WorldWideScience

Sample records for superconducting inductive energy

  1. Energy transfer from a superconducting magnet to an inductive load

    International Nuclear Information System (INIS)

    Onishi, Toshitada; Miura, Akinori.

    1977-01-01

    Experiments on energy transfer between two superconducting magnets have been carried out using an inductive energy transfer system similar to the flying capacitor system developed at the Karlsruhe Institute. In the present system the capacitor is grounded and diodes are used instead of thyristors, and a fraction of stored energy is transferred to the capacitor only when the relay connected in parallel to the magnet is switched off. The capacitor is expected to have no constraint in size, while in the flying capacitor system the capacitor is required to exceed a threshold size. Consequently it is possible to shorten the transfer time to some extent in comparison with the one in the flying capacitor system. Transfer experiments have been carried out using a storage magnet with inductance of 1.2H and a load of 0.41H. The capacitance is 200μF. It is possible to transfer 80.1% of the stored energy of 221 J into the load in less than about 0.35 seconds. (auth.)

  2. Superconducting energy stabilizer with charging and discharging DC-DC converters

    International Nuclear Information System (INIS)

    Kim, S.H.; Kostecki, E.L.; DeWinkel, C.C.

    1992-01-01

    This patent describes a superconducting energy stabilizer having multiple load connections and employing DC-DC conversion for storing energy in a superconducting inductive energy storage device having a first end and a second end, and for releasing the stored energy from the superconducting inductive energy storage device to a load or loads or to a utility or an industrial electrical distribution system, the superconducting energy stabilizer having multiple load connections and employing DC-DC conversion. It comprises: energy storage cell means for supplying energy to the load, discharging DC-DC converter means for releasing energy from the superconducting inductive energy storage device to the energy storage cell means, the discharging DC-DC converter means having input terminals, output terminals, and a discharging control line means for carrying signals controlling the operation of the discharging DC-DC converter means, one of the input terminals of the discharging DC-DC converter means coupled to the first end of the superconducting energy storage device

  3. Superconducting magnets for induction linac phase-rotation in a neutrino factory

    International Nuclear Information System (INIS)

    Green, M.A.; Yu, S.

    2001-01-01

    The neutrino factory[1-3] consists of a target section where pions are produced and captured in a solenoidal magnetic field. Pions in a range of energies from 100 Mev to 400 MeV decay into muons in an 18-meter long channel of 1.25 T superconducting solenoids. The warm bore diameter of these solenoids is about 600 mm. The phase rotation section slows down the high-energy muon and speeds up the low energy muons to an average momentum of 200 MeV/c. The phase-rotation channel consists of three induction linac channels with a short cooling section and a magnetic flux reversal section between the first and second induction linacs and a drift space between the second and third induction linacs. The length of the phase rotation channel will be about 320 meters. The superconducting coils in the channel are 0.36 m long with a gap of 0.14 m between the coils. The magnetic induction within the channel will be 1.25. For 260 meters of the 320-meter long channel, the solenoids are inside the induction linac. This paper discusses the design parameters for the superconducting solenoids in the neutrino factory phase-rotation channel

  4. Superconductivity, energy storage and switching

    International Nuclear Information System (INIS)

    Laquer, H.L.

    1974-01-01

    The phenomenon of superconductivity can contribute to the technology of energy storage and switching in two distinct ways. On one hand the zero resistivity of the superconductor can produce essentially infinite time constants so that an inductive storage system can be charged from very low power sources. On the other hand, the recovery of finite resistivity in a normal-going superconducting switch can take place in extremely short times, so that a system can be made to deliver energy at a very high power level. Topics reviewed include: physics of superconductivity, limits to switching speed of superconductors, physical and engineering properties of superconducting materials and assemblies, switching methods, load impedance considerations, refrigeration economics, limitations imposed by present day and near term technology, performance of existing and planned energy storage systems, and a comparison with some alternative methods of storing and switching energy. (U.S.)

  5. Design study of superconducting inductive energy storages for tokamak fusion reactor

    International Nuclear Information System (INIS)

    1977-08-01

    Design of the superconducting inductive energy storages (SC-IES) has been studied. One SC-IES is for the power supply system in a experimental tokamak fusion reactor, and the other in a future practical reactor. Study started with definition of the requirements of SC-IES, followed by optimization of the coil shape and determination of major parameters. Then, the coil and the vessel were designed, including the following: for SC-IES of the experimental reactor, stored energy 10 GJ, B max 8 T, conductor NbTi and size 18 m diameter x 10 m height; for SC-IES of the practical reactor, stored energy 56 GJ, B max 10.5 T, conductor Nb 3 Sn and size 26 m diameter x 15 m height. Design of the coil protection system and an outline of the auxiliary systems (for refrigeration and evacuation) are also given, and further, problems and usefullness of SC-IES. (auth.)

  6. Nanoscale superconducting memory based on the kinetic inductance of asymmetric nanowire loops

    Science.gov (United States)

    Murphy, Andrew; Averin, Dmitri V.; Bezryadin, Alexey

    2017-06-01

    The demand for low-dissipation nanoscale memory devices is as strong as ever. As Moore’s law is staggering, and the demand for a low-power-consuming supercomputer is high, the goal of making information processing circuits out of superconductors is one of the central goals of modern technology and physics. So far, digital superconducting circuits could not demonstrate their immense potential. One important reason for this is that a dense superconducting memory technology is not yet available. Miniaturization of traditional superconducting quantum interference devices is difficult below a few micrometers because their operation relies on the geometric inductance of the superconducting loop. Magnetic memories do allow nanometer-scale miniaturization, but they are not purely superconducting (Baek et al 2014 Nat. Commun. 5 3888). Our approach is to make nanometer scale memory cells based on the kinetic inductance (and not geometric inductance) of superconducting nanowire loops, which have already shown many fascinating properties (Aprili 2006 Nat. Nanotechnol. 1 15; Hopkins et al 2005 Science 308 1762). This allows much smaller devices and naturally eliminates magnetic-field cross-talk. We demonstrate that the vorticity, i.e., the winding number of the order parameter, of a closed superconducting loop can be used for realizing a nanoscale nonvolatile memory device. We demonstrate how to alter the vorticity in a controlled fashion by applying calibrated current pulses. A reliable read-out of the memory is also demonstrated. We present arguments that such memory can be developed to operate without energy dissipation.

  7. Superconducting magnetic energy storage and superconducting self-supplied electromagnetic launcher

    Science.gov (United States)

    Ciceron, Jérémie; Badel, Arnaud; Tixador, Pascal

    2017-10-01

    Superconductors can be used to build energy storage systems called Superconducting Magnetic Energy Storage (SMES), which are promising as inductive pulse power source and suitable for powering electromagnetic launchers. The second generation of high critical temperature superconductors is called coated conductors or REBCO (Rare Earth Barium Copper Oxide) tapes. Their current carrying capability in high magnetic field and their thermal stability are expanding the SMES application field. The BOSSE (Bobine Supraconductrice pour le Stockage d'Energie) project aims to develop and to master the use of these superconducting tapes through two prototypes. The first one is a SMES with high energy density. Thanks to the performances of REBCO tapes, the volume energy and specific energy of existing SMES systems can be surpassed. A study has been undertaken to make the best use of the REBCO tapes and to determine the most adapted topology in order to reach our objective, which is to beat the world record of mass energy density for a superconducting coil. This objective is conflicting with the classical strategies of superconducting coil protection. A different protection approach is proposed. The second prototype of the BOSSE project is a small-scale demonstrator of a Superconducting Self-Supplied Electromagnetic Launcher (S3EL), in which a SMES is integrated around the launcher which benefits from the generated magnetic field to increase the thrust applied to the projectile. The S3EL principle and its design are presented. Contribution to the topical issue "Electrical Engineering Symposium (SGE 2016)", edited by Adel Razek

  8. Nanoscale superconducting memory based on the kinetic inductance of asymmetric nanowire loops

    International Nuclear Information System (INIS)

    Murphy, Andrew; Bezryadin, Alexey; Averin, Dmitri V

    2017-01-01

    The demand for low-dissipation nanoscale memory devices is as strong as ever. As Moore’s law is staggering, and the demand for a low-power-consuming supercomputer is high, the goal of making information processing circuits out of superconductors is one of the central goals of modern technology and physics. So far, digital superconducting circuits could not demonstrate their immense potential. One important reason for this is that a dense superconducting memory technology is not yet available. Miniaturization of traditional superconducting quantum interference devices is difficult below a few micrometers because their operation relies on the geometric inductance of the superconducting loop. Magnetic memories do allow nanometer-scale miniaturization, but they are not purely superconducting (Baek et al 2014 Nat. Commun. 5 3888). Our approach is to make nanometer scale memory cells based on the kinetic inductance (and not geometric inductance) of superconducting nanowire loops, which have already shown many fascinating properties (Aprili 2006 Nat. Nanotechnol. 1 15; Hopkins et al 2005 Science 308 1762). This allows much smaller devices and naturally eliminates magnetic-field cross-talk. We demonstrate that the vorticity, i.e., the winding number of the order parameter, of a closed superconducting loop can be used for realizing a nanoscale nonvolatile memory device. We demonstrate how to alter the vorticity in a controlled fashion by applying calibrated current pulses. A reliable read-out of the memory is also demonstrated. We present arguments that such memory can be developed to operate without energy dissipation. (paper)

  9. High-current pulses from inductive energy stores

    International Nuclear Information System (INIS)

    Wipf, S.L.

    1981-01-01

    Superconducting inductive energy stores can be used for high power pulse supplies if a suitable current multiplication scheme is used. The concept of an inductive Marx generator is superior to a transformer. A third scheme, a variable flux linkage device, is suggested; in multiplying current it also compresses energy. Its function is in many ways analogous to that of a horsewhip. Superconductor limits indicate that peak power levels of TW can be reached for stored energies above 1 MJ

  10. Superconducting inductive displacement detection of a microcantilever

    Science.gov (United States)

    Vinante, A.

    2014-07-01

    We demonstrate a superconducting inductive technique to measure the displacement of a micromechanical resonator. In our scheme, a type I superconducting microsphere is attached to the free end of a microcantilever and approached to the loop of a dc Superconducting Quantum Interference Device (SQUID) microsusceptometer. A local magnetic field as low as 100 μT, generated by a field coil concentric to the SQUID, enables detection of the cantilever thermomechanical noise at 4.2 K. The magnetomechanical coupling and the magnetic spring are in good agreement with image method calculations assuming pure Meissner effect. These measurements are relevant to recent proposals of quantum magnetomechanics experiments based on levitating superconducting microparticles.

  11. Loss and Inductance Investigation in Superconducting Cable Conductors

    DEFF Research Database (Denmark)

    Olsen, Søren Krüger; Tønnesen, Ole; Træholt, Chresten

    1999-01-01

    An important parameter in the design and optimization of a superconducting cable conductor is the control of the current distribution among single tapes and layers. This distribution is to a large degree determined by inductances, since the resistances are low. The self and mutual inductances...... of transport current and current distribution.This presentation is based on a number of experiments performed on prototype superconducting cable conductors. The critical current (1uV/cm) of the conductor at 77K was 1590 A (cable #1) and 3240 A (cable #2) respectively.At an rms current of 2 kA (50 Hz) the AC......-loss was measured on cable #2 to 0.6W/mxphase. This is, to our knowledge, the lowest AC-loss (at 2kA and 77K) of a high temperature superconducting cable conductor reported so far....

  12. Change in magnetic induction lines during the current-induced destruction of superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Makiei, B; Golab, S; Sikora, A; Troinar, E; Zacharko, W [Polska Akademia Nauk, Wroclaw. Instytut Niskich Temperatur i Badan Strukturalnych

    1976-09-01

    Recent results of experimental investigations show that during the current-induced destruction of superconductivity in cylindrical samples a non-azimuthal component of the magnetic induction arises. This 'autoparamagnetic effect' is observable both in type I and type II superconductors. Assuming a helical form for the magnetic flux filaments the angle between the magnetic induction lines and the plane perpendicular to the Pb + In alloy sample axis is estimated in several cases. A conceptual explanation of the energy losses in the resistive state is.

  13. Three-dimensional multi-terminal superconductive integrated circuit inductance extraction

    International Nuclear Information System (INIS)

    Fourie, Coenrad J; Wetzstein, Olaf; Kunert, Jürgen; Ortlepp, Thomas

    2011-01-01

    Accurate inductance calculations are critical for the design of both digital and analogue superconductive integrated circuits, and three-dimensional calculations are gaining importance with the advent of inductive biasing, inductive coupling and sky plane shielding for RSFQ cells. InductEx, an extraction programme based on the three-dimensional calculation software FastHenry, was proposed earlier. InductEx uses segmentation techniques designed to accurately model the geometries of superconductive integrated circuit structures. Inductance extraction for complex multi-terminal three-dimensional structures from current distributions calculated by FastHenry is discussed. Results for both a reflection plane modelling an infinite ground plane and a finite segmented ground plane that allows inductive elements to extend over holes in the ground plane are shown. Several SQUIDs were designed for and fabricated with IPHT's 1 kA cm −2 RSFQ1D niobium process. These SQUIDs implement a number of loop structures that span different layers, include vias, inductively coupled control lines and ground plane holes. We measured the loop inductance of these SQUIDs and show how the results are used to calibrate the layer parameters in InductEx and verify the extraction accuracy. We also show that, with proper modelling, FastHenry can be fast enough to be used for the extraction of typical RSFQ cell inductances.

  14. Change in magnetic induction lines during the current-induced destruction of superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Makiej, B; Golab, S; Sikora, A; Trojnar, E; Zacharko, W

    1976-09-01

    Recent results of experimental investigations show that during the current-induced destruction of superconductivity in cylindrical samples a non-azimuthal component of the magnetic induction arises. This ''autoparamagnetic effect'' is observable both in type I and type II superconductors. Assuming a helical form for the magnetic flux filaments the angle between the magnetic induction lines and the plane perpendicular to the Pb + In alloy sample axis is estimated in several cases. A conceptual explanation of the energy losses in the resistive state is presented. 4 refs.

  15. Superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Rogers, J.D.; Boenig, H.J.

    1978-01-01

    Superconducting inductors provide a compact and efficient means of storing electrical energy without an intermediate conversion process. Energy storage inductors are under development for diurnal load leveling and transmission line stabilization in electric utility systems and for driving magnetic confinement and plasma heating coils in fusion energy systems. Fluctuating electric power demands force the electric utility industry to have more installed generating capacity than the average load requires. Energy storage can increase the utilization of base-load fossil and nuclear power plants for electric utilities. Superconducting magnetic energy storage (SMES) systems, which will store and deliver electrical energy for load leveling, peak shaving, and the stabilization of electric utility networks are being developed. In the fusion area, inductive energy transfer and storage is also being developed by LASL. Both 1-ms fast-discharge theta-pinch and 1-to-2-s slow tokamak energy transfer systems have been demonstrated. The major components and the method of operation of an SMES unit are described, and potential applications of different size SMES systems in electric power grids are presented. Results are given for a 1-GWh reference design load-leveling unit, for a 30-MJ coil proposed stabilization unit, and for tests with a small-scale, 100-kJ magnetic energy storage system. The results of the fusion energy storage and transfer tests are also presented. The common technology base for the systems is discussed

  16. Induction motor for superconducting synchronous/asynchronous motor

    International Nuclear Information System (INIS)

    Litz, D.C.; Haller, H.E. III.

    1975-01-01

    An induction motor structure for use on the outside of a superconducting rotor comprising a cylindrical shell of solid and laminated, magnetic iron with squirrel cage windings embedded in the outer circumference of said shell is described. The sections of the shell between the superconducting windings of the rotor are solid magnetic iron. The sections of the shell over the superconducting windings are made of laminations of magnetic iron. These laminations are parallel to the axis of the machine and are divided in halves with the laminations in each half oriented in diagonal opposition so that the intersection of the laminations forms a V. This structure presents a relatively high reluctance to leakage flux from the superconducting windings in the synchronous operating mode, while presenting a low reluctance path to the stator flux during asynchronous operation

  17. A novel induction motor starting method using superconduction

    International Nuclear Information System (INIS)

    Silva, F.B.B.; Orlando, M.T.D.; Fardin, J.F.; Simonetti, D.S.; Baldan, C.A.

    2014-01-01

    Highlights: • Alternative method for starting up induction motor. • Based on using a high-temperature superconductor. • A prototype of the limiter was constructed with a 2G-YBCO tape. • Prototype was tested with a 55-kW industrial induction motor in a 440-V/60-Hz. • Offers reduced current waveform distortion compared to the soft starter method. - Abstract: In this paper, an alternative method for starting up induction motors is proposed, taking into account experimental measurements. The new starting current limitation method is based on using a high-temperature superconductor. A prototype of the superconducting starting current limiter was constructed with a commercially available second-generation high-temperature superconductor YBCO tape, and this was tested with a 55-kW industrial induction motor in a 440-V/60-Hz three-phase power grid. Performance evaluations of the superconducting limiter method (applied to startup of the induction motor) were performed and were compared with a direct-on-line starter and an electronic soft starter. In addition, a computational model was developed and used for electromagnetic torque analysis of the system. As significant characteristics, our method offers the ability to limit the starting current of the induction motor with greater electromagnetic torque, reduced current waveform distortion and therefore lower harmonic pollution during startup when compared to the soft starter method

  18. A novel induction motor starting method using superconduction

    Energy Technology Data Exchange (ETDEWEB)

    Silva, F.B.B., E-mail: flaviobarcelos@ifes.edu.br [Ifes – Federal Institute of Espírito Santo, Dept. of Industrial Automation, Serra, ES 29173087 (Brazil); UFES – Federal University of Espírito Santo, Dept. of Electrical Engineering, Vitória, ES (Brazil); Orlando, M.T.D. [UFES – Federal University of Espírito Santo, Dept. of Physics, Vitória, ES (Brazil); Fardin, J.F.; Simonetti, D.S. [UFES – Federal University of Espírito Santo, Dept. of Electrical Engineering, Vitória, ES (Brazil); Baldan, C.A. [EEL/USP – Engineering School from Lorena/University of São Paulo, SP (Brazil)

    2014-12-15

    Highlights: • Alternative method for starting up induction motor. • Based on using a high-temperature superconductor. • A prototype of the limiter was constructed with a 2G-YBCO tape. • Prototype was tested with a 55-kW industrial induction motor in a 440-V/60-Hz. • Offers reduced current waveform distortion compared to the soft starter method. - Abstract: In this paper, an alternative method for starting up induction motors is proposed, taking into account experimental measurements. The new starting current limitation method is based on using a high-temperature superconductor. A prototype of the superconducting starting current limiter was constructed with a commercially available second-generation high-temperature superconductor YBCO tape, and this was tested with a 55-kW industrial induction motor in a 440-V/60-Hz three-phase power grid. Performance evaluations of the superconducting limiter method (applied to startup of the induction motor) were performed and were compared with a direct-on-line starter and an electronic soft starter. In addition, a computational model was developed and used for electromagnetic torque analysis of the system. As significant characteristics, our method offers the ability to limit the starting current of the induction motor with greater electromagnetic torque, reduced current waveform distortion and therefore lower harmonic pollution during startup when compared to the soft starter method.

  19. Superconducting magnets in the world of energy, especially in fusion power

    International Nuclear Information System (INIS)

    Komarek, P.

    1976-01-01

    Industrial applications of superconducting magnets are only feasible in the near future for superconducting monopolar machines and possible MHD generators. For superconducting synchronous machines, after the successful operation of machines in the MVA range, a new phase of basic investigations has started. Fundamental problems which could not be studied in the MVA machines, but which influence the design of large turbo-alternators, must now be investigated. Fusion power by magnetic confinement will probably be the largest field of application for superconducting magnets in the long run. The present research programmes require large superconducting magnets by the mid-1980s for the experimental reactors envisaged at that time. In addition to dc windings, pulse-operated superconducting windings are required in some systems, such as Tokamak. The high sensitivity of the overall plant efficiency and the active power demand of the pulsed windings require great efficiency from energy storage and transfer systems. Superconducting energy storage systems would be suitable for this, if transfer between inductances could be provided with sufficient efficiency. Basic experiments gave encouraging results. In power plant systems and electric machines an extremely high level of reliability and availability has been achieved. Less reliability will not be accepted for systems with superconducting magnets. This requires great efforts during the development work. (author)

  20. Experimentally verified inductance extraction and parameter study for superconductive integrated circuit wires crossing ground plane holes

    International Nuclear Information System (INIS)

    Fourie, Coenrad J; Wetzstein, Olaf; Kunert, Juergen; Meyer, Hans-Georg; Toepfer, Hannes

    2013-01-01

    As the complexity of rapid single flux quantum (RSFQ) circuits increases, both current and power consumption of the circuits become important design criteria. Various new concepts such as inductive biasing for energy efficient RSFQ circuits and inductively coupled RSFQ cells for current recycling have been proposed to overcome increasingly severe design problems. Both of these techniques use ground plane holes to increase the inductance or coupling factor of superconducting integrated circuit wires. New design tools are consequently required to handle the new topographies. One important issue in such circuit design is the accurate calculation of networks of inductances even in the presence of finite holes in the ground plane. We show how a fast network extraction method using InductEx, which is a pre- and post-processor for the magnetoquasistatic field solver FastHenry, is used to calculate the inductances of a set of SQUIDs (superconducting quantum interference devices) with ground plane holes of different sizes. The results are compared to measurements of physical structures fabricated with the IPHT Jena 1 kA cm −2 RSFQ niobium process to verify accuracy. We then do a parameter study and derive empirical equations for fast and useful estimation of the inductance of wires surrounded by ground plane holes. We also investigate practical circuits and show excellent accuracy. (paper)

  1. High-kinetic inductance additive manufactured superconducting microwave cavity

    Science.gov (United States)

    Holland, Eric T.; Rosen, Yaniv J.; Materise, Nicholas; Woollett, Nathan; Voisin, Thomas; Wang, Y. Morris; Torres, Sharon G.; Mireles, Jorge; Carosi, Gianpaolo; DuBois, Jonathan L.

    2017-11-01

    Investigations into the microwave surface impedance of superconducting resonators have led to the development of single photon counters that rely on kinetic inductance for their operation, while concurrent progress in additive manufacturing, "3D printing," opens up a previously inaccessible design space for waveguide resonators. In this manuscript, we present results from the synthesis of these two technologies in a titanium, aluminum, vanadium (Ti-6Al-4V) superconducting radio frequency resonator which exploits a design unattainable through conventional fabrication means. We find that Ti-6Al-4V has two distinct superconducting transition temperatures observable in heat capacity measurements. The higher transition temperature is in agreement with DC resistance measurements, while the lower transition temperature, not previously known in the literature, is consistent with the observed temperature dependence of the superconducting microwave surface impedance. From the surface reactance, we extract a London penetration depth of 8 ± 3 μm—roughly an order of magnitude larger than other titanium alloys and several orders of magnitude larger than other conventional elemental superconductors.

  2. Minimum Quench Energy and Early Quench Development in NbTi Superconducting Strands

    CERN Document Server

    Breschi, M; Boselli, M; Bottura, Luca; Devred, Arnaud; Ribani, P L; Trillaud, F

    2007-01-01

    The stability of superconducting wires is a crucial task in the design of safe and reliable superconducting magnets. These magnets are prone to premature quenches due to local releases of energy. In order to simulate these energy disturbances, various heater technologies have been developed, such as coated tips, graphite pastes, and inductive coils. The experiments studied in the present work have been performed using a single-mode diode laser with an optical fiber to illuminate the superconducting strand surface. Minimum quench energies and voltage traces at different magnetic flux densities and transport currents have been measured on an LHC-type, Cu/NbTi wire bathed in pool boiling helium I. This paper deals with the numerical analysis of the experimental data. In particular, a coupled electromagnetic and thermal model has been developed to study quench development and propagation, focusing on the influence of heat exchange with liquid helium.

  3. Inductive Soldering of the Junctions of the Main Superconducting Busbars of the LHC

    CERN Document Server

    Jacquemod, A; Schauf, F; Skoczen, Blazej; Tock, J P

    2004-01-01

    The Large Hadron Collider (LHC) is the next world-facility for the high energy physics community, presently under construction at CERN, Geneva. The LHC will bring into collisions intense beams of protons and ions. The main components of the LHC are the twin-aperture high-field superconducting cryomagnets that will be installed in the existing 26.7-km long tunnel. They are powered in series by superconducting Nb-Ti cables. Along the machine, about 60 000 joints between superconducting cables must be realised in-situ during the installation. Ten thousands of them, rated at 13 000 A, are involved in the powering scheme of the main dipoles and quadrupoles. To meet the requirements of the cryogenic budget, an electrical resistance at operating temperature (1.9 K) lower than 0.6 nW has to be achieved. The induction soldering technology was selected for this purpose. After a brief introduction to the LHC project, the constraints and requirements are listed. Then, the applied solution is detailed. The splices of the ...

  4. A novel approach to calculate inductance and analyze magnetic flux density of helical toroidal coil applicable to Superconducting Magnetic Energy Storage systems (SMES)

    International Nuclear Information System (INIS)

    Alizadeh Pahlavani, M.R.; Shoulaie, A.

    2010-01-01

    In this paper, formulas are proposed for the self and mutual inductance calculations of the helical toroidal coil (HTC) by the direct and indirect methods at superconductivity conditions. The direct method is based on the Neumann's equation and the indirect approach is based on the toroidal and the poloidal components of the magnetic flux density. Numerical calculations show that the direct method is more accurate than the indirect approach at the expense of its longer computational time. Implementation of some engineering assumptions in the indirect method is shown to reduce the computational time without loss of accuracy. Comparison between the experimental measurements and simulated results for inductance, using the direct and the indirect methods indicates that the proposed formulas have high reliability. It is also shown that the self inductance and the mutual inductance could be calculated in the same way, provided that the radius of curvature is >0.4 of the minor radius, and that the definition of the geometric mean radius in the superconductivity conditions is used. Plotting contours for the magnetic flux density and the inductance show that the inductance formulas of helical toroidal coil could be used as the basis for coil optimal design. Optimization target functions such as maximization of the ratio of stored magnetic energy with respect to the volume of the toroid or the conductor's mass, the elimination or the balance of stress in some coordinate directions, and the attenuation of leakage flux could be considered. The finite element (FE) approach is employed to present an algorithm to study the three-dimensional leakage flux distribution pattern of the coil and to draw the magnetic flux density lines of the HTC. The presented algorithm, due to its simplicity in analysis and ease of implementation of the non-symmetrical and three-dimensional objects, is advantageous to the commercial software such as ANSYS, MAXWELL, and FLUX. Finally, using the

  5. Inductive Shimming of Superconductive Undulators - Preparations for a realistic test

    CERN Document Server

    Schoerling, D; Bernhard,; Burkart, F; Ehlers, S; Gerstl, S; Grau, A; Peiffer, P; Rossmanith, R; Wollmann, D

    2010-01-01

    The monochromaticity and intensity of synchrotron light emitted by undulators strongly depend on the undulator field quality. For the particular case of superconductive undulators it was shown recently that their field quality can be significantly improved by an array of coupled high temperature superconductor loops attached to the surface of the superconductive undulator. Local field errors induce currents in the coupled closed superconducting loops and, as a result, the hereby generated magnetic field minimizes the field errors. In previous papers the concept was described theoretically and a proof-of-principle experiment was reported. This paper reports on a prepatation experiment for the first quantitative measurement of the phase error reduction in a 13-period short model undulator equipped with a full-scale induction shimming system.

  6. Superconducting kinetic inductance detectors for astrophysics

    International Nuclear Information System (INIS)

    Vardulakis, G; Withington, S; Goldie, D J; Glowacka, D M

    2008-01-01

    The kinetic inductance detector (KID) is an exciting new device that promises high-sensitivity, large-format, submillimetre to x-ray imaging arrays for astrophysics. KIDs comprise a superconducting thin-film microwave resonator capacitively coupled to a probe transmission line. By exciting the electrical resonance with a microwave probe signal, the transmission phase of the resonator can be monitored, allowing the deposition of energy or power to be detected. We describe the fabrication and low-temperature testing, down to 26 mK, of a number of devices, and confirm the basic principles of operation. The KIDs were fabricated on r-plane sapphire using superconducting niobium and aluminium as the resonator material, and tantalum as the x-ray absorber. KID quality factors of up to Q = (741 ± 15) × 10 3 were measured for niobium at 1 K, and quasiparticle effective recombination times of τ* R = 30 µs after x-ray absorption. Al/Ta quasiparticle traps were combined with resonators to make complete detectors. These devices were operated at 26 mK with quality factors of up Q = (187.7 ± 3.5) × 10 3 and a phase-shift responsivity of ∂θ/∂N qp = (5.06 ± 0.23) × 10 −6 degrees per quasiparticle. Devices were characterized both at thermal equilibrium and as x-ray detectors. A range of different x-ray pulse types was observed. Low phase-noise readout measurements on Al/Ta KIDs gave a minimum NEP = 1.27 × 10 −16 W Hz −1/2 at a readout frequency of 550 Hz and NEP = 4.60 × 10 −17 W Hz −1/2 at 95 Hz, for effective recombination times τ* R = 100 µs and τ* R = 350 µs respectively. This work demonstrates that high-sensitivity detectors are possible, encouraging further development and research into KIDs

  7. Effect of coupling currents on the dynamic inductance during fast transient in superconducting magnets

    Directory of Open Access Journals (Sweden)

    V. Marinozzi

    2015-03-01

    Full Text Available We present electromagnetic models aiming to calculate the variation of the inductance in a magnet due to dynamic effects such as the variation of magnetization or the coupling with eddy currents. The models are studied with special regard to the calculation of the inductance in superconducting magnets which are affected by interfilament coupling currents. The developed models have been compared with experimental data coming from tests of prototype Nb_{3}Sn magnets designed for the new generation of accelerators. This work is relevant for the quench protection study of superconducting magnets: quench is an unwanted event, when part of the magnet becomes resistive; in these cases, the current should be discharged as fast as possible, in order to maintain the resistive zone temperature under a safe limit. The magnet inductance is therefore a relevant term for the description of the current discharge, especially for the high-field new generation superconducting magnets for accelerators, and this work shows how to calculate the correct value during rapid current changes, providing a mean for simulations of the reached temperature.

  8. Superconducting magnets in high energy physics

    International Nuclear Information System (INIS)

    Prodell, A.G.

    1978-01-01

    The applications of superconducting magnets in high energy physics in the last ten years have made feasible developments which are vital to high energy research. These developments include high magnetic field, large volume detectors, such as bubble chambers, required for effective resolution of high energy particle trajectories, particle beam transport magnets, and superconducting focusing and bending magnets for the very high energy accelerators and storage rings needed to pursue the study of interactions between elementary particles. The acceptance of superconductivity as a proven technology in high energy physics was reinforced by the recognition that the existing large accelerators using copper-iron magnets had reached practical limits in terms of magnetic field intensity, cost, space, and energy usage, and that large-volume, high-field, copper-iron magnets were not economically feasible. Some of the superconducting magnets and associated systems being used in and being developed for high energy physics are described

  9. Future IBM-BNL large-area superconducting inductive monopole detectors

    International Nuclear Information System (INIS)

    Bermon, S.; Chi, C.C.; Tsuei, C.C.; Chaudhari, P.; Ketchen, M.; Tesche, C.D.; Prodell, A.

    1986-01-01

    The observation of massive moving magnetic monopoles would have extremely important implications for grand unification theories and cosmological models for the creation of the universe. Among detection methods, the superconducting induction technique is unique in that it directly and unambiguously measures the sole property of the monopole of which the authors are certain--its magnetic charge--the detector response being independent of all other characteristics such as the monopole mass, its velocity, the presence of a companion electric charge, or the detailed nature of its interaction with matter. Described herein are plans for constructing an induction detector sufficiently large to reach the Parker bound in several years of operation

  10. Inductance calculation of 3D superconducting structures with ground plane

    International Nuclear Information System (INIS)

    Teh, C.H.; Kitagawa, M.; Okabe, Y.

    1999-01-01

    An inductance calculation method, which is based on calculating the current distribution of a fluxoid-trapped superconducting loop by using the expression of momentum and the Maxwell equations, is reconstructed to enable calculation of arbitrary 3D structures which have a ground plane (GP). Calculation of the mutual inductances of the superconductor system is also incorporated into the algorithm. The method of images is used to save computational resources, and the mirror plane is demonstrated to be just at the effective penetration depth below the upper boundary of the GP. The algorithm offers accurate results with reasonable calculation time. (author)

  11. Superconductive energy storage magnet study

    International Nuclear Information System (INIS)

    Rhee, S.W.

    1982-01-01

    Among many methods of energy storages the superconducting energy storage has been considered as the most promising method. Many related technical problems are still unsolved. One of the problems is the magnetizing and demagnetizing loss of superconducting coil. This loss is mainly because of hysteresis of pinning force. In this paper the hysteresis loss is calculated and field dependence of the a.c. losses is explained. The ratio of loss and stored energy is also calculated. (Author)

  12. Superconducting magnetic energy storage for electric utilities and fusion systems

    International Nuclear Information System (INIS)

    Rogers, J.D.; Boenig, H.J.; Hassenzahl, W.V.

    1978-01-01

    Superconducting inductors provide a compact and efficient means of storing electrical energy without an intermediate conversion process. Energy storage inductors are under development for load leveling and transmission line stabilization in electric utility systems and for driving magnetic confinement and plasma heating coils in fusion energy systems. Fluctuating electric power demands force the electric utility industry to have more installed generating capacity than the average load requires. Energy storage can increase the utilization of base-load fossil and nuclear power plants for electric utilities. The Los Alamos Scientific Laboratory and the University of Wisconsin are developing superconducting magnetic energy storage (SMES) systems, which will store and deliver electrical energy for load leveling, peak shaving, and the stabilization of electric utility networks. In the fusion area, inductive energy transfer and storage is being developed. Both 1-ms fast-discharge theta-pinch systems and 1-to-2-s slow energy transfer tokamak systems have been demonstrated. The major components and the method of operation of a SMES unit are described, and potential applications of different size SMES systems in electric power grids are presented. Results are given of a reference design for a 10-GWh unit for load leveling, of a 30-MJ coil proposed for system stabilization, and of tests with a small-scale, 100-kJ magnetic energy storage system. The results of the fusion energy storage and transfer tests are presented. The common technology base for the various storage systems is discussed

  13. Playing catch with energy between two superconducting coils

    International Nuclear Information System (INIS)

    Masuda, Masayoshi; Shintomi, Takakazu; Asaji, Kiyoyuki.

    1979-03-01

    The first performance of playing catch with energy between two 100 kJ superconducting magnets has been presented. The mechanism of the energy transfer as an interface between the superconducting coils is a thyristorized DC-AC-DC converter. The obtained experimental efficiency of energy transfer has been compared with the theory and good agreement has been obtained. The method will offer a versatile extension of superconductive technique in energy problems. (author)

  14. Inductive voltage compensation in superconducting magnet systems

    International Nuclear Information System (INIS)

    Yeh, H.T.; Goddard, J.S.; Shen, S.S.

    1979-01-01

    This paper details several techniques of inductive voltage compensation developed for quench detection in superconducting magnet systems with multiple coils and power supplies, with particular application for the Large Coil Test Facility (LCTF). Sources of noise, their magnitudes, and the sensitivity required for normal zone detection to avoid damage to the magnets are discussed. Two passive compensation schemes (second difference and central difference) are introduced and illustrated by parameters of LCTF; these take advantage of coil symmetries and other system characteristics. An active compensation scheme based on current rate input fom pickup coils and utilizing theory on ac loss voltage for calibration was tested, and the experimental setup and test results are discussed

  15. Superconducting nanowires as nonlinear inductive elements for qubits

    Science.gov (United States)

    Ku, Jaseung; Manucharyan, Vladimir; Bezryadin, Alexey

    2011-03-01

    We report microwave transmission measurements of superconducting Fabry-Perot resonators, having a superconducting nanowire placed at a supercurrent antinode. As the plasma oscillation is excited, the supercurrent is forced to flow through the nanowire. The microwave transmission of the resonator-nanowire device shows a nonlinear resonance behavior, significantly dependent on the amplitude of the supercurrent oscillation. We show that such amplitude-dependent response is due to the nonlinearity of the current-phase relationship of the nanowire. The results are explained within a nonlinear oscillator model of the Duffing oscillator, in which the nanowire acts as a purely inductive element, in the limit of low temperatures and low amplitudes. The low-quality factor sample exhibits a ``crater'' at the resonance peak at higher driving power, which is due to dissipation. We observe a hysteretic bifurcation behavior of the transmission response to frequency sweep in a sample with a higher quality factor. The Duffing model is used to explain the Duffing bistability diagram. NSF DMR-1005645, DOE DO-FG02-07ER46453.

  16. Power flow control and damping enhancement of a large wind farm using a superconducting magnetic energy storage unit

    DEFF Research Database (Denmark)

    Chen, S. S.; Wang, L.; Lee, W. J.

    2009-01-01

    A novel scheme using a superconducting magnetic energy storage (SMES) unit to perform both power flow control and damping enhancement of a large wind farm (WF) feeding to a utility grid is presented. The studied WF consisting of forty 2 MW wind induction generators (IGs) is simulated...

  17. Optimization of the protective energy removal parameters for tokamak HT7-U superconducting magnets

    Energy Technology Data Exchange (ETDEWEB)

    Khvostenko, P.P.; Chudnovsky, A.N.; Posadsky, I.A. [RRC ' Kurchatov Inst.' , Nuclear Fusion Inst., Moscow (Russian Federation); Bi, Y.F.; Cheng, S.M.; He, Y.X. [Academia Sinica, Hefei, Anhui (China). Inst. of Plasma Physics

    1998-07-01

    The design of the HT-7U superconducting tokamak is in progress now. The design incorporates superconducting magnets of the toroidal field and poloidal field systems. Toroidal field system consists of 16 D-shape coils and poloidal field system consists of 12 coils. All coils will be use NbTi/Cu cable-in-conduit conductor cooled with forced-flow supercritical helium at 4.5 K, 4 Bar. Quench in the superconducting magnets is accompanied byconversion of the stored magnetic field energy into a thermal one which is spent on heating of both the coil part which made transition into a normal state and dump resistors. A non-uniform heating of the coil part results in the emergence of thermomechanical stresses which can cause its destruction. The protective removal of a current is realized to prevent the coil destruction at the emergence of the quench. In that case, the faster the current removal occurs, the less the coil heating is. On the other hand, the current removal rate should not be too high in order to avoid an electric breakdown by the excited inductive voltage. Optimization of the protective energy removal parameters both for TF and PF superconducting magnets is presented. (author)

  18. Optimization of the protective energy removal parameters for tokamak HT7-U superconducting magnets

    International Nuclear Information System (INIS)

    Khvostenko, P.P.; Chudnovsky, A.N.; Posadsky, I.A.; Bi, Y.F.; Cheng, S.M.; He, Y.X.

    1998-01-01

    The design of the HT-7U superconducting tokamak is in progress now. The design incorporates superconducting magnets of the toroidal field and poloidal field systems. Toroidal field system consists of 16 D-shape coils and poloidal field system consists of 12 coils. All coils will be use NbTi/Cu cable-in-conduit conductor cooled with forced-flow supercritical helium at 4.5 K, 4 Bar. Quench in the superconducting magnets is accompanied by conversion of the stored magnetic field energy into a thermal one which is spent on heating of both the coil part which made transition into a normal state and dump resistors. A non-uniform heating of the coil part results in the emergence of thermomechanical stresses which can cause its destruction. The protective removal of a current is realized to prevent the coil destruction at the emergence of the quench. In that case, the faster the current removal occurs, the less the coil heating is. On the other hand, the current removal rate should not be too high in order to avoid an electric breakdown by the excited inductive voltage. Optimization of the protective energy removal parameters both for TF and PF superconducting magnets is presented. (author)

  19. Characteristic Of Induction Magnetic Field On The Laboratory Scale Superconducting Fault Current Limiter Circuit

    International Nuclear Information System (INIS)

    Adi, Wisnu Ari; Sukirman, E.; Didin, S.W.; Yustinus, P.M.; Siregar, Riswal H.

    2004-01-01

    Model construction of the laboratory scale superconducting fault current limiter circuit (SFCL) has been performed. The SFCL is fault current limiter and used as electric network security. It mainly consists of a copper coil, a superconducting ring and an iron core that are concentrically arranged. The SFCL circuit is essentially a transformer where the secondary windings are being replaced by the ring of YBa 2 Cu 3 O 7-x superconductor (HTS). The ring has critical transition temperature Tc = 92 K and critical current Ic = 3.61 A. Characterization of the SFCL circuit is simulated by ANSYS version 5.4 software. The SFCL circuit consists of load and transformer impedances. The results show that the inductions of magnet field flux in the iron core of primer windings and ring disappear to one other before fault state. It means that impedance of the transformer is zero. After the condition a superconductivity behavior of the ring is disappear so that the impedance of the transformer becomes very high. From this experiment, we concluded that the SFCL circuit could work normally if the resultant of induction magnetic in the iron core (transformer) is zero

  20. Superconducting magnetic energy storage, possibilities and limitations

    International Nuclear Information System (INIS)

    Bace, M.; Knapp, V.

    1981-01-01

    Energy storage is of great importance for the exploitation of new energy sources as well as for the better utilisation of conventional ones. Several proposals in recent years have suggested that superconducting magnets could be used as energy storage in large electricity networks. It is a purpose of this note to point out that the requirements which have to be met by energy storage in a large electricity network place serious limitation on the possible use of superconducting energy storage. (author)

  1. Superconducting magnetic energy storage (SMES) program. Progress report, January 1-December 31, 1980

    International Nuclear Information System (INIS)

    Rogers, J.D.

    1981-03-01

    Work is reported on the development of two superconducting magnetic energy storage (SMES) units. One is a 30-MJ unit for use by the Bonneville Power Administration (BPA) to stabilize power oscillations on their Pacific AC Intertie, and the second is a 1- to 10-GWh unit for use as a diurnal load leveling device. Emphasis has been on the stabilizing system. The manufacturing phase of the 30-MJ superconducting coil was initiated and the coil fabrication has advanced rapidly. The two converter power transformers were manufactured, successfully factory tested, and shipped. One transformer reached the Tacoma Substation in good condition; the other was dropped enroute and has been returned to the factory for rebuilding. Insulation of the 30-MJ coil has been examined for high voltage effects apt to be caused by transients such as inductive voltage spikes from the protective dump circuit. The stabilizing system converter and protective energy dump system were completed, factory tested, and delivered

  2. Analysis of magnetic energy stored in superconducting coils with and without ferromagnetic inserts

    International Nuclear Information System (INIS)

    Cha, Y.S.

    1993-01-01

    Inductance and energy of superconducting coils are calculated by (1) a long-solenoid approximation, (2) a finite-element model, and (3) working formulas and tables. The results of the finite-element model compare favorably with those of the working formulas. The long-solenoid approximation overpredicts the energy and inductance compared to the other two methods. The difference decreases with increasing length-to-diameter ratio. Energy stored in a coil with a ferromagnetic insert is calculated by using a long-solenoid approximation and a finite-element model. The analysis shows that the gain in energy ratio is equal to the relative permeability of the insert (which decreases with increasing current or current density). Even though large gains can be achieved at relatively low currents, the energy level itself is too low. The stored energy increases with current, but the gain decreases with increasing current because relative permeability decreases. If a coil with a diameter of 0.3 m and a length of 0.3 m is required to store 10 kJ of energy, the current density must equal 4000 A/cm 2 . The gain in energy ratio is equal to 2.55 when the insert is used

  3. Measurement of kinetic inductance of superconducting wires and application for measuring flux state of Josephson-junction loops

    Energy Technology Data Exchange (ETDEWEB)

    Shimazu, Y.; Yokoyama, T

    2004-10-01

    In order to realize strong coupling in a system of multiple flux qubits with a DC-SQUID, the use of kinetic inductance is advantageous because it can be much larger than geometrical inductance for narrow superconducting wires. We measured the inductance associated with narrow Al wires, and estimated the contributions of kinetic and geometrical inductances. The London penetration depth which determines the kinetic inductance is evaluated. We fabricated samples of two Josephson-junction loops and a DC-SQUID which are all coupled with kinetic inductances. The observed magnetic flux due to the loops is in good agreement with the result of numerical simulation based on the estimated inductances.

  4. Capacitor energy needed to induce transitions from the superconducting to the normal state

    International Nuclear Information System (INIS)

    Eberhard, P.H.; Ross, R.R.

    1985-08-01

    The purpose of this paper is to describe a technique to turn a long length of superconducting wire normal by dumping a charged capacitor into it and justify some formulae needed in the design. The physical phenomenon is described. A formula for the energy to be stored in the capacitor is given. There are circumstances where the dc in an electrical circuit containing superconducting elements has to be turned off quickly and where the most convenient way to switch the current off is to turn a large portion or all of the superconducting wire normal. Such was the case of the Time Projection Chamber (TPC) superconducting magnet as soon as a quench was detected. The technique used was the discharge of a capacitor into the coil center tap. It turned the magnet winding normal in ten milliseconds or so and provided an adequate quench protection. The technique of discharging a capacitor into a superconducting wire should have many other applications whenever a substantial resistance in a superconducting circuit has to be generated in that kind of time scale. The process involves generating a pulse of large currents in some part of the circuit and heating the wire up by ac losses until the value of the wire critical current is smaller than the dc current. Use of low inductance connections to the circuit is necessary. Then the dc gets turned off due to the resistance of the wire as in a magnet quench

  5. A design study of superconducting energy storage system for a tokamak fusion reactor

    International Nuclear Information System (INIS)

    Ueda, Kazuo

    1979-01-01

    A design study of a superconducting inductive energy storage system (SC-IES) has been carried out in commission with JAERI. The SC-IES is to be applied to the power supply system for a tokamak experimental fusion reactor. The study was initiated with the definition of the requirement for the SC-IES and selection of the coil shape. The design of the coil and the cryostat has been followed. The design parameters are: stored energy 10 GJ, B max 8 T, conductor Nb-Ti, overall size 18 m (diameter) x 10 m (height). Technical problems and usefullness of SC-IES are discussed also. (author)

  6. Superconductivity in Spain. Midas program

    International Nuclear Information System (INIS)

    Yndurain, F.

    1996-01-01

    The different activities in the field of applied superconductivity carried out in Spain under the auspices of the MIDAS program are reported. Applications using both low- and high-temperature superconductors are considered. In the low temperature superconductors case, the design and construction of a 1 mega joule SMES (Superconducting Magnetic Energy Storage) unit, as well as the fabrication of voltage and resistance standards, are reviewed. Developments involving the design and fabrication of an inductive current fault limited and mono- and multi-filamentary wires and tapes using high-temperature superconductors are discussed. Finally, the prospects for the application of superconductivity technology to electric power systems for the electric utilities is considered. (author)

  7. Application of superconductivity to pulse fields

    International Nuclear Information System (INIS)

    Saito, Shigeo; Suzawa, Chizuru; Ohkura, Kengo; Nagata, Masayuki; Kawashima, Masao

    1984-01-01

    Numerous attempts to apply the superconductive phenomena of zero electrical resistivity to AC (pulsed) magnets in addition to conventional DC magnet fields are being made in the areas of poloidal coils of nuclear fusion, energy storage, rotary machines, and induction for stabilization of electric power systems. In pulsed superconductive magnets, the stability of the superconductivity and the generation of heat due to AC loss are serious problems. Based on the knowledge obtained through the development of various types of superconductors, magnets, cryostats, and other superconductive-related products, Cu-Ni/Cu/Nb-Ti mixed-matrix fine multifilamentary superconductor wire and the stable, low AC loss superconductors used therein, magnets, and FRP cryostats are developed and manufactured. (author)

  8. Research for superconducting energy storage patterns and its practical countermeasures

    Energy Technology Data Exchange (ETDEWEB)

    Lin, D.H., E-mail: lindehua_cn@yahoo.com.cn [College of Physics, Chongqing University, JD Duz (USA)-CQU Institute for Superconductivity, Chongqing 400030 (China); Cui, D.J.; Li, B.; Teng, Y.; Zheng, G.L. [College of Physics, Chongqing University, JD Duz (USA)-CQU Institute for Superconductivity, Chongqing 400030 (China); Wang, X.Q. [College of Physics, Chongqing University, JD Duz (USA)-CQU Institute for Superconductivity, Chongqing 400030 (China); State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400030 (China)

    2013-10-15

    Highlights: • Proposed some new ideas and strategies about how to improve the energy storage density for SMES system. • Increasing the effective current density in the superconducting coils or optimizing the configuration of the SMES coil could improve the energy storage density. • A new conceive of energy compression is also proposed. -- Abstract: In this paper, we attempt to introduce briefly the significance, the present status, as well as the working principle of the primary patterns of the superconducting energy storage system, first of all. According to the defect on the lower energy storage density of existed superconducting energy storage device, we proposed some new ideas and strategies about how to improve the energy storage density, in which, a brand-new but a tentative proposal regarding the concept of energy compression was emphasized. This investigation has a certain reference value towards the practical application of the superconducting energy storage.

  9. Research for superconducting energy storage patterns and its practical countermeasures

    International Nuclear Information System (INIS)

    Lin, D.H.; Cui, D.J.; Li, B.; Teng, Y.; Zheng, G.L.; Wang, X.Q.

    2013-01-01

    Highlights: • Proposed some new ideas and strategies about how to improve the energy storage density for SMES system. • Increasing the effective current density in the superconducting coils or optimizing the configuration of the SMES coil could improve the energy storage density. • A new conceive of energy compression is also proposed. -- Abstract: In this paper, we attempt to introduce briefly the significance, the present status, as well as the working principle of the primary patterns of the superconducting energy storage system, first of all. According to the defect on the lower energy storage density of existed superconducting energy storage device, we proposed some new ideas and strategies about how to improve the energy storage density, in which, a brand-new but a tentative proposal regarding the concept of energy compression was emphasized. This investigation has a certain reference value towards the practical application of the superconducting energy storage

  10. Recovery characteristics of flux-lock type superconducting fault current limiter

    International Nuclear Information System (INIS)

    Han, T.H.; Choi, H.S.; Lim, S.H.; Lee, N.Y.

    2007-01-01

    The flux-lock type superconducting fault current limiter (SFCL) has attractive characteristics that the current limiting level can be adjusted by a winding direction and the inductance ratio between two coils. We changed the winding direction and the number of coils to compare the resistive type SFCL with the flux-lock type SFCL. The initial limiting current (I ini ) and quench characteristic were dependent on the winding direction and the inductance ratio of two coils. As a winding number was increased from 21 to 42, I ini and quench characteristic were proportionally increased. In additive polarity winding, I ini was 10.2 A and the quench time (T q ) was 0.53 ms, which was faster than that of a subtractive polarity winding. The consumed energy and recovery characteristics in a superconducting element showed the same tendency. Recovery characteristics in the flux-lock type SFCL were dependent on the consumed energy of a superconducting element. The recovery time was related to a heat energy and it was represented as the consuming time of the heat energy. As the heat energy was shown in H 0.24I 2 Rt, the recovery time was shortened in the following order: a subtractive polarity winding, a resistive type and an additive polarity winding. It was known that the recovery time was proportional to a consumed energy of a superconducting element

  11. Superconductivity in high energy particle accelerators

    International Nuclear Information System (INIS)

    Schmueser, P.

    2002-08-01

    The basics of superconductivity are outlined with special emphasis on the features which are relevant for the application in magnets and radio frequency cavities for high energy particle accelerators. The special properties of superconducting accelerator magnets are described in detail: design principles, magnetic field calculations, magnetic forces, quench performance, persistent magnetization currents and eddy currents. The design principles and basic properties of superconducting cavities are explained as well as the observed performance limitations and the countermeasures. The ongoing research efforts towards maximum accelerating fields are addressed and the coupling of radio frequency power to the particle beam is treated. (orig.)

  12. Research and development of superconductivity for energy technology in electrotechnical laboratory

    International Nuclear Information System (INIS)

    Koyama, K.

    1984-01-01

    Superconductivity is a physical effect wherein the electrical resistivity disappears at cryogenic temperatures. Superconductivity has the advantage of following large current densities and high magnetic fields, which are stable and homogeneous. There are many applications of superconductivity which take advantage of these merits. It is of special importance to apply superconductors to alternative energy and energy saving technology. This paper presents briefly some of the research and development efforts to apply superconductivity to energy technology in the Electrotechnical Laboratory

  13. Inductive line energy storage generator

    Energy Technology Data Exchange (ETDEWEB)

    Choi, P [Ecole Polytechnique, Palaiseau (France). Laboratoire de Physique des Milieux Ionises

    1997-12-31

    The inductive energy storage (IES) generator has long been considered to be the most efficient system for energy usage in large pulsed power system at the MA level. A number of parameters govern the efficiency of energy transfer between the storage capacitors and the load, and the level of current deliverable to the load. For high power system, the energy storage capacitors are arranged as a Marx generator. The primary constraints are the inductances in the various parts of the circuit, in particular, the upstream inductance between the Marx and the POS, and the downstream inductance between the POS and the load. This paper deals with the effect of replacing part of the upstream inductance with a transmission line and introduces the new concept of an inductive line for energy storage (ILES). Extensive parametric scans were carried out on circuit simulations to investigate the effect of this upstream transmission line. A model was developed to explain the operation of the ILES design based on the data obtained. Comparison with an existing IES generator shows that the ILES design offers a significant improvement in the maximum current and hence energy delivered to an inductive load. (author). 5 figs., 1 ref.

  14. Superconducting Kinetic Inductance Detectors for astronomy and particle physics

    International Nuclear Information System (INIS)

    Calvo, M.; Goupy, J.; D'Addabbo, A.; Benoit, A.; Bourrion, O.; Catalano, A.; Monfardini, A.

    2016-01-01

    Kinetic Inductance Detectors (KID) represent a novel detector technology based on superconducting resonators. Since their first demonstration in 2003, they have been rapidly developed and are today a strong candidate for present and future experiments in the different bands of the electromagnetic spectrum. This has been possible thanks to the unique features of such devices: in particular, they couple a very high sensitivity to their intrinsic suitability for frequency domain multiplexed readout, making the fabrication of large arrays of ultrasensitive detectors possible. There are many fields of application that can profit of such detectors. Here, we will briefly review the principle of operation of a KID, and give two sample applications, to mm-wave astronomy and to particle physics.

  15. Superconducting Kinetic Inductance Detectors for astronomy and particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Calvo, M., E-mail: martino.calvo@neel.cnrs.fr [Institute Néel, CNRS, Grenoble (France); Goupy, J.; D' Addabbo, A.; Benoit, A. [Institute Néel, CNRS, Grenoble (France); Bourrion, O. [Laboratoire de Physique Subatomique et Cosmologie, CNRS, Grenoble (France); Catalano, A. [Institute Néel, CNRS, Grenoble (France); Laboratoire de Physique Subatomique et Cosmologie, CNRS, Grenoble (France); Monfardini, A. [Institute Néel, CNRS, Grenoble (France)

    2016-07-11

    Kinetic Inductance Detectors (KID) represent a novel detector technology based on superconducting resonators. Since their first demonstration in 2003, they have been rapidly developed and are today a strong candidate for present and future experiments in the different bands of the electromagnetic spectrum. This has been possible thanks to the unique features of such devices: in particular, they couple a very high sensitivity to their intrinsic suitability for frequency domain multiplexed readout, making the fabrication of large arrays of ultrasensitive detectors possible. There are many fields of application that can profit of such detectors. Here, we will briefly review the principle of operation of a KID, and give two sample applications, to mm-wave astronomy and to particle physics.

  16. Critical energy of superconducting composites

    International Nuclear Information System (INIS)

    Jayakumar, R.

    1987-01-01

    The stability of superconducting composites is studied in one-dimensional geometry and critical quench energies are calculated by solving for the steady state temperature profile which gives the minimum energy. The present calculations give lower values for the critical energy than previous estimates. The calculations are shown to be applicable to both direct cooled and impregnated conductors. Critical energies are also calculated including the effect of temperature dependence of conductor properties. (author)

  17. Superconducting energy store

    International Nuclear Information System (INIS)

    Elsel, W.

    1986-01-01

    The advantages obtained by the energy store device according to the invention with a superconducting solenoid system consist of the fact that only relatively short superconducting forward and return leads are required, which are collected into cables as far as possible. This limits the coolant losses of the cables. Only one relatively expensive connecting part with a transition of its conductors from room temperature to a low temperature is required, which, like the normal conducting current switch, is easily accessible. As the continuation has to be cooled independently of the upper part solenoid, cooling of this continuation part can prevent the introduction of large quantities of heat into the connected part solenoid. Due to the cooling of the forward and return conductors of the connecting cable with the coolant of the lower part solenoid, there are relatively few separations between the coolant spaces of the part solenoids. (orig./MM) [de

  18. Superconducting RF for energy-recovery linacs

    International Nuclear Information System (INIS)

    Liepe, M.; Knobloch, J.

    2006-01-01

    Since superconducting RF for particle accelerators made its first appearance in the 1970s, it has found highly successful application in a variety of machines. Recent progress in this technology has made so-called Energy-Recovery Linacs (ERLs)-originally proposed in 1965-feasible, and interest in this type of machine has increased enormously. A superconducting linac is the driving heart of ERLs, and emittance preservation and cost efficiency is of utmost importance. The resulting challenges for the superconducting cavity technology and RF field control are manifold. In March 2005 the first international workshop on ERLs was held at Newport News, VA, to explore the potential of ERLs and to discuss machine-physics and technology challenges and their solutions. This paper reviews the state-of-the-art in superconducting RF and RF control for ERLs, and summarizes the discussions of the SRF working group on this technology during the ERL2005 workshop

  19. Energy losses of superconducting power transmission cables in the grid

    DEFF Research Database (Denmark)

    Østergaard, Jacob; Okholm, Jan; Lomholt, Karin

    2001-01-01

    One of the obvious motives for development of superconducting power transmission cables is reduction of transmission losses. Loss components in superconducting cables as well as in conventional cables have been examined. These losses are used for calculating the total energy losses of conventional...... as well as superconducting cables when they are placed in the electric power transmission network. It is concluded that high load connections are necessary to obtain energy saving by the use of HTSC cables. For selected high load connections, an energy saving of 40% is expected. It is shown...

  20. Test equipment for a flywheel energy storage system using a magnetic bearing composed of superconducting coils and superconducting bulks

    International Nuclear Information System (INIS)

    Ogata, M; Matsue, H; Yamashita, T; Hasegawa, H; Nagashima, K; Maeda, T; Matsuoka, T; Mukoyama, S; Shimizu, H; Horiuchi, S

    2016-01-01

    Energy storage systems are necessary for renewable energy sources such as solar power in order to stabilize their output power, which fluctuates widely depending on the weather. Since ‘flywheel energy storage systems’ (FWSSs) do not use chemical reactions, they do not deteriorate due to charge or discharge. This is an advantage of FWSSs in applications for renewable energy plants. A conventional FWSS has capacity limitation because of the mechanical bearings used to support the flywheel. Therefore, we have designed a superconducting magnetic bearing composed of a superconducting coil stator and a superconducting bulk rotor in order to solve this problem, and have experimentally manufactured a large scale FWSS with a capacity of 100 kWh and an output power of 300 kW. The superconducting magnetic bearing can levitate 4 tons and enables the flywheel to rotate smoothly. A performance confirmation test will be started soon. An overview of the superconducting FWSS is presented in this paper. (paper)

  1. Superconducting systems of advanced sources of electrical energy in the USSR

    International Nuclear Information System (INIS)

    Demirchian, K.S.

    1987-01-01

    Two examples illustrating some of the possible applications of the superconductivity effect are discussed in this presentation. One of these examples, the MHD method of energy conversion, illustrates the use of superconducting magnet systems for raising the efficiency of conversion of organic fuel energy to electrical energy. The other example, the magnet system of Tokamak-type fusion facility, illustrates the use of superconductivity in application to new sources of energy. The choice of these examples is governed by the fact that the availability of superconducting systems is essential in both cases. Furthermore, the development of such systems per se presents a major scientific and technical achievement based on extensive studies in the field of solid state physics, electro- and thermophysics and engineering

  2. High Tc superconducting energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Werfel, Frank [Adelwitz Technologiezentrum GmbH (ATZ), Arzberg-Adelwitz (Germany)

    2012-07-01

    Electric energy is basic to heat and light our homes, to power our businesses and to transport people and goods. Powerful storage techniques like SMES, Flywheel, Super Capacitor, and Redox - Flow batteries are needed to increase the overall efficiency, stability and quality of electrical grids. High-Tc superconductors (HTS) possess superior physical and technical properties and can contribute in reducing the dissipation and losses in electric machines as motors and generators, in electric grids and transportation. The renewable energy sources as solar, wind energy and biomass will require energy storage systems even more as a key technology. We survey the physics and the technology status of superconducting flywheel energy storage (FESS) and magnetic energy storage systems (SMES) for their potential of large-scale commercialization. We report about a 10 kWh / 250 kW flywheel with magnetic stabilization of the rotor. The progress of HTS conductor science and technological engineering are basic for larger SMES developments. The performance of superconducting storage systems is reviewed and compared. We conclude that a broad range of intensive research and development in energy storage is urgently needed to produce technological options that can allow both climate stabilization and economic development.

  3. A chopper circuit for energy transfer between superconducting magnets

    International Nuclear Information System (INIS)

    Onishi, Toshitada; Tateishi, Hiroshi; Takeda, Masatoshi; Matsuura, Toshiaki; Nakatani, Toshio.

    1986-01-01

    It has been suggested that superconducting magnets could provide a medium for storing energy and supplying the large energy pulses needed by experimental nuclear-fusion equipment and similar loads. Based on this concept, tests on energy transfer between superconducting magnets are currently being conducted at the Agency of Industrial Science and Technology's Electrotechnical Laboratory. Mitsubishi Electric has pioneered the world's first chopper circuit for this application. The circuit has the advantages of being simple and permitting high-speed, bipolar energy transfer. The article describes this circuit and its testing. (author)

  4. PULSAR: an inductive pulse power source

    International Nuclear Information System (INIS)

    Cnare, E.C.; Brooks, W.P.; Cowan, M.

    1979-01-01

    The PULSAR concept of inductive pulsed power source uses a flux-compressing metallic or plasma armature rather than a fast opening switch to transfer magnetic flux to a load. The inductive store may be a relatively unsophisticated dc superconducting magnet since no magnetic energy is taken from it, and no large current transients are induced in it. Initial experimental efforts employed either expendable or reusable metallic armatures with a 200 kJ, 450 mm diameter superconducting magnet. Attention is now being focused on the development of much faster plasma armatures for use in larger systems of one and two meters diameter. Techniques used to generate the required high magnetic Reynolds number flow will be described and initial experimental results will be presented

  5. Large high current density superconducting solenoids for use in high energy physics experiments

    International Nuclear Information System (INIS)

    Green, M.A.; Eberhard, P.H.; Taylor, J.D.

    1976-05-01

    Very often the study of high energy physics in colliding beam storage-rings requires a large magnetic field volume in order to detect and analyze charged particles which are created from the collision of two particle beams. Large superconducting solenoids which are greater than 1 meter in diameter are required for this kind of physics. In many cases, interesting physics can be done outside the magnet coil, and this often requires that the amount of material in the magnet coil be minimized. As a result, these solenoids should have high current density (up to 10 9 A m -2 ) superconducting windings. The methods commonly used to stabilize large superconducting magnets cannot be employed because of this need to minimize the amount of material in the coils. A description is given of the Lawrence Berkeley Laboratory program for building and testing prototype solenoid magnets which are designed to operate at coil current densities in excess of 10 9 A m -2 with magnetic stored energies which are as high as 1.5 Megajoules per meter of solenoid length. The coils use intrinsically stable multifilament Nb--Ti superconductors. Control of the magnetic field quench is achieved by using a low resistance aluminum bore tube which is inductively coupled to the coil. The inner cryostat is replaced by a tubular cooling system which carries two phase liquid helium. The magnet coil, the cooling tubes, and aluminum bore tube are cast in epoxy to form a single unified magnet and cryogenic system which is about 2 centimeters thick. The results of the magnet coil tests are discussed

  6. Superconducting magnetic energy storage for asynchronous electrical systems

    Science.gov (United States)

    Boenig, Heinrich J.

    1986-01-01

    A superconducting magnetic energy storage coil connected in parallel between converters of two or more ac power systems provides load leveling and stability improvement to any or all of the ac systems. Control is provided to direct the charging and independently the discharging of the superconducting coil to at least a selected one of the ac power systems.

  7. Evaluation of inductive heating energy of a PF insert coil conductor by the calorimetric method (Contract research)

    International Nuclear Information System (INIS)

    Matsui, Kunihiro; Nabara, Yoshihiro; Nunoya, Yoshihiko; Koizumi, Norikiyo; Okuno, Kiyoshi

    2009-02-01

    The PF Insert Coil is a single layer solenoid coil using a superconducting conductor designed for ITER, housed in a Poloidal field coil and installed in the bore of the CS Model Coil. A stability test of the conductor will be performed in a magnetic field generated by the CS Model Coil. In this test, the inductive heat of an inductive heater attached to the conductor will be applied to initiate a normal zone in the conductor. Since the conductor for the PF Insert Coil is a cable-in-conduit conductor, it is quite difficult to estimate inductive heating energy theoretically. Thus, the inductive heating energy is measured experimentally by the calorimetric method. The heating energy is in proportion to a constant multiplied by the integrated square of an applied sinusoidal current wave over the heating period. Experimental results show that the proportional constants of the conductor, cable, conduit and dummy conductor are 0.138 [J/A 2 s], 0.028 [J/A 2 s], 0.118 [J/A 2 s] and 0.009 [J/A 2 s], respectively. The first three denote not only the inductive heating but also the joule heating of the inductive heater. The final value denotes joule heating only. Therefore, subtracting the first three constants by the last one, the proportional constants of inductive heating generated in the conductor, cable and conduit are estimated to be 0.129 [J/A 2 s], 0.019 [J/A 2 s] and 0.109 [J/A 2 s], respectively. (author)

  8. Suppression of Gain Ripples in Superconducting Traveling-Wave Kinetic Inductance Amplifiers

    Science.gov (United States)

    Bal, Mustafa; Erickson, Robert P.; Ku, Hsiang Sheng; Wu, Xian; Pappas, David P.

    Superconducting traveling-wave kinetic inductance (KIT) amplifiers demonstrated gain over a wide bandwidth with high dynamic range and low noise. However, the gain curve exhibits ripples. Impedance mismatch at the input and output ports of the KIT amplifier as wells as split ground planes of the coplanar waveguide (CPW) geometry are potential contributors to the ripple in the gain curve. Here we study the origin of these ripples in KIT amplifiers configured in CPW geometry using approximately 20 nm thick NbTiN films grown by reactive co-sputtering of NbN and TiN. Our NbTiN films have non-linear kinetic inductance as a function of current, described by L =L0 (1 +(I /I*) 2) , where I* = 15 . 96 +/- 0 . 11 mA measured by time domain reflectometry. We report the results of implementing an impedance taper that takes into account a significantly reduced phase velocity as it narrows, adding Au onto the CPW split grounds, as well as employing different designs of dispersion engineering. Qubit Measurements using KIT amplifiers will also be reported.

  9. Superconducting Nonlinear Kinetic Inductance Devices

    Data.gov (United States)

    National Aeronautics and Space Administration — Superconducting quantum interference devices, or SQUIDs, are by far the most sensitive magnetometers available, but two issues limit their commercial potential:...

  10. Local tuning of the order parameter in superconducting weak links: A zero-inductance nanodevice

    Science.gov (United States)

    Winik, Roni; Holzman, Itamar; Dalla Torre, Emanuele G.; Buks, Eyal; Ivry, Yachin

    2018-03-01

    Controlling both the amplitude and the phase of the superconducting quantum order parameter (" separators="|ψ ) in nanostructures is important for next-generation information and communication technologies. The lack of electric resistance in superconductors, which may be advantageous for some technologies, hinders convenient voltage-bias tuning and hence limits the tunability of ψ at the microscopic scale. Here, we demonstrate the local tunability of the phase and amplitude of ψ, obtained by patterning with a single lithography step a Nb nano-superconducting quantum interference device (nano-SQUID) that is biased at its nanobridges. We accompany our experimental results by a semi-classical linearized model that is valid for generic nano-SQUIDs with multiple ports and helps simplify the modelling of non-linear couplings among the Josephson junctions. Our design helped us reveal unusual electric characteristics with effective zero inductance, which is promising for nanoscale magnetic sensing and quantum technologies.

  11. Superconducting energy gap of YB6 studied by point-contact spectroscopy

    International Nuclear Information System (INIS)

    Szabo, Pavol; Kacmarcik, Jozef; Samuely, Peter; Girovsky, Jan; Gabani, Slavomir; Flachbart, Karol; Mori, Takao

    2007-01-01

    Yttrium hexaboride has the second highest critical temperature, T c ∼ 8 K, among all borides. The presented paper deals with the experimental study of its superconducting energy gap established by the method of the point-contact spectroscopy. The temperature dependence of the energy gap and the strength of the superconducting coupling is presented

  12. Inductance analysis of superconducting quantum interference devices with 3D nano-bridge junctions

    Science.gov (United States)

    Wang, Hao; Yang, Ruoting; Li, Guanqun; Wu, Long; Liu, Xiaoyu; Chen, Lei; Ren, Jie; Wang, Zhen

    2018-05-01

    Superconducting quantum interference devices (SQUIDs) with 3D nano-bridge junctions can be miniaturized into nano-SQUIDs that are able to sense a few spins in a large magnetic field. Among all device parameters, the inductance is key to the performance of SQUIDs with 3D nano-bridge junctions. Here, we measured the critical-current magnetic flux modulation curves of 12 devices with three design types using a current strip-line directly coupled to the SQUID loop. A best flux modulation depth of 71% was achieved for our 3D Nb SQUID. From the modulation curves, we extracted the inductance values of the current stripe-line in each design and compared them with the corresponding simulation results of InductEX. In this way, London penetration depths of 110 and 420 nm were determined for our Nb (niobium) and NbN (niobium nitride) films, respectively. Furthermore, we showed that inductances of 11 and 119 pH for Nb and NbN 3D nano-bridge junctions, respectively, dominated the total inductance of our SQUID loops which are 23 pH for Nb and 255 pH for NbN. A screening parameter being equal to one suggests optimal critical currents of 89.6 and 8.1 μA for Nb and NbN SQUIDs, respectively. Additionally, intrinsic flux noise of 110 ± 40 nΦ0/(Hz)1/2 is calculated for the Nb SQUIDs with 3D nano-bridge junctions by Langevin simulation.

  13. Preliminary magnet design for a superconducting separated sector cyclotron

    International Nuclear Information System (INIS)

    Bertrand, P.; Chabert, A.; Duval, M.; Ripouteau, F.

    1992-01-01

    This paper reports that in order to increase the energies available at GANIL, studies on a superconducting separated six straight sector cyclotron for heavy ions with energy up to 500 MeV/A (ions with Q/A = 0.5) have been performed. With a mean injection radius of 2.5 m and an extraction radius of 5 m, the maximum magnetic field on a sector has to be 5T. Each of the six sectors consists of two superconducting main coils (wound around the poles), room temperature iron pole pieces and a large yoke. Due to the broad ranges of energy and ion species, the required field laws are very different and for the most difficult operating point, the induction difference between the injection and ejection radii is about one Tesla. As a consequence, correcting coils have to provide a high field and one unusual point is that the machine will be operated with superconducting trim coils

  14. Two Superconducting Charge Qubits Coupled by a Josephson Inductance

    Science.gov (United States)

    Watanabe, Michio; Yamamoto, Tsuyoshi; Pashkin, Yuri A.; Astafiev, Oleg; Nakamura, Yasunobu; Tsai, Jaw-Shen

    2007-03-01

    When the quantum oscillations [Pashkin et al., Nature 421, 823 (2003)] and the conditional gate operation [Yamamoto et al., Nature 425, 941 (2003)] were demonstrated using superconducting charge qubits, the charge qubits were coupled capacitively, where the coupling was always on and the coupling strength was not tunable. This fixed coupling, however, is not ideal because for example, it makes unconditional gate operations difficult. In this work, we aimed to tunably couple two charge qubits. We fabricated circuits based on the theoretical proposal by You, Tsai, and Nori [PRB 68, 024510 (2003)], where the inductance of a Josephson junction, which has a much larger junction area than the qubit junctions, couples the qubits and the coupling strength is controlled by the external magnetic flux. We confirmed by spectroscopy that the large Josephson junction was indeed coupled to the qubits and that the coupling was turned on and off by the external magnetic flux. In the talk, we will also discuss the quantum oscillations in the circuits.

  15. Critical current measurement in superconducting rings using an automatic inductive technique

    International Nuclear Information System (INIS)

    Gonzalez-Jorge, H.; Linares, B.; Quelle, I.; Carballo, E.; Romani, L.; Domarco, G.

    2007-01-01

    A measurement technique was developed to identify the critical current of superconducting rings. It is based on the detection of the voltage on a secondary coil when the current induced in the superconductor by a primary one go beyond to the critical value. The technique uses a DC power supply to control the AC current circulating by the primary circuit. Such circuit mainly consists on an AC power supply which gives a constant AC voltage, a primary inducting coil and a control coil with iron core. The AC current circulating by this circuit is modified with the change in the impedance of the control coil due to the fact of the DC current supplied by the power supply in parallel with it

  16. High-energy neutron irradiation of superconducting compounds

    International Nuclear Information System (INIS)

    Sweedler, A.R.; Snead, C.L.; Newkirk, L.; Valencia, F.; Geballe, T.H.; Schwall, R.H.; Matthias, B.T.; Corenswit, E.

    1975-01-01

    The effect of high-energy neutron irradiation (E greater than 1 MeV) at ambient reactor temperatures on the superconducting properties of a variety of superconducting compounds is reported. The materials studied include the A-15 compounds Nb 3 Sn, Nb 3 Al, Nb 3 Ga, Nb 3 Ge and V 3 Si, the C-15 Laves phase HfV 2 , the ternary molybdenum sulfide Mo 3 Pb 0 . 5 S 4 and the layered dichalcogenide NbSe 2 . The superconducting transition temperature has been measured for all of the above materials for neutron fluences up to 5 x 10 19 n/cm 2 . The critical current for multifilamentary Nb 3 Sn has also been determined for fields up to 16 T and fluences between 3 x 10 17 n/cm 2 and 1.1 x 10 19 n/cm 2

  17. Experiment study on an inductive superconducting fault current limiter using no-insulation coils

    Science.gov (United States)

    Qiu, D.; Li, Z. Y.; Gu, F.; Huang, Z.; Zhao, A.; Hu, D.; Wei, B. G.; Huang, H.; Hong, Z.; Ryu, K.; Jin, Z.

    2018-03-01

    No-insulation (NI) coil made of 2 G high temperature superconducting (HTS) tapes has been widely used in DC magnet due to its excellent performance of engineering current density, thermal stability and mechanical strength. However, there are few AC power device using NI coil at present. In this paper, the NI coil is firstly applied into inductive superconducting fault current limiter (iSFCL). A two-winding structure air-core iSFCL prototype was fabricated, composed of a primary copper winding and a secondary no-insulation winding using 2 G HTS coated conductors. Firstly, in order to testify the feasibility to use NI coil as the secondary winding, the impedance variation of the prototype at different currents and different cycles was tested. The result shows that the impedance increases rapidly with the current rises. Then the iSFCL prototype was tested in a 40 V rms/ 3.3 kA peak short circuit experiment platform, both of the fault current limiting and recovery property of the iSFCL are discussed.

  18. Peak power reduction and energy efficiency improvement with the superconducting flywheel energy storage in electric railway system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hansang, E-mail: hslee80@kiu.ac.kr [School of Railway and Electrical Engineering, Kyungil University, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 712-701 (Korea, Republic of); Jung, Seungmin [School of Electrical Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-712 (Korea, Republic of); Cho, Yoonsung [Department of Electric and Energy Engineering, Catholic University of Daegu, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 712-702 (Korea, Republic of); Yoon, Donghee [Department of New and Renewable Energy, Kyungil University, Hayang-eup, Gyeongsangbuk-do 712-701 (Korea, Republic of); Jang, Gilsoo, E-mail: gjang@korea.ac.kr [School of Electrical Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-712 (Korea, Republic of)

    2013-11-15

    Highlights: •It is important to develop power and energy management system to save operating cost. •An 100 kWh of SFES is effective to decrease peak power and energy consumption. •Operation cost saving can be achieved using superconducting flywheel energy storage. -- Abstract: This paper proposes an application of the 100 kWh superconducting flywheel energy storage systems to reduce the peak power of the electric railway system. The electric railway systems have high-power characteristics and large amount of regenerative energy during vehicles’ braking. The high-power characteristic makes operating cost high as the system should guarantee the secure capacity of electrical equipment and the low utilization rate of regenerative energy limits the significant energy efficiency improvement. In this paper, it had been proved that the peak power reduction and energy efficiency improvement can be achieved by using 100 kWh superconducting flywheel energy storage systems with the optimally controlled charging or discharging operations. Also, economic benefits had been assessed.

  19. Peak power reduction and energy efficiency improvement with the superconducting flywheel energy storage in electric railway system

    International Nuclear Information System (INIS)

    Lee, Hansang; Jung, Seungmin; Cho, Yoonsung; Yoon, Donghee; Jang, Gilsoo

    2013-01-01

    Highlights: •It is important to develop power and energy management system to save operating cost. •An 100 kWh of SFES is effective to decrease peak power and energy consumption. •Operation cost saving can be achieved using superconducting flywheel energy storage. -- Abstract: This paper proposes an application of the 100 kWh superconducting flywheel energy storage systems to reduce the peak power of the electric railway system. The electric railway systems have high-power characteristics and large amount of regenerative energy during vehicles’ braking. The high-power characteristic makes operating cost high as the system should guarantee the secure capacity of electrical equipment and the low utilization rate of regenerative energy limits the significant energy efficiency improvement. In this paper, it had been proved that the peak power reduction and energy efficiency improvement can be achieved by using 100 kWh superconducting flywheel energy storage systems with the optimally controlled charging or discharging operations. Also, economic benefits had been assessed

  20. Superconductivity

    CERN Document Server

    Thomas, D B

    1974-01-01

    A short general review is presented of the progress made in applied superconductivity as a result of work performed in connection with the high-energy physics program in Europe. The phenomenon of superconductivity and properties of superconductors of Types I and II are outlined. The main body of the paper deals with the development of niobium-titanium superconducting magnets and of radio-frequency superconducting cavities and accelerating structures. Examples of applications in and for high-energy physics experiments are given, including the large superconducting magnet for the Big European Bubble Chamber, prototype synchrotron magnets for the Super Proton Synchrotron, superconducting d.c. beam line magnets, and superconducting RF cavities for use in various laboratories. (0 refs).

  1. Exploring the performance of thin-film superconducting multilayers as kinetic inductance detectors for low-frequency detection

    Science.gov (United States)

    Zhao, Songyuan; Goldie, D. J.; Withington, S.; Thomas, C. N.

    2018-01-01

    We have solved numerically the diffusive Usadel equations that describe the spatially varying superconducting proximity effect in Ti-Al thin-film bi- and trilayers with thickness values that are suitable for kinetic inductance detectors (KIDs) to operate as photon detectors with detection thresholds in the frequency range of 50-90 GHz. Using Nam’s extension of the Mattis-Bardeen calculation of the superconductor complex conductivity, we show how to calculate the surface impedance for the spatially varying case, and hence the surface impedance quality factor. In addition, we calculate energy-and spatially-averaged quasiparticle lifetimes at temperatures well-below the transition temperature and compare to calculation in Al. Our results for the pair-breaking threshold demonstrate differences between bilayers and trilayers with the same total film thicknesses. We also predict high quality factors and long multilayer-averaged quasiparticle recombination times compared to thin-film Al. Our calculations give a route for designing KIDs to operate in this scientifically-important frequency regime.

  2. Sweeping a persisting superconducting magnet with a transformer

    International Nuclear Information System (INIS)

    Spencer, G.F.; Alexander, P.W.; Ihas, G.G.

    1982-01-01

    A method for sweeping a persisting superconducting magnet is described. The field sweep is achieved by including in the superconducting loop of the magnet a coil which acts as the secondary coil of a transformer. Variation of the current in the primary coil of the transformer, controlled from outside the cryostat, causes the field-sweeping action through flux-linking with the superconducting loop. Compared to directly changing the current in a magnet, this technique improves control by the ratio of the magnet's inductance to the transformer's inductance. The advantages of using an all-metal vacuum-tight superconducting feedthrough are discussed. (author)

  3. The power processor of a high temperature superconducting energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Ollila, J. [Power Electronics, Tampere University of Technology, Tampere (Finland)

    1997-12-31

    This report introduces the structure and properties of a power processor unit for a high temperature superconducting magnetic energy storage system which is bused in an UPS demonstration application. The operation is first demonstrated using simulations. The software based operating and control system utilising combined Delta-Sigma and Sliding-Mode control is described shortly. Preliminary test results using a conventional NbTi superconducting energy y storage magnet operating at 4.2 K is shown. (orig.)

  4. Superconducting magnetic energy storage (SMES) program, January 1-December 31, 1981

    International Nuclear Information System (INIS)

    Rogers, J.D.

    1982-02-01

    Work reported is on the development of a 30 MJ superconducting magnetic energy storage (SMES) unit for use by the Bonneville Power Administration (BPA) to stabilize power oscillations on their Pacific AC Intertie. The 30 MJ superconducting coil manufacture was completed. Design of the seismic mounting of the coil to the nonconducting dewar lid and a concrete foundation is complete. The superconducting application VAR (SAVAR) control study indicated a low economic advantage and the SAVAR program was terminated. An economic and technological evaluation of superconducting fault current limiter (SFCL) was completed and the results are reported

  5. Superconducting Magnetic Energy Storage

    International Nuclear Information System (INIS)

    Hassenzahl, W.

    1989-01-01

    Recent programmatic developments in Superconducting Magnetic Energy Storage (SMES) have prompted renewed and widespread interest in this field. In mid 1987 the Defense Nuclear Agency, acting for the Strategic Defense Initiative Office issued a request for proposals for the design and construction of SMES Engineering Test Model (ETM). Two teams, one led by Bechtel and the other by Ebasco, are now engaged in the first phase of the development of a 10 to 20 MWhr ETM. This report presents the rationale for energy storage on utility systems, describes the general technology of SMES, and explains the chronological development of the technology. The present ETM program is outlined; details of the two projects for ETM development are described in other papers in these proceedings. The impact of high Tc materials on SMES is discussed

  6. Superconducting six-axis accelerometer

    Science.gov (United States)

    Paik, H. J.

    1990-01-01

    A new superconducting accelerometer, capable of measuring both linear and angular accelerations, is under development at the University of Maryland. A single superconducting proof mass is magnetically levitated against gravity or any other proof force. Its relative positions and orientations with respect to the platform are monitored by six superconducting inductance bridges sharing a single amplifier, called the Superconducting Quantum Interference Device (SQUID). The six degrees of freedom, the three linear acceleration components and the three angular acceleration components, of the platform are measured simultaneously. In order to improve the linearity and the dynamic range of the instrument, the demodulated outputs of the SQUID are fed back to appropriate levitation coils so that the proof mass remains at the null position for all six inductance bridges. The expected intrinsic noise of the instrument is 4 x 10(exp -12)m s(exp -2) Hz(exp -1/2) for linear acceleration and 3 x 10(exp -11) rad s(exp -2) Hz(exp -1/2) for angular acceleration in 1-g environment. In 0-g, the linear acceleration sensitivity of the superconducting accelerometer could be improved by two orders of magnitude. The design and the operating principle of a laboratory prototype of the new instrument is discussed.

  7. Energy of magnetic moment of superconducting current in magnetic field

    International Nuclear Information System (INIS)

    Gurtovoi, V.L.; Nikulov, A.V.

    2015-01-01

    Highlights: • Quantization effects observed in superconducting loops are considered. • The energy of magnetic moment in magnetic field can not be deduced from Hamiltonian. • This energy is deduced from a history of the current state in the classical case. • It can not be deduced directly in the quantum case. • Taking this energy into account demolishes agreement between theory and experiment. - Abstract: The energy of magnetic moment of the persistent current circulating in superconducting loop in an externally produced magnetic field is not taken into account in the theory of quantization effects because of identification of the Hamiltonian with the energy. This identification misleads if, in accordance with the conservation law, the energy of a state is the energy expended for its creation. The energy of magnetic moment is deduced from a creation history of the current state in magnetic field both in the classical and quantum case. But taking this energy into account demolishes the agreement between theory and experiment. Impartial consideration of this problem discovers the contradiction both in theory and experiment

  8. An electrical gearbox by means of pole variation for induction and superconducting disc motor

    International Nuclear Information System (INIS)

    Inacio, S; Inacio, D; Pina, J M; Valtchev, S; Neves, M V; Rodrigues, A L

    2008-01-01

    In this paper, a poly-phase disc motor innovative feeding and control strategy, based on a variable poles approach, and its application to a HTS disc motor, are presented. The stator windings may be electronically commutated to implement a 2, 4, 6 or 8 poles winding, thus changing the motor's torque/speed characteristics. The motor may be a conventional induction motor with a conductive disc rotor, or a new HTS disc motor, with conventional copper windings at its two iron semi-stators, and a HTS disc as a rotor. The conventional induction motor's operation principle is related with the induced electromotive forces in the conductive rotor. Its behaviour, characteristics (namely their torque/speed characteristics for different number of pole pairs) and modelling through Steinmetz and others theories are well known. The operation principle of the motor with HTS rotor, however, is rather different and is related with vortices' dynamics and pinning characteristics; this is a much more complex process than induction, and its modelling is quite complicated. In this paper, the operation was simulated through finite-elements commercial software, whereas superconductivity was simulated by the E-J power law. The Electromechanical performances of both motors where computed and are presented and compared. Considerations about the systems overall efficiency, including cryogenics, are also discussed

  9. Peak power reduction and energy efficiency improvement with the superconducting flywheel energy storage in electric railway system

    Science.gov (United States)

    Lee, Hansang; Jung, Seungmin; Cho, Yoonsung; Yoon, Donghee; Jang, Gilsoo

    2013-11-01

    This paper proposes an application of the 100 kWh superconducting flywheel energy storage systems to reduce the peak power of the electric railway system. The electric railway systems have high-power characteristics and large amount of regenerative energy during vehicles’ braking. The high-power characteristic makes operating cost high as the system should guarantee the secure capacity of electrical equipment and the low utilization rate of regenerative energy limits the significant energy efficiency improvement. In this paper, it had been proved that the peak power reduction and energy efficiency improvement can be achieved by using 100 kWh superconducting flywheel energy storage systems with the optimally controlled charging or discharging operations. Also, economic benefits had been assessed.

  10. Superconducting magnets in nuclear and high energy physics

    International Nuclear Information System (INIS)

    Hamelin, J.; Parain, J.; Perot, J.; Lesmond, C.

    1976-01-01

    A few examples of superconducting magnets developped at Saclay for high energy physics are presented. The OGA doublet is a large acceptance optical system consisting of two quadrupoles with maximum field gradients of 35 and 23 teslas per meter giving an increase of the beam acceptance by a factor 4. The ALEC dipole is a synchrotron magnet with a length of 1.5 meter and a field of 5 teslas, operating in pulse made at a frequency of 0.1 Hertz and entirely constructed in industry. The ECO project is a demonstration of electrical energy saving by means of superconductors. It consists in the replacement of conventional copper of a classical beam transport magnet by superconducting windings. The use of superconductors for polarized target magnets allows a large variety of configurations to be obtained in order to satisfy the acceptance and space requirements to the detectors around the targets [fr

  11. Superconducting Nanowires as Nonlinear Inductive Elements for Qubits

    OpenAIRE

    Ku, Jaseung; Manucharyan, Vladimir; Bezryadin, Alexey

    2010-01-01

    We report microwave transmission measurements of superconducting Fabry-Perot resonators (SFPR), having a superconducting nanowire placed at a supercurrent antinode. As the plasma oscillation is excited, the supercurrent is forced to flow through the nanowire. The microwave transmission of the resonator-nanowire device shows a nonlinear resonance behavior, significantly dependent on the amplitude of the supercurrent oscillation. We show that such amplitude-dependent response is due to the nonl...

  12. Study of superconducting magnetic bearing applicable to the flywheel energy storage system that consist of HTS-bulks and superconducting-coils

    International Nuclear Information System (INIS)

    Seino, Hiroshi; Nagashima, Ken; Tanaka, Yoshichika; Nakauchi, Masahiko

    2010-01-01

    The Railway Technical Research Institute conducted a study to develop a superconducting magnetic bearing applicable to the flywheel energy-storage system for railways. In the first step of the study, the thrust rolling bearing was selected for application, and adopted liquid-nitrogen-cooled HTS-bulk as a rotor, and adopted superconducting coil as a stator for the superconducting magnetic bearing. Load capacity of superconducting magnetic bearing was verified up to 10 kN in the static load test. After that, rotation test of that approximately 5 kN thrust load added was performed with maximum rotation of 3000rpm. In the results of bearing rotation test, it was confirmed that position in levitation is able to maintain with stability during the rotation. Heat transfer properties by radiation in vacuum and conductivity by tenuous gas were basically studied by experiment by the reason of confirmation of rotor cooling method. The experimental result demonstrates that the optimal gas pressure is able to obtain without generating windage drag. In the second stage of the development, thrust load capacity of the bearing will be improved aiming at the achievement of the energy capacity of a practical scale. In the static load test of the new superconducting magnetic bearing, stable 20kN-levitation force was obtained.

  13. A current controlled variable delay superconducting transmission line

    International Nuclear Information System (INIS)

    Anlage, S.M.; Snortland, H.J.; Beasley, M.R.

    1989-01-01

    The authors present a device concept for a current-controlled variable delay for superconducting transmission line. The device makes use of the change in kinetic inductance of a superconducting transmission line under the application of a DC bias current. The relevant materials parameters and several promising superconducting materials have been identified

  14. Effect of superconducting electrons on the energy splitting of tunneling systems

    International Nuclear Information System (INIS)

    Yu, C.C.; Granato, A.V.

    1985-01-01

    We consider the effect of superconducting electrons on the magnitude of the energy splitting of a tunneling system. A specific example is a hydrogen atom tunneling in niobium. We find that in this case the splitting is roughly 20% smaller in the normal state than in the superconducting state. This difference in the splitting should be observable in neutron scattering and ultrasonic measurements

  15. Pulsed power generators using an inductive energy storage system

    International Nuclear Information System (INIS)

    Akiyama, H.; Sueda, T.; Katschinski, U.; Katsuki, S.; Maeda, S.

    1996-01-01

    The pulsed power generators using an inductive energy storage system are extremely compact and lightweight in comparison with those using a capacitive energy storage system. The reliable and repetitively operated opening switch is necessary to realize the inductive pulsed power generator. Here, the pulsed power generators using the inductive energy storage system, which have been developed in Kumamoto University, are summarized. copyright 1996 American Institute of Physics

  16. Superconductivity

    CERN Document Server

    Poole, Charles P; Farach, Horacio A

    1995-01-01

    Superconductivity covers the nature of the phenomenon of superconductivity. The book discusses the fundamental principles of superconductivity; the essential features of the superconducting state-the phenomena of zero resistance and perfect diamagnetism; and the properties of the various classes of superconductors, including the organics, the buckministerfullerenes, and the precursors to the cuprates. The text also describes superconductivity from the viewpoint of thermodynamics and provides expressions for the free energy; the Ginzburg-Landau and BCS theories; and the structures of the high

  17. Superconductivity in technology

    International Nuclear Information System (INIS)

    Komarek, P.

    1976-01-01

    Physics, especially high energy physics and solid state physics was the first area in which superconducting magnets were used but in the long run, the most extensive application of superconductivity will probably be in energy technology. Superconducting power transmission cables, magnets for energy conversion in superconducting electrical machines, MHD-generators and fusion reactors and magnets for energy storage are being investigated. Magnets for fusion reactors will have particularly large physical dimensions, which means that much development effort is still needed, for there is no economic alternative. Superconducting surfaces in radio frequency cavities can give Q-values up to a factor of 10 6 higher than those of conventional resonators. Particle accelerators are the important application. And for telecommunication, simple coaxial superconducting radio frequency cables seem promising. The tunnel effect in superconducting junctions is now being developed commercially for sensitive magnetometers and may soon possibly feature in the memory cells of computer devices. Hence superconductivity can play an important role in the technological world, solving physical and technological problems and showing economic advantages as compared with possible conventional techniques, bearing also in mind the importance of reliability and safety. (author)

  18. Superconducting magnetic energy storage apparatus structural support system

    Science.gov (United States)

    Withers, Gregory J.; Meier, Stephen W.; Walter, Robert J.; Child, Michael D.; DeGraaf, Douglas W.

    1992-01-01

    A superconducting magnetic energy storage apparatus comprising a cylindrical superconducting coil; a cylindrical coil containment vessel enclosing the coil and adapted to hold a liquid, such as liquefied helium; and a cylindrical vacuum vessel enclosing the coil containment vessel and located in a restraining structure having inner and outer circumferential walls and a floor; the apparatus being provided with horizontal compression members between (1) the coil and the coil containment vessel and (2) between the coil containment vessel and the vacuum vessel, compression bearing members between the vacuum vessel and the restraining structure inner and outer walls, vertical support members (1) between the coil bottom and the coil containment vessel bottom and (2) between the coil containment vessel bottom and the vacuum vessel bottom, and external supports between the vacuum vessel bottom and the restraining structure floor, whereby the loads developed by thermal and magnetic energy changes in the apparatus can be accommodated and the structural integrity of the apparatus be maintained.

  19. Superconductivity applications for infrared and microwave devices; Proceedings of the Meeting, Orlando, FL, Apr. 19, 20, 1990

    Science.gov (United States)

    Bhasin, Kul B.; Heinen, Vernon O.

    1990-10-01

    Various papers on superconductivity applications for IR and microwave devices are presented. The individual topics addressed include: pulsed laser deposition of Tl-Ca-Ba-Cu-O films, patterning of high-Tc superconducting thin films on Si substrates, IR spectra and the energy gap in thin film YBa2Cu3O(7-delta), high-temperature superconducting thin film microwave circuits, novel filter implementation utilizing HTS materials, high-temperature superconductor antenna investigations, high-Tc superconducting IR detectors, high-Tc superconducting IR detectors from Y-Ba-Cu-O thin films, Y-Ba-Cu0-O thin films as high-speed IR detectors, fabrication of a high-Tc superconducting bolometer, transition-edge microbolometer, photoresponse of YBa2Cu3O(7-delta) granular and epitaxial superconducting thin films, fast IR response of YBCO thin films, kinetic inductance effects in high-Tc microstrip circuits at microwave frequencies.

  20. Protection of large-stored-energy superconducting coils

    International Nuclear Information System (INIS)

    Kircher, F.

    1975-11-01

    When the stored energy of superconducting magnets increases, the problem of the protection of the coil when a quench occurs becomes more and more important, especially if the structure of the coil is such that the energy can be dissipated only in a small part of the coil. The aim of this paper is first to describe a program which enables to predict the increase of temperature inside the coil for several kinds of protection and to give results for KEK pulsed dipoles (under construction and planned for TRISTAN). (auth.)

  1. ORNL superconducting technology program for electric energy systems

    Science.gov (United States)

    Hawsey, R. A.

    1993-02-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy's (DOE's) Office of Conservation and Renewable Energy to develop the technology base needed by US industry for commercial development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and systems development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from information prepared for the FY-92 Peer Review of Projects, which was conducted by DOE's Office of Program Analysis, Office of Energy Research. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer to US industry. Working together, the collaborative teams are making tremendous progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire products.

  2. A double-superconducting axial bearing system for an energy storage flywheel model

    Science.gov (United States)

    Deng, Z.; Lin, Q.; Ma, G.; Zheng, J.; Zhang, Y.; Wang, S.; Wang, J.

    2008-02-01

    The bulk high temperature superconductors (HTSCs) with unique flux-pinning property have been applied to fabricate two superconducting axial bearings for an energy storage flywheel model. The two superconducting axial bearings are respectively fixed at two ends of the vertical rotational shaft, whose stator is composed of seven melt-textured YBa2Cu3O7-x (YBCO) bulks with diameter of 30 mm, height of 18 mm and rotor is made of three cylindrical axial-magnetized NdFeB permanent magnets (PM) by superposition with diameter of 63 mm, height of 27 mm. The experimental results show the total levitation and lateral force produced by the two superconducting bearings are enough to levitate and stabilize the 2.4 kg rotational shaft. When the two YBCO stators were both field cooled to the liquid nitrogen temperature at respective axial distances above or below the PM rotor, the shaft could be automatically levitated between the two stators without any contact. In the case of a driving motor, it can be stably rotated along the central axis besides the resonance frequency. This double-superconducting axial bearing system can be used to demonstrate the flux-pinning property of bulk HTSC for stable levitation and suspension and the principle of superconducting flywheel energy storage system to visitors.

  3. Conceptual design of dump resistor for superconducting CS of SST-1

    International Nuclear Information System (INIS)

    Roy, Swati; Pradhan, Subrata; Panchal, Arun

    2015-01-01

    During the upgradation of SST-1, the resistive central solenoid (CS) coil has been planned to be replaced with Nb 3 Sn based superconducting coil. The superconducting CS will store upto 3.5MJ of magnetic energy per operation cycle with operating current upto 14kA. In case of coil quench, the energy stored in the coils is to be extracted rapidly with a time constant of 1.5s. This will be achieved by inserting a 20m Ohm dump resistor in series with the superconducting CS which is normally shorted by circuit breakers. As a vital part of the superconducting CS quench protection system, a conceptual design of the 20m Ohm dump resistor has been proposed. In this paper, the required design aspects and a dimensional layout of the dump resistor for the new superconducting CS has been presented. Natural air circulation is proposed as cooling method for this dump resistor. The basic structure of the proposed dump resistor comprises of stainless steel grids connected in series in the shape of meander to minimize the stray inductance and increase the surface area for cooling. The entire dump resistor will be an array of such grids connected in series and parallel to meet electrical as well as thermal parameters. The maximum temperature of the proposed dump resistor is upto 350 °C during dump 3.5MJ energy. The proposed design permits indigenous fabrication of the dump resistor using commercially available welding techniques. (author)

  4. A new power supply for superconductive magnetic energy storage system

    International Nuclear Information System (INIS)

    Karady, G.G.; Han, B.M.

    1992-01-01

    In this paper a new power supply for a superconductive magnetic energy storage system, which permits a fast independent regulation of the active and reactive power, is presented. The power supply is built with several units connected in parallel. Each unit consists of a 24-pulse bridge converter, thyristor-switched tap-changing transformer, and thyristor-switched capacitor bank. Its system operation is analyzed by computer simulation and a feasible system realization is shown. A superconductive magnetic energy storage system with the proposed power supply has the capability of leveling the load variation, damping the low-frequency oscillation, and improving the transient stability in the power system. This power supply can be built with commercially available components using well-proven technologies

  5. Numerical analysis of magnetic field in superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Kanamaru, Y.; Amemiya, Y.

    1991-01-01

    This paper reports that the superconducting magnetic energy storage (SMES) is more useful than the other systems of electric energy storage because of larger stored energy and higher efficiency. The other systems are the battery, the flywheel, the pumped-storage power station. Some models of solenoid type SMES are designed in U.S.A. and Japan. But a high magnetic field happens by the large scale SMES in the living environment, and makes the erroneous operations of the computer display, the pacemaker of the heart and the electronic equipments. We study some fit designs of magnetic shielding of the solenoidal type SMES for reduction of the magnetic field in living environment. When some superconducting shielding coils are over the main storage coil, magnetic field reduces remarkably than the case of non shielding coil. The calculated results of the magnetic field are obtained y the finite element method

  6. Energy Optimal Control of Induction Motor Drives

    DEFF Research Database (Denmark)

    Abrahamsen, Flemming

    This thesis deals with energy optimal control of small and medium-size variable speed induction motor drives for especially Heating, Ventilation and Air-Condition (HVAC) applications. Optimized efficiency is achieved by adapting the magnetization level in the motor to the load, and the basic...... demonstrated that energy optimal control will sometimes improve and sometimes deteriorate the stability. Comparison of small and medium-size induction motor drives with permanent magnet motor drives indicated why, and in which applications, PM motors are especially good. Calculations of economical aspects...... improvement by energy optimal control for any standard induction motor drive between 2.2 kW and 90 kW. A simple method to evaluate the robustness against load disturbances was developed and used to compare the robustness of different motor types and sizes. Calculation of the oscillatory behavior of a motor...

  7. A Review of Some Superconducting Technologies for AtLAST: Parametric Amplifiers, Kinetic Inductance Detectors, and On-Chip Spectrometers

    Science.gov (United States)

    Noroozian, Omid

    2018-01-01

    The current state of the art for some superconducting technologies will be reviewed in the context of a future single-dish submillimeter telescope called AtLAST. The technologies reviews include: 1) Kinetic Inductance Detectors (KIDs), which have now been demonstrated in large-format kilo-pixel arrays with photon background-limited sensitivity suitable for large field of view cameras for wide-field imaging. 2) Parametric amplifiers - specifically the Traveling-Wave Kinetic Inductance (TKIP) amplifier - which has enormous potential to increase sensitivity, bandwidth, and mapping speed of heterodyne receivers, and 3) On-chip spectrometers, which combined with sensitive direct detectors such as KIDs or TESs could be used as Multi-Object Spectrometers on the AtLAST focal plane, and could provide low-medium resolution spectroscopy of 100 objects at a time in each field of view.

  8. Use of a High-Temperature Superconducting Coil for Magnetic Energy Storage

    International Nuclear Information System (INIS)

    Fagnard, J-F; Crate, D; Jamoye, J-F; Laurent, Ph; Mattivi, B; Cloots, R; Ausloos, M; Genon, A; Vanderbemden, Ph

    2006-01-01

    A high temperature superconducting magnetic energy storage device (SMES) has been realised using a 350 m-long BSCCO tape wound as a ''pancake'' coil. The coil is mounted on a cryocooler allowing temperatures down to 17.2 K to be achieved. The temperature dependence of coil electrical resistance R(T) shows a superconducting transition at T = 102.5 K. Measurements of the V(I) characteristics were performed at several temperatures between 17.2 K and 101.5 K to obtain the temperature dependence of the critical current (using a 1 μV/cm criterion). Critical currents were found to exceed 100 A for T < 30 K. An electronic DC-DC converter was built in order to control the energy flow in and out of the superconducting coil. The converter consists of a MOS transistor bridge switching at a 80 kHz frequency and controlled with standard Pulse Width Modulation (PWM) techniques. The system was tested using a 30 V squared wave power supply as bridge input voltage. The coil current, the bridge input and output voltages were recorded simultaneously. Using a 10 A setpoint current in the superconducting coil, the whole system (coil + DC-DC converter) can provide a stable output voltage showing uninterruptible power supply (UPS) capabilities over 1 s

  9. Detailed modeling of superconducting magnetic energy storage (SMES) system

    NARCIS (Netherlands)

    Chen, L.; Liu, Y.; Arsoy, A.B.; Ribeiro, P.F.; Steurer, M.; Iravani, M.R.

    2006-01-01

    This paper presents a detailed model for simulation of a Superconducting Magnetic Energy Storage (SMES) system. SMES technology has the potential to bring real power storage characteristic to the utility transmission and distribution systems. The principle of SMES system operation is reviewed in

  10. Induction shimming: A new shimming concept for superconductive undulators

    Directory of Open Access Journals (Sweden)

    D. Wollmann

    2008-10-01

    Full Text Available Undulators are the most advanced sources for the generation of synchrotron radiation. The photons generated by a single electron add up coherently along the electron trajectory. In order to do so, the oscillatory motion of the electron has to be in phase with the emitted photons along the whole undulator. Small magnetic errors can cause unwanted destructive interferences. In standard permanent magnet undulators, the magnetic errors are reduced by applying shimming techniques. Superconductive undulators have higher magnetic fields than permanent magnet undulators but shimming is more complex. In this paper it is shown that coupled superconductive loops installed along the surface of the superconductive undulator coil can significantly reduce the destructive effect of the field errors. This new idea might allow the building of undulators with a superior field quality.

  11. Effect of plasma current breakaway on the operating stability of the superconducting coil of the toroidal magnetic field in the T-10M installation

    International Nuclear Information System (INIS)

    Kostenko, A.I.; Kravchenko, M.Yu.; Monoszon, N.A.; Trokhachev, G.V.

    1979-01-01

    The method and calculation results of stability of a superconducting coil of the toroidal magnetic field in the T-10M installation to plasma current breakaway are presented. The calculations were performed for two values of the magnetic field induction in the centre of the plasma cross section: 3.5 and 5 T. The calculation of energy losses and heating of the superconducting coil was performed assuming the plasma current in case of breakaway decreases to zero with an infinite rate, so that the estimations obtained are maxiaum. It is shown that in case of 3.5 T induction the superconducting coil exhibits resistance to plasma current breakaways, and in case of 5 T it is necessary to use electromagnetic screening to provide stability

  12. Second order phase transition in thermodynamic geometry and holographic superconductivity in low-energy stringy black holes

    Science.gov (United States)

    Rizwan, C. L. Ahmed; Vaid, Deepak

    2018-05-01

    We study holographic superconductivity in low-energy stringy Garfinkle-Horowitz-Strominger (GHS) dilaton black hole background. We finds that superconducting properties are much similar to s-wave superconductors. We show that the second-order phase transition indicated from thermodynamic geometry is not different from superconducting phase transition.

  13. Conceptual design of Dump resistor for Superconducting CS of SST-1

    Science.gov (United States)

    Roy, Swati; Raj, Piyush; Panchal, Arun; Pradhan, Subrata

    2017-04-01

    Under upgradation activities for SST-1, the existing resistive central solenoid (CS) coil will be replaced with Nb3Sn based superconducting coil. Design of Central solenoid had been completed and some of the initiative has already taken for its manufacturing. The superconducting CS will store upto 3 MJ of magnetic energy per operation cycle with operating current upto 14 kA. During quench, energy stored in the coils has to be extracted rapidly with a time constant of 1.5 s by inserting a 20 mΩ dump resistor in series with the superconducting CS which is normally shorted by circuit breakers. As a critical part of the superconducting CS quench protection system, a conceptual design of the 20 mΩ dump resistor has been proposed. The required design aspects and a dimensional layout of the dump resistor for the new superconducting CS has been presented and discussed. The basic structure of the proposed dump resistor comprises of stainless steel grids connected in series in the form of meander to minimize the stray inductance and increase the surface area for cooling. Such an array of grids connected in series and parallel will cater to the electrical as well as thermal parameters. It will be cooled by natural convection. During operation, the estimated maximum temperature of the proposed dump resistor will raise upto 600 K.

  14. Inductive energy storage commutator

    International Nuclear Information System (INIS)

    Gavrilov, I.M.

    1987-01-01

    An inductive energy storage commutator is described. The value of commutated current is up to 800 A, the voltage amplitude in the load is up to 50 kV, the working frequency is equal to 1-50 Hz, the commutated power is up to 40 MW. The commutating device comprises of the first stage commutator having two in-series connected modules of the BTSV - 800/235 high-voltage thyristor unit, the second stage commutator containing three GMI-43A parallel connected powerful pulsed triodes, a commutating capacitor, an induction coil, two supplementary high-voltage thyristor keys (20 in-series connected thyristors T2-300 (13 class)), load, control pulse shapers, thyristor keys, power supply

  15. Theory of multiwave mixing within the superconducting kinetic-inductance traveling-wave amplifier

    Science.gov (United States)

    Erickson, R. P.; Pappas, D. P.

    2017-03-01

    We present a theory of parametric mixing within the coplanar waveguide (CPW) of a superconducting nonlinear kinetic-inductance traveling-wave (KIT) amplifier engineered with periodic dispersion loadings. This is done by first developing a metamaterial band theory of the dispersion-engineered KIT using a Floquet-Bloch construction and then applying it to the description of mixing of the nonlinear RF traveling waves. Our theory allows us to calculate signal gain versus signal frequency in the presence of a frequency stop gap, based solely on loading design. We present results for both three-wave mixing (3WM), with applied dc bias, and four-wave mixing (4WM), without dc. Our theory predicts an intrinsic and deterministic origin to undulations of 4WM signal gain with signal frequency, apart from extrinsic sources, such as impedance mismatch, and shows that such undulations are absent from 3WM signal gain achievable with dc. Our theory is extensible to amplifiers based on Josephson junctions in a lumped LC-ladder transmission line (TWPA).

  16. New superconducting coil configuration for energy storage

    International Nuclear Information System (INIS)

    Tokorabet, M.; Mailfert, A.; Colteu, A.

    1998-01-01

    Energy storage using superconducting coils involves the problem of electromagnetic field pollution outside the considered system. Different configurations are widely studied: the torus, the alone solenoid and multiple parallel solenoids enclosed in one container. A new configuration which minimizes the external pollution is studied in this paper. The theoretical system is composed of two spherical distributions of the current which are concentric. The analytical study uses solution of Laplace equations. Parametric study covers energy, flux density and geometrical data. The second study concerns the numerical approach of this design using coaxial solenoids. A comparison between this new system and the known systems is presented as a conclusion. (orig.)

  17. Research and development project for flywheel energy storage system using high-temperature superconducting magnetic bearing

    International Nuclear Information System (INIS)

    Shinagawa, Jiro; Ishikawa, Fumihiko

    1996-01-01

    Recent progress in the research and development of an yttrium-based oxide high-temperature superconductor has enabled the production of a large-diameter bulk with a strong flux-pinning force. A combination of this superconductor and a permanent magnet makes it feasible to fabricate a non-contact, non-controlled superconducting magnetic bearing with a very small rotational loss. Use of the superconducting magnetic bearing for a flywheel energy storage system may pave the way to the development of a new energy storage system that has great energy storage efficiency. >From relevant data measured with a miniature model of the high-temperature superconducting magnetic bearing, a conceptual design of an 8 MWh flywheel energy storage system was developed, using the new bearing which proved to be potentially capable of achieving a high energy storage efficiency of 84%. A 100 Wh-class experimental system was install that attained a high revolution rate of 17.000 rpm. (author)

  18. Exotic superconductivity with enhanced energy scales in materials with three band crossings

    Science.gov (United States)

    Lin, Yu-Ping; Nandkishore, Rahul M.

    2018-04-01

    Three band crossings can arise in three-dimensional quantum materials with certain space group symmetries. The low energy Hamiltonian supports spin one fermions and a flat band. We study the pairing problem in this setting. We write down a minimal BCS Hamiltonian and decompose it into spin-orbit coupled irreducible pairing channels. We then solve the resulting gap equations in channels with zero total angular momentum. We find that in the s-wave spin singlet channel (and also in an unusual d-wave `spin quintet' channel), superconductivity is enormously enhanced, with a possibility for the critical temperature to be linear in interaction strength. Meanwhile, in the p-wave spin triplet channel, the superconductivity exhibits features of conventional BCS theory due to the absence of flat band pairing. Three band crossings thus represent an exciting new platform for realizing exotic superconducting states with enhanced energy scales. We also discuss the effects of doping, nonzero temperature, and of retaining additional terms in the k .p expansion of the Hamiltonian.

  19. Magnet field design considerations for a high energy superconducting cyclotron

    International Nuclear Information System (INIS)

    Botman, J.I.M.; Craddock, M.K.; Kost, C.J.; Richardson, J.R.

    1983-08-01

    This paper reports the pole shape designs for a two stage superconducting isochronous cyclotron combination (CANUCK) to accelerate 100 μA proton beams to 15 GeV. The pole shape of the 15 sectors of the first stage 3.5 GeV proton cyclotron provides isochronism over the full energy range and a constant axial tune over all but the lowest energies. Progress on the pole design of the 42 sector 15 GeV second stage is also reported. The magnetic fields are computed from the current distribution of the superconducting coils and the infinitely thin current sheets simulating the fully saturated poles. A least squares method is used to minimize deviations from isochronism by adjusting the size of various elemental shim coils placed around the main coil. The method to obtain the desired axial tune is described

  20. Status of the Argonne superconducting-linac heavy-ion energy booster

    International Nuclear Information System (INIS)

    Aron, J.; Benaroya, R.; Bollinger, L.M.; Clifft, B.E.; Henning, W.; Johnson, K.W.; Nixon, J.M.; Markovich, P.; Shepard, K.W.

    1979-01-01

    A superconducting linac is being constructed to provide an energy booster for heavy ions from an FN tandem. By late 1980 the linac will consist of 24 independently-phased superconducting resonators, and will provide an effective accelerating potential of more than 25 MV. While the linac is under construction, completed sections are being used to provide useful beam for nuclear physics experiments. In the most recent run with beam (June 1979), an eight resonator array provided an effective accelerating potential of 9.3 MV. Operation of a 12 resonator array is scheduled to begin in October 1979

  1. Status of the Argonne superconducting-linac heavy-ion energy booster

    Energy Technology Data Exchange (ETDEWEB)

    Aron, J.; Benaroya, R.; Bollinger, L.M.; Clifft, B.E.; Henning, W.; Johnson, K.W.; Nixon, J.M.; Markovich, P.; Shepard, K.W.

    1979-01-01

    A superconducting linac is being constructed to provide an energy booster for heavy ions from an FN tandem. By late 1980 the linac will consist of 24 independently-phased superconducting resonators, and will provide an effective accelerating potential of more than 25 MV. While the linac is under construction, completed sections are being used to provide useful beam for nuclear physics experiments. In the most recent run with beam (June 1979), an eight resonator array provided an effective accelerating potential of 9.3 MV. Operation of a 12 resonator array is scheduled to begin in October 1979.

  2. Development trends of combined inductance-capacitance electromechanical energy converters

    Directory of Open Access Journals (Sweden)

    Karayan Hamlet

    2018-01-01

    Full Text Available In the article the modern state of completely new direction of electromechanical science such as combined inductive-capacitive electromechanics is considered. The wide spectra of its possible practical applications and prospects for further development are analyzed. A new approach for mathematical description of transients in dualcon jugate dynamic systems is proposed. On the basis of the algorithm differential equations for inductive-capacitive compatible electromechanical energy converters are derived. The generalized Lagrangian theory of combined inductively-capacitive electric machines was developed as a union of generalized Lagrangian models of inductive and capacitive electro-mechanical energy converters developed on the basis of the basic principles of binary-conjugate electrophysics. The author gives equations of electrodynamics and electromechanics of combined inductive-capacitive electric machines in case there are active electrotechnical materials of dual purpose (ferroelectromagnets in the structure of their excitation system. At the same time, the necessary Lagrangian for combined inductive-capacitive forces was built using new technologies of interaction between inductive and capacitive subsystems. The joint solution of these equations completely determines the dynamic behavior and energy characteristics of the generalized model of combined machines of any design and in any modes of interaction of their functional elements

  3. Superconducting sector magnet for the deuteron cyclotron DC-1

    International Nuclear Information System (INIS)

    Alenitskij, Y.G.; Vasilenko, A.T.; Zaplatin, N.L.; Mironov, S.V.; Morozov, N.A.; Pryanichnikov, V.I.; Samsonov, E.V.; Sukhanov, V.I.; Chesnov, A.F.; Chesnova, S.I.

    1992-01-01

    In this paper the results of calculations of a superconducting magnet with a cold pole for a cyclotron to deuteron energy 100 MeV are presented. The maximum induction in the magnet is 4.5 T, stored energy 5 MJ, mean current density in coil 9 · 10 7 A/m 2 . The scheme and main parameters of the magnet protection system and cryogenic provision system are described. The results of calculation of magnetic and thermal forces acting on the coil and its case are presented. The status of the manufacture of the magnetic system elements is considered

  4. Superconducting accelerator technology

    International Nuclear Information System (INIS)

    Grunder, H.A.; Hartline, B.K.

    1986-01-01

    Modern and future accelerators for high energy and nuclear physics rely increasingly on superconducting components to achieve the required magnetic fields and accelerating fields. This paper presents a practical overview of the phenomenon of superconductivity, and describes the design issues and solutions associated with superconducting magnets and superconducting rf acceleration structures. Further development and application of superconducting components promises increased accelerator performance at reduced electric power cost

  5. Energy saving work of frequency controlled induction cage machine

    Energy Technology Data Exchange (ETDEWEB)

    Gnacinski, P. [Gdynia Maritime University, Department of Ship Electrical Power Engineering, Morska Str. 8, 81-225 Gdynia (Poland)]. E-mail: piotrg@am.gdynia.pl

    2007-03-15

    Energy saving work, understood as lowering the supply voltage when load torque is much less than rated, is one way of reducing power losses in an induction cage machine working with a variable load. Reduction in power losses also affects the thermal properties of an induction machine because the energy saving work allows the temperature rise of the windings to decrease. Thanks to a lower temperature of the windings, the same load torque can be carried by a machine of less rated power. The ability of energy saving work to reduce the temperature of windings depends on the thermal properties of an induction machine, which are different in the case of a machine with foreign ventilation and its own ventilation. This paper deals with the thermal effect of energy saving work on a frequency controlled induction cage machine. A comparison of the properties of a machine with its own and outside ventilation is presented. The results of the investigations are shown for a 3 kW induction cage machine with the two previously mentioned ways of ventilation: one provided with a fan placed on a shaft and the other provided with a fan driven by an auxiliary motor.

  6. Energy saving work of frequency controlled induction cage machine

    International Nuclear Information System (INIS)

    Gnacinski, P.

    2007-01-01

    Energy saving work, understood as lowering the supply voltage when load torque is much less than rated, is one way of reducing power losses in an induction cage machine working with a variable load. Reduction in power losses also affects the thermal properties of an induction machine because the energy saving work allows the temperature rise of the windings to decrease. Thanks to a lower temperature of the windings, the same load torque can be carried by a machine of less rated power. The ability of energy saving work to reduce the temperature of windings depends on the thermal properties of an induction machine, which are different in the case of a machine with foreign ventilation and its own ventilation. This paper deals with the thermal effect of energy saving work on a frequency controlled induction cage machine. A comparison of the properties of a machine with its own and outside ventilation is presented. The results of the investigations are shown for a 3 kW induction cage machine with the two previously mentioned ways of ventilation: one provided with a fan placed on a shaft and the other provided with a fan driven by an auxiliary motor

  7. Rule Induction-Based Knowledge Discovery for Energy Efficiency

    OpenAIRE

    Chen, Qipeng; Fan, Zhong; Kaleshi, Dritan; Armour, Simon M D

    2015-01-01

    Rule induction is a practical approach to knowledge discovery. Provided that a problem is developed, rule induction is able to return the knowledge that addresses the goal of this problem as if-then rules. The primary goals of knowledge discovery are for prediction and description. The rule format knowledge representation is easily understandable so as to enable users to make decisions. This paper presents the potential of rule induction for energy efficiency. In particular, three rule induct...

  8. Abrupt onset of a second energy gap at the superconducting transition of underdoped Bi2212

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Zahid; Lee, W.S.; Vishik, I.M.; Tanaka, K.; Lu, D.H.; Sasagawa, T.; Nagaosa, N.; Devereaux, T.P.; Hussain, Z.; Shen, Z.-X.

    2007-05-26

    he superconducting gap--an energy scale tied to the superconducting phenomena--opens on the Fermi surface at the superconducting transition temperature (Tc) in conventional BCS superconductors. In underdoped high-Tc superconducting copper oxides, a pseudogap (whose relation to the superconducting gap remains a mystery) develops well above Tc (refs 1, 2). Whether the pseudogap is a distinct phenomenon or the incoherent continuation of the superconducting gap above Tc is one of the central questions in high-Tc research3, 4, 5, 6, 7, 8. Although some experimental evidence suggests that the two gaps are distinct9, 10, 11, 12, 13, 14, 15, 16, 17, 18, this issue is still under intense debate. A crucial piece of evidence to firmly establish this two-gap picture is still missing: a direct and unambiguous observation of a single-particle gap tied to the superconducting transition as function of temperature. Here we report the discovery of such an energy gap in underdoped Bi2Sr2CaCu2O8+delta in the momentum space region overlooked in previous measurements. Near the diagonal of Cu?O bond direction (nodal direction), we found a gap that opens at Tc and has a canonical (BCS-like) temperature dependence accompanied by the appearance of the so-called Bogoliubov quasi-particles, a classical signature of superconductivity. This is in sharp contrast to the pseudogap near the Cu?O bond direction (antinodal region) measured in earlier experiments19, 20, 21.

  9. Search for Superconducting Energy Gap in UPt3 by Point-Contact Spectroscopy

    International Nuclear Information System (INIS)

    Gouchi, Jun; Sumiyama, Akihiko; Yamaguchi, Akira; Motoyama, Gaku; Kimura, Noriaki; Yamamoto, Etsuji; Haga, Yoshinori; Ōnuki, Yoshichika

    2015-01-01

    We have investigated the differential resistance of the point contacts between heavy-fermion superconductor UPt 3 and a normal metal Pt, which were fabricated using a commercial piezo-electric actuator, and retried the observation of the energy gap of UPt 3 . A V-shaped dip is observed in both normal and superconducting states and disappeared around T K ∼ 20 K, suggesting that it is related to the Kondo effect. Below the superconducting transition temperature, a shallow double-minimum structure, which indicates the energy gap, has been observed for the contacts on the faces perpendicular to the a-, b- and c-axes of UPt 3

  10. Power and reactive power simultaneous control by 0.5 MJ superconducting magnet energy storage

    International Nuclear Information System (INIS)

    Ise, Toshifumi; Tsuji, Kiichiro; Murakami, Yoshishige

    1984-01-01

    Superconducting magnet energy storage (SMES) is expected to be widely applied to the pulsed sources for fusion reactor research and to the energy storage substituting for pumping-up power stations, because of its fast energy storing and discharging and very high efficiency. Some results have been obtained so far. In this paper, however, the simultaneous control of power and reactive power is considered for an energy storage composed of two sets of thyristorized power conversion system and superconducting magnets in series connection, and a direct digital control system is described on the principle, design and configuration including the compensator, and on the experiment using the 0.5 MJ superconducting magnet energy storage installed in the Superconduction Engineering Experiment Center, Osaka University. The results obtained are as follows: (1) P control priority mode and Q control priority mode (in which power and reactive power control has priority, respectively) were proposed as the countermeasures when the simultaneous control of power and reactive power became impossible; (2) the design method was established, by which power and reactive power control loops can independently be designed as a result of simulation; (3) the achievement of the simultaneous control of power and reactive power was confirmed by using P-control priority mode and Q-control priority mode, in the experiment using the control system designed by simulation. The validity of simulation model was also confirmed by actual response waveforms. (Wakatsuki, Y.)

  11. Superconducting energy storage magnet

    International Nuclear Information System (INIS)

    Eyssa, Y.M.; Boom, R.W.; Young, W.C.; McIntosh, G.E.; Abdelsalam, M.K.

    1986-01-01

    A superconducting magnet is described comprising: (a) a first, outer coil of one layer of conductor including at least a superconducting composite material; (b) a second, inner coil of one layer of conductor including at least a superconducting composite material. The second coil disposed adjacent to the first coil with each turn of the second inner coil at substantially the same level as a turn on the first coil; (c) an inner support structure between the first and second coils and engaged to the conductors thereof, including support rails associated with each turn of conductor in each coil and in contact therewith along its length at positions on the inwardly facing periphery of the conductor. The rail associated with each conductor is electrically isolated from other rails in the inner support structure. The magnetic field produced by a current flowing in the same direction through the conductors of the first and second coils produces a force on the conductors that are directed inwardly toward the inner support structure

  12. Superconducting fault current-limiter with variable shunt impedance

    Science.gov (United States)

    Llambes, Juan Carlos H; Xiong, Xuming

    2013-11-19

    A superconducting fault current-limiter is provided, including a superconducting element configured to resistively or inductively limit a fault current, and one or more variable-impedance shunts electrically coupled in parallel with the superconducting element. The variable-impedance shunt(s) is configured to present a first impedance during a superconducting state of the superconducting element and a second impedance during a normal resistive state of the superconducting element. The superconducting element transitions from the superconducting state to the normal resistive state responsive to the fault current, and responsive thereto, the variable-impedance shunt(s) transitions from the first to the second impedance. The second impedance of the variable-impedance shunt(s) is a lower impedance than the first impedance, which facilitates current flow through the variable-impedance shunt(s) during a recovery transition of the superconducting element from the normal resistive state to the superconducting state, and thus, facilitates recovery of the superconducting element under load.

  13. Optimization of a Superconducting Magnetic Energy Storage Device via a CPU-Efficient Semi-Analytical Simulation

    OpenAIRE

    Dimitrov, I K; Zhang, X; Solovyov, V F; Chubar, O; Li, Qiang

    2014-01-01

    Recent advances in second generation (YBCO) high temperature superconducting wire could potentially enable the design of super high performance energy storage devices that combine the high energy density of chemical storage with the high power of superconducting magnetic storage. However, the high aspect ratio and considerable filament size of these wires requires the concomitant development of dedicated optimization methods that account for both the critical current density and ac losses in ...

  14. Quench Property of Twisted-Pair MgB$_2$ Superconducting Cables in Helium Gas

    CERN Document Server

    Spurrell, J; Falorio, I; Pelegrin, J; Ballarino, A; Yang, Y

    2015-01-01

    CERN's twisted-pair superconducting cable is a novel design which offers filament transposition, low cable inductance and is particularly suited for tape conductors such as 2G YBCO coated conductors, Ag-sheathed Bi2223 tapes and Ni/Monel-sheathed MgB2 tapes. A typical design of such twistedpair cables consists of multiple superconducting tapes intercalated with thin copper tapes as additional stabilizers. The copper tapes are typically not soldered to the superconducting tapes so that sufficient flexibility is retained for the twisting of the tape assembly. The electrical and thermal contacts between the copper and superconducting tapes are an important parameter for current sharing, cryogenic stability and quench propagation. Using an MgB2 twisted-pair cable assembly manufactured at CERN, we have carried out minimum quench energy (MQE) and propagation velocity (vp) measurements with point-like heat deposition localized within a tape. Furthermore, different contacts between the copper and superconductor aroun...

  15. Superconductivity - applications

    International Nuclear Information System (INIS)

    The paper deals with the following subjects: 1) Electronics and high-frequency technology, 2) Superconductors for energy technology, 3) Superconducting magnets and their applications, 4) Electric machinery, 5) Superconducting cables. (WBU) [de

  16. Development of quench detection/protection system based on active power method for superconducting magnet by using capacitor circuit

    International Nuclear Information System (INIS)

    Nanato, N.; Otsuka, T.; Hesaka, S.; Murase, S.

    2013-01-01

    Highlights: ► The authors have presented an active power method for quench detection. ► A method for improving its characteristics using a capacitor circuit was proposed. ► Quench detection/protection test for a Bi2223 superconducting coil was carried out. ► The proposed method was more useful than the conventional one. -- Abstract: When a quench occurs in a superconducting magnet, excessive joule heating in normal region may damage the magnet. It is necessary to detect the quench as soon as possible and discharge magnetic energy stored in the magnet. The authors have presented a quench detection/protection system based on an active power method which detects the quench regardless of a self-inductive and mutual-inductive voltages and electromagnetic noise. In the conventional active power method, the inductive voltages are removed by cancel coils. In this paper, the authors propose a method to cancel an inductive voltage using a capacitor circuit. The quench detection/protection system becomes more precise and smaller than the conventional system through the capacitor circuit

  17. Development of large high current density superconducting solenoid magnets for use in high energy physics experiments

    International Nuclear Information System (INIS)

    Green, M.A.

    1977-05-01

    The development of a unique type of large superconducting solenoid magnet, characterized by very high current density windings and a two-phase helium tubular cooling system is described. The development of the magnet's conceptual design and the construction of two test solenoids are described. The successful test of the superconducting coil and its tubular cooling refrigeration system is presented. The safety, environmental and economic impacts of the test program on future developments in high energy physics are shown. Large solid angle particle detectors for colliding beam physics will analyze both charged and neutral particles. In many cases, these detectors will require neutral particles, such as gamma rays, to pass through the magnet coil with minimum interaction. The magnet coils must be as thin as possible. The use of superconducting windings allows one to minimize radiation thickness, while at the same time maximizing charged particle momentum resolution and saving substantial quantities of electrical energy. The results of the experimental measurements show that large high current density solenoid magnets can be made to operate at high stored energies. The superconducting magnet development described has a positive safety and environmental impact. The use of large high current density thin superconducting solenoids has been proposed in two high energy physics experiments to be conducted at the Stanford Linear Accelerator Center and Cornell University as a result of the successful experiments described

  18. submitter Superconducting transmission lines – Sustainable electric energy transfer with higher public acceptance?

    CERN Document Server

    Thomas, Heiko; Chervyakov, Alexander; Stückrad, Stefan; Salmieri, Delia; Rubbia, Carlo

    2016-01-01

    Despite the extensive research and development investments into superconducting science and technology, both at the fundamental and at the applied levels, many benefits of superconducting transmission lines (SCTL) remain unknown to the public and decision makers at large. This paper aims at informing about the progress in this important research field. Superconducting transmission lines have a tremendous size advantage and lower total electrical losses for high capacity transmission plus a number of technological advantages compared to solutions based on standard conductors. This leads to a minimized environmental impact and enables an overall more sustainable transmission of electric energy. One of the direct benefits may be an increased public acceptance due to the low visual impact with a subsequent reduction of approval time. The access of remote renewable energy (RE) sources with high-capacity transmission is rendered possible with superior efficiency. That not only translates into further reducing $CO_2...

  19. Experimentally stabilized superconducting magnet with inner diameter of 700 mm

    Energy Technology Data Exchange (ETDEWEB)

    Vetlitskii, I A; Belonogov, A V; Dobrov, V M; Krylov, V L; Lebedev, A V; Lomkatsi, G S; Nilov, A F; Smolyankin, V T

    1974-05-01

    An experimental magnet, SPM-70, with the following characteristics was constructed. The inner diameter of the winding was 730 mm; outer diameter of the winding 1000 mm; height of winding 310 mm; magnetic induction at the center of the magnet 1.45 T; maximum magnetic induction 2.4 T; operation current 820 A; ampere-turns 1.07 x 10/sup 6/; design current density 2560 A/cm/sup 2/; stored energy 500 kJ; superconducting alloy Nb+50% Zr; weight of superconductor 23 kg; weight of copper 210 kg; resistivity of the copper in the strips at T = 4.2 K, B = 2.5 T, 2.6 x 10/sup -8/ ..cap omega.. cm.

  20. Pulsed energy conversion with a dc superconducting magnet

    International Nuclear Information System (INIS)

    Cowan, M.; Cnare, E.C.; Leisher, W.B.; Tucker, W.K.; Wessenberg, D.L.

    1976-01-01

    A generator system for pulsed power is described which employs a dc superconducting magnet in a magnetic flux compression scheme. Experience with a small-scale generator together with projections of numerical models indicate potential applications to fusion research and commercial power generation. When the system is large enough pulse energy can exceed that stored in the magnet and pulse rise time can range from several microseconds to tens of milliseconds. (author)

  1. The MgB2 superconducting energy gaps measured by Raman spectroscopy

    International Nuclear Information System (INIS)

    Quilty, James William

    2003-01-01

    Understanding the nature of the superconducting energy gap in magnesium diboride is an essential part of understanding this unusual superconductor, and Raman scattering is a convenient and powerful technique which is able to directly measure the key physical properties of the gap. The Raman spectra of MgB 2 show clear superconductivity induced renormalisations and evidence is found for two superconducting gaps residing on the σ and π Fermi surfaces with maximum magnitudes of around 110 and 30 cm -1 . The larger gap appears as a sharp peak in the electronic Raman scattering continuum while the smaller gap manifests itself as a threshold in the low-frequency spectral intensity, indicating that the gaps form in different electronic environments. The physical properties of the gaps favour explanations of the extraordinarily high T c in MgB 2 within strong coupling theory

  2. A feasibility demonstration program for superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Filios, P.G.

    1988-01-01

    The Defense Nuclear Agency, as the agent of the Strategic Defense Initiative (SDI) Office, has begun a program to build an engineering test model (ETM) of a superconducting magnetic energy storage (SMES) system. The ETM will serve to demonstrate the feasibility of using SMES technology to meet both SDI and public utility requirements for electric energy storage. SMES technology characteristics are reviewed and related to SDI and electric utility requirements. Program structure and schedule are related to specific objectives, and critical issues are defined

  3. Dispersion-Engineered Traveling Wave Kinetic Inductance Parametric Amplifier

    Science.gov (United States)

    Zmuidzinas, Jonas (Inventor); Day, Peter K. (Inventor)

    2014-01-01

    A traveling wave kinetic inductance parametric amplifier comprises a superconducting transmission line and a dispersion control element. The transmission line can include periodic variations of its dimension along its length. The superconducting material can include a high normal state resistivity material. In some instances the high normal state resistivity material includes nitrogen and a metal selected from the group consisting of titanium, niobium and vanadium. The traveling wave kinetic inductance parametric amplifier is expected to exhibit a noise temperature below 100 mK/GHz.

  4. Experimental apparatus and its operational characteristics for MHD rotating machine with superconducting rotor

    International Nuclear Information System (INIS)

    Katsurai, Makoto; Karasaki, Takashi; Sekiguchi, Tadashi; Matsuda, Shoji; Ichikawa, Hayao.

    1976-01-01

    This paper presents the construction and operational characteristics of the experimental apparatus of MHD rotating machine with superconducting rotor, which has the electromechanical energy conversion function based on the inductive interactions between travelling magnetic field produced by the rotor and MHD working fluid. The machine consists of a rotating-dewar type superconducting rotor and a coaxially rotating metal cylinder which simulates the liquid metal MHD working fluid, and the both of them are driven separately by speed-controlled driving motors. The superconducting magnets installed in the rotor has the 8 shaped winding whose outer diameter is 11 cm and hight is 11 cm, and with the excitation current of 200 A (rating), it produces screw type magnetic field in the inductive interaction region of the cylinder with the peak value of 0.2 Wb/m 2 , whereas the average field strength reaches almost 4 Wb/m 2 inside the winding. In this condition, mutual interaction force is 30 N in the peripheral direction and 8 N in the axial direction and the total driving power of motors is 1,300 W when the relative rotation speed of the rotor and the cylinder is 800 rpm. Observed characteristics of this machine are for the most part in agreement with those estimated by the theoretical analysis. (auth.)

  5. Capital and operating cost estimates for high temperature superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Schoenung, S.M.; Meier, W.R.; Fagaly, R.L.; Heiberger, M.; Stephens, R.B.; Leuer, J.A.; Guzman, R.A.

    1992-01-01

    Capital and operating costs have been estimated for mid-scale (2 to 200 Mwh) superconducting magnetic energy storage (SMES) designed to use high temperature superconductors (HTS). Capital costs are dominated by the cost of superconducting materials. Operating costs, primarily for regeneration, are significantly reduced for HTS-SMES in comparison to low temperature, conventional systems. This cost component is small compared to other O and M and capital components, when levelized annual costs are projected. In this paper, the developments required for HTS-SMES feasibility are discussed

  6. On test results of the superconducting magnetic energy storage (SMES) system in Ariuragawa Power Station

    International Nuclear Information System (INIS)

    Katahira, Osamu; Fukui, Fumihiko; Karano, Koichi; Irie, Fujio; Takeo, Masakatsu; Okada, Hidehiko; Shimojo, Toshikazu.

    1991-01-01

    SMES system is that for storing electric energy in the form of magnetic energy by flowing DC current through a superconducting coil by utilizing the characteristics of its superconductivity. It comprises a superconducting coil for storing energy, an AC-DC converter, the cooling system for maintaining extremely low temperature and so on. The features of SMES are the high efficiency of storing electric energy (more than 90 % in the large scale system), the fast response to store and release electric power, and effective power and reactive power can be independently and arbitrarily controlled. It is expected that SMES can be applied to the stabilization of electric power system, the adjustment of system voltage, the adjustment of varying load and so on. In order to verify the results of the laboratory research in actual power system, the system test was carried out in Ariuragawa Power Station on November 20-22, 1990. The outline of the test, the method of controlling SMES, the test results and the examination of the results are reported. (K.I.)

  7. Program NICOLET to integrate energy loss in superconducting coils

    International Nuclear Information System (INIS)

    Vogel, H.F.

    1978-08-01

    A voltage pickup coil, inductively coupled to the magnetic field of the superconducting coil under test, is connected so its output may be compared with the terminal voltage of the coil under test. The integrated voltage difference is indicative of the resistive volt-seconds. When multiplied with the main coil current, the volt-seconds yield the loss. In other words, a hysteresis loop is obtained if the integrated voltage difference phi = ∫ΔVdt is plotted as a function of the coil current, i. First, time functions of the two signals phi(t) and i(t) are recorded on a dual-trace digital oscilloscope, and these signals are then recorded on magnetic tape. On a CDC-6600, the recorded information is decoded and plotted, and the hysteresis loops are integrated by the set of FORTRAN programs NICOLET described in this report. 4 figures

  8. Energy Efficiency Model for Induction Furnace

    Science.gov (United States)

    Dey, Asit Kr

    2018-01-01

    In this paper, a system of a solar induction furnace unit was design to find out a new solution for the existing AC power consuming heating process through Supervisory control and data acquisition system. This unit can be connected directly to the DC system without any internal conversion inside the device. The performance of the new system solution is compared with the existing one in terms of power consumption and losses. This work also investigated energy save, system improvement, process control model in a foundry induction furnace heating framework corresponding to PV solar power supply. The results are analysed for long run in terms of saving energy and integrated process system. The data acquisition system base solar foundry plant is an extremely multifaceted system that can be run over an almost innumerable range of operating conditions, each characterized by specific energy consumption. Determining ideal operating conditions is a key challenge that requires the involvement of the latest automation technologies, each one contributing to allow not only the acquisition, processing, storage, retrieval and visualization of data, but also the implementation of automatic control strategies that can expand the achievement envelope in terms of melting process, safety and energy efficiency.

  9. Operation of multiple superconducting energy doubler magnets in series

    International Nuclear Information System (INIS)

    Kalbfleisch, G.; Limon, P.J.; Rode, C.

    1977-01-01

    In order to understand the operational characteristics of the Energy Doubler, a series of experiments were begun which were designed to be a practical test of running superconducting accelerator magnets in series. Two separate tests in which two Energy Doubler dipoles were powered in series are described. Of particular interest are the static losses of the cryostats and the behavior of the coils and cryostats during quenches. The results of the tests show that Energy Doubler magnets can be safely operated near their short sample limit, and that the various safety devices used are adequate to protect the coils and the cryostats from damage

  10. Superconducting magnetic energy storage for electric utility load leveling: A study of cost vs. stored energy

    International Nuclear Information System (INIS)

    Luongo, C.A.; Loyd, R.J.

    1987-01-01

    Superconducting Magnetic Energy Storage (SMES) is a promising technology for electric utility load leveling. This paper presents the results of a study to establish the capital cost of SMES as a function of stored energy. Energy-related coil cost and total installed plant cost are given for construction in nominal soil and in competent rock. Economic comparisons are made between SMES and other storage technologies and peaking gas turbines. SMES is projected to be competitive at stored energies as low as 1000 MWh

  11. An innovative experiment on superconductivity, based on video analysis and non-expensive data acquisition

    International Nuclear Information System (INIS)

    Bonanno, A; Bozzo, G; Camarca, M; Sapia, P

    2015-01-01

    In this paper we present a new experiment on superconductivity, designed for university undergraduate students, based on the high-speed video analysis of a magnet falling through a ceramic superconducting cylinder (T c  = 110 K). The use of an Atwood’s machine allows us to vary the magnet’s speed and acceleration during its interaction with the superconductor. In this way, we highlight the existence of two interaction regimes: for low crossing energy, the magnet is levitated by the superconductor after a transient oscillatory damping; for higher crossing energy, the magnet passes through the superconducting cylinder. The use of a commercial-grade high speed imaging system, together with video analysis performed using the Tracker software, allows us to attain a good precision in space and time measurements. Four sensing coils, mounted inside and outside the superconducting cylinder, allow us to study the magnetic flux variations in connection with the magnet’s passage through the superconductor, permitting us to shed light on a didactically relevant topic as the behaviour of magnetic field lines in the presence of a superconductor. The critical discussion of experimental data allows undergraduate university students to grasp useful insights on the basic phenomenology of superconductivity as well as on relevant conceptual topics such as the difference between the Meissner effect and the Faraday-like ‘perfect’ induction. (paper)

  12. Superconductivity application technologies. Superconducting quadrupole magnet and cooling system for KEK B factory

    International Nuclear Information System (INIS)

    Tsuchiya, Kiyosumi; Yamaguchi, Kiyoshi; Sakurabata, Hiroaki; Seido, Masahiro; Matsumoto, Kozo.

    1997-01-01

    At present in National Laboratory for High Energy Physics (KEK), the construction of B factory is in progress. By colliding 8 GeV electrons and 3.5 GeV positrons, this facility generates large amounts of B mesons and anti-B mesons, and performs the elementary particle experiment of high accuracy. It is the collision type accelerator of asymmetric two-ring type comprising 8 GeV and 3.5 GeV rings. In the field of high energy physics, superconductivity technology has been put to practical use. As the objects of superconductivity technology, there are dipole magnet for bending beam, quadrupole magnet for adjusting beam, large solenoid magnet used for detector and so on. Superconducting magnets which are indispensable for high energy, superconducting wire material suitable to accelerators, and the liquid helium cooling system for maintaining superconducting magnets at 4.4 K are reported. The technologies of metallic conductors and making their coils have advanced rapidly, and also cooling technology has advanced, accordingly, superconductivity technology has reached the stage of practical use perfectly. (K.I.)

  13. Superconducting-electromagnetic hybrid bearing using YBCO bulk blocks for passive axial levitation

    Science.gov (United States)

    Nicolsky, R.; de Andrade, R., Jr.; Ripper, A.; David, D. F. B.; Santisteban, J. A.; Stephan, R. M.; Gawalek, W.; Habisreuther, T.; Strasser, T.

    2000-06-01

    A superconducting/electromagnetic hybrid bearing has been designed using active radial electromagnetic positioning and a superconducting passive axial levitator. This bearing has been tested for an induction machine with a vertical shaft. The prototype was conceived as a four-pole, two-phase induction machine using specially designed stator windings for delivering torque and radial positioning simultaneously. The radial bearing uses four eddy-current sensors, displaced 90° from each other, for measuring the shaft position and a PID control system for feeding back the currents. The stator windings have been adapted from the ones of a standard induction motor. The superconducting axial bearing has been assembled with commercial NdFeB permanent magnets and a set of seven top-seeded-melt-textured YBCO large-grain cylindrical blocks. The bearing set-up was previously simulated by a finite element method for different permanent magnet-superconductor block configurations. The stiffness of the superconducting axial bearing has been investigated by measuring by a dynamic method the vertical and transversal elastic constants for different field cooling processes. The resulting elastic constants show a linear dependence on the air gap, i.e. the clearance between the permanent magnet assembly and the set of superconducting large-grain blocks, which is dependent on cooling distance.

  14. Superconducting Wind Turbine Generators

    Directory of Open Access Journals (Sweden)

    Yunying Pan

    2016-08-01

    Full Text Available Wind energy is well known as a renewable energy because its clean and less polluted characteristic, which is the foundation of development modern wind electricity. To find more efficient wind turbine is the focus of scientists around the world. Compared from conventional wind turbines, superconducting wind turbine generators have advantages at zero resistance, smaller size and lighter weight. Superconducting wind turbine will inevitably become the main trends in this area. This paper intends to introduce the basic concept and principle of superconductivity, and compare form traditional wind turbine to obtain superiority, then to summary three proposed machine concept.While superconductivity have difficulty  in modern technology and we also have proposed some challenges in achieving superconducting wind turbine finally.

  15. A novel transient rotor current control scheme of a doubly-fed induction generator equipped with superconducting magnetic energy storage for voltage and frequency support

    Science.gov (United States)

    Shen, Yang-Wu; Ke, De-Ping; Sun, Yuan-Zhang; Daniel, Kirschen; Wang, Yi-Shen; Hu, Yuan-Chao

    2015-07-01

    A novel transient rotor current control scheme is proposed in this paper for a doubly-fed induction generator (DFIG) equipped with a superconducting magnetic energy storage (SMES) device to enhance its transient voltage and frequency support capacity during grid faults. The SMES connected to the DC-link capacitor of the DFIG is controlled to regulate the transient dc-link voltage so that the whole capacity of the grid side converter (GSC) is dedicated to injecting reactive power to the grid for the transient voltage support. However, the rotor-side converter (RSC) has different control tasks for different periods of the grid fault. Firstly, for Period I, the RSC injects the demagnetizing current to ensure the controllability of the rotor voltage. Then, since the dc stator flux degenerates rapidly in Period II, the required demagnetizing current is low in Period II and the RSC uses the spare capacity to additionally generate the reactive (priority) and active current so that the transient voltage capability is corroborated and the DFIG also positively responds to the system frequency dynamic at the earliest time. Finally, a small amount of demagnetizing current is provided after the fault clearance. Most of the RSC capacity is used to inject the active current to further support the frequency recovery of the system. Simulations are carried out on a simple power system with a wind farm. Comparisons with other commonly used control methods are performed to validate the proposed control method. Project supported by the National Natural Science Foundation of China (Grant No. 51307124) and the Major Program of the National Natural Science Foundation of China (Grant No. 51190105).

  16. Contribution to study and realization of 20-Tesla superconducting magnet

    International Nuclear Information System (INIS)

    Marty, J.

    1981-11-01

    This work is mainly concerned with 20 Tesla induction production study. This magnetic induction should be produced by associating a series of coils using high critical field commercial: superconductors to the 10 Tesla magnet (diameter: 300; let's call it 10-300 magnet). The operation temperature lowering from 4,2 0 K to 1,8 0 K should effectively lead to much higher inductions (with equal effective diameter) than the greatest performances nowadays realized at 4,2 0 K temperature. To this performance augmentation is associated a more important energy density augmentation. This leads to the necessity of the knowledge of the superconducting material physical properties. They are studied in this report. Following, different methodes of magnet calculations are described: problems related to mechanical constraints, protection and stability must be known. Finally, some coils of the 10-300 magnet are presented together with their realization [fr

  17. Superconductivity in the 1990's

    International Nuclear Information System (INIS)

    Stekly, Z.J.J.

    1990-01-01

    Superconducting magnets, coils or windings are the basis for a range of major applications in the energy area such as energy storage in superconducting coils, magnets for fusion research, and rotating machinery. Other major applications of superconductivity include high energy physics where 1000 superconducting magnets are operated continuously in the Tevatron at Fermilab in Illinois, over 12,000 superconducting magnets will be required for the superconducting Super Collider being build near Dallas. The largest commercial application of superconductors is in magnets for magnetic resonance imaging (MRI) - a new medical diagnostic imaging technique with about 2,000 systems installed worldwide. These form a sizable technology base on which to evaluate and push forward applications such as magneto hydrodynamic propulsion of seagoing vessels. The attractiveness of which depends ultimately on the characteristics of the superconducting magnet. The magnet itself is a combination of several technology areas - the conductors, magnetics, structures and cryogenics. This paper reviews state-of-the-art in each of the technology areas as they relate to superconductors

  18. Superconductivity: Phenomenology

    International Nuclear Information System (INIS)

    Falicov, L.M.

    1988-08-01

    This document discusses first the following topics: (a) The superconducting transition temperature; (b) Zero resistivity; (c) The Meissner effect; (d) The isotope effect; (e) Microwave and optical properties; and (f) The superconducting energy gap. Part II of this document investigates the Ginzburg-Landau equations by discussing: (a) The coherence length; (b) The penetration depth; (c) Flux quantization; (d) Magnetic-field dependence of the energy gap; (e) Quantum interference phenomena; and (f) The Josephson effect

  19. Bulk superconducting gap of V_3Si studied by low-energy ultrahigh-resolution photoemission spectroscopy

    International Nuclear Information System (INIS)

    Sato, T.; Souma, S.; Nakayama, K.; Sugawara, K.; Toyota, N.; Takahashi, T.

    2016-01-01

    Highlights: • We report ultrahigh-resolution photoemission spectroscopy of A15 compound V_3Si. • We found a sharp quasiparticle peak due to superconducting-gap opening. • The surface metallic component is negligibly small in the bulk-sensitive measurement. • We show that V_3Si is a single-gap s-wave superconductor. - Abstract: We have performed low-energy ultrahigh-resolution photoemission spectroscopy (PES) of A15 compound V_3Si with a xenon-plasma discharge lamp to elucidate the bulk superconducting gap. Below the superconducting transition temperature (T_c = 15.9 K), we found a sharp quasiparticle peak at the Fermi level in the PES spectrum. The gap spectrum is well fitted by a single s-wave superconducting-gap function together with a dip structure at ∼30 meV suggestive of a strong electron-phonon coupling. The anomalous in-gap state previously observed in the PES measurement with high-energy photons is absent or negligibly small in the present bulk-sensitive measurement. The present PES result shows that V_3Si is a single-gap s-wave superconductor.

  20. Doping dependence of low-energy quasiparticle excitations in superconducting Bi2212.

    Science.gov (United States)

    Ino, Akihiro; Anzai, Hiroaki; Arita, Masashi; Namatame, Hirofumi; Taniguchi, Masaki; Ishikado, Motoyuki; Fujita, Kazuhiro; Ishida, Shigeyuki; Uchida, Shinichi

    2013-12-05

    : The doping-dependent evolution of the d-wave superconducting state is studied from the perspective of the angle-resolved photoemission spectra of a high-Tc cuprate, Bi2Sr2CaCu2 O8+δ (Bi2212). The anisotropic evolution of the energy gap for Bogoliubov quasiparticles is parametrized by critical temperature and superfluid density. The renormalization of nodal quasiparticles is evaluated in terms of mass enhancement spectra. These quantities shed light on the strong coupling nature of electron pairing and the impact of forward elastic or inelastic scatterings. We suggest that the quasiparticle excitations in the superconducting cuprates are profoundly affected by doping-dependent screening.

  1. Optimization study on inductive-resistive circuit for broadband piezoelectric energy harvesters

    Directory of Open Access Journals (Sweden)

    Ting Tan

    2017-03-01

    Full Text Available The performance of cantilever-beam piezoelectric energy harvester is usually analyzed with pure resistive circuit. The optimal performance of such a vibration-based energy harvesting system is limited by narrow bandwidth around its modified natural frequency. For broadband piezoelectric energy harvesting, series and parallel inductive-resistive circuits are introduced. The electromechanical coupled distributed parameter models for such systems under harmonic base excitations are decoupled with modified natural frequency and electrical damping to consider the coupling effect. Analytical solutions of the harvested power and tip displacement for the electromechanical decoupled model are confirmed with numerical solutions for the coupled model. The optimal performance of piezoelectric energy harvesting with inductive-resistive circuits is revealed theoretically as constant maximal power at any excitation frequency. This is achieved by the scenarios of matching the modified natural frequency with the excitation frequency and equating the electrical damping to the mechanical damping. The inductance and load resistance should be simultaneously tuned to their optimal values, which may not be applicable for very high electromechanical coupling systems when the excitation frequency is higher than their natural frequencies. With identical optimal performance, the series inductive-resistive circuit is recommended for relatively small load resistance, while the parallel inductive-resistive circuit is suggested for relatively large load resistance. This study provides a simplified optimization method for broadband piezoelectric energy harvesters with inductive-resistive circuits.

  2. Optimization study on inductive-resistive circuit for broadband piezoelectric energy harvesters

    Science.gov (United States)

    Tan, Ting; Yan, Zhimiao

    2017-03-01

    The performance of cantilever-beam piezoelectric energy harvester is usually analyzed with pure resistive circuit. The optimal performance of such a vibration-based energy harvesting system is limited by narrow bandwidth around its modified natural frequency. For broadband piezoelectric energy harvesting, series and parallel inductive-resistive circuits are introduced. The electromechanical coupled distributed parameter models for such systems under harmonic base excitations are decoupled with modified natural frequency and electrical damping to consider the coupling effect. Analytical solutions of the harvested power and tip displacement for the electromechanical decoupled model are confirmed with numerical solutions for the coupled model. The optimal performance of piezoelectric energy harvesting with inductive-resistive circuits is revealed theoretically as constant maximal power at any excitation frequency. This is achieved by the scenarios of matching the modified natural frequency with the excitation frequency and equating the electrical damping to the mechanical damping. The inductance and load resistance should be simultaneously tuned to their optimal values, which may not be applicable for very high electromechanical coupling systems when the excitation frequency is higher than their natural frequencies. With identical optimal performance, the series inductive-resistive circuit is recommended for relatively small load resistance, while the parallel inductive-resistive circuit is suggested for relatively large load resistance. This study provides a simplified optimization method for broadband piezoelectric energy harvesters with inductive-resistive circuits.

  3. High speed superconducting flywheel system for energy storage

    Science.gov (United States)

    Bornemann, H. J.; Urban, C.; Boegler, P.; Ritter, T.; Zaitsev, O.; Weber, K.; Rietschel, H.

    1994-12-01

    A prototype of a flywheel system with auto stable high temperature superconducting bearings was built and tested. The bearings offered good vertical and lateral stability. A metallic flywheel disk, ø 190 mm x 30 mm, was safely rotated at speeds up to 15000 rpm. The disk was driven by a 3 phase synchronous homopolar motor/generator. Maximum energy capacity was 3.8 Wh, maximum power was 1.5 KW. The dynamic behavior of the prototype was tested, characterized and evaluated with respect to axial and lateral stiffness, decay torques (bearing drag), vibrational modes and critical speeds. The bearings supports a maximum weight of 65 N at zero gap, axial and lateral stiffness at 1 mm gap were 440 N/cm and 130 N/cm, respectively. Spin down experiments were performed to investigate the energy efficiency of the system. The decay rate was found to depend upon background pressure in the vacuum chamber and upon the gap width in the bearing. At a background pressure of 5x10 -4 Torr, the coefficient of friction (drag-to-lift ratio) was measured to be 0.000009 at low speeds for 6 mm gap width in the bearing. Our results indicate that further refinement of this technology will allow operation of higly efficient superconducting flywheels in the kWh range.

  4. Superconducting three element synchronous ac machine

    International Nuclear Information System (INIS)

    Boyer, L.; Chabrerie, J.P.; Mailfert, A.; Renard, M.

    1975-01-01

    There is a growing interest in ac superconducting machines. Of several new concepts proposed for these machines in the last years one of the most promising seems to be the ''three elements'' concept which allows the cancellation of the torque acting on the superconducting field winding, thus overcoming some of the major contraints. This concept leads to a device of induction-type generator. A synchronous, three element superconducting ac machine is described, in which a room temperature, dc fed rotating winding is inserted between the superconducting field winding and the ac armature. The steady-state machine theory is developed, the flux linkages are established, and the torque expressions are derived. The condition for zero torque on the field winding, as well as the resulting electrical equations of the machine, are given. The theoretical behavior of the machine is studied, using phasor diagrams and assuming for the superconducting field winding either a constant current or a constant flux condition

  5. WORKSHOPS: Radiofrequency superconductivity

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    In the continual push towards higher energy particle beams, superconducting radiofrequency techniques now play a vital role, highlighted in the fifth workshop on radiofrequency superconductivity, held at DESY from 19 - 24 August 1991

  6. WORKSHOPS: Radiofrequency superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1992-01-15

    In the continual push towards higher energy particle beams, superconducting radiofrequency techniques now play a vital role, highlighted in the fifth workshop on radiofrequency superconductivity, held at DESY from 19 - 24 August 1991.

  7. Influence of quasiparticle multi-tunneling on the energy flow through the superconducting tunnel junction

    International Nuclear Information System (INIS)

    Samedov, V. V.; Tulinov, B. M.

    2011-01-01

    Superconducting tunnel junction (STJ) detector consists of two layers of superconducting material separated by thin insulating barrier. An incident particle produces in superconductor excess nonequilibrium quasiparticles. Each quasiparticle in superconductor should be considered as quantum superposition of electron-like and hole-like excitations. This duality nature of quasiparticle leads to the effect of multi-tunneling. Quasiparticle starts to tunnel back and forth through the insulating barrier. After tunneling from biased electrode quasiparticle loses its energy via phonon emission. Eventually, the energy that equals to the difference in quasiparticle energy between two electrodes is deposited in the signal electrode. Because of the process of multi-tunneling, one quasiparticle can deposit energy more than once. In this work, the theory of branching cascade processes was applied to the process of energy deposition caused by the quasiparticle multi-tunneling. The formulae for the mean value and variance of the energy transferred by one quasiparticle into heat were derived. (authors)

  8. Superconducting states and depinning transitions of Josephson ladders

    International Nuclear Information System (INIS)

    Barahona, M.; Strogatz, S.H.; Orlando, T.P.

    1998-01-01

    We present analytical and numerical studies of pinned superconducting states of open-ended Josephson ladder arrays, neglecting inductances but taking edge effects into account. Treating the edge effects perturbatively, we find analytical approximations for three of these superconducting states emdash the no-vortex, fully frustrated, and single-vortex states emdash as functions of the dc bias current I and the frustration f. Bifurcation theory is used to derive formulas for the depinning currents and critical frustrations at which the superconducting states disappear or lose dynamical stability as I and f are varied. These results are combined to yield a zero-temperature stability diagram of the system with respect to I and f. To highlight the effects of the edges, we compare this dynamical stability diagram to the thermodynamic phase diagram for the infinite system where edges have been neglected. We briefly indicate how to extend our methods to include self-inductances. copyright 1998 The American Physical Society

  9. Superconductivity in power engineering

    International Nuclear Information System (INIS)

    1989-01-01

    This proceedings volume presents 24 conference papers and 15 posters dealing with the following aspects: 1) Principles and elementary aspects of high-temperature superconductivity (3 plenary lectures); 2) Preparation, properties and materials requirements of metallic or oxide superconductors (critical current behaviour, soldered joints, structural studies); 3) Magnet technology (large magnets for thermonuclear fusion devices; magnets for particle accelerators and medical devices); 4) Magnetic levitation and superconductivity; 5) Cryogenics; 6) Energy storage systems using superconducting coils (SMES); 7) Superconducting power transmission cables, switches, transformers, and generator systems for power plant; 8) Supporting activities, industrial aspects, patents. There are thirty-eight records in the ENERGY database relating to individual conference papers. (MM) [de

  10. Superconducting Magnetic Energy Storage (SMES). (Latest citations from the NTIS bibliographic database). Published Search

    International Nuclear Information System (INIS)

    1993-11-01

    The bibliography contains citations concerning the technology and use of superconducting magnetic energy storage (SMES). The design, analysis, evaluation, and operation of SMES systems and equipment are discussed. Topics include utility scale SMES plants, SMES for transmission line stabilization, design and protection of superconducting magnets and coils, computer controlled SMES systems, and fusion power reactors. (Contains a minimum of 82 citations and includes a subject term index and title list.)

  11. Superconducting Magnetic Energy Storage (SMES). (Latest citations from the NTIS bibliographic database). Published Search

    International Nuclear Information System (INIS)

    1993-09-01

    The bibliography contains citations concerning the technology and use of superconducting magnetic energy storage (SMES). The design, analysis, evaluation, and operation of SMES systems and equipment are discussed. Topics include utility scale SMES plants, SMES for transmission line stabilization, design and protection of superconducting magnets and coils, computer controlled SMES systems, and fusion power reactors. (Contains a minimum of 82 citations and includes a subject term index and title list.)

  12. Development and operation of the JAERI superconducting energy recovery linacs

    Science.gov (United States)

    Minehara, Eisuke J.

    2006-02-01

    The Japan Atomic Energy Research Institute free-electron laser (JAERI FEL) group at Tokai, Ibaraki, Japan has successfully developed one of the most advanced and newest accelerator technologies named "superconducting energy recovery linacs (ERLs)" and some applications in near future using the ERLs. In the text, the current operation and high power JAERI ERL-FEL 10 kW upgrading program, ERL-light source design studies, prevention of the stainless-steel cold-worked stress-corrosion cracking failures and decommissioning of nuclear power plants in nuclear energy industries were reported and discussed briefly as a typical application of the ERL-FEL.

  13. FEM Optimal Design of Energy Efficient Induction Machines

    Directory of Open Access Journals (Sweden)

    TUDORACHE, T.

    2009-06-01

    Full Text Available This paper deals with a comparative numerical analysis of performances of several design solutions of induction machines with improved energy efficiency. Starting from a typical cast aluminum cage induction machine this study highlights the benefit of replacing the classical cast aluminum cage with a cast copper cage in the manufacture of future generation of high efficiency induction machines used as motors or generators. Then the advantage of replacement of standard electrical steel with higher grade steel with smaller losses is pointed out. The numerical analysis carried out in the paper is based on 2D plane-parallel finite element approach of the induction machine, the numerical results being discussed and compared with experimental measurements.

  14. Superconducting energy storage magnet

    Science.gov (United States)

    Boom, Roger W. (Inventor); Eyssa, Yehia M. (Inventor); Abdelsalam, Mostafa K. (Inventor); Huang, Xianrui (Inventor)

    1993-01-01

    A superconducting magnet is formed having composite conductors arrayed in coils having turns which lie on a surface defining substantially a frustum of a cone. The conical angle with respect to the central axis is preferably selected such that the magnetic pressure on the coil at the widest portion of the cone is substantially zero. The magnet structure is adapted for use as an energy storage magnet mounted in an earthen trench or tunnel where the strength the surrounding soil is lower at the top of the trench or tunnel than at the bottom. The composite conductor may be formed having a ripple shape to minimize stresses during charge up and discharge and has a shape for each ripple selected such that the conductor undergoes a minimum amount of bending during the charge and discharge cycle. By minimizing bending, the working of the normal conductor in the composite conductor is minimized, thereby reducing the increase in resistance of the normal conductor that occurs over time as the conductor undergoes bending during numerous charge and discharge cycles.

  15. The impedance of inductive superconducting fault current limiters operating with stacks of thin film Y123/Au washers or bulk Bi2223 rings as secondaries

    International Nuclear Information System (INIS)

    Fernandez, J A Lorenzo; Osorio, M R; Toimil, P; Ferro, G; Blanch, M; Veira, J A; Vidal, F

    2006-01-01

    Inductive fault current limiters operating with stacks of various small superconducting elements acting as secondaries were studied. The stacks consist of Y 1 Ba 2 Cu 3 O 7-δ thin film washers or Bi 1.8 Pb 0.26 Sr 2 Ca 2 Cu 3 O 10+x bulk rings. A central result of our work is an experimental demonstration that the limiting capability of the device is strongly reduced when several bulk rings are stacked, whereas it remains almost unchanged for thin film washers. The use of thin films should therefore allow us to build more efficient high power inductive limiters based on stacks of small washers

  16. Inductive circuit arrangements

    International Nuclear Information System (INIS)

    Mansfield, Peter; Coxon, R.J.

    1987-01-01

    A switched coil arrangement is connected in a bridge configuration of four switches S 1 , S 2 , S 3 and S 4 which are each shunted by diodes D 1 , D 2 , D 3 and D 4 so that current can flow in either direction through a coil L depending on the setting of the switches. A capacitor C is connected across the bridge through a switch S 5 to receive the inductive energy stored in coil L on breaking the current flow path through the coil. The electrostatic energy stored in capacitor C can then be used to supply current through the coil in the reverse direction either immediately or after a time delay. Coil L may be a superconductive coil. Losses in the circuit can be made up by a trickle charge of capacitor C from a separate supply V 2 . The device may be used in nuclear magnetic resonance imaging. (author)

  17. Inductance mode characteristics of a ceramic YBa2Cu3O7-x radio-frequency superconducting quantum interference device at 77 K

    DEFF Research Database (Denmark)

    Il'ichev, E. V.; Andreev, A. V.; Jacobsen, Claus Schelde

    1993-01-01

    Experimental results on some radio-frequency superconducting quantum interference device (rf-SQUID) signal properties are presented. The quantum interferometer was made of ceramic YBa2Cu3O7−x and was due to a low critical current operated in the inductance or nonhysteretic mode. With bias current...... as reference, amplitude variation, and phase shift of the voltage over the tank circuit coupled to the SQUID were measured simultaneously. It is shown that there is qualitative agreement between calculations based on the resistivity shunted junction model and the data. Moreover, using phase detection, signal...... instabilities predicted for the rf-SQUID inductance mode were observed. These signal instabilities may be exploited to enhance the transfer coefficient for measured flux-to-output signal. Journal of Applied Physics is copyrighted by The American Institute of Physics....

  18. Cryogenic system for production testing and measurement of Fermilab energy saver superconducting magnets

    International Nuclear Information System (INIS)

    Cooper, W.E.; Barger, R.K.; Bianchi, A.J.; Cooper, W.E.; Johnson, F.B.; McGuire, K.J.; Pinyan, K.D.; Wilson, F.R.

    1983-01-01

    The cryogenic system of the Fermilab Magnet Test Facility has been used to provide cooling for the testing of approximately 1200 Energy Saver superconducting magnets. The system provides liquid helium, liquid nitrogen, gas purification, and vacuum support for six magnet test stands. It provides for simultaneous high current testing of two superconducting magnets and nonhigh current cold testing of two additional magnets. The cryogenic system has been in operation for about 32000 hours. The 1200 magnets have taken slightly more than three years to test

  19. Cryogenic system for production testing and measurement of Fermilab energy saver superconducting magnets

    International Nuclear Information System (INIS)

    Cooper, W.E.; Bianchi, A.J.; Barger, R.K.; Johnson, F.B.; McGuire, K.J.; Pinyan, K.D.; Wilson, F.R.

    1983-03-01

    The cryogenic system of the Fermilab Magnet Test Facility has been used to provide cooling for the testing of approximately 1200 Energy Saver superconducting magnets. The system provides liquid helium, liquid nitrogen, gas purification, and vacuum support for six magnet test stands. It provides for simultaneous high current testing of two superconducting magnets and non-high current cold testing of two additional magnets. The cryogenic system has been in operation for about 32000 hours. The 1200 magnets have taken slightly more than three years to test

  20. Inductive fault current limiter based on multiple superconducting rings of small diameter

    International Nuclear Information System (INIS)

    Osorio, M R; Cabo, L; Veira, J A; Vidal, F

    2004-01-01

    We present a fault current limiter prototype based on the use of a secondary comprised of an array of magnetic cores of small sections, each one of them with several superconducting rings. The main advantage of this configuration is that it is easier to make small diameter superconducting rings which, in addition, are more homogeneous and allow better refrigeration. We then present detailed measurements that show that, in addition to these advantages, this prototype offers the same limitation performances than when using a unique core and a superconducting ring with an equivalent area as the array of small section cores

  1. Superconductivity Engineering and Its Application for Fusion 3.Superconducting Technology as a Gateway to Future Technology

    Science.gov (United States)

    Asano, Katsuhiko

    Hopes for achieving a new source of energy through nuclear fusion rest on the development of superconducting technology that is needed to make future equipments more energy efficient as well as increase their performance. Superconducting technology has made progress in a wide variety of fields, such as energy, life science, electronics, industrial use and environmental improvement. It enables the actualization of equipment that was unachievable with conventional technology, and will sustain future “IT-Based Quality Life Style”, “Sustainable Environmental” and “Advanced Healthcare” society. Besides coil technology with high magnetic field performance, superconducting electoronics or device technology, such as SQUID and SFQ-circuit, high temperature superconducting material and advanced cryogenics technology might be great significance in the history of nuclear fusion which requires so many wide, high and ultra technology. Superconducting technology seems to be the catalyst for a changing future society with nuclear fusion. As society changes, so will superconducting technology.

  2. Design and performance of a new induction furnace for heat treatment of superconducting radiofrequency niobium cavities.

    Science.gov (United States)

    Dhakal, Pashupati; Ciovati, Gianluigi; Rigby, Wayne; Wallace, John; Myneni, Ganapati Rao

    2012-06-01

    Superconducting radio frequency (SRF) cavities made of high purity niobium (Nb) are the building blocks of many modern particle accelerators. The fabrication process includes several cycles of chemical and heat treatment at low (∼120 °C) and high (∼800 °C) temperatures. In this contribution, we describe the design and performance of an ultra-high-vacuum furnace which uses an induction heating system to heat treat SRF cavities. Cavities are heated by radiation from the Nb susceptor. By using an all-niobium hot zone, contamination of the Nb cavity by foreign elements during heat treatment is minimized and allows avoiding subsequent chemical etching. The furnace was operated up to 1400 °C with a maximum pressure of ∼1 × 10(-5) Torr and the maximum achievable temperature is estimated to be higher than 2000 °C. Initial results on the performance of a single cell 1.5 GHz cavity made of ingot Nb heat treated at 1200 °C using this new induction furnace and without subsequent chemical etching showed a reduction of the RF losses by a factor of ∼2 compared to cavities made of fine-grain Nb which underwent standard chemical and heat treatments.

  3. Subharmonic energy-gap structure and heating effects in superconducting niobium point contacts

    DEFF Research Database (Denmark)

    Flensberg, K.; Hansen, Jørn Bindslev

    1989-01-01

    We present experimental data of the temperature-dependent subharmonic energy-gap structure (SGS) in the current-voltage (I-V) curves of superconducting niobium point contacts. The observed SGS is modified by heating effects. We construct a model of the quasiparticle conductance of metallic...

  4. Reluctance motor employing superconducting magnetic flux switches

    International Nuclear Information System (INIS)

    Spyker, R.L.; Ruckstadter, E.J.

    1992-01-01

    This paper reports that superconducting flux switches controlling the magnetic flux in the poles of a motor will enable the implementation of a reluctance motor using one central single phase winding. A superconducting flux switch consists of a ring of superconducting material surrounding a ferromagnetic pole of the motor. When in the superconducting state the switch will block all magnetic flux attempting to flow in the ferromagnetic core. When switched to the normal state the superconducting switch will allow the magnetic flux to flow freely in that pole. By using one high turns-count coil as a flux generator, and selectively channeling flux among the various poles using the superconducting flux switch, 3-phase operation can be emulated with a single-hase central AC source. The motor will also operate when the flux generating coil is driven by a DC current, provided the magnetic flux switches see a continuously varying magnetic flux. Rotor rotation provides this varying flux due to the change in stator pole inductance it produces

  5. Coil protection for a utility scale superconducting magnetic energy storage plant

    International Nuclear Information System (INIS)

    Loyd, R.J.; Schoenung, S.M.; Rogers, J.D.; Hassenzahl, W.V.; Purcell, J.R.

    1986-01-01

    Superconducting Magnetic Energy Storage (SMES) is proposed for electric utility load leveling. Attractive costs, high diurnal energy efficiency (≥ 92%), and rapid response are advantages relative to other energy storage technologies. Recent industry-led efforts have produced a conceptual design for a 5000 MWh/1000 MW energy storage plant which is technically feasible at commercially attractive estimated costs. The SMES plant design includes a protection system which prevents damage to the magnetic coil if events require a rapid discharge of stored energy. This paper describes the design and operation of the coil protection system, which is primarily passive and uses the thermal capacity of the coil itself to absorb the stored electromagnetic energy

  6. Advancements in Kinetic Inductance Detector, Spectrometer, and Amplifier Technologies for Millimeter-Wave Astronomy

    Science.gov (United States)

    Che, George

    The inductance of a conductor expresses its tendency to oppose a change in current flowing through it. For superconductors, in addition to the familiar magnetic inductance due to energy stored in the magnetic field generated by this current, kinetic inductance due to inertia of charge carriers is a significant and often dominant contribution to total inductance. Devices based on modifying the kinetic inductance of thin film superconductors have widespread application to millimeter-wave astronomy. Lithographically patterning such a film into a high quality factor resonator produces a high sensitivity photodetector known as a kinetic inductance detector (KID), which is sensitive to frequencies above the superconducting energy gap of the chosen material. Inherently multiplexable in the frequency domain and relatively simple to fabricate, KIDs pave the way to the large format focal plane array instruments necessary to conduct the next generation of cosmic microwave background (CMB), star formation, and galaxy evolution studies. In addition, non-linear kinetic inductance can be exploited to develop traveling wave kinetic inductance parametric amplifiers (TKIPs) based on superconducting delay lines to read out these instruments. I present my contributions to both large and small scale collaborative efforts to develop KID arrays, spectrometers integrated with KIDs, and TKIPs. I optimize a dual polarization TiN KID absorber for the next generation Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry, which is designed to investigate the role magnetic fields play in star formation. As part of an effort to demonstrate aluminum KIDs on sky for CMB polarimetry, I fabricate devices for three design variants. SuperSpec and WSpec are respectively the on-chip and waveguide implementations of a filter bank spectrometer concept designed for survey spectroscopy of high redshift galaxies. I provide a robust tool for characterizing the performance of all Super

  7. Enhancing the design of a superconducting coil for magnetic energy storage systems

    International Nuclear Information System (INIS)

    Indira, Gomathinayagam; UmaMaheswaraRao, Theru; Chandramohan, Sankaralingam

    2015-01-01

    Highlights: • High magnetic flux density of SMES coil to reduce the size. • YBCO Tapes for the construction of HTS magnets. • Relation between energy storage and length of the coil wound by various materials. • Design with a certain length of second-generation HTS. - Abstract: Study and analysis of a coil for Superconducting Magnetic Energy Storage (SMES) system is presented in this paper. Generally, high magnetic flux density is adapted in the design of superconducting coil of SMES to reduce the size of the coil and to increase its energy density. With high magnetic flux density, critical current density of the coil is degraded and so the coil is wound with High Temperature Superconductors (HTS) made of different materials. A comparative study is made to emphasize the relationship between the energy storage and length of the coil wound by Bi2223, SF12100, SCS12100 and YBCO tapes. Recently for the construction of HTS magnets, YBCO tapes have been used. Simulation models for various designs have been developed to analyze the magnetic field distribution for the optimum design of energy storage. The design which gives the maximum stored energy in the coil has been used with a certain length of second-generation HTS. The performance analysis and the results of comparative study are done

  8. Enhancing the design of a superconducting coil for magnetic energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Indira, Gomathinayagam, E-mail: gindu80@gmail.com [EEE Department, Prince Shri Venkateshwara Padmavathy Engineering College, Chennai (India); UmaMaheswaraRao, Theru, E-mail: umesh.theru@gmail.com [Divison of Power Engineering and Management, Anna University, Chennai (India); Chandramohan, Sankaralingam, E-mail: cdramo@gmail.com [Divison of Power Engineering and Management, Anna University, Chennai (India)

    2015-01-15

    Highlights: • High magnetic flux density of SMES coil to reduce the size. • YBCO Tapes for the construction of HTS magnets. • Relation between energy storage and length of the coil wound by various materials. • Design with a certain length of second-generation HTS. - Abstract: Study and analysis of a coil for Superconducting Magnetic Energy Storage (SMES) system is presented in this paper. Generally, high magnetic flux density is adapted in the design of superconducting coil of SMES to reduce the size of the coil and to increase its energy density. With high magnetic flux density, critical current density of the coil is degraded and so the coil is wound with High Temperature Superconductors (HTS) made of different materials. A comparative study is made to emphasize the relationship between the energy storage and length of the coil wound by Bi2223, SF12100, SCS12100 and YBCO tapes. Recently for the construction of HTS magnets, YBCO tapes have been used. Simulation models for various designs have been developed to analyze the magnetic field distribution for the optimum design of energy storage. The design which gives the maximum stored energy in the coil has been used with a certain length of second-generation HTS. The performance analysis and the results of comparative study are done.

  9. Design optimization of superconducting magnetic energy storage coil

    Energy Technology Data Exchange (ETDEWEB)

    Bhunia, Uttam, E-mail: ubhunia@vecc.gov.in; Saha, Subimal; Chakrabarti, Alok

    2014-05-15

    Highlights: • We modeled the optimization formulation that minimizes overall refrigeration load into the SMES cryostat. • Higher the operating current reduces the dynamic load but increases static heat load into the cryostat. • Higher allowable hoop stress reduces both coil volume and refrigeration load. • The formulation can be in general be utilized for any arbitrary specification of SMES coil and conductor type. - Abstract: An optimization formulation has been developed for a superconducting magnetic energy storage (SMES) solenoid-type coil with niobium titanium (Nb–Ti) based Rutherford-type cable that minimizes the cryogenic refrigeration load into the cryostat. Minimization of refrigeration load reduces the operating cost and opens up the possibility to adopt helium re-condensing system using cryo-cooler especially for small-scale SMES system. Dynamic refrigeration load during charging or discharging operational mode of the coil dominates over steady state load. The paper outlines design optimization with practical design constraints like actual critical characteristics of the superconducting cable, maximum allowable hoop stress on winding, etc., with the objective to minimize refrigeration load into the SMES cryostat. Effect of design parameters on refrigeration load is also investigated.

  10. Frustrated Kinetic Energy, the Optical Sum Rule, and the Mechanism of Superconductivity

    International Nuclear Information System (INIS)

    Chakravarty, S.; Kee, H.; Abrahams, E.

    1999-01-01

    The basis of the interlayer tunneling theory of high-temperature superconductivity is that the electronic kinetic energy in a direction perpendicular to the copper-oxygen planes is a substantial fraction of the condensation energy. This issue is critically examined, and it is argued from a rigorous conductivity sum rule that the consequences of this theory are consistent with recent optical and penetration depth measurements. copyright 1999 The American Physical Society

  11. Enhanced superconductivity of fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Washington, II, Aaron L.; Teprovich, Joseph A.; Zidan, Ragaiy

    2017-06-20

    Methods for enhancing characteristics of superconductive fullerenes and devices incorporating the fullerenes are disclosed. Enhancements can include increase in the critical transition temperature at a constant magnetic field; the existence of a superconducting hysteresis over a changing magnetic field; a decrease in the stabilizing magnetic field required for the onset of superconductivity; and/or an increase in the stability of superconductivity over a large magnetic field. The enhancements can be brought about by transmitting electromagnetic radiation to the superconductive fullerene such that the electromagnetic radiation impinges on the fullerene with an energy that is greater than the band gap of the fullerene.

  12. Radiofrequency amplifier based on a DC superconducting quantum interference device

    International Nuclear Information System (INIS)

    Martinis, J.M.; Hilbert, C.; Clarke, J.

    1986-01-01

    A method is described of amplifying a radiofrequency signal consisting of: disposing a single symmetrically biased dc SQUID and an input coil within a superconducting shield, the dc SQUID having a superconducting ring interrupted by two shunted Josephson junctions, and the input coil being inductively coupled solely to the ring of the single SQUID, establishing a constant magnetic flux threading the SQUID ring, applying the radiofrequency signal to the input coil from outside of the superconducting shield, obtaining an amplified radiofrequency signal solely from across the ring of the single SQUID, transmitting the amplified radiofrequency signal from across the SQUID ring to the outside of the superconducting shield

  13. A novel transition radiation detector utilizing superconducting microspheres for measuring the energy of relativistic high-energy charged particles

    International Nuclear Information System (INIS)

    Yuan, Luke C.L.; Chen, C.P.; Huang, C.Y.; Lee, S.C.; Waysand, G.; Perrier, P.; Limagne, D.; Jeudy, V.; Girard, T.

    2000-01-01

    A novel transition radiation detector (TRD) utilizing superheated superconducting microspheres of tin of 22-26, 27-32 and 32-38 μm in diameter, respectively, has been constructed which is capable of measuring accurately the energy of relativistic high-energy charged particles. The test has been conducted in a high-energy electron beam facility at the CERN PS in the energy range of 1-10 GeV showing an energy dependence of the TR X-ray photon produced and hence the value γ=E/mc 2 of the charged particle

  14. Large impedances and Majorana bound states in superconducting circuits

    International Nuclear Information System (INIS)

    Ulrich, Jascha

    2017-01-01

    Superconducting circuits offer the opportunity to study quantum mechanics on mesoscopic scales unimpeded by dissipation. This fact and the nonlinearity of the Josephson inductance make it possible to use superconducting circuits as artificial atoms whose long-lived states can be selectively addressed and studied. A pronounced nonlinearity of the energy spectrum, however, requires quantum fluctuations of the flux across the Josephson junction which are large on the scale of the superconducting flux quantum Φ Q =h/2e. This implies charge fluctuations below the single Cooper-pair limit via flux-charge duality. The localization of charge leads to a strong susceptibility to interactions with charges in the environment which has motivated the search for schemes to decouple charges from their environment. This thesis is concerned with theoretical challenges arising from two complementary approaches to this problem: the realization of large impedances and the fractionalization of electrons by means of Majorana bound states. In recent years, the decoupling of charges from the environment through reactive large impedances, so-called ''superinductances'' L, has attracted much interest. These inductances feature small parasitic capacitance C such that the characteristic impedance √(L/C) is much larger than the superconducting resistance quantum R Q =h/4e 2 . Superinductances have various applications ranging from qubit designs such as the 0-π qubit or the fluxonium to impedance matching, Bloch oscillations and the stabilization of phase slips in superconducting nanowires. Although there exists a well-established formalism for the quantization of superconducting circuits in terms of node fluxes, this formalism is ill-suited for the description of fast flux transport with localized charges in large-impedance environments. In particular, the nonlinear capacitive behavior of phase slip junctions cannot be modeled in a straightforward way using node fluxes

  15. Bulk superconducting gap of V{sub 3}Si studied by low-energy ultrahigh-resolution photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sato, T., E-mail: t-sato@arpes.phys.tohoku.ac.jp [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Souma, S. [WPI Research Center, Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Nakayama, K. [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Sugawara, K. [WPI Research Center, Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Toyota, N. [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Takahashi, T. [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); WPI Research Center, Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2016-04-15

    Highlights: • We report ultrahigh-resolution photoemission spectroscopy of A15 compound V{sub 3}Si. • We found a sharp quasiparticle peak due to superconducting-gap opening. • The surface metallic component is negligibly small in the bulk-sensitive measurement. • We show that V{sub 3}Si is a single-gap s-wave superconductor. - Abstract: We have performed low-energy ultrahigh-resolution photoemission spectroscopy (PES) of A15 compound V{sub 3}Si with a xenon-plasma discharge lamp to elucidate the bulk superconducting gap. Below the superconducting transition temperature (T{sub c} = 15.9 K), we found a sharp quasiparticle peak at the Fermi level in the PES spectrum. The gap spectrum is well fitted by a single s-wave superconducting-gap function together with a dip structure at ∼30 meV suggestive of a strong electron-phonon coupling. The anomalous in-gap state previously observed in the PES measurement with high-energy photons is absent or negligibly small in the present bulk-sensitive measurement. The present PES result shows that V{sub 3}Si is a single-gap s-wave superconductor.

  16. Energy Extracting and Quench Protection System in the LHC

    CERN Document Server

    Abu Siam, Mansour

    2016-01-01

    quadrupole magnets. The electromagnets are built of special cables that operate in superconducting state by cooling them to 1.9K (-271.3℃); the superconducting magnets of the LHC are powered in about 1700 electrical circuits. A phenomenon called quench can spontaneously occur in superconducting magnets, which means that the superconductivity is lost in part of their windings. The energy stored within the magnet, up to 1.3 GJ, can cause severe damage. In order to protect the superconducting elements after a resistive transition, the energy is dissipated into a dump resistor installed in series with the magnet chain that is switched into the circuit by opening circuit breakers. The system described above is utilized for magnets installed in the LHC that operate under currents ranging from 600A up to 13kA. For the next LHC upgrade (High Luminosity) there is a need for circuit breakers capable of interrupting high DC currents in a solely inductive circuit within one millisecond and under development of very hig...

  17. Optimization of superconducting bending magnets for a 1.0 to 1.5 GeV compact light source

    International Nuclear Information System (INIS)

    Green, M.A.; Garren, A.A.

    1995-06-01

    Compact light sources are being proposed for protein crystallography, medical imaging, nano-machining and other areas of study that require intense sources of x rays at energies up to 35 keV. In order for a synchrotron light source to be attractive, its capital cost must, be kept low. The proposed compact light source has superconducting bending elements to bend the stored beam and produce the x rays. Additional focusing for the machine is provided by conventional quadrupoles. An important part of the cost optimization of a compact light source is the cost of the bending magnets. In the case of a machine with superconducting bending elements, the bending magnet system can represent close to half of the storage ring cost. The compact light source storage rings studied here have a range of stored electron energies from 1.0 to 1.5 GeV. For a number of reasons, it is desirable to keep the storage ring circumference below 30 meters. Cost optimization parameters include: (1) the number of superconducting bending elements in the ring, and (2) the central induction of the dipole. A machine design that features two superconducting dipoles in a single cryostat vacuum vessel is also discussed

  18. Design and optimization of superconducting magnet system for energy storage application

    International Nuclear Information System (INIS)

    Bhunia, Uttam

    2015-01-01

    In view of developing superconducting magnetic energy storage system (SMES) technology that will mitigate voltage sag/dip in the utility line, VEC centre has taken up a leading role in the country. In the first phase a solenoid-type 0.6 MJ SMES system using cryo-stable NbTi superconductor has been designed, developed and tested successfully with resistive load to mitigate power line voltage dips. The cryogenic test results of 0.6 MJ SMES coil will be highlighted. Further, effort is underway to develop a 4.5 MJ/1 MW SMES system with toroidal coil configuration. The lecture will also cover the superconducting coil development for SMES application with special emphasis on design aspects and the optimization issue of the toroidal system using NbTi based Rutherford-type cable. (author)

  19. Resistivity changes in superconducting-cavity-grade Nb following high-energy proton irradiation

    International Nuclear Information System (INIS)

    Snead, C.L. Jr.; Hanson, A.; Greene, G.A.

    1997-01-01

    Niobium superconducting rf cavities are proposed for use in the proton LINAC accelerators for spallation-neutron applications. Because of accidental beam loss and continual halo losses along the accelerator path, concern for the degradation of the superconducting properties of the cavities with accumulating damage arises. Residual-resistivity-ratio (RRR) specimens of Nb, with a range of initial RRR's were irradiated at room temperature with protons at energies from 200 to 2000 MeV. Four-probe resistance measurements were made at room temperature and at 4.2 K both prior to and after irradiation. Nonlinear increases in resistivity simulate expected behavior in cavity material after extended irradiation, followed by periodic anneals to room temperature: For RRR = 316 material, irradiations to (2 - 3) x 10 15 p/cm 2 produce degradations up to the 10% level, a change that is deemed operationally acceptable. Without. periodic warming to room temperature, the accumulated damage energy would be up to a factor of ten greater, resulting in unacceptable degradations. Likewise, should higher-RRR material be used, for the same damage energy imparted, relatively larger percentage changes in the RRR will result

  20. Optimized use of superconducting magnetic energy storage for electromagnetic rail launcher powering

    Science.gov (United States)

    Badel, Arnaud; Tixador, Pascal; Arniet, Michel

    2012-01-01

    Electromagnetic rail launchers (EMRLs) require very high currents, from hundreds of kA to several MA. They are usually powered by capacitors. The use of superconducting magnetic energy storage (SMES) in the supply chain of an EMRL is investigated, as an energy buffer and as direct powering source. Simulations of direct powering are conducted to quantify the benefits of this method in terms of required primary energy. In order to enhance further the benefits of SMES powering, a novel integration concept is proposed, the superconducting self-supplied electromagnetic launcher (S3EL). In the S3EL, the SMES is used as a power supply for the EMRL but its coil serves also as an additional source of magnetic flux density, in order to increase the thrust (or reduce the required current for a given thrust). Optimization principles for this new concept are presented. Simulations based on the characteristics of an existing launcher demonstrate that the required current could be reduced by a factor of seven. Realizing such devices with HTS cables should be possible in the near future, especially if the S3EL concept is used in combination with the XRAM principle, allowing current multiplication.

  1. Optimized use of superconducting magnetic energy storage for electromagnetic rail launcher powering

    International Nuclear Information System (INIS)

    Badel, Arnaud; Tixador, Pascal; Arniet, Michel

    2012-01-01

    Electromagnetic rail launchers (EMRLs) require very high currents, from hundreds of kA to several MA. They are usually powered by capacitors. The use of superconducting magnetic energy storage (SMES) in the supply chain of an EMRL is investigated, as an energy buffer and as direct powering source. Simulations of direct powering are conducted to quantify the benefits of this method in terms of required primary energy. In order to enhance further the benefits of SMES powering, a novel integration concept is proposed, the superconducting self-supplied electromagnetic launcher (S 3 EL). In the S 3 EL, the SMES is used as a power supply for the EMRL but its coil serves also as an additional source of magnetic flux density, in order to increase the thrust (or reduce the required current for a given thrust). Optimization principles for this new concept are presented. Simulations based on the characteristics of an existing launcher demonstrate that the required current could be reduced by a factor of seven. Realizing such devices with HTS cables should be possible in the near future, especially if the S 3 EL concept is used in combination with the XRAM principle, allowing current multiplication.

  2. Laser activated superconducting switch

    International Nuclear Information System (INIS)

    Wolf, A.A.

    1976-01-01

    A superconducting switch or bistable device is described consisting of a superconductor in a cryogen maintaining a temperature just below the transition temperature, having a window of the proper optical frequency band for passing a laser beam which may impinge on the superconductor when desired. The frequency of the laser is equal to or greater than the optical absorption frequency of the superconducting material and is consistent with the ratio of the gap energy of the switch material to Planck's constant, to cause depairing of electrons, and thereby normalize the superconductor. Some embodiments comprise first and second superconducting metals. Other embodiments feature the two superconducting metals separated by a thin film insulator through which the superconducting electrons tunnel during superconductivity

  3. Superconducting nanostructured materials

    International Nuclear Information System (INIS)

    Metlushko, V.

    1998-01-01

    Within the last year it has been realized that the remarkable properties of superconducting thin films containing a periodic array of defects (such as sub-micron sized holes) offer a new route for developing a novel superconducting materials based on precise control of microstructure by modern photolithography. A superconductor is a material which, when cooled below a certain temperature, loses all resistance to electricity. This means that superconducting materials can carry large electrical currents without any energy loss--but there are limits to how much current can flow before superconductivity is destroyed. The current at which superconductivity breaks down is called the critical current. The value of the critical current is determined by the balance of Lorentz forces and pinning forces acting on the flux lines in the superconductor. Lorentz forces proportional to the current flow tend to drive the flux lines into motion, which dissipates energy and destroys zero resistance. Pinning forces created by isolated defects in the microstructure oppose flux line motion and increase the critical current. Many kinds of artificial pinning centers have been proposed and developed to increase critical current performance, ranging from dispersal of small non-superconducting second phases to creation of defects by proton, neutron or heavy ion irradiation. In all of these methods, the pinning centers are randomly distributed over the superconducting material, causing them to operate well below their maximum efficiency. We are overcome this drawback by creating pinning centers in aperiodic lattice (see Fig 1) so that each pin site interacts strongly with only one or a few flux lines

  4. Design and construction of a resistive energy dump device for bipolar superconducting magnet systems

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, M. J.

    1977-05-01

    When superconducting magnets quench, the resistance of the conductor material rises rapidly to its normal value. This increase in resistance can result in catastrophic heating in the magnet unless stored field energy is quickly removed from the system. Phase inversion is the normal mode of energy removal. SCR's in the power supply are phased back, the output of the supply is inverted, and magnetic field energy is directed back into the utility grid. Under certain conditions, however, the power supply may fail to invert properly, and an alternate energy removal scheme must protect the superconducting magnet system. Composed of an isolation switch, a semiconductor switching module, and a dump resistor, the resistive dump device provides a viable protection scheme. Operationally, several conditions are capable of activating the isolation switch and triggering the bipolar SCR switching module. Manual dump commands, for instance, permit the operator to dump field energy in the event of observed abnormalities. A special voltage tap quench detector senses the aforementioned abnormal power supply output inversion and also fires the dump circuit. Regardless of the nature of the trigger input, however, activation of the energy dump device diverts coil current through the dump resistor. I/sup 2/R losses over time then safely dissipate stored magnetic field energy.

  5. Influence of Superconducting Leads Energy Gap on Electron Transport Through Double Quantum Dot by Markovian Quantum Master Equation Approach

    International Nuclear Information System (INIS)

    Afsaneh, E.; Yavari, H.

    2014-01-01

    The superconducting reservoir effect on the current carrying transport of a double quantum dot in Markovian regime is investigated. For this purpose, a quantum master equation at finite temperature is derived for the many-body density matrix of an open quantum system. The dynamics and the steady-state properties of the double quantum dot system for arbitrary bias are studied. We will show that how the populations and coherencies of the system states are affected by superconducting leads. The energy parameter of system contains essentially four contributions due to dots system-electrodes coupling, intra dot coupling, two quantum dots inter coupling and superconducting gap. The coupling effect of each energy contribution is applied to currents and coherencies results. In addition, the effect of energy gap is studied by considering the amplitude and lifetime of coherencies to get more current through the system. (author)

  6. Beauty physics at the ultrahigh energies of the ELOISATRON [Euroasiatic Long Intersecting Superconducting Accelerator Synchrotron

    International Nuclear Information System (INIS)

    Cox, B.

    1988-02-01

    The potential for experimentally studying B physics at the proposed INFN 100 TeV ELOISATRON (Euroasiatic Long Intersecting Superconducting Accelerator Synchrotron) is compared with possibilities at 40 TeV at the Superconducting Super Collider. The effect of the increase in center of mass energy on the production and decay of B mesons has been investigated, particularly with respect to the accummulation of large samples of B hadron decays necessary for the detection of CP violating effects. 13 refs., 7 figs., 1 tab

  7. Comparison of Levelized Cost of Energy of superconducting direct drive generators for a 10 MW offshore wind turbine

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Liu, Dong; Magnusson, Niklas

    2018-01-01

    A method for comparing the Levelized Cost of Energy (LCoE) of different superconducting drive trains is introduced. The properties of a 10 MW MgB$_{2}$ superconducting direct drive generator are presented in terms weight scaled to a turbine with a rotor diameter up of 280 m and the cost break down...

  8. Superconducting linac

    International Nuclear Information System (INIS)

    Bollinger, L.M.; Shepard, K.W.; Wangler, T.P.

    1978-01-01

    This project has two goals: to design, build, and test a small superconducting linac to serve as an energy booster for heavy ions from an FN tandem electrostatic accelerator, and to investigate various aspects of superconducting rf technology. The main design features of the booster are described, a status report on various components (resonators, rf control system, linac control system, cryostats, buncher) is given, and plans for the near future are outlined. Investigations of superconducting-linac technology concern studies on materials and fabrication techniques, resonator diagnostic techniques, rf-phase control, beam dynamics computer programs, asymmetry in accelerating field, and surface-treatment techniques. The overall layout of the to-be-proposed ATLAS, the Argonne Tandem-Linac Accelerator System, is shown; the ATLAS would use superconducting technology to produce beams of 5 to 25 MeV/A. 6 figures

  9. Large-area NbN superconducting nanowire avalanche photon detectors with saturated detection efficiency

    Science.gov (United States)

    Murphy, Ryan P.; Grein, Matthew E.; Gudmundsen, Theodore J.; McCaughan, Adam; Najafi, Faraz; Berggren, Karl K.; Marsili, Francesco; Dauler, Eric A.

    2015-05-01

    Superconducting circuits comprising SNSPDs placed in parallel—superconducting nanowire avalanche photodetectors, or SNAPs—have previously been demonstrated to improve the output signal-to-noise ratio (SNR) by increasing the critical current. In this work, we employ a 2-SNAP superconducting circuit with narrow (40 nm) niobium nitride (NbN) nanowires to improve the system detection efficiency to near-IR photons while maintaining high SNR. Additionally, while previous 2-SNAP demonstrations have added external choke inductance to stabilize the avalanching photocurrent, we show that the external inductance can be entirely folded into the active area by cascading 2-SNAP devices in series to produce a greatly increased active area. We fabricated series-2-SNAP (s2-SNAP) circuits with a nanowire length of 20 μm with cascades of 2-SNAPs providing the choke inductance necessary for SNAP operation. We observed that (1) the detection efficiency saturated at high bias currents, and (2) the 40 nm 2-SNAP circuit critical current was approximately twice that for a 40 nm non-SNAP configuration.

  10. Fast-opening vacuum switches for high-power inductive energy storage

    International Nuclear Information System (INIS)

    Cooperstein, G.

    1988-01-01

    The subject of fast-opening vacuum switches for high-power inductive energy storage is emerging as an exciting new area of plasma science research. This opening switch technology, which generally involves the use of plasmas as the switching medium, is key to the development of inductive energy storage techniques for pulsed power which have a number of advantages over conventional capacitive techniques with regard to cost and size. This paper reviews the state of the art in this area with emphasis on applications to inductive storage pulsed power generators. Discussion focuses on fast-opening vacuum switches capable of operating at high power (≥10 12 W). These include plasma erosion opening switches, ion beam opening switches, plasma filled diodes, reflex diodes, plasma flow switches, and other novel vacuum opening switches

  11. Broadband illumination of superconducting pair breaking photon detectors

    International Nuclear Information System (INIS)

    Guruswamy, T; Goldie, D J; Withington, S

    2016-01-01

    Understanding the detailed behaviour of superconducting pair breaking photon detectors such as Kinetic Inductance Detectors (KIDs) requires knowledge of the nonequilibrium quasiparticle energy distributions. We have previously calculated the steady state distributions resulting from uniform absorption of monochromatic sub gap and above gap frequency radiation by thin films. In this work, we use the same methods to calculate the effect of illumination by broadband sources, such as thermal radiation from astrophysical phenomena or from the readout system. Absorption of photons at multiple above gap frequencies is shown to leave unchanged the structure of the quasiparticle energy distribution close to the superconducting gap. Hence for typical absorbed powers, we find the effects of absorption of broadband pair breaking radiation can simply be considered as the sum of the effects of absorption of many monochromatic sources. Distribution averaged quantities, like quasiparticle generation efficiency η, match exactly a weighted average over the bandwidth of the source of calculations assuming a monochromatic source. For sub gap frequencies, however, distributing the absorbed power across multiple frequencies does change the low energy quasiparticle distribution. For moderate and high absorbed powers, this results in a significantly larger η–a higher number of excess quasiparticles for a broadband source compared to a monochromatic source of equal total absorbed power. Typically in KIDs the microwave power absorbed has a very narrow bandwidth, but in devices with broad resonance characteristics (low quality factors), this increase in η may be measurable. (paper)

  12. Ultra-wide bandwidth improvement of piezoelectric energy harvesters through electrical inductance coupling

    Science.gov (United States)

    Abdelmoula, H.; Abdelkefi, A.

    2015-11-01

    The design and analysis of innovative ultra-wide bandwidth piezoelectric energy harvesters are deeply investigated. An electrical inductance is considered in the harvester's circuit to be connected in series or parallel to a load resistance. A lumped-parameter model is used to model the electromechanical response of the harvester when subjected to harmonic excitations. A linear comprehensive analysis is performed to investigate the effects of an electrical inductance on the coupled frequencies and damping of the harvester. It is shown that including an electrical inductance connected in series or in parallel to an electrical load resistance can result in the appearance of a second coupled frequency of electrical type. The results show that the inclusion of an inductance may give the opportunity to tune one of the coupled frequencies of mechanical and electrical types to the available excitation frequency in the environment. Using the gradient method, an optimization analysis is then performed to determine the optimum values of the electrical inductance and load resistance that maximize the harvested power. It is demonstrated that, for each excitation frequency, there is a combination of optimum values of the electrical inductance and resistance in such a way an optimum constant value of the harvested power is found. Numerical analysis is then performed to show the importance of considering an additional inductance in the harvester's circuitry in order to design broadband energy harvesters. The results show that the presence of the second coupled frequency of electrical type due to the inductance gives the possibility to design optimal broadband inductive-resistive piezoelectric energy harvesters with minimum displacement due to shunt damping effect.

  13. SMES [Superconducting Magnetic Energy Storage] systems applications to improve quality service

    Energy Technology Data Exchange (ETDEWEB)

    Esteban, P.; Gutierrez-Iglesias, J.L. [ASINEL (Spain); Bautista, A. [IBERDROLA (Spain); Rodriguez, J.M.; Urretavizcaya, E. [Red Electrica de Espana (Spain)

    1997-12-31

    This article presents the contribution of SMES (Superconducting Magnetic Energy Storage) systems to improvement quality of service, either as a mitigating element or as a power support for critical loads. It also describes these systems and its operation. Finally, a description is shown of the state of the art of this technology in Spain, as developed until now in the AMAS500 project. (Author)

  14. 1-GWh diurnal load-leveling superconducting magnetic energy storage system reference design. Appendix A: energy storage coil and superconductor

    International Nuclear Information System (INIS)

    Schermer, R.I.

    1979-09-01

    The technical aspects of a 1-GWh Superconducting Magnetic Energy Storage (SMES) coil for use as a diurnal load-leveling device in an electric utility system are presented. The superconductor for the coil is analyzed, and costs for the entire coil are developed

  15. Energy efficiency of induction heating; Energieeffizienz von Anlagen zum induktiven Randschichthaerten

    Energy Technology Data Exchange (ETDEWEB)

    Schuboltz, Stefan; Stiele, Hansjuerg [EFD Induction GmbH, Freiburg (Germany)

    2012-09-15

    Based on increasing prices for energy and growing consciousness for ecology, the energy efficiency of machines has become an important aspect in many sectors of the industry. The significance of the efficiency factor of induction heating systems, which are generating power ratings up to the megawatt-band, has risen up eminently. Due to increasing needs on reliable solutions and high requirements for the components, induction as a tool for surface hardening obtains high demands. (orig.)

  16. APPLICATION OF NONLINEAR PID CONTROLLER IN SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    OpenAIRE

    PENG, Xiaotao; CHENG, Shijie

    2011-01-01

    As a new control strategy, Nonlinear PID(NLPID) controller has been introduced in the power system successfully. The controller is free of planting model foundation in the design procedure and realized simply. In this paper, a nonlinear PID controller used for superconducting magnetic energy storage (SMES) unit connected to a power system is proposed. Purpose of designing such controller is to improve the stability of the power system in a relatively wide operation range. The design procedure...

  17. Superconductivity and their applications

    OpenAIRE

    Roque, António; Sousa, Duarte M.; Fernão Pires, Vítor; Margato, Elmano

    2017-01-01

    Trabalho apresentado em International Conference on Renewable Energies and Power Quality (ICREPQ’17), 4 a 6 de Abril de 2017, Málaga, Espanha The research in the field of superconductivity has led to the synthesis of superconducting materials with features that allow you to expand the applicability of this kind of materials. Among the superconducting materials characteristics, the critical temperature of the superconductor is framing the range and type of industrial applications that can b...

  18. Loss and Inductance Investigations in a 4-layer Superconducting Prototype Cable Conductor

    DEFF Research Database (Denmark)

    Tønnesen, Ole; Olsen, Søren Krüger; Kühle (fratrådt), Anders Van Der Aa

    1999-01-01

    One important issue in the design and optimization of a superconducting cable conductor is the control of the current distribution between single tapes and layers. This presentation is based on a number of experiments performed on a 4-layer three meter long prototype superconducting cable conductor......-losses are measured as a function of transport current and a given current distribution and compared with the monoblock model. Recommendations for design of future cable conductor prototypes are given....

  19. Acoustic wave spread in superconducting-normal-superconducting sandwich

    International Nuclear Information System (INIS)

    Urushadze, G.I.

    2004-01-01

    The acoustic wave spread, perpendicular to the boundaries between superconducting and normal metals in superconducting-normal-superconducting (SNS) sandwich has been considered. The alternate current flow sound induced by the Green function method has been found and the coefficient of the acoustic wave transmission through the junction γ=(S 1 -S 2 )/S 1 , (where S 1 and S 2 are average energy flows formed on the first and second boundaries) as a function of the phase difference between superconductors has been investigated. It is shown that while the SNS sandwich is almost transparent for acoustic waves (γ 0 /τ), n=0,1,2, ... (where τ 0 /τ is the ratio of the broadening of the quasiparticle energy levels in impurity normal metal as a result of scattering of the carriers by impurities 1/τ to the spacing between energy levels 1/τ 0 ), γ=2, (S 2 =-S 1 ), which corresponds to the full reflection of the acoustic wave from SNS sandwich. This result is valid for the limit of a pure normal metal but in the main impurity case there are two amplification and reflection regions for acoustic waves. The result obtained shows promise for the SNS sandwich as an ideal mirror for acoustic wave reflection

  20. Japan. Superconductivity for Smart Grids

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, K.

    2012-11-15

    Currently, many smart grid projects are running or planned worldwide. These aim at controlling the electricity supply more efficiently and more stably in a new power network system. In Japan, especially superconductivity technology development projects are carried out to contribute to the future smart grid. Japanese cable makers such as Sumitomo Electric and Furukawa Electric are leading in the production of high-temperature superconducting (HTS) power cables. The world's largest electric current and highest voltage superconductivity proving tests have been started this year. Big cities such as Tokyo will be expected to introduce the HTS power cables to reduce transport losses and to meet the increased electricity demand in the near future. Superconducting devices, HTS power cables, Superconducting Magnetic Energy Storage (SMES) and flywheels are the focus of new developments in cooperations between companies, universities and research institutes, funded by the Japanese research and development funding organization New Energy and Industrial Technology Development Organization (NEDO)

  1. Low-velocity superconducting accelerating structures

    International Nuclear Information System (INIS)

    Delayen, J.R.

    1990-01-01

    The present paper reviews the status of RF superconductivity as applied to low-velocity accelerating properties. Heavy-ion accelerators must accelerate efficiently particles which travel at a velocity much smaller than that of light particles, whose velocity changes along accelerator, and also different particles which have different velocity profiles. Heavy-ion superconducting accelerators operate at frequencies which are lower than high-energy superconducting accelerators. The present paper first discusses the basic features of heavy-ion superconducting structures and linacs. Design choices are then addressed focusing on structure geometry, materials, frequency, phase control, and focusing. The report also gives an outline of the status of superconducting booster projects currently under way at the Argonne National Laboratory, SUNY Stony Brook, Weizmann Institute, University of Washington, Florida State, Saclay, Kansas State, Daresbury, Japanese Atomic Energy Research Institute, Legnaro, Bombay, Sao Paulo, ANU (Canberra), and Munich. Recent developments and future prospects are also described. (N.K.) 68 refs

  2. 100 Years of Superconductivity: Perspective on Energy Applications

    Science.gov (United States)

    Grant, Paul

    2011-11-01

    One hundred years ago this past April, in 1911, traces of superconductivity were first detected near 4.2 K in mercury in the Leiden laboratory of Kammerlingh Onnes, followed seventy-five years later in January, 1986, by the discovery of ``high temperature'' superconductivity above 30 K in layered copper oxide perovskites by Bednorz and Mueller at the IBM Research Laboratory in Rueschlikon. Visions of application to the electric power infrastructure followed each event, and the decades following the 1950s witnessed numerous, successful demonstrations to electricity generation, transmission and end use -- rotating machinery, cables, transformers, storage, current limiters and power conditioning, employing both low and high temperature superconductors in the USA, Japan, Europe, and more recently, China. Despite these accomplishments, there has been to date no substantial insertion of superconducting technology in the electric power infrastructure worldwide, and its eventual deployment remains problematic. We will explore the issues delaying such deployment and suggest future electric power scenarios where superconductivity will play an essential central role.

  3. Superconducted tour

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1988-09-15

    Superconductivity - the dramatic drop in electrical resistance in certain materials at very low temperatures - has grown rapidly in importance over the past two or three decades to become a key technology for high energy particle accelerators. It was in this setting that a hundred students and 15 lecturers met in Hamburg in June for a week's course on superconductivity in particle accelerators, organized by the CERN Accelerator School and the nearby DESY Laboratory.

  4. Linear arrangement of metallic and superconducting defects in a thin superconducting sample

    International Nuclear Information System (INIS)

    Barba-Ortega, J.; Sardella, Edson; Albino Aguiar, J.

    2013-01-01

    Highlights: • We study the influence of superconducting and metallic defects on the vortex configurations in a thin mesoscopic disk. • We found that the vortex–defect interaction leads to interesting vortex configurations. • The first vortex entry is always (never) found sitting on the metallic (superconducting) defect position. -- Abstract: The vortex matter in a superconducting disk with a linear configuration of metallic and superconducting defects is studied. Effects associated to the pinning (anti-pinning) force of the metallic (superconducting) defect on the vortex configuration and on the thermodynamic critical fields are analyzed in the framework of the Ginzburg Landau theory. We calculate the loop of the magnetization, vorticity and free energy curves as a function of the magnetic field for a thin disk. Due to vortex–defect attraction for a metallic defect (repulsion for a superconducting defect), the vortices always (never) are found to be sitting on the defect position

  5. Civilian applications for superconducting magnet technology developed for defense

    International Nuclear Information System (INIS)

    Johnson, R.A.; Klein, S.W.; Gurol, H.

    1986-01-01

    Seventy years after its discovery, superconducting technology is beginning to play an important role in the civilian sector. Strategic defense initiative (SDI)-related research in space- and ground-based strategic defense weapons, particularly research efforts utilizing superconducting magnet energy storage, magnetohydrodynamics (MHD), and superconducting pulsed-power devices, have direct applications in the civilian sector as well and are discussed in the paper. Other applications of superconducting magnets, which will be indirectly enhanced by the overall advancement in superconducting technology, include high-energy physics accelerators, magnetic resonance imaging, materials purifying, water purifying, superconducting generators, electric power transmission, magnetically levitated trains, magnetic-fusion power plants, and superconducting computers

  6. Levitation properties of superconducting magnetic bearings using superconducting coils and bulk superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Arai, Yuuki; Seino, Hiroshi; Nagashima, Ken [Railway Technical Research Institute, 2-8-38 Hikari-cho, Kokubunji-shi, Tokyo 185-8540 (Japan)

    2010-11-15

    We have been developing a flywheel energy storage system (FESS) with 36 MJ energy capacity for a railway system with superconducting magnetic bearings (SMBs). We prepared two kinds of models using superconducting coils and bulk superconductors (SCs). One model demonstrated SMB load capacity of 20 kN and the other model proved non-contact stable levitation and non-contact rotation with SMBs. Combining these results, the feasibility of a 36 MJ energy capacity FESS with SMBs completely inside a cryostat has been confirmed. In this paper, we report the levitation properties of SMBs in these models.

  7. Levitation properties of superconducting magnetic bearings using superconducting coils and bulk superconductors

    International Nuclear Information System (INIS)

    Arai, Yuuki; Seino, Hiroshi; Nagashima, Ken

    2010-01-01

    We have been developing a flywheel energy storage system (FESS) with 36 MJ energy capacity for a railway system with superconducting magnetic bearings (SMBs). We prepared two kinds of models using superconducting coils and bulk superconductors (SCs). One model demonstrated SMB load capacity of 20 kN and the other model proved non-contact stable levitation and non-contact rotation with SMBs. Combining these results, the feasibility of a 36 MJ energy capacity FESS with SMBs completely inside a cryostat has been confirmed. In this paper, we report the levitation properties of SMBs in these models.

  8. Superconducting linac booster

    International Nuclear Information System (INIS)

    Srinivasan, B.; Betigeri, M.G.; Pandey, M.K.; Pillay, R.G.; Kurup, M.B.

    1997-01-01

    The report on superconducting LINAC booster, which is a joint project of Bhabha Atomic Research Centre (BARC) and Tata Institute of Fundamental Research (TIFR), brings out the work accomplished so far towards the development of the technology of superconducting LINAC to boost the energy of ions from the 14UD Pelletron. The LINAC is modular in construction with each module comprising of a helium cryostat housing four lead-plated quarter wave resonators. The resonators are superconducting for temperatures below 7.19K. An energy boost of 2 MeV/q per module is expected to be achieved. The first module and the post-tandem superbuncher have been fabricated and tested on the LINAC beam line. This report gives a summary of the technological achievements and also brings out the difficulties encountered during the R and D phase. (author)

  9. Hole superconductivity

    International Nuclear Information System (INIS)

    Hirsch, J.E.; Marsiglio, F.

    1989-01-01

    The authors review recent work on a mechanism proposed to explain high T c superconductivity in oxides as well as superconductivity of conventional materials. It is based on pairing of hole carriers through their direct Coulomb interaction, and gives rise to superconductivity because of the momentum dependence of the repulsive interaction in the solid state environment. In the regime of parameters appropriate for high T c oxides this mechanism leads to characteristic signatures that should be experimentally verifiable. In the regime of conventional superconductors most of these signatures become unobservable, but the characteristic dependence of T c on band filling survives. New features discussed her include the demonstration that superconductivity can result from repulsive interactions even if the gap function does not change sign and the inclusion of a self-energy correction to the hole propagator that reduces the range of band filling where T c is not zero

  10. Study on modes of energy action in laser-induction hybrid cladding

    International Nuclear Information System (INIS)

    Huang Yongjun; Zeng Xiaoyan

    2009-01-01

    The shape and microstructure in laser-induction hybrid cladding were investigated, in which the cladding material was provided by means of three different methods including the powder feeding, cold pre-placed coating (CPPC) and thermal pre-placed coating (TPPC). Moreover, the modes of energy action in laser-induction hybrid cladding were also studied. The results indicate that the cladding material supplying method has an important influence on the shape and microstructure of coating. The influence is decided by the mode of energy action in laser-induction hybrid cladding. During the TPPC hybrid cladding of Ni-based alloy, the laser and induction heating are mainly performed on coating. During the CPPC hybrid cladding of Ni-based alloy, the laser and induction heating are mainly performed on coating and substrate surface, respectively. In powder feeding hybrid cladding, a part of laser is absorbed by the powder particles directly, while the other part of laser penetrating powder cloud radiates on the molten pool. Meanwhile, the induction heating is entirely performed on the substrate. In addition, the wetting property on the interface is improved and the metallurgical bond between the coating and substrate is much easier to form. Therefore, the powder feeding laser-induction hybrid cladding has the highest cladding efficiency and the best bond property among three hybrid cladding methods.

  11. Superconducting magnetic energy storage (SMES) program. January 1--December 31, 1978

    International Nuclear Information System (INIS)

    Rogers, J.D.

    1979-02-01

    Work is reported on the development of two superconducting magnetic energy storage units. One is a 30-MJ unit for use by the Bonneville Power Administration to stabilize power oscillations on their Pacific AC Intertie, and the second is a 1- to 10-GWh unit for use as a diurnal load-leveling device. Emphasis has been placed on the stabilizing system. The engineering specification design of the 30-MJ superconducting coil was completed and a contract will be placed for the coil fabrication design. Bids have been received for the stabilizing system 10-MW converter and coil protective dump resistor. These components will be purchased in 1979. The reference design for the 1- to 10-GWh diurnal load-leveling unit has been totally revised and is being assembled in redrafted report form. Plans are to build a 10- to 30-MWh prototype diurnal load-leveling demonstration unit

  12. Korea's developmental program for superconductivity

    Science.gov (United States)

    Hong, Gye-Won; Won, Dong-Yeon; Kuk, Il-Hyun; Park, Jong-Chul

    1995-04-01

    Superconductivity research in Korea was firstly carried out in the late 70's by a research group in Seoul National University (SNU), who fabricated a small scale superconducting magnetic energy storage system under the financial support from Korea Electric Power Company (KEPCO). But a few researchers were involved in superconductivity research until the oxide high Tc superconductor was discovered by Bednorz and Mueller. After the discovery of YBaCuO superconductor operating above the boiling point of liquid nitrogen (77 K)(exp 2), Korean Ministry of Science and Technology (MOST) sponsored a special fund for the high Tc superconductivity research to universities and national research institutes by recognizing its importance. Scientists engaged in this project organized 'High Temperature Superconductivity Research Association (HITSRA)' for effective conducting of research. Its major functions are to coordinate research activities on high Tc superconductivity and organize the workshop for active exchange of information. During last seven years the major superconductivity research has been carried out through the coordination of HITSRA. The major parts of the Korea's superconductivity research program were related to high temperature superconductor and only a few groups were carrying out research on conventional superconductor technology, and Korea Atomic Energy Research Institute (KAERI) and Korea Electrotechnology Research Institute (KERI) have led this research. In this talk, the current status and future plans of superconductivity research in Korea will be reviewed based on the results presented in interim meeting of HITSRA, April 1-2, 1994. Taejeon, as well as the research activity of KAERI.

  13. Results from a model system of superconducting solenoids and phase shifting bridge for pulsed power studies for proposed tokamak EF coils

    International Nuclear Information System (INIS)

    Fuja, R.E.; Kustom, R.L.; Smith, R.P.

    1977-01-01

    A matched pair of superconducting solenoids and a phase-shifting bridge circuit has been constructed to study energy storage and transfer for application to tokamak EF coils. The intrinsically stable solenoids, each with 4 H self-inductance, incorporate sufficient cooling to allow charging at several hundred volts, corresponding to B = 1 T/sec. The three-phase inductor-convertor capacitive bridge network operating at up to 150 V rms transfers energy reversibly and at controllable rates from the storage coil to the load coil

  14. Superconductivity: materials and applications

    International Nuclear Information System (INIS)

    Duchateau, J.L.; Kircher, F.; Leveque, J.; Tixador, P.

    2008-01-01

    This digest paper presents the different types of superconducting materials: 1 - the low-TC superconductors: the multi-filament composite as elementary constituent, the world production of NbTi, the superconducting cables of the LHC collider and of the ITER tokamak; 2 - the high-TC superconductors: BiSrCaCuO (PIT 1G) ribbons and wires, deposited coatings; 3 - application to particle physics: the the LHC collider of the CERN, the LHC detectors; 4 - applications to thermonuclear fusion: Tore Supra and ITER tokamaks; 5 - NMR imaging: properties of superconducting magnets; 6 - applications in electrotechnics: cables, motors and alternators, current limiters, transformers, superconducting energy storage systems (SMES). (J.S.)

  15. Superconducting rf activities at Cornell University

    International Nuclear Information System (INIS)

    Padamsee, H.; Hakimi, M.; Kirchgessner, J.

    1988-01-01

    Development of rf superconductivity for high energy accelerators has been a robust activity at the Cornell Laboratory of Nuclear Studies (LNS) for many years. In order to realize the potential of rf superconductivity, a two-pronged approach has been followed. On the one hand accelerator applications were selected where the existing state-of-the art of superconducting rf is competitive with alternate technologies, then LNS engaged in a program to design, construct and test suitable superconducting cavities, culminating in a full system test in an operating accelerator. On the second front the discovery and invention of ideas, techniques and materials required to make superconducting rf devices approach the ideal in performance has been aggressively pursued. Starting with the development of superconducting cavities for high energy electron synchrotrons, the technology was extended to high energy e + e - storage rings. The LE5 cavity design has now been adopted for use in the Continuous Electron Beam Accelerator Facility (CEBAF). When completed, this project will be one of the largest applications of SRF technology, using 440 LE5 modules[4]. In the last two years, the cavity design and the technology have been transferred to industry and CEBAF. Cornell has tested the early industrial prototypes and cavity pairs. LNS has developed, in collaboration with CEBAF, designs and procedures for cavity pair and cryomodule assembly and testing. Advanced research for future electron accelerators is badly needed if particle physicists hope to expand the energy frontier. Superconducting cavity technology continues to offer attractive opportunities for further advances in achievable voltage at reasonable cost for future accelerators. For Nb, the full potential implies an order of magnitude increase over current capabilities. 20 references, 11 figures

  16. Superconductivity and fusion energy—the inseparable companions

    Science.gov (United States)

    Bruzzone, Pierluigi

    2015-02-01

    Although superconductivity will never produce energy by itself, it plays an important role in energy-related applications both because of its saving potential (e.g., power transmission lines and generators), and its role as an enabling technology (e.g., for nuclear fusion energy). The superconducting magnet’s need for plasma confinement has been recognized since the early development of fusion devices. As long as the research and development of plasma burning was carried out on pulsed devices, the technology of superconducting fusion magnets was aimed at demonstrations of feasibility. In the latest generation of plasma devices, which are larger and have longer confinement times, the superconducting coils are a key enabling technology. The cost of a superconducting magnet system is a major portion of the overall cost of a fusion plant and deserves significant attention in the long-term planning of electricity supply; only cheap superconducting magnets will help fusion get to the energy market. In this paper, the technology challenges and design approaches for fusion magnets are briefly reviewed for past, present, and future projects, from the early superconducting tokamaks in the 1970s, to the current ITER (International Thermonuclear Experimental Reactor) and W7-X projects and future DEMO (Demonstration Reactor) projects. The associated cryogenic technology is also reviewed: 4.2 K helium baths, superfluid baths, forced-flow supercritical helium, and helium-free designs. Open issues and risk mitigation are discussed in terms of reliability, technology, and cost.

  17. Maximum field capability of energy saver superconducting magnets

    International Nuclear Information System (INIS)

    Turkot, F.; Cooper, W.E.; Hanft, R.; McInturff, A.

    1983-01-01

    At an energy of 1 TeV the superconducting cable in the Energy Saver dipole magnets will be operating at ca. 96% of its nominal short sample limit; the corresponding number in the quadrupole magnets will be 81%. All magnets for the Saver are individually tested for maximum current capability under two modes of operation; some 900 dipoles and 275 quadrupoles have now been measured. The dipole winding is composed of four individually wound coils which in general come from four different reels of cable. As part of the magnet fabrication quality control a short piece of cable from both ends of each reel has its critical current measured at 5T and 4.3K. In this paper the authors describe and present the statistical results of the maximum field tests (including quench and cycle) on Saver dipole and quadrupole magnets and explore the correlation of these tests with cable critical current

  18. Pair Fermi contour and high-temperature superconductivity

    CERN Document Server

    Belyavsky, V I

    2002-01-01

    The holes superconducting coupling with the pair high summarized pulse and the relative motion low pulses is considered with an account of the quasi-two-dimensional electron structure of the HTSC-cuprates with the clearly-pronounced nesting of the Fermi contour. The superconducting energy gap and the condensation energy are determined and their dependences on the doping level are qualitatively studied. It is shown that the energy gap takes place in some holes concentration area, limited on both sides. The superconducting state, whereby the condensation energy is positive, originates in the more narrower doping interval inside this area. The hole pair redistribution in the pulse space constitutes the cause of the superconducting state origination by the holes repulsive screened Coulomb interaction. The coupling mechanism discussed hereby, males it possible to explain qualitatively not only the phase diagram basic peculiarities but also the key experimental facts, related to the cuprate HTSC-materials

  19. Robustness Improvement of Superconducting Magnetic Energy Storage System in Microgrids Using an Energy Shaping Passivity-Based Control Strategy

    Directory of Open Access Journals (Sweden)

    Rui Hou

    2017-05-01

    Full Text Available Superconducting magnetic energy storage (SMES systems, in which the proportional-integral (PI method is usually used to control the SMESs, have been used in microgrids for improving the control performance. However, the robustness of PI-based SMES controllers may be unsatisfactory due to the high nonlinearity and coupling of the SMES system. In this study, the energy shaping passivity (ESP-based control strategy, which is a novel nonlinear control based on the methodology of interconnection and damping assignment (IDA, is proposed for robustness improvement of SMES systems. A step-by-step design of the ESP-based method considering the robustness of SMES systems is presented. A comparative analysis of the performance between ESP-based and PI control strategies is shown. Simulation and experimental results prove that the ESP-based strategy achieves the stronger robustness toward the system parameter uncertainties than the conventional PI control. Besides, the use of ESP-based control method can reduce the eddy current losses of a SMES system due to the significant reduction of 2nd and 3rd harmonics of superconducting coil DC current.

  20. A fully analytic treatment of resonant inductive coupling in the far field

    International Nuclear Information System (INIS)

    Sedwick, Raymond J.

    2012-01-01

    For the application of resonant inductive coupling for wireless power transfer, fabrication of flat spiral coils using ribbon wire allows for analytic expressions of the capacitance and inductance of the coils and therefore the resonant frequency. The expressions can also be used in an approximate way for the analysis of coils constructed from cylindrical wire. Ribbon wire constructed from both standard metals as well as high temperature superconducting material is commercially available, so using these derived expressions as a basis, a fully analytic treatment is presented that allows for design trades to be made for hybrid designs incorporating either technology. The model is then extended to analyze the performance of the technology as applied to inductively coupled communications, which has been demonstrated as having an advantage in circumstances where radiated signals would suffer unacceptable levels of attenuation. - Highlights: ► An analytic framework finds power and efficiency for resonant inductive coupling. ► The framework supports superconducting, resistive and dielectric elements. ► Maximum power transfer occurs at an efficiency of 50% when in close proximity. ► A 100 turn superconducting design achieves 10% efficiency out to 280 coil radii. ► The system response to narrow band amplitude modulation is modeled and presented.

  1. 1-GWh diurnal load-leveling superconducting magnetic energy storage system reference design. Appendix D: superconductive magnetic energy storage cavern construction methods and costs

    International Nuclear Information System (INIS)

    1979-09-01

    The excavation and preparation of an underground cavern to contain a 1-GWh diurnal load-leveling Superconducting Magnetic Energy Storage (SMES) unit is examined. The cavern's principal function is to provide a rock structure for supporting the magnetic forces from the charged storage coil. Certain economic considerations indicate the refrigerator cold box for the helium system should also be underground. The study includes such a provision and considers, among other things, rock bolting, water seepage, concrete lining of the walls, steel bearing pads, a system to prevent freezing of the walls, a mining schedule, and costs

  2. Analysis of threshold curves for superconducting interferometers

    International Nuclear Information System (INIS)

    Peterson, R.L.; Hamilton, C.A.

    1979-01-01

    Threshold curves for multijunction superconducting interferometers have been calculated previously, showing general agreement with observed features, especially in symmetric cases. We here add some more details to the analysis, paying particular attention to the effects of asymmetries in coupling, inductance, or critical currents. Feed-loop inductance and flux quantization in the feed loop can be important. A changing lobe pattern over many periods, asymmetries within a period, shifting patterns between runs spanning a warm-up, and sudden changes in pattern because of noise in the environment are all quantitatively explainable on the basis of this model. By use of a single ''calibration curve'', the inductance for symmetric two- or three-junction interferometers can be obtained immediately

  3. Superconductivity in graphite intercalation compounds

    International Nuclear Information System (INIS)

    Smith, Robert P.; Weller, Thomas E.; Howard, Christopher A.; Dean, Mark P.M.; Rahnejat, Kaveh C.; Saxena, Siddharth S.; Ellerby, Mark

    2015-01-01

    Highlights: • Historical background of graphite intercalates. • Superconductivity in graphite intercalates and its place in the field of superconductivity. • Recent developments. • Relevant modeling of superconductivity in graphite intercalates. • Interpretations that pertain and questions that remain. - Abstract: The field of superconductivity in the class of materials known as graphite intercalation compounds has a history dating back to the 1960s (Dresselhaus and Dresselhaus, 1981; Enoki et al., 2003). This paper recontextualizes the field in light of the discovery of superconductivity in CaC 6 and YbC 6 in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how these relate to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity, and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition

  4. Superconductivity in graphite intercalation compounds

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Robert P. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Weller, Thomas E.; Howard, Christopher A. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Dean, Mark P.M. [Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973 (United States); Rahnejat, Kaveh C. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Saxena, Siddharth S. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Ellerby, Mark, E-mail: mark.ellerby@ucl.ac.uk [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom)

    2015-07-15

    Highlights: • Historical background of graphite intercalates. • Superconductivity in graphite intercalates and its place in the field of superconductivity. • Recent developments. • Relevant modeling of superconductivity in graphite intercalates. • Interpretations that pertain and questions that remain. - Abstract: The field of superconductivity in the class of materials known as graphite intercalation compounds has a history dating back to the 1960s (Dresselhaus and Dresselhaus, 1981; Enoki et al., 2003). This paper recontextualizes the field in light of the discovery of superconductivity in CaC{sub 6} and YbC{sub 6} in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how these relate to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity, and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.

  5. Superconducting frustration bit

    International Nuclear Information System (INIS)

    Tanaka, Y.

    2014-01-01

    Highlights: • A frustration bit element is proposed for a conventional superconducting circuit. • It is composed of π-junctions. • It mimics the multiband superconductor. - Abstract: A basic design is proposed for a classical bit element of a superconducting circuit that mimics a frustrated multiband superconductor and is composed of an array of π-Josephson junctions (π-junction). The phase shift of π provides the lowest energy for one π-junction, but neither a π nor a zero phase shift gives the lowest energy for an assembly of π-junctions. There are two chiral states that can be used to store one bit information. The energy scale for reading and writing to memory is of the same order as the junction energy, and is thus in the same order of the driving energy of the circuit. In addition, random access is also possible

  6. Superconducting bearings for flywheel applications

    DEFF Research Database (Denmark)

    Abrahamsen, A.B.

    2001-01-01

    A literature study on the application of superconducting bearings in energy storage flywheel systems. The physics of magnetic levitation and superconductors are presented in the first part of the report, followed by a discussion of the literature found onthe applications of superconducting bearings...

  7. Superconducting magnets for high energy storage rings

    International Nuclear Information System (INIS)

    Sampson, W.B.

    1977-01-01

    Superconducting dipole and quadrupole magnets were developed for the proton-proton intersecting storage accelerator ISABELLE. Full size prototypes of both kinds of magnets were constructed and successfully tested. The coils are fabricated from a single layer of wide braided superconductor and employ a low temperature iron core. This method of construction leads to two significant performance advantages; little or no training, and the ability of the coil to absorb its total magnetic stored energy without damage. A high pressure (15 atm) helium gas system is used for cooling. Measurements of the random field errors are compared with the expected field distribution. Three magnets (two dipoles and one quadrupole) were assembled into a segment of the accelerator ring structure (half cell). The performance of this magnet array, which is coupled in series both electrically and cryogenically, is also summarized

  8. Emergent Higgsless Superconductivity

    Directory of Open Access Journals (Sweden)

    Cristina Diamantini M.

    2017-01-01

    Full Text Available We present a new Higgsless model of superconductivity, inspired from anyon superconductivity but P- and T-invariant and generalizable to any dimension. While the original anyon superconductivity mechanism was based on incompressible quantum Hall fluids as average field states, our mechanism involves topological insulators as average field states. In D space dimensions it involves a (D-1-form fictitious pseudovector gauge field which originates from the condensation of topological defects in compact lowenergy effective BF theories. There is no massive Higgs scalar as there is no local order parameter. When electromagnetism is switched on, the photon acquires mass by the topological BF mechanism. Although the charge of the gapless mode (2 and the topological order (4 are the same as those of the standard Higgs model, the two models of superconductivity are clearly different since the origins of the gap, reflected in the high-energy sectors are totally different. In 2D thi! s type of superconductivity is explicitly realized as global superconductivity in Josephson junction arrays. In 3D this model predicts a possible phase transition from topological insulators to Higgsless superconductors.

  9. Neutron detection using a current biased kinetic inductance detector

    International Nuclear Information System (INIS)

    Shishido, Hiroaki; Miyajima, Shigeyuki; Ishida, Takekazu; Narukami, Yoshito; Oikawa, Kenichi; Harada, Masahide; Oku, Takayuki; Arai, Masatoshi; Hidaka, Mutsuo; Fujimaki, Akira

    2015-01-01

    We demonstrate neutron detection using a solid state superconducting current biased kinetic inductance detector (CB-KID), which consists of a superconducting Nb meander line of 1 μm width and 40 nm thickness. 10 B-enriched neutron absorber layer of 150 nm thickness is placed on top of the CB-KID. Our neutron detectors are able to operate in a wide superconducting region in the bias current–temperature diagram. This is in sharp contrast with our preceding current-biased transition edge detector, which can operate only in a narrow range just below the superconducting critical temperature. The full width at half maximum of the signals remains of the order of a few tens of ns, which confirms the high speed operation of our detectors

  10. Heat Capacity and Thermal Conductance Measurements of a Superconducting-Normal Mixed State by Detection of Single 3 eV Photons in a Magnetic Penetration Thermometer

    Science.gov (United States)

    Stevenson, T. R.; Balvin, M. A.; Bandler, S. R.; Denis, K. L.; Lee, S.-J.; Nagler, P. C.; Smith, S. J.

    2015-01-01

    We report on measurements of the detected signal pulses in a molybdenum-gold Magnetic Penetration Thermometer (MPT) in response to absorption of one or more 3 eV photons. We designed and used this MPT sensor for x-ray microcalorimetry. In this device, the diamagnetic response of a superconducting MoAu bilayer is used to sense temperature changes in response to absorbed photons, and responsivity is enhanced by a Meissner transition in which the magnetic flux penetrating the sensor changes rapidly to minimize free energy in a mixed superconducting normal state. We have previously reported on use of our MPT to study a thermal phonon energy loss to the substrate when absorbing x-rays. We now describe results of extracting heat capacity C and thermal conductance G values from pulse height and decay time of MPT pulses generated by 3 eV photons. The variation in C and G at temperatures near the Meissner transition temperature (set by an internal magnetic bias field) allow us to probe the behavior in superconducting normal mixed state of the condensation energy and the electron cooling power resulting from quasi-particle recombination and phonon emission. The information gained on electron cooling power is also relevant to the operation of other superconducting detectors, such as Microwave Kinetic Inductance Detectors.

  11. Development and fundamental study on a superconducting induction/synchronous motor incorporated with MgB2 cage windings

    International Nuclear Information System (INIS)

    Nakamura, T; Yamada, Y; Nishio, H; Sugano, M; Amemiya, N; Kajikawa, K; Wakuda, T; Takahashi, M; Okada, M

    2012-01-01

    In this paper, a fundamental study of the rotating characteristics of a induction/synchronous motor by use of superconducting MgB 2 cage windings is carried out based on analysis and experiment. Current transport properties of the produced monofilamentary MgB 2 wires are firstly characterized, and then utilized for the determination of the current carrying capacity of the rotor bars. Then, the motor model is designed and fabricated with the aid of conventional (copper) stator windings. We successfully observe the synchronous rotation of the fabricated motor at a rotation speed range from 300 to 1800 rpm. We can also realize an almost constant torque versus speed curve, and this characteristic is explained from the steep take-off of the electric field versus the current density curve, based on the nonlinear electrical equivalent circuit. These results are promising for the practical applications of a high efficiency motor for a liquid hydrogen circulation pump.

  12. Microwave dynamics of high aspect ratio superconducting nanowires studied using self-resonance

    Science.gov (United States)

    Santavicca, Daniel F.; Adams, Jesse K.; Grant, Lierd E.; McCaughan, Adam N.; Berggren, Karl K.

    2016-06-01

    We study the microwave impedance of extremely high aspect ratio (length/width ≈ 5000) superconducting niobium nitride nanowires. The nanowires are fabricated in a compact meander geometry that is in series with the center conductor of a 50 Ω coplanar waveguide transmission line. The transmission coefficient of the sample is measured up to 20 GHz. At high frequency, a peak in the transmission coefficient is seen. Numerical simulations show that this is a half-wave resonance along the length of the nanowire, where the nanowire acts as a high impedance, slow wave transmission line. This resonance sets the upper frequency limit for these nanowires as inductive elements. Fitting simulations to the measured resonance enables a precise determination of the nanowire's complex sheet impedance at the resonance frequency. The real part is a measure of dissipation, while the imaginary part is dominated by kinetic inductance. We characterize the dependence of the sheet resistance and sheet inductance on both temperature and current and compare the results to recent theoretical predictions for disordered superconductors. These results can aid in the understanding of high frequency devices based on superconducting nanowires. They may also lead to the development of novel superconducting devices such as ultra-compact resonators and slow-wave structures.

  13. Electrical protection of superconducting magnet systems

    International Nuclear Information System (INIS)

    Sutter, D.F.; Flora, R.H.

    1975-01-01

    The problem of dissipating the energy stored in the field of a superconducting magnet when a quench occurs has received considerable study. However, when the magnet becomes a system 4 miles in length whose normal operation is an ac mode, some re-examination of standard techniques for dissipating energy outside the magnets is in order. Data accumulated in the Fermilab Energy Doubler magnet development program shows that heating associated with the temporal and spatial development of quenches is highly localized and can result in temperatures damaging to the superconducting wire. The design and operation are discussed for several energy dumping schemes, compatible with the operation of ac superconducting magnets, wherein more than 70 percent of the stored energy can be dissipated outside the magnet. Instrumentation to detect quenches early in their development and circuits for dumping the field energy are described, and representative operating performance data for the dump circuits and data showing temporal development of quenches are presented. (auth)

  14. Results from a model system of superconducting solenoids and phase shifting bridge for pulsed power studies for proposed tokamak EF coils

    International Nuclear Information System (INIS)

    Fuja, R.E.; Kustom, R.L.; Smith, R.P.

    1977-01-01

    A matched pair of superconducting solenoids and a phase-shifting bridge circuit has been constructed to study energy storage and transfer for application to tokamak EF coils. The intrinsically stable solenoids, each with 4 H self-inductance, incorporate sufficient cooling to allow charging at several hundred volts, corresponding to B approximately equal 1 T/sec. The three-phase inductor-convertor capacitive bridge network operating at up to 150 V rms transfers energy reversibly and at controllable rates from the storage coil to the load coil

  15. Progress with High-Field Superconducting Magnets for High-Energy Colliders

    Science.gov (United States)

    Apollinari, Giorgio; Prestemon, Soren; Zlobin, Alexander V.

    2015-10-01

    One of the possible next steps for high-energy physics research relies on a high-energy hadron or muon collider. The energy of a circular collider is limited by the strength of bending dipoles, and its maximum luminosity is determined by the strength of final focus quadrupoles. For this reason, the high-energy physics and accelerator communities have shown much interest in higher-field and higher-gradient superconducting accelerator magnets. The maximum field of NbTi magnets used in all present high-energy machines, including the LHC, is limited to ˜10 T at 1.9 K. Fields above 10 T became possible with the use of Nb3Sn superconductors. Nb3Sn accelerator magnets can provide operating fields up to ˜15 T and can significantly increase the coil temperature margin. Accelerator magnets with operating fields above 15 T require high-temperature superconductors. This review discusses the status and main results of Nb3Sn accelerator magnet research and development and work toward 20-T magnets.

  16. Lumped-Element Dynamic Electro-Thermal model of a superconducting magnet

    Science.gov (United States)

    Ravaioli, E.; Auchmann, B.; Maciejewski, M.; ten Kate, H. H. J.; Verweij, A. P.

    2016-12-01

    Modeling accurately electro-thermal transients occurring in a superconducting magnet is challenging. The behavior of the magnet is the result of complex phenomena occurring in distinct physical domains (electrical, magnetic and thermal) at very different spatial and time scales. Combined multi-domain effects significantly affect the dynamic behavior of the system and are to be taken into account in a coherent and consistent model. A new methodology for developing a Lumped-Element Dynamic Electro-Thermal (LEDET) model of a superconducting magnet is presented. This model includes non-linear dynamic effects such as the dependence of the magnet's differential self-inductance on the presence of inter-filament and inter-strand coupling currents in the conductor. These effects are usually not taken into account because superconducting magnets are primarily operated in stationary conditions. However, they often have significant impact on magnet performance, particularly when the magnet is subject to high ramp rates. Following the LEDET method, the complex interdependence between the electro-magnetic and thermal domains can be modeled with three sub-networks of lumped-elements, reproducing the electrical transient in the main magnet circuit, the thermal transient in the coil cross-section, and the electro-magnetic transient of the inter-filament and inter-strand coupling currents in the superconductor. The same simulation environment can simultaneously model macroscopic electrical transients and phenomena at the level of superconducting strands. The model developed is a very useful tool for reproducing and predicting the performance of conventional quench protection systems based on energy extraction and quench heaters, and of the innovative CLIQ protection system as well.

  17. Diagnostics of internal inductance in HT-7

    International Nuclear Information System (INIS)

    Zeng Li; Wan Baonian; Qian Jinping; Fan Hengyu

    2001-01-01

    Two arrays of Mirnov coils and a pair of concentric loops have been installed to superconducting tokamak HT-7. Software compensation and digital Fourier series expansion are the two techniques that have been applied successfully in measuring diamagnetic flux of concentric loops and internal inductance. The internal inductance of plasma l i , poloidal beta β p , Grad Shafranov parameter Λ, plasma minor radius α p and the center of the outermost magnetic flux surface Δ g are determined

  18. Transmission line properties of long strings of superconducting magnets

    International Nuclear Information System (INIS)

    Shafer, R.E.

    1980-09-01

    The purpose of this paper is to discuss the electrical characteristics of a long string of superconducting magnets, such as in a superconducting storage ring or accelerator. As the magnets have a shunt capacitance to ground as well as a series inductance, travelling waves can propagate along the string, as in a transmission line. As the string is of finite length, standing waves can also exist. In accelerator quality superconducting magnets, considerable effort has been devoted to minimizing ac losses, the net result being that the magnet string has a high Q precisely at the frequencies which are important for the standing and travelling waves. The magnitude of these effects are estimated, and the solution to be used at Fermilab will be discussed

  19. Superconducting magnets for a muon collider

    International Nuclear Information System (INIS)

    Green, M.A.

    1996-01-01

    The existence of a muon collider will be dependent on the use of superconducting magnets. Superconducting magnets for the μ - μ + collider will be found in the following locations: the π - π + capture system, the muon phase rotation system, the muon cooling system, the recirculating acceleration system, the collider ring, and the collider detector system. This report describes superconducting magnets for each of these sections except the detector. In addition to superconducting magnets, superconducting RF cavities will be found in the recirculating accelerator sections and the collider ring. The use of superconducting magnets is dictated by the need for high magnetic fields in order to reduce the length of various machine components. The performance of all of the superconducting magnets will be affected the energy deposited from muon decay products. (orig.)

  20. Report on the production magnet measurement system for the Fermilab Energy-Saver superconducting dipoles and quadrupoles

    International Nuclear Information System (INIS)

    Brown, B.C.; Cooper, W.E.; Garvey, J.D.

    1983-03-01

    The measurement system and procedures used to test more than 900 superconducting dipole magnets and more than 275 superconducting quadrupole magnets for the Fermilab Energy Saver are described. The system is designed to measure nearly all parameters relevant to the use of the magnets in the accelerator including maximum field capability and precision field measurements. The performance of the instrumentation with regard to precision, reliability, and operational needs for high volume testing will be described. Previous reports have described the measurement system used during development of the Saver magnets from which this system has evolved

  1. Conceptual study of superconducting urban area power systems

    International Nuclear Information System (INIS)

    Noe, Mathias; Gold-acker, Wilfried; Bach, Robert; Prusseit, Werner; Willen, Dag; Poelchau, Juri; Linke, Christian

    2010-01-01

    Efficient transmission, distribution and usage of electricity are fundamental requirements for providing citizens, societies and economies with essential energy resources. It will be a major future challenge to integrate more sustainable generation resources, to meet growing electricity demand and to renew electricity networks. Research and development on superconducting equipment and components have an important role to play in addressing these challenges. Up to now, most studies on superconducting applications in power systems have been concentrated on the application of specific devices like for example cables and current limiters. In contrast to this, the main focus of our study is to show the consequence of a large scale integration of superconducting power equipment in distribution level urban power systems. Specific objectives are to summarize the state-of-the-art of superconducting power equipment including cooling systems and to compare the superconducting power system with respect to energy and economic efficiency with conventional solutions. Several scenarios were considered starting from the replacement of an existing distribution level sub-grid up to a full superconducting urban area distribution level power system. One major result is that a full superconducting urban area distribution level power system could be cost competitive with existing solutions in the future. In addition to that, superconducting power systems offer higher energy efficiency as well as a number of technical advantages like lower voltage drops and improved stability.

  2. Superconducting bearings for flywheel applications

    Energy Technology Data Exchange (ETDEWEB)

    Abrahamsen, Asger Bech

    2001-05-01

    A literature study on the application of superconducting bearings in energy storage flywheel systems. The physics of magnetic levitation and superconductors are presented in the first part of the report, followed by a discussion of the literature found on the applications of superconducting bearings in flywheels. (au)

  3. Superconductive magnet having shim coils and quench protection circuits

    International Nuclear Information System (INIS)

    Schwall, R.E.

    1987-01-01

    A superconductive magnet is described comprising: a first persistent current loop comprising a first superconductor and a main coil connected to the first superconductor, the main coil being operative in response to superconduction therein to generate a primary magnetic field; a second persistent current loop comprising a second superconductor and a shim coil connected thereto, the shim coil being operative in response to superconduction therein to generate a corrective field for correcting aberrations in a predetermined gradient in the primary magnetic field, the shim coil having fewer turns than the main coil and being inductively coupled therewith whereby small changes in the current in the main coil cause much greater changes in the current in the shim coil. The magnet is characterized by an improvement which consists of: a first heater connected across the second persistent loop in parallel with the shim coil, the first heater being normally inoperative to carry current while the shim coil and the second superconductor are superconducting, the first heater being operative in response to current therein to heat the shim coil to a resistive state; and protective circuit means comprising a second heater connected to the main coil for carrying current from the main coil upon quenching of the main coil, the second heater being disposed in thermal contact with the second superconductor to heat the second superconductor to a resistive state in response to the current from the main coil to thereby divert current in the second persistent loop through the second heater causing it to heat the shim coil to a resistive state and resistively dissipate energy therein

  4. Assessment of micro-superconducting magnetic energy storage (SMES) utility in railroad applications : a report to Congress

    Science.gov (United States)

    1997-07-01

    At the direction of the U.S. Congress, the Federal Railroad Administration (FRA), with technical support from the Volpe National Transportation Systems Center (Volpe Center), investigated the feasibility of using micro-Superconducting Magnetic Energy...

  5. Energy conservation and environmental benefits that may be realized from Superconducting Magnetic Energy Storage

    International Nuclear Information System (INIS)

    Baumann, P.D.

    1992-01-01

    This paper discusses the Superconducting Magnetic Energy Storage (SMES) technology which has the capability to significantly improve electrical system operations within electric utility systems. This has been demonstrated by Bonneville Power Administration in a 30-MJ SMES demonstration unit. Savings in utility operations from improved system efficiency, increased reliability, and reduced maintenance requirements contribute to the economic justification of SMES. Beyond these benefits, there are additional benefits which in the long run may significantly outweigh the electrical operational benefits. These benefits are the energy conservation and environmental benefits. Since SMES can uncouple generation from load, it can shift generation around, thereby changing the operational characteristics of the system. The technology has the capability of reducing fuel consumption which can in turn reduce emissions. In a regional setting it can potentially shift emissions both in volumes and in physical areas to avoid problem situations. With its capability to strategically shift generation and significantly affect emissions and air quality it can stretch clean energy generation options. With these attributes, SMES can be recognized as an energy and environmental management technology and tool

  6. Superconducting cyclotrons

    International Nuclear Information System (INIS)

    Blosser, H.G.; Johnson, D.A.; Burleigh, R.J.

    1976-01-01

    Superconducting cyclotrons are particularly appropriate for acceleration of heavy ions. A review is given of design features of a superconducting cyclotron with energy 440 (Q 2 /A) MeV. A strong magnetic field (4.6 tesla average) leads to small physical size (extraction radius 65 cm) and low construction costs. Operating costs are also low. The design is based on established technology (from present cyclotrons and from large bubble chambers). Two laboratories (in Chalk River, Canada and in East Lansing, Michigan) are proceeding with construction of full-scale prototype components for such cyclotrons

  7. 1-GWh diurnal load-leveling superconducting magnetic energy storage system reference design

    International Nuclear Information System (INIS)

    Hassenzahl, W.V.; Rogers, J.D.

    1979-01-01

    A point reference design has been completed for a 1-GWh Superconducting Magnetic Energy Storage system. The system is for electric utility dirunal load leveling; however, such a device will function to meet much faster power demands including dynamic stabilization. The study has explored several concepts of design not previously considered in the same detail as treated here. Because the study is for a point design, optimization in all respects is not complete. The study examines aspects of the coil design; superconductor supported off of the dewar shell; the dewar shell, its configuration and stresses; the underground excavation and related construction for holding the superconducting coil and its dewar; the helium refrigeration system; the electrical converter system; the vacuum system; the guard coil; and the costs. The report is a condensation of the more comprehensive study which is in the process of being printed

  8. Development of superconducting magnetic bearing using superconducting coil and bulk superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Seino, H; Nagashima, K; Arai, Y [Railway Technical Research Institute, Hikari-cho 2-8-38, Kokubunji-shi, Tokyo (Japan)], E-mail: seino@rtri.or.jp

    2008-02-01

    The authors conducted a study on superconducting magnetic bearing, which consists of superconducting rotor and stator to apply the flywheel energy-storage system for railways. In this study, high temperature bulk superconductor (HTS bulk) was combined with superconducting coils to increase the load capacity of the bearing. In the first step of the study, the thrust rolling bearing was selected for application by using liquid nitrogen cooled HTS bulk. 60mm-diameter HTS bulks and superconducting coil which generated a high gradient of magnetic field by cusp field were adopted as a rotor and a stator for superconducting magnetic bearing, respectively. The results of the static load test and the rotation test, creep of the electromagnetic forces caused by static flux penetration and AC loss due to eccentric rotation were decreased to the level without any problems in substantial use by using two HTS bulks. In the result of verification of static load capacity, levitation force (thrust load) of 8900N or more was supportable, and stable static load capacity was obtainable when weight of 460kg was levitated.

  9. Development of superconducting magnetic bearing using superconducting coil and bulk superconductor

    International Nuclear Information System (INIS)

    Seino, H; Nagashima, K; Arai, Y

    2008-01-01

    The authors conducted a study on superconducting magnetic bearing, which consists of superconducting rotor and stator to apply the flywheel energy-storage system for railways. In this study, high temperature bulk superconductor (HTS bulk) was combined with superconducting coils to increase the load capacity of the bearing. In the first step of the study, the thrust rolling bearing was selected for application by using liquid nitrogen cooled HTS bulk. 60mm-diameter HTS bulks and superconducting coil which generated a high gradient of magnetic field by cusp field were adopted as a rotor and a stator for superconducting magnetic bearing, respectively. The results of the static load test and the rotation test, creep of the electromagnetic forces caused by static flux penetration and AC loss due to eccentric rotation were decreased to the level without any problems in substantial use by using two HTS bulks. In the result of verification of static load capacity, levitation force (thrust load) of 8900N or more was supportable, and stable static load capacity was obtainable when weight of 460kg was levitated

  10. Industrial tooling and methods for the junctions of the superconducting busbars in the interconnections between the LHC cryomagnets

    International Nuclear Information System (INIS)

    Balaguer, J M; Colombet, T; Jacquemod, A; Laurent, F; Nambride, C; Taffard, Y; Tock, J Ph

    2006-01-01

    The Large Hadron Collider (LHC) is the next world-facility for the high energy physics community, presently under installation at CERN, Geneva. The main components of the LHC are the twin-aperture high-field superconducting cryomagnets that are powered in series by superconducting Nb-Ti busbars. Along the machine, about 60 000 splices between the superconducting busbars have to be performed in-situ during the interconnection activities. They are carrying a nominal current varying from 600 A to 13 kA depending upon the magnets, at an operating temperature of 1.9 K. Three specific techniques have been developed and optimised for the splicing of the three main types of cables: inductive and resistive soldering, ultrasonic welding. After a brief presentation of the constraints and requirements applying to these junctions, the tooling is described, highlighting the industrialisation aspects. Before their use to interconnect actual cryomagnets in the LHC tunnel, the equipments and procedures follow rigorous qualification to ensure that all the characteristics of the junctions (electrical, mechanical, reliability, ...) are within the specifications. The assessment of the tooling performance is obtained via sample testing of superconducting busbars. Initial results are presented

  11. Superconducting devices at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Dahl, P.F.

    1978-04-01

    The various ongoing programs in applied superconductivity supported by BNL are summarized, including the development of high field ac and dc superconducting magnets for accelerators and other applications, of microwave deflecting cavities for high energy particle beam separators, and of cables for underground power transmission, and materials research on methods of fabricating new superconductors and on metallurgical properties affecting the performance of superconducting devices

  12. Neutron detection using a current biased kinetic inductance detector

    Energy Technology Data Exchange (ETDEWEB)

    Shishido, Hiroaki, E-mail: shishido@pe.osakafu-u.ac.jp; Miyajima, Shigeyuki; Ishida, Takekazu [Department of Physics and Electronics, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Institute for Nanofabrication Research, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Narukami, Yoshito [Department of Physics and Electronics, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Oikawa, Kenichi; Harada, Masahide; Oku, Takayuki; Arai, Masatoshi [Materials and Life Science Division, J-PARC Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Hidaka, Mutsuo [National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568 (Japan); Fujimaki, Akira [Department of Quantum Engineering, Nagoya University, Nagoya, Aichi 464-8603 (Japan)

    2015-12-07

    We demonstrate neutron detection using a solid state superconducting current biased kinetic inductance detector (CB-KID), which consists of a superconducting Nb meander line of 1 μm width and 40 nm thickness. {sup 10}B-enriched neutron absorber layer of 150 nm thickness is placed on top of the CB-KID. Our neutron detectors are able to operate in a wide superconducting region in the bias current–temperature diagram. This is in sharp contrast with our preceding current-biased transition edge detector, which can operate only in a narrow range just below the superconducting critical temperature. The full width at half maximum of the signals remains of the order of a few tens of ns, which confirms the high speed operation of our detectors.

  13. The Application of High Temperature Superconducting Materials to Power Switches

    CERN Document Server

    March, S A; Ballarino, A

    2009-01-01

    Superconducting switches may find application in superconducting magnet systems that require energy extraction. Such superconducting switches could be bypass-switches that are operated in conjunction with a parallel resistor or dump-switches where all of the energy is dissipated in the switch itself. Bypass-switches are more suited to higher energy circuits as a portion of the energy can be dissipated in the external dump resistor. Dump- switches require less material and triggering energy as a lower switch resistance is needed to achieve the required total dump resistance. Both superconducting bypass-switches and superconducting dump-switches can be ther- mally activated. Switching times that are comparable to those obtained with mechanical bypass-switch systems can be achieved using a co-wound heater that is powered by a ca- pacitor discharge. Switches that have fast thermal diffusion times through the insulation can be modelled as a lumped system whereas those with slow thermal diffusion times were modelle...

  14. Measurement of AC electrical characteristics of SSC superconducting dipole magnets

    International Nuclear Information System (INIS)

    Smedley, K.M.; Shafer, R.E.

    1992-01-01

    Experiments were conducted to measure the AC electrical characteristics of SSC superconducting dipole magnets over the frequency range of 0.1 Hz to 10 kHz. A magnet equivalent circuit representing the magnet DC inductance, eddy current losses, coil-to-ground and turn-to-turn capacitance, was synthesized from the experimental data. This magnet equivalent circuit can be used to predict the current ripple distribution along the superconducting magnet string and can provide dynamic information for the design of the collider current regulation loop

  15. Study on quench detection of the KSTAR CS coil with CDA+MIK compensation of inductive voltages

    Energy Technology Data Exchange (ETDEWEB)

    An, Seok Chan; Kim, Jin Sub [Yonsei University, Seoul (Korea, Republic of); Chu, Yong [National Fusion Research Institute(NFRI), Daejeon (Korea, Republic of)

    2016-03-15

    Quench Detection System (QDS) is essential to guarantee the stable operation of the Korea Superconducting Tokamak Advanced Research (KSTAR) Poloidal Field (PF) magnet system because the stored energy in the magnet system is very large. For the fast response, voltage-based QDS has been used. Co-wound voltage sensors and balanced bridge circuits were applied to eliminate the inductive voltages generated during the plasma operation. However, as the inductive voltages are hundreds times higher than the quench detection voltage during the pulse-current operation, Central Difference Averaging (CDA) and MIK, where I and K stand for mutual coupling indexes of different circuits, which is an active cancellation of mutually generated voltages have been suggested and studied. In this paper, the CDA and MIK technique were applied to the KSTAR magnet for PF magnet quench detection. The calculated inductive voltages from the MIK and measured voltages from the CDA circuits were compared to eliminate the inductive voltages at result signals.

  16. Study on quench detection of the KSTAR CS coil with CDA+MIK compensation of inductive voltages

    International Nuclear Information System (INIS)

    An, Seok Chan; Kim, Jin Sub; Chu, Yong

    2016-01-01

    Quench Detection System (QDS) is essential to guarantee the stable operation of the Korea Superconducting Tokamak Advanced Research (KSTAR) Poloidal Field (PF) magnet system because the stored energy in the magnet system is very large. For the fast response, voltage-based QDS has been used. Co-wound voltage sensors and balanced bridge circuits were applied to eliminate the inductive voltages generated during the plasma operation. However, as the inductive voltages are hundreds times higher than the quench detection voltage during the pulse-current operation, Central Difference Averaging (CDA) and MIK, where I and K stand for mutual coupling indexes of different circuits, which is an active cancellation of mutually generated voltages have been suggested and studied. In this paper, the CDA and MIK technique were applied to the KSTAR magnet for PF magnet quench detection. The calculated inductive voltages from the MIK and measured voltages from the CDA circuits were compared to eliminate the inductive voltages at result signals

  17. ESCAR superconducting magnet system

    International Nuclear Information System (INIS)

    Gilbert, W.S.; Meuser, R.B.; Pope, W.L.; Green, M.A.

    1975-01-01

    Twenty-four superconducting dipoles, each about 1 meter long, provide the guide field for the Experimental Superconducting Accelerator Ring proton accelerator--storage ring. Injection of 50 MeV protons corresponds to a 3 kG central dipole field, and a peak proton energy of 4.2 GeV corresponds to a 46 kG central field. Thirty-two quadrupoles provide focusing. The 56 superconducting magnets are contained in 40 cryostats that are cryogenically connected in a novel series ''weir'' arrangement. A single 1500 W refrigeration plant is required. Design and testing of the magnet and cryostat system are described. (U.S.)

  18. RADIOFREQUENCY SUPERCONDUCTIVITY: Workshop

    International Nuclear Information System (INIS)

    Lengeler, Herbert

    1989-01-01

    Superconducting radiofrequency is already playing an important role in the beam acceleration system for the TRISTAN electron-positron collider at the Japanese KEK Laboratory and new such systems are being prepared for other major machines. Thus the fourth Workshop on Radiofrequency Superconductivity, organized by KEK under the chairmanship of local specialist Yuzo Kojima and held just before the International Conference on High Energy Accelerators, had much progress to review and even more to look forward to

  19. Survey of potential applications of superconducting suspensions

    International Nuclear Information System (INIS)

    Rao, D.K.; Bupara, S.S.

    1993-01-01

    The purpose of this report is to survey the recent developments in applying the bulk superconductors to mechanical applications. These applications, called superconducting suspensions, can be broadly divided into three groups - Passive Magnetic Bearings, Passive Superconducting Dampers and Active Superconducting Bearings. Basically, passive magnetic bearings utilize bulk superconductors to support a rotating shaft without contact while active superconducting bearings employ superconducting wires. Passive superconducting dampers, on the other hand, dissipate energy from a vibrating component. Over the past one year, dramatic improvements have been made in processing large-size specimens made of high grade bulk superconductors. As a result, they can meet the size requirements and load capacity requirements of many applications. With this size-scale up, one can utilize them in a wider number of applications than what was possible a few years back. At present several organizations have demonstrated the capability of passive magnetic bearings. The targeted applications include miniature cryoturboexpanders, cryoturbopumps, energy storage wheels and turbomolecular pumps. These demonstrations indicate that the passive magnetic bearings are closer to technology maturity. (orig.)

  20. Elliptical superconducting RF cavities for FRIB energy upgrade

    Science.gov (United States)

    Ostroumov, P. N.; Contreras, C.; Plastun, A. S.; Rathke, J.; Schultheiss, T.; Taylor, A.; Wei, J.; Xu, M.; Xu, T.; Zhao, Q.; Gonin, I. V.; Khabiboulline, T.; Pischalnikov, Y.; Yakovlev, V. P.

    2018-04-01

    The multi-physics design of a five cell, βG = 0 . 61, 644 MHz superconducting elliptical cavity being developed for an energy upgrade in the Facility for Rare Isotope Beams (FRIB) is presented. The FRIB energy upgrade from 200 MeV/u to 400 MeV/u for heaviest uranium ions will increase the intensities of rare isotope beams by nearly an order of magnitude. After studying three different frequencies, 1288 MHz, 805 MHz, and 644 MHz, the 644 MHz cavity was shown to provide the highest energy gain per cavity for both uranium and protons. The FRIB upgrade will include 11 cryomodules containing 5 cavities each and installed in 80-meter available space in the tunnel. The cavity development included extensive multi-physics optimization, mechanical and engineering analysis. The development of a niobium cavity is complete and two cavities are being fabricated in industry. The detailed design of the cavity sub-systems such as fundamental power coupler and dynamic tuner are currently being pursued. In the overall design of the cavity and its sub-systems we extensively applied experience gained during the development of 650 MHz low-beta cavities at Fermi National Accelerator Laboratory (FNAL) for the Proton Improvement Plan (PIP) II.

  1. Survey of domestic research on superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Dresner, L.

    1991-09-01

    This report documents the results of a survey of domestic research on superconducting magnetic energy storage (SMES) undertaken with the support of the Oak Ridge National Laboratory (ORNL) Superconductivity Pilot Center. Each survey entry includes the following: Name, address, and other telephone and facsimile numbers of the principal investigator and other staff members; funding for fiscal year 1991, 1992, 1993; brief descriptions of the program, the technical progress to date, and the expected technical progress; a note on any other collaboration. Included with the survey are recommendations intended to help DOE decide how best to support SMES research and development (R ampersand D). To summarize, I would say that important elements of a well-rounded SMES research program for DOE are as follows. (1) Construction of a large ETM. (2) Development of SMES as an enabling technology for solar and wind generation, especially in conjunction with the ETM program, if possible. (3) Development of small SMES units for electric networks, for rapid transit, and as noninterruptible power supplies [uses (2), (3), and (4) above]. In this connection, lightweight, fiber-reinforced polymer structures, which would be especially advantageous for space and transportation applications, should be developed. (4) Continued study of the potential impacts of high-temperature superconductors on SMES, with construction as soon as feasible of small SMES units using high-temperature superconductors (HTSs)

  2. Proposal of 99.99%-aluminum/7N01-Aluminum clad beam tube for high energy booster of Superconducting Super Collider

    International Nuclear Information System (INIS)

    Ishimaru, Hajime

    1994-01-01

    Proposal of 99.99% pure aluminum/7N01 aluminum alloy clad beam tube for high energy booster in Superconducting Super Collider is described. This aluminum clad beam tube has many good performances, but a eddy current effect is large in superconducting magnet quench collapse. The quench test result for aluminum clad beam tube is basically no problem against magnet quench collapse. (author)

  3. Basic Research Needs for Superconductivity. Report of the Basic Energy Sciences Workshop on Superconductivity, May 8-11, 2006

    Energy Technology Data Exchange (ETDEWEB)

    Sarrao, J.; Kwok, W-K; Bozovic, I.; Mazin, I.; Seamus, J. C.; Civale, L.; Christen, D.; Horwitz, J.; Kellogg, G.; Finnemore, D.; Crabtree, G.; Welp, U.; Ashton, C.; Herndon, B.; Shapard, L.; Nault, R. M.

    2006-05-11

    As an energy carrier, electricity has no rival with regard to its environmental cleanliness, flexibility in interfacing with multiple production sources and end uses, and efficiency of delivery. In fact, the electric power grid was named ?the greatest engineering achievement of the 20th century? by the National Academy of Engineering. This grid, a technological marvel ingeniously knitted together from local networks growing out from cities and rural centers, may be the biggest and most complex artificial system ever built. However, the growing demand for electricity will soon challenge the grid beyond its capability, compromising its reliability through voltage fluctuations that crash digital electronics, brownouts that disable industrial processes and harm electrical equipment, and power failures like the North American blackout in 2003 and subsequent blackouts in London, Scandinavia, and Italy in the same year. The North American blackout affected 50 million people and caused approximately $6 billion in economic damage over the four days of its duration. Superconductivity offers powerful new opportunities for restoring the reliability of the power grid and increasing its capacity and efficiency. Superconductors are capable of carrying current without loss, making the parts of the grid they replace dramatically more efficient. Superconducting wires carry up to five times the current carried by copper wires that have the same cross section, thereby providing ample capacity for future expansion while requiring no increase in the number of overhead access lines or underground conduits. Their use is especially attractive in urban areas, where replacing copper with superconductors in power-saturated underground conduits avoids expensive new underground construction. Superconducting transformers cut the volume, weight, and losses of conventional transformers by a factor of two and do not require the contaminating and flammable transformer oils that violate urban safety

  4. Basic Research Needs for Superconductivity. Report of the Basic Energy Sciences Workshop on Superconductivity, May 8-11, 2006

    International Nuclear Information System (INIS)

    Sarrao, J.; Kwok, W-K; Bozovic, I.; Mazin, I.; Seamus, J. C.; Civale, L.; Christen, D.; Horwitz, J.; Kellogg, G.; Finnemore, D.; Crabtree, G.; Welp, U.; Ashton, C.; Herndon, B.; Shapard, L.; Nault, R. M.

    2006-01-01

    As an energy carrier, electricity has no rival with regard to its environmental cleanliness, flexibility in interfacing with multiple production sources and end uses, and efficiency of delivery. In fact, the electric power grid was named ?the greatest engineering achievement of the 20th century? by the National Academy of Engineering. This grid, a technological marvel ingeniously knitted together from local networks growing out from cities and rural centers, may be the biggest and most complex artificial system ever built. However, the growing demand for electricity will soon challenge the grid beyond its capability, compromising its reliability through voltage fluctuations that crash digital electronics, brownouts that disable industrial processes and harm electrical equipment, and power failures like the North American blackout in 2003 and subsequent blackouts in London, Scandinavia, and Italy in the same year. The North American blackout affected 50 million people and caused approximately $6 billion in economic damage over the four days of its duration. Superconductivity offers powerful new opportunities for restoring the reliability of the power grid and increasing its capacity and efficiency. Superconductors are capable of carrying current without loss, making the parts of the grid they replace dramatically more efficient. Superconducting wires carry up to five times the current carried by copper wires that have the same cross section, thereby providing ample capacity for future expansion while requiring no increase in the number of overhead access lines or underground conduits. Their use is especially attractive in urban areas, where replacing copper with superconductors in power-saturated underground conduits avoids expensive new underground construction. Superconducting transformers cut the volume, weight, and losses of conventional transformers by a factor of two and do not require the contaminating and flammable transformer oils that violate urban safety

  5. Two energy scales and two quasiparticle dynamics in the superconducting state of under-doped cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Le Tacon, M.; Sacuto, A. [Paris-7 Univ., Lab. Mat riaux et Ph nom nes Quantiques (UMR 7162 CNRS), 75 (France); Laboratoire de Physique du Solide, ESPCI, 75 - Paris (France); Georges, A. [Centre de Physique Theorique, Ecole Polytechnique, 91 - Palaiseau (France); Kotliar, G. [Centre de Physique Theorique, Ecole Polytechnique, 91 - Palaiseau (France); Rutgers Univ., Serin Physics Lab. (United States); Gallais, Y. [Columbia Univ. New York, Dept. of Physics and Applied Physics, NY (United States); Colson, D.; Forget, A. [CEA Saclay, Service de Physique de l' Etat Condense, 91 - Gif-sur-Yvette (France)

    2006-07-01

    The superconducting state of under-doped cuprates is often described in terms of a single energy scale, associated with the maximum of the (d-wave) gap. Here, we report on electronic Raman scattering results, which show that the gap function in the under-doped regime is characterized by two energy scales, depending on doping in opposite manners. Their ratios to the maximum critical temperature are found to be universal in cuprates. Our experimental results also reveal two different quasiparticle dynamics in the under-doped superconducting state, associated with two regions of momentum space: nodal regions near the zeros of the gap and anti-nodal regions. While anti-nodal quasiparticles quickly loose coherence as doping is reduced, coherent nodal quasiparticles persist down to low doping levels. A theoretical analysis using a new sum-rule allows us to relate the low-frequency-dependence of the Raman response to the temperature-dependence of the superfluid density, both controlled by nodal excitations. (authors)

  6. X-ray induction by low energy protons: the quantification problem

    International Nuclear Information System (INIS)

    Oliver, A.; Miranda, J.

    1988-01-01

    The quantification analysis employing X-ray induction produced by protons with energies lower than 1 MeV, must be done considering the variations on cross sections by proton energy loss, when crossing the target. In this work, it is presented some results of thickness of thin films in the determination of alloys. (A.C.A.S.) [pt

  7. Superconducting Cable Development for Future High Energy Physics Detector Magnets

    Science.gov (United States)

    Horvath, I. L.

    1995-11-01

    Under the leadership of the Swiss Federal Institute of Technology (ETHZ) an international ad hoc collaboration for superconducting cables developed an aluminium stabilised superconducting cable for future detector magnets. With the financial support of the Swiss government, this R&D work was carried out for the European Organisation for Nuclear Research (CERN). In this report the manufacturing process is described and results of the quality control measurements are summarised. These tests showed that the industrial manufacturing of an aluminium stabilised superconducting cable is feasible.

  8. Superconductivity in doped two-leg ladder cuprates

    International Nuclear Information System (INIS)

    Qin Jihong; Yuan Feng; Feng Shiping

    2006-01-01

    Within the t-J ladder model, superconductivity with a modified d-wave symmetry in doped two-leg ladder cuprates is investigated based on the kinetic energy driven superconducting mechanism. It is shown that the spin-liquid ground-state at the half-filling evolves into the superconducting ground-state upon doping. In analogy to the doping dependence of the superconducting transition temperature in the planar cuprate superconductors, the superconducting transition temperature in doped two-leg ladder cuprates increases with increasing doping in the underdoped regime, and reaches a maximum in the optimal doping, then decreases in the overdoped regime

  9. Measuring the critical current in superconducting samples made of NT-50 under pulse irradiation by high-energy particles

    International Nuclear Information System (INIS)

    Vasilev, P.G.; Vladimirova, N.M.; Volkov, V.I.; Goncharov, I.N.; Zajtsev, L.N.; Zel'dich, B.D.; Ivanov, V.I.; Kleshchenko, E.D.; Khvostov, V.B.

    1981-01-01

    The results of tests of superconducting samples of an uninsulated wire of the 0.5 mm diameter, containing 1045 superconducting filaments of the 10 μm diameter made of NT-50 superconductor in a copper matrix, are given. The upper part of the sample (''closed'') is placed between two glass-cloth-base laminate plates of the 50 mm length, and the lower part (''open'') of the 45 mm length is immerged into liquid helium. The sample is located perpendicular to the magnetic field of a superconducting solenoid and it is irradiated by charged particle beams at the energy of several GeV. The measurement results of permissible energy release in the sample depending on subcriticality (I/Isub(c) where I is an operating current through the sample, and Isub(c) is a critical current for lack of the beam) and the particle flux density, as well as of the maximum permissible fluence depending on subcriticality. In case of the ''closed'' sample irradiated by short pulses (approximately 1 ms) for I/Isub(c) [ru

  10. Dynamic characteristics of a flywheel energy storage system using superconducting magnetic bearings

    CERN Document Server

    Kim, J S

    2003-01-01

    The high-temperature superconducting magnetic bearing flywheel energy storage system (SMB-FESS) is proposed as an efficient energy storage system. It is important to identify the dynamic behaviour and the characteristics of the SMB-FESS. First, a new method for identifying SMB characteristics has been suggested. The suggested modelling method is verified by comparing the experimental and analytical frequency response functions. In this study, the analyses of critical speed and unbalance response are performed using the analytical model. The experimental test has been carried out to verify the result of simulation. A good agreement has been observed between the experiment and the simulation result.

  11. Optimization of HTS superconducting magnetic energy storage magnet volume

    Science.gov (United States)

    Korpela, Aki; Lehtonen, Jorma; Mikkonen, Risto

    2003-08-01

    Nonlinear optimization problems in the field of electromagnetics have been successfully solved by means of sequential quadratic programming (SQP) and the finite element method (FEM). For example, the combination of SQP and FEM has been proven to be an efficient tool in the optimization of low temperature superconductors (LTS) superconducting magnetic energy storage (SMES) magnets. The procedure can also be applied for the optimization of HTS magnets. However, due to a strongly anisotropic material and a slanted electric field, current density characteristic high temperature superconductors HTS optimization is quite different from that of the LTS. In this paper the volumes of solenoidal conduction-cooled Bi-2223/Ag SMES magnets have been optimized at the operation temperature of 20 K. In addition to the electromagnetic constraints the stress caused by the tape bending has also been taken into account. Several optimization runs with different initial geometries were performed in order to find the best possible solution for a certain energy requirement. The optimization constraints describe the steady-state operation, thus the presented coil geometries are designed for slow ramping rates. Different energy requirements were investigated in order to find the energy dependence of the design parameters of optimized solenoidal HTS coils. According to the results, these dependences can be described with polynomial expressions.

  12. The Physics of Superconducting Microwave Resonators

    Science.gov (United States)

    Gao, Jiansong

    Over the past decade, low temperature detectors have brought astronomers revolutionary new observational capabilities and led to many great discoveries. Although a single low temperature detector has very impressive sensitivity, a large detector array would be much more powerful and are highly demanded for the study of more difficult and fundamental problems in astronomy. However, current detector technologies, such as transition edge sensors and superconducting tunnel junction detectors, are difficult to integrate into a large array. The microwave kinetic inductance detector (MKID) is a promising new detector technology invented at Caltech and JPL which provides both high sensitivity and an easy solution to the detector integration. It senses the change in the surface impedance of a superconductor as incoming photons break Cooper pairs, by using high-Q superconducting microwave resonators capacitively coupled to a common feedline. This architecture allows thousands of detectors to be easily integrated through passive frequency domain multiplexing. In this thesis, we explore the rich and interesting physics behind these superconducting microwave resonators. The first part of the thesis discusses the surface impedance of a superconductor, the kinetic inductance of a superconducting coplanar waveguide, and the circuit response of a resonator. These topics are related with the responsivity of MKIDs. The second part presents the study of the excess frequency noise that is universally observed in these resonators. The properties of the excess noise, including power, temperature, material, and geometry dependence, have been quantified. The noise source has been identified to be the two-level systems in the dielectric material on the surface of the resonator. A semi-empirical noise model has been developed to explain the power and geometry dependence of the noise, which is useful to predict the noise for a specified resonator geometry. The detailed physical noise

  13. Low energy excitations in superconducting La1.86Sr0.14CuO4

    DEFF Research Database (Denmark)

    Mason, T.E.; Aeppli, G.; Hayden, S.M.

    1993-01-01

    We present magnetic neutron scattering and specific heat data on the high-T(c) superconductor La1.86Sr0.14CuO4. Even when the samples are superconducting and the magnetic response, chi'', is suppressed, there are excitations with energies well below 3.5k(B)T(c). The wave-vector dependence of chi...

  14. Advances in elementary particle physics with applied superconductivity. Contribution of superconducting technology to CERN large hadron collider accelerator

    International Nuclear Information System (INIS)

    Yamamoto, Akira

    2011-01-01

    The construction of the Large Hadron Collider (LHC) was started in 1994 and completed in 2008. The LHC consists of more than seven thousand superconducting magnets and cavities, which play an essential role in elementary particle physics and its energy frontier. Since 2010, physics experiments at the new energy frontier have been carried out to investigate the history and elementary particle phenomena in the early universe. The superconducting technology applied in the energy frontier physics experiments is briefly introduced. (author)

  15. Development of a superconducting position sensor for the Satellite Test of the Equivalence Principle

    Science.gov (United States)

    Clavier, Odile Helene

    The Satellite Test of the Equivalence Principle (STEP) is a joint NASA/ESA mission that proposes to measure the differential acceleration of two cylindrical test masses orbiting the earth in a drag-free satellite to a precision of 10-18 g. Such an experiment would conceptually reproduce Galileo's tower of Pisa experiment with a much longer time of fall and greatly reduced disturbances. The superconducting test masses are constrained in all degrees of freedom except their axial direction (the sensitive axis) using superconducting bearings. The STEP accelerometer measures the differential position of the masses in their sensitive direction using superconducting inductive pickup coils coupled to an extremely sensitive magnetometer called a DC-SQUID (Superconducting Quantum Interference Device). Position sensor development involves the design, manufacture and calibration of pickup coils that will meet the acceleration sensitivity requirement. Acceleration sensitivity depends on both the displacement sensitivity and stiffness of the position sensor. The stiffness must kept small while maintaining stability of the accelerometer. Using a model for the inductance of the pickup coils versus displacement of the test masses, a computer simulation calculates the sensitivity and stiffness of the accelerometer in its axial direction. This simulation produced a design of pickup coils for the four STEP accelerometers. Manufacture of the pickup coils involves standard photolithography techniques modified for superconducting thin-films. A single-turn pickup coil was manufactured and produced a successful superconducting coil using thin-film Niobium. A low-temperature apparatus was developed with a precision position sensor to measure the displacement of a superconducting plate (acting as a mock test mass) facing the coil. The position sensor was designed to detect five degrees of freedom so that coupling could be taken into account when measuring the translation of the plate

  16. Prototype superconducting radio-frequency cavity for LEP

    CERN Multimedia

    1985-01-01

    This niobium superconducting cavity was part of the prototype stages for an upgrade to LEP, known as LEP-2. Superconducting cavities would eventually replace the traditional copper cavities and allow beam energies of 100 GeV.

  17. Parametric resonance energy exchange and induction phenomenon in a one-dimensional nonlinear oscillator chain

    Science.gov (United States)

    Yoshimura, K.

    2000-11-01

    We study analytically the induction phenomenon in the Fermi-Pasta-Ulam β oscillator chain under initial conditions consisting of single mode excitation. Our study is based on the analytical computation of the largest characteristic exponent of an approximate version of the variational equation. The main results can be summarized as follows: (1) the energy density ɛ scaling of the induction time T is given by T~ɛ-1, and T becomes smaller for higher-frequency mode excitation; (2) there is a threshold energy density ɛc such that the induction time diverges when ɛ∞ (3) the threshold ɛc vanishes as ɛc~N-2 in the limit N-->∞ (4) the threshold ɛc does not depend on the mode number k that is excited in the initial condition; (5) the two modes k+/-m have the largest exponential growth rate, and m increases with increasing ɛ as m/N=3βɛ/π. The above analytical results are thoroughly verified in numerical experiments. Moreover, we discuss the energy exchange process after the induction period in some energy density regimes, based on the numerical results.

  18. ASC 84: applied superconductivity conference. Final program and abstracts

    International Nuclear Information System (INIS)

    1984-01-01

    Abstracts are given of presentations covering: superconducting device fabrication; applications of rf superconductivity; conductor stability and losses; detectors and signal processing; fusion magnets; A15 and Nb-Ti conductors; stability, losses, and various conductors; SQUID applications; new applications of superconductivity; advanced conductor materials; high energy physics applications of superconductivity; electronic materials and characterization; general superconducting electronics; ac machinery and new applications; digital devices; fusion and other large scale applications; in-situ and powder process conductors; ac applications; synthesis, properties, and characterization of conductors; superconducting microelectronics

  19. ASC 84: applied superconductivity conference. Final program and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    Abstracts are given of presentations covering: superconducting device fabrication; applications of rf superconductivity; conductor stability and losses; detectors and signal processing; fusion magnets; A15 and Nb-Ti conductors; stability, losses, and various conductors; SQUID applications; new applications of superconductivity; advanced conductor materials; high energy physics applications of superconductivity; electronic materials and characterization; general superconducting electronics; ac machinery and new applications; digital devices; fusion and other large scale applications; in-situ and powder process conductors; ac applications; synthesis, properties, and characterization of conductors; superconducting microelectronics. (LEW)

  20. Ion energy and angular distributions in inductively coupled Argon RF discharges

    International Nuclear Information System (INIS)

    Woodworth, J.R.; Riley, M.E.; Meister, D.C.

    1996-03-01

    We report measurements of the energies and angular distributions of positive ions in an inductively coupled argon plasma in a GEC reference cell. Use of two separate ion detectors allowed measurement of ion energies and fluxes as a function of position as well as ion angular distributions on the discharge centerline. The inductive drive on our system produced high plasma densities (up to 10 12 /cm 3 electron densities) and relatively stable plasma potentials. As a result, ion energy distributions typically consisted of a single feature well separated from zero energy. Mean ion energy was independent of rf power and varied inversely with pressure, decreasing from 29 eV to 12 eV as pressure increased form 2.4 m Torr to 50 mTorr. Half-widths of the ion angular distributions in these experiments varied from 5 degrees to 12.5 degrees, or equivalently, transverse temperatures varied form 0.2 to 0.5 eV with the distributions broadening as either pressure or RF power were increased

  1. Improvement of superconducting cylindrical linear induction motor; Chodendo entokeitan ichiji rinia yudo mota no tokusei kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Kikuma, T.; Tomita, M.; Ishiyama, A. [Waseda Univ., Tokyo (Japan)

    1999-11-10

    For the purpose of we examining the effect of characteristics and ac loss under real machine operating environment of the alternating current superconductivity winding for a realization of the superconductive AC machine vessel, cylindrical shortness first linear guiding motor which used NbTi/CuNi superconducting cable for the primary winding was produced experimentally. The coil number was increased from 6 in 14 this time, and the optimization of the primary current was done, and the improvement on characteristics was attempted. Here, starting torque characteristics, quenching detection protection control circuit are reported. (NEDO)

  2. Sensing with Superconducting Point Contacts

    Directory of Open Access Journals (Sweden)

    Argo Nurbawono

    2012-05-01

    Full Text Available Superconducting point contacts have been used for measuring magnetic polarizations, identifying magnetic impurities, electronic structures, and even the vibrational modes of small molecules. Due to intrinsically small energy scale in the subgap structures of the supercurrent determined by the size of the superconducting energy gap, superconductors provide ultrahigh sensitivities for high resolution spectroscopies. The so-called Andreev reflection process between normal metal and superconductor carries complex and rich information which can be utilized as powerful sensor when fully exploited. In this review, we would discuss recent experimental and theoretical developments in the supercurrent transport through superconducting point contacts and their relevance to sensing applications, and we would highlight their current issues and potentials. A true utilization of the method based on Andreev reflection analysis opens up possibilities for a new class of ultrasensitive sensors.

  3. Superconducting and hybrid systems for magnetic field shielding

    International Nuclear Information System (INIS)

    Gozzelino, L; Gerbaldo, R; Ghigo, G; Laviano, F; Truccato, M; Agostino, A

    2016-01-01

    In this paper we investigate and compare the shielding properties of superconducting and hybrid superconducting/ferromagnetic systems, consisting of cylindrical cups with an aspect ratio of height/radius close to unity. First, we reproduced, by finite-element calculations, the induction magnetic field values measured along the symmetry axis in a superconducting (MgB 2 ) and in a hybrid configuration (MgB 2 /Fe) as a function of the applied magnetic field and of the position. The calculations are carried out using the vector potential formalism, taking into account simultaneously the non-linear properties of both the superconducting and the ferromagnetic material. On the basis of the good agreement between the experimental and the computed data we apply the same model to study the influence of the geometric parameters of the ferromagnetic cup as well as of the thickness of the lateral gap between the two cups on the shielding properties of the superconducting cup. The results show that in the considered non-ideal geometry, where the edge effect in the flux penetration cannot be disregarded, the superconducting shield is always the most efficient solution at low magnetic fields. However, a partial recovery of the shielding capability of the hybrid configuration occurs if a mismatch in the open edges of the two cups is considered. In contrast, at high magnetic fields the hybrid configurations are always the most effective. In particular, the highest shielding factor was found for solutions with the ferromagnetic cup protruding over the superconducting one. (paper)

  4. Thermodynamic Green functions in theory of superconductivity

    Directory of Open Access Journals (Sweden)

    N.M.Plakida

    2006-01-01

    Full Text Available A general theory of superconductivity is formulated within the thermodynamic Green function method for various types of pairing mediated by phonons, spin fluctuations, and strong Coulomb correlations in the Hubbard and t-J models. A rigorous Dyson equation for matrix Green functions is derived in terms of a self-energy as a many-particle Green function. By applying the noncrossing approximation for the self-energy, a closed self-consistent system of equations is obtained, similar to the conventional Eliashberg equations. A brief discussion of superconductivity mediated by kinematic interaction with an estimation of a superconducting transition temperature in the Hubbard model is given.

  5. Superconducting Radio-Frequency Cavities

    Science.gov (United States)

    Padamsee, Hasan S.

    2014-10-01

    Superconducting cavities have been operating routinely in a variety of accelerators with a range of demanding applications. With the success of completed projects, niobium cavities have become an enabling technology, offering upgrade paths for existing facilities and pushing frontier accelerators for nuclear physics, high-energy physics, materials science, and the life sciences. With continued progress in basic understanding of radio-frequency superconductivity, the performance of cavities has steadily improved to approach theoretical capabilities.

  6. Superconductivity at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, N B; Ginzburg, N I

    1969-07-01

    Work published during the last 3 or 4 yrs concerning the effect of pressure on superconductivity is reviewed. Superconducting modifications of Si, Ge, Sb, Te, Se, P and Ce. Change of Fermi surface under pressure for nontransition metals. First experiments on the influence of pressure on the tunneling effect in superconductors provide new information on the nature of the change in phonon and electron energy spectra of metals under hydrostatic compression. 78 references.

  7. Evaluation of inductive heating energy of sub-size improved DPC-C conductor by calorimetric method

    International Nuclear Information System (INIS)

    Ito, Toshinobu; Koizumi, Norikiyo; Wakabayashi, Hiroshi; Miura, Yuushi; Fujisaki, Hiroshi; Matsui, Kunihiro; Takahashi, Yoshikazu; Tsuji, Hiroshi

    1996-08-01

    The improved DPC-U conductor consisting of 648 chrome plated NbTi strands was fabricated and its stability has been investigated using 1/24 sub-size conductor. In the stability experiment, the inductive heating method was applied to originate initial normal zone. Since it is difficult to calculate the inductive heating energy deposited on the conductor because of complicate geometry of the twisted multi-strand cable, inductive heating energy had to be experimentally evaluated using calorimetric method. The heating energy is in proportion to integration of square of an applied sinusoidal wave pulsed current over the heating period. The experimental result shows the proportional constants for the conductor and conduit are 2.062 x 10 -3 [J/A 2 s] and 0.771 x 10 -3 [J/A 2 s], respectively. The coupling between the eddy currents in the strands and conduit might take effect on the heating energy put in the strands. It was shown this effect was however small in this experiment. Consequently, the inductive heating energy applied in the strands was estimated to be the proportional constant of 1.291 x 10 -3 [J/A 2 s] from the difference of the heat energies in the conductor and conduit. (author)

  8. Kinetic inductance of HTS resonators at various microwave power levels

    International Nuclear Information System (INIS)

    Srivastava, G.P.; Jacob, Mohan V.

    1997-01-01

    Microwave superconducting devices show a drastic deterioration in its performance at high microwave power levels. The flux penetration through the weak links increases the quasiparticle concentration which results in the increase of penetration depth and hence the kinetic inductance. We have modeled an expression to find the kinetic inductance at various RF power levels. The results show that the change in kinetic inductance is proportional to be square of the applied field. This model can explain the reported experimental results at and below the intermediate power levels. (author)

  9. Superconducting magnetic energy storage for the disposal of fast reserve energy at the electrical energy supply. Supraleitende Energiespeicher zur Bereitstellung schneller Reserveleistung in der elektrischen Energieversorgung

    Energy Technology Data Exchange (ETDEWEB)

    Bayer, W [Siemens AG, Erlangen (Germany); Bittihn, R [Varta AG, Hagen (Germany); Kuerten, H [Siemens AG, Erlangen (Germany); Radtke, U [PreussenElektra AG, Hannover (Germany); Taube, W [PreussenElektra AG, Hannover (Germany); Vollmar, H E [Siemens AG, Erlangen (Germany); Willmes, H [Varta Batterie AG, Hagen (Germany)

    1994-04-05

    The authors investigate the economic efficiency of the application of a superconducting magnetic energy storage (SMES) in the field of electrical energy supply taking as example a network of 10 000 MW which is operated in an European interconnected power system. In case of this network the supply of the second reserve energy has become an interesting example of application, especially combined with the disconnection of the pre-heater. The application of SMES could lead to a better utilisation of existing power stations and the fuels along with a reduction of emissions. (orig.)

  10. Inductive crystal field control in layered metal oxides with correlated electrons

    International Nuclear Information System (INIS)

    Balachandran, P. V.; Cammarata, A.; Rondinelli, J. M.; Nelson-Cheeseman, B. B.; Bhattacharya, A.

    2014-01-01

    We show that the NiO 6 crystal field energies can be tailored indirectly via heterovalent A cation ordering in layered (La,A)NiO 4 Ruddlesden–Popper (RP) oxides, where A = Sr, Ca, or Ba, using density functional calculations. We leverage as a driving force the electrostatic interactions between charged [LaO] 1+ and neutral [AO] 0 planes to inductively tune the Ni–O bond distortions, without intentional doping or epitaxial strain, altering the correlated d-orbital energies. We use this strategy to design cation ordered LaCaNiO 4 and LaBaNiO 4 with distortions favoring enhanced Ni e g orbital polarization, and find local electronic structure signatures analogous to those in RP La-cuprates, i.e., parent phases of the high-temperature superconducting oxides

  11. Model of vortex dynamics in superconducting films in two-coil measurements of the coherence length

    Science.gov (United States)

    Lemberger, Thomas; Loh, Yen Lee

    In two-coil measurements on superconducting films, a magnetic field from a small coil is applied to the center of the film. When the amplitude of the ac field is increased, the film undergoes a transition from the ``Meissner'' state to a state with vortices and antivortices. Ultimately, the vortex density matches the applied magnetic field and field screening is negligible. Experimentally, the field at the transition is related to the superconducting coherence length, although a full theory of the relationship is lacking. We show that the mutual inductance between drive and pickup coils, on opposite sides of the film, as a function of ac field amplitude is well-described by a phenomenological model in which vortices and antivortices appear together in the film at the radius where the induced supercurrent is strongest, and then they move through a landscape of moderately strong vortex pinning sites. Work at OSU supported by DOE-Basic Energy Sciences through Grant No. FG02-08ER46533.

  12. Enhancing the utilization of photovoltaic power generation by superconductive magnetic energy storage

    International Nuclear Information System (INIS)

    Tam, K.S.; Kumar, P.; Foreman, M.

    1989-01-01

    This paper demonstrates that a superconductive magnetic energy storage (SMES) system can enhance large scale utilization of PV generation. With SMES support, power generated from PV arrays van be fully utilized under different weather conditions and PV penetrations can be increased to significant levels without causing adverse effects to the power system. Coupled with PV generation, a SMES system is even more effective in performing diurnal load leveling. A coordinated PV/SMES operation scheme is proposed and demonstrated under different weather conditions

  13. Universal transport characteristics of multiple topological superconducting wires with large charging energy

    Energy Technology Data Exchange (ETDEWEB)

    Kashuba, Oleksiy; Trauzettel, Bjoern [Institut fuer Theoretische Physik und Astrophysik, Universitaet Wuerzburg, 97074 Wuerzburg (Germany); Timm, Carsten [Institut fuer Theoretische Physik, TU Dresden, 01062 Dresden (Germany)

    2016-07-01

    The system with multiple Majorana states coupled to the normal lead can potentially support the interaction between Majorana fermions and electrons. Such system can be implemented by several floating topological superconducting wires with large charging energy asymmetrically coupled to two normal leads. The analysis of the renormalization flow shows that there is a single fixed point - the strong coupling limit of isotropic antiferromagnetic Kondo model. The topological Kondo-like interaction leads also to the selective renormalization of the tunneling coefficients, strongly enhancing one component and suppressing others. Thus, charging energy crucially changes the transport properties of the system leading to the universal single-channel conductance independently from the values of the initial leads-wires coupling.

  14. Current status of development on superconducting magnetic energy storage systems and magnetic refrigeration

    International Nuclear Information System (INIS)

    Hirano, Naoki

    2010-01-01

    Superconducting magnetic energy storage (SMES) systems have excellent characteristics as energy-storage equipment in power systems such as high efficiency, quick response, and no deterioration in repetitive operations. There are many projects to develop SMES throughout the world. Since 1991, a national project by the Agency for Natural Resources and Energy Japan has been working to develop an SMES system to control power in power systems. Moreover, SMES has been developed to compensate for momentary voltage dips since 2003. To reduce energy consumption due to prolonged operating times, we developed energy-conserving electrical equipment incorporating refrigerating aggregates such as air conditioners. We conduced R and D to convert magnetic refrigeration and highly-efficient, energy-conserving/environmentally friendly technologies, to practical applications. The current status in the development of SMES to control power systems, bridging to deal with instantaneous voltage dips, and magnetic refrigeration technology will be explained in this paper. (author)

  15. Characterization of a dc SQUID based accelerometer circuit for a superconducting gravity gradiometer

    International Nuclear Information System (INIS)

    Scharnweber, R.; Lumley, J.M.

    1999-01-01

    A demonstrator set-up to test superconducting components has been designed and fabricated in order to characterize their functionality for use in a superconducting gravity gradiometer. The displacement of a freely oscillating levitated niobium proof mass in this acceleration transducer is measured inductively and read out by a direct current superconducting quantum interference device. It has been confirmed experimentally that the oscillation frequency depends on the current of the levitation magnet that is operated in persistent-current mode. The results allow us to establish testing and operational procedures that can be used in a more complex multichannel system to confirm functionality and to adjust the levitated proof mass. (author)

  16. Characterization of a dc SQUID based accelerometer circuit for a superconducting gravity gradiometer

    Energy Technology Data Exchange (ETDEWEB)

    Scharnweber, R.; Lumley, J.M. [Oxford Instruments, Scientific Research Division, Research Instruments (Cambridge), Newton House, Cambridge Business Park, Cowley Road, Cambridge CB4 4WZ (United Kingdom)

    1999-11-01

    A demonstrator set-up to test superconducting components has been designed and fabricated in order to characterize their functionality for use in a superconducting gravity gradiometer. The displacement of a freely oscillating levitated niobium proof mass in this acceleration transducer is measured inductively and read out by a direct current superconducting quantum interference device. It has been confirmed experimentally that the oscillation frequency depends on the current of the levitation magnet that is operated in persistent-current mode. The results allow us to establish testing and operational procedures that can be used in a more complex multichannel system to confirm functionality and to adjust the levitated proof mass. (author)

  17. Large Superconducting Magnet Systems

    CERN Document Server

    Védrine, P.

    2014-07-17

    The increase of energy in accelerators over the past decades has led to the design of superconducting magnets for both accelerators and the associated detectors. The use of Nb−Ti superconducting materials allows an increase in the dipole field by up to 10 T compared with the maximum field of 2 T in a conventional magnet. The field bending of the particles in the detectors and generated by the magnets can also be increased. New materials, such as Nb$_{3}$Sn and high temperature superconductor (HTS) conductors, can open the way to higher fields, in the range 13–20 T. The latest generations of fusion machines producing hot plasma also use large superconducting magnet systems.

  18. Large Superconducting Magnet Systems

    Energy Technology Data Exchange (ETDEWEB)

    Védrine, P [Saclay (France)

    2014-07-01

    The increase of energy in accelerators over the past decades has led to the design of superconducting magnets for both accelerators and the associated detectors. The use of Nb−Ti superconducting materials allows an increase in the dipole field by up to 10 T compared with the maximum field of 2 T in a conventional magnet. The field bending of the particles in the detectors and generated by the magnets can also be increased. New materials, such as Nb3Sn and high temperature superconductor (HTS) conductors, can open the way to higher fields, in the range 13–20 T. The latest generations of fusion machines producing hot plasma also use large superconducting magnet systems.

  19. Superconducting wire for the T-15 toroidal magnet

    International Nuclear Information System (INIS)

    Klimenko, E.Yu.; Kruglov, V.S.; Martovetskij, N.N.

    1987-01-01

    Main characteristics of a wire designed for the T-15 toroidal superconducting magnet production are given. The wire with circulation cooling is a twist of 11 niobium-tin wires 1.5 mm in diameter, joined electrolytically by two copper tubes with 3 mm inside diameter. The wire is capable to carry 10 kA current in the 8.5 T induction field. Wire features and structures promote to receive high structural current density in winding: diffuseness of superconducting-to-normal transition increases wire stability, screw symmetry od a current-carrying core provides wire resistance to pulse longitudinal field effect at plasma current disruption, low bronze thermal conductivity in a twist increases stability to outside pulse perturbations

  20. Experimental studies of current sharing in parallel driven Graetz bridge units for diurnal superconductive magnetic energy storage

    International Nuclear Information System (INIS)

    Kustom, R.L.; Akita, S.; Okada, H.; Skiles, J.

    1985-01-01

    Superconductive Magnetic Energy Storage (SMES) coils for diurnal load leveling and system peaking are envisioned to operate at hundreds of thousands of amperes and a few kilovolts. The interface between the SMES coil and the electric utility is envisioned to be Graetz bridges using SCR switches. Many parallel SCR switches or bridge units will have to operate in parallel because of the high operating current of the coil. Current balancing on parallel Graetz bridges driving a single 8-hy superconducting coil has been achieved on a laboratory model using delay-angle control with an LSI 11/2 microprocessor and external digital control hardware

  1. Exotic Magnetic Orders and Their Interplay with Superconductivity

    DEFF Research Database (Denmark)

    Christensen, Morten Holm

    Superconductivity represents one of the most important scientific discoveries of the 20th century. The practical applications are numerous ranging from clean energy storage and MRI machines to quantum computers. However, the low temperatures required for superconductivity prohibits many practical...... applications. The more recent discovery of high-temperature superconductors, with superconducting transition temperatures above 100~K, has led to the hope that superconductivity at room-temperature might be achievable, although a complete theoretical understanding of the high-temperature superconductors...

  2. Program NICOLET to integrate energy loss in superconducting coils. [In FORTRAN for CDC-6600

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, H.F.

    1978-08-01

    A voltage pickup coil, inductively coupled to the magnetic field of the superconducting coil under test, is connected so its output may be compared with the terminal voltage of the coil under test. The integrated voltage difference is indicative of the resistive volt-seconds. When multiplied with the main coil current, the volt-seconds yield the loss. In other words, a hysteresis loop is obtained if the integrated voltage difference phi = ..integral delta..Vdt is plotted as a function of the coil current, i. First, time functions of the two signals phi(t) and i(t) are recorded on a dual-trace digital oscilloscope, and these signals are then recorded on magnetic tape. On a CDC-6600, the recorded information is decoded and plotted, and the hysteresis loops are integrated by the set of FORTRAN programs NICOLET described in this report. 4 figures.

  3. Gauge Model of High-Tc Superconductivity

    International Nuclear Information System (INIS)

    Ng, Sze Kui

    2012-01-01

    A simple gauge model of superconductivity is presented. The seagull vertex term of this gauge model gives an attractive potential between electrons for the forming of Cooper pairs of superconductivity. This gauge model gives a unified description of superconductivity and magnetism including antiferromagnetism, pseudogap phenomenon, stripes phenomenon, paramagnetic Meissner effect, Type I and Type II supeconductivity and high-T c superconductivity. The doping mechanism of superconductivity is found. It is shown that the critical temperature T c is related to the ionization energies of elements and can be computed by a formula of T c . For the high-T c superconductors such as La 2-x Sr x CuO 4 , Y Ba 2 Cu 3 O 7 , and MgB 2 , the computational results of T c agree with the experimental results.

  4. Analysis of reflection-coefficient by wireless power transmission using superconducting coils

    International Nuclear Information System (INIS)

    Jeong, In Sung; Choi, Hyo Sang; Chung, Dong Chul

    2017-01-01

    The use of electronic devices such as mobile phones and tablet PCs has increased of late. However, the power which is supplied through wires has a limitation of the free use of devices and portability. Magnetic-resonance wireless power transfer (WPT) can achieve increased transfer distance and efficiency compared to the existing electromagnetic inductive coupling. A superconducting coil can be applied to increase the efficiency and distance of magnetic-resonance WPT. As superconducting coils have lower resistance than copper coils, they can increase the quality factor (Q-factor) and can overcome the limitations of magnetic-resonance WPT. In this study, copper coils were made from ordinary copper under the same condition as the superconducting coils for a comparison experiment. Superconducting coils use liquid nitrogen to keep the critical temperature. As there is a difference of medium between liquid nitrogen and air, liquid nitrogen was also used in the normal conductor coil to compare the experiment with under the same condition. It was confirmed that superconducting coils have a lower reflection-coefficient(S11) than the normal conductor coils

  5. Analysis of reflection-coefficient by wireless power transmission using superconducting coils

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, In Sung; Choi, Hyo Sang [Chosun University, Gwangju (Korea, Republic of); Chung, Dong Chul [Korea Institute of Carbon Convergence Technology, Jeonju (Korea, Republic of)

    2017-06-15

    The use of electronic devices such as mobile phones and tablet PCs has increased of late. However, the power which is supplied through wires has a limitation of the free use of devices and portability. Magnetic-resonance wireless power transfer (WPT) can achieve increased transfer distance and efficiency compared to the existing electromagnetic inductive coupling. A superconducting coil can be applied to increase the efficiency and distance of magnetic-resonance WPT. As superconducting coils have lower resistance than copper coils, they can increase the quality factor (Q-factor) and can overcome the limitations of magnetic-resonance WPT. In this study, copper coils were made from ordinary copper under the same condition as the superconducting coils for a comparison experiment. Superconducting coils use liquid nitrogen to keep the critical temperature. As there is a difference of medium between liquid nitrogen and air, liquid nitrogen was also used in the normal conductor coil to compare the experiment with under the same condition. It was confirmed that superconducting coils have a lower reflection-coefficient(S11) than the normal conductor coils.

  6. Response of fractal penetration of magnetic flux to disorder landscape in superconducting films

    Science.gov (United States)

    Ye, Zuxin; Li, Qiang; Si, W. D.; Suenaga, M.; Solovyov, V. F.; Johnson, P. D.

    2005-10-01

    Magnetic flux front and induction contours in superconducting YBa2Cu3O7-δ films with defect size stilde ξ (superconducting coherence length) and s≫ξ are studied by magneto-optical imaging. Robust self-affine spatial correlation was observed using scaling analysis in the small pinning disorder-dominated ( stilde ξ) films. The roughness exponent α was determined to be ˜0.66 , independent of numbers of defects (or the film thickness). When the disorder landscape also included a distribution of large defects (s≫ξ) , the flux front and induction contours exhibited self-similarity, with a fractal dimension D determined to be ˜1.33 using the box-counting method. The remarkably different flux penetration patterns were shown to be the manifestation of self-organized criticality at different length scales.

  7. Transition metal borides. Synthesis, characterization and superconducting properties

    International Nuclear Information System (INIS)

    Kayhan, Mehmet

    2013-01-01

    A systematic study was done on the synthesis and superconducting properties of metal rich transition metal borides. Five different binary systems were investigated including the boride systems of niobium, tantalum, molybdenum, tungsten and rhenium. High temperature solid state methods were used in order to synthesize samples of different transition metal borides of the composition M 2 B, MB, M 3 B 2 , MB 2 , and M 2 B 4 . The reactions were carried out in three different furnaces with different sample containers: the electric arc (copper crucible), the high frequency induction furnace (boron nitride, tantalum or glassy carbon crucibles), and the conventional tube furnace (sealed evacuated quartz ampoules). The products obtained were characterized with X-ray powder diffractometry, scanning electron microscopy and energy-dispersive X-ray spectroscopy. Phase analyses and crystal structure refinements using the Rietveld method and based on structure models known from literature were performed. A neutron diffraction measurement was done for W 2 B 4 to allow for a complete crystal structure determination, because of the presence of a heavy element like tungsten and a light element like boron that made it difficult to determine the accurate determination of the boron atom positions and occupancies from X-ray data. A new structure model for W 2 B 4 was proposed. Magnetic measurements in a SQUID magnetometer down to temperatures as low as 1.8 K were performed to several of the products in order to see if the transition metal borides become superconducting at low temperatures, and the results were compared with data from literature. Superconducting properties were found for the following compounds: NbB 2 (T C = 3.5 K), β-MoB (T C = 2.4 K), β-WB (T C = 2.0 K), α-WB (T C = 4.3 K), W 2 B 4 (T C = 5.4 K), Re 7 B 3 (T C = 2.4 K). A relationship between the superconducting properties and the compositional and structural features was discussed for metal diborides. Also it was

  8. 1-GWh diurnal load-leveling Superconducting Magnetic Energy Storage system reference design

    International Nuclear Information System (INIS)

    Rogers, J.D.; Hassenzahl, W.V.; Schermer, R.I.

    1979-09-01

    A point reference design has been completed for a 1-GWh Superconducting Magnetic Energy Storage system. The system is for electric utility diurnal load-leveling but can also function to meet much faster power demands including dynamic stabilization. This study explores several concepts of design not previously considered in the same detail as treated here. Because the study is for a point design, optimization in all respects is not complete. This report examines aspects of the coil, the superconductor supported off of the dewar shell, the dewar shell, and its configuration and stresses, the underground excavation and construction for holding the superconducting coil and its dewar, the helium refrigeration system, the electrical converter system, the vacuum system, the guard coil, and the costs. This report is divided into two major portions. The first is a general treatment of the work and the second is seven detailed technical appendices issued as separate reports. The information presented on the aluminum stabilizer for the conductor, on the excavation, and on the converter is based upon industrial studies contracted for this work

  9. A low energy muon spin rotation and point contact tunneling study of niobium films prepared for superconducting cavities

    Science.gov (United States)

    Junginger, Tobias; Calatroni, S.; Sublet, A.; Terenziani, G.; Prokscha, T.; Salman, Z.; Suter, A.; Proslier, T.; Zasadzinski, J.

    2017-12-01

    Point contact tunneling and low energy muon spin rotation are used to probe, on the same samples, the surface superconducting properties of micrometer thick niobium films deposited onto copper substrates using different sputtering techniques: diode, dc magnetron and HIPIMS. The combined results are compared to radio-frequency tests performances of RF cavities made with the same processes. Degraded surface superconducting properties are found to correlate to lower quality factors and stronger Q-slope. In addition, both techniques find evidence for surface paramagnetism on all samples and particularly on Nb films prepared by HIPIMS.

  10. Superconducting RF activities at Cornell University

    International Nuclear Information System (INIS)

    Kirchgessner, J.; Moffat, D.; Padamsee, H.; Rubin, D.; Sears, J.; Shu, Q.S.

    1990-01-01

    This paper outlines the RF superconductivity research and development work that has taken place at Cornell Laboratory of Nuclear Studies over the past years. The work that has been performed since the last RF superconductivity workshop is emphasized together with a discussion of the direction of future efforts. Past work is summarized first, focusing on research and development activities in the area of RF superconductivity. Superconducting TeV linear collider is then discussed focusing on the application of superconducting RF to a future TeV linear collider. Linear collider structure development is then described centering on the development of a simpler (thereby cheaper) structure for a TeV linear collider. B-factory with superconducting RF is outlined focusing on the formulation of a conceptual design for a B-factory. B-factory structure development is discussed in relation to the advancement in the capability of SC cavities to carry beam currents of several amperes necessary for a high luminosity storage ring. High gradients are discussed as the key to the realization of a high energy superconducting linac or a superconducting RF B-factory. (N.K.)

  11. Superconducting magnet development in Japan

    International Nuclear Information System (INIS)

    Yasukochi, K.

    1983-01-01

    The present state of R and D works on the superconducting magnet and its applications in Japan are presented. On electrical rotating machines, 30 MVA superconducting synchronous rotary condenser (Mitsubishi and Fuji) and 50 MVA generator are under construction. Two ways of ship propulsion by superconducting magnets are developing. A superconducting magnetically levitated and linear motor propelled train ''MAGLEV'' was developed by the Japan National Railways (JNR). The superconducting magnet development for fusion is the most active field in Japan. The Cluster Test program has been demonstrated on a 10 T Nb 3 Sn coil and the first coil of Large Coil Task in IEA collaboration has been constructed and the domestic test was completed in JAERI. These works are for the development of toroidal coils of the next generation tokamak machine. R and D works on superconducting ohmic heating coil are in progress in JAERI and ETL. The latter group has constructed 3.8 MJ pulsed coil. A high ramp rate of changing field in pulsed magnet, 200 T/s, has been tested successfully. High Energy Physics Laboratory (KEK) are conducting active works. The superconducting μ meson channel and π meson channel have been constructed and are operating successfully. KEK has also a project of big accelerator named ''TRISTAN'', which is similar to ISABELLE project of BNL. Superconducting synchrotron magnets are developed for this project. The development of superconducting three thin wall solenoid has been started. One of them, CDF, is progressing under USA-Japan collaboration

  12. A modified BCS theory of heavy fermion superconductivity

    International Nuclear Information System (INIS)

    Baral, P.C.; Rout, G.C.

    2012-01-01

    In this paper we derive an expression for the superconducting gap equation for U and Ce based heavy fermion (HF) systems within a modified weak coupling theory of superconductivity. The calculated gap equation presents a mixture of pairing amplitudes of two different quasi-particle bands α and β. These two gap equations are solved numerically and self-consistently within the cut-off energy which arises due to the Kondo energy. It is found that the energy dependence of the enhanced density of states for the HF systems clearly manifests itself in the theory and the Kondo energy naturally takes the role of cut-off energy (ω c ), as long as the effective cut-off energy is large in comparison with the Kondo energy. The numerical analysis confirms this result and shows that superconducting transition temperature is independent of effective cut-off energy employed within this approach. The temperature dependence of gap equations are studied by varying the model parameters like positions of f-level, hybridization and coupling constants of the HF systems. (author)

  13. Superconductivity

    International Nuclear Information System (INIS)

    Palmieri, V.

    1990-01-01

    This paper reports on superconductivity the absence of electrical resistance has always fascinated the mind of researchers with a promise of applications unachievable by conventional technologies. Since its discovery superconductivity has been posing many questions and challenges to solid state physics, quantum mechanics, chemistry and material science. Simulations arrived to superconductivity from particle physics, astrophysic, electronics, electrical engineering and so on. In seventy-five years the original promises of superconductivity were going to become reality: a microscopical theory gave to superconductivity the cloth of the science and the level of technological advances was getting higher and higher. High field superconducting magnets became commercially available, superconducting electronic devices were invented, high field accelerating gradients were obtained in superconductive cavities and superconducting particle detectors were under study. Other improvements came in a quiet progression when a tornado brought a revolution in the field: new materials had been discovered and superconductivity, from being a phenomenon relegated to the liquid Helium temperatures, became achievable over the liquid Nitrogen temperature. All the physics and the technological implications under superconductivity have to be considered ab initio

  14. Thermal expansion of coexistence of ferromagnetism and superconductivity

    International Nuclear Information System (INIS)

    Hatayama, Nobukuni; Konno, Rikio

    2010-01-01

    The temperature dependence of thermal expansion of coexistence of ferromag-netism and superconductivity below the superconducting transition temperature T cu of a majority spin conduction band is investigated. Majority spin and minority spin superconducting gaps exist in the coexistent state. We assume that the Curie temperature is much larger than the superconducting transition temperatures. The free energy that Linder et al. [Phys. Rev. B76, 054511 (2007)] derived is used. The thermal expansion of coexistence of ferromagnetism and superconductivity is derived by the application of the method of Takahashi and Nakano [J. Phys.: Condens. Matter 18, 521 (2006)]. We find that we have the anomalies of the thermal expansion in the vicinity of the superconducting transition temperatures.

  15. Potential energy efficiency and conservation, economic, and environmental benefits from the implementation of superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Baumann, P.D.

    1992-01-01

    This paper reports on Superconducting Magnetic Energy Storage (SMES) which is a recent technology that has the capability to significantly improve electrical system operations within electric utility systems. The technology has already been demonstrated by Bonneville Power Administration in a 30-MJ SMES test demonstration unit. Savings in utility operations from improved system efficiency, increased reliability, and reduced maintenance requirements contribute to the economic justification of SMES. Beyond these benefits, there are additional benefits which in the long run may equal or outweigh the electrical operational benefits. These benefits are the energy conservation and environmental benefits. The technology has the capability of reducing fuel consumption which can in turn reduce emissions. In a regional setting it can shift emissions both in volumes and in physical. With its capability to strategically shift generation and significantly affect emissions and air quality it can stretch clean energy generation options, thus SMES can be seen as an energy and environmental management technology and tool

  16. Negative inductance SQUID qubit operating in a quantum regime

    Science.gov (United States)

    Liu, W. Y.; Su, F. F.; Xu, H. K.; Li, Z. Y.; Tian, Ye; Zhu, X. B.; Lu, Li; Han, Siyuan; Zhao, S. P.

    2018-04-01

    Two-junction SQUIDs with negative mutual inductance between their two arms, called nSQUIDs, have been proposed for significantly improving quantum information transfer but their quantum nature has not been experimentally demonstrated. We have designed, fabricated, and characterized superconducting nSQUID qubits. Our results provide clear evidence of the quantum coherence of the device, whose properties are well described by theoretical calculations using parameters determined from spectroscopic measurement. In addition to their future application for fast quantum information transfer, the nSQUID qubits exhibit rich characteristics in their tunable two-dimensional (2D) potentials, energy levels, wave function symmetries, and dipole matrix elements, which are essential to the study of a wide variety of macroscopic quantum phenomena such as tunneling in 2D potential landscapes.

  17. Accelerators and superconductivity: A marriage of convenience

    International Nuclear Information System (INIS)

    Wilson, M.

    1987-01-01

    This lecture deals with the relationship between accelerator technology in high-energy-physics laboratories and the development of superconductors. It concentrates on synchrotron magnets, showing how their special requirements have brought about significant advances in the technology, particularly the development of filamentary superconducting composites. Such developments have made large superconducting accelerators an actuality: the Tevatron in routine operation, the Hadron Electron Ring Accelerator (HERA) under construction, and the Superconducting Super Collider (SSC) and Large Hadron Collider (LHC) at the conceptual design stage. Other applications of superconductivity have also been facilitated - for example medical imaging and small accelerators for industrial and medical use. (orig.)

  18. The role of local repulsion in superconductivity in the Hubbard–Holstein model

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chungwei, E-mail: clin@merl.com; Wang, Bingnan; Teo, Koon Hoo

    2017-01-15

    Highlights: • There exists an optimal Boson energy for superconductivity in Hubbard–Holstein model. • The electron-Boson coupling is essential for superconductivity, but the same coupling can lead to polaron insulator, which is against superconductivity. • The local Coulomb repulsion can sometimes enhance superconductivity. - Abstract: We examine the superconducting solution in the Hubbard–Holstein model using Dynamical Mean Field Theory. The Holstein term introduces the site-independent Boson fields coupling to local electron density, and has two competing influences on superconductivity: The Boson field mediates the effective electron-electron attraction, which is essential for the S-wave electron pairing; the same coupling to the Boson fields also induces the polaron effect, which makes the system less metallic and thus suppresses superconductivity. The Hubbard term introduces an energy penalty U when two electrons occupy the same site, which is expected to suppress superconductivity. By solving the Hubbard–Holstein model using Dynamical Mean Field theory, we find that the Hubbard U can be beneficial to superconductivity under some circumstances. In particular, we demonstrate that when the Boson energy Ω is small, a weak local repulsion actually stabilizes the S-wave superconducting state. This behavior can be understood as an interplay between superconductivity, the polaron effect, and the on-site repulsion: As the polaron effect is strong and suppresses superconductivity in the small Ω regime, the weak on-site repulsion reduces the polaron effect and effectively enhances superconductivity. Our calculation elucidates the role of local repulsion in the conventional S-wave superconductors.

  19. LHC Report: superconducting circuit powering tests

    CERN Multimedia

    Mirko Pojer

    2015-01-01

    After the long maintenance and consolidation campaign carried out during LS1, the machine is getting ready to start operation with beam at 6.5 TeV… the physics community can’t wait! Prior to this, all hardware and software systems have to be tested to assess their correct and safe operation.   Most of the cold circuits (those with high current/stored energy) possess a sophisticated magnet protection system that is crucial to detect a transition of the coil from the superconducting to the normal state (a quench) and safely extract the energy stored in the circuits (about 1 GJ per dipole circuit at nominal current). LHC operation relies on 1232 superconducting dipoles with a field of up to 8.33 T operating in superfluid helium at 1.9 K, along with more than 500 superconducting quadrupoles operating at 4.2 or 1.9 K. Besides, many other superconducting and normal resistive magnets are used to guarantee the possibility of correcting all beam parameters, for a total of mo...

  20. U.S. program to develop superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Schoenung, S.M.; Hassenzahl, W.V.; Filios, P.G.

    1988-01-01

    The United States Government, along with the Electric Power Research Institute (EPRI), has initiated a program to develop Superconducting Magnetic Energy Storage (SMES). This program is designed to answer questions of technical and economic viability by the mid-1990s, thereby paving the way to commercialization. EPRI has supported this technology since 1981 and is interested in its potential use in diurnal electric load-leveling. The U.S. Government has an additional interest in the potential of SMES to power ground-based lasers for Strategic Defense purposes. This paper presents a brief description of SMES technology, a review of the programmatic aspects of the ongoing program, including EPRI and DoD objectives, critical issues, and program milestones. The potential impact of high temperature superconductors on SMES is also discussed

  1. Overview of Superconductivity and Challenges in Applications

    Science.gov (United States)

    Flükiger, Rene

    2012-01-01

    Considerable progress has been achieved during the last few decades in the various fields of applied superconductivity, while the related low temperature technology has reached a high level. Magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR) are so far the most successful applications, with tens of thousands of units worldwide, but high potential can also be recognized in the energy sector, with high energy cables, transformers, motors, generators for wind turbines, fault current limiters and devices for magnetic energy storage. A large number of magnet and cable prototypes have been constructed, showing in all cases high reliability. Large projects involving the construction of magnets, solenoids as well as dipoles and quadrupoles are described in the present book. A very large project, the LHC, is currently in operation, demonstrating that superconductivity is a reliable technology, even in a device of unprecedented high complexity. A project of similar complexity is ITER, a fusion device that is presently under construction. This article starts with a brief historical introduction to superconductivity as a phenomenon, and some fundamental properties necessary for the understanding of the technical behavior of superconductors are described. The introduction of superconductivity in the industrial cycle faces many challenges, first for the properties of the base elements, e.g. the wires, tapes and thin films, then for the various applied devices, where a number of new difficulties had to be resolved. A variety of industrial applications in energy, medicine and communications are briefly presented, showing how superconductivity is now entering the market.

  2. Design of Anti-windup Compensator for Superconducting Magnetic Energy Storage

    DEFF Research Database (Denmark)

    Fang, Jiakun; Chen, Zhe; Su, Chi

    2013-01-01

    -windup compensator (AWC) is applied to the controller of the superconducting magnetic energy storage (SMES) system to improve power system stability. First, power system with actuator saturation is described to formulate the problem mathematically. Then, uniform anti-windup scheme is studied and compensator...... is designed with method of linear matrix inequality (LMI). Instead of replacing the original controller with a new one, the anti-windup compensation make use of the difference between the controller’s and the actuator’s output to mitigate the adverse influence of saturation, which leaves the original...... controller unaffected. Hence, this method can be used to enhance power system stability under the same capacity with its unsaturated controller so that SMES is utilized more efficiently....

  3. Additive Manufactured Superconducting Cavities

    Science.gov (United States)

    Holland, Eric; Rosen, Yaniv; Woolleet, Nathan; Materise, Nicholas; Voisin, Thomas; Wang, Morris; Mireles, Jorge; Carosi, Gianpaolo; Dubois, Jonathan

    Superconducting radio frequency cavities provide an ultra-low dissipative environment, which has enabled fundamental investigations in quantum mechanics, materials properties, and the search for new particles in and beyond the standard model. However, resonator designs are constrained by limitations in conventional machining techniques. For example, current through a seam is a limiting factor in performance for many waveguide cavities. Development of highly reproducible methods for metallic parts through additive manufacturing, referred to colloquially as 3D printing\\x9D, opens the possibility for novel cavity designs which cannot be implemented through conventional methods. We present preliminary investigations of superconducting cavities made through a selective laser melting process, which compacts a granular powder via a high-power laser according to a digitally defined geometry. Initial work suggests that assuming a loss model and numerically optimizing a geometry to minimize dissipation results in modest improvements in device performance. Furthermore, a subset of titanium alloys, particularly, a titanium, aluminum, vanadium alloy (Ti - 6Al - 4V) exhibits properties indicative of a high kinetic inductance material. This work is supported by LDRD 16-SI-004.

  4. Superconducting current generators

    International Nuclear Information System (INIS)

    Genevey, P.

    1970-01-01

    After a brief summary of the principle of energy storage and liberation with superconducting coils,two current generators are described that create currents in the range 600 to 1400 A, used for two storage experiments of 25 kJ and 50 kJ respectively. The two current generators are: a) a flux pump and b) a superconducting transformer. Both could be developed into more powerful units. The study shows the advantage of the transformer over the flux pump in order to create large currents. The efficiencies of the two generators are 95 per cent and 40 to 60 per cent respectively. (author) [fr

  5. Quench propagation and training in simulated superconducting magnet windings

    International Nuclear Information System (INIS)

    Sampson, W.B.; Garber, M.; Ghosh, A.

    1981-01-01

    Training behavior similar to that which occurs in full scale superconducting accelerator magnets has been observed in small test windings. The test coils are formed from approximately 20 meters of conductor wound non-inductively, in Bifilar fashion. The resulting racetrack shaped coil is molded at elevated temperature to simulate the construction techniques used for the ISABELLE dipoles. The quench current of such windings has been measured as a function of applied field and the effect of parameters such as mechanical loading and porosity have been investigated. The velocity of propagation of the normal front has been measured both along and transverse to the direction of current flow for several test windings. The minimum energy required to produce a self propagating normal zone has also been determined in an attempt to quantify the relative stability of the coils

  6. Harmonic current layer method for the design of superconducting quadrupole magnetic field

    International Nuclear Information System (INIS)

    Zizek, F.

    1977-01-01

    The magnetic field of a superconducting quadrupole is investigated by the method of harmonic current layers of cylindrical shape. The superconducting winding is replaced by a system of thin current layers with a harmonically distributed density of the surface current along the circumference. The effect of the outer ferromagnetic circuit with an arbitrary constant permeability over the cross section is replaced analogically. The resultant magnetic field is then given by the superposition of the contributions from the individual current layers. The calculation method can be modified for the selection of the geometry of the winding for the latter to meet the demand for the high homogeneity of the gradient of magnetic induction in the working space of the superconducting quadrupole. (author)

  7. Elimination of the induced current error in magnetometers using superconducting flux transformers

    International Nuclear Information System (INIS)

    Dummer, D.; Weyhmann, W.

    1987-01-01

    The changing magnetization of a sample in a superconducting flux transformer coupled magnetometer induces a current in the transformer which in turn changes the field at the sample. This ''image'' field and the error caused by it can be eliminated by sensing the current in the loop and nulling it by feedback through a mutual inductance. We have tested the technique on the superconducting transition of indium in an applied magnetic field and shown that the observed width of the transition is greatly reduced by maintaining zero current in the flux transformer

  8. Computation of Superconducting Generators for Wind Turbine Applications

    DEFF Research Database (Denmark)

    Rodriguez Zermeno, Victor Manuel

    The idea of introducing a superconducting generator for offshore wind turbine applications has received increasing support. It has been proposed as a way to meet energy market requirements and policies demanding clean energy sources in the near future. However, design considerations have to take......, to the actual generators in the KW (MW) class with an expected cross section in the order of decimeters (meters). This thesis work presents cumulative results intended to create a bottom-up model of a synchronous generator with superconducting rotor windings. In a first approach, multiscale meshes with large...... of the generator including ramp-up of rotor coils, load connection and change was simulated. Hence, transient hysteresis losses in the superconducting coils were computed. This allowed addressing several important design and performance issues such as critical current of the superconducting coils, electric load...

  9. Inductive crystal field control in layered metal oxides with correlated electrons

    Energy Technology Data Exchange (ETDEWEB)

    Balachandran, P. V.; Cammarata, A.; Rondinelli, J. M., E-mail: jrondinelli@nortwestern.edu [Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104 (United States); Nelson-Cheeseman, B. B. [School of Engineering, University of St. Thomas, St. Paul, Minnesota 55105 (United States); Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Bhattacharya, A. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2014-07-01

    We show that the NiO{sub 6} crystal field energies can be tailored indirectly via heterovalent A cation ordering in layered (La,A)NiO{sub 4} Ruddlesden–Popper (RP) oxides, where A = Sr, Ca, or Ba, using density functional calculations. We leverage as a driving force the electrostatic interactions between charged [LaO]{sup 1+} and neutral [AO]{sup 0} planes to inductively tune the Ni–O bond distortions, without intentional doping or epitaxial strain, altering the correlated d-orbital energies. We use this strategy to design cation ordered LaCaNiO{sub 4} and LaBaNiO{sub 4} with distortions favoring enhanced Ni e{sub g} orbital polarization, and find local electronic structure signatures analogous to those in RP La-cuprates, i.e., parent phases of the high-temperature superconducting oxides.

  10. Superconductivity and the environment: a Roadmap

    International Nuclear Information System (INIS)

    Nishijima, Shigehiro; Eckroad, Steven; Marian, Adela; Choi, Kyeongdal; Kim, Woo Seok; Terai, Motoaki; Deng, Zigang; Zheng, Jun; Wang, Jiasu; Umemoto, Katsuya; Du, Jia; Keenan, Shane; Foley, Cathy P; Febvre, Pascal; Mukhanov, Oleg; Cooley, Lance D; Hassenzahl, William V; Izumi, Mitsuru

    2013-01-01

    There is universal agreement between the United Nations and governments from the richest to the poorest nations that humanity faces unprecedented global challenges relating to sustainable energy, clean water, low-emission transportation, coping with climate change and natural disasters, and reclaiming use of land. We have invited researchers from a range of eclectic research areas to provide a Roadmap of how superconducting technologies could address these major challenges confronting humanity. Superconductivity has, over the century since its discovery by Kamerlingh Onnes in 1911, promised to provide solutions to many challenges. So far, most superconducting technologies are esoteric systems that are used in laboratories and hospitals. Large science projects have long appreciated the ability of superconductivity to efficiently create high magnetic fields that are otherwise very costly to achieve with ordinary materials. The most successful applications outside of large science are high-field magnets for magnetic resonance imaging, laboratory magnetometers for mineral and materials characterization, filters for mobile communications, and magnetoencephalography for understanding the human brain. The stage is now set for superconductivity to make more general contributions. Humanity uses practically unthinkable amounts of energy to drive our modern way of life. Overall, global power usage has been predicted to almost double from 16.5 to 30 TW in the next four decades (2011 Equinox Summit: Energy 2030 http://wgsi.org/publications-resources). The economy with which electrons carry energy compels the continued quest for efficient superconducting power generation, energy storage, and power transmission. The growing global population requires new arable land and treatment of water, especially in remote areas, and superconductivity offers unique solutions to these problems. Exquisite detectors give warning of changes that are otherwise invisible. Prediction of climate and

  11. Superconductivity and the environment: a Roadmap

    Science.gov (United States)

    Nishijima, Shigehiro; Eckroad, Steven; Marian, Adela; Choi, Kyeongdal; Kim, Woo Seok; Terai, Motoaki; Deng, Zigang; Zheng, Jun; Wang, Jiasu; Umemoto, Katsuya; Du, Jia; Febvre, Pascal; Keenan, Shane; Mukhanov, Oleg; Cooley, Lance D.; Foley, Cathy P.; Hassenzahl, William V.; Izumi, Mitsuru

    2013-11-01

    There is universal agreement between the United Nations and governments from the richest to the poorest nations that humanity faces unprecedented global challenges relating to sustainable energy, clean water, low-emission transportation, coping with climate change and natural disasters, and reclaiming use of land. We have invited researchers from a range of eclectic research areas to provide a Roadmap of how superconducting technologies could address these major challenges confronting humanity. Superconductivity has, over the century since its discovery by Kamerlingh Onnes in 1911, promised to provide solutions to many challenges. So far, most superconducting technologies are esoteric systems that are used in laboratories and hospitals. Large science projects have long appreciated the ability of superconductivity to efficiently create high magnetic fields that are otherwise very costly to achieve with ordinary materials. The most successful applications outside of large science are high-field magnets for magnetic resonance imaging, laboratory magnetometers for mineral and materials characterization, filters for mobile communications, and magnetoencephalography for understanding the human brain. The stage is now set for superconductivity to make more general contributions. Humanity uses practically unthinkable amounts of energy to drive our modern way of life. Overall, global power usage has been predicted to almost double from 16.5 to 30 TW in the next four decades (2011 Equinox Summit: Energy 2030 http://wgsi.org/publications-resources). The economy with which electrons carry energy compels the continued quest for efficient superconducting power generation, energy storage, and power transmission. The growing global population requires new arable land and treatment of water, especially in remote areas, and superconductivity offers unique solutions to these problems. Exquisite detectors give warning of changes that are otherwise invisible. Prediction of climate and

  12. Experimental Observation of Non-'S-Wave' Superconducting Behavior in Bulk Superconducting Tunneling Junctions of Yba2Cu3O7-δ

    Directory of Open Access Journals (Sweden)

    Leandro Jose Guerra

    1998-06-01

    Full Text Available Evidence of non-s-wave superconductivity from normal tunneling experiments in bulk tunneling junctions of YBa2Cu3O7-δ is presented. The I-V and dI/dV characteristics of bulk superconducting tunneling junctions of YBa2Cu3O7-δ have been measured at 77.0K and clear deviation from s-wave superconducting behavior has been observed. The result agrees with d-wave symmetry, and interpreting the data in this way, the magnitude of the superconducting energy gap, 2Δ, is found to be (0.038 ± 0.002 eV. Comparing this energy gap with Tc (2Δ/kB Tc = 5.735, indicates that these high-Tc superconductors are strongly correlated materials, which in contrast with BCS-superconductors are believed to be weakly correlated.

  13. Progress in the development of superconducting quadrupoles for heavy ion fusion

    International Nuclear Information System (INIS)

    Faltens, A.; Lietzke, A.; Sabbi, G.; Seidl, P.; Lund, S.; Manahan, B.; Martovetsky, N.; Gung, C.; Minervini, J.; Schultz, J.; Myatt, L.; Meinke, R.

    2002-01-01

    The Heavy Ion Fusion program is developing single aperture superconducting quadrupoles based on NbTi conductor, for use in the High Current Experiment at Lawrence Berkeley National Laboratory. Following the fabrication and testing of prototypes using two different approaches, a baseline design has been selected and further optimized. A prototype cryostat for a quadrupole doublet, with features to accommodate induction acceleration modules, is being fabricated. The single aperture magnet was derived from a conceptual design of a quadrupole array magnet for multi-beam transport. Progress on the development of superconducting quadrupole arrays for future experiments is also reported

  14. Progress in the development of superconducting quadrupoles for heavy ion fusion

    Energy Technology Data Exchange (ETDEWEB)

    Faltens, A.; Lietzke, A.; Sabbi, G.; Seidl, P.; Lund, S.; Manahan, B.; Martovetsky, N.; Gung, C.; Minervini, J.; Schultz, J.; Myatt, L.; Meinke, R.

    2002-05-24

    The Heavy Ion Fusion program is developing single aperture superconducting quadrupoles based on NbTi conductor, for use in the High Current Experiment at Lawrence Berkeley National Laboratory. Following the fabrication and testing of prototypes using two different approaches, a baseline design has been selected and further optimized. A prototype cryostat for a quadrupole doublet, with features to accommodate induction acceleration modules, is being fabricated. The single aperture magnet was derived from a conceptual design of a quadrupole array magnet for multi-beam transport. Progress on the development of superconducting quadrupole arrays for future experiments is also reported.

  15. Progress in the Development of Superconducting Quadrupoles forHeavy-ion Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Faltens, A.; Lietzke, A.; Sabbi, G.; Seidl, P.; Lund, S.; Manahan, R.; Martovetsky, N.; Gung, C.; Minervini, J.; Schultz, J.; Myatt, L.; Meinke, R.

    2002-08-19

    The Heavy Ion Fusion program is developing single aperture superconducting quadrupoles based on NbTi conductor, for use in the High Current Experiment at Lawrence Berkeley National Laboratory. Following the fabrication and testing of prototypes using two different approaches, a baseline design has been selected and further optimized. A prototype cryostat for a quadrupole doublet, with features to accommodate induction acceleration modules, is being fabricated. The single aperture magnet was derived from a conceptual design of a quadrupole array magnet for multi-beam transport. Progress on the development of superconducting quadrupole arrays for future experiments is also reported.

  16. Tunnelling determined superconducting energy gap of bulk single crystal aluminum

    International Nuclear Information System (INIS)

    Civiak, R.L.

    1974-01-01

    A procedure has been developed for fabricating Giaver tunnel junctions on bulk aluminum. Al-I-Ag junctions were prepared, where I is the naturally formed oxide on the polished, chemically treated aluminum surface. The aluminum energy gap was determined from tunneling conductance curves obtained from samples oriented in three different crystal directions, and as a function of magnetic field in each of these orientations. In contrast to the results of microwave absorption measurements on superconducting aluminum, no magnetic field dependence could be measured for either the average gap or the spread in gap values of the tunneling electrons. This is consistent with commonly accepted tunneling selection rules, and Garfunkel's interpretation of the microwave behavior which depended upon adjusting the energy spectrum of only the electrons traveling parallel to the surface in the presence of a magnetic field. The energy gaps measured for samples oriented in the 100, 110 and 111 directions are 3.52, 3.50 and 3.39 kT/sub c/, respectively. The trend in the anisotropy is the same as in the calculation of Leavens and Carbotte, however, the magnitude of the anisotropy is smaller than in their calculation and that which previous measurements have indicated

  17. Melt formed superconducting joint between superconducting tapes

    International Nuclear Information System (INIS)

    Benz, M.G.; Knudsen, B.A.; Rumaner, L.E.; Zaabala, R.J.

    1992-01-01

    This patent describes a superconducting joint between contiguous superconducting tapes having an inner laminate comprised of a parent-metal layer selected from the group niobium, tantalum, technetium, and vanadium, a superconductive intermetallic compound layer on the parent-metal layer, a reactive-metal layer that is capable of combining with the parent-metal and forming the superconductive intermetallic compound, the joint comprising: a continuous precipitate of the superconductive intermetallic compound fused to the tapes forming a continuous superconducting path between the tapes

  18. Numerical calculation of transient field effects in quenching superconducting magnets

    International Nuclear Information System (INIS)

    Schwerg, Juljan Nikolai

    2010-01-01

    be subjected to further studies. Common definitions and concepts in the design of superconducting magnets, derivations of electromagnetic models, and explanations of typical effects are collected in the detailed treatment. We introduce, e.g., the temperature margin to quench and the MIITs, and define the magnetic energy and inductance in case of materials exhibiting hysteresis and diffusive behavior. The momentarily dissipated hysteresis losses are derived for the critical state model of hard superconductors. Furthermore, we review magnet protection methods and the voltages occurring during a quench. The appendix contains all information required for the reproduction of the presented results. It comprises material properties such as the electrical resistivity or the heat capacity for a temperature range spanning from cryogenic temperatures to some hundred kelvins. The model and simulation parameters for the magnets used for this work are collected at the end.

  19. Numerical calculation of transient field effects in quenching superconducting magnets

    Energy Technology Data Exchange (ETDEWEB)

    Schwerg, Juljan Nikolai

    2010-07-01

    be subjected to further studies. Common definitions and concepts in the design of superconducting magnets, derivations of electromagnetic models, and explanations of typical effects are collected in the detailed treatment. We introduce, e.g., the temperature margin to quench and the MIITs, and define the magnetic energy and inductance in case of materials exhibiting hysteresis and diffusive behavior. The momentarily dissipated hysteresis losses are derived for the critical state model of hard superconductors. Furthermore, we review magnet protection methods and the voltages occurring during a quench. The appendix contains all information required for the reproduction of the presented results. It comprises material properties such as the electrical resistivity or the heat capacity for a temperature range spanning from cryogenic temperatures to some hundred kelvins. The model and simulation parameters for the magnets used for this work are collected at the end.

  20. Application of Superconducting Power Cables to DC Electric Railway Systems

    Science.gov (United States)

    Ohsaki, Hiroyuki; Lv, Zhen; Sekino, Masaki; Tomita, Masaru

    For novel design and efficient operation of next-generation DC electric railway systems, especially for their substantial energy saving, we have studied the feasibility of applying superconducting power cables to them. In this paper it is assumed that a superconducting power cable is applied to connect substations supplying electric power to trains. An analysis model line was described by an electric circuit, which was analyzed with MATLAB-Simulink. From the calculated voltages and currents of the circuit, the regenerative brake and the energy losses were estimated. In addition, assuming the heat loads of superconducting power cables and the cryogenic efficiency, the energy saving of the total system was evaluated. The results show that the introduction of superconducting power cables could achieve the improved use of regenerative brake, the loss reduction, the decreased number of substations, the reduced maintenance, etc.

  1. Diagram of a LEP superconducting cavity

    CERN Multimedia

    1991-01-01

    This diagram gives a schematic representation of the superconducting radio-frequency cavities at LEP. Liquid helium is used to cool the cavity to 4.5 degrees above absolute zero so that very high electric fields can be produced, increasing the operating energy of the accelerator. Superconducting cavities were used only in the LEP-2 phase of the accelerator, from 1996 to 2000.

  2. Photoemission and the origin of high temperature superconductivity

    International Nuclear Information System (INIS)

    Norman, M. R.; Randeria, M.; Janko, B.; Campuzano, J. C.

    2000-01-01

    The condensation energy can be shown to be a moment of the change in the occupied part of the spectral function when going from the normal to the superconducting state. As a consequence, there is a one to one correspondence between the energy gain associated with forming the superconducting ground state, and the dramatic changes seen in angle resolved photoemission spectra. Some implications this observation has are offered

  3. Superconducting energy gap of BaPb/sub 1-//sub x/Bi/sub x/O3

    International Nuclear Information System (INIS)

    Schlesinger, Z.; Collins, R.T.; Scott, B.A.; Calise, J.A.

    1988-01-01

    We report the first infrared measurement of the superconducting energy gap of BaPb/sub 1-//sub x/Bi/sub x/O 3 . In our polycrystalline samples with T/sub c/≅9.5 K (x≅0.2) we obtain 2Δ≅3.2kT/sub c/, roughly in agreement with the weak-coupling Bardeen-Cooper-Schrieffer prediction, 2Δ = 3.5kT/sub c/, and with tunneling measurements of the gap. We do not observe any structure above the gap energy associated with strong coupling

  4. Coupling between magnetic and superconducting order parameters and evidence for the spin excitation gap in the superconducting state of a heavy fermion superconductor UPd2Al3

    International Nuclear Information System (INIS)

    Metoki, Naoto; Haga, Yoshinori; Koike, Yoshihiro; Aso, Naofumi; Onuki, Yoshichika

    1997-01-01

    Neutron scattering experiments have been carried out in order to study the interplay between magnetism and superconductivity in a heavy fermion superconductor, UPd 2 Al 3 . We have observed 1% suppression of the (0 0 0.5) magnetic peak intensity below the superconducting transition temperature T c . This is direct evidence for the coupling of the magnetic order parameter with the superconducting one. Furthermore, we have observed a spin excitation gap associated with superconductivity. The gap energy ΔE g increases continuously from ΔE g =0 to 0.4 meV with decreasing temperature from T c to 0.4 K. This gap energy corresponds to 2k B T c , which is smaller than the superconducting gap expected from the BCS theory (3.5k B T c ). These results are indicative of the strong interplay between magnetism and superconductivity. (author)

  5. Development of superconducting power devices in Europe

    International Nuclear Information System (INIS)

    Tixador, Pascal

    2010-01-01

    Europe celebrated last year (2008) the 100-year anniversary of the first liquefaction of helium by H. Kammerling Onnes in Leiden. It led to the discovery of superconductivity in 1911. Europe is still active in the development of superconducting (SC) devices. The discovery of high critical temperature materials in 1986, again in Europe, has opened a lot of opportunities for SC devices by broking the 4 K cryogenic bottleneck. Electric networks experience deep changes due to the emergence of dispersed generation (renewable among other) and to the advances in ICT (Information Communication Technologies). The networks of the future will be 'smart grids'. Superconductivity will offer 'smart' devices for these grids like FCL (Fault Current Limiter) or VLI (Very Low Inductance) cable and would certainly play an important part. Superconductivity also will participate to the required sustainable development by lowering the losses and enhancing the mass specific powers. Different SC projects in Europe will be presented (Cable, FCL, SMES, Flywheel and Electrical Machine) but the description is not exhaustive. Nexans has commercialized the first two FCLs without public funds in the European grid (UK and Germany). The Amsterdam HTS cable is an exciting challenge in term of losses for long SC cables. European companies (Nexans, Air Liquide, Siemens, Converteam, ...) are also very active for projects outside Europe (LIPA, DOE FCL, ...).

  6. LEP superconducting cavity

    CERN Multimedia

    1995-01-01

    Engineers work in a clean room on one of the superconducting cavities for the upgrade to the LEP accelerator, known as LEP-2. The use of superconductors allow higher electric fields to be produced so that higher beam energies can be reached.

  7. Negative self-inductance in superconducting thin wires and weak links

    International Nuclear Information System (INIS)

    Christiansen, P.V.; Hansen, E.B.; Sjostrom, C.J.

    1971-01-01

    The concept of negative self-inductance is explained by deriving the velocity dependence of the superinductance on the basis of the uniform Ginsburg-Landau (GL) solution. A formulation of the GL theory is presented which is suited for describing the depairing effects in a thin wire or film. The stability of the solutions to the GL equations is discussed. It is found that for a long wire or film negative self-inductance and instability always go together. An application of the developed theory to weak links is considered

  8. Generation and detection of high-energy phonons by superconducting junctions

    International Nuclear Information System (INIS)

    Singer, I.L.

    1976-01-01

    Superconducting tunnel junctions are used to investigate the dynamics of energy exchange that takes place in superconductors driven out of equilibrium. In a Sn junction biased at a voltage V much greater than 2Δ(Sn)/e, the tunneling current sustains a continual energy exchange amongst the quasiparticles, phonons, and Cooper pairs. Repeatedly, high-energy quasiparticles decay, emitting phonons; and phonons with energy greater than 2Δ(Sn) break pairs, producing quasiparticles. The phonon-induced component of the current is recovered by synchronously detecting the full tunneling current with respect to a small modulation current in the generator. Sharp onsets observed at intervals of the gap energies require that the escaping phonons are produced by the direct decay of the injected quasiparticles and are not merely the high-energy tail of the thermalized phonons. Both primary and secondary phonons can be abserved distinctly. Theoretical transconductance curves have been computed. The experimental and theoretical curves are in good qualitative agreement. A more detailed comparison suggests that the escape rate of high-energy phonons depends on the energy of the phonons. The dependence of the observed transconductance signal on the temperature and the total junction thickness suggests that the presence of quasiparticles plays a major role in the escape of high-energy phonons. The dependence on temperature can be fitted to exp(b/kT), 0.74 less than b less than 1.05 MeV. It is speculated that the excitation energy is first transported across the superconductor and then carried out of the film by the phonons. It is concluded that high-energy phonons are a sensitive probe of the very reabsorption effects that make their escape so unlikely, and analysis of the detected phonons rich details of the behavior of superconductors removed from equilibrium

  9. The modified high-energy transport code, HETC, and design calculations for the SSC [Superconducting Super Collider

    International Nuclear Information System (INIS)

    Alsmiller, R.G. Jr.; Alsmiller, F.S.; Gabriel, T.A.; Hermann, O.W.; Bishop, B.L.

    1988-01-01

    The proposed Superconducting Super Collider (SSC) will have two circulating proton beams, each with an energy of 20 TeV. In order to perform detector and shield design calculations at these higher energies that are as accurate as possible, it is necessary to incorporate in the calculations the best available information on differential particle production from hadron-nucleus collisions. In this paper, the manner in which this has been done in the High-Energy Transport Code HETC will be described and calculated results obtained with the modified code will be compared with experimental data. 10 refs., 1 fig

  10. Superconducting versus normal conducting cavities

    CERN Document Server

    Podlech, Holger

    2013-01-01

    One of the most important issues of high-power hadron linacs is the choice of technology with respect to superconducting or room-temperature operation. The favour for a specific technology depends on several parameters such as the beam energy, beam current, beam power and duty factor. This contribution gives an overview of the comparison between superconducting and normal conducting cavities. This includes basic radiofrequency (RF) parameters, design criteria, limitations, required RF and plug power as well as case studies.

  11. Y-Ba-Cu-O superconducting thin films by simultaneous or sequential evaporation

    International Nuclear Information System (INIS)

    Mogro-Campero, A.; Hunt, B.D.; Turner, L.G.; Burrell, M.C.; Balz, W.E.

    1988-01-01

    Superconducting thin films of Y-Ba-Cu-O near the 1:2:3 stoichiometry were produced by simultaneous (coevaporation) and sequential (multilayer) evaporation in the same evaporator. The best film obtained on yttria-stabilized zirconia (YSZ) had a superconducting onset temperature of 104 K, a midpoint T/sub c/ of 92 K, and zero resistance at T≤74 K. Stoichiometry was deduced by inductively coupled plasma emission spectroscopy, and elemental depth profiles were obtained by x-ray photoelectron spectroscopy. Film stoichiometry changes only near the film/substrate boundary for films on YSZ. Films on Si/SiO 2 were not superconducting; depth profiling shows severe changes of film composition with depth. A major theme of this work is process reproducibility, which was found to be poor for coevaporation but improved considerably for sequential evaporation

  12. Two-fluid model of the superconductivity in the BCS's theory

    International Nuclear Information System (INIS)

    Rangelov, J.

    1977-01-01

    The coefficients of Bogolubov-Valatin's transformation are chosen in accordance with the two-fluid model of superconductivity. The energy spectrum of superconducting quasi-particles is obtained as a solution of the linearized equation of motion of interacting particles. The energy distribution of the superconducting and normal quasi-particles is discussed from a new view-point. The correlation between the quasi-particles forming the Cooper's pair is discussed in accordance with the proposed ideas. The tunnelling of the normal quasi-particles in systems M-I-S and S 1 -I-S 2 is investigated qualitatively

  13. Superconducting magnets

    International Nuclear Information System (INIS)

    Willen, E.

    1996-01-01

    Superconducting dipole magnets for high energy colliders are discussed. As an example, the magnets recently built for the Relativistic Heavy Ion Collider at Brookhaven are reviewed. Their technical performance and the cost for the industry-built production dipoles are given. The cost data is generalized in order to extrapolate the cost of magnets for a new machine

  14. Alternating current losses of a 10 metre long low loss superconducting cable conductor determined from phase sensitive measurements

    DEFF Research Database (Denmark)

    Olsen, Søren Krüger; Kühle (fratrådt), Anders Van Der Aa; Træholt, Chresten

    1999-01-01

    The ac loss of a superconducting cable conductor carrying an ac current is small. Therefore the ratio between the inductive (out-of-phase) and the resistive (in-phase) voltages over the conductor is correspondingly high. In vectorial representations this results in phase angles between the current......-in amplifiers can be exploited. In this paper we present the results from ac-loss measurements on a low loss 10 metre long high temperature superconducting cable conductor using such a correction scheme. Measurements were carried out with and without a compensation circuit that could reduce-the inductive...... voltage. The 1 mu V cm(-1) critical current of the conductor was 3240 A at 77 K. At an rms current of 2 kA (50 Hz) the ac loss was derived to be 0.6 +/- 0.15 W m(-1). This is, to the best of our knowledge, the lowest value of ac loss of a high temperature superconducting cable conductor reported so far...

  15. Application of superconducting magnet energy storage to improve power system dynamic performance

    International Nuclear Information System (INIS)

    Mitani, Y.; Tsuji, K.; Murakami, Y.

    1988-01-01

    The application of Superconducting Magnet Energy Storage (SMES) to the stabilization of a power system with long distance bulk power transmission lines which has the problem of poorly damped power oscillations, is presented. Control schemes for stabilization using SMES which is capable of controlling active and reactive power simultaneously in four quadrant ranges, is proposed. The effective locations and the necessary capacities of SMES for power system stabilizing control are discussed in detail. Results of numerical analysis and experiments in an artificial power transmission system demonstrate the significant effect of the control by SMES on the improvement of power system oscillatory performance

  16. The g-2 storage ring superconducting magnet system

    International Nuclear Information System (INIS)

    Green, M.A.

    1993-09-01

    The g-2 μ lepton (muon) storage ring is a single dipole magnet that is 44 meters in circumference. The storage ring dipole field is created by three large superconducting solenoid coils. A single outer solenoid, 15.1 meters in diameter, carries 254 kA. Two inner solenoids, 13.4 meters in diameter, carry 127 kA each in opposition to the current carried by the outer solenoid. A room temperature C shaped iron yoke returns the magnetic flux and shapes the magnetic field in a 180 mm gap where the stored muon beam circulates. The gap induction will be 1.47 T. This report describes the three large superconducting solenoids, the cryogenic system needed to keep them cold, the solenoid power supply and the magnet quench protection system

  17. Tests of the 30-MJ superconducting magnetic-energy storage unit

    International Nuclear Information System (INIS)

    Boenig, H.J.; Dean, J.W.; Rogers, J.D.; Schermer, R.I.; Hauer, J.F.

    1983-01-01

    A 30-MJ (8.4 kWh) superconducting magnetic energy storage (SMES) unit with a 10-MW converter was installed during the later months of 1982 at the Bonneville Power Administration (BPA) Tacoma substation in Tacoma, Washington. The unit, which is capable of absorbing and releasing up to 10 MJ of energy at a frequency of 0.35 Hz, was designed to damp the dominant power swing mode of the Pacific AC Intertie. Extensive tests were performed with the unit during the first half of 1983. This paper will review the major components of the storage unit and describe the startup and steady state operating experience with the coil, dewar, refrigerator and converter. The unit has absorbed power up to a level of 11.8 Mw. Real power was modulated following a sinusoidal power demand with frequencies from 0.1 to 1.2 Hz and a power level up to +- 8.3 MW. The unit has performed in accordance with design expectations and no major problems have developed

  18. Characterization of superconducting thin films by infrared reflection

    International Nuclear Information System (INIS)

    Gervais, F.

    1988-01-01

    Infrared reflectivity spectroscopy is shown to be a powerful tool to characterize the new high-Tc oxide superconductors since it gives information about the superconducting gap, phonons, plasmon and possibly low-energy electronic excitations such as excitons, information relevant to understand the mechanism of superconductivity [fr

  19. Energy Efficiency Standards of Induction Motors, ¿Are you Prepared Latin America?

    Directory of Open Access Journals (Sweden)

    Carlos M. Londoño-Parra

    2013-06-01

    Full Text Available In Colombia the regulatory process regarding the energy efficiency of end-use prod-ucts is emerging with the draft technical regulation product labeling RETIQ, which includes in Annex E, the test methods for determining the efficiency of motors alternat-ing current induction. The goal of this paper is to compare the energy efficiency of induction motors between the countries of Latin America and the countries of the major economies of the globe, considering four aspects: the current state of classification standards and test procedures of induction motors efficiency, multilateral agreements of mutual recognition, the infrastructure to conduct tests of the standard and support programs to improve the efficiency of electric motor-driven systems. The study reveals that Latin America is a considerable delay in the implementation of classification standards and methods for testing the efficiency of electric motors, most widely used in the world: IEC 60034-30:2008, IEC 60034-2-1: 2007 IEEE 112:2004 and EPAct'92, with respect to the countries of the European Union, United States, China, Australia, and other developed countries, in which these standards have been adopted. Furthermore, the region is evident in the absence of programs focused on improving the energy efficiency of electric motors and a limited number of accredited laboratories to evaluate their efficiency, which leads to most Latin American countries to establish agreements mutual recognition for this purpose.

  20. Energy Efficiency Standards of Induction Motors, ¿Are you Prepared Latin America?

    Directory of Open Access Journals (Sweden)

    Carlos M. Londoño-Parra

    2013-06-01

    Full Text Available In Colombia the regulatory process regarding the energy efficiency of end-use products is emerging with the draft technical regulation product labeling RETIQ, which includes in Annex E, the test methods for determining the efficiency of motors alternating current induction. The goal of this paper is to compare the energy efficiency of induction motors between the countries of Latin America and the countries of the major economies of the globe, considering four aspects: the current state of classification standards and test procedures of induction motors efficiency, multilateral agreements of mutual recognition, the infrastructure to conduct tests of the standard and support programs to improve the efficiency of electric motor-driven systems. The study reveals that Latin America is a considerable delay in the implementation of classification standards and methods for testing the efficiency of electric motors, most widely used in the world: IEC 60034-30:2008, IEC 60034-2-1: 2007 IEEE 112:2004 and EPAct'92, with respect to the countries of the European Union, United States, China, Australia, and other developed countries, in which these standards have been adopted. Furthermore, the region is evident in the absence of programs focused on improving the energy efficiency of electric motors and a limited number of accredited laboratories to evaluate their efficiency, which leads to most Latin American countries to establish agreements mutual recognition for this purpose.

  1. Superconductivity in Washington, D.C

    International Nuclear Information System (INIS)

    Ritter, D.

    1988-01-01

    The author provides insights into the federal government's activity in superconductors. He says the President's most important legislative proposal is a change in anti-trust laws to allow businesses to cooperate on joint production ventures. The President has also directed the Department of Energy, the Department of Commerce, the National Aeronautics and Space Administration, the National Science Foundation, and the Department of Defense to establish Superconductivity Research Centers to conduct research and disseminate information. The author says he thinks it is worthwhile to pursue the President's proposal for cooperation with Japan in superconductivity research and development. The author explains why he supports this and other key legislation related to superconductivity. He says if the United States does not do all that it can, as fast as it can, both domestically and internationally, the U.S. could lose the cutting edge of technological and commercial leadership in the latter 20th century and the 21st century. This is what superconductivity represents

  2. Analysis of Electrical Coupling Parameters in Superconducting Cables

    CERN Document Server

    Bottura, L; Rosso, C

    2003-01-01

    The analysis of current distribution and redistribution in superconducting cables requires the knowledge of the electric coupling among strands, and in particular the interstrand resistance and inductance values. In practice both parameters can have wide variations in cables commonly used such as Rutherford cables for accelerators or Cable-in-Conduits for fusion and SMES magnets. In this paper we describe a model of a multi-stage twisted cable with arbitrary geometry that can be used to study the range of interstrand resistances and inductances that is associated with variations of geometry. These variations can be due to cabling or compaction effects. To describe the variations from the nominal geometry we have adopted a cable model that resembles to the physical process of cabling and compaction. The inductance calculation part of the model is validated by comparison to semi-analytical results, showing excellent accuracy and execution speed.

  3. Transition metal borides. Synthesis, characterization and superconducting properties

    Energy Technology Data Exchange (ETDEWEB)

    Kayhan, Mehmet

    2013-07-12

    A systematic study was done on the synthesis and superconducting properties of metal rich transition metal borides. Five different binary systems were investigated including the boride systems of niobium, tantalum, molybdenum, tungsten and rhenium. High temperature solid state methods were used in order to synthesize samples of different transition metal borides of the composition M{sub 2}B, MB, M{sub 3}B{sub 2}, MB{sub 2}, and M{sub 2}B{sub 4}. The reactions were carried out in three different furnaces with different sample containers: the electric arc (copper crucible), the high frequency induction furnace (boron nitride, tantalum or glassy carbon crucibles), and the conventional tube furnace (sealed evacuated quartz ampoules). The products obtained were characterized with X-ray powder diffractometry, scanning electron microscopy and energy-dispersive X-ray spectroscopy. Phase analyses and crystal structure refinements using the Rietveld method and based on structure models known from literature were performed. A neutron diffraction measurement was done for W{sub 2}B{sub 4} to allow for a complete crystal structure determination, because of the presence of a heavy element like tungsten and a light element like boron that made it difficult to determine the accurate determination of the boron atom positions and occupancies from X-ray data. A new structure model for W{sub 2}B{sub 4} was proposed. Magnetic measurements in a SQUID magnetometer down to temperatures as low as 1.8 K were performed to several of the products in order to see if the transition metal borides become superconducting at low temperatures, and the results were compared with data from literature. Superconducting properties were found for the following compounds: NbB{sub 2} (T{sub C} = 3.5 K), β-MoB (T{sub C} = 2.4 K), β-WB (T{sub C} = 2.0 K), α-WB (T{sub C} = 4.3 K), W{sub 2}B{sub 4} (T{sub C} = 5.4 K), Re{sub 7}B{sub 3} (T{sub C} = 2.4 K). A relationship between the superconducting properties

  4. COMMERCIALIZATION DEMONSTRATION OF MID-SIZED SUPERCONDUCTING MAGNETIC ENERGY STORAGE TECHNOLOGY FOR ELECTRIC UTILITYAPPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    CHARLES M. WEBER

    2008-06-24

    As an outgrowth of the Technology Reinvestment Program of the 1990’s, an Agreement was formed between BWXT and the DOE to promote the commercialization of Superconducting Magnetic Energy Storage (SMES) technology. Business and marketing studies showed that the performance of electric transmission lines could be improved with this SMES technology by stabilizing the line thereby allowing the reserved stability margin to be used. One main benefit sought was to double the capacity and the amount of energy flow on an existing transmission line by enabling the use of the reserved stability margin, thereby doubling revenue. Also, electrical disturbances, power swings, oscillations, cascading disturbances and brown/black-outs could be mitigated and rendered innocuous; thereby improving power quality and reliability. Additionally, construction of new transmission lines needed for increased capacity could be delayed or perhaps avoided (with significant savings) by enabling the use of the reserved stability margin of the existing lines. Two crucial technical aspects were required; first, a large, powerful, dynamic, economic and reliable superconducting magnet, capable of oscillating power flow was needed; and second, an electrical power interface and control to a transmission line for testing, demonstrating and verifying the benefits and features of the SMES system was needed. A project was formed with the goals of commercializing the technology by demonstrating SMES technology for utility applications and to establish a domestic capability for manufacturing large superconducting magnets for both commercial and defense applications. The magnet had very low AC losses to support the dynamic and oscillating nature of the stabilizing power flow. Moreover, to economically interface to the transmission line, the magnet had the largest operating voltage ever made. The manufacturing of that design was achieved by establishing a factory with newly designed and acquired equipment

  5. Experimental research on electromagnetic radiation in inductive energy storage accelerator

    International Nuclear Information System (INIS)

    Zhong Jianzhong; Liu Lie; Li Limin; Wen Jianchun

    2008-01-01

    There exists strong electromagnetic radiation in inductive energy storage accelerators. In can destroy a measuring device at a distance. By repeated experiments, we found that it is a wide-spectrum electromagnetic wave with a main frequency of 75 MHz. The effector such as coaxial transmission line is effected strongly in short distance. The current in the coaxial transmission line can be measured in Rogowski coils. The strength of field in it is about 500 V/m and the peak current is 217 mA. The radiation source may be LC oscillating or electric exploding opening switch. Through the experimental research, we think it probably may be caused by the LC oscillating in the circuit when the switches conduct. And its strength is correlated to current change ratio. The change rate in secondary circuit is stronger than in primary circuit. So the radiation generated in secondary circuit is stronger than in primary circuit. It may be a reference for further research in inductive energy storage accelerators and shielding electromagnetic disturbing. (authors)

  6. Half-metallic superconducting triplet spin multivalves

    Science.gov (United States)

    Alidoust, Mohammad; Halterman, Klaus

    2018-02-01

    We study spin switching effects in finite-size superconducting multivalve structures. We examine F1F2SF3 and F1F2SF3F4 hybrids where a singlet superconductor (S) layer is sandwiched among ferromagnet (F) layers with differing thicknesses and magnetization orientations. Our results reveal a considerable number of experimentally viable spin-valve configurations that lead to on-off switching of the superconducting state. For S widths on the order of the superconducting coherence length ξ0, noncollinear magnetization orientations in adjacent F layers with multiple spin axes leads to a rich variety of triplet spin-valve effects. Motivated by recent experiments, we focus on samples where the magnetizations in the F1 and F4 layers exist in a fully spin-polarized half-metallic phase, and calculate the superconducting transition temperature, spatially and energy resolved density of states, and the spin-singlet and spin-triplet superconducting correlations. Our findings demonstrate that superconductivity in these devices can be completely switched on or off over a wide range of magnetization misalignment angles due to the generation of equal-spin and opposite-spin triplet pairings.

  7. Digital control of the superconducting cavities for the LEP energy upgrade

    International Nuclear Information System (INIS)

    Gavallari, G.; Ciapala, E.

    1992-01-01

    The superconducting (SC) cavities for the LEP200 energy upgrade will be installed in units of 16 as for the present copper cavity system. Similar equipment will be used for RF power generation and distribution, for the low-level RF system and for digital control. The SC cavities and their associated equipment however require different interface hardware and new control software. To simplify routine operation control of the SC cavity units is made to resemble as closely as possible that of the existing units. Specific controls for the SC cavities at the equipment level, the facilities available and the integration of the SC cavity units into the LEP RF control system are described. (author)

  8. Protection for low current superconducting coils wound with insulated strand cable

    International Nuclear Information System (INIS)

    Satti, J.

    1980-09-01

    The insulated strand cable concept for winding of low current superconducting coil leads to an ideal quench protection by induction coupling. A superconducting secondary loop was made within a cable of a 6.2 Henry dipole coil. When quenching occurred, current was induced in the secondary strand above the critical value. The normal strand quenched the whole cable due to good thermal contact. The secondary loop works as a heater turned on as the wire becomes normal throughout the coil. With a well spread quench, the energy dissipation density is decreased thus preventing local burnout. The mechanism is possible because of close coupling that is present in the insulated cable as in bifilar winding. For the coil tested a 12 strand cable was used, thus a favorable 11 to 1 turn ratio was obtained for the primary to secondary. The superconductor in the secondary had a lower resistance until the critical current was achieved. A theoretical explanation is described for a simplified circuit. Test on the dipole coil with four individual shells showed that the one shell protected with the induced coupling heater always had a more rapid reduction of current. The induced coupling heater tested and explained in this paper works automatically and does not rely on mechanical or electrical devices

  9. Superconductivity and ferromagnetism in topological insulators

    Science.gov (United States)

    Zhang, Duming

    exist when topological insulators are interfaced with superconductors. The observation of Majorana fermions would not only be fundamentally important, but would also lead to applications in fault-tolerant topological quantum computation. By interfacing topological insulator nanoribbons with superconducting electrodes, we observe distinct signatures of proximity-induced superconductivity, which is found to be present in devices with channel lengths that are much longer than the normal transport characteristic lengths. This might suggest preferential coupling of the proximity effect to a ballistic surface channel of the topological insulator. In addition, when the electrodes are in the superconducting state, we observe periodic magnetoresistance oscillations which suggest the formation of vortices in the proximity-induced region of the nanoribbons. Our results demonstrate that proximity-induced superconductivity and vortices can be realized in our nanoribbon geometry, which accomplishes a first important step towards the search for Majorana fermions in condensed matter. In Chapter 5, I will discuss experiments on a magnetically-doped topological insulator (Mn-doped Bi2Se3) to induce a surface state gap. The metallic Dirac cone surface states of a topological insulator are expected to be protected against small perturbations by time-reversal symmetry. However, these surface states can be dramatically modified and a finite energy gap can be opened at the Dirac point by breaking the time-reversal symmetry via magnetic doping. The interplay between magnetism and topological surface states is predicted to yield novel phenomena of fundamental interest such as a topological magneto-electric effect, a quantized anomalous Hall effect, and the induction of magnetic monopoles. Our systematic measurements reveal a close correlation between the onset of ferromagnetism and quantum corrections to diffusive transport, which crosses over from the symplectic (weak anti-localization) to the

  10. Superconducting pipes and levitating magnets.

    Science.gov (United States)

    Levin, Yan; Rizzato, Felipe B

    2006-12-01

    Motivated by a beautiful demonstration of the Faraday and the Lenz laws in which a small neodymium magnet falls slowly through a conducting nonferromagnetic tube, we consider the dynamics of a magnet falling coaxially through a superconducting pipe. Unlike the case of normal conducting pipes, in which the magnet quickly reaches the terminal velocity, inside a superconducting tube the magnet falls freely. On the other hand, to enter the pipe the magnet must overcome a large electromagnetic energy barrier. For sufficiently strong magnets, the barrier is so large that the magnet will not be able to penetrate it and will be levitated over the mouth of the pipe. We calculate the work that must done to force the magnet to enter a superconducting tube. The calculations show that superconducting pipes are very efficient at screening magnetic fields. For example, the magnetic field of a dipole at the center of a short pipe of radius a and length L approximately > a decays, in the axial direction, with a characteristic length xi approximately 0.26a. The efficient screening of the magnetic field might be useful for shielding highly sensitive superconducting quantum interference devices. Finally, the motion of the magnet through a superconducting pipe is compared and contrasted to the flow of ions through a trans-membrane channel.

  11. Design fractures and commercial potential of superconducting magnetic energy storage for electric utility application

    International Nuclear Information System (INIS)

    Lloyd, R.J.; Schoenung, S.

    1986-01-01

    Historically, energy storage in the United States has been provided by a few pumped hydroelectric plants, but siting constraints and high cost severely limit the use of this option. Two other options which will soon be in use are batteries and compressed air energy storage. A fourth option, currently being developed for load leveling is Superconducting Magnetic Energy Storage (SMES). This paper reports the design features and estimated costs of utility scale SMES plants. For moderate discharge duration, SMES is projected to have substantially lower revenue requirements and better availability than other load leveling options. The Electric Power Research Institute has prepared a plan for commercialization which could, if aggressively pursued, lead to a demonstrated SMES technology that is available for utility commitment by the late 1990's

  12. Superconductivity

    International Nuclear Information System (INIS)

    Taylor, A.W.B.; Noakes, G.R.

    1981-01-01

    This book is an elementray introduction into superconductivity. The topics are the superconducting state, the magnetic properties of superconductors, type I superconductors, type II superconductors and a chapter on the superconductivity theory. (WL)

  13. Superconductivity mediated by anharmonic phonons: application to β-pyrochlore oxides

    Science.gov (United States)

    Hattori, Kazumasa; Tsunetsugu, Hirokazu

    2010-03-01

    We investigate three dimensional anharmonic phonons under tetrahedral symmetry and superconductivity mediated by these phonons. Three dimensional anharmonic phonon spectra are calculated directly by solving Schr"odinger equation and the superconducting transition temperature is determined by using the theory of strong coupling superconductivity assuming an isotropic gap function. With increasing the third order anharmonicity b of the tetrahedral potential, we find a crossover in the energy spectrum to a quantum tunneling regime. We obtain strongly enhanced transition temperatures around the crossover point. The first order transition observed in KOs2O6 is discussed in terms of the first excited state energy δ, and the coupling constant λ in the strong coupling theory of superconductivity. Our results suggest that the decrease of λ and increase of δ below the first order transition temperature. We point out that the change in the oscillation amplitude and characterizes this isomorphic transition. The chemical trends of the superconducting transition temperature, λ, and δ in the β-pyrochlore compounds are also discussed.

  14. Superconductivity

    International Nuclear Information System (INIS)

    Onnes, H.K.

    1988-01-01

    The author traces the development of superconductivity from 1911 to 1986. Some of the areas he explores are the Meissner Effect, theoretical developments, experimental developments, engineering achievements, research in superconducting magnets, and research in superconducting electronics. The article also mentions applications shown to be technically feasible, but not yet commercialized. High-temperature superconductivity may provide enough leverage to bring these applications to the marketplace

  15. The present role of superconductivity in fusion

    International Nuclear Information System (INIS)

    Shimamoto, S.

    1986-01-01

    After completion of large fusion devices in the world, such as JT-60, JET and TFTR, high temperature plasma is proceeding to critical condition for fusion. The devices up to now use mainly conventional magnet. However, for the next generation machine which demonstrates fusion reaction, deuterium-tritium burning, superconducting magnet system is indispensable from view point of both net energy extraction and capacity limitation of power supply. In order to realize such a large and complicated system, a lot of development works is being carried out. This paper describes required parameters of superconducting magnet and helium refrigerator, the state of plasma condition and superconducting magnet. It is shown that the present technology of superconducting magnet is not so far from realization of fusion experimental reactor

  16. Today's markets for superconductivity

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The worldwide market for superconductive products may exceed $1 billion in 1987. These products are expanding the frontiers of science, revolutionizing the art of medical diagnosis, and developing the energy technology of the future. In general, today's customers for superconductive equipment want the highest possible performance, almost regardless of cost. The products operate within a few degrees of absolute zero, and virtually all are fabricated from niobium or niobium alloys-so far the high-temperature superconductors discovered in 1986 and 1987 have had no impact on these markets. The industry shows potential and profound societal impact, even without the new materials

  17. Superconductivity

    International Nuclear Information System (INIS)

    Andersen, N.H.; Mortensen, K.

    1988-12-01

    This report contains lecture notes of the basic lectures presented at the 1st Topsoee Summer School on Superconductivity held at Risoe National Laboratory, June 20-24, 1988. The following lecture notes are included: L.M. Falicov: 'Superconductivity: Phenomenology', A. Bohr and O. Ulfbeck: 'Quantal structure of superconductivity. Gauge angle', G. Aeppli: 'Muons, neutrons and superconductivity', N.F. Pedersen: 'The Josephson junction', C. Michel: 'Physicochemistry of high-T c superconductors', C. Laverick and J.K. Hulm: 'Manufacturing and application of superconducting wires', J. Clarke: 'SQUID concepts and systems'. (orig.) With 10 tabs., 128 figs., 219 refs

  18. FY 1999 report on the results of the superconductive energy application technology development/research on a total system, etc. Survey of potentiality of the commercialization of superconductive technology, effects of the introduction, etc. (Future course of the superconductive technology development in Japan); 1999 nendo chodendo denryoku oryokuyo gijutsu kaihatsu total system nado no kenkyu. Chodendo gijutsu no jitsuyoka kanosei oyobi donyu koka nado no chosa (Nippon ni okeru chodendo gijutsu kaihatsu no kongo no hokosei)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    By the use of superconductive technology, the following are aimed at: marked reduction in power loss of electrical equipment and power transmission path, and size/weight reduction in electrical devices by high current/magnetic flux density. The superconductive technology has advantages such as great energy saving effect, CO2 reduction and global environmental preservation. As an example, concerning the superconductive generator now being developed under the New Sunshine Project, power loss can be reduced by half, and by the use of high magnetic field, size/weight can be reduced such as reduction in rotor diameter and reduction in weight by half. Further, as an innovative system, cited are the superconducting magnetic energy storage system (SMES) and flywheel energy storage system. The superconducting magnetic levitation railway, medical use MRI, etc. have also innovativity which is difficult to get in the conventional technology. Effects are also expected of introducing the process development using superconducting magnet such as magnetic separation, electromagnetic metallurgy, electromagnetic agitation and monocrytal growth convection control. Also cited is Josephson electronic device. High performance SQUID in bio-magnetic/non-destructive inspection is also expected to be developed. (NEDO)

  19. Superconducting magnetic energy storage unit; Supraleitender magnetischer Energiespeicher

    Energy Technology Data Exchange (ETDEWEB)

    Kleimaier, M [RWE Energie AG, Essen (Germany); Prescher, K [Siemens AG, Muehlheim an der Ruhr (Germany); Radtke, U [PreussenElektra AG, Hannover (Germany); Voelzke, R [Siemens AG, Erlangen (Germany)

    1995-07-01

    Superconducting magnetic power storage units are a low-cost alternative to turbine throttling as a means of ensuring active power seconds-range reserve. Advantages are fuel savings, emission reduction and a better utilisation of the available power plant park. With the aid of network simulations, the authors investigate the application conditions of superconducting magnetic power storage units in combination with preheater shut-off for the example of a 10 GW subgrid of the European interconnected grid. (orig.) [Deutsch] Supraleitende magnetische Energiespeicher (SMES) koennten einem Lastverteiler neue Moeglichkeiten bieten, Sekundenreserveleistung kostenguenstig vorzuhalten. Anstelle der heute vorherrschenden Androsselung der Turbinenventile sind bei Ersatz durch einen SMES Brennstoffeinsparungen, Emissionsminderungen und eine hoehere Ausnutzung des bestehenden Kraftwerksparks zu erwarten. Untersucht werden mit Hilfe von Netzsimulationsrechnungen am Beispiel eines 10-GW-Teilnetzes im westeuropaeischen Verbundnetz die Einsatzbedingungen dieser SMES in Kombination mit der Vorwaermeabschaltung. (orig.)

  20. Superconducting magnets for toroidal fusion reactors

    International Nuclear Information System (INIS)

    Haubenreich, P.N.

    1980-01-01

    Fusion reactors will soon be employing superconducting magnets to confine plasma in which deuterium and tritium (D-T) are fused to produce usable energy. At present there is one small confinement experiment with superconducting toroidal field (TF) coils: Tokamak 7 (T-7), in the USSR, which operates at 4 T. By 1983, six different 2.5 x 3.5-m D-shaped coils from six manufacturers in four countries will be assembled in a toroidal array in the Large Coil Test Facility (LCTF) at Oak Ridge National Laboratory (ORNL) for testing at fields up to 8 T. Soon afterwards ELMO Bumpy Torus (EBT-P) will begin operation at Oak Ridge with superconducting TF coils. At the same time there will be tokamaks with superconducting TF coils 2 to 3 m in diameter in the USSR and France. Toroidal field strength in these machines will range from 6 to 9 T. NbTi and Nb 3 Sn, bath cooling and forced flow, cryostable and metastable - various designs are being tried in this period when this new application of superconductivity is growing and maturing

  1. Analysis of an HTS coil for large scale superconducting magnetic energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Young; Lee, Se Yeon; Choi, Kyeong Dal; Park, Sang Ho; Hong, Gye Won; Kim, Sung Soo; Kim, Woo Seok [Korea Polytechnic University, Siheung (Korea, Republic of); Lee, Ji Kwang [Woosuk University, Wanju (Korea, Republic of)

    2015-06-15

    It has been well known that a toroid is the inevitable shape for a high temperature superconducting (HTS) coil as a component of a large scale superconducting magnetic energy storage system (SMES) because it is the best option to minimize a magnetic field intensity applied perpendicularly to the HTS wires. Even though a perfect toroid coil does not have a perpendicular magnetic field, for a practical toroid coil composed of many HTS pancake coils, some type of perpendicular magnetic field cannot be avoided, which is a major cause of degradation of the HTS wires. In order to suggest an optimum design solution for an HTS SMES system, we need an accurate, fast, and effective calculation for the magnetic field, mechanical stresses, and stored energy. As a calculation method for these criteria, a numerical calculation such as an finite element method (FEM) has usually been adopted. However, a 3-dimensional FEM can involve complicated calculation and can be relatively time consuming, which leads to very inefficient iterations for an optimal design process. In this paper, we suggested an intuitive and effective way to determine the maximum magnetic field intensity in the HTS coil by using an analytic and statistical calculation method. We were able to achieve a remarkable reduction of the calculation time by using this method. The calculation results using this method for sample model coils were compared with those obtained by conventional numerical method to verify the accuracy and availability of this proposed method. After the successful substitution of this calculation method for the proposed design program, a similar method of determining the maximum mechanical stress in the HTS coil will also be studied as a future work.

  2. Analysis of an HTS coil for large scale superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Lee, Ji Young; Lee, Se Yeon; Choi, Kyeong Dal; Park, Sang Ho; Hong, Gye Won; Kim, Sung Soo; Kim, Woo Seok; Lee, Ji Kwang

    2015-01-01

    It has been well known that a toroid is the inevitable shape for a high temperature superconducting (HTS) coil as a component of a large scale superconducting magnetic energy storage system (SMES) because it is the best option to minimize a magnetic field intensity applied perpendicularly to the HTS wires. Even though a perfect toroid coil does not have a perpendicular magnetic field, for a practical toroid coil composed of many HTS pancake coils, some type of perpendicular magnetic field cannot be avoided, which is a major cause of degradation of the HTS wires. In order to suggest an optimum design solution for an HTS SMES system, we need an accurate, fast, and effective calculation for the magnetic field, mechanical stresses, and stored energy. As a calculation method for these criteria, a numerical calculation such as an finite element method (FEM) has usually been adopted. However, a 3-dimensional FEM can involve complicated calculation and can be relatively time consuming, which leads to very inefficient iterations for an optimal design process. In this paper, we suggested an intuitive and effective way to determine the maximum magnetic field intensity in the HTS coil by using an analytic and statistical calculation method. We were able to achieve a remarkable reduction of the calculation time by using this method. The calculation results using this method for sample model coils were compared with those obtained by conventional numerical method to verify the accuracy and availability of this proposed method. After the successful substitution of this calculation method for the proposed design program, a similar method of determining the maximum mechanical stress in the HTS coil will also be studied as a future work

  3. Some characteristics of the superconducting magnetic system of toroidal spectrometer STORS

    International Nuclear Information System (INIS)

    Andreev, S.V.; Vorozhtsov, S.B.; Kakurin, S.I.

    1993-01-01

    A superconducting toroidal spectrometer (STORS) has been suggested to provide precision measurements of structure functions in muon beams. In this paper we present the calculation of the magnet induction and forces influencing the elements of the magnet, requirements to the reliability and rigidity of the carrying elements of the magnet construction. (author.) 14 refs.; 50 figs.; 4 tabs

  4. Globally optimal, minimum stored energy, double-doughnut superconducting magnets.

    Science.gov (United States)

    Tieng, Quang M; Vegh, Viktor; Brereton, Ian M

    2010-01-01

    The use of the minimum stored energy current density map-based methodology of designing closed-bore symmetric superconducting magnets was described recently. The technique is further developed to cater for the design of interventional-type MRI systems, and in particular open symmetric magnets of the double-doughnut configuration. This extends the work to multiple magnet domain configurations. The use of double-doughnut magnets in MRI scanners has previously been hindered by the ability to deliver strong magnetic fields over a sufficiently large volume appropriate for imaging, essentially limiting spatial resolution, signal-to-noise ratio, and field of view. The requirement of dedicated interventional space restricts the manner in which the coils can be arranged and placed. The minimum stored energy optimal coil arrangement ensures that the field strength is maximized over a specific region of imaging. The design method yields open, dual-domain magnets capable of delivering greater field strengths than those used prior to this work, and at the same time it provides an increase in the field-of-view volume. Simulation results are provided for 1-T double-doughnut magnets with at least a 50-cm 1-ppm (parts per million) field of view and 0.7-m gap between the two doughnuts. Copyright (c) 2009 Wiley-Liss, Inc.

  5. Theory of superconductivity

    International Nuclear Information System (INIS)

    Crisan, M.

    1988-01-01

    This book discusses the most important aspects of the theory. The phenomenological model is followed by the microscopic theory of superconductivity, in which modern formalism of the many-body theory is used to treat most important problems such as superconducting alloys, coexistence of superconductivity with the magnetic order, and superconductivity in quasi-one-dimensional systems. It concludes with a discussion on models for exotic and high temperature superconductivity. Its main aim is to review, as complete as possible, the theory of superconductivity from classical models and methods up to the 1987 results on high temperature superconductivity. Contents: Phenomenological Theory of Superconductivity; Microscopic Theory of Superconductivity; Theory of Superconducting Alloys; Superconductors in a Magnetic Field; Superconductivity and Magnetic Order; Superconductivity in Quasi-One-Dimensional Systems; and Non-Conventional Superconductivity

  6. Applied superconductivity

    CERN Document Server

    Newhouse, Vernon L

    1975-01-01

    Applied Superconductivity, Volume II, is part of a two-volume series on applied superconductivity. The first volume dealt with electronic applications and radiation detection, and contains a chapter on liquid helium refrigeration. The present volume discusses magnets, electromechanical applications, accelerators, and microwave and rf devices. The book opens with a chapter on high-field superconducting magnets, covering applications and magnet design. Subsequent chapters discuss superconductive machinery such as superconductive bearings and motors; rf superconducting devices; and future prospec

  7. Electrical Conduction and Superconductivity

    Indian Academy of Sciences (India)

    When an electric field is applied, this electron can be lifted to this higher energy ... By such a virtual process two electrons .... using superconducting coils has come to be a reality. ... nance imaging techniques used in medical diagnostics. Com ...

  8. DARKNESS: A Microwave Kinetic Inductance Detector Integral Field Spectrograph for High-contrast Astronomy

    Science.gov (United States)

    Meeker, Seth R.; Mazin, Benjamin A.; Walter, Alex B.; Strader, Paschal; Fruitwala, Neelay; Bockstiegel, Clint; Szypryt, Paul; Ulbricht, Gerhard; Coiffard, Grégoire; Bumble, Bruce; Cancelo, Gustavo; Zmuda, Ted; Treptow, Ken; Wilcer, Neal; Collura, Giulia; Dodkins, Rupert; Lipartito, Isabel; Zobrist, Nicholas; Bottom, Michael; Shelton, J. Chris; Mawet, Dimitri; van Eyken, Julian C.; Vasisht, Gautam; Serabyn, Eugene

    2018-06-01

    We present DARKNESS (the DARK-speckle Near-infrared Energy-resolving Superconducting Spectrophotometer), the first of several planned integral field spectrographs to use optical/near-infrared Microwave Kinetic Inductance Detectors (MKIDs) for high-contrast imaging. The photon counting and simultaneous low-resolution spectroscopy provided by MKIDs will enable real-time speckle control techniques and post-processing speckle suppression at frame rates capable of resolving the atmospheric speckles that currently limit high-contrast imaging from the ground. DARKNESS is now operational behind the PALM-3000 extreme adaptive optics system and the Stellar Double Coronagraph at Palomar Observatory. Here, we describe the motivation, design, and characterization of the instrument, early on-sky results, and future prospects.

  9. Novel rotating characteristics of a squirrel-cage-type HTS induction/synchronous motor

    International Nuclear Information System (INIS)

    Nakamura, T; Ogama, Y; Miyake, H; Nagao, K; Nishimura, T

    2007-01-01

    This paper describes the rotating characteristics of a high-T c superconducting induction/synchronous motor, which possesses both asynchronous and synchronous torques even though its structure is exactly the same as the squirrel-cage-type induction motor. Two kinds of Bi-2223/Ag multifilamentary tapes were utilized for the secondary windings. A commercialized motor (1.5 kW) was subjected to this study. A conventional (normal conducting) stator (three-phase, four-pole) was directly utilized, and only the squirrel-cage windings were replaced with the superconducting tapes. The tests were performed after the fabricated motor was immersed in liquid nitrogen. The operating temperature was also varied by pumping out the liquid nitrogen. It is shown that the motor is successfully synchronized for the temperature range from 65 to 77 K. Detailed discussions for such novel rotating characteristics are reported based on the electrical equivalent circuit

  10. Advantage of superconducting bearing in a commercial flywheel system

    Energy Technology Data Exchange (ETDEWEB)

    Viznichenko, R; Velichko, A V; Hong, Z; Coombs, T A [Department of Engineering, University of Cambridge, Cambridge CB2 1PZ (United Kingdom)], E-mail: tac1000@cam.ac.uk

    2008-02-01

    The use of a superconducting magnetic bearing in an Urenco Power Technologies (UPT) 100kW flywheel is being studied. The dynamics of a conventional flywheel energy storage system have been studied at low frequencies. We show that the main design consideration is overcoming drag friction losses and parasitic resonances. We propose an original superconducting magnetic bearing design and improved cryogenic motor cooling to increase stability and decrease energy losses in the system.

  11. Prototype superconducting magnet for the FFAG accelerator

    International Nuclear Information System (INIS)

    Obana, T.; Ogitsu, T.; Yamamoto, A.; Yoshimoto, M.; Mori, Y.; Fujii, T.; Iwasa, M.; Orikasa, T.

    2006-01-01

    A study of a superconducting magnet for the Fixed Field Alternating Gradient (FFAG) accelerator has been performed. The FFAG accelerator requires static magnetic field, and it is suitable for superconducting magnet applications, because problems associated with time varying magnetic field such as eddy current loss can be eliminated. The superconducting magnet, which can generate high magnetic field, is possible to realize a higher beam energy with a given accelerator size or the size to be smaller for a given beam energy. The FFAG accelerator magnet is demanded to have a complicated nonlinear magnetic field with high accuracy. As a first prototype superconducting coil, the coil configuration which consists of left-right asymmetric cross-section and large aperture has been designed. The prototype coil has been successfully developed by using a 6-axis Computer Numerical Control (CNC) winding machine. The magnetic field of the prototype coil has been demonstrated in warm measurement. As a consequence, the technical feasibility has been verified with the prototype coil development and the performance test. In addition, the technology components developed in the prototype coil have a possibility to transfer to a fusion magnet

  12. The role of local repulsion in superconductivity in the Hubbard-Holstein model

    Science.gov (United States)

    Lin, Chungwei; Wang, Bingnan; Teo, Koon Hoo

    2017-01-01

    We examine the superconducting solution in the Hubbard-Holstein model using Dynamical Mean Field Theory. The Holstein term introduces the site-independent Boson fields coupling to local electron density, and has two competing influences on superconductivity: The Boson field mediates the effective electron-electron attraction, which is essential for the S-wave electron pairing; the same coupling to the Boson fields also induces the polaron effect, which makes the system less metallic and thus suppresses superconductivity. The Hubbard term introduces an energy penalty U when two electrons occupy the same site, which is expected to suppress superconductivity. By solving the Hubbard-Holstein model using Dynamical Mean Field theory, we find that the Hubbard U can be beneficial to superconductivity under some circumstances. In particular, we demonstrate that when the Boson energy Ω is small, a weak local repulsion actually stabilizesthe S-wave superconducting state. This behavior can be understood as an interplay between superconductivity, the polaron effect, and the on-site repulsion: As the polaron effect is strong and suppresses superconductivity in the small Ω regime, the weak on-site repulsion reduces the polaron effect and effectively enhances superconductivity. Our calculation elucidates the role of local repulsion in the conventional S-wave superconductors.

  13. Inductive energy storage using high voltage vacuum circuit breakers

    International Nuclear Information System (INIS)

    McCann, R.B.; Woodson, H.H.; Mukutmoni, T.

    1976-01-01

    Controlled thermonuclear fusion experiments currently being planned require large amounts of pulsed energy. Inductive energy storage systems (IES) appear to be attractive for at least two applications in the fusion research program: high beta devices and those employing turbulent heating. The well-known roadblock to successful implementation of IES is the development of a reliable and cost-effective off-switch capable of handling high currents and withstanding high recovery voltages. The University of Texas at Austin has a program to explore the application of conventional vacuum circuit breakers designed for use in AC systems, in conjunction with appropriate counter pulse circuits, as off-switches in inductive energy storage systems. The present paper describes the IES employing vacuum circuit breakers as off-switches. Since the deionization property of these circuit breakers is of great importance to the design and the cost of the counter-pulse circuit, a synthetic test installation to test these breakers has been conceived, designed and is being installed in the Fusion Research Center, University of Texas at Austin. Some design aspects of the facility will be discussed here. Finally, the results of the study on a mathematical model developed and optimized to determine the least cost system which meets both the requirements of an off-switch for IES Systems and the ratings of circuit breakers used in power systems has been discussed. This analysis indicates that the most important factor with respect to the system cost is the derating of the circuit breakers to obtain satisfactory lifetimes

  14. Framework of collaboration investigation on neutron effect on superconducting magnet materials

    International Nuclear Information System (INIS)

    Nishimura, Arata; Takeuchi, Takao; Nishijima, Shigehiro; Izumi, Yoshinobu; Takakura, Kosuke; Ochiai, Kentaro; Henmi, Tsutomu; Nishijima, Gen; Watanabe, Kazuo; Sato, Isamu; Kurisita, Hiroaki; Narui, Minoru; Shikama, Tatsuo

    2009-01-01

    A fusion reactor will generate D-T neutron and the kinetic energy of the neutron will be converted to the thermal energy and electrical energy. The neutron has huge energy and will be able to penetrate a shielding blanket and stream out of ports for neutral beam injections. The penetrated and streamed out neutrons will reach superconducting magnets and make some damages on the magnet system. To investigate the neutron irradiation effects on the superconducting magnet materials, a collaborative network must be organized and the irradiation researches must be performed. This report will describe the framework of the collaboration investigation which has been established among neutronics, superconducting magnet and fusion system. After showing the collaboration scheme, some new results on 14 MeV neutron irradiation effect are presented. Then, a three years new project which was adopted as one of 'Nuclear basic infrastructure strategy study initiatives' by MEXT will be introduced as an example of collaborative program among superconducting materials, fission reactor and high magnetic field technology. (author)

  15. Development of innovative superconducting DC power cable

    Energy Technology Data Exchange (ETDEWEB)

    Matsushita, Teruo; Kiuchi, Masaru [Dept. of Computer Science and Electronics Kyushu Institute of Technology, Iizuka (Japan)

    2017-09-15

    It is required to reduce the cost of superconducting cable to realize a superconducting DC power network that covers a wide area in order to utilize renewable energy. In this paper a new concept of innovative cable is introduced that can enhance the current-carrying capacity even though the same superconducting tape is used. Such a cable can be realized by designing an optimal winding structure in such a way that the angle between the tape and magnetic field becomes small. This idea was confirmed by preliminary experiments for a single layer model cable made of Bi-2223 tapes and REBCO coated conductors. Experiments of three and four layer cables of practical sizes were also done and it was found that the current-carrying capacity increased as theoretically predicted. If the critical current properties of commercial superconducting tapes are further improved in a parallel magnetic field, the enhancement will become pronounced and this technology will surely contribute to realization of superconducting DC power network.

  16. Quantum Theory of Conducting Matter Superconductivity and Quantum Hall Effect

    CERN Document Server

    Fujita, Shigeji; Godoy, Salvador

    2009-01-01

    Explains major superconducting properties including zero resistance, Meissner effect, sharp phase change, flux quantization, excitation energy gap, and Josephson effects using quantum statistical mechanical calculations. This book covers the 2D superconductivity and the quantum Hall effects

  17. Sustainability Aspects of Energy Conversion in Modern High-Speed Trains with Traction Induction Motors

    OpenAIRE

    Marc A. Rosen; Doru A. Nicola; Cornelia A. Bulucea; Daniel C. Cismaru

    2015-01-01

    Some aspects are illustrated of energy conversion processes during the operation of electric railway vehicles with traction induction motors, in order to support transport systems’ sustainability. Increasing efforts are being expended to enhance the sustainability of transportation technologies and systems. Since electric drive systems are used with variable voltage variable frequency (VVVF) inverters and traction induction motors, these machines with appropriate controls can realize both tra...

  18. Clarification as to why alcoholic beverages have the ability to induce superconductivity in Fe1+dTe1−xSx

    International Nuclear Information System (INIS)

    Deguchi, K; Hara, H; Kawasaki, Y; Demura, S; Watanabe, T; Denholme, S J; Okazaki, H; Ozaki, T; Yamaguchi, T; Takeya, H; Takano, Y; Sato, D; Sugimoto, M; Soga, T; Tomita, M

    2012-01-01

    To elucidate the mechanism as to why alcoholic beverages can induce superconductivity in Fe 1+d Te 1−x S x samples, we performed component analysis and found that a weak acid such as an organic acid has the ability to induce superconductivity. Inductively coupled plasma spectroscopy was performed on weak acid solutions post-annealing. We found that the mechanism of inducement of superconductivity in Fe 1+d Te 1−x S x is the deintercalation of excess Fe from the interlayer sites. (paper)

  19. Effect of superconducting correlation on the localization of quasiparticles in low dimensions

    International Nuclear Information System (INIS)

    Xiang, T.

    1995-01-01

    Localization lengths of superconducting quasiparticles λ s are evaluated and compared with the corresponding normal-state values λ n in one-dimensional (1D) and two-dimensional lattices. The effect of superconducting correlation on the localization of quasiparticles is generally stronger in an off-site pairing state than in an on-site pairing state. The modification of superconducting correlation to λ is strongly correlated with the density of states (DOS) of superconducting quasiparticles. λ s drops within the energy gap but is largely enhanced around energies where DOS peaks appear. For a gapless pairing state in 1D or a d-wave pairing state in 2D, λ s /λ n at the Fermi energy E F is of order 1 and determined purely by the value of gap parameter not by the random potential. For the d-wave pairing state, the localization effect is largely weakened compared with the corresponding normal state and quasiparticles with energies close to E F are more strongly localized than other low-energy quasiparticles

  20. Superconductivity

    International Nuclear Information System (INIS)

    Caruana, C.M.

    1988-01-01

    Despite reports of new, high-temperature superconductive materials almost every day, participants at the First Congress on Superconductivity do not anticipate commercial applications with these materials soon. What many do envision is the discovery of superconducting materials that can function at much warmer, perhaps even room temperatures. Others hope superconductivity will usher in a new age of technology as semiconductors and transistors did. This article reviews what the speakers had to say at the four-day congress held in Houston last February. Several speakers voiced concern that the Reagan administration's apparent lack of interest in funding superconductivity research while other countries, notably Japan, continue to pour money into research and development could hamper America's international competitiveness

  1. Florida State University superconducting linac

    International Nuclear Information System (INIS)

    Myers, E.G.; Fox, J.D.; Frawley, A.D.; Allen, P.; Faragasso, J.; Smith, D.; Wright, L.

    1988-01-01

    As early as the fall of 1977 it was decided that the future research needs of their nuclear structure laboratory required an increase in energy capability to at least 8 MeV per nucleon for the lighter ions, and that these needs could be met by the installation of a 17 MV tandem Van de Graaff accelerator. The chief problem with this proposal was the high cost. It became apparent that a far less expensive option was to construct a linear accelerator to boost the energy from their existing 9 MV tandem. The options open to them among linac boosters were well represented by the room temperature linac at Heidelberg and the superconducting Stony Brook and Argonne systems. By the Spring of 1979 it had been decided that both capital cost and electric power requirements favored a superconducting system. As regards the two superconducting resonator technologies - the Argonne niobium-copper or the Caltech-Stony Brook lead plated copper - the Argonne resonators, though more expensive to construct, had the advantages of more boost per resonator, greater durability of the superconducting surface and less stringent beam bunching requirements. In 1980 pilot funding from the State of Florida enabled the construction of a building addition to house the linac and a new target area, and the setting up of a small, three resonator, test booster. Major funding by the NSF for the laboratory upgrade started in 1984. With these funds they purchased their present helium liquefaction and transfer system and constructed three large cryostats, each housing four Argonne beta = 0.105 resonators and two superconducting solenoids. The last large cryostat was completed and installed on-line early this year and the linac was dedicated on March 20. Nuclear physics experiments using the whole linac began in early June. 4 references, 6 figures, 1 table

  2. Pulsed power inductive energy storage in the microsecond range

    International Nuclear Information System (INIS)

    Rix, W.; Miller, A.R.; Thompson, J.; Waisman, E.; Wilkinson, M.; Wilson, A.

    1993-01-01

    During the past five years Maxwell has developed a series of inductive energy storage (IES) pulsed power generators; ACE 1, ACE 2, ACE 3, and ACE 4, to drive electron-beam loads. They are all based on a plasma opening switch (POS) contained in a single vacuum envelope operating at conduction times of around one microsecond. They all employ fast capacitor bank technology to match this conduction time without intermediate power conditioning. Oil or air filled transmission lines transfer capacitor bank energy to a vacuum section where the final pulse compression is accomplished. Development of the ACE series is described, emphasizing capacitor bank and the opening switch technology for delivering high voltage, multimegampere pulses to electron beam loads

  3. Magnetic-Field-Tunable Superconducting Rectifier

    Science.gov (United States)

    Sadleir, John E.

    2009-01-01

    Superconducting electronic components have been developed that provide current rectification that is tunable by design and with an externally applied magnetic field to the circuit component. The superconducting material used in the device is relatively free of pinning sites with its critical current determined by a geometric energy barrier to vortex entry. The ability of the vortices to move freely inside the device means this innovation does not suffer from magnetic hysteresis effects changing the state of the superconductor. The invention requires a superconductor geometry with opposite edges along the direction of current flow. In order for the critical current asymmetry effect to occur, the device must have different vortex nucleation conditions at opposite edges. Alternative embodiments producing the necessary conditions include edges being held at different temperatures, at different local magnetic fields, with different current-injection geometries, and structural differences between opposite edges causing changes in the size of the geometric energy barrier. An edge fabricated with indentations of the order of the coherence length will significantly lower the geometric energy barrier to vortex entry, meaning vortex passage across the device at lower currents causing resistive dissipation. The existing prototype is a two-terminal device consisting of a thin-film su - perconducting strip operating at a temperature below its superconducting transition temperature (Tc). Opposite ends of the strip are connected to electrical leads made of a higher Tc superconductor. The thin-film lithographic process provides an easy means to alter edge-structures, current-injection geo - metries, and magnetic-field conditions at the edges. The edge-field conditions can be altered by using local field(s) generated from dedicated higher Tc leads or even using the device s own higher Tc superconducting leads.

  4. Superconductivity observed in platinum-silicon interface

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Pai-Chia, E-mail: paichia@phys.sinica.edu.tw [Research Program on Nanoscience and Nanotechnology, Academia Sinica, Taipei 11529, Taiwan (China); Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Chen, Chun-Wei [Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Lee, Ku-Pin; Shiue, Jessie, E-mail: yshiue@phys.sinica.edu.tw [Research Program on Nanoscience and Nanotechnology, Academia Sinica, Taipei 11529, Taiwan (China); Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China)

    2014-05-26

    We report the discovery of superconductivity with an onset temperature of ∼0.6 K in a platinum-silicon interface. The interface was formed by using a unique focused ion beam sputtering micro-deposition method in which the energies of most sputtered Pt atoms are ∼2.5 eV. Structural and elemental analysis by transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy reveal a ∼ 7 nm interface layer with abundant Pt, which is the layer likely responsible for the superconducting transport behavior. Similar transport behavior was also observed in a gold-silicon interface prepared by the same technique, indicating the possible generality of this phenomenon.

  5. Safety and stability in superconducting magnets

    International Nuclear Information System (INIS)

    Herring, J.S.

    1989-01-01

    The increasing size and field of superconducting magnets required for new applications result in significant stored energy and magnetic forces. The use of superconducting magnets near humans has resulted in standards for limiting occupational exposures to magnetic field. While these standards are unofficial, they have been widely adopted. In addition, development of large magnet sets for the fusion program and for the MHD program has led to experiments on the behavior of shorted and arcing coils under transient conditions. In combination with various code development efforts, these experiments, in the US and Europe, are resulting in criteria for the design of stable coils which can safely discharge their stored energy. 22 refs., 6 tabs

  6. The LHC Superconducting RF System

    CERN Document Server

    Boussard, Daniel

    1999-01-01

    The European Laboratory for Particle Physics (CERN), the largest high energy physics laboratory worldwide, is constructing the Large Hadron Collider (LHC) in the existing 27 km circumference LEP (Large Electron Positron) collider tunnel. For the LHC, superconducting cavities, operating at 4.5 K, will provide the required acceleration field for ramping the beam energy up to 7 TeV and for keeping the colliding proton beams tightly bunched. Superconducting cavities were chosen, not only because of their high acceleration field leading to a small contribution to the machine impedance, but also because of their high stored energy which minimises the effects of periodic transient beam loading associated with the high beam intensity (0.5 A). There will be eight single-cell cavities per beam, each delivering 2 MV (5.3 MV/m) at 400 MHz. The cavities themselves are now being manufactured by industrial firms, using niobium on copper technology which gives full satisfaction at LEP. A complete cavity prototype assembly in...

  7. New developments on transition radiation detectors using superconducting granules

    International Nuclear Information System (INIS)

    Yuan, L.C.L.

    1977-01-01

    By raising slightly either the temperature or the magnetic field to above that of the critical temperature or the critical magnetic field, the type I superconducting granules would still remain in the superconducting state which becomes a metastable state and is called the superheated superconducting state. If a relativistic charged particle incident on such a granule which is located in a colloidal suspension has imported to it an energy that is above the threshold energy (for state flipping) of the granule then it would flip to the normal state. The threshold energy of a granule is a function of the square of its radius, whereas the energy loss of a charged particle due to ionization is linearly proportional to the radius. The size of the granule can be pre-determined to be such that its threshold energy is slightly above the ionization loss of a relativistic charged particle. Then the traversal of the charged particle through such a granule would not affect the superconducting state of the granule unless a transition x-ray radiation is emitted at the surface of the granule by the traversing particle and the x-ray transition radiation is immediately absorbed either in total or partially by the metallic granule causing it to flip to the normal state. The total intensity of the x-ray transition radiation is linearly proportional to the Lorentz factor γ of the traversing particle, and the number of granules flipped would also be a measure of γ. Three methods for detecting the flipping of granules from the superconducting state to the normal state are described. They include the frequency measuring method, the SQUID method, and the pulse method with low noise amplifier system

  8. Topology Comparison of Superconducting Generators for 10-MW Direct-Drive Wind Turbines: Cost of Energy Based

    DEFF Research Database (Denmark)

    Liu, Dong; Polinder, Henk; Abrahamsen, Asger Bech

    2017-01-01

    This paper aims at finding feasible electromagnetic designs of superconducting synchronous generators (SCSGs) for a 10-MW direct-drive wind turbine. Since a lower levelized cost of energy (LCoE) increases the feasibility of SCSGs in this application, 12 generator topologies are compared regarding...... their LCoE in a simplified form of levelized equipment cost of energy (LCoE$_{\\text{eq}}$). MgB$_2$ wires are employed in the field winding. Based on the current unit cost and critical current density capability of the MgB $_2$ wire at 20 K, the topologies with more iron have a much lower LCo...

  9. Current high-temperature superconducting coils and applications in Japan

    International Nuclear Information System (INIS)

    Matsushita, T.

    2000-01-01

    In Japan, four projects for the application of Bi-based superconducting magnets to practical apparatus are currently underway. These projects involve the development of an insert magnet for a 1 GHz nuclear magnetic resonance spectrometer, a magnet for a silicon single-crystal pulling apparatus, a magnet for a magnetic separation system, and a 1 T pulse magnet for a superconducting magnet energy storage system. For example, the magnet for the silicon single-crystal pulling apparatus is of the class with stored energy of 1 MJ to be operated at around 20 K. This review focuses on the present status of the development of these magnets, followed by a discussion of the problems of the present superconducting tapes that need to be overcome for future applications. (author)

  10. Low-Loss, Low-Noise, Crystalline Silicon Dielectric for Superconducting Microstrip and Kinetic Inductance Detector Capacitors

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of technology to use crystalline dielectrics in superconducting spectroscopic sensors operating in the infrared/sub-millimeter wavelength range. The...

  11. Reviews of large superconducting machines: Metallurgy, fabrication, and applications

    International Nuclear Information System (INIS)

    Bogner, G.

    1981-01-01

    This paper reviews large superconducting machines presently in place or in experiment. The ''Cello'' particle detector magnet for the positron-electron colliding beam facility PETRA at DESY in Hamburg is shown, and the Fermi Lab, and the Brookhaven ISABELLE also described. Electrodynamic levitation systems are specified, as researched and developed in Germany and Japan. Of superconducting coils for magnetic separation, a high gradient magnetic separator with superconducting magnet and steel wool, and a Jones type high gradient magnetic separator are schematicized. Turbogenerators with superconductor field winding are studied. Superconducting high power cables include the flexible coaxial cable core consisting of a perforated polyethylene tube and test cables at Siemens and at Brookhaven. Magnet systems for fusion reactors include tokamaks and tandem mirrors, and the toroidal coil experiment at Oak Ridge National Laboratory is described, among others. Superconducting magnets for MHD plants, and superconducting magnet energy storage (SME storage) are also discussed

  12. Magnetic fluctuations and heavy electron superconductivity

    International Nuclear Information System (INIS)

    Norman, M.R.

    1988-01-01

    A magnetic fluctuation self-energy based on neutron scattering data is used to calculate mass renormalizations, and superconducting critical temperatures and order parameters, for various heavy electron metals

  13. Superconductivity: materials and applications; La supraconductivite: materiaux et apllications

    Energy Technology Data Exchange (ETDEWEB)

    Duchateau, J.L. [CEA Cadarache, 13 - Saint Paul lez Durance (France); Kircher, F. [CEA Saclay, 91 - Gif sur Yvette (France); Leveque, J. [Groupe de Recherche en Electrotechnique et Electronique de Nancy, GREEN - UHP, 54 - Vandoeuvre les Nancy (France); Tixador, P. [INP/Institut Neel, 38 - Grenoble (France)

    2008-07-01

    This digest paper presents the different types of superconducting materials: 1 - the low-TC superconductors: the multi-filament composite as elementary constituent, the world production of NbTi, the superconducting cables of the LHC collider and of the ITER tokamak; 2 - the high-TC superconductors: BiSrCaCuO (PIT 1G) ribbons and wires, deposited coatings; 3 - application to particle physics: the the LHC collider of the CERN, the LHC detectors; 4 - applications to thermonuclear fusion: Tore Supra and ITER tokamaks; 5 - NMR imaging: properties of superconducting magnets; 6 - applications in electrotechnics: cables, motors and alternators, current limiters, transformers, superconducting energy storage systems (SMES). (J.S.)

  14. A numerical study on the feasibility evaluation of a hybrid type superconducting fault current limiter applying thyristors

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Seok Ho; Lee, Woo Seung; Lee, Ji Ho; Hwang, Young Jin; Ko, Tae Kuk [Yonsei University, Seoul (Korea, Republic of)

    2013-12-15

    Smart fault current controller (SFCC) proposed in our previous work consists of a power converter, a high temperature superconducting (HTS) DC reactor, thyristors, and a control unit [1]. SFCC can limit and control the current by adjusting firing angles of thyristors when a fault occurs. SFCC has complex structure because the HTS DC reactor generates the loss under AC. To use the DC reactor under AC, rectifier that consists of four thyristors is needed and it increases internal resistance of SFCC. For this reason, authors propose a hybrid type superconducting fault current limiter (SFCL). The hybrid type SFCL proposed in this paper consists of a non-inductive superconducting coil and two thyristors. To verify the feasibility of the proposed hybrid type SFCL, simulations about the interaction of the superconducting coil and thyristors are conducted when fault current flows in the superconducting coil. Authors expect that the hybrid type SFCL can control the magnitude of the fault current by adjusting the firing angles of thyristors after the superconducting coil limits the fault current at first peak.

  15. A numerical study on the feasibility evaluation of a hybrid type superconducting fault current limiter applying thyristors

    International Nuclear Information System (INIS)

    Nam, Seok Ho; Lee, Woo Seung; Lee, Ji Ho; Hwang, Young Jin; Ko, Tae Kuk

    2013-01-01

    Smart fault current controller (SFCC) proposed in our previous work consists of a power converter, a high temperature superconducting (HTS) DC reactor, thyristors, and a control unit [1]. SFCC can limit and control the current by adjusting firing angles of thyristors when a fault occurs. SFCC has complex structure because the HTS DC reactor generates the loss under AC. To use the DC reactor under AC, rectifier that consists of four thyristors is needed and it increases internal resistance of SFCC. For this reason, authors propose a hybrid type superconducting fault current limiter (SFCL). The hybrid type SFCL proposed in this paper consists of a non-inductive superconducting coil and two thyristors. To verify the feasibility of the proposed hybrid type SFCL, simulations about the interaction of the superconducting coil and thyristors are conducted when fault current flows in the superconducting coil. Authors expect that the hybrid type SFCL can control the magnitude of the fault current by adjusting the firing angles of thyristors after the superconducting coil limits the fault current at first peak.

  16. LHC superconducting strand

    CERN Multimedia

    Patrice Loiez

    1999-01-01

    This cross-section through a strand of superconducting matieral as used in the LHC shows the 8000 Niobium-Titanium filaments embedded like a honeycomb in copper. When cooled to 1.9 degrees above absolute zero in the LHC accelerator, these filaments will have zero resistance and so will carry a high electric current with no energy loss.

  17. Free electron lasers on superconducting linac

    International Nuclear Information System (INIS)

    Lapierrre, Y.

    1986-01-01

    Analysing the results of several Free Electron Laser experiments, we show that the best accelerator should be a superconducting linear accelerator: it can provide a c.w. high quality beam (energy spread and emittance). The technology of RF superconductivity provide the opportunity to build such an accelerator. In this paper, we present the foreseen results one can expect from a FEL based on such a machine: - Average power > 1 Kw, - Total efficiency > 2.5%, - Tunability between 0.6 and 5 μm [fr

  18. Induction linacs

    International Nuclear Information System (INIS)

    Keefe, D.

    1986-07-01

    The principle of linear induction acceleration is described, and examples are given of practical configurations for induction linacs. These examples include the Advanced Technology Accelerator, Long Pulse Induction Linac, Radial Line Accelerator (RADLAC), and Magnetically-Insulated Electron-Focussed Ion Linac. A related concept, the auto accelerator, is described in which the high-current electron-beam technology in the sub-10 MeV region is exploited to produce electron beams at energies perhaps as high as the 100 to 1000 MeV range. Induction linacs for ions are also discussed. The efficiency of induction linear acceleration is analyzed

  19. Potential damage to dc superconducting magnets due to high frequency electromagnetic waves

    Science.gov (United States)

    Gabriel, G. J.; Burkhart, J. A.

    1977-01-01

    Studies of a d.c. superconducting magnet coil indicate that the large coil behaves as a straight waveguide structure. Voltages between layers within the coil sometimes exceeded those recorded at terminals where protective resistors are located. Protection of magnet coils against these excessive voltages could be accomplished by impedance matching throughout the coil system. The wave phenomenon associated with superconducting magnetic coils may create an instability capable of converting the energy of a quiescent d.c. superconducting coil into dissipative a.c. energy, even in cases when dielectric breakdown does not take place.

  20. Investigation of wire motion in superconducting magnets

    International Nuclear Information System (INIS)

    Ogitsu, T.; Tsuchiya, K.; Devred, A.

    1990-09-01

    The large Lorentz forces occuring during the excitation of superconducting magnets can provoke sudden motions of wire, which eventually release enough energy to trigger a quench. These wire motions are accompanied by two electromagnetic effects: an induced emf along the moved wire, and a local change in flux caused by the minute dislocation of current. Both effects cause spikes in the coil voltage. Voltage data recorded during the excitation of a superconducting quadrupole magnet which early exhibit such events are here reported. Interpretations of the voltage spikes in terms of energy release are also presented, leading to insights on the spectrum of the disturbances which occur in real magnets. 15 refs

  1. Oscillations of the energy, magnetic moment, and current with a period equal to the normal or superconducting flux quantum in cyclic systems

    International Nuclear Information System (INIS)

    Svirskii, M.S.

    1985-01-01

    Oscillations with a period equal to the normal or superconducting flux quantum occur in the current density and the orbital parts of the energy and the magnetic moment in cyclic systems. Transitions between these regimes can be induced by changing the number of electrons or by switching between states with different energies

  2. Mechanical stresses and strains in superconducting dipole magnets for high energy accelerators

    International Nuclear Information System (INIS)

    Greben, L.I.; Mironov, E.S.; Moustafin, H.H.

    1979-01-01

    Stress and strain distributions in superconducting dipole magnets were investigated numerically. A finite element computer program was developed to calculate stresses and displacements due to thermal stress, electromagnetic forces and prestressing of structural elements. Real mechanical and thermal properties of superconducting dipole elements are taken into account. Numerical results of stress and strain patterns in dipole magnets are presented

  3. Analysis of Mechanical Stresses/Strains in Superconducting Wire

    Science.gov (United States)

    Barry, Matthew; Chen, Jingping; Zhai, Yuhu

    2016-10-01

    The optimization of superconducting magnet performance and development of high-field superconducting magnets will greatly impact the next generation of fusion devices. A successful magnet development, however, relies deeply on the understanding of superconducting materials. Among the numerous factors that impact a superconductor's performance, mechanical stress is the most important because of the extreme operation temperature and large electromagnetic forces. In this study, mechanical theory is used to calculate the stresses/strains in typical superconducting strands, which consist of a stabilizer, a barrier, a matrix and superconducting filaments. Both thermal loads and mechanical loads are included in the analysis to simulate operation conditions. Because this model simulates the typical architecture of major superconducting materials, such as Nb3Sn, MgB2, Bi-2212 etc., it provides a good overall picture for us to understand the behavior of these superconductors in terms of thermal and mechanical loads. This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internship (SULI) program.

  4. Proceedings of the fourth international conference and exhibition: World Congress on superconductivity. Volume 1

    International Nuclear Information System (INIS)

    Krishen, K.; Burnham, C.

    1994-01-01

    The goals of the World Congress on Superconductivity (WCS) have been to establish and foster the development and commercial application of superconductivity technology on a global scale by providing a non-adversarial, non-advocacy forum where scientists, engineers, businessmen and government personnel can freely exchange information and ideas on recent developments and directions for the future of superconductive research. Sessions were held on: accelerator technology, power and energy, persistent magnetic fields, performance characterization, physical properties, fabrication methodology, superconductive magnetic energy storage (SMES), thin films, high temperature materials, device applications, wire fabrication, and granular superconductors. Individual papers are indexed separately

  5. Proceedings of the fourth international conference and exhibition: World Congress on superconductivity. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Krishen, K.; Burnham, C. [eds.] [National Aeronautics and Space Administration, Houston, TX (United States). Lyndon B. Johnson Space Center

    1994-12-31

    The goals of the World Congress on Superconductivity (WCS) have been to establish and foster the development and commercial application of superconductivity technology on a global scale by providing a non-adversarial, non-advocacy forum where scientists, engineers, businessmen and government personnel can freely exchange information and ideas on recent developments and directions for the future of superconductive research. Sessions were held on: accelerator technology, power and energy, persistent magnetic fields, performance characterization, physical properties, fabrication methodology, superconductive magnetic energy storage (SMES), thin films, high temperature materials, device applications, wire fabrication, and granular superconductors. Individual papers are indexed separately.

  6. Experimental results of superconducting magnet behaviour during discharging into the external load

    Directory of Open Access Journals (Sweden)

    Ladislav Grega

    2008-12-01

    Full Text Available The basic part of every SMES (Superconducting magnetic energy storage system is a superconducting magnet. All eventsof electrical nature which happen during its charging,, bypassing and discharging are transient. The article deals with experimentalresults of the superconducting magnet behaviour, especially during the period of its discharging into the prepared external load.

  7. Magnetic field systems employing a superconducting D.C. field coil

    International Nuclear Information System (INIS)

    Bartram, T.C.; Hazell, P.A.

    1977-01-01

    Method and equipment for transferring energy to or from a direct-current superconducting field coil to change the magnetic field generated by the coil in which a second direct-current superconducting coil is used as a storage coil, and energy transfer between the field coil and the storage coil is effected automatically in dependence upon a control program. Preferably, the control program acts upon a variable transformer which is coupled by respective rectifier/inverters to the field and storage coils and also serves for intital supply of energy to the coils

  8. Scanning tunneling spectroscopy of Co adsorbates on superconducting Pb nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Decker, Regis; Caminale, Michael; Oka, Hirofumi; Stepniak, Agnieszka; Leon Vanegas, Augusto A.; Sander, Dirk; Kirschner, Juergen [Max-Planck-Institut fuer Mikrostrukturphysik, Weinberg 2, 06120 Halle (Germany)

    2015-07-01

    Superconductivity in low-dimensional structures has become an active research area. In order to understand the superconducting pairing, long-standing work has been devoted to the pair breaking effect, where magnetic impurities break Cooper pair singlets. We performed scanning tunneling spectroscopy at low temperature on Co adsorbates on superconducting Pb nanoislands. On the Co adsorbates, we observe spectral features in the superconductor's energy gap, which we attribute to magnetic impurity induced bound states, a hallmark of the pair breaking effect. We discuss the response of the superconducting islands to the presence of Co adsorbates.

  9. Crosstalk in a KID Array Caused by the Thickness Variation of Superconducting Metal

    Science.gov (United States)

    Adane, A.; Boucher, C.; Coiffard, G.; Leclercq, S.; Schuster, K. F.; Goupy, J.; Calvo, M.; Hoarau, C.; Monfardini, A.

    2016-07-01

    The work presented in this paper is focused on the improvement of the kinetic detectors used on NIKA2 instrument (New IRAM KID array 2). Based on the simulation and low temperature measurements, it aims at showing how the variations of the superconducting metal corrupt the frequency comb of the kinetic Inductance detectors (KID) in the frequency range (between 1 and 3 GHz), i.e., how the superconducting metal inhomogeneity induces the resonance-to-resonance cross-coupling which deteriorates the homogeneity of the resonance quality factor and the frequency resonance separation. Solutions are then proposed to fight against the effect of these metallic variations when designing the KID array.

  10. Synthesis of Bulk Superconducting Magnesium Diboride

    Directory of Open Access Journals (Sweden)

    Margie Olbinado

    2002-06-01

    Full Text Available Bulk polycrystalline superconducting magnesium diboride, MgB2, samples were successfully prepared via a one-step sintering program at 750°C, in pre Argon with a pressure of 1atm. Both electrical resistivity and magnetic susceptibility measurements confirmed the superconductivity of the material at 39K, with a transition width of 5K. The polycrystalline nature, granular morphology, and composition of the sintered bulk material were confirmed using X-ray diffractometry (XRD, scanning electron microscopy (SEM, and energy dispersive X-ray analysis (EDX.

  11. Geometrical resonance effects in thin superconducting films

    International Nuclear Information System (INIS)

    Nedellec, P.

    1977-01-01

    Electron tunneling density of states measurements on thick and clear superconducting films (S 1 ) backed by films in the normal or superconducting state (S 2 ) show geometrical resonance effects associated with the spatial variation of Δ(x), the pair potential, near the interface S 1 -S 2 . The present understanding of this so-called 'Tomasch effect' is described. The dispersion relation and the nature of excitations in the superconducting state are introduced. It is shown that the introduction of Green functions give a general description of the superconducting state. The notion of Andreev scattering at the S 1 -S 2 interface is presented and connect the geometrical resonance effects to interference process between excitations. The different physical parameters involved are defined and used in the discussion of some experimental results: the variation of the period in energy with the superconducting thickness is connected to the renormalized group velocity of excitations traveling perpendicular to the film. The role of the barrier potential at the interface on the Tomasch effect is described. The main results discussed are: the decrease of the amplitude of the Tomasch structures with energy is due to the loss of the mixed electron-hole character of the superconducting excitations far away from the Fermi level; the variation of the pair potential at the interface is directly related to the amplitude of the oscillations; the tunneling selectivity is an important parameter as the amplitude as well as the phase of the oscillations are modified depending on the value of the selectivity; the phase of the Tomasch oscillations is different for an abrupt change of Δ at the interface and for a smooth variation. An ambiguity arises due to the interplay between these parameters. Finally, some experiments, which illustrate clearly the predicted effects are described [fr

  12. Superconduction at 77 K

    International Nuclear Information System (INIS)

    Mueller, H.G.

    1989-01-01

    This general paper deals with the advantages which may result from the use of ceramic high-temperature superconductors. The use of these new superconductors for generators and electric motors for ship propulsion is regarded as a promising potential defense application. Furthermore, SMES (Superconducting Magnetic Energy Storage) can be used as a 'power compressor' for future high-performance weapon systems such as electromagnetic cannons, high-energy lasers, and high power microwaves. (MM) [de

  13. Quantitative analysis of Josephson-quasiparticle current in superconducting single-electron transistors

    International Nuclear Information System (INIS)

    Nakamura, Y.; Chen, C.D.; Tsai, J.S.

    1996-01-01

    We have investigated Josephson-quasiparticle (JQP) current in superconducting single-electron transistors in which charging energy E C was larger than superconducting gap energy Δ and junction resistances were much larger than R Q ≡h/4e 2 . We found that not only the shapes of the JQP peaks but also their absolute height were reproduced quantitatively with a theory by Averin and Aleshkin using a Josephson energy of Ambegaokar-Baratoff close-quote s value. copyright 1996 The American Physical Society

  14. The Future of Superconducting Technology for Particle Accelerators

    CERN Document Server

    Yamamoto, Akira

    2015-01-01

    Introduction: - Colliders constructed and operated - Future High Energy Colliders under Study - Superconducting Phases and Applications - Possible Choices among SC Materials Superconducting Magnets and the Future - Advances in SC Magnets for Accelerators - Nb$_{3}$Sn for realizing Higher Field - NbTi to Nb$_{3}$Sn for realizing High Field (> 10 T) - HL-LHC as a critical milestone for the Future of Acc. Magnet Technology - Nb$_{3}$Sn Superconducting Magnets (> 11 T)and MgB2 SC Links for HL-LHC - HL-LHC, 11T Dipole Magnet - Nb$_{3}$Sn Quadrupole (MQXF) at IR - Future Circular Collider Study - Conductor development (1998-2008) - Nb$_{3}$Sn conductor program - 16 T Dipole Options and R&D sharing - Design Study and Develoment for SppC in China - High-Field Superconductor and Magnets - HTS Block Coil R&D for 20 T - Canted Cosine Theta (CCT) Coil suitable with Brittle HTS Conductor - A topic at KEK: S-KEKB IRQs just integrated w/ BELLE-II ! Superconducting RF and the Future - Superconducting Phase...

  15. The Future of Superconducting Technology for Particle Accelerators

    CERN Document Server

    Yamamoto, Akira

    2015-01-01

    Introduction: - Colliders constructed and operated - Future High Energy Colliders under Study - Superconducting Phases and Applications - Possible Choices among SC Materials Superconducting Magnets and the Future - Advances in SC Magnets for Accelerators - Nb3Sn for realizing Higher Field - NbTi to Nb3Sn for realizing High Field (> 10 T) - HL-LHC as a critical milestone for the Future of Acc. Magnet Technology - Nb3Sn Superconducting Magnets (> 11 T)and MgB2 SC Links for HL-LHC - HL-LHC, 11T Dipole Magnet - Nb3Sn Quadrupole (MQXF) at IR - Future Circular Collider Study - Conductor development (1998-2008) - Nb3Sn conductor program - 16 T Dipole Options and R&D sharing - Design Study and Develoment for SppC in China - High-Field Superconductor and Magnets - HTS Block Coil R&D for 20 T - Canted Cosine Theta (CCT) Coil suitable with Brittle HTS Conductor - A topic at KEK: S-KEKB IRQs just integrated w/ BELLE-II ! Superconducting RF and the Future - Superconducting Phases and Applications - Poss...

  16. Design of a superconducting accelerator for positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    Oshima, Nagayasu; Kuroda, Ryunosuke; Suzuki, Ryoichi; Kinomura, Atsushi; Ohdaira, Toshiyuki; Hayashizaki, Noriyosu; Hattori, Toshiyuki

    2008-01-01

    A design of a superconducting accelerator for a positron beam with energy of ∼1 MeV for positron annihilation spectroscopy is proposed. The total system can be extremely small with an application of superconducting technology. Both a miniaturization and easy maintenance of the accelerator can be achieved by usage of a small liquidless refrigerator for cooling of a superconducting RF cavity. Moreover, operation duty cycle of the superconducting cavity is ∼100%. The required RF power to drive the system is only ∼10 W, therefore a large-size klystron is not necessary. The designed system including a slow positron source is small (∼2 m 3 ) enough to be used in a general laboratory. (author)

  17. Superconducting permanent magnets and their application in magnetic levitation

    International Nuclear Information System (INIS)

    Schultz, L.; Krabbes, G.; Fuchs, G.; Pfeiffer, W.; Mueller, K.H.

    2002-01-01

    Superconducting permanent magnets form a completely new class of permanent magnets. Of course, they must be cooled to 77 K or below. At very low temperatures (24 K) their magnetization can be a factor of 10 higher than that of the best conventional magnets, providing magnetic forces and energies which are up to two orders of magnitude higher. These new supermagnets became only recently available by the extreme improvement of the quality of melt-textured massive YBa 2 Cu 3 O x samples. Besides having a high magnetization, these superconducting permanent magnets can freeze in any given magnetic field configuration allowing completely new applications like superconducting transport systems or superconducting magnetic bearings. (orig.)

  18. The Data Acquisition System for a Kinetic Inductance Detector

    International Nuclear Information System (INIS)

    Branchini, P; Budano, A; Capasso, L; Marchetti, D

    2015-01-01

    The Data Acquisition System (DAQ) and the Front-End electronics for an array of Kinetic Inductance Detectors (KIDs) are described. KIDs are superconductive detectors, in which electrons are organized in Cooper pairs. Any incident radiation could break a pair generating a couple of quasi-particles that increase the inductance of the detector. The DAQ system we developed is a hardware/software co-design, based on state machines and on a microprocessor embedded into an FPGA. A commercial DAC/ADC board is used to interface the FPGA to the array of KIDs. The DAQ system generates a Stimulus signal suitable for an array of up to 128 KIDs. Such signal is up-mixed with a 3 GHz carrier wave and it then excites the KIDs array. The read-out signal from the detector is down-mixed with respect to the 3 GHz sine wave and recovered Stimulus is read back by the ADC device. The microprocessor stores read out data via a PCI express bus (PCIe) into an external disk. It also computes the Fast Fourier Transform of the acquired read out signal: this allows extrapolating which KID interacted and the energy of the impinging radiation. Simulations and tests have been performed successfully and experimental results are presented. (paper)

  19. Quench simulation of SMES consisting of some superconducting coils

    International Nuclear Information System (INIS)

    Noguchi, S.; Oga, Y.; Igarashi, H.

    2011-01-01

    A chain of quenches may be caused by a quench of one element coil when SMES is consists of many element coils. To avoid the chain of quenches, the energy stored in element coil has to be quickly discharged. The cause of the chain of the quenches is the short time constant of the decreasing current of the quenched coil. In recent years, many HTS superconducting magnetic energy storage (HTS-SMES) systems are investigated and designed. They usually consist of some superconducting element coils due to storing excessively high energy. If one of them was quenched, the storage energy of the superconducting element coil quenched has to be immediately dispersed to protect the HTS-SMES system. As the result, the current of the other element coils, which do not reach to quench, increases since the magnetic coupling between the quenched element coil and the others are excessively strong. The increase of the current may cause the quench of the other element coils. If the energy dispersion of the element coil quenched was failed, the other superconducting element coil would be quenched in series. Therefore, it is necessary to investigate the behavior of the HTS-SMES after quenching one or more element coils. To protect a chain of quenches, it is also important to investigate the time constant of the coils. We have developed a simulation code to investigate the behavior of the HTS-SMES. By the quench simulation, it is indicated that a chain of quenches is caused by a quench of one element coil.

  20. Superconducting InSb nanowire devices

    NARCIS (Netherlands)

    Szombati, D.B.

    2017-01-01

    Josephson junctions form a two-level system which is used as a building block for many types of superconducting qubits. Junctions fabricated from semiconducting nanowires are gate-tunable and offer electrostatically adjustable Josephson energy, highly desirable in qubit architecture. Studying

  1. Design considerations for high-current superconducting ion linacs

    International Nuclear Information System (INIS)

    Delayen, J.R.; Bohn, C.L.; Micklich, B.J.; Roche, C.T.; Sagalovsky, L.

    1993-01-01

    Superconducting linacs may be a viable option for high-current applications such as fusion materials irradiation testing, spallation neutron source, transmutation of radioactive waste, tritium production, and energy production. These linacs must run reliably for many years and allow easy routine maintenance. Superconducting cavities operate efficiently with high cw gradients, properties which help to reduce operating and capital costs, respectively. However, cost-effectiveness is not the sole consideration in these applications. For example, beam impingement must be essentially eliminated to prevent unsafe radioactivation of the accelerating structures, and thus large apertures are needed through which to pass the beam. Because of their high efficiency, superconducting cavities can be designed with very large bore apertures, thereby reducing the effect of beam impingement. Key aspects of high-current cw superconducting linac designs are explored in this context

  2. Superconducting gap anomaly in heavy fermion systems

    International Nuclear Information System (INIS)

    Rout, G.C.; Ojha, M.S.; Behera, S.N.

    2008-01-01

    The heavy fermion system (HFS) is described by the periodic Anderson model (PAM), treating the Coulomb correlation between the f-electrons in the mean-field Hartree-Fock approximation. Superconductivity is introduced by a BCS-type pairing term among the conduction electrons. Within this approximation the equation for the superconducting gap is derived, which depends on the effective position of the energy level of the f-electrons relative to the Fermi level. The latter in turn depends on the occupation probability n f of the f-electrons. The gap equation is solved self-consistently with the equation for n f ; and their temperature dependences are studied for different positions of the bare f-electron energy level, with respect to the Fermi level. The dependence of the superconducting gap on the hybridization leads to a re-entrant behaviour with increasing strength. The induced pairing between the f-electrons and the pairing of mixed conduction and f-electrons due to hybridization are also determined. The temperature dependence of the hybridization parameter, which characterizes the number of electrons with mixed character and represents the number of heavy electrons is studied. This number is shown to be small. The quasi-particle density of states (DOS) shows the existence of a pseudo-gap due to superconductivity and the signature of a hybridization gap at the Fermi level. For the choice of the model parameters, the DOS shows that the HFS is a metal and undergoes a transition to the gap-less superconducting state. (author)

  3. The stationary storage of energy. Available technologies and CEA researches

    International Nuclear Information System (INIS)

    2012-01-01

    After a discussion of the main challenges related to the stationary storage of energy, this publication proposes an overview of the different available technologies: plant for transfer of energy by pumping, compressed air, energy flywheels, hydrogen, lithium-ion battery, redox-flow battery, thermal storage by sensitive heat, thermal-chemical storage coupled to a thermal solar system, thermal storage by phase change, superconductive inductance storage, super-capacitors. It discusses the criteria of choice of storage technology, either for electric energy storage or for heat storage. It proposes an overview of researches performed within the CEA on storage systems: electrochemical, thermal, and hydrogen-based storages. The final chapter addresses current fundamental researches on storage in the field of lithium-ion batteries, hydrogen as a fuel, and thermoelectricity

  4. Interface superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Gariglio, S., E-mail: stefano.gariglio@unige.ch [DQMP, Université de Genève, 24 Quai E.-Ansermet, CH-1211 Genève (Switzerland); Gabay, M. [Laboratoire de Physique des Solides, Bat 510, Université Paris-Sud 11, Centre d’Orsay, 91405 Orsay Cedex (France); Mannhart, J. [Max Planck Institute for Solid State Research, 70569 Stuttgart (Germany); Triscone, J.-M. [DQMP, Université de Genève, 24 Quai E.-Ansermet, CH-1211 Genève (Switzerland)

    2015-07-15

    Highlights: • We discuss interfacial superconductivity, a field boosted by the discovery of the superconducting interface between LaAlO. • This system allows the electric field control and the on/off switching of the superconducting state. • We compare superconductivity at the interface and in bulk doped SrTiO. • We discuss the role of the interfacially induced Rashba type spin–orbit. • We briefly discuss superconductivity in cuprates, in electrical double layer transistor field effect experiments. • Recent observations of a high T{sub c} in a monolayer of FeSe deposited on SrTiO{sub 3} are presented. - Abstract: Low dimensional superconducting systems have been the subject of numerous studies for many years. In this article, we focus our attention on interfacial superconductivity, a field that has been boosted by the discovery of superconductivity at the interface between the two band insulators LaAlO{sub 3} and SrTiO{sub 3}. We explore the properties of this amazing system that allows the electric field control and on/off switching of superconductivity. We discuss the similarities and differences between bulk doped SrTiO{sub 3} and the interface system and the possible role of the interfacially induced Rashba type spin–orbit. We also, more briefly, discuss interface superconductivity in cuprates, in electrical double layer transistor field effect experiments, and the recent observation of a high T{sub c} in a monolayer of FeSe deposited on SrTiO{sub 3}.

  5. Programs on large scale applications of superconductivity in Japan

    International Nuclear Information System (INIS)

    Yasukochi, K.; Ogasawara, T.

    1974-01-01

    History of the large scale application of superconductivity in Japan is reported. Experimental works on superconducting magnet systems for high energy physics have just begun. The programs are described by dividing into five categories: 1) MHD power generation systems, 2) superconducting rotating machines, 3) cryogenic power transmission systems, 4) magnetically levitated transportation, and 5) application to high energy physics experiments. The development of a big superconducting magnet for a 1,000 kW class generator was set up as a target of first seven year plan, which came to end in 1972, and continues for three years with the budget of 900 million yen from 1973 on. In the second phase plan, a prototype MHD generator is argued. A plan is contemplated to develop a synchronous generator with inner rotating field by Fuji Electric Co. The total budget for the future plans of superconducting power transmission system amounts to 20 billion yen for the first period of 8 approximately 9 years. In JNR's research and development efforts, several characteristic points are picked up: 1) linear motor drive with active side on ground, 2) loop track, 3) combined test run of maglev and LSM. The field test at the speed of 500 km/hr on a 7 km track is scheduled to be performed in 1975. The target of operation is in 1985. A 12 GeV proton synchrotron is now under construction for the study on high energy physics. Three ring intersecting storage accelerator is discussed for future plan. (Iwakiri, K.)

  6. Superconducting coil and method of stress management in a superconducting coil

    Science.gov (United States)

    McIntyre, Peter M.; Shen, Weijun; Diaczenko, Nick; Gross, Dan A.

    1999-01-01

    A superconducting coil (12) having a plurality of superconducting layers (18) is provided. Each superconducting layer (18) may have at least one superconducting element (20) which produces an operational load. An outer support structure (24) may be disposed outwardly from the plurality of layers (18). A load transfer system (22) may be coupled between at least one of the superconducting elements (20) and the outer support structure (24). The load transfer system (22) may include a support matrix structure (30) operable to transfer the operational load from the superconducting element (20) directly to the outer support structure (24). A shear release layer (40) may be disposed, in part, between the superconducting element (20) and the support matrix structure (30) for relieving a shear stress between the superconducting element (20) and the support matrix structure (30). A compliant layer (42) may also be disposed, in part, between the superconducting element (20) and the support matrix structure (30) for relieving a compressive stress on the superconducting element (20).

  7. Superconducting magnetic energy storage (SMES). Results of a technology assessment

    International Nuclear Information System (INIS)

    Fleischer, T.; Juengst, K.P.; Brandl, V.; Maurer, W.; Nieke, E.

    1995-05-01

    The authors report on results of a Technology Assessment study commissioned by the German Federal Ministry of Education, Science, Research and Technology. The objective of this study was to evaluate the potential of superconducting magnetic energy storage (SMES) technology with respect to the economical, political and organization structures in the Federal Republic of Germany. The main focus of the study was on the technical and economic potential of large-scale SMES for diurnal load levelling applications. It was shown that there is no demand for the development of large SMES in Germany in the short and medium term. A second range of applications investigated is storage of electric energy for immediate delivery or consumption of electric power in case of need or for periodic power supply within the range of seconds. Due to its excellent dynamic properties SMES has substantial advantages over conventional storage technologies in this field. For those so-called dynamic applications SMES of small and medium energy capacity are needed. It was shown that SMES may be economically attractive for the provision of spinning reserve capacity in electrical networks, in particular cases for power quality applications (uninterruptable power supply, UPS) and for the compensation of cyclic loads, as well as in some market niches. The use of SMES for storage of recuperated energy in electrical railway traction systems has been proven to be uneconomical. Mobile SMES applications are unrealistic due to technical and size limitations. In SMES systems the energy is stored in a magnetic field. Biological objects as well as technical systems in the vicinity of a SMES plant are exposed to this field. The knowledge on impacts of magnetic fields on sensitive technical systems as well as on living organisms and especially on effects on human health is rather small and quite uncertain. (orig./MM) [de

  8. Use of high-temperature superconducting films in superconducting bearings

    International Nuclear Information System (INIS)

    Cansiz, A.

    1999-01-01

    We have investigated the effect of high-temperature superconductor (HTS) films deposited on substrates that are placed above bulk HTSs in an attempt to reduce rotational drag in superconducting bearings composed of a permanent magnet levitated above the film/bulk HTS combination. According to the critical state model, hysteresis energy loss is inversely proportional to critical current density, J c , and because HTS films typically have much higher J c than that of bulk HTS, the film/bulk combination was expected to reduce rotational losses by at least one order of magnitude in the coefficient of fiction, which in turn is a measure of the hysteresis losses. We measured rotational losses of a superconducting bearing in a vacuum chamber and compared the losses with and without a film present. The experimental results showed that contrary to expectation, the rotational losses are increased by the film. These results are discussed in terms of flux drag through the film, as well as of the critical state model

  9. Origin of Superconductivity and Latent Charge Density Wave in NbS2

    Science.gov (United States)

    Heil, Christoph; Poncé, Samuel; Lambert, Henry; Schlipf, Martin; Margine, Elena R.; Giustino, Feliciano

    2017-08-01

    We elucidate the origin of the phonon-mediated superconductivity in 2 H -NbS2 using the ab initio anisotropic Migdal-Eliashberg theory including Coulomb interactions. We demonstrate that superconductivity is associated with Fermi surface hot spots exhibiting an unusually strong electron-phonon interaction. The electron-lattice coupling is dominated by low-energy anharmonic phonons, which place the system on the verge of a charge density wave instability. We also provide definitive evidence for two-gap superconductivity in 2 H -NbS2 , and show that the low- and high-energy peaks observed in tunneling spectra correspond to the Γ - and K -centered Fermi surface pockets, respectively. The present findings call for further efforts to determine whether our proposed mechanism underpins superconductivity in the whole family of metallic transition metal dichalcogenides.

  10. Energy supplementation in Santa Inês sheep subjected to estrus induction treatment

    Directory of Open Access Journals (Sweden)

    Sabrina Silva Venturi

    2016-02-01

    Full Text Available The aim of this study was to evaluate the effect of a 20% increase in dietary energy during short-term estrus induction treatment on the reproductive parameters of Santa Inês ewes. Females (n=43 were allocated into two experimental groups according to the amount of energy inclusion in the diet: maintenance diet or maintenance diet plus 20% energy. Ultrasound examinations were performed in order to detect ovulation. To assess sexual behavior, ewes were teased and further mated. Blood samples were collected for the determination of glucose and insulin concentrations. There was no difference (P>0.05 between groups in the following categories: ovulation rate (80.00% vs. 60.00%, largest follicle diameter (6.00 ± 0.20 vs. 5.90 ± 0.60, interval from device removal to ovulation (52.80 ± 14.87 vs. 59.01 ± 8.34 hours, animals in estrus (75.00% vs. 65.21%, interval from device removal to estrus (30.00 ± 15.49 vs. 30.00 ± 13.35 hours and conception rate (50.00% vs. 21.73%. There were differences (P<0.05 in the concentrations of insulin and glucose. It can be concluded that the 20% increase in energy in the diet during short-term estrus induction treatment did not affect the reproductive parameters studied.

  11. Energy storage via high temperature superconductivity (SMES)

    Energy Technology Data Exchange (ETDEWEB)

    Mikkonen, R. [Tampere Univ. of Technology (Finland)

    1998-10-01

    The technology concerning high temperature superconductors (HTS) is matured to enabling different kind of prototype applications including SMES. Nowadays when speaking about HTS systems, attention is focused on the operating temperature of 20-30 K, where the critical current and flux density are fairly close to 4.2 K values. In addition by defining the ratio of the energy content of a novel HTS magnetic system and the required power to keep the system at the desired temperature, the optimum settles to the above mentioned temperature range. In the frame of these viewpoints a 5 kJ HTS SMES system has been designed and tested at Tampere University of Technology with a coil manufactured by American Superconductor (AMSC). The HTS magnet has inside and outside diameters of 252 mm and 317 mm, respectively and axial length of 66 mm. It operates at 160 A and carries a total of 160 kA-turns to store the required amount of energy. The effective magnetic inductance is 0.4 H and the peak axial field is 1.7 T. The magnet is cooled to the operating temperature of 20 K with a two stage Gifford-McMahon type cryocooler with a cooling power of 60 W at 77 K and 8 W at 20 K. The magnetic system has been demonstrated to compensate a short term loss of power of a sensitive consumer

  12. Design and construction of the main linac module for the superconducting energy recovery linac project at Cornell

    Energy Technology Data Exchange (ETDEWEB)

    Eichhorn, R.; Bullock, B.; He, Y.; Hoffstaetter, G.; Liepe, M.; O' Connell, T.; Quigley, P.; Sabol, D.; Sears, J.; Smith, E.; Veshcherevich, V. [Cornell Laboratory for Accelerator-based Science and Education (CLASSE), Cornell University, 161 Synchrotron Drive, Ithaca, NY 14853 (United States)

    2014-01-29

    Cornell University has been designing and building superconducting accelerators for various applications for more than 50 years. Currently, an energy-recovery linac (ERL) based synchrotron-light facility is proposed making use of the existing CESR facility. As part of the phase 1 R and D program funded by the NSF, critical challenges in the design were addressed, one of them being a full linac cryo-module. It houses 6 superconducting cavities- operated at 1.8 K in continuous wave (CW) mode - with individual HOM absorbers and one magnet/ BPM section. Pushing the limits, a high quality factor of the cavities (2⋅10{sup 10}) and high beam currents (100 mA accelerated plus 100 mA decelerated) are targeted. We will present the design of the main linac cryo-module (MLC) being finalized recently, its cryogenic features and report on the status of the fabrication which started in late 2012.

  13. Adaptive automatic generation control with superconducting magnetic energy storage in power systems

    International Nuclear Information System (INIS)

    Tripathy, S.C.; Balasubramanian, R.; Nair, P.S.C.

    1992-01-01

    An improved automatic generation control (AGC) employing self-tuning adaptive control for both main AGC loop and superconducting magnetic energy storage (SMES) is presented in this paper. Computer simulations on a two-area interconnected power system show that the proposed adaptive control scheme is very effective in damping out oscillations caused by load disturbances and its performance is quite insensitive to controller gain parameter changes of SMES. A comprehensive comparative performance evaluation of control schemes using adaptive and non-adaptive controllers in the main AGC and in the SMES control loops is presented. The improvement in performance brought in by the adaptive scheme is particularly pronounced for load changes of random magnitude and duration. The proposed controller can be easily implemented using microprocessors

  14. Improving superconducting RF technology for high energy particle accelerators

    International Nuclear Information System (INIS)

    Leconte, P.

    1991-01-01

    A review of the state of the art is given. It shows recent proofs of success of the technology. An important R and D effort remains to be done in order to collect all the expectable benefits of RF superconductivity. (author)

  15. Superconductivity

    International Nuclear Information System (INIS)

    Kakani, S.L.; Kakani, Shubhra

    2007-01-01

    The monograph provides readable introduction to the basics of superconductivity for beginners and experimentalists. For theorists, the monograph provides nice and brief description of the broad spectrum of experimental properties, theoretical concepts with all details, which theorists should learn, and provides a sound basis for students interested in studying superconducting theory at the microscopic level. Special chapter on the theory of high-temperature superconductivity in cuprates is devoted

  16. Energy gap and surface structure of superconducting diamond films probed by scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Nishizaki, Terukazu; Takano, Yoshihiko; Nagao, Masanori; Takenouchi, Tomohiro; Kawarada, Hiroshi; Kobayashi, Norio

    2007-01-01

    We have performed scanning tunneling microscopy/spectroscopy (STM/STS) experiments on (1 1 1)-oriented epitaxial films of heavily boron-doped diamond at T = 0.47 K. The STM topography shows two kinds of atomic structures: a hydrogenated 1 x 1 structure, C(1 1 1)1 x 1:H, and an amorphous structure. On the C(1 1 1)1 x 1:H region, the tunneling spectra show superconducting property with the energy gap Δ = 0.83 meV. The obtained gap ratio 2Δ/k B T c = 3.57 is consistent with the weak-coupling BCS theory

  17. Superconducting proximity effect in topological materials

    Science.gov (United States)

    Reeg, Christopher R.

    In recent years, there has been a renewed interest in the proximity effect due to its role in the realization of topological superconductivity. In this dissertation, we discuss several results that have been obtained in the field of proximity-induced superconductivity and relate the results to the search for Majorana fermions. First, we show that repulsive electron-electron interactions can induce a non-Majorana zero-energy bound state at the interface between a conventional superconductor and a normal metal. We show that this state is very sensitive to disorder, owing to its lack of topological protection. Second, we show that Rashba spin-orbit coupling, which is one of the key ingredients in engineering a topological superconductor, induces triplet pairing in the proximity effect. When the spin-orbit coupling is strong (i.e., when the characteristic energy scale for spin-orbit coupling is comparable to the Fermi energy), the induced singlet and triplet pairing amplitudes can be comparable in magnitude. Finally, we discuss how the size of the proximity-induced gap, which appears in a low-dimensional material coupled to a superconductor, evolves as the thickness of the (quasi-)low-dimensional material is increased. We show that the induced gap can be comparable to the bulk energy gap of the underlying superconductor in materials that are much thicker than the Fermi wavelength, even in the presence of an interfacial barrier and strong Fermi surface mismatch. This result has important experimental consequences for topological superconductivity, as a sizable gap is required to isolate and detect the Majorana modes.

  18. Pair-breaking effects by parallel magnetic field in electric-field-induced surface superconductivity

    International Nuclear Information System (INIS)

    Nabeta, Masahiro; Tanaka, Kenta K.; Onari, Seiichiro; Ichioka, Masanori

    2016-01-01

    Highlights: • Zeeman effect shifts superconducting gaps of sub-band system, towards pair-breaking. • Higher-level sub-bands become normal-state-like electronic states by magnetic fields. • Magnetic field dependence of zero-energy DOS reflects multi-gap superconductivity. - Abstract: We study paramagnetic pair-breaking in electric-field-induced surface superconductivity, when magnetic field is applied parallel to the surface. The calculation is performed by Bogoliubov-de Gennes theory with s-wave pairing, including the screening effect of electric fields by the induced carriers near the surface. Due to the Zeeman shift by applied fields, electronic states at higher-level sub-bands become normal-state-like. Therefore, the magnetic field dependence of Fermi-energy density of states reflects the multi-gap structure in the surface superconductivity.

  19. Dynamic Average-Value Modeling of Doubly-Fed Induction Generator Wind Energy Conversion Systems

    Science.gov (United States)

    Shahab, Azin

    In a Doubly-fed Induction Generator (DFIG) wind energy conversion system, the rotor of a wound rotor induction generator is connected to the grid via a partial scale ac/ac power electronic converter which controls the rotor frequency and speed. In this research, detailed models of the DFIG wind energy conversion system with Sinusoidal Pulse-Width Modulation (SPWM) scheme and Optimal Pulse-Width Modulation (OPWM) scheme for the power electronic converter are developed in detail in PSCAD/EMTDC. As the computer simulation using the detailed models tends to be computationally extensive, time consuming and even sometimes not practical in terms of speed, two modified approaches (switching-function modeling and average-value modeling) are proposed to reduce the simulation execution time. The results demonstrate that the two proposed approaches reduce the simulation execution time while the simulation results remain close to those obtained using the detailed model simulation.

  20. Roles of superconducting magnetic bearings and active magnetic bearings in attitude control and energy storage flywheel

    International Nuclear Information System (INIS)

    Tang Jiqiang; Fang Jiancheng; Ge, Shuzhi Sam

    2012-01-01

    Compared with conventional energy storage flywheel, the rotor of attitude control and energy storage flywheel (ACESF) used in space not only has high speed, but also is required to have precise and stable direction. For the presented superconducting magnetic bearing (SMB) and active magnetic bearing (AMB) suspended ACESF, the rotor model including gyroscopic couples is established originally by taking the properties of SMB and AMB into account, the forces of SMB and AMB are simplified by linearization within their own neighbors of equilibrium points. For the high-speed rigid discal rotor with large inertia, the negative effect of gyroscopic effect of rotor is prominent, the radial translation and tilting movement of rotor suspended by only SMB, SMB with equivalent PMB, or SMB together with PD controlled AMB are researched individually. These analysis results proved originally that SMB together with AMB can make the rotor be stable and make the radial amplitude of the vibration of rotor be small while the translation of rotor suspended by only SMB or SMB and PM is not stable and the amplitude of this vibration is large. For the stability of the high-speed rotor in superconducting ACESF, the AMB can suppress the nutation and precession of rotor effectively by cross-feedback control based on the separated PD type control or by other modern control methods.

  1. Design Aspects and Test of an Inductive Fault Current Limiter

    Directory of Open Access Journals (Sweden)

    Arsénio Pedro

    2014-05-01

    Full Text Available Magnetic shielding inductive fault current limiters with high temperature superconducting tapes are considered as emerging devices that provide technology for the advent of modern power grids. The development of such limiters requires magnetic iron cores and leads to several design challenges regarding the constitutive parts of the limiter, namely the primary and secondary windings. Preliminary tests in a laboratory scale prototype have been carried out considering an assembly designed for simplicity in which the optimization of the magnetic coupling between the primary and secondary was not the main focus. This work addresses the design configuration of an inductive current limiter prototype regarding the assembly of the primary and secondary windings in the core. The prototype is based on a closed magnetic core wound by a primary, built from a normal electric conductor, and a short-circuited secondary, built from first generation superconducting tape. Four different design configurations are considered. Through experimental tests, the performance of such prototype is discussed and compared, in terms of normal and fault operation regimes. The results show that all the configurations assure effective magnetic shielding at normal operation regime, however, at fault operation regime, there are differences among configurations.

  2. Reliability of the Quench Protection System for the LHC Superconducting Elements

    OpenAIRE

    Vergara-Fernández, A; Rodríguez-Mateos, F

    2003-01-01

    The huge energy stored in the Large Hadron Collider (LHC) could potentially cause severe damage when the superconducting state disappears (quench) if precautions are not taken. Most of the superconducting elements in this accelerator require protection in case of resistive transition. The reliability of the Quench Protection System will have a very important impact on the overall LHC performance. Existing high energy accelerators were conceived as prototypes whose main objective was not the e...

  3. Superconductivity

    International Nuclear Information System (INIS)

    Langone, J.

    1989-01-01

    This book explains the theoretical background of superconductivity. Includes discussion of electricity, material fabrication, maglev trains, the superconducting supercollider, and Japanese-US competition. The authors reports the latest discoveries

  4. ac superconducting articles

    International Nuclear Information System (INIS)

    Meyerhoff, R.W.

    1977-01-01

    A noval ac superconducting cable is described. It consists of a composite structure having a superconducting surface along with a high thermally conductive material wherein the superconducting surface has the desired physical properties, geometrical shape and surface finish produced by the steps of depositing a superconducting layer upon a substrate having a predetermined surface finish and shape which conforms to that of the desired superconducting article, depositing a supporting layer of material on the superconducting layer and removing the substrate, the surface of the superconductor being a replica of the substrate surface

  5. High-temperature superconductivity

    International Nuclear Information System (INIS)

    Ginzburg, V.L.

    1987-07-01

    After a short account of the history of experimental studies on superconductivity, the microscopic theory of superconductivity, the calculation of the control temperature and its possible maximum value are presented. An explanation of the mechanism of superconductivity in recently discovered superconducting metal oxide ceramics and the perspectives for the realization of new high-temperature superconducting materials are discussed. 56 refs, 2 figs, 3 tabs

  6. Superconducting conversion of the Intersecting storage Rings

    International Nuclear Information System (INIS)

    1977-01-01

    A study is presented of design, performances and cost estimates for superconducting proton storage rings in the existing ISR tunnel at CERN. By using a proven technology for the superconducting magnets an energy of 120 GeV is attainable, which corresponds to a bending field of 5.12 T. Using injection from the PS and stacking at 25 GeV, followed by phase displacement acceleration, luminosities of up to 4.10 33 cm -2 s -1 at 120 GeV are obtained. (Auth.)

  7. Electric currents in REBaCuO superconducting tapes

    Czech Academy of Sciences Publication Activity Database

    Jirsa, Miloš; Rameš, Michal; Ďuran, Ivan; Melíšek, T.; Kováč, P.; Viererbl, L.

    2017-01-01

    Roč. 30, č. 4 (2017), 1-8, č. článku 045010. ISSN 0953-2048 EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:68378271 ; RVO:61389021 Keywords : superconducting tapes * REBaCuO * critical currents * induction and transport * pinning force density * magnetic relaxation * neutron irradiation Subject RIV: BM - Solid Matter Physics ; Magnetism; BL - Plasma and Gas Discharge Physics (UFP-V) OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.); Fluids and plasma physics (including surface physics) (UFP-V) Impact factor: 2.878, year: 2016

  8. Sustainability Aspects of Energy Conversion in Modern High-Speed Trains with Traction Induction Motors

    Directory of Open Access Journals (Sweden)

    Marc A. Rosen

    2015-03-01

    Full Text Available Some aspects are illustrated of energy conversion processes during the operation of electric railway vehicles with traction induction motors, in order to support transport systems’ sustainability. Increasing efforts are being expended to enhance the sustainability of transportation technologies and systems. Since electric drive systems are used with variable voltage variable frequency (VVVF inverters and traction induction motors, these machines with appropriate controls can realize both traction and electric braking regimes for electric traction vehicles. In line with this idea, this paper addresses the operation sustainability of electric railway vehicles highlighting the chain of interactions among the main electric equipment on an electrically driven railway system supplied from an a.c. contact line: The contact line-side converter, the machine-side converter and the traction induction motor. The paper supports the findings that electric traction drive systems using induction motors fed by network-side converters and VVVF inverters enhance the sustainable operation of railway trains.

  9. Higgsless superconductivity from topological defects in compact BF terms

    Directory of Open Access Journals (Sweden)

    M. Cristina Diamantini

    2015-02-01

    Full Text Available We present a new Higgsless model of superconductivity, inspired from anyon superconductivity but P- and T-invariant and generalisable to any dimension. While the original anyon superconductivity mechanism was based on incompressible quantum Hall fluids as average field states, our mechanism involves topological insulators as average field states. In D space dimensions it involves a (D−1-form fictitious pseudovector gauge field which originates from the condensation of topological defects in compact low-energy effective BF theories. In the average field approximation, the corresponding uniform emergent charge creates a gap for the (D−2-dimensional branes via the Magnus force, the dual of the Lorentz force. One particular combination of intrinsic and emergent charge fluctuations that leaves the total charge distribution invariant constitutes an isolated gapless mode leading to superfluidity. The remaining massive modes organise themselves into a D-dimensional charged, massive vector. There is no massive Higgs scalar as there is no local order parameter. When electromagnetism is switched on, the photon acquires mass by the topological BF mechanism. Although the charge of the gapless mode (2 and the topological order (4 are the same as those of the standard Higgs model, the two models of superconductivity are clearly different since the origins of the gap, reflected in the high-energy sectors are totally different. In 2D this type of superconductivity is explicitly realised as global superconductivity in Josephson junction arrays. In 3D this model predicts a possible phase transition from topological insulators to Higgsless superconductors.

  10. Longitudinal Proximity Effect Superconducting Transition-Edge Sensor

    Data.gov (United States)

    National Aeronautics and Space Administration — Superconducting Transition-Edge Sensors (TESs) hold the highest energy resolving power of any nondispersive spectrometer.   They are used for imaging spectroscopy...

  11. The cryogenic system for the superconducting solenoid magnet of the CMS experiment

    CERN Document Server

    Delikaris, D; Passardi, Giorgio; Lottin, J C; Lottin, J P; Lyraud, C

    1998-01-01

    The design concept of the CMS experiment, foreseen for the Large Hadron Collider (LHC) project at CERN, is based on a superconducting solenoid magnet. The large coil will be made of a four layers winding generating the 4 T uniform magnetic induction required by the detector. The length of the solenoid is 13 m with an inner diameter of 5.9 m. The mass kept at liquid helium temperature totals 220 t and the electromagnetic stored energy is 2.7 GJ. The windings are indirectly cooled with a liquid helium flow driven by a thermosyphon effect. The external cryogenic system consists of a 1.5 kW at 4.5 K (entropy equivalent) cryoplant including an additional liquid nitrogen precooling unit and a 5000 litre liquid helium buffer. The whole magnet and cryogenic system will be tested at the surface by 2003 before final installation in the underground area of LHC.

  12. Multi-gap superconductivity in MgB2: Magneto-Raman spectroscopy

    International Nuclear Information System (INIS)

    Blumberg, G.; Mialitsin, A.; Dennis, B.S.; Zhigadlo, N.D.; Karpinski, J.

    2007-01-01

    Electronic Raman scattering studies on MgB 2 single crystals as a function of excitation and polarization have revealed three distinct superconducting features: a clean gap below 37 cm -1 and two coherence peaks at 109 and 78 cm -1 which we identify as the superconducting gaps in π- and σ-bands and as the Leggett's collective mode arising from the fluctuation in the relative phase between two superconducting condensates residing on corresponding bands. The temperature and field dependencies of the superconducting features have been established. A phononic Raman scattering study of the E 2g boron stretching mode anharmonicity and of superconductivity induced self-energy effects is presented. We show that anharmonic two phonon decay is mainly responsible for the unusually large linewidth of the E 2g mode. We observe ∼2.5% hardening of the E 2g phonon frequency upon cooling into the superconducting state and estimate the electron-phonon coupling strength associated with this renormalization

  13. Superconducting technology

    International Nuclear Information System (INIS)

    2010-01-01

    Superconductivity has a long history of about 100 years. Over the past 50 years, progress in superconducting materials has been mainly in metallic superconductors, such as Nb, Nb-Ti and Nb 3 Sn, resulting in the creation of various application fields based on the superconducting technologies. High-T c superconductors, the first of which was discovered in 1986, have been changing the future vision of superconducting technology through the development of new application fields such as power cables. On basis of these trends, future prospects of superconductor technology up to 2040 are discussed. In this article from the viewpoints of material development and the applications of superconducting wires and electronic devices. (author)

  14. Superconductivity and antiferromagnetism in heavy-electron systems

    International Nuclear Information System (INIS)

    Konno, R.; Ueda, K.

    1989-01-01

    Superconductivity and antiferromagnetism in heavy-electron systems are investigated from a general point of view. First we classify superconducting states in a simple cubic lattice, a body-centered tetragonal lattice, and a hexagonal close-packed lattice, having URu 2 Si 2 and UPt 3 in mind. For that purpose we take an approach to treat the effective couplings in real space. The approach is convenient to discuss the relation between the nature of fluctuations in the system and the superconducting states. When we assume that the antiferromagnetic fluctuations reported by neutron experiments are dominant, the most promising are some of the anisotropic singlet states and there remains the possibility for some triplet states too. Then we discuss the coupling between the two order parameters based on a Ginzburg-Landau theory. We derive a general expression of the coupling term. It is pointed out that the coupling constant can be large in heavy-electron systems. The general trend of the coexistence of the superconductivity and antiferromagnetism is discussed, and it is shown that the anisotropic states are generally more favorable to the coexistence than the conventional isotropic singlet. Experimental data of URu 2 Si 2 and UPt 3 are analyzed by the Ginzburg-Landau theory. According to the analysis URu 2 Si 2 has a small coupling constant and a large condensation energy of the antiferromagnetism. On the other hand, UPt 3 has a large coupling constant and a small condensation energy. It means that the specific-heat anomaly at T N should be small in UPt 3 and its superconductivity is easily destroyed when a large moment is formed

  15. The progresses of superconducting technology for power grid last decade in China

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Liye; Gu, Hong Wei [Applied Superconductivity Laboratory, Chinese Academy of Sciences, Beijing (China)

    2015-03-15

    With the increasing development of renewable energy, it is expected that large-scale renewable power would be transported from the west and north area of China to the east and south area. For this reason, it will be necessary to develop a wide-area power grid in which the renewable energy would be the dominant power source, and the power grid will be faced by some critical challenges such as long-distance large-capacity power transmission, the stability of the wide-area power grid and the land use problem for the power grid. The superconducting technology for power (STP) would be a possible alternative for the development of China’s future power grid. In last decade, STP has been extensively developed in China. In this paper, we present an overview of the R and D of STP last decade in China including: 1) the development of high temperature superconducting (HTS) materials, 2) DC power cables, 3) superconducting power substations, 4) fault current limiters and 5) superconducting magnetic energy storage (SMES)

  16. The progresses of superconducting technology for power grid last decade in China

    International Nuclear Information System (INIS)

    Xiao, Liye; Gu, Hong Wei

    2015-01-01

    With the increasing development of renewable energy, it is expected that large-scale renewable power would be transported from the west and north area of China to the east and south area. For this reason, it will be necessary to develop a wide-area power grid in which the renewable energy would be the dominant power source, and the power grid will be faced by some critical challenges such as long-distance large-capacity power transmission, the stability of the wide-area power grid and the land use problem for the power grid. The superconducting technology for power (STP) would be a possible alternative for the development of China’s future power grid. In last decade, STP has been extensively developed in China. In this paper, we present an overview of the R and D of STP last decade in China including: 1) the development of high temperature superconducting (HTS) materials, 2) DC power cables, 3) superconducting power substations, 4) fault current limiters and 5) superconducting magnetic energy storage (SMES)

  17. Superconducting magnet technology for particle accelerators and detectors seminar

    CERN Multimedia

    CERN. Geneva

    2006-01-01

    This lecture is an introduction to superconducting magnets for particle accelerators and detectors, the aim being to explain the vocabulary and describe the basic technology of modern superconducting magnets, and to explore the limits of the technology. It will include the following: - Why we need superconducting magnets - Properties of superconductors, critical field, critical temperature - Why accelerators need fine filaments and cables; conductor manufacture - Temperature rise and temperature margin: the quench process, training - Quench protection schemes. Protection in the case of the LHC. - Magnets for detectors - The challenges of state-of-the-art magnets for High Energy Physics

  18. The Kohn-Luttinger mechanism and phase diagram of the superconducting state in the Shubin-Vonsovsky model

    International Nuclear Information System (INIS)

    Kagan, M. Yu.; Val’kov, V. V.; Mitskan, V. A.; Korovuskin, M. M.

    2013-01-01

    Using the Shubin-Vonsovsky model in the weak-coupling regime W > U > V (W is the bandwidth, U is the Hubbard onsite repulsion, and V is the Coulomb interaction at neighboring sites) based on the Kohn-Luttinger mechanism, we determined the regions of the existence of the superconducting phases with the d xy , p, s, and d x 2 -y 2 symmetry types of the order parameter. It is shown that the effective interaction in the Cooper channel considerably depends not only on single-site but also on intersite Coulomb correlations. This is demonstrated by the example of the qualitative change and complication of the phase diagram of the superconducting state. The superconducting (SC) phase induction mechanism is determined taking into account polarization contributions in the second-order perturbation theory in the Coulomb interaction. The results obtained for the angular dependence of the superconducting gap in different channels are compared with angule-resolved photoemission spectroscopy (ARPES) results. The influence of long-range hops in the phase diagram and critical superconducting transition temperature in different channels is analyzed. The conditions for the appearance of the Kohn-Luttinger superconductivity with the d x 2 -y 2 symmetry and high critical temperatures T c ∼ 100 K near the half-filling are determined

  19. The Zeeman-split superconductivity with Rashba and Dresselhaus spin-orbit coupling

    Science.gov (United States)

    Zhao, Jingxiang; Yan, Xu; Gu, Qiang

    2017-10-01

    The superconductivity with Rashba and Dressehlaus spin-orbit coupling and Zeeman effect is investigated. The energy gaps of quasi-particles are carefully calculated. It is shown that the coexistence of two spin-orbit coupling might suppress superconductivity. Moreover, the Zeeman effect favors spin-triplet Cooper pairs.

  20. Bridging the Gap for High-Coherence, Strongly Coupled Superconducting Qubits

    Science.gov (United States)

    Yoder, Jonilyn; Kim, David; Baldo, Peter; Day, Alexandra; Fitch, George; Holihan, Eric; Hover, David; Samach, Gabriel; Weber, Steven; Oliver, William

    Crossovers can play a critical role in increasing superconducting qubit device performance, as long as device coherence can be maintained even with the increased fabrication and circuit complexity. Specifically, crossovers can (1) enable a fully-connected ground plane, which reduces spurious modes and crosstalk in the circuit, and (2) increase coupling strength between qubits by facilitating interwoven qubit loops with large mutual inductances. Here we will describe our work at MIT Lincoln Laboratory to integrate superconducting air bridge crossovers into the fabrication of high-coherence capacitively-shunted superconducting flux qubits. We will discuss our process flow for patterning air bridges by resist reflow, and we will describe implementation of air bridges within our circuits. This research was funded in part by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) and by the Assistant Secretary of Defense for Research and Engineering under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.