentation reviews the concept of the Operating System Abstraction Layer (OSAL) and its benefits. The OSAL is A small layer of software that allows programs to run on many different operating systems and hardware platforms It runs independent of the underlying OS & hardware and it is self-contained. The benefits of OSAL are that it removes dependencies from any one operating system, promotes portable, reusable flight software. It allows for Core Flight software (FSW) to be built for multiple processors and operating systems. The presentation discusses the functionality, the various OSAL releases, and describes the specifications.

  10. Modular transportable superconducting magnetic Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lieurance, D.; Kimball, F.; Rix, C. [Martin Marietta Space Magnetics, San Diego, CA (United States)

    1994-12-31

    Design and cost studies were performed for the magnet components of mid-size (1-5 MWh), cold supported SMES systems using alternative configurations. The configurations studied included solenoid magnets, which required onsite assembly of the magnet system, and toroid and racetrack configurations which consisted of factory assembled modules. For each configuration, design concepts and cost information were developed for the major features of the magnet system including the conductor, electrical insulation, and structure. These studies showed that for mid-size systems, the costs of solenoid and toroid magnet configurations are comparable and that the specific configuration to be used for a given application should be based upon customer requirements such as limiting stray fields or minimizing risks in development or construction.

  11. Mechanism, time-reversal symmetry, and topology of superconductivity in noncentrosymmetric systems

    Science.gov (United States)

    Scheurer, M. S.

    2016-05-01

    We analyze the possible interaction-induced superconducting instabilities in noncentrosymmetric systems based on symmetries of the normal state. It is proven that pure electron-phonon coupling will always lead to a fully gapped superconductor that does not break time-reversal symmetry and is topologically trivial. We show that topologically nontrivial behavior can be induced by magnetic doping without gapping out the resulting Kramers pair of Majorana edge modes. In the case of superconductivity arising from the particle-hole fluctuations associated with a competing instability, the properties of the condensate crucially depend on the time-reversal behavior of the order parameter of the competing instability. When the order parameter preserves time-reversal symmetry, we obtain exactly the same properties as in the case of phonons. If it is odd under time reversal, the Cooper channel of the interaction will be fully repulsive leading to sign changes of the gap and making spontaneous time-reversal-symmetry breaking possible. To discuss topological properties, we focus on fully gapped time-reversal-symmetric superconductors and derive constraints on possible pairing states that yield necessary conditions for the emergence of topologically nontrivial superconductivity. These conditions might serve as a tool in the search for topological superconductors. We also discuss implications for oxide heterostructures and single-layer FeSe.

  12. Experimental system design for the integration of trapped-ion and superconducting qubit systems

    Science.gov (United States)

    De Motte, D.; Grounds, A. R.; Rehák, M.; Rodriguez Blanco, A.; Lekitsch, B.; Giri, G. S.; Neilinger, P.; Oelsner, G.; Il'ichev, E.; Grajcar, M.; Hensinger, W. K.

    2016-12-01

    We present a design for the experimental integration of ion trapping and superconducting qubit systems as a step towards the realization of a quantum hybrid system. The scheme addresses two key difficulties in realizing such a system: a combined microfabricated ion trap and superconducting qubit architecture, and the experimental infrastructure to facilitate both technologies. Developing upon work by Kielpinski et al. (Phys Rev Lett 108(13):130504, 2012. doi: 10.1103/PhysRevLett.108.130504), we describe the design, simulation and fabrication process for a microfabricated ion trap capable of coupling an ion to a superconducting microwave LC circuit with a coupling strength in the tens of kHz. We also describe existing difficulties in combining the experimental infrastructure of an ion trapping set-up into a dilution refrigerator with superconducting qubits and present solutions that can be immediately implemented using current technology.

  13. Odd-frequency Superconductivity in Driven Systems

    Science.gov (United States)

    Triola, Christopher; Balatsky, Alexander

    We show that Berezinskii's classification of the symmetries of Cooper pair amplitudes in terms of parity under transformations that invert spin, space, time, and orbital degrees of freedom holds for driven systems even in the absence of translation invariance. We then discuss the conditions under which pair amplitudes which are odd in frequency can emerge in driven systems. Considering a model Hamiltonian for a superconductor coupled to an external driving potential, we investigate the influence of the drive on the anomalous Green's function, density of states, and spectral function. We find that the anomalous Green's function develops odd in frequency component in the presence of an external drive. Furthermore we investigate how these odd-frequency terms are related to satellite features in the density of states and spectral function. Supported by US DOE BES E 304.

  14. Odd-frequency superconductivity in driven systems

    Science.gov (United States)

    Triola, Christopher; Balatsky, Alexander V.

    2016-09-01

    We show that Berezinskii's classification of the symmetries of Cooper pair amplitudes holds for driven systems even in the absence of translation invariance. We then consider a model Hamiltonian for a superconductor coupled to an external driving potential and, treating the drive as a perturbation, we investigate the corrections to the anomalous Green's function, density of states, and spectral function. We find that in the presence of an external drive the anomalous Green's function develops terms that are odd in frequency and that the same mechanism responsible for these odd-frequency terms generates additional features in the density of states and spectral function.

  15. Two-dimensional superconductivity in the cuprates revealed by atomic-layer-by-layer molecular beam epitaxy

    Science.gov (United States)

    Bollinger, A. T.; Božović, I.

    2016-10-01

    Various electronic phases displayed by cuprates that exhibit high temperature superconductivity continue to attract much interest. We provide a short review of several experiments that we have performed aimed at investigating the superconducting state in these compounds. Measurements on single-phase films, bilayers, and superlattices all point to the conclusion that the high-temperature superconductivity (HTS) in these materials is an essentially quasi-two dimensional phenomenon. With proper control over the film growth, HTS can exist in a single copper oxide plane with the critical temperatures as high as that achieved in the bulk samples.

  16. Noise from Two-Level Systems in Superconducting Resonators

    Science.gov (United States)

    Neill, C.; Barends, R.; Chen, Y.; Chiaro, B.; Jeffrey, E.; Kelly, J.; Mariantoni, M.; Megrant, A.; Mutus, J.; Ohya, S.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T.; Cleland, A. N.; Martinis, J. M.

    2013-03-01

    Two-level systems (TLSs) present in amorphous dielectrics and surface interfaces are a significant source of decoherence in superconducting qubits. Linear microwave resonators offer a valuable instrument for characterizing the strongly power-dependent response of these TLSs. Using quarter-wavelength coplanar waveguide resonators, we monitored the microwave response of the resonator at a single near-resonant frequency versus time at varying microwave drive powers. We observe a time dependent variation of the resonator's internal dissipation and resonance frequency. The amplitude of these variations saturates with power in a manner similar to loss from TLSs. These results provide a means for quantifying the number and distribution of TLSs.

  17. A vertical test system for China-ADS project injector II superconducting cavities

    Science.gov (United States)

    Chang, Wei; He, Yuan; Wen, Liang-Hua; Li, Chun-Long; Xue, Zong-Heng; Song, Yu-Kun; Zhang, Rui; Zhu, Zheng-Long; Gao, Zheng; Zhang, Cong; Sun, Lie-Peng; Yue, Wei-Ming; Zhang, Sheng-Hu; You, Zhi-Ming; Thomas, Joseph Powers(Tom Powers

    2014-05-01

    To test superconducting cavities, a vertical test system has been designed and set up at the Institute of Modern Physics (IMP). The system design is based on VCO-PLL hardware and the NI Labview software. The test of the HWR010#2 superconducting cavity shows that the function of this test system is satisfactory for testing the low frequency cavity.

  18. Tunable electromagnetically induced transparency in a composite superconducting system

    Science.gov (United States)

    Wang, Xin; Li, Hong-rong; Chen, Dong-xu; Liu, Wen-xiao; Li, Fu-li

    2016-05-01

    We theoretically propose an efficient method to realize electromagnetically induced transparency (EIT) in the microwave regime through a coupled system consisting of a flux qubit and a superconducting LC resonator. Driven by two appropriate microwave fields, the system will be trapped in the dark states. In our proposal, the control field of EIT is played by a second-order transfer rather than by a direct strong-pump field. In particular, we obtained conditions for electromagnetically induced transparency and Autler-Townes splitting in this composite system. Both theoretical and numerical results show that this EIT system benefits from the relatively long coherent time of the resonator. Since this whole system is artificial and tunable, our scheme may have potential applications in various domains.

  19. Common electronic origin of superconductivity in (Li,Fe)OHFeSe bulk superconductor and single-layer FeSe/SrTiO3 films.

    Science.gov (United States)

    Zhao, Lin; Liang, Aiji; Yuan, Dongna; Hu, Yong; Liu, Defa; Huang, Jianwei; He, Shaolong; Shen, Bing; Xu, Yu; Liu, Xu; Yu, Li; Liu, Guodong; Zhou, Huaxue; Huang, Yulong; Dong, Xiaoli; Zhou, Fang; Liu, Kai; Lu, Zhongyi; Zhao, Zhongxian; Chen, Chuangtian; Xu, Zuyan; Zhou, X J

    2016-02-08

    The mechanism of high-temperature superconductivity in the iron-based superconductors remains an outstanding issue in condensed matter physics. The electronic structure plays an essential role in dictating superconductivity. Recent revelation of distinct electronic structure and high-temperature superconductivity in the single-layer FeSe/SrTiO3 films provides key information on the role of Fermi surface topology and interface in inducing or enhancing superconductivity. Here we report high-resolution angle-resolved photoemission measurements on the electronic structure and superconducting gap of an FeSe-based superconductor, (Li0.84Fe0.16)OHFe0.98Se, with a Tc at 41 K. We find that this single-phase bulk superconductor shows remarkably similar electronic behaviours to that of the superconducting single-layer FeSe/SrTiO3 films in terms of Fermi surface topology, band structure and the gap symmetry. These observations provide new insights in understanding high-temperature superconductivity in the single-layer FeSe/SrTiO3 films and the mechanism of superconductivity in the bulk iron-based superconductors.

  20. Effective field theories for superconducting systems with multiple Fermi surfaces

    Science.gov (United States)

    Braga, P. R.; Granado, D. R.; Guimaraes, M. S.; Wotzasek, C.

    2016-11-01

    In this work we investigate the description of superconducting systems with multiple Fermi surfaces. For the case of one Fermi surface we re-obtain the result that the superconductor is more precisely described as a topological state of matter. Studying the case of more than one Fermi surface, we obtain the effective theory describing a time reversal symmetric topological superconductor. These results are obtained by employing a general procedure to construct effective low energy actions describing states of electromagnetic systems interacting with charges and defects. The procedure consists in taking into account the proliferation or dilution of these charges and defects and its consequences for the low energy description of the electromagnetic response of the system. We find that the main ingredient entering the low energy characterization of the system with more than one Fermi surface is a non-conservation of the canonical supercurrent triggered by particular vortex configurations.

  1. Effective field theories for superconducting systems with multiple Fermi surfaces

    CERN Document Server

    Braga, P R; Guimaraes, M S; Wotzasek, C

    2016-01-01

    In this work we investigate the description of superconducting systems with multiple Fermi surfaces. For the case of one Fermi surface we re-obtain the result that the superconductor is more precisely described as a topological state of matter. Studying the case of more than one Fermi surface, we obtain the effective theory describing a time reversal symmetric topological superconductor. These results are obtained by employing a general procedure to construct effective low energy actions describing states of electromagnetic systems interacting with charges and defects. The procedure consists in taking into account the proliferation or dilution of these charges and defects and its consequences for the low energy description of the electromagnetic response of the system. We find that the main ingredient entering the low energy characterization of the system with more the one Fermi surface is a non-conservation of the canonical supercurrent triggered by particular vortex configurations.

  2. The superconducting busbar system of Wendelstein 7-X

    Energy Technology Data Exchange (ETDEWEB)

    Stache, Kerstin E-mail: kerstin.stache@ipp.mpg.de; Kerl, F.; Sapper, J.; Sombach, B.; Wegener, L

    2003-09-01

    The superconducting magnet system of the stellarator Wendelstein 7-X (W7-X) consists of 50 non-planar and 20 planar coils grouped in five periodic modules. Ten coils of a given type of non-planar and planar coils will always be connected electrically in series with nominal currents ranging up to 18 kA. Because of the 5-fold symmetry five busbar systems are to be routed. Electrical connection of the busbar system will require 184 disconnectable joints with a resistance below 5 n{omega}. The paper describes the design features of the busbar systems and their installation in the stellarator. Requirements for the design and qualification of the disconnectable joints will be pointed out.

  3. Effective field theories for superconducting systems with multiple Fermi surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Braga, P.R., E-mail: pedro.rangel.braga@gmail.com [Departamento de Física Teórica, Instituto de Física, UERJ - Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, 20550-013 Maracanã, Rio de Janeiro (Brazil); Granado, D.R., E-mail: diegorochagrana@uerj.br [Departamento de Física Teórica, Instituto de Física, UERJ - Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, 20550-013 Maracanã, Rio de Janeiro (Brazil); Department of Physics and Astronomy, Ghent University, Krijgslaan 281-S9, 9000 Gent (Belgium); Guimaraes, M.S., E-mail: msguimaraes@uerj.br [Departamento de Física Teórica, Instituto de Física, UERJ - Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, 20550-013 Maracanã, Rio de Janeiro (Brazil); Wotzasek, C., E-mail: clovis@if.ufrj.br [Instituto de Física, Universidade Federal do Rio de Janeiro, 21941-972, Rio de Janeiro (Brazil)

    2016-11-15

    In this work we investigate the description of superconducting systems with multiple Fermi surfaces. For the case of one Fermi surface we re-obtain the result that the superconductor is more precisely described as a topological state of matter. Studying the case of more than one Fermi surface, we obtain the effective theory describing a time reversal symmetric topological superconductor. These results are obtained by employing a general procedure to construct effective low energy actions describing states of electromagnetic systems interacting with charges and defects. The procedure consists in taking into account the proliferation or dilution of these charges and defects and its consequences for the low energy description of the electromagnetic response of the system. We find that the main ingredient entering the low energy characterization of the system with more than one Fermi surface is a non-conservation of the canonical supercurrent triggered by particular vortex configurations.

  4. High speed superconducting flywheel system for energy storage

    Science.gov (United States)

    Bornemann, H. J.; Urban, C.; Boegler, P.; Ritter, T.; Zaitsev, O.; Weber, K.; Rietschel, H.

    1994-12-01

    A prototype of a flywheel system with auto stable high temperature superconducting bearings was built and tested. The bearings offered good vertical and lateral stability. A metallic flywheel disk, ø 190 mm x 30 mm, was safely rotated at speeds up to 15000 rpm. The disk was driven by a 3 phase synchronous homopolar motor/generator. Maximum energy capacity was 3.8 Wh, maximum power was 1.5 KW. The dynamic behavior of the prototype was tested, characterized and evaluated with respect to axial and lateral stiffness, decay torques (bearing drag), vibrational modes and critical speeds. The bearings supports a maximum weight of 65 N at zero gap, axial and lateral stiffness at 1 mm gap were 440 N/cm and 130 N/cm, respectively. Spin down experiments were performed to investigate the energy efficiency of the system. The decay rate was found to depend upon background pressure in the vacuum chamber and upon the gap width in the bearing. At a background pressure of 5x10 -4 Torr, the coefficient of friction (drag-to-lift ratio) was measured to be 0.000009 at low speeds for 6 mm gap width in the bearing. Our results indicate that further refinement of this technology will allow operation of higly efficient superconducting flywheels in the kWh range.

  5. Optimal RF Systems for Lightly Loaded Superconducting Structures

    CERN Document Server

    Zwart, Townsend; Graves, William S; Wang, D; Zolfaghari, Abbi

    2004-01-01

    Recent developments in the field of RF accelerators have created a demand for power amplifiers that can support very high accelerating gradients, 15-25 MV/m, in superconducting structures with extremely low losses. Free electron lasers (FEL’s) with modest beam current, I< 10 uA, or based on energy recovery linacs (ERL’s) may have intrinsic power demands of less than 1 kW/m. We present the design of an amplifier and external tuner system that will efficiently meet this requirement. The RF amplifier, an Inductive Output Tube (IOT), offers high AC/RF efficiency, flexible power output and switching capability without the need for external modulation. The tuner circuit makes use of low loss ferrite phase shifters to create a moderate quality standing wave (Q~100-1000) between the amplifier and the superconducting cavity. An alternative design based on a shorter cavity structure and employing solid state amplifiers is also presented. The expected performance characteristics of both systems are described.

  6. Contextuality without nonlocality in a superconducting quantum system

    Science.gov (United States)

    Jerger, Markus; Reshitnyk, Yarema; Oppliger, Markus; Potočnik, Anton; Mondal, Mintu; Wallraff, Andreas; Goodenough, Kenneth; Wehner, Stephanie; Juliusson, Kristinn; Langford, Nathan K.; Fedorov, Arkady

    2016-01-01

    Classical realism demands that system properties exist independently of whether they are measured, while noncontextuality demands that the results of measurements do not depend on what other measurements are performed in conjunction with them. The Bell–Kochen–Specker theorem states that noncontextual realism cannot reproduce the measurement statistics of a single three-level quantum system (qutrit). Noncontextual realistic models may thus be tested using a single qutrit without relying on the notion of quantum entanglement in contrast to Bell inequality tests. It is challenging to refute such models experimentally, since imperfections may introduce loopholes that enable a realist interpretation. Here we use a superconducting qutrit with deterministic, binary-outcome readouts to violate a noncontextuality inequality while addressing the detection, individual-existence and compatibility loopholes. This evidence of state-dependent contextuality also demonstrates the fitness of superconducting quantum circuits for fault-tolerant quantum computation in surface-code architectures, currently the most promising route to scalable quantum computing. PMID:27698351

  7. Two-circuit cryogenic system for cooling and cryostating a superconductive turbogenerator

    Energy Technology Data Exchange (ETDEWEB)

    Vishnev, I.P.; Kalitin, P.P.; Krauze, A.I.

    1985-01-01

    This paper reports the results of experimentation with a cryogenic system which indicate that the system meets the refrigeration and cryostating requirements of superconductive turbogenerators and the thermal, hydraulic, mechanical and electrical calculation procedures which they have developed and tested and which make it possible to plan similar high-power superconductive electrical devices.

  8. Low cost composite structures for superconducting magnetic energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Rix, C. (General Dynamics Space Magnetics, San Diego, CA (United States)); McColskey, D. (National Inst. of Standards and Technology, Boulder, CO (United States)); Acree, R. (Phillips Lab., Edwards Air Force Base, CA (United States))

    1994-07-01

    As part of the Superconducting Magnetic Energy Storage/Engineering Test Model (SMES-ETM) programs, design, analysis, fabrication and test programs were conducted to evaluate the low cost manufacturing of Fiberglass Reinforced Plastic (FRP) beams for usage as major components of the structural and electrical insulation systems. These studies utilized pultrusion process technologies and vinylester resins to produce large net sections at costs significantly below that of conventional materials. Demonstration articles incorporating laminate architectures and design details representative of SMES-ETM components were fabricated using the pultrusion process and epoxy, vinylester, and polyester resin systems. The mechanical and thermal properties of these articles were measured over the temperature range from 4 K to 300 K. The results of these tests showed that the pultruded, vinylester components have properties comparable to those of currently used materials, such as G-10, and are capable of meeting the design requirements for the SMES-ETM system.

  9. ORNL Superconducting Technology Program for Electric Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hawsey, R.A. (comp.)

    1993-02-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy's (DOE's) Office of Conservation and Renewable Energy to develop the technology base needed by US industry for commercial development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and systems development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from information prepared for the FY 1992 Peer Review of Projects, conducted by DOE's Office of Program Analysis, Office of Energy Research. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer to US industry. Working together, the collaborative teams are making tremendous progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire products.

  10. Two-Dimensional Superconductivity Emerged at Monatomic Bi(2-) Square Net in Layered Y2O2Bi via Oxygen Incorporation.

    Science.gov (United States)

    Sei, Ryosuke; Kitani, Suguru; Fukumura, Tomoteru; Kawaji, Hitoshi; Hasegawa, Tetsuya

    2016-09-07

    Discovery of layered superconductors such as cuprates and iron-based compounds has unveiled new science and compounds. In these superconductors, quasi-two-dimensional layers including transition metal cations play principal role in the superconductivity via carrier doping by means of aliovalent-ion substitution. Here, we report on a two-dimensional superconductivity at 2 K in ThCr2Si2-type layered oxide Y2O2Bi possessing conducting monatomic Bi(2-) square net, possibly associated with an exotic superconductivity. The superconductivity emerges only in excessively oxygen-incorporated Y2O2Bi with expanded inter-net distance, in stark contrast to nonsuperconducting pristine Y2O2Bi reported previously. This result suggests that the element incorporation into hidden interstitial site could be an alternative approach to conventional substitution and intercalation methods for search of novel superconductors.

  11. Josephson plasma resonance in superconducting multilayers

    DEFF Research Database (Denmark)

    Pedersen, Niels Falsig; Sakai, S

    1998-01-01

    We derive an analytical solution for the Josephson plasma resonance of superconducting multilayers. This analytical solution is derived mainly for low-T-c systems with magnetic coupling between the superconducting layers. but many features of our results are more general, and thus an application...

  12. Josephson plasma resonance in superconducting multilayers

    DEFF Research Database (Denmark)

    Pedersen, Niels Falsig

    1999-01-01

    We derive an analytical solution for the josephson plasma resonance of superconducting multilayers. This analytical solution is derived mainly for low T-c systems with magnetic coupling between the superconducting layers, but many features of our results are more general, and thus an application...

  13. Emulating a mesoscopic system using superconducting quantum circuits

    Science.gov (United States)

    Chen, Yu; Barends, R.; Bochmann, J.; Campbell, B.; Chiaro, B.; Jeffrey, E.; Kelly, J.; Mariantoni, M.; Megrant, A.; Mutus, J.; Neill, C.; O'Malley, P.; Ohya, S.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T.; Cleland, A. N.; Martinis, J. M.

    2013-03-01

    We demonstrate an emulation of a mesoscopic system using superconducting quantum circuits. Taking advantage of our ReZQu-architectured quantum processor, we controllably splitted a microwave photon and manipulated the splitted photons before they recombined for detection. In this way, we were able to simulate the weak localization effect in mesoscopic systems - a coherent backscattering process due to quantum interference. The influence of the phase coherence was investigated by tuning the coherence time of the quantum circuit, which in turn mimics the temperature effect on the weak localization process. At the end, we demonstrated an effect resembling universal conductance fluctuations, which arises from the frequency beating between different coherent backscattering processes. The universality of the observed fluctuation was shown as the independence of the fluctuation amplitude on detailed experimental conditions.

  14. Superconductivity in Mg-Doped Layered Intermetallic Compound NbB2

    Institute of Scientific and Technical Information of China (English)

    LIU Guang-Tong; JIN Hao; LI Zheng; GENG Hong-Xia; CHE Guang-Can; JIN Duo; SUN Lian-Feng; XIE Si-Shen; LUO Jian-Lin

    2008-01-01

    We have performed low temperature resistivity p(T) and specific heat C(T) measurements on a superconducting polycrystalline Nb0.75Mg0.25B2 sample.The results indicate that the superconducting transition temperature is ~4.6 K.The zero temperature upper critical field determined from the resistivity and specific heat is 3123 Oe.The electronic coefficient of specific heat γn=4.51 mJ mol-1 K2 and the Debye temperature θn=419 K are obtained by fitting the zero-field specific heat data in the normal state.At low temperatures,the electronic specific heat in the superconducting state follows Ces/γnTc=2.84 exp(-1.21Tc/T).This indicates that the superconducting pairing in Nb0.75Mg0.25 B2 has s-wave symmetry.

  15. High pressure superconductivity in iron-based layered compounds studied using designer diamonds

    Energy Technology Data Exchange (ETDEWEB)

    Tsoi, Georgiy; Stemshorn, Andrew K; Vohra, Yogesh K [Department of Physics, University of Alabama at Birmingham (UAB), Birmingham, AL 35294 (United States); Wu, Phillip M [Department of Physics, Duke University, Durham, NC 27708 (United States); Hsu, F C; Huang, Y L; Wu, M K; Yeh, K W [Institute of Physics, Academia Sinica-Nankang, Taipei, Taiwan (China); Weir, Samuel T [Lawrence Livermore National Laboratory, Mail Stop L-041, Livermore, CA 94550 (United States)

    2009-06-10

    High pressure superconductivity in iron-based superconductor FeSe{sub 0.5}Te{sub 0.5} has been studied up to 15 GPa and 10 K using an eight probe designer diamond anvil in a diamond anvil cell device. Four probe electrical resistance measurements show the onset of superconductivity (T{sub c}) at 14 K at ambient pressure with T{sub c} increasing with increasing pressure to 19 K at a pressure of 3.6 GPa. At higher pressures beyond 3.6 GPa, T{sub c} decreases and extrapolation suggests non-superconducting behavior above 10 GPa. The loss of superconductivity coincides with the pressure induced disordering of the Fe(SeTe){sub 4} tetrahedra reported at 11 GPa in x-ray diffraction studies at ambient temperature. (fast track communication)

  16. Superconductivity program for electric systems, Superconductivity Technology Center, Los Alamos National Laboratory, annual progress report for fiscal year 1997

    Energy Technology Data Exchange (ETDEWEB)

    Willis, J.O.; Newnam, B.E. [eds.; Peterson, D.E.

    1999-03-01

    Development of high-temperature superconductors (HTS) has undergone tremendous progress during the past year. Kilometer tape lengths and associated magnets based on BSCCO materials are now commercially available from several industrial partners. Superconducting properties in the exciting YBCO coated conductors continue to be improved over longer lengths. The Superconducting Partnership Initiative (SPI) projects to develop HTS fault current limiters and transmission cables have demonstrated that HTS prototype applications can be produced successfully with properties appropriate for commercial applications. Research and development activities at LANL related to the HTS program for Fiscal Year 1997 are collected in this report. LANL continues to support further development of Bi2223 and Bi2212 tapes in collaboration with American Superconductor Corporation (ASC) and Oxford Superconductivity Technology, Inc. (OSTI), respectively. The tape processing studies involving novel thermal treatments and microstructural characterization have assisted these companies in commercializing these materials. The research on second-generation YBCO-coated conductors produced by pulsed-laser deposition (PLD) over buffer template layers produced by ion beam-assisted deposition (IBAD) continues to lead the world. The applied physics studies of magnetic flux pinning by proton and heavy ion bombardment of BSCCO and YBCO tapes have provided many insights into improving the behavior of these materials in magnetic fields. Sections 4 to 7 of this report contain a list of 29 referred publications and 15 conference abstracts, a list of patent and license activities, and a comprehensive list of collaborative agreements in progress and completed.

  17. Design of RF system for CYCIAE-230 superconducting cyclotron

    Science.gov (United States)

    Yin, Zhiguo; Ji, Bin; Fu, Xiaoliang; Cao, Xuelong; Zhao, Zhenlu; Zhang, Tinajue

    2017-05-01

    The CYCIAE230 is a low-current, compact superconducting cyclotron designed for proton therapy. The Radio Frequency system consists of four RF cavities and applies second harmonic to accelerate beams. The driving power for the cavity system is estimated to be approximately 150 kW. The LLRF controller is a self-made device developed and tested at low power using a small-scale cavity model. In this paper, the resonator systems of an S.C. cyclotron in history are reviewed. Contrary to those RF systems, the cavities of the CYCIAE230 cyclotron connect two opposite dees. Two high-power RF windows are included in the system. Each window carries approximately 75 kW RF power from the driver to the cavities. Thus, the RF system for the CY-CIAE230 cyclotron is operated in driven push-pull mode. The two-way amplifier-coupler-cavity systems are operated with approximately the same amount of RF power but 180° out of phase compared with each other. The design, as well as the technical advantage and limitations of this operating mode, of the CYCIAE230 cyclotron RF system is analyzed.

  18. Emulation of complex open quantum systems using superconducting qubits

    Science.gov (United States)

    Mostame, Sarah; Huh, Joonsuk; Kreisbeck, Christoph; Kerman, Andrew J.; Fujita, Takatoshi; Eisfeld, Alexander; Aspuru-Guzik, Alán

    2017-02-01

    With quantum computers being out of reach for now, quantum simulators are alternative devices for efficient and accurate simulation of problems that are challenging to tackle using conventional computers. Quantum simulators are classified into analog and digital, with the possibility of constructing "hybrid" simulators by combining both techniques. Here we focus on analog quantum simulators of open quantum systems and address the limit that they can beat classical computers. In particular, as an example, we discuss simulation of the chlorosome light-harvesting antenna from green sulfur bacteria with over 250 phonon modes coupled to each electronic state. Furthermore, we propose physical setups that can be used to reproduce the quantum dynamics of a standard and multiple-mode Holstein model. The proposed scheme is based on currently available technology of superconducting circuits consist of flux qubits and quantum oscillators.

  19. Cryogenic System for a High Temperature Superconducting Power Transmission Cable

    Energy Technology Data Exchange (ETDEWEB)

    Demko, J.A.; Gouge, M.J.; Hughey, R.L.; Lue, J.W.; Martin, R.; Sinha, U.; Stovall, J.P.

    1999-07-12

    High-temperature superconducting (HTS) cable systems for power transmission are under development that will use pressurized liquid nitrogen to provide cooling of the cable and termination hardware. Southwire Company and Oak Ridge National Laboratory have been operating a prototype HTS cable system that contains many of the typical components needed for a commercial power transmission application. It is being used to conduct research in the development of components and systems for eventual commercial deployment. The cryogenic system was built by Air Products and Chemicals, Allentown, Pennsylvania, and can circulate up to 0.35 kg/s of liquid nitrogen at temperatures as low as 67 K at pressures of 1 to 10 bars. Sufficient cooling is provided for testing a 5-m-long HTS transmission cable system that includes the terminations required for room temperature electrical connections. Testing of the 5-m HTS transmission cable has been conducted at the design ac conditions of 1250 A and 7.5 kV line to ground. This paper contains a description of the essential features of the HTS cable cryogenic system and performance results obtained during operation of the system. The salient features of the operation that are important in large commercial HTS cable applications will be discussed.

  20. Superconducting interfaces between insulating oxides.

    Science.gov (United States)

    Reyren, N; Thiel, S; Caviglia, A D; Kourkoutis, L Fitting; Hammerl, G; Richter, C; Schneider, C W; Kopp, T; Rüetschi, A-S; Jaccard, D; Gabay, M; Muller, D A; Triscone, J-M; Mannhart, J

    2007-08-31

    At interfaces between complex oxides, electronic systems with unusual electronic properties can be generated. We report on superconductivity in the electron gas formed at the interface between two insulating dielectric perovskite oxides, LaAlO3 and SrTiO3. The behavior of the electron gas is that of a two-dimensional superconductor, confined to a thin sheet at the interface. The superconducting transition temperature of congruent with 200 millikelvin provides a strict upper limit to the thickness of the superconducting layer of congruent with 10 nanometers.

  1. Superconducting YBa sub 2 Cu sub 3 O sub 7 minus. delta. thin films on GaAs with conducting indium-tin-oxide buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    Kellett, B.J.; Gauzzi, A.; James, J.H.; Dwir, B.; Pavuna, D.; Reinhart, F.K. (Institut de Micro et Optoelectronique, Ecole Polytechnique Federale de Lausanne, CH-1015, Lausanne (CH))

    1990-12-10

    Superconducting YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} (YBCO) thin films have been grown {ital in} {ital situ} on GaAs with conducting indium-tin-oxide (ITO) buffer layers. Superconducting onset is about 92 K with zero resistance at 60 K. ITO buffer layers usually form Schottky-like barriers on GaAs. The YBCO film and ITO buffer layer, grown by ion beam sputter codeposition, are textured and polycrystalline with a combined room-temperature resistivity of about 1 m{Omega} cm.

  2. Superconductivity in the high-Tc Bi-Ca-Sr-Cu-O system - Phase identification

    Science.gov (United States)

    Hazen, R. M.; Prewitt, C. T.; Angel, R. J.; Ross, N. L.; Finger, L. W.

    1988-01-01

    Four phases are observed in superconducting Bi-Ca-Sr-Cu-O samples. The superconducting phase, with onset temperature near 120 K, is a 15.4-A-layered compound with composition near Bi2Ca1Sr2Cu2O9 and an A-centered orthorhombic unit subcell 5.41 x 5.44 x 30.78 A. X-ray diffraction and electron microscopy data are consistent with a structure of alternating perovskite and Bi2O2 layers. High-resolution transmission electron microscopy images reveal a b-axis superstructure of 27.2 A, numerous (001) stacking faults, and other defects.

  3. Analysis of a Liquid Nitrogen-Cooled Tri-Axial High-Temperature Superconducting Cable System

    Science.gov (United States)

    Demko, J. A.; Lue, J. W.; Gouge, M. J.; Fisher, P. W.; Lindsay, D.; Roden, M.

    2004-06-01

    This tri-axial high-temperature superconducting (HTS) cable design uses three concentric superconducting layers for the phase conductors, separated by a cold dielectric material. The design offers an efficient HTS cable configuration by reducing the amount of superconductor needed and places all three phases in a single cryostat. The tri-axial cable cooling circuit analyzed includes heat loads at the ends for the cable terminations and cable heat loads due to ac, dielectric, and thermal losses. The HTS cable critical current and ac loss are functions of the local temperature that must be determined by the analysis. The radial heat transfer also has an influence on these parameters due to the relatively low thermal conductivity of the dielectric material separating the HTS phases. The study investigates whether the tri-axial cable must be cooled both inside the former and outside of the cable. In this study, the range of operating parameters for a tri-axial HTS cable system and refrigeration requirements are determined based on expected HTS tape performance.

  4. Splice Resistance Measurements in the LHC Main Superconducting Magnet Circuits by the New Quench Protection System

    CERN Document Server

    Charifoulline, Z; Denz, R; Siemko, A; Steckert, J

    2012-01-01

    The interconnections between the LHC main magnets are made of soldered joints (splices) of two superconducting cables stabilized by a copper bus-bar. After the 2008 LHC incident, caused by a defective interconnection, a new layer of high resolution magnet circuit quench protection (nQPS) has been developed and integrated with the existing systems. It allowed mapping of the resistances of all superconducting splices during the 2009 commissioning campaign. Since April 2010, when the LHC was successfully restarted at 3.5 TeV, every bus bar interconnection is constantly monitored by the nQPS electronics. The acquired data are saved to the LHC Logging Database. The paper will briefly describe the data analysis method and will present the results from the two years of resistance measurements. Although no splice was found with resistance higher than 3.3 n and no significant degradation in time was observed so far, the monitoring of splices will stay active till the end of LHC 4 TeV run. The detected outliers wil...

  5. Theoretical study of superconducting proximity effect in single and multi-layered graphene

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Masahiko, E-mail: m-hayashi@ed.akita-u.ac.j [Faculty of Education and Human Studies, Akita University, Akita 010-8502 (Japan); JST-CREST, Kawaguchi, Saitama 332-0012 (Japan); Yoshioka, Hideo [Department of Physics, Nara Women' s University, Nara 630-8506 (Japan); Kanda, Akinobu [Institute of Physics, University of Tsukuba, Tsukuba 305-8571 (Japan)

    2010-12-15

    Theoretical analysis of superconducting current in graphite thin films (or graphene) in proximity to superconductors is presented, especially paying attention to the band structure. We derive the general formula to calculate the free energy of the superconductor-graphite film-superconductor junction, which enable us to calculate the critical current of the junction. We introduce two models for the band structures: (1) Fermi point type (characteristic to monolayer case) and (2) zero-gap semiconductor type (characteristic to bilayer case). Then we calculate the superconducting critical current as a function of junction length and temperature.

  6. Spin superconductivity and ac-Josephson effect in Graphene system under strong magnetic field

    Science.gov (United States)

    Liu, Haiwen; Jiang, Hua; Sun, Qing-Feng; Xie, X. C.; Collaborative Innovation Center of Quantum Matter, Beijing, China Collaboration

    We study the spin superconductivity in Graphene system under strong magnetic field. From the microscopically Gor'kov method combined with the Aharonov-Casher effect, we derive the effective Landau-Ginzburg free energy and analyze the time evolution of order parameter, which is confirmed to be the off-diagonal long range order. Meanwhile, we compare the ground state of spin superconductivity to the canted-antiferromagnetic state, and demonstrate the equivalence between these two states. Moreover, we give out the pseudo-field flux quantization condition of spin supercurrent, and propose an experimental measurable ac-Josephson effect of spin superconductivity in this system.

  7. Analysis of FCL effect caused by superconducting DC cables for railway systems

    Science.gov (United States)

    Nishihara, Taichi; Hoshino, Tsutomu; Tomita, Masaru

    2017-02-01

    DC superconducting cable that is expected for railway system has been developed in the world, since the introduction effects were expected to energy saving. However, behaviour under unsteady states such as a short circuit accident are not entirely clear, and appropriate method of protection has not been established. Therefore, simulation model of the superconducting cable under direct current system was built and analyzed. Analysis result suggests the superconducting cable has the effect of Fault Current Limited (FCL) and critical current rise was effective method for temperature-rise suppression under unsteady states. Trade-off between cable temperature rise and overcurrent was confirmed.

  8. Superconductivity in the PbTe/sub 1-x/Se/sub x/:Tl system

    Energy Technology Data Exchange (ETDEWEB)

    Kaidanov, V.I.; Nemov, S.A.; Parfen' ev, R.V.; Shamshur, D.V.

    1985-08-01

    A study of the influence of the replacement of the atoms in the chalco sublattice, carried out by investigating the superconducting transition in the PbTlTeSe system with x = 0.001-0.05 is reported. (AIP)

  9. Cryogenic system for the MYRRHA superconducting linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Chevalier, Nicolas R.; Junquera, Tomas [Accelerators and Cryogenic Systems, 86, rue de Paris, 91400 Orsay (France); Thermeau, Jean-Pierre [Institut de Physique Nucléaire, Université Paris Sud, 91400 Orsay (France); Romão, Luis Medeiros; Vandeplassche, Dirk [SCK-CEN, Boeretang 200, 2400 Mol (Belgium)

    2014-01-29

    SCK⋅CEN, the Belgian Nuclear Research Centre, is designing MYRRHA, a flexible fast spectrum research reactor (80 MW{sub th}), conceived as an accelerator driven system (ADS), able to operate in sub-critical and critical modes. It contains a continuous-wave (CW) superconducting (SC) proton accelerator of 600 MeV, a spallation target and a multiplying core with MOX fuel, cooled by liquid lead-bismuth (Pb-Bi). From 17 MeV onward, the SC accelerator will consist of 48 β=0.36 spoke-loaded cavities (352 MHz), 34 β=0.47 elliptical cavities (704 MHz) and 60 β=0.65 elliptical cavities (704 MHz). We present an analysis of the thermal loads and of the optimal operating temperature of the cryogenic system. In particular, the low operating frequency of spoke cavities makes their operation in CW mode possible both at 4.2 K or at 2 K. Our analysis outlines the main factors that determine at what temperature the spoke cavities should be operated. We then present different cryogenic fluid distribution schemes, important characteristics (storage, transfer line, etc.) and the main challenges offered by MYRRHA in terms of cryogenics.

  10. Stacking variants and superconductivity in the Bi-O-S system.

    Science.gov (United States)

    Phelan, W Adam; Wallace, David C; Arpino, Kathryn E; Neilson, James R; Livi, Kenneth J; Seabourne, Che R; Scott, Andrew J; McQueen, Tyrel M

    2013-04-10

    High-temperature superconductivity has a range of applications from sensors to energy distribution. Recent reports of this phenomenon in compounds containing electronically active BiS2 layers have the potential to open a new chapter in the field of superconductivity. Here we report the identification and basic properties of two new ternary Bi-O-S compounds, Bi2OS2 and Bi3O2S3. The former is non-superconducting; the latter likely explains the superconductivity at T(c) = 4.5 K previously reported in "Bi4O4S3". The superconductivity of Bi3O2S3 is found to be sensitive to the number of Bi2OS2-like stacking faults; fewer faults correlate with increases in the Meissner shielding fractions and T(c). Elucidation of the electronic consequences of these stacking faults may be key to the understanding of electronic conductivity and superconductivity which occurs in a nominally valence-precise compound.

  11. PREFACE: Focus section on superconducting power systems Focus section on superconducting power systems

    Science.gov (United States)

    Cardwell, D. A.; Amemiya, N.; Fair, R.

    2012-01-01

    This focus section of Superconductor Science and Technology looks at the properties, technology and applications of (RE)BCO and MgB2 based superconductors for power engineering systems. Both bulk and conductor forms of material are addressed, including elements of materials fabrication and processing, and the measurement of their applied properties for various levels of system application. The areas of research include ac losses in type II materials in power devices, cables and coated conductors, the development of high current dc cables and the application of superconductors in levitation devices, motors and fault current limiters. This focus section presents a broad cross-section of contemporary issues, that represent state-of-the-art for power applications of superconductors, and highlights the areas that require further development if commercial applications of these rapidly emerging materials are to be realised. It contains papers from some of the major groups in the field, including contributions from Europe, the USA and Japan, and describes devices that are relatively close to market.

  12. The power processor of a high temperature superconducting energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Ollila, J. [Power Electronics, Tampere University of Technology, Tampere (Finland)

    1997-12-31

    This report introduces the structure and properties of a power processor unit for a high temperature superconducting magnetic energy storage system which is bused in an UPS demonstration application. The operation is first demonstrated using simulations. The software based operating and control system utilising combined Delta-Sigma and Sliding-Mode control is described shortly. Preliminary test results using a conventional NbTi superconducting energy y storage magnet operating at 4.2 K is shown. (orig.)

  13. Upgrade of the protection system for superconducting circuits in the LHC

    CERN Document Server

    Denz, R; Formenti, F; Meß, K H; Siemko, A; Steckert, J; Walckiers, L; Strait, J

    2010-01-01

    Prior to the re-start of the Large Hadron Collider LHC in 2009 the protection system for superconducting magnets and bus-bars QPS will be substantially upgraded. The foreseen modifications will enhance the capability of the system in detecting problems related to the electrical interconnections between superconducting magnets as well as the detection of so-called aperture symmetric quenches in the LHC main magnets.

  14. Micro-Layer Tomography System

    Directory of Open Access Journals (Sweden)

    M. Navabpour

    2005-08-01

    Full Text Available Introduction & Background: Tomography or plani-graphy is an x-ray imaging system for preserving a certain plane of a radiography object by diffusing the other planes; however, the desired plane does not obtain an optimum sharpness. Meanwhile, relatively nearer points to the rotating axes fixed point have lesser liner velocity than those lying further from the fixed point. Consequently, unwanted obscuring planes occur gradually, that then render the wanted plane somehow blurred, hence the phenomenon known as "tomographic blurring", which diminishes the clinical value of the image. Thus, computerized imaging is uncertain especially to medical authorities. Besides, there is a possibility of dismissing the lesion in some cases, because of the relatively undesirable deep resolution of the system. The present innovation could be an approach to improve current tomography systems by increasing image resolution, obtaining optimum deep resolution, rapid operation, and cost reduction. Material and Methods: Micro-layer tomography has been designed with the benefit of fast x-ray rotating velocity without tube movement, to make images with deep resolution of millimeter fraction, while there is no need of digital images reconstruction in-struments that allows statistical errors to fall to about zero. Furthermore, high-resolution images could be prepared in all planes, including coronal, sagittal, and transverse ones. Likewise, patient treatment and sys-tem maintenance costs are by far less than those in CT scan and MRI. Results & Conclusion: The system quick operation is highly exceptional; therefore, the tomographic slices could be prepared in about less than 0.02 second. The laboratory samples experienced by this system showed a unique result, suggesting the new device preference.

  15. In situ growth of superconducting YBa sub 2 Cu sub 3 O sub 7 minus. delta. thin films on Si with conducting indium-tin-oxide buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    Kellett, B.J.; James, J.H.; Gauzzi, A.; Dwir, B.; Pavuna, D.; Reinhart, F.K. (Institute of Micro and Optoelectronics, Ecole Polytechnique Federale de Lausanne, CH-1015, Lausanne (Switzerland))

    1990-09-10

    Superconducting YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} (YBCO) thin films have been grown {ital in} {ital situ} on Si with conducting indium-tin-oxide (ITO) buffer layers. ITO allows YBCO to be electrically connected to the underlying Si substrate. Both the YBCO film and ITO buffer layer, grown by ion beam sputtering, are textured and polycrystalline with a combined room- temperature resistivity of about 2 m{Omega} cm. Superconducting onsets are 92 K with zero resistance at 68 K.

  16. Bond polarons and high-Tc superconductivity in single layer La_(2-x)Sr_xCuO_4: normal state currents and pairing

    CERN Document Server

    Georgiev, Mladen

    2011-01-01

    We use the term "bond polaron" for a phonon coupled entity which makes the link between neighboring conductive CuO_2 layers in high-Tc superconductive materials. The link is essential for the superconductivity which requires a long range phase coherence in addition to pairing of carriers. The linkage features studied point to a process which is less dependent on the doped hole density implanted as x in the solid solution. The analysis applies to single layered materials mostly but may help understand multilayer ones as well.

  17. Performance evaluation of high-temperature superconducting current leads for micro-SMES systems

    Science.gov (United States)

    Niemann, R. C.; Cha, Y. S.; Hull, J. R.; Buckles, W. E.; Weber, B. R.; Yang, S. T.

    As part of the US Department of Energy's Superconductivity Technology Program, Argonne National Laboratory and Superconductivity, Inc., are developing high-temperature superconductor (HTS) current leads for application to micro-superconducting magnetic energy storage systems. Two 1500-A HTS leads have been designed and constructed. The performance of the current lead assemblies is being evaluated in a zero-magnetic-field test program that includes assembly procedures, tooling, and quality assurance; thermal and electrical performance; and flow and mechanical characteristics. Results of evaluations performed to data are presented.

  18. Commissioning of the Cryogenic System for the ATLAS Superconducting Magnets

    CERN Document Server

    Delruelle, N; Bradshaw, T; Haug, F; ten Kate, H H J; Passardi, Giorgio; Pengo, R; Pezzetti, M; Pirotte, O; Rochford, J

    2006-01-01

    The paper describes the test results of the helium cryoplant for the superconducting magnets of the ATLAS particle detector at CERN. It consists of two refrigerators used in common by all the magnets and of two proximity cryogenic systems (PCS) interfacing respectively the toroids and the central solenoid. Emphasis is given to the commissioning of the refrigerators: the main unit of 6 kW equivalent capacity at 4.5 K and the thermal shield refrigerator providing 20 kW between 40 K and 80 K. The first unit is used for refrigeration at 4.5 K and for the cooling of three sets of 20 kA current leads, while the second one provides, in addition to the 20 kW refrigeration of the thermal shields, 60 kW for the cool-down to 100 K of the 660 ton cold mass of the magnets. The tests, carried out with the equipment in the final underground configuration, are extended to the PCS that includes the large liquid helium centrifugal pumps (each providing 1.2 kg/s) for forced-flow cooling of the magnets and the complex distributi...

  19. Eddy damping effect of additional conductors in superconducting levitation systems

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Zhao-Fei; Gou, Xiao-Fan, E-mail: xfgou@hhu.edu.cn

    2015-12-15

    Highlights: • In this article, for the eddy current damper attached to the HTSC, we • quantitatively investigated the damping coefficient c, damping ratio, Joule heating of the copper damper, and the vibration frequency of the PM as well. • presented four different arrangements of the copper damper, and comparatively studied their damping effects and Joule heating, and finally proposed the most advisable arrangement. - Abstract: Passive superconducting levitation systems consisting of a high temperature superconductor (HTSC) and a permanent magnet (PM) have demonstrated several fascinating applications such as the maglev system, flywheel energy storage. Generally, for the HTSC–PM levitation system, the HTSC with higher critical current density J{sub c} can obtain larger magnetic force to make the PM levitate over the HTSC (or suspended below the HTSC), however, the process of the vibration of the levitated PM, provides very limited inherent damping (essentially hysteresis). To improve the dynamic stability of the levitated PM, eddy damping of additional conductors can be considered as the most simple and effective approach. In this article, for the HTSC–PM levitation system with an additional copper damper attached to the HTSC, we numerically and comprehensively investigated the damping coefficient c, damping ratio, Joule heating of the copper damper, and the vibration frequency of the PM as well. Furthermore, we comparatively studied four different arrangements of the copper damper, on the comprehensive analyzed the damping effect, efficiency (defined by c/V{sub Cu}, in which V{sub Cu} is the volume of the damper) and Joule heating, and finally presented the most advisable arrangement.

  20. Dimensionality of high temperature superconductivity in oxides

    Science.gov (United States)

    Chu, C. W.

    1989-01-01

    Many models have been proposed to account for the high temperature superconductivity observed in oxide systems. Almost all of these models proposed are based on the uncoupled low dimensional carrier Cu-O layers of the oxides. Results of several experiments are presented and discussed. They suggest that the high temperature superconductivity observed cannot be strictly two- or one-dimensional, and that the environment between the Cu-O layers and the interlayer coupling play an important role in the occurrence of such high temperature superconductivity. A comment on the very short coherence length reported is also made.

  1. Research data supporting "Unconventional superconductivity in the layered iron germanide YFe2Ge2"

    OpenAIRE

    2016-01-01

    Data is grouped according to the figures in the publication which it supports. Fig. 1 shows resistivity vs. temperature at various applied magnetic fields in YFe2Ge2, and the .txt datasets give the data underlying this diagram. Fig. 2 shows how resistive superconducting transition temperatures depend on sample quality, as measured by the residual resistance ratio, and the .txt dataset gives the underlying table of data. Fig. 3 shows heat capacity and magnetisation data taken at low temperatur...

  2. Methodology and search for superconductivity in the La-Si-C system

    Energy Technology Data Exchange (ETDEWEB)

    De la Venta, J; Basaran, Ali C; Schuller, Ivan K [Department of Physics, University of California San Diego, La Jolla, CA 92093 (United States); Grant, T; Machado, A J S; Fisk, Z [Department of Physics and Astronomy, University of California Irvine, Irvine, CA 92697 (United States); Suchomel, M R [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Weber, R T, E-mail: jdelaventa@physics.ucsd.edu [EPR Division Bruker BioSpin Corporation, Billerica, MA 01821-3931 (United States)

    2011-07-15

    In this paper we describe a methodology for the search for new superconducting materials. This consists of a parallel synthesis of a highly inhomogeneous alloy which covers large areas of the metallurgical phase diagram combined with a fast, microwave-based method which allows non-superconducting portions of the sample to be discarded. Once an inhomogeneous sample containing a minority phase superconductor is identified, we revert to well-known thorough identification methods which include standard physical and structural methods. We show how a systematic structural study helps in avoiding misidentification of new superconducting materials when there are indications from other methods of new discoveries. These ideas are applied to the La-Si-C system which exhibits promising normal state properties which are sometimes correlated with superconductivity. Although this system shows indications for the presence of a new superconducting compound, the careful analysis described here shows that the superconductivity in this system can be attributed to intermediate binary and single phases of the system.

  3. Methodology and search for superconductivity in the La-Si-C system.

    Energy Technology Data Exchange (ETDEWEB)

    de la Venta, J. de la; Basaran, A. C.; Grant, T.; Machado, A. J. S.; Suchomel, M. R.; Weber, R. T.; Fisk, Z.; Schuller, I. K. (X-Ray Science Division); (Univ. of California at San Diego); (Univ. of Sao Paulo); (Bruker BioSpin Corp.)

    2011-01-01

    In this paper we describe a methodology for the search for new superconducting materials. This consists of a parallel synthesis of a highly inhomogeneous alloy which covers large areas of the metallurgical phase diagram combined with a fast, microwave-based method which allows non-superconducting portions of the sample to be discarded. Once an inhomogeneous sample containing a minority phase superconductor is identified, we revert to well-known thorough identification methods which include standard physical and structural methods. We show how a systematic structural study helps in avoiding misidentification of new superconducting materials when there are indications from other methods of new discoveries. These ideas are applied to the La-Si-C system which exhibits promising normal state properties which are sometimes correlated with superconductivity. Although this system shows indications for the presence of a new superconducting compound, the careful analysis described here shows that the superconductivity in this system can be attributed to intermediate binary and single phases of the system.

  4. High field superconducting magnets

    Science.gov (United States)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  5. Superconductivity, Antiferromagnetism, and Kinetic Correlation in Strongly Correlated Electron Systems

    Directory of Open Access Journals (Sweden)

    Takashi Yanagisawa

    2015-01-01

    Full Text Available We investigate the ground state of two-dimensional Hubbard model on the basis of the variational Monte Carlo method. We use wave functions that include kinetic correlation and doublon-holon correlation beyond the Gutzwiller ansatz. It is still not clear whether the Hubbard model accounts for high-temperature superconductivity. The antiferromagnetic correlation plays a key role in the study of pairing mechanism because the superconductive phase exists usually close to the antiferromagnetic phase. We investigate the stability of the antiferromagnetic state when holes are doped as a function of the Coulomb repulsion U. We show that the antiferromagnetic correlation is suppressed as U is increased exceeding the bandwidth. High-temperature superconductivity is possible in this region with enhanced antiferromagnetic spin fluctuation and pairing interaction.

  6. Superconducting NbN single-photon detectors on GaAs with an AlN buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Ekkehart; Merker, Michael; Ilin, Konstantin; Siegel, Michael [Institut fuer Mikro- und Nanoelektronische Systeme (IMS), Karlsruher Institut fuer Technologie, Hertzstrasse 16, 76187 Karlsruhe (Germany)

    2015-07-01

    GaAs is the material of choice for photonic integrated circuits. It allows the monolithic integration of single-photon sources like quantum dots, waveguide based optical circuits and detectors like superconducting nanowire single-photon detectors (SNSPDs) onto one chip. The growth of high quality NbN films on GaAs is challenging, due to natural occurring surface oxides and the large lattice mismatch of about 27%. In this work, we try to overcome these problems by the introduction of a 10 nm AlN buffer layer. Due to the buffer layer, the critical temperature of 6 nm thick NbN films was increased by about 1.5 K. Furthermore, the critical current density at 4.2 K of NbN flim deposited onto GaAs with AlN buffer is 50% higher than of NbN film deposited directly onto GaAs substrate. We successfully fabricated NbN SNSPDs on GaAs with a AlN buffer layer. SNSPDs were patterned using electron-beam lithography and reactive-ion etching techniques. Results on the study of detection efficiency and jitter of a NbN SNSPD on GaAs, with and without AlN buffer layer will be presented and discussed.

  7. Protective link for superconducting coil

    Science.gov (United States)

    Umans, Stephen D.

    2009-12-08

    A superconducting coil system includes a superconducting coil and a protective link of superconducting material coupled to the superconducting coil. A rotating machine includes first and second coils and a protective link of superconducting material. The second coil is operable to rotate with respect to the first coil. One of the first and second coils is a superconducting coil. The protective link is coupled to the superconducting coil.

  8. Superconducting coil system and methods of assembling the same

    Science.gov (United States)

    Rajput-Ghoshal, Renuka; Rochford, James H.; Ghoshal, Probir K.

    2016-01-19

    A superconducting magnet apparatus is provided. The superconducting magnet apparatus includes a power source configured to generate a current; a first switch coupled in parallel to the power source; a second switch coupled in series to the power source; a coil coupled in parallel to the first switch and the second switch; and a passive quench protection device coupled to the coil and configured to by-pass the current around the coil and to decouple the coil from the power source when the coil experiences a quench.

  9. Performance of current measurement system in poloidal field power supply for Experimental Advanced Superconducting Tokamak

    Science.gov (United States)

    Liu, D. M.; Li, J.; Wan, B. N.; Lu, Z.; Wang, L. S.; Jiang, L.; Lu, C. H.; Huang, J.

    2016-11-01

    As one of the core subsystems of the Experimental Advanced Superconducting Tokamak (EAST), the poloidal field power system supplies energy to EAST's superconducting coils. To measure the converter current in the poloidal field power system, a current measurement system has been designed. The proposed measurement system is composed of a Rogowski coil and a newly designed integrator. The results of the resistor-inductor-capacitor discharge test and the converter equal current test show that the current measurement system provides good reliability and stability, and the maximum error of the proposed system is less than 1%.

  10. Effect of annealing on superconductivity in Fe1+y(Te1-xSx) system

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We have synthesized polycrystalline samples of Fe1.11(Te1-xSx) and single crystals of Fe1+y(Te0.88S0.12),and characterized their properties.Our results show that the solid solution of S in the Fe1.11Te tetragonal lattice is limited,~10%.We observed superconductivity at ~8 K in both polycrystalline samples and single crystals.Magnetization measurements reveal that the volume fraction is small for this superconducting phase in both polycrystalline samples as-synthesized and single crystals as-grown.It is found that annealing in air enhances the superconducting fraction;the maximum fraction is almost 100% in the single crystals annealed in air at 300°C.We discuss the effect of annealing on superconductivity and transport properties at the normal state in the Fe1+y(Te1-xSx) system in terms of decrease of the excess Fe.

  11. Magnetic and superconducting quantum critical points of heavy-fermion systems

    Energy Technology Data Exchange (ETDEWEB)

    Demuer, A.; Sheikin, I.; Braithwaite, D. E-mail: dbraithwaite@cea.fr; Faak, B.; Huxley, A.; Raymond, S.; Flouquet, J

    2001-05-01

    Two examples of heavy-fermion systems are presented : CePd{sub 2}Si{sub 2}, an antiferromagnet with a quantum critical point at P{sub C}=28 kbar and UGe{sub 2} an itinerant ferromagnet which transits in a paramagnetic phase above P{sub C}=16 kbar. In CePd{sub 2}Si{sub 2} the superconductivity domain is centered on P{sub C}. Special attention was given to the superconducting and magnetic anomalies at their superconducting and Neel temperatures. In UGe{sub 2} superconductivity appears in 9 kbar at a temperature T{sub S}, more than two orders of magnitude lower than the Curie temperature; furthermore, it occurs only on the magnetic border (P

  12. Magnetic and superconducting quantum critical points of heavy-fermion systems

    Science.gov (United States)

    Demuer, A.; Sheikin, I.; Braithwaite, D.; Fåk, B.; Huxley, A.; Raymond, S.; Flouquet, J.

    2001-05-01

    Two examples of heavy-fermion systems are presented : CePd 2Si 2, an antiferromagnet with a quantum critical point at PC=28 kbar and UGe 2 an itinerant ferromagnet which transits in a paramagnetic phase above PC=16 kbar. In CePd 2Si 2 the superconductivity domain is centered on PC. Special attention was given to the superconducting and magnetic anomalies at their superconducting and Néel temperatures. In UGe 2 superconductivity appears in 9 kbar at a temperature TS, more than two orders of magnitude lower than the Curie temperature; furthermore, it occurs only on the magnetic border ( P< PC). Another characteristic temperature TX is detected by resistivity; the zigzag uranium chain of the lattice may favor a supplementary nesting in the majority spin band.

  13. Updating of Optical Inspection System for 6 GHz Superconducting Cavities

    Institute of Scientific and Technical Information of China (English)

    YU; Guo-long

    2013-01-01

    As a validation tool for the material properties and the surface treatment process,6 GHz superconducting cavity needs complex surface treatment process during its manufacture.It is verynecessary to record and monitor the statues of the internal surface of the cavity after each surface treatment,such as ultrasonic washing,mechanical polishing,electronic polishing(EP),buffered chemical

  14. Electrical conductivity plus probability of superconductivity in α-CuSe/klockmannite; bulk and nano-layers

    Energy Technology Data Exchange (ETDEWEB)

    Shojaei, Ali Reza, E-mail: Ali.r.shojaei@gmail.com

    2015-05-25

    Highlights: • We calculated electrical conductivity of α-CuSe in bulk state and nano-layers (NLs). • We found a large anisotropy (nearly six orders of magnitude) in bulk conductivities. • Our studies show probability of superconductivity occurrence in α-CuSe bulk. • We considered a simple model for feasibility study of this occurrence in CuSe bulk. • We found a high anisotropy (nearly 10{sup 6} orders of magnitude) in NLs conductivities. - Abstract: In this paper, a computational study is carried out on unusual electrical conductivity of α-CuSe compound in the bulk state and its nano-layers (NLs). The property is studied by using Full-potential calculations and the Boltzmann transport equation assuming a suitable temperature-dependent relaxation time for charge carriers. The dependence of electrical conductivity per temperature changes is considered from 80 up to 330 K as well as separately in low-temperature. Our results show that CuSe has a high anisotropy electrical conductivity meaning that the in-plane conductivity is very good, with high hole transport but the z-axis transport is completely different, with two types of electron and hole carriers. By considering the curves of electrical conductivity in low-temperature and again reviewing the experimental data, we predict probability of occurrence of a superconductivity phase transition in this compound in a temperature about 3 K. This possibility has been discussed by assuming a simple model. In continuation of our previous work, we calculate the values of electrical conductivity of the most stable NLs of CuSe. Our results show that the electrical conductivity of NLs in x (or y) direction is nearly 10{sup 6} orders of magnitude than z direction. Therefore, the NLs have very good hole conductive in x (or y) direction but their conductivity is ultra-low in z-axis.

  15. Bulk superconductivity at 38 K in a molecular system.

    Science.gov (United States)

    Ganin, Alexey Y; Takabayashi, Yasuhiro; Khimyak, Yaroslav Z; Margadonna, Serena; Tamai, Anna; Rosseinsky, Matthew J; Prassides, Kosmas

    2008-05-01

    C(60)-based solids are archetypal molecular superconductors with transition temperatures (Tc) as high as 33 K (refs 2-4). Tc of face-centred-cubic (f.c.c.) A(3)C(60) (A=alkali metal) increases monotonically with inter C(60) separation, which is controlled by the A(+) cation size. As Cs(+) is the largest such ion, Cs(3)C(60) is a key material in this family. Previous studies revealing trace superconductivity in Cs(x)C(60) materials have not identified the structure or composition of the superconducting phase owing to extremely small shielding fractions and low crystallinity. Here, we show that superconducting Cs(3)C(60) can be reproducibly isolated by solvent-controlled synthesis and has the highest Tc of any molecular material at 38 K. In contrast to other A(3)C(60) materials, two distinct cubic Cs(3)C(60) structures are accessible. Although f.c.c. Cs(3)C(60) can be synthesized, the superconducting phase has the A15 structure based uniquely among fullerides on body-centred-cubic packing. Application of hydrostatic pressure controllably tunes A15 Cs(3)C(60) from insulating at ambient pressure to superconducting without crystal structure change and reveals a broad maximum in Tc at approximately 7 kbar. We attribute the observed Tc maximum as a function of inter C(60)separation--unprecedented in fullerides but reminiscent of the atom-based cuprate superconductors--to the role of strong electronic correlations near the metal-insulator transition onset.

  16. Smart monitoring system based on adaptive current control for superconducting cable test

    Energy Technology Data Exchange (ETDEWEB)

    Arpaia, Pasquale [Department of Electrical Engineering and Information Technology, University of Naples Federico II, 80125 Napoli (Italy); Technology Department, European Organization for Nuclear Research (CERN), 1217 Geneva (Switzerland); Ballarino, Amalia; Montenero, Giuseppe [Technology Department, European Organization for Nuclear Research (CERN), 1217 Geneva (Switzerland); Daponte, Vincenzo [Technology Department, European Organization for Nuclear Research (CERN), 1217 Geneva (Switzerland); Department of Electronics, Information, and Bioengineering, Polytechnic of Milan, 20133 Milano (Italy); Svelto, Cesare [Department of Electronics, Information, and Bioengineering, Polytechnic of Milan, 20133 Milano (Italy)

    2014-12-15

    A smart monitoring system for superconducting cable test is proposed with an adaptive current control of a superconducting transformer secondary. The design, based on Fuzzy Gain Scheduling, allows the controller parameters to adapt continuously, and finely, to the working variations arising from transformer nonlinear dynamics. The control system is integrated in a fully digital control loop, with all the related benefits, i.e., high noise rejection, ease of implementation/modification, and so on. In particular, an accurate model of the system, controlled by a Fuzzy Gain Scheduler of the superconducting transformer, was achieved by an experimental campaign through the working domain at several current ramp rates. The model performance was characterized by simulation, under all the main operating conditions, in order to guide the controller design. Finally, the proposed monitoring system was experimentally validated at European Organization for Nuclear Research (CERN) in comparison to the state-of-the-art control system [P. Arpaia, L. Bottura, G. Montenero, and S. Le Naour, “Performance improvement of a measurement station for superconducting cable test,” Rev. Sci. Instrum.83, 095111 (2012)] of the Facility for the Research on Superconducting Cables, achieving a significant performance improvement: a reduction in the system overshoot by 50%, with a related attenuation of the corresponding dynamic residual error (both absolute and RMS) up to 52%.

  17. Smart monitoring system based on adaptive current control for superconducting cable test.

    Science.gov (United States)

    Arpaia, Pasquale; Ballarino, Amalia; Daponte, Vincenzo; Montenero, Giuseppe; Svelto, Cesare

    2014-12-01

    A smart monitoring system for superconducting cable test is proposed with an adaptive current control of a superconducting transformer secondary. The design, based on Fuzzy Gain Scheduling, allows the controller parameters to adapt continuously, and finely, to the working variations arising from transformer nonlinear dynamics. The control system is integrated in a fully digital control loop, with all the related benefits, i.e., high noise rejection, ease of implementation/modification, and so on. In particular, an accurate model of the system, controlled by a Fuzzy Gain Scheduler of the superconducting transformer, was achieved by an experimental campaign through the working domain at several current ramp rates. The model performance was characterized by simulation, under all the main operating conditions, in order to guide the controller design. Finally, the proposed monitoring system was experimentally validated at European Organization for Nuclear Research (CERN) in comparison to the state-of-the-art control system [P. Arpaia, L. Bottura, G. Montenero, and S. Le Naour, "Performance improvement of a measurement station for superconducting cable test," Rev. Sci. Instrum. 83, 095111 (2012)] of the Facility for the Research on Superconducting Cables, achieving a significant performance improvement: a reduction in the system overshoot by 50%, with a related attenuation of the corresponding dynamic residual error (both absolute and RMS) up to 52%.

  18. Digital base-band rf control system for the superconducting Darmstadt electron linear accelerator

    Directory of Open Access Journals (Sweden)

    M. Konrad

    2012-05-01

    Full Text Available The accelerating field in superconducting cavities has to be stabilized in amplitude and phase by a radio-frequency (rf control system. Because of their high loaded quality factor superconducting cavities are very susceptible for microphonics. To meet the increased requirements with respect to accuracy, availability, and diagnostics, the previous analog rf control system of the superconducting Darmstadt electron linear accelerator S-DALINAC has been replaced by a digital rf control system. The new hardware consists of two components: An rf module that converts the signal from the cavity down to the base-band and a field-programmable gate array board including a soft CPU that carries out the signal processing steps of the control algorithm. Different algorithms are used for normal-conducting and superconducting cavities. To improve the availability of the control system, techniques for automatic firmware and software deployment have been implemented. Extensive diagnostic features provide the operator with additional information. The architecture of the rf control system as well as the functionality of its components will be presented along with measurements that characterize the performance of the system, yielding, e.g., an amplitude stabilization down to (ΔA/A_{rms}=7×10^{-5} and a phase stabilization of (Δϕ_{rms}=0.8° for superconducting cavities.

  19. Cryogenic helium gas circulation system for advanced characterization of superconducting cables and other devices

    Science.gov (United States)

    Pamidi, Sastry; Kim, Chul Han; Kim, Jae-Ho; Crook, Danny; Dale, Steinar

    2012-04-01

    A versatile cryogenic test bed, based on circulating cryogenic helium gas, has been designed, fabricated, and installed at the Florida State University Center for Advanced Power Systems (FSU-CAPS). The test bed is being used to understand the benefits of integrating the cryogenic systems of multiple superconducting power devices. The helium circulation system operates with four sets of cryocooler and heat exchanger combinations. The maximum operating pressure of the system is 2.1 MPa. The efficacy of helium circulation systems in cooling superconducting power devices is evaluated using a 30-m-long simulated superconducting cable in a flexible cryostat. Experiments were conducted at various mass flow rates and a variety of heat load profiles. A 1-D thermal model was developed to understand the effect of the gas flow parameters on the thermal gradients along the cable. Experimental results are in close agreement with the results from the thermal model.

  20. Passivation of Flexible YBCO Superconducting Current Lead With Amorphous SiO2 Layer

    Science.gov (United States)

    Johannes, Daniel; Webber, Robert

    2013-01-01

    Adiabatic demagnetization refrigerators (ADR) are operated in space to cool detectors of cosmic radiation to a few 10s of mK. A key element of the ADR is a superconducting magnet operating at about 0.3 K that is continually energized and de-energized in synchronism with a thermal switch, such that a piece of paramagnetic salt is alternately warm in a high magnetic field and cold in zero magnetic field. This causes the salt pill or refrigerant to cool, and it is able to suck heat from an object, e.g., the sensor, to be cooled. Current has to be fed into and out of the magnets from a dissipative power supply at the ambient temperature of the spacecraft. The current leads that link the magnets to the power supply inevitably conduct a significant amount of heat into the colder regions of the supporting cryostat, resulting in the need for larger, heavier, and more powerful supporting refrigerators. The aim of this project was to design and construct high-temperature superconductor (HTS) leads from YBCO (yttrium barium copper oxide) composite conductors to reduce the heat load significantly in the temperature regime below the critical temperature of YBCO. The magnet lead does not have to support current in the event that the YBCO ceases to be superconducting. Cus - tomarily, a normal metal conductor in parallel with the YBCO is a necessary part of the lead structure to allow for this upset condition; however, for this application, the normal metal can be dispensed with. Amorphous silicon dioxide is deposited directly onto the surface of YBCO, which resides on a flexible substrate. The silicon dioxide protects the YBCO from chemically reacting with atmospheric water and carbon dioxide, thus preserving the superconducting properties of the YBCO. The customary protective coating for flexible YBCO conductors is silver or a silver/gold alloy, which conducts heat many orders of magnitude better than SiO2 and so limits the use of such a composite conductor for passing current

  1. Superconductivity at 43 K in an iron-based layered compound LaO(1-x)F(x)FeAs.

    Science.gov (United States)

    Takahashi, Hiroki; Igawa, Kazumi; Arii, Kazunobu; Kamihara, Yoichi; Hirano, Masahiro; Hosono, Hideo

    2008-05-15

    The iron- and nickel-based layered compounds LaOFeP (refs 1, 2) and LaONiP (ref. 3) have recently been reported to exhibit low-temperature superconducting phases with transition temperatures T(c) of 3 and 5 K, respectively. Furthermore, a large increase in the midpoint T(c) of up to approximately 26 K has been realized in the isocrystalline compound LaOFeAs on doping of fluoride ions at the O2- sites (LaO(1-x)F(x)FeAs). Experimental observations and theoretical studies suggest that these transitions are related to a magnetic instability, as is the case for most superconductors based on transition metals. In the copper-based high-temperature superconductors, as well as in LaOFeAs, an increase in T(c) is often observed as a result of carrier doping in the two-dimensional electronic structure through ion substitution in the surrounding insulating layers, suggesting that the application of external pressure should further increase T(c) by enhancing charge transfer between the insulating and conducting layers. The effects of pressure on these iron oxypnictide superconductors may be more prominent than those in the copper-based systems, because the As ion has a greater electronic polarizability, owing to the covalency of the Fe-As chemical bond, and, thus, is more compressible than the divalent O2- ion. Here we report that increasing the pressure causes a steep increase in the onset T(c) of F-doped LaOFeAs, to a maximum of approximately 43 K at approximately 4 GPa. With the exception of the copper-based high-T(c) superconductors, this is the highest T(c) reported to date. The present result, together with the great freedom available in selecting the constituents of isocrystalline materials with the general formula LnOTMPn (Ln, Y or rare-earth metal; TM, transition metal; Pn, group-V, 'pnicogen', element), indicates that the layered iron oxypnictides are promising as a new material platform for further exploration of high-temperature superconductivity.

  2. LEVEL STATISTICS AND PARITY EFFECT ON SMALL SUPERCONDUCTING SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    CHEN ZHI-QIAN; ZHENG REN-RONG

    2001-01-01

    In this paper we have calculated the variations of the gap △'(0, d) and transition temperature Tc' in small metallic grains as functions of grain size (or the level spacing d between discrete electronic states) for the cases of odd and even numbers of electrons by applying the random matrix theory to the mean field theory. We find the presence of enhancement of superconductivity and critical dc, where the superconductivity of small grains breaks down. This agrees with Anderson's prediction (1959 J. Phys. Chem. Solids 11 28). We find that in the grains, as the size is lowered,the transition temperature Tc' decreases and A'(O, d)/kBTc' ≤πe-γ in odd numbers of electrons, and for Gaussian orthogonal and unitary ensembles in some regimes △'(0, d)/kBTc' >πe-γ in even numbers of electrons.

  3. Ferromagnetic/superconducting bilayer structure: A model system for spin diffusion length estimation

    CERN Document Server

    Soltan, S; Habermeier, H U

    2004-01-01

    We report detailed studies on ferromagnet--superconductor bilayer structures. Epitaxial bilayer structures of half metal--colossal magnetoresistive La$_{\\mathrm{2/3}}$Ca$_{\\mathrm{1/3}}$MnO$_{\\mathrm{3}}$ (HM--CMR) and high--$T_{\\mathrm{c}}$ superconducting YBa$_{\\mathrm{2}}$Cu$_{\\mathrm{3}}$O$_{\\mathrm{7-\\delta}}$(HTSC) are grown on SrTiO$_3$ (100) single--crystalline substrates using pulsed laser deposition. Magnetization $M$(T) measurements show the coexistence of ferromagnetism and superconductivity in these structures at low temperatures. Using the HM--CMR layer as an electrode for spin polarized electrons, we discuss the role of spin polarized self injection into the HTSC layer. The experimental results are in good agreement with a presented theoretical estimation, where the spin diffusion length $\\xi_{\\mathrm {FM}}$ is found to be in the range of $\\xi_{\\mathrm{FM}} \\approx$ 10 nm.

  4. PREFACE: Focus on superconductivity in Fe-based systems Focus on superconductivity in Fe-based systems

    Science.gov (United States)

    Prozorov, Ruslan; Chubukov, Andrey; Meingast, Christoph; Putti, Marina

    2012-08-01

    The past four years of incredibly intense research into Fe-based superconductors have brought about many unexpected surprises. Our understanding of their behavior and physical properties is constantly evolving. Unlike any other superconductors, those containing iron span diverse groups of materials: pnictides, chalcogenides, intermetallics and oxides. Some major properties of the materials are quite similar, yet each group has its own distinct features. Significant effort has been put into identifying new superconducting compositions, modifying the existing ones with new dopants and treatments, and producing single crystals, thin films, wires and polycrystalline bulk material. A wide array of experimental techniques was applied to study Fe-based superconductors and the result is a tremendous amount of data collected over a period of less than four years. Theoretical debates are still lively, and there is an ongoing search for possible universalities and commonalities with other unconventional superconductors, like high-Tc cuprates or heavy fermion materials. The three-dimensional electronic structures of Fe-based superconductors, as well as their extreme sensitivity to disorder, present serious challenges for both theoretical analysis and the interpretation of experiments. However, some key properties emerge from multiple studies. Unconventional, multiband superconductivity originating from an electronic mechanism has found both experimental and theoretical support. There has been great progress in the understanding of various anisotropies of superconducting gap structures, including the possibility of gap nodes even if the gap symmetry is s-wave. Similar to high-Tc cuprates, the superconducting phase has a dome-like shape on T-doping or T-pressure phase diagrams. The anisotropy of the superconducting gap evolves with doping and is likely to become stronger at the dome's edge. In many Fe-based superconductors there is a range where superconductivity coexists and

  5. Superconductivity at 52.5 K in the lanthanum-barium-copper-oxide system

    Science.gov (United States)

    Chu, C. W.; Hor, P. H.; Meng, R. L.; Gao, L.; Huang, Z. J.

    1987-01-01

    The electrical properties of the (La/0/9/Ba/0.1/)CuO/4-y/ system are examined under ambient and hydrostatic pressures. The resistance, ac magnetic susceptibility, and superconductivity onset, midpoint, and intercept temperatures are measured. It is observed that at ambient pressure the resistance decreases with temperature decreases, and the ac susceptibility shows diamagnetic shifts starting at about 32 K. Under hydrostatic pressure a superconducting transition with an onset temperature of 52.5 K is observed, and the resistance increases at lower temperatures. The data reveal that the electrical properties of the La-Ba-Cu-O system are dependent on samples and preparation conditions. Various causes for the high temperature superconductivity of the system are proposed.

  6. Equilibrium of a system of superconducting rings in a uniform gravitational field

    Science.gov (United States)

    Bishaev, A. M.; Bush, A. A.; Gavrikov, M. B.; Gordeev, I. S.; Denisyuk, A. I.; Kamentsev, K. E.; Kozintseva, M. V.; Savel'ev, V. V.; Sigov, A. S.

    2013-05-01

    To construct a plasma trap with levitating magnetic coils in the thin ring approximation, we derive the expression for the potential energy of a system of several superconducting rings (one of which is fixed) capturing the preset flows in the uniform gravitational field as a function of the coordinates of the free ring (or rings). Calculations performed in the Mathcad system show that the potential energy of such a system has a local minimum for certain values of parameters. Stable levitation of a superconducting ring in the position corresponding to calculations is realized in the field of another superconducting ring, and this leads to the conclusion that a magnetic Galatea trap can be prepared on the basis of a levitating quadrupole.

  7. A cryogen-free ultralow-field superconducting quantum interference device magnetic resonance imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob, E-mail: ihahn@caltech.edu [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 (United States)

    2014-09-15

    Magnetic resonance imaging (MRI) at microtesla fields using superconducting quantum interference device (SQUID) detection has previously been demonstrated, and advantages have been noted. Although the ultralow-field SQUID MRI technique would not need the heavy superconducting magnet of conventional MRI systems, liquid helium required to cool the low-temperature detector still places a significant burden on its operation. We have built a prototype cryocooler-based SQUID MRI system that does not require a cryogen. The SQUID detector and the superconducting gradiometer were cooled down to 3.7 K and 4.3 K, respectively. We describe the prototype design, characterization, a phantom image, and areas of further improvements needed to bring the imaging performance to parity with conventional MRI systems.

  8. A cryogen-free ultralow-field superconducting quantum interference device magnetic resonance imaging system

    Science.gov (United States)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2014-09-01

    Magnetic resonance imaging (MRI) at microtesla fields using superconducting quantum interference device (SQUID) detection has previously been demonstrated, and advantages have been noted. Although the ultralow-field SQUID MRI technique would not need the heavy superconducting magnet of conventional MRI systems, liquid helium required to cool the low-temperature detector still places a significant burden on its operation. We have built a prototype cryocooler-based SQUID MRI system that does not require a cryogen. The SQUID detector and the superconducting gradiometer were cooled down to 3.7 K and 4.3 K, respectively. We describe the prototype design, characterization, a phantom image, and areas of further improvements needed to bring the imaging performance to parity with conventional MRI systems.

  9. The emergence of superconducting systems in Anti-de Sitter space

    Science.gov (United States)

    Wu, W. M.; Pierpoint, M. P.; Forrester, D. M.; Kusmartsev, F. V.

    2016-10-01

    In this article, we investigate the mathematical relationship between a (3+1) dimensional gravity model inside Anti-de Sitter space AdS4, and a (2+1) dimensional superconducting system on the asymptotically flat boundary of AdS4 (in the absence of gravity). We consider a simple case of the Type II superconducting model (in terms of Ginzburg-Landau theory) with an external perpendicular magnetic field H. An interaction potential V ( r, ψ) = α( T)| ψ|2 /r 2 + χ| ψ|2 /L 2 + β| ψ|4 /(2 r k ) is introduced within the Lagrangian system. This provides more flexibility within the model, when the superconducting system is close to the transition temperature T c. Overall, our result demonstrates that the Ginzburg-Landau differential equations can be directly deduced from Einstein's theory of general relativity.

  10. Study on cooling process of cryogenic system for superconducting magnets of BEPCⅡ

    Institute of Scientific and Technical Information of China (English)

    ZONG Zhan-Guo; LIU Li-Qiang; XIONG Lian-You; LI Shao-Peng; XU Qing-Jin; HE Kun; ZHANG Liang; GAO Jie

    2008-01-01

    In the upgrade project of the Beijing Electron Positron Collider(BEPCⅡ),three superconducting magnets are employed to realize the goal of two orders of magnitude higher luminosity.A cryogenic system with a total capacity of 0.5 kW at 4.5 K was built at the Institute of High Energy Physics(IHEP)to support the operations of these superconducting devices.For preparing the commissioning of the system,the refrigeration process Was simulated and analyrzed numerically.The numerical model Was based on the latest engineering progress and focused on the normal operation mode.The pressure and temperature profiles of the cryogenic system are achieved with the simulation.The influence of the helium mass flow rates to cool superconducting magnets on the thermodynamic parameters of their normal operation is also studied and discussed in this paper.

  11. The Emergence of Superconducting Systems in Anti-de Sitter Space

    CERN Document Server

    Wu, W M; Forrester, D M; Kusmartsev, F V

    2016-01-01

    In this article, we investigate the mathematical relationship between a (3+1) dimensional gravity model inside Anti-de Sitter space $\\rm AdS_4$, and a (2+1) dimensional superconducting system on the asymptotically flat boundary of $\\rm AdS_4$ (in the absence of gravity). We consider a simple case of the Type II superconducting model (in terms of Ginzburg-Landau theory) with an external perpendicular magnetic field ${\\bf H}$. An interaction potential $V(r,\\psi) = \\alpha(T)|\\psi|^2/r^2+\\chi|\\psi|^2/L^2+\\beta|\\psi|^4/(2 r^k )$ is introduced within the Lagrangian system. This provides more flexibility within the model, when the superconducting system is close to the transition temperature $T_c$. Overall, our result demonstrates that the two Ginzburg-Landau differential equations can be directly deduced from Einstein's theory of general relativity.

  12. Effect of Pr doping on the superconductivity and interlayer coupling of the Bi{sub 2}Sr{sub 2-x}Pr{sub x}Ca{sub 1}Cu{sub 2}O{sub y} system

    Energy Technology Data Exchange (ETDEWEB)

    Salamati, H [Department of Physics, Isfahan University of Technology, Isfahan 84154 (Iran, Islamic Republic of); Kameli, P [Department of Physics, Isfahan University of Technology, Isfahan 84154 (Iran, Islamic Republic of); Razavi, F S [Department of Physics, Brock University, St Catharines, ON L2S 3A1 (Canada)

    2003-08-01

    We investigate the effect of Pr substitution on the superconductivity and interlayer coupling of the Bi{sub 2}Sr{sub 2}Ca{sub 1}Cu{sub 2}O{sub y} system. Magnetic and transport measurements were performed for the purposes of characterization. The superconducting transition temperature T{sub c} first increases and then decreases until it becomes zero at x = 0.6. The effective superconducting volume also decreases due to Pr substitution. From the fluctuation conductivity analysis, it is found that the interlayer coupling constant J decreases monotonically with the increase of the Pr content. This result shows that the Pr doping weakens the CuO{sub 2} interlayer coupling of the Bi2212 system due to the loss of local superconductivity in the CuO{sub 2} layers.

  13. A Simple System to Measure Superconducting Transition Temperature at High Pressure

    Institute of Scientific and Technical Information of China (English)

    YU Yong; ZHAI Guang-Jie; JIN Chang-Qing

    2009-01-01

    A simple hydride system is fabricated to measure the superconducting transition temperature Tc under high pressure using a diamond anvil cell (DAC). The system is designed with centrosymetric coils around the diamond that makes it easy to keep balance between the pick-up coil and the inductance coil, while the superconducting states can be modulated with a low-frequency small external magnetic field. Using the device we successfully obtain the Tc evolution as a function of applied pressure up to 10 GPa for YBa2 Cu3O6+δ superconductor single crystal.

  14. A Conduction-Cooled Superconducting Magnet System-Design, Fabrication and Thermal Tests

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Holbøll, Joachim; Wang, Qiuliang

    2015-01-01

    A conduction-cooled superconducting magnet system with an operating current of 105.5 A was designed, fabricated and tested for material processing applications. The magnet consists of two coaxial NbTi solenoid coils with an identical vertical height of 300 mm and is installed in a high-vacuumed c......A conduction-cooled superconducting magnet system with an operating current of 105.5 A was designed, fabricated and tested for material processing applications. The magnet consists of two coaxial NbTi solenoid coils with an identical vertical height of 300 mm and is installed in a high...

  15. A double-superconducting axial bearing system for an energy storage flywheel model

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Z; Lin, Q; Ma, G; Zheng, J; Zhang, Y; Wang, S; Wang, J [Applied Superconductivity Laboratory, Mail Stop 152, Southwest Jiaotong University, Chengdu, 610031 (China)], E-mail: jsywang@home.swjtu.edu.cn

    2008-02-15

    The bulk high temperature superconductors (HTSCs) with unique flux-pinning property have been applied to fabricate two superconducting axial bearings for an energy storage flywheel model. The two superconducting axial bearings are respectively fixed at two ends of the vertical rotational shaft, whose stator is composed of seven melt-textured YBa{sub 2}Cu{sub 3}O{sub 7-x} (YBCO) bulks with diameter of 30 mm, height of 18 mm and rotor is made of three cylindrical axial-magnetized NdFeB permanent magnets (PM) by superposition with diameter of 63 mm, height of 27 mm. The experimental results show the total levitation and lateral force produced by the two superconducting bearings are enough to levitate and stabilize the 2.4 kg rotational shaft. When the two YBCO stators were both field cooled to the liquid nitrogen temperature at respective axial distances above or below the PM rotor, the shaft could be automatically levitated between the two stators without any contact. In the case of a driving motor, it can be stably rotated along the central axis besides the resonance frequency. This double-superconducting axial bearing system can be used to demonstrate the flux-pinning property of bulk HTSC for stable levitation and suspension and the principle of superconducting flywheel energy storage system to visitors.

  16. Conceptual design of superconducting magnet systems for the Argonne Tokamak Experimental Power Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.T.; Turner, L.R.; Mills, F.E.; DeMichele, D.W.; Smelser, P.; Kim, S.H.

    1976-01-01

    As an integral effort in the Argonne Tokamak Experimental Power Reactor Conceptual Design, the conceptual design of a 10-tesla, pure-tension superconducting toroidal-field (TF) coil system has been developed in sufficient detail to define a realistic design for the TF coil system that could be built based upon the current state of technology with minimum technological extrapolations. A conceptual design study on the superconducting ohmic-heating (OH) coils and the superconducting equilibrium-field (EF) coils were also completed. These conceptual designs are developed in sufficient detail with clear information on high current ac conductor design, cooling, venting provision, coil structural support and zero loss poloidal coil cryostat design. Also investigated is the EF penetration into the blanket and shield.

  17. Plane-polarized Raman continuum in the insulating and superconducting layered cuprates

    Science.gov (United States)

    Reznik, D.; Cooper, S. L.; Klein, M. V.; Lee, W. C.; Ginsberg, D. M.; Maksimov, A. A.; Puchkov, A. V.; Tartakovskii, I. I.; Cheong, S.-W.

    1993-09-01

    Electronic properties of copper oxygen planes (and chains in Y-Ba-Cu-O) were studied with Raman spectroscopy of plane-polarized photons. The electronic continuum was found to be independent of doping in 2:1:4 and 1:2:3 materials at energies above ~1000 cm-1. Temperature dependence at low energies differs significantly in undoped, lightly doped, and fully doped YBa2Cu3O6+x. A feature consistent with the superconducting gap was observed below Tc in YBa2Cu3O6.9 in all scattering geometries. However, the gaplike redistribution was not complete, with 40-60 % of states not shifted to higher energies at temperatures well below Tc. Above Tc the temperature dependence strongly depends on scattering geometry: the continuum is temperature independent (marginal-Fermi-liquid-like) in XX (x2) and X'X' (x2+y2) geometry; it has a Bose-factor temperature dependence in X'Y' (x2-y2) geometry, and a weak temperature dependence somewhat smaller than the Bose factor in YY (y2) geometry. A two-boson-like temperature dependence of the low-energy continuum is found in YBa2Cu3O6.1 and Sm2CuO4. It becomes one-particle-like in Y-Ba-Cu-O once small doping levels are introduced. Constraints these results place on theoretical models are discussed.

  18. Double-layer rotor magnetic shield performance analysis in high temperature superconducting synchronous generators under short circuit fault conditions

    Science.gov (United States)

    Hekmati, Arsalan; Aliahmadi, Mehdi

    2016-12-01

    High temperature superconducting, HTS, synchronous machines benefit from a rotor magnetic shield in order to protect superconducting coils against asynchronous magnetic fields. This magnetic shield, however, suffers from exerted Lorentz forces generated in light of induced eddy currents during transient conditions, e.g. stator windings short-circuit fault. In addition, to the exerted electromagnetic forces, eddy current losses and the associated effects on the cryogenic system are the other consequences of shielding HTS coils. This study aims at investigating the Rotor Magnetic Shield, RMS, performance in HTS synchronous generators under stator winding short-circuit fault conditions. The induced eddy currents in different circumferential positions of the rotor magnetic shield along with associated Joule heating losses would be studied using 2-D time-stepping Finite Element Analysis, FEA. The investigation of Lorentz forces exerted on the magnetic shield during transient conditions has also been performed in this paper. The obtained results show that double line-to-ground fault is of the most importance among different types of short-circuit faults. It was revealed that when it comes to the design of the rotor magnetic shields, in addition to the eddy current distribution and the associated ohmic losses, two phase-to-ground fault should be taken into account since the produced electromagnetic forces in the time of fault conditions are more severe during double line-to-ground fault.

  19. Load frequency stabilization of four area hydro thermal system using Superconducting Magnetic Energy Storage system

    Directory of Open Access Journals (Sweden)

    A.Ruby meena

    2014-07-01

    Full Text Available Automatic generation control in electric power system design is a major concern nowadays due to its rising size, varying structure, integration of renewable-energy sources and distributed generators to meet the growing demand. In this paper, automatic generation control of an interconnected four area hydro thermal system examined. Each area equipped with reheat turbine for thermal system and hydro turbine with electric governor for hydro system. Load frequency stabilization gained by including Superconducting Magnetic Energy Storage system (SMES in all areas. A comparative analysis made between Proportional and Integral (PI controller with Fuzzy Logic controller with and without including SMES in the four area power system. The designed Fuzzy Logic Controller can generate best dynamic performance for step load perturbations given in all areas. The system simulation realized by using MATLAB software.

  20. Halo current diagnostic system of experimental advanced superconducting tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D. L.; Shen, B.; Sun, Y.; Qian, J. P., E-mail: jpqian@ipp.ac.cn; Wang, Y.; Xiao, B. J. [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031 (China); Granetz, R. S. [MIT Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States)

    2015-10-15

    The design, calibration, and installation of disruption halo current sensors for the Experimental Advanced Superconducting Tokamak are described in this article. All the sensors are Rogowski coils that surround conducting structures, and all the signals are analog integrated. Coils with two different cross-section sizes have been fabricated, and their mutual inductances are calibrated. Sensors have been installed to measure halo currents in several different parts of both the upper divertor (tungsten) and lower divertor (graphite) at several toroidal locations. Initial measurements from disruptions show that the halo current diagnostics are working well.

  1. Halo current diagnostic system of experimental advanced superconducting tokamak

    Science.gov (United States)

    Chen, D. L.; Shen, B.; Granetz, R. S.; Sun, Y.; Qian, J. P.; Wang, Y.; Xiao, B. J.

    2015-10-01

    The design, calibration, and installation of disruption halo current sensors for the Experimental Advanced Superconducting Tokamak are described in this article. All the sensors are Rogowski coils that surround conducting structures, and all the signals are analog integrated. Coils with two different cross-section sizes have been fabricated, and their mutual inductances are calibrated. Sensors have been installed to measure halo currents in several different parts of both the upper divertor (tungsten) and lower divertor (graphite) at several toroidal locations. Initial measurements from disruptions show that the halo current diagnostics are working well.

  2. Study of decoherence in a system of superconducting flux-qubits interacting with an ensemble of electrons

    Energy Technology Data Exchange (ETDEWEB)

    Reboiro, M., E-mail: reboiro@fisica.unlp.edu.ar [IFLP, CONICET-Department of Physics, University of La Plata, c.c. 67 1900, La Plata (Argentina); Civitarese, O., E-mail: osvaldo.civitarese@fisica.unlp.edu.ar [IFLP, CONICET-Department of Physics, University of La Plata, c.c. 67 1900, La Plata (Argentina); Ramírez, R. [IFLP, CONICET-Department of Mathematics, University of La Plata (Argentina)

    2017-03-15

    The degree of coherence in a hybrid system composed of superconducting flux-qubits and an electron ensemble is analysed. Both, the interactions among the electrons and among the superconducting flux-qubits are taken into account. The time evolution of the hybrid system is solved exactly, and discussed in terms of the reduced density matrix of each subsystem. It is seen that the inclusion of a line width, for the electrons and for the superconducting flux-qubits, influences the pattern of spin-squeezing and the coherence of the superconducting flux qubits. - Highlights: • The degree of coherence in a hybrid system, composed of superconducting flux qubits and an electron ensemble, is analysed. • The time evolution of the hybrid system is solved exactly and discussed in terms of the reduced density matrix of each subsystem. • It is shown that the initial state of the system evolves to a stationary squeezed state.

  3. Band splitting and relative spin alignment in two-layer systems

    CERN Document Server

    Ovchinnikov, A A

    2002-01-01

    It is shown that the single-particle spectra of the low Hubbard zone in the two-layer correlated 2D-systems sharply differ in the case of different relative alignment of the layers spin systems. The behavior of the two-layer splitting in the Bi sub 2 Sr sub 2 CaCu sub 2 O sub 8 sub + subdelta gives all reasons for the hypothesis on the possible rearrangement of the F sub z -> AF sub z alignment configuration, occurring simultaneously with the superconducting transition. The effects of the spin alignment on the magnetic excitations spectrum, as the way for studying the spin structure of the two-layer systems, are discussed by the example of homogenous solutions for the effective spin models

  4. Power system stabilization by superconducting magnetic energy storage with solid-state phase shifter

    Energy Technology Data Exchange (ETDEWEB)

    Mitani, Y.; Uranaka, T.; Tsuji, K. [Osaka Univ., Suita, Osaka (Japan). Dept. of Electrical Engineering

    1995-08-01

    In this paper, a new configuration of power system controller with a combination of superconducting magnetic energy storage and phase shifter, is proposed to improve the stability of a long distance bulk power transmission system. A power system stabilizing control scheme is also proposed. A related simulation shows that the proposed controller is effective for enhancement of power system stability independent of the location of controller in a long distance bulk power transmission system.

  5. Theory of superconductivity

    CERN Document Server

    Crisan, Mircea

    1989-01-01

    This book discusses the most important aspects of the theory. The phenomenological model is followed by the microscopic theory of superconductivity, in which modern formalism of the many-body theory is used to treat most important problems such as superconducting alloys, coexistence of superconductivity with the magnetic order, and superconductivity in quasi-one-dimensional systems. It concludes with a discussion on models for exotic and high temperature superconductivity. Its main aim is to review, as complete as possible, the theory of superconductivity from classical models and methods up t

  6. Compact Superconducting Radio-frequency Accelerators and Innovative RF Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kephart, Robert [Fermilab; Chattopadhyay, Swaapan [Northern Illinois U.; Milton, Stephen [Colorado State U.

    2015-04-10

    We will present several new technical and design breakthroughs that enable the creation of a new class of compact linear electron accelerators for industrial purposes. Use of Superconducting Radio-Frequency (SRF) cavities allow accelerators less than 1.5 M in length to create electron beams beyond 10 MeV and with average beam powers measured in 10’s of KW. These machines can have the capability to vary the output energy dynamically to produce brehmstrahlung x-rays of varying spectral coverage for applications such as rapid scanning of moving cargo for security purposes. Such compact accelerators will also be cost effective for many existing and new industrial applications. Examples include radiation crosslinking of plastics and rubbers, creation of pure materials with surface properties radically altered from the bulk, modification of bulk or surface optical properties of materials, sterilization of medical instruments animal solid or liquid waste, and destruction of organic compounds in industrial waste water effluents. Small enough to be located on a mobile platform, such accelerators will enable new remediation methods for chemical and biological spills and/or in-situ crosslinking of materials. We will describe one current design under development at Fermilab including plans for prototype and value-engineering to reduce costs. We will also describe development of new nano-structured field-emitter arrays as sources of electrons, new methods for fabricating and cooling superconducting RF cavities, and a new novel RF power source based on magnetrons with full phase and amplitude control.

  7. Circumpolar Active-Layer Permafrost System (CAPS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Circumpolar Active-Layer Permafrost System (CAPS) contains over 100 data sets pertaining to permafrost and frozen ground topics. It also contains detailed...

  8. Forward model theoretical basis for a superconducting imaging surface magnetoencephalography system

    Energy Technology Data Exchange (ETDEWEB)

    Maharajh, K [University of New Mexico, Albuquerque, NM (United States); Volegov, P L [Los Alamos National Laboratory, Los Alamos, NM (United States); Kraus, R H [Los Alamos National Laboratory, Los Alamos, NM (United States)

    2004-02-21

    A novel magnetoencephalography (MEG) system was designed at Los Alamos National Laboratory (LANL) that incorporates a helmet-shaped superconductor in order to increase the signal to noise ratio. The magnetic field perturbations caused by the superconducting surface must be included in the forward physics for accurate source localization. In this paper, the theoretical basis for the forward model that calculates the field of any magnetic source in the presence of an arbitrarily shaped superconducting surface is presented. Appropriate magnetic field integral equations are derived that provide a description of the physics of the forward model. These equations are derived starting from Maxwell's equations in the presence of inhomogeneous media, with the appropriate boundary conditions for a superconductor. A discretized version of this equation is then compared with known analytic solutions for simple superconducting surface geometries.

  9. Study on design of superconducting proton linac for accelerator driven subcritical nuclear power system

    CERN Document Server

    Yu Qi; Xu Tao Guang

    2002-01-01

    As a prior option of the next generation of energy source, the accelerator driven subcritical nuclear power system (ADS) can use efficiently the uranium and thorium resource, transmute the high-level long-lived radioactive wastes and raise nuclear safety. The ADS accelerator should provide the proton beam with tens megawatts. The superconducting linac (SCL) is a good selection of ADS accelerator because of its high efficiency and low beam loss rate. It is constitute by a series of the superconducting accelerating cavities. The cavity geometry is determined by means of the electromagnetic field computation. The SCL main parameters are determined by the particle dynamics computation

  10. Protection of Hardware: Powering Systems (Power Converter, Normal Conducting, and Superconducting Magnets)

    CERN Document Server

    Pfeffer, H; Wolff, D

    2016-01-01

    Along with the protection of magnets and power converters, we have added a section on personnel protection because this is our highest priority in the design and operation of power systems. Thus, our topics are the protection of people, power converters, and magnet loads (protected from the powering equipment), including normal conducting magnets and superconducting magnets.

  11. New, coupling loss induced, quench protection system for superconducting accelerator magnets

    NARCIS (Netherlands)

    Ravaioli, E.; Datskov, V.I.; Giloux, C.; Kirby, G.; Kate, ten H.H.J.; Verweij, A.P.

    2014-01-01

    A new and promising method for the protection of superconducting high-field magnets is developed and tested on the so-called MQXC quadrupole magnet in the CERN magnet test facility. The method relies on a capacitive discharge system inducing during a few periods an oscillation of the transport curre

  12. Multichannel system based on a high sensitivity superconductive sensor for magnetoencephalography.

    Science.gov (United States)

    Rombetto, Sara; Granata, Carmine; Vettoliere, Antonio; Russo, Maurizio

    2014-07-08

    We developed a multichannel system based on superconducting quantum interference devices (SQUIDs) for magnetoencephalography measurements. Our system consists of 163 fully-integrated SQUID magnetometers, 154 channels and 9 references, and all of the operations are performed inside a magnetically-shielded room. The system exhibits a magnetic field noise spectral density of approximatively 5 fT/Hz(1=2). The presented magnetoencephalography is the first system working in a clinical environment in Italy.

  13. The Occurrence of Superconductivity in the TlBa2CuO5-δ-Type (1021) System

    Science.gov (United States)

    Ku, H. C.; Tai, M. F.; Shi, J. B.; Shieh, M. J.; Hsu, S. W.; Hwang, G. H.; Ling, D. C.; Watson-Yang, T. J.; Lin, T. Y.

    1989-06-01

    Stable and reproducible superconductivity in the Tl(Ba2-xLax)CuO5-δ (0.0≤x≤0.6) system with the tetragonal TlBa2CuO5-δ-type (1021) structure was reported. A Prototype compound TlBa2CuO5-δ had shown a metastable superconducting onset around 25 K, with zero resistivity at 10 K. With partial substitution of La for Ba ions, Tc (50% resistivity drop) increases to 45 K, Tc0 (zero resistivity) to 42 K and onset around 50 K. A diamagnetic signal was observed with onset as high as 57 K. Tetragonal lattice parameters decrease with the increasing La concentration due to the partial replacement of larger Ba2+ ions by smaller La3+ ions. The Pairing field energy of 170 K and electron-elementary excitation coupling constant λ of 0.76 were derived from the BCS-like Tc formula through comparison with other single Tl-O layer systems TlCan-1Ba2CunO2n+3-δ.

  14. A Superconducting Levitation Transport Model System for Dynamical and Didactical Studies

    Science.gov (United States)

    Rosenzweig, St.; Reich, E.; Neu, V.; Berger, D.; Peukert, K.; Holzapfel, B.; Schultz, L.; Pospiech, G.

    Superconducting levitation transport systems might become very attractive in the near future due to various reasons. The realisation of contactless systems allows e.g. extended maintenance-free operation with high efficiency since such a system only needs energy for cooling and propulsion. We established a small superconducting levitation transport model system called "SupraTrans Min" consisting of permanent magnetic rails and a levitated vehicle including four YBCO-bulk samples in a cryostat. The rail system consists of an oval shaped loop (2.90 m x 1.44 m), which was build up from individual linear and curved track modules. Inside the vehicle position variations of the superconductors are possible. By means of velocity, acceleration and temperature measurements different dynamical aspects of our complex levitation system can be investigated. We also show the broad applicability of the experimental setup for didactical studies in physics.

  15. Power system stabilization by superconducting magnetic energystorage connected to rotating exciter

    OpenAIRE

    Mitani, Yasunori; Tsuji, K.

    1993-01-01

    The authors describe a combination of a rotating exciter and a superconducting magnetic energy storage (SMES) system for efficient power system stabilization. A SMES system connected to an exciter rotating with a turbine-rotor shaft is proposed. The exciter is installed exclusively to supply current for the SMES. Since electrical power output from the SMES is converted into a mechanical torque of the generator directly by the exciter, it is expected that power swings of the generator will be ...

  16. Ordinary and triplet superconducting spin valve effect in Fe/Pb based systems

    Energy Technology Data Exchange (ETDEWEB)

    Leksin, Pavel; Schumann, Joachim; Krupskaya, Yulia; Kataev, Vladislav; Hess, Christian; Schmidt, Oliver; Buechner, Bernd [Leibniz Institute for Solid State and Materials Research IFW Dresden (Germany); Garifyanov, Nadir; Garifullin, Ilgiz [Zavoisky Physical-Technical Institute of RAS, Kazan (Russian Federation); Fominov, Yakov [L. D. Landau Institute for Theoretical Physics of RAS, Moscow (Russian Federation)

    2015-07-01

    We report on experimental evidence for the occurrence of the long range triplet correlations (LRTC) of the superconducting (SC) condensate in the spin-valve heterostructures CoO{sub x}/Fe1/Cu/Fe2/Pb. The LRTC generation in this layer sequence is accompanied by a T{sub c} suppression near the orthogonal mutual orientation of the Fe1 and Fe2 layers' magnetization. This T{sub c} drop reaches its maximum of 60mK at the Fe2 layer thickness d{sub Fe2} = 0.6 nm and falls down when d{sub Fe2} is increased. The modification of the Fe/Pb interface by using a thin Cu layer between Fe and Pb layers reduces the SC transition width without preventing the interaction between Pb and Fe2 layers. The dependence of the SSVE magnitude on Fe1 layer thickness d{sub Fe1} reveals maximum of the effect when d{sub Fe1} and d{sub Fe2} are equal and the d{sub Fe2} value is minimal. Using the optimal d{sub Fe1}, d{sub Fe2} and the intermediate Cu layer we realized almost full switching from normal to SC state due to SSVE.

  17. Department of Energy`s Wire Development Workshop - Superconductivity program for electric systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    The 1996 High-Temperature Superconducting Wire Development Workshop was held on January 31--February 1 at the Crown Plaza Tampa Westshore in Tampa, Florida. The meeting was hosted by Tampa Electric Company and sponsored by the Department of Energy`s Superconductivity Program for Electric Systems. The meeting focused on recent high-temperature superconducting wire development activities in the Department of Energy`s Superconductivity Systems program. Tampa Electric`s Greg Ramon began the meeting by giving a perspective on the changes now occurring in the utility sector. Major program wire development accomplishments during the past year were then highlighted, particularly the world record achievements at Los Alamos and Oak Ridge National Laboratories. The meeting then focussed on three priority technical issues: thallium conductors; AC losses in HTS conductors; and coated conductors on textured substrates. Following in-depth presentations, working groups were formed in each technology area to discuss and critique the most important current research and development issues. The working groups identified research areas that have the potential for greatly enhancing the wire development effort. These areas are discussed in the summary reports from each of the working groups. This document is a compilation of the workshop proceedings including all general session presentations and summary reports from the working groups.

  18. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system.

    Science.gov (United States)

    Drozdov, A P; Eremets, M I; Troyan, I A; Ksenofontov, V; Shylin, S I

    2015-09-03

    A superconductor is a material that can conduct electricity without resistance below a superconducting transition temperature, Tc. The highest Tc that has been achieved to date is in the copper oxide system: 133 kelvin at ambient pressure and 164 kelvin at high pressures. As the nature of superconductivity in these materials is still not fully understood (they are not conventional superconductors), the prospects for achieving still higher transition temperatures by this route are not clear. In contrast, the Bardeen-Cooper-Schrieffer theory of conventional superconductivity gives a guide for achieving high Tc with no theoretical upper bound--all that is needed is a favourable combination of high-frequency phonons, strong electron-phonon coupling, and a high density of states. These conditions can in principle be fulfilled for metallic hydrogen and covalent compounds dominated by hydrogen, as hydrogen atoms provide the necessary high-frequency phonon modes as well as the strong electron-phonon coupling. Numerous calculations support this idea and have predicted transition temperatures in the range 50-235 kelvin for many hydrides, but only a moderate Tc of 17 kelvin has been observed experimentally. Here we investigate sulfur hydride, where a Tc of 80 kelvin has been predicted. We find that this system transforms to a metal at a pressure of approximately 90 gigapascals. On cooling, we see signatures of superconductivity: a sharp drop of the resistivity to zero and a decrease of the transition temperature with magnetic field, with magnetic susceptibility measurements confirming a Tc of 203 kelvin. Moreover, a pronounced isotope shift of Tc in sulfur deuteride is suggestive of an electron-phonon mechanism of superconductivity that is consistent with the Bardeen-Cooper-Schrieffer scenario. We argue that the phase responsible for high-Tc superconductivity in this system is likely to be H3S, formed from H2S by decomposition under pressure. These findings raise hope for the

  19. A study of two-level system defects in dielectric films using superconducting resonators

    Science.gov (United States)

    Khalil, Moe Shwan

    In this dissertation I describe measurements of dielectric loss at microwave frequencies due to two level systems (TLS) using superconducting resonators. Most measurements were performed in a dilution refrigerator at temperatures between 30 and 200 mK and all resonators discussed were fabricated with thin-film superconducting aluminum. I derive the transmission through a non-ideal (mismatched) resonant circuit and find that in general the resonance line-shape is asymmetric. I describe an analysis method for extracting the internal quality factor (Q i), the diameter correction method (DCM), and compare it to a commonly used phenomenological method, the phi rotation method (phiRM). I analytically find that the phiRM deterministically overestimates Qi when the asymmetry of the resonance line-shape is high. Four coplanar resonator geometries were studied, with frequencies spanning 5-7 GHz. They were all superconducting aluminum fabricated on sapphire and silicon substrates. These include a quasi-lumped element resonator, a coplanar strip transmission line resonator, and two hybrid designs that contain both a coplanar strip and a quasi-lumped element. Measured Qi's were as high as 2 x 105 for single photon excitations and there was no systematic variation in loss between quasi-lumped and coplanar strip resonance modes. I also measured the microwave loss tangent of several atomic layer deposition (ALD) grown dielectrics and obtained secondary ion mass spectrometry (SIMS) measurements of the same films. I found that hydrogen defect concentrations were correlated with low temperature microwave loss. In amorphous films that showed excess hydrogen defects on the surface, two independent TLS distributions were required to fit the loss tangent, one for the surface and one for the bulk. In crystalline dielectrics where hydrogen contamination was uniform throughout the bulk, a single bulk TLS distribution was sufficient. Finally, I measured the TLS loss in 250 nm thick HD

  20. Optimization of Peltier current lead for applied superconducting systems with optimum combination of cryo-stages

    Science.gov (United States)

    Kawahara, Toshio; Emoto, Masahiko; Watanabe, Hirofumi; Hamabe, Makoto; Sun, Jian; Ivanov, Yury; Yamaguchi, Satarou

    2012-06-01

    The reduction of electric power consumption of the cryo-cooler during the working conditions of applied superconducting systems is important, as superconductivity can only be stored at low temperature and the power required for the cooling determines the efficiency of the systems employed. Use of Peltier current leads (PCLs) represents one key solution to effect heat load reduction on the terminals in systems. On the other hand, the performance of cryo-coolers generally increases as the temperature increases given the higher Carnot efficiency. Therefore, combination with suitable mid-stage temperatures represents one possible approach since the thermal anchor can enhance the performance of the system by reducing the electric power consumption of the cryo-coolers. In this paper, we discuss this possibility utilizing an advanced configuration of PCL with a commercially available high temperature cooler. Over 50% enhancement of the performance is estimated.

  1. Development of a Superconducting Magnet System for the ONR/General Atomics Homopolar Motor

    Science.gov (United States)

    Schaubel, K. M.; Langhorn, A. R.; Creedon, W. P.; Johanson, N. W.; Sheynin, S.; Thome, R. J.

    2006-04-01

    This paper describes the design, testing and operational experience of a superconducting magnet system presently in use on the Homopolar Motor Program. The homopolar motor is presently being tested at General Atomics in San Diego, California for the U.S Navy Office of Naval Research. The magnet system consists of two identical superconducting solenoid coils housed in two cryostats mounted integrally within the homopolar motor housing. The coils provide the static magnetic field required for motor operation and are wound using NbTi superconductor in a copper matrix. Each magnet is conduction cooled using a Gifford McMahon cryocooler. The coils are in close proximity to the iron motor housing requiring a cold to warm support structure with high stiffness and strength. The design of the coils, cold to warm support structure, cryogenic system, and the overall magnet system design will be described. The test results and operational experience will also be described.

  2. Power system analysis of Hanlim superconducting HVDC system using real time digital simulator

    Science.gov (United States)

    Won, Y. J.; Kim, J. G.; Kim, A. R.; Kim, G. H.; Park, M.; Yu, I. K.; Sim, K. D.; Cho, J.; Lee, S.; Jeong, K. W.; Watanabe, K.

    2011-11-01

    Jeju island is located approximately 100 km south from the mainland of Korea, and had a peak load of about 553 MW in 2008. The demand increases 7.2% a year over the last 5 years. Since the wind profiles of Jeju island are more favorable than mainland of Korea, many companies have shown interest in the wind power business at the Jeju island. Moreover KEPCO has a plan for renewable energy test too whose power will be delivered by HVDC system. One kilometer length of total 8 km was designed as superconducting DC cable. Rest 7 km will be the conventional overhead line. In this paper, the authors have developed a simulation model of the power network around 8 km HVDC system using real time digital simulator (RTDS).

  3. Superconducting magnet system for a space-based 100 MW MHD disk generator

    Energy Technology Data Exchange (ETDEWEB)

    Marston, P.G.

    1988-03-01

    The conceptual design of a 6 T superconducting magnet system for a space-based 100 MW single-coil MHD disk generator is described. Overall cold-mass dimensions are 2.325 m diameter by 0.15 m thickness. Average current density in the winding is 1.8 x 10/sup 8/ A/m/sup 2/. Stored energy is 45 MJ. Total system weight is 5000 kg.

  4. Superconducting and normal state properties of the systems La1 -xMxPt4Ge12 (M = Ce ,Th )

    Science.gov (United States)

    Huang, K.; Yazici, D.; White, B. D.; Jeon, I.; Breindel, A. J.; Pouse, N.; Maple, M. B.

    2016-09-01

    Electrical resistivity, magnetization, and specific heat measurements were performed on polycrystalline samples of the filled-skutterudite systems La1 -xMxPt4Ge12(M =Ce and Th ) . Superconductivity in LaPt4Ge12 was quickly suppressed with Ce substitution and no evidence for superconductivity was found down to 1.1 K for x >0.2 . Temperature-dependent specific heat data at low temperatures for La1 -xCexPt4Ge12 show a change from power-law to exponential behavior, which may be an indication for multiband superconductivity in LaPt4Ge12 . A similar crossover was observed in the Pr1 -xCexPt4Ge12 system. However, the suppression rates of the superconducting transition temperatures Tc(x ) in the two systems are quite disparate, indicating a difference in the nature of superconductivity, which is conventional in LaPt4Ge12 and unconventional in PrPt4Ge12 . In comparison, a nearly linear and smooth evolution of Tc with increasing Th was observed in the La1 -xThxPt4Ge12 system, with no change of the superconducting energy gap in the temperature dependence of the specific heat, suggesting similar types of superconductivity in both the LaPt4Ge12 and ThPt4Ge12 compounds.

  5. Characterization of non-contact torque transfer and switching system for superconducting flywheel

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, M., E-mail: m208005@sic.shibaura-it.ac.j [Superconducting Materials Laboratory, Shibaura Institute of Technology, 3-7-5, Toyosu, Koto-Ku, Tokyo 135-8548 (Japan); Takeda, K. [Superconducting Materials Laboratory, Shibaura Institute of Technology, 3-7-5, Toyosu, Koto-Ku, Tokyo 135-8548 (Japan); Hasegawa, H.; Seino, H.; Nagashima, K. [Railway Technical Research Institute, 2-8-38 Hikari-cho, Kokubunji, Tokyo 185-8540 (Japan); Murakami, M. [Superconducting Materials Laboratory, Shibaura Institute of Technology, 3-7-5, Toyosu, Koto-Ku, Tokyo 135-8548 (Japan)

    2010-11-01

    Superconducting flywheel energy storage system can store the energy for a long duration, in that the main body of a flywheel is placed in a vacuum chamber to minimize rotational loss, and is separated from a generation motor. The superconducting flywheel device need a non-contact system which can transfer the rotational torque without contact. A combination of two permanent magnets can transmit the power without contact. We calculated the torque forces and the field distributions of two types of magnetic arrays; repulsive type and Halbach type. Both magnetic circuits have respective inner and outer diameters of 61.5 and 144 mm and consist of eight poles of Fe-Nd-B permanent magnets 30 mm in thickness. We also studied the effects of the number of poles and the size on the transferable torque forces and found that a practical torque transfer and switching systems can be constructed with a combination of permanent magnetic circuits.

  6. High-temperature superconductivity for avionic electronic warfare and radar systems

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, P.A. [Wright Lab., Wright-Patterson AFB, OH (United States). Avionics Directorate

    1994-12-31

    The electronic warfare (EW) and radar communities expect to be major beneficiaries of the performance advantages high-temperature superconductivity (HTS) has to offer over conventional technology. Near term upgrades to system hardware can be envisioned using extremely small, high Q, microwave filters and resonators; compact, wideband, low loss, microwave delay and transmission lines; as well as, wideband, low loss, monolithic microwave integrated circuit phase shifters. The most dramatic impact will be in the far term, using HTS to develop new, real time threat identification and response strategy receiver/processing systems designed to utilize the unique high frequency properties of microwave and ultimately digital HTS. To make superconductivity practical for operational systems, however, technological obstacles need to be overcome. Compact cryogenically cooled subsystems with exceptional performance able to withstand rugged operational environments for long periods of time need to be developed.

  7. Realization of a Binary-Outcome Projection Measurement of a Three-Level Superconducting Quantum System

    Science.gov (United States)

    Jerger, Markus; Macha, Pascal; Hamann, Andrés Rosario; Reshitnyk, Yarema; Juliusson, Kristinn; Fedorov, Arkady

    2016-07-01

    Binary-outcome measurements allow one to determine whether a multilevel quantum system is in a certain state while preserving quantum coherence between all orthogonal states. In this paper, we explore different regimes of the dispersive readout of a three-level superconducting quantum system coupled to a microwave cavity in order to implement binary-outcome measurements. By designing identical cavity-frequency shifts for the first and second excited states of the system, we realize strong projective binary-outcome measurements onto its ground state with a fidelity of 94.3%. Complemented with standard microwave control and low-noise parametric amplification, this scheme enables the quantum nondemolition detection of leakage errors and can be used to create sets of compatible measurements to reveal the contextual nature of superconducting circuits.

  8. Magnesium Diboride Superconducting Coils for Electric Propulsion Systems for Large Aircraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The recent development of magnesium diboride superconducting wires makes possible the potential to have much lighter weight superconducting coils for heavy aircraft...

  9. Low-temperature synthesis to achieve high critical current density and avoid a reaction layer in SmFeAsO1-x F x superconducting tapes

    Science.gov (United States)

    Zhang, Qianjun; Lin, He; Yuan, Pusheng; Zhang, Xianping; Yao, Chao; Wang, Dongliang; Dong, Chiheng; Ma, Yanwei; Awaji, Satoshi; Watanabe, Kazuo

    2015-10-01

    A low-temperature (300-500 °C) heat treatment process under ambient pressure or uniaxial pressure was performed on Sn-added SmFeAsO1-x F x superconducting tapes fabricated by the ex situ powder-in-tube method. A highest transport critical current density (J c) of 3.95 × 104 A cm-2 (at 4.2 K and self-field) was achieved by this process. The low-temperature process allows tapes to endure much longer heat treatment without J c degradation than the high-temperature method. Microscopic analysis also revealed that this method could obtain a clear boundary without a reaction layer or interdiffusion between a superconducting core and sheath metal.

  10. Cryogenics Vision Workshop for High-Temperature Superconducting Electric Power Systems Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Energetics, Inc.

    2000-01-01

    The US Department of Energy's Superconductivity Program for Electric Systems sponsored the Cryogenics Vision Workshop, which was held on July 27, 1999 in Washington, D.C. This workshop was held in conjunction with the Program's Annual Peer Review meeting. Of the 175 people attending the peer review meeting, 31 were selected in advance to participate in the Cryogenics Vision Workshops discussions. The participants represented cryogenic equipment manufactures, industrial gas manufacturers and distributors, component suppliers, electric power equipment manufacturers (Superconductivity Partnership Initiative participants), electric utilities, federal agencies, national laboratories, and consulting firms. Critical factors were discussed that need to be considered in describing the successful future commercialization of cryogenic systems. Such systems will enable the widespread deployment of high-temperature superconducting (HTS) electric power equipment. Potential research, development, and demonstration (RD and D) activities and partnership opportunities for advancing suitable cryogenic systems were also discussed. The workshop agenda can be found in the following section of this report. Facilitated sessions were held to discuss the following specific focus topics: identifying Critical Factors that need to be included in a Cryogenics Vision for HTS Electric Power Systems (From the HTS equipment end-user perspective) identifying R and D Needs and Partnership Roles (From the cryogenic industry perspective) The findings of the facilitated Cryogenics Vision Workshop were then presented in a plenary session of the Annual Peer Review Meeting. Approximately 120 attendees participated in the afternoon plenary session. This large group heard summary reports from the workshop session leaders and then held a wrap-up session to discuss the findings, cross-cutting themes, and next steps. These summary reports are presented in this document. The ideas and suggestions

  11. Superconducting technology for overcurrent limiting in a 25 kA current injection system

    Science.gov (United States)

    Heydari, Hossein; Faghihi, Faramarz; Sharifi, Reza; Poursoltanmohammadi, Amir Hossein

    2008-09-01

    Current injection transformer (CIT) systems are within the major group of the standard type test of high current equipment in the electrical industry, so their performance becomes very important. When designing high current systems, there are many factors to be considered from which their overcurrent protection must be ensured. The output of a CIT is wholly dependent on the impedance of the equipment under test (EUT). Therefore current flow beyond the allowable limit can occur. The present state of the art provides an important guide to developing current limiters not only for the grid application but also in industrial equipment. This paper reports the state of the art in the technology available that could be developed into an application of superconductivity for high current equipment (CIT) protection with no test disruption. This will result in a greater market choice and lower costs for equipment protection solutions, reduced costs and improved system reliability. The paper will also push the state of the art by using two distinctive circuits, closed-core and open-core, for overcurrent protection of a 25 kA CIT system, based on a flux-lock-type superconducting fault current limiter (SFCL) and magnetic properties of high temperature superconducting (HTS) elements. An appropriate location of the HTS element will enhance the rate of limitation with the help of the magnetic field generated by the CIT output busbars. The calculation of the HTS parameters for overcurrent limiting is also performed to suit the required current levels of the CIT.

  12. Double pancake superconducting coil design for maximum magnetic energy storage in small scale SMES systems

    Science.gov (United States)

    Hekmati, Arsalan; Hekmati, Rasoul

    2016-12-01

    Electrical power quality and stability is an important issue nowadays and technology of Superconducting Magnetic Energy Storage systems, SMES, has brought real power storage capability to power systems. Therefore, optimum SMES design to achieve maximum energy with the least length of tape has been quite a matter of concern. This paper provides an approach to design optimization of solenoid and toroid types of SMES, ensuring maximum possible energy storage. The optimization process, based on Genetic Algorithm, calculates the operating current of superconducting tapes through intersection of a load line with the surface indicating the critical current variation versus the parallel and perpendicular components of magnetic flux density. FLUX3D simulations of SMES have been utilized for energy calculations. Through numerical analysis of obtained data, formulations have been obtained for the optimum dimensions of superconductor coil and maximum stored energy for a given length and cross sectional area of superconductor tape.

  13. CLIQ – Coupling-Loss Induced Quench System for Protecting Superconducting Magnets

    CERN Multimedia

    Ravaioli, E; Kirby, G; ten Kate, H H J; Verweij, A P

    2014-01-01

    The recently developed Coupling-Loss-Induced Quench (CLIQ) protection system is a new method for initiating a fast and voluminous transition to the normal state for protecting high energy density superconducting magnets. Upon quench detection, CLIQ is triggered to generate an oscillating current in the magnet coil by means of a capacitive discharge. This in turn introduces a high coupling loss in the superconductor which provokes a quick transition to the normal state of the coil windings. The system is now implemented for the protection of a two meter long superconducting quadrupole magnet and characterized in the CERN magnet test facility. Various CLIQ configurations with different current injection points are tested and the results compared to similar transients lately measured with a not optimized configuration. Test results convincingly show that the newly tested design allows for a more global quench initiation and thus a faster discharge of the magnet energy. Moreover, the performance of CLIQ for reduc...

  14. Summary results of an assessment of research projects in the superconductivity for electric power systems program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-10-01

    The Office of Program Analysis undertook an assessment of 37 research projects sponsored by the High Temperature Superconductivity Program. This report summarizes the results of the review. Rating factors included scientific and technical merit, mission relevance, appropriateness and level of innovation, quality of project team, productivity, and probable impact on the program`s mission. Some research needs and opportunities are described that were identified by the reviewers in the areas of wire development, deposited film technology, and systems development.

  15. Reactive Power Compensation and Harmonic Suppression for Power Supply System of HT-7U Superconductive Tokamak

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper, a strategy for the reactive power compensation and harmonic suppression of the power supply system in HT-7U superconductive Tokamak is proposed. The optimizedapproach is given in the parameters design for passive filter. Also a controlling method with fastresponse time and good accuracy is put forward for the compensator, which is more suitable forthe dynamic load.PAGS: 84.70.+p ,52.55. Fa, 84.30. Vn

  16. Superconductivity induced by U doping in the SmFeAsO system

    Science.gov (United States)

    Huang, Bo; Yang, Jijun; Tang, Jun; Liao, Jiali; Yang, Yuanyou; Liu, Ning; Mu, Gang; Hu, Tao; Shen, Xiaoping; Feng, Donglai

    2013-02-01

    Through partial substitution of Sm by U in SmFeAsO, a different member of the family of iron-based superconductors was successfully synthesized. X-ray diffraction measurements show that the lattice constants along the a and c axes are both squeezed through U doping, indicating a successful substitution of U at the Sm site. The parent compound shows a strong resistivity anomaly near 150 K, associated with spin-density-wave instability. U doping suppresses this instability and leads to a transition to the superconducting state at temperatures up to 49 K. Magnetic measurements confirm the bulk superconductivity in this system. For the sample with a doping level of x=0.2, the external magnetic field suppresses the onset temperature very slowly, indicating a rather high upper critical field. In addition, the Hall effect measurements show that U clearly dopes electrons into the material.

  17. Performance evaluation of high-temperature superconducting current leads for electric utility SMES systems

    Science.gov (United States)

    Niemann, R. C.; Cha, Y. S.; Hull, J. R.; Rey, C. M.; Dixon, K. D.

    As part of the U.S. Department of Energy's Superconductivity Technology Program, Argonne National Laboratory and Babcock & Wilcox are developing high-temperature super-conductor (HTS) current leads for application to electric utility superconducting magnetic energy storage systems. A 16,000-A HTS lead has been designed and is being constructed. An evaluation program for component performance was conducted to confirm performance predictions and/or to qualify the design features for construction. Performance of the current lead assemblies will be evaluated in a test program that includes assembly procedures, tooling, and quality assurance; thermal and electrical performance; and flow and mechanical characteristics. Results of the evaluations to date are presented.

  18. Electronic structure and superconductivity of hcp-bcc binary systems based on titanium and rhenium

    Energy Technology Data Exchange (ETDEWEB)

    Prekul, A.F.; Volkenshtein, N.V.

    1978-12-01

    The similarity of hcp--bcc binary systems of transition metals of groups IV--V and VI--VII is shown on the basis of a joint analysis of the kinetic, superconducting, and structural properties. Under the assumption that there is a singularity (a pseudo-gap) in the electronic structure of hardened alloys, a model is proposed for the change in the critical temperature of superconductivity with alloy concentration. According to the model, the two peaks in the functions T/sub c/(x) are due to the partial dielectrization of the electron spectrum and do not belong to the equilibrium solid solutions based on the initial metals, as had earlier been assumed.

  19. Search for high-Tc conventional superconductivity at megabar pressures in the lithium-sulfur system

    Science.gov (United States)

    Kokail, Christian; Heil, Christoph; Boeri, Lilia

    2016-08-01

    Motivated by the recent report of superconductivity above 200 K in ultra-dense hydrogen sulfide, we search for high-TC conventional superconductivity in the phase diagram of the binary Li-S system, using ab initio methods for crystal structure prediction and linear response calculations for the electron-phonon coupling. We find that at pressures higher than 20 GPa, several new compositions, besides the known Li2S , are stabilized; many exhibit electride-like interstitial charge localization observed in other alkali-metal compounds. Of all predicted phases, only an fcc phase of Li3S , metastable before 640 GPa, exhibits a sizable TC, in contrast to what is observed in sulfur and phosphorus hydrides, where several stoichiometries lead to high TC. We attribute this difference to 2 s -2 p hybridization and avoided core overlap, and predict similar behavior for other alkali-metal compounds.

  20. Static Measurements on HTS Coils of Fully Superconducting AC Electric Machines for Aircraft Electric Propulsion System

    Science.gov (United States)

    Choi, Benjamin B.; Hunker, Keith R.; Hartwig, Jason; Brown, Gerald V.

    2017-01-01

    The NASA Glenn Research Center (GRC) has been developing the high efficiency and high-power density superconducting (SC) electric machines in full support of electrified aircraft propulsion (EAP) systems for a future electric aircraft. A SC coil test rig has been designed and built to perform static and AC measurements on BSCCO, (RE)BCO, and YBCO high temperature superconducting (HTS) wire and coils at liquid nitrogen (LN2) temperature. In this paper, DC measurements on five SC coil configurations of various geometry in zero external magnetic field are measured to develop good measurement technique and to determine the critical current (Ic) and the sharpness (n value) of the super-to-normal transition. Also, standard procedures for coil design, fabrication, coil mounting, micro-volt measurement, cryogenic testing, current control, and data acquisition technique were established. Experimentally measured critical currents are compared with theoretical predicted values based on an electric-field criterion (Ec). Data here are essential to quantify the SC electric machine operation limits where the SC begins to exhibit non-zero resistance. All test data will be utilized to assess the feasibility of using HTS coils for the fully superconducting AC electric machine development for an aircraft electric propulsion system.

  1. Closed-cycle cryocooled SQUID system with superconductive shield for biomagnetism

    Science.gov (United States)

    Yu, Kwon Kyu; Lee, Yong Ho; Lee, Seong Joo; Shim, Jeong Hyun; Hwang, Seong min; Kim, Jin Mok; Kwon, Hyuckchan; Kim, Kiwoong

    2014-10-01

    We developed a cryocooled SQUID system with which human magnetocardiogram (MCG) and possibly magnetoenceparogram (MEG) can be measured. To reduce cyclic magnetic noises originating from the regenerator of the cold heads of the cryocooler, a superconductive shield (99.5% Pb) was used to protect the SQUID sensors, and a ferromagnetic shield (78% Ni alloy) was used to screen the cold head. In addition, the SQUID sensors’ chamber was placed at a distance of 1.8 m from the cold head chamber to install the cold-head chamber outside the magnetically shielded room (MSR) for future development. The loss in cooling power due to the increased distance was compensated by increasing the number of thermal rods, and thus the SQUID sensor and superconductive shield could be refrigerated to 4.8 K and 5 K, respectively. The superconductive shield successfully rejected thermal noise emitted from metallic blocks used to improve thermal conduction. The noise of the SQUID system was 3 fT/Hz1/2, and the cyclic magnetic noise could be reduced to 1.7 pT. We could obtain a clear MCG signal while the entire cryogenics was in operation without any special digital processing.

  2. Spin-liquid polymorphism in a correlated electron system on the threshold of superconductivity.

    Science.gov (United States)

    Zaliznyak, Igor; Savici, Andrei T; Lumsden, Mark; Tsvelik, Alexei; Hu, Rongwei; Petrovic, Cedomir

    2015-08-18

    We report neutron scattering measurements which reveal spin-liquid polymorphism in an "11" iron chalcogenide superconductor. It occurs when a poorly metallic magnetic state of FeTe is tuned toward superconductivity by substitution of a small amount of tellurium with isoelectronic sulfur. We observe a liquid-like magnetic response, which is described by the coexistence of two disordered magnetic phases with different local structures whose relative abundance depends on temperature. One is the ferromagnetic (FM) plaquette phase observed in undoped, nonsuperconducting FeTe, which preserves the C4 symmetry of the underlying square lattice and is favored at high temperatures, whereas the other is the antiferromagnetic plaquette phase with broken C4 symmetry, which emerges with doping and is predominant at low temperatures. These findings suggest the coexistence of and competition between two distinct liquid states, and a liquid-liquid phase transformation between these states, in the electronic spin system of FeTe(1-x)(S,Se)(x). We have thus discovered the remarkable physics of competing spin-liquid polymorphs in a correlated electron system approaching superconductivity. Our results facilitate an understanding of large swaths of recent experimental data in unconventional superconductors. In particular, the phase with lower C2 local symmetry, whose emergence precedes superconductivity, naturally accounts for a propensity for forming electronic nematic states which have been observed experimentally, in cuprate and iron-based superconductors alike.

  3. Performance analysis of a model-sized superconducting DC transmission system based VSC-HVDC transmission technologies using RTDS

    Science.gov (United States)

    Dinh, Minh-Chau; Ju, Chang-Hyeon; Kim, Sung-Kyu; Kim, Jin-Geun; Park, Minwon; Yu, In-Keun

    2012-08-01

    The combination of a high temperature superconducting DC power cable and a voltage source converter based HVDC (VSC-HVDC) creates a new option for transmitting power with multiple collection and distribution points for long distance and bulk power transmissions. It offers some greater advantages compared with HVAC or conventional HVDC transmission systems, and it is well suited for the grid integration of renewable energy sources in existing distribution or transmission systems. For this reason, a superconducting DC transmission system based HVDC transmission technologies is planned to be set up in the Jeju power system, Korea. Before applying this system to a real power system on Jeju Island, system analysis should be performed through a real time test. In this paper, a model-sized superconducting VSC-HVDC system, which consists of a small model-sized VSC-HVDC connected to a 2 m YBCO HTS DC model cable, is implemented. The authors have performed the real-time simulation method that incorporates the model-sized superconducting VSC-HVDC system into the simulated Jeju power system using Real Time Digital Simulator (RTDS). The performance analysis of the superconducting VSC-HVDC systems has been verified by the proposed test platform and the results were discussed in detail.

  4. Intrinsic magnetization in the novel quasi-two-dimensional superconducting and magnetic Fe1+δTe1-xSex system

    Science.gov (United States)

    Yoshimura, Kazuyoshi; Michioka, Chishiro; Matsui, Mami; Ohta, Hiroto; Yang, Jinhu; Fang, Minghu

    2011-06-01

    Intrinsic spin susceptibility of the novel layered superconducting and magnetic system Fe1+δTe1-xSex was investigated by means of the magnetization measurements in comparing with the 125Te NMR Knight shift 125K. The macroscopic uniform susceptibility in Fe1+δTe1-xSex consists of the itinerant magnetization originated in the Fe(1) site, localized one in the Fe(2) site and the ferromagnetic-like impurity which is frequently sandwiched by the thin film-like single crystals. Unlike the macroscopic magnetization, Knight shift 125K is mainly attributed to the itinerant magnetism of the Fe(1) site, which is important for the superconductivity and the magnetism in the Fe1+δTe1-xSex system. The magnetic susceptibility estimated in the high-field region agrees well with 125K. The uniform susceptibility of the superconducting Fe1+δTe1-xSex gradually decreases with decreasing temperature in the normal state accompanied by the growth of antiferromagnetic spin afluctuations.

  5. Silicon superconducting quantum interference device

    Energy Technology Data Exchange (ETDEWEB)

    Duvauchelle, J. E.; Francheteau, A.; Marcenat, C.; Lefloch, F., E-mail: francois.lefloch@cea.fr [Université Grenoble Alpes, CEA - INAC - SPSMS, F-38000 Grenoble (France); Chiodi, F.; Débarre, D. [Université Paris-sud, CNRS - IEF, F-91405 Orsay - France (France); Hasselbach, K. [Université Grenoble Alpes, CNRS - Inst. Néel, F-38000 Grenoble (France); Kirtley, J. R. [Center for probing at nanoscale, Stanford University, Palo Alto, California 94305-4045 (United States)

    2015-08-17

    We have studied a Superconducting Quantum Interference Device (SQUID) made from a single layer thin film of superconducting silicon. The superconducting layer is obtained by heavily doping a silicon wafer with boron atoms using the gas immersion laser doping technique. The SQUID is composed of two nano-bridges (Dayem bridges) in a loop and shows magnetic flux modulation at low temperature and low magnetic field. The overall behavior shows very good agreement with numerical simulations based on the Ginzburg-Landau equations.

  6. Control System and Operation of the Cryogenic Test Facilities for LHC Series Superconducting Magnets

    CERN Document Server

    Axensalva, J; Lamboy, J P; Tovar-Gonzalez, A; Vullierme, B

    2005-01-01

    Prior to their final preparation before installation in the tunnel, the ~1800 series superconducting magnets of the LHC machine will be entirely tested at reception on modular test facilities using dedicated control systems. The test facilities are operated by teams of high-skilled and trained operators. This paper describes the architecture of the control & supervision system of the cryogenic test facilities as well as the tools and management systems developed to help in real time all involved operation teams in order to reach the required industrial production level.

  7. Study of the DEF Feedback Control System in AC Operation of Superconducting Tokamak

    Institute of Scientific and Technical Information of China (English)

    WANG Hua; LUO Jiarong; YUAN Qiping; XU Congdong

    2007-01-01

    AC operation with multiple full cycles has been successfully performed on the superconducting tokamak HT-7. In the experiment, it was discovered that the saturation of the transformer magnetic flux with DEF, a signal name, was one of key aspects that affected the AC operation. The conditions of DEF were examined through the DEF feedback control system. By controlling the working patterns of the subsystems, namely the poloidal field control system and density control system, it was guaranteed that DEF would remain in the non-saturated status.

  8. Quantum dynamics of a microwave driven superconducting phase qubit coupled to a two-level system

    Science.gov (United States)

    Sun, Guozhu; Wen, Xueda; Mao, Bo; Zhou, Zhongyuan; Yu, Yang; Wu, Peiheng; Han, Siyuan

    2010-10-01

    We present an analytical and comprehensive description of the quantum dynamics of a microwave resonantly driven superconducting phase qubit coupled to a microscopic two-level system (TLS), covering a wide range of the external microwave field strength. Our model predicts several interesting phenomena in such an ac driven four-level bipartite system including anomalous Rabi oscillations, high-contrast beatings of Rabi oscillations, and extraordinary two-photon transitions. Our experimental results in a coupled qubit-TLS system agree quantitatively very well with the predictions of the theoretical model.

  9. Workshop on technology issues of superconducting Maglev transportation systems

    Energy Technology Data Exchange (ETDEWEB)

    Wegrzyn, J.E. (Brookhaven National Lab., Upton, NY (United States)); Shaw, D.T. (New York State Inst. of Superconductivity, Buffalo, NY (United States))

    1991-09-27

    There exists a critical need in the United States to improve its ground transportation system. One suggested system that offers many advantages over the current transportation infrastructure is Maglev. Maglev represents the latest evolution in very high and speed ground transportation, where vehicles are magnetically levitated, guided, and propelled over elevated guideways at speeds of 300 miles per hour. Maglev is not a new concept but is, however, receiving renewed interest. The objective of this workshop was to further promote these interest by bringing together a small group of specialists in Maglev technology to discuss Maglev research needs and to identify key research issues to the development of a successful Maglev system. The workshop was organized into four sessions based on the following technical areas: Materials, Testing, and Shielding; Magnet Design and Cryogenic Systems; Propulsion and Levitation Systems; and, System Control and Integration.

  10. Superconducting spin-valve effect and triplet superconductivity in Co Ox/Fe1/Cu /Fe2/Cu /Pb multilayer

    Science.gov (United States)

    Leksin, P. V.; Garif'yanov, N. N.; Kamashev, A. A.; Fominov, Ya. V.; Schumann, J.; Hess, C.; Kataev, V.; Büchner, B.; Garifullin, I. A.

    2015-06-01

    We report magnetic and superconducting properties of the modified spin-valve system CoOx/Fe1/Cu /Fe2/Cu /Pb . Introduction of a Cu interlayer between Fe2 and Pb layers prevents material interdiffusion process, increases the Fe2/Pb interface transparency, stabilizes and enhances properties of the system. This allowed us to perform a comprehensive study of such heterostructures and to present theoretical description of the superconducting spin-valve effect and of the manifestation of the long-range triplet component of the superconducting condensate.

  11. Korea Superconducting tokamak advanced research project - Development of heating system

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Byung Ho [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-10-01

    The heating and current drive systems for KSTAR based on multiple technologies (neutral beam, ion cyclotron, lower hybrid and electron cyclotron) have been designed to provide heating and current drive capabilities as well as flexibility in the control of current density and pressure profiles needed to meet the mission and research objectives of the machine. They are designed to operate for long-pulse lengths of up to 300 s. The NBI system initially delivers 8 MW of neutral beam power to the plasma from one co-directed beam line and shall be upgraded to provide 20 MW of neutral beam power with two co-directed beam lines plus one counter-directed beam line. It will be capable of being reconfigured such that the source arrangement is changed from horizontal to vertical stacking, with 6 MW beam power to the plasmas per beam line, in order to facilitate profile control. The RF system initially delivers 6 MW of rf power to the plasma, using a single four-strap antenna mounted in a midplane port. The system will be upgraded to proved 12 MW of rf power through 2 adjacent ports. In the first phase, we completed the basic design of RF system and the system have the capabilities to be operationable for pulse length up to 300 sec and in the 25-60 MHz frequency range. Lower hybrid system initially provides 1.5 MW LH rf power to the plasma at 3.7 GHz through a horizontal port, which has a capability to be operated for pulse length up to 300 sec, and shall be upgraded to provide 4.5 MW of LH rf power to the plasma. In the first phase, we completed the basic design of LHCD system which incorporate the TPX-type launcher and independently phase-changeable transmission system for the fully phased coupler. The ECH system will deliver up to 0.5 MW of power to the plasma for up to 0.5 sec. In the first phase, we completed the basic design of ECH system which includes an 84 GHz gyrotron system, a transmission system, and a launcher. The basic design of the low loss transmission system

  12. Load test of Superconducting Magnetic Bearing for MW-class Flywheel Energy Storage System

    Science.gov (United States)

    Mukoyama, S.; Nakao, K.; Sakamoto, H.; Nagashima, K.; Ogata, M.; Yamashita, T.; Miyazaki, K.; Shimizu, H.; Sawamura, H.

    2017-07-01

    A flywheel energy storage system (FESS) stores electrical power as kinetic energy of a rotating flywheel rotor. Since the storage energy of the FESS is proportional to the weight of the rotor and the square of the rotating speed, the heavy weight and high speed rotor leads a FESS to a high power and a high capacity. However a conventional FESS limits in both the rotor weight and the rotating speed because of using mechanical bearings. A superconducting FESS (SFESS) utilizes a superconducting magnetic bearing (SMB) to levitate and rotate the flywheel rotor that has ton class weight and high speed rotation without mechanical contact. As the SFESS with 300 kW demonstrated at Mt. Komekura in Yamanashi prefecture, the SMB in the SFESS levitated the 4-ton rotor. The SMB consisted of a high temperature superconducting magnet (HTS magnet) and a HTS bulk, and utilized a repulsive force between the HTS magnet and the HTS bulk. The demonstration of the SFESS has been carried out successfully at Mt. Komekura. Now the next step development was started to aim a MW-class SFESS. The MW-class SFESS needs the SMB levitated and withstood a 10 ton-class load. This paper describes a design of the 10 ton-class SMB and the result of the load test of the developed SMB

  13. ORNL Superconducting Technology Program for Electric Power Systems, Annual Report for FY 1998

    Energy Technology Data Exchange (ETDEWEB)

    Hawsey, R.A.; Murphy, A.W.

    1999-04-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by U.S. industry for commercial development of electric power applications of high temperature superconductivity. The two major elements of this program are wire development and applications development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from recent open literature publications, presentations, and information prepared for the FY 1998 Annual Program Review held July 20-22, 1998. Aspects of ORNL's work that were presented at the Applied Superconductivity Conference (September 1998) are included in this report, as well. This ORNL program is highly leveraged by the staff and other resources of U.S. industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to cooperative projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with U.S. industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high temperature superconductor wire and wire-using systems.

  14. Strongly interacting Fermi systems in 1/N expansion: From cold atoms to color superconductivity

    Science.gov (United States)

    Abuki, Hiroaki; Brauner, Tomáš

    2008-12-01

    We investigate the 1/N expansion proposed recently as a strategy to include quantum fluctuation effects in the nonrelativistic, attractive Fermi gas at and near unitarity. We extend the previous results by calculating the next-to-leading order corrections to the critical temperature along the whole crossover from Bardeen-Cooper-Schrieffer (BCS) superconductivity to Bose-Einstein condensation. We demonstrate explicitly that the extrapolation from the mean-field approximation, based on the 1/N expansion, provides a useful approximation scheme only on the BCS side of the crossover. We then apply the technique to the study of strongly interacting relativistic many-fermion systems. Having in mind the application to color superconductivity in cold dense quark matter, we develop, within a simple model, a formalism suitable to compare the effects of order parameter fluctuations in phases with different pairing patterns. Our main conclusion is that the relative correction to the critical temperature is to a good accuracy proportional to the mean-field ratio of the critical temperature and the chemical potential. As a consequence, it is significant even rather deep in the BCS regime, where phenomenologically interesting values of the quark-quark coupling are expected. Possible impact on the phase diagram of color-superconducting quark matter is discussed.

  15. Superconducting optical modulator

    Science.gov (United States)

    Bunt, Patricia S.; Ference, Thomas G.; Puzey, Kenneth A.; Tanner, David B.; Tache, Nacira; Varhue, Walter J.

    2000-12-01

    An optical modulator based on the physical properties of high temperature superconductors has been fabricated and tested. The modulator was constructed form a film of Yttrium Barium Copper Oxide (YBCO) grown on undoped silicon with a buffer layer of Yttria Stabilized Zirconia. Standard lithographic procedures were used to pattern the superconducting film into a micro bridge. Optical modulation was achieved by passing IR light through the composite structure normal to the micro bridge and switching the superconducting film in the bridge region between the superconducting and non-superconducting states. In the superconducting state, IR light reflects from the superconducting film surface. When a critical current is passed through the micro bridge, it causes the film in this region to switch to the non-superconducting state allowing IR light to pass through it. Superconducting materials have the potential to switch between these two states at speeds up to 1 picosecond using electrical current. Presently, fiber optic transmission capacity is limited by the rate at which optical data can be modulated. The superconducting modulator, when combined with other components, may have the potential to increase the transmission capacity of fiber optic lines.

  16. A superconducting conveyer system using multiple bulk Y-Ba-Cu-O superconductors and permanent magnets

    Science.gov (United States)

    Kinoshita, T.; Koshizuka, N.; Nagashima, K.; Murakami, M.

    Developments of non-contact superconducting devices like superconducting magnetic levitation transfer and superconducting flywheel energy storage system have been performed based on the interactions between bulk Y-Ba-Cu-O superconductors and permanent magnets, in that the superconductors can stably be levitated without any active control. The performances of noncontact superconducting devices are dependent on the interaction forces like attractive forces and stiffness. In the present study, we constructed a non-contact conveyer for which the guide rails were prepared by attaching many Fe-Nd-B magnets onto an iron base plate. Along the translational direction, all the magnets were arranged as to face the same pole, and furthermore their inter-distance was made as small as possible. The guide rail has three magnet rows, for which the magnets were glued on the iron plate such that adjacent magnet rows have opposite poles like NSN. At the center row, the magnetic field at zero gap reached 0.61T, while the field strengths of two rows on the side edges were only 0.48T due to magnetic interactions among permanent magnets. We then prepared a cryogenic box made with FRP that can store several bulk Y-Ba-Cu-O superconductors 25 mm in diameter cooled by liquid nitrogen. It was found that the levitation forces and stiffness increased with increasing the number of bulk superconductors installed in the box, although the levitation force per unit bulk were almost the same. We also confirmed that these forces are dependent on the configuration of bulk superconductors.

  17. Applied superconductivity

    CERN Document Server

    Newhouse, Vernon L

    1975-01-01

    Applied Superconductivity, Volume II, is part of a two-volume series on applied superconductivity. The first volume dealt with electronic applications and radiation detection, and contains a chapter on liquid helium refrigeration. The present volume discusses magnets, electromechanical applications, accelerators, and microwave and rf devices. The book opens with a chapter on high-field superconducting magnets, covering applications and magnet design. Subsequent chapters discuss superconductive machinery such as superconductive bearings and motors; rf superconducting devices; and future prospec

  18. FLYWHEEL ENERGY STORAGE SYSTEMS WITH SUPERCONDUCTING BEARINGS FOR UTILITY APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Michael Strasik; Mr. Arthur Day; Mr. Philip Johnson; Dr. John Hull

    2007-10-26

    This project’s mission was to achieve significant advances in the practical application of bulk high-temperature superconductor (HTS) materials to energy-storage systems. The ultimate product was planned as an operational prototype of a flywheel system on an HTS suspension. While the final prototype flywheel did not complete the final offsite demonstration phase of the program, invaluable lessons learned were captured on the laboratory demonstration units that will lead to the successful deployment of a future HTS-stabilized, composite-flywheel energy-storage system (FESS).

  19. Magnesium Diboride Superconducting Stator Coils for Electric Propulsion Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Many are pursuing the development of electric propulsion systems for large aircraft due to the potential of being cleaner, quieter, lighter, and more versatile than...

  20. Divertor asymmetry and scrape-off layer flow in various divertor configurations in Experimental Advanced Superconducting Tokamak

    DEFF Research Database (Denmark)

    Liu, S. C.; Guo, H. Y.; Xu, Guandong

    2012-01-01

    Divertor asymmetry and its dependence on the ion del B direction has been investigated in the Experimental Advanced Superconducting Tokamak by changing the divertor configuration from lower single null (LSN), via double null (DN), to upper single null (USN) during one single discharge. Divertor p...

  1. Superconducting Metallic Glass Transition-Edge-Sensors

    Science.gov (United States)

    Hays, Charles C. (Inventor)

    2013-01-01

    A superconducting metallic glass transition-edge sensor (MGTES) and a method for fabricating the MGTES are provided. A single-layer superconducting amorphous metal alloy is deposited on a substrate. The single-layer superconducting amorphous metal alloy is an absorber for the MGTES and is electrically connected to a circuit configured for readout and biasing to sense electromagnetic radiation.

  2. Feasibility study of superconducting power cables for DC electric railway feeding systems in view of thermal condition at short circuit accident

    Science.gov (United States)

    Kumagai, Daisuke; Ohsaki, Hiroyuki; Tomita, Masaru

    2016-12-01

    A superconducting power cable has merits of a high power transmission capacity, transmission losses reduction, a compactness, etc., therefore, we have been studying the feasibility of applying superconducting power cables to DC electric railway feeding systems. However, a superconducting power cable is required to be cooled down and kept at a very low temperature, so it is important to reveal its thermal and cooling characteristics. In this study, electric circuit analysis models of the system and thermal analysis models of superconducting cables were constructed and the system behaviors were simulated. We analyzed the heat generation by a short circuit accident and transient temperature distribution of the cable to estimate the value of temperature rise and the time required from the accident. From these results, we discussed a feasibility of superconducting cables for DC electric railway feeding systems. The results showed that the short circuit accident had little impact on the thermal condition of a superconducting cable in the installed system.

  3. Boundary layer control of rotating convection systems.

    Science.gov (United States)

    King, Eric M; Stellmach, Stephan; Noir, Jerome; Hansen, Ulrich; Aurnou, Jonathan M

    2009-01-15

    Turbulent rotating convection controls many observed features of stars and planets, such as magnetic fields, atmospheric jets and emitted heat flux patterns. It has long been argued that the influence of rotation on turbulent convection dynamics is governed by the ratio of the relevant global-scale forces: the Coriolis force and the buoyancy force. Here, however, we present results from laboratory and numerical experiments which exhibit transitions between rotationally dominated and non-rotating behaviour that are not determined by this global force balance. Instead, the transition is controlled by the relative thicknesses of the thermal (non-rotating) and Ekman (rotating) boundary layers. We formulate a predictive description of the transition between the two regimes on the basis of the competition between these two boundary layers. This transition scaling theory unifies the disparate results of an extensive array of previous experiments, and is broadly applicable to natural convection systems.

  4. Dynamic characteristics of a flywheel energy storage system using superconducting magnetic bearings

    CERN Document Server

    Kim, J S

    2003-01-01

    The high-temperature superconducting magnetic bearing flywheel energy storage system (SMB-FESS) is proposed as an efficient energy storage system. It is important to identify the dynamic behaviour and the characteristics of the SMB-FESS. First, a new method for identifying SMB characteristics has been suggested. The suggested modelling method is verified by comparing the experimental and analytical frequency response functions. In this study, the analyses of critical speed and unbalance response are performed using the analytical model. The experimental test has been carried out to verify the result of simulation. A good agreement has been observed between the experiment and the simulation result.

  5. Shielding optimization studies for the detector systems of the Superconducting Super Collider

    Energy Technology Data Exchange (ETDEWEB)

    Slater, C.O.; Lillie, R.A.; Gabriel, T.A.

    1994-09-01

    Preliminary shielding optimization studies for the Superconducting Super Collider`s Solenoidal Detector Collaboration detector system were performed at the Oak Ridge National Laboratory in 1993. The objective of the study was to reduce the neutron and gamma-ray fluxes leaving the shield to a level that resulted in insignificant effects on the functionality of the detector system. Steel and two types of concrete were considered as components of the shield, and the shield was optimized according to thickness, weight, and cost. Significant differences in the thicknesses, weights, and costs were noted for the three optimization parameters. Results from the study are presented.

  6. Radio Frequency Surface Impedance Characterization System for Superconducting Samples at 7.5 GHz

    Energy Technology Data Exchange (ETDEWEB)

    Binping Xiao, Charles Reece, Michael Kelley, Larry Phillips, Rongli Geng, Haipeng Wang, Frank Marhauser

    2011-05-01

    A radio frequency (RF) surface impedance characterization (SIC) system that uses a sapphire-loaded Nb cavity operating at 7.5 GHz has been fabricated to measure the RF surface impedance of flat superconducting samples. Currently, the SIC system can make direct calorimetric surface impedance measurements in the central 0.8 cm2 area of 5 cm diameter disk samples in a temperature range from 2 to 20 K, exposed to a magnetic flux density of up to 14 mT. As an application, we present the measurement results for a bulk Nb sample.

  7. Reflection type of terahertz imaging system using a high-T{sub c} superconducting oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwagi, T.; Minami, H.; Kadowaki, K. [Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8571 (Japan); Division of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); Nakade, K.; Saiwai, Y.; Kitamura, T.; Watanabe, C.; Ishida, K.; Sekimoto, S.; Asanuma, K.; Yasui, T.; Shibano, Y. [Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8571 (Japan); Marković, B.; Mirković, J. [Faculty of Sciences, University of Montenegro, George Washington Str., 81000 Podgorica (Montenegro); Tsujimoto, M. [Department of Electronic Science and Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan); Yamamoto, T. [National Institute for Materials Science, Wide Bandgap Materials Group, Optical and Electronic Materials Unit, Environment and Energy Materials Division, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2014-01-13

    A reflection type of imaging system is shown at sub-terahertz frequencies generated from high-T{sub c} superconducting intrinsic Josephson junction mesa structures fabricated by single crystalline Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+δ} to demonstrate how the sub-terahertz imaging technique using monochromatic radiation is powerful and unique for the variety of practical applications. Several examples are discussed in detail and are compared to other terahertz imaging systems.

  8. Multiband superconductivity in the correlated electron filled skutterudite system Pr1-xCexPt4Ge12

    Science.gov (United States)

    Singh, Y. P.; Adhikari, R. B.; Zhang, S.; Huang, K.; Yazici, D.; Jeon, I.; Maple, M. B.; Dzero, M.; Almasan, C. C.

    2016-10-01

    Studies of superconductivity in multiband correlated electronic systems have become one of the central topics in condensed-matter and materials physics. In this paper, we present the results of thermodynamic measurements on the superconducting filled skutterudite system Pr1 -xCexPt4Ge12 (0 ≤x ≤0.2 ) to investigate how substitution of Ce at Pr sites affects superconductivity. We find that an increase in Ce concentration leads to a suppression of the superconducting transition temperature from Tc˜7.9 K for x =0 to Tc˜0.6 K for x =0.14 . Our analysis of the specific-heat data for x ≤0.07 reveals that superconductivity must develop in at least two bands: the superconducting order parameter has nodes on one Fermi pocket and remains fully gapped on the other. Both the nodal and nodeless gaps decrease, with the nodal gap being suppressed more strongly upon Ce substitution. Ultimately, the higher-Ce-concentration samples (x >0.07 ) display a nodeless gap only.

  9. Robust two-dimensional superconductivity and vortex system in Bi2Te3/FeTe heterostructures.

    Science.gov (United States)

    Liu, Hong-Chao; Li, Hui; He, Qing Lin; Sou, Iam Keong; Goh, Swee K; Wang, Jiannong

    2016-05-17

    The discovery of two-dimensional superconductivity in Bi2Te3/FeTe heterostructures provides a new platform for the search of Majorana fermions in condensed matter systems. Since Majorana fermions are expected to reside at the core of the vortices, a close examination of the vortex dynamics in superconducting interface is of paramount importance. Here, we report the robustness of the interfacial superconductivity and 2D vortex dynamics in four as-grown and aged Bi2Te3/FeTe heterostructure with different Bi2Te3 epilayer thickness (3, 5, 7, 14 nm). After two years' air exposure, superconductivity remains robust even when the thickness of Bi2Te3 epilayer is down to 3 nm. Meanwhile, a new feature at ~13 K is induced in the aged samples, and the high field studies reveal its relevance to superconductivity. The resistance of all as-grown and aged heterostructures, just below the superconducting transition temperature follows the Arrhenius relation, indicating the thermally activated flux flow behavior at the interface of Bi2Te3 and FeTe. Moreover, the activation energy exhibits a logarithmic dependence on the magnetic field, providing a compelling evidence for the 2D vortex dynamics in this novel system. The weak disorder associated with aging-induced Te vacancies is possibly responsible for these observed phenomena.

  10. Current dependence of heat leak on the terminals in the superconducting DC transmission and distribution system of CASER-2

    Science.gov (United States)

    Kawahara, Toshio; Watanabe, Hirofumi; Emoto, Masahiko; Hamabe, Makoto; Yamaguchi, Sataro; Hikichi, Yasuo; Minowa, Masahiro

    2012-12-01

    Superconductivity can solve the energy problems in the world as energy saving technologies. In particular, superconducting direct current (DC) transmission and distribution (T&D) systems is promising, as it can be easily extended to large scale energy transmission systems for energy sharing. We are developing criogenic systems for effective cooling of superconducting T&D systems. In the cooling experiments with the 200 m-class superconducting DC T&D system at Chubu University (CASER-2), we have estimated the performance of the system. For example, our superconducting cable is connected to the outside at the terminals using Peltier current leads (PCLs). The PCL is composed of a thermoelectric material and a copper lead. Small thermal conductivity and large thermopower of the thermoelectric modules can effectively insulate the heat leak to the low temperature end. We measured the temperature along the current leads and the heat leak at the terminals. As current leads have an optimal shape factor, the optimum operation current exists. The current dependence of the system performance is discussed.

  11. Superconducting magnet system for an experimental disk MHD facility

    NARCIS (Netherlands)

    Knoopers, H.G.; Kate, ten H.H.J.; Klundert, van de L.J.M.

    1991-01-01

    A predesign of a split-pair magnet for a magnetohydrodynamic (MHD) facility for testing a 10-MW open-cycle disk or a 5-MW closed-cycle disk generator is presented. The magnet system consists of a NbTi and a Nb 3Sn section, which provide a magnetic field of 9 T in the active area of the MHD channel.

  12. Compact Superconducting Power Systems for Airborne Applications (Postprint)

    Science.gov (United States)

    2009-01-01

    rotating machin- ery such as motors and alternators, is to maximize the magnet- ic flux density. This can be achieved by using a higher current...future systems could be driven to much higher power ratios, since the initial machine configuration was a homopolar inductor alternator‡ (HIA). A... Homopolar inductor alternator is an electrically symmetrical synchro- nous generator with a field winding that has a fixed magnetic position in relation to

  13. Modeling dynamic behavior of superconducting maglev systems under external disturbances

    Science.gov (United States)

    Huang, Chen-Guang; Xue, Cun; Yong, Hua-Dong; Zhou, You-He

    2017-08-01

    For a maglev system, vertical and lateral displacements of the levitation body may simultaneously occur under external disturbances, which often results in changes in the levitation and guidance forces and even causes some serious malfunctions. To fully understand the effect of external disturbances on the levitation performance, in this work, we build a two-dimensional numerical model on the basis of Newton's second law of motion and a mathematical formulation derived from magnetoquasistatic Maxwell's equations together with a nonlinear constitutive relation between the electric field and the current density. By using this model, we present an analysis of dynamic behavior for two typical maglev systems consisting of an infinitely long superconductor and a guideway of different arrangements of infinitely long parallel permanent magnets. The results show that during the vertical movement, the levitation force is closely associated with the flux motion and the moving velocity of the superconductor. After being disturbed at the working position, the superconductor has a disturbance-induced initial velocity and then starts to periodically vibrate in both lateral and vertical directions. Meanwhile, the lateral and vertical vibration centers gradually drift along their vibration directions. The larger the initial velocity, the faster their vibration centers drift. However, the vertical drift of the vertical vibration center seems to be independent of the direction of the initial velocity. In addition, due to the lateral and vertical drifts, the equilibrium position of the superconductor in the maglev systems is not a space point but a continuous range.

  14. Spiral 2 Cryogenic System for The Superconducting LINAC

    Science.gov (United States)

    Ghribi, A.; Bernaudin, P.-E.; Bert, Y.; Commeaux, C.; Houeto, M.; Lescalié, G.

    2017-02-01

    SPIRAL 21 is a rare isotope accelerator dedicated to the production of high intensity beams (E = 40 MeV, I = 5 mA). The driver is a linear accelerator (LINAC) that uses bulk Niobium made quarter wave RF cavities. 19 cryomodules inclose one or two cavities respectively for the low and the high energy sections. To supply the 1300 W at 4.2 K required to cool down the LINAC, a cryogenic system has been set up. The heart of the latter is a 3 turbines geared HELIAL®LF (ALAT2) cold box that delivers both the liquid helium for the cavities and the 60 K Helium gaz for the thermal screens. 19 valve-boxes insure cryogenic fluid distribution and management. Key issues like cool down speed or cavity RF frequency stability are closely linked to the cryogenic system management. To overcome these issues, modelling and simulation efforts are being undertaken prior to the first cool down trials. In this paper, we present a status update of the Spiral 2 cryogenic system and the cool down strategy considered for its commissioning.

  15. Superconducting magnet system for the WENDELSTEIN 7-X Stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Sapper, Joerg [EURATOM Association, Garching (Germany)

    1996-12-31

    The WENDELSTEIN 7-X Stellator is a further experiment in the small group of next-step fusion devices in the world. An essential goal of this machine is to demonstrate concept improvement towards the development of fusion devices. The magnet system is designed for optimum stellator plasma performance and the technical layout will allow steady-state plasma operation. The whole magnet is encapsulated by an inner and outer toroidal cryostat tube for cold operation. The schedule for the experimental device aims at a start of technical operation in 2002 and plasma operation two years later. 4 refs., 9 figs.

  16. Superconducting magnet system for an experimental disk MHD facility

    OpenAIRE

    Knoopers, H.G.; Kate, ten, H.H.J.; Klundert, van de, L.J.M.

    1991-01-01

    A predesign of a split-pair magnet for a magnetohydrodynamic (MHD) facility for testing a 10-MW open-cycle disk or a 5-MW closed-cycle disk generator is presented. The magnet system consists of a NbTi and a Nb 3Sn section, which provide a magnetic field of 9 T in the active area of the MHD channel. The optimization process, which is based on minimum conductor costs is discussed, and the proposed conductor design is described. Basic solutions for the construction of the magnet, the cryostat an...

  17. The design and fabrication of a reverse Brayton cycle cryocooler system for the high temperature superconductivity cable cooling

    Science.gov (United States)

    Park, Jae Hong; Kwon, Yong Ha; Kim, Young Soo

    2005-01-01

    A high temperature superconductivity cable must be cooled below the nitrogen liquefaction temperature to apply the cable to power generation and transmission systems under superconducting state. To maintain the superconducting state, a reliable cryocooler system is also required. The design and fabrication of a cryocooler system have been performed with a reverse Brayton cycle using neon gas as a refrigerant. The system consists of a compressor, a recuperator, a cold-box, and control valves. The design of the system is made to have 1 kW cooling capacity. The heat loss through multilayer insulators is calculated. Conduction heat loss is about 7 W through valves and access ports and radiation heat loss is about 18 W on the surface of a cryocooler. The design factors are discussed in detail.

  18. Translational and rotational dynamic analysis of a superconducting levitation system

    Science.gov (United States)

    Cansiz, A.; Hull, J. R.; Gundogdu, Ö.

    2005-07-01

    The rotational dynamics of a disc-shaped permanent magnet rotor levitated over a high temperature superconductor was studied experimentally and theoretically. The interaction between the rotor magnet and the superconductor was modelled by assuming the magnet to be a magnetic dipole and the superconductor a diamagnet. In the magnetomechanical analysis of the superconductor part, the frozen image concept was combined with the diamagnetic image, and the damping in the system was neglected. The interaction potential of the system is the combination of magnetic and gravitational potentials. From the dynamical analysis the equations of motion of the permanent magnet were stated as a function of lateral, vertical, tilt, precision and rotating angles. The vibration behaviour and correlation of the vibration of one direction with that of another were determined with a numerical calculation based on the Runge-Kutta method. The various vibrational frequencies identified were vertical, radial, tilt, precession and rotation. The tests performed for experimental verifications were translational and rotational. The permanent magnet was 'spun up' under vacuum conditions to analyse the dynamics of the free 'spin down' behaviour of the permanent magnet.

  19. Operation Tests for SN Transition Superconducting Fault Current Limiter in the Power System Simulator

    Science.gov (United States)

    Kameda, Hideyuki; Torii, Shinji; Kumano, Teruhisa; Sakaki, Hisayoshi; Kubota, Hiroshi; Yasuda, Kenji

    One of important problems to be solved in Japanese trunk transmission systems is the reduction of short circuit capacity. As this countermeasure, double buses are split into two buses in some substations. In recent years, dispersed generators are introduced in lower voltage classes due to the introduction of the electricity deregulation. In such a distribution system as many dispersed generators are introduced, it is a possibility that the fault current becomes beyond the breaking capacity at the occurrence of short circuit. Introduction of superconducting fault current limiters into a power system is very effective as one of the means to solve the above-mentioned problem, and we have studied on the effective introduction method of them and setting method of their parameters. This paper describes the results of the operation tests for SN transition type of a superconducting fault current limiter using 3 phases of FCL modules against various kinds of system faults or inrush current in the Power System Simulator installed at CRIEPI.

  20. Influence of Cu-site substitution on La2Ca1Ba2Cu5Oz superconducting system

    Science.gov (United States)

    Bhalodia, J. A.; Mankadia, S. R.; Dalsaniya, S. M.; Gonal, M. R.

    2012-07-01

    We have prepared a series of La2CaBa2Cu5-xCoxOz; x = 0.0, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0 (La-2125) compounds by the standard solid state reaction method and characterized for their structural, superconducting, magnetic properties and oxygen content through X-ray diffraction, scanning electron microscopy, d. c. resistivity, magnetic susceptibility and iodometric titration respectively. All the compounds crystallize with the tetragonal LaBa2Cu3Oz type structure, space group P4/mmm. Here the effect of higher Co substitution for Cu in the La2CaBa2Cu5-xCoxOz system has been studied. It is observed that only 2 at. % Co substitution for Cu destroys the superconductivity of the sample. For heavily doped samples (with x >= 0.1) are found non-superconducting presumably because of magnetic pair- breaking effect. These samples do not show superconductivity but are of interest for understanding the interplay between superconductivity and magnetism. Possible reasons for destruction of superconductivity are discussed in this communication.

  1. Double-Layer Systems at Zero Magnetic Field

    OpenAIRE

    ~Hanna, C. ~B.; Haas, Dylan; Diaz-Velez, J.C.

    2000-01-01

    We investigate theoretically the effects of intralayer and interlayer exchange in biased double-layer electron and hole systems, in the absence of a magnetic field. We use a variational Hartree-Fock-like approximation to analyze the effects of layer separation, layer density, tunneling, and applied gate voltages on the layer densities and on interlayer phase coherence. In agreement with earlier work, we find that for very small layer separations and low layer densities, an interlayer-correlat...

  2. A small scale remote cooling system for a superconducting cyclotron magnet

    Science.gov (United States)

    Haug, F.; Berkowitz Zamorra, D.; Michels, M.; Gomez Bosch, R.; Schmid, J.; Striebel, A.; Krueger, A.; Diez, M.; Jakob, M.; Keh, M.; Herberger, W.; Oesterle, D.

    2017-02-01

    Through a technology transfer program CERN is involved in the R&D of a compact superconducting cyclotron for future clinical radioisotope production, a project led by the Spanish research institute CIEMAT. For the remote cooling of the LTc superconducting magnet operating at 4.5 K, CERN has designed a small scale refrigeration system, the Cryogenic Supply System (CSS). This refrigeration system consists of a commercial two-stage 1.5 W @ 4.2 K GM cryocooler and a separate forced flow circuit. The forced flow circuit extracts the cooling power of the first and the second stage cold tips, respectively. Both units are installed in a common vacuum vessel and, at the final configuration, a low loss transfer line will provide the link to the magnet cryostat for the cooling of the thermal shield with helium at 40 K and the two superconducting coils with two-phase helium at 4.5 K. Currently the CSS is in the testing phase at CERN in stand-alone mode without the magnet and the transfer line. We have added a “validation unit” housed in the vacuum vessel of the CSS representing the thermo-hydraulic part of the cyclotron magnet. It is equipped with electrical heaters which allow the simulation of the thermal loads of the magnet cryostat. A cooling power of 1.4 W at 4.5 K and 25 W at the thermal shield temperature level has been measured. The data produced confirm the design principle of the CSS which could be validated.

  3. Electronic structure and superconductivity of FeSe-related superconductors.

    Science.gov (United States)

    Liu, Xu; Zhao, Lin; He, Shaolong; He, Junfeng; Liu, Defa; Mou, Daixiang; Shen, Bing; Hu, Yong; Huang, Jianwei; Zhou, X J

    2015-05-13

    FeSe superconductors and their related systems have attracted much attention in the study of iron-based superconductors owing to their simple crystal structure and peculiar electronic and physical properties. The bulk FeSe superconductor has a superconducting transition temperature (Tc) of ~8 K and it can be dramatically enhanced to 37 K at high pressure. On the other hand, its cousin system, FeTe, possesses a unique antiferromagnetic ground state but is non-superconducting. Substitution of Se with Te in the FeSe superconductor results in an enhancement of Tc up to 14.5 K and superconductivity can persist over a large composition range in the Fe(Se,Te) system. Intercalation of the FeSe superconductor leads to the discovery of the AxFe2-ySe2 (A = K, Cs and Tl) system that exhibits a Tc higher than 30 K and a unique electronic structure of the superconducting phase. A recent report of possible high temperature superconductivity in single-layer FeSe/SrTiO3 films with a Tc above 65 K has generated much excitement in the community. This pioneering work opens a door for interface superconductivity to explore for high Tc superconductors. The distinct electronic structure and superconducting gap, layer-dependent behavior and insulator-superconductor transition of the FeSe/SrTiO3 films provide critical information in understanding the superconductivity mechanism of iron-based superconductors. In this paper, we present a brief review of the investigation of the electronic structure and superconductivity of the FeSe superconductor and related systems, with a particular focus on the FeSe films.

  4. An FPGA-based quench detection and protection system for superconducting accelerator magnets

    Energy Technology Data Exchange (ETDEWEB)

    Carcagno, R.H.; Feher, S.; Lamm, M.; Makulski, A.; Nehring, R.; Orris, D.F.; Pischalnikov, Y.; Tartaglia, M.; /Fermilab

    2005-05-01

    A new quench detection and protection system for superconducting accelerator magnets was developed for the Fermilab's Magnet Test Facility (MTF). This system is based on a Field-Programmable Gate Array (FPGA) module, and it is made of mostly commercially available, integrated hardware and software components. It provides all the functions of our existing VME-based quench detection and protection system, but in addition the new system is easily scalable to protect multiple magnets powered independently and a more powerful user interface and analysis tools. The new system has been used successfully for testing LHC Interaction Region Quadrupoles correctors and High Field Magnet HFDM04. In this paper we describe the system and present results.

  5. The Study about Application of Transportation System of the Superconductive Electromagnetism Propulsion in the Harbor

    OpenAIRE

    涌井, 和也; 荻原, 宏康

    1999-01-01

    Electromagnetic propulsion is promising technique for a linear motor car, a ship and a space ship, in future. W. A Rice developed an electromagnetic pump for the liquid metal transfer. There are two electromagnetic propulsions : a superconductive electricity propulsion and a superconductive electromagnetic propulsion. A superconductive electricity propulsion ship uses a screw driven by a superconducting motor. This technique has merits of excellent navigation-ability, and the free degree of t...

  6. Eddy Current Analysis and Optimization for Superconducting Magnetic Bearing of Flywheel Energy Storage System

    Science.gov (United States)

    Arai, Yuuki; Yamashita, Tomohisa; Hasegawa, Hitoshi; Matsuoka, Taro; Kaimori, Hiroyuki; Ishihara, Terumasa

    Levitation and guidance force is electromagnetic generated between a superconducting coil and zero field cooled bulk superconductors used in our flywheel energy storage system (FESS). Because the magnetic field depends on the configuration of the coil and the bulks, the eccentricity and the vibration of a rotor cause fluctuation in the magnetic field which induces eddy current and consequent Joule heat on electric conductors such as cooling plates. Heat generation in the cryogenic region critically reduces the efficiency of the FESS. In this paper, we will report the result of the electromagnetic analysis of the SMB and propose an optimal divided cooling plate for reducing the eddy current and Joule heat.

  7. New method for fabrication of superconducting pipes in the Bi-Sr-Ca-Cu-O system

    Science.gov (United States)

    Abe, Yoshihiro; Hosono, Hideo; Lee, Won-Hyuk; Hosoe, Masahiro; Nakamura, Koichi; Inukai, Eikichi

    1993-01-01

    Pipes or hollow cylinders in the Bi-Sr-Ca-Cu-O system were found to be fabricated easily by inspiring or sucking the low viscosity melt into a cold silica glass tube. The outer part of the cast rod-like melt solidified, and the inner hot low-viscosity part of the rod melt was expired. The precursor pipes were reheated at 800 C for 50 h in air, resulting in the formation of superconducting (Tc = 87 K) pipes which were of smooth surface without machining and high bending strength (100-150 MPa).

  8. An Examination of the Effect of Boundary Layer Ingestion on Turboelectric Distributed Propulsion Systems

    Science.gov (United States)

    Felder, James L.; Kim, Huyn Dae; Brown, Gerald V.; Chu, Julio

    2011-01-01

    A Turboelectric Distributed Propulsion (TeDP) system differs from other propulsion systems by the use of electrical power to transmit power from the turbine to the fan. Electrical power can be efficiently transmitted over longer distances and with complex topologies. Also the use of power inverters allows the generator and motors speeds to be independent of one another. This decoupling allows the aircraft designer to place the core engines and the fans in locations most advantageous for each. The result can be very different installation environments for the different devices. Thus the installation effects on this system can be quite different than conventional turbofans where the fan and core both see the same installed environments. This paper examines a propulsion system consisting of two superconducting generators, each driven by a turboshaft engine located so that their inlets ingest freestream air, superconducting electrical transmission lines, and an array of superconducting motor driven fan positioned across the upper/rear fuselage area of a hybrid wing body aircraft in a continuous nacelle that ingests all of the upper fuselage boundary layer. The effect of ingesting the boundary layer on the design of the system with a range of design pressure ratios is examined. Also the impact of ingesting the boundary layer on off-design performance is examined. The results show that when examining different design fan pressure ratios it is important to recalculate of the boundary layer mass-average Pt and MN up the height for each inlet height during convergence of the design point for each fan design pressure ratio examined. Correct estimation of off-design performance is dependent on the height of the column of air measured from the aircraft surface immediately prior to any external diffusion that will flow through the fan propulsors. The mass-averaged Pt and MN calculated for this column of air determine the Pt and MN seen by the propulsor inlet. Since the height

  9. Study of some superconducting and magnetic materials on high T sub c oxide superconductors

    Science.gov (United States)

    Wu, M. K.

    1987-01-01

    On the basis of existing data it appears that the high-temperature superconductivity above 77 K reported here, occurs only in compound systems consisting of a phase other than the K2NiF4 phase. A narrow superconducting transition was obtained with T sub c0 = 98 K and T sub c1 = 94 K in Y-Ba-Cu-O (YBCO). Preliminary results indicate that YBCO is rather different from the layered LaBCO, LaSCO, and LaCCO. While electron-photon interaction cannot be absent from this compound system, nonconventional enhanced superconducting interactions due to interfaces, Resonating Valence Bond (RVB) states, or even a superconducting state beyond the BCS framework, may be required to account for the high T sub c in YBCO. It is believed that study of the possible subtle correlation between magnetism and superconductivity will definitely provide important insight into the superconducting mechanism in YBCO and other oxides.

  10. A fiber-optic strain measurement and quench localization system for use in superconducting accelerator dipole magnets

    NARCIS (Netherlands)

    Oort, van Johannes M.; Scanlan, Ronald M.; Kate, ten Herman H.J.

    1995-01-01

    A novel fiber-optic measurement system for superconducting accelerator magnets is described. The principal component is an extrinsic Fabry-Perot interferometer to determine localized strain and stress in coil windings. The system can be used either as a sensitive relative strain measurement system o

  11. Fundamentals of Superconducting Nanoelectronics

    CERN Document Server

    Sidorenko, Anatolie

    2011-01-01

    This book demonstrates how the new phenomena in superconductivity on the nanometer scale (FFLO state, triplet superconductivity, Crossed Andreev Reflection, synchronized generation etc.) serve as the basis for the invention and development of novel nanoelectronic devices and systems. It demonstrates how rather complex ideas and theoretical models, like odd-pairing, non-uniform superconducting state, pi-shift etc., adequately describe the processes in real superconducting nanostructues and novel devices based on them. The book is useful for a broad audience of readers, researchers, engineers, P

  12. Superconductive imaging surface magnetometer

    Science.gov (United States)

    Overton, Jr., William C.; van Hulsteyn, David B.; Flynn, Edward R.

    1991-01-01

    An improved pick-up coil system for use with Superconducting Quantum Interference Device gradiometers and magnetometers involving the use of superconducting plates near conventional pick-up coil arrangements to provide imaging of nearby dipole sources and to deflect environmental magnetic noise away from the pick-up coils. This allows the practice of gradiometry and magnetometry in magnetically unshielded environments. One embodiment uses a hemispherically shaped superconducting plate with interior pick-up coils, allowing brain wave measurements to be made on human patients. another embodiment using flat superconducting plates could be used in non-destructive evaluation of materials.

  13. A new muon-pion collection and transport system design using superconducting solenoids based on CSNS

    Science.gov (United States)

    Xiao, Ran; Liu, Yan-Fen; Xu, Wen-Zhen; Ni, Xiao-Jie; Pan, Zi-Wen; Ye, Bang-Jiao

    2016-05-01

    A new muon and pion capture system is proposed for the China Spallation Neutron Source (CSNS), currently under construction. Using about 4% of the pulsed proton beam (1.6 GeV, 4 kW and 1 Hz) of CSNS to bombard a cylindrical graphite target inside a superconducting solenoid, both surface muons and pions can be acquired. The acceptance of this novel capture system - a graphite target wrapped up by a superconducting solenoid - is larger than the normal muon beam lines using quadrupoles at one side of the separated muon target. The muon and pion production at different capture magnetic fields was calculated using Geant4. The bending angle of the capture solenoid with respect to the proton beam was also optimized in simulation to achieve more muons and pions. Based on the layout of the muon experimental area reserved at the CSNS project, a preliminary muon beam line was designed with multi-purpose muon spin rotation areas (surface, decay and low-energy muons). Finally, high-flux surface muons (108/s) and decay muons (109/s) simulated by G4beamline will be available at the end of the decay solenoid based on the first phase of CSNS. This collection and transport system will be a very effective beam line at a proton current of 2.5 μA. Supported by National Natural Science Foundation of China (11527811)

  14. Optimization of a superconducting linear levitation system using a soft ferromagnet

    Energy Technology Data Exchange (ETDEWEB)

    Agramunt-Puig, Sebastia; Del-Valle, Nuria; Navau, Carles, E-mail: carles.navau@uab.cat; Sanchez, Alvaro

    2013-04-15

    Highlights: ► Study of the levitation of a superconducting bar over different magnetic guideways. ► A soft ferromagnet within permanent magnets improves levitation stability. ► We study the best geometry for large levitation force with full stability. -- Abstract: The use of guideways that combine permanent magnets and soft ferromagnetic materials is a common practice in magnetic levitation transport systems (maglevs) with bulk high-temperature superconductors. Theoretical tools to simulate in a realistic way both the behavior of all elements (permanent magnets, soft ferromagnet and superconductor) and their mutual effects are helpful to optimize the designs of real systems. Here we present a systematic study of the levitation of a maglev with translational symmetry consisting of a superconducting bar and a guideway with two identic permanent magnets and a soft ferromagnetic material between them. The system is simulated with a numerical model based on the energy minimization method that allows to analyze the mutual interaction of the superconductor, assumed to be in the critical state, and a soft ferromagnet with infinite susceptibility. Results indicate that introducing a soft ferromagnet within the permanent magnets not only increases the levitation force but also improves the stability. Besides, an estimation of the relative sizes and shapes of the soft ferromagnet, permanent magnets and the superconductor in order to obtain large levitation force with full stability is provided.

  15. Hamiltonian Dynamics and Adiabatic Invariants for Time-Dependent Superconducting Qubit-Oscillators and Resonators in Quantum Computing Systems

    Directory of Open Access Journals (Sweden)

    Jeong Ryeol Choi

    2015-01-01

    Full Text Available An adiabatic invariant, which is a conserved quantity, is useful for studying quantum and classical properties of dynamical systems. Adiabatic invariants for time-dependent superconducting qubit-oscillator systems and resonators are investigated using the Liouville-von Neumann equation. At first, we derive an invariant for a simple superconducting qubit-oscillator through the introduction of its reduced Hamiltonian. Afterwards, an adiabatic invariant for a nanomechanical resonator linearly interfaced with a superconducting circuit, via a coupling with a time-dependent strength, is evaluated using the technique of unitary transformation. The accuracy of conservation for such invariant quantities is represented in detail. Based on the results of our developments in this paper, perturbation theory is applicable to the research of quantum characteristics of more complicated qubit systems that are described by a time-dependent Hamiltonian involving nonlinear terms.

  16. Development of a Peltier Current Lead for the 200-m-Class Superconducting Direct Current Transmission and Distribution System

    Science.gov (United States)

    Kawahara, Toshio; Emoto, Masahiko; Watanabe, Hirofumi; Hamabe, Makoto; Yamaguchi, Sataro; Hikichi, Yasuo; Minowa, Masahiro

    2013-07-01

    Reducing cryogenic heat leaks is critical for superconducting applications. Reduction of heat leak at the terminals is essential for uses with short-length applications, where cryogenic losses at the terminals dominate. We are developing a 200-m-class superconducting direct current (DC) transmission and distribution system (CASER-2), and have used a Peltier current lead (PCL) for heat insulation at the terminals. The PCL consists of thermoelectric elements and copper leads, which enhance the performance of superconducting systems. As DC flows through the current lead, thermoelectric elements on opposite terminations of a superconducting line can be used to decrease the heat ingress to the cryogenic environment ( n-type on one end, p-type on the opposite end). During the current feeding and cooling test, a large temperature difference was observed across thermoelectric elements in the PCL. This demonstrates that we have successfully insulated the heat leak at the current lead. During the fourth cooling test, we established a new PCL design with p-type elements at terminal B, and then compared the performance of the terminals. Several improvements were implemented, including balancing the resistances of the PCL to enhance the stability of the superconducting systems.

  17. Design of A Conduction-cooled 4T Superconducting Racetrack for Multi-field Coupling Measurement System

    CERN Document Server

    Chen, Yuquan; Wu, Wei; Guan, Mingzhi; Wu, Beimin; Mei, Enming; Xin, Canjie

    2015-01-01

    A conduction-cooled superconducting magnet producing a transverse field of 4 Tesla has been designed for the new generation multi-field coupling measurement system, which was used to study the mechanical behavior of superconducting samples at cryogenic temperature and intense magnetic fields. Considering experimental costs and coordinating with system of strain measurements by contactless signals (nonlinear CCD optics system), the racetrack type for the coil winding was chosen in our design, and a compact cryostat with a two-stage GM cryocooler was designed and manufactured for the superconducting magnet. The magnet was composed of a pair of flat racetrack coils wound by NbTi/Cu superconducting composite wires, a copper and stainless steel combinational form and two Bi2Sr2CaCu2Oy superconducting current leads. All the coils were connected in series and can be powered with a single power supply. The maximum central magnetic field is 4 T. In order to support the high stress and uniform thermal distribution in t...

  18. An improved phase-control system for superconducting low-velocity accelerating structures

    Energy Technology Data Exchange (ETDEWEB)

    Bogaty, J.M.; Clifft, B.E.; Shepard, K.W.; Zinkann, G.P.

    1989-01-01

    Microphonic fluctuations in the rf eigenfrequency of superconducting (SC) slow-wave structures must be compensated by a fast-tuning system in order to control the rf phase. The tuning system must handle a reactive power proportional to the product of the tuning range and the rf energy content of the resonant cavity. The accelerating field level of many of the SC cavities forming the ATLAS linac has been limited by the rf power capacity of the presently used PIN-diode based fast-tuner. A new system has been developed, utilizing PIN diodes operating immersed in liquid nitrogen, with the diodes controlled by a high-voltage VMOS FET driver. The system has operated at reactive power levels above 20 KVA, a factor of four increase over an earlier design. 7 refs., 2 figs.

  19. New, Coupling Loss Induced, Quench Protection System for Superconducting Accelerator Magnets

    CERN Document Server

    Ravaioli, E; Giloux, C; Kirby, G; ten Kate, H H J; Verweij, A P

    2014-01-01

    Email Print Request Permissions Save to Project A new and promising method for the protection of superconducting high-field magnets is developed and tested on the so-called MQXC quadrupole magnet at the CERN magnet test facility. The method relies on a capacitive discharge system inducing, during a few periods, an oscillation of the transport current in the superconducting cable of the coil. The corresponding fast change of the local magnetic field introduces a high coupling-current loss, which, in turn, causes a fast quench of a large fraction of the coil due to enhanced temperature. Results of measured discharges at various levels of transport current are presented and compared to discharges by quenching the coils using conventional quench heaters and an energy extraction system. The hot-spot temperature in the quenching coil is deduced from the coil voltage and current. The results are compared to simulations carried out using a lumped-element dynamic electro-thermal model of the so-called MQX...

  20. A new muon-pion collection and transport system design using superconducting solenoids based on CSNS

    CERN Document Server

    Xiao, Ran; Xu, Wenzhen; Ni, Xiaojie; Pan, Ziwen; Ye, Bangjiao

    2015-01-01

    A new muon and pion capture system was proposed at the under-conduction China Spallation Neutron Source (CSNS). Using about 4 % of the pulsed proton beam (1.6 GeV, 4 kW and 1 Hz) of CSNS to bombard a cylindrical graphite target inside a superconducting solenoid both surface muons and pions can be acquired. The acceptance of this novel capture system - a graphite target wrapped up by a superconducting solenoid - is larger than the normal muon beam lines using quadrupoles at one side of the separated muon target. The muon and pion production at different capture magnetic fields was calculated by Geant4, the bending angle of the capture solenoid with respect to the proton beam was also optimized in simulation to achieve more muons and pions and to reduce proton dosages to following beam elements. According to the layout of the muon experimental area reserved at the CSNS project, a preliminary muon beam line was designed with multi-propose muon spin rotation areas(surface, decay and low-energy muons). Finally, hi...

  1. ORNL Superconducting Technology Program for electric power systems. Annual report for FY 1995

    Energy Technology Data Exchange (ETDEWEB)

    Hawsey, R.A. [comp.; Turner, J.W. [ed.

    1996-05-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the U.S. Department of Energy`s Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by U.S. industry for commercial development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and systems development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from information prepared for the FY 1995 Annual Program Review held August 1-2, 1995. This ORNL program is highly leveraged by the staff and other resources of U.S. industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to cooperative projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with U.S. industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire-using systems.

  2. Angular Dependence of Lateral and Levitation Forces in Asymmetric Small Magnet/Superconducting Systems

    Institute of Scientific and Technical Information of China (English)

    H. M. Al-Khateeb; M. K. Alqadi; F. Y. Alzoubi; N. Y. Ayoub

    2007-01-01

    The dipole-dipole interaction model is used to calculate the angular dependence of lateral and levitation forces on a small permanent magnet and a cylindrical superconductor in the Meissner state lying laterally offthe symmetric axis of the cylinder. Under the assumption that the lateral displacement of the magnet is small compared with the physical dimensions of the system, we obtain analytical expressions for the lateral and levitation forces as functions of geometrical parameters of the superconductor as well as the height, the lateral displacement and the orientation of magnetic moment of the magnet. The effect of thickness and radius of the superconductor on the levitation force is similar to that for a symmetric magnet/superconducting cylinder system, but within the range of lateral displacement. The splitting in the levitation force increases with the increasing angle of orientation of the magnetic moment of the magnet. For a given lateral displacement of the magnet, the lateral force vanishes when the magnetic moment is perpendicular to the surface of the superconductor and has a maximum value when the moment is parallel to the surface. For a given orientation of the magnetic moment, the lateral force has a linear relationship with the lateral displacement. The stability of the magnet above the superconducting cylinder is discussed in detail.

  3. Superconducting resonator and Rydberg atom hybrid system in the strong coupling regime

    Science.gov (United States)

    Yu, Deshui; Landra, Alessandro; Valado, María Martínez; Hufnagel, Christoph; Kwek, Leong Chuan; Amico, Luigi; Dumke, Rainer

    2016-12-01

    We propose a promising hybrid quantum system, where a highly excited atom strongly interacts with a superconducting L C oscillator via the electric field of capacitor. An external electrostatic field is applied to tune the energy spectrum of the atom. The atomic qubit is implemented by two eigenstates near an avoided-level crossing in the dc Stark map of a Rydberg atom. Varying the electrostatic field brings the atomic-qubit transition on or off resonance with respect to the microwave resonator, leading to a strong atom-resonator coupling with an extremely large cooperativity. Like the nonlinearity induced by Josephson junctions in superconducting circuits, the large atom-resonator interface disturbs the harmonic potential of the resonator, resulting in an artificial two-level particle. Different universal two-qubit logic gates can also be performed on our hybrid system within the space where an atomic qubit couples to a single photon with an interaction strength much larger than any relaxation rates, opening the door to the cavity-mediated state transmission.

  4. The YBCO-PbS high-temperature superconducting system. Further investigations. [YBaCuO-PbS

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, A.K. (Dept. of Applied Physics, GND Univ., Amritsar (India)); Sharma, T.P. (Institute of Advanced Studies, Meerut (India). Dept. of Physics); Shahi, K. (Advanced Centre for Materials Science, IIT, Kanpur (India))

    1993-12-16

    Further investigations on the recently reported YBCO-PbS HTS system are reported. The system is found to have conducting BaPbO[sub 3] as a second phase, which fills the intergrain vacant spaces forming a composite-like microstructure. Thermoanalytical investigations revealed that PbS addition enhances the synthesis of the Y-123-phase and lowers the temperature of partial melting of this phase, which is essential to further reduce the voids. The metallurgical reaction occurring during sintering is also determined and investigated. It is shown that these composite superconducting materials have better normal-state, superconducting, and mechanical properties. (orig.)

  5. Coordinated Control of Superconducting Fault Current Limiter and Superconducting Magnetic Energy Storage for Transient Performance Enhancement of Grid-Connected Photovoltaic Generation System

    Directory of Open Access Journals (Sweden)

    Lei Chen

    2017-01-01

    Full Text Available In regard to the rapid development of renewable energy sources, more and more photovoltaic (PV generation systems have been connected to main power networks, and it is critical to enhance their transient performance under short-circuit faults conditions. This paper proposes and studies the coordinated control of a flux-coupling-type superconducting fault current limiter (SFCL and a superconducting magnetic energy storage (SMES, to improve the fault ride through (FRT capability and smooth the power fluctuation of a grid-connected PV generation system. Theoretical analyses of the device structure, operating principle and control strategy are conducted, and a detailed simulation model of 100 kW class PV generation system is built in MATLAB/SIMULINK. During the simulations of the symmetrical and asymmetrical faults, the maximum power point tracking (MPPT control is disabled, and four different cases including without auxiliary, with SFCL, with SMES, and with SFCL-SMES, are compared. From the demonstrated results, the combination of without MPPT and with SFCL-SMES can more efficiently improve the point of common coupling (PCC voltage sag, inhibit the DC-link overvoltage and alleviate the power fluctuation. Finally, a preliminary parameter optimization method is suggested for the SFCL and the SMES, and it is helpful to promote their future application in the real PV projects.

  6. Beam Halo on the LHC TCDQ Diluter System and Thermal Load on the Downstream Superconducting Magnets

    CERN Document Server

    Goddard, B; Presland, A; Redaelli, S; Robert-Démolaize, G; Sarchiapone, L; Weiler, T; Weterings, W

    2006-01-01

    The moveable single-jawed graphite TCDQ diluter must be positioned very close to the circulating LHC beam in order to prevent damage to downstream components in the event of an unsynchronised beam abort. A two-jawed graphite TCS.IR6 collimator forms part of the TCDQ system. The requirement to place the jaws close to the beam means that the system can intercept a substantial beam halo load. Initial investigations indicated a worryingly high heat load on the Q4 coils. This paper presents the updated load cases, shielding and simulation geometry, and the results of simulations of the energy deposition in the TCDQ system and in the downstream superconducting Q4 magnet. The implications for the operation of the LHC are discussed.

  7. Advanced measurement systems based on digital processing techniques for superconducting LHC magnets

    CERN Document Server

    Masi, Alessandro; Cennamo, Felice

    The Large Hadron Collider (LHC), a particle accelerator aimed at exploring deeper into matter than ever before, is currently being constructed at CERN. Beam optics of the LHC, requires stringent control of the field quality of about 8400 superconducting magnets, including 1232 main dipoles and 360 main quadrupoles to assure the correct machine operation. The measurement challenges are various: accuracy on the field strength measurement up to 50 ppm, harmonics in the ppm range, measurement equipment robustness, low measurement times to characterize fast field phenomena. New magnetic measurement systems, principally based on analog solutions, have been developed at CERN to achieve these goals. This work proposes the introduction of digital technologies to improve measurement performance of three systems, aimed at different measurement target and characterized by different accuracy levels. The high accuracy measurement systems, based on rotating coils, exhibit high performance in static magnetic field. With vary...

  8. Radial stiffness improvement of a flywheel system using multi-surface superconducting levitation

    Science.gov (United States)

    Basaran, Sinan; Sivrioglu, Selim

    2017-03-01

    The goal of this research study is the maximization of the levitation force in a flywheel system by the use of more than one permanent magnet with a single ring-shaped HTS material. An analytical model for the radial stiffness of the ring HTS-PM is derived using the frozen image approach. The experimental works are carried out for different polarizations of the permanent magnets, and radial stiffness values are obtained from the radial force measurements. The rotational test of the flywheel system is also realized for different cases. Finally, natural frequencies of the flywheel superconducting magnetic bearing system are experimentally obtained for different combinations of the permanent magnets using a frequency analyzer.

  9. Gutzwiller wave function for finite systems: superconductivity in the Hubbard model

    Science.gov (United States)

    Tomski, Andrzej; Kaczmarczyk, Jan

    2016-05-01

    We study the superconducting phase of the Hubbard model using the Gutzwiller variational wave function (GWF) and the recently proposed diagrammatic expansion technique (DE-GWF). The DE-GWF method works on the level of the full GWF and in the thermodynamic limit. Here, we consider a finite-size system to study the accuracy of the results as a function of the system size (which is practically unrestricted). We show that the finite-size scaling used, e.g. in the variational Monte Carlo method can lead to significant, uncontrolled errors. The presented research is the first step towards applying the DE-GWF method in studies of inhomogeneous situations, including systems with impurities, defects, inhomogeneous phases, or disorder.

  10. System Software Abstraction Layer - much more than Operating System Abstraction Layer

    Directory of Open Access Journals (Sweden)

    Sunita Awasthi Singh

    2013-03-01

    Full Text Available Current and future aircraft systems require real-time embedded software with greater flexibility compared to what was previously available due to the continuous advancements in the technology leading to large and complex systems. Portability of software as one of the aspects of this flexibility is a major concern in application development for avionics domain for fast development and integration of systems. Abstractions of the hardware platform which have been already introduced by the operating system community allow the software modules to be reused on different hardware and with different physical resources. Now operating system community has come up with an abstraction layer called operating system abstraction layer (OSAL which along with the hardware abstraction unifies the OS architecture too. It provides a common set of primitives independent of the underlying operating system and its particular architecture. Factors such as reliability, scalability and determinism of any application largely depend on the design and architecture of the application. This is the most important and critical factor of real time systems such as mission computers of avionics systems, missile control system or control computers of space shuttle. It demands developer to perform feasibility of different software architecture to select the best alternative. Authors’ analysis shows that to make any real time application more secure, scalable, deterministic, and highly portable, OSAL has to be extended to more than just operating system abstraction. This new view of OSAL will be called as system software abstraction layer (SSAL. In this paper, authors attempt to highlight the efficiency of SSAL as well as detailed description of its main features and design considerations. Authors have implemented the SSAL on top of two well known OS (WinCE and Vxworks and performed extensive evaluations, which shows that it effectively reduces portability efforts while achieving

  11. Evidence for Coexistence of Bulk Superconductivity and Itinerant Antiferromagnetism in the Heavy Fermion System CeCo(In(1-x)Cdx)5.

    Science.gov (United States)

    Howald, Ludovic; Stilp, Evelyn; de Réotier, Pierre Dalmas; Yaouanc, Alain; Raymond, Stéphane; Piamonteze, Cinthia; Lapertot, Gérard; Baines, Christopher; Keller, Hugo

    2015-07-30

    In the generic phase diagram of heavy fermion systems, tuning an external parameter such as hydrostatic or chemical pressure modifies the superconducting transition temperature. The superconducting phase forms a dome in the temperature-tuning parameter phase diagram, which is associated with a maximum of the superconducting pairing interaction. Proximity to antiferromagnetism suggests a relation between the disappearance of antiferromagnetic order and superconductivity. We combine muon spin rotation, neutron scattering, and x-ray absorption spectroscopy techniques to gain access to the magnetic and electronic structure of CeCo(In(1-x)Cdx)5 at different time scales. Different magnetic structures are obtained that indicate a magnetic order of itinerant character, coexisting with bulk superconductivity. The suppression of the antiferromagnetic order appears to be driven by a modification of the bandwidth/carrier concentration, implying that the electronic structure and consequently the interplay of superconductivity and magnetism is strongly affected by hydrostatic and chemical pressure.

  12. Design and development progress of a LLRF control system for a 500 MHz superconducting cavity

    Science.gov (United States)

    Lee, Y. S.; Kim, H. W.; Song, H. S.; Lee, J. H.; Park, K. H.; Yu, I. H.; Chai, J. S.

    2012-07-01

    The LLRF (low-level radio-frequency) control system which regulates the amplitude and the phase of the accelerating voltage inside a RF cavity is essential to ensure the stable operation of charged particle accelerators. Recent advances in digital signal processors and data acquisition systems have allowed the LLRF control system to be implemented in digitally and have made it possible to meet the higher demands associated with the performance of LLRF control systems, such as stability, accuracy, etc. For this reason, many accelerator laboratories have completed or are completing the developments of digital LLRF control systems. The digital LLRF control system has advantages related with flexibility and fast reconfiguration. This paper describes the design of the FPGA (field programmable gate array) based LLRF control system and the status of development for this system. The proposed LLRF control system includes an analog front-end, a digital board (ADC (analog to digital converter), DAC (digital to analog converter), FPGA, etc.) and a RF & clock generation system. The control algorithms will be implemented by using the VHDL (VHSIC (very high speed integrated circuits) hardware description language), and the EPICS (experiment physics and industrial control system) will be ported to the host computer for the communication. In addition, the purpose of this system is to control a 500 MHz RF cavity, so the system will be applied to the superconducting cavity to be installed in the PLS storage ring, and its performance will be tested.

  13. Superconducting YBa2Cu3O7 films on Si and GaAs with conducting indium tin oxide buffer layers

    Science.gov (United States)

    James, J. H.; Kellett, B. J.; Gauzzi, A.; Dwir, B.; Pavuna, D.

    1991-03-01

    Superconducting YBa2Cu3O7-delta (YBCO) thin films have been grown in situ by ion beam sputtering on Si and GaAs substrates with intermediate, conducting Indium Tin Oxide (ITO) buffer layers. Uniform, textured YBCO films on ITO exhibit Tc onset at 92K and Tc0 at 68K and 60K on Si and GaAs substrates respectively, the latter value is the highest Tc reported on GaAs. YBCO/ITO films exhibit metallic resistivity behavior. In situ YBCO films on SrTiO3 show Tc onset = 92K and Tc0 = 90.5K, transition widths are less than 1K. A simple optical bolometer has been constructed from YBCO films on SrTiO3. Tunnelling measurements have also been carried out using the first YBCO-Pb window-type tunnel junctions.

  14. Effect of the laser sputtering parameters on the orientation of a cerium oxide buffer layer on sapphire and the properties of a YBa2Cu3Ox superconducting film

    DEFF Research Database (Denmark)

    Mozhaev, P. B.; Ovsyannikov, G. A.; Skov, Johannes

    1999-01-01

    The effect of the laser sputtering parameters on the crystal properties of CeO2 buffer layers grown on a (1 (1) under bar 02) sapphire substrate and on the properties of superconducting YBa2Cu3Ox thin films are investigated. It is shown that (100) and (111) CeO2 growth is observed, depending...

  15. A cryogenic phase locking loop system for a superconducting integrated receiver

    Science.gov (United States)

    Khudchenko, A. V.; Koshelets, V. P.; Dmitriev, P. N.; Ermakov, A. B.; Yagoubov, P. A.; Pylypenko, O. M.

    2009-08-01

    The authors present a new cryogenic device, an ultrawideband cryogenic phase locking loop system (CPLL). The CPLL was developed for phase locking of a flux-flow oscillator (FFO) in a superconducting integrated receiver (SIR) but can be used for any cryogenic terahertz oscillator. The key element of the CPLL is the cryogenic phase detector (CPD), a recently proposed new superconducting element. The CPD is an innovative implementation of a superconductor-insulator-superconductor tunnel junction. All components of the CPLL reside inside a cryostat at 4.2 K, with the loop length of cables 50 cm and the total loop delay 4.5 ns. So small a delay results in a CPLL synchronization bandwidth as wide as 40 MHz and allows phase locking of more than 60% of the power emitted by the FFO, even for FFO linewidths of about 11 MHz. This percentage of phase locked power is three times that achieved with conventional room temperature PLLs. Such an improvement enables reducing the FFO phase noise and extending the SIR operation range.

  16. ORNL Superconducting Technology Program for electric power systems. Annual report for FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    Koncinski, W.S. [ed.; Hawsey, R.A. [comp.

    1997-05-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy`s Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by US industry for commercial development of electric power applications of high temperature superconductivity. The two major elements of this program are wire development and applications development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from recent open literature publications, presentations, and information prepared for the FY 1996 Annual Program Review held July 31 and August 1, 1996. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to cooperative projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with US industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high temperature superconductor wire and wire-using systems.

  17. Non-Fermi liquid picture and superconductivity in heavy fermion systems

    Energy Technology Data Exchange (ETDEWEB)

    Sykora, Steffen [IFW Dresden, D- 01171 Dresden (Germany); Becker, Klaus W. [Department of Physics, TU Dresden, D-01069 Dresden (Germany)

    2013-07-01

    We study the S = 1/2 Kondo lattice model which is widely used to describe heavy fermion behavior. In conventional treatments of the model a hybridization of conduction and localized f electrons is introduced by decoupling the Kondo interaction. However, such an approximation has the detrimental effect that a breaking of a local gauge symmetry is imposed which implicates that the local f occupation n{sub i}{sup f} is no longer conserved. To avoid such an artifact, we treat the model in an alternative approach based on the Projective Renormalization Method (PRM). Thereby, within the conduction electron spectral function we identify the lattice Kondo resonance as an almost flat incoherent excitation near the Fermi surface which is composed of conduction electron creation operators combined with localized spin fluctuations. This leads to a new concept of the Kondo resonance without having to resort to a symmetry breaking and Fermi liquid theory. Based on this new picture we develop a microscopic theory for superconductivity in heavy fermion systems. Thereby we study the momentum-dependence of the superconducting order parameter for singlet as well as triplet pairing. We show that in particular the triplet pairing components are strongly affected by the incoherent excitations found to be responsible for the Kondo resonance.

  18. ORNL Superconducting Technology Program for Electric Power Systems--Annual Report for FY 2001

    Energy Technology Data Exchange (ETDEWEB)

    Hawsey, RA

    2002-02-18

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy's Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by US industry for development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and applications development. A new part of the wire research effort was the Accelerated Coated Conductor Initiative. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from recent open literature publications, presentations, and information prepared for the FY 2001 Annual Program Review held August 1-3, 2001. Aspects of ORNL's work that were presented at the International Cryogenic Materials Conference/Cryogenic Engineering Conference (July 2001) are included in this report as well. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. Interlaboratory teams are also in place on a number of industry-driven projects. Working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with US industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire-using systems.

  19. Enhancing the design of a superconducting coil for magnetic energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Indira, Gomathinayagam, E-mail: gindu80@gmail.com [EEE Department, Prince Shri Venkateshwara Padmavathy Engineering College, Chennai (India); UmaMaheswaraRao, Theru, E-mail: umesh.theru@gmail.com [Divison of Power Engineering and Management, Anna University, Chennai (India); Chandramohan, Sankaralingam, E-mail: cdramo@gmail.com [Divison of Power Engineering and Management, Anna University, Chennai (India)

    2015-01-15

    Highlights: • High magnetic flux density of SMES coil to reduce the size. • YBCO Tapes for the construction of HTS magnets. • Relation between energy storage and length of the coil wound by various materials. • Design with a certain length of second-generation HTS. - Abstract: Study and analysis of a coil for Superconducting Magnetic Energy Storage (SMES) system is presented in this paper. Generally, high magnetic flux density is adapted in the design of superconducting coil of SMES to reduce the size of the coil and to increase its energy density. With high magnetic flux density, critical current density of the coil is degraded and so the coil is wound with High Temperature Superconductors (HTS) made of different materials. A comparative study is made to emphasize the relationship between the energy storage and length of the coil wound by Bi2223, SF12100, SCS12100 and YBCO tapes. Recently for the construction of HTS magnets, YBCO tapes have been used. Simulation models for various designs have been developed to analyze the magnetic field distribution for the optimum design of energy storage. The design which gives the maximum stored energy in the coil has been used with a certain length of second-generation HTS. The performance analysis and the results of comparative study are done.

  20. ORNL Superconducting Technology Program for Electric Energy Systems. Annual report for FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    Hawsey, R.A. [comp.

    1993-02-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy`s (DOE`s) Office of Conservation and Renewable Energy to develop the technology base needed by US industry for commercial development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and systems development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from information prepared for the FY 1992 Peer Review of Projects, conducted by DOE`s Office of Program Analysis, Office of Energy Research. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer to US industry. Working together, the collaborative teams are making tremendous progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire products.

  1. ORNL Superconducting Technology Program for Electric Power Systems: Annual Report for FY 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hawsey, R.A.

    2000-06-13

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by U.S. industry for development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and applications development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from recent open literature publications, presentations, and information prepared for the FY 1999 Annual Program Review held July 26-28, 1999. Aspects of ORNL's work that were presented at the International Cryogenic Materials Conference and the Cryogenic Engineering Conference (July 1999) are included in this report, as well. This ORNL program is highly leveraged by the staff and other resources of U.S. industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to cooperative projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with U.S. industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire-using systems.

  2. ORNL Superconducting Technology Program for Electric Power Systems, Annual Report for FY 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hawsey, R.A.; Murphy, A.W

    2000-04-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by U.S. industry for development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and applications development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from recent open literature publications, presentations, and information prepared for the FY 1999 Annual Program Review held July 26--28, 1999. Aspects of ORNL's work that were presented at the International Cryogenic Materials Conference and the Cryogenic Engineering Conference (July 1999) are included in this report, as well. This ORNL program is highly leveraged by the staff and other resources of U.S. industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to cooperative projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with U.S. industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire-using systems.

  3. ORNL Superconducting Technology Program for electric power systems: Annual report for FY 1997

    Energy Technology Data Exchange (ETDEWEB)

    Koncinski, W.S.; O`Hara, L.M. [eds.; Hawsey, R.A.; Murphy, A.W. [comps.

    1998-03-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy`s Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by US industry for commercial development of electric power applications of high temperature superconductivity. The two major elements of this program are wire development and applications development. This document describes the major research and developments activities for this program together with related accomplishments. The technical progress reported was summarized from recent open literature publications, presentations, and information prepared for the FY 1997 Annual Program Review held July 21--23, 1997. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to cooperative projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with US industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high temperature superconductor wire and wire-using systems.

  4. Phase fluctuations in two coaxial quasi-one-dimensional superconducting cylindrical surfaces serving as a model system for superconducting nanowire bundles

    Science.gov (United States)

    Wong, C. H.; Wu, R. P. H.; Lortz, R.

    2017-03-01

    The dimensional crossover from a 1D fluctuating state at high temperatures to a 3D phase coherent state in the low temperature regime in two coaxial weakly-coupled cylindrical surfaces formed by two-dimensional arrays of parallel nanowires is studied via an 8-state 3D-XY model. This system serves as a model for quasi-one-dimensional superconductors in the form of bundles of weakly-coupled superconducting nanowires. A periodic variation of the dimensional crossover temperature TDC is observed when the inner superconducting cylindrical surface is rotated in the angular plane. TDC reaches a maximum when the relative angle between the cylinders is 2.81°, which corresponds to the maximum separation of nanowires between the two cylindrical surfaces. We demonstrate that the relative strength of phase fluctuations in this system is controllable by the rotational angle between the two surfaces with a strong suppression of the fluctuation strength at 2.81°. The phase fluctuations are suppressed gradually upon cooling, before they abruptly vanish below TDC. Our model thus allows us to study how phase fluctuations can be suppressed in quasi-one-dimensional superconductors in order to achieve a global phase coherent state throughout the nanowire array with zero electric resistance.

  5. Phase fluctuations in two coaxial quasi-one-dimensional superconducting cylindrical surfaces serving as a model system for superconducting nanowire bundles

    Energy Technology Data Exchange (ETDEWEB)

    Wong, C.H., E-mail: ch.kh.vong@urfu.ru [Institute of Physics and Technology, Ural Federal University, Clear Water Bay, Kowloon (Russian Federation); Wu, R.P.H., E-mail: pak-hong-raymond.wu@connect.polyu.hk [Department of Applied Physics, The Hong Kong Polytechnic University (Hong Kong); Lortz, R., E-mail: lortz@ust.hk [Department of Physics, Hong Kong University of Science and Technology (Hong Kong)

    2017-03-15

    The dimensional crossover from a 1D fluctuating state at high temperatures to a 3D phase coherent state in the low temperature regime in two coaxial weakly-coupled cylindrical surfaces formed by two-dimensional arrays of parallel nanowires is studied via an 8-state 3D-XY model. This system serves as a model for quasi-one-dimensional superconductors in the form of bundles of weakly-coupled superconducting nanowires. A periodic variation of the dimensional crossover temperature T{sub DC} is observed when the inner superconducting cylindrical surface is rotated in the angular plane. T{sub DC} reaches a maximum when the relative angle between the cylinders is 2.81°, which corresponds to the maximum separation of nanowires between the two cylindrical surfaces. We demonstrate that the relative strength of phase fluctuations in this system is controllable by the rotational angle between the two surfaces with a strong suppression of the fluctuation strength at 2.81°. The phase fluctuations are suppressed gradually upon cooling, before they abruptly vanish below T{sub DC}. Our model thus allows us to study how phase fluctuations can be suppressed in quasi-one-dimensional superconductors in order to achieve a global phase coherent state throughout the nanowire array with zero electric resistance.

  6. Design and test of a superconducting magnet in a linear accelerator for an Accelerator Driven Subcritical System

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Quanling, E-mail: pengql@ihep.ac.cn [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Xu, Fengyu [Harbin Institute of Technology, Heilongjiang 150006 (China); Wang, Ting [Beijing Huantong Special Equipment Co., LTD, Beijing 100192 (China); Yang, Xiangchen [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Chen, Anbin [Harbin Institute of Technology, Heilongjiang 150006 (China); Wei, Xiaotao [Beijing Huantong Special Equipment Co., LTD, Beijing 100192 (China); Gao, Yao; Hou, Zhenhua; Wang, Bing; Chen, Yuan; Chen, Haoshu [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2014-11-11

    A batch superconducting solenoid magnet for the ADS proton linear accelerator has been designed, fabricated, and tested in a vertical dewar in Sept. 2013. A total of ten superconducting magnets will be installed into two separate cryomodules. Each cryomodule contains six superconducting spoke RF cavities for beam acceleration and five solenoid magnets for beam focusing. The multifunction superconducting magnet contains a solenoid for beam focusing and two correctors for orbit correction. The design current for the solenoid magnet is 182 A. A quench performance test shows that the operating current of the solenoid magnet can reach above 300 A after natural quenching on three occasions during current ramping (260 A, 268 A, 308 A). The integrated field strength and leakage field at the nearby superconducting spoke cavities all meet the design requirements. The vertical test checked the reliability of the test dewar and the quench detection system. This paper presents the physical and mechanical design of the batch magnets, the quench detection technique, field measurements, and a discussion of the residual field resulting from persistent current effects.

  7. Performances of the distributed control system of the Milan superconducting cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Giove, D.; Aghion, F. (Istituto Nazionale di Fisica Nucleare, Milan (Italy); Milan Univ. (Italy)); Cuttone, G. (Istituto Nazionale di Fisica Nucleare, Catania (Italy))

    1989-04-01

    A three-level network architecture has been implemented for the control system of the Milan superconducting cyclotron. The field level consists of microcontroller board interfaces (analog and digital) connected onto a serial SDLC-like bus (Bitbus) fitted inside each controllable component. At the second level a set of multicomputer-based stations are dedicated to the control of a particular accelerator subsystem. A console node, connected to a DEC microVax II, provides the plant supervisor functions and implements the third level. The main features of the control system will be discussed, with particular care to software architecture. Performances, measured during a preliminary test of the accelerator, will be presented. (orig.).

  8. The cryogenic system for the superconducting e{sup +}e{sup -} linear collider TESLA

    Energy Technology Data Exchange (ETDEWEB)

    Horlitz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    1996-09-01

    The superconducting electron/positron collider TESLA (center of mass energy 500 GeV) requires a cryogenic supply system of total estimated cooling capacities of 33 kW at 2.0 K, 36 kW at 4.5 K, 243 kW at 40/80 K and current lead cooling flow rate (liquefaction power) of 0.2 kg/s. The system is spread over a linear range of about 30 km. A new layout is presented in this paper (reduction of HF - pulse rate from 10/s to 5/s results in reduced heat loads, lower numbers of cryo halls with refrigerators and increased subunit lengths). (author)

  9. A test of a 2 Tesla superconducting transmission line magnet system

    Energy Technology Data Exchange (ETDEWEB)

    Piekarz, Henryk; Carcagno, Ruben; Claypool, Brad; Foster, George W.; Hays, Steven L.; Huang, Yuenian; Kashikhin, Vladimir; Malamud, Ernest; Mazur, Peter O.; Nehring,; Oleck, Andrew; Rabehl, Roger; Schlabach, Phil; Sylvester, Cosmore; Velev, Gueorgui; Volk, James; /Fermilab; Wake, Masayoshi; /KEK, Tsukuba

    2005-09-01

    Superconducting transmission line magnet test system for an injector accelerator of a staged VLHC proton-proton colliding beam accelerator has been built and operated at Fermilab. The 1.5 m long, twin-aperture, combined function dipole magnet of 2 Tesla field is excited by a single turn 100 kA transmission line superconductor. The 100 kA dc current is generated using dc-dc switching converters powered by a bulk 240 kW supply. A pair of horizontally placed conventional leads facilitates transfer of this current to the magnet transmission line superconductor operating at liquid helium temperature. Fabrication of magnet components and magnet assembly work are described. The magnet test system and its operation are presented, and the performance is summarized.

  10. Design and analysis of an electromagnetic turnout for the superconducting Maglev system

    Science.gov (United States)

    Li, Y. J.; Dai, Q.; Zhang, Y.; Wang, H.; Chen, Z.; Sun, R. X.; Zheng, J.; Deng, C. Y.; Deng, Z. G.

    2016-09-01

    Turnout is a crucial track junction device of the ground rail transportation system. For high temperature superconducting (HTS) Maglev system, the permanent magnet guideway (PMG) makes the strong magnetic force existing between rail segments, which may cause moving difficulties and increase the operation cost when switching a PMG. In this paper, a non-mechanical 'Y' shaped Halbach-type electromagnetic turnout was proposed. By replacing the PMs with electromagnets, the turnout can guide the maglev vehicle running into another PMG by simply controlling the current direction of electromagnets. The material and structure parameters of the electromagnets were optimized by simulation. The results show that the optimized electromagnet can keep the magnetic field above it as strong as the PMs', meanwhile feasible for design and manufacture. This work provides valuable references for the future design in non-mechanical PMG turnout.

  11. Relaxation transition due to different cooling processes in a superconducting levitation system

    Science.gov (United States)

    Zhou, You-He; Zhang, Xing-Yi; Zhou, Jun

    2008-06-01

    We present an experimental study of relaxation of vertical and horizontal force components in a high-temperature superconducting levitation system, with different initial cooling process after fixing the levitated body in an expected position statically. In the experiment, the bulk YBaCuO cylinder superconductor and the permanent magnet disk are employed. For a selected levitation height (LH) and a lateral displacement (LD) of the system, the experimental results show that the relaxations of the vertical and horizontal forces are strongly dependent on the initial cooling height (CH). With CH decreasing, the transition of the lateral force from repulsion to attraction is found as well as the changing characteristics with time from decrease to increase. Additionally, when LH is fixed at the CH, the transition phenomenon is also observed in the levitation force behavior and their relaxation under different LDs.

  12. Exploration of stable compounds, crystal structures, and superconductivity in the Be-H system

    Directory of Open Access Journals (Sweden)

    Shuyin Yu

    2014-10-01

    Full Text Available Using first-principles variable-composition evolutionary methodology, we explored the high-pressure structures of beryllium hydrides between 0 and 400 GPa. We found that BeH2 remains the only stable compound in this pressure range. The pressure-induced transformations are predicted as I b a m → P 3 ̄ m 1 → R 3 ̄ m → C m c m → P 4 / n m m , which occur at 24, 139, 204 and 349 GPa, respectively. P 3 ̄ m 1 and R 3 ̄ m structures are layered polytypes based on close packings of H atoms with Be atoms filling all octahedral voids in alternating layers. Cmcm and P4/nmm contain two-dimensional triangular networks with each layer forming a kinked slab in the ab-plane. P 3 ̄ m 1 and R 3 ̄ m are semiconductors while Cmcm and P4/nmm are metallic. We have explored superconductivity of both metal phases, and found large electron-phonon coupling parameters of λ = 0.63 for Cmcm with a Tc of 32.1-44.1 K at 250 GPa and λ = 0.65 for P4/nmm with a Tc of 46.1-62.4 K at 400 GPa. The dependence of Tc on pressure indicates that Tc initially increases to a maximum of 45.1 K for Cmcm at 275 GPa and 97.0 K for P4/nmm at 365 GPa, and then decreases with increasing pressure for both phases.

  13. Normal and superconducting properties in the Ca 1-xCd xLaBaCu 3O y system

    Science.gov (United States)

    Zhang, X.-J.; Wang, J.-S.; Xu, Z.-A.; Jiao, Z.-K.; Zhang, Q. R.

    1994-11-01

    The superconducting behavior of the superconductor CaLaBaCu 3O y (CLBCO) has been studied as a function of substitution of Cd for Ca. Electrical resistivity measurements show that the superconducting critical temperature ( Tc) decreases monotonously with increasing substituent Cd concentration x. Within the composition range O⩽ x⩽1, the samples remain in single phase. Thermogravimetry (TG) studies of the samples show that the oxygen content greatly influences the normal and superconducting properties of the Ca 1- xCd xLaBaCu 3O y system. The substitution of Cd for Ca leads to deficiencies of oxygen in Cu-O chain. As the substituent Cd concentration x increases, the oxygen content decreases monotonously. It is concluded that the reason why Cd leads to the suppression of Tc is the reduction of oxygen content caused by substitution of Cd for Ca.

  14. Generation and detection of gravitational waves at microwave frequencies by means of a superconducting two-body system

    CERN Document Server

    Chiao, Raymond Y

    2007-01-01

    The 2-body system of a superconducting sphere levitated in the magnetic field generated by a persistent current in a superconducting ring, can possibly convert gravitational waves into electromagnetic waves, and vice versa. Faraday's law of induction implies that the time-varying distance between the sphere and the ring caused by the tidal force of an incident gravitational wave induces time-varying electrical currents, which are the source of an electromagnetic wave at the same frequency as the incident gravitational wave. At sufficiently low temperatures, the internal degrees of freedom of the superconductors are frozen out because of the superconducting energy gap, and only external degrees of freedom, which are coupled to the radiation fields, remain. Hence this wave-conversion process is loss-free and therefore efficient, and by time-reversal symmetry, so is the reverse process. A Hertz-like experiment at microwave frequencies should therefore be practical to perform. This would open up observations of t...

  15. The superconducting spin valve and triplet superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Garifullin, I.A., E-mail: ilgiz_garifullin@yahoo.com [Zavoisky Physical-Technical Institute, Kazan Scientific Center of Russian Academy of Sciences, 420029 Kazan (Russian Federation); Leksin, P.V.; Garif' yanov, N.N.; Kamashev, A.A. [Zavoisky Physical-Technical Institute, Kazan Scientific Center of Russian Academy of Sciences, 420029 Kazan (Russian Federation); Fominov, Ya.V. [L. D. Landau Institute for Theoretical Physics RAS, 119334 Moscow (Russian Federation); Moscow Institute of Physics and Technology, 141700 Dolgoprudny (Russian Federation); Schumann, J.; Krupskaya, Y.; Kataev, V.; Schmidt, O.G. [Leibniz Institute for Solid State and Materials Research IFW Dresden, D-01171 Dresden (Germany); Büchner, B. [Leibniz Institute for Solid State and Materials Research IFW Dresden, D-01171 Dresden (Germany); Institut für Festkörperphysik, Technische Universität Dresden, D-01062 Dresden (Germany)

    2015-01-01

    A review of our recent results on the spin valve effect is presented. We have used a theoretically proposed spin switch design F1/F2/S comprising a ferromagnetic bilayer (F1/F2) as a ferromagnetic component, and an ordinary superconductor (S) as the second interface component. Based on it we have prepared and studied in detail a set of multilayers CoO{sub x}/Fe1/Cu/Fe2/S (S=In or Pb). In these heterostructures we have realized for the first time a full spin switch effect for the superconducting current, have observed its sign-changing oscillating behavior as a function of the Fe2-layer thickness and finally have obtained direct evidence for the long-range triplet superconductivity arising due to noncollinearity of the magnetizations of the Fe1 and Fe2 layers. - Highlights: • We studied a spin switch design F1/F2/S. • We prepared a set of multilayers CoOx/Fe1/Cu/Fe2/S (S=In or Pb). • The full spin switch effect for the superconducting current was realized. • We observed its oscillating behavior as a function of the Fe2-layer thickness. • We obtained direct evidence for the long-range triplet superconductivity.

  16. High temperature interfacial superconductivity

    Science.gov (United States)

    Bozovic, Ivan [Mount Sinai, NY; Logvenov, Gennady [Port Jefferson Station, NY; Gozar, Adrian Mihai [Port Jefferson, NY

    2012-06-19

    High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting per se, is described. Depending upon the layering sequence of the bilayers, T.sub.c may be either .about.15 K or .about.30 K. This highly robust phenomenon is confined to within 2-3 nm around the interface. After exposing the bilayer to ozone, T.sub.c exceeds 50 K and this enhanced superconductivity is also shown to originate from a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi two-dimensional high T.sub.c phases and to significantly enhance superconducting properties in other superconductors. The superconducting interface may be implemented, for example, in SIS tunnel junctions or a SuFET.

  17. Improvement of the critical temperature of superconducting NbTiN and NbN thin films using the AlN buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Shiino, Tatsuya; Shiba, Shoichi; Sakai, Nami; Yamamoto, Satoshi [Department of Physics, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Yamakura, Tetsuya [Institute of Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, Ten-nodai, Tsukuba, Ibaraki 305-8577 (Japan); Jiang, Ling [College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, Jiangsu (China); Uzawa, Yoshinori [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan); Maezawa, Hiroyuki, E-mail: shiino@taurus.phys.s.u-tokyo.ac.j [Solar-Terrestrial Environment Laboratory, Nagoya University, Furo-cho, Chigusa-ku, Nagoya 464-8602 (Japan)

    2010-04-15

    Thin superconducting NbTiN and NbN films with a few nm thickness are used in various device applications including in hot electron bolometer mixers. Such thin films have lower critical temperature (T{sub c}) and higher resistivity than corresponding bulk materials. In an effort to improve them, we have investigated an effect of the AlN buffer layer between the film and the substrate (quartz or soda lime glass). The AlN film is deposited by DC magnetron sputtering, and the process condition is optimized so that the x-ray diffraction intensity from the 002 surface of wurtzite AlN becomes the highest. By use of this well-characterized buffer layer, T{sub c} and the resistivity of the NbTiN film with a few nm thickness are remarkably increased and decreased, respectively, in comparison with those without the buffer layer. More importantly, the AlN buffer layer is found to be effective for NbN. With the AlN buffer layer, T{sub c} is increased from 7.3 to 10.5 K for the 8 nm NbN film. The improvement of T{sub c} and the resistivity originates from the good lattice matching between the 002 surface of AlN and the 111 surface of NbTiN or NbN, which results in better crystallization of the NbTiN or NbN film. This is further confirmed by the x-ray diffraction measurement.

  18. Layered-nanomaterial-amplified chemiluminescence systems and their analytical applications.

    Science.gov (United States)

    Zhong, Jinpan; Yuan, Zhiqin; Lu, Chao

    2016-12-01

    Layered nanomaterial has become a popular hierarchical material for amplifying chemiluminescence (CL) in recent years, mainly because of its ease of preparation and modification, large specific surface area, and high catalytic activity. In this review, we mainly discuss layered-nanomaterial-amplified CL systems based on graphene and its derivatives, layered double hydroxides, and clay. Detection mechanisms and strategies of layered-nanomaterial-amplified CL systems are provided to show the basic concepts for designing sensitive and selective sensing systems. Strategies for expanding the applications of layered-nanomaterial-amplified CL systems by combination with surfactants, quantum dots, organic dyes, and nanoparticles are introduced for the analysis of various analytes in real samples. The challenges and future trends of layered-nanomaterial-amplified CL systems are discussed at the end of the review. Graphical Abstract Schematic illustration of layered nanomaterial amplified chemiluminescence.

  19. Analysis of transmission efficiency of the superconducting resonance coil according the materials of cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yu Kyeong; Hwang, Jun Won; Choi, Hyo Sang [Chosun University, Gwangju (Korea, Republic of)

    2016-03-15

    The wireless power transfer (WPT) system using a magnetic resonance was based on magnetic resonance coupling of the transmission and the receiver coils. In these system, it is important to maintain a high quality-factor (Q-factor) to increase the transmission efficiency of WPT system. Our research team used a superconducting coil to increase the Q-factor of the magnetic resonance coil in WPT system. When the superconductor is applied in these system, we confirmed that transmission efficiency of WPT system was higher than normal conductor coil through a preceding study. The efficiency of the transmission and the receiver coil is affected by the magnetic shielding effect of materials around the coils. The magnetic shielding effect is dependent on the type, thickness, frequency, distance, shape of materials. Therefore, it is necessary to study the WPT system on the basis of these conditions. In this paper, the magnetic shield properties of the cooling system were analyzed using the High-Frequency Structure Simulation (HFSS, Ansys) program. We have used the shielding materials such as plastic, aluminum and iron, etc. As a result, when we applied the fiber reinforced polymer (FRP), the transmission efficiency of WPT was not affected because electromagnetic waves went through the FRP. On the other hand, in case of a iron and aluminum, transmission efficiency was decreased because of their electromagnetic shielding effect. Based on these results, the research to improve the transmission efficiency and reliability of WPT system is continuously necessary.

  20. Mechanism Analysis and Experimental Validation of Employing Superconducting Magnetic Energy Storage to Enhance Power System Stability

    Directory of Open Access Journals (Sweden)

    Xiaohan Shi

    2015-01-01

    Full Text Available This paper investigates the mechanism analysis and the experimental validation of employing superconducting magnetic energy storage (SMES to enhance power system stability. The models of the SMES device and the single-machine infinite-bus (SMIB system with SMES are deduced. Based on the model of the SMIB system with SMES, the action mechanism of SMES on a generator is analyzed. The analysis takes the impact of SMES location and the system operating point into consideration, as well. Based on the mechanism analysis, the P-controller and Q-controller are designed utilizing the phase compensation method to improve the damping of the SMIB system. The influence of factors, such as SMES location, transmission system reactance, the dynamic characteristics of SMES and the system operating point, on the damping improvement of SMES, is investigated through root locus analysis. The simulation results of the SMIB test system verify the analysis conclusions and controller design method. The laboratory results of the 150-kJ/100-kW high-temperature SMES (HT-SMES device validate that the SMES device can effectively enhance the damping, as well as the transient stability of the power system.

  1. Rapid characterization of microscopic two-level systems using Landau-Zener transitions in a superconducting qubit

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Xinsheng [National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093 (China); Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045 (United States); Yu, Haifeng, E-mail: hfyu@nju.edu.cn; Yu, Yang, E-mail: yuyang@nju.edu.cn [National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Han, Siyuan [Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045 (United States)

    2015-09-07

    We demonstrate a fast method to detect microscopic two-level systems in a superconducting phase qubit. By monitoring the population leak after sweeping the qubit bias flux, we are able to measure the two-level systems that are coupled with the qubit. Compared with the traditional method that detects two-level systems by energy spectroscopy, our method is faster and more sensitive. This method supplies a useful tool to investigate two-level systems in solid-state qubits.

  2. Layered Polymeric Optical Systems Using Continuous Coextrusion

    Science.gov (United States)

    2009-01-01

    band[13]. The possibility of fabricating tunable photonic crystals was explored using thermoplastic polyurethane (TPU, n = 1.55) layered against Pebax... losses within the cavity reflection band. Typical emission spectra are shown in Figure 9. The thickness of the dielectric layer determines the spacing...fabrication of refractive index patterns, including gradients and superlattices. The periodic dielectric nature leads to interference effects

  3. High-temperature superconductivity in space-charge regions of lanthanum cuprate induced by two-dimensional doping

    Science.gov (United States)

    Baiutti, F.; Logvenov, G.; Gregori, G.; Cristiani, G.; Wang, Y.; Sigle, W.; van Aken, P. A.; Maier, J.

    2015-10-01

    The exploitation of interface effects turned out to be a powerful tool for generating exciting material properties. Such properties include magnetism, electronic and ionic transport and even superconductivity. Here, instead of using conventional homogeneous doping to enhance the hole concentration in lanthanum cuprate and achieve superconductivity, we replace single LaO planes with SrO dopant planes using atomic-layer-by-layer molecular beam epitaxy (two-dimensional doping). Electron spectroscopy and microscopy, conductivity measurements and zinc tomography reveal such negatively charged interfaces to induce layer-dependent superconductivity (Tc up to 35 K) in the space-charge zone at the side of the planes facing the substrate, where the strontium (Sr) profile is abrupt. Owing to the growth conditions, the other side exhibits instead a Sr redistribution resulting in superconductivity due to conventional doping. The present study represents a successful example of two-dimensional doping of superconducting oxide systems and demonstrates its power in this field.

  4. Assessment on the influence of resistive superconducting fault current limiter in VSC-HVDC system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong-Geon; Khan, Umer Amir; Hwang, Jae-Sang; Seong, Jae-Kyu; Shin, Woo-Ju; Park, Byung-Bae; Lee, Bang-Wook, E-mail: bangwook@hanyang.ac.kr

    2014-09-15

    Highlights: • The role of SFCLs in VSC-HVDC systems was evaluated. • Simulation model based on Korea Jeju-Haenam HVDC power system was designed. • An effect and the feasible locations of resistive SFCLs were evaluated. • DC line-to-line, DC line-to-ground and 3 phase AC faults were imposed and analyzed. - Abstract: Due to fewer risk of commutation failures, harmonic occurrences and reactive power consumptions, Voltage Source Converter (VSC) based HVDC system is known as the optimum solution of HVDC power system for the future power grid. However, the absence of suitable fault protection devices for HVDC system hinders the efficient VSC-HVDC power grid design. In order to enhance the reliability of the VSC-HVDC power grid against the fault current problems, the application of resistive Superconducting Fault Current Limiters (SFCLs) could be considered. Also, SFCLs could be applied to the VSC-HVDC system with integrated AC Power Systems in order to enhance the transient response and the robustness of the system. In this paper, in order to evaluate the role of SFCLs in VSC-HVDC systems and to determine the suitable position of SFCLs in VSC-HVDC power systems integrated with AC power System, a simulation model based on Korea Jeju-Haenam HVDC power system was designed in Matlab Simulink/SimPowerSystems. This designed model was composed of VSC-HVDC system connected with an AC microgrid. Utilizing the designed VSC-HVDC systems, the feasible locations of resistive SFCLs were evaluated when DC line-to-line, DC line-to-ground and three phase AC faults were occurred. Consequently, it was found that the simulation model was effective to evaluate the positive effects of resistive SFCLs for the effective suppression of fault currents in VSC-HVDC systems as well as in integrated AC Systems. Finally, the optimum locations of SFCLs in VSC-HVDC transmission systems were suggested based on the simulation results.

  5. Superconductivity and magnetic short-range order in the system with a Pd sheet sandwiched between graphene sheets

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Masatsugu [Department of Physics, State University of New York at Binghamton, Binghamton, NY 13902-6016 (United States); Suzuki, Itsuko S [Department of Physics, State University of New York at Binghamton, Binghamton, NY 13902-6016 (United States); Walter, Juergen [Department of Physics, State University of New York at Binghamton, Binghamton, NY 13902-6016 (United States)

    2004-02-18

    Pd-metal graphite (Pd-MG) has a layered structure, where each Pd sheet is sandwiched between adjacent graphene sheets. The DC magnetization and AC magnetic susceptibility of Pd-MG have been measured using a SQUID magnetometer. Pd-MG undergoes a superconducting transition at T{sub c} (= 3.63 {+-} 0.04 K). The superconductivity occurs in the Pd sheets. The irreversibility between {chi}{sub ZFC} and {chi}{sub FC} occurs well above T{sub c}. The susceptibility {chi}{sub FC} obeys a Curie-Weiss behaviour with a negative Curie-Weiss temperature (-13.1 {<=}{theta} {<=}-5.4 K). The growth of magnetic order is limited by the disordered nature of nanographites, forming magnetic short-range order at low temperature in the graphene sheets.

  6. Superconductivity and superconductive electronics

    Science.gov (United States)

    Beasley, M. R.

    1990-12-01

    The Stanford Center for Research on Superconductivity and Superconductive Electronics is currently focused on developing techniques for producing increasingly improved films and multilayers of the high-temperature superconductors, studying their physical properties and using these films and multilayers in device physics studies. In general the thin film synthesis work leads the way. Once a given film or multilayer structure can be made reasonably routinely, the emphasis shifts to studying the physical properties and device physics of these structures and on to the next level of film quality or multilayer complexity. The most advanced thin films synthesis work in the past year has involved developing techniques to deposit a-axis and c-axis YBCO/PBCO superlattices and related structures. The in-situ feature is desirable because no solid state reactions with accompanying changes in volume, morphology, etc., that degrade the quality of the film involved.

  7. Mitigation of commutation failures in LCC-HVDC systems based on superconducting fault current limiters

    Science.gov (United States)

    Lee, Jong-Geon; Khan, Umer Amir; Lee, Ho-Yun; Lim, Sung-Woo; Lee, Bang-Wook

    2016-11-01

    Commutation failure in line commutated converter based HVDC systems cause severe damages on the entire power grid system. For LCC-HVDC, thyristor valves are turned on by a firing signal but turn off control is governed by the external applied AC voltage from surrounding network. When the fault occurs in AC system, turn-off control of thyristor valves is unavailable due to the voltage collapse of point of common coupling (PCC), which causes the commutation failure in LCC-HVDC link. Due to the commutation failure, the power transfer interruption, dc voltage drop and severe voltage fluctuation in the AC system could be occurred. In a severe situation, it might cause the protection system to block the valves. In this paper, as a solution to prevent the voltage collapse on PCC and to limit the fault current, the application study of resistive superconducting fault current limiter (SFCL) on LCC-HVDC grid system was performed with mathematical and simulation analyses. The simulation model was designed by Matlab/Simulink considering Haenam-Jeju HVDC power grid in Korea which includes conventional AC system and onshore wind farm and resistive SFCL model. From the result, it was observed that the application of SFCL on LCC-HVDC system is an effective solution to mitigate the commutation failure. And then the process to determine optimum quench resistance of SFCL which enables the recovery of commutation failure was deeply investigated.

  8. Mitigation of commutation failures in LCC–HVDC systems based on superconducting fault current limiters

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong-Geon; Khan, Umer Amir; Lee, Ho-Yun; Lim, Sung-Woo; Lee, Bang-Wook, E-mail: bangwook@hanyang.ac.kr

    2016-11-15

    Commutation failure in line commutated converter based HVDC systems cause severe damages on the entire power grid system. For LCC–HVDC, thyristor valves are turned on by a firing signal but turn off control is governed by the external applied AC voltage from surrounding network. When the fault occurs in AC system, turn-off control of thyristor valves is unavailable due to the voltage collapse of point of common coupling (PCC), which causes the commutation failure in LCC–HVDC link. Due to the commutation failure, the power transfer interruption, dc voltage drop and severe voltage fluctuation in the AC system could be occurred. In a severe situation, it might cause the protection system to block the valves. In this paper, as a solution to prevent the voltage collapse on PCC and to limit the fault current, the application study of resistive superconducting fault current limiter (SFCL) on LCC–HVDC grid system was performed with mathematical and simulation analyses. The simulation model was designed by Matlab/Simulink considering Haenam-Jeju HVDC power grid in Korea which includes conventional AC system and onshore wind farm and resistive SFCL model. From the result, it was observed that the application of SFCL on LCC–HVDC system is an effective solution to mitigate the commutation failure. And then the process to determine optimum quench resistance of SFCL which enables the recovery of commutation failure was deeply investigated.

  9. Mesoscopic Transport Characteristics of a Normal-Metal-Superconducting-Grain-Superconductor System

    Institute of Scientific and Technical Information of China (English)

    冯金福; 熊诗杰

    2003-01-01

    We investigate transport properties of a normal-metal-superconducting-grain-superconductor system by the use of the equivalent single-particle multi-channel networks, taking into account the multi-level structure, the Coulomb interaction, and the pair potential on the grain. The dependence of the current on the gate voltage shows oscillating behaviour with a period related to 2e of the charge on the grain, reflecting the charge transfer in units of Cooper pairs. The conductance can be enhanced when the pairing parameter is near the Coulomb energy e2/2C, due to the resonance of the Andreev reflection through the grain. The magnitude of the Andreev reflection as a function of the bias voltage exhibits complicated structures, reflecting the multiple levels, the spin orientations, and the interaction energy on the grain.

  10. Quantum simulator of an open quantum system using superconducting qubits: exciton transport in photosynthetic complexes

    CERN Document Server

    Mostame, Sarah; Tsomokos, Dimitris I; Aspuru-Guzik, Alán

    2011-01-01

    In the initial stage of photosynthesis, light-harvested energy is transferred with remarkably high efficiency to a reaction center, with the vibrational environment assisting the transport mechanism. It is of great interest to mimic this process with present-day technologies. Here we propose an analog quantum simulator of open system dynamics, where noise engineering of the environment has a central role. In particular, we propose the use of superconducting qubits for the simulation of exciton transport in the Fenna-Matthew-Olson protein, a prototypical photosynthetic complex. Our method allows for a single-molecule implementation and the investigation of energy transfer pathways as well as non-Markovian and spatiotemporal noise-correlation effects.

  11. Quantum simulator of an open quantum system using superconducting qubits: exciton transport in photosynthetic complexes

    Science.gov (United States)

    Mostame, Sarah; Rebentrost, Patrick; Eisfeld, Alexander; Kerman, Andrew J.; Tsomokos, Dimitris I.; Aspuru-Guzik, Alan

    2012-02-01

    In the initial stage of photosynthesis, light-harvested energy is transferred with remarkably high efficiency to a reaction center, with the vibrational environment assisting the transport mechanism. It is of great interest to mimic this process with present-day technologies. Here we propose an analog quantum simulator of open system dynamics, where noise engineering of the environment has a central role. In particular, we propose the use of superconducting qubits for the simulation of exciton transport in the Fenna-Matthew-Olson protein, a prototypical photosynthetic complex. Our method allows for a single-molecule implementation and the investigation of energy transfer pathways as well as non-Markovian and spatiotemporal noise-correlation effects.

  12. Assessment on the influence of resistive superconducting fault current limiter in VSC-HVDC system

    Science.gov (United States)

    Lee, Jong-Geon; Khan, Umer Amir; Hwang, Jae-Sang; Seong, Jae-Kyu; Shin, Woo-Ju; Park, Byung-Bae; Lee, Bang-Wook

    2014-09-01

    Due to fewer risk of commutation failures, harmonic occurrences and reactive power consumptions, Voltage Source Converter (VSC) based HVDC system is known as the optimum solution of HVDC power system for the future power grid. However, the absence of suitable fault protection devices for HVDC system hinders the efficient VSC-HVDC power grid design. In order to enhance the reliability of the VSC-HVDC power grid against the fault current problems, the application of resistive Superconducting Fault Current Limiters (SFCLs) could be considered. Also, SFCLs could be applied to the VSC-HVDC system with integrated AC Power Systems in order to enhance the transient response and the robustness of the system. In this paper, in order to evaluate the role of SFCLs in VSC-HVDC systems and to determine the suitable position of SFCLs in VSC-HVDC power systems integrated with AC power System, a simulation model based on Korea Jeju-Haenam HVDC power system was designed in Matlab Simulink/SimPowerSystems. This designed model was composed of VSC-HVDC system connected with an AC microgrid. Utilizing the designed VSC-HVDC systems, the feasible locations of resistive SFCLs were evaluated when DC line-to-line, DC line-to-ground and three phase AC faults were occurred. Consequently, it was found that the simulation model was effective to evaluate the positive effects of resistive SFCLs for the effective suppression of fault currents in VSC-HVDC systems as well as in integrated AC Systems. Finally, the optimum locations of SFCLs in VSC-HVDC transmission systems were suggested based on the simulation results.

  13. OPERATIONAL EXPERIENCE WITH BEAM ABORT SYSTEM FOR SUPERCONDUCTING UNDULATOR QUENCH MITIGATION*

    Energy Technology Data Exchange (ETDEWEB)

    Harkay, Katherine C.; Dooling, Jeffrey C.; Sajaev, Vadim; Wang, Ju

    2017-06-25

    A beam abort system has been implemented in the Advanced Photon Source storage ring. The abort system works in tandem with the existing machine protection system (MPS), and its purpose is to control the beam loss location and, thereby, minimize beam loss-induced quenches at the two superconducting undulators (SCUs). The abort system consists of a dedicated horizontal kicker designed to kick out all the bunches in a few turns after being triggered by MPS. The abort system concept was developed on the basis of single- and multi-particle tracking simulations using elegant and bench measurements of the kicker pulse. Performance of the abort system—kick amplitudes and loss distributions of all bunches—was analyzed using beam position monitor (BPM) turn histories, and agrees reasonably well with the model. Beam loss locations indicated by the BPMs are consistent with the fast fiber-optic beam loss monitor (BLM) diagnostics described elsewhere [1,2]. Operational experience with the abort system, various issues that were encountered, limitations of the system, and quench statistics are described.

  14. System Software Abstraction Layer - much more than Operating System Abstraction Layer

    Directory of Open Access Journals (Sweden)

    Sunita Awasthi Singh

    2013-03-01

    Full Text Available Current and future aircraft systems require real-time embedded software with greater flexibility compared to what was previously available due to the continuous advancements in the technology leading to large and complex systems. Portability of software as one of the aspects of this flexibility is a major concern in application development for avionics domain for fast development and integration of systems. Abstractions of the hardware platform which have been already introduced by the operating system community allow the software modules to be reused on different hardware and with different physical resources. Now operating system community has come up with an abstraction layer called operating system abstraction layer (OSAL which along with the hardware abstraction unifies the OS architecture too. It provides a common set of primitives independent of the underlying operating system and its particular architecture. Factors such as reliability, scalability and determinism of any application largely depend on the design and architecture of the application. This is the most important and critical factor of real time systems such as mission computers of avionics systems, missile control system or control computers of space shuttle. It demands developer to perform feasibility of different software architecture to select the best alternative. Authors’ analysis shows that to make any real time application more secure, scalable, deterministic, and highly portable, OSAL has to be extended to more than just operating system abstraction. This new view of OSAL will be called as system software abstraction layer (SSAL. In this paper, authors attempt to highlight the efficiency of SSAL as well as detailed description of its main features and design considerations. Authors have implemented the SSAL on top of two well known OS (WinCE and Vxworks and performed extensive evaluations, which shows that it effectively reduces portability efforts while achieving

  15. Superconducting electron and hole lenses

    Science.gov (United States)

    Cheraghchi, H.; Esmailzadeh, H.; Moghaddam, A. G.

    2016-06-01

    We show how a superconducting region (S), sandwiched between two normal leads (N), in the presence of barriers, can act as a lens for propagating electron and hole waves by virtue of the so-called crossed Andreev reflection (CAR). The CAR process, which is equivalent to Cooper pair splitting into two N electrodes, provides a unique possibility of constructing entangled electrons in solid state systems. When electrons are locally injected from an N lead, due to the CAR and normal reflection of quasiparticles by the insulating barriers at the interfaces, sequences of electron and hole focuses are established inside another N electrode. This behavior originates from the change of momentum during electron-hole conversion beside the successive normal reflections of electrons and holes due to the barriers. The focusing phenomena studied here are fundamentally different from the electron focusing in other systems, such as graphene p-n junctions. In particular, due to the electron-hole symmetry of the superconducting state, the focusing of electrons and holes is robust against thermal excitations. Furthermore, the effects of the superconducting layer width, the injection point position, and barrier strength are investigated on the focusing behavior of the junction. Very intriguingly, it is shown that by varying the barrier strength, one can separately control the density of electrons or holes at the focuses.

  16. Layers And Processes In The Model Of Technological Postal System

    National Research Council Canada - National Science Library

    Lucia Madleňáková; Radovan Madleňák; Paweł Droździel; Ivan Kurtev

    2015-01-01

    The paper include important aspects of layer model of postal technological system such as makes the possibility to define rules for regulating, technical and technological requirements and interfaces...

  17. Cross-sectional TEM study of the microstructure of superconducting X-ray detectors based on thin W-Al layers

    Energy Technology Data Exchange (ETDEWEB)

    Safran, G. E-mail: safran@mfa.kfki.hu; Loidl, M.; Meier, O.; Seidel, W.; Proebst, F

    2002-06-01

    The relation between structural and morphological properties and the performance of X-ray detectors have been studied by means of cross-sectional transmission electron microscopy (XTEM) and low temperature electrical measurements. The detectors consist of a strip of an aluminium thin film in contact with superconducting phase transition thermometers based on tungsten films at its both ends. Soft X-ray photons are absorbed in the sapphire substrate underneath the Al film and create high energy phonons. These phonons enter the superconducting film and break up Cooper-pairs into quasiparticles which then diffuse into the W films and create correlated thermal signals in both thermometers. XTEM investigations revealed a polycrystalline structure of the Al films above both the bare sapphire and chemically etched areas of the highly oriented W films, while the Al is single crystalline above the intact W film surface showing an orientational relationship: (2 0 0)Al parallel (0 2 0)W parallel (0 1 1-bar 2)Al{sub 2}O{sub 3} and [0 2-bar 2]Al parallel [2 0 0]W parallel [1 0 1-bar 2-bar]Al{sub 2}O{sub 3}. No remarkable difference in morphology and structure of the layers of the two detector sides was observed. On the other hand, irregular saw-tooth-like interfaces of different profiles of low slope were found between the chemically etched regions of the W sensor films and the overlapping Al diffusion film. The observed strong asymmetry of the correlated signals is attributed to the disturbed quasiparticle propagation through the observed different interface structures of the two detector sides.

  18. A new RHQT Nb3Al superconducting wire with a Ta/Cu/Ta three-layer filament-barrier structure

    Science.gov (United States)

    Takeuchi, Takao; Tsuchiya, Kiyosumi; Nakagawa, Kazuhiko; Nimori, Shigeki; Banno, Nobuya; Iijima, Yasuo; Kikuchi, Akihiro; Nakamoto, Tatsushi

    2012-06-01

    To suppress the low-magnetic-field instability (flux jumps in low magnetic fields) of a rapid-heating, quenching and transformation (RHQT) processed Nb3Al superconductor, we had previously modified the cross-sectional design of an RHQT Nb3Al by adopting a Ta filament-barrier structure. Unlike Nb barriers, Ta barriers are not superconducting in magnetic fields at 4.2 K so that they electromagnetically decouple filaments. However, small flux jumps still occurred at 1.8 K, which is a typical operating temperature for the magnets used in high-energy particle accelerators. Furthermore, poor bonding at the Ta/Ta interface between neighboring Ta-coated jelly-roll (JR) filaments frequently caused precursor wires to break during drawing. To overcome these problems, we fabricated a new RHQT Nb3Al wire with a Ta/Cu/Ta three-layer filament-barrier structure for which an internal stabilization technique (Cu rods encased in Ta are dispersed in the wire cross section) was extended. Removing the Ta/Ta interface in the interfilamentary barrier (JR filament/Ta/Cu/Ta/JR filament) allowed precursor wires to be drawn without breaking. Furthermore, the Cu filament barrier electromagnetically decoupled filaments to suppress flux jumps at 1.8 K. The ductile Cu layer also improved the bending strain tolerance of RHQT Nb3Al.

  19. Properties of superconducting Bi-Sr-Ca-Cu-O system remelted under higher gravity conditions

    Science.gov (United States)

    Volkov, M. P.; Melekh, B. T.; Parfeniev, R. V.; Kartenko, N. F.; Regel, L. L.; Turchaninov, A. M.

    1992-04-01

    The structure and magnetic properties of high Tc superconductor Bi-Sr-Ca-Cu-O samples remelted under 1 g0, 8 g0 and 12 g0 gravity levels have been investigated. Superconducting properties make a change along the ingots. The dependence of structural and superconducting properties on the gravity level and their time degradation have been observed.

  20. The 5.8 T Cryogen-Free Gyrotron Superconducting Magnet System on HL-2A

    Science.gov (United States)

    Xia, Donghui; Huang, Mei; Zhou, Jun; Bai, Xingyu; Zheng, Tieliu; Rao, Jun; Zhuang, Ge

    2014-04-01

    A 5.8 T cryogen-free superconducting magnet (SCM) system with a warm bore hole of 160 mm in diameter, used for gyrotrons operating in the frequency range from 68 GHz to 140 GHz, is installed on the site of the HL-2A tokamak. The SCM consists of two separate solenoidal magnetic coils connected in series, a 4.2 K Gifford-McMahon (GM) refrigerator, a compressor, a coil power supply and two temperature monitors. The performance, test and preliminary experimental results of this SCM system are described in this paper. The magnetic field distribution was measured along the axis, and a dummy tube was used for adjusting the magnet system. Finally, the magnet was used for the operation of a 68 GHz/500 kW gyrotron, which is part of an electron cyclotron resonance heating (ECRH) system. With an additional auxiliary coil and after adjusting the magnet system, a maximum output power for the ECRH system of up to 400 kW was achieved.

  1. Peak power reduction and energy efficiency improvement with the superconducting flywheel energy storage in electric railway system

    Science.gov (United States)

    Lee, Hansang; Jung, Seungmin; Cho, Yoonsung; Yoon, Donghee; Jang, Gilsoo

    2013-11-01

    This paper proposes an application of the 100 kWh superconducting flywheel energy storage systems to reduce the peak power of the electric railway system. The electric railway systems have high-power characteristics and large amount of regenerative energy during vehicles’ braking. The high-power characteristic makes operating cost high as the system should guarantee the secure capacity of electrical equipment and the low utilization rate of regenerative energy limits the significant energy efficiency improvement. In this paper, it had been proved that the peak power reduction and energy efficiency improvement can be achieved by using 100 kWh superconducting flywheel energy storage systems with the optimally controlled charging or discharging operations. Also, economic benefits had been assessed.

  2. Development of Low Level RF Control Systems for Superconducting Heavy Ion Linear Accelerators, Electron Synchrotrons and Storage Rings

    CERN Document Server

    Aminov, Bachtior; Kolesov, Sergej; Pekeler, Michael; Piel, Christian; Piel, Helmut

    2005-01-01

    Since 2001 ACCEL Instruments is supplying low level RF control systems together with turn key cavity systems. The early LLRF systems used the well established technology based on discrete analogue amplitude and phase detectors and modulators. Today analogue LLRF systems can make use of advanced vector demodulators and modulators combined with a fast computer controlled analogue feed back loop. Feed forward control is implemented to operate the RF cavity in an open loop mode or to compensate for predictable perturbations. The paper will introduce the general design philosophy and show how it can be adapted to different tasks as controlling a synchrotron booster nc RF system at 500 MHz, or superconducting storage ring RF cavities, as well as a linear accelerator at 176 MHz formed by a chain of individually driven and controlled superconducting λ/2 cavities.

  3. A high-temperature superconducting millimeter wave detecting system based on pulse tube cryocooler

    Science.gov (United States)

    Chen, Jian; Wu, Peiheng; Nakajima, Kensuke; Yamashita, Tsutomu

    2004-10-01

    A millimeter (mm) wave broadband video detecting system using high temperature superconducting (HTS) junction and compact pulse tube cryocooler (PTC) has been studied. The lowest attainable temperature of the PTC is 42K and the operating temperature (T) can be adjusted by changing the pressure difference in the compressor. By measuring the linewidth of the Josephson oscillation as well as the dynamic range of the Josephson detector, it is found that the PTC has no excess noise compared with other kinds of cryostats such as liquid helium cryostats, and is very suitable for the applications in the mm wave detecting system. Furthermore, to improve the sensitivity of the system, the coupling efficiency of the system has been studied in detail. It is found that the coupling efficiency increases with the increase of RN linearly, and is better than 1% for RN of 1.7 Ohm. A sensitivity of about 318V/W has been obtained for the system based on the PTC and a junction with RN=1.7 Ohm and ICRN =1mV.

  4. Cross layers decision making and fusion model in layered sensing systems

    Science.gov (United States)

    Khoshnaw, Abdulqadir; Zein-Sabatto, Saleh; Malkani, Mohan

    2012-06-01

    Layered sensing systems involve operation of several layers of sensing with different capabilities integrated into one whole system. The integrated layers of sensing must share information and local decisions across layers for better situation awareness. This research focused on the development of a model for decision making and fusion at the information level in layered sensing systems using the cloud model for uncertainty processing. In this research, the addition of a new processing level to the Joint Directors of Laboratories (JDL) processing model is proposed. The new processing level is called "Information Assessment, Fusion, and Control (IAFC)". Through this level, the different layers of a layered sensing system evaluate information about a given situation in terms of threat level and make a decision. The information assessment and control processing module were able to assess the threat level of a situation accurately and exchange assessments in order to determine the overall situation's threat level among all layers. The uncertain decisions were fused together to a unified decision using the cloud model of uncertainty processing methodology. Using this methodology, a cognitive element was added to the process of information assessment module leading to more accurate situation awareness.

  5. Electronic structure of the superconducting layered ternary nitrides CaTaN2 and CaNbN2

    Science.gov (United States)

    Oliva, Josep M.; Weht, Ruben; Ordejón, Pablo; Canadell, Enric

    2000-07-01

    The electronic structure of the layered ternary nitrides CaMN2 (M= Ta, Nb) has been studied and the results are compared with those for the related LiMoN2 phase. It is shown that the former are two-dimensional metals, with a Fermi surface very similar to that of the 1T-TaX2 (X= S, Se) dichalcogenides, whereas the latter is a three-dimensional metal. The three phases show strong covalent bonding within the layers but ionic bonding with the alkali atom sheets.

  6. Superconducting Quantum Circuits

    NARCIS (Netherlands)

    Majer, J.B.

    2002-01-01

    This thesis describes a number of experiments with superconducting cir- cuits containing small Josephson junctions. The circuits are made out of aluminum islands which are interconnected with a very thin insulating alu- minum oxide layer. The connections form a Josephson junction. The current trough

  7. High temperature interface superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Gozar, A., E-mail: adrian.gozar@yale.edu [Yale University, New Haven, CT 06511 (United States); Bozovic, I. [Yale University, New Haven, CT 06511 (United States); Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2016-02-15

    Highlight: • This review article covers the topic of high temperature interface superconductivity. • New materials and techniques used for achieving interface superconductivity are discussed. • We emphasize the role played by the differences in structure and electronic properties at the interface with respect to the bulk of the constituents. - Abstract: High-T{sub c} superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-T{sub c} Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed. We conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.

  8. Automatic Management Systems for the Operation of the Cryogenic Test Facilities for LHC Series Superconducting Magnets

    CERN Document Server

    Tovar-Gonzalez, A; Herblin, L; Lamboy, J P; Vullierme, B

    2006-01-01

    Prior to their final preparation before installation in the tunnel, the ~1800 series superconducting magnets of the LHC machine shall be entirely tested at reception on modular test facilities. The operation 24 hours per day of the cryogenic test facilities is conducted in turn by 3-operator teams, assisted in real time by the use of the Test Bench Priorities Handling System, a process control application enforcing the optimum use of cryogenic utilities and of the "Tasks Tracking System", a web-based e-traveller application handling 12 parallel 38-task test sequences. This paper describes how such computer-based management systems can be used to optimize operation of concurrent test benches within technical boundary conditions given by the cryogenic capacity, and how they can be used to study the efficiency of the automatic steering of all individual cryogenic sub-systems. Finally, this paper presents the overall performance of the cryomagnet test station for the first complete year of operation at high produ...

  9. Performance test of the cryogenic cooling system for the superconducting fault current limiter

    Science.gov (United States)

    Hong, Yong-Ju; In, Sehwan; Yeom, Han-Kil; Kim, Heesun; Kim, Hye-Rim

    2015-12-01

    A Superconducting Fault Current Limiter is an electric power device which limits the fault current immediately in a power grid. The SFCL must be cooled to below the critical temperature of high temperature superconductor modules. In general, they are submerged in sub-cooled liquid nitrogen for their stable thermal characteristics. To cool and maintain the target temperature and pressure of the sub-cooled liquid nitrogen, the cryogenic cooling system should be designed well with a cryocooler and coolant circulation devices. The pressure of the cryostat for the SFCL should be pressurized to suppress the generation of nitrogen bubbles in quench mode of the SFCL. In this study, we tested the performance of the cooling system for the prototype 154 kV SFCL, which consist of a Stirling cryocooler, a subcooling cryostat, a pressure builder and a main cryostat for the SFCL module, to verify the design of the cooling system and the electric performance of the SFCL. The normal operation condition of the main cryostat is 71 K and 500 kPa. This paper presents tests results of the overall cooling system.

  10. Digital data acquisition system implementation at the National Superconducting Cyclotron Laboratory

    Science.gov (United States)

    Prokop, C. J.; Liddick, S. N.; Abromeit, B. L.; Chemey, A. T.; Larson, N. R.; Suchyta, S.; Tompkins, J. R.

    2014-03-01

    A Digital Data Acquisition System (DDAS) composed of 16-channel FPGA-programmable modules running 12-bit 100 Mega-Samples Per Second (MSPS) ADCs has been implemented on three different experimental arrays at the National Superconducting Cyclotron Laboratory (NSCL) encompassing charged particle spectroscopy, high and low energy-resolution photon detection, and neutron time-of-flight measurements. DDAS has increased the experimental capabilities of each array by providing energy and time measurements with nearly zero dead-time, low energy thresholds, and large dynamic range. The performance of the DDAS Analog-to-Digital Converters (ADC)s was characterized, and energy and time resolutions were compared with traditional analog systems. We have demonstrated a 14- to 15-bit peak-sensing equivalent resolution when applied to semiconductor detectors and 500 ps time resolution for LaBr3 detectors measuring coincident radiation with signal amplitudes of ≈13% of the input range of the ADC. Details regarding the operation of the system at NSCL including digital filtering, triggering, clock distribution, and event-building are discussed along with applications to selected detector systems.

  11. Digital data acquisition system implementation at the National Superconducting Cyclotron Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Prokop, C.J., E-mail: prokop@nscl.msu.edu [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Liddick, S.N., E-mail: liddick@nscl.msu.edu [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Abromeit, B.L., E-mail: abromeit@nscl.msu.edu [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Chemey, A.T., E-mail: chemeyal@nscl.msu.edu [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Larson, N.R., E-mail: larson@nscl.msu.edu [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Suchyta, S., E-mail: suchyta@nscl.msu.edu [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Tompkins, J.R., E-mail: tompkins@nscl.msu.edu [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States)

    2014-03-21

    A Digital Data Acquisition System (DDAS) composed of 16-channel FPGA-programmable modules running 12-bit 100 Mega-Samples Per Second (MSPS) ADCs has been implemented on three different experimental arrays at the National Superconducting Cyclotron Laboratory (NSCL) encompassing charged particle spectroscopy, high and low energy-resolution photon detection, and neutron time-of-flight measurements. DDAS has increased the experimental capabilities of each array by providing energy and time measurements with nearly zero dead-time, low energy thresholds, and large dynamic range. The performance of the DDAS Analog-to-Digital Converters (ADC)s was characterized, and energy and time resolutions were compared with traditional analog systems. We have demonstrated a 14- to 15-bit peak-sensing equivalent resolution when applied to semiconductor detectors and 500 ps time resolution for LaBr{sub 3} detectors measuring coincident radiation with signal amplitudes of ≈13% of the input range of the ADC. Details regarding the operation of the system at NSCL including digital filtering, triggering, clock distribution, and event-building are discussed along with applications to selected detector systems.

  12. A 166.6 MHz superconducting rf system for the HEPS storage ring

    Science.gov (United States)

    Zhang, P.; Hao, X.; Huang, T.; Li, Z.; Lin, H.; Meng, F.; Mi, Z.; Sun, Y.; Wang, G.; Wang, Q.; Zhang, X.

    2017-07-01

    A superconducting 166.6 MHz quarter-wave beta=1 cavity was recently proposed for the High Energy Photon Source (HEPS), a 6 GeV kilometer-scale light source. Four 166.6 MHz cavities will be used for main acceleration in the newly planned on-axis beam injection scheme realized by a double-frequency RF system. The fundamental frequency, 166.6 MHz, was dictated by the fast injection kicker technology and the preference of using 499.8 MHz SC RF cavity as the third harmonic. Each 166.6 MHz cavity will be operated at 4.2 K providing 1.2 MV accelerating voltage and 150 kW of power to the electron beam. The input coupler will use single-window coaxial type graded up to 200 kW CW power. Each cavity will be equipped with a 200 kW solid-state amplifier and digital low-level RF system. This paper describes the 166.6 MHz RF system with a focus on the design and optimization of the RF cavity and its ancillaries, the LLRF system and the status of the solid-state amplifiers.

  13. The superconducting spin valve and triplet superconductivity

    Science.gov (United States)

    Garifullin, I. A.; Leksin, P. V.; Garif`yanov, N. N.; Kamashev, A. A.; Fominov, Ya. V.; Schumann, J.; Krupskaya, Y.; Kataev, V.; Schmidt, O. G.; Büchner, B.

    2015-01-01

    A review of our recent results on the spin valve effect is presented. We have used a theoretically proposed spin switch design F1/F2/S comprising a ferromagnetic bilayer (F1/F2) as a ferromagnetic component, and an ordinary superconductor (S) as the second interface component. Based on it we have prepared and studied in detail a set of multilayers CoOx/Fe1/Cu/Fe2/S (S=In or Pb). In these heterostructures we have realized for the first time a full spin switch effect for the superconducting current, have observed its sign-changing oscillating behavior as a function of the Fe2-layer thickness and finally have obtained direct evidence for the long-range triplet superconductivity arising due to noncollinearity of the magnetizations of the Fe1 and Fe2 layers.

  14. Free-standing oxide superconducting articles

    Science.gov (United States)

    Wu, Xin D.; Muenchausen, Ross E.

    1993-01-01

    A substrate-free, free-standing epitaxially oriented superconductive film including a layer of a template material and a layer of a ceramic superconducting material is provided together with a method of making such a substrate-free ceramic superconductive film by coating an etchable material with a template layer, coating the template layer with a layer of a ceramic superconductive material, coating the layer of ceramic superconductive material with a protective material, removing the etchable material by an appropriate means so that the etchable material is separated from a composite structure including the template lay This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).

  15. Superconductivity in the Tl-Ca-Ba-Cu-O System:. Synthesis, Characterization and Mechanism

    Science.gov (United States)

    Ganguli, A. K.; Swamy, K. S. Nanjunda; Subbanna, G. N.; Rajumon, M. K.; Sarma, D. D.; Rao, C. N. R.

    Synthesis and characterization of some of the members of the Tl-Ca-Ba-Cu-O system are presented. Tc in both the TlCan-1Ba2CunO2n+3 and Tl2Can-1Ba2CunO2n+4 series increase with the number of Cu-O layers, n; Tc in the latter series with two Tl-O layers are generally higher than in the former with a single Tl-O layer. Tl in the cuprates is in the 3+ state while Cu is in the 1+ and 2+ states, showing the importance of oxygen holes. The concentration of these holes seems to increase with the number of Tl-O layers.

  16. Magnetism and the absence of superconductivity in the praseodymium–silicon system doped with carbon and boron

    Energy Technology Data Exchange (ETDEWEB)

    de la Venta, J.; Basaran, Ali C.; Grant, T.; Gallardo-Amores, J. M.; Ramirez, J. G.; Alario-Franco, M. A.; Fisk, Z.; Schuller, Ivan K.

    2013-08-01

    We searched for new structural, magnetic and superconductivity phases in the Pr–Si system using high-pressure high-temperature and arc melting syntheses. Both high and low Si concentration areas of the phase diagram were explored. Although a similar approach in the La–Si system produced new stable superconducting phases, in the Pr–Si system we did not find any new superconductors. At low Si concentrations, the arc-melted samples were doped with C or B. It was found that addition of C gave rise to multiple previously unknown ferromagnetic phases. Furthermore, X-ray refinement of the undoped samples confirmed the existence of the so far elusive Pr3Si2 phase.

  17. An overview of Boeing flywheel energy storage systems with high-temperature superconducting bearings

    Science.gov (United States)

    Strasik, M.; Hull, J. R.; Mittleider, J. A.; Gonder, J. F.; Johnson, P. E.; McCrary, K. E.; McIver, C. R.

    2010-03-01

    An overview summary of recent Boeing work on high-temperature superconducting (HTS) bearings is presented. A design is presented for a small flywheel energy storage system that is deployable in a field installation. The flywheel is suspended by a HTS bearing whose stator is conduction cooled by connection to a cryocooler. At full speed, the flywheel has 5 kW h of kinetic energy, and it can deliver 3 kW of three-phase 208 V power to an electrical load. The entire system, which includes a containment structure, is compatible with transportation by forklift or crane. Laboratory measurements of the bearing loss are combined with the parasitic loads to estimate the efficiency of the system. Improvements in structural composites are expected to enable the operation of flywheels with very high rim velocities. Small versions of such flywheels will be capable of very high rotational rates and will likely require the low loss inherent in HTS bearings to achieve these speeds. We present results of experiments with small-diameter rotors that use HTS bearings for levitation and rotate in vacuum at kHz rates. Bearing losses are presented as a function of rotor speed.

  18. Construction of sputtering system and preparation of high temperature superconducting thin films

    CERN Document Server

    Kaynak, E

    2000-01-01

    The preparation of high T sub c superconducting thin film is important both for the understanding of fundamental behaviours of these materials and for the investigations on the usefulness of technological applications. High quality thin films can be prepared by various kinds of techniques being used today. Among these, sputtering is the most preferred one. The primary aim of this work is the construction of a r. f. and c. magnetron sputtering system. For this goal, a magnetron sputtering system was designed and constructed having powers up to 500W (r.f.) and 1KW (d.c.) that enables to deposit thin films of various kinds of materials: metals, ceramics and magnetic materials. The temperature dependence of the electrical resistance of the films was investigated by using four-point probe method. The zero resistance and the transition with of the films were measured as 80-85 K, and 2-9 K, respectively. The A.C. susceptibility experiments were done by utilising the system that was designed and constructed. The appl...

  19. Combined hydrogen and lithium beam emission spectroscopy observation system for Korea Superconducting Tokamak Advanced Research

    Energy Technology Data Exchange (ETDEWEB)

    Lampert, M. [Wigner RCP, Euratom Association-HAS, Budapest (Hungary); BME NTI, Budapest (Hungary); Anda, G.; Réfy, D.; Zoletnik, S. [Wigner RCP, Euratom Association-HAS, Budapest (Hungary); Czopf, A.; Erdei, G. [Department of Atomic Physics, BME IOP, Budapest (Hungary); Guszejnov, D.; Kovácsik, Á.; Pokol, G. I. [BME NTI, Budapest (Hungary); Nam, Y. U. [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-07-15

    A novel beam emission spectroscopy observation system was designed, built, and installed onto the Korea Superconducting Tokamak Advanced Research tokamak. The system is designed in a way to be capable of measuring beam emission either from a heating deuterium or from a diagnostic lithium beam. The two beams have somewhat complementary capabilities: edge density profile and turbulence measurement with the lithium beam and two dimensional turbulence measurement with the heating beam. Two detectors can be used in parallel: a CMOS camera provides overview of the scene and lithium beam light intensity distribution at maximum few hundred Hz frame rate, while a 4 × 16 pixel avalanche photo-diode (APD) camera gives 500 kHz bandwidth data from a 4 cm × 16 cm region. The optics use direct imaging through lenses and mirrors from the observation window to the detectors, thus avoid the use of costly and inflexible fiber guides. Remotely controlled mechanisms allow adjustment of the APD camera’s measurement location on a shot-to-shot basis, while temperature stabilized filter holders provide selection of either the Doppler shifted deuterium alpha or lithium resonance line. The capabilities of the system are illustrated by measurements of basic plasma turbulence properties.

  20. Development of a machine protection system for the Superconducting Beam Test Facility at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Warner, A.; Carmichael, L.; Church, M.; Neswold, R.; /Fermilab

    2011-09-01

    Fermilab's Superconducting RF Beam Test Facility currently under construction will produce electron beams capable of damaging the acceleration structures and the beam line vacuum chambers in the event of an aberrant accelerator pulse. The accelerator is being designed with the capability to operate with up to 3000 bunches per macro-pulse, 5Hz repetition rate and 1.5 GeV beam energy. It will be able to sustain an average beam power of 72 KW at the bunch charge of 3.2 nC. Operation at full intensity will deposit enough energy in niobium material to approach the melting point of 2500 C. In the early phase with only 3 cryomodules installed the facility will be capable of generating electron beam energies of 810 MeV and an average beam power that approaches 40 KW. In either case a robust Machine Protection System (MPS) is required to mitigate effects due to such large damage potentials. This paper will describe the MPS system being developed, the system requirements and the controls issues under consideration.

  1. Effective method to control the levitation force and levitation height in a superconducting maglev system

    Institute of Scientific and Technical Information of China (English)

    杨芃焘; 杨万民; 王妙; 李佳伟; 郭玉霞

    2015-01-01

    The influence of the width of the middle magnet in the permanent magnet guideways (PMGs) on the levitation force and the levitation height of single-domain yttrium barium copper oxide (YBCO) bulks has been investigated at 77 K under the zero field cooled (ZFC) state. It is found that the largest levitation force can be obtained in the system with the width of the middle magnet of the PMG equal to the size of the YBCO bulk when the gap between the YBCO bulk and PMG is small. Both larger levitation force and higher levitation height can be obtained in the system with the width of the middle magnet of the PMG larger than the size of the YBCO bulk. The stiffness of the levitation force between the PMG and the YBCO bulk is higher in the system with a smaller width of the middle magnet in the PMG. These results provide an effective way to control the levitation force and the levitation height for the superconducting maglev design and applications.

  2. Crystal structure of 200 K-superconducting phase in sulfur hydride system

    Energy Technology Data Exchange (ETDEWEB)

    Einaga, Mari; Sakata, Masafumi; Ishikawa, Takahiro; Shimizu, Katsuya [KYOKUGEN, Graduate School of Engineering Science, Osaka Univ. (Japan); Eremets, Mikhail; Drozdov, Alexander; Troyan, Ivan [Max Planck Institut fuer Chemie, Mainz (Germany); Hirao, Naohisa; Ohishi, Yasuo [JASRI/SPring-8, Hyogo (Japan)

    2016-07-01

    Superconductivity with the critical temperature T{sub c} above 200 K has been recently discovered by compression of H{sub 2}S (or D{sub 2}S) under extreme pressure. It was proposed that these materials decompose under high pressure to elemental sulfur and hydride with higher content of hydrogen which is responsible for the high temperature superconductivity. In this study, we have investigated that the crystal structure of the superconducting compressed H{sub 2}S and D{sub 2}S by synchrotron x-ray diffraction measurements combined with electrical resistance measurements at room and low temperatures. We found that the superconducting phase is in good agreement with theoretically predicted body-centered cubic structure, and coexists with elemental sulfur, which claims that the formation of 3H{sub 2}S → 2H{sub 3}S + S is occured under high pressure.

  3. Properties of superconducting Bi-Sr-Ca-Cu-O system remelted under higher gravity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Volkov, M.P.; Melekh, B.T.; Parfeniev, R.V.; Kartenko, N.F. (A.F. Ioffe Physical Technical Inst., Academy of Sciences, Moscow (Russia)); Regel, L.L.; Turchaninov, A.M. (Space Research Inst., Academy of Sciences, Moscow (Russia))

    1992-04-01

    The structure and magnetic properties of high Tc superconductor Bi-Sr-Ca-Cu-O samples remelted under 1g{sub 0}, 8g{sub 0} and 12g{sub 0} gravity levels have been investigated. Superconducting properties make a change along the ingots. The dependence of structural and superconducting properties on the gravity level and their time degradation have been observed. (orig.).

  4. Thermal Performance of the Supporting System for the Large Hadron Collider (LHC) Superconducting Magnets

    CERN Document Server

    Castoldi, M; Parma, Vittorio; Vandoni, Giovanna

    1999-01-01

    The LHC collider will be composed of approximately 1700 main ring superconducting magnets cooled to 1.9 K in pressurised superfluid helium and supported within their cryostats on low heat in-leak column-type supports. The precise positioning of the heavy magnets and the stringent thermal budgets imposed by the machine cryogenic system, require a sound thermo-mechanical design of the support system. Each support is composed of a main tubular thin-walled structure in glass-fibre reinforced epoxy resin, with its top part interfaced to the magnet at 1.9 K and its bottom part mounted onto the cryostat vacuum vessel at 293 K. In order to reduce the conduction heat in-leak at 1.9 K, each support mounts two heat intercepts at intermediate locations on the column, both actively cooled by cryogenic lines carrying helium gas at 4.5-10 K and 50-65 K. The need to assess the thermal performance of the supports has lead to setting up a dedicated test set-up for precision heat load measurements on prototype supports. This pa...

  5. Upgraded phase control system for superconducting low-velocity accelerating structures

    Energy Technology Data Exchange (ETDEWEB)

    Added, N. (Sao Paulo Univ., SP (Brazil). Dept. de Fisica Nuclear); Clifft, B.E.; Shepard, K.W. (Argonne National Lab., IL (United States))

    1992-01-01

    Microphonic-induced fluctuations in the RF eigenfrequency of superconducting (SC) slow-wave structures must be compensated by a fast-tuning system in order to control the RF phase. The tuning system must handle a reactive power proportional to the product of the frequency range and the RF energy content of the Rf cavity. The fast tuner for the SC resonators in the ATLAS heavy-ion linac is a voltage-controlled reactance based on an array of PIN diodes operating immersed in liquid nitrogen. This paper discusses recent upgrades to the ATLAS fast tuner which can now provide as much as 30 KVA of reactive tuning capability with a real RF power loss of less than 300 watts. The design was guided by numerical modeling of all elements of the device. Also discussed is the RF coupler which can couple 30 KW from 77 K tuner to a 42 K resonant cavity with less than 2 W of RF loss into 4.2 K.

  6. Upgraded phase control system for superconducting low-velocity accelerating structures

    Energy Technology Data Exchange (ETDEWEB)

    Added, N. [Sao Paulo Univ., SP (Brazil). Dept. de Fisica Nuclear; Clifft, B.E.; Shepard, K.W. [Argonne National Lab., IL (United States)

    1992-09-01

    Microphonic-induced fluctuations in the RF eigenfrequency of superconducting (SC) slow-wave structures must be compensated by a fast-tuning system in order to control the RF phase. The tuning system must handle a reactive power proportional to the product of the frequency range and the RF energy content of the Rf cavity. The fast tuner for the SC resonators in the ATLAS heavy-ion linac is a voltage-controlled reactance based on an array of PIN diodes operating immersed in liquid nitrogen. This paper discusses recent upgrades to the ATLAS fast tuner which can now provide as much as 30 KVA of reactive tuning capability with a real RF power loss of less than 300 watts. The design was guided by numerical modeling of all elements of the device. Also discussed is the RF coupler which can couple 30 KW from 77 K tuner to a 42 K resonant cavity with less than 2 W of RF loss into 4.2 K.

  7. Tunable High Q Superconducting Microwave Resonator for Hybrid System with ^87Rb atoms

    Science.gov (United States)

    Kim, Zaeill; Voigt, K. D.; Lee, Jongmin; Hoffman, J. E.; Grover, J. A.; Ravets, S.; Zaretskey, V.; Palmer, B. S.; Hafezi, M.; Taylor, J. M.; Anderson, J. R.; Dragt, A. J.; Lobb, C. J.; Orozco, L. A.; Rolston, S. L.; Wellstood, F. C.

    2012-02-01

    We have developed a frequency tuning system for a ``lumped-element'' thin-film superconducting Al microwave resonator [1] on sapphire intended for coupling to hyperfine ground states of cold trapped ^87Rb atoms, which are separated by about fRb=6.83 GHz. At T=12 mK and on resonance at 6.81 GHz, the loaded quality factor was 120,000. By moving a carefully machined Al pin towards the inductor of the resonator using a piezo stage, we were able to tune the resonance frequency over a range of 35 MHz and within a few kHz of fRb. While measuring the power dependent response of the resonator at each tuned frequency, we observed anomalous decreases in the quality factor at several frequencies. These drops were more pronounced at lower power. We discuss our results, which suggest these resonances are attributable to discrete two-level systems.[4pt] [1] Z. Kim et al., AIP ADVANCES 1, 042107 (2011).

  8. Design and analysis of an electromagnetic turnout for the superconducting Maglev system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.J. [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China); School of Information Science and Technology, Southwest Jiaotong University, Chengdu 610031 (China); Dai, Q. [School of Information Science and Technology, Southwest Jiaotong University, Chengdu 610031 (China); Zhang, Y. [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China); Wang, H.; Chen, Z. [School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Sun, R.X.; Zheng, J. [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China); Deng, C.Y. [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China); School of Information Science and Technology, Southwest Jiaotong University, Chengdu 610031 (China); Deng, Z.G., E-mail: deng@swjtu.cn [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China)

    2016-09-15

    Highlights: • The switching principle of electromagnetic turnout for a Halbach-type magnetic rail was presented. • Shape design and optimization of the electromagnet for electromagnetic turnout were conducted. • Magnetic field distribution over the working area of electromagnetic turnout was analyzed. • Feasibility of the electromagnetic turnout was proved. - Abstract: Turnout is a crucial track junction device of the ground rail transportation system. For high temperature superconducting (HTS) Maglev system, the permanent magnet guideway (PMG) makes the strong magnetic force existing between rail segments, which may cause moving difficulties and increase the operation cost when switching a PMG. In this paper, a non-mechanical ‘Y’ shaped Halbach-type electromagnetic turnout was proposed. By replacing the PMs with electromagnets, the turnout can guide the maglev vehicle running into another PMG by simply controlling the current direction of electromagnets. The material and structure parameters of the electromagnets were optimized by simulation. The results show that the optimized electromagnet can keep the magnetic field above it as strong as the PMs’, meanwhile feasible for design and manufacture. This work provides valuable references for the future design in non-mechanical PMG turnout.

  9. Nonlinear resonances of three modes in a high-T{sub c} superconducting magnetic levitation system

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Masahiko, E-mail: galian@z2.keio.jp; Sakaguchi, Ryunosuke; Sugiura, Toshihiko, E-mail: sugiura@mach.keio.ac.jp

    2013-11-15

    Highlights: •We studied two nonlinear vibrations of a levitated beam supported by superconductors. •One of the vibrations is combination resonance of the 1st mode and the 3rd mode. •The other vibration is autoparametric resonance of the 2nd mode. •When the amplitude of the 2nd mode is small, the combination resonance is suppressed. •Otherwise, the two resonances can be resonated simultaneously. -- Abstract: In a high-T{sub c} superconducting magnetic levitation system, an object can levitate without control and contact. So it is expected to be applied to magnetically levitated transportation. To use it safely, lightening the levitated object is necessary. But this reduces the bending stiffness of the object. Besides, the system has nonlinearity. Therefore nonlinear elastic vibration can occur. This study focused on how plural nonlinear elastic vibrations of the 1st, 2nd and 3rd modes simultaneously occur. Our numerical calculation and experiment found out that the three modes simultaneously resonate when the amplitude of the 2nd mode is large enough whereas only the 2nd mode resonates when it is small.

  10. Vibration reduction using autoparametric resonance in a high-Tc superconducting levitation system

    Science.gov (United States)

    Yamasaki, Hiroshi; Takazakura, Toyoki; Sakaguchi, Ryunosuke; Sugiura, Toshihiko

    2014-05-01

    High-Tc superconducting levitation systems have very small damping and enable stable levitation without control. Therefore, they can be applied to various kinds of application. However, there are some problems that small damping produces large vibration and nonlinearity of magnetic force can generate complicated phenomena. Accordingly, analysis of these phenomena and reduction of vibration occurring in the system are important. In this study, we examined reduction of vibration without using any absorbers, but utilizing autoparametric resonance caused by nonlinear coupling between vertical oscillation and horizontal oscillation. We conducted numerical analysis and experiments in order to investigate motions of a rigid bar levitated by the electromagnetic force from high-Tc superconductors. As a result, if the ratio of the natural frequency of vertical oscillation and that of horizontal oscillation is two to one, the vertical oscillation decreases while the horizontal oscillation is excited. Thus, it was confirmed that the amplitude of a primary resonance can be reduced by occurrence of autoparametric resonance without using any absorbers.

  11. System and Method for Fabricating Super Conducting Circuitry on Both Sides of an Ultra-Thin Layer

    Science.gov (United States)

    Brown, Ari D. (Inventor); Mikula, Vilem (Inventor)

    2017-01-01

    A method of fabricating circuitry in a wafer includes depositing a superconducting metal on a silicon on insulator wafer having a handle wafer, coating the wafer with a sacrificial layer and bonding the wafer to a thermally oxide silicon wafer with a first epoxy. The method includes flipping the wafer, thinning the flipped wafer by removing a handle wafer, etching a buried oxide layer, depositing a superconducting layer, bonding the wafer to a thermally oxidized silicon wafer having a handle wafer using an epoxy, flipping the wafer again, thinning the flipped wafer, etching a buried oxide layer from the wafer and etching the sacrificial layer from the wafer. The result is a wafer having superconductive circuitry on both sides of an ultra-thin silicon layer.

  12. Design of a cryogenic system for a 20m direct current superconducting MgB2 and YBCO power cable

    Science.gov (United States)

    Cheadle, Michael J.; Bromberg, Leslie; Jiang, Xiaohua; Glowacki, Bartek; Zeng, Rong; Minervini, Joseph; Brisson, John

    2014-01-01

    The Massachusetts Institute of Technology, the University of Cambridge in the United Kingdom, and Tsinghua University in Beijing, China, are collaborating to design, construct, and test a 20 m, direct current, superconducting MgB2 and YBCO power cable. The cable will be installed in the State Key Laboratory of Power Systems at Tsinghua University in Beijing beginning in 2013. In a previous paper [1], the cryogenic system was briefly discussed, focusing on the cryogenic issues for the superconducting cable. The current paper provides a detailed discussion of the design, construction, and assembly of the cryogenic system and its components. The two-stage system operates at nominally 80 K and 20 K with the primary cryogen being helium gas. The secondary cryogen, liquid nitrogen, is used to cool the warm stage of binary current leads. The helium gas provides cooling to both warm and cold stages of the rigid cryostat housing the MgB2 and YBCO conductors, as well as the terminations of the superconductors at the end of the current leads. A single cryofan drives the helium gas in both stages, which are thermally isolated with a high effectiveness recuperator. Refrigeration for the helium circuit is provided by a Sumitomo RDK415 cryocooler. This paper focuses on the design, construction, and assembly of the cryostat, the recuperator, and the current leads with associated superconducting cable terminations.

  13. Interdiffusion studies on high-Tc superconducting YBa2Cu3O7-δ thin films on Si(111) with a NiSi2/ZrO2 buffer layer

    DEFF Research Database (Denmark)

    Aarnink, W.A.M.; Blank, D.H.A.; Adelerhof, D.J.

    1991-01-01

    Interdiffusion studies on high-T(c) superconducting YBa2Cu3O7-delta thin films with thickness in the range of 2000-3000 angstrom, on a Si(111) substrate with a buffer layer have been performed. The buffer layer consists of a 400 angstrom thick epitaxial NiSi2 layer covered with 1200 angstrom...... x 10(4) A/cm2. With X-ray analysis (XRD), only c-axis orientation has been observed. The interdiffusion studies, using Rutherford backscattering spectrometry (RBS) and scanning Auger microscopy (SAM) show that the ZrO2 buffer layer prevents severe Si diffusion to the YBa2Cu3O7-delta layer, the Si...... substrate and Ni segregation to the surface of the ZrO2 layer may be expected. From the results we may conclude that, when using laser ablation, it is well possible to grow polycrystalline, c-axis-oriented high-T(c) superconducting YBa2Cu3O7-delta thin films on a Si(111) substrate with a NiSi2/ZrO2 buffer...

  14. Development of cooling systems for high-Tc superconducting sampler; Koon chodendo sanpura reikyaku shisutemu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, S. [Daikin Industries Ltd., Osaka (Japan). Air-Conditioning R and D Lab.; Kang, Y.M. [Daikin Industries Ltd., Osaka (Japan). ENvironmental Lab.

    2000-05-29

    The sampler applying the high speed responsibility of high temperature super-conducting Josephson junction and height of the critical current sensitivity is expected as means of accurately observing super speed digital signal waveform. The high temperature super-conducting element practically used in combination with a small sized refrigerator up to now is a microwave filter being a driven element and a SQUID being a low speed analog element. In this study, the element using high speed switching characteristic of the Josephson junction like sampler circuit is applied to two small refrigerating machines of Stirling refrigerating machine and GM type pulse tube refrigerating machine. As an example of the former, a system for observing super-speed digital waveform is introduced. In this system, Stirling refrigerating machine of 5W(at mark)80K class is used in order to obtain the cooling temperature below 40K for improving the performance of the high temperature superconductivity sampler. As an example of the latter, a current waveform measurement system is introduced. (NEDO)

  15. Application of Elastic Layered System in the Design of Road

    Directory of Open Access Journals (Sweden)

    Jia Ying

    2015-07-01

    Full Text Available Elastic layered system is widely used in road design because of its reasonable assumptions, simple calculation model and typical represent activeness. Although the hypothesis is partly different from the actual structure, it is irreplaceable and worthy of further study in the current level of science and technology. This paper lists and briefly describes the application of elastic layered system theory in the calculation of asphalt pavement thickness and subgrade the stress analysis of cement concrete pavement and porous concrete base load to illustrate the generalizability of application of elastic layered system and look to the future road.

  16. Superconducting phase formation in random neck syntheses: a study of the Y-Ba-Cu-O system by magneto-optics and magnetometry

    Energy Technology Data Exchange (ETDEWEB)

    Willems, J B; Landau, I L; Hulliger, J [Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, CH-3012-Berne (Switzerland); Albrecht, J [Max-Planck-Institute for Metals Research, Heisenbergstrasse 3, D-70569 Stuttgart (Germany)

    2009-04-15

    Magneto-optical imaging and magnetization measurements were applied to investigate the local formation of a superconducting phase effected by a random neck synthesis in the Y-Ba-Cu-O system. Polished pellets of strongly inhomogeneous ceramic samples show clearly the appearance of superconducting material in the intergrain zones of binary primary particles reacted under different conditions. Susceptibility measurements allowed evaluation of the superconducting critical temperature, which turned out to be close to that of optimally doped YBa{sub 2}Cu{sub 3}O{sub 7-x}.

  17. Studying temperature dependence of pairing gap parameter in a nucleus as a small superconducting system

    Science.gov (United States)

    Rahmatinejad, A.; Razavi, R.; Kakavand, T.

    2016-07-01

    In this paper, we have taken the effect of small size of nucleus and static fluctuations into account in the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity calculations of 45Ti nucleus. Thermodynamic quantities of 45Ti have been extracted within the BCS model with the inclusion of the average value of the pairing gap square, extracted by the modified Ginzburg-Landau (MGL) method for small systems. Calculated values of the excitation energy and entropy within the MGL+BCS method improve the extracted results within the usual BCS model and show a smooth behavior around the critical temperature with a very good agreement with the semi-empirical values. The result of using MGL+BCS method for the heat capacity of 45Ti is compared with the corresponding semi-empirical values and the calculated values within the BCS, static path approximation (SPA) and Modified Pairing gap BCS (MPBCS) which is a method that was proposed in our previous publications. Both MGL+BCS and MPBCS avoid the discontinuity of the heat capacity curve, which is observed in the usual BCS method, and lead to an S-shaped curve with a good agreement with the semi-empirical results.

  18. Performance test of current lead cooled by a cryocooler in low temperature superconducting magnet system

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yeon Suk, E-mail: ychoi@kbsi.re.kr; Kim, Myung Su

    2013-11-15

    Highlights: •The current lead with multi-contact connector in the joint was fabricated for performance test. •The electrical contact resistance in the joint was measured during magnet charging. •The resistances of the joint were 0.4–0.9 mΩ for 40–80 K. •The heat generation due to electrical contact resistance was reduced below 1 W by multiple spring louvers. -- Abstract: In a low temperature superconducting magnet system, heat leakage through current leads is one of the major factors in cryogenic load. The semi-retractable current lead is a good option because the conductive heat leakage can be eliminated after the excitation of the magnet. It is composed of a normal metal element, conducting the current from room temperature to intermediate temperature, and an HTS element, conducting the current down to liquid helium temperature. The normal metal element is disengaged from the HTS element through the multi-contact connector without disturbance to the insulating vacuum space and without requiring complete removal of the normal metal element. The intermediate block with a lockable set point is thermally connected to the first stage of cryocooler and carries current through a strip of louvered material. The electrical contact resistance of multi-contact connector in the intermediate block is measured during magnet charging process. The effects of current level as well as operating temperature on the heat generation in the joint block are also discussed.

  19. Performance test of current lead cooled by a cryocooler in low temperature superconducting magnet system

    Science.gov (United States)

    Choi, Yeon Suk; Kim, Myung Su

    2013-11-01

    In a low temperature superconducting magnet system, heat leakage through current leads is one of the major factors in cryogenic load. The semi-retractable current lead is a good option because the conductive heat leakage can be eliminated after the excitation of the magnet. It is composed of a normal metal element, conducting the current from room temperature to intermediate temperature, and an HTS element, conducting the current down to liquid helium temperature. The normal metal element is disengaged from the HTS element through the multi-contact connector without disturbance to the insulating vacuum space and without requiring complete removal of the normal metal element. The intermediate block with a lockable set point is thermally connected to the first stage of cryocooler and carries current through a strip of louvered material. The electrical contact resistance of multi-contact connector in the intermediate block is measured during magnet charging process. The effects of current level as well as operating temperature on the heat generation in the joint block are also discussed.

  20. Strongly interacting Fermi systems in 1/N expansion: From cold atoms to color superconductivity

    CERN Document Server

    Abuki, Hiroaki

    2008-01-01

    We investigate the 1/N expansion proposed recently as a strategy to include quantum fluctuation effects in the nonrelativistic, attractive Fermi gas at and near unitarity. We extend the previous results by calculating the next-to-leading order corrections to the critical temperature along the whole BCS-BEC crossover. We demonstrate explicitly that the extrapolation from the mean-field approximation, based on the $1/N$ expansion, provides a useful approximation scheme only on the BCS side of the crossover. We then apply the technique to the study of strongly interacting relativistic many-fermion systems. Having in mind the application to color superconductivity in cold dense quark matter, we develop, within a simple model, a formalism suitable to compare the effects of order parameter fluctuations in phases with different pairing patterns. Our main conclusion is that the relative correction to the critical temperature is to a good accuracy proportional to the mean-field ratio of the critical temperature and th...

  1. Dynamic response characteristics of the high-temperature superconducting maglev system under lateral eccentric distance

    Science.gov (United States)

    Wang, Bo; Zheng, Jun; Si, Shuaishuai; Qian, Nan; Li, Haitao; Li, Jipeng; Deng, Zigang

    2016-07-01

    Off-centre operation of high-temperature superconducting (HTS) maglev systems caused by inevitable conditions such as the misregistration of vehicle, crosswind and curve negotiation, may change the distribution of the trapped flux in the HTS bulks and the magnetic interaction between HTS bulks and the PMG. It impacts on the performance of HTS maglev, and more seriously makes the maglev vehicle overturned. Therefore, understanding the performance of the HTS maglev in off-center operation is very important. In this paper, the dynamic response characteristics of a cryostat with twenty-four onboard YBaCuO superconductor bulks were experimentally investigated at different eccentric distances under loads before the initial FC process. Parameters such as vibration accelerations, displacement, natural frequency and dynamic stiffness were acquired and analyzed via the B&K vibration analyzer and laser displacement sensors. Results suggest that the natural frequency and dynamic stiffness of the maglev vehicle would be obviously reduced with the eccentric distance, posing negative effects on the stability of HTS maglev.

  2. Design of a Superconducting Magnet System for the AEGIS Experiment at CERN

    CERN Document Server

    Dudarev, A; ten Kate, H; Perini, D

    2011-01-01

    The new AEGIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) Experiment will be installed in the Antiproton Decelerator hall at CERN. The main goal is to measure the Earth's gravitational acceleration of antihydrogen atoms. The experiment consists of two high-homogeneity solenoids placed on the same axis. The 5 T magnet is part of a cylindrical Penning trap to catch and to accumulate antiprotons delivered by the decelerator. The antihydrogen is then produced in the 1 T region where sub-kelvin antiproton temperatures provided by the dilution refrigerator are required to form a slowly-moving beam of antihydrogen. The helium bath cooled superconducting magnets; the different traps and the dilution refrigerator are integrated in a common cryostat with an internal vacuum barrier between the insulating cryogenic vacuum and the very high beam vacuum. In addition, the magnet system has to guarantee a smooth transition between the 5 T and the 1 T magnetic field areas required for a loss-free transfer o...

  3. New Superconducting Toroidal Magnet System for IAXO, the International AXion Observatory

    CERN Document Server

    Shilon, I; Silva, H; Wagner, U; Kate, H H J ten

    2013-01-01

    Axions are hypothetical particles that were postulated to solve one of the puzzles arising in the standard model of particle physics, namely the strong CP (Charge conjugation and Parity) problem. The new International AXion Observatory (IAXO) will incorporate the most promising solar axions detector to date, which is designed to enhance the sensitivity to the axion-photon coupling by one order of magnitude beyond the limits of the current state-of-the-art detector, the CERN Axion Solar Telescope (CAST). The IAXO detector relies on a high-magnetic field distributed over a very large volume to convert solar axions into X-ray photons. Inspired by the successful realization of the ATLAS barrel and end-cap toroids, a very large superconducting toroid is currently designed at CERN to provide the required magnetic field. This toroid will comprise eight, one meter wide and twenty one meter long, racetrack coils. The system is sized 5.2 m in diameter and 25 m in length. Its peak magnetic field is 5.4 T with a stored e...

  4. Multi-Layered Integrated Airframe System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has a need to develop higher performance ablative thermal protection systems (TPS) than is currently available for future exploration of our solar system's...

  5. Overview of data acquisition and central control system of steady state superconducting Tokamak (SST-1)

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, S., E-mail: pradhan@ipr.res.in; Mahajan, K.; Gulati, H.K.; Sharma, M.; Kumar, A.; Patel, K.; Masand, H.; Mansuri, I.; Dhongde, J.; Bhandarkar, M.; Chudasama, H.

    2016-11-15

    Highlights: • The paper gives overview on SST-1 data acquisition and central control system and future upgrade plans. • The lossless PXI based data acquisition of SST-1 is capable of acquiring around 130 channels with sampling frequency ranging from 10 KHz to 1 MHz sampling frequency. • Design, architecture and technologies used for central control system (CCS) of SST-1. • Functions performed by CCS. - Abstract: Steady State Superconducting Tokamak (SST-1) has been commissioned successfully and has been carrying out limiter assisted ohmic plasma experiments since the beginning of 2014 achieving a maximum plasma current of 75 kA at a central field of 1.5 T and the plasma duration ∼500 ms. In near future, SST-1 looks forward to carrying out elongated plasma experiments and stretching plasma pulses beyond 1 s. The data acquisition and central control system (CCS) for SST-1 are distributed, modular, hierarchical and scalable in nature The CCS has been indigenously designed, developed, implemented, tested and validated for the operation of SST-1. The CCS has been built using well proven technologies like Redhat Linux, vxWorks RTOS for deterministic control, FPGA based hardware implementation, Ethernet, fiber optics backbone for network, DSP for real-time computation & Reflective memory for high-speed data transfer etc. CCS in SST-1 controls & monitors various heterogeneous SST-1 subsystems dispersed in the same campus. The CCS consists of machine control system, basic plasma control system, GPS time synchronization system, storage area network (SAN) for centralize data storage, SST-1 networking system, real-time networks, SST-1 control room infrastructure and many other supportive systems. Machine Control System (MCS) is a multithreaded event driven system running on Linux based servers, where each thread of the software communicates to a unique subsystem for monitoring and control from SST-1 central control room through network programming. The CCS hardware

  6. Live-Grid Operation and Maintenance of the 35 kV/121 MVA Superconducting Cable System

    Institute of Scientific and Technical Information of China (English)

    Huan-Huan Li; An-Lin Ren; Ying Xin; Hui Hong; Zhi-Li Chen; Lin-Na Shi

    2008-01-01

    A 33.5 m, 35 kV/121 MVA, three-phase, warm dielectric HTS power cable system was successfully installed and activated in China Southern Power Grid at the Puji substation in Kunming on April 19th of 2004, supplying electricity to four industrial customers (including two metallurgical refineries) and a residential population of about 100000. In this paper, we give an update on the operation and maintenance status of the system and comments on reliability issues. We conclude that the superconducting cable system is currently quite robust and feasible for particular utility applications, and it will be improved by advancement in cryogenic equipment and system technology.

  7. Superconducting electronics

    NARCIS (Netherlands)

    Rogalla, Horst

    1994-01-01

    During the last decades superconducting electronics has been the most prominent area of research for small scale applications of superconductivity. It has experienced quite a stormy development, from individual low frequency devices to devices with high integration density and pico second switching

  8. Superconductivity in the Sn-Ba-Sr-Y-Cu-O system

    Science.gov (United States)

    Aleksandrov, K. S.; Khrustalev, B. P.; Krivomazov, S. N.; Petrov, M. I.; Vasilyev, A. D.; Zwegintsev, S. A.

    1991-01-01

    After the discovery of high-T(sub c) superconductivity in the La-Ba-Cu-O compound, several families of superconducting oxides were synthesized. Here, researchers report the results of the search for superconductivity in the compounds based on tin which has a lone electron pair like Bi, Tl, and Pb. The following compounds were synthesized: Sn1Ba1Sr1Cu3O(sub x), Sn1Ba1Ca1Cu3O(sub x), Sn1Ba1Mg1Cu3O(sub x), Sn1Sr1Ca1Cu3O(sub x), Sn1Sr1Mg1Cu3O(sub x), and Sn1Ca1Mg1Cu3O(sub x). The initial components were oxides and carbonates of the appropriate elements. A standard firing-grinding procedure was used. Final heating was carried out at 960 C during 12 hours. Then the samples were cooled inside the furnace. All the synthesis cycles were carried out in air atmosphere. Among the synthesized compounds only Sn1Ba1Sr1Cu3O(sub x) showed remarkable conductivity. Other compounds were practically dielectrics. Presence of a possible superconductivity in Sn1Ba1Sr1Cu3O(sub x) was defined by using the Meissner effect. At low temperature a deviation from paramagnetic behavior is observed. The hysteresis loops obtained at lower temperature undoubtly testify to the presence of a superconductive phase in the sample. However, the part of the superconductive phase in the Sn1Ba1Sr1Cu3O(sub x) ceramic turned out to be small, less than 2 percent, which agrees with the estimation from magnetic data. In order to increase the content of the superconductive phase, two-valent cations Ba and Sr were partially substituted by univalent (K) and three-valent ones (Y).

  9. Possibility of a gas-cooled Peltier current lead in the 200 m-class superconducting direct current transmission and distribution system of CASER-2

    Science.gov (United States)

    Kawahara, Toshio; Emoto, Masahiko; Watanabe, Hirofumi; Hamabe, Makoto; Yamaguchi, Sataro; Hikichi, Yasuo; Minowa, Masahiro

    Global energy problems should be solved quickly, and superconducting applications are highly demanded as energy saving technologies. Among them, long-distance superconducting transmission seems to be one of the most promising for energy saving by energy sharing. On the other hand, such large systems can be constructed from smaller network systems that can be enhanced by scaling up to the superconducting grid. Reducing heat leak to the low temperature end is the most important aspect of technology for practical superconducting applications, and heat leak reduction at the terminal is a key goal especially for small-length applications. At Chubu University, we have developed a 200 m-class superconducting direct current transmission and distribution system (CASER-2), in which we also used a Peltier current lead (PCL) as heat insulation at the terminal. PCL is composed of a thermoelectric material and a copper lead. In actual transmission and distribution applications, the cables are also cooled by the coolant. After the circulation, the coolant could also be used to cool the current lead. We will discuss the performance of such gas-cooled systems as the total performance of applied superconducting systems using the experimental parameters obtained in CASER-2.

  10. A single-sided linear synchronous motor with a high temperature superconducting coil as the excitation system

    Energy Technology Data Exchange (ETDEWEB)

    Yen, F; Li, J; Zheng, S J; Liu, L; Ma, G T; Wang, J S; Wang, S Y; Liu Wei, E-mail: fei.h.yen@gmail.co [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)

    2010-10-15

    Thrust measurements were performed on a coil made of a YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} coated conductor acting as the excitation system of a single-sided linear synchronous motor. The superconducting coil was a single pancake in the shape of a racetrack with 100 turns, the width and effective lengths were 42 mm and 84 mm, respectively. The stator was made of conventional copper wire. At 77 K and a gap of 10 mm, with an operating direct current of I{sub DC} = 30 A for the superconducting coil and alternating current of I{sub AC} = 9 A for the stator coils, a thrust of 24 N was achieved. With addition of an iron core, thrust was increased by 49%. With addition of an iron back-plate, thrust was increased by 70%.

  11. Probing the density of states of two-level tunneling systems in silicon oxide films using superconducting lumped element resonators

    Energy Technology Data Exchange (ETDEWEB)

    Skacel, S. T. [Physikalisches Institut, Karlsruher Institut für Technologie, Wolfgang-Gaede-Straße 1, D-76131 Karlsruhe (Germany); Institut für Mikro- und Nanoelektronische Systeme, Karlsruher Institut für Technologie, Hertzstraße 16, D-76187 Karlsruhe (Germany); Kaiser, Ch.; Wuensch, S.; Siegel, M. [Institut für Mikro- und Nanoelektronische Systeme, Karlsruher Institut für Technologie, Hertzstraße 16, D-76187 Karlsruhe (Germany); Rotzinger, H.; Lukashenko, A.; Jerger, M.; Weiss, G. [Physikalisches Institut, Karlsruher Institut für Technologie, Wolfgang-Gaede-Straße 1, D-76131 Karlsruhe (Germany); Ustinov, A. V. [Physikalisches Institut, Karlsruher Institut für Technologie, Wolfgang-Gaede-Straße 1, D-76131 Karlsruhe (Germany); Russian Quantum Center, 100 Novaya St., Skolkovo, Moscow Region 143025 (Russian Federation)

    2015-01-12

    We have investigated dielectric losses in amorphous silicon oxide (a-SiO) thin films under operating conditions of superconducting qubits (mK temperatures and low microwave powers). For this purpose, we have developed a broadband measurement setup employing multiplexed lumped element resonators using a broadband power combiner and a low-noise amplifier. The measured temperature and power dependences of the dielectric losses are in good agreement with those predicted for atomic two-level tunneling systems (TLS). By measuring the losses at different frequencies, we found that the TLS density of states is energy dependent. This had not been seen previously in loss measurements. These results contribute to a better understanding of decoherence effects in superconducting qubits and suggest a possibility to minimize TLS-related decoherence by reducing the qubit operation frequency.

  12. Superconducting Qubit Optical Transducer (SQOT)

    Science.gov (United States)

    2015-08-05

    SECURITY CLASSIFICATION OF: The SQOT (Superconducting Qubit Optical Transducer ) project proposes to build a novel electro-optic system which can...Apr-2015 Approved for Public Release; Distribution Unlimited Final Report: "Superconducting Qubit Optical Transducer " (SQOT) The views, opinions and...journals: Number of Papers published in non peer-reviewed journals: Final Report: "Superconducting Qubit Optical Transducer " (SQOT) Report Title The

  13. Effective method to control the levitation force and levitation height in a superconducting maglev system

    Science.gov (United States)

    Yang, Peng-Tao; Yang, Wan-Min; Wang, Miao; Li, Jia-Wei; Guo, Yu-Xia

    2015-11-01

    The influence of the width of the middle magnet in the permanent magnet guideways (PMGs) on the levitation force and the levitation height of single-domain yttrium barium copper oxide (YBCO) bulks has been investigated at 77 K under the zero field cooled (ZFC) state. It is found that the largest levitation force can be obtained in the system with the width of the middle magnet of the PMG equal to the size of the YBCO bulk when the gap between the YBCO bulk and PMG is small. Both larger levitation force and higher levitation height can be obtained in the system with the width of the middle magnet of the PMG larger than the size of the YBCO bulk. The stiffness of the levitation force between the PMG and the YBCO bulk is higher in the system with a smaller width of the middle magnet in the PMG. These results provide an effective way to control the levitation force and the levitation height for the superconducting maglev design and applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 51342001 and 50872079), the Key-grant Project of Chinese Ministry of Education (Grant No. 311033), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120202110003), the Innovation Team in Shaanxi Province, China (Grant No. 2014KTC-18), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. GK201101001 and GK201305014), and the Outstanding Doctoral Thesis Foundation Project of Shaanxi Normal University, China (Grant Nos. X2011YB08 and X2012YB05).

  14. Cross-Layer Adaptive Feedback Scheduling of Wireless Control Systems

    CERN Document Server

    Xia, Feng; Peng, Chen; Sun, Youxian; Dong, Jinxiang

    2008-01-01

    There is a trend towards using wireless technologies in networked control systems. However, the adverse properties of the radio channels make it difficult to design and implement control systems in wireless environments. To attack the uncertainty in available communication resources in wireless control systems closed over WLAN, a cross-layer adaptive feedback scheduling (CLAFS) scheme is developed, which takes advantage of the co-design of control and wireless communications. By exploiting cross-layer design, CLAFS adjusts the sampling periods of control systems at the application layer based on information about deadline miss ratio and transmission rate from the physical layer. Within the framework of feedback scheduling, the control performance is maximized through controlling the deadline miss ratio. Key design parameters of the feedback scheduler are adapted to dynamic changes in the channel condition. An event-driven invocation mechanism for the feedback scheduler is also developed. Simulation results sh...

  15. Reprint of “Performance analysis of a model-sized superconducting DC transmission system based VSC-HVDC transmission technologies using RTDS”

    Science.gov (United States)

    Dinh, Minh-Chau; Ju, Chang-Hyeon; Kim, Sung-Kyu; Kim, Jin-Geun; Park, Minwon; Yu, In-Keun

    2013-01-01

    The combination of a high temperature superconducting DC power cable and a voltage source converter based HVDC (VSC-HVDC) creates a new option for transmitting power with multiple collection and distribution points for long distance and bulk power transmissions. It offers some greater advantages compared with HVAC or conventional HVDC transmission systems, and it is well suited for the grid integration of renewable energy sources in existing distribution or transmission systems. For this reason, a superconducting DC transmission system based HVDC transmission technologies is planned to be set up in the Jeju power system, Korea. Before applying this system to a real power system on Jeju Island, system analysis should be performed through a real time test. In this paper, a model-sized superconducting VSC-HVDC system, which consists of a small model-sized VSC-HVDC connected to a 2 m YBCO HTS DC model cable, is implemented. The authors have performed the real-time simulation method that incorporates the model-sized superconducting VSC-HVDC system into the simulated Jeju power system using Real Time Digital Simulator (RTDS). The performance analysis of the superconducting VSC-HVDC systems has been verified by the proposed test platform and the results were discussed in detail.

  16. SC Power leads and cables - Nominal Current Test Performance of 2 kA-Class High-Tc Superconducting Cable Conductors and Its Implications for Cooling Systems for Utility Cables

    DEFF Research Database (Denmark)

    Willen, D. W. A; Daumling, M.; Rasmussen, C. N.

    2000-01-01

    at high currents. The critical currents of these conductors are in the range of 1-3 kA, and ac losses smaller than 1 W/m are measured at 2 kArms. AC currents with peak values exceeding the dc critical currents are applied. Increased losses, in excess of the expected magnitization losses are observed when...... individual layers in the cables saturate. The loss-contributions from other components of the cable system are discussed,and the implications for the cooling apparatus for superconducting utility cables are determined....

  17. Physical layer approaches for securing wireless communication systems

    CERN Document Server

    Wen, Hong

    2013-01-01

    This book surveys the outstanding work of physical-layer (PHY) security, including  the recent achievements of confidentiality and authentication for wireless communication systems by channel identification. A practical approach to building unconditional confidentiality for Wireless Communication security by feedback and error correcting code is introduced and a framework of PHY security based on space time block code (STBC) MIMO system is demonstrated.  Also discussed is a scheme which combines cryptographic techniques implemented in the higher layer with the physical layer security approach

  18. SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 8: Aerothermodynamics Automation and Robotics (A/R) systems sensors, high-temperature superconductivity

    Science.gov (United States)

    1991-01-01

    Viewgraphs of briefings presented at the SSTAC/ARTS review of the draft Integrated Technology Plan (ITP) on aerothermodynamics, automation and robotics systems, sensors, and high-temperature superconductivity are included. Topics covered include: aerothermodynamics; aerobraking; aeroassist flight experiment; entry technology for probes and penetrators; automation and robotics; artificial intelligence; NASA telerobotics program; planetary rover program; science sensor technology; direct detector; submillimeter sensors; laser sensors; passive microwave sensing; active microwave sensing; sensor electronics; sensor optics; coolers and cryogenics; and high temperature superconductivity.

  19. Pressure-induced superconductivity in the giant Rashba system BiTeI

    Science.gov (United States)

    VanGennep, D.; Linscheid, A.; Jackson, D. E.; Weir, S. T.; Vohra, Y. K.; Berger, H.; Stewart, G. R.; Hennig, R. G.; Hirschfeld, P. J.; Hamlin, J. J.

    2017-03-01

    At ambient pressure, BiTeI exhibits a giant Rashba splitting of the bulk electronic bands. At low pressures, BiTeI undergoes a transition from trivial insulator to topological insulator. At still higher pressures, two structural transitions are known to occur. We have carried out a series of electrical resistivity and AC magnetic susceptibility measurements on BiTeI at pressure up to  ∼40 GPa in an effort to characterize the properties of the high-pressure phases. A previous calculation found that the high-pressure orthorhombic P4/nmm structure BiTeI is a metal. We find that this structure is superconducting with T c values as high as 6 K. AC magnetic susceptibility measurements support the bulk nature of the superconductivity. Using electronic structure and phonon calculations, we compute T c and find that our data is consistent with phonon-mediated superconductivity.

  20. Applications in the Advanced Transportation System and Impact on Superconductivity Industry of Htsm

    Science.gov (United States)

    Zhang, Y. P.; Zhao, Y.

    As the information technology grows up and its application penetrates into every area of this world, how to faster and more efficiently transport people and goods is becoming the new social demand, which indicates a new revolution on advanced transportation technology being brewed. High-temperature Superconductivity Maglev (HTSM) is one with the best development potential among most transportation technologies. It could be used in many advanced transportation fields, overcoming the key contradiction and shortcoming of the current transportation patterns such as train, automobile and airplane. On the other hand, HTSM will promote theoretical study and technology exploitation on superconductivity. HTSM's applications in a large scale will bring up profound effect on the forming and development of the superconductivity industry.

  1. Contribution to the study of superconducting magnetic systems in the frame of fusion projects

    Energy Technology Data Exchange (ETDEWEB)

    Duchateau, J.L.; Artiguelongue, H.; Bej, Z.; Ciazynski, D.; Cloez, H.; Decool, P.; Hertout, P.; Libeyre, P.; Martinez, A.; Nicollet, S.; Rubino, M.; Schild, T.; Verger, J.M. [Association Euratom-CEA, CEA/Cadarache, Dept. de Recherches sur la Fusion Controlee DRFC, 13 - Saint-Paul-lez-Durance (France)

    2000-02-01

    This report is a presentation of all the 55 publications made by the Magnet Group of the 'Departement de Recherche sur la Fusion Controlee' during the 94-99 period. These publications have been made mainly in the frame of EURATOM contracts and task for ITER. This collection deals with most of the dimensioning aspects of large superconducting magnets and hence the field interest is wider than the restricted field of magnets for fusion by magnetic confinement. Whenever it is possible, simple expressions and criteria are given for dimensioning superconducting strands, assembling them to build cables and cooling them by an adapted forced flow cooling. This is hence a major for the understanding of the behaviour of large modern superconducting magnets and provides many tools for design and construction. (author)

  2. Superconducting spin-triplet-MRAM with infinite magnetoresistance ratio

    Energy Technology Data Exchange (ETDEWEB)

    Lenk, Daniel; Ullrich, Aladin; Obermeier, Guenter; Mueller, Claus; Krug von Nidda, Hans-Albrecht; Horn, Siegfried; Tidecks, Reinhard [Institut fuer Physik, Universitaet Augsburg, D-86159 Augsburg (Germany); Morari, Roman [Institut fuer Physik, Universitaet Augsburg, D-86159 Augsburg (Germany); D. Ghitsu Institute of Electronic Engineering and Nanotechnologies ASM, Academiei Str. 3/3, MD2028 Kishinev (Moldova, Republic of); Solid State Physics Department, Kazan Federal University, 420008 Kazan (Russian Federation); Zdravkov, Vladimir I. [Institut fuer Physik, Universitaet Augsburg, D-86159 Augsburg (Germany); D. Ghitsu Institute of Electronic Engineering and Nanotechnologies ASM, Academiei Str. 3/3, MD2028 Kishinev (Moldova, Republic of); Institute of Applied Physics and Interdisciplinary Nanoscience Center, Universitaet Hamburg, Jungiusstrasse 9A, D-20355 Hamburg (Germany); Sidorenko, Anatoli S. [D. Ghitsu Institute of Electronic Engineering and Nanotechnologies ASM, Academiei Str. 3/3, MD2028 Kishinev (Moldova, Republic of); Tagirov, Lenar R. [Institut fuer Physik, Universitaet Augsburg, D-86159 Augsburg (Germany); Solid State Physics Department, Kazan Federal University, 420008 Kazan (Russian Federation)

    2016-07-01

    We fabricated a nanolayered hybrid superconductor-ferromagnet spin-valve structure, i.e. the superconducting transition temperature of this structure depends on its magnetic history. The observed spin-valve effect is based on the generation of the long range odd in frequency triplet component, arising from a non-collinear relative orientation of the constituent ferromagnetic layers. We investigated the effect both as a function of the sweep amplitude of the magnetic field, determining the magnetic history, and the applied transport current. Moreover, we demonstrate the possibility of switching the system from the normal o the superconducting state by applying field pulses, yielding an infinite magnetoresistance ratio.

  3. Charge-carrier transport in epitactical strontium titanate layers for the application in superconducting components; Ladungstraegertransport in epitaktischen Strontiumtitanat-Schichten fuer den Einsatz in supraleitenden Bauelementen

    Energy Technology Data Exchange (ETDEWEB)

    Grosse, Veit

    2011-02-01

    In this thesis thin STO layers were epitactically deposited on YBCO for a subsequent electrical characterization. YBCO layers with a roughness of less than 2 nm (RMS), good out-of-plane orientation with a half-width in the rocking curve in the range (0.2..0.3) at only slightly diminished critical temperature could be reached. The STO layers exhibited also very good crystallographic properties. The charge-carrier transport in STO is mainly dominated by interface-limited processes. By means of an in thesis newly developed barrier model thereby the measured dependencies j(U,T) respectively {sigma}(U,T) could be described very far-reachingly. At larger layer thicknesses and low temperatures the charge-carrier transport succeeds by hopping processes. So in the YBCO/STO/YBCO system the variable-range hopping could be identified as dominating transport process. Just above U>10 V a new behaviour is observed, which concerning its temperature dependence however is also tunnel-like. The STO layers exhibit here very large resistances, so that fields up to 10{sup 7}..10{sup 8} V/m can be reached without flowing of significant leakage currents through the barrier. In the system YBCO/STO/Au the current transport can be principally in the same way as in the YBCO/STO/YBCO system. The special shape and above all the asymmetry of the barrier however work out very distinctly. It could be shown that at high temperatures according to the current direction a second barrier on the opposite electrode must be passed. So often observed breakdown effects can be well described. For STO layer-thicknesses in the range around 25 nm in the whole temperature range studied inelastic tunneling over chains of localized states was identified as dominating transport process. It could however for the first time be shown that at very low temperatures in the STO layers Coulomb blockades can be formed.

  4. Radon Sub-slab Suctioning System Integrated in Insulating Layer

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    This poster presents a new radon sub-slab suctioning system. This system makes use of a grid of horizontal pressurised air ducts located within the lower part of the rigid insulation layer of the ground floor slab. For this purpose a new system of prefabricated lightweight elements is introduced...

  5. Novel Interplay between High-Tc Superconductivity and Antiferromagnetism in Tl-Based Six-CuO2-Layered Cuprates: 205Tl- and 63Cu-NMR Probes

    Science.gov (United States)

    Mukuda, Hidekazu; Shiki, Nozomu; Kimoto, Naoki; Yashima, Mitsuharu; Kitaoka, Yoshio; Tokiwa, Kazuyasu; Iyo, Akira

    2016-08-01

    We report 63Cu- and 205Tl-NMR studies on six-layered (n = 6) high-Tc superconducting (SC) cuprate TlBa2Ca5Cu6O14+δ (Tl1256) with Tc ˜ 100 K, which reveal that antiferromagnetic (AFM) order takes place below TN ˜ 170 K. In this compound, four underdoped inner CuO2 planes [n(IP) = 4] sandwiched by two outer planes (OPs) are responsible for the onset of AFM order, whereas the nearly optimally-doped OPs responsible for the onset of bulk SC. It is pointed out that an increase in the out-of-plane magnetic interaction within an intra-unit-cell causes TN ˜ 45 K for Tl1245 with n(IP) = 3 to increase to ˜170 K for Tl1256 with n(IP) = 4. It is remarkable that the marked increase in TN and the AFM moments for the IPs does not bring about any reduction in Tc, since Tc ˜ 100 K is maintained for both compounds with nearly optimally doped OP. We highlight the fact that the SC order for n ≥ 5 is mostly dominated by the long-range in-plane SC correlation even in the multilayered structure, which is insensitive to the magnitude of TN and the AFM moments at the IPs or the AFM interaction among the IPs. These results demonstrate a novel interplay between the SC and AFM orders when the charge imbalance between the IPs and OP is significantly large.

  6. Superconductivity and crystal and electronic structures in hydrogenated and disordered Nb3Ge and Nb3Sn layers with A15 structure

    Science.gov (United States)

    Nölscher, C.; Saemann-Ischenko, G.

    1985-08-01

    Superconducting and transport properties of Nb3Ge and Nb3Sn layers have been varied over a wide range by hydrogenation, ion irradiation, and annealing. After hydrogenation, both compounds remain in the A15 structure and no effects of hydride precipitations at low temperatures could be observed. At high ion-irradiation doses Nb3Ge becomes amorphous, but Nb3Sn remains in the A15 structure, although Tc behaves similarly. The long-range order parameter SA and the mean displacement amplitude u2>1/2 were determined for Nb3Sn with x-ray diffraction. Distinct differences between the irradiation- and annealing-induced correlations of Tc versus Sa, Tc versus u2>, and Tc versus lattice parameter were observed. This indicates the influence of topological short-range order. The correlations of Tc versus residual resistivity and Tc versus the temperature derivative of the upper critical field at Tc are distinctly different for hydrogenated and irradiated Nb3Sn and Nb3Ge, but the derived correlations of Tc versus the coefficient of the electronic specific heat are very similar. The results are interpreted by a dominant influence of the Γ12 band on high Tc. The measurements of the Hall constant RH indicate a filling of steep electronic bands as a result of hydrogenation. Irradiation has a similar influence as thermal-induced disorder on RH. A maximum in the temperature dependence of RH indicates a martensitic transformation of Nb3Sn at 50-55 K, which is unchanged in slightly hydrogenated samples with higher Tc but vanishes in irradiated samples.

  7. Quantum device prospects of superconducting nanodiamond films

    Science.gov (United States)

    Mtsuko, D.; Churochkin, D.; Bhattacharyya, S.

    2016-02-01

    Nanostructured semiconducting carbon system, described by as a superlattice-like structure demonstrated its potential in switching device applications based on the quantum tunneling through the insulating carbon layer. This switching property can be enhanced further with the association of Josephson's tunneling between two superconducting carbon (diamond) grains separated by a very thin layer of carbon which holds the structure of the film firmly. The superconducting nanodiamond heterostructures form qubits which can lead to the development of quantum computers provided the effect of disorder present in these structure can be firmly understood. Presently we concentrate on electrical transport properties of heavily boron-doped nanocrystalline diamond films around the superconducting transition temperature measured as a function of magnetic fields and the applied bias current. Microstructure of these films is described by a two dimensional superlattice system which can also contain paramagnetic impurities. We report observation of anomalous negative Hall resistance in these films close to the superconductor-insulator-normal phase transition in the resistance versus temperature plots at low bias currents at zero and low magnetic field. The negative Hall effect is found to be suppressed as the bias current increase. Magnetoresistance study shows a distinct peak at zero field when measured in the low current regimes which suggest a superconductor-insulator-superconductor structure of films. Current vs. voltage characteristics show signature of π-Josephson like behaviour which can give rise to a characteristic frequency of several hundred of gigahertz. Signature of spin flipping also shows novel spintronic device applications.

  8. Conceptual design for the superconducting magnet system of a pulsed DEMO reactor

    Energy Technology Data Exchange (ETDEWEB)

    Duchateau, J.-L., E-mail: jean-luc.duchateau@cea.fr [CEA/IRFM, 13108 St. Paul lez Durance Cedex (France); Hertout, P.; Saoutic, B.; Magaud, P.; Artaud, J.-F.; Giruzzi, G.; Bucalossi, J.; Johner, J.; Sardain, P.; Imbeaux, F.; Ané, J.-M.; Li-Puma, A. [CEA/IRFM, 13108 St. Paul lez Durance Cedex (France)

    2013-10-15

    Highlights: ► A 1D design approach of a pulsed DEMO reactor is presented. ► The main CS and TF conductor design criteria are presented. ► A typical major radius for a 2 GW DEMO is 9 m. ► A typical plasma magnetic field is 4.9 T. ► The pulse duration is 1.85 h for an aspect ratio of 3. -- Abstract: A methodology has been developed to consistently investigate, taking into account main reactor components, possible magnet solutions for a pulsed fusion reactor aiming at a large solenoid flux swing duration within the 2–3 h range. In a conceptual approach, investigations are carried out in the equatorial plane, taking into account the radial extension of the blanket-shielding zone, of the toroidal field magnet system inner leg and of the central solenoid for estimation of the pulsed swing. Design criteria are presented for the radial extension of the superconducting magnets, which is mostly driven by the structures (casings and conductor jacket). Typical available cable current densities are presented as a function of the magnetic field and of the temperature margin. The magnet design criteria have been integrated into SYCOMORE, a code for reactor modeling presently in development at CEA/IRFM in Cadarache, using the tools of the EFDA Integrated Tokamak Modeling task force. Possible solutions are investigated for a 2 GW fusion power reactor with different aspect ratios. The final adjustment of the DEMO pulsed reactor parameters will have to be consistently done, considering all reactor components, when the final goals of the machine will be completely clarified.

  9. New dual gas puff imaging system with up-down symmetry on experimental advanced superconducting tokamak

    DEFF Research Database (Denmark)

    Liu, S. C.; Shao, L. M.; Zweben, S. J.;

    2012-01-01

    advanced superconducting tokamak (EAST). The two views are up-down symmetric about the midplane and separated by a toroidal angle of 66.6 degrees. A linear manifold with 16 holes apart by 10 mm is used to form helium gas cloud at the 130x130 mm (radial versus poloidal) objective plane. A fast camera...

  10. Radiation Tolerance of Components Used in the Protection System of LHC Superconducting Elements

    CERN Document Server

    Denz, R

    2002-01-01

    A selection of electronic devices to be used for the protection of superconducting elements of the Large Hadron Collider LHC has been submitted to functional tests in the CERN TCC2 irradiation test facility. The results confirm the validity of the various designs, which are entirely based on COTS (Components-Off-The-Shelf).

  11. Secure physical layer using dynamic permutations in cognitive OFDMA systems

    DEFF Research Database (Denmark)

    Meucci, F.; Wardana, Satya Ardhy; Prasad, Neeli R.

    2009-01-01

    This paper proposes a novel lightweight mechanism for a secure Physical (PHY) layer in Cognitive Radio Network (CRN) using Orthogonal Frequency Division Multiplexing (OFDM). User's data symbols are mapped over the physical subcarriers with a permutation formula. The PHY layer is secured...... of the permutations are analyzed for several DSA patterns. Simulations are performed according to the parameters of the IEEE 802.16e system model. The securing mechanism proposed provides intrinsic PHY layer security and it can be easily implemented in the current IEEE 802.16 standard applying almost negligible...

  12. Boundary Layer to a System of Viscous Hyperbolic Conservation Laws

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this paper, we investigate the large-time behavior of solutions to the initial-boundary value problem for nxn hyperbolic system of conservation laws with artificial viscosity in the half line (0, ∞). We first show that a boundary layer exists if the corresponding hyperbolic part contains at least one characteristic field with negative propagation speed. We further show that such boundary layer is nonlinearly stable under small initial perturbation. The proofs are given by an elementary energy method.

  13. Robustness Improvement of Superconducting Magnetic Energy Storage System in Microgrids Using an Energy Shaping Passivity-Based Control Strategy

    Directory of Open Access Journals (Sweden)

    Rui Hou

    2017-05-01

    Full Text Available Superconducting magnetic energy storage (SMES systems, in which the proportional-integral (PI method is usually used to control the SMESs, have been used in microgrids for improving the control performance. However, the robustness of PI-based SMES controllers may be unsatisfactory due to the high nonlinearity and coupling of the SMES system. In this study, the energy shaping passivity (ESP-based control strategy, which is a novel nonlinear control based on the methodology of interconnection and damping assignment (IDA, is proposed for robustness improvement of SMES systems. A step-by-step design of the ESP-based method considering the robustness of SMES systems is presented. A comparative analysis of the performance between ESP-based and PI control strategies is shown. Simulation and experimental results prove that the ESP-based strategy achieves the stronger robustness toward the system parameter uncertainties than the conventional PI control. Besides, the use of ESP-based control method can reduce the eddy current losses of a SMES system due to the significant reduction of 2nd and 3rd harmonics of superconducting coil DC current.

  14. Korea's developmental program for superconductivity

    Science.gov (United States)

    Hong, Gye-Won; Won, Dong-Yeon; Kuk, Il-Hyun; Park, Jong-Chul

    1995-01-01

    Superconductivity research in Korea was firstly carried out in the late 70's by a research group in Seoul National University (SNU), who fabricated a small scale superconducting magnetic energy storage system under the financial support from Korea Electric Power Company (KEPCO). But a few researchers were involved in superconductivity research until the oxide high Tc superconductor was discovered by Bednorz and Mueller. After the discovery of YBaCuO superconductor operating above the boiling point of liquid nitrogen (77 K)(exp 2), Korean Ministry of Science and Technology (MOST) sponsored a special fund for the high Tc superconductivity research to universities and national research institutes by recognizing its importance. Scientists engaged in this project organized 'High Temperature Superconductivity Research Association (HITSRA)' for effective conducting of research. Its major functions are to coordinate research activities on high Tc superconductivity and organize the workshop for active exchange of information. During last seven years the major superconductivity research has been carried out through the coordination of HITSRA. The major parts of the Korea's superconductivity research program were related to high temperature superconductor and only a few groups were carrying out research on conventional superconductor technology, and Korea Atomic Energy Research Institute (KAERI) and Korea Electrotechnology Research Institute (KERI) have led this research. In this talk, the current status and future plans of superconductivity research in Korea will be reviewed based on the results presented in interim meeting of HITSRA, April 1-2, 1994. Taejeon, as well as the research activity of KAERI.

  15. Superconducting bearings for flywheel applications

    DEFF Research Database (Denmark)

    Abrahamsen, A.B.

    2001-01-01

    A literature study on the application of superconducting bearings in energy storage flywheel systems. The physics of magnetic levitation and superconductors are presented in the first part of the report, followed by a discussion of the literature found onthe applications of superconducting bearings...

  16. Variation in superconducting transition temperature due to tetragonal domains in two-dimensionally doped SrTiO3

    Science.gov (United States)

    Noad, Hilary; Spanton, Eric M.; Nowack, Katja C.; Inoue, Hisashi; Kim, Minu; Merz, Tyler A.; Bell, Christopher; Hikita, Yasuyuki; Xu, Ruqing; Liu, Wenjun; Vailionis, Arturas; Hwang, Harold Y.; Moler, Kathryn A.

    2016-11-01

    Strontium titanate is a low-temperature, non-Bardeen-Cooper-Schrieffer superconductor that superconducts to carrier concentrations lower than in any other system and exhibits avoided ferroelectricity at low temperatures. Neither the mechanism of superconductivity in strontium titanate nor the importance of the structure and dielectric properties for the superconductivity are well understood. We studied the effects of twin structure on superconductivity in a 5.5-nm-thick layer of niobium-doped SrTiO3 embedded in undoped SrTiO3. We used a scanning superconducting quantum interference device susceptometer to image the local diamagnetic response of the sample as a function of temperature. We observed regions that exhibited a superconducting transition temperature Tc≳ 10 % higher than the temperature at which the sample was fully superconducting. The pattern of these regions varied spatially in a manner characteristic of structural twin domains. Some regions are too wide to originate on twin boundaries; therefore, we propose that the orientation of the tetragonal unit cell with respect to the doped plane affects Tc. Our results suggest that the anisotropic dielectric properties of SrTiO3 are important for its superconductivity and need to be considered in any theory of the mechanism of the superconductivity.

  17. Planar Lithographed Superconducting LC Resonators for Frequency-Domain Multiplexed Readout Systems

    Science.gov (United States)

    Rotermund, K.; Barch, B.; Chapman, S.; Hattori, K.; Lee, A.; Palaio, N.; Shirley, I.; Suzuki, A.; Tran, C.

    2016-07-01

    Cosmic microwave background (CMB) polarization experiments are increasing the number of transition edge sensor (TES) bolometers to increase sensitivity. In order to maintain low thermal loading of the sub-Kelvin stage, the frequency-domain multiplexing (FDM) factor has to increase accordingly. FDM is achieved by placing TES bolometers in series with inductor-capacitor (LC) resonators, which select the readout frequency. The multiplexing factor can be raised with a large total readout bandwidth and small frequency spacing between channels. The inductance is kept constant to maintain a uniform readout bandwidth across detectors, while the maximum acceptable value is determined by bolometer stability. Current technology relies on commercially available ceramic chip capacitors. These have high scatter in their capacitance thereby requiring large frequency spacing. Furthermore, they have high equivalent series resistance (ESR) at higher frequencies and are time consuming and tedious to hand assemble via soldering. A solution lies in lithographed, planar spiral inductors (currently in use by some experiments) combined with interdigitated capacitors on a silicon (Si) substrate. To maintain reasonable device dimensions, we have reduced trace and gap widths of the LCs to 4 \\upmu m. We increased the inductance from 16 to 60 \\upmu H to achieve a higher packing density, a requirement for FDM systems with large multiplexing factors. Additionally, the Si substrate yields low ESR values across the entire frequency range and lithography makes mass production of LC pairs possible. We reduced mutual inductance between inductors by placing them in a checkerboard pattern with the capacitors, thereby increasing physical distances between adjacent inductors. We also reduce magnetic coupling of inductors with external sources by evaporating a superconducting ground plane onto the backside of the substrate. We report on the development of lithographed LCs in the 1-5 MHz range for use

  18. Method and system for continuous atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Jeffrey W.; Yanguas-Gil, Angel; Libera, Joseph A.

    2017-03-21

    A system and method for continuous atomic layer deposition. The system and method includes a housing, a moving bed which passes through the housing, a plurality of precursor gases and associated input ports and the amount of precursor gases, position of the input ports, and relative velocity of the moving bed and carrier gases enabling exhaustion of the precursor gases at available reaction sites.

  19. Layers And Processes In The Model Of Technological Postal System

    Directory of Open Access Journals (Sweden)

    Madleňáková Lucia

    2015-12-01

    Full Text Available The paper include important aspects of layer model of postal technological system such as makes the possibility to define rules for regulating, technical and technological requirements and interfaces to communicate with other postal systems. The current postal reform is mainly attributable to release of network access and ensuring full interoperability between technological systems. Not only to ensure the development and protection of competition but also in respect to the conservation of requirements to provide the universal service, which is the performance of public interest. There is a space here to examine the postal system, not only from a procedural point of view, but to be viewed as an open communication system. It is possible to find there the commonalities with other communication sector branches and to handle the technological postal system in more layers; similarly as the electronic communication systems are handled. Model of layer postal system, based not only on the processes but on layers functionality, will enable to identify communication protocols and interfaces determining interoperability. It also opens the question of appropriate regulation model.

  20. An Opportunistic Error Correction Layer for OFDM Systems

    NARCIS (Netherlands)

    Shao, Xiaoying; Schiphorst, Roel; Slump, Cornelis H.

    2009-01-01

    In this paper, we propose a novel cross layer scheme to lower power consumption of ADCs in OFDM systems, which is based on resolution adaptive ADCs and Fountain codes. The key part in the new proposed system is that the dynamic range of ADCs can be reduced by discarding the packets which are transmi

  1. Physical-layer network coding in coherent optical OFDM systems.

    Science.gov (United States)

    Guan, Xun; Chan, Chun-Kit

    2015-04-20

    We present the first experimental demonstration and characterization of the application of optical physical-layer network coding in coherent optical OFDM systems. It combines two optical OFDM frames to share the same link so as to enhance system throughput, while individual OFDM frames can be recovered with digital signal processing at the destined node.

  2. Cost-Effective Systems for Atomic Layer Deposition

    Science.gov (United States)

    Lubitz, Michael; Medina, Phillip A., IV; Antic, Aleks; Rosin, Joseph T.; Fahlman, Bradley D.

    2014-01-01

    Herein, we describe the design and testing of two different home-built atomic layer deposition (ALD) systems for the growth of thin films with sub-monolayer control over film thickness. The first reactor is a horizontally aligned hot-walled reactor with a vacuum purging system. The second reactor is a vertically aligned cold-walled reactor with a…

  3. Magnetism and the absence of superconductivity in the praseodymium–silicon system doped with carbon and boron

    Energy Technology Data Exchange (ETDEWEB)

    Venta, J. de la, E-mail: jdelaventa@physics.ucsd.edu [Department of Physics and Center for Advanced Nanoscience, University of California, La Jolla, San Diego, CA 92093 (United States); Basaran, Ali C. [Department of Physics and Center for Advanced Nanoscience, University of California, La Jolla, San Diego, CA 92093 (United States); Materials Science and Engineering, University of California, La Jolla, San Diego, CA 92093 (United States); Grant, T. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Gallardo-Amores, J.M. [Departamento de Quimica Inorganica I, Universidad Complutense, E-28040 Madrid (Spain); Ramirez, J.G. [Department of Physics and Center for Advanced Nanoscience, University of California, La Jolla, San Diego, CA 92093 (United States); Alario-Franco, M.A. [Departamento de Quimica Inorganica I, Universidad Complutense, E-28040 Madrid (Spain); Fisk, Z. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Schuller, Ivan K. [Department of Physics and Center for Advanced Nanoscience, University of California, La Jolla, San Diego, CA 92093 (United States)

    2013-08-15

    We searched for new structural, magnetic and superconductivity phases in the Pr–Si system using high-pressure high-temperature and arc melting syntheses. Both high and low Si concentration areas of the phase diagram were explored. Although a similar approach in the La–Si system produced new stable superconducting phases, in the Pr–Si system we did not find any new superconductors. At low Si concentrations, the arc-melted samples were doped with C or B. It was found that addition of C gave rise to multiple previously unknown ferromagnetic phases. Furthermore, X-ray refinement of the undoped samples confirmed the existence of the so far elusive Pr{sub 3}Si{sub 2} phase. - Highlights: • Study of the Pr–Si system using HP–HT or doping with C and B. • New magnetic phases in the Pr–Si system doped with C. • Confirmation of the existence of the Pr{sub 3}Si{sub 2} phase.

  4. Incorporating Cyber Layer Failures in Composite Power System Reliability Evaluations

    Directory of Open Access Journals (Sweden)

    Yuqi Han

    2015-08-01

    Full Text Available This paper proposes a novel approach to analyze the impacts of cyber layer failures (i.e., protection failures and monitoring failures on the reliability evaluation of composite power systems. The reliability and availability of the cyber layer and its protection and monitoring functions with various topologies are derived based on a reliability block diagram method. The availability of the physical layer components are modified via a multi-state Markov chain model, in which the component protection and monitoring strategies, as well as the cyber layer topology, are simultaneously considered. Reliability indices of composite power systems are calculated through non-sequential Monte-Carlo simulation. Case studies demonstrate that operational reliability downgrades in cyber layer function failure situations. Moreover, protection function failures have more significant impact on the downgraded reliability than monitoring function failures do, and the reliability indices are especially sensitive to the change of the cyber layer function availability in the range from 0.95 to 1.

  5. Seebeck effect in superconducting BaPb sub(1-x)Bi sub(x) O/sub 3/ system

    Energy Technology Data Exchange (ETDEWEB)

    Tani, T.; Itoh, T.; Tanaka, S. (Tokyo Univ. (Japan). Faculty of Engineering)

    1980-01-01

    Seebeck effect was observed on superconducting BaPb sub(1-x)Bi sub(x)O/sub 3/ system in x = 0 -- 0.4 from 4.2K or T sub(c) to 300K. Seebeck coefficient seems to consist of two contributions; one from the dominant metallic electrons and the other from additional unidentified carriers with fairly low mobility. The calculated epsilon sub(F), N(epsilon sub(F)) and m* from the metallic contribution tend to increase with x to maxima around x = 0.2, where T sub(c) also becomes maximum.

  6. Berry{close_quote}s phase and a possible new topological current drive in certain weak link superconducting systems

    Energy Technology Data Exchange (ETDEWEB)

    Gaitan, F.; Shenoy, S.R. [International Center for Theoretical Physics, P. O. Box 586, Miramare, 34100 Trieste (Italy)

    1996-06-01

    We examine the consequences of Berry{close_quote}s phase for the dynamics of Josephson junctions and junction arrays in which moving vortices are present. For both a large annular Josephson junction and a 2D junction array, Berry{close_quote}s phase produces a new current drive in the superconducting phase dynamics of these weak link systems. This Berry phase effect is shown to be physically inequivalent to a known effect in junction arrays associated with the Aharonov-Casher phase. {copyright} {ital 1996 The American Physical Society.}

  7. Influences of Resistor-Type Superconducting Fault Current Limiter on Power System Transient Stability with Asymmetrical Short-Circuit Faults

    Institute of Scientific and Technical Information of China (English)

    Xue-Ping Gu; Zhi-Long Yang

    2008-01-01

    The transient stability of a single machine to infinite-busbar power system with resistor- type superconducting fault current limiters (SFCL) is analyzed under asymmetrical short-circuit fault conditions. The SFCL is considered to introduce a resistance into the three-phase circuits when faults occur. Based on the power-angle curves for different short-circuit conditions of the single-line to ground, double-line to ground and line to line short-circuit faults, the influences of the SFCLs on transient stability are analyzed in detail. The time-domain simulation of transient stability is carried out to verify the analytical results.

  8. Structural studies of Nd$_{1.85}$Ce$_{0.15}$CuO$_{4}$ $+$ Ag superconducting system

    Indian Academy of Sciences (India)

    N RADHIKESH RAVEENDRAN; A K SINHA; R RAJARAMAN; M PREMILA; E P AMALADASS; K VINOD; J JANAKI; S KALAVATHI; AWADHESH MANI

    2016-06-01

    We have studied for the first time the effect of Ag addition (0–15 wt%) to the superconducting system, Nd$_{1.85}$Ce$_{0.15}$CuO$_{4}$, on its crystal structure and local structural features, using synchrotron X-ray diffraction(SXRD) and Raman spectroscopy, respectively. SXRD and subsequent Rietveld refinement studies on powders of Nd$_{1.85}$Ce$_{0.15}$CuO$_4$ $+$ Ag system indicate a small but significant change in lattice parameter upon Ag addition, showing evidence for possible incorporation of Ag to the extent of $\\sim$1 wt%. Raman spectroscopic studies indicate that the parent structure of Nd$_{1.85}$Ce$_{0.15}CuO$_{4}$ remains unaffected with no major local structural changes on doping with silver. However, all Raman modes show minor phonon hardening upon Ag addition, which is consistent with the unit cell volume reduction as is observed in XRD. A systematic bleaching out of the apical oxygen defect mode was also observed with increased Ag addition. Polarized Raman measurements helped to identify the asymmetric nature of the B1g Raman mode. X-ray diffraction studies on pellets of Nd$_{1.85}$Ce$_{0.15}CuO$_4$ $+$ Ag system further indicate a randomization of preferred orientation upon Ag addition. The superconductivity of the Nd$_{1.85}$Ce$_{0.15}$CuO$_4$ $+$ Ag system has been well characterized for all the compositions studied.

  9. Hybrid superconducting neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Merlo, V.; Lucci, M.; Ottaviani, I. [Dipartimento di Fisica, Università Tor Vergata, Via della Ricerca Scientifica, I-00133 Roma (Italy); Salvato, M.; Cirillo, M. [Dipartimento di Fisica, Università Tor Vergata, Via della Ricerca Scientifica, I-00133 Roma (Italy); CNR SPIN Salerno, Università di Salerno, Via Giovanni Paolo II, n.132, 84084 Fisciano (Italy); Scherillo, A. [Science and Technology Facility Council, ISIS Facility Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Celentano, G. [ENEA Frascati Research Centre, Via. E. Fermi 45, 00044 Frascati (Italy); Pietropaolo, A., E-mail: antonino.pietropaolo@enea.it [ENEA Frascati Research Centre, Via. E. Fermi 45, 00044 Frascati (Italy); Mediterranean Institute of Fundamental Physics, Via Appia Nuova 31, 00040 Marino, Roma (Italy)

    2015-03-16

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, {sup 10}B + n → α + {sup 7}Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current I{sub c}, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  10. Layered composite thermal insulation system for nonvacuum cryogenic applications

    Science.gov (United States)

    Fesmire, J. E.

    2016-03-01

    A problem common to both space launch applications and cryogenic propulsion test facilities is providing suitable thermal insulation for complex cryogenic piping, tanks, and components that cannot be vacuum-jacketed or otherwise be broad-area-covered. To meet such requirements and provide a practical solution to the problem, a layered composite insulation system has been developed for nonvacuum applications and extreme environmental exposure conditions. Layered composite insulation system for extreme conditions (or LCX) is particularly suited for complex piping or tank systems that are difficult or practically impossible to insulate by conventional means. Consisting of several functional layers, the aerogel blanket-based system can be tailored to specific thermal and mechanical performance requirements. The operational principle of the system is layer-pairs working in combination. Each layer pair is comprised of a primary insulation layer and a compressible radiant barrier layer. Vacuum-jacketed piping systems, whether part of the ground equipment or the flight vehicle, typically include numerous terminations, disconnects, umbilical connections, or branches that must be insulated by nonvacuum means. Broad-area insulation systems, such as spray foam or rigid foam panels, are often the lightweight materials of choice for vehicle tanks, but the plumbing elements, feedthroughs, appurtenances, and structural supports all create "hot spot" areas that are not readily insulated by similar means. Finally, the design layouts of valve control skids used for launch pads and test stands can be nearly impossible to insulate because of their complexity and high density of components and instrumentation. Primary requirements for such nonvacuum thermal insulation systems include the combination of harsh conditions, including full weather exposure, vibration, and structural loads. Further requirements include reliability and the right level of system breathability for thermal

  11. Lattice Instability in High Temperature Superconducting Cuprates and FeAs Systems: Polarons Probed by EXAFS

    Directory of Open Access Journals (Sweden)

    H. Oyanagi

    2010-01-01

    Full Text Available Carrier-induced lattice distortion (signature of polaron in oxypnictide superconductors is found by an instantaneous local probe, extended X-ray absorption fine structure (EXAFS. Polaron formation is detected as two distinct nearest neighbor distances (Fe-As, implying an incoherent local mode that develops coherence at the critical temperature. Comparing the results with the unusual lattice response in cuprate superconductors, intimate correlation between evolution of local lattice mode and superconductivity is revealed. The results suggest that strong electron-lattice interaction is present as a common ingredient in the microscopic mechanism of superconducting transition. The effect of magnetic impurity atoms in cuprates further indicates that magnetic scattering becomes diluted as long as polaron formation is conserved. We argue that polaron coherence dominates electrical conduction and magnetic interaction in oxypnictide and cuprate superconductors.

  12. Superconductive transition and the intergrain effects of mixture ceramic systems synthesized using Citrate pyrolysis precursor method

    Energy Technology Data Exchange (ETDEWEB)

    Hagiwara, M; Kitada, R; Shima, T; Nishio, K [Department of Electronics, Kyoto Institute of Technology, Kyoto, 606-8585 (Japan); Deguchi, H [Faculty of Engineering, Kyushu Institute of Tecnnology, Kitakyushu 804-8550 (Japan); Koyama, K [Faculty of Integrated Arts and Sciences, University of Tokushima, Tokushima 770-8502 (Japan); Matsuura, M, E-mail: hag@kit.ac.j [Fukui University of Technology, Fukui 910-8505 (Japan)

    2009-03-01

    Superconductive characteristics of Pr{sub 2}Ba{sub 4}Cu{sub 7}O{sub 15-delta} (Pr247) ceramics with crystalline phase inhomogeneity for the stacking structures is examined experimentally, using reference observations for multi-phased ceramic sample consists simply of PrBa{sub 2}Cu{sub 4}O{sub 8} (Pr124) and PrBa{sub 2}Cu{sub 3}O{sub 7-delta} (Pr123). After reduction treatment by vacuum-heating, the reference multiphased sample shows onset of abrupt electric resistivity dropping and also weak Meissner magnetization below approx20 K. The results suggest that superconductivity at CuO double chains in Pr124 grains is caused by charge transfer from neighbouring Pr123 grains. Such a charge transfer effect is thought to occur also in Pr247 sample including phase inhomogeneity.

  13. Chemically gated electronic structure of a superconducting doped topological insulator system

    Science.gov (United States)

    Wray, L. A.; Xu, S.; Neupane, M.; Fedorov, A. V.; Hor, Y. S.; Cava, R. J.; Hasan, M. Z.

    2013-07-01

    Angle resolved photoemission spectroscopy is used to observe changes in the electronic structure of bulk-doped topological insulator CuxBi2Se3 as additional copper atoms are deposited onto the cleaved crystal surface. Carrier density and surface-normal electrical field strength near the crystal surface are estimated to consider the effect of chemical surface gating on atypical superconducting properties associated with topological insulator order, such as the dynamics of theoretically predicted Majorana Fermion vortices.

  14. Magnetism and superconductivity in the system Ce1-xLaxRh3B2

    Science.gov (United States)

    Malik, S. K.; Umarji, A. M.; Shenoy, G. K.; Aldred, A. T.; Niarchos, D. G.

    1985-10-01

    The compound CeRh3B2 is magnetically ordered with a low saturation moment of ~0.4 μB per formula unit and an unusually large Curie temperature of 115 K while isostructural LaRh3B2 is superconducting with a transition temperature of ~2.3 K. Magnetic and superconducting studies on the series of compounds Ce1-xLaxRh3B2 reveal that the magnetic state persists for 0<=x<=0.8. The magnetic moment per Ce ion goes through a maximum and the Curie temperature decreases as La is substituted for Ce. On the La-rich side, superconductivity is destroyed even with 1% replacement of La by Ce, indicating a strong coupling of Ce 4f moments with conduction-electron spins. The temperature dependence of the upper critical field of LaRh3B2 has been measured and is discussed in terms of Werthammer-Helfand-Hohenberg theory.

  15. State of the art of superconducting fault current limiters and their application to the electric power system

    Science.gov (United States)

    Morandi, Antonio

    2013-01-01

    Modern electric power systems are becoming more and more complex in order to meet new needs. Nowadays a high power quality is mandatory and there is the need to integrate increasing amounts of on-site generation. All this translates in more sophisticated electric network with intrinsically high short circuit rate. This network is vulnerable in case of fault and special protection apparatus and procedures needs to be developed in order to avoid costly or even irreversible damage. A superconducting fault current limiter (SFCL) is a device with a negligible impedance in normal operating conditions that reliably switches to a high impedance state in case of extra-current. Such a device is able to increase the short circuit power of an electric network and to contemporarily eliminate the hazard during the fault. It can be regarded as a key component for future electric power systems. In this paper the state of the art of superconducting fault current limiters mature for applications is briefly resumed and the potential impact of this device on the paradigm of design and operation of power systems is analyzed. In particular the use of the FCL as a mean to allow more interconnection of MV bus-bars as well an increased immunity with respect to the voltage disturbances induced by critical customer is discussed. The possibility to integrate more distributed generation in the distribution grid is also considered.

  16. Precise NMR measurement and stabilization system of magnetic field of a superconducting 7 T wave length shifter

    CERN Document Server

    Borovikov, V M; Karpov, G V; Korshunov, D A; Kuper, E A; Kuzin, M V; Mamkin, V R; Medvedko, A S; Mezentsev, N A; Repkov, V V; Shkaruba, V A; Shubin, E I; Veremeenko, V F

    2001-01-01

    The system of measurement and stabilization of the magnetic field in the superconducting 7 T wave length shifter (WLS), designed at Budker Institute of Nuclear Physics are described. The measurements are performed by nuclear magnetic resonance (NMR) magnetometer at two points of the WLS magnetic field. Stabilization of the field is provided by the current pumping system. The stabilization system is based on precise NMR measurement of magnetic field as a feedback signal for computer code which control currents inside the superconducting coils. The problem of the magnetic field measurements with NMR method consists in wide spread of field in the measured area (up to 50 Gs/mm), wide temperature range of WLS operating, small space for probe and influence of iron hysteresis. Special solid-state probes were designed to satisfy this requirements. The accuracy of magnetic field measurements at probe locations is not worse than 20 ppm. For the WLS field of 7 T the reproducibility of the magnetic field of 30 ppm has be...

  17. Inhomogeneous superconductivity in organic conductors: the role of disorder and magnetic field.

    Science.gov (United States)

    Haddad, S; Charfi-Kaddour, S; Pouget, J-P

    2011-11-23

    Several experimental studies have shown the presence of spatially inhomogeneous phase coexistence of superconducting and non-superconducting domains in low dimensional organic superconductors. The superconducting properties of these systems are found to be strongly dependent on the amount of disorder introduced in the sample regardless of its origin. The suppression of the superconducting transition temperature T(c) shows a clear discrepancy with the result expected from the Abrikosov-Gor'kov law giving the behavior of T(c) with impurities. On the basis of the time dependent Ginzburg-Landau theory, we derive a model to account for this striking feature of T(c) in organic superconductors for different types of disorder by considering the segregated texture of the system. We show that the calculated T(c) quantitatively agrees with experiments. We also focus on the effect of superconducting fluctuations on the upper critical fields H(c2) of layered superconductors showing slab structure where superconducting domains are sandwiched by non-superconducting regions. We found that H(c2) may be strongly enhanced by such fluctuations.

  18. Readout of a superconducting qubit. A problem of quantum escape processes for driven systems

    Energy Technology Data Exchange (ETDEWEB)

    Verso, Alvise

    2010-10-27

    We started this work with a description of two devices that were recently developed in the context of quantum information processing. These devices are used as read-out for superconducting quantum bits based on Josephson junctions. The classical description has to be extended to the quantum regime. As the main result we calculate the leading order corrections in {Dirac_h} on the escape rate. We took into account a standard metastable potential with a static energy barrier and showed how to derive an extension of the classical diffusion equation. We did this within a systematic semiclassical formalism starting from a quantum mechanical master equation. This master equation contains an extra term for the loss of population due to tunneling through the barrier and, in contrast to previous approaches, finite barrier transmission which also affects the transition probabilities between the states. The escape rate is obtained from the stationary non-equilibrium solution of the diffusion equation. The quantum corrections on the escape rate are captured by two factors, the first one describes zero-point fluctuations in the well, while the second one describes the impact of finite barrier transmission close to the top. Interestingly, for weak friction there exists a temperature range, where the latter one can actually prevail and lead to a reduction of the escape compared to the classical situation due to finite reflection from the barrier even for energies above the barrier. Only for lower temperatures does the quantum result exceed the classical one. The approach can not strictly be used for the Duffing oscillator because of the time dependent term in its Hamiltonian. But it is possible to move in a frame rotating with a frequency equal to the response frequency of the Duffing oscillator in order to obtain a time-independent Hamiltonian. Therefore a system plus reservoir model was applied to consistently derive in the weak coupling limit the master equation for the reduced

  19. Effect of a functionally graded soft middle layer on Love waves propagating in layered piezoelectric systems.

    Science.gov (United States)

    Ben Salah, Issam; Ben Amor, Morched; Ben Ghozlen, Mohamed Hédi

    2015-08-01

    Numerical examples for wave propagation in a three-layer structure have been investigated for both electrically open and shorted cases. The first order differential equations are solved by both methods ODE and Stiffness matrix. The solutions are used to study the effects of thickness and gradient coefficient of soft middle layer on the phase velocity and on the electromechanical coupling factor. We demonstrate that the electromechanical coupling factor is substantially increased when the equivalent thickness is in the order of the wavelength. The effects of gradient coefficients are plotted for the first mode when electrical and mechanical gradient variations are applied separately and altogether. The obtained deviations in comparison with the ungraded homogenous film are plotted with respect to the dimensionless wavenumber. The impact related to the gradient coefficient of the soft middle layer, on the mechanical displacement and the Poynting vector, is carried out. The numericals results are illustrated by a set of appropriate curves related to various profiles. The obtained results set guidelines not only for the design of high-performance surface acoustic wave (SAW) devices, but also for the measurement of material properties in a functionally graded piezoelectric layered system using Love waves.

  20. Japan. Superconductivity for Smart Grids

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, K.

    2012-11-15

    Currently, many smart grid projects are running or planned worldwide. These aim at controlling the electricity supply more efficiently and more stably in a new power network system. In Japan, especially superconductivity technology development projects are carried out to contribute to the future smart grid. Japanese cable makers such as Sumitomo Electric and Furukawa Electric are leading in the production of high-temperature superconducting (HTS) power cables. The world's largest electric current and highest voltage superconductivity proving tests have been started this year. Big cities such as Tokyo will be expected to introduce the HTS power cables to reduce transport losses and to meet the increased electricity demand in the near future. Superconducting devices, HTS power cables, Superconducting Magnetic Energy Storage (SMES) and flywheels are the focus of new developments in cooperations between companies, universities and research institutes, funded by the Japanese research and development funding organization New Energy and Industrial Technology Development Organization (NEDO)

  1. `imaka - a ground-layer adaptive optics system on Maunakea

    CERN Document Server

    Chun, Mark; Toomey, Douglas; Lu, Jessica; Service, Max; Baranec, Christoph; Thibault, Simon; Brousseau, Denis; Hayano, Yutaka; Oya, Shin; Santi, Shane; Kingery, Christopher; Loss, Keith; Gardiner, John; Steele, Brad

    2016-01-01

    We present the integration status for `imaka, the ground-layer adaptive optics (GLAO) system on the University of Hawaii 2.2-meter telescope on Maunakea, Hawaii. This wide-field GLAO pathfinder system exploits Maunakea's highly confined ground layer and weak free-atmosphere to push the corrected field of view to ~1/3 of a degree, an areal field approaching an order of magnitude larger than any existing or planned GLAO system, with a FWHM ~ 0.33 arcseconds in the visible and near infrared. We discuss the unique design aspects of the instrument, the driving science cases and how they impact the system, and how we will demonstrate these cases on the sky.

  2. Comparative study of superconducting fault current limiter both for LCC-HVDC and VSC-HVDC systems

    Science.gov (United States)

    Lee, Jong-Geon; Khan, Umer Amir; Lim, Sung-Woo; Shin, Woo-ju; Seo, In-Jin; Lee, Bang-Wook

    2015-11-01

    High Voltage Direct Current (HVDC) system has been evaluated as the optimum solution for the renewable energy transmission and long-distance power grid connections. In spite of the various advantages of HVDC system, it still has been regarded as an unreliable system compared to AC system due to its vulnerable characteristics on the power system fault. Furthermore, unlike AC system, optimum protection and switching device has not been fully developed yet. Therefore, in order to enhance the reliability of the HVDC systems mitigation of power system fault and reliable fault current limiting and switching devices should be developed. In this paper, in order to mitigate HVDC fault, both for Line Commutated Converter HVDC (LCC-HVDC) and Voltage Source Converter HVDC (VSC-HVDC) system, an application of resistive superconducting fault current limiter which has been known as optimum solution to cope with the power system fault was considered. Firstly, simulation models for two types of LCC-HVDC and VSC-HVDC system which has point to point connection model were developed. From the designed model, fault current characteristics of faulty condition were analyzed. Second, application of SFCL on each types of HVDC system and comparative study of modified fault current characteristics were analyzed. Consequently, it was deduced that an application of AC-SFCL on LCC-HVDC system with point to point connection was desirable solution to mitigate the fault current stresses and to prevent commutation failure in HVDC electric power system interconnected with AC grid.

  3. Fuzzy Aided Application Layer Semantic Intrusion Detection System - FASIDS

    CERN Document Server

    Sangeetha, S; 10.5121/ijnsa.2010.2204

    2010-01-01

    The objective of this is to develop a Fuzzy aided Application layer Semantic Intrusion Detection System (FASIDS) which works in the application layer of the network stack. FASIDS consist of semantic IDS and Fuzzy based IDS. Rule based IDS looks for the specific pattern which is defined as malicious. A non-intrusive regular pattern can be malicious if it occurs several times with a short time interval. For detecting such malicious activities, FASIDS is proposed in this paper. At application layer, HTTP traffic's header and payload are analyzed for possible intrusion. In the proposed misuse detection module, the semantic intrusion detection system works on the basis of rules that define various application layer misuses that are found in the network. An attack identified by the IDS is based on a corresponding rule in the rule-base. An event that doesn't make a 'hit' on the rule-base is given to a Fuzzy Intrusion Detection System (FIDS) for further analysis.

  4. Development of superconducting high gradient magnetic separation system for scale removal from feed-water in thermal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Shibatani, Saori; Nakanishi, Motohiro; Mizuno, Nobumi [Osaka University, Osaka (Japan); and others

    2016-03-15

    A Superconducting High Gradient Magnetic Separation (HGMS) system is proposed for treatment of feed-water in thermal power plant. This is a method to remove the iron scale from feed-water utilizing magnetic force. One of the issues for practical use of HGMS system is to extend continuous operation period. In this study, we designed the magnetic filters by particle trajectory simulation and HGMS experiments in order to solve this problem. As a result, the quantity of magnetite captured by each filter was equalized and filter blockage was prevented. A design method of the magnetic filter was proposed which is suitable for the long-term continuous scale removal in the feed-water system of the thermal power plant.

  5. Superconductivity in highly disordered dense carbon disulfide.

    Science.gov (United States)

    Dias, Ranga P; Yoo, Choong-Shik; Struzhkin, Viktor V; Kim, Minseob; Muramatsu, Takaki; Matsuoka, Takahiro; Ohishi, Yasuo; Sinogeikin, Stanislav

    2013-07-16

    High pressure plays an increasingly important role in both understanding superconductivity and the development of new superconducting materials. New superconductors were found in metallic and metal oxide systems at high pressure. However, because of the filled close-shell configuration, the superconductivity in molecular systems has been limited to charge-transferred salts and metal-doped carbon species with relatively low superconducting transition temperatures. Here, we report the low-temperature superconducting phase observed in diamagnetic carbon disulfide under high pressure. The superconductivity arises from a highly disordered extended state (CS4 phase or phase III[CS4]) at ~6.2 K over a broad pressure range from 50 to 172 GPa. Based on the X-ray scattering data, we suggest that the local structural change from a tetrahedral to an octahedral configuration is responsible for the observed superconductivity.

  6. A three-layer structure model for the effect of a soft middle layer on Love waves propagating in layered piezoelectric systems

    Institute of Scientific and Technical Information of China (English)

    Peng Li; Feng Jin; Tian-Jian Lu

    2012-01-01

    A three-layer structure model is proposed for investigating the effect of a soft elastic middle layer on the propagation behavior of Love waves in piezoelectric layered systems,with "soft" implying that the bulk-shear-wave velocity of the middle layer is smaller than that of the upper sensitive layer.Dispersion equations are obtained for unelectroded and traction-free upper surfaces which,in the limit,can be reduced to those for classical Love waves.Systematic parametric studies are subsequently carried out to quantify the effects of the soft middle layer upon Love wave propagation,including its thickness,mass density,dielectric constant and elastic coefficient.It is demonstrated that whilst the thickness and elastic coefficient of the middle layer affect significantly Love wave propagation,its mass density and dielectric constant have negligible influence.On condition that both the thickness and elastic coefficient of the middle layer are vanishingly small so that it degenerates into an imperfectly bonded interface,the three-layer model is also employed to investigate the influence of imperfect interfaces on Love waves propagating in piezoelectric layer/elastic substrate systems.Upon comparing with the predictions obtained by employing the traditional shear-lag model,the present three-layer structure model is found to be more accurate as it avoids the unrealistic displacement discontinuity across imperfectly bonded interfaces assumed by the shearlag model,especially for long waves when the piezoelectric layer is relatively thin.

  7. Relation between oxygen content and superconductivity in BiSrCaCuO system

    Science.gov (United States)

    Miura, N.; Deshimaru, Y.; Otani, T.; Shimizu, Y.; Yamazoe, N.

    1991-12-01

    Oxygen sorption-desorption behaviors as well as superconducting properties were examined for a series of 2212-isostructural oxides, Bi 2Sr 2-xCa 1+xCu 2O y ( x=0-1.0). It was found that oxygen sorption and desorption at temperatures below 600 °C brought about reversible shifts of Tc in a manner dependent on x. Quantitative determination of oxygen content (y) revealed that, as y decreased with oxygen desorption from the as-prepared levels, Tc increased monotonically for x=0 and 0.25, while it went through a maximum at y=8.15 for x=0.8.

  8. Design and System Integration of the Superconducting Wiggler Magnets for the Compact Linear Collider Damping Rings

    CERN Document Server

    Schoerling, D; Bernhard, A; Bragin, A; Karppinen, M; Maccaferri, R; Mezentsev, N; Papaphilippou, Y; Peiffer, P; Rossmanith, R; Rumolo, G; Russenschuck, S; Vobly, P; Zolotarev, K

    2012-01-01

    To achieve high luminosity at the collision point of the Compact Linear Collider (CLIC) the normalized horizontal and vertical emittances of the electron and positron beams must be reduced to 500 nm and 4 nm before the beams enter the 1.5TeV linear accelerators. An effective way to accomplish ultra-low emittances with only small effects on the electron polarization is using damping rings operating at 2.86 GeV equipped with superconducting wiggler magnets. This paper describes a technical design concept for the CLIC damping wigglers.

  9. Superconductivity without dependence on valence electron density in Zn doped YBCO systems

    Institute of Scientific and Technical Information of China (English)

    Li Ping-Lin; Wang Yong-Yong; Tian Yong-Tao; Wang Jing; Niu Xiao-Li; Wang Jun-Xi; Wang Dan-Dan; Wang Xiao-Xia

    2008-01-01

    This paper reports that the YBa2Cu3-xZnxO7-δ(x=0-0.4)samples are researched by means of x-ray diffraction,calculations of binding energy,the positron experiments and variations of oxygen content.The results of simulated calculations,positron experiments and variations of oxygen content support the existence of cluster effect.Moreover,it is concluded that the cluster effect is an important factor on suppression of high-Tc cuprate superconductivity and the Tc does not depend on the density of valence electron directly.

  10. Transition between different quantum states in a mesoscopic system: The superconducting ring

    Energy Technology Data Exchange (ETDEWEB)

    Horane, E.M. [Instituto Balseiro, Universidad Nacional de Cuyo and Comision Nacional de Energia Atomica, 8400 Bariloche (Argentina); Castro, J.I. [Departamento Fisico-Quimica, Facultad Filosofia Humanidades y Artes, Universidad Nacional de San Juan, San Juan (Argentina); Buscaglia, G.C.; Lopez, A. [Instituto Balseiro, and Centro Atomico Bariloche, Universidad Nacional de Cuyo and Comision Nacional de Energia Atomica, 8400 Bariloche (Argentina)

    1996-04-01

    We investigate the thermodynamic properties of a superconducting ring, both analytically and numerically, relying upon the Ginzburg-Landau theory. We find that modulated solutions for the order parameter play a role in describing the thermodynamic transitions between consecutive modes of uniform order parameter, associated with different quantum numbers. Exact expressions for these solutions are given in terms of elliptic functions. We identify the family of energy extrema which, being saddle points of the energy in the functional space of the distributions of the order parameter, represent the energy barrier to be overcome for transitions between different solutions. {copyright} {ital 1996 The American Physical Society.}

  11. Superconductivity in 2-2-3 system Y2Ba2Cu2O(8+delta)

    Science.gov (United States)

    Joshi, H. H.; Baldha, G. J.; Jotania, R. B.; Joshi, S. M.; Mohan, H.; Pandya, P. B.; Pandya, H. N.; Kulkarni, R. G.

    1991-01-01

    Researchers synthesized a new high T(sub c) 2-2-3 superconductor Y2Ba2Cu3O(8+delta) by a special preparation technique and characterized it by ac-susceptibility measurements. Diamagnetism and Meissner effect sets in at low fields and superconducting transition onsets at 90 K. The systematic investigation of the real and imaginary components of ac-susceptibility as a function of temperature and applied ac magnetic field reveals that the magnetic behavior is that of a granular type superconductor.

  12. Superconducting Microelectronics.

    Science.gov (United States)

    Henry, Richard W.

    1984-01-01

    Discusses superconducting microelectronics based on the Josephson effect and its advantages over conventional integrated circuits in speed and sensitivity. Considers present uses in standards laboratories (voltage) and in measuring weak magnetic fields. Also considers future applications in superfast computer circuitry using Superconducting…

  13. Superconducting doped topological materials

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Satoshi, E-mail: sasaki@sanken.osaka-u.ac.jp [Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Mizushima, Takeshi, E-mail: mizushima@mp.es.osaka-u.ac.jp [Department of Materials Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Department of Physics, Okayama University, Okayama 700-8530 (Japan)

    2015-07-15

    Highlights: • Studies on both normal- and SC-state properties of doped topological materials. • Odd-parity pairing systems with the time-reversal-invariance. • Robust superconductivity in the presence of nonmagnetic impurity scattering. • We propose experiments to identify the existence of Majorana fermions in these SCs. - Abstract: Recently, the search for Majorana fermions (MFs) has become one of the most important and exciting issues in condensed matter physics since such an exotic quasiparticle is expected to potentially give rise to unprecedented quantum phenomena whose functional properties will be used to develop future quantum technology. Theoretically, the MFs may reside in various types of topological superconductor materials that is characterized by the topologically protected gapless surface state which are essentially an Andreev bound state. Superconducting doped topological insulators and topological crystalline insulators are promising candidates to harbor the MFs. In this review, we discuss recent progress and understanding on the research of MFs based on time-reversal-invariant superconducting topological materials to deepen our understanding and have a better outlook on both the search for and realization of MFs in these systems. We also discuss some advantages of these bulk systems to realize MFs including remarkable superconducting robustness against nonmagnetic impurities.

  14. Suppression of superconductivity in Zn-doped SmFeAsO 0.8F 0.2 system

    Science.gov (United States)

    Cui, Y. J.; Chen, Y. L.; Cheng, C. H.; Yang, Y.; Zhao, Y.

    2011-11-01

    A series of SmFe1-xZnxAsO0.8F0.2 samples with x = 0, 0.05, 0.1, 0.2 and 0.4 have been successfully synthesized using a solid state method. The lattice parameters are found to increase with increasing Zn doping content. The superconductivity has been definitely suppressed by Zn doping at Fe site with the transition temperature Tc being reduced from 52.5 K to 23.3 K for the sample of x = 0.05, and to 18.2 K for the sample of x = 0.1. For the samples with x > 0.1, the superconducting transition vanishes, and, at the meantime, the spin-density-wave anomaly recovers at 140 K. The metal to semiconductor transition is also observed in the SmFe1-xZnxAsO0.8F0.2 system. The behavior of SmFe1-xZnxAsO0.8F0.2 is very different from that of REFeAsO (RE = rare earth metal), which reveals a very strong electron correlation in SmFe1-xZnxAsO0.8F0.2.

  15. Operational Merits of Maritime Superconductivity

    Science.gov (United States)

    Ross, R.; Bosklopper, J. J.; van der Meij, K. H.

    The perspective of superconductivity to transfer currents without loss is very appealing in high power applications. In the maritime sector many machines and systems exist in the roughly 1-100 MW range and the losses are well over 50%, which calls for dramatic efficiency improvements. This paper reports on three studies that aimed at the perspectives of superconductivity in the maritime sector. It is important to realize that the introduction of superconductivity comprises two technology transitions namely firstly electrification i.e. the transition from mechanical drives to electric drives and secondly the transition from normal to superconductive electrical machinery. It is concluded that superconductivity does reduce losses, but its impact on the total energy chain is of little significance compared to the investments and the risk of introducing a very promising but as yet not proven technology in the harsh maritime environment. The main reason of the little impact is that the largest losses are imposed on the system by the fossil fueled generators as prime movers that generate the electricity through mechanical torque. Unless electric power is supplied by an efficient and reliable technology that does not involve mechanical torque with the present losses both normal as well as superconductive electrification of the propulsion will hardly improve energy efficiency or may even reduce it. One exception may be the application of degaussing coils. Still appealing merits of superconductivity do exist, but they are rather related to the behavior of superconductive machines and strong magnetic fields and consequently reduction in volume and mass of machinery or (sometimes radically) better performance. The merits are rather convenience, design flexibility as well as novel applications and capabilities which together yield more adequate systems. These may yield lower operational costs in the long run, but at present the added value of superconductivity rather seems more

  16. Superconducting Aero Propulsion Motor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Superconducting electric propulsion systems will yield improvements in total ownership costs due to the simplicity of electric drive when compared with gas turbine...

  17. Segmented superconducting tape having reduced AC losses and method of making

    Science.gov (United States)

    Foltyn, Stephen R.; Jia, Quanxi; Arendt, Paul N.; Holesinger, Terry G.; Wang, Haiyan

    2009-09-22

    A superconducting tape having reduced AC losses. The tape has a high temperature superconductor layer that is segmented. Disruptive strips, formed in one of the tape substrate, a buffer layer, and the superconducting layer create parallel discontinuities in the superconducting layer that separate the current-carrying elements of the superconducting layer into strips or filament-like structures. Segmentation of the current-carrying elements has the effect of reducing AC current losses. Methods of making such a superconducting tape and reducing AC losses in such tapes are also disclosed.

  18. ORNL superconducting technology program for electric power systems. Annual report for FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    Hawsey, R.A. [comp.

    1994-04-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy`s Office of Energy Efficiency and Renewable Energy to develop the technology base needed by US industry for commercial development of electric power applications of high-temperature superconductivity. The two major elements of this program are conductor development and applications development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from information prepared for the FY 1993 Annual Program Review held July 28--29, 1993. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to industrial competitiveness projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer to US industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire products.

  19. Concept of a Cryogenic System for a Cryogen-Free 25 T Superconducting Magnet

    Science.gov (United States)

    Iwai, Sadanori; Takahashi, Masahiko; Miyazaki, Hiroshi; Tosaka, Taizo; Tasaki, Kenji; Hanai, Satoshi; Ioka, Shigeru; Watanabe, Kazuo; Awaji, Satoshi; Oguro, Hidetoshi

    A cryogen-free 25 T superconducting magnet using a ReBCO insert coil that generates 11.5 T in a 14 T background field of outer low-temperature superconducting (LTS) coils is currently under development. The AC loss of the insert coil during field ramping is approximately 8.8 W, which is difficult to dissipate at the operating temperature of the LTS coils (4 K). However, since a ReBCO coil can operate at a temperature above 4 K, the ReBCO insert coil is cooled to about 10 K by two GM cryocoolers, and the LTS coils are independently cooled by two GM/JT cryocoolers. Two GM cryocoolers cool a circulating helium gas through heat exchangers, and the gas is transported over a long distance to the cold stage located on the ReBCO insert coil, in order to protect the cryocoolers from the leakage field of high magnetic fields. The temperature difference of the 2nd cold stage of the GM cryocoolers and the insert coil can be reduced by increasing the gas flow rate. However, at the same time, the heat loss of the heat exchangers increases, and the temperature of the second cold stage is raised. Therefore, the gas flow rate is optimized to minimize the operating temperature of the ReBCO insert coil by using a flow controller and a bypass circuit connected to a buffer tank.

  20. ORNL superconducting technology program for electric power systems. Annual report for FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    Hawsey, R.A. [comp.

    1994-04-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy`s Office of Energy Efficiency and Renewable Energy to develop the technology base needed by US industry for commercial development of electric power applications of high-temperature superconductivity. The two major elements of this program are conductor development and applications development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from information prepared for the FY 1993 Annual Program Review held July 28--29, 1993. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to industrial competitiveness projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer to US industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire products.