WorldWideScience

Sample records for superconducting island cooper-pair

  1. Cooper pairs' magnetic moment in MCFL color superconductivity

    International Nuclear Information System (INIS)

    Feng Bo; Ferrer, Efrain J.; Incera, Vivian de la

    2011-01-01

    We investigate the effect of the alignment of the magnetic moments of Cooper pairs of charged quarks that form at high density in three-flavor quark matter. The high-density phase of this matter in the presence of a magnetic field is known to be the Magnetic Color-Flavor-Locked (MCFL) phase of color superconductivity. We derive the Fierz identities of the theory and show how the explicit breaking of the rotational symmetry by the uniform magnetic field opens new channels of interactions and allows the formation of a new diquark condensate. The new order parameter is a spin-1 condensate proportional to the component in the field direction of the average magnetic moment of the pairs of charged quarks. The magnitude of the spin-1 condensate becomes comparable to the larger of the two scalar gaps in the region of large fields. The existence of the spin-1 condensate is unavoidable, as in the presence of a magnetic field there is no solution of the gap equations with nonzero scalar gaps and zero magnetic moment condensate. This is consistent with the fact that the extra condensate does not break any symmetry that has not already been broken by the known MCFL gaps. The spin-1 condensate enhances the condensation energy of pairs formed by charged quarks and the magnetization of the system. We discuss the possible consequences of the new order parameter on the issue of the chromomagnetic instability that appears in color superconductivity at moderate density.

  2. Arrays of Cooper pair boxes coupled to a superconducting reservoir: 'superradiance' and 'revival'

    International Nuclear Information System (INIS)

    Rodrigues, D A; Gyoerffy, B L; Spiller, T P

    2004-01-01

    We consider an array of l b Cooper pair boxes, each of which is coupled to a superconducting reservoir by a capacitive tunnel junction. We discuss two effects that probe not just the quantum nature of the islands, but also of the superconducting reservoir coupled to them. These are analogues to the well-known quantum optical effects 'superradiance' and 'revival'. When revival is extended to multiple systems, we find that 'entanglement revival' can also be observed. In order to study the above effects, we utilize a highly simplified model for these systems in which all the single-electron energy eigenvalues are set to be the same (the strong coupling limit), as are the charging energies of the Cooper pair boxes, allowing the whole system to be represented by two coupled quantum spins, one finite, which represents the array of boxes, and one representing the reservoir, which we consider in the limit of infinite size. Although this simplification is drastic, the model retains the main features necessary to capture the phenomena of interest. Given the progress in superconducting box experiments over recent years, it is possible that experiments to investigate both of these interesting quantum coherent phenomena could be performed in the foreseeable future

  3. The formation of Cooper pairs and the nature of superconducting currents

    International Nuclear Information System (INIS)

    Weisskopf, V.F.

    1979-12-01

    A simple physical explanation is given for the formation of Cooper pairs in a superconducting metal, for the origin of the attractive force causing the binding of the pairs, for the forming of a degenerate Bose gas by the Cooper pairs, for the finite energy gap that prevents the ensemble of electrons to change its quantum state at low temperatures, and for the existence of permanent currents in a superconducting wire. (orig.)

  4. The formation of Cooper pairs and the nature of superconducting currents

    International Nuclear Information System (INIS)

    Weisskopf, V.F.

    1981-01-01

    A simple physical explanation is given for the formation of Cooper pairs in a superconducting metal, for the origin of the attractive force causing the binding of the pairs, for the forming of a degenerate Bose gas by the Cooper pairs, for the finite energy gap that prevents the ensemble of electrons from changing its quantum state at low temperatures, and for the existence of permanent currents in a superconducting wire. (author)

  5. Structural change of cooper pairs in color superconductivity. Crossover from weak coupling to strong coupling

    Energy Technology Data Exchange (ETDEWEB)

    Abuki, Hiroaki; Hatsuda, Tetsuo [Tokyo Univ., Dept. of Physics, Tokyo (Japan); Itakura, Kazunori [Brookhaven National Laboratory, RIKEN BNL Research Center, Upton, NY (United States)

    2002-09-01

    The two-flavor color superconductivity is studied over a wide range of baryon density with a single model. We pay a special attention to the spatial-momentum dependence of the gap and to the spatial-structure of Cooper pairs. At extremely high baryon density ({approx}O(10{sup 10} {rho}{sub 0}) with {rho}{sub 0} being the normal nuclear matter density), our model becomes equivalent to the usual perturbative QCD treatment and the gap is shown to have a sharp peak near the Fermi surface due to the weak-coupling nature of QCD. On the other hand, the gap is a smooth function of the momentum at lower densities ({approx}O(10{sup 10} {rho}{sub 0})) due to strong color magnetic and electric interactions. To study the structural change of Cooper pairs from high density to lower density, quark correlation in the color superconductor is studied both in the momentum space and in the coordinate space. The size of the Cooper pair is shown to become comparable to the averaged inter-quark distance at low densities. Also, effects of the momentum-dependent running coupling and the antiquark pairing, which are both small at high density, are shown to be non-negligible at low densities. These features are highly contrasted to the standard BCS superconductivity in metals. (author)

  6. Collective neutrino-pair emission due to Cooper pairing of protons in superconducting neutron stars

    International Nuclear Information System (INIS)

    Leinson, L.B.

    2001-01-01

    The neutrino emission due to formation and breaking of Cooper pairs of protons in superconducting cores of neutron stars is considered with taking into account the electromagnetic coupling of protons to ambient electrons. It is shown that collective response of electrons to the proton quantum transition contributes coherently to the complete interaction with a neutrino field and enhances the neutrino-pair production. Our calculation shows that the contribution of the vector weak current to the ννbar emissivity of protons is much larger than that calculated by different authors without taking into account the plasma effects. Partial contribution of the pairing protons to the total neutrino radiation from the neutron star core is very sensitive to the critical temperatures for the proton and neutron pairing. We show domains of these parameters where the neutrino radiation, caused by a singlet-state pairing of protons is dominating

  7. Cooper-pair size and binding energy for unconventional superconducting systems

    Science.gov (United States)

    Dinóla Neto, F.; Neto, Minos A.; Salmon, Octavio D. Rodriguez

    2018-06-01

    The main proposal of this paper is to analyze the size of the Cooper pairs composed by unbalanced mass fermions from different electronic bands along the BCS-BEC crossover and study the binding energy of the pairs. We are considering an interaction between fermions with different masses leading to an inter-band pairing. In addiction to the attractive interaction we have an hybridization term to couple both bands, which in general acts unfavorable for the pairing between the electrons. We get first order phase transitions as the hybridization breaks the Cooper pairs for the s-wave symmetry of the gap amplitude. The results show the dependence of the Cooper-pair size as a function of the hybridization for T = 0 . We also propose the structure of the binding energy of the inter-band system as a function of the two-bands quasi-particle energies.

  8. Theory of superconductivity. II. Excited Cooper pairs. Why does sodium remain normal down to 0 K?

    International Nuclear Information System (INIS)

    Fujita, S.

    1992-01-01

    Based on a generalized BCS Hamiltonian in which the interaction strengths (V 11 , V 22 , V 12 ) among and between electron (12) and hole (2) Cooper pairs are differentiated, the thermodynamic properties of a type-I superconductor below the critical temperature T c are investigated. An expression for the ground-state energy, W - W 0 , relative to the unperturbed Block system is obtained. The usual BCS formulas are obtained in the limits: (all) V jl = V 0 , N 1 (0) = N 2 (0). Any excitations generated through the BCS interaction Hamiltonian containing V jl must involve Cooper pairs of antiparallel spins and nearly opposite momenta. The nonzero momentum or excited Cooper pairs below T c are shown to have an excitation energy band minimum lower than the quasi-electrons, which were regarded as the elementary excitations in the original BCS theory. The energy gap var-epsilon g (T) defined relative to excited and zero-momentum Copper pairs (when V jl > 0) decreases from var-epsilon g (0) to 0 as the temperature T is raised from 0 to T c . If electrons only are available as in a monovalent metal like sodium (V 12 = 0), the energy constant Δ 1 is finite but the energy gap vanishes identically for all T. In agreement with the BCS theory, the present theory predicts that a pure nonmagnetic metal in any dimensions should have a Cooper-pair ground state whose energy is lower than that of the Bloch ground state. Additionally it predicts that a monovalent metal should remain normal down to 0 K, and that there should be no strictly one-dimensional superconductor

  9. Cooper Pairs in Insulators?

    International Nuclear Information System (INIS)

    Valles, James

    2008-01-01

    Nearly 50 years elapsed between the discovery of superconductivity and the emergence of the microscopic theory describing this zero resistance state. The explanation required a novel phase of matter in which conduction electrons joined in weakly bound pairs and condensed with other pairs into a single quantum state. Surprisingly, this Cooper pair formation has also been invoked to account for recently uncovered high-resistance or insulating phases of matter. To address this possibility, we have used nanotechnology to create an insulating system that we can probe directly for Cooper pairs. I will present the evidence that Cooper pairs exist and dominate the electrical transport in these insulators and I will discuss how these findings provide new insight into superconductor to insulator quantum phase transitions.

  10. Junctionless Cooper pair transistor

    Energy Technology Data Exchange (ETDEWEB)

    Arutyunov, K. Yu., E-mail: konstantin.yu.arutyunov@jyu.fi [National Research University Higher School of Economics , Moscow Institute of Electronics and Mathematics, 101000 Moscow (Russian Federation); P.L. Kapitza Institute for Physical Problems RAS , Moscow 119334 (Russian Federation); Lehtinen, J.S. [VTT Technical Research Centre of Finland Ltd., Centre for Metrology MIKES, P.O. Box 1000, FI-02044 VTT (Finland)

    2017-02-15

    Highlights: • Junctionless Cooper pair box. • Quantum phase slips. • Coulomb blockade and gate modulation of the Coulomb gap. - Abstract: Quantum phase slip (QPS) is the topological singularity of the complex order parameter of a quasi-one-dimensional superconductor: momentary zeroing of the modulus and simultaneous 'slip' of the phase by ±2π. The QPS event(s) are the dynamic equivalent of tunneling through a conventional Josephson junction containing static in space and time weak link(s). Here we demonstrate the operation of a superconducting single electron transistor (Cooper pair transistor) without any tunnel junctions. Instead a pair of thin superconducting titanium wires in QPS regime was used. The current–voltage characteristics demonstrate the clear Coulomb blockade with magnitude of the Coulomb gap modulated by the gate potential. The Coulomb blockade disappears above the critical temperature, and at low temperatures can be suppressed by strong magnetic field.

  11. Theory of superconductivity with non-Hermitian and parity-time reversal symmetric Cooper pairing symmetry

    Science.gov (United States)

    Ghatak, Ananya; Das, Tanmoy

    2018-01-01

    Recently developed parity (P ) and time-reversal (T ) symmetric non-Hermitian systems govern a rich variety of new and characteristically distinct physical properties, which may or may not have a direct analog in their Hermitian counterparts. We study here a non-Hermitian, PT -symmetric superconducting Hamiltonian that possesses a real quasiparticle spectrum in the PT -unbroken region of the Brillouin zone. Within a single-band mean-field theory, we find that real quasiparticle energies are possible when the superconducting order parameter itself is either Hermitian or anti-Hermitian. Within the corresponding Bardeen-Cooper-Schrieffer (BCS) theory, we find that several properties are characteristically distinct and novel in the non-Hermitian pairing case than its Hermitian counterpart. One of our significant findings is that while a Hermitian superconductor gives a second-order phase transition, the non-Hermitian one produces a robust first-order phase transition. The corresponding thermodynamic properties and the Meissner effect are also modified accordingly. Finally, we discuss how such a PT -symmetric pairing can emerge from an antisymmetric potential, such as the Dzyloshinskii-Moriya interaction, but with an external bath, or complex potential, among others.

  12. Excited cooper pairs

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Arrietea, M. G.; Solis, M. A.; De Llano, M. [Universidad Nacional Autonoma de Mexico, Mexico, D.F (Mexico)

    2001-02-01

    Excited cooper pairs formed in a many-fermion system are those with nonzero total center-of mass momentum (CMM). They are normally neglected in the standard Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity for being too few compared with zero CMM pairs. However, a Bose-Einstein condensation picture requires both zero and nonzero CMM pairs. Assuming a BCS model interaction between fermions we determine the populations for all CMM values of Cooper pairs by actually calculating the number of nonzero-CMM pairs relative to that of zero-CMM ones in both 2D and 3D. Although this ratio decreases rapidly with CMM, the number of Cooper pairs for any specific CMM less than the maximum (or breakup of the pair) momentum turns out to be typically larger than about 95% of those with zero-CMM at zero temperature T. Even at T {approx}100 K this fraction en 2D is still as large as about 70% for typical quasi-2D cuprate superconductor parameters. [Spanish] Los pares de cooper excitados formados en un sistema de muchos electrones, son aquellos con momentos de centro de masa (CMM) diferente de cero. Normalmente estos no son tomados en cuenta en la teoria estandar de la superconductividad de Bardeen-Cooper-Schrieffer (BCS) al suponer que su numero es muy pequeno comparados con los pares de centro de masa igual a cero. Sin embargo, un esquema de condensacion Bose-Einstein requiere de ambos pares, con CMM cero y diferente de cero. Asumiendo una interaccion modelo BCS entre los fermiones, determinamos la poblacion de pares cooper con cada uno de todos los posibles valores del CMM calculando el numero de pares con momentos de centro de masa diferente de cero relativo a los pares de CMM igual a cero, en 2D y 3D. Aunque esta razon decrece rapidamente con el CMM, el numero de pares de cooper para cualquier CMM especifico menor que el momento maximo (o rompimiento de par) es tipicamente mas grande que el 95% de aquellos con CMM cero. Aun a T {approx}100 K esta fraccion en 2D es

  13. Exact mapping of the dx2-y2 Cooper-pair wavefunction onto the spin fluctuations in cuprates: the Fermi surface as a driver for 'high Tc' superconductivity

    International Nuclear Information System (INIS)

    McDonald, Ross D; Harrison, Neil; Singleton, John

    2009-01-01

    We propose that the extraordinarily high superconducting transition temperatures in the cuprates are driven by an exact mapping of the d x 2 -y 2 Cooper-pair wavefunction onto the incommensurate spin fluctuations observed in neutron-scattering experiments. This is manifested in the direct correspondence between the inverse of the incommensurability factor δ seen in inelastic neutron-scattering experiments and the measured superconducting coherence length ξ 0 . Strikingly, the relationship between ξ 0 and δ is valid for both La 2-x Sr x CuO 4 and YBa 2 Cu 3 O 7-x , suggesting a common mechanism for superconductivity across the entire hole-doped cuprate family. Using data from recent quantum-oscillation experiments in the cuprates, we propose that the fluctuations responsible for superconductivity are driven by a Fermi-surface instability. On the basis of these findings, one can specify the optimal characteristics of a solid that will exhibit 'high T c ' superconductivity. (fast track communication)

  14. Isominkowskian theory of Cooper Pairs in superconductors

    International Nuclear Information System (INIS)

    Animalu, A.O.E.

    1993-01-01

    Via the use of Santilli's isominkowskian space, the author presents a relativistic extension of the author's recent treatment of the Cooper Pair in superconductivity based on the Lie-isotopic lifting of quantum mechanics known as Hadronic Mechanics. The isominkowskian treatment reduces the solution of the eiganvalue problem for the quasiparticle energy spectrum to a geometric problem of specifying the metric of the isominkowskian space inside the pair in various models of ordinary high T c superconductors. The use of an intriguing realization of the metric due to Dirac reduces the dimensionality of the interior space to two yielding a spin mutation from 1/2 to zero inside a Cooper pair in two-band BCS and Hubbard models. 12 refs

  15. Detecting nonlocal Cooper pair entanglement by optical Bell inequality violation

    Energy Technology Data Exchange (ETDEWEB)

    Nigg, Simon E.; Tiwari, Rakesh P.; Walter, Stefan; Schmidt, Thomas L. [Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel (Switzerland)

    2015-07-01

    Based on the Bardeen Cooper Schrieffer (BCS) theory of superconductivity, the coherent splitting of Cooper pairs from a superconductor to two spatially separated quantum dots has been predicted to generate nonlocal pairs of entangled electrons. In order to test this hypothesis, we propose a scheme to transfer the spin state of a split Cooper pair onto the polarization state of a pair of optical photons. We show that the produced photon pairs can be used to violate a Bell inequality, unambiguously demonstrating the entanglement of the split Cooper pairs.

  16. Detecting nonlocal Cooper pair entanglement by optical Bell inequality violation

    Science.gov (United States)

    Nigg, Simon E.; Tiwari, Rakesh P.; Walter, Stefan; Schmidt, Thomas L.

    2015-03-01

    Based on the Bardeen-Cooper-Schrieffer theory of superconductivity, the coherent splitting of Cooper pairs from a superconductor to two spatially separated quantum dots has been predicted to generate nonlocal pairs of entangled electrons. In order to test this hypothesis, we propose a scheme to transfer the spin state of a split Cooper pair onto the polarization state of a pair of optical photons. We show that the photon pairs produced can be used to violate a Bell inequality, unambiguously demonstrating the entanglement of the split Cooper pairs.

  17. Detecting nonlocal Cooper pair entanglement by optical Bell inequality violation

    OpenAIRE

    Nigg, Simon E.; Tiwari, Rakesh P.; Walter, Stefan; Schmidt, Thomas L.

    2014-01-01

    Based on the Bardeen Cooper Schrieffer (BCS) theory of superconductivity, the coherent splitting of Cooper pairs from a superconductor to two spatially separated quantum dots has been predicted to generate nonlocal pairs of entangled electrons. In order to test this hypothesis, we propose a scheme to transfer the spin state of a split Cooper pair onto the polarization state of a pair of optical photons. We show that the produced photon pairs can be used to violate a Bell inequality, unambiguo...

  18. Strong temperature effect on the sizes of the Cooper pairs in a two-band superconductor

    Science.gov (United States)

    Örd, Teet; Rägo, Küllike; Vargunin, Artjom; Litak, Grzegorz

    2018-01-01

    We study the temperature dependencies of the mean sizes of the Cooper pairs in a two-band BCS-type s-wave superconductivity model with coupling cut-off in the momentum space. It is found that, in contrast to single-band systems, the size of Cooper pairs in the weaker superconductivity band can significantly decrease with a temperature increase due to an interband proximity effect. The relevant spatial behaviour of the wave functions of the Cooper pairs is analyzed. The results also indicate a possibility that the size of Cooper pairs in two-band systems may increase with an increase in temperature.

  19. Cooper pair splitters beyond the Coulomb blockade regime

    Energy Technology Data Exchange (ETDEWEB)

    Amitai, Ehud; Tiwari, Rakesh P.; Nigg, Simon E. [Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel (Switzerland); Walter, Stefan [Institute for Theoretical Physics, University Erlangen Nuernberg, Staudtstrasse 7, 91058 Erlangen (Germany); Schmidt, Thomas L. [Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg (Luxembourg)

    2016-07-01

    We consider the setup of a conventional s-wave Cooper pair splitter. However, we consider the charging energies in the quantum dots to be finite and smaller than the superconducting gap. We find analytically that at low energies the superconductor mediates an inter-dot tunneling term, the spin symmetry of which is influenced by a finite Zeeman field. This effect, together with an electrical tuning scheme of the quantum dot levels, can be used to engineer a non local triplet state on the two quantum dots, thereby extending the non-local state engineering capabilities of the Cooper pair splitter system.

  20. Superconducting properties and pseudogap from preformed Cooper pairs in the triclinic (CaFe{sub 1-x}Pt{sub x}As){sub 10}Pt{sub 3}As{sub 8}

    Energy Technology Data Exchange (ETDEWEB)

    Surmach, M.A.; Brueckner, F.; Kamusella, S.; Sarkar, R.; Portnichenko, P.Y.; Klauss, H.H.; Inosov, D.S. [TU Dresden (Germany); Park, J.T. [MLZ, Garching (Germany); Ghambashidze, G. [MPI, Stuttgart (Germany); Luetkens, H.; Biswas, P. [PSI, Villigen (Switzerland); Choi, W.J.; Seo, Y.I.; Kwon, Y.S. [DGIST, Daegu (Korea, Republic of)

    2015-07-01

    Using μSR, INS and NMR, we investigated the novel Fe-based superconductor with a triclinic crystal structure (CaFe{sub 1-x}Pt{sub x}As){sub 10}Pt{sub 3}As{sub 8} (T{sub c}=13 K). The T-dependence of the superfluid density from the μSR measurements indicates the presence of two superconducting gaps. Our INS data revealed commensurate spin fluctuations at the (π, 0) wave vector. Their intensity remains unchanged across T{sub c}, indicating the absence of a spin resonance typical for many Fe-pnictides. Instead, we observed a peak around ℎω{sub 0} = 7 meV at the same wave vector, which persists above T{sub c} and is characterized by the ratio ℎω{sub 0}/k{sub B}T{sub c}∼6.2, i.e. significantly higher than typical values for the magnetic resonant modes in iron pnictides (∝ 4.3). The T-dependence of magnetic intensity at 7 meV revealed an anomaly around T*=45 K related to the disappearance of this new mode. A suppression of the spin-lattice relaxation rate, 1=/T{sub 1}T, observed by NMR immediately below T* without any notable subsequent anomaly at T{sub c}, indicates that T{sup *} could mark the onset of a pseudogap in (CaFe{sub 1-x}Pt{sub x}As){sub 10}Pt{sub 3}As{sub 8}, likely associated with the emergence of preformed Cooper pairs.

  1. Drive the Dirac electrons into Cooper pairs in SrxBi2Se3

    Science.gov (United States)

    Du, Guan; Shao, Jifeng; Yang, Xiong; Du, Zengyi; Fang, Delong; Wang, Jinghui; Ran, Kejing; Wen, Jinsheng; Zhang, Changjin; Yang, Huan; Zhang, Yuheng; Wen, Hai-Hu

    2017-01-01

    Topological superconductors are a very interesting and frontier topic in condensed matter physics. Despite the tremendous efforts in exploring topological superconductivity, its presence is however still under heavy debate. The Dirac electrons have been proven to exist on the surface of a topological insulator. It remains unclear whether and how the Dirac electrons fall into Cooper pairing in an intrinsic superconductor with the topological surface states. Here we show the systematic study of scanning tunnelling microscope/spectroscopy on the possible topological superconductor SrxBi2Se3. We first demonstrate that only the intercalated Sr atoms can induce superconductivity. Then we show the full superconducting gaps without any in-gap density of states as expected theoretically for a bulk topological superconductor. Finally, we find that the surface Dirac electrons will simultaneously condense into the superconducting state within the superconducting gap. This vividly demonstrates how the surface Dirac electrons are driven into Cooper pairs. PMID:28198378

  2. Dynamical Cooper pairing in non-equilibrium electron-phonon systems

    Energy Technology Data Exchange (ETDEWEB)

    Knap, Michael [Technical University of Munich (Germany); Harvard University (United States); Babadi, Mehrtash; Refael, Gil [Caltech (United States); Martin, Ivar [Argonne National Laboratory (United States); Demler, Eugene [Harvard University (United States)

    2016-07-01

    Ultrafast laser pulses have been used to manipulate complex quantum materials and to induce dynamical phase transitions. One of the most striking examples is the transient enhancement of superconductivity in several classes of materials upon irradiating them with high intensity pulses of terahertz light. Motivated by these experiments we analyze the Cooper pairing instabilities in non-equilibrium electron-phonon systems. We demonstrate that the light induced non-equilibrium state of phonons results in a simultaneous increase of the superconducting coupling constant and the electron scattering. We analyze the competition between these effects and show that in a broad range of parameters the dynamic enhancement of Cooper pair formation dominates over the increase in the scattering rate. This opens the possibility of transient light induced superconductivity at temperatures that are considerably higher than the equilibrium transition temperatures. Our results pave new pathways for engineering high-temperature light-induced superconducting states.

  3. How to measure the cooper pair mass using plasmons in low-dimensional superconductor structures

    International Nuclear Information System (INIS)

    Mishonov, T.M.

    1990-06-01

    The creation of the Cooper pair mass-spectroscopy is suggested. The plasmons in low-dimensional superconductor structures (layers or wires in dielectric background) are theoretically considered to that purpose. The Cooper pair mass m * can be determined by measurements of the Doppler shift of the plasmon frequency when a direct current is applied through the superconductor. The plasmons with frequency ω lower than the superconducting gap 2 Δ can be detected by the same fare-infrared (FIR) absorption technique and grating couplings used previously for investigation of two-dimension (2D) plasmons in semiconductor microstructures. (author). 17 refs, 2 figs

  4. Creation of Spin-Triplet Cooper Pairs in the Absence of Magnetic Ordering

    Science.gov (United States)

    Breunig, Daniel; Burset, Pablo; Trauzettel, Björn

    2018-01-01

    In superconducting spintronics, it is essential to generate spin-triplet Cooper pairs on demand. Up to now, proposals to do so concentrate on hybrid structures in which a superconductor (SC) is combined with a magnetically ordered material (or an external magnetic field). We, instead, identify a novel way to create and isolate spin-triplet Cooper pairs in the absence of any magnetic ordering. This achievement is only possible because we drive a system with strong spin-orbit interaction—the Dirac surface states of a strong topological insulator (TI)-out of equilibrium. In particular, we consider a bipolar TI-SC-TI junction, where the electrochemical potentials in the outer leads differ in their overall sign. As a result, we find that nonlocal singlet pairing across the junction is completely suppressed for any excitation energy. Hence, this junction acts as a perfect spin-triplet filter across the SC, generating equal-spin Cooper pairs via crossed Andreev reflection.

  5. On the combination of the Cooper pair and the Ogg pair in the high-Tc oxide superconductor

    International Nuclear Information System (INIS)

    Zhang Liyuan.

    1991-08-01

    In this paper it is argued that the superconductivity of the high-T c oxide superconductor (HTOS) can be explained by the combinating mechanism of the Cooper pair and the Ogg pair. The properties of the superconducting state of the HTOS have been calculated under this mechanism, and the theoretical results are overall consistent with the experiment. (author). 37 refs

  6. A quantitative study of quasiparticle traps using the single-Cooper-pair-transistor

    OpenAIRE

    Court, N. A.; Ferguson, A. J.; Lutchyn, Roman; Clark, R. G.

    2007-01-01

    We use radio-frequency reflectometry to measure quasiparticle tunneling rates in the single-Cooper-pair-transistor. Devices with and without quasiparticle traps in proximity to the island are studied. A $10^2$ to $10^3$-fold reduction in the quasiparticle tunneling rate onto the island is observed in the case of quasiparticle traps. In the quasiparticle trap samples we also measure a commensurate decrease in quasiparticle tunneling rate off the island.

  7. Possibility of Cooper-pair formation controlled by multi-terminal spin injection

    Science.gov (United States)

    Ohnishi, K.; Sakamoto, M.; Ishitaki, M.; Kimura, T.

    2018-03-01

    A multi-terminal lateral spin valve consisting of three ferromagnetic nanopillars on a Cu/Nb bilayer has been fabricated. We investigated the influence of the spin injection on the superconducting properties at the Cu/Nb interface. The non-local spin valve signal exhibits a clear spin insulation signature due to the superconducting gap of the Nb. The magnitude of the spin signal is found to show the probe configuration dependence. From the careful analysis of the bias current dependence, we found the suppression of the superconductivity due to the exchange interaction between the Cooper pair and accumulated spin plays an important role in the multi-terminal spin injections. We also discuss about the possibility of the Cooper-pair formation due to the spin injection from the two injectors with the anti-parallel alignment.

  8. Quantitative Raman Measurement of the Evolution of the Cooper-pair Density with Doping in Bi2Sr2CaCu2O8+δ Superconductors

    International Nuclear Information System (INIS)

    Blanc, S.; Gu, G.; Gallais, Y.; Sacuto, A.; Cazayous, M.; Measson, M.A.; Wen, J.S.; Xu, Z.J.

    2009-01-01

    We report Raman measurements on Bi 2 Sr 2 CaCu 2 O 8+δ single crystals that allow us to quantitatively evaluate the doping dependence of the density of Cooper pairs in the superconducting state. We show that the drastic loss of Cooper pairs in the antinodal region as the doping level is reduced is concomitant with a deep alteration of the quasiparticles dynamic above T c and consistent with a pseudogap that competes with superconductivity. Our data also reveal that the overall density of Cooper pairs evolves with doping, distinctly from the superfluid density above the doping level p c = 0.2.

  9. Understanding Fomalhaut as a Cooper pair

    Science.gov (United States)

    Feng, F.; Jones, H. R. A.

    2018-03-01

    Fomalhaut is a nearby stellar system and has been found to be a triple based on astrometric observations. With new radial velocity and astrometric data, we study the association between Fomalhaut A, B, and C in a Bayesian framework, finding that the system is gravitationally bound or at least associated. Based on simulations of the system, we find that Fomalhaut C can be easily destabilized through combined perturbations from the Galactic tide and stellar encounters. Considering that observing the disruption of a triple is probably rare in the solar neighbourhood, we conclude that Fomalhaut C is a so-called `gravitational pair' of Fomalhaut A and B. Like the Cooper pair mechanism in superconductors, this phenomenon only appears once the orbital energy of a component becomes comparable with the energy fluctuations caused by the environment. Based on our simulations, we find (1) an upper limit of 8 km s-1 velocity difference is appropriate when selecting binary candidates, and (2) an empirical formula for the escape radius, which is more appropriate than tidal radius when measuring the stability of wide binaries.

  10. Coherent Cooper pair tunneling in systems of Josephson junctions: effects of quasiparticle tunneling and of the electromagnetic environment

    NARCIS (Netherlands)

    Maassen van den Brink, A.; Odintsov, A.A.; Bobbert, P.A.; Schön, G.

    1991-01-01

    Small capacitance tunnel junctions show single electron effects and, in the superconducting state, the coherent tunneling of Cooper pairs. We study these effects in a system of two Josephson junctions, driven by a voltage source with a finite impedance. Novel features show up in theI–V

  11. Unconventional Cooper pairing results in a pseudogap-like phase in s-wave superconductors

    International Nuclear Information System (INIS)

    Springer, Daniel; Cheong, Siew Ann

    2015-01-01

    The impact of disorder on the superconducting (SC) pairing mechanism is the centre of much debate. Some evidence suggests a loss of phase coherence of pairs while others point towards the formation of a competing phase. In our work we show that the two perspectives may be different sides of the same coin. Using an extension of the perturbative renormalization group approach we compare the impact of different disorder-induced interactions on a SC ground state. We find that in the strongly disordered regime an interaction between paired fermions and their respective disordered environment replaces conventional Cooper pairing. For these unconventional Cooper pairs the phase coherence condition, required for the formation of a SC condensate, is not satisfied. (paper)

  12. Electron Waiting Times of a Cooper Pair Splitter

    Science.gov (United States)

    Walldorf, Nicklas; Padurariu, Ciprian; Jauho, Antti-Pekka; Flindt, Christian

    2018-02-01

    Electron waiting times are an important concept in the analysis of quantum transport in nanoscale conductors. Here we show that the statistics of electron waiting times can be used to characterize Cooper pair splitters that create spatially separated spin-entangled electrons. A short waiting time between electrons tunneling into different leads is associated with the fast emission of a split Cooper pair, while long waiting times are governed by the slow injection of Cooper pairs from a superconductor. Experimentally, the waiting time distributions can be measured using real-time single-electron detectors in the regime of slow tunneling, where conventional current measurements are demanding. Our work is important for understanding the fundamental transport processes in Cooper pair splitters and the predictions may be verified using current technology.

  13. Electron Waiting Times of a Cooper Pair Splitter

    DEFF Research Database (Denmark)

    Walldorf, Nicklas; Padurariu, Ciprian; Jauho, Antti-Pekka

    2018-01-01

    Electron waiting times are an important concept in the analysis of quantum transport in nanoscale conductors. Here we show that the statistics of electron waiting times can be used to characterize Cooper pair splitters that create spatially separated spin-entangled electrons. A short waiting time...... between electrons tunneling into different leads is associated with the fast emission of a split Cooper pair, while long waiting times are governed by the slow injection of Cooper pairs from a superconductor. Experimentally, the waiting time distributions can be measured using real-time single......-electron detectors in the regime of slow tunneling, where conventional current measurements are demanding. Our work is important for understanding the fundamental transport processes in Cooper pair splitters and the predictions may be verified using current technology....

  14. Scanning tunneling spectroscopy of Co adsorbates on superconducting Pb nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Decker, Regis; Caminale, Michael; Oka, Hirofumi; Stepniak, Agnieszka; Leon Vanegas, Augusto A.; Sander, Dirk; Kirschner, Juergen [Max-Planck-Institut fuer Mikrostrukturphysik, Weinberg 2, 06120 Halle (Germany)

    2015-07-01

    Superconductivity in low-dimensional structures has become an active research area. In order to understand the superconducting pairing, long-standing work has been devoted to the pair breaking effect, where magnetic impurities break Cooper pair singlets. We performed scanning tunneling spectroscopy at low temperature on Co adsorbates on superconducting Pb nanoislands. On the Co adsorbates, we observe spectral features in the superconductor's energy gap, which we attribute to magnetic impurity induced bound states, a hallmark of the pair breaking effect. We discuss the response of the superconducting islands to the presence of Co adsorbates.

  15. Cooper pair induced frustration and nematicity of two-dimensional magnetic adatom lattices

    Science.gov (United States)

    Schecter, Michael; Syljuâsen, Olav F.; Paaske, Jens

    2018-05-01

    We propose utilizing the Cooper pair to induce magnetic frustration in systems of two-dimensional (2D) magnetic adatom lattices on s -wave superconducting surfaces. The competition between singlet electron correlations and the RKKY coupling is shown to lead to a variety of hidden-order states that break the point-group symmetry of the 2D adatom lattice at finite temperature. The phase diagram is constructed using a newly developed effective bond theory [M. Schecter et al., Phys. Rev. Lett. 119, 157202 (2017), 10.1103/PhysRevLett.119.157202], and exhibits broad regions of long-range vestigial nematic order.

  16. Nonlinear optical effects and third-harmonic generation in superconductors: Cooper pairs versus Higgs mode contribution

    Science.gov (United States)

    Cea, T.; Castellani, C.; Benfatto, L.

    2016-05-01

    The recent observation of a transmitted THz pulse oscillating at three times the frequency of the incident light paves the way to a powerful protocol to access resonant excitations in a superconductor. Here we show that this nonlinear optical process is dominated by light-induced excitation of Cooper pairs, while the collective amplitude (Higgs) fluctuations of the superconducting order parameter give in general a negligible contribution. We also predict a nontrivial dependence of the signal on the direction of the light polarization with respect to the lattice symmetry, which can be tested in systems such as, e.g., cuprate superconductors.

  17. Near quantum limited amplification from inelastic Cooper-pair tunneling

    Science.gov (United States)

    Hofheinz, Max; Jebari, Salha; Blanchet, Florian; Grimm, Alexander; Hazra, Dibyendu; Albert, Romain; Portier, Fabien

    Josephson parametric amplifiers approach quantum-limited noise performance but require strong external microwave pump tones which make them more difficult to use than DC powered amplifiers: The pump tone can affect the device under test and requires expensive room-temperature equipment. Inelastic Cooper pair tunneling processes through a small DC voltage-biased Josephson junction, where a tunneling Cooper pair dissipates its energy 2 eV in the form of two photons are reminiscent of parametric down conversion. We show that these processes can be used to provide amplification near the quantum limit without external microwave pump tone. We explain the measured gain and noise based on the P (E) theory of inelastic Cooper pair tunneling and general fluctuation-dissipation relations.

  18. Cooper Pair Writing at the LaAlO3/ SrTiO 3 Interface

    Science.gov (United States)

    Cen, Cheng; Bogorin, Daniela F.; Bark, Chung Wung; Folkman, Chad M.; Eom, Chang-Beom; Levy, Jeremy

    2011-03-01

    Superconducting semiconductors offer unique ways to exert electrostatic control over macroscopic quantum phases. The recently demonstrated nanoscale control over conductivity at the LaAl O3 / SrTi O3 interface raises the question of whether nanoscale control over superconducting phases can be realized. Here we report low-temperature magnetotransport experiments on structures defined with nanoscale precision at the LaAl O3 / SrTi O3 interface. A quantum phase transition is observed that is associated with the formation of Cooper pairs, but a finite resistance is observed at the lowest temperatures. Higher mobility interfaces exhibit larger Ginsburg-Landau coherence lengths, a stronger suppression of pairing by magnetic field as well as Shubnikov-de Haas oscillations. Cooper pair localization, spin-orbit coupling, and finite-size effects may factor into an explanation for some of the unusual properties observed. The work is supported by Department of Energy and State of Florida, NSF (DMR-0906443 and DMR-0704022), DOE (DE-FG02-06ER46327) and the Fine Foundation.

  19. Atomic-scale Visualization of Electronic Nematicity and Cooper Pairing in Iron-based Superconductors

    Science.gov (United States)

    Allan, Milan P.

    2013-03-01

    The mechanism of high-temperature superconductivity in the relatively novel iron-based high-Tc superconductors is unresolved, both in terms of how the phases evolve with doping, and in terms of the actual Cooper pairing process. To explore these issues, we used spectroscopic-imaging scanning tunneling microscopy to study the electronic structure of CaFe2As2 in the antiferromagnetic-orthorhombic `parent' state from which the superconductivity emerges. We discovered and visualized the now widely studied electronic `nematicity' of this phase, whose suppression is associated with the emergence of superconductivity (Science 327, 181, 2010). As subsequent transport experiments discovered a related anisotropic conductance which increases with dopant concentration, the interplay between the electronic structure surrounding each dopant atom, quasiparticle scattering therefrom, and the transport nematicity has become a pivotal focus of research. We find that substituting Co for Fe atoms in underdoped Ca(Fe1-xCox)2As2 generates a dense population of identical and strongly anisotropic impurity states that are distributed randomly but aligned with the antiferromagnetic a-axis. We also demonstrate, by imaging their surrounding interference patterns, that these impurity states scatter quasiparticles and thus influence transport in a highly anisotropic manner (M.P. Allan et al., 2013). Next, we studied the momentum dependence of the energy gaps of iron-based superconductivity, now focusing on LiFeAs. If strong electron-electron interactions mediate the Cooper pairing, then momentum-space anisotropic superconducting energy gaps Δi (k) were predicted by multiple techniques to appear on the different electronic bands i. We introduced intraband Bogoliubov quasiparticle scattering interference (QPI) techniques for the determination of anisotropic energy gaps to test these hypotheses and discovered the anisotropy, magnitude, and relative orientations of the energy gaps on multiple

  20. Inter-layer Cooper pairing of two-dimensional electrons

    International Nuclear Information System (INIS)

    Inoue, Masahiro; Takemori, Tadashi; Yoshizaki, Ryozo; Sakudo, Tunetaro; Ohtaka, Kazuo

    1987-01-01

    The authors point out the possibility that the high transition temperatures of the recently discovered oxide superconductors are dominantly caused by the inter-layer Cooper pairing of two-dimensional electrons that are coupled through the exchange of three-dimensional phonons. (author)

  1. Nonlocal Cooper pair splitting in a pSn-junction

    NARCIS (Netherlands)

    Veldhorst, M.; Brinkman, Alexander

    2010-01-01

    Perfect Cooper pair splitting is proposed, based on crossed Andreev reflection (CAR) in a p-type semiconductor-superconductor-n-type semiconductor (pSn) junction. The ideal splitting is caused by the energy filtering that is enforced by the band structure of the electrodes. The pSn junction is

  2. Splitting efficiency and interference effects in a Cooper pair splitter based on a triple quantum dot with ferromagnetic contacts

    Science.gov (United States)

    Bocian, Kacper; Rudziński, Wojciech; Weymann, Ireneusz

    2018-05-01

    We theoretically study the spin-resolved subgap transport properties of a Cooper pair splitter based on a triple quantum dot attached to superconducting and ferromagnetic leads. Using the Keldysh Green's function formalism, we analyze the dependence of the Andreev conductance, Cooper pair splitting efficiency, and tunnel magnetoresistance on the gate and bias voltages applied to the system. We show that the system's transport properties are strongly affected by spin dependence of tunneling processes and quantum interference between different local and nonlocal Andreev reflections. We also study the effects of finite hopping between the side quantum dots on the Andreev current. This allows for identifying the optimal conditions for enhancing the Cooper pair splitting efficiency of the device. We find that the splitting efficiency exhibits a nonmonotonic dependence on the degree of spin polarization of the leads and the magnitude and type of hopping between the dots. An almost perfect splitting efficiency is predicted in the nonlinear response regime when the energies of the side quantum dots are tuned to the energies of the corresponding Andreev bound states. In addition, we analyzed features of the tunnel magnetoresistance (TMR) for a wide range of the gate and bias voltages, as well as for different model parameters, finding the corresponding sign changes of the TMR in certain transport regimes. The mechanisms leading to these effects are thoroughly discussed.

  3. Oscillation of Critical Current by Gate Voltage in Cooper Pair Transistor

    International Nuclear Information System (INIS)

    Kim, N.; Cheong, Y.; Song, W.

    2010-01-01

    We measured the critical current of a Cooper pair transistor consisting of two Josephson junctions and a gate electrode. The Cooper pair transistors were fabricated by using electron-beam lithography and double-angle evaporation technique. The Gate voltage dependence of critical current was measured by observing voltage jumps at various gate voltages while sweeping bias current. The observed oscillation was 2e-periodic, which shows the Cooper pair transistor had low level of quasiparticle poisoning.

  4. Topological Nodal Cooper Pairing in Doped Weyl Metals

    Science.gov (United States)

    Li, Yi; Haldane, F. D. M.

    2018-02-01

    We generalize the concept of Berry connection of the single-electron band structure to that of a two-particle Cooper pairing state between two Fermi surfaces with opposite Chern numbers. Because of underlying Fermi surface topology, the pairing Berry phase acquires nontrivial monopole structure. Consequently, pairing gap functions have topologically protected nodal structure as vortices in the momentum space with the total vorticity solely determined by the pair monopole charge qp. The nodes of gap function behave as the Weyl-Majorana points of the Bogoliubov-de Gennes pairing Hamiltonian. Their relation with the connection patterns of the surface modes from the Weyl band structure and the Majorana surface modes inside the pairing gap is also discussed. Under the approximation of spherical Fermi surfaces, the pairing symmetry are represented by monopole harmonic functions. The lowest possible pairing channel carries angular momentum number j =|qp|, and the corresponding gap functions are holomorphic or antiholomorphic functions on Fermi surfaces. After projected on the Fermi surfaces with nontrivial topology, all the partial-wave channels of pairing interactions acquire the monopole charge qp independent of concrete pairing mechanism.

  5. Shape of Cooper pairs in a norma.-metal/superconductors junction

    NARCIS (Netherlands)

    Tanaka, Yukio; Asano, Yasuhiro; Golubov, Alexandre Avraamovitch

    2008-01-01

    In s-wave superconductors the Cooper pair wave function is isotropic in momentum space. This property may also be expected for Cooper pairs entering a normal metal from a superconductor due to the proximity effect. We show, however, that such a deduction is incorrect and the pairing function in a

  6. Current cross-correlations in double quantum dot Cooper pair splitter

    Energy Technology Data Exchange (ETDEWEB)

    Wrzesniewski, Kacper; Trocha, Piotr; Weymann, Ireneusz [Faculty of Physics, Adam Mickiewicz University, 61-614 Poznan (Poland)

    2016-07-01

    We investigate theoretically transport properties of a quantum dot (QD) system working as a Cooper pair splitter. The device is coupled to one superconducting and two ferromagnetic leads. Presented results are calculated using real-time diagrammatic technique in the sequential tunneling approximation with respect to the coupling to ferromagnetic leads. The transport properties are evaluated within the superconductor subgap regime taking into account Andreev reflection processes solely. We focus on the analysis of current and current cross-correlations, both in linear and nonlinear responses. Current cross-correlations give additional information about dynamics of transport processes. We identify both positive and negative signs of current cross-correlations and discuss mechanisms leading to those results. Strong negative cross-correlations are found when the occupation number of QD system becomes degenerate and near the emergence of the triplet blockade, while positive ones occur in the most range where current flows due to crossed Andreev processes. Finally, we consider ferromagnetic leads polarization and temperature influences on aforementioned features.

  7. Pseudogap from preformed Cooper pairs in a platinum-iron-arsenide superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Surmach, M.A.; Brueckner, F.; Kamusella, S.; Sarkar, R.; Portnichenko, P.Y.; Klauss, H.H.; Inosov, D.S. [TU Dresden (Germany); Park, J.T. [MLZ, Garching (Germany); Luetkens, H.; Biswas, P. [PSI, Villigen (Switzerland); Choi, W.J.; Seo, Y.I.; Kwon, Y.S. [DGIST, Daegu (Korea, Republic of)

    2015-07-01

    Using a combination of μSR, INS and NMR, we investigated the novel iron-based superconductor with a triclinic crystal structure (CaFe{sub 1-x}Pt{sub x}As){sub 10}Pt{sub 3}As{sub 8} (T{sub c}=13 K). The T-dependence of the superfluid density from our μSR relaxation-rate measurements indicates the presence of two superconducting gaps. According to our INS measurements, commensurate spin fluctuations are centered at the (π, 0) wave vector. Their intensity is unchanged across T{sub c}, indicating the absence of a spin resonance typical for many Fe-based superconductors. Instead, we observed a peak in the spin-excitation spectrum around ℎω{sub 0}=7 meV at the same wave vector, which persists above T{sub c}. The temperature dependence of magnetic intensity at 7 meV revealed an anomaly around T*=45 K related to the disappearance of this new mode. A suppression of the spin-lattice relaxation rate, 1/T{sub 1}T, observed by NMR immediately below T* without any notable subsequent anomaly at T{sub c}, indicates that T* could mark the onset of a pseudogap in (CaFe{sub 1-x}Pt{sub x}As){sub 10}Pt{sub 3}As{sub 8}, which is likely associated with the emergence of preformed Cooper pairs.

  8. A cavity-Cooper pair transistor scheme for investigating quantum optomechanics in the ultra-strong coupling regime

    International Nuclear Information System (INIS)

    Rimberg, A J; Blencowe, M P; Armour, A D; Nation, P D

    2014-01-01

    We propose a scheme involving a Cooper pair transistor (CPT) embedded in a superconducting microwave cavity, where the CPT serves as a charge tunable quantum inductor to facilitate ultra-strong coupling between photons in the cavity and a nano- to meso-scale mechanical resonator. The mechanical resonator is capacitively coupled to the CPT, such that mechanical displacements of the resonator cause a shift in the CPT inductance and hence the cavity's resonant frequency. The amplification provided by the CPT is sufficient for the zero point motion of the mechanical resonator alone to cause a significant change in the cavity resonance. Conversely, a single photon in the cavity causes a shift in the mechanical resonator position on the order of its zero point motion. As a result, the cavity-Cooper pair transistor coupled to a mechanical resonator will be able to access a regime in which single photons can affect single phonons and vice versa. Realizing this ultra-strong coupling regime will facilitate the creation of non-classical states of the mechanical resonator, as well as the means to accurately characterize such states by measuring the cavity photon field. (paper)

  9. On magnon mediated Cooper pair formation in ferromagnetic superconductors

    Directory of Open Access Journals (Sweden)

    Rakesh Kar

    2014-08-01

    Full Text Available Identification of pairing mechanism leading to ferromagnetic superconductivity is one of the most challenging issues in condensed matter physics. Although different models have been proposed to explain this phenomenon, a quantitative understanding about this pairing is yet to be achieved. Using the localized-itinerant model, we find that in ferromagnetic superconducting materials both triplet pairing and singlet pairing of electrons are possible through magnon exchange depending upon whether the Debye cut off frequency of magnons is greater or lesser than the Hund's coupling (J multiplied by average spin (S per site. Taking into account the repulsive interaction due to the existence of paramagnons, we also find an expression for effective interaction potential between a pair of electrons with opposite spins. We apply the developed formalism in case of UGe2 and URhGe. The condition of singlet pairing is found to be fulfilled in these cases, as was previously envisaged by Suhl [Suhl, Phys. Rev. Lett. 87, 167007 (2001]. We compute the critical temperatures of URhGe at ambient pressure and of UGe2 under different pressures for the first time through BCS equation. Thus, this work outlines a very simple way to evaluate critical temperature in case of a superconducting system. A close match with the available experimental results strongly supports our theoretical treatment.

  10. Electron and Cooper-pair transport across a single magnetic molecule explored with a scanning tunneling microscope

    Science.gov (United States)

    Brand, J.; Gozdzik, S.; Néel, N.; Lado, J. L.; Fernández-Rossier, J.; Kröger, J.

    2018-05-01

    A scanning tunneling microscope is used to explore the evolution of electron and Cooper-pair transport across single Mn-phthalocyanine molecules adsorbed on Pb(111) from tunneling to contact ranges. Normal-metal as well as superconducting tips give rise to a gradual transition of the Bardeen-Cooper-Schrieffer energy gap in the tunneling range into a zero-energy resonance close to and at contact. Supporting transport calculations show that in the normal-metal-superconductor junctions this resonance reflects the merging of in-gap Yu-Shiba-Rusinov states as well as the onset of Andreev reflection. For the superconductor-superconductor contacts, the zero-energy resonance is rationalized in terms of a finite Josephson current that is carried by phase-dependent Andreev and Yu-Shiba-Rusinov levels.

  11. Universal quantum gates for Single Cooper Pair Box based quantum computing

    Science.gov (United States)

    Echternach, P.; Williams, C. P.; Dultz, S. C.; Braunstein, S.; Dowling, J. P.

    2000-01-01

    We describe a method for achieving arbitrary 1-qubit gates and controlled-NOT gates within the context of the Single Cooper Pair Box (SCB) approach to quantum computing. Such gates are sufficient to support universal quantum computation.

  12. Transition from Sign-Reversed to Sign-Preserved Cooper-Pairing Symmetry in Sulfur-Doped Iron Selenide Superconductors.

    Science.gov (United States)

    Wang, Qisi; Park, J T; Feng, Yu; Shen, Yao; Hao, Yiqing; Pan, Bingying; Lynn, J W; Ivanov, A; Chi, Songxue; Matsuda, M; Cao, Huibo; Birgeneau, R J; Efremov, D V; Zhao, Jun

    2016-05-13

    An essential step toward elucidating the mechanism of superconductivity is to determine the sign or phase of the superconducting order parameter, as it is closely related to the pairing interaction. In conventional superconductors, the electron-phonon interaction induces attraction between electrons near the Fermi energy and results in a sign-preserved s-wave pairing. For high-temperature superconductors, including cuprates and iron-based superconductors, prevalent weak coupling theories suggest that the electron pairing is mediated by spin fluctuations which lead to repulsive interactions, and therefore that a sign-reversed pairing with an s_{±} or d-wave symmetry is favored. Here, by using magnetic neutron scattering, a phase sensitive probe of the superconducting gap, we report the observation of a transition from the sign-reversed to sign-preserved Cooper-pairing symmetry with insignificant changes in T_{c} in the S-doped iron selenide superconductors K_{x}Fe_{2-y}(Se_{1-z}S_{z})_{2}. We show that a rather sharp magnetic resonant mode well below the superconducting gap (2Δ) in the undoped sample (z=0) is replaced by a broad hump structure above 2Δ under 50% S doping. These results cannot be readily explained by simple spin fluctuation-exchange pairing theories and, therefore, multiple pairing channels are required to describe superconductivity in this system. Our findings may also yield a simple explanation for the sometimes contradictory data on the sign of the superconducting order parameter in iron-based materials.

  13. Superconductivity

    International Nuclear Information System (INIS)

    Taylor, A.W.B.; Noakes, G.R.

    1981-01-01

    This book is an elementray introduction into superconductivity. The topics are the superconducting state, the magnetic properties of superconductors, type I superconductors, type II superconductors and a chapter on the superconductivity theory. (WL)

  14. Effects of Ion Beam Irradiation on Nanoscale InOx Cooper-Pair Insulators

    Directory of Open Access Journals (Sweden)

    Srdjan Milosavljević

    2013-01-01

    Full Text Available This paper examines the effects of irradiating indium oxide films of nanoscale thickness by ion beams, when these films are in the Cooper-pair insulator state. Radiation effects are predicted on the basis of Monte Carlo simulations of ion transport. Results of numerical experiments are interpreted within the theoretical model of a Cooper-pair insulator. The study suggests that radiation-induced changes in InOx films exposed to ion beams could significantly alter their current-voltage characteristics and that a transition to a metallic state is possible, due to radiation-induced perturbation of the fine-tuned granular structure. Furthermore, incident and displaced ions can break up enough Cooper pairs in InOx films to cause dissolution of this specific insulating state.

  15. Excitons and Cooper pairs two composite bosons in many-body physics

    CERN Document Server

    Combescot, Monique

    2015-01-01

    This book bridges a gap between two major communities of Condensed Matter Physics, Semiconductors and Superconductors, that have thrived independently. Through an original perspective that their key particles, excitons and Cooper pairs, are composite bosons, the authors raise fundamental questions of current interest: how does the Pauli exclusion principle wield its power on the fermionic components of bosonic particles at a microscopic level and how this affects the macroscopic physics? What can we learn from Wannier and Frenkel excitons and from Cooper pairs that helps us understand "bosonic condensation" of composite bosons and its difference from Bose-Einstein condensation of elementary bosons? The authors start from solid mathematical and physical foundation to derive excitons and Cooper pairs. They further introduce Shiva diagrams as a graphic support to grasp the many-body physics induced by fermion exchange - a novel mechanism not visualized by standard Feynman diagrams. Advanced undergraduate or grad...

  16. Enhancement of tunnel conductivity by Cooper pair fluctuations in electron-hole bilayer

    International Nuclear Information System (INIS)

    Efimkin, D K; Lozovik, Yu E

    2012-01-01

    Influence of Cooper pair fluctuations that are precursor of pairing of electrons and holes located on opposite surfaces of topological insulator film on tunnel conductivity between the surfaces is investigated. Due to restrictions caused by momentum and energy conservation dependence of tunnel conductivity on external bias voltage has peak that becomes more prominent with decreasing of disorder and temperature. We have shown that Cooper pair fluctuations considerably enhance tunneling and height of the peak diverges in vicinity of critical temperature with critical index ν = 2. Width of the peak tends to zero in proximity of critical temperature. Pairing of electrons and holes can be suppressed by disorder and in vicinity of quantum critical point height of the peak also diverges as function of Cooper pair damping with critical index μ = 2.

  17. Generic strong coupling behavior of Cooper pairs in the surface of superfluid nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Pillet, N. [DPTA/Service de Physique nucleaire, CEA/DAM Ile de France, BP12, F-91680 Bruyeres-le-Chatel (France); Sandulescu, N. [DPTA/Service de Physique nucleaire, CEA/DAM Ile de France, BP12, F-91680 Bruyeres-le-Chatel (France)]|[Institute of Physics and Nuclear Engineering, 76900 Bucharest (Romania)]|[Institut de Physique Nucleaire, CNRS, UMR 8608, Orsay, F-91406 (France); Schuck, P. [Institut de Physique Nucleaire, CNRS, UMR 8608, Orsay, F-91406 (France)]|[Universite Paris-Sud, Orsay, F-91505 (France)

    2007-01-15

    With realistic HFB calculations, using the D1S Gogny force, we reveal a generic behavior of concentration of small sized Cooper pairs (2-3 fm) in the surface of superfluid nuclei. This study confirms and extends previous results given in the literature that use more schematic approaches. It is shown that the strong concentration of pair probability of small Cooper pairs in the nuclear surface is a quite general and generic feature and that nuclear pairing is much closer to the strong coupling regime than previously assumed.

  18. Generic strong coupling behavior of Cooper pairs in the surface of superfluid nuclei

    International Nuclear Information System (INIS)

    Pillet, N.; Sandulescu, N.; Schuck, P.

    2007-01-01

    With realistic HFB calculations, using the D1S Gogny force, we reveal a generic behavior of concentration of small sized Cooper pairs (2-3 fm) in the surface of superfluid nuclei. This study confirms and extends previous results given in the literature that use more schematic approaches. It is shown that the strong concentration of pair probability of small Cooper pairs in the nuclear surface is a quite general and generic feature and that nuclear pairing is much closer to the strong coupling regime than previously assumed

  19. Superconductivity

    CERN Document Server

    Poole, Charles P; Farach, Horacio A

    1995-01-01

    Superconductivity covers the nature of the phenomenon of superconductivity. The book discusses the fundamental principles of superconductivity; the essential features of the superconducting state-the phenomena of zero resistance and perfect diamagnetism; and the properties of the various classes of superconductors, including the organics, the buckministerfullerenes, and the precursors to the cuprates. The text also describes superconductivity from the viewpoint of thermodynamics and provides expressions for the free energy; the Ginzburg-Landau and BCS theories; and the structures of the high

  20. Cooper pair formation dynamics in Bi2Sr2CaCu2O8+δ

    International Nuclear Information System (INIS)

    Kaindl, R.A.; Carnahan, M.A.; Orenstein, J.; Chemla, D.S.; Oh, S.; Eckstein, J.N.

    2003-01-01

    We utilize ultrafast terahertz pulses to monitor the carrier dynamics in the high-TC superconductor Bi2Sr2CaCu2O8+delta. The temperature, density and time dependence distinctly exposes a bimolecular recombination process of quasiparticles which underlies formation of Cooper pairs

  1. Cooper pair splitter realized in a two-quantum-dot Y-junction.

    Science.gov (United States)

    Hofstetter, L; Csonka, S; Nygård, J; Schönenberger, C

    2009-10-15

    Non-locality is a fundamental property of quantum mechanics that manifests itself as correlations between spatially separated parts of a quantum system. A fundamental route for the exploration of such phenomena is the generation of Einstein-Podolsky-Rosen (EPR) pairs of quantum-entangled objects for the test of so-called Bell inequalities. Whereas such experimental tests of non-locality have been successfully conducted with pairwise entangled photons, it has not yet been possible to realize an electronic analogue of it in the solid state, where spin-1/2 mobile electrons are the natural quantum objects. The difficulty stems from the fact that electrons are immersed in a macroscopic ground state-the Fermi sea-which prevents the straightforward generation and splitting of entangled pairs of electrons on demand. A superconductor, however, could act as a source of EPR pairs of electrons, because its ground-state is composed of Cooper pairs in a spin-singlet state. These Cooper pairs can be extracted from a superconductor by tunnelling, but, to obtain an efficient EPR source of entangled electrons, the splitting of the Cooper pairs into separate electrons has to be enforced. This can be achieved by having the electrons 'repel' each other by Coulomb interaction. Controlled Cooper pair splitting can thereby be realized by coupling of the superconductor to two normal metal drain contacts by means of individually tunable quantum dots. Here we demonstrate the first experimental realization of such a tunable Cooper pair splitter, which shows a surprisingly high efficiency. Our findings open a route towards a first test of the EPR paradox and Bell inequalities in the solid state.

  2. Superconductivity

    International Nuclear Information System (INIS)

    Langone, J.

    1989-01-01

    This book explains the theoretical background of superconductivity. Includes discussion of electricity, material fabrication, maglev trains, the superconducting supercollider, and Japanese-US competition. The authors reports the latest discoveries

  3. Superconductivity

    International Nuclear Information System (INIS)

    Onnes, H.K.

    1988-01-01

    The author traces the development of superconductivity from 1911 to 1986. Some of the areas he explores are the Meissner Effect, theoretical developments, experimental developments, engineering achievements, research in superconducting magnets, and research in superconducting electronics. The article also mentions applications shown to be technically feasible, but not yet commercialized. High-temperature superconductivity may provide enough leverage to bring these applications to the marketplace

  4. Spin–orbit coupling, minimal model and potential Cooper-pairing from repulsion in BiS2-superconductors

    Science.gov (United States)

    Cobo-Lopez, Sergio; Saeed Bahramy, Mohammad; Arita, Ryotaro; Akbari, Alireza; Eremin, Ilya

    2018-04-01

    We develop the realistic minimal electronic model for recently discovered BiS2 superconductors including the spin–orbit (SO) coupling based on the first-principles band structure calculations. Due to strong SO coupling, characteristic for the Bi-based systems, the tight-binding low-energy model necessarily includes p x , p y , and p z orbitals. We analyze a potential Cooper-pairing instability from purely repulsive interaction for the moderate electronic correlations using the so-called leading angular harmonics approximation. For small and intermediate doping concentrations we find the dominant instabilities to be {d}{x2-{y}2}-wave, and s ±-wave symmetries, respectively. At the same time, in the absence of the sizable spin fluctuations the intra and interband Coulomb repulsions are of the same strength, which yield the strongly anisotropic behavior of the superconducting gaps on the Fermi surface. This agrees with recent angle resolved photoemission spectroscopy findings. In addition, we find that the Fermi surface topology for BiS2 layered systems at large electron doping can resemble the doped iron-based pnictide superconductors with electron and hole Fermi surfaces maintaining sufficient nesting between them. This could provide further boost to increase T c in these systems.

  5. Superconductivity

    International Nuclear Information System (INIS)

    Andersen, N.H.; Mortensen, K.

    1988-12-01

    This report contains lecture notes of the basic lectures presented at the 1st Topsoee Summer School on Superconductivity held at Risoe National Laboratory, June 20-24, 1988. The following lecture notes are included: L.M. Falicov: 'Superconductivity: Phenomenology', A. Bohr and O. Ulfbeck: 'Quantal structure of superconductivity. Gauge angle', G. Aeppli: 'Muons, neutrons and superconductivity', N.F. Pedersen: 'The Josephson junction', C. Michel: 'Physicochemistry of high-T c superconductors', C. Laverick and J.K. Hulm: 'Manufacturing and application of superconducting wires', J. Clarke: 'SQUID concepts and systems'. (orig.) With 10 tabs., 128 figs., 219 refs

  6. Superconductivity

    International Nuclear Information System (INIS)

    Palmieri, V.

    1990-01-01

    This paper reports on superconductivity the absence of electrical resistance has always fascinated the mind of researchers with a promise of applications unachievable by conventional technologies. Since its discovery superconductivity has been posing many questions and challenges to solid state physics, quantum mechanics, chemistry and material science. Simulations arrived to superconductivity from particle physics, astrophysic, electronics, electrical engineering and so on. In seventy-five years the original promises of superconductivity were going to become reality: a microscopical theory gave to superconductivity the cloth of the science and the level of technological advances was getting higher and higher. High field superconducting magnets became commercially available, superconducting electronic devices were invented, high field accelerating gradients were obtained in superconductive cavities and superconducting particle detectors were under study. Other improvements came in a quiet progression when a tornado brought a revolution in the field: new materials had been discovered and superconductivity, from being a phenomenon relegated to the liquid Helium temperatures, became achievable over the liquid Nitrogen temperature. All the physics and the technological implications under superconductivity have to be considered ab initio

  7. Superconductivity

    CERN Document Server

    Thomas, D B

    1974-01-01

    A short general review is presented of the progress made in applied superconductivity as a result of work performed in connection with the high-energy physics program in Europe. The phenomenon of superconductivity and properties of superconductors of Types I and II are outlined. The main body of the paper deals with the development of niobium-titanium superconducting magnets and of radio-frequency superconducting cavities and accelerating structures. Examples of applications in and for high-energy physics experiments are given, including the large superconducting magnet for the Big European Bubble Chamber, prototype synchrotron magnets for the Super Proton Synchrotron, superconducting d.c. beam line magnets, and superconducting RF cavities for use in various laboratories. (0 refs).

  8. Multiplying and detecting propagating microwave photons using inelastic Cooper-pair tunneling

    Science.gov (United States)

    Leppäkangas, Juha; Marthaler, Michael; Hazra, Dibyendu; Jebari, Salha; Albert, Romain; Blanchet, Florian; Johansson, Göran; Hofheinz, Max

    2018-01-01

    The interaction between propagating microwave fields and Cooper-pair tunneling across a DC-voltage-biased Josephson junction can be highly nonlinear. We show theoretically that this nonlinearity can be used to convert an incoming single microwave photon into an outgoing n -photon Fock state in a different mode. In this process, the electrostatic energy released in a Cooper-pair tunneling event is transferred to the outgoing Fock state, providing energy gain. The created multiphoton Fock state is frequency entangled and highly bunched. The conversion can be made reflectionless (impedance matched) so that all incoming photons are converted to n -photon states. With realistic parameters, multiplication ratios n >2 can be reached. By two consecutive multiplications, the outgoing Fock-state number can get sufficiently large to accurately discriminate it from vacuum with linear postamplification and power measurement. Therefore, this amplification scheme can be used as a single-photon detector without dead time.

  9. Approach to equilibrium in a pure superconductor. The relaxation of the Cooper pair density

    Energy Technology Data Exchange (ETDEWEB)

    Schid, A

    1968-01-01

    Electron-phonon and electron-electron collisions are the processes which determine the relaxation time r/sub R/ of the Cooper pair density. The case is considered for which the deviation of the pair density from equilibrium is small and where the equilibrium state is homogeneous. Starting from the Eliashberg equation one is able to reduce the problem to a quadrature once the equilibrium Green functions are known.

  10. Superconductivity

    International Nuclear Information System (INIS)

    Kakani, S.L.; Kakani, Shubhra

    2007-01-01

    The monograph provides readable introduction to the basics of superconductivity for beginners and experimentalists. For theorists, the monograph provides nice and brief description of the broad spectrum of experimental properties, theoretical concepts with all details, which theorists should learn, and provides a sound basis for students interested in studying superconducting theory at the microscopic level. Special chapter on the theory of high-temperature superconductivity in cuprates is devoted

  11. Crystalline color superconductivity

    International Nuclear Information System (INIS)

    Alford, Mark; Bowers, Jeffrey A.; Rajagopal, Krishna

    2001-01-01

    In any context in which color superconductivity arises in nature, it is likely to involve pairing between species of quarks with differing chemical potentials. For suitable values of the differences between chemical potentials, Cooper pairs with nonzero total momentum are favored, as was first realized by Larkin, Ovchinnikov, Fulde, and Ferrell (LOFF). Condensates of this sort spontaneously break translational and rotational invariance, leading to gaps which vary periodically in a crystalline pattern. Unlike the original LOFF state, these crystalline quark matter condensates include both spin-zero and spin-one Cooper pairs. We explore the range of parameters for which crystalline color superconductivity arises in the QCD phase diagram. If in some shell within the quark matter core of a neutron star (or within a strange quark star) the quark number densities are such that crystalline color superconductivity arises, rotational vortices may be pinned in this shell, making it a locus for glitch phenomena

  12. Quasiparticle dynamics in aluminium superconducting microwave resonators

    NARCIS (Netherlands)

    De Visser, P.J.

    2014-01-01

    This thesis describes the intrinsic limits of superconducting microresonator detectors. In a superconductor at low temperature, most of the electrons are paired into so called Cooper pairs, which cause the well-known electrical conduction without resistance. Superconducting microwave resonators have

  13. Superconductivity

    International Nuclear Information System (INIS)

    Caruana, C.M.

    1988-01-01

    Despite reports of new, high-temperature superconductive materials almost every day, participants at the First Congress on Superconductivity do not anticipate commercial applications with these materials soon. What many do envision is the discovery of superconducting materials that can function at much warmer, perhaps even room temperatures. Others hope superconductivity will usher in a new age of technology as semiconductors and transistors did. This article reviews what the speakers had to say at the four-day congress held in Houston last February. Several speakers voiced concern that the Reagan administration's apparent lack of interest in funding superconductivity research while other countries, notably Japan, continue to pour money into research and development could hamper America's international competitiveness

  14. Superconductivity

    CERN Document Server

    Ketterson, John B

    2008-01-01

    Conceived as the definitive reference in a classic and important field of modern physics, this extensive and comprehensive handbook systematically reviews the basic physics, theory and recent advances in the field of superconductivity. Leading researchers, including Nobel laureates, describe the state-of-the-art in conventional and unconventional superconductors at a particularly opportune time, as new experimental techniques and field-theoretical methods have emerged. In addition to full-coverage of novel materials and underlying mechanisms, the handbook reflects continued intense research into electron-phone based superconductivity. Considerable attention is devoted to high-Tc superconductivity, novel superconductivity, including triplet pairing in the ruthenates, novel superconductors, such as heavy-Fermion metals and organic materials, and also granular superconductors. What’s more, several contributions address superconductors with impurities and nanostructured superconductors. Important new results on...

  15. Introduction to superconductivity

    CERN Document Server

    Darriulat, Pierre

    1998-01-01

    The lecture series will address physicists, such as particle and nuclear physicists, familiar with non-relativistic quantum mechanics but not with solid state physics. The aim of this introduction to low temperature superconductivity is to give sufficient bases to the student for him/her to be able to access the scientific literature on this field. The five lectures will cover the following topics : 1. Normal metals, free electron gas, chambers equation. 2. Cooper pairs, the BCS ground state, quasi particle excitations. 3. DC superconductivity, Meissner state, dirty superconductors.4. Self consistent approach, Ginsburg Landau equations, Abrikosov fluxon lattice. 5. Josephson effects, high temperature superconductivity.

  16. Magnetic Field Tuning and Quantum Interference in a Cooper Pair Splitter.

    Science.gov (United States)

    Fülöp, G; Domínguez, F; d'Hollosy, S; Baumgartner, A; Makk, P; Madsen, M H; Guzenko, V A; Nygård, J; Schönenberger, C; Levy Yeyati, A; Csonka, S

    2015-11-27

    Cooper pair splitting (CPS) is a process in which the electrons of the naturally occurring spin-singlet pairs in a superconductor are spatially separated using two quantum dots. Here, we investigate the evolution of the conductance correlations in an InAs CPS device in the presence of an external magnetic field. In our experiments the gate dependence of the signal that depends on both quantum dots continuously evolves from a slightly asymmetric Lorentzian to a strongly asymmetric Fano-type resonance with increasing field. These experiments can be understood in a simple three-site model, which shows that the nonlocal CPS leads to symmetric line shapes, while the local transport processes can exhibit an asymmetric shape due to quantum interference. These findings demonstrate that the electrons from a Cooper pair splitter can propagate coherently after their emission from the superconductor and how a magnetic field can be used to optimize the performance of a CPS device. In addition, the model calculations suggest that the estimate of the CPS efficiency in the experiments is a lower bound for the actual efficiency.

  17. A Bethe ansatz solvable model for superpositions of Cooper pairs and condensed molecular bosons

    International Nuclear Information System (INIS)

    Hibberd, K.E.; Dunning, C.; Links, J.

    2006-01-01

    We introduce a general Hamiltonian describing coherent superpositions of Cooper pairs and condensed molecular bosons. For particular choices of the coupling parameters, the model is integrable. One integrable manifold, as well as the Bethe ansatz solution, was found by Dukelsky et al. [J. Dukelsky, G.G. Dussel, C. Esebbag, S. Pittel, Phys. Rev. Lett. 93 (2004) 050403]. Here we show that there is a second integrable manifold, established using the boundary quantum inverse scattering method. In this manner we obtain the exact solution by means of the algebraic Bethe ansatz. In the case where the Cooper pair energies are degenerate we examine the relationship between the spectrum of these integrable Hamiltonians and the quasi-exactly solvable spectrum of particular Schrodinger operators. For the solution we derive here the potential of the Schrodinger operator is given in terms of hyperbolic functions. For the solution derived by Dukelsky et al., loc. cit. the potential is sextic and the wavefunctions obey PT-symmetric boundary conditions. This latter case provides a novel example of an integrable Hermitian Hamiltonian acting on a Fock space whose states map into a Hilbert space of PT-symmetric wavefunctions defined on a contour in the complex plane

  18. Bound states and Cooper pairs of molecules in 2D optical lattices bilayer

    Energy Technology Data Exchange (ETDEWEB)

    Camacho-Guardian, A.; Dominguez-Castro, G.A.; Paredes, R. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico (Mexico)

    2016-08-15

    We investigate the formation of Cooper pairs, bound dimers and the dimer-dimer elastic scattering of ultracold dipolar Fermi molecules confined in a 2D optical lattice bilayer configuration. While the energy and their associated bound states are determined in a variational way, the correlated two-molecule pair is addressed as in the original Cooper formulation. We demonstrate that the 2D lattice confinement favors the formation of zero center mass momentum bound states. Regarding the Cooper pairs binding energy, this depends on the molecule populations in each layer. Maximum binding energies occur for non-zero (zero) pair momentum when the Fermi system is polarized (unpolarized). We find an analytic expression for the dimer-dimer effective interaction in the deep BEC regime. The present analysis represents a route for addressing the BCS-BEC crossover in dipolar Fermi gases confined in 2D optical lattices within the current experimental panorama. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Magnetization induced by odd-frequency spin-triplet Cooper pairs in a Josephson junction with metallic trilayers

    Science.gov (United States)

    Hikino, S.; Yunoki, S.

    2015-07-01

    We theoretically study the magnetization inside a normal metal induced in an s -wave superconductor/ferromagnetic metal/normal metal/ferromagnetic metal/s -wave superconductor (S /F 1 /N /F 2 /S ) Josephson junction. Using the quasiclassical Green's function method, we show that the magnetization becomes finite inside the N . The origin of this magnetization is due to odd-frequency spin-triplet Cooper pairs formed by electrons of equal and opposite spins, which are induced by the proximity effect in the S /F 1 /N /F 2 /S junction. We find that the magnetization M (d ,θ ) in the N can be decomposed into two parts, M (d ,θ ) =MI(d ) +MII(d ,θ ) , where θ is the superconducting phase difference between the two S s and d is the thickness of N . The θ -independent magnetization MI(d ) exists generally in S /F junctions, while MII(d ,θ ) carries all θ dependence and represents the fingerprint of the phase coherence between the two S s in Josephson junctions. The θ dependence thus allows us to control the magnetization in the N by tuning θ for a fixed d . We show that the θ -independent magnetization MI(d ) weakly decreases with increasing d , while the θ -dependent magnetization MII(d ,θ ) rapidly decays with d . Moreover, we find that the time-averaged magnetization exhibits a discontinuous peak at each resonance dc voltage Vn=n ℏ ωS/2 e (n : integer) when dc voltage V as well as ac voltage vac(t ) with frequency ωS are both applied to the S /F 1 /N /F 2 /S junction. This is because MII(d ,θ ) oscillates generally in time t (ac magnetization) with d θ /d t =2 e [V +vac(t ) ]/ℏ and thus =0 , but can be converted into the time-independent dc magnetization for the dc voltage at Vn. We also discuss that the magnetization induced in the N can be measurably large in realistic systems. Therefore, the measurement of the induced magnetization serves as an alternative way to detect the phase coherence between the two S s in Josephson junctions. Our results

  20. Superconductivity

    CERN Document Server

    Poole, Charles P; Creswick, Richard J; Prozorov, Ruslan

    2014-01-01

    Superconductivity, Third Edition is an encyclopedic treatment of all aspects of the subject, from classic materials to fullerenes. Emphasis is on balanced coverage, with a comprehensive reference list and significant graphics from all areas of the published literature. Widely used theoretical approaches are explained in detail. Topics of special interest include high temperature superconductors, spectroscopy, critical states, transport properties, and tunneling. This book covers the whole field of superconductivity from both the theoretical and the experimental point of view. This third edition features extensive revisions throughout, and new chapters on second critical field and iron based superconductors.

  1. Conventional proximity effect in bilayers of superconducting underdoped $La_{1.88}Sr_{0.12}CuO_4$ islands coated with non superconducting overdoped $La_{1.65}Sr_{0.35}CuO_4$

    OpenAIRE

    Koren, G.; Millo, O.

    2009-01-01

    Following a recent study by our group in which a large $T_c$ enhancement was reported in bilayers of the non-superconducting $La_{1.65}Sr_{0.35}CuO_4$ and superconducting $La_{1.88}Sr_{0.12}CuO_4$ films [Phys. Rev. Lett. \\textbf{101}, 057005 (2008)], we checked if a similar effect occurs when superconducting $La_{1.88}Sr_{0.12}CuO_4$ islands are coated with a continuous layer of the non superconducting $La_{1.65}Sr_{0.35}CuO_4$. We found that no such phenomenon is observed. The bare supercond...

  2. Correlation-induced suppression of decoherence in capacitively coupled Cooper-pair boxes

    Science.gov (United States)

    Hu, Xuedong; You, J. Q.; Nori, Franco

    2005-03-01

    Charge fluctuations from gate bias and background traps severely limit the performance of a charge qubit in a Cooper-pair box (CPB). Here we discuss an encoding approachootnotetextJ.Q. You, X.Hu, and F. Nori, cond-mat/0407423. to control the decoherence effects of these charge fluctuations using two strongly capacitively coupled CPBs. This coupled-box system has a low-decoherence subspace of two states, for which we calculate the dephasing and relaxation rates using a master equation approach. Our results show that the inter-box Coulomb correlation can significantly suppress decoherence of this two-level system by reducing the strength of the system-environment interaction, making it a promising candidate as a logical qubit, encoded using two CPBs.

  3. Skew Information for a Single Cooper Pair Box Interacting with a Single Cavity Field

    International Nuclear Information System (INIS)

    Metwally, N.; Al-Mannai, A.; Abdel-Aty, M.

    2013-01-01

    The dynamics of the skew information (SI) is investigated for a single Cooper Pair Box (CPB) interacting with a single cavity field. By suitably choosing the system parameters and precisely controlling the dynamics, novel connection is found between the SI and entanglement generation. It is shown that SI can be increased and reach its maximum value either by increasing the number of photons inside the cavity or considering the far off-resonant case. The number of oscillations of SI is increased by decreasing this ratio between the Josephson junction capacity and the gate capacity. This leads to significant improvement of the travelling time between the maximum and minimum values. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  4. Spin correlation and entanglement detection in Cooper pair splitters by current measurements using magnetic detectors

    Science.gov (United States)

    Busz, Piotr; Tomaszewski, Damian; Martinek, Jan

    2017-08-01

    We analyze a model of a double quantum dot Cooper pair splitter coupled to two ferromagnetic detectors and demonstrate the possibility of determination of spin correlation by current measurements. We use perturbation theory, taking account of the exchange interaction with the detectors, which leads to complex spin dynamics in the dots. This affects the measured spin and restricts the use of ferromagnetic detectors to the nonlinear current-voltage characteristic regime at the current plateau, where the relevant spin projection is conserved, in contrast to the linear current-voltage characteristic regime, in which the spin information is distorted. Moreover, we show that for separable states the spin correlation can only be determined in a limited parameter regime, much more restricted than in the case of entangled states. We propose an entanglement test based on the Bell inequality.

  5. Superconductivity

    International Nuclear Information System (INIS)

    Narlikar, A.V.

    1993-01-01

    Amongst the numerous scientific discoveries that the 20th century has to its credit, superconductivity stands out as an exceptional example of having retained its original dynamism and excitement even for more than 80 years after its discovery. It has proved itself to be a rich field by continually offering frontal challenges in both research and applications. Indeed, one finds that a majority of internationally renowned condensed matter theorists, at some point of their career, have found excitement in working in this important area. Superconductivity presents a unique example of having fetched Nobel awards as many as four times to date, and yet, interestingly enough, the field still remains open for new insights and discoveries which could undeniably be of immense technological value. 1 fig

  6. Superconductivity

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This book profiles the research activity of 42 companies in the superconductivity field, worldwide. It forms a unique and comprehensive directory to this emerging technology. For each research site, it details the various projects in progress, analyzes the level of activity, pinpoints applications and R and D areas, reviews strategies and provides complete contact information. It lists key individuals, offers international comparisons of government funding, reviews market forecasts and development timetables and features a bibliography of selected articles on the subject

  7. Superconductivity

    International Nuclear Information System (INIS)

    Buller, L.; Carrillo, F.; Dietert, R.; Kotziapashis, A.

    1989-01-01

    Superconductors are materials which combine the property of zero electric resistance with the capability to exclude any adjacent magnetic field. This leads to many large scale applications such as the much publicized levitating train, generation of magnetic fields in MHD electric generators, and special medical diagnostic equipment. On a smaller-scale, superconductive materials could replace existing resistive connectors and decrease signal delays by reducing the RLC time constants. Thus, a computer could operate at much higher speeds, and consequently at lower power levels which would reduce the need for heat removal and allow closer spacing of circuitry. Although technical advances and proposed applications are constantly being published, it should be recognized that superconductivity is a slowly developing technology. It has taken scientists almost eighty years to learn what they now know about this material and its function. The present paper provides an overview of the historical development of superconductivity and describes some of the potential applications for this new technology as it pertains to the electronics industry

  8. Magnetoresistance in single-electron transistors comprising a superconducting island with ferromagnetic leads

    Science.gov (United States)

    Mizugaki, Yoshinao; Takiguchi, Masashi; Tamura, Nobuyuki; Shimada, Hiroshi

    2018-03-01

    We report electric and magnetic field responses of single-electron transistors (SETs) comprising a superconducting island with ferromagnetic (FM) leads. We fabricated two SETs, one of which had relatively high resistance and the other had relatively low resistance. The SETs had two states for the gate charge: SET-ON or SET-OFF. They also had two states for the FM lead magnetization: parallel (P) or anti-parallel (AP) configuration. Current-voltage characteristics of four SET states (“P & SET-ON,” “P & SET-OFF,” “AP & SET-ON,” and “AP & SET-OFF”) were measured at approximately 0.1 K in a compact dilution refrigerator. Magnetoresistance ratio (MRR) values were obtained for the SET-ON and SET-OFF states, respectively. The higher-resistance SET1 exhibited positive MRR values for all measured bias voltages. The MRR enhancement was confirmed for the SET-OFF state, which agreed well with the co-tunneling model. The lower-resistance SET2, on the other hand, exhibited negative and positive MRR values for higher and lower bias voltage conditions, respectively. The bias voltage for the MRR polarity reversal was changed by the gate voltage. It was also confirmed that the co-tunneling model was partially valid for negative MRR values.

  9. Superconductivity

    International Nuclear Information System (INIS)

    2007-01-01

    During 2007, a large amount of the work was centred on the ITER project and related tasks. The activities based on low-temperature superconducting (LTS) materials included the manufacture and qualification of ITER full-size conductors under relevant operating conditions, the design of conductors and magnets for the JT-60SA tokamak and the manufacture of the conductors for the European dipole facility. A preliminary study was also performed to develop a new test facility at ENEA in order to test long-length ITER or DEMO full-size conductors. Several studies on different superconducting materials were also started to create a more complete database of superconductor properties, and also for use in magnet design. In this context, an extensive measurement campaign on transport and magnetic properties was carried out on commercially available NbTi strands. Work was started on characterising MgB 2 wire and bulk samples to optimise their performance. In addition, an intense experimental study was started to clarify the effect of mechanical loads on the transport properties of multi-filamentary Nb 3 Sn strands with twisted or untwisted superconducting filaments. The experimental activity on high-temperature superconducting (HTS) materials was mainly focussed on the development and characterisation of YBa 2 Cu 3 O 7-X (YBCO) based coated conductors. Several characteristics regarding YBCO deposition, current transport performance and tape manufacture were investigated. In the framework of chemical approaches for YBCO film growth, a new method, developed in collaboration with the Technical University of Cluj-Napoca (TUCN), Romania, was studied to obtain YBCO film via chemical solution deposition, which modifies the well-assessed metallic organic deposition trifluoroacetate (MOD-TFA) approach. The results are promising in terms of critical current and film thickness values. YBCO properties in films with artificially added pinning sites were characterised in collaboration with

  10. Quasiparticle density of states in a half metal in the presence of odd-frequency Cooper pairs

    NARCIS (Netherlands)

    Asano, Yasuhiro; Yokoyama, Takehito; Tanaka, Yukio; Golubov, Alexandre Avraamovitch

    2008-01-01

    We study the local density of states in a half metal sandwiched by the two superconductors. The spin-flip scattering at the junction interface opens the Josephson channels of the odd-frequency spin-triplet s-wave Cooper pairs. The penetration of the odd-frequency pairs enhances the quasiparticle

  11. Inhomogeneous superconductivity in a ferromagnet

    International Nuclear Information System (INIS)

    Kontos, T.; Aprili, M.; Lesueur, J.; Genet, F.; Boursier, R.; Grison, X.

    2003-01-01

    We have studied a new superconducting state where the condensate wave function resulting from conventional pairing, is modified by an exchange field. Superconductivity is induced into a ferromagnetic thin film (F) by the proximity effect with a superconducting reservoir (S). We observed oscillations of the superconducting order parameter induced in F as a function of the distance from the S/F interface. They originate from the finite momentum transfer provided to Cooper pairs by the splitting of the spin up and down bands. We measured the superconducting density of states in F by tunneling spectroscopy and the Josephson critical current when F is coupled with a superconducting counter-electrode. Negative values of the superconducting order parameter are revealed by capsized tunneling spectra in F and a negative Josephson coupling (π-junction)

  12. Superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Batistoni, Paola; De Marco, Francesco; Pieroni, Leonardo [ed.

    2005-07-01

    Research on superconductivity at ENEA is mainly devoted to projects related to the ITER magnet system. In this framework, ENEA has been strongly involved in the design, manufacturing and test campaigns of the ITER toroidal field model coil (TFMC), which reached a world record in operating current (up to 80 kA). Further to this result, the activities in 2004 were devoted to optimising the ITER conductor performance. ENEA participated in the tasks launched by EFDA to define and produce industrial-scale advanced Nb3Sn strand to be used in manufacturing the ITER high-field central solenoid (CS) and toroidal field (TF) magnets. As well as contributing to the design of the new strand and the final conductor layout, ENEA will also perform characterisation tests, addressing in particular the influence of mechanical stress on the Nb3Sn performance. As a member of the international ITER-magnet testing group, ENEA plays a central role in the measurement campaigns and data analyses for each ITER-related conductor and coil. The next phase in the R and D of the ITER magnets will be their mechanical characterisation in order to define the fabrication route of the coils and structures. During 2004 the cryogenic measurement campaign on the Large Hadron Collider (LHC) by-pass diode stacks was completed. As the diode-test activity was the only LHC contract to be finished on schedule, the 'Centre Europeenne pour la Recherche Nucleaire' (CERN) asked ENEA to participate in an international tender for the cold check of the current leads for the LHC magnets. The contract was obtained, and during 2004, the experimental setup was designed and realised and the data acquisition system was developed. The measurement campaign was successfully started at the end of 2004 and will be completed in 2006.

  13. Controlling the transmitted information of a multi-photon interacting with a single-Cooper pair box

    Energy Technology Data Exchange (ETDEWEB)

    Kadry, Heba, E-mail: hkadry1@yahoo.com; Abdel-Aty, Abdel-Haleem, E-mail: hkadry1@yahoo.com; Zakaria, Nordin, E-mail: hkadry1@yahoo.com [Computer and Information Science Department, Universiti Teknologi Petronas, Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Cheong, Lee Yen [Fundamental and Applied Science Department, Universiti Teknologi Petronas, Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2014-10-24

    We study a model of a multi-photon interaction of a single Cooper pair box with a cavity field. The exchange of the information using this system is studied. We quantify the fidelity of the transmitted information. The effect of the system parameters (detuning parameter, field photons, state density and mean photon number) in the fidelity of the transmitted information is investigated. We found that the fidelity of the transmitted information can be controlled using the system parameters.

  14. Controlling the transmitted information of a multi-photon interacting with a single-Cooper pair box

    International Nuclear Information System (INIS)

    Kadry, Heba; Abdel-Aty, Abdel-Haleem; Zakaria, Nordin; Cheong, Lee Yen

    2014-01-01

    We study a model of a multi-photon interaction of a single Cooper pair box with a cavity field. The exchange of the information using this system is studied. We quantify the fidelity of the transmitted information. The effect of the system parameters (detuning parameter, field photons, state density and mean photon number) in the fidelity of the transmitted information is investigated. We found that the fidelity of the transmitted information can be controlled using the system parameters

  15. Selection rules for Cooper pairing in two-dimensional interfaces and sheets

    Science.gov (United States)

    Scheurer, Mathias S.; Agterberg, Daniel F.; Schmalian, Jörg

    2017-12-01

    Thin sheets deposited on a substrate and interfaces of correlated materials offer a plethora of routes towards the realization of exotic phases of matter. In these systems, inversion symmetry is broken which strongly affects the properties of possible instabilities—in particular in the superconducting channel. By combining symmetry and energetic arguments, we derive general and experimentally accessible selection rules for Cooper instabilities in noncentrosymmetric systems, which yield necessary and sufficient conditions for spontaneous time-reversal-symmetry breaking at the superconducting transition and constrain the orientation of the triplet vector. We discuss in detail the implications for various different materials. For instance, we conclude that the pairing state in thin layers of Sr2RuO4 must, as opposed to its bulk superconducting state, preserve time-reversal symmetry with its triplet vector being parallel to the plane of the system. All triplet states of this system allowed by the selection rules are predicted to display topological Majorana modes at dislocations or at the edge of the system. Applying our results to the LaAlO3/SrTiO3 heterostructures, we find that while the condensates of the (001) and (110) oriented interfaces must be time-reversal symmetric, spontaneous time-reversal-symmetry breaking can only occur for the less studied (111) interface. We also discuss the consequences for thin layers of URu2Si2 and UPt3 as well as for single-layer FeSe. On a more general level, our considerations might serve as a design principle in the search for time-reversal-symmetry-breaking superconductivity in the absence of external magnetic fields.

  16. Angle-resolved photoemission studies of the superconducting gap symmetry in Fe-based superconductors

    Directory of Open Access Journals (Sweden)

    Y.-B. Huang

    2012-12-01

    Full Text Available The superconducting gap is the fundamental parameter that characterizes the superconducting state, and its symmetry is a direct consequence of the mechanism responsible for Cooper pairing. Here we discuss about angle-resolved photoemission spectroscopy measurements of the superconducting gap in the Fe-based high-temperature superconductors. We show that the superconducting gap is Fermi surface dependent and nodeless with small anisotropy, or more precisely, a function of the momentum location in the Brillouin zone. We show that while this observation seems inconsistent with weak coupling approaches for superconductivity in these materials, it is well supported by strong coupling models and global superconducting gaps. We also suggest that a smaller lifetime of the superconducting Cooper pairs induced by the momentum dependent interband scattering inherent to these materials could affect the residual density of states at low energies, which is critical for a proper evaluation of the superconducting gap.

  17. Spectral density of Cooper pairs in two level quantum dot–superconductors Josephson junction

    Energy Technology Data Exchange (ETDEWEB)

    Dhyani, A., E-mail: archana.d2003@gmail.com [Department of Physics, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand (India); Rawat, P.S. [Department of Nuclear Science and Technology, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand (India); Tewari, B.S., E-mail: bstewari@ddn.upes.ac.in [Department of Physics, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand (India)

    2016-09-15

    Highlights: • The present work deals with the study of the electronic spectral density of electron pairs and its effect in charge transport in superconductor-quantum dot-superconductor junctions. • The charge transfer across such junctions can be controlled by changing the positions of the dot level. • The Josephson supercurrent can also be tuned by controlling the position of quantum dot energy levels. - Abstract: In the present paper, we report the role of quantum dot energy levels on the electronic spectral density for a two level quantum dot coupled to s-wave superconducting leads. The theoretical arguments in this work are based on the Anderson model so that it necessarily includes dot energies, single particle tunneling and superconducting order parameter for BCS superconductors. The expression for single particle spectral function is obtained by using the Green's function equation of motion technique. On the basis of numerical computation of spectral function of superconducting leads, it has been found that the charge transfer across such junctions can be controlled by the positions and availability of the dot levels.

  18. Theory of itinarant ferromagnetism in superconducting semimetals. Theorie du ferromagnetisme itinerant dans des semimetaux supraconducteurs

    Energy Technology Data Exchange (ETDEWEB)

    Do Tran, C; Nguyen Van, C [Groupe de Physique Theorique, Inst. National Polytechnique de Hanoi (Viet Nam); Nguyen Manh, D [Groupe de Physique Theorique, Inst. National Polytechnique de Hanoi (Viet Nam) Centre National de la Recherche Scientifique, Lab. d' Etudes des Proprietes Electroniques des Solides, 38 - Grenoble (France)

    1991-11-01

    A theory of itinerant ferromagnetism in superconducting semimetals is proposed. A nonzero mean magnetisation appears in the superconducting state due to the interaction (interference) of spin density wave (SDW), charge density wave (CDW) and Cooper pair wave. Phase diagram and physical properties of the states considered are investigated analytically and numerically. (orig.).

  19. The Zeeman-split superconductivity with Rashba and Dresselhaus spin-orbit coupling

    Science.gov (United States)

    Zhao, Jingxiang; Yan, Xu; Gu, Qiang

    2017-10-01

    The superconductivity with Rashba and Dressehlaus spin-orbit coupling and Zeeman effect is investigated. The energy gaps of quasi-particles are carefully calculated. It is shown that the coexistence of two spin-orbit coupling might suppress superconductivity. Moreover, the Zeeman effect favors spin-triplet Cooper pairs.

  20. Superconductivity and fast proton transport in nanoconfined water

    Science.gov (United States)

    Johnson, K. H.

    2018-04-01

    A real-space molecular-orbital density-wave description of Cooper pairing in conjunction with the dynamic Jahn-Teller mechanism for high-Tc superconductivity predicts that electron-doped water confined to the nanoscale environment of a carbon nanotube or biological macromolecule should superconduct below and exhibit fast proton transport above the transition temperature, Tc ≅ 230 K (-43 °C).

  1. Zero-bias conductance quantization in a normal / superconducting junction of nano wire

    International Nuclear Information System (INIS)

    Asano, Yasuhiro; Tanaka, Yukio

    2012-01-01

    We discuss a strong relationship between Majorana fermions and odd-frequency Cooper pairs which appear at a disordered normal nano wire attached to a topologically nontrivial superconducting one. The zero-bias differential conductance in a normal / superconducting nano wire junctions is quantized at 2e 2 /h irrespective of degree of disorder, length of disordered segment, and random realization of disordered potential. Such behaviors are exactly the same as those in the anomalous proximity effect of p x -wave spin-triplet superconductors. We show that odd-frequency Cooper pairs assist the unusual transport properties.

  2. Model Evidence of a Superconducting State with a Full Energy Gap in Small Cuprate Islands

    Science.gov (United States)

    Black-Schaffer, Annica M.; Golubev, Dmitri S.; Bauch, Thilo; Lombardi, Floriana; Fogelström, Mikael

    2013-05-01

    We investigate subdominant order parameters stabilizing at low temperatures in nanoscale high-Tc cuprate islands, motivated by the recent observation of a fully gapped state in nanosized YBa2Cu3O7-δ [D. Gustafsson et al., Nature Nanotech. 8, 25 (2013)]. Using complementary quasiclassical and tight-binding Bogoliubov-de Gennes methods, we show on distinctly different properties dependent on the symmetry being dx2-y2+is or dx2-y2+idxy. We find that a surface-induced dx2-y2+is phase creates a global spectroscopic gap which increases with an applied magnetic field, consistent with experimental observation.

  3. Gauge Model of High-Tc Superconductivity

    International Nuclear Information System (INIS)

    Ng, Sze Kui

    2012-01-01

    A simple gauge model of superconductivity is presented. The seagull vertex term of this gauge model gives an attractive potential between electrons for the forming of Cooper pairs of superconductivity. This gauge model gives a unified description of superconductivity and magnetism including antiferromagnetism, pseudogap phenomenon, stripes phenomenon, paramagnetic Meissner effect, Type I and Type II supeconductivity and high-T c superconductivity. The doping mechanism of superconductivity is found. It is shown that the critical temperature T c is related to the ionization energies of elements and can be computed by a formula of T c . For the high-T c superconductors such as La 2-x Sr x CuO 4 , Y Ba 2 Cu 3 O 7 , and MgB 2 , the computational results of T c agree with the experimental results.

  4. Superconductivity in compensated and uncompensated semiconductors

    Directory of Open Access Journals (Sweden)

    Youichi Yanase and Naoyuki Yorozu

    2008-01-01

    Full Text Available We investigate the localization and superconductivity in heavily doped semiconductors. The crossover from the superconductivity in the host band to that in the impurity band is described on the basis of the disordered three-dimensional attractive Hubbard model for binary alloys. The microscopic inhomogeneity and the thermal superconducting fluctuation are taken into account using the self-consistent 1-loop order theory. The superconductor-insulator transition accompanies the crossover from the host band to the impurity band. We point out an enhancement of the critical temperature Tc around the crossover. Further localization of electron wave functions leads to the localization of Cooper pairs and induces the pseudogap. We find that both the doping compensation by additional donors and the carrier increase by additional acceptors suppress the superconductivity. A theoretical interpretation is proposed for the superconductivity in the boron-doped diamond, SiC, and Si.

  5. Nature of inhomogeneous states in superconducting junctions

    International Nuclear Information System (INIS)

    Ivlev, B.I.; Kopnin, N.B.

    1982-01-01

    A superconducting structure which arises in a superconducting film under a strong injection of a current through a tunnel junction is considered. If the current density in the film exceeds the critical Ginzburg-Landau value, an inhomogeneous resistive state with phase-slip centers can arise in it. This state is charcterized by the presence of regions with different chemical potentials of the Cooper pairs. These shifts of the pair chemical potential and the nonuniform structure of the order parameter may account for the so-called multigap states which have been observed experimentally

  6. Cooper pairs versus Bose condensed molecules: The ground-state current in superfluid 3He-A

    International Nuclear Information System (INIS)

    Mermin, N.D.; Muzikar, P.

    1980-01-01

    We present a new calculation of the current g flowing in a ground state of the Bardeen-Cooper-Schrieffer (BCS) form for a weakly inhomogeneous superfluid with the symmetry of 3 He-A. When the structure of the order parameter not determined by symmetry is appropriate to 3 He-A and when the mass density rho of the helium is essentially uniform, our current reduces to that calculated by Cross. If the mass density is allowed to vary, we find a generalization of the Cross current which shows that when v/sub s/=0 and the anisotropy axis l is uniform, then the current is simply (h/4M) del-arrow-rightrho x l. We show that this property of the BCS ground state, which taken with the Cross definition leads to an ''intrinsic angular momentum density'' of rhoh/2M at zero temperature, also follows directly from the Gor'kov equations. If the range of the order parameter is taken to be small compared with the interatomic separation, then the ground state does not describe 3 He-A, but a Bose-Einstein condensate of tightly bound diatomic molecules. In this limit our current reduces to the form calculated by Ishikawa et al. We indicate why their analysis is only valid in this limit, and offer some rather more general remarks on the differences between Cooper pairing and the Bose-Einstein condensation of diatomic molecules

  7. Quantum Statistical Approach to Superconductivity

    Science.gov (United States)

    Nam, Eunsoo

    The Frohlich Hamiltonian representing an interaction between electron and phonon is derived. By exchanging a virtual phonon, a system of two electrons can lower the system's total energy if the difference of their kinetic energies is less than the energy of the phonon exchanged. This is shown by using quantum mechanical perturbation theory, which is fully developed. A general theory of superconductivity is developed, starting with a BCS Hamiltonian in which the interaction strengths (V_{11}, V_{22 }, V_{12}) among and between "electron" (1) and "hole" (2) Cooper pairs are differentiated. The supercondensate is shown to be composed of equal numbers of "electron" and "hole" ground (zero-momentum) Cooper pairs with charges mp 2e.. Based on the Hamiltonian, the normal-to-super phase transition is investigated, approaching the critical temperature T_{c} from the high temperature side. Non zero momentum Cooper pairs, that is, pairs of electrons (holes) with antiparallel spins and nearly opposite momenta above T_{c } in the bulk limit, are shown to move like independent bosons with the energy momentum relation varepsilon = (1/2)upsilon_ {F}p, where upsilon_ {F} represents the Fermi velocity. We have investigated the Bose-Einstein condensation of pairons. The system of free Cooper pairs in a 3D superconductors undergoes a phase transition of the second order with the critical temperature T_{c} given byk_{B}T_{c } = (1/2)(pi^2hbar^3v_sp {F}{3}n/1.20257)^{1over3 }where n is the number density of Cooper pairs. We calculate various properties associated with superconductivity at finite temperature. We derive general expressions for the energy gaps for both quasi electrons and pairons. Based on the independent pairon model, we explain the flux quantization, London's equation and the Josephson effects, stressing the importance of the macroscopic wave -function which represents the supercondensate in motion. We derived the basic equations governing the behavior of the

  8. The Rashba spin-orbit coupling for superconductivity in oxide interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Beyl, Stefan; Orth, Peter P.; Schmalian, Joerg [Institut fuer Theorie der Kondensierten Materie, Karlsruher Institut fuer Technologie, Karlsruhe (Germany)

    2014-07-01

    We investigate the role of the Rashba spin-orbit coupling on the superconducting order parameter and the phase stiffness at the interface of LaAlO{sub 3} and SrTiO{sub 3}. In particular, we analyze the gate controlled crossover between BCS superconductivity and Bose-Einstein condensation of Cooper pairs, amplified by the Rashba coupling and the possibility of a phase fluctuation induced quantum critical point.

  9. Lighting up superconducting stripes

    Science.gov (United States)

    Ergeçen, Emre; Gedik, Nuh

    2018-02-01

    Cuprate superconductors display a plethora of complex phases as a function of temperature and carrier concentration, the understanding of which could provide clues into the mechanism of superconductivity. For example, when about one-eighth of the conduction electrons are removed from the copper oxygen planes in cuprates such as La2‑xBaxCuO4 (LBCO), the doped holes (missing electrons) organize into one-dimensional stripes (1). The bulk superconducting transition temperature (Tc) is greatly reduced, and just above Tc, electrical transport perpendicular to the planes (along the c axis) becomes resistive, but parallel to the copper oxygen planes, resistivity remains zero for a range of temperatures (2). It was proposed a decade ago (3) that this anisotropic behavior is caused by pair density waves (PDWs); superconducting Cooper pairs exist along the stripes within the planes but cannot tunnel to the adjacent layers. On page 575 of this issue, Rajasekaran et al. (4) now report detection of this state in LBCO using nonlinear reflection of high-intensity terahertz (THz) light.

  10. Observing bose condensations of cooper pairs in semiconductor solid solutions (Pb1-xSnx)1-zInzTe

    International Nuclear Information System (INIS)

    Nemov, S.A.; Seregin, P.L.; Volkov, V.P.; Seregin, N.P.; Shamshur, D.V.

    2004-01-01

    It has been established using the emission Moessbauer spectroscopy method on the isotope 73 As( 73 Ge) that superconducting transition in the solid solutions (Pb 1-x Sn x ) 1-z In z Te (temperature of phase transition ∼ 4 K) leads to the change of the electron density in the metal sites, while in the anion sites no change in the electronic density has been observed [ru

  11. Observing the Bose-condensation of Cooper's pairs in superconductors on the isotope 73(73Ge)

    International Nuclear Information System (INIS)

    Nemov, S.A.; Seregin, P.P.; Khujakulov, E.S.; Turaev, N.Yu.

    2007-01-01

    Using the emission Moessbauer spectroscopy method on the isotope 73 ( 73 Ge) it has been established that the superconducting transition in the solid solutions (Pb 1-x Sn x ) 1-z In z Te and superconductor Nb 3 Al leads to the change of the electron density in the metal sites, while in the anion sites no change in the electronic density has been observed. (author)

  12. Microscopic Superconductivity and Room Temperature Electronics of High-Tc Cuprates

    International Nuclear Information System (INIS)

    Liu Fusui; Chen Wanfang

    2008-01-01

    This paper points out that the Landau criterion for macroscopic superfluidity of He II is only a criterion for microscopic superfluidity of 4 He, extends the Landau criterion to microscopic superconductivity in fermions (electron and hole) system and system with Cooper pairs without long-range phase coherence. This paper gives another three non-superconductive systems that are of microscopic superconductivity. This paper demonstrates that one application of microscopic superconductivity is to establish room temperature electronics of the high-T c cuprates

  13. Cooper-pair formation by anharmonic rattling modes in the β-pyrochlore superconductor KOs2O6

    Science.gov (United States)

    Chang, Jun; Eremin, Ilya; Thalmeier, Peter

    2009-05-01

    We study the influence of anharmonic rattling phonons in the β-pyrochlore superconductor KOs2O6 using the strong-coupling Eliashberg approach. In particular, by analyzing the specific heat data, we find that the rattling phonon frequency changes discontinuously at the critical temperature of the first-order phase transition. Solving the strong-coupling Eliashberg equations with effective temperature-dependent α2F(ω), we investigate the consequence of this first-order phase transition for the anomalous temperature dependence of the superconducting gap. We discuss our results in the context of the recent experimental data.

  14. Superatom representation of high-TC superconductivity

    International Nuclear Information System (INIS)

    Panas, Itai

    2012-01-01

    A “super-atom” conceptual interface between chemistry and physics is proposed in order to assist in the search for higher T C superconductors. The plaquettes generating the checkerboard superstructure in the cuprates, the C 60 molecules in K 3 C 60 , and the Mo 6 S 8 2- clusters in Chevrel phase materials offer such candidate super-atoms. Thus, in the present study high-T C superconductivity HTSC is articulated as the entanglement of two disjoint electronic manifolds in the vicinity of a common Fermi energy. The resulting HTSC ground state couples near-degenerate protected local super-atom states to virtual magnons in an antiferromagnetic AFM embedding. The composite Cooper pairs emerge as the interaction particles for virtual magnons mediated “self-coherent entanglement” of super-atom states. A Hückel type resonating valence bond RVB formalism is employed in order to illustrate the real-space Cooper pairs as well as their delocalization and Bose Einstein condensation BEC on a ring of super-atoms. The chemical potential μ BEC for Cooper pairs joining the condensate is formulated in terms of the super-exchange interaction, and consequently the T C in terms of the Neél temperature. A rationale for the robustness of the HTSC ground state is proposed: achieving local maximum “electron correlation entropy” at the expense of non-local phase rigidity.

  15. Two-fluid model of the superconductivity in the BCS's theory

    International Nuclear Information System (INIS)

    Rangelov, J.

    1977-01-01

    The coefficients of Bogolubov-Valatin's transformation are chosen in accordance with the two-fluid model of superconductivity. The energy spectrum of superconducting quasi-particles is obtained as a solution of the linearized equation of motion of interacting particles. The energy distribution of the superconducting and normal quasi-particles is discussed from a new view-point. The correlation between the quasi-particles forming the Cooper's pair is discussed in accordance with the proposed ideas. The tunnelling of the normal quasi-particles in systems M-I-S and S 1 -I-S 2 is investigated qualitatively

  16. Luminescence and squeezing of a superconducting light-emitting diode

    Science.gov (United States)

    Hlobil, Patrik; Orth, Peter P.

    2015-05-01

    We investigate a semiconductor p -n junction in contact with superconducting leads that is operated under forward bias as a light-emitting diode. The presence of superconductivity results in a significant increase of the electroluminescence in a sharp frequency window. We demonstrate that the tunneling of Cooper pairs induces an additional luminescence peak on resonance. There is a transfer of superconducting to photonic coherence that results in the emission of entangled photon pairs and squeezing of the fluctuations in the quadrature amplitudes of the emitted light. We show that the squeezing angle can be electrically manipulated by changing the relative phase of the order parameters in the superconductors. We finally derive the conditions for lasing in the system and show that the laser threshold is reduced due to superconductivity. This reveals how the macroscopic coherence of a superconductor can be used to control the properties of light.

  17. Superconductivity: Is there a problem in transuranics?

    International Nuclear Information System (INIS)

    Colineau, Eric; Griveau, Jean-Christophe; Eloirdi, Rachel; Hen, Amir; Caciuffo, Roberto

    2014-01-01

    Superconductivity was first reported in 1942 for uranium metal (¡-U) and in 1958 for U compounds: UCo, U6Mn, U6Fe, and U6Co, with critical temperatures Tc, of 1.7, 2.3, 3.9, and 2.3K, respectively. A new class of U superconductors emerged in the early 1980’s with the discovery of U heavy fermion superconductors : UBe13 (Tc = 0.85K), UPt3 (Tc = 0.53K), URu2Si2 (Tc = 1.5K) , UPd2Al3 (Tc = 1.9K) … Furthermore, in most of these systems, the superconducting phases coexist with antiferromagnetic (AF) correlations which have characteristic temperatures, usually the Néel temperature TN, that are typically one order of magnitude greater than the corresponding superconducting critical temperatures Tc. Superconductivity was even shown to co-exist with ferromagnetism in e.g. UGe2 (Tc ï» 0.8K, TC ï» 30K at p ï» 1.2GPa) and URhGe (Tc = 0.25K, TC = 9.5K). Heavy fermion superconductors still remain a major challenge for condensed matter physics. The existence of heavy fermion superconductivity and its coexistence or proximity with magnetic order suggests that the conventional mechanism of phonon-mediated superconductivity is inappropriate and that alternative mechanisms, like spin fluctuations, should be considered for Cooper pairing

  18. Controlling superconductivity by tunable quantum critical points.

    Science.gov (United States)

    Seo, S; Park, E; Bauer, E D; Ronning, F; Kim, J N; Shim, J-H; Thompson, J D; Park, Tuson

    2015-03-04

    The heavy fermion compound CeRhIn5 is a rare example where a quantum critical point, hidden by a dome of superconductivity, has been explicitly revealed and found to have a local nature. The lack of additional examples of local types of quantum critical points associated with superconductivity, however, has made it difficult to unravel the role of quantum fluctuations in forming Cooper pairs. Here, we show the precise control of superconductivity by tunable quantum critical points in CeRhIn5. Slight tin-substitution for indium in CeRhIn5 shifts its antiferromagnetic quantum critical point from 2.3 GPa to 1.3 GPa and induces a residual impurity scattering 300 times larger than that of pure CeRhIn5, which should be sufficient to preclude superconductivity. Nevertheless, superconductivity occurs at the quantum critical point of the tin-doped metal. These results underline that fluctuations from the antiferromagnetic quantum criticality promote unconventional superconductivity in CeRhIn5.

  19. Attenuation in Superconducting Circular Waveguides

    Directory of Open Access Journals (Sweden)

    K. H. Yeap

    2016-09-01

    Full Text Available We present an analysis on wave propagation in superconducting circular waveguides. In order to account for the presence of quasiparticles in the intragap states of a superconductor, we employ the characteristic equation derived from the extended Mattis-Bardeen theory to compute the values of the complex conductivity. To calculate the attenuation in a circular waveguide, the tangential fields at the boundary of the wall are first matched with the electrical properties (which includes the complex conductivity of the wall material. The matching of fields with the electrical properties results in a set of transcendental equations which is able to accurately describe the propagation constant of the fields. Our results show that although the attenuation in the superconducting waveguide above cutoff (but below the gap frequency is finite, it is considerably lower than that in a normal waveguide. Above the gap frequency, however, the attenuation in the superconducting waveguide increases sharply. The attenuation eventually surpasses that in a normal waveguide. As frequency increases above the gap frequency, Cooper pairs break into quasiparticles. Hence, we attribute the sharp rise in attenuation to the increase in random collision of the quasiparticles with the lattice structure.

  20. Crossover from BCS to composite boson (local pair) superconductivity in quasi-2D systems

    International Nuclear Information System (INIS)

    Gorbar, E.V.; Loktev, V.M.; Sharapov, S.G.

    1995-01-01

    The crossover from cooperative Cooper pairing to independent bound state (composite bosons) formation and condensation in quasi-2 D systems is studied. It is shown that at low carrier density the critical superconducting temperature is equal to the temperature of Bose-condensation of ideal quasi-2 D Bose-gas with heavy dynamical mass, meanwhile at high densities the BCS result remains valid. 15 refs

  1. Crystallography of color superconductivity

    International Nuclear Information System (INIS)

    Bowers, Jeffrey A.; Rajagopal, Krishna

    2002-01-01

    We develop the Ginzburg-Landau approach to comparing different possible crystal structures for the crystalline color superconducting phase of QCD, the QCD incarnation of the Larkin-Ovchinnikov-Fulde-Ferrell phase. In this phase, quarks of different flavor with differing Fermi momenta form Cooper pairs with nonzero total momentum, yielding a condensate that varies in space like a sum of plane waves. We work at zero temperature, as is relevant for compact star physics. The Ginzburg-Landau approach predicts a strong first-order phase transition (as a function of the chemical potential difference between quarks) and for this reason is not under quantitative control. Nevertheless, by organizing the comparison between different possible arrangements of plane waves (i.e., different crystal structures) it provides considerable qualitative insight into what makes a crystal structure favorable. Together, the qualitative insights and the quantitative, but not controlled, calculations make a compelling case that the favored pairing pattern yields a condensate which is a sum of eight plane waves forming a face-centered cubic structure. They also predict that the phase is quite robust, with gaps comparable in magnitude to the BCS gap that would form if the Fermi momenta were degenerate. These predictions may be tested in ultracold gases made of fermionic atoms. In a QCD context, our results lay the foundation for a calculation of vortex pinning in a crystalline color superconductor, and thus for the analysis of pulsar glitches that may originate within the core of a compact star

  2. Applied superconductivity

    CERN Document Server

    Newhouse, Vernon L

    1975-01-01

    Applied Superconductivity, Volume II, is part of a two-volume series on applied superconductivity. The first volume dealt with electronic applications and radiation detection, and contains a chapter on liquid helium refrigeration. The present volume discusses magnets, electromechanical applications, accelerators, and microwave and rf devices. The book opens with a chapter on high-field superconducting magnets, covering applications and magnet design. Subsequent chapters discuss superconductive machinery such as superconductive bearings and motors; rf superconducting devices; and future prospec

  3. ISTS of Fe adatoms in contact to superconducting Ta

    Energy Technology Data Exchange (ETDEWEB)

    Kamlapure, Anand; Cornils, Lasse; Wiebe, Jens; Wiesendanger, Roland [Department of Physics, Hamburg University, Hamburg (Germany); Zhou, Lihui [Department of Physics, Hamburg University, Hamburg (Germany); Max-Planck Institute for Solid State-Research, Stuttgart (Germany); Khajetoorians, Alexander A. [Department of Physics, Hamburg University, Hamburg (Germany); Institute for Molecules and Materials, Radboud University, Nijmegen (Netherlands)

    2015-07-01

    Recent local scale investigations of the competition of superconductivity and magnetism in molecular systems revealed rich physics associated with a quantum phase transition. Here, we experimentally study individual Fe atoms adsorbed on a reconstructed surface of superconducting Ta by inelastic scanning tunneling spectroscopy (ISTS) at a temperature of 1 K and as a function of magnetic field of strength up to 3 T perpendicular to the surface. We observe strong inelastic excitations at three different adsorption sites of the Fe adatoms. The majority site shows a sharp step around 2 meV which is almost independent of the magnetic field. The other two sites exhibit excitations around 1 meV and 4 meV which have a weak magnetic field dependence indicating the magnetic origin of this excitation. In all three cases the superconducting energy gap and coherence peaks are preserved at zero magnetic field indicating very weak coupling between the magnetic moment and the cooper pairs.

  4. Microscopic theory of coexistence of superconductivity and antiferromagnetism

    International Nuclear Information System (INIS)

    Ashkenazi, J.; Kuper, C.G.; Ron, A.

    1983-01-01

    A theory of the coexistence of superconductivity and antiferromagnetism is presented. We study the role of the ''diagonal'' exchange coupling between magnetic ions and conduction electrons, using Eliashberg's formalism. This coupling generates a spatial displacement of the Cooper-paired states, and thus reduces the pairing strength. The reduction is linear in the exchange integral and the staggered magnetization. The theory agrees well with experiment for Dy/sub 1.2/Mo 6 S 8 and Tb/sub 1.2/Mo 6 S 8

  5. Femtosecond optical detection of quasiparticle dynamics in high-Tc YBa2Cu3O7-δ superconducting thin films

    International Nuclear Information System (INIS)

    Han, S.G.; Vardeny, Z.V.; Wong, K.S.; Symko, O.G.; Koren, G.

    1990-01-01

    Femtosecond dynamics of photogenerated quasiparticles in YBa 2 Cu 3 O 7-δ superconducting thin films shows, at T≤T c , two main electronic processes: (i) quasiparticle avalanche production during hot-carrier thermalization, which takes about 300 fsec; (ii) recombination of quasiparticles to form Cooper pairs, which is completed within 5 psec. In contrastr, nonsuperconducting epitaxial films such as PrBa 2 Cu 2 O 7 and YBa 2 Cu 3 O 6 show regular picosecond electronic response

  6. Cooper-pair and Bose-Einstein condensations in two dimensions: A critical analysis based on the Nozieres and Schmitt-Rink formalism

    International Nuclear Information System (INIS)

    Tokumitu, A.; Miyake, K.; Yamada, K.

    1993-01-01

    The crossover between the Cooper-pair condensation and the Bose-Einstein condensation of ''di-electronic'' molecules in two-dimensional superconductors is investigated in detail on the basis of the Nozieres and Schmitt-Rink formalism. It is shown that temperature dependence of the chemical potential μ so calculated is classified into two classes as decreasing temperatures; i.e., class (a) where μ approaches the point of Bose-Einstein condensation of two-dimensional ideal Bose gas of ''di-electronic'' molecules, and class (b) where μ diverges positively along the line of BCS-type mean-field pair condensation. This feature is rather universal irrespective of strength V of the attractive interaction of the s-wave type. While the former class (a) has been found by Schmitt-Rink, Varma, and Ruckenstein, existence of the latter class (b) is recognized here. In the case where V is fixed, class (a) is realized for electron number density N smaller than N cr , which is an increasing function of V, and class (b) is realized for N larger than N cr . If N much-gt N cr in particular, there exists a regime, where the Fermi-liquid-like description is valid, between the BCS-type mean-field transition temperature and the Fermi temperature. In the situation where V is changed with N being fixed, low-temperature states for the strong-coupling case belong to class (a) while those for the weak-coupling case belong to class (b). Therefore, with decreasing V, the chemical potential μ(T), at temperatures far below the Fermi temperature, shows a discontinuous jump at V=V cr (N) corresponding to the transition from class (a) to (b)

  7. Superconducting proximity in three-dimensional Dirac materials: Odd-frequency, pseudoscalar, pseudovector, and tensor-valued superconducting orders

    Science.gov (United States)

    Faraei, Zahra; Jafari, S. A.

    2017-10-01

    We find that a conventional s -wave superconductor in proximity to a three-dimensional Dirac material (3DDM), to all orders of perturbation in tunneling, induces a combination of s - and p -wave pairing only. We show that the Lorentz invariance of the superconducting pairing prevents the formation of Cooper pairs with higher orbital angular momenta in the 3DDM. This no-go theorem acquires stronger form when the probability of tunneling from the conventional superconductor to positive and negative energy states of 3DDM are equal. In this case, all the p -wave contribution except for the lowest order, identically vanish and hence we obtain an exact result for the induced p -wave superconductivity in 3DDM. Fierz decomposing the superconducting matrix we find that the temporal component of the vector superconducting order and the spatial components of the pseudovector order have odd-frequency pairing symmetry. We find that the latter is odd with respect to exchange of position and chirality of the electrons in the Cooper pair and is a spin-triplet, which is necessary for NMR detection of such an exotic pseudovector pairing. Moreover, we show that the tensorial order breaks into a polar vector and an axial vector and both of them have conventional pairing symmetry except for being a spin triplet. According to our study, for gapless 3DDM, the tensorial superconducting order will be the only order that is odd with respect to the chemical potential μ . Therefore we predict that a transverse p -n junction binds Majorana fermions. This effect can be used to control the neutral Majorana fermions with electric fields.

  8. Quantum State Transmission in a Superconducting Charge Qubit-Atom Hybrid

    Science.gov (United States)

    Yu, Deshui; Valado, María Martínez; Hufnagel, Christoph; Kwek, Leong Chuan; Amico, Luigi; Dumke, Rainer

    2016-01-01

    Hybrids consisting of macroscopic superconducting circuits and microscopic components, such as atoms and spins, have the potential of transmitting an arbitrary state between different quantum species, leading to the prospective of high-speed operation and long-time storage of quantum information. Here we propose a novel hybrid structure, where a neutral-atom qubit directly interfaces with a superconducting charge qubit, to implement the qubit-state transmission. The highly-excited Rydberg atom located inside the gate capacitor strongly affects the behavior of Cooper pairs in the box while the atom in the ground state hardly interferes with the superconducting device. In addition, the DC Stark shift of the atomic states significantly depends on the charge-qubit states. By means of the standard spectroscopic techniques and sweeping the gate voltage bias, we show how to transfer an arbitrary quantum state from the superconducting device to the atom and vice versa. PMID:27922087

  9. Superconductivity - applications

    International Nuclear Information System (INIS)

    The paper deals with the following subjects: 1) Electronics and high-frequency technology, 2) Superconductors for energy technology, 3) Superconducting magnets and their applications, 4) Electric machinery, 5) Superconducting cables. (WBU) [de

  10. Geneva University - Superconducting flux quantum bits: fabricated quantum objects

    CERN Multimedia

    2007-01-01

    Ecole de physique Département de physique nucléaire et corspusculaire 24, Quai Ernest-Ansermet 1211 GENEVE 4 Tél: (022) 379 62 73 Fax: (022) 379 69 92 Lundi 29 janvier 2007 COLLOQUE DE LA SECTION DE PHYSIQUE 17 heures - Auditoire Stueckelberg Superconducting flux quantum bits: fabricated quantum objects Prof. Hans Mooij / Kavli Institute of Nanoscience, Delft University of Technology The quantum conjugate variables of a superconductor are the charge or number of Cooper pairs, and the phase of the order parameter. In circuits that contain small Josephson junctions, these quantum properties can be brought forward. In Delft we study so-called flux qubits, superconducting rings that contain three small Josephson junctions. When a magnetic flux of half a flux quantum is applied to the loop, there are two states with opposite circulating current. For suitable junction parameters, a quantum superposition of those macroscopic states is possible. Transitions can be driven with resonant microwaves. These quantum ...

  11. Bec Model of HIGH-Tc Superconductivity in Layered Cuprates

    Science.gov (United States)

    Lomnitz, M.; Villarreal, C.; de Llano, M.

    2013-11-01

    High-Tc superconductivity in layered cuprates is described in a BCS-BEC formalism with linearly-dispersive s- and d-wave Cooper pairs moving in quasi-2D finite-width layers around the CuO2 planes. This yields a closed formula for Tc involving the layer width, the Debye frequency, the pairing energy and the in-plane penetration depth. The new formula has no free parameters and reasonably reproduces empirical values of superconducting Tcs for 11 different layered superconductors over a wide doping regime including YBCO itself as well as other compounds like LSCO, BSCCO and TBCCO. In agreement with the London formalism, the formula also yields a fair description of the Tc dependence of the lower critical magnetic field in highly underdoped YBCO.

  12. A Superconducting Dual-Channel Photonic Switch.

    Science.gov (United States)

    Srivastava, Yogesh Kumar; Manjappa, Manukumara; Cong, Longqing; Krishnamoorthy, Harish N S; Savinov, Vassili; Pitchappa, Prakash; Singh, Ranjan

    2018-06-05

    The mechanism of Cooper pair formation and its underlying physics has long occupied the investigation into high temperature (high-T c ) cuprate superconductors. One of the ways to unravel this is to observe the ultrafast response present in the charge carrier dynamics of a photoexcited specimen. This results in an interesting approach to exploit the dissipation-less dynamic features of superconductors to be utilized for designing high-performance active subwavelength photonic devices with extremely low-loss operation. Here, dual-channel, ultrafast, all-optical switching and modulation between the resistive and the superconducting quantum mechanical phase is experimentally demonstrated. The ultrafast phase switching is demonstrated via modulation of sharp Fano resonance of a high-T c yttrium barium copper oxide (YBCO) superconducting metamaterial device. Upon photoexcitation by femtosecond light pulses, the ultrasensitive cuprate superconductor undergoes dual dissociation-relaxation dynamics, with restoration of superconductivity within a cycle, and thereby establishes the existence of dual switching windows within a timescale of 80 ps. Pathways are explored to engineer the secondary dissociation channel which provides unprecedented control over the switching speed. Most importantly, the results envision new ways to accomplish low-loss, ultrafast, and ultrasensitive dual-channel switching applications that are inaccessible through conventional metallic and dielectric based metamaterials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Pairing induced superconductivity in holography

    Science.gov (United States)

    Bagrov, Andrey; Meszena, Balazs; Schalm, Koenraad

    2014-09-01

    We study pairing induced superconductivity in large N strongly coupled systems at finite density using holography. In the weakly coupled dual gravitational theory the mechanism is conventional BCS theory. An IR hard wall cut-off is included to ensure that we can controllably address the dynamics of a single confined Fermi surface. We address in detail the interplay between the scalar order parameter field and fermion pairing. Adding an explicitly dynamical scalar operator with the same quantum numbers as the fermion-pair, the theory experiences a BCS/BEC crossover controlled by the relative scaling dimensions. We find the novel result that this BCS/BEC crossover exposes resonances in the canonical expectation value of the scalar operator. This occurs not only when the scaling dimension is degenerate with the Cooper pair, but also with that of higher derivative paired operators. We speculate that a proper definition of the order parameter which takes mixing with these operators into account stays finite nevertheless.

  14. Superconductivity revisited

    CERN Document Server

    Dougherty, Ralph

    2013-01-01

    While the macroscopic phenomenon of superconductivity is well known and in practical use worldwide in many industries, including MRIs in medical diagnostics, the current theoretical paradigm for superconductivity (BCS theory) suffers from a number of limitations, not the least of which is an adequate explanation of high temperature superconductivity. This book reviews the current theory and its limitations and suggests new ideas and approaches in addressing these issues. The central objective of the book is to develop a new, coherent, understandable theory of superconductivity directly based on molecular quantum mechanics.

  15. Superatom representation of high-T{sub C} superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Panas, Itai, E-mail: itai@chalmers.se [Environmental Inorganic Chemistry, Division of Energy and Materials, Department of Chemistry and Biotechnology, Chalmers University of Technology, S-412 96 Gothenburg (Sweden)

    2012-10-15

    A 'super-atom' conceptual interface between chemistry and physics is proposed in order to assist in the search for higher T{sub C} superconductors. The plaquettes generating the checkerboard superstructure in the cuprates, the C{sub 60} molecules in K{sub 3}C{sub 60}, and the Mo{sub 6}S{sub 8}{sup 2-} clusters in Chevrel phase materials offer such candidate super-atoms. Thus, in the present study high-T{sub C} superconductivity HTSC is articulated as the entanglement of two disjoint electronic manifolds in the vicinity of a common Fermi energy. The resulting HTSC ground state couples near-degenerate protected local super-atom states to virtual magnons in an antiferromagnetic AFM embedding. The composite Cooper pairs emerge as the interaction particles for virtual magnons mediated 'self-coherent entanglement' of super-atom states. A Hueckel type resonating valence bond RVB formalism is employed in order to illustrate the real-space Cooper pairs as well as their delocalization and Bose Einstein condensation BEC on a ring of super-atoms. The chemical potential {mu}{sub BEC} for Cooper pairs joining the condensate is formulated in terms of the super-exchange interaction, and consequently the T{sub C} in terms of the Neel temperature. A rationale for the robustness of the HTSC ground state is proposed: achieving local maximum 'electron correlation entropy' at the expense of non-local phase rigidity.

  16. Rare-earth doping of high T/sub c/ superconducting perovskites

    International Nuclear Information System (INIS)

    Mc Kinnon, W.R.; Tarascon, J.M.; Greene, L.H.; Hull, G.W.

    1987-01-01

    In most superconductors, the magnetic moments of rare-earth (Re) ions interact with the conduction electrons and break the Cooper pairs, supressing or destroying superconductivity. But in the perovskite-based superconductors discovered recently, the rare-earth ions are separated from the copper and oxygen where the superconducting electrons are believed to be located. The authors study the effects of rare-earth doping in both the 40K La/sub 2-x/Sr/sub x/CuO/sub 4-y/ system and 90K YBa/sub 2/Cu/sub 3/O/sub 7-x/ system. In these materials, the RE ions only weakly affect superconductivity, and the effects we do see are more strongly correlated with changes in the volume of the crystal than with the magnetism of the rare earths

  17. Superconducting cermets

    International Nuclear Information System (INIS)

    Goyal, A.; Funkenbusch, P.D.; Chang, G.C.S.; Burns, S.J.

    1988-01-01

    Two distant classes of superconducting cermets can be distinguished, depending on whether or not a fully superconducting skeleton is established. Both types of cermets have been successfully fabricated using non-noble metals, with as high as 60wt% of the metal phase. The electrical, magnetic and mechanical behavior of these composites is discussed

  18. Direct measurement of the quantum state of the electromagnetic field in a superconducting transmission line

    International Nuclear Information System (INIS)

    Melo, F. de; Aolita, L.; Davidovich, L.; Toscano, F.

    2006-01-01

    We propose an experimental procedure to directly measure the state of an electromagnetic field inside a resonator, corresponding to a superconducting transmission line, coupled to a Cooper-pair box (CPB). The measurement protocol is based on the use of a dispersive interaction between the field and the CPB, and the coupling to an external classical field that is tuned to resonance with either the field or the CPB. We present a numerical simulation that demonstrates the feasibility of this protocol, which is within reach of present technology

  19. Superconducting technology

    International Nuclear Information System (INIS)

    2010-01-01

    Superconductivity has a long history of about 100 years. Over the past 50 years, progress in superconducting materials has been mainly in metallic superconductors, such as Nb, Nb-Ti and Nb 3 Sn, resulting in the creation of various application fields based on the superconducting technologies. High-T c superconductors, the first of which was discovered in 1986, have been changing the future vision of superconducting technology through the development of new application fields such as power cables. On basis of these trends, future prospects of superconductor technology up to 2040 are discussed. In this article from the viewpoints of material development and the applications of superconducting wires and electronic devices. (author)

  20. Interface superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Gariglio, S., E-mail: stefano.gariglio@unige.ch [DQMP, Université de Genève, 24 Quai E.-Ansermet, CH-1211 Genève (Switzerland); Gabay, M. [Laboratoire de Physique des Solides, Bat 510, Université Paris-Sud 11, Centre d’Orsay, 91405 Orsay Cedex (France); Mannhart, J. [Max Planck Institute for Solid State Research, 70569 Stuttgart (Germany); Triscone, J.-M. [DQMP, Université de Genève, 24 Quai E.-Ansermet, CH-1211 Genève (Switzerland)

    2015-07-15

    Highlights: • We discuss interfacial superconductivity, a field boosted by the discovery of the superconducting interface between LaAlO. • This system allows the electric field control and the on/off switching of the superconducting state. • We compare superconductivity at the interface and in bulk doped SrTiO. • We discuss the role of the interfacially induced Rashba type spin–orbit. • We briefly discuss superconductivity in cuprates, in electrical double layer transistor field effect experiments. • Recent observations of a high T{sub c} in a monolayer of FeSe deposited on SrTiO{sub 3} are presented. - Abstract: Low dimensional superconducting systems have been the subject of numerous studies for many years. In this article, we focus our attention on interfacial superconductivity, a field that has been boosted by the discovery of superconductivity at the interface between the two band insulators LaAlO{sub 3} and SrTiO{sub 3}. We explore the properties of this amazing system that allows the electric field control and on/off switching of superconductivity. We discuss the similarities and differences between bulk doped SrTiO{sub 3} and the interface system and the possible role of the interfacially induced Rashba type spin–orbit. We also, more briefly, discuss interface superconductivity in cuprates, in electrical double layer transistor field effect experiments, and the recent observation of a high T{sub c} in a monolayer of FeSe deposited on SrTiO{sub 3}.

  1. Color superconductivity in dense quark matter

    International Nuclear Information System (INIS)

    Alford, Mark G.; Schmitt, Andreas; Rajagopal, Krishna; Schaefer, Thomas

    2008-01-01

    Matter at high density and low temperature is expected to be a color superconductor, which is a degenerate Fermi gas of quarks with a condensate of Cooper pairs near the Fermi surface that induces color Meissner effects. At the highest densities, where the QCD coupling is weak, rigorous calculations are possible, and the ground state is a particularly symmetric state, the color-flavor locked (CFL) phase. The CFL phase is a superfluid, an electromagnetic insulator, and breaks chiral symmetry. The effective theory of the low-energy excitations in the CFL phase is known and can be used, even at more moderate densities, to describe its physical properties. At lower densities the CFL phase may be disfavored by stresses that seek to separate the Fermi surfaces of the different flavors, and comparison with the competing alternative phases, which may break translation and/or rotation invariance, is done using phenomenological models. We review the calculations that underlie these results and then discuss transport properties of several color-superconducting phases and their consequences for signatures of color superconductivity in neutron stars.

  2. Charge Aspects of Composite Pair Superconductivity

    Science.gov (United States)

    Flint, Rebecca

    2014-03-01

    Conventional Cooper pairs form from well-defined electronic quasiparticles, making the internal structure of the pair irrelevant. However, in the 115 family of superconductors, the heavy electrons are forming as they pair and the internal pair structure becomes as important as the pairing mechanism. Conventional spin fluctuation mediated pairing cannot capture the direct transition from incoherent local moments to heavy fermion superconductivity, but the formation of composite pairs favored by the two channel Kondo effect can. These composite pairs are local d-wave pairs formed by two conduction electrons in orthogonal Kondo channels screening the same local moment. Composite pairing shares the same symmetries as magnetically mediated pairing, however, only composite pairing necessarily involves a redistribution of charge within the unit cell originating from the internal pair structure, both as a monopole (valence change) and a quadrupole effect. This redistribution will onset sharply at the superconducting transition temperature. A smoking gun test for composite pairing is therefore a sharp signature at Tc - for example, a cusp in the Mossbauer isomer shift in NpPd5Al2 or in the NQR shift in (Ce,Pu)CoIn5.

  3. Superconducting properties of YBa2Cu3O7−δ films deposited on commercial tape substrates, decorated with Pd or Ta nano-islands

    International Nuclear Information System (INIS)

    Polat, Ö; Thompson, J R; Leonard, K J; Wee, S H; Christen, D K; Ertuğrul, M; Sinclair, J W; Zuev, Y L; Paranthaman, M P; Aytuğ, T; Xiong, X; Selvamanickam, V

    2012-01-01

    To obtain an engineered surface for deposition of high-T c superconductors, nanoscale modulations of the surface of the underlying LaMnO 3 (LMO) cap layer is a potential source for generating microstructural defects in YBa 2 Cu 3 O 7−δ (YBCO) films. These defects may improve the flux pinning and consequently increase the critical current density, J c . To provide such nanoscale modulation via a practical and scalable process, palladium (Pd) or tantalum (Ta) nano-islands were deposited using dc-magnetron sputtering on the surface of the cap layer of commercial metal tape templates for second-generation wires. The size and density of these nano-islands can be controlled by changing sputtering conditions such as the power and deposition time. Compared to the reference sample grown on an untreated LMO cap layer, the YBCO films grown on the LMO cap layers with Pd or Ta nano-islands exhibited improved in-field J c performance. Atomic force microscopy and transmission electron microscopy were used to assess the evolving size and density of the nano-islands. (paper)

  4. Organic superconductivity

    International Nuclear Information System (INIS)

    Jerome, D.

    1980-01-01

    We present the experimental evidences for the existence of a superconducting state in the Quasi One Dimensional organic conductor (TMTSF) 2 PF 6 . Superconductivity occuring at 1 K under 12 kbar is characterized by a zero resistance diamagnetic state. The anistropy of the upper critical field of this type II superconductor is consistent with the band structure anistropy. We present evidences for the existence of large superconducting precursor effects giving rise to a dominant paraconductive contribution below 40 K. We also discuss the anomalously large pressure dependence of T sb(s), which drops to 0.19 K under 24 kbar in terms of the current theories. (author)

  5. Pressure-induced electronic phase separation of magnetism and superconductivity in CrAs.

    Science.gov (United States)

    Khasanov, Rustem; Guguchia, Zurab; Eremin, Ilya; Luetkens, Hubertus; Amato, Alex; Biswas, Pabitra K; Rüegg, Christian; Susner, Michael A; Sefat, Athena S; Zhigadlo, Nikolai D; Morenzoni, Elvezio

    2015-09-08

    The recent discovery of pressure (p) induced superconductivity in the binary helimagnet CrAs has raised questions on how superconductivity emerges from the magnetic state and on the mechanism of the superconducting pairing. In the present work the suppression of magnetism and the occurrence of superconductivity in CrAs were studied by means of muon spin rotation. The magnetism remains bulk up to p ≃ 3.5 kbar while its volume fraction gradually decreases with increasing pressure until it vanishes at p ≃ 7 kbar. At 3.5 kbar superconductivity abruptly appears with its maximum Tc ≃ 1.2 K which decreases upon increasing the pressure. In the intermediate pressure region (3.5 magnetic volume fractions are spatially phase separated and compete for phase volume. Our results indicate that the less conductive magnetic phase provides additional carriers (doping) to the superconducting parts of the CrAs sample thus leading to an increase of the transition temperature (Tc) and of the superfluid density (ρs). A scaling of ρs with Tc(3.2) as well as the phase separation between magnetism and superconductivity point to a conventional mechanism of the Cooper-pairing in CrAs.

  6. Superconducting linac

    International Nuclear Information System (INIS)

    Bollinger, L.M.; Shepard, K.W.; Wangler, T.P.

    1978-01-01

    This project has two goals: to design, build, and test a small superconducting linac to serve as an energy booster for heavy ions from an FN tandem electrostatic accelerator, and to investigate various aspects of superconducting rf technology. The main design features of the booster are described, a status report on various components (resonators, rf control system, linac control system, cryostats, buncher) is given, and plans for the near future are outlined. Investigations of superconducting-linac technology concern studies on materials and fabrication techniques, resonator diagnostic techniques, rf-phase control, beam dynamics computer programs, asymmetry in accelerating field, and surface-treatment techniques. The overall layout of the to-be-proposed ATLAS, the Argonne Tandem-Linac Accelerator System, is shown; the ATLAS would use superconducting technology to produce beams of 5 to 25 MeV/A. 6 figures

  7. Superconducting materials

    International Nuclear Information System (INIS)

    Kormann, R.; Loiseau, R.; Marcilhac, B.

    1989-01-01

    The invention concerns superconducting ceramics containing essentially barium, calcium and copper fluorinated oxides with close offset and onset temperatures around 97 K and 100 K and containing neither Y nor rare earth [fr

  8. Hole superconductivity

    International Nuclear Information System (INIS)

    Hirsch, J.E.; Marsiglio, F.

    1989-01-01

    The authors review recent work on a mechanism proposed to explain high T c superconductivity in oxides as well as superconductivity of conventional materials. It is based on pairing of hole carriers through their direct Coulomb interaction, and gives rise to superconductivity because of the momentum dependence of the repulsive interaction in the solid state environment. In the regime of parameters appropriate for high T c oxides this mechanism leads to characteristic signatures that should be experimentally verifiable. In the regime of conventional superconductors most of these signatures become unobservable, but the characteristic dependence of T c on band filling survives. New features discussed her include the demonstration that superconductivity can result from repulsive interactions even if the gap function does not change sign and the inclusion of a self-energy correction to the hole propagator that reduces the range of band filling where T c is not zero

  9. Superconducted tour

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1988-09-15

    Superconductivity - the dramatic drop in electrical resistance in certain materials at very low temperatures - has grown rapidly in importance over the past two or three decades to become a key technology for high energy particle accelerators. It was in this setting that a hundred students and 15 lecturers met in Hamburg in June for a week's course on superconductivity in particle accelerators, organized by the CERN Accelerator School and the nearby DESY Laboratory.

  10. Superconductivity: Phenomenology

    International Nuclear Information System (INIS)

    Falicov, L.M.

    1988-08-01

    This document discusses first the following topics: (a) The superconducting transition temperature; (b) Zero resistivity; (c) The Meissner effect; (d) The isotope effect; (e) Microwave and optical properties; and (f) The superconducting energy gap. Part II of this document investigates the Ginzburg-Landau equations by discussing: (a) The coherence length; (b) The penetration depth; (c) Flux quantization; (d) Magnetic-field dependence of the energy gap; (e) Quantum interference phenomena; and (f) The Josephson effect

  11. Transport through hybrid superconducting/normal nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Futterer, David

    2013-01-29

    We mainly investigate transport through interacting quantum dots proximized by superconductors. For this purpose we extend an existing theory to describe transport through proximized quantum dots coupled to normal and superconducting leads. It allows us to study the influence of a strong Coulomb interaction on Andreev currents and Josephson currents. This is a particularly interesting topic because it combines two competing properties: in superconductors Cooper pairs are formed by two electrons which experience an attractive interaction while two electrons located on a quantum dot repel each other due to the Coulomb interaction. It seems at first glance that transport processes involving Cooper pairs should be suppressed because of the two competing interactions. However, it is possible to proximize the dot in nonequilibrium situations. At first, we study a setup composed of a quantum dot coupled to one normal, one ferromagnetic, and one superconducting lead in the limit of an infinitely-large superconducting gap. Within this limit the coupling between dot and superconductor is described exactly by the presented theory. It leads to the formation of Andreev-bound states (ABS) and an additional bias scheme opens in which a pure spin current, i.e. a spin current with a vanishing associated charge current, can be generated. In a second work, starting from the infinite-gap limit, we perform a systematic expansion of the superconducting gap around infinity and investigate Andreev currents and Josephson currents. This allows us to estimate the validity of infinite-gap calculations for real systems in which the superconducting gap is usually a rather small quantity. We find indications that a finite gap renormalizes the ABS and propose a resummation approach to explore the finite-gap ABS. Despite the renormalization effects the modifications of transport by finite gaps are rather small. This result lets us conclude that the infinite-gap calculation is a valuable tool to

  12. Transport through hybrid superconducting/normal nanostructures

    International Nuclear Information System (INIS)

    Futterer, David

    2013-01-01

    We mainly investigate transport through interacting quantum dots proximized by superconductors. For this purpose we extend an existing theory to describe transport through proximized quantum dots coupled to normal and superconducting leads. It allows us to study the influence of a strong Coulomb interaction on Andreev currents and Josephson currents. This is a particularly interesting topic because it combines two competing properties: in superconductors Cooper pairs are formed by two electrons which experience an attractive interaction while two electrons located on a quantum dot repel each other due to the Coulomb interaction. It seems at first glance that transport processes involving Cooper pairs should be suppressed because of the two competing interactions. However, it is possible to proximize the dot in nonequilibrium situations. At first, we study a setup composed of a quantum dot coupled to one normal, one ferromagnetic, and one superconducting lead in the limit of an infinitely-large superconducting gap. Within this limit the coupling between dot and superconductor is described exactly by the presented theory. It leads to the formation of Andreev-bound states (ABS) and an additional bias scheme opens in which a pure spin current, i.e. a spin current with a vanishing associated charge current, can be generated. In a second work, starting from the infinite-gap limit, we perform a systematic expansion of the superconducting gap around infinity and investigate Andreev currents and Josephson currents. This allows us to estimate the validity of infinite-gap calculations for real systems in which the superconducting gap is usually a rather small quantity. We find indications that a finite gap renormalizes the ABS and propose a resummation approach to explore the finite-gap ABS. Despite the renormalization effects the modifications of transport by finite gaps are rather small. This result lets us conclude that the infinite-gap calculation is a valuable tool to

  13. Topological Crystalline Superconductivity in Locally Noncentrosymmetric Multilayer Superconductors.

    Science.gov (United States)

    Yoshida, Tomohiro; Sigrist, Manfred; Yanase, Youichi

    2015-07-10

    Topological crystalline superconductivity in locally noncentrosymmetric multilayer superconductors (SCs) is proposed. We study the odd-parity pair-density wave (PDW) state induced by the spin-singlet pairing interaction through the spin-orbit coupling. It is shown that the PDW state is a topological crystalline SC protected by a mirror symmetry, although it is topologically trivial according to the classification based on the standard topological periodic table. The topological property of the mirror subsectors is intuitively explained by adiabatically changing the Bogoliubov-de Gennes Hamiltonian. A subsector of the bilayer PDW state reduces to the two-dimensional noncentrosymmetric SC, while a subsector of the trilayer PDW state is topologically equivalent to the spinless p-wave SC. Chiral Majorana edge modes in trilayers can be realized without Cooper pairs in the spin-triplet channel and chemical potential tuning.

  14. Non-equilibrium spin and charge transport in superconducting heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Thalmann, Marcel; Rudolf, Marcel; Braun, Julian; Pietsch, Torsten; Scheer, Elke [Department of Physics, University of Konstanz, Universitaetsstrasse 10, 78464 Konstanz (Germany)

    2015-07-01

    Ferromagnet Superconductance (F/S) junctions are rich in exciting quantum-physical-phenomena, which are still poorly understood but may provide bright prospects for new applications. In contrast to conventional normal-metal proximity systems, Andreev reflection is suppressed for singlet cooper pairs in F/S heterostructures. However, long-range triplet pairing may be observed in S/F systems with non-collinear magnetization or spin-active interfaces. Herein, we investigate non-equilibrium transport properties of lateral S/F heterojunctions, defined via electron beam lithography. In particular we focus microwave- and magneto-transport spectroscopy on conventional type-I (Al, Pb, Zn) and type-II (Nb) superconductors in combination with strong transition metal ferromagnets (Ni, Co, Fe). A cryogenic HF readout platform and advanced electronic filtering is developed and results on Al-based heterojunctions are shown.

  15. Critical current enhancement driven by suppression of superconducting fluctuation in ion-gated ultrathin FeSe

    Science.gov (United States)

    Harada, T.; Shiogai, J.; Miyakawa, T.; Nojima, T.; Tsukazaki, A.

    2018-05-01

    The framework of phase transition, such as superconducting transition, occasionally depends on the dimensionality of materials. Superconductivity is often weakened in the experimental conditions of two-dimensional thin films due to the fragile superconducting state against defects and interfacial effects. In contrast to this general trend, superconductivity in the thin limit of FeSe exhibits an opposite trend, such as an increase in critical temperature (T c) and the superconducting gap exceeding the bulk values; however, the dominant mechanism is still under debate. Here, we measured thickness-dependent electrical transport properties of the ion-gated FeSe thin films to evaluate the superconducting critical current (I c) in the ultrathin FeSe. Upon systematically decreasing the FeSe thickness by the electrochemical etching technique in the Hall bar-shaped electric double-layer transistors, we observed a dramatic enhancement of I c reaching about 10 mA and corresponding to about 107 A cm‑2 in the thinnest condition. By analyzing the transition behavior, we clarify that the suppressed superconducting fluctuation is one of the origins of the large I c in the ion-gated ultrathin FeSe films. These results indicate the existence of a robust superconducting state possibly with dense Cooper pairs at the thin limit of FeSe.

  16. Large impedances and Majorana bound states in superconducting circuits

    International Nuclear Information System (INIS)

    Ulrich, Jascha

    2017-01-01

    Superconducting circuits offer the opportunity to study quantum mechanics on mesoscopic scales unimpeded by dissipation. This fact and the nonlinearity of the Josephson inductance make it possible to use superconducting circuits as artificial atoms whose long-lived states can be selectively addressed and studied. A pronounced nonlinearity of the energy spectrum, however, requires quantum fluctuations of the flux across the Josephson junction which are large on the scale of the superconducting flux quantum Φ Q =h/2e. This implies charge fluctuations below the single Cooper-pair limit via flux-charge duality. The localization of charge leads to a strong susceptibility to interactions with charges in the environment which has motivated the search for schemes to decouple charges from their environment. This thesis is concerned with theoretical challenges arising from two complementary approaches to this problem: the realization of large impedances and the fractionalization of electrons by means of Majorana bound states. In recent years, the decoupling of charges from the environment through reactive large impedances, so-called ''superinductances'' L, has attracted much interest. These inductances feature small parasitic capacitance C such that the characteristic impedance √(L/C) is much larger than the superconducting resistance quantum R Q =h/4e 2 . Superinductances have various applications ranging from qubit designs such as the 0-π qubit or the fluxonium to impedance matching, Bloch oscillations and the stabilization of phase slips in superconducting nanowires. Although there exists a well-established formalism for the quantization of superconducting circuits in terms of node fluxes, this formalism is ill-suited for the description of fast flux transport with localized charges in large-impedance environments. In particular, the nonlinear capacitive behavior of phase slip junctions cannot be modeled in a straightforward way using node fluxes

  17. Pressure-induced unconventional superconductivity near a quantum critical point in CaFe2As2

    International Nuclear Information System (INIS)

    Kawasaki, S; Tabuchi, T; Zheng Guoqing; Wang, X F; Chen, X H

    2010-01-01

    75 As-zero-field nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements are performed on CaFe 2 As 2 under pressure. At P = 4.7 and 10.8 kbar, the temperature dependencies of nuclear-spin-lattice relaxation rate (1/T 1 ) measured in the tetragonal phase show no coherence peak just below T c (P) and decrease with decreasing temperature. The superconductivity is gapless at P = 4.7 kbar but evolves to that with multiple gaps at P = 10.8 kbar. We find that the superconductivity appears near a quantum critical point under pressures in the range 4.7 kbar ≤ P ≤ 10.8 kbar. Both electron correlation and superconductivity disappear in the collapsed tetragonal phase. A systematic study under pressure indicates that electron correlations play a vital role in forming Cooper pairs in this compound.

  18. Antidiabetic Theory of Superconducting State Transition: Phonons and Strong Electron Correlations the Old Physics and New Aspects

    International Nuclear Information System (INIS)

    Banacky, P.

    2010-01-01

    Complex electronic ground state of molecular and solid state system is analyzed on the ab initio level beyond the adiabatic Born-Oppenheimer approximation (BOA). The attention is focused on the band structure fluctuation (BSF) at Fermi level, which is induced by electron-phonon coupling in superconductors, and which is absent in the non-superconducting analogues. The BSF in superconductors results in breakdown of the adiabatic BOA. At these circumstances, chemical potential is substantially reduced and system is stabilized (effect of nuclear dynamics) in the anti adiabatic state at broken symmetry with a gap(s) in one-particle spectrum. Distorted nuclear structure has fluxional character and geometric degeneracy of the anti adiabatic ground state enables formation of mobile bipolarons in real space. It has been shown that an effective attractive e-e interaction (Cooper-pair formation) is in fact correction to electron correlation energy at transition from adiabatic into anti adiabatic ground electronic state. In this respect, Cooper-pair formation is not the primary reason for transition into superconducting state, but it is a consequence of anti adiabatic state formation. It has been shown that thermodynamic properties of system in anti adiabatic state correspond to thermodynamics of superconducting state. Illustrative application of the theory for different types of superconductors is presented.

  19. Time-resolved X-ray diffraction study on superconducting YBa{sub 2}Cu{sub 3}O{sub 7} epitaxially grown on SrTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Luebcke, A.

    2007-07-01

    In this PhD thesis time-resolved X-ray diffraction in optical pump - X-ray probe scheme was applied for the first time to a High-Temperature Superconductor in the superconducting state. The aim was to study the possible lattice response to optical Cooper pair breaking. As sample a thin YBa{sub 2}Cu{sub 3}O{sub 7} film with a superconducting transition temperature of T{sub c}=90 K, epitaxially grown on a SrTiO{sub 3} single crystal was used. (orig.)

  20. Superconducting cyclotrons

    International Nuclear Information System (INIS)

    Blosser, H.G.; Johnson, D.A.; Burleigh, R.J.

    1976-01-01

    Superconducting cyclotrons are particularly appropriate for acceleration of heavy ions. A review is given of design features of a superconducting cyclotron with energy 440 (Q 2 /A) MeV. A strong magnetic field (4.6 tesla average) leads to small physical size (extraction radius 65 cm) and low construction costs. Operating costs are also low. The design is based on established technology (from present cyclotrons and from large bubble chambers). Two laboratories (in Chalk River, Canada and in East Lansing, Michigan) are proceeding with construction of full-scale prototype components for such cyclotrons

  1. Routes to High-Temperature Superconductivity: A Lesson from FeSe/SrTiO3

    Science.gov (United States)

    Lee, Dung-Hai

    2018-03-01

    Raising the superconducting transition temperature to a point where applications are practical is one of the most important challenges in science. In this review, we aim at gaining insights on the Tc controlling factors for a particular high-temperature superconductor family - the FeSe-based superconductors. In particular, we discuss the mechanisms by which the Cooper pairing temperature is enhanced from ˜8 K in bulk FeSe to ˜80 K in the interface between an atomic layer of FeSe and SrTiO3. This includes the experimental hints and the theoretical simulation of the involved mechanisms. We end by applying these insights to suggest some possible high-temperature superconducting systems.

  2. One- and two-dimensional sublattices as preconditions for high-Tc superconductivity

    International Nuclear Information System (INIS)

    Krueger, E.

    1989-01-01

    In an earlier paper it was proposed describing superconductivity in the framework of a nonadiabatic Heisenberg model in order to interprete the outstanding symmetry proper ties of the (spin-dependent) Wannier functions in the conduction bands of superconductors. This new group-theoretical model suggests that Cooper pair formation can only be mediated by boson excitations carrying crystal-spin-angular momentum. While in the three-dimensionally isotropic lattices of the standard superconductors phonons are able to transport crystal-spin-angular momentum, this is not true for phonons propagating through the one- or two-dimensional Cu-O sublattices of the high-T c compounds. Therefore, if such an anisotropic material is superconducting, it is necessarily higher-energetic excitations (of well-defined symmetry) which mediate pair formation. This fact is proposed being responsible for the high transition temperatures of these compounds. (author)

  3. Superconducting spin valve effect in Fe/In based heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Leksin, Pavel; Schumann, Joachim; Kataev, Vladislav; Schmidt, Oliver; Buechner, Bernd [Leibniz Institute for Solid State and Materials Research IFW Dresden (Germany); Garifyanov, Nadir; Garifullin, Ilgiz [Zavoisky Physical-Technical Institute, Kazan Scientific Center, Russian Academy of Sciences (Russian Federation)

    2015-07-01

    We report on magnetic and superconducting properties of the spin-valve multilayer system CoOx/Fe1/Cu/Fe2/In. The Superconducting Spin Valve Effect (SSVE) assumes the T{sub c} difference between parallel (P) and antiparallel (AP) orientations of the Fe1 and Fe2 layers' magnetizations. The SSVE value oscillates and changes its sign when the Fe2 layer thickness d{sub Fe2} is varied from 0 to 5 nm. The SSVE value is positive, as expected, in the range 0.4 nm ≤ d{sub Fe2} ≤ 0.8 nm. For a rather broad range of thicknesses 1 nm ≤ d{sub Fe2} ≤ 2.6 nm the SSVE has negative sign assuming the inverse SSVE. Moreover, the magnitude of the inverse effect is larger than that of the positive direct effect. We attribute these oscillations to a quantum interference of the cooper pair wave functions in the magnetic part of the system. For most of the spin-valve samples from this set we experimentally realized the full switching between normal and superconducting states due to direct and inverse SSVE. The analysis of the experimental data has enabled the determination of all microscopic parameters of the studied system.

  4. Superconducting materials

    International Nuclear Information System (INIS)

    Ruvalds, J.

    1990-01-01

    This report discusses the following topics: Fermi liquid nesting in high temperature superconductors; optical properties of high temperature superconductors; Hall effect in superconducting La 2-x Sr x CuO 4 ; source of high transition temperatures; and prospects for new superconductors

  5. Superconducting transformer

    International Nuclear Information System (INIS)

    Murphy, J.H.

    1982-01-01

    A superconducting transformer having a winding arrangement that provides for current limitation when subjected to a current transient as well as more efficient utilization of radial spacing and winding insulation. Structural innovations disclosed include compressed conical shaped winding layers and a resistive matrix to promote rapid switching of current between parallel windings

  6. Superconducting magnets

    International Nuclear Information System (INIS)

    1994-08-01

    This report discusses the following topics on superconducting magnets: D19B and -C: The next steps for a record-setting magnet; D20: The push beyond 10 T: Beyond D20: Speculations on the 16-T regime; other advanced magnets for accelerators; spinoff applications; APC materials development; cable and cabling-machine development; and high-T c superconductor at low temperature

  7. Superconducting magnets

    International Nuclear Information System (INIS)

    Willen, E.

    1996-01-01

    Superconducting dipole magnets for high energy colliders are discussed. As an example, the magnets recently built for the Relativistic Heavy Ion Collider at Brookhaven are reviewed. Their technical performance and the cost for the industry-built production dipoles are given. The cost data is generalized in order to extrapolate the cost of magnets for a new machine

  8. Bipolar superconductivity

    International Nuclear Information System (INIS)

    Pankratov, S.G.

    1987-01-01

    A model of bipolaron superconductivity suggested by Soviet scientist Alexandrov A.S. and French scientist Ranninger is presentes in a popular way. It is noted that the bipolaron theory gives a good explanation of certain properties of new superconductors, high critical temperature, in particular

  9. Superconducting transistor

    International Nuclear Information System (INIS)

    Gray, K.E.

    1978-01-01

    A three film superconducting tunneling device, analogous to a semiconductor transistor, is presented, including a theoretical description and experimental results showing a current gain of four. Much larger current gains are shown to be feasible. Such a development is particularly interesting because of its novelty and the striking analogies with the semiconductor junction transistor

  10. Theory of superconductivity

    International Nuclear Information System (INIS)

    Crisan, M.

    1988-01-01

    This book discusses the most important aspects of the theory. The phenomenological model is followed by the microscopic theory of superconductivity, in which modern formalism of the many-body theory is used to treat most important problems such as superconducting alloys, coexistence of superconductivity with the magnetic order, and superconductivity in quasi-one-dimensional systems. It concludes with a discussion on models for exotic and high temperature superconductivity. Its main aim is to review, as complete as possible, the theory of superconductivity from classical models and methods up to the 1987 results on high temperature superconductivity. Contents: Phenomenological Theory of Superconductivity; Microscopic Theory of Superconductivity; Theory of Superconducting Alloys; Superconductors in a Magnetic Field; Superconductivity and Magnetic Order; Superconductivity in Quasi-One-Dimensional Systems; and Non-Conventional Superconductivity

  11. Pseudo-Coulomb potential in singlet superconductivity

    International Nuclear Information System (INIS)

    Daemen, L.L.; Overhauser, A.W.

    1988-01-01

    Reduction of the screened Coulomb potential parameter μ to μ/sup */ = μ/[1+μ ln(E/sub F//(h/2π)ω/sub D/)] is related to the pair correlation function at r = 0. This correlation function is calculated for both the simple Cooper-pair problem and standard Bardeen-Cooper-Schrieffer (BCS) theory by use of a two-square-well model (with λ and μ describing the attraction and repulsion). Results are compared with values obtained for a one-square-well model (having the suitable net attraction, e.g., λ-μ/sup */ in the BCS case). For the BCS case, the ''true'' pair correlation at r = 0 is reduced by a factor (μ/sup *//μ) 2 relative to the fictitious (one-square-well) value (even though Δ is the same for both models). The reduction factor is typically ≅(1/25. It follows that any short-range attractive contribution to superconducting pairing will suffer a reduction similar to that for the Coulomb repulsion

  12. Towards inducing superconductivity into graphene

    Science.gov (United States)

    Efetov, Dmitri K.

    dependent effective Debey temperature - the so-called Bloch-Gruneisen temperature theta BG. We also probe the transport properties of the high energy sub-bands in bilayer graphene by electrolyte gating. Furthermore we demonstrate that electrolyte gates can be used to drive intercalation reactions in graphite and present an all optical study of the reaction kinetics during the creation of the graphene derived graphite intercalation compound LiC 6, and show the general applicability of the electrolyte gates to other 2-dimensional materials such as thin films of complex oxides, where we demonstrate gating dependent conductance changes in the spin-orbit Mott insulator Sr 2IrO4. Another, entirely different approach to induce superconducting correlations into graphene is by bringing it into proximity to a superconductor. Although not intrinsic to graphene, Cooper pairs can leak in from the superconductor and exist in graphene in the form of phase-coherent electron-hole states, the so-called Andreev states. Here we demonstrate a new way of fabricating highly transparent graphene/superconductor junctions by vertical stacking of graphene and the type-II van der Waals superconductor NbSe2. Due to NbSe2's high upper critical field of Hc2=4T we are able to test a long proposed and yet not well understood regime, where proximity effect and quantum Hall effect coexist.

  13. Local destruction of superconductivity by non-magnetic impurities in mesoscopic iron-based superconductors.

    Science.gov (United States)

    Li, Jun; Ji, Min; Schwarz, Tobias; Ke, Xiaoxing; Van Tendeloo, Gustaaf; Yuan, Jie; Pereira, Paulo J; Huang, Ya; Zhang, Gufei; Feng, Hai-Luke; Yuan, Ya-Hua; Hatano, Takeshi; Kleiner, Reinhold; Koelle, Dieter; Chibotaru, Liviu F; Yamaura, Kazunari; Wang, Hua-Bing; Wu, Pei-Heng; Takayama-Muromachi, Eiji; Vanacken, Johan; Moshchalkov, Victor V

    2015-07-03

    The determination of the pairing symmetry is one of the most crucial issues for the iron-based superconductors, for which various scenarios are discussed controversially. Non-magnetic impurity substitution is one of the most promising approaches to address the issue, because the pair-breaking mechanism from the non-magnetic impurities should be different for various models. Previous substitution experiments demonstrated that the non-magnetic zinc can suppress the superconductivity of various iron-based superconductors. Here we demonstrate the local destruction of superconductivity by non-magnetic zinc impurities in Ba0.5K0.5Fe2As2 by exploring phase-slip phenomena in a mesoscopic structure with 119 × 102 nm(2) cross-section. The impurities suppress superconductivity in a three-dimensional 'Swiss cheese'-like pattern with in-plane and out-of-plane characteristic lengths slightly below ∼1.34 nm. This causes the superconducting order parameter to vary along abundant narrow channels with effective cross-section of a few square nanometres. The local destruction of superconductivity can be related to Cooper pair breaking by non-magnetic impurities.

  14. Color superconductivity

    International Nuclear Information System (INIS)

    Wilczek, F.

    1997-01-01

    The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken

  15. Color superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Wilczek, F. [Institute for Advanced Study, Princeton, NJ (United States)

    1997-09-22

    The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken.

  16. Superconducting magnet

    Science.gov (United States)

    1985-01-01

    Extensive computer based engineering design effort resulted in optimization of a superconducting magnet design with an average bulk current density of approximately 12KA/cm(2). Twisted, stranded 0.0045 inch diameter NbTi superconductor in a copper matrix was selected. Winding the coil from this bundle facilitated uniform winding of the small diameter wire. Test coils were wound using a first lot of the wire. The actual packing density was measured from these. Interwinding voltage break down tests on the test coils indicated the need for adjustment of the wire insulation on the lot of wire subsequently ordered for construction of the delivered superconducting magnet. Using the actual packing densities from the test coils, a final magnet design, with the required enhancement and field profile, was generated. All mechanical and thermal design parameters were then also fixed. The superconducting magnet was then fabricated and tested. The first test was made with the magnet immersed in liquid helium at 4.2K. The second test was conducted at 2K in vacuum. In the latter test, the magnet was conduction cooled from the mounting flange end.

  17. Melt formed superconducting joint between superconducting tapes

    International Nuclear Information System (INIS)

    Benz, M.G.; Knudsen, B.A.; Rumaner, L.E.; Zaabala, R.J.

    1992-01-01

    This patent describes a superconducting joint between contiguous superconducting tapes having an inner laminate comprised of a parent-metal layer selected from the group niobium, tantalum, technetium, and vanadium, a superconductive intermetallic compound layer on the parent-metal layer, a reactive-metal layer that is capable of combining with the parent-metal and forming the superconductive intermetallic compound, the joint comprising: a continuous precipitate of the superconductive intermetallic compound fused to the tapes forming a continuous superconducting path between the tapes

  18. Role of superconducting energy gap in extended BCS-Bose crossover theory

    Science.gov (United States)

    Chávez, I.; García, L. A.; de Llano, M.; Grether, M.

    2017-10-01

    The generalized Bose-Einstein condensation (GBEC) theory of superconductivity (SC) is briefly surveyed. It hinges on three distinct new ingredients: (i) Treatment of Cooper pairs (CPs) as actual bosons since they obey Bose statistics, in contrast to BCS pairs which do not obey Bose commutation relations; (ii) inclusion of two-hole Cooper pairs (2hCPs) on an equal footing with two-electron Cooper pairs (2eCPs), thus making this a complete boson-fermion (BF) model; and (iii) inclusion in the resulting ternary ideal BF gas with particular BF vertex interactions that drive boson formation/disintegration processes. GBEC subsumes as special cases both BCS (having its 50-50 symmetry of both kinds of CPs) and ordinary BEC theories (having no 2hCPs), as well as the now familiar BCS-Bose crossover theory. We extended the crossover theory with the explicit inclusion of 2hCPs and construct a phase diagram of Tc/TF versus n/nf, where Tc and TF are the critical and Fermi temperatures, n is the total number density and nf that of unbound electrons at T = 0. Also, with this extended crossover one can construct the energy gap Δ(T)/Δ(0) versus T/Tc for some elemental SCs by solving at least two equations numerically: a gap-like and a number equation. In 50-50 symmetry, the energy gap curve agrees quite well with experimental data. But ignoring 2hCPs altogether leads to the gap curve falling substantially below that with 50-50 symmetry which already fits the data quite well, showing that 2hCPs are indispensable to describe SCs.

  19. The Physics of Superconducting Microwave Resonators

    Science.gov (United States)

    Gao, Jiansong

    Over the past decade, low temperature detectors have brought astronomers revolutionary new observational capabilities and led to many great discoveries. Although a single low temperature detector has very impressive sensitivity, a large detector array would be much more powerful and are highly demanded for the study of more difficult and fundamental problems in astronomy. However, current detector technologies, such as transition edge sensors and superconducting tunnel junction detectors, are difficult to integrate into a large array. The microwave kinetic inductance detector (MKID) is a promising new detector technology invented at Caltech and JPL which provides both high sensitivity and an easy solution to the detector integration. It senses the change in the surface impedance of a superconductor as incoming photons break Cooper pairs, by using high-Q superconducting microwave resonators capacitively coupled to a common feedline. This architecture allows thousands of detectors to be easily integrated through passive frequency domain multiplexing. In this thesis, we explore the rich and interesting physics behind these superconducting microwave resonators. The first part of the thesis discusses the surface impedance of a superconductor, the kinetic inductance of a superconducting coplanar waveguide, and the circuit response of a resonator. These topics are related with the responsivity of MKIDs. The second part presents the study of the excess frequency noise that is universally observed in these resonators. The properties of the excess noise, including power, temperature, material, and geometry dependence, have been quantified. The noise source has been identified to be the two-level systems in the dielectric material on the surface of the resonator. A semi-empirical noise model has been developed to explain the power and geometry dependence of the noise, which is useful to predict the noise for a specified resonator geometry. The detailed physical noise

  20. Femtosecond optical detection of quasiparticle dynamics in high- T sub c YBa sub 2 Cu sub 3 O sub 7 minus. delta. superconducting thin films

    Energy Technology Data Exchange (ETDEWEB)

    Han, S.G.; Vardeny, Z.V.; Wong, K.S.; Symko, O.G. (Department of Physics, University of Utah, Salt Lake City, UT (USA)); Koren, G. (Department of Physics, Technion, 32000 Haifa (Israel))

    1990-11-19

    Femtosecond dynamics of photogenerated quasiparticles in YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} superconducting thin films shows, at {ital T}{le}{ital T}{sub {ital c}}, two main electronic processes: (i) quasiparticle avalanche production during hot-carrier thermalization, which takes about 300 fsec; (ii) recombination of quasiparticles to form Cooper pairs, which is completed within 5 psec. In contrastr, nonsuperconducting epitaxial films such as PrBa{sub 2}Cu{sub 2}O{sub 7} and YBa{sub 2}Cu{sub 3}O{sub 6} show regular picosecond electronic response.

  1. Superconducting plasmas

    International Nuclear Information System (INIS)

    Ohnuma, Toshiro; Ohno, J.

    1994-01-01

    Superconducting (SC) plasmas are proposed and investigated. The SC plasmas are not yet familiar and have not yet been studied. However, the existence and the importance of SC plasmas are stressed in this report. The existence of SC plasmas are found as follows. There is a fundamental property of Meissner effect in superconductors, which shows a repulsive effect of magnetic fields. Even in that case, in a microscopic view, there is a region of magnetic penetration. The penetration length λ is well-known as London's penetration depth, which is expressed as δ = (m s /μ 0 n s q s 2 ) 1/2 where m s , n s , q s and μ o show the mass, the density, the charge of SC electron and the permeability in free space, respectively. Because this expression is very simple, no one had tried it into more simple and meaningful form. Recently, one of the authors (T.O.) has found that the length can be expressed into more simple and understandable fundamental form as λ = c/ω ps where c = (ε 0 μ 0 ) -1/2 and ω ps = (n s q s 2 /m s ε 0 ) 1/2 are the light velocity and the superconducting plasma frequency. From this simple expression, the penetration depth of the magnetic field to SC is found as a SC plasma skin depth, that is, the fundamental property of SC can be expressed by the SC plasmas. This discovery indicates an importance of the studies of superconducting plasmas. From these points, several properties (propagating modes et al) of SC plasmas, which consist of SC electrons, normal electrons and lattice ions, are investigated in this report. Observations of SC plasma frequency is also reported with a use of Terahertz electromagnet-optical waves

  2. Superconducting fluctuations and characteristic time scales in amorphous WSi

    Science.gov (United States)

    Zhang, Xiaofu; Lita, Adriana E.; Sidorova, Mariia; Verma, Varun B.; Wang, Qiang; Nam, Sae Woo; Semenov, Alexei; Schilling, Andreas

    2018-05-01

    We study magnitudes and temperature dependencies of the electron-electron and electron-phonon interaction times which play the dominant role in the formation and relaxation of photon-induced hotspots in two-dimensional amorphous WSi films. The time constants are obtained through magnetoconductance measurements in a perpendicular magnetic field in the superconducting fluctuation regime and through time-resolved photoresponse to optical pulses. The excess magnetoconductivity is interpreted in terms of the weak-localization effect and superconducting fluctuations. Aslamazov-Larkin and Maki-Thompson superconducting fluctuations alone fail to reproduce the magnetic field dependence in the relatively high magnetic field range when the temperature is rather close to Tc because the suppression of the electronic density of states due to the formation of short-lifetime Cooper pairs needs to be considered. The time scale τi of inelastic scattering is ascribed to a combination of electron-electron (τe -e) and electron-phonon (τe -p h) interaction times, and a characteristic electron-fluctuation time (τe -f l) , which makes it possible to extract their magnitudes and temperature dependencies from the measured τi. The ratio of phonon-electron (τp h -e) and electron-phonon interaction times is obtained via measurements of the optical photoresponse of WSi microbridges. Relatively large τe -p h/τp h -e and τe -p h/τe -e ratios ensure that in WSi the photon energy is more efficiently confined in the electron subsystem than in other materials commonly used in the technology of superconducting nanowire single-photon detectors (SNSPDs). We discuss the impact of interaction times on the hotspot dynamics and compare relevant metrics of SNSPDs from different materials.

  3. The state of superconductivity

    International Nuclear Information System (INIS)

    Clark, T.D.

    1981-01-01

    The present status of applications based on the phenomena of superconductivity are reviewed. Superconducting materials, large scale applications, the Josephson effect and its applications, and superconductivity in instrumentation, are considered. The influence that superconductivity has had on modern theories of elementary particles, such as gauge symmetry breaking, is discussed. (U.K.)

  4. Superconductivity without inversion symmetry in CePt3Si

    International Nuclear Information System (INIS)

    Frigeri, P.A.; Agterberg, D.F.; Koga, A.; Sigrist, M.

    2005-01-01

    Based on symmetry arguments by Anderson, the following conditions are necessary for the formation of Cooper pairs: spin-singlet pairing relies on time-reversal symmetry, while spin-triplet pairing requires parity in addition. The rather general formulation of this rule has led to the common belief that the lack of an inversion center in a material would prevent spin-triplet pairing indiscriminately. In this presentation, we discuss symmetry aspects of superconductivity in a class of systems without inversion symmetry which is connected with spin-orbit coupling. We can show that, not only spin singlet pairing, but also certain spin triplet states remain unaffected by the loss of inversion symmetry. Moreover, the absence of an inversion center reduces the effect of paramagnetic limiting for spin-singlet pairing states in an external magnetic field. Based on this symmetry analysis, we examine the recently discovered heavy Fermion superconductor CePt 3 Si, where a missing inversion plane leads to the well-known Rashba-type of spin-orbit coupling. In particular, the problem of the pairing symmetry will be addressed as well as several properties of the superconducting phase which appears close to a quantum phase transition between a paramagnetic and antiferromagnetic phase. The same kind of analysis will also be done for another example UIr

  5. THz spectroscopy on superconducting NbN thin films

    Energy Technology Data Exchange (ETDEWEB)

    Daschke, Lena; Pracht, Uwe S.; Dressel, Martin; Scheffler, Marc [1. Physikalisches Institut, Universitaet Stuttgart (Germany); Ilin, Konstantin S.; Siegel, Michael [Institut fuer Mikro- und Nanoelektronische Systeme, Karlsruher Institut fuer Technologie (Germany)

    2015-07-01

    Epitaxial thin-film niobium nitride (NbN) is a conventional BCS superconductor. In presence of strong disorder, however, electronic inhomogeneities appear, which is not fully understood yet. To obtain a better insight into the physics of such disordered materials, studies on model systems such as structurally tailored films might be useful. Furthermore, disordered NbN films are used for single-photon detection devices, whose proper performance depends on a profound understanding of the superconducting properties. The studied NbN films have a T{sub c} ranging from 10 to 15 K and the superconducting energy gap is easily accessible with THz spectroscopy (0.4 - 5.6 meV). We investigate thin films of NbN sputtered on a sapphire substrate. With a Mach-Zehnder interferometer we measure the amplitude and phase shift of radiation transmitted through the thin-film sample. From there we can determine the real and imaginary parts of the optical conductivity. These results give information about the energy gap, Cooper pair density, and quasiparticle dynamics, including the temperature evolution of these quantities. We found that a film with 10 nm thickness roughly follows the BCS behavior, as expected. We will present results of our measurements on several different NbN samples.

  6. Heat Islands

    Science.gov (United States)

    EPA's Heat Island Effect Site provides information on heat islands, their impacts, mitigation strategies, related research, a directory of heat island reduction initiatives in U.S. communities, and EPA's Heat Island Reduction Program.

  7. Island biogeography

    DEFF Research Database (Denmark)

    Whittaker, Robert James; Fernández-Palacios, José María; Matthews, Thomas J.

    2017-01-01

    Islands provide classic model biological systems. We review how growing appreciation of geoenvironmental dynamics of marine islands has led to advances in island biogeographic theory accommodating both evolutionary and ecological phenomena. Recognition of distinct island geodynamics permits gener...

  8. 100 years of superconductivity

    CERN Document Server

    Rogalla, Horst

    2011-01-01

    Even a hundred years after its discovery, superconductivity continues to bring us new surprises, from superconducting magnets used in MRI to quantum detectors in electronics. 100 Years of Superconductivity presents a comprehensive collection of topics on nearly all the subdisciplines of superconductivity. Tracing the historical developments in superconductivity, the book includes contributions from many pioneers who are responsible for important steps forward in the field.The text first discusses interesting stories of the discovery and gradual progress of theory and experimentation. Emphasizi

  9. High-temperature superconductivity

    International Nuclear Information System (INIS)

    Ginzburg, V.L.

    1987-07-01

    After a short account of the history of experimental studies on superconductivity, the microscopic theory of superconductivity, the calculation of the control temperature and its possible maximum value are presented. An explanation of the mechanism of superconductivity in recently discovered superconducting metal oxide ceramics and the perspectives for the realization of new high-temperature superconducting materials are discussed. 56 refs, 2 figs, 3 tabs

  10. Superconducting accelerator technology

    International Nuclear Information System (INIS)

    Grunder, H.A.; Hartline, B.K.

    1986-01-01

    Modern and future accelerators for high energy and nuclear physics rely increasingly on superconducting components to achieve the required magnetic fields and accelerating fields. This paper presents a practical overview of the phenomenon of superconductivity, and describes the design issues and solutions associated with superconducting magnets and superconducting rf acceleration structures. Further development and application of superconducting components promises increased accelerator performance at reduced electric power cost

  11. High field superconducting magnets

    Science.gov (United States)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  12. Understanding and application of superconducting materials

    International Nuclear Information System (INIS)

    Moon, Byeong Mu; Lee, Chun Heung

    1997-02-01

    This book deals with superconducting materials, which contains from basic theory to application of superconducting materials. The contents of this book are mystery of superconducting materials, properties of superconducting materials, thermodynamics of superconducting materials, theoretical background of superconducting materials, tunnelling and quantum interference, classification and properties of superconducting materials, high temperature superconducting materials, production and analysis of superconducting materials and application of superconducting materials.

  13. ac superconducting articles

    International Nuclear Information System (INIS)

    Meyerhoff, R.W.

    1977-01-01

    A noval ac superconducting cable is described. It consists of a composite structure having a superconducting surface along with a high thermally conductive material wherein the superconducting surface has the desired physical properties, geometrical shape and surface finish produced by the steps of depositing a superconducting layer upon a substrate having a predetermined surface finish and shape which conforms to that of the desired superconducting article, depositing a supporting layer of material on the superconducting layer and removing the substrate, the surface of the superconductor being a replica of the substrate surface

  14. Superconducting properties of the η-pairing state in the Penson-Kolb-Hubbard model

    International Nuclear Information System (INIS)

    Czart, W.R.; Robaszkiewicz, S.

    2004-01-01

    The Penson-Kolb-Hubbard model, i.e. the Hubbard model with the pair-hopping interaction J is studied. We focus on the properties of the superconducting state with the Cooper-pair center-of mass momentum q Q(η-phase). The transition into the η-phase, which is favorized by the repulsive J (J c |, dependent on band filling, on-site interaction U and band structure, and the system never exhibits standard BCS-like features. This is in obvious contrast with the properties of the isotropic s-wave state, stabilized by the attractive J and attractive U, which exhibit at T = 0 a smooth crossover from the BCS-like limit to that of tightly bound pairs with increasing pairing strength. (author)

  15. Fluctuations and dark count rates in superconducting NbN single-photon detectors

    International Nuclear Information System (INIS)

    Engel, Andreas; Semenov, Alexei; Huebers, Heinz-Wilhelm; Il'in, Kostya; Siegel, Michael

    2005-01-01

    We measured the temperature- and current-dependence of dark count rates of a superconducting singlephoton detector. The detector's key element is a 84 nm wide meander strip line fabricated from a 5 nm thick NbN film. Due to its reduced dimensions various types of fluctuations can cause temporal and localized transitions into a resistive state leading to dark count events. Adopting a recent refinement of the hotspot model we achieve a satisfying description of the experimental dark count rates taking into account fluctuations of the Cooper-pair density and current-assisted unbinding of vortex-antivortex pairs. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Interplay between superconductivity and Coulomb blockade

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Thomas; Sprenger, Susanne; Scheer, Elke [Universitaet Konstanz (Germany)

    2016-07-01

    Studying the interplay between superconductivity and Coulomb blockade (CB) can be achieved by investigating an all superconducting single electron transistor (SSET) consisting of an island coupled to the leads by two tunneling contacts. The majority of experiments performed so far were using superconducting tunnel contacts made from oxide layers, in which multiple Andreev reflections (MAR) can be excluded. Using a mechanically controlled break junction (MCBJ) made of aluminum enables tuning the contributions of MAR in one junction continuously and thereby addressing different transport regimes within the same sample. Our results offer the possibility to attribute particular features in the transport characteristics to the transmission probabilities of individual modes in the MCBJ contact. We discuss our findings in terms of dynamical CB, SSET behaviour and MAR when continuously opening the MCBJ from the fully closed state to a tunneling contact.

  17. An introduction to superconductivity. The Meissner effect and the derivation of phenomenological models

    Energy Technology Data Exchange (ETDEWEB)

    Habeney, Lucas

    2016-09-23

    The purpose of this work was to give the reader insight into the topic of conventional superconductors. It started out with defining the superconductive state itself as a state of ideal conductivity and ideal diamagnetism. An important phenomenon to keep in mind in this regard is the Meissner-Ochsenfeld effect. It then went on to attempt to understand those properties on a macroscopic level. This was achieved in the framework of the two major macroscopic theories, the London theory and the Ginzburg-Landau theory. While the London theory focused on the electrodynamic qualities of the superconductive state, the Ginzburg-Landau theory dealt with events close to the superconducting phase transition in a thermodynamic scope. The highlight of this section was the investigation of the Abrikosov lattice, the geometric disposition of the flux tubes in the intermediate Shubnikov phase. We closed with the BCS theory as the premier microscopic theory of superconductivity. Main subjects of this section were the concept of Cooper pairs and the calculation of various energy gap equations. We also looked at real properties of superconductors such as the specific heat to test our rather abstract calculations and came to outstanding agreements. The principles presented in this document should serve as a foundation to work on more advanced problems in superconductivity. Especially the large field of unconventional superconductivity is of huge interest in current research, as most of the high T{sub c} superconductors fall in that category. As unconventional superconductors can not be explained with BCS theory, the search for a uniform theory to describe them is still on-going. Unconventional superconductors include but are not limited to cuprates (T{sub c}

  18. WORKSHOPS: Radiofrequency superconductivity

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    In the continual push towards higher energy particle beams, superconducting radiofrequency techniques now play a vital role, highlighted in the fifth workshop on radiofrequency superconductivity, held at DESY from 19 - 24 August 1991

  19. WORKSHOPS: Radiofrequency superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1992-01-15

    In the continual push towards higher energy particle beams, superconducting radiofrequency techniques now play a vital role, highlighted in the fifth workshop on radiofrequency superconductivity, held at DESY from 19 - 24 August 1991.

  20. Superconducting current in a bisoliton superconductivity model

    International Nuclear Information System (INIS)

    Ermakov, V.N.; Kruchinin, S.P.; Ponezha, E.A.

    1991-01-01

    It is shown that the transition into a superconducting state with the current which is described by a bisoliton superconductivity model is accompanied by the deformation of the spectrum of one-particle states of the current carriers. The deformation value is proportional to the conducting current force. The residuaby resistance in such state is absent

  1. Enhanced superconductivity of fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Washington, II, Aaron L.; Teprovich, Joseph A.; Zidan, Ragaiy

    2017-06-20

    Methods for enhancing characteristics of superconductive fullerenes and devices incorporating the fullerenes are disclosed. Enhancements can include increase in the critical transition temperature at a constant magnetic field; the existence of a superconducting hysteresis over a changing magnetic field; a decrease in the stabilizing magnetic field required for the onset of superconductivity; and/or an increase in the stability of superconductivity over a large magnetic field. The enhancements can be brought about by transmitting electromagnetic radiation to the superconductive fullerene such that the electromagnetic radiation impinges on the fullerene with an energy that is greater than the band gap of the fullerene.

  2. Superconductivity in Medicine

    Science.gov (United States)

    Alonso, Jose R.; Antaya, Timothy A.

    2012-01-01

    Superconductivity is playing an increasingly important role in advanced medical technologies. Compact superconducting cyclotrons are emerging as powerful tools for external beam therapy with protons and carbon ions, and offer advantages of cost and size reduction in isotope production as well. Superconducting magnets in isocentric gantries reduce their size and weight to practical proportions. In diagnostic imaging, superconducting magnets have been crucial for the successful clinical implementation of magnetic resonance imaging. This article introduces each of those areas and describes the role which superconductivity is playing in them.

  3. Fulde-Ferrell state in superconducting core/shell nanowires: role of the orbital effect

    Science.gov (United States)

    Mika, Marek; Wójcik, Paweł

    2017-11-01

    The orbital effect on the Fulde-Ferrell (FF) phase is investigated in superconducting core/shell nanowires subjected to the axial magnetic field. Confinement in the radial direction results in quantization of the electron motion with energies determined by the radial j and orbital m quantum numbers. In the external magnetic field, the twofold degeneracy with respect to the orbital magnetic quantum number m is lifted which leads to the Fermi wave vector mismatch between the paired electrons, (k, j, m, \\uparrow) ≤ftrightarrow (-k, j, -m, \\downarrow) . This mismatch is transferred to the nonzero total momentum of the Cooper pairs, which results in a formation of the FF phase occurring sequentially with increasing magnetic field. By changing the nanowire radius R and the superconducting shell thickness d, we discuss the role of the orbital effect in the FF phase formation in both the nanowire-like (R/d \\ll 1 ) and nanofilm-like (R/d \\gg 1 ) regime. We have found that the irregular pattern of the FF phase which appears for the case of the nanowire-like regime, for the nanofilm-like geometry evolves towards the regular distribution in which the FF phase stability regions emerge periodically between the BCS states. The transition between these two different phase diagrams is explained as resulting from the orbital effect and the multigap character of superconductivity in the core/shell nanowires.

  4. Superconductivity in transition metals.

    Science.gov (United States)

    Slocombe, Daniel R; Kuznetsov, Vladimir L; Grochala, Wojciech; Williams, Robert J P; Edwards, Peter P

    2015-03-13

    A qualitative account of the occurrence and magnitude of superconductivity in the transition metals is presented, with a primary emphasis on elements of the first row. Correlations of the important parameters of the Bardeen-Cooper-Schrieffer theory of superconductivity are highlighted with respect to the number of d-shell electrons per atom of the transition elements. The relation between the systematics of superconductivity in the transition metals and the periodic table high-lights the importance of short-range or chemical bonding on the remarkable natural phenomenon of superconductivity in the chemical elements. A relationship between superconductivity and lattice instability appears naturally as a balance and competition between localized covalent bonding and so-called broken covalency, which favours d-electron delocalization and superconductivity. In this manner, the systematics of superconductivity and various other physical properties of the transition elements are related and unified. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  5. Superconducting nanowire networks formed on nanoporous membrane substrates

    Science.gov (United States)

    Luo, Qiong

    Introducing a regular array of holes into superconducting thin films has been actively pursued to stabilize and pin the vortex lattice against external driving forces, enabling higher current capabilities. If the width of the sections between neighboring holes is comparable to the superconducting coherence length, the circulation of the Cooper pairs in around the holes in the presence of a magnetic field can also produce the Little-Parks effect, i.e. periodic oscillation of the critical temperature. These two mechanisms, commensurate vortex pinning enhancement by the hole-array and the critical temperature oscillations of a wire network due to Little-Parks effect can induce similar experimental observations such as magnetoresistance oscillation and enhancement of the critical current at specific magnetic fields. This dissertation work investigates the effect of a hole-array on the properties of superconducting films deposited onto nanoporous substrates. Experiments on anisotropies of the critical temperature for niobium films on anodic aluminum oxide membrane substrates containing a regular hole-array reveal that the critical temperature exhibits two strong anisotropic effects: Little-Parks oscillations whose period varies with field direction superimposed on a smooth background arising from one dimensional confinement by the finite lateral space between neighboring holes. The two components of the anisotropy are intrinsically linked and appear in concert. That is, the hole-array changes the dimensionality of a two-dimensional (2D) film to a network of 1D nanowire network. Network of superconducting nanowires with transverse dimensions as small as few nanometers were achieved by coating molybdenum germanium (MoGe) layer onto commercially available filtration membranes which have extremely dense nanopores. The magnetoresistance, magnetic field dependence of the critical temperature and the anisotropies of the synthesized MoGe nanowire networks can be consistently

  6. Canary Islands

    Science.gov (United States)

    1992-01-01

    This easterly looking view shows the seven major volcanic islands of the Canary Island chain (28.0N, 16.5W) and offers a unique view of the islands that have become a frequent vacation spot for Europeans. The northwest coastline of Africa, (Morocco and Western Sahara), is visible in the background. Frequently, these islands create an impact on local weather (cloud formations) and ocean currents (island wakes) as seen in this photo.

  7. Functional renormalization for antiferromagnetism and superconductivity in the Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Friederich, Simon

    2010-12-08

    Despite its apparent simplicity, the two-dimensional Hubbard model for locally interacting fermions on a square lattice is widely considered as a promising approach for the understanding of Cooper pair formation in the quasi two-dimensional high-T{sub c} cuprate materials. In the present work this model is investigated by means of the functional renormalization group, based on an exact flow equation for the effective average action. In addition to the fermionic degrees of freedom of the Hubbard Hamiltonian, bosonic fields are introduced which correspond to the different possible collective orders of the system, for example magnetism and superconductivity. The interactions between bosons and fermions are determined by means of the method of ''rebosonization'' (or ''flowing bosonization''), which can be described as a continuous, scale-dependent Hubbard-Stratonovich transformation. This method allows an efficient parameterization of the momentum-dependent effective two-particle interaction between fermions (four-point vertex), and it makes it possible to follow the flow of the running couplings into the regimes exhibiting spontaneous symmetry breaking, where bosonic fluctuations determine the types of order which are present on large length scales. Numerical results for the phase diagram are presented, which include the mutual influence of different, competing types of order. (orig.)

  8. Functional renormalization for antiferromagnetism and superconductivity in the Hubbard model

    International Nuclear Information System (INIS)

    Friederich, Simon

    2010-01-01

    Despite its apparent simplicity, the two-dimensional Hubbard model for locally interacting fermions on a square lattice is widely considered as a promising approach for the understanding of Cooper pair formation in the quasi two-dimensional high-T c cuprate materials. In the present work this model is investigated by means of the functional renormalization group, based on an exact flow equation for the effective average action. In addition to the fermionic degrees of freedom of the Hubbard Hamiltonian, bosonic fields are introduced which correspond to the different possible collective orders of the system, for example magnetism and superconductivity. The interactions between bosons and fermions are determined by means of the method of ''rebosonization'' (or ''flowing bosonization''), which can be described as a continuous, scale-dependent Hubbard-Stratonovich transformation. This method allows an efficient parameterization of the momentum-dependent effective two-particle interaction between fermions (four-point vertex), and it makes it possible to follow the flow of the running couplings into the regimes exhibiting spontaneous symmetry breaking, where bosonic fluctuations determine the types of order which are present on large length scales. Numerical results for the phase diagram are presented, which include the mutual influence of different, competing types of order. (orig.)

  9. Mesoscopic pairing without superconductivity

    Science.gov (United States)

    Hofmann, Johannes

    2017-12-01

    We discuss pairing signatures in mesoscopic nanowires with a variable attractive pairing interaction. Depending on the wire length, density, and interaction strength, these systems realize a simultaneous bulk-to-mesoscopic and BCS-BEC crossover, which we describe in terms of the parity parameter that quantifies the odd-even energy difference and generalizes the bulk Cooper pair binding energy to mesoscopic systems. We show that the parity parameter can be extracted from recent measurements of conductance oscillations in SrTiO3 nanowires by Cheng et al. [Nature (London) 521, 196 (2015), 10.1038/nature14398], where it marks the critical magnetic field that separates pair and single-particle currents. Our results place the experiment in the fluctuation-dominated mesoscopic regime on the BCS side of the crossover.

  10. Superconductivity an introduction

    CERN Document Server

    Mangin, Philippe

    2017-01-01

    This book proposes a thorough introduction for a varied audience. The reader will master London theory and the Pippard equations, and go on to understand type I and type II superconductors (their thermodynamics, magnetic properties, vortex dynamics, current transport…), Cooper pairs and the results of BCS theory. By studying coherence and flux quantization he or she will be lead to the Josephson effect which, with the SQUID, is a good example of the applications. The reader can make up for any gaps in his knowledge with the use of the appendices, follow the logic behind each model, and assimilate completely the underlying concepts. Approximately 250 illustrations help in developing a thorough understanding. This volume is aimed towards masters and doctoral students, as well as advanced undergraduates, teachers and researchers at all levels coming from a broad range of subjects (chemistry, physics, mechanical and electrical engineering, materials science…). Engineers working in industry will have a useful ...

  11. Unconventional superconductivity of the heavy fermion compound UNi2Al3

    International Nuclear Information System (INIS)

    Zakharov, Andrey

    2008-01-01

    The heavy fermion compound UNi 2 Al 3 exhibits the coexistence of superconductivity and magnetic order at low temperatures, stimulating speculations about possible exotic Cooper-pairing interaction in this superconductor. However, the preparation of good quality bulk single crystals of UNi 2 Al 3 has proven to be a non-trivial task due to metallurgical problems, which result in the formation of an UAl 2 impurity phase and hence a strongly reduced sample purity. The present work concentrates on the preparation, characterization and electronic properties investigation of UNi 2 Al 3 single crystalline thin film samples. The preparation of thin films was accomplished in a molecular beam epitaxy (MBE) system. (100)-oriented epitaxial thin films of UNi 2 Al 3 were grown on single crystalline YAlO 3 substrates cut in (010)- or (112)-direction. The high crystallographic quality of the samples was proved by several characterisation methods, such as X-ray analysis, RHEED and TEM. To study the magnetic structure of epitaxial thin films resonant magnetic X-ray scattering was employed. The magnetic order of thin the film samples, the formation of magnetic domains with different moment directions, and the magnetic correlation length were discussed. The electronic properties of the UNi 2 Al 3 thin films in the normal and superconducting states were investigated by means of transport measurements. A pronounced anisotropy of the temperature dependent resistivity ρ(T) was observed. Moreover, it was found that the temperature of the resistive superconducting transition depends on the current direction, providing evidence for multiband superconductivity in UNi 2 Al 3 . The initial slope of the upper critical field H' c2 (T) of the thin film samples suggests an unconventional spin-singlet superconducting state, as opposed to bulk single crystal data. To probe the superconducting gap of UNi 2 Al 3 directly by means of tunnelling spectroscopy many planar junctions of different design

  12. Laser activated superconducting switch

    International Nuclear Information System (INIS)

    Wolf, A.A.

    1976-01-01

    A superconducting switch or bistable device is described consisting of a superconductor in a cryogen maintaining a temperature just below the transition temperature, having a window of the proper optical frequency band for passing a laser beam which may impinge on the superconductor when desired. The frequency of the laser is equal to or greater than the optical absorption frequency of the superconducting material and is consistent with the ratio of the gap energy of the switch material to Planck's constant, to cause depairing of electrons, and thereby normalize the superconductor. Some embodiments comprise first and second superconducting metals. Other embodiments feature the two superconducting metals separated by a thin film insulator through which the superconducting electrons tunnel during superconductivity

  13. Frontiers in Superconducting Materials

    CERN Document Server

    Narlikar, Anant V

    2005-01-01

    Frontiers in Superconducting Materials gives a state-of-the-art report of the most important topics of the current research in superconductive materials and related phenomena. It comprises 30 chapters written by renowned international experts in the field. It is of central interest to researchers and specialists in Physics and Materials Science, both in academic and industrial research, as well as advanced students. It also addresses electronic and electrical engineers. Even non-specialists interested in superconductivity might find some useful answers.

  14. Superconductivity and their applications

    OpenAIRE

    Roque, António; Sousa, Duarte M.; Fernão Pires, Vítor; Margato, Elmano

    2017-01-01

    Trabalho apresentado em International Conference on Renewable Energies and Power Quality (ICREPQ’17), 4 a 6 de Abril de 2017, Málaga, Espanha The research in the field of superconductivity has led to the synthesis of superconducting materials with features that allow you to expand the applicability of this kind of materials. Among the superconducting materials characteristics, the critical temperature of the superconductor is framing the range and type of industrial applications that can b...

  15. Superconducting machines. Chapter 4

    International Nuclear Information System (INIS)

    Appleton, A.D.

    1977-01-01

    A brief account is given of the principles of superconductivity and superconductors. The properties of Nb-Ti superconductors and the method of flux stabilization are described. The basic features of superconducting d.c. machines are illustrated by the use of these machines for ship propulsion, steel-mill drives, industrial drives, aluminium production, and other d.c. power supplies. Superconducting a.c. generators and their design parameters are discussed. (U.K.)

  16. Superconductivity in the actinides

    International Nuclear Information System (INIS)

    Smith, J.L.; Lawson, A.C.

    1985-01-01

    The trends in the occurrence of superconductivity in actinide materials are discussed. Most of them seem to show simple transition metal behavior. However, the superconductivity of americium proves that the f electrons are localized in that element and that ''actinides'' is the correct name for this row of elements. Recently the superconductivity of UBe 13 and UPt 3 has been shown to be extremely unusual, and these compounds fall in the new class of compounds now known as heavy fermion materials

  17. WORKSHOP: Radiofrequency superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1984-10-15

    The Second Workshop on Radiofrequency Superconductivity was held at CERN from 23-27 July, four years after the first, organized at Karlsruhe. 35 invited talks were presented to the about 80 participants from Australia, Brazil, Europe, Japan and the United States. For the first time, ten Laboratories operating or planning superconducting accelerators for heavy ions participated and shared their experience with the community proposing the use of superconducting accelerating sections for electron accelerators.

  18. WORKSHOP: Radiofrequency superconductivity

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The Second Workshop on Radiofrequency Superconductivity was held at CERN from 23-27 July, four years after the first, organized at Karlsruhe. 35 invited talks were presented to the about 80 participants from Australia, Brazil, Europe, Japan and the United States. For the first time, ten Laboratories operating or planning superconducting accelerators for heavy ions participated and shared their experience with the community proposing the use of superconducting accelerating sections for electron accelerators

  19. Superconductivity in power engineering

    International Nuclear Information System (INIS)

    1989-01-01

    This proceedings volume presents 24 conference papers and 15 posters dealing with the following aspects: 1) Principles and elementary aspects of high-temperature superconductivity (3 plenary lectures); 2) Preparation, properties and materials requirements of metallic or oxide superconductors (critical current behaviour, soldered joints, structural studies); 3) Magnet technology (large magnets for thermonuclear fusion devices; magnets for particle accelerators and medical devices); 4) Magnetic levitation and superconductivity; 5) Cryogenics; 6) Energy storage systems using superconducting coils (SMES); 7) Superconducting power transmission cables, switches, transformers, and generator systems for power plant; 8) Supporting activities, industrial aspects, patents. There are thirty-eight records in the ENERGY database relating to individual conference papers. (MM) [de

  20. Superconductivity and its application

    International Nuclear Information System (INIS)

    Spadoni, M.

    1988-01-01

    This paper, after a short introduction to superconductivity and to multifilamentary superconducting composites is aiming to review the state of the art and the future perspective of some of the applications of the superconducting materials. The main interest is focussed to large scale applications like, for istance, magnets for accelerators or fusion reactors, superconducting system for NMR thomography, etc. A short paragraph is dedicated to applications for high sensitivity instrumentation. The paper is then concluded by some considerations about the potentialities of the newly discovered high critical temperature materials

  1. Superconducting quantum electronics

    International Nuclear Information System (INIS)

    Kose, V.

    1989-01-01

    This book reviews recent accomplishments, presents new results and discusses possible future developments of superconducting quantum electronics and high T c superconductivity. The three main parts of the book deal with fundamentals, sensitive detectors, and precision metrology. New results reported include: correct equivalent circuits modelling superconducting electronic devices; exact solution of the Mattis-Bardeen equations describing various experiments for thin films; complete theoretical description and experimental results for a new broad band spectrum analyzer; a new Josephson junction potentiometer allowing tracing of unknown voltage ratios back to well-known frequency ratios; and fast superconducting SQUID shift registers enabling the production of calculable noise power spectra in the microwave region

  2. Superconducting linear accelerator cryostat

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; Elkonin, B.V.; Sokolowski, J.S.

    1984-01-01

    A large vertical cryostat for a superconducting linear accelerator using quarter wave resonators has been developed. The essential technical details, operational experience and performance are described. (author)

  3. Basic Study of Superconductive Actuator

    OpenAIRE

    涌井, 和也; 荻原, 宏康

    2000-01-01

    There are two kinds of electromagnetic propulsion ships : a superconductive electromagnetic propulsion ship and a superconductive electricity propulsion ship. A superconductive electromagnetic propulsion ship uses the electromagnetic force (Lorenz force) by the interaction between a magnetic field and a electric current. On the other hand, a superconductive electricity propulsion ship uses screws driven by a superconductive motor. A superconductive propulsion ship technique has the merits of ...

  4. Terahertz Mixing Characteristics of NbN Superconducting Tunnel Junctions and Related Astronomical Observations

    Science.gov (United States)

    Li, J.

    2010-01-01

    High-sensitivity superconducting SIS (superconductor-insulator-superconductor) mixers are playing an increasingly important role in the terahertz (THz) astronomical observation, which is an emerging research frontier in modern astrophysics. Superconducting SIS mixers with niobium (Nb) tunnel junctions have reached a sensitivity close to the quantum limit, but have a frequency limit about 0.7 THz (i.e., gap frequency of Nb tunnel junctions). Beyond this frequency Nb superconducting films will absorb energetic photons (i.e., energy loss) to break Cooper pairs, thereby resulting in significant degradation of the mixer performance. Therefore, it is of particular interest to develop THz superconducting SIS mixers incorporating tunnel junctions with a larger energy gap. Niobium-nitride (NbN) superconducting tunnel junctions have been long known for their large energy gap, almost double that of Nb ones. With the introduction of epitaxially grown NbN films, the fabrication technology of NbN superconducting tunnel junctions has been considerably improved in the recent years. Nevertheless, their performances are still not as good as Nb ones, and furthermore they are not yet demonstrated in real astronomical applications. Given the facts mentioned above, in this paper we systematically study the quantum mixing behaviors of NbN superconducting tunnel junctions in the THz regime and demonstrate an astronomical testing observation with a 0.5 THz superconducting SIS mixer developed with NbN tunnel junctions. The main results of this study include: (1) successful design and fabrication of a 0.4˜0.6 THz waveguide mixing circuit with the high-dielectric-constant MgO substrate; (2) successful fabrication of NbN superconducting tunnel junctions with the gap voltage reaching 5.6 mV and the quality factor as high as 15; (3) demonstration of a 0.5 THz waveguide NbN superconducting SIS mixer with a measured receiver noise temperature (no correction) as low as five times the quantum limit

  5. Anisotropic energy-gaps of iron-based superconductivity from intra-band quasiparticle interference in LiFeAs

    Energy Technology Data Exchange (ETDEWEB)

    Rost, A.W. [LASSP, Department of Physics, Cornell, Ithaca, NY 14853 (United States); SUPA, School of Physics and Astronomy, Univ. of St Andrews, St Andrews, Fife KY16 9SS (United Kingdom); Allan, M.P. [LASSP, Department of Physics, Cornell, Ithaca, NY 14853 (United States); SUPA, School of Physics and Astronomy, Univ. of St Andrews, St Andrews, Fife KY16 9SS (United Kingdom); CMPMS Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Mackenzie, A.P. [SUPA, School of Physics and Astronomy, Univ. of St Andrews, St Andrews, Fife KY16 9SS (United Kingdom); Xie, Y. [CMPMS Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Davis, J.C. [LASSP, Department of Physics, Cornell, Ithaca, NY 14853 (United States); SUPA, School of Physics and Astronomy, Univ. of St Andrews, St Andrews, Fife KY16 9SS (United Kingdom); CMPMS Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Kavli Institute at Cornell for Nanoscale Science, Cornell, Ithaca, NY 14853 (United States); Kihou, K.; Lee, C.H.; Iyo, A.; Eisaki, H. [AIST, Tsukuba, Ibaraki 305-8568 (Japan); Chuang, T.M. [LASSP, Department of Physics, Cornell, Ithaca, NY 14853 (United States); CMPMS Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Inst. of Physics, Academica Sinica, Nankang, Taipei 11529, Taiwan (China)

    2012-07-01

    Cooper pairing in the Fe-based superconductors is thought to occur due to the projection of the antiferromagnetic interactions between iron atoms onto the complex momentum-space electronic structure. A key consequence is that distinct anisotropic energy gaps {Delta}{sub i}(k) with specific relative orientations should occur on the different electronic bands i. To determine this previously unresolved gap structure high-precision spectroscopy is required. Here we introduce the STM technique of intra-band Bogolyubov quasiparticle scattering interference (QPI) to iron-based superconductor studies, focusing on LiFeAs. We identify the QPI signatures of three hole-like dispersions and, by introducing a new QPI technique, determine the magnitude and relative orientations of corresponding anisotropic {Delta}{sub i}(k). Intra-band Bogolyubov QPI therefore yields the spectroscopic information required to identify the mechanism of superconductivity in Fe-based superconductors.

  6. Superconducting properties of YaBa2Cu3O7-delta films deposited on commercial tape substrates, decorated with Pd or Ta nano-islands

    Energy Technology Data Exchange (ETDEWEB)

    Polat, Ozgur [ORNL; Ertugrul, Memhet [Ataturk University; Thompson, James R [ORNL; Leonard, Keith J [ORNL; Sinclair IV, John W [ORNL; Paranthaman, Mariappan Parans [ORNL; Wee, Sung Hun [ORNL; Zuev, Yuri L [ORNL; Xiong, X. [SuperPower Incorporated, Schenectady, New York; Selvamanickam, V. [SuperPower Incorporated, Schenectady, New York; Christen, David K [ORNL; Aytug, Tolga [ORNL

    2012-01-01

    To obtain an engineered surface for deposition of high-Tc superconductors, nanoscale modulations of the surface of the underlying LaMnO3 (LMO) cap layer is a potential source for generating microstructural defects in YBa2Cu3O7- (YBCO) films. These defects may improve the flux-pinning and consequently increase the critical current density, Jc. To provide such nanoscale modulation via a practical and scalable process, tantalum (Ta) and palladium (Pd) nano-islands were deposited using dc-magnetron sputtering on the surface of the cap layer of commercial metal tape templates for second-generation wires. The size and density of these nano-islands can be controlled by changing sputtering conditions such as the power and deposition time. Compared to the reference sample grown on an untreated LMO cap layer, the YBCO films grown on the LMO cap layers with Ta or Pd nano-islands exhibited improved in-field Jc performance. Atomic Force Microscopy (AFM) and Transmission Electron Microscopy (TEM) were used to assess the evolving size and density of the nano-islands.

  7. Radiation effects on superconductivity

    International Nuclear Information System (INIS)

    Brown, B.S.

    1975-01-01

    The effect of radiation on the superconducting transition temperature (T/sub c/), upper critical field (H/sub c2/), and volume-pinning-force density (F/sub p/) were discussed for the three kinds of superconducting material (elements, alloys, and compounds). 11 figures, 3 tables, 86 references

  8. Superconducting elliptical cavities

    CERN Document Server

    Sekutowicz, J K

    2011-01-01

    We give a brief overview of the history, state of the art, and future for elliptical superconducting cavities. Principles of the cell shape optimization, criteria for multi-cell structures design, HOM damping schemes and other features are discussed along with examples of superconducting structures for various applications.

  9. Superconductivity in technology

    International Nuclear Information System (INIS)

    Komarek, P.

    1976-01-01

    Physics, especially high energy physics and solid state physics was the first area in which superconducting magnets were used but in the long run, the most extensive application of superconductivity will probably be in energy technology. Superconducting power transmission cables, magnets for energy conversion in superconducting electrical machines, MHD-generators and fusion reactors and magnets for energy storage are being investigated. Magnets for fusion reactors will have particularly large physical dimensions, which means that much development effort is still needed, for there is no economic alternative. Superconducting surfaces in radio frequency cavities can give Q-values up to a factor of 10 6 higher than those of conventional resonators. Particle accelerators are the important application. And for telecommunication, simple coaxial superconducting radio frequency cables seem promising. The tunnel effect in superconducting junctions is now being developed commercially for sensitive magnetometers and may soon possibly feature in the memory cells of computer devices. Hence superconductivity can play an important role in the technological world, solving physical and technological problems and showing economic advantages as compared with possible conventional techniques, bearing also in mind the importance of reliability and safety. (author)

  10. Academic training: Applied superconductivity

    CERN Multimedia

    2007-01-01

    LECTURE SERIES 17, 18, 19 January from 11.00 to 12.00 hrs Council Room, Bldg 503 Applied Superconductivity : Theory, superconducting Materials and applications E. PALMIERI/INFN, Padova, Italy When hearing about persistent currents recirculating for several years in a superconducting loop without any appreciable decay, one realizes that we are dealing with a phenomenon which in nature is the closest known to the perpetual motion. Zero resistivity and perfect diamagnetism in Mercury at 4.2 K, the breakthrough during 75 years of several hundreds of superconducting materials, the revolution of the "liquid Nitrogen superconductivity"; the discovery of still a binary compound becoming superconducting at 40 K and the subsequent re-exploration of the already known superconducting materials: Nature discloses drop by drop its intimate secrets and nobody can exclude that the last final surprise must still come. After an overview of phenomenology and basic theory of superconductivity, the lectures for this a...

  11. Superconducting rotating machines

    International Nuclear Information System (INIS)

    Smith, J.L. Jr.; Kirtley, J.L. Jr.; Thullen, P.

    1975-01-01

    The opportunities and limitations of the applications of superconductors in rotating electric machines are given. The relevant properties of superconductors and the fundamental requirements for rotating electric machines are discussed. The current state-of-the-art of superconducting machines is reviewed. Key problems, future developments and the long range potential of superconducting machines are assessed

  12. Superconductivity in bad metals

    International Nuclear Information System (INIS)

    Emery, V.J.; Kivelson, S.A.

    1995-01-01

    It is argued that many synthetic metals, including high temperature superconductors are ''bad metals'' with such a poor conductivity that the usual mean-field theory of superconductivity breaks down because of anomalously large classical and quantum fluctuations of the phase of the superconducting order parameter. Some consequences for high temperature superconductors are described

  13. Electronic structure of the cuprate superconducting and pseudogap phases from spectroscopic imaging STM

    Science.gov (United States)

    Schmidt, A. R.; Fujita, K.; Kim, E.-A.; Lawler, M. J.; Eisaki, H.; Uchida, S.; Lee, D.-H.; Davis, J. C.

    2011-06-01

    We survey the use of spectroscopic imaging scanning tunneling microscopy (SI-STM) to probe the electronic structure of underdoped cuprates. Two distinct classes of electronic states are observed in both the d-wave superconducting (dSC) and the pseudogap (PG) phases. The first class consists of the dispersive Bogoliubov quasiparticle excitations of a homogeneous d-wave superconductor, existing below a lower energy scale E=Δ0. We find that the Bogoliubov quasiparticle interference (QPI) signatures of delocalized Cooper pairing are restricted to a k-space arc, which terminates near the lines connecting k=±(π/a0,0) to k=±(0,π/a0). This arc shrinks continuously with decreasing hole density such that Luttinger's theorem could be satisfied if it represents the front side of a hole-pocket that is bounded behind by the lines between k=±(π/a0,0) and k=±(0,π/a0). In both phases, the only broken symmetries detected for the |E|modulations, locally breaking both rotational and translational symmetries, coexist with this intra-unit-cell electronic symmetry breaking at E=Δ1. Their characteristic wavevector Q is determined by the k-space points where Bogoliubov QPI terminates and therefore changes continuously with doping. The distinct broken electronic symmetry states (intra-unit-cell and finite Q) coexisting at E~Δ1 are found to be indistinguishable in the dSC and PG phases. The next challenge for SI-STM studies is to determine the relationship of the E~Δ1 broken symmetry electronic states with the PG phase, and with the E<Δ0 states associated with Cooper pairing.

  14. Submicron superconducting structures

    International Nuclear Information System (INIS)

    Golovashkin, A.I.; Lykov, A.N.

    1986-01-01

    An overview of works concerning superconducting structures of submicron dimensions and a system of such structures is given. It is noted that usage of the above structures in superconducting microelectronics permits, first, to increase the element packing density, to decrease the signal transmission time, capacity, power dissipated in high-frequency applications. Secondly, negligible coherence length in transition metals, their alloys and high-temperature compounds also restrict the dimensions of superconducting weak couplings when the 'classical' Josephson effect is displayed. The most effective methods for production of submicron superconducting structures are the following: lithography, double scribering. Recently the systems of superconducting submicron elements are extensively studied. It is shown that such systems can be phased by magnetic field

  15. Superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Mijatovic, Nenad; Seiler, Eugen

    2010-01-01

    , the main challenge of the superconducting direct drive technology is to prove that the reliability is superior to the alternative drive trains based on gearboxes or permanent magnets. A strategy of successive testing of superconducting direct drive trains in real wind turbines of 10 kW, 100 kW, 1 MW and 10......We have examined the potential of 10 MW superconducting direct drive generators to enter the European offshore wind power market and estimated that the production of about 1200 superconducting turbines until 2030 would correspond to 10% of the EU offshore market. The expected properties of future...... offshore turbines of 8 and 10 MW have been determined from an up-scaling of an existing 5 MW turbine and the necessary properties of the superconducting drive train are discussed. We have found that the absence of the gear box is the main benefit and the reduced weight and size is secondary. However...

  16. Superconducting Wind Turbine Generators

    Directory of Open Access Journals (Sweden)

    Yunying Pan

    2016-08-01

    Full Text Available Wind energy is well known as a renewable energy because its clean and less polluted characteristic, which is the foundation of development modern wind electricity. To find more efficient wind turbine is the focus of scientists around the world. Compared from conventional wind turbines, superconducting wind turbine generators have advantages at zero resistance, smaller size and lighter weight. Superconducting wind turbine will inevitably become the main trends in this area. This paper intends to introduce the basic concept and principle of superconductivity, and compare form traditional wind turbine to obtain superiority, then to summary three proposed machine concept.While superconductivity have difficulty  in modern technology and we also have proposed some challenges in achieving superconducting wind turbine finally.

  17. Collective modes and dielectric and superconducting properties of electronic systems in confined geometries

    International Nuclear Information System (INIS)

    Ulloa, S.E.

    1984-01-01

    The dielectric response function of electronic systems in restricted geometries is studied as well as some of the consequences, using the self-consistent field method. These consequences include: 1) existence of multiple branches of longitudinal slender acoustic plasma oscillations (SAP) in thin wires; 2) a new superconductivity mechanism in thin wires via the exchange of SAPs by the electrons forming the Cooper pairs, and 3) reduction of the static screening offered by the valence electrons in a thin semiconductor film with respect to the bulk case. The SAP modes are collective modes shown to exist only in thin wires and neither in a bulk system nor in a thin film. They have linear dispersion relations with phase velocities smaller than the Fermi velocity of the system and are not Landau-damped. Numerical examples of these SAP modes in metallic and semiconductor wires are presented, showing that they sould be more easily observable in semiconductor structures. The SAP-induced mechanism of superconductivity is shown to possibly give higher critical temperature T/sub c/ than the phonon mechanism in thin wires. The author presents a semi-rigorous calculation of T/sub c/ and shows that by increasing the frequency of the SAP modes and having a small effective electron mass one would be able to increase T/sub c/. He also shows that the dielectric function of a thin semiconductor slab is wavenumber dependent even at long wavelengths and is not a constant as in the bulk case

  18. Superconducting spin valves based on epitaxial Fe/V-hybrid thin film heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, Gregor

    2010-12-10

    This study presents a systematic investigation of the SSV effect in FM/SC/FM and FM/N/FM/SC heterostructures. Before investigating the actual SSV effect, we first pre-analyzed structural, magnetic and superconducting properties of the Fe/V system. In these preliminary studies we demonstrated, that epitaxial Fe/V heterostructures of superior crystalline quality can be grown by DC sputter deposition. With a Fe/V interface thickness of only one monolayer, the chemical separation of the Fe and V layers is extremely sharp. Moreover, the magnetic investigation showed that from thicknesses of two Fe(001) monolayers on the Fe layers in the superlattice possess a magnetic moment. Furthermore, we demonstrated the interlayer exchange coupling as oscillatory function of the V interlayer thickness. The investigations of the superconducting parameters of the Fe/V system revealed a non-monotonic T{sub S} vs. d{sub Fe} dependence in sample series (1). This observation proves the presence of the FM/SC proximity effect. The studies of various heterostructures of the design AFM/FM/SC/FM revealed a strong counteracting influence on the SSV effect, the stray field effect. The sample containing Fe{sub 25}V{sub 75} alloy layers, has the highest ratio of Cooper pair coherence length and superconductor thickness (ξ{sub S})/(d{sub S}), and its superconducting transition temperature is comparable to the sample with Fe{sub 35}V{sub 65} alloy layers. Nevertheless, the SSV effect in sample Fe{sub 25}V{sub 75} with alloy layers is much smaller than in sample with Fe{sub 35}V{sub 65} alloy layers. For a high-performance superconducting spin valve based on a FM1/SC/FM2 heterostructure at least four parameters have to be optimized simultaneously. 1. The magnetic domain size in FM1 and FM2 has to be as large as possible in order to reduce the stray field effect resulting from magnetization components in the FM domain walls perpendicular to the SC layer. 2. When using ferromagnetic alloys as

  19. Quantum phase slip interference device based on a shaped superconducting nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Zorin, Alexander; Hongisto, Terhi [Physikalisch-Technische Bundesanstalt, 38116 Braunschweig (Germany)

    2012-07-01

    As was predicted by Mooij and Nazarov, the superconducting nanowires may exhibit, depending on the impedance of external electromagnetic environment, not only quantum slips of phase, but also the quantum-mechanically dual effect of coherent transfer of single Cooper pairs. We propose and realize a transistor-like superconducting circuit including two serially connected segments of a narrow (10 nm by 18 nm) nanowire joint by a wider segment with a capacitively coupled gate in between. This circuit is made of amorphous NbSi film and embedded in a network of on-chip Cr microresistors ensuring a high external impedance (>>h/e{sup 2}∼25.8 kΩ) and, eventually, a charge bias regime. Virtual quantum phase slips in two narrow segments of the wire lead in this case to quantum interference of voltages on these segments making this circuit dual to the dc SQUID. Our samples demonstrated appreciable Coulomb blockade voltage (analog of critical current of the SQUID) and remarkable periodic modulation of this blockade by an electrostatic gate (analog of flux modulation in the SQUID). The obtained experimental results and the model of this QPS transistor will be presented.

  20. Pulse measurement of the hot spot current in a NbTiN superconducting filament

    Science.gov (United States)

    Harrabi, K.; Mekki, A.; Kunwar, S.; Maneval, J. P.

    2018-02-01

    We have studied the voltage response of superconducting NbTiN filaments to a step-pulse of over-critical current I > Ic. The current induces the destruction of the Cooper pairs and initiates different mechanisms of dissipation depending on the bath temperature T. For the sample investigated, and for T above a certain T*, not far from Tc, the resistance manifests itself in the form of a phase-slip center, which turns into a normal hot spot (HS) as the step-pulse is given larger amplitudes. However, at all temperatures below T*, the destruction of superconductivity still occurs at Ic(T), but leads directly to an ever-growing HS. By lowering the current amplitude during the pulse, one can produce a steady HS and thus define a threshold HS current Ih(T). That is achieved by combining two levels of current, the first and larger one to initiate an HS, the second one to search for constant voltage response. The double diagram of the functions Ic(T) and Ih(T) was plotted in the T-range Tc/2 < T < Tc, and their crossing found at T* = (8.07 ± 0.07) K.

  1. Properties of a tunnel point contact between aluminum and the superconducting amorphous alloy NiZr2

    International Nuclear Information System (INIS)

    Gantmakher, V.F.; Golubov, A.A.; Osherov, M.V.

    1989-01-01

    The I-V characteristics of a tunnel point contact between aluminum and an amorphous ribbon resembling NiZr 2 in composition differ qualitatively from those of ordinary tunnel junctions between a superconductor and a normal metal. It is demonstrated that the observed curve shapes cannot be explained by accounting solely for one-particle tunneling in conditions of the proximity effect. This is followed by a qualitative discussion of a model in which the current rise at the potential eV equal to the gap width Δ (T) is generated by two-particle electron tunneling through the intermediate state which is manifested as a Cooper pair on the Fermi-level in the thin superconducting layer produced in the aluminum by the proximity effect. The current flowing through the contact will cause a breakdown of superconductivity in the vicinity of the contact at voltages exceeding the gap width. Smallness of the junction plays a decisive role both in inducing superconductivity for eV Δ

  2. Magnetic field dependence of the superconducting proximity effect in a two atomic layer thin metallic film

    Energy Technology Data Exchange (ETDEWEB)

    Caminale, Michael; Leon Vanegas, Augusto A.; Stepniak, Agnieszka; Oka, Hirofumi; Fischer, Jeison A.; Sander, Dirk; Kirschner, Juergen [Max-Planck-Institut fuer Mikrostrukturphysik, Halle (Germany)

    2015-07-01

    The intriguing possibility to induce superconductivity in a metal, in direct contact with a superconductor, is under renewed interest for applications and for fundamental aspects. The underlying phenomenon is commonly known as proximity effect. In this work we exploit the high spatial resolution of scanning tunneling spectroscopy at sub-K temperatures and in magnetic fields. We probe the differential conductance along a line from a superconducting 9 ML high Pb nanoisland into the surrounding two layer thin Pb/Ag wetting layer on a Si(111) substrate. A gap in the differential conductance indicates superconductivity of the Pb island. We observe an induced gap in the wetting layer, which decays with increasing distance from the Pb island. This proximity length is 21 nm at 0.38 K and 0 T. We find a non-trivial dependence of the proximity length on magnetic field. Surprisingly, we find that the magnetic field does not affect the induced superconductivity up to 0.3 T. However, larger fields of 0.6 T suppress superconductivity in the wetting layer, where the Pb island still remains superconducting. We discuss the unexpected robustness of induced superconductivity in view of the high electronic diffusivity in the metallic wetting layer.

  3. Superconductivity and electron microscopy

    International Nuclear Information System (INIS)

    Hawkes, P.W.; Valdre, U.

    1977-01-01

    In this review article, two aspects of the role of superconductivity in electron microscopy are examined: (i) the development of superconducting devices (mainly lenses) and their incorporation in electron microscopes; (ii) the development of electron microscope techniques for studying fundamental and technological problems associated with superconductivity. The first part opens with a brief account of the relevant properties of conventional lenses, after which the various types of superconducting lenses are described and their properties compared. The relative merits and inconveniences of superconducting and conventional lenses are examined, particular attention being paid to the spherical and chromatic aberration coefficients at accelerating voltages above a megavolt. This part closes with a survey of the various microscope designs that have been built or proposed, incorporating superconducting components. In the second part, some methods that have been or might be used in the study of superconductivity in the electron microscope are described. A brief account of the types of application for which they are suitable is given. (author)

  4. Superconducting materials and magnets

    International Nuclear Information System (INIS)

    1991-04-01

    The Technical Committee Meeting on Superconducting Materials and Magnets was convened by the IAEA and held by invitation of the Japanese government on September 4-6, 1989 in Tokyo. The meeting was hosted by the National Research Institute for Metals. Topics of the conference related to superconducting magnets and technology with particular application to fusion and the superconducting supercollider. Technology using both high and low-temperature superconductors was discussed. This document is a compendium of the papers presented at the meeting. Refs, figs and tabs

  5. 'Speedy' superconducting circuits

    International Nuclear Information System (INIS)

    Holst, T.

    1994-01-01

    The most promising concept for realizing ultra-fast superconducting digital circuits is the Rapid Single Flux Quantum (RSFQ) logic. The basic physical principle behind RSFQ logic, which include the storage and transfer of individual magnetic flux quanta in Superconducting Quantum Interference Devices (SQUIDs), is explained. A Set-Reset flip-flop is used as an example of the implementation of an RSFQ based circuit. Finally, the outlook for high-temperature superconducting materials in connection with RSFQ circuits is discussed in some details. (au)

  6. ESCAR superconducting magnet system

    International Nuclear Information System (INIS)

    Gilbert, W.S.; Meuser, R.B.; Pope, W.L.; Green, M.A.

    1975-01-01

    Twenty-four superconducting dipoles, each about 1 meter long, provide the guide field for the Experimental Superconducting Accelerator Ring proton accelerator--storage ring. Injection of 50 MeV protons corresponds to a 3 kG central dipole field, and a peak proton energy of 4.2 GeV corresponds to a 46 kG central field. Thirty-two quadrupoles provide focusing. The 56 superconducting magnets are contained in 40 cryostats that are cryogenically connected in a novel series ''weir'' arrangement. A single 1500 W refrigeration plant is required. Design and testing of the magnet and cryostat system are described. (U.S.)

  7. Superconducting tin core fiber

    International Nuclear Information System (INIS)

    Homa, Daniel; Liang, Yongxuan; Hill, Cary; Kaur, Gurbinder; Pickrell, Gary

    2015-01-01

    In this study, we demonstrated superconductivity in a fiber with a tin core and fused silica cladding. The fibers were fabricated via a modified melt-draw technique and maintained core diameters ranging from 50-300 microns and overall diameters of 125-800 microns. Superconductivity of this fiber design was validated via the traditional four-probe test method in a bath of liquid helium at temperatures on the order of 3.8 K. The synthesis route and fiber design are perquisites to ongoing research dedicated all-fiber optoelectronics and the relationships between superconductivity and the material structures, as well as corresponding fabrication techniques. (orig.)

  8. Superconductivity in doped insulators

    International Nuclear Information System (INIS)

    Emery, V.J.; Kivelson, S.A.

    1995-01-01

    It is shown that many synthetic metals, including high temperature superconductors are ''bad metals'', with such a poor conductivity that the usual meanfield theory of superconductivity breaks down because of anomalously large classical and quantum fluctuations of the phase of the superconducting order parameter. It is argued that the supression of a first order phase transition (phase separation) by the long-range Coulomb interaction leads to high temperature superconductivity accompanied by static or dynamical charge inhomogeneIty. Evidence in support of this picture for high temperature superconductors is described

  9. Superconducting active impedance converter

    International Nuclear Information System (INIS)

    Ginley, D.S.; Hietala, V.M.; Martens, J.S.

    1993-01-01

    A transimpedance amplifier for use with high temperature superconducting, other superconducting, and conventional semiconductors allows for appropriate signal amplification and impedance matching to processing electronics. The amplifier incorporates the superconducting flux flow transistor into a differential amplifier configuration which allows for operation over a wide temperature range, and is characterized by high gain, relatively low noise, and response times less than 200 picoseconds over at least a 10-80 K. temperature range. The invention is particularly useful when a signal derived from either far-IR focal plane detectors or from Josephson junctions is to be processed by higher signal/higher impedance electronics, such as conventional semiconductor technology. 12 figures

  10. The filled skutterudite PrOs4Sb12: superconductivity and correlations

    International Nuclear Information System (INIS)

    Measson, M.A.

    2005-12-01

    The filled skutterudite PrOs 4 Sb 12 is the first Pr-based heavy fermion superconductor. This thesis addresses several important open questions including the determination of the quasi-particle mass renormalisation, the nature and mechanism of superconductivity, and the intrinsic or extrinsic nature of the double superconducting transition seen in the specific heat. A fit of the specific heat with magnetic interactions between the ions Pr is proposed. We extract from it an electronic term of between 300-750 mJ/K 2 .mol(Pr). Analysis of the specific heat jump provides evidence that heavy carriers are involved in Cooper pairing and that superconductivity is strongly coupled. Extensive characterizations by specific heat, resistivity, susceptibility measurements show that a double transition appears in the best samples. Nevertheless we bring the first serious doubts on the intrinsic nature of the double transition, because we have found samples with a single sharp transition at Tc2 and because the ratio of the two specific heat jumps shows strong dispersion among the samples. Furthermore we have measured the superconducting phase diagrams with an A.C. specific heat technique under magnetic field and under pressure up to 4.2 GPa, and we show that the two transitions, Tc1 and Tc2, exhibit similar behaviours with magnetic field and pressure. We find a strong change in the pressure dependence of Tc's above 2 GPa which might be related to a change in the nature of the superconductivity under pressure (at least partially mediated by fluctuations and only by phonons at respectively low and high pressure) which may be linked to the increase of the crystal field gap of the Pr ions. Analysis of the upper critical field shows the presence of at least two superconducting bands and concludes to a singlet nature of the pairing. A strong distortion of the flux-line lattice, which is constant with temperature and field, is obtained by small angle neutron scattering measurement

  11. Magnetic and superconducting nanowires

    DEFF Research Database (Denmark)

    Piraux, L.; Encinas, A.; Vila, L.

    2005-01-01

    magnetic and superconducting nanowires. Using different approaches entailing measurements on both single wires and arrays, numerous interesting physical properties have been identified in relation to the nanoscopic dimensions of these materials. Finally, various novel applications of the nanowires are also...

  12. Hybrid superconducting magnetic suspensions

    International Nuclear Information System (INIS)

    Tixador, P.; Hiebel, P.; Brunet, Y.; Chaud, X.; Gautier-Picard, P.

    1996-01-01

    Superconductors, especially high T c ones, are the most attractive materials to design stable and fully passive magnetic suspensions which have to control five degrees of freedom. The hybrid superconducting magnetic suspensions present high performances and a simple cooling mode. They consist of a permanent magnet bearing, stabilized by a suitable magnet-superconductor structure. Several designs are given and compared in terms of forces and stiffnesses. The design of the magnet bearing plays an important part. The superconducting magnetic bearing participates less in levitation but must provide a high stabilizing stiffness. This is achieved by the magnet configuration, a good material in term of critical current density and field cooling. A hybrid superconducting suspension for a flywheel is presented. This system consists of a magnet thrust bearing stabilized by superconductors interacting with an alternating polarity magnet structure. First tests and results are reported. Superconducting materials are magnetically melt-textured YBaCuO

  13. Superconducting Technology Assessment

    National Research Council Canada - National Science Library

    2005-01-01

    This Superconducting Technology Assessment (STA) has been conducted by the National Security Agency to address the fundamental question of a potential replacement for silicon complementary metal oxide semiconductor (CMOS...

  14. Superconductivity: materials and applications

    International Nuclear Information System (INIS)

    Duchateau, J.L.; Kircher, F.; Leveque, J.; Tixador, P.

    2008-01-01

    This digest paper presents the different types of superconducting materials: 1 - the low-TC superconductors: the multi-filament composite as elementary constituent, the world production of NbTi, the superconducting cables of the LHC collider and of the ITER tokamak; 2 - the high-TC superconductors: BiSrCaCuO (PIT 1G) ribbons and wires, deposited coatings; 3 - application to particle physics: the the LHC collider of the CERN, the LHC detectors; 4 - applications to thermonuclear fusion: Tore Supra and ITER tokamaks; 5 - NMR imaging: properties of superconducting magnets; 6 - applications in electrotechnics: cables, motors and alternators, current limiters, transformers, superconducting energy storage systems (SMES). (J.S.)

  15. Superconductivity and its devices

    International Nuclear Information System (INIS)

    Forbes, D.S.

    1981-01-01

    Among the more important developments that are discussed are cryotrons, superconducting motors and generators, and high-field magnets. Cryotrons will create faster and more economical computer systems. Superconducting motors and generators will cost much less to build than conventional electric generators and cut fuel consumption. Moreover, high-field magnets are being used to confine plasma in connection with nuclear fusion. Superconductors have a vital role to play in all of these developments. Most importantly, though, are the magnetic properties of superconductivity. Superconducting magnets are an integral part of nuclear fusion. In addition, high-field magnets are necessary in the use of accelerators, which are needed to study the interactions between elementary particles

  16. Superconductivity: Heike's heritage

    NARCIS (Netherlands)

    van der Marel, D.; Golden, M.

    2011-01-01

    A century ago, Heike Kamerlingh Onnes discovered superconductivity. And yet, despite the conventional superconductors being understood, the list of unconventional superconductors is growing — for which unconventional theories may be required.

  17. RADIOFREQUENCY SUPERCONDUCTIVITY: Workshop

    International Nuclear Information System (INIS)

    Lengeler, Herbert

    1989-01-01

    Superconducting radiofrequency is already playing an important role in the beam acceleration system for the TRISTAN electron-positron collider at the Japanese KEK Laboratory and new such systems are being prepared for other major machines. Thus the fourth Workshop on Radiofrequency Superconductivity, organized by KEK under the chairmanship of local specialist Yuzo Kojima and held just before the International Conference on High Energy Accelerators, had much progress to review and even more to look forward to

  18. Stacked magnet superconducting bearing

    International Nuclear Information System (INIS)

    Rigney, T.K. II; Saville, M.P.

    1993-01-01

    A superconducting bearing is described, comprising: a plurality of permanent magnets magnetized end-to-end and stacked side-by-side in alternating polarity, such that flux lines flow between ends of adjacent magnets; isolating means, disposed between said adjacent magnets, for reducing flux leakage between opposing sides of said adjacent magnets; and a member made of superconducting material having at least one surface in communication with said flux lines

  19. Superconductivity at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, N B; Ginzburg, N I

    1969-07-01

    Work published during the last 3 or 4 yrs concerning the effect of pressure on superconductivity is reviewed. Superconducting modifications of Si, Ge, Sb, Te, Se, P and Ce. Change of Fermi surface under pressure for nontransition metals. First experiments on the influence of pressure on the tunneling effect in superconductors provide new information on the nature of the change in phonon and electron energy spectra of metals under hydrostatic compression. 78 references.

  20. Superconductivity: A critical analysis

    International Nuclear Information System (INIS)

    Sacchetti, Nicola

    1997-01-01

    It is some forty years now that superconductivity has entered into the field of applied Physics. Countless applications have been proposed some of which have been successfully tested in the form of prototypes and relatively few have become widely used products. This article offers an objective examination of what applied superconductivity represents in the area of modern technology highlighting its exclusive advantages and its inevitable limitations

  1. Generalized Superconductivity. Generalized Levitation

    International Nuclear Information System (INIS)

    Ciobanu, B.; Agop, M.

    2004-01-01

    In the recent papers, the gravitational superconductivity is described. We introduce the concept of generalized superconductivity observing that any nongeodesic motion and, in particular, the motion in an electromagnetic field, can be transformed in a geodesic motion by a suitable choice of the connection. In the present paper, the gravitoelectromagnetic London equations have been obtained from the generalized Helmholtz vortex theorem using the generalized local equivalence principle. In this context, the gravitoelectromagnetic Meissner effect and, implicitly, the gravitoelectromagnetic levitation are given. (authors)

  2. Superconducting magnets for accelerators

    International Nuclear Information System (INIS)

    Denisov, Yu.N.

    1979-01-01

    Expediency of usage and possibilities arising in application of superconducting devices in magnetic systems of accelerators and experimental nuclear-physical devices are studied. Parameters of specific devices are given. It is emphasized that at the existing level of technological possibilities, construction and usage of superconducting magnetic systems in experimental nuclear physics should be thought of as possible, from the engineering, and expedient, from the economical viewpoints [ru

  3. Emergent Higgsless Superconductivity

    Directory of Open Access Journals (Sweden)

    Cristina Diamantini M.

    2017-01-01

    Full Text Available We present a new Higgsless model of superconductivity, inspired from anyon superconductivity but P- and T-invariant and generalizable to any dimension. While the original anyon superconductivity mechanism was based on incompressible quantum Hall fluids as average field states, our mechanism involves topological insulators as average field states. In D space dimensions it involves a (D-1-form fictitious pseudovector gauge field which originates from the condensation of topological defects in compact lowenergy effective BF theories. There is no massive Higgs scalar as there is no local order parameter. When electromagnetism is switched on, the photon acquires mass by the topological BF mechanism. Although the charge of the gapless mode (2 and the topological order (4 are the same as those of the standard Higgs model, the two models of superconductivity are clearly different since the origins of the gap, reflected in the high-energy sectors are totally different. In 2D thi! s type of superconductivity is explicitly realized as global superconductivity in Josephson junction arrays. In 3D this model predicts a possible phase transition from topological insulators to Higgsless superconductors.

  4. Superconducting Fullerene Nanowhiskers

    Directory of Open Access Journals (Sweden)

    Yoshihiko Takano

    2012-04-01

    Full Text Available We synthesized superconducting fullerene nanowhiskers (C60NWs by potassium (K intercalation. They showed large superconducting volume fractions, as high as 80%. The superconducting transition temperature at 17 K was independent of the K content (x in the range between 1.6 and 6.0 in K-doped C60 nanowhiskers (KxC60NWs, while the superconducting volume fractions changed with x. The highest shielding fraction of a full shielding volume was observed in the material of K3.3C60NW by heating at 200 °C. On the other hand, that of a K-doped fullerene (K-C60 crystal was less than 1%. We report the superconducting behaviors of our newly synthesized KxC60NWs in comparison to those of KxC60 crystals, which show superconductivity at 19 K in K3C60. The lattice structures are also discussed, based on the x-ray diffraction (XRD analyses.

  5. High-current applications of superconductivity

    International Nuclear Information System (INIS)

    Komarek, P.

    1995-01-01

    The following topics were dealt with: superconducting materials, design principles of superconducting magnets, magnets for research and engineering, superconductivity for power engineering, superconductivity in nuclear fusion technology, economical considerations

  6. Marshall Islands

    OpenAIRE

    World Bank

    2015-01-01

    This note aims to build understanding of the existing disaster risk financing and insurance (DRFI) tools in use in The Marshall Islands and to identify gaps where potential engagement could further develop financial resilience. The likelihood that a hazardous event will have a significant impact on the Marshall Islands has risen with the increasing levels of population and assets in the urban ...

  7. Superconducting nanostructured materials

    International Nuclear Information System (INIS)

    Metlushko, V.

    1998-01-01

    Within the last year it has been realized that the remarkable properties of superconducting thin films containing a periodic array of defects (such as sub-micron sized holes) offer a new route for developing a novel superconducting materials based on precise control of microstructure by modern photolithography. A superconductor is a material which, when cooled below a certain temperature, loses all resistance to electricity. This means that superconducting materials can carry large electrical currents without any energy loss--but there are limits to how much current can flow before superconductivity is destroyed. The current at which superconductivity breaks down is called the critical current. The value of the critical current is determined by the balance of Lorentz forces and pinning forces acting on the flux lines in the superconductor. Lorentz forces proportional to the current flow tend to drive the flux lines into motion, which dissipates energy and destroys zero resistance. Pinning forces created by isolated defects in the microstructure oppose flux line motion and increase the critical current. Many kinds of artificial pinning centers have been proposed and developed to increase critical current performance, ranging from dispersal of small non-superconducting second phases to creation of defects by proton, neutron or heavy ion irradiation. In all of these methods, the pinning centers are randomly distributed over the superconducting material, causing them to operate well below their maximum efficiency. We are overcome this drawback by creating pinning centers in aperiodic lattice (see Fig 1) so that each pin site interacts strongly with only one or a few flux lines

  8. Superconducting wind turbine generators

    International Nuclear Information System (INIS)

    Abrahamsen, A B; Seiler, E; Zirngibl, T; Andersen, N H; Mijatovic, N; Traeholt, C; Pedersen, N F; Oestergaard, J; Noergaard, P B

    2010-01-01

    We have examined the potential of 10 MW superconducting direct drive generators to enter the European offshore wind power market and estimated that the production of about 1200 superconducting turbines until 2030 would correspond to 10% of the EU offshore market. The expected properties of future offshore turbines of 8 and 10 MW have been determined from an up-scaling of an existing 5 MW turbine and the necessary properties of the superconducting drive train are discussed. We have found that the absence of the gear box is the main benefit and the reduced weight and size is secondary. However, the main challenge of the superconducting direct drive technology is to prove that the reliability is superior to the alternative drive trains based on gearboxes or permanent magnets. A strategy of successive testing of superconducting direct drive trains in real wind turbines of 10 kW, 100 kW, 1 MW and 10 MW is suggested to secure the accumulation of reliability experience. Finally, the quantities of high temperature superconducting tape needed for a 10 kW and an extreme high field 10 MW generator are found to be 7.5 km and 1500 km, respectively. A more realistic estimate is 200-300 km of tape per 10 MW generator and it is concluded that the present production capacity of coated conductors must be increased by a factor of 36 by 2020, resulting in a ten times lower price of the tape in order to reach a realistic price level for the superconducting drive train.

  9. Competition/coexistence of magnetism and superconductivity in iron pnictides probed by muon spin rotation

    International Nuclear Information System (INIS)

    Takeshita, Soshi; Kadono, Ryosuke

    2009-01-01

    The presence of macroscopic phase separation into superconducting and magnetic phases in LaFeAsO 1-x F x and CaFe 1-x Co x AsF is demonstrated by muon spin rotation (μSR) measurement across their phase boundaries (x=0.06 for LaFeAsO 1-x F x and x=0.075-0.15 for CaFe 1-x Co x AsF). In LaFeAsO 0.94 F 0.06 , both magnetism and superconductivity develop simultaneously below a common critical temperature, T m ≅T c ≅18 K, where the magnetism is characterized by strong randomness. A similar, but more distinct segregation of these two phases is observed in CaFe 1-x Co x AsF, where the magnetic phase retains T m close to that of the parent compound (T c m ≅80-120 K) and the superconducting volume fraction is mostly proportional to the Co content x. The close relationship between magnetism and superconductivity is discussed based on these experimental observations. Concerning the superconducting phase, an assessment is made on the anisotropy of the order parameter in the superconducting state of LaFeAsO 1-x F x , CaFe 1-x Co x AsF and Ba 1-x K x Fe 2 As 2 (x=0.4) based on the temperature dependence of superfluid density [n s (T)] measured by μSR. The gap parameter, 2Δ/k B T c , determined from n s (T) exhibits a tendency that values in the hole-doped pnictides (Ba 1-x K x Fe 2 As 2 ) are much greater than those in electron-doped ones (LaFeAsO 1-x F x and CaFe 1-x Co x AsF), suggesting a difference in the coupling to bosons mediating the Cooper pairs between relevant d electron bands.

  10. Thermodynamics of superconducting quantum metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Dallaire-Demers, Pierre-Luc; Wilhelm-Mauch, Frank [Universitaet des Saarlandes (Germany)

    2015-07-01

    Left-handed matematerials are capacitively coupled layers of inductive pieces of conductors. These systems are well studied in the context of microwave metamaterials but their full quantum description or their embedding in highly correlated materials like superconductors are still an open problem. Notably, they are known to have a Van Hove singularity in the density of states at low energy and high pseudo-momentum that could effectively couple and condense Cooper pairs. The goal of this research is to analyze the thermodynamical properties of the order parameter of stacked layers of superconductors with a small repulsive Coulomb interaction. A 3D toy model of such a material is mapped to a Fermi-Hubbard lattice. The temperature dependent anomalous correlation functions are computed variationally from a self-energy functional of a small cluster where inter-cluster tunneling is treated perturbatively. The effect of the repulsive interaction on the Cooper pairs binding can then be seen from the momentum distribution of the condensation amplitude. Such a material could potentially be realized with optical lattices or nanoscaled superconductors.

  11. Superconductivity and macroscopic quantum phenomena

    International Nuclear Information System (INIS)

    Rogovin, D.; Scully, M.

    1976-01-01

    It is often asserted that superconducting systems are manifestations of quantum mechanics on a macroscopic scale. In this review article it is demonstrated that this quantum assertion is true within the framework of the microscopic theory of superconductivity. (Auth.)

  12. Superconducting state mechanisms and properties

    CERN Document Server

    Kresin, Vladimir Z; Wolf, Stuart A

    2014-01-01

    'Superconducting State' provides a very detailed theoretical treatment of the key mechanisms of superconductivity, including the current state of the art (phonons, magnons, and plasmons). A very complete description is given of the electron-phonon mechanism responsible for superconductivity in the majority of superconducting systems, and the history of its development, as well as a detailed description of the key experimental techniques used to study the superconducting state and determine the mechanisms. In addition, there are chapters describing the discovery and properties of the key superconducting compounds that are of the most interest for science, and applications including a special chapter on the cuprate superconductors. It provides detailed treatments of some very novel aspects of superconductivity, including multiple bands (gaps), the "pseudogap" state, novel isotope effects beyond BCS, and induced superconductivity.

  13. Fullerides - Superconductivity at the limit

    NARCIS (Netherlands)

    Palstra, Thomas T. M.

    The successful synthesis of highly crystalline Cs3C60, exhibiting superconductivity up to a record temperature for fullerides of 38 K, demonstrates a powerful synthetic route for investigating the origin of superconductivity in this class of materials.

  14. Rf superconducting devices

    International Nuclear Information System (INIS)

    Hartwig, W.H.; Passow, C.

    1975-01-01

    Topics discussed include (1) the theory of superconductors in high-frequency fields (London surface impedance, anomalous normal surface resistance, pippard nonlocal theory, quantum mechanical model, superconductor parameters, quantum mechanical calculation techniques for the surface, impedance, and experimental verification of surface impedance theories); (2) residual resistance (separation of losses, magnetic field effects, surface resistance of imperfect and impure conductors, residual loss due to acoustic coupling, losses from nonideal surfaces, high magnetic field losses, field emission, and nonlinear effects); (3) design and performance of superconducting devices (design considerations, materials and fabrication techniques, measurement of performance, and frequency stability); (4) devices for particle acceleration and deflection (advantages and problems of using superconductors, accelerators for fast particles, accelerators for particles with slow velocities, beam optical devices separators, and applications and projects under way); (5) applications of low-power superconducting resonators (superconducting filters and tuners, oscillators and detectors, mixers and amplifiers, antennas and output tanks, superconducting resonators for materials research, and radiation detection with loaded superconducting resonators); and (6) transmission and delay lines

  15. Superconducting Ferromagnetic Nanodiamond.

    Science.gov (United States)

    Zhang, Gufei; Samuely, Tomas; Xu, Zheng; Jochum, Johanna K; Volodin, Alexander; Zhou, Shengqiang; May, Paul W; Onufriienko, Oleksandr; Kačmarčík, Jozef; Steele, Julian A; Li, Jun; Vanacken, Johan; Vacík, Jiri; Szabó, Pavol; Yuan, Haifeng; Roeffaers, Maarten B J; Cerbu, Dorin; Samuely, Peter; Hofkens, Johan; Moshchalkov, Victor V

    2017-06-27

    Superconductivity and ferromagnetism are two mutually antagonistic states in condensed matter. Research on the interplay between these two competing orderings sheds light not only on the cause of various quantum phenomena in strongly correlated systems but also on the general mechanism of superconductivity. Here we report on the observation of the electronic entanglement between superconducting and ferromagnetic states in hydrogenated boron-doped nanodiamond films, which have a superconducting transition temperature T c ∼ 3 K and a Curie temperature T Curie > 400 K. In spite of the high T Curie , our nanodiamond films demonstrate a decrease in the temperature dependence of magnetization below 100 K, in correspondence to an increase in the temperature dependence of resistivity. These anomalous magnetic and electrical transport properties reveal the presence of an intriguing precursor phase, in which spin fluctuations intervene as a result of the interplay between the two antagonistic states. Furthermore, the observations of high-temperature ferromagnetism, giant positive magnetoresistance, and anomalous Hall effect bring attention to the potential applications of our superconducting ferromagnetic nanodiamond films in magnetoelectronics, spintronics, and magnetic field sensing.

  16. Superconductive analogue of spin glasses

    International Nuclear Information System (INIS)

    Feigel'man, M.; Ioffe, L.; Vinokur, V.; Larkin, A.

    1987-07-01

    The properties of granular superconductors in magnetic fields, namely the existence of a new superconductive state analogue of the low-temperature superconductive state in spin glasses are discussed in the frame of the infinite-range model and the finite-range models. Experiments for elucidation of spin-glass superconductive state in real systems are suggested. 30 refs

  17. Quenches in large superconducting magnets

    International Nuclear Information System (INIS)

    Eberhard, P.H.; Alston-Garnjost, M.; Green, M.A.; Lecomte, P.; Smits, R.G.; Taylor, J.D.; Vuillemin, V.

    1977-08-01

    The development of large high current density superconducting magnets requires an understanding of the quench process by which the magnet goes normal. A theory which describes the quench process in large superconducting magnets is presented and compared with experimental measurements. The use of a quench theory to improve the design of large high current density superconducting magnets is discussed

  18. On anyon superconductivity--

    International Nuclear Information System (INIS)

    Chen, Y.-H.; Wilczek, F.; Witten, E.; Halperin, B.I.

    1989-01-01

    We investigate the statistical mechanics of a gas of fractional statistics particles in 2 + 1 dimensions. In the case of statistics very close to Fermi statistics (statistical parameter θ = π(1 - 1/n), for large n), the effect of the statistics is a weak attraction. Building upon earlier RPA calculation for the case n = 2, the authors argue that for large n perturbation theory is reliable and exhibits superfluidity (or superconductivity after coupling to electromagnetism). They describe the order parameter for this superconductng phase in terms of spontaneous breaking of commutativity of translations as opposed to the usual pairing order parameters. The vortices of the superconducting anyon gas are charged, and superconducting order parameters of the usual type vanish. They investigate the characteristic P and T violating phenomenology

  19. Connectivity and superconductivity

    CERN Document Server

    Rubinstein, Jacob

    2000-01-01

    The motto of connectivity and superconductivity is that the solutions of the Ginzburg--Landau equations are qualitatively influenced by the topology of the boundaries, as in multiply-connected samples. Special attention is paid to the "zero set", the set of the positions (also known as "quantum vortices") where the order parameter vanishes. The effects considered here usually become important in the regime where the coherence length is of the order of the dimensions of the sample. It takes the intuition of physicists and the awareness of mathematicians to find these new effects. In connectivity and superconductivity, theoretical and experimental physicists are brought together with pure and applied mathematicians to review these surprising results. This volume is intended to serve as a reference book for graduate students and researchers in physics or mathematics interested in superconductivity, or in the Schrödinger equation as a limiting case of the Ginzburg--Landau equations.

  20. Superconducting linac booster

    International Nuclear Information System (INIS)

    Srinivasan, B.; Betigeri, M.G.; Pandey, M.K.; Pillay, R.G.; Kurup, M.B.

    1997-01-01

    The report on superconducting LINAC booster, which is a joint project of Bhabha Atomic Research Centre (BARC) and Tata Institute of Fundamental Research (TIFR), brings out the work accomplished so far towards the development of the technology of superconducting LINAC to boost the energy of ions from the 14UD Pelletron. The LINAC is modular in construction with each module comprising of a helium cryostat housing four lead-plated quarter wave resonators. The resonators are superconducting for temperatures below 7.19K. An energy boost of 2 MeV/q per module is expected to be achieved. The first module and the post-tandem superbuncher have been fabricated and tested on the LINAC beam line. This report gives a summary of the technological achievements and also brings out the difficulties encountered during the R and D phase. (author)

  1. Superconducting accelerator magnet design

    International Nuclear Information System (INIS)

    Wolff, S.

    1994-01-01

    Superconducting dipoles, quadrupoles and correction magnets are necessary to achieve the high magnetic fields required for big accelerators presently in construction or in the design phase. Different designs of superconducting accelerator magnets are described and the designs chosen at the big accelerator laboratories are presented. The most frequently used cosθ coil configuration is discussed in detail. Approaches for calculating the magnetic field quality including coil end fields are presented. Design details of the cables, coils, mechanical structures, yokes, helium vessels and cryostats including thermal radiation shields and support structures used in superconducting magnets are given. Necessary material properties are mentioned. Finally, the main results of magnetic field measurements and quench statistics are presented. (orig.)

  2. Large Superconducting Magnet Systems

    CERN Document Server

    Védrine, P.

    2014-07-17

    The increase of energy in accelerators over the past decades has led to the design of superconducting magnets for both accelerators and the associated detectors. The use of Nb−Ti superconducting materials allows an increase in the dipole field by up to 10 T compared with the maximum field of 2 T in a conventional magnet. The field bending of the particles in the detectors and generated by the magnets can also be increased. New materials, such as Nb$_{3}$Sn and high temperature superconductor (HTS) conductors, can open the way to higher fields, in the range 13–20 T. The latest generations of fusion machines producing hot plasma also use large superconducting magnet systems.

  3. Superconducting super collider

    International Nuclear Information System (INIS)

    Limon, P.J.

    1987-01-01

    The Superconducting Super Collider is to be a 20 TeV per beam proton-proton accelerator and collider. Physically the SCC will be 52 miles in circumference and slightly oval in shape. The use of superconducting magnets instead of conventional cuts the circumference from 180 miles to the 52 miles. The operating cost of the SCC per year is estimated to be about $200-250 million. A detailed cost estimate of the project is roughly $3 billion in 1986 dollars. For the big collider ring, the technical cost are dominated by the magnet system. That is why one must focus on the cost and design of the magnets. Presently, the process of site selection is underway. The major R and D efforts concern superconducting dipoles. The magnets use niobium-titanium as a conductor stabilized in a copper matrix. 10 figures

  4. Large Superconducting Magnet Systems

    Energy Technology Data Exchange (ETDEWEB)

    Védrine, P [Saclay (France)

    2014-07-01

    The increase of energy in accelerators over the past decades has led to the design of superconducting magnets for both accelerators and the associated detectors. The use of Nb−Ti superconducting materials allows an increase in the dipole field by up to 10 T compared with the maximum field of 2 T in a conventional magnet. The field bending of the particles in the detectors and generated by the magnets can also be increased. New materials, such as Nb3Sn and high temperature superconductor (HTS) conductors, can open the way to higher fields, in the range 13–20 T. The latest generations of fusion machines producing hot plasma also use large superconducting magnet systems.

  5. Superconducting current generators

    International Nuclear Information System (INIS)

    Genevey, P.

    1970-01-01

    After a brief summary of the principle of energy storage and liberation with superconducting coils,two current generators are described that create currents in the range 600 to 1400 A, used for two storage experiments of 25 kJ and 50 kJ respectively. The two current generators are: a) a flux pump and b) a superconducting transformer. Both could be developed into more powerful units. The study shows the advantage of the transformer over the flux pump in order to create large currents. The efficiencies of the two generators are 95 per cent and 40 to 60 per cent respectively. (author) [fr

  6. Materials for superconducting cavities

    International Nuclear Information System (INIS)

    Bonin, B.

    1996-01-01

    The ideal material for superconducting cavities should exhibit a high critical temperature, a high critical field, and, above all, a low surface resistance. Unfortunately, these requirements can be conflicting and a compromise has to be found. To date, most superconducting cavities for accelerators are made of niobium. The reasons for this choice are discussed. Thin films of other materials such as NbN, Nb 3 Sn, or even YBCO compounds can also be envisaged and are presently investigated in various laboratories. It is shown that their success will depend critically on the crystalline perfection of these films. (author)

  7. Today's markets for superconductivity

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The worldwide market for superconductive products may exceed $1 billion in 1987. These products are expanding the frontiers of science, revolutionizing the art of medical diagnosis, and developing the energy technology of the future. In general, today's customers for superconductive equipment want the highest possible performance, almost regardless of cost. The products operate within a few degrees of absolute zero, and virtually all are fabricated from niobium or niobium alloys-so far the high-temperature superconductors discovered in 1986 and 1987 have had no impact on these markets. The industry shows potential and profound societal impact, even without the new materials

  8. Gambling with Superconducting Fluctuations

    Science.gov (United States)

    Foltyn, Marek; Zgirski, Maciej

    2015-08-01

    Josephson junctions and superconducting nanowires, when biased close to superconducting critical current, can switch to a nonzero voltage state by thermal or quantum fluctuations. The process is understood as an escape of a Brownian particle from a metastable state. Since this effect is fully stochastic, we propose to use it for generating random numbers. We present protocol for obtaining random numbers and test the experimentally harvested data for their fidelity. Our work is prerequisite for using the Josephson junction as a tool for stochastic (probabilistic) determination of physical parameters such as magnetic flux, temperature, and current.

  9. Superconducting cosmic strings

    International Nuclear Information System (INIS)

    Chudnovsky, E.M.; Field, G.B.; Spergel, D.N.; Vilenkin, A.

    1986-01-01

    Superconducting loops of string formed in the early Universe, if they are relatively light, can be an important source of relativistic particles in the Galaxy. They can be observed as sources of synchrotron radiation at centimeter wavelengths. We propose a string model for two recently discovered radio sources, the ''thread'' in the galactic center and the source G357.7-0.1, and predict that the filaments in these sources should move at relativistic speeds. We also consider superheavy superconducting strings, and the possibility that they be observed as extragalactic radio sources

  10. Superconducting Electronic Film Structures

    Science.gov (United States)

    1991-02-14

    Segmuller, A., Cooper, E.I., Chisholm, M.F., Gupta, A. Shinde, S., and Laibowitz, R.B. Lanthanum gallate substrates for epitaxial high-T superconducting thin...M. F. Chisholm, A. Gupta, S. Shinde, and R. B. Laibowitz, " Lanthanum Gallate Substrates for Epitaxial High-T c Superconducting Thin Films," Appl...G. Forrester and J. Talvacchio, " Lanthanum Copper Oxide Buffer Layers for Growth of High-T c Superconductor Films," Disclosure No. RDS 90-065, filed

  11. Superconductivity in doped semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Bustarret, E., E-mail: Etienne.bustarret@neel.cnrs.fr

    2015-07-15

    A historical survey of the main normal and superconducting state properties of several semiconductors doped into superconductivity is proposed. This class of materials includes selenides, tellurides, oxides and column-IV semiconductors. Most of the experimental data point to a weak coupling pairing mechanism, probably phonon-mediated in the case of diamond, but probably not in the case of strontium titanate, these being the most intensively studied materials over the last decade. Despite promising theoretical predictions based on a conventional mechanism, the occurrence of critical temperatures significantly higher than 10 K has not been yet verified. However, the class provides an enticing playground for testing theories and devices alike.

  12. Technology of RF superconductivity

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    This work has several parts, two of which are collaborative development projects with the majority of the work being performed at Argonne. The first is the development of a superconducting RFQ structure in collaboration with AccSys Technology Inc. of Pleasanton, California, funded as a Phase II SBIR grant. Another is a collaborative project with the Nuclear Science Centre, New Delhi, India (who are funding the work) to develop new superconducting ion accelerating structures. Other initiatives are developing various aspects of the technology required to utilize ATLAS as a secondary beam linac for radioactive beams

  13. Superconducting magnetic quadrupole

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.W.; Shepard, K.W.; Nolen, J.A.

    1995-08-01

    A design was developed for a 350 T/m, 2.6-cm clear aperture superconducting quadrupole focussing element for use in a very low q/m superconducting linac as discussed below. The quadrupole incorporates holmium pole tips, and a rectangular-section winding using standard commercially-available Nb-Ti wire. The magnet was modeled numerically using both 2D and 3D codes, as a basis for numerical ray tracing using the quadrupole as a linac element. Components for a prototype singlet are being procured during FY 1995.

  14. Superconducting Microwave Resonator Arrays for Submillimeter/Far-Infrared Imaging

    Science.gov (United States)

    Noroozian, Omid

    Superconducting microwave resonators have the potential to revolutionize submillimeter and far-infrared astronomy, and with it our understanding of the universe. The field of low-temperature detector technology has reached a point where extremely sensitive devices like transition-edge sensors are now capable of detecting radiation limited by the background noise of the universe. However, the size of these detector arrays are limited to only a few thousand pixels. This is because of the cost and complexity of fabricating large-scale arrays of these detectors that can reach up to 10 lithographic levels on chip, and the complicated SQUID-based multiplexing circuitry and wiring for readout of each detector. In order to make substantial progress, next-generation ground-based telescopes such as CCAT or future space telescopes require focal planes with large-scale detector arrays of 104--10 6 pixels. Arrays using microwave kinetic inductance detectors (MKID) are a potential solution. These arrays can be easily made with a single layer of superconducting metal film deposited on a silicon substrate and pattered using conventional optical lithography. Furthermore, MKIDs are inherently multiplexable in the frequency domain, allowing ˜ 10 3 detectors to be read out using a single coaxial transmission line and cryogenic amplifier, drastically reducing cost and complexity. An MKID uses the change in the microwave surface impedance of a superconducting thin-film microresonator to detect photons. Absorption of photons in the superconductor breaks Cooper pairs into quasiparticles, changing the complex surface impedance, which results in a perturbation of resonator frequency and quality factor. For excitation and readout, the resonator is weakly coupled to a transmission line. The complex amplitude of a microwave probe signal tuned on-resonance and transmitted on the feedline past the resonator is perturbed as photons are absorbed in the superconductor. The perturbation can be

  15. Superconductivity and magnet technology

    International Nuclear Information System (INIS)

    Lubell, M.S.

    1975-01-01

    The background theory of superconducting behavior is reviewed. Three parameters that characterize superconducting materials with values of commercial materials as examples are discussed. More than 1000 compounds and alloy systems and 26 elements are known to exhibit superconducting properties under normal conditions at very low temperatures. A wide variety of crystal structures are represented among the known superconductors. The most important ones do seem to have cubic symmetry such as the body-centered cubic (NbZr and NbTi), face-centered cubic (NbN), and the A15 or β-tungsten structures (Nb 3 Sn), V 3 Ga, Nb 3 Ge, Nb 3 Al, and V 3 Si). Attempts to understand some of the particular phenomena associated with superconductors as a necessary prelude to constructing superconducting magnets are discussed by the author. The origin of degradation is briefly discussed and methods to stabilize magnets are illustrated. The results of Oak Ridge National Laboratory design studies of toroidal magnet systems for fusion reactors are described

  16. High temperature interface superconductivity

    International Nuclear Information System (INIS)

    Gozar, A.; Bozovic, I.

    2016-01-01

    Highlight: • This review article covers the topic of high temperature interface superconductivity. • New materials and techniques used for achieving interface superconductivity are discussed. • We emphasize the role played by the differences in structure and electronic properties at the interface with respect to the bulk of the constituents. - Abstract: High-T_c superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-T_c Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed. We conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.

  17. ISR Superconducting Quadrupoles

    CERN Multimedia

    1977-01-01

    Michel Bouvier is preparing for curing the 6-pole superconducting windings inbedded in the cylindrical wall separating liquid helium from vacuum in the quadrupole aperture. The heat for curing the epoxy glue was provided by a ramp of infrared lamps which can be seen above the slowly rotating cylinder. See also 7703512X, 7702690X.

  18. Forecasting of superconducting compounds

    International Nuclear Information System (INIS)

    Savitskii, E.M.; Gribulya, V.G.; Kiseleva, N.N.

    1981-01-01

    In forecasting new superconducting intermetallic compounds of the A15 and Mo 3 Se types most promising from the viewpoint of high critical temperature Tsub(c), high critical magnetic fields Hsub(c), and high critical currents and in estimating their transition temperature it is proposed to apply cybernetic methods of computer learning

  19. Superconducting Super Collider project

    International Nuclear Information System (INIS)

    Perl, M.L.

    1986-04-01

    The scientific need for the Superconducting Super Collider (SSC) is outlined, along with the history of the development of the SSC concept. A brief technical description is given of each of the main points of the SSC conceptual design. The construction cost and construction schedule are discussed, followed by issues associated with the realization of the SSC. 8 refs., 3 figs., 3 tabs

  20. Checking BEBC superconducting magnet

    CERN Multimedia

    CERN PhotoLab

    1974-01-01

    The superconducting coils of the magnet for the 3.7 m Big European Bubble Chamber (BEBC) had to be checked, see Annual Report 1974, p. 60. The photo shows a dismantled pancake. By December 1974 the magnet reached again the field design value of 3.5 T.

  1. Niobium superconducting cavity

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    This 5-cell superconducting cavity, made from bulk-Nb, stems from the period of general studies, not all directed towards direct use at LEP. This one is dimensioned for 1.5 GHz, the frequency used at CEBAF and also studied at Saclay (LEP RF was 352.2 MHz). See also 7908227, 8007354, 8209255, 8210054, 8312339.

  2. Superconducting magnets 1992

    International Nuclear Information System (INIS)

    1993-06-01

    This report discusses the following topics on Superconducting Magnets; SSC Magnet Industrialization; Collider Quadrupole Development; A Record-Setting Magnet; D20: The Push Beyond 10T; Nonaccelerator Applications; APC Materials Development; High-T c at Low Temperature; Cable and Cabling-Machine Development; and Analytical Magnet Design

  3. LHC superconducting strand

    CERN Multimedia

    Patrice Loiez

    1999-01-01

    This cross-section through a strand of superconducting matieral as used in the LHC shows the 8000 Niobium-Titanium filaments embedded like a honeycomb in copper. When cooled to 1.9 degrees above absolute zero in the LHC accelerator, these filaments will have zero resistance and so will carry a high electric current with no energy loss.

  4. Electrical Conduction and Superconductivity

    Indian Academy of Sciences (India)

    When an electric field is applied, this electron can be lifted to this higher energy ... By such a virtual process two electrons .... using superconducting coils has come to be a reality. ... nance imaging techniques used in medical diagnostics. Com ...

  5. Superconducting magnets for HERA

    International Nuclear Information System (INIS)

    Wolff, S.

    1987-01-01

    The Hadron-Electron-Ring Accelerator (HERA) presently under construction at DESY, Hamburg, consists of an electron storage ring of 30 GeV and a proton storage ring of 820 GeV. Superconducting magnets are used for the proton ring. There are 416 superconducting bending magnets of 4.698 T central field and 8.824 m magnetic length, 224 superconducting quadrupoles of 91.2 T/m central gradient and many superconducting correction dipoles, quadrupoles and sextupoles. The main dipoles and quadrupoles consist of two-layer coils of 75 mm inner diameter clammed with aluminium (for the dipoles) or stainless steel laminations (for the quadrupoles). The collared coils are surrounded by a laminated cold iron yoke and supported inside a low loss cryostat. The protection system uses cold diodes to bypass the current around a quenching magnet. The magnets are cooled with one phase helium supplied by a 3 block central refrigeration system of 20 kW refrigeration power at 4.3 K. Two helium is returned through the magnets in good thermal contact with the one phase helium in the dipoles for temperature control. This paper describes the magnet system and gives the results obtained for prototype magnets

  6. LEP superconducting cavity

    CERN Multimedia

    1995-01-01

    Engineers work in a clean room on one of the superconducting cavities for the upgrade to the LEP accelerator, known as LEP-2. The use of superconductors allow higher electric fields to be produced so that higher beam energies can be reached.

  7. Gossamer superconductivity, new paradigm?

    Energy Technology Data Exchange (ETDEWEB)

    Won, Hyekyung [Department of Physics, Hallym University, Chuncheon 200-702 (Korea); Haas, Stephan; Parker, David [Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-0484 (United States); Maki, Kazumi [Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-0484 (United States); Max-Planck Institute for the Physics of Complex Systems, Noethnitzer Str. 38, 01187 Dresden (Germany); Dora, Balazs [Department of Physics, Budapest University of Technology and Economics, 1521 Budapest (Hungary); Virosztek, Attila [Department of Physics, Budapest University of Technology and Economics, 1521 Budapest (Hungary); Research Institute for Solid State Physics and Optics, P.O. Box 49, 1525 Budapest (Hungary)

    2006-01-01

    We review our recent works on d-wave density wave (dDW) and gossamer superconductivity (i.e. d-wave superconductivity in the presence of dDW) in high-T{sub c} cuprates and CeCoIn{sub 5}. a) We show that both the giant Nernst effect and the angle dependent magnetoresistance (ADMR) in the pseudogap phases of the cuprates and CeCoIn{sub 5} are manifestations of dDW. b) The phase diagram of high-T{sub c} cuprates is understood in terms of mean field theory, which includes two order parameters {delta}{sub 1} and {delta}{sub 2}, where one order paremeter is from dDW and the other from d-wave superconductivity. c) In the optimally to the overdoped region we find the spatially periodic dDW, an analogue of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state, becomes more stable. d) In the underdoped region where {delta}{sub 2}/{delta}{sub 1}<<1 the Uemera relation is obtained within the present model. We speculate that the gossamer superconductivity is at the heart of high-T{sub c} cuprate superconductors, the heavy-fermion superconductor CeCoIn{sub 5} and the organic superconductors {kappa}-(ET){sub 2}Cu(NCS){sub 2} and (TMTSF){sub 2}PF{sub 6}. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Superconductivity : Controlling magnetism

    NARCIS (Netherlands)

    Golubov, Alexandre Avraamovitch; Kupriyanov, Mikhail Yu.

    Manipulation of the magnetic state in spin valve structures by superconductivity has now been achieved, opening a new route for the development of ultra-fast cryogenic memories. Spintronics is a rapidly developing field that allows insight into fundamental spin-dependent physical properties and the

  9. High-temperature superconductivity

    International Nuclear Information System (INIS)

    Lynn, J.W.

    1990-01-01

    This book discusses development in oxide materials with high superconducting transition temperature. Systems with Tc well above liquid nitrogen temperature are already a reality and higher Tc's are anticipated. The author discusses how the idea of a room-temperature superconductor appears to be a distinctly possible outcome of materials research

  10. Magnetic levitation and superconductivity

    International Nuclear Information System (INIS)

    Albrecht, C.

    1989-01-01

    The paper explains the impressive advances made in the development of superconducting magnets, in cryogenic engineering, and in the development of drive and vehicle concepts in Japan in the period following termination of West German development work for the electrodynamical system (MLU 001, MLU 002). The potentials engineering due to the development of high-Tc superconductors are discussed. (orig./MM) [de

  11. AC/RF Superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, G [Jefferson Lab (United States)

    2014-07-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  12. AC/RF Superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, Gianluigi [JLAB

    2015-02-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  13. Theory of spin-fluctuation induced superconductivity in iron-based superconductors

    International Nuclear Information System (INIS)

    Zhang, Junhua

    2011-01-01

    In this dissertation we focus on the investigation of the pairing mechanism in the recently discovered high-temperature superconductor, iron pnictides. Due to the proximity to magnetic instability of the system, we considered short-range spin fluctuations as the major mediating source to induce superconductivity. Our calculation supports the magnetic fluctuations as a strong candidate that drives Cooper-pair formation in this material. We find the corresponding order parameter to be of the so-called ss-wave type and show its evolution with temperature as well as the capability of supporting high transition temperature up to several tens of Kelvin. On the other hand, our itinerant model calculation shows pronounced spin correlation at the observed antiferromagnetic ordering wave vector, indicating the underlying electronic structure in favor of antiferromagnetic state. Therefore, the electronic degrees of freedom could participate both in the magnetic and in the superconducting properties. Our work shows that the interplay between magnetism and superconductivity plays an important role to the understanding of the rich physics in this material. The magnetic-excitation spectrum carries important information on the nature of magnetism and the characteristics of superconductivity. We analyze the spin excitation spectrum in the normal and superconducting states of iron pnictides in the magnetic scenario. As a consequence of the sign-reversed gap structure obtained in the above, a spin resonance mode appears below the superconducting transition temperature. The calculated resonance energy, scaled with the gap magnitude and the magnetic correlation length, agrees well with the inelastic neutron scattering (INS) measurements. More interestingly, we find a common feature of those short-range spin fluctuations that are capable of inducing a fully gapped ss state is the momentum anisotropy with elongated span along the direction transverse to the antiferromagnetic momentum

  14. Superconducting single electron transistor for charge sensing in Si/SiGe-based quantum dots

    Science.gov (United States)

    Yang, Zhen

    Si-based quantum devices, including Si/SiGe quantum dots (QD), are promising candidates for spin-based quantum bits (quits), which are a potential platform for quantum information processing. Meanwhile, qubit readout remains a challenging task related to semiconductor-based quantum computation. This thesis describes two readout devices for Si/SiGe QDs and the techniques for developing them from a traditional single electron transistor (SET). By embedding an SET in a tank circuit and operating it in the radio-frequency (RF) regime, a superconducting RF-SET has quick response as well as ultra high charge sensitivity and can be an excellent charge sensor for the QDs. We demonstrate such RF-SETs for QDs in a Si/SiGe heterostructure. Characterization of the SET in magnetic fields is studied for future exploration of advanced techniques such as spin detection and spin state manipulation. By replacing the tank circuit with a high-quality-factor microwave cavity, the embedded SET will be operated in the supercurrent regime as a single Cooper pair transistor (CPT) to further increase the charge sensitivity and reduce any dissipation. The operating principle and implementation of the cavity-embedded CPT (cCPT) will be introduced.

  15. Supersymmetry in the Majorana Cooper-pair box

    NARCIS (Netherlands)

    Ulrich, Jascha; Adagideli, Inanc; Schuricht, Dirk; Hassler, Fabian

    2014-01-01

    Over the years, supersymmetric quantum mechanics has evolved from a toy model of high-energy physics to a field of its own. Although various examples of supersymmetric quantum mechanics have been found, systems that have a natural realization are scarce. Here, we show that the extension of the

  16. The Role of Broken Cooper Pairs in Warm Nuclei

    International Nuclear Information System (INIS)

    Guttormsen, M.; Chankova, R.; Larsen, A.C.; Rekstad, J.; Siem, S.; Syed, N.U.H.; Agvaanluvsan, U.; Schiller, A.; Voinov, A.

    2007-01-01

    In order to understand warm nuclei and describe the underlying microscopic structure, entropy is measured for several even-even and odd-mass nuclei. Mid-shell nuclei show significant odd-even entropy differences interpreted as the single-particle entropy introduced by the valence nucleon. A method to extract critical temperatures for the pair breaking process is demonstrated. (author)

  17. Class renormalization: islands around islands

    International Nuclear Information System (INIS)

    Meiss, J.D.

    1986-01-01

    An orbit of 'class' is one that rotates about a periodic orbit of one lower class with definite frequency. This contrasts to the 'level' of a periodic orbit which is the number of elements in its continued fraction expansion. Level renormalization is conventionally used to study the structure of quasi-periodic orbits. The scaling structure of periodic orbits encircling other periodic orbits in area preserving maps is discussed here. Fixed points corresponding to the accumulation of p/q bifurcations are found and scaling exponents determined. Fixed points for q > 2 correspond to self-similar islands around islands. Frequencies of the island boundary circles at the fixed points are obtained. Importance of this scaling for the motion of particles in stochastic regions is emphasized. (author)

  18. 2017 Gordon Conference on Superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Chubukov, Andrey [Univ. of Minnesota, Twin Cities, MN (United States)

    2017-11-14

    The DOE award was for a 2017 Gordon Research conference on Superconductivity (GRC). The objective of GRC is to interchange the information about the latest theoretical and experimental developments in the area of superconductivity and to select most perspective directions for future research in this area.The goal of the Gordon Conference on Superconductivity is to present and discuss the latest results in the field of modern superconductivity, discuss new ideas and new directions of research in the area. It is a long-standing tradition of the Gordon conference on Superconductivity that the vast majority of participants are junior scientists. Funding for the conference would primarily be used to support junior researchers, particularly from under-represented groups. We had more 10 female speakers, some of them junior researchers, and some funding was used to support these speakers. The conference was held together with Gordon Research Seminar on Superconductivity, where almost all speakers and participants were junior scientists.

  19. Vector superconductivity in cosmic strings

    International Nuclear Information System (INIS)

    Dvali, G.R.; Mahajan, S.M.

    1992-03-01

    We argue that in most realistic cases, the usual Witten-type bosonic superconductivity of the cosmic string is automatically (independent of the existence of superconducting currents) accompanied by the condensation of charged gauge vector bosons in the core giving rise to a new vector type superconductivity. The value of the charged vector condensate is related with the charged scalar expectation value, and vanishes only if the latter goes to zero. The mechanism for the proposed vector superconductivity, differing fundamentally from those in the literature, is delineated using the simplest realistic example of the two Higgs doublet standard model interacting with the extra cosmic string. It is shown that for a wide range of parameters, for which the string becomes scalarly superconducting, W boson condensates (the sources of vector superconductivity) are necessarily excited. (author). 14 refs

  20. Superconducting Accelerator Magnets

    CERN Document Server

    Mess, K H; Wolff, S

    1996-01-01

    The main topic of the book are the superconducting dipole and quadrupole magnets needed in high-energy accelerators and storage rings for protons, antiprotons or heavy ions. The basic principles of low-temperature superconductivity are outlined with special emphasis on the effects which are relevant for accelerator magnets. Properties and fabrication methods of practical superconductors are described. Analytical methods for field calculation and multipole expansion are presented for coils without and with iron yoke. The effect of yoke saturation and geometric distortions on field quality is studied. Persistent magnetization currents in the superconductor and eddy currents the copper part of the cable are analyzed in detail and their influence on field quality and magnet performance is investigated. Superconductor stability, quench origins and propagation and magnet protection are addressed. Some important concepts of accelerator physics are introduced which are needed to appreciate the demanding requirements ...

  1. Infrared Quenched Photoinduced Superconductivity

    Science.gov (United States)

    Federici, J. F.; Chew, D.; Guttierez-Solana, J.; Molina, G.; Savin, W.; Wilber, W.

    1996-03-01

    Persistant photoconductivity (PPC) and photoinduced superconductivity (PISC) in oxygen deficient YBa_2Cu_3O_6+x have received recent attention. It has been suggested that oxygen vacancy defects play an important role in the PISC/PPC mechanism.(J. F. Federici, D. Chew, B. Welker, W. Savin, J. Gutierrez-Solana, and T. Fink, Phys. Rev. B), December 1995 Supported by National Science Foundation In this model, defects trap photogenerated electrons so that electron-hole recombination can not occur thereby allowing photogenerated holes to contribute to the carrier density. Nominally, the photoinduced state is long-lived, persisting for days at low temperature. Experiment results will be presented demonstrating that the photoinduced superconductivity state can be quenched using infrared radiation. Implications for the validity of the PISC/PCC defect model will be discussed.

  2. Superconductivity an introduction

    CERN Document Server

    Kleiner, Reinhold

    2016-01-01

    The third edition of this proven text has been developed further in both scope and scale to reflect the potential for superconductivity in power engineering to increase efficiency in electricity transmission or engines. The landmark reference remains a comprehensive introduction to the field, covering every aspect from fundamentals to applications, and presenting the latest developments in organic superconductors, superconducting interfaces, quantum coherence, and applications in medicine and industry. Due to its precise language and numerous explanatory illustrations, it is suitable as an introductory textbook, with the level rising smoothly from chapter to chapter, such that readers can build on their newly acquired knowledge. The authors cover basic properties of superconductors and discuss stability and different material groups with reference to the latest and most promising applications, devoting the last third of the book to applications in power engineering, medicine, and low temperature physics. An e...

  3. Variable temperature superconducting microscope

    Science.gov (United States)

    Cheng, Bo; Yeh, W. J.

    2000-03-01

    We have developed and tested a promising type of superconducting quantum interference device (SQUID) microscope, which can be used to detect vortex motion and can operate in magnetic fields over a large temperature range. The system utilizes a single-loop coupling transformer, consisting of a patterned high Tc superconducting thin film. At one end of the transformer, a 20 μm diam detecting loop is placed close to the sample. At the other end, a large loop is coupled to a NbTi coil, which is connected to a low Tc SQUID sensor. Transformers in a variety of sizes have been tested and calibrated. The results show that the system is capable of detecting the motion of a single vortex. We have used the microscope to study the behavior of moving vortices at various positions in a YBa2Cu3O7 thin film bridge.

  4. Superconducting energy store

    International Nuclear Information System (INIS)

    Elsel, W.

    1986-01-01

    The advantages obtained by the energy store device according to the invention with a superconducting solenoid system consist of the fact that only relatively short superconducting forward and return leads are required, which are collected into cables as far as possible. This limits the coolant losses of the cables. Only one relatively expensive connecting part with a transition of its conductors from room temperature to a low temperature is required, which, like the normal conducting current switch, is easily accessible. As the continuation has to be cooled independently of the upper part solenoid, cooling of this continuation part can prevent the introduction of large quantities of heat into the connected part solenoid. Due to the cooling of the forward and return conductors of the connecting cable with the coolant of the lower part solenoid, there are relatively few separations between the coolant spaces of the part solenoids. (orig./MM) [de

  5. Statistical mechanics of superconductivity

    CERN Document Server

    Kita, Takafumi

    2015-01-01

    This book provides a theoretical, step-by-step comprehensive explanation of superconductivity for undergraduate and graduate students who have completed elementary courses on thermodynamics and quantum mechanics. To this end, it adopts the unique approach of starting with the statistical mechanics of quantum ideal gases and successively adding and clarifying elements and techniques indispensible for understanding it. They include the spin-statistics theorem, second quantization, density matrices, the Bloch–De Dominicis theorem, the variational principle in statistical mechanics, attractive interaction, and bound states. Ample examples of their usage are also provided in terms of topics from advanced statistical mechanics such as two-particle correlations of quantum ideal gases, derivation of the Hartree–Fock equations, and Landau’s Fermi-liquid theory, among others. With these preliminaries, the fundamental mean-field equations of superconductivity are derived with maximum mathematical clarity based on ...

  6. Superconductivity in Chevrel phases

    International Nuclear Information System (INIS)

    Fischer, O.; Seeber, B.

    1979-01-01

    In the last years several ternary superconductors have been discovered, which possess unusual physical properties. Among them the molybdenum chalcogenides, which are often called Chevrel phases, have a special position. Some of these compounds have very high critical fields, which is of special interest for a technical application. In these substances the coexistence of magnetic ordering and superconductivity has been found for the first time, too. Recently it has become possible to prepare new compounds, which are interesting for superconductivity, by the appropriate coalescence of Mo 6 clusters. In the case of Tl 2 Mo 6 Se 6 (Tsub(c) = 3K) this development leads to a quasi-one-dimensional metallic system. (orig.)

  7. Metastable superconducting alloys

    International Nuclear Information System (INIS)

    Johnson, W.L.

    1978-07-01

    The study of metastable metals and alloys has become one of the principal activities of specialists working in the field of superconducting materials. Metastable crystalline superconductors such as the A15-type materials have been given much attention. Non-crystalline superconductors were first studied over twenty years ago by Buckel and Hilsch using the technique of thin film evaporation on a cryogenic substrate. More recently, melt-quenching, sputtering, and ion implantation techniques have been employed to produce a variety of amorphous superconductors. The present article presents a brief review of experimental results and a survey of current work on these materials. The systematics of superconductivity in non-crystalline metals and alloys are described along with an analysis of the microscopic parameters which underlie the observed trends. The unique properties of these superconductors which arise from the high degree of structural disorder in the amorphous state are emphasized

  8. Superconducting frustration bit

    International Nuclear Information System (INIS)

    Tanaka, Y.

    2014-01-01

    Highlights: • A frustration bit element is proposed for a conventional superconducting circuit. • It is composed of π-junctions. • It mimics the multiband superconductor. - Abstract: A basic design is proposed for a classical bit element of a superconducting circuit that mimics a frustrated multiband superconductor and is composed of an array of π-Josephson junctions (π-junction). The phase shift of π provides the lowest energy for one π-junction, but neither a π nor a zero phase shift gives the lowest energy for an assembly of π-junctions. There are two chiral states that can be used to store one bit information. The energy scale for reading and writing to memory is of the same order as the junction energy, and is thus in the same order of the driving energy of the circuit. In addition, random access is also possible

  9. Superconductivity and spin fluctuations

    International Nuclear Information System (INIS)

    Scalapino, D.J.

    1999-01-01

    The organizers of the Memorial Session for Herman Rietschel asked that the author review some of the history of the interplay of superconductivity and spin fluctuations. Initially, Berk and Schrieffer showed how paramagnon spin fluctuations could suppress superconductivity in nearly-ferromagnetic materials. Following this, Rietschel and various co-workers wrote a number of papers in which they investigated the role of spin fluctuations in reducing the Tc of various electron-phonon superconductors. Paramagnon spin fluctuations are also believed to provide the p-wave pairing mechanism responsible for the superfluid phases of 3 He. More recently, antiferromagnetic spin fluctuations have been proposed as the mechanism for d-wave pairing in the heavy-fermion superconductors and in some organic materials as well as possibly the high-Tc cuprates. Here the author will review some of this early history and discuss some of the things he has learned more recently from numerical simulations

  10. Stabilized superconducting materials and fabrication process

    International Nuclear Information System (INIS)

    Chevallier, B.; Dance, J.M.; Etourneau, J.; Lozano, L.; Tressaud, A.; Tournier, R.; Sulpice, A.; Chaussy, J.; Lejay, P.

    1989-01-01

    Superconducting ceramics are fluorinated at a temperature ≤ 120 0 C. Are also claimed new superconducting materials with a fluorine concentration gradient decreasing from the surface to the core. Superconductivity is stabilized and/or improved [fr

  11. Superconductivity in MgB{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Muranaka, Takahiro; Akimitsu, Jun [Aoyama Gakuin Univ., Kanagawa (Japan). Dept. of Physics and Mathematics

    2011-07-01

    We review superconductivity in MgB{sub 2} in terms of crystal and electronic structure, electron-phonon coupling, two-gap superconductivity and application. Finally, we introduce the development of new superconducting materials in related compounds. (orig.)

  12. Topological confinement and superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Al-hassanieh, Dhaled A [Los Alamos National Laboratory; Batista, Cristian D [Los Alamos National Laboratory

    2008-01-01

    We derive a Kondo Lattice model with a correlated conduction band from a two-band Hubbard Hamiltonian. This mapping allows us to describe the emergence of a robust pairing mechanism in a model that only contains repulsive interactions. The mechanism is due to topological confinement and results from the interplay between antiferromagnetism and delocalization. By using Density-Matrix-Renormalization-Group (DMRG) we demonstrate that this mechanism leads to dominant superconducting correlations in aID-system.

  13. Unconventional superconductivity near inhomogeneities

    International Nuclear Information System (INIS)

    Poenicke, A.F.

    2008-01-01

    After the presentation of a quasi-classical theory the specific heat of Sr 2 RuO 4 is considered. Then tunneling spectroscopy on cuprate superconductors is discussed. Thereafter the subharmonic gap structure in d-wave superconductors is considered. Finally the application of the S-matrix in superconductivity is discussed with spin mixing, CrO 2 as example, and an interface model. (HSI)

  14. Unconventional superconductivity near inhomogeneities

    Energy Technology Data Exchange (ETDEWEB)

    Poenicke, A F

    2008-01-25

    After the presentation of a quasi-classical theory the specific heat of Sr{sub 2}RuO{sub 4} is considered. Then tunneling spectroscopy on cuprate superconductors is discussed. Thereafter the subharmonic gap structure in d-wave superconductors is considered. Finally the application of the S-matrix in superconductivity is discussed with spin mixing, CrO{sub 2} as example, and an interface model. (HSI)

  15. Superconduction at 77 K

    International Nuclear Information System (INIS)

    Mueller, H.G.

    1989-01-01

    This general paper deals with the advantages which may result from the use of ceramic high-temperature superconductors. The use of these new superconductors for generators and electric motors for ship propulsion is regarded as a promising potential defense application. Furthermore, SMES (Superconducting Magnetic Energy Storage) can be used as a 'power compressor' for future high-performance weapon systems such as electromagnetic cannons, high-energy lasers, and high power microwaves. (MM) [de

  16. Advanced superconducting materials

    International Nuclear Information System (INIS)

    Fluekiger, R.

    1983-11-01

    The superconducting properties of various materials are reviewed in view of their use in high field magnets. The critical current densities above 12 T of conductors based on NbN or PbMo 6 S 8 are compared to those of the most advanced practical conductors based on alloyed by Nb 3 Sn. Different aspects of the mechanical reinforcement of high field conductors, rendered necessary by the strong Lorentz forces (e.g. in fusion magnets), are discussed. (orig.) [de

  17. Superconducting magnet wire

    Science.gov (United States)

    Schuller, Ivan K.; Ketterson, John B.; Banerjee, Indrajit

    1986-01-01

    A superconducting tape or wire with an improved critical field is formed of alternating layers of a niobium-containing superconductor such as Nb, NbTi, Nb.sub.3 Sn or Nb.sub.3 Ge with a thickness in the range of about 0.5-1.5 times its coherence length, supported and separated by layers of copper with each copper layer having a thickness in the range of about 170-600 .ANG..

  18. Superconductivity in power engineering

    International Nuclear Information System (INIS)

    Chaddah, P.; Dande, Y.D.; Dasannacharya, B.A.; Malik, M.K.; Raghavan, R.V.

    1987-01-01

    The advantages of low power loss, high magnetic fields and compactness of size of superconducting magnets have generated world-wide interest in using them for MHD generators, Tokamak fusion reactors, energy storage systems etc. With a view to assess the feasibility of using the technology in power engineering in India, the status of the efforts in the country is reviewed and the areas of R and D required are indicated. 13 figures, 15 refs. (author)

  19. Superconducting linear colliders

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The advantages of superconducting radiofrequency (SRF) for particle accelerators have been demonstrated by successful operation of systems in the TRISTAN and LEP electron-positron collider rings respectively at the Japanese KEK Laboratory and at CERN. If performance continues to improve and costs can be lowered, this would open an attractive option for a high luminosity TeV (1000 GeV) linear collider

  20. Superconducting Ferromagnetic Nanodiamond

    Czech Academy of Sciences Publication Activity Database

    Zhang, G.; Samuely, T.; Xu, Z.; Jochum, J. K.; Volodin, A.; Zhou, S. Q.; May, P. W.; Onufriienko, O.; Kacmarik, J.; Steele, J. A.; Li, J.; Vanacken, J.; Vacík, Jiří; Szabo, P.; Yuan, H. F.; Roeffaers, M. B. J.; Cerbu, D.; Samuely, P.; Hofkens, J.; Moshchalkov, V.V.

    2017-01-01

    Roč. 11, č. 6 (2017), s. 5358-5366 ISSN 1936-0851 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk LM2015056 Institutional support: RVO:61389005 Keywords : nanodiamond * superconductivity and ferromagnetism * spin fluctuations * giant positive magnetoresistance * anamalous Hall effect Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nano-materials (production and properties ) Impact factor: 13.942, year: 2016

  1. Superconducting cavities for HERA

    International Nuclear Information System (INIS)

    Dwersteg, B.; Ebeling, W.; Moeller, W.D.; Renken, D.; Proch, D.; Sekutowicz, J.; Susta, J.; Tong, D.

    1988-01-01

    Superconducting 500 MHz cavities are developed to demonstrate the feasibility of upgrading the e-beam energy of the HERA storage ring. A prototype module with 2 x 4 cell resonators and appropriate fundamental and higher mode couplers has been designed at DESY and is being built by industrial firms. The design and results of RF and cryogenic measurements are reported in detail. 17 references, 10 figures, 2 tables

  2. Superconductivity is pair work

    International Nuclear Information System (INIS)

    Wengenmayr, Roland

    2011-01-01

    Electric cables that routinely conduct electricity without loss - physicists have been motivated by this idea ever since superconductivity was discovered 100 years ago. Researchers working with Bernhard Keimer at the Max Planck Institute for Solid State Research in Stuttgart and Frank Steglich at the Max Planck Institute for Chemical Physics of Solids in Dresden want to gain a detailed understanding of how unconventional superconductors lose their resistivity. (orig.)

  3. Superconducting Panofsky quadrupoles

    International Nuclear Information System (INIS)

    Harwood, L.H.

    1981-01-01

    A design for a rectangular aperture quadrupole magnet without pole-tips was introduced by Hand and Panofsky in 1959. This design was quite radical but simple to construct. Few magnets of this design were ever built because of the large power needed. With the advent of superconducting coils there has been a renewed interest in them. The mathematical basis, field characteristics, and present and future construction of these magnets are described

  4. Unconventional superconductivity of the heavy fermion compound UNi{sub 2}Al{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Zakharov, Andrey

    2008-07-01

    The heavy fermion compound UNi{sub 2}Al{sub 3} exhibits the coexistence of superconductivity and magnetic order at low temperatures, stimulating speculations about possible exotic Cooper-pairing interaction in this superconductor. However, the preparation of good quality bulk single crystals of UNi{sub 2}Al{sub 3} has proven to be a non-trivial task due to metallurgical problems, which result in the formation of an UAl{sub 2} impurity phase and hence a strongly reduced sample purity. The present work concentrates on the preparation, characterization and electronic properties investigation of UNi{sub 2}Al{sub 3} single crystalline thin film samples. The preparation of thin films was accomplished in a molecular beam epitaxy (MBE) system. (100)-oriented epitaxial thin films of UNi{sub 2}Al{sub 3} were grown on single crystalline YAlO{sub 3} substrates cut in (010)- or (112)-direction. The high crystallographic quality of the samples was proved by several characterisation methods, such as X-ray analysis, RHEED and TEM. To study the magnetic structure of epitaxial thin films resonant magnetic X-ray scattering was employed. The magnetic order of thin the film samples, the formation of magnetic domains with different moment directions, and the magnetic correlation length were discussed. The electronic properties of the UNi{sub 2}Al{sub 3} thin films in the normal and superconducting states were investigated by means of transport measurements. A pronounced anisotropy of the temperature dependent resistivity {rho}(T) was observed. Moreover, it was found that the temperature of the resistive superconducting transition depends on the current direction, providing evidence for multiband superconductivity in UNi{sub 2}Al{sub 3}. The initial slope of the upper critical field H'{sub c2}(T) of the thin film samples suggests an unconventional spin-singlet superconducting state, as opposed to bulk single crystal data. To probe the superconducting gap of UNi{sub 2}Al{sub 3

  5. Cooldown of superconducting magnet strings

    International Nuclear Information System (INIS)

    Yuecel, A.; Carcagno, R.H.

    1995-01-01

    A numerical model for the cooldown of the superconducting magnet strings in the Accelerator System String Test (ASST) Facility at the Superconducting Super Collider (SSC) Laboratory is presented. Numerical results are compared with experimental data from the ASST test runs. Agreement between the numerical predictions and experiments is very good over the entire range from room temperature to liquid helium temperatures. The model can be readily adapted to predict the cooldown and warmup behavior of other superconducting magnets or cold masses

  6. Superconductivity in borides and carbides

    International Nuclear Information System (INIS)

    Muranaka, Takahiro

    2007-01-01

    It was thought that intermetallic superconductors do not exhibit superconductivity at temperatures over 30 K because of the Bardeen-Cooper-Schrieffer (BCS) limit; therefore, researchers have been interested in high-T c cuprates. Our group discovered high-T c superconductivity in MgB 2 at 39 K in 2001. This discovery has initiated a substantial interest in the potential of high-T c superconductivity in intermetallic compounds that include 'light' elements (borides, carbides, etc.). (author)

  7. Superconducting energy storage magnet

    International Nuclear Information System (INIS)

    Eyssa, Y.M.; Boom, R.W.; Young, W.C.; McIntosh, G.E.; Abdelsalam, M.K.

    1986-01-01

    A superconducting magnet is described comprising: (a) a first, outer coil of one layer of conductor including at least a superconducting composite material; (b) a second, inner coil of one layer of conductor including at least a superconducting composite material. The second coil disposed adjacent to the first coil with each turn of the second inner coil at substantially the same level as a turn on the first coil; (c) an inner support structure between the first and second coils and engaged to the conductors thereof, including support rails associated with each turn of conductor in each coil and in contact therewith along its length at positions on the inwardly facing periphery of the conductor. The rail associated with each conductor is electrically isolated from other rails in the inner support structure. The magnetic field produced by a current flowing in the same direction through the conductors of the first and second coils produces a force on the conductors that are directed inwardly toward the inner support structure

  8. Magnetically leviated superconducting bearing

    Science.gov (United States)

    Weinberger, Bernard R.; Lynds, Jr., Lahmer

    1993-01-01

    A magnetically levitated superconducting bearing includes a magnet (2) mounted on a shaft (12) that is rotatable around an axis of rotation and a Type II superconductor (6) supported on a stator (14) in proximity to the magnet (2). The superconductor (6) is positioned so that when it is cooled to its superconducting state in the presence of a magnetic field, it interacts with the magnet (2) to produce an attractive force that levitates the magnet (2) and supports a load on the shaft (12). The interaction between the superconductor (6) and magnet(2) also produces surface screening currents (8) that generate a repulsive force perpendicular to the load. The bearing also has means for maintaining the superconductor at a temperature below its critical temperature (16, 18). The bearing could also be constructed so the magnet (2) is supported on the stator (14) and the superconductor (6) is mounted on the shaft (12). The bearing can be operated by cooling the superconductor (6) to its superconducting state in the presence of a magnetic field.

  9. Investigations of two types of superconducting arrays

    International Nuclear Information System (INIS)

    Niu, M.

    1993-01-01

    This dissertation has two parts. Part one studies the anisotropy effect on homogeneous superconducting wire-networks, by using the Abrikosov approach. The networks assumed to have an infinite square lattice geometry. An anisotropy parameter R is defined to be the cross sectional area ratio of the vertical and horizontal strands. Many limiting behaviors of the order parameter distribution as R → ∞ are obtained. Many anisotropy-induced vortex configurational transitions are found at several Φ/Φ 0 values studied, and are investigated in detail. Part two studies the ground-state vortex configurations of the Josephson-coupled arrays of superconducting islands. The Ginzburg-Landau Josephson array model is used. With arrays of Penrose tiling geometry, the authors have found negative evidences against a proposed mechanism, and positive evidences for a new mechanism for generating commensurate states. But the mechanisms for the majority of the nontrivial commensurate states remain to be investigated. With arrays of infinite square lattice geometry, a temperature-induced vortex configurational transition at Φ/Φ 0 = 1/6 is found. The authors discover that the equilibrium vortex ground state of an infinite square-lattice array can occur in a unit cell of size other than q by q, or 2q by 2q, which has been widely accepted and commonly used so far

  10. Superconductivity in graphite intercalation compounds

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Robert P. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Weller, Thomas E.; Howard, Christopher A. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Dean, Mark P.M. [Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973 (United States); Rahnejat, Kaveh C. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Saxena, Siddharth S. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Ellerby, Mark, E-mail: mark.ellerby@ucl.ac.uk [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom)

    2015-07-15

    Highlights: • Historical background of graphite intercalates. • Superconductivity in graphite intercalates and its place in the field of superconductivity. • Recent developments. • Relevant modeling of superconductivity in graphite intercalates. • Interpretations that pertain and questions that remain. - Abstract: The field of superconductivity in the class of materials known as graphite intercalation compounds has a history dating back to the 1960s (Dresselhaus and Dresselhaus, 1981; Enoki et al., 2003). This paper recontextualizes the field in light of the discovery of superconductivity in CaC{sub 6} and YbC{sub 6} in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how these relate to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity, and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.

  11. Superconductivity in graphite intercalation compounds

    International Nuclear Information System (INIS)

    Smith, Robert P.; Weller, Thomas E.; Howard, Christopher A.; Dean, Mark P.M.; Rahnejat, Kaveh C.; Saxena, Siddharth S.; Ellerby, Mark

    2015-01-01

    Highlights: • Historical background of graphite intercalates. • Superconductivity in graphite intercalates and its place in the field of superconductivity. • Recent developments. • Relevant modeling of superconductivity in graphite intercalates. • Interpretations that pertain and questions that remain. - Abstract: The field of superconductivity in the class of materials known as graphite intercalation compounds has a history dating back to the 1960s (Dresselhaus and Dresselhaus, 1981; Enoki et al., 2003). This paper recontextualizes the field in light of the discovery of superconductivity in CaC 6 and YbC 6 in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how these relate to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity, and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition

  12. Korea's developmental program for superconductivity

    Science.gov (United States)

    Hong, Gye-Won; Won, Dong-Yeon; Kuk, Il-Hyun; Park, Jong-Chul

    1995-04-01

    Superconductivity research in Korea was firstly carried out in the late 70's by a research group in Seoul National University (SNU), who fabricated a small scale superconducting magnetic energy storage system under the financial support from Korea Electric Power Company (KEPCO). But a few researchers were involved in superconductivity research until the oxide high Tc superconductor was discovered by Bednorz and Mueller. After the discovery of YBaCuO superconductor operating above the boiling point of liquid nitrogen (77 K)(exp 2), Korean Ministry of Science and Technology (MOST) sponsored a special fund for the high Tc superconductivity research to universities and national research institutes by recognizing its importance. Scientists engaged in this project organized 'High Temperature Superconductivity Research Association (HITSRA)' for effective conducting of research. Its major functions are to coordinate research activities on high Tc superconductivity and organize the workshop for active exchange of information. During last seven years the major superconductivity research has been carried out through the coordination of HITSRA. The major parts of the Korea's superconductivity research program were related to high temperature superconductor and only a few groups were carrying out research on conventional superconductor technology, and Korea Atomic Energy Research Institute (KAERI) and Korea Electrotechnology Research Institute (KERI) have led this research. In this talk, the current status and future plans of superconductivity research in Korea will be reviewed based on the results presented in interim meeting of HITSRA, April 1-2, 1994. Taejeon, as well as the research activity of KAERI.

  13. The development of superconducting equipment

    CERN Document Server

    Ueda, T; Hiue, H

    2003-01-01

    Fuji Electric has been developing various types of superconducting equipment for over a quarter of a century. This paper describes the development results achieved for superconducting equipment and especially focuses on large-capacity current leads and superconducting transmission systems, the development of which is being promoted for application to the field of nuclear fusion. High temperature superconductor (HTS) is becoming the mainstream in the field of superconductivity, and the HTS floating coil and conduction-cooled HTS transformed are also introduced as recent developments for devices that utilize this technology. (author)

  14. Superconducting magnet development in Japan

    International Nuclear Information System (INIS)

    Yasukochi, K.

    1983-01-01

    The present state of R and D works on the superconducting magnet and its applications in Japan are presented. On electrical rotating machines, 30 MVA superconducting synchronous rotary condenser (Mitsubishi and Fuji) and 50 MVA generator are under construction. Two ways of ship propulsion by superconducting magnets are developing. A superconducting magnetically levitated and linear motor propelled train ''MAGLEV'' was developed by the Japan National Railways (JNR). The superconducting magnet development for fusion is the most active field in Japan. The Cluster Test program has been demonstrated on a 10 T Nb 3 Sn coil and the first coil of Large Coil Task in IEA collaboration has been constructed and the domestic test was completed in JAERI. These works are for the development of toroidal coils of the next generation tokamak machine. R and D works on superconducting ohmic heating coil are in progress in JAERI and ETL. The latter group has constructed 3.8 MJ pulsed coil. A high ramp rate of changing field in pulsed magnet, 200 T/s, has been tested successfully. High Energy Physics Laboratory (KEK) are conducting active works. The superconducting μ meson channel and π meson channel have been constructed and are operating successfully. KEK has also a project of big accelerator named ''TRISTAN'', which is similar to ISABELLE project of BNL. Superconducting synchrotron magnets are developed for this project. The development of superconducting three thin wall solenoid has been started. One of them, CDF, is progressing under USA-Japan collaboration

  15. Superconducting Nonlinear Kinetic Inductance Devices

    Data.gov (United States)

    National Aeronautics and Space Administration — Superconducting quantum interference devices, or SQUIDs, are by far the most sensitive magnetometers available, but two issues limit their commercial potential:...

  16. Unconventional superconductivity in honeycomb lattice

    Directory of Open Access Journals (Sweden)

    P Sahebsara

    2013-03-01

    Full Text Available   ‎ The possibility of symmetrical s-wave superconductivity in the honeycomb lattice is studied within a strongly correlated regime, using the Hubbard model. The superconducting order parameter is defined by introducing the Green function, which is obtained by calculating the density of the electrons ‎ . In this study showed that the superconducting order parameter appears in doping interval between 0 and 0.5, and x=0.25 is the optimum doping for the s-wave superconductivity in honeycomb lattice.

  17. Process for producing clad superconductive materials

    International Nuclear Information System (INIS)

    Cass, R.B.; Ott, K.C.; Peterson, D.E.

    1992-01-01

    This patent describes a process for fabricating superconducting composite wire. It comprises placing a superconductive precursor admixture capable of undergoing self propagating combustion in stoichiometric amounts sufficient to form a superconductive product within an oxygen-porous metal tube; sealing one end of the tube; igniting the superconductive precursor admixture whereby the superconductive precursor admixture endburns along the length of the admixture; and cross-section reducing the tube at a rate substantially equal to the rate of burning of the superconductive precursor admixture and at a point substantially planar with the burnfront of the superconductive precursor mixture, whereby a clad superconductive product is formed in situ

  18. Heavy-ion superconducting linacs

    International Nuclear Information System (INIS)

    Delayen, J.R.

    1989-01-01

    This paper reviews the status of the superconducting heavy-ion accelerators. Most of them are linacs used as boosters for tandem electrostatic accelerators, although the technology is being extended to very low velocity to eliminate the need for an injector. The characteristics and features of the various superconducting heavy-ion accelerators are discussed. 45 refs

  19. Heavy-ion superconducting linacs

    Energy Technology Data Exchange (ETDEWEB)

    Delayen, J.R.

    1989-01-01

    This paper reviews the status of the superconducting heavy-ion accelerators. Most of them are linacs used as boosters for tandem electrostatic accelerators, although the technology is being extended to very low velocity to eliminate the need for an injector. The characteristics and features of the various superconducting heavy-ion accelerators are discussed. 45 refs.

  20. Meissner effect in superconducting microtraps

    OpenAIRE

    Cano, Daniel

    2009-01-01

    This thesis investigates the impact of the Meissner effect on magnetic microtraps for ultracold atoms near superconducting microstructures. This task has been accomplished both theoretically and experimentally. The Meissner effect distorts the magnetic fields near superconducting surfaces, thus altering the parameters of magnetic microtraps. Both computer simulations and experimental measurements demonstrate that the Meissner effect shortens the distance between the magnetic microtrap and the...

  1. Superconducting magnet for 'ML-100'

    Energy Technology Data Exchange (ETDEWEB)

    Saito, R; Fujinaga, T; Tada, N; Kimura, H

    1974-07-01

    A magneticaly levitated experimental vehicle (Ml-100) was designed and constructed in commemoration of the centenary of the Japanese National Railways. For magnetic levitation the vehicle is provided with two superconducting magnets. In the test operation of the vehicle, these superconducting magnets showed stable performance in levitating vehicle body.

  2. Superconducting bearings for flywheel applications

    Energy Technology Data Exchange (ETDEWEB)

    Abrahamsen, Asger Bech

    2001-05-01

    A literature study on the application of superconducting bearings in energy storage flywheel systems. The physics of magnetic levitation and superconductors are presented in the first part of the report, followed by a discussion of the literature found on the applications of superconducting bearings in flywheels. (au)

  3. Superconducting bearings for flywheel applications

    DEFF Research Database (Denmark)

    Abrahamsen, A.B.

    2001-01-01

    A literature study on the application of superconducting bearings in energy storage flywheel systems. The physics of magnetic levitation and superconductors are presented in the first part of the report, followed by a discussion of the literature found onthe applications of superconducting bearings...

  4. Superconducting Qubit Optical Transducer (SQOT)

    Science.gov (United States)

    2015-08-05

    parts on optical signals and any quasiparticle loss caused by optical photons on microwave signals. Using a superconducting 3D cavity as the microwave...plasmonic and quasiparticle losses. 3. The electro-optic material should be easily integrable with superconducting circuits. A fully integrated

  5. The Danish Superconducting Cable Project

    DEFF Research Database (Denmark)

    Tønnesen, Ole

    1997-01-01

    The design and construction of a superconducting cable is described. The cable has a room temperature dielectric design with the cryostat placed inside the electrical insulation.BSCCO 2223 superconducting tapes wound in helix form around a former are used as the cable conductor. Results from...

  6. the tj model and superconductivity

    African Journals Online (AJOL)

    DJFLEX

    Perhaps that in the reason why their explanations of the superconductivity have had limited scope . A proper theory and mechanism of superconductivity in the ceramic cuprates should take account of magnetism inherent in the compounds. For the (214) compound experiment have revealed strong antiferromagnetic (AF).

  7. Superconducting cavities for beauty factories

    International Nuclear Information System (INIS)

    Lengeler, H.

    1992-01-01

    The possibilities and merits of superconducting accelerating cavities for Beauty-factories are considered. There exist already large sc systems of size and frequency comparable to the ones needed for Beauty-factories. Their status and operation experience is discussed. A comparison of normal conducting and superconducting systems is done for two typical Beauty-factory rings

  8. A superconducting magnetic gear

    International Nuclear Information System (INIS)

    Campbell, A M

    2016-01-01

    A comparison is made between a magnetic gear using permanent magnets and superconductors. The objective is to see if there are any fundamental reasons why superconducting magnets should not provide higher power densities than permanent magnets. The gear is based on the variable permeability design of Attilah and Howe (2001 IEEE Trans. Magn. 37 2844–46) in which a ring of permanent magnets surrounding a ring of permeable pole pieces with a different spacing gives an internal field component at the beat frequency. Superconductors can provide much larger fields and forces but will saturate the pole pieces. However the gear mechanism still operates, but in a different way. The magnetisation of the pole pieces is now constant but rotates with angle at the beat frequency. The result is a cylindrical Halbach array which produces an internal field with the same symmetry as in the linear regime, but has an analytic solution. In this paper a typical gear system is analysed with finite elements using FlexPDE. It is shown that the gear can work well into the saturation regime and that the Halbach array gives a good approximation to the results. Replacing the permanent magnets with superconducting tapes can give large increases in torque density, and for something like a wind turbine a combined gear and generator is possible. However there are major practical problems. Perhaps the most fundamental is the large high frequency field which is inevitably present and which will cause AC losses. Also large magnetic fields are required, with all the practical problems of high field superconducting magnets in rotating machines. Nevertheless there are ways of mitigating these difficulties and it seems worthwhile to explore the possibilities of this technology further. (paper)

  9. Normal-metal quasiparticle traps for superconducting qubits

    Energy Technology Data Exchange (ETDEWEB)

    Hosseinkhani, Amin [Peter Grunberg Institute (PGI-2), Forschungszentrum Julich, D-52425 Julich (Germany); JARA-Institute for Quantum Information, RWTH Aachen University, D-52056 Aachen (Germany)

    2016-07-01

    Superconducting qubits are promising candidates to implement quantum computation, and have been a subject of intensive research in the past decade. Excitations of a superconductor, known as quasiparticles, can reduce the qubit performance by causing relaxation; the relaxation rate is proportional to the density of quasiparticles tunneling through Josephson junction. Here, we consider engineering quasiparticle traps by covering parts of a superconducting device with normal-metal islands. We utilize a phenomenological quasiparticle diffusion model to study both the decay rate of excess quasiparticles and the steady-state profile of the quasiparticle density in the device. We apply the model to various realistic configurations to explore the role of geometry and location of the traps.

  10. Rate of tunneling nonequilibrium quasiparticles in superconducting qubits

    International Nuclear Information System (INIS)

    Ansari, Mohammad H

    2015-01-01

    In superconducting qubits the lifetime of quantum states cannot be prolonged arbitrarily by decreasing temperature. At low temperature quasiparticles tunneling between the electromagnetic environment and superconducting islands takes the condensate state out of equilibrium due to charge imbalance. We obtain the tunneling rate from a phenomenological model of non-equilibrium, where nonequilibrium quasiparticle tunnelling stimulates a temperature-dependent chemical potential shift in the superconductor. As a result we obtain a non-monotonic behavior for relaxation rate as a function of temperature. Depending on the fabrication parameters for some qubits, the lowest tunneling rate of nonequilibrium quasiparticles can take place only near the onset temperature below which nonequilibrium quasiparticles dominate over equilibrium one. Our theory also indicates that such tunnelings can influence the probability of transitions in qubits through a coupling to the zero-point energy of phase fluctuations. (paper)

  11. Superconductivity at the industrial scale

    International Nuclear Information System (INIS)

    Tixador, P.; Lebrun, Ph.

    2011-01-01

    The discovery of superconductivity is 100 years old but theoretical works are still necessary: the BCS theory does not apply to the new families of high temperature superconducting materials discovered after 1986. In 2001 it was discovered that MgB 2 is superconducting at 39 K, this critical temperature is not the highest but MgB 2 is easy to produce and cheap. Today's highest critical temperature under atmospheric pressure is that of the HgTlBaCaCuO compound: 138 K. The complexity and the cost of cryogenic systems restrain the applications of superconductivity. The author reviews the applications of superconducting in medical imaging, particle detectors, and in the safety systems of power networks. (A.C.)

  12. Japan. Superconductivity for Smart Grids

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, K.

    2012-11-15

    Currently, many smart grid projects are running or planned worldwide. These aim at controlling the electricity supply more efficiently and more stably in a new power network system. In Japan, especially superconductivity technology development projects are carried out to contribute to the future smart grid. Japanese cable makers such as Sumitomo Electric and Furukawa Electric are leading in the production of high-temperature superconducting (HTS) power cables. The world's largest electric current and highest voltage superconductivity proving tests have been started this year. Big cities such as Tokyo will be expected to introduce the HTS power cables to reduce transport losses and to meet the increased electricity demand in the near future. Superconducting devices, HTS power cables, Superconducting Magnetic Energy Storage (SMES) and flywheels are the focus of new developments in cooperations between companies, universities and research institutes, funded by the Japanese research and development funding organization New Energy and Industrial Technology Development Organization (NEDO)

  13. Three-terminal superconducting devices

    International Nuclear Information System (INIS)

    Gallagher, W.J.

    1985-01-01

    The transistor has a number of properties that make it so useful. The authors discuss these and the additional properties a transistor would need to have for high performance applications at temperatures where superconductivity could contribute advantages to system-level performance. These properties then serve as criteria by which to evaluate three-terminal devices that have been proposed for applications at superconducting temperatures. FETs can retain their transistor properties at low temperatures, but their power consumption is too large for high-speed, high-density cryogenic applications. They discuss in detail why demonstrated superconducting devices with three terminals -Josephson effect based devices, injection controlled weak links, and stacked tunnel junction devices such as the superconducting transistor proposed by K. Gray and the quiteron -- each fail to have true transistor-like properties. They conclude that the potentially very rewarding search for a transistor compatible with superconductivity in high performance applications must be in new directions

  14. Review of superconducting linacs

    International Nuclear Information System (INIS)

    Bollinger, L.M.

    1992-01-01

    This paper summarizes the status of the technology of superconducting (SC) linacs designed for the acceleration of ions. The emphasis is on the technical issues involved, with only brief descriptions of the numerous linacs now in operation or under construction. Recent developments of special interest are treated in more detail, and remaining technical challenges are outlined. The technology required for acceleration of ions with velocity β ∼ 1 is not discussed because it is almost the same as for relativistic electrons. That is, this paper is mainly about SC linacs for low-velocity heavy ions. (Author) 5 tabs., 6 figs., 29 refs

  15. A superconducting electron spectrometer

    International Nuclear Information System (INIS)

    Guttormsen, M.; Huebel, H.; Grumbkow, A. von

    1983-03-01

    The set-up and tests of an electron spectrometer for in-beam conversion electron measurements are described. A superconducting solenoid is used to transport the electrons from the target to cooled Si(Li) detectors. The solenoid is designed to produce either a homogeneous axially symmetric field of up to 2 Tesla or a variety of field profiles by powering the inner and outer set of coils of the solenoid separately. The electron trajectories resulting for various field profiles are discussed. In-beam electron spectra taken in coincidence with electrons, gammas and alpha-particles are shown. (Auth.)

  16. Superconducting ac cable

    Science.gov (United States)

    Schmidt, F.

    1980-11-01

    The components of a superconducting 110 kV ac cable for power ratings or = 2000 MVA were developed. The cable design is of the semiflexible type, with a rigid cryogenic envelope containing a flexible hollow coaxial cable core. The cable core consists of spirally wound Nb-A1 composite wires electrically insulated by high pressure polyethylene tape wrappings. A 35 m long single phase test cable with full load terminals rated at 110 kV and 10 kA was constructed and successfully tested. The results obtained prove the technical feasibility and capability of this cable design.

  17. Superconductivity in nanostructured lead

    Science.gov (United States)

    Lungu, Anca; Bleiweiss, Michael; Amirzadeh, Jafar; Saygi, Salih; Dimofte, Andreea; Yin, Ming; Iqbal, Zafar; Datta, Timir

    2001-01-01

    Three-dimensional nanoscale structures of lead were fabricated by electrodeposition of pure lead into artificial porous opal. The size of the metallic regions was comparable to the superconducting coherence length of bulk lead. Tc as high as 7.36 K was observed, also d Tc/d H was 2.7 times smaller than in bulk lead. Many of the characteristics of these differ from bulk lead, a type I superconductor. Irreversibility line and magnetic relaxation rates ( S) were also studied. S( T) displayed two maxima, with a peak value about 10 times smaller than that of typical high- Tc superconductors.

  18. Remarks on superconductive networks

    International Nuclear Information System (INIS)

    Dominguez, D.; Lopez, A.R.N.; Simonin, J.M.

    1989-01-01

    Some remarks on the determination of the normal-superconductor phase boundary in random superconductive networks are made. A recently reported work by Soukoulis, Grest and Li which introduces weak links between nodes as these are removed in the site percolation problem is discussed. By the analysis of two simple geometries, it is shown that this procedure introduces spurious effects which mask the physical properties of the system. These affect in particular the field slope critical index and the sharpness of the normal-superconductor boundary. (Author)

  19. Superconducting magnet cooling system

    Science.gov (United States)

    Vander Arend, Peter C.; Fowler, William B.

    1977-01-01

    A device is provided for cooling a conductor to the superconducting state. The conductor is positioned within an inner conduit through which is flowing a supercooled liquid coolant in physical contact with the conductor. The inner conduit is positioned within an outer conduit so that an annular open space is formed therebetween. Through the annular space is flowing coolant in the boiling liquid state. Heat generated by the conductor is transferred by convection within the supercooled liquid coolant to the inner wall of the inner conduit and then is removed by the boiling liquid coolant, making the heat removal from the conductor relatively independent of conductor length.

  20. Introduction to superconductivity

    CERN Document Server

    Rose-Innes, A C

    1978-01-01

    Introduction to Superconductivity differs from the first edition chiefly in Chapter 11, which has been almost completely rewritten to give a more physically-based picture of the effects arising from the long-range coherence of the electron-waves in superconductors and the operation of quantum interference devices. In this revised second edition, some further modifications have been made to the text and an extra chapter dealing with """"high-temperature"""" superconductors has been added. A vast amount of research has been carried out on these since their discovery in 1986 but the results, both

  1. Ruthenates: simple superconducting qubits

    International Nuclear Information System (INIS)

    Gulian, Armen M.; Wood, Kent S.

    2004-01-01

    We propose triplet superconductors, such as ruthenates, as a prospective material for qubit construction. The vectorial nature of the order parameter in triplet superconductors makes it conceptually very easy to imagine the performance of the qubits. The Cooper condensate of pairs in triplet superconductors has all the attributes of the Bose-Einstein condensates and should facilitate long decoherence times of these qubits versus other 'vectorial' schemes for qubits, such as small ferromagnets. There are other benefits, which the superconducting state provides for a requirement like entanglement between qubits via the proximity effect

  2. Superconductivity in nanowires

    CERN Document Server

    Bezryadin, Alexey

    2012-01-01

    The importance and actuality of nanotechnology is unabated and will be for years to come. A main challenge is to understand the various properties of certain nanostructures, and how to generate structures with specific properties for use in actual applications in Electrical Engineering and Medicine.One of the most important structures are nanowires, in particular superconducting ones. They are highly promising for future electronics, transporting current without resistance and at scales of a few nanometers. To fabricate wires to certain defined standards however, is a major challenge, and so i

  3. Superconductivity at disordered interfaces

    International Nuclear Information System (INIS)

    Simanek, E.

    1979-01-01

    The increase of the superconducting transition temperature Tsub(c) due to the tunneling of conduction electrons into negative-u centers at a disordered metal-semiconductor interface is calculated. The strong dependence of the experimental increase of Tsub(c) on the Fermi energy of the metal is accounted for by the polaronic reduction of the tunneling matrix elements. The latter reduction is dynamically suppressed by the decreasing lifetime of the localized state as Esub(F) increases. The theoretical enhancement is sufficiently strong to explain the increase of Tsub(c) observed in eutectic alloys. (author)

  4. New theory of superconductivity

    International Nuclear Information System (INIS)

    Bell, A.B.; Bell, D.M.

    1978-01-01

    Based on three earlier papers which treat electromagnetic, elastogravitational, and radiant-nonradiant thermal phenomena in terms of six types of electric or nonelectric charges, the authors classify states of matter as hyperefficient, efficient, semiefficient, and hypoefficient in transmitting a particular type of charge, by means of a generalization of Ohm's law to two or three dimensions. Conventional states of matter (solid, liquid, gas, vacuum) are associated with torsional (gravitational) charges. Applications are made to electric superconductivity of crystals at elevated temperatures, and to frequency shift

  5. AGS superconducting bending magnets

    International Nuclear Information System (INIS)

    Robins, K.E.; Sampson, W.B.; McInturff, A.D.; Dahl, P.F.; Abbatiello, F.; Aggus, J.; Bamberger, J.; Brown, D.; Damm, R.; Kassner, D.; Lasky, C.; Schlafke, A.

    1976-01-01

    Four large aperture superconducting bending magnets are being built for use in the experimental beams at the AGS. Each of these magnets is 2.5 m long and has a room temperature aperture of 20 cm. The magnets are similar in design to the dipoles being developed for ISABELLE and employ a low temperature iron core. Results are presented on the ''training'' behavior of the magnets and a comparison will be made with the smaller aperture versions of this design. The magnet field measurements include end fields and leakage fields as well as the harmonic components of the straight section of the magnet

  6. High gradient superconducting quadrupoles

    International Nuclear Information System (INIS)

    Lundy, R.A.; Brown, B.C.; Carson, J.A.; Fisk, H.E.; Hanft, R.H.; Mantsch, P.M.; McInturff, A.D.; Remsbottom, R.H.

    1987-07-01

    Prototype superconducting quadrupoles with a 5 cm aperture and gradient of 16 kG/cm have been built and tested as candidate magnets for the final focus at SLC. The magnets are made from NbTi Tevatron style cable with 10 inner and 14 outer turns per quadrant. Quench performance and multipole data are presented. Design and data for a low current, high gradient quadrupole, similar in cross section but wound with a cable consisting of five insulated conductors are also discussed

  7. Stabilized superconductive wires

    International Nuclear Information System (INIS)

    Randall, R.N.; Wong, J.

    1976-01-01

    A stable, high field, high current conductor is produced by packing multiple, multi-layer rods of a bronze core and niobium or vanadium inner jacket and copper outer jacket into a pure copper tube or other means for forming a pure copper matrix, sealing, working the packed tube to a wire, and by diffusion, heat treating to form a type II superconducting, Beta-Wolfram structure, intermetallic compound as a layer within each of several filaments derived from the rods. The layer of Beta-Wolfram structure compound may be formed in less than 2 h of diffusion heat treatment in a thickness of 0.5--2μ

  8. Superconducting ac cable

    International Nuclear Information System (INIS)

    Schmidt, F.

    1980-01-01

    The components of a superconducting 110 kV ac cable for power ratings >= 2000 MVA have been developed. The cable design especially considered was of the semiflexible type, with a rigid cryogenic envelope and flexible hollow coaxial cable cores pulled into the former. The cable core consists of spirally wound Nb-Al composite wires and a HDPE-tape wrapped electrical insulation. A 35 m long single phase test cable with full load terminations for 110 kV and 10 kA was constructed and successfully tested. The results obtained prove the technical feasibility and capability of our cable design. (orig.) [de

  9. Modern high-temperature superconductivity

    International Nuclear Information System (INIS)

    Ching Wu Chu

    1988-01-01

    Ever since the discovery of superconductivity in 1911, its unusual scientific challenge and great technological potential have been recognized. For the past three-quarters of a century, superconductivity has done well on the science front. This is because sueprconductivity is interesting not only just in its own right but also in its ability to act as a probe to many exciting nonsuperconducting phenomena. For instance, it has continued to provide bases for vigorous activities in condensed matter science. Among the more recent examples are heavy-fermion systems and organic superconductors. During this same period of time, superconductivity has also performed admirably in the applied area. Many ideas have been conceived and tested, making use of the unique characteristics of superconductivity - zero resistivity, quantum interference phenomena, and the Meissner effect. In fact, it was not until late January 1987 that it became possible to achieve superconductivity with the mere use of liquid nitrogen - which is plentiful, cheap, efficient, and easy to handle - following the discovery of supercondictivity above 90 K in Y-Ba-Cu-O, the first genuine quaternary superconductor. Superconductivity above 90 K poses scientific and technological challenges not previously encountered: no existing theories can adequately describe superconductivity above 40 K and no known techniques can economically process the materials for full-scale applications. In this paper, therefore, the author recalls a few events leading to the discovery of the new class of quaternary compounds with a superconducting transition temperature T c in the 90 K range, describes the current experimental status of high-temperature superconductivity and, finally, discusses the prospect of very-high-temperature superconductivity, i.e., with a T c substantially higher than 100 K. 97 refs., 7 figs

  10. SMES application for frequency control during islanded microgrid operation

    Science.gov (United States)

    Kim, A.-Rong; Kim, Gyeong-Hun; Heo, Serim; Park, Minwon; Yu, In-Keun; Kim, Hak-Man

    2013-01-01

    This paper analyzes the operating characteristics of a superconducting magnetic energy storage (SMES) for the frequency control of an islanded microgrid operation. In the grid-connected mode of a microgrid, an imbalance between power supply and demand is solved by a power trade with the upstream power grid. The difference in the islanded mode is a critical problem because the microgrid is isolated from any power grid. For this reason, the frequency control during islanded microgrid operation is a challenging issue. A test microgrid in this paper consisted of a wind power generator, a PV generation system, a diesel generator and a load to test the feasibility of the SMES for controlling frequency during islanded operation as well as the transient state varying from the grid-connected mode to the islanded mode. The results show that the SMES contributes well for frequency control in the islanded operation. In addition, a dual and a single magnet type of SMES have been compared to demonstrate the control performance. The dual magnet has the same energy capacity as the single magnet, but there are two superconducting coils and each coil has half inductance of the single magnet. The effectiveness of the SMES application with the simulation results is discussed in detail.

  11. Experimental evidence for s-wave pairing symmetry in superconducting Cu(x)Bi2Se3 single crystals using a scanning tunneling microscope.

    Science.gov (United States)

    Levy, Niv; Zhang, Tong; Ha, Jeonghoon; Sharifi, Fred; Talin, A Alec; Kuk, Young; Stroscio, Joseph A

    2013-03-15

    Topological superconductors represent a newly predicted phase of matter that is topologically distinct from conventional superconducting condensates of Cooper pairs. As a manifestation of their topological character, topological superconductors support solid-state realizations of Majorana fermions at their boundaries. The recently discovered superconductor Cu(x)Bi(2)Se(3) has been theoretically proposed as an odd-parity superconductor in the time-reversal-invariant topological superconductor class, and point-contact spectroscopy measurements have reported the observation of zero-bias conductance peaks corresponding to Majorana states in this material. Here we report scanning tunneling microscopy measurements of the superconducting energy gap in Cu(x)Bi(2)Se(3) as a function of spatial position and applied magnetic field. The tunneling spectrum shows that the density of states at the Fermi level is fully gapped without any in-gap states. The spectrum is well described by the Bardeen-Cooper-Schrieffer theory with a momentum independent order parameter, which suggests that Cu(x)Bi(2)Se(3) is a classical s-wave superconductor contrary to previous expectations and measurements.

  12. Superconductivity and fluctuations in Ba_1_–_pK_pFe_2As_2 and Ba(Fe_1_–_nCo_n)_2As_2

    International Nuclear Information System (INIS)

    Böhm, T.; Hosseinian Ahangharnejhad, R.; Technical University of Munich, Garching

    2016-01-01

    In this paper, we study the interplay of fluctuations and superconductivity in BaFe_2As_2 (Ba-122) compounds with Ba and Fe substituted by K (p doping) and Co (n doping), respectively. To this end, we measured electronic Raman spectra as a function of polarization and temperature. We observe gap excitations and fluctuations for all doping levels studied. The response from fluctuations is much stronger for Co substitution and, according to the selection rules and the temperature dependence, originates from the exchange of two critical spin fluctuations with characteristic wave vectors (±π,0) and (0,±π). At 22% K doping (p = 0.22), we find the same selection rules and spectral shape for the fluctuations but the intensity is smaller by a factor of 5. Since there exists no nematic region above the orthorhombic spin-density-wave (SDW) phase, the identification of the fluctuations via the temperature dependence is not possible. The gap excitations in the superconducting state indicate strongly anisotropic near-nodal gaps for Co substitution which make the observation of collective modes difficult. The variation with doping of the spectral weights of the A_1_g and B_1_g gap features does not support the influence of fluctuations on Cooper pairing. Thus, the observation of Bardasis–Schrieffer modes inside the nearly clean gaps on the K-doped side remains the only experimental evidence for the relevance of fluctuations for pairing.

  13. Overview on superconducting photoinjectors

    CERN Document Server

    Arnold, A

    2011-01-01

    The success of most of the proposed energy recovery linac (ERL) based electron accelerator projects for future storage ring replacements (SRR) and high power IR–free-electron lasers (FELs) largely depends on the development of an appropriate source. For example, to meet the FEL specifications [J.W. Lewellen, Proc. SPIE Int. Soc. Opt. Eng. 5534, 22 (2004)] electron beams with an unprecedented combination of high brightness, low emittance (0.1 µmrad), and high average current (hundreds of mA) are required. An elegant way to create a beam of such quality is to combine the high beam quality of a normal conducting rf photoinjector with the superconducting technology, i.e., to build a superconducting rf photoinjector (SRF gun). SRF gun R&D programs based on different approaches have been launched at a growing number of institutes and companies (AES, Beijing University, BESSY, BNL, DESY, FZD, TJNAF, Niowave, NPS, Wisconsin University). Substantial progress was achieved in recent years and the first long term ...

  14. Superconducting composites materials

    International Nuclear Information System (INIS)

    Kerjouan, P.; Boterel, F.; Lostec, J.; Bertot, J.P.; Haussonne, J.M.

    1991-01-01

    The new superconductor materials with a high critical current own a large importance as well in the electronic components or in the electrotechnical devices fields. The deposit of such materials with the thick films technology is to be more and more developed in the years to come. Therefore, we tried to realize such thick films screen printed on alumina, and composed mainly of the YBa 2 Cu 3 O 7-δ material. We first realized a composite material glass/YBa 2 Cu 3 O 7-δ , by analogy with the classical screen-printed inks where the glass ensures the bonding with the substrate. We thus realized different materials by using some different classes of glass. These materials owned a superconducting transition close to the one of the pure YBa 2 Cu 3 O 7-δ material. We made a slurry with the most significant composite materials and binders, and screen-printed them on an alumina substrate preliminary or not coated with a diffusion barrier layer. After firing, we studied the thick films adhesion, the alumina/glass/composite material interfaces, and their superconducting properties. 8 refs.; 14 figs.; 9 tabs [fr

  15. Superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Rogers, J.D.; Boenig, H.J.

    1978-01-01

    Superconducting inductors provide a compact and efficient means of storing electrical energy without an intermediate conversion process. Energy storage inductors are under development for diurnal load leveling and transmission line stabilization in electric utility systems and for driving magnetic confinement and plasma heating coils in fusion energy systems. Fluctuating electric power demands force the electric utility industry to have more installed generating capacity than the average load requires. Energy storage can increase the utilization of base-load fossil and nuclear power plants for electric utilities. Superconducting magnetic energy storage (SMES) systems, which will store and deliver electrical energy for load leveling, peak shaving, and the stabilization of electric utility networks are being developed. In the fusion area, inductive energy transfer and storage is also being developed by LASL. Both 1-ms fast-discharge theta-pinch and 1-to-2-s slow tokamak energy transfer systems have been demonstrated. The major components and the method of operation of an SMES unit are described, and potential applications of different size SMES systems in electric power grids are presented. Results are given for a 1-GWh reference design load-leveling unit, for a 30-MJ coil proposed stabilization unit, and for tests with a small-scale, 100-kJ magnetic energy storage system. The results of the fusion energy storage and transfer tests are also presented. The common technology base for the systems is discussed

  16. Lightweight superconducting alternators

    International Nuclear Information System (INIS)

    Keim, T.A.

    1988-01-01

    One of the most efficient and most lightweight means of converting high-temperature heat energy to electricity is a turboalternator set. Turboalternators are potentially important components of burst-mode power systems, either chemical or nuclear powered. Also, they are probable key components in future electric propulsion systems. Existing examples of multimegawatt turbomachines have been optimized for a variety of aerospace uses, ranging from aircraft propulsion to rocket engine fuel pump drives. There is no corresponding history of multimegawatt alternators built to aerospace standards of mass, performance, and reliability. This paper discusses one of the few such development efforts presently in progress, and gives an indication of possible future potential. In large power ratings, superconducting generators offer substantial power density, specific weight, and efficiency advantages over competing technologies. A program at GE has led to the construction of a lightweight high-voltage 20-MW generator with a superconducting field winding. The first part of this paper describes the design of the generator. The second projects the capabilities of the generator to other ratings

  17. Superconducting magnet for MAGLEV

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Fumio; Miyairi,; Komei,; Goto, Fumihiko [Hitachi, Ltd., Tokyo, (Japan)

    1989-07-25

    In the superconducting magnet for MAGLEV , the magnet itself travels. It is, therefore, important to know the dynamic behavior which accompanies the traveling; and for the designing of a superconducting magnet, analysis of mechanical characteristics as well as electromagnetic characteristics is required. This is a report on the recent analyzing technology of mechanical characteristics by CAE(Computer Aided Engineering). The analysis is conducted by an on-line system of finite element method. Most important for the analysis are that the analysis model is appropriate and that basic data coincide with the actual condition. Recent analysis results are as follows. Equivalent rigidity of coils can be calculated by an analysis model and the calculated value agrees with the experiment value. Structure of the internal drum can be optimized with the parameter of deformation or stress. Analysis result of a load supporting material agrees with the experiment value when a correction coefficient (0.5) is introduced to the elastic modulus of FRP. 2 refs., 10 figs.

  18. Superconducting Magnets for Accelerators

    Science.gov (United States)

    Brianti, G.; Tortschanoff, T.

    1993-03-01

    This chapter describes the main features of superconducting magnets for high energy synchrotrons and colliders. It refers to magnets presently used and under development for the most advanced accelerators projects, both recently constructed or in the preparatory phase. These magnets, using the technology mainly based on the NbTi conductor, are described from the aspect of design, materials, construction and performance. The trend toward higher performance can be gauged from the doubling of design field in less than a decade from about 4 T for the Tevatron to 10 T for the LHC. Special properties of the superconducting accelerator magnets, such as their general layout and the need of extensive computational treatment, the limits of performance inherent to the available conductors, the requirements on the structural design are described. The contribution is completed by elaborating on persistent current effects, quench protection and the cryostat design. As examples the main magnets for HERA and SSC, as well as the twin-aperture magnets for LHC, are presented.

  19. Additive Manufactured Superconducting Cavities

    Science.gov (United States)

    Holland, Eric; Rosen, Yaniv; Woolleet, Nathan; Materise, Nicholas; Voisin, Thomas; Wang, Morris; Mireles, Jorge; Carosi, Gianpaolo; Dubois, Jonathan

    Superconducting radio frequency cavities provide an ultra-low dissipative environment, which has enabled fundamental investigations in quantum mechanics, materials properties, and the search for new particles in and beyond the standard model. However, resonator designs are constrained by limitations in conventional machining techniques. For example, current through a seam is a limiting factor in performance for many waveguide cavities. Development of highly reproducible methods for metallic parts through additive manufacturing, referred to colloquially as 3D printing\\x9D, opens the possibility for novel cavity designs which cannot be implemented through conventional methods. We present preliminary investigations of superconducting cavities made through a selective laser melting process, which compacts a granular powder via a high-power laser according to a digitally defined geometry. Initial work suggests that assuming a loss model and numerically optimizing a geometry to minimize dissipation results in modest improvements in device performance. Furthermore, a subset of titanium alloys, particularly, a titanium, aluminum, vanadium alloy (Ti - 6Al - 4V) exhibits properties indicative of a high kinetic inductance material. This work is supported by LDRD 16-SI-004.

  20. Superconductivity and future accelerators

    International Nuclear Information System (INIS)

    Danby, G.T.; Jackson, J.W.

    1963-01-01

    For 50 years particle accelerators employing accelerating cavities and deflecting magnets have been developed at a prodigious rate. New accelerator concepts and hardware ensembles have yielded great improvements in performance and GeV/$. The great idea for collective acceleration resulting from intense auxiliary charged-particle beams or laser light may or may not be just around the corner. In its absence, superconductivity (SC) applied both to rf cavities and to magnets opened up the potential for very large accelerators without excessive energy consumption and with other economies, even with the cw operation desirable for colliding beams. HEP has aggressively pioneered this new technology: the Fermilab single ring 1 TeV accelerator - 2 TeV collider is near the testing stage. Brookhaven National Laboratory's high luminosity pp 2 ring 800 GeV CBA collider is well into construction. Other types of superconducting projects are in the planning stage with much background R and D accomplished. The next generation of hadron colliders under discussion involves perhaps a 20 TeV ring (or rings) with 40 TeV CM energy. This is a very large machine: even if the highest practical field B approx. 10T is used, the radius is 10x that of the Fermilab accelerator. An extreme effort to get maximum GeV/$ may be crucial even for serious consideration of funding

  1. Superconducting current transducer

    International Nuclear Information System (INIS)

    Kuchnir, M.; Ozelis, J.P.

    1990-10-01

    The construction and performance of an electric current meter that operates in liquid He and mechanically splits apart to permit replacement of the current carrying conductor is described. It permits the measurement of currents induced in a loop of superconducting cable and expeditious exchange of such loops. It is a key component for a short sample cable testing facility that requires no high current power supplies nor high current leads. Its superconducting pickup circuit involves a non-magnetic core toroidal split-coil that surrounds the conductor and a solenoid whose field is sensed by a Hall probe. This toroidal split-coil is potted inside another compensating toroidal split-coil. The C shaped half toroids can be separated and brought precisely together from outside the cryostat. The Hall probe is energized and sensed by a lock-in amplifier whose output drives a bipolar power supply which feeds the compensating coil. The output is the voltage across a resistor in this feedback circuit. Currents of up to 10 kA can be measured with a precision of 150 mA. 3 refs., 4 figs

  2. Superconducting properties of Pb nanoislands on Pb/Ag/Si(111) studied by a "3He-cooled scanning tunnelling microscope in magnetic fields at variable temperatures

    International Nuclear Information System (INIS)

    Leon Vanegas, Alvaro Augusto

    2015-01-01

    A "3He-cooled scanning tunneling microscope was used to investigate the superconducting properties of Pb single layers on Si(111) and Ag/Si(111) and Pb islands on Pb/Ag/Si(111) at temperatures between 0.38 K and 6 K and in magnetic fields of up to 3 T. The spectroscopy measurements show that in contrast with Pb/Si(111), a single Pb layer on Ag/Si(111) is non-superconducting. The superconductivity of Pb islands on Pb/Ag/Si(111) was characterized as a function of temperature and magnetic field. A non-uniform critical magnetic field for suppression of superconductivity on islands of uniform thickness but sitting of regions of different height is reported. The proximity induced superconductivity on the wetting layer surrounding a Pb island on Pb/Ag/Si(111) was studied. Spatially resolved, magnetic field dependent spectroscopy uncovers a non-trivial reduction of the extension of the induced superconductivity with increasing field. A breakdown of the proximity effect for fields larger than 0.5 T is found. Tunneling spectroscopy reveals a strong decrease of the proximity length with increasing temperature. This is ascribed to the thermally induced broadening of the electronic density of states in the tip used in the STM experiment.

  3. Superconducting properties of Pb nanoislands on Pb/Ag/Si(111) studied by a {sup 3}He-cooled scanning tunnelling microscope in magnetic fields at variable temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Leon Vanegas, Alvaro Augusto

    2015-02-26

    A {sup 3}He-cooled scanning tunneling microscope was used to investigate the superconducting properties of Pb single layers on Si(111) and Ag/Si(111) and Pb islands on Pb/Ag/Si(111) at temperatures between 0.38 K and 6 K and in magnetic fields of up to 3 T. The spectroscopy measurements show that in contrast with Pb/Si(111), a single Pb layer on Ag/Si(111) is non-superconducting. The superconductivity of Pb islands on Pb/Ag/Si(111) was characterized as a function of temperature and magnetic field. A non-uniform critical magnetic field for suppression of superconductivity on islands of uniform thickness but sitting of regions of different height is reported. The proximity induced superconductivity on the wetting layer surrounding a Pb island on Pb/Ag/Si(111) was studied. Spatially resolved, magnetic field dependent spectroscopy uncovers a non-trivial reduction of the extension of the induced superconductivity with increasing field. A breakdown of the proximity effect for fields larger than 0.5 T is found. Tunneling spectroscopy reveals a strong decrease of the proximity length with increasing temperature. This is ascribed to the thermally induced broadening of the electronic density of states in the tip used in the STM experiment.

  4. Technical and economic feasibility of superconducting power transmission: a case study

    International Nuclear Information System (INIS)

    Forsyth, E.B.; Mulligan, G.A.; Beck, J.W.; Williams, J.A.

    1975-01-01

    The long-range plans of the Long Island Lighting Company include the installation of 4600 MW of generation capacity at nuclear sites on eastern Long Island by the 1990's. A single site, Shoreham, was chosen for this study which would require transmission facilities to the Ruland Road substation, 43 miles away. Conventional 345 kV overhead and underground circuits are planned for this service. For the case study three superconducting cable schemes have been investigated which reflect various technical options. The superconducting cables have been designed to meet acceptable normal and contingency load flow conditions and to withstand maximum short circuit faults. A cost analysis has been made of the complete installation, providing a valuable comparison of the estimated cost of this new technology with conventional methods. The most favorable cost comparison is a two-circuit 345 kV superconducting system, which appears to be about one-half the cost of an all underground 345 kV high pressure oil-filled cable system. No reactive compensation will be required for the superconducting system, whereas extensive compensation is required for HPOF cables over the same distance. The cost estimate for the two-circuit superconducting system is about twice that of 345 kV overhead transmission, which would consist of two double circuits and one single circuit, assuming right-of-way could be obtained. (U.S.)

  5. Quantum teleportation and entanglement swapping of electron spins in superconducting hybrid structures

    Energy Technology Data Exchange (ETDEWEB)

    Bubanja, Vladimir, E-mail: vladimir.bubanja@callaghaninnovation.govt.nz

    2015-06-15

    We present schemes for quantum teleportation and entanglement swapping of electronic spin states in hybrid superconductor–normal-metal systems. The proposed schemes employ subgap transport whereby the lowest order processes involve Cooper pair-electron and double Cooper-pair cotunneling in quantum teleportation and entanglement swapping protocols, respectively. The competition between elastic cotunneling and Cooper-pair splitting results in the success probability of 25% in both cases. Described implementations of these protocols are within reach of present-day experimental techniques.

  6. Meissner effect in superconducting microtraps

    International Nuclear Information System (INIS)

    Cano, Daniel

    2009-01-01

    This thesis investigates the impact of the Meissner effect on magnetic microtraps for ultracold atoms near superconducting microstructures. This task has been accomplished both theoretically and experimentally. The Meissner effect distorts the magnetic fields near superconducting surfaces, thus altering the parameters of magnetic microtraps. Both computer simulations and experimental measurements demonstrate that the Meissner effect shortens the distance between the magnetic microtrap and the superconducting surface, reduces the magnetic-field gradients and dramatically lowers the trap depth. A novel numerical method for calculating magnetic fields in atom chips with superconducting microstructures has been developed. This numerical method overcomes the geometrical limitations of other calculation techniques and can solve superconducting microstructures of arbitrary geometry. The numerical method has been used to calculate the parameters of magnetic microtraps in computer-simulated chips containing thin-film wires. Simulations were carried out for both the superconducting and the normal-conducting state, and the differences between the two cases were analyzed. Computer simulations have been contrasted with experimental measurements. The experimental apparatus generates a magnetic microtrap for ultracold Rubidium atoms near a superconducting Niobium wire of circular cross section. The design and construction of the apparatus has met the challenge of integrating the techniques for producing atomic quantum gases with the techniques for cooling solid bodies to cryogenic temperatures. By monitoring the position of the atom cloud, one can observe how the Meissner effect influences the magnetic microtrap. (orig.)

  7. Superconductivity in the 1990's

    International Nuclear Information System (INIS)

    Stekly, Z.J.J.

    1990-01-01

    Superconducting magnets, coils or windings are the basis for a range of major applications in the energy area such as energy storage in superconducting coils, magnets for fusion research, and rotating machinery. Other major applications of superconductivity include high energy physics where 1000 superconducting magnets are operated continuously in the Tevatron at Fermilab in Illinois, over 12,000 superconducting magnets will be required for the superconducting Super Collider being build near Dallas. The largest commercial application of superconductors is in magnets for magnetic resonance imaging (MRI) - a new medical diagnostic imaging technique with about 2,000 systems installed worldwide. These form a sizable technology base on which to evaluate and push forward applications such as magneto hydrodynamic propulsion of seagoing vessels. The attractiveness of which depends ultimately on the characteristics of the superconducting magnet. The magnet itself is a combination of several technology areas - the conductors, magnetics, structures and cryogenics. This paper reviews state-of-the-art in each of the technology areas as they relate to superconductors

  8. Meissner effect in superconducting microtraps

    Energy Technology Data Exchange (ETDEWEB)

    Cano, Daniel

    2009-04-30

    This thesis investigates the impact of the Meissner effect on magnetic microtraps for ultracold atoms near superconducting microstructures. This task has been accomplished both theoretically and experimentally. The Meissner effect distorts the magnetic fields near superconducting surfaces, thus altering the parameters of magnetic microtraps. Both computer simulations and experimental measurements demonstrate that the Meissner effect shortens the distance between the magnetic microtrap and the superconducting surface, reduces the magnetic-field gradients and dramatically lowers the trap depth. A novel numerical method for calculating magnetic fields in atom chips with superconducting microstructures has been developed. This numerical method overcomes the geometrical limitations of other calculation techniques and can solve superconducting microstructures of arbitrary geometry. The numerical method has been used to calculate the parameters of magnetic microtraps in computer-simulated chips containing thin-film wires. Simulations were carried out for both the superconducting and the normal-conducting state, and the differences between the two cases were analyzed. Computer simulations have been contrasted with experimental measurements. The experimental apparatus generates a magnetic microtrap for ultracold Rubidium atoms near a superconducting Niobium wire of circular cross section. The design and construction of the apparatus has met the challenge of integrating the techniques for producing atomic quantum gases with the techniques for cooling solid bodies to cryogenic temperatures. By monitoring the position of the atom cloud, one can observe how the Meissner effect influences the magnetic microtrap. (orig.)

  9. Superconductivity in doped Dirac semimetals

    Science.gov (United States)

    Hashimoto, Tatsuki; Kobayashi, Shingo; Tanaka, Yukio; Sato, Masatoshi

    2016-07-01

    We theoretically study intrinsic superconductivity in doped Dirac semimetals. Dirac semimetals host bulk Dirac points, which are formed by doubly degenerate bands, so the Hamiltonian is described by a 4 ×4 matrix and six types of k -independent pair potentials are allowed by the Fermi-Dirac statistics. We show that the unique spin-orbit coupling leads to characteristic superconducting gap structures and d vectors on the Fermi surface and the electron-electron interaction between intra and interorbitals gives a novel phase diagram of superconductivity. It is found that when the interorbital attraction is dominant, an unconventional superconducting state with point nodes appears. To verify the experimental signature of possible superconducting states, we calculate the temperature dependence of bulk physical properties such as electronic specific heat and spin susceptibility and surface state. In the unconventional superconducting phase, either dispersive or flat Andreev bound states appear between point nodes, which leads to double peaks or a single peak in the surface density of states, respectively. As a result, possible superconducting states can be distinguished by combining bulk and surface measurements.

  10. Signatures of topological superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Yang

    2017-07-19

    The prediction and experimental discovery of topological insulators brought the importance of topology in condensed matter physics into the limelight. Topology hence acts as a new dimension along which more and more new states of matter start to emerge. One of these topological states of matter, namely topological superconductors, comes into the focus because of their gapless excitations. These gapless excitations, especially in one dimensional topological superconductors, are Majorana zero modes localized at the ends of the superconductor and exhibit exotic nonabelian statistics, which can be potentially applied to fault-tolerant quantum computation. Given their highly interesting physical properties and potential applications to quantum computation, both theorists and experimentalists spend great efforts to realize topological supercondoctors and to detect Majoranas. In two projects within this thesis, we investigate the properties of Majorana zero modes in realistic materials which are absent in simple theoretical models. We find that the superconducting proximity effect, an essential ingredient in all existing platforms for topological superconductors, plays a significant role in determining the localization property of the Majoranas. Strong proximity coupling between the normal system and the superconducting substrate can lead to strongly localized Majoranas, which can explain the observation in a recent experiment. Motivated by experiments in Molenkamp's group, we also look at realistic quantum spin Hall Josephson junctions, in which charge puddles acting as magnetic impurities are coupled to the helical edge states. We find that with this setup, the junction generically realizes an exotic 8π periodic Josephson effect, which is absent in a pristine Josephson junction. In another two projects, we propose more pronounced signatures of Majoranas that are accessible with current experimental techniques. The first one is a transport measurement, which uses

  11. Tenarife Island, Canary Island Archipelago, Atlantic Ocean

    Science.gov (United States)

    1991-01-01

    Tenarife Island is one of the most volcanically active of the Canary Island archipelago, Atlantic Ocean, just off the NW coast of Africa, (28.5N, 16.5W). The old central caldera, nearly filled in by successive volcanic activity culminating in two stratocones. From those two peaks, a line of smaller cinder cones extend to the point of the island. Extensive gullies dissect the west side of the island and some forests still remain on the east side.

  12. Superconducting pulsed magnets

    CERN Multimedia

    CERN. Geneva

    2006-01-01

    Lecture 1. Introduction to Superconducting Materials Type 1,2 and high temperature superconductors; their critical temperature, field & current density. Persistent screening currents and the critical state model. Lecture 2. Magnetization and AC Loss How screening currents cause irreversible magnetization and hysteresis loops. Field errors caused by screening currents. Flux jumping. The general formulation of ac loss in terms of magnetization. AC losses caused by screening currents. Lecture 3. Twisted Wires and Cables Filamentary composite wires and the losses caused by coupling currents between filaments, the need for twisting. Why we need cables and how the coupling currents in cables contribute more ac loss. Field errors caused by coupling currents. Lecture 4. AC Losses in Magnets, Cooling and Measurement Summary of all loss mechanisms and calculation of total losses in the magnet. The need for cooling to minimize temperature rise in a magnet. Measuring ac losses in wires and in magnets. Lecture 5. Stab...

  13. UNK superconducting dipole development

    International Nuclear Information System (INIS)

    Ageev, A.I.; Andreev, N.I.; Balbekov, V.I.

    1987-01-01

    For choozing the design of superconducting dipoles (SCD) for the IHEP UNK the test results for SCD with warm and cold iron are given. The main parameters of dipoles are presented. The SCD designs are described. At present works on SP magnet simulation for UNK are carried out in two directions. Tests are conducted on a rig with a chain of series dipoles with a warm magnetic screen. The purpose of these tests is to study heat exchange and hydraulics in magnets, energy and helium evacuation in emergency magnet transition into normal conditions, simulation of possible cooling and heating schemes. Another direction involves production of short and full-scale dipole models with cold iron and their testing on rigs. The final choice of the dipole design for commercial production is planned for 1987

  14. Superconducting thin films

    International Nuclear Information System (INIS)

    Hebard, A.F.; Vandenberg, J.M.

    1982-01-01

    This invention relates to granular metal and metal oxide superconducting films formed by ion beam sputter deposition. Illustratively, the films comprise irregularly shaped, randomly oriented, small lead grains interspersed in an insulating lead oxide matrix. The films are hillock-resistant when subjected to thermal cycling and exhibit unusual josephson-type switching characteristics. Depending on the oxygen content, a film may behave in a manner similar to that of a plurality of series connected josephson junctions, or the film may have a voltage difference in a direction parallel to a major surface of the film that is capable of being switched from zero voltage difference to a finite voltage difference in response to a current larger than the critical current

  15. Superconducting magnetic coil

    Science.gov (United States)

    Aized, Dawood; Schwall, Robert E.

    1996-06-11

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil.

  16. Superconducting Magnetic Energy Storage

    International Nuclear Information System (INIS)

    Hassenzahl, W.

    1989-01-01

    Recent programmatic developments in Superconducting Magnetic Energy Storage (SMES) have prompted renewed and widespread interest in this field. In mid 1987 the Defense Nuclear Agency, acting for the Strategic Defense Initiative Office issued a request for proposals for the design and construction of SMES Engineering Test Model (ETM). Two teams, one led by Bechtel and the other by Ebasco, are now engaged in the first phase of the development of a 10 to 20 MWhr ETM. This report presents the rationale for energy storage on utility systems, describes the general technology of SMES, and explains the chronological development of the technology. The present ETM program is outlined; details of the two projects for ETM development are described in other papers in these proceedings. The impact of high Tc materials on SMES is discussed

  17. Superconducting magnets for ISABELLE

    International Nuclear Information System (INIS)

    Sampson, W.B.

    1976-01-01

    The application of superconducting magnet technology to high-energy accelerators has been studied at BNL for many years. Recently this effort has focused on the magnet system for the proposed Intersecting Storage Accelerator, ISABELLE. Several full-sized dipole and quadrupole magnets were fabricated and tested. A dipole was successfully operated using a high pressure forced circulation refrigeration system similar to that proposed for the accelerator. This magnet reached a maximum central field of 4.9 T, considerably above the design field of 3.9 T. A quadrupole of similar design was equally successful, achieving a gradient of 71 T/m compared to the design value of 53 T/m. A summary is given of the present status of the magnet development program, and the direction of future work is outlined

  18. The LHC superconducting cavities

    CERN Document Server

    Boussard, Daniel; Häbel, E; Kindermann, H P; Losito, R; Marque, S; Rödel, V; Stirbet, M

    1999-01-01

    The LHC RF system, which must handle high intensity (0.5 A d.c.) beams, makes use of superconducting single-cell cavities, best suited to minimizing the effects of periodic transient beam loading. There will be eight cavities per beam, each capable of delivering 2 MV (5 MV/m accelerating field) at 400 MHz. The cavities themselves are now being manufactured by industry, using niobium-on-copper technology which gives full satisfaction at LEP. A cavity unit includes a helium tank (4.5 K operating temperature) built around a cavity cell, RF and HOM couplers and a mechanical tuner, all housed in a modular cryostat. Four-unit modules are ultimately foreseen for the LHC (two per beam), while at present a prototype version with two complete units is being extensively tested. In addition to a detailed description of the cavity and its ancillary equipment, the first test results of the prototype will be reported.

  19. Superconducting coil protection

    International Nuclear Information System (INIS)

    Woods, E.L.

    1975-01-01

    The protection system is based on a two-phase construction program. Phase I is the development of a reliable hardwired relay control system with a digital loop utilizing firmware and a microprocessor controller. Phase II is an expansion of the digital loop to include many heretofore unmonitored coil variables. These new monitored variables will be utilized to establish early quench detection and to formulate confirmation techniques of the quench detection mechanism. Established quench detection methods are discussed and a new approach to quench detection is presented. The new circuit is insensitive to external pulsed magnetic fields and the associated induced voltages. Reliability aspects of the coil protection system are discussed with respect to shutdowns of superconducting coil systems. Redundance and digital system methods are presented as related topics

  20. Overview on superconducting photoinjectors

    Directory of Open Access Journals (Sweden)

    A. Arnold

    2011-02-01

    Full Text Available The success of most of the proposed energy recovery linac (ERL based electron accelerator projects for future storage ring replacements (SRR and high power IR–free-electron lasers (FELs largely depends on the development of an appropriate source. For example, to meet the FEL specifications [J. W. Lewellen, Proc. SPIE Int. Soc. Opt. Eng. 5534, 22 (2004PSISDG0277-786X10.1117/12.557378] electron beams with an unprecedented combination of high brightness, low emittance (0.1  μmrad, and high average current (hundreds of mA are required. An elegant way to create a beam of such quality is to combine the high beam quality of a normal conducting rf photoinjector with the superconducting technology, i.e., to build a superconducting rf photoinjector (SRF gun. SRF gun R&D programs based on different approaches have been launched at a growing number of institutes and companies (AES, Beijing University, BESSY, BNL, DESY, FZD, TJNAF, Niowave, NPS, Wisconsin University. Substantial progress was achieved in recent years and the first long term operation was demonstrated at FZD [R. Xiang et al., in Proceedings of the 31st International Free Electron Laser Conference (FEL 09, Liverpool, UK (STFC Daresbury Laboratory, Warrington, 2009, p. 488]. In the near future SRF guns are expected to play an important role for linac-driven FEL facilities. In this paper we will review the concepts, the design parameters, and the status of the major SRF gun projects.

  1. Superconductivity and normal state properties of non-centrosymmetric CePt3Si: a status report

    International Nuclear Information System (INIS)

    Bauer, E.; Bonalde, I.; Sigrist, M.

    2005-01-01

    Ternary CePt 3 Si crystallizes in the tetragonal P4mm structure which lacks a center of inversion. Antiferromagnetic order sets in at T N approx 22 K followed by superconductivity (SC) below Tc approx 0.75 K. Large values of H' c2 approx -8.5 T/K and H c2 (0) approx 5T were derived, referring to Cooper pairs formed out of heavy quasiparticles. The mass enhancement originates from Kondo interactions with a characteristic temperature T K approx 8 K. CePt 3 Si follows the general features of correlated electron systems and can be arranged within the Kadowaki-Woods plot next to the unconventional SC UPt 3 . NMR and mSR results show that both magnetic order and SC coexist on a microscopic scale without having spatial segregation of both phenomena. The absence of an inversion symmetry gives rise to a lifting of the degeneracy of electronic bands by spin-orbit coupling. As a consequence, the SC order parameter may have uncommon features as indicated from a very unique NMR relaxation rate 1/T 1 and a linear temperature dependence of the penetration depth λ

  2. Can magnetism and superconductivity coexist

    International Nuclear Information System (INIS)

    Ishikawa, M.

    1982-01-01

    Recent syntheses of rare earth (RE) ternary superconductors such as (RE)Mo 6 X 8 (X=S or Se) and (RE)Rh 4 B 4 have provided the first opportunity to explore the interaction between magnetism and superconductivity in detail owing to their particular crystal structure. The regular sublattice of the rare-earth ions in these new ternary compounds undergoes a ferro- or antiferromagnetic phase transition in the superconducting state. If the transition is antiferromagnetic, the superconductivity is preserved so that true coexistence results. If it is ferromagnetic, on the other hand, the superconductivity eventually gives way to uniform ferromagnetism at low temperatures. However, recent theories predict several possible states of coexistence even in ferromagnetic superconductors. This article reviews aspects of these new phase transitions in ternary superconductors. (author)

  3. Superconductivity, energy storage and switching

    International Nuclear Information System (INIS)

    Laquer, H.L.

    1974-01-01

    The phenomenon of superconductivity can contribute to the technology of energy storage and switching in two distinct ways. On one hand the zero resistivity of the superconductor can produce essentially infinite time constants so that an inductive storage system can be charged from very low power sources. On the other hand, the recovery of finite resistivity in a normal-going superconducting switch can take place in extremely short times, so that a system can be made to deliver energy at a very high power level. Topics reviewed include: physics of superconductivity, limits to switching speed of superconductors, physical and engineering properties of superconducting materials and assemblies, switching methods, load impedance considerations, refrigeration economics, limitations imposed by present day and near term technology, performance of existing and planned energy storage systems, and a comparison with some alternative methods of storing and switching energy. (U.S.)

  4. Advanced Superconducting Test Accelerator (ASTA)

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Superconducting Test Accelerator (ASTA) facility will be based on upgrades to the existing NML pulsed SRF facility. ASTA is envisioned to contain 3 to 6...

  5. Superconductivity in all its states

    CERN Multimedia

    Globe Info

    2011-01-01

    Temporary exhibition at the Saint-Genis-Pouilly Tourist Office. For the 100th anniversary of its discovery, take a plunge into the amazing world of superconductivity. Some materials, when cooled down to extreme temperatures, acquire a remarkable property -  they become superconducting. Superconductivity is a rare example of a quantum effect that can be witnessed on the macroscopic scale and is today at the heart of much research. In laboratories, researchers try to gain a better understanding of its origins, study new superconducting materials, explore the phenomenon at the nanometric scale and pursue their indefatigable search for new applications. Monday to Friday: 09:00 a.m. to 12:00 and 2:30 p.m. to 6:30 p.m. Saturday: 10:00 a.m. to 12:00 noon » Open to all – Admission free For further information: +33 (0)4 50 42 29 37

  6. Superconductivity in Layered Organic Metals

    Directory of Open Access Journals (Sweden)

    Jochen Wosnitza

    2012-04-01

    Full Text Available In this short review, I will give an overview on the current understanding of the superconductivity in quasi-two-dimensional organic metals. Thereby, I will focus on charge-transfer salts based on bis(ethylenedithiotetrathiafulvalene (BEDT-TTF or ET for short. In these materials, strong electronic correlations are clearly evident, resulting in unique phase diagrams. The layered crystallographic structure leads to highly anisotropic electronic as well as superconducting properties. The corresponding very high orbital critical field for in-plane magnetic-field alignment allows for the occurrence of the Fulde–Ferrell– Larkin–Ovchinnikov state as evidenced by thermodynamic measurements. The experimental picture on the nature of the superconducting state is still controversial with evidence both for unconventional as well as for BCS-like superconductivity.

  7. The future of superconducting technology

    International Nuclear Information System (INIS)

    Kolm, H.H.

    1974-01-01

    As soon as cryogenic engineering problems are convincingly solved, superconducting technology is destined to play a vital role in mining, pollution control, medicine, power generation and transmission, and metallurgy. (author)

  8. Interplay of magnetism and superconductivity

    International Nuclear Information System (INIS)

    Akhavan, M.

    2006-01-01

    After about two decades of intense research since the discovery of high-temperature superconductivity (HTSC) in cuprates, although many aspects of the physics and chemistry of these cuprate superconductors are now well understood, the underlying pairing mechanism remains elusive. Magnetism and superconductivity are usually thought as incompatible, but in number of special materials including HTSCs these two mutually excluding mechanisms are found to coexist. The presence in a system of superconductivity and magnetism, gives rise to a large number of interesting phenomenon. This article provides perspective on recent developments and their implications for our understanding of the interplay between magnetism and superconductivity in new materials. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  9. Recent advances in fullerene superconductivity

    CERN Document Server

    Margadonna, S

    2002-01-01

    Superconducting transition temperatures in bulk chemically intercalated fulleride salts reach 33 K at ambient pressure and in hole-doped C sub 6 sub 0 derivatives in field-effect-transistor (FET) configurations, they reach 117 K. These advances pose important challenges for our understanding of high-temperature superconductivity in these highly correlated organic metals. Here we review the structures and properties of intercalated fullerides, paying particular attention to the correlation between superconductivity and interfullerene separation, orientational order/disorder, valence state, orbital degeneracy, low-symmetry distortions, and metal-C sub 6 sub 0 interactions. The metal-insulator transition at large interfullerene separations is discussed in detail. An overview is also given of the exploding field of gate-induced superconductivity of fullerenes in FET electronic devices.

  10. New world of Gossamer superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Maki, Kazumi; Haas, Stephan; Parker, David [Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-0484 (United States); Won, Hyekyung [Max-Planck-Institut fuer Physik komplexer Systeme, Noethnitzer Str. 38, 01187, Dresden (Germany); Department of Physics, Hallym University, Chuncheon 200-702 (Korea); Dora, Balazs; Virosztek, Attila [Department of Physics, Budapest University of Technology and Economics, 1521 Budapest (Hungary)

    2006-09-15

    Since the discovery of the high-T {sub c} cuprate superconductor La{sub 2-x}BaCuO{sub 4} in 1986 by Bednorz and Mueller, controversy regarding the nature or origin of this remarkable superconductivity has continued. However, d-wave superconductivity in the hole-doped cuprates, arising due to the anti-paramagnon exchange, was established around 1994. More recently we have shown that the mean field theory, like the BCS theory of superconductivity and Landau's Fermi liquid theory are adequate to describe the cuprates. The keys for this development are the facts that a) the pseudogap phase is d-wave density wave (dDW) and that the high-T{sub c} cuprate superconductivity is gossamer (i.e. it exists in the presence of dDW). (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. New world of Gossamer superconductivity

    International Nuclear Information System (INIS)

    Maki, Kazumi; Haas, Stephan; Parker, David; Won, Hyekyung; Dora, Balazs; Virosztek, Attila

    2006-01-01

    Since the discovery of the high-T c cuprate superconductor La 2-x BaCuO 4 in 1986 by Bednorz and Mueller, controversy regarding the nature or origin of this remarkable superconductivity has continued. However, d-wave superconductivity in the hole-doped cuprates, arising due to the anti-paramagnon exchange, was established around 1994. More recently we have shown that the mean field theory, like the BCS theory of superconductivity and Landau's Fermi liquid theory are adequate to describe the cuprates. The keys for this development are the facts that a) the pseudogap phase is d-wave density wave (dDW) and that the high-T c cuprate superconductivity is gossamer (i.e. it exists in the presence of dDW). (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Positron annihilation in superconductive metals

    Energy Technology Data Exchange (ETDEWEB)

    Dekhtjar, I.J.

    1969-03-10

    A correlation is shown between the parameters of superconductive metals and those of positron annihilation. Particular attention is paid to the density states obtained from the electron specific heat.

  13. Superconducting linacs used with tandems

    International Nuclear Information System (INIS)

    Ben-Zvi, I.

    1984-01-01

    The main features of superconducting linacs used as post-accelerators of tandems are reviewed. Various aspects of resonators, cryogenics and electronics are discussed, and recent advances in the field are presented. (orig.)

  14. Superconductive energy storage magnet study

    International Nuclear Information System (INIS)

    Rhee, S.W.

    1982-01-01

    Among many methods of energy storages the superconducting energy storage has been considered as the most promising method. Many related technical problems are still unsolved. One of the problems is the magnetizing and demagnetizing loss of superconducting coil. This loss is mainly because of hysteresis of pinning force. In this paper the hysteresis loss is calculated and field dependence of the a.c. losses is explained. The ratio of loss and stored energy is also calculated. (Author)

  15. Cryostat for TRISTAN superconducting cavity

    International Nuclear Information System (INIS)

    Mitsunobu, S.; Furuya, T.; Hara, K.

    1990-01-01

    Superconducting cavities generate rather high heat load of hundreds watts in one cryostat and have high sensitivity for pressure. We adopted usual pool-boiling type cooling for its stable pressure operation. Two 5-cell Nb cavities were installed in one flange type cryostat. Tuning mechanics actuated by a pulse-motor and a Piezo-electric element are set at outside of vacuum end flange. The design and performance of the cryostat for TRISTAN superconducting cavities are described. (author)

  16. Radiation resistant ducted superconductive coil

    International Nuclear Information System (INIS)

    Schleich, A.

    1976-01-01

    The radiation-resistant ducted superconductive coil consists of a helically wound electrical conductor constituted by an electrically conductive core of superconductive material provided with a longitudinally extending cooling duct. The core is covered with a layer of inorganic insulating material and the duct is covered by an electrically conductive metallic gas-tight sheath. The metallic sheaths on adjacent turns of the coil are secured together. 2 Claims, 4 Drawing Figures

  17. Superconductivity in inhomogeneous granular metals

    International Nuclear Information System (INIS)

    McLean, W.L.

    1980-01-01

    A model of elongated metal ellipsoids imbedded in a granular metal is treated by an effective medium approach to explain the observed temperature dependence of the normal-state conductivity of superconducting granular aluminum. Josephson tunneling is thus still required to account for the superconductivity. The model predicts the same kind of contrasting behavior on opposite sides of the metal-insulator transition as is found in the recent scaling treatment of Anderson localization

  18. Superconducting magnet applications in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Berglund, P; Collan, H K; Lounasmaa, O V

    1983-01-01

    A short review of superconducting magnet applications in Finland is presented. The development work was done in areas that seem to offer potential for a significant break-through technology. So far our efforts have covered magnetic separation, electric DC machinery and medical NMR imaging, and it is now being extended to biological NMR on living tissue and to particle physics experiments. Our work has been facilitated by the recently started fabrication of domestic superconducting wire.

  19. Superconducting Radio-Frequency Cavities

    Science.gov (United States)

    Padamsee, Hasan S.

    2014-10-01

    Superconducting cavities have been operating routinely in a variety of accelerators with a range of demanding applications. With the success of completed projects, niobium cavities have become an enabling technology, offering upgrade paths for existing facilities and pushing frontier accelerators for nuclear physics, high-energy physics, materials science, and the life sciences. With continued progress in basic understanding of radio-frequency superconductivity, the performance of cavities has steadily improved to approach theoretical capabilities.

  20. Hermetically sealed superconducting magnet motor

    Science.gov (United States)

    DeVault, Robert C.; McConnell, Benjamin W.; Phillips, Benjamin A.

    1996-01-01

    A hermetically sealed superconducting magnet motor includes a rotor separated from a stator by either a radial gap, an axial gap, or a combined axial and radial gap. Dual conically shaped stators are used in one embodiment to levitate a disc-shaped rotor made of superconducting material within a conduit for moving cryogenic fluid. As the rotor is caused to rotate when the field stator is energized, the fluid is pumped through the conduit.

  1. Superconducting composite for magnetic bearings

    International Nuclear Information System (INIS)

    Rigney, T.K. II.

    1995-01-01

    A composite includes granules of Type II superconducting material and granules of rare-earth permanent magnets that are distributed in a binder. The composite is a two-phase structure that combines the properties of the superconductor and magnets with the flexibility and toughness of a polymeric material. A bearing made from this composite has the load capacity and stiffness of a permanent magnet bearing with added stability from a Type II superconducting material. 7 figs

  2. Superconducting versus normal conducting cavities

    CERN Document Server

    Podlech, Holger

    2013-01-01

    One of the most important issues of high-power hadron linacs is the choice of technology with respect to superconducting or room-temperature operation. The favour for a specific technology depends on several parameters such as the beam energy, beam current, beam power and duty factor. This contribution gives an overview of the comparison between superconducting and normal conducting cavities. This includes basic radiofrequency (RF) parameters, design criteria, limitations, required RF and plug power as well as case studies.

  3. Conceptual design report: superconducting booster

    International Nuclear Information System (INIS)

    1983-01-01

    The Superconducting Booster project includes the construction of a new high-voltage injector and buncher for the existing tandem, a magnetic transport system, an rf linac with superconducting resonators, and a rebuncher-debuncher. The booster will fit in existing space so that a new building is not required. The layout of the accelerator is given in Fig. I-1. The University of Washington is contributing approximately $1 M to this project

  4. Composite conductor containing superconductive wires

    Energy Technology Data Exchange (ETDEWEB)

    Larson, W.L.; Wong, J.

    1974-03-26

    A superconductor cable substitute made by coworking multiple rods of superconductive niobium--titanium or niobium--zirconium alloy with a common copper matrix to extend the copper and rods to form a final elongated product which has superconductive wires distributed in a reduced cross-section copper conductor with a complete metallurgical bond between the normal-conductive copper and the superconductor wires contained therein is described. The superconductor cable can be in the form of a tube.

  5. Superconductivity in domains with corners

    DEFF Research Database (Denmark)

    Bonnaillie-Noel, Virginie; Fournais, Søren

    2007-01-01

    We study the two-dimensional Ginzburg-Landau functional in a domain with corners for exterior magnetic field strengths near the critical field where the transition from the superconducting to the normal state occurs. We discuss and clarify the definition of this field and obtain a complete...... asymptotic expansion for it in the large $\\kappa$ regime. Furthermore, we discuss nucleation of superconductivity at the boundary....

  6. The superconducting bending magnets 'CESAR'

    CERN Document Server

    Pérot, J

    1978-01-01

    In 1975, CERN decided to build two high precision superconducting dipoles for a beam line in the SPS north experimental area. The aim was to determine whether superconducting magnets of the required accuracy and reliability can be built and what their economies and performances in operation will be. Collaboration between CERN and CAE /SACLAY was established in order to make use of the knowledge and experience already acquired in the two laboratories. (0 refs).

  7. Superconducting pipes and levitating magnets.

    Science.gov (United States)

    Levin, Yan; Rizzato, Felipe B

    2006-12-01

    Motivated by a beautiful demonstration of the Faraday and the Lenz laws in which a small neodymium magnet falls slowly through a conducting nonferromagnetic tube, we consider the dynamics of a magnet falling coaxially through a superconducting pipe. Unlike the case of normal conducting pipes, in which the magnet quickly reaches the terminal velocity, inside a superconducting tube the magnet falls freely. On the other hand, to enter the pipe the magnet must overcome a large electromagnetic energy barrier. For sufficiently strong magnets, the barrier is so large that the magnet will not be able to penetrate it and will be levitated over the mouth of the pipe. We calculate the work that must done to force the magnet to enter a superconducting tube. The calculations show that superconducting pipes are very efficient at screening magnetic fields. For example, the magnetic field of a dipole at the center of a short pipe of radius a and length L approximately > a decays, in the axial direction, with a characteristic length xi approximately 0.26a. The efficient screening of the magnetic field might be useful for shielding highly sensitive superconducting quantum interference devices. Finally, the motion of the magnet through a superconducting pipe is compared and contrasted to the flow of ions through a trans-membrane channel.

  8. SMES application for frequency control during islanded microgrid operation

    International Nuclear Information System (INIS)

    Kim, A-Rong; Kim, Gyeong-Hun; Heo, Serim; Park, Minwon; Yu, In-Keun; Kim, Hak-Man

    2013-01-01

    Highlights: ► The operating characteristics of SMES for the frequency control of an islanded microgrid were investigated. ► The SMES contributes well for frequency control in the islanded operation. ► A dual and a single magnet type of SMES have been compared to demonstrate the performances. -- Abstract: This paper analyzes the operating characteristics of a superconducting magnetic energy storage (SMES) for the frequency control of an islanded microgrid operation. In the grid-connected mode of a microgrid, an imbalance between power supply and demand is solved by a power trade with the upstream power grid. The difference in the islanded mode is a critical problem because the microgrid is isolated from any power grid. For this reason, the frequency control during islanded microgrid operation is a challenging issue. A test microgrid in this paper consisted of a wind power generator, a PV generation system, a diesel generator and a load to test the feasibility of the SMES for controlling frequency during islanded operation as well as the transient state varying from the grid-connected mode to the islanded mode. The results show that the SMES contributes well for frequency control in the islanded operation. In addition, a dual and a single magnet type of SMES have been compared to demonstrate the control performance. The dual magnet has the same energy capacity as the single magnet, but there are two superconducting coils and each coil has half inductance of the single magnet. The effectiveness of the SMES application with the simulation results is discussed in detail

  9. SMES application for frequency control during islanded microgrid operation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, A-Rong, E-mail: haven21c@changwon.ac.kr [Changwon National University, Sarim-dong, Changwon 641-773 (Korea, Republic of); Kim, Gyeong-Hun; Heo, Serim; Park, Minwon [Changwon National University, Sarim-dong, Changwon 641-773 (Korea, Republic of); Yu, In-Keun, E-mail: yuik@changwon.ac.kr [Changwon National University, Sarim-dong, Changwon 641-773 (Korea, Republic of); Kim, Hak-Man [University of Incheon, Songdo-dong, Incheon 406-772 (Korea, Republic of)

    2013-01-15

    Highlights: ► The operating characteristics of SMES for the frequency control of an islanded microgrid were investigated. ► The SMES contributes well for frequency control in the islanded operation. ► A dual and a single magnet type of SMES have been compared to demonstrate the performances. -- Abstract: This paper analyzes the operating characteristics of a superconducting magnetic energy storage (SMES) for the frequency control of an islanded microgrid operation. In the grid-connected mode of a microgrid, an imbalance between power supply and demand is solved by a power trade with the upstream power grid. The difference in the islanded mode is a critical problem because the microgrid is isolated from any power grid. For this reason, the frequency control during islanded microgrid operation is a challenging issue. A test microgrid in this paper consisted of a wind power generator, a PV generation system, a diesel generator and a load to test the feasibility of the SMES for controlling frequency during islanded operation as well as the transient state varying from the grid-connected mode to the islanded mode. The results show that the SMES contributes well for frequency control in the islanded operation. In addition, a dual and a single magnet type of SMES have been compared to demonstrate the control performance. The dual magnet has the same energy capacity as the single magnet, but there are two superconducting coils and each coil has half inductance of the single magnet. The effectiveness of the SMES application with the simulation results is discussed in detail.

  10. Process of producing superconducting bar magnets

    International Nuclear Information System (INIS)

    Wilson, M.A.

    1988-01-01

    A method of forming a magnet having an established magnetic field is described comprising; (1) establishing a magnetic field of the desired extent and shape; (2) providing a superconducting material of desired shape; (3) positioning the material of (2) in field (1) while at a temperature above the critical temperature of the superconducting material so as to apply a magnetic field on the superconducting material; (4) cooling the superconducting material while in magnetic field (1) to below the critical temperature of the superconducting material; (5) removing the superconducting material from the magnetic field while in the supercooled condition; and (6) maintaining the material at or below the critical temperature

  11. Unconventional superconductivity in cuprates, cobaltates and graphene. What is universal and what is material-dependent in strongly versus weakly correlated materials?

    International Nuclear Information System (INIS)

    Kiesel, Maximilian Ludwig

    2013-01-01

    A general theory for all classes of unconventional superconductors is still one of the unsolved key issues in condensed-matter physics. Actually, it is not yet fully settled if there is a common underlying pairing mechanism. Instead, it might be possible that several distinct sources for unconventional (not phonon-mediated) superconductivity have to be considered, or an electron-phonon interaction is not negligible. The focus of this thesis is on the most probable mechanism for the formation of Cooper pairs in unconventional superconductors, namely a strictly electronic one where spin fluctuations are the mediators. Studying different superconductors in this thesis, the emphasis is put on material-independent features of the pairing mechanism. In addition, the investigation of the phase diagrams enables a view on the vicinity of superconductivity. Thus, it is possible to clarify which competing quantum fluctuations enhance or weaken the propensity for a superconducting state. The broad range of superconducting materials requires the use of more than one numerical technique to study an appropriate microscopic description. This is not a problem but a big advantage because this facilitates the approach-independent description of common underlying physics. For this evaluation, the strongly correlated cuprates are simulated with the variational cluster approach. Especially the question of a pairing glue is taken into consideration. Furthermore, it is possible to distinguish between retarded and non-retarded contributions to the gap function. The cuprates are confronted with the cobaltate Na x CoO 2 and graphene. These weakly correlated materials are investigated with the functional renormalization group (fRG) and reveal a comprehensive phase diagram, including a d+id-wave superconductivity, which breaks time-reversal symmetry. The corresponding gap function is nodeless, but for NaCoO, it features a doping-dependent anisotropy. In addition, some general considerations on

  12. Unconventional superconductivity in cuprates, cobaltates and graphene. What is universal and what is material-dependent in strongly versus weakly correlated materials?

    Energy Technology Data Exchange (ETDEWEB)

    Kiesel, Maximilian Ludwig

    2013-02-08

    A general theory for all classes of unconventional superconductors is still one of the unsolved key issues in condensed-matter physics. Actually, it is not yet fully settled if there is a common underlying pairing mechanism. Instead, it might be possible that several distinct sources for unconventional (not phonon-mediated) superconductivity have to be considered, or an electron-phonon interaction is not negligible. The focus of this thesis is on the most probable mechanism for the formation of Cooper pairs in unconventional superconductors, namely a strictly electronic one where spin fluctuations are the mediators. Studying different superconductors in this thesis, the emphasis is put on material-independent features of the pairing mechanism. In addition, the investigation of the phase diagrams enables a view on the vicinity of superconductivity. Thus, it is possible to clarify which competing quantum fluctuations enhance or weaken the propensity for a superconducting state. The broad range of superconducting materials requires the use of more than one numerical technique to study an appropriate microscopic description. This is not a problem but a big advantage because this facilitates the approach-independent description of common underlying physics. For this evaluation, the strongly correlated cuprates are simulated with the variational cluster approach. Especially the question of a pairing glue is taken into consideration. Furthermore, it is possible to distinguish between retarded and non-retarded contributions to the gap function. The cuprates are confronted with the cobaltate Na{sub x}CoO{sub 2} and graphene. These weakly correlated materials are investigated with the functional renormalization group (fRG) and reveal a comprehensive phase diagram, including a d+id-wave superconductivity, which breaks time-reversal symmetry. The corresponding gap function is nodeless, but for NaCoO, it features a doping-dependent anisotropy. In addition, some general

  13. Magnetic and superconductivity studies on (In{sub 1−x}Fe{sub x}){sub 2}O{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sai Krishna, N. [Thin Films Laboratory, School of Advanced Sciences, VIT University, Vellore 632 014, Tamil Nadu (India); Kaleemulla, S., E-mail: skaleemulla@gmail.com [Thin Films Laboratory, School of Advanced Sciences, VIT University, Vellore 632 014, Tamil Nadu (India); Amarendra, G. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu (India); UGC-DAE-CSR, Kalpakkam Node, Kokilamedu 603 104, Tamil Nadu (India); Madhusudhana Rao, N.; Krishnamoorthi, C.; Rigana Begam, M. [Thin Films Laboratory, School of Advanced Sciences, VIT University, Vellore 632 014, Tamil Nadu (India); Omkaram, I. [Department of Electronics and Radio Engineering, Kyung Hee University, Yongin-si Gyeonggi-do 446-701 (Korea, Republic of); Sreekantha Reddy, D. [Department of Physics and Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2015-07-15

    Highlights: • Fe doped In{sub 2}O{sub 3} thin films deposited using electron beam evaporation technique. • Characterization of the samples using XRD, SEM, EDAX, AES, Raman spectroscopy, FT-IR, VSM and magnetoresistance. • All Fe doped In{sub 2}O{sub 3} thin films exhibited the cubic structure of In{sub 2}O{sub 3}. • Pure and Fe doped In{sub 2}O{sub 3} samples exhibited room temperature ferromagnetism and superconductivity at 2 K. - Abstract: Magnetic, magnetoresistivity and superconductivity studies were carried out on (In{sub 1−x}Fe{sub x}){sub 2}O{sub 3} (x = 0.00, 0.03, 0.05 and 0.07) thin films (2D structures) grown on glass substrate by electron beam evaporation technique at 350 °C. The films have an average size of 120 nm particles. All the samples shown soft ferromagnetic hysteresis loops at room temperature and saturation magnetization increased with iron dopant concentration. Observed magnetization could be best interpreted by F-center mediated magnetic exchange interaction in the samples. Temperature dependent resistivity of the sample (x = 0.00 and 0.07) showed metallic behavior down to very low temperatures and superconductivity at 2 K for undoped In{sub 2}O{sub 3} whereas the In{sub 1.86}Fe{sub 0.14}O{sub 3} sample shows superconductivity below 2 K in the absence of magnetic fields. The reduction in transition temperature was attributed to increase electrical disorder with iron doping. Both samples showed positive magnetoresistivity (MR) in superconducting state due to increase of resistivity resulting from breaking of superconducting Cooper pairs upon application of magnetic field. In addition, both the samples show feeble negative MR in normal electrical state. The observed MR in normal state is not due to spin polarized tunneling instead it is due to suppression of scattering of charge carrier by single occupied localized states.

  14. Generation and detection of high-energy phonons by superconducting junctions

    International Nuclear Information System (INIS)

    Singer, I.L.

    1976-01-01

    Superconducting tunnel junctions are used to investigate the dynamics of energy exchange that takes place in superconductors driven out of equilibrium. In a Sn junction biased at a voltage V much greater than 2Δ(Sn)/e, the tunneling current sustains a continual energy exchange amongst the quasiparticles, phonons, and Cooper pairs. Repeatedly, high-energy quasiparticles decay, emitting phonons; and phonons with energy greater than 2Δ(Sn) break pairs, producing quasiparticles. The phonon-induced component of the current is recovered by synchronously detecting the full tunneling current with respect to a small modulation current in the generator. Sharp onsets observed at intervals of the gap energies require that the escaping phonons are produced by the direct decay of the injected quasiparticles and are not merely the high-energy tail of the thermalized phonons. Both primary and secondary phonons can be abserved distinctly. Theoretical transconductance curves have been computed. The experimental and theoretical curves are in good qualitative agreement. A more detailed comparison suggests that the escape rate of high-energy phonons depends on the energy of the phonons. The dependence of the observed transconductance signal on the temperature and the total junction thickness suggests that the presence of quasiparticles plays a major role in the escape of high-energy phonons. The dependence on temperature can be fitted to exp(b/kT), 0.74 less than b less than 1.05 MeV. It is speculated that the excitation energy is first transported across the superconductor and then carried out of the film by the phonons. It is concluded that high-energy phonons are a sensitive probe of the very reabsorption effects that make their escape so unlikely, and analysis of the detected phonons rich details of the behavior of superconductors removed from equilibrium

  15. Superconducting permanent magnets

    International Nuclear Information System (INIS)

    Wipf, S.L.; Laquer, H.L.

    1989-01-01

    The concept of superconducting permanent magnets with fields trapped in shells or cylinders of Type II superconductors is an old one. Unfortunately, the low values of 0.5 to 1T for the first flux jump field, which is independent of the actual current density, have frustrated its implementation with classical Type II superconductors. The fact that the flux jump fields for high temperature superconductors should be an order of magnitude larger at liquid nitrogen temperatures allows us to reconsider these options. Analysis of the hysteresis patterns, based on the critical state model, shows that, if the dimensions are chosen so that the sample is penetrated at a field B/sub p/, which is equal to or just less than the first flux jump field, B/sub fj/, a temporarily applied field of 2B/sub fj/ will trap 0.5 B/sub fj/. Thus for a 90 K superconductor with a B/sub fj/ of 6T, a permanent field of 3 T should be trapped, with an energy product of 1.8 MJ/m/sup 3/ (225 MG . Oe). This is five times as large as for the best permanent magnet materials. The authors discuss means to verify the analysis and the limitations imposed by the low critical current densities in presently available high temperature superconductors

  16. SNS superconducting linac

    International Nuclear Information System (INIS)

    Sundelin, Ronald M.

    2001-01-01

    The Spallation Neutron Source (SNS) decided in early 2000 to use superconducting RF (SRF) in the linac at energies above 185 MeV. Since the SNS duty cycle is 6%, the SRF and normal conducting approaches have capital costs which are about the same, but operating costs and future upgradability are improved by using SRF. The current status of cavity and cryomodule development and procurement, including the basis for decisions made, is discussed. The current plan includes use of 805 MHz, 6-cell cavities with geometrical betas of 0.61 and 0.81. There are 33 medium beta and 60 high beta cavities in 11 and 15 cryomodules, respectively. Each cavity (except the 93rd) is powered by a 550 kW pulsed klystron. Issues addressed include choice of peak surface gradient, optimization of cavity shape, selection of a scaled KEK input power coupler, selection of scaled TESLA higher mode couplers, and control of the effects of higher order modes on the beam. (author)

  17. The Superconducting TESLA Cavities

    CERN Document Server

    Aune, B.; Bloess, D.; Bonin, B.; Bosotti, A.; Champion, M.; Crawford, C.; Deppe, G.; Dwersteg, B.; Edwards, D.A.; Edwards, H.T.; Ferrario, M.; Fouaidy, M.; Gall, P-D.; Gamp, A.; Gössel, A.; Graber, J.; Hubert, D.; Hüning, M.; Juillard, M.; Junquera, T.; Kaiser, H.; Kreps, G.; Kuchnir, M.; Lange, R.; Leenen, M.; Liepe, M.; Lilje, L.; Matheisen, A.; Möller, W-D.; Mosnier, A.; Padamsee, H.; Pagani, C.; Pekeler, M.; Peters, H-B.; Peters, O.; Proch, D.; Rehlich, K.; Reschke, D.; Safa, H.; Schilcher, T.; Schmüser, P.; Sekutowicz, J.; Simrock, S.; Singer, W.; Tigner, M.; Trines, D.; Twarowski, K.; Weichert, G.; Weisend, J.; Wojtkiewicz, J.; Wolff, S.; Zapfe, K.

    2000-01-01

    The conceptional design of the proposed linear electron-positron colliderTESLA is based on 9-cell 1.3 GHz superconducting niobium cavities with anaccelerating gradient of Eacc >= 25 MV/m at a quality factor Q0 > 5E+9. Thedesign goal for the cavities of the TESLA Test Facility (TTF) linac was set tothe more moderate value of Eacc >= 15 MV/m. In a first series of 27industrially produced TTF cavities the average gradient at Q0 = 5E+9 wasmeasured to be 20.1 +- 6.2 MV/m, excluding a few cavities suffering fromserious fabrication or material defects. In the second production of 24 TTFcavities additional quality control measures were introduced, in particular aneddy-current scan to eliminate niobium sheets with foreign material inclusionsand stringent prescriptions for carrying out the electron-beam welds. Theaverage gradient of these cavities at Q0 = 5E+9 amounts to 25.0 +- 3.2 MV/mwith the exception of one cavity suffering from a weld defect. Hence only amoderate improvement in production and preparation technique...

  18. RF superconductivity at CEBAF

    International Nuclear Information System (INIS)

    1990-01-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) is a 4 GeV continuous beam electron accelerator being constructed to perform nuclear physics research. Construction began in February 1987 and initial operation is scheduled for February 1994. The present report describes its prototyping, problems/solutions, further development, facilities, design status, production and upgrade potential. The accelerator is 1.4 km in circumference, and has a race-track shape. It is of the recirculated linear accelerator type, and employs a total of five passes. Two linacs on opposite sides of the race-track each provide 400 MeV per pass. Beams of various energies are transported by separated arcs at each end of the straight sections to provide the recirculation. There are 4 recirculation arcs at the injector end, and 5 arcs at the other end. The full energy beam is routed by an RF separator to between one and three end stations, as desired, on a bucket-by-bucket basis. The average output beam current is 200 microamperes. Acceleration is provided by 338 superconducting cavities, which are arranged in pairs, each of which is enclosed in a helium vessel and suspended inside a vacuum jacket without ends. (N.K.)

  19. Superconductivity of small particles

    International Nuclear Information System (INIS)

    Leavens, C.R.; Fenton, E.W.

    1981-01-01

    The Eliashberg gap equations are used to investigate the contribution of surface-phonon softening to the size dependence of the superconducting transition temperature (T/sub c/) of small metallic particles. Because of our limited quantitative knowledge of phonon spectra and electron-phonon coupling in the surface region, the effect cannot be calculated with certainty. Previous calculations which agree with experiment depend on a fortuitous choice of input parameters which cannot be justified at present. For this reason the absence of any observable size effect for T/sub c/ in Pb is especially important. This null effect is obtained in Pb if the electron-phonon coupling strength is the same in the surface region as in the bulk. This assumption can be tested experimentally because it means that the energy gap of Pb should not be independent of particle size but rather should increase significantly with decreasing radius. Hence, measurement of the size dependence of the energy gap for well-characterized small particles of Pb could provide information regarding the importance of the phonon-softening mechanism, at least for Pb

  20. Superconducting bearings in flywheels

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, T.A.; Campbell, A.M.; Ganney, I.; Lo, W. [Cambridge Univ. (United Kingdom). Interdisciplinary Research Centre in Superconductivity (IRC); Twardowski, T. [International Energy Systems, Chester High Road, Neston, South Wirral (United Kingdom); Dawson, B. [British Nuclear Fuels, Capenhurst, South Wirral (United Kingdom)

    1998-05-01

    Investigations are being carried out into the use of superconducting magnetic bearings to levitate energy storage flywheels. In a planned program of work, Cambridge University are aiming to produce a practical bearing system for Pirouette(TM). The Pirouette(TM) system is designed to provide 5 kWh of recoverable energy which is currently recoverable at a rate of 5 kW (future revisions will provide up to 50 kW). IES (a British Nuclear Fuels subsidiary) the owners of the Pirouette(TM) machine have supplied Cambridge with a flywheel. This flywheel weighs >40 kg and is being levitated using an Evershed-type arrangement in which the superconductor is being used to stabilize the interaction between two magnets. To date we have demonstrated stable levitation in static and low speed tests in a rig designed for low speeds of rotation in air. A second rig which is currently under construction at BNFL will run in vacuum at speeds of up to 50 (orig.) 5 refs.

  1. Improved superconducting magnet wire

    Science.gov (United States)

    Schuller, I.K.; Ketterson, J.B.

    1983-08-16

    This invention is directed to a superconducting tape or wire composed of alternating layers of copper and a niobium-containing superconductor such as niobium of NbTi, Nb/sub 3/Sn or Nb/sub 3/Ge. In general, each layer of the niobium-containing superconductor has a thickness in the range of about 0.05 to 1.5 times its coherence length (which for Nb/sub 3/Si is 41 A) with each copper layer having a thickness in the range of about 170 to 600 A. With the use of very thin layers of the niobium composition having a thickness within the desired range, the critical field (H/sub c/) may be increased by factors of 2 to 4. Also, the thin layers of the superconductor permit the resulting tape or wire to exhibit suitable ductility for winding on a magnet core. These compositions are also characterized by relatively high values of critical temperature and therefore will exhibit a combination of useful properties as superconductors.

  2. Superconducting energy storage magnet

    Science.gov (United States)

    Boom, Roger W. (Inventor); Eyssa, Yehia M. (Inventor); Abdelsalam, Mostafa K. (Inventor); Huang, Xianrui (Inventor)

    1993-01-01

    A superconducting magnet is formed having composite conductors arrayed in coils having turns which lie on a surface defining substantially a frustum of a cone. The conical angle with respect to the central axis is preferably selected such that the magnetic pressure on the coil at the widest portion of the cone is substantially zero. The magnet structure is adapted for use as an energy storage magnet mounted in an earthen trench or tunnel where the strength the surrounding soil is lower at the top of the trench or tunnel than at the bottom. The composite conductor may be formed having a ripple shape to minimize stresses during charge up and discharge and has a shape for each ripple selected such that the conductor undergoes a minimum amount of bending during the charge and discharge cycle. By minimizing bending, the working of the normal conductor in the composite conductor is minimized, thereby reducing the increase in resistance of the normal conductor that occurs over time as the conductor undergoes bending during numerous charge and discharge cycles.

  3. Superconducting magnet safety

    International Nuclear Information System (INIS)

    Arendt, F.; Komarek, P.

    1983-01-01

    One of the major components in a fusion reactor for which a safety analysis must be carried out is the magnet system. Most of the possible disturbances influencing the operation of superconducting magnets lead only to a quench, defined as an ''abnormal operating condition'' which causes just a temporary shut down of the magnet system without damage, if the system is well designed. More unlikely are accidental events which are associated with the generation of high power arcs. In these cases, single current arcs, e.g. at broken current leads, will lead to moderate damage only, but with the necessity of a longer shut down period for repair or replacing. Severe damage can only occur if in a multiple current arcing, starting by broken conductors, a wide-spread rupture of the winding occurs and the final high power arc burns through the coil case damaging other coils and reactor components. In a very hypothetical event the simultaneous rupture of the complete winding at two locations at least 1 m apart leads to missile generation due to the electromagnetic forces in the background field. The kinetic energy which the flying piece can get will be less than the values assumed for airplane crashes with the containment of modern fission power plants. (author)

  4. Superconducting digital logic amplifier

    International Nuclear Information System (INIS)

    Przybysz, J.X.

    1989-01-01

    This paper describes a superconducting digital logic amplifier for interfacing between a Josephson junction logic circuit having output current and a higher voltage semiconductor circuit input. The amplifier comprising: an input terminal for connection to a; an output terminal for connection to a semiconductor circuit input; an input, lower critical current, Josephson junction having first and second terminals; a first series string of at least three lower critical current Josephson junctions. The first series string being connected to the first terminal of the input Josephson junction such that the first series string is in series with the input Josephson junction to provide a series combination. The input terminal being connected to the first terminal of the input Josephson junction, and with the critical current of the lower critical current Josephson junctions of the input Josephson junction and the first series Josephson junctions being less than the output current of the low voltage Josephson junction circuit; a second series string of at least four higher critical current Josephson junctions. The second string being connected in parallel with the series combination to provide parallel strings having an upper common connection and a lower common connection. The lower common connection being connected to the second terminal of the input Josephson junction and the upper common connection being connected to the output terminal; and a pulsed DC current source connected the parallel strings at the upper common connection. The DC current source having a current at least equal to the critical current of the higher critical current Josephson junctions

  5. Superconductivity in doped fullerenes

    International Nuclear Information System (INIS)

    Hebard, A.F.

    1992-01-01

    While there is not complete agreement on the microscopic mechanism of superconductivity in alkali-metal-doped C 60 , further research may well lead to the production of analogous materials that lose resistance at even higher temperatures. Carbon 60 is a fascinating and arrestingly beautiful molecule. With 12 pentagonal and 20 hexagonal faces symmetrically arrayed in a soccer-ball-like structure that belongs to the icosahedral point group, I h , its high symmetry alone invites special attention. The publication in September 1990 of a simple technique for manufacturing and concentrating macroscopic amounts of this new form of carbon announced to the scientific community that enabling technology had arrived. Macroscopic amounts of C 60 (and the higher fullerenes, such as C 70 and C 84 ) can now be made with an apparatus as simple as an arc furnace powered with an arc welding supply. Accordingly, chemists, physicists and materials scientists have joined forces in an explosion of effort to explore the properties of this unusual molecular building block. 23 refs., 6 figs

  6. Superconductivity in doped fullerenes

    International Nuclear Information System (INIS)

    Herbard, A.F.

    1996-01-01

    While there is not complete agreement on the microscopic mechanism of superconductivity in alkali-metal-doped C sup 0, further research may well lead to the production of analogous materials that lose resistance at even higher temperatures. Carbon 60 is a fascinating and arrestingly beautiful molecule. With 12 pentagonal and 20 hexagonal faces symmetrically arrayed in a soccer-ball-like structure that belongs to the icosahedral point group, I sub h, its high symmetry alone invites special attention. The publication in september 1990 of a simple technique for manufacturing and concentrating macroscopic amounts of this new form of carbon announced to the scientific community that enabling technology had arrived. Macroscopic amounts of C sub 6 sub 0 (and the higher fullerenes, such as C sub 7 sub 0 and C sub 8 sub 4) can now be made with an apparatus as simple as an arc furnace powered with an arc welding supply. Accordingly, chemists, physicists and materials scientists have joined forces in an explosion of effort to explore the properties of this unusual molecular building block. (author). 23 refs., 6 figs

  7. Superconductive AC current limiter

    International Nuclear Information System (INIS)

    Bekhaled, M.

    1987-01-01

    This patent describes an AC current limiter for a power transport line including a power supply circuit and feeding a load circuit via an overload circuit-breaker member. The limiter comprises a transformer having a primary winding connected in series between the power supply circuit and the load circuit and at least one secondary winding of superconductor material contained in a cryogenic enclosure and short-circuited on itself. The leakage reactance of the transformer as seen from the primary winding is low, and the resistance of the at least one secondary winding when in the non-superconducting state and as seen from the primary is much greater than the nominal impedance of the transformer. The improvement whereby the at least one secondary winding of the transformer comprises an active winding in association with a set of auxiliary windings. The set of auxiliary windings is constituted by an even number of series-connected auxiliary windings wound in opposite directions, with the total number of turns in one direction being equal to the total number of turns in the opposite direction, and with the thermal capacity of the secondary winding as a whole being sufficiently high to limit the expansion thereof to a value which remains small during the time it takes the circuit-breaking member to operate

  8. Superconducting quantum bits

    International Nuclear Information System (INIS)

    Mooij, Hans

    2005-01-01

    Superconducting devices can be used to explore the boundaries between the quantum and classical worlds, and could also have applications in quantum information. The quantum world looks very different to the ordinary world. A quantum particle can, for instance, be in two places simultaneously, while its speed and position cannot both be measured with complete accuracy at the same time. Moreover, if its mass is small enough, a quantum particle can tunnel through energy barriers that its classical counterparts could never cross. Physicists are comfortable with the use of quantum mechanics to describe atomic and subatomic particles. However, in recent years we have discovered that micron-sized objects that have been produced using standard semiconductor-fabrication techniques - objects that are small on everyday scales but large compared with atoms - can also behave as quantum particles. These artificial quantum objects might one day be used as 'quantum bits' in a quantum computer that could perform certain computational tasks much faster than any classical computing device. Before then, however, these devices will allow us to explore the interface between the quantum and classical worlds, and to study how interactions with external degrees of freedom lead to a gradual disappearance of quantum behaviour. (U.K.)

  9. Multiband superconductivity in heavy fermion compound CePt3Si without inversion symmetry. An NMR study on a high-quality single crystal

    International Nuclear Information System (INIS)

    Mukuda, Hidekazu; Nishide, Sachihiro; Harada, Atsushi

    2009-01-01

    We report on novel superconducting characteristics of the heavy fermion (HF) superconductor CePt 3 Si without inversion symmetry through 195 Pt-NMR study on a single crystal with T c =0.46 K that is lower than T c - 0.75 K for polycrystals. We show that the intrinsic superconducting characteristics inherent to CePt 3 Si can be understood in terms of the unconventional strong-coupling state with a line-node gap below T c =0.46 K. The mystery about the sample dependence of T c is explained by the fact that more or less polycrystals and single crystals inevitably contain some disordered domains, which exhibit a conventional BCS s-wave superconductivity (SC) below 0.8 K. In contrast, the Neel temperature T N - 2.2 K is present regardless of the quality of samples, revealing that the Fermi surface responsible for SC differ from that for the antiferromagnetic order. These unusual characteristics of CePt 3 Si can be also described by a multiband model; in the homogeneous domains, the coherent HF bands are responsible for the unconventional SC, whereas in the disordered domains the conduction bands existing commonly in LaPt 3 Si may be responsible for the conventional s-wave SC. We remark that some impurity scatterings in the disordered domains break up the 4f-electrons-derived coherent bands but not others. In this context, the small peak in 1/T 1 just below T c reported before [Yogi et al. (2004)] is not due to a two-component order parameter composed of spin-singlet and spin-triplet Cooper pairing states, but due to the contamination of the disorder domains which are in the s-wave SC state. (author)

  10. Superconductivity from magnetic elements under high pressure

    International Nuclear Information System (INIS)

    Shimizu, Katsuya; Amaya, Kiichi; Suzuki, Naoshi; Onuki, Yoshichika

    2006-01-01

    Can we expect the appearance of superconductivity from magnetic elements? In general, superconductivity occurs in nonmagnetic metal at low temperature and magnetic impurities destroy superconductivity; magnetism and superconductivity are as incompatible as oil and water. Here, we present our experimental example of superconducting elements, iron and oxygen. They are magnetic at ambient pressure, however, they become nonmagnetic under high pressure, then superconductor at low temperature. What is the driving force of the superconductivity? Our understanding in the early stages was a simple scenario that the superconductive state was obtained as a consequence of an emergence of the nonmagnetic states. In both cases, we may consider another scenario for the appearance of superconductivity; the magnetic fluctuation mechanism in the same way as unconventional superconductors

  11. Superconducting materials for large scale applications

    International Nuclear Information System (INIS)

    Dew-Hughes, D.

    1975-01-01

    Applications of superconductors capable of carrying large current densities in large-scale electrical devices are examined. Discussions are included on critical current density, superconducting materials available, and future prospects for improved superconducting materials. (JRD)

  12. Some theories of high temperature superconductivity

    International Nuclear Information System (INIS)

    Cohen, M.L.

    1990-01-01

    In this paper a brief review is given of some historical aspects of theoretical research on superconductivity including a discussion of BCS theory and some theoretical proposals for mechanisms which can cause superconductivity at high temperatures

  13. Last LEP superconducting module travels to surface

    CERN Multimedia

    Patrice Loïez

    2001-01-01

    The last superconducting module is raised from the Large Electron-Positron (LEP) collider tunnel, through the main shaft, to the surface. Superconducting modules were only used in the LEP-2 phase of the accelerator, from 1996 to 2000.

  14. Preparing last LEP superconducting module for removal

    CERN Multimedia

    Patrice Loïez

    2000-01-01

    The last superconducting module travels along the LEP tunnel towards one of the shafts where it will be lifted to the surface. Superconducting modules were only used in the LEP-2 phase of the accelerator, from 1996 to 2000.

  15. Superconductivity basics and applications to magnets

    CERN Document Server

    Sharma, R G

    2015-01-01

    This book presents the basics and applications of superconducting magnets. It explains the phenomenon of superconductivity, theories of superconductivity, type II superconductors and high-temperature cuprate superconductors. The main focus of the book is on the application to superconducting magnets to accelerators and fusion reactors and other applications of superconducting magnets. The thermal and electromagnetic stability criteria of the conductors and the present status of the fabrication techniques for future magnet applications are addressed. The book is based on the long experience of the author in studying superconducting materials, building magnets and numerous lectures delivered to scholars. A researcher and graduate student will enjoy reading the book to learn various aspects of magnet applications of superconductivity. The book provides the knowledge in the field of applied superconductivity in a comprehensive way.

  16. Working on an LHC superconducting cavity

    CERN Multimedia

    Laurent Guiraud

    2000-01-01

    The delicate superconducting equipment for CERN’s LHC collider has to be assembled in ultra-clean conditions to safeguard performance. Here we see the power supply being installed on one of the superconducting cavities.

  17. Superconductivity research in the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Jirsa, Miloš

    -, č. 1 (2007), s. 1-6 ISSN N Institutional research plan: CEZ:AV0Z10100520 Keywords : superconductivity * research to superconductivity * financial support of the research Subject RIV: BM - Solid Matter Physics ; Magnetism

  18. Development of superconducting equipment for fusion device

    International Nuclear Information System (INIS)

    Konno, Masayuki; Ueda, Toshio; Hiue, Hisaaki; Ohgushi, Kouzou

    1993-01-01

    At Fuji Electric Co., Ltd., the development of superconductivity was started from 1960, and superconducting equipment for fusion device has been developed for ten years. The superconducting equipment, which is developed for fusion by Fuji Electric Co., Ltd., are able to be grouped in three categories which are current lead, superconducting coil and superconducting bus-line. The current lead is an electrical feeder between a superconducting coil and an electrical power supply. The rated current of developed current lead is 30kA at continuous use and 100kA at short time use respectively. The advanced disk type coil is developed for the toroidal field coil and some coils are developed for critical current measurement. Superconductor is applied to the superconducting bus-line between the superconducting coils and the current leads, and the bus-line is being developed for the Large Helical Device. This report describes an abstract of these equipment. (author)

  19. Superconducting six-axis accelerometer

    Science.gov (United States)

    Paik, H. J.

    1990-01-01

    A new superconducting accelerometer, capable of measuring both linear and angular accelerations, is under development at the University of Maryland. A single superconducting proof mass is magnetically levitated against gravity or any other proof force. Its relative positions and orientations with respect to the platform are monitored by six superconducting inductance bridges sharing a single amplifier, called the Superconducting Quantum Interference Device (SQUID). The six degrees of freedom, the three linear acceleration components and the three angular acceleration components, of the platform are measured simultaneously. In order to improve the linearity and the dynamic range of the instrument, the demodulated outputs of the SQUID are fed back to appropriate levitation coils so that the proof mass remains at the null position for all six inductance bridges. The expected intrinsic noise of the instrument is 4 x 10(exp -12)m s(exp -2) Hz(exp -1/2) for linear acceleration and 3 x 10(exp -11) rad s(exp -2) Hz(exp -1/2) for angular acceleration in 1-g environment. In 0-g, the linear acceleration sensitivity of the superconducting accelerometer could be improved by two orders of magnitude. The design and the operating principle of a laboratory prototype of the new instrument is discussed.

  20. Fast superconducting magnetic field switch

    Science.gov (United States)

    Goren, Yehuda; Mahale, Narayan K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

  1. Liquid phase sintered superconducting cermet

    International Nuclear Information System (INIS)

    Ray, S.P.

    1990-01-01

    This patent describes a method of making a superconducting cermet having superconducting properties with improved bulk density, low porosity and in situ stabilization. It comprises: forming a structure of a superconducting ceramic material having the formula RM 2 Cu 3 O (6.5 + x) wherein R is one or more rare earth elements capable of reacting to form a superconducting ceramic, M is one or more alkaline earth metal elements selected from barium and strontium capable of reacting to form a superconducting ceramic, x is greater than 0 and less than 0.5; and a precious metal compound in solid form selected from the class consisting of oxides, sulfides and halides of silver; and liquid phase sintering the mixture at a temperature wherein the precious metal of the precious metal compound is molten and below the melting point of the ceramic material. The liquid phase sintering is carried out for a time less than 36 hours but sufficient to improve the bulk density of the cermet

  2. Fast superconducting magnetic field switch

    International Nuclear Information System (INIS)

    Goren, Y.; Mahale, N.K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs

  3. Temperature dependence of the superconducting proximity effect quantified by scanning tunneling spectroscopy

    Directory of Open Access Journals (Sweden)

    A. Stępniak

    2015-01-01

    Full Text Available Here, we present the first systematic study on the temperature dependence of the extension of the superconducting proximity effect in a 1–2 atomic layer thin metallic film, surrounding a superconducting Pb island. Scanning tunneling microscopy/spectroscopy (STM/STS measurements reveal the spatial variation of the local density of state on the film from 0.38 up to 1.8 K. In this temperature range the superconductivity of the island is almost unaffected and shows a constant gap of a 1.20 ± 0.03 meV. Using a superconducting Nb-tip a constant value of the proximity length of 17 ± 3 nm at 0.38 and 1.8 K is found. In contrast, experiments with a normal conductive W-tip indicate an apparent decrease of the proximity length with increasing temperature. This result is ascribed to the thermal broadening of the occupation of states of the tip, and it does not reflect an intrinsic temperature dependence of the proximity length. Our tunneling spectroscopy experiments shed fresh light on the fundamental issue of the temperature dependence of the proximity effect for atomic monolayers, where the intrinsic temperature dependence of the proximity effect is comparably weak.

  4. High-Tc superconducting electric motors

    International Nuclear Information System (INIS)

    Schiferl, R.; Stein, J.

    1992-01-01

    In this paper, the advantages and limitations of using superconductors in motors are discussed. A synchronous motor with a high temperature superconducting field winding for pump and fan drive applications is described and some of its unique design features are identified. A 10,000 horsepower superconducting motor design is presented. The critical field and current density requirements for high temperature superconducting wire in motors is discussed. Finally, recent progress in superconducting wire performance is presented

  5. Superconducting devices at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Dahl, P.F.

    1978-04-01

    The various ongoing programs in applied superconductivity supported by BNL are summarized, including the development of high field ac and dc superconducting magnets for accelerators and other applications, of microwave deflecting cavities for high energy particle beam separators, and of cables for underground power transmission, and materials research on methods of fabricating new superconductors and on metallurgical properties affecting the performance of superconducting devices

  6. Superconducting Metallic Glass Transition-Edge-Sensors

    Science.gov (United States)

    Hays, Charles C. (Inventor)

    2013-01-01

    A superconducting metallic glass transition-edge sensor (MGTES) and a method for fabricating the MGTES are provided. A single-layer superconducting amorphous metal alloy is deposited on a substrate. The single-layer superconducting amorphous metal alloy is an absorber for the MGTES and is electrically connected to a circuit configured for readout and biasing to sense electromagnetic radiation.

  7. Superconducting magnets technologies for large accelerator

    International Nuclear Information System (INIS)

    Ogitsu, Toru

    2017-01-01

    The first hadron collider with superconducting magnet technologies was built at Fermi National Accelerator Laboratory as TEVATRON. Since then, the superconducting magnet technologies are widely used in large accelerator applications. The paper summarizes the superconducting magnet technologies used for large accelerators. (author)

  8. WORKSHOP: Radiofrequency superconductivity

    International Nuclear Information System (INIS)

    Tückmantel, Joachim

    1993-01-01

    Full text: With superconducting radiofrequency playing a major role in the push for new machines to break fresh physics frontiers, it has become a tradition for experts and newcomers in this field from all over the world to meet every second year to hear progress reports from laboratories and to discuss common problems and possible solutions. The sixth such workshop was held from 4-8 October under the chairmanship of Ron Sundelin at the Continuous Electron Beam Accelerator Facility (CEBAF) under construction in Newport News, Virginia. With 170 participants from 14 countries including Eastern Europe and China, it reflected the growing interest in the field - looking back to 1984, when CERN was the host laboratory, the second workshop had less than 100 participants. The CEBAF meeting began with laboratory status reports, covering both high beam energy ('high beta') applications with 'spherical' cavities (as with CERN's LEP200), all using niobium as superconductor and working between 352 MHz and 3 GHz, and lower energy (low beta') applications with geometrically more complicated shapes such as quarter or half wave, split ring or spoke resonators, some using electrodeposited lead as superconductor and working around 100 MHz. During these talks it became clear that more and more laboratories have focused on routine problems, such as reliable series production and testing, running cavities with ancillaries in the machines, or building complete prototypes for projects to be approved by critical funding authorities. This contrasts with the heady days just a few years ago when - at least in the high beta community - the main objective was to explore new ideas. State-of-the-art summaries showed how at 1.3 and 3 GHz 25-30 MV/m have been reached by several laboratories using different preparation methods. Newer developments for common problems included r.f. windows, couplers, controls, and especially field emission, public enemy number one for

  9. Researching Pacific island livelihoods:

    DEFF Research Database (Denmark)

    Egelund Christensen, Andreas; Mertz, Ole

    2010-01-01

    on contemporary theories of nissology and conceptual analytical frameworks for island research. Through a review of selected case-study-based island literature on changing livelihoods coming out of the South Pacific, we wish to illustrate and discuss advantages of finding common grounds for small island studies....... The focus is on two dimensions of island livelihood, migration and natural resource management, both of which are significant contributors in making island livelihoods and shaping Pacific seascapes. We argue that there is still a substantial lack of studies targeting small island dynamics that are empirical...

  10. Superconducting ECR ion source system

    International Nuclear Information System (INIS)

    Sharma, S.C.; Gore, J.A.; Gupta, A.K.; Saxena, A.

    2017-01-01

    In order to cover the entire mass range of the elements across the periodic table, an ECR based heavy ion accelerator programme, consisting of a superconducting ECR (Electron Cyclotron Resonance) source and a room temperature RFQ (Radio Frequency Quadrupole) followed by low and high beta superconducting resonator cavities has been proposed. The 18 GHz superconducting ECR ion source system has already been commissioned and being operated periodically at FOTIA beam hall. This source is capable of delivering ion beams right from proton to uranium with high currents and high charge states over a wide mass range (1/7 ≤ q/m ≤ 1/2) across the periodic table, including U"3"4"+ (q/m∼1/7) with 100 pna yield. The normalized transverse beam emittance from ECR source is expected to be <1.0 pi mm mrad. ECR ion sources are quite robust, making them suitable for operating for weeks continuously without any interruption

  11. Superconductivity in Spain. Midas program

    International Nuclear Information System (INIS)

    Yndurain, F.

    1996-01-01

    The different activities in the field of applied superconductivity carried out in Spain under the auspices of the MIDAS program are reported. Applications using both low- and high-temperature superconductors are considered. In the low temperature superconductors case, the design and construction of a 1 mega joule SMES (Superconducting Magnetic Energy Storage) unit, as well as the fabrication of voltage and resistance standards, are reviewed. Developments involving the design and fabrication of an inductive current fault limited and mono- and multi-filamentary wires and tapes using high-temperature superconductors are discussed. Finally, the prospects for the application of superconductivity technology to electric power systems for the electric utilities is considered. (author)

  12. Sensing with Superconducting Point Contacts

    Directory of Open Access Journals (Sweden)

    Argo Nurbawono

    2012-05-01

    Full Text Available Superconducting point contacts have been used for measuring magnetic polarizations, identifying magnetic impurities, electronic structures, and even the vibrational modes of small molecules. Due to intrinsically small energy scale in the subgap structures of the supercurrent determined by the size of the superconducting energy gap, superconductors provide ultrahigh sensitivities for high resolution spectroscopies. The so-called Andreev reflection process between normal metal and superconductor carries complex and rich information which can be utilized as powerful sensor when fully exploited. In this review, we would discuss recent experimental and theoretical developments in the supercurrent transport through superconducting point contacts and their relevance to sensing applications, and we would highlight their current issues and potentials. A true utilization of the method based on Andreev reflection analysis opens up possibilities for a new class of ultrasensitive sensors.

  13. LLNL superconducting magnets test facility

    Energy Technology Data Exchange (ETDEWEB)

    Manahan, R; Martovetsky, N; Moller, J; Zbasnik, J

    1999-09-16

    The FENIX facility at Lawrence Livermore National Laboratory was upgraded and refurbished in 1996-1998 for testing CICC superconducting magnets. The FENIX facility was used for superconducting high current, short sample tests for fusion programs in the late 1980s--early 1990s. The new facility includes a 4-m diameter vacuum vessel, two refrigerators, a 40 kA, 42 V computer controlled power supply, a new switchyard with a dump resistor, a new helium distribution valve box, several sets of power leads, data acquisition system and other auxiliary systems, which provide a lot of flexibility in testing of a wide variety of superconducting magnets in a wide range of parameters. The detailed parameters and capabilities of this test facility and its systems are described in the paper.

  14. Superconducting TESLA cavities

    Directory of Open Access Journals (Sweden)

    B. Aune

    2000-09-01

    Full Text Available The conceptional design of the proposed linear electron-positron collider TESLA is based on 9-cell 1.3 GHz superconducting niobium cavities with an accelerating gradient of E_{acc}≥25 MV/m at a quality factor Q_{0}≥5×10^{9}. The design goal for the cavities of the TESLA Test Facility (TTF linac was set to the more moderate value of E_{acc}≥15 MV/m. In a first series of 27 industrially produced TTF cavities the average gradient at Q_{0}=5×10^{9} was measured to be 20.1±6.2 MV/m, excluding a few cavities suffering from serious fabrication or material defects. In the second production of 24 TTF cavities, additional quality control measures were introduced, in particular, an eddy-current scan to eliminate niobium sheets with foreign material inclusions and stringent prescriptions for carrying out the electron-beam welds. The average gradient of these cavities at Q_{0}=5×10^{9} amounts to 25.0±3.2 MV/m with the exception of one cavity suffering from a weld defect. Hence only a moderate improvement in production and preparation techniques will be needed to meet the ambitious TESLA goal with an adequate safety margin. In this paper we present a detailed description of the design, fabrication, and preparation of the TESLA Test Facility cavities and their associated components and report on cavity performance in test cryostats and with electron beam in the TTF linac. The ongoing research and development towards higher gradients is briefly addressed.

  15. Superconducting Magnets for Particle Accelerators

    CERN Document Server

    Bottura, Luca; Yamamoto, Akira; Zlobin, Alexander V

    2016-01-01

    In this paper we summarize the evolution and contributions of superconducting magnets to particle accelerators as chronicled over the last 50 years of Particle Accelerator Conferences (PAC, NA-PAC and IPAC). We begin with an historical overview based primarily on PAC Proceedings augmented with references to key milestones in the development of superconducting magnets for particle accelerators. We then provide some illustrative examples of applications that have occurred over the past 50 years, focusing on those that have either been realized in practice or provided technical development for other projects, with discussion of possible future applications.

  16. Cooling device of superconducting coils

    International Nuclear Information System (INIS)

    Duthil, R.; Lottin, J.C.

    1985-01-01

    This device is rotating around an horizontal axis. The superconducting coils are contained in a cryogenic enclosure feeded in liquid helium forced circulation. They are related to an electric generator by electric mains each of them comprising a gas exchanger, and an exchanger-evaporator set between the cryogenic device and those exchangers. The exchanger-evaporator is aimed at dissipating the heat arriving by conductors connected to the superconducting coils. According to the invention, the invention includes an annular canalization with horizontal axis in which the connection conductors bathe in liquid helium [fr

  17. Superconducting augmented rail gun (SARG)

    International Nuclear Information System (INIS)

    Homan, C.G.; Cummings, C.E.; Fowler, C.M.

    1986-01-01

    Superconducting augmentation consists of a superconducting coil operating in the persistent mode closely coupled magnetically with a normally conducting rail gun. A theoretical investigation of the effect of this system on a rail gun has shown that two benefits occur. Projectile velocities and launch efficiencies increase significantly depending on the magnetic coupling between the rail and augmentation circuits. Previous work evaluated an idealized system by neglecting energy dissipation effects. In this paper, the authors extend the analysis to include the neglected terms and show improved actual launch efficiencies for the SARG configuration. In this paper, the authors discuss details of projectile design in depth and present preliminary results of rail gun performance

  18. Diamagnetism in quasicrystalline superconducting networks

    International Nuclear Information System (INIS)

    Qian Niu; Nori, F.

    1990-01-01

    In this paper, we review recent results on superconducting structures with quasicrystalline geometry. Specifically, we consider the superconducting-normal phase boundaries of a variety of wire networks and Josephson junction arrays. We have computed the mean field phase diagrams for a number of geometries and compared them to the corresponding experimental data. We have introduced an analytical approach to the analysis of the structures present in the phase boundaries. Furthermore, we have shown in great detail how the gross structure is determined by the statistical distributions of the cell areas, and how the fine structures are determined by correlations among neighboring cells in the lattices. (author). 12 refs, 2 figs

  19. Electromagnetic design of superconducting quadrupoles

    Directory of Open Access Journals (Sweden)

    L. Rossi

    2006-10-01

    Full Text Available We study how the critical gradient depends on the coil layout in a superconducting quadrupole for particle accelerators. We show that the results relative to a simple sector coil are well representative of the coil layouts that have been used to build several quadrupoles in the past 30 years. Using a semianalytical approach, we derive a formula that gives the critical gradient as a function of the coil cross-sectional area, of the magnet aperture, and of the superconducting cable parameters. This formula is used to evaluate the efficiency of several types of coil layouts (shell, racetrack, block, open midplane.

  20. Current leads for superconducting magnets

    International Nuclear Information System (INIS)

    Ishibashi, Kenji

    1989-01-01

    Current leads for superconducting magnets have been studied since 1960's. The technology of current leads may seem to have been established both in theory and experiment before the middle of 1970's. Nevertheless, a wide variety of superconducting magnets have been introduced in the last 15 years, and the demands for special current leads have increased in accordance to the variety. A steady advance has been made in the design theory and fabrication of current leads. This paper describes the recent current lead technology regarding the design theory, safety in accidents, and high current capability. (author)