WorldWideScience

Sample records for superconducting gravimeter sg

  1. A new gravimetric reference station in South America: The installation of the Superconducting Gravimeters SG038 at the Argentinian-German Geodetic Observatory AGGO

    Science.gov (United States)

    Wziontek, Hartmut; Nowak, Ilona; Hase, Hayo; Häfner, Michael; Güntner, Andreas; Reich, Marvin; Brunini, Claudio

    2016-04-01

    In April 2015, the Transportable Integrated Geodetic Observatory (TIGO) of BKG was moved from Concepcion / Chile to La Plata / Argentina and was inaugurated in July 2015 as the Argentinian-German Geodetic Observatory (AGGO). In December 2015 the superconducting gravimeter SG038 was set up. The new station is equipped with four stable pillars to serve as a reference station and comparison site for absolute gravimeters in the future. We report about the overland transportation of the SG with the sphere floating, its installation at the new site and the hydrological instrumentation to observe local water storage changes to model near field gravimetric effects. We give an outlook about the first months of gravity time series and assess the drift behaviour after transport.

  2. Least Squares Spectral Analysis and Its Application to Superconducting Gravimeter Data Analysis

    Institute of Scientific and Technical Information of China (English)

    YIN Hui; Spiros D. Pagiatakis

    2004-01-01

    Detection of a periodic signal hidden in noise is the goal of Superconducting Gravimeter (SG) data analysis. Due to spikes, gaps, datum shrifts (offsets) and other disturbances, the traditional FFT method shows inherent limitations. Instead, the least squares spectral analysis (LSSA) has showed itself more suitable than Fourier analysis of gappy, unequally spaced and unequally weighted data series in a variety of applications in geodesy and geophysics. This paper reviews the principle of LSSA and gives a possible strategy for the analysis of time series obtained from the Canadian Superconducting Gravimeter Installation (CGSI), with gaps, offsets, unequal sampling decimation of the data and unequally weighted data points.

  3. Remarks on superconducting gravimeter calibration by co-located gravity observations

    Science.gov (United States)

    Meurers, B.; Blaumoser, N.; Ullrich, Ch.

    2012-04-01

    Using absolute gravimetry for site by site recording of temporal gravity variations is the most common method to calibrate stationary relative gravimeters, specifically superconducting gravimeters. This method is based on the assumption that both sensors record the same gravity signal. Actually, this condition is never perfectly fulfilled, not even when absolute gravimeters are involved. Instrumental effects like drift are the main reason. Therefore the situation dramatically deteriorates if spring gravimeters are applied as reference due to their large and sometimes irregular drift. This paper investigates the role of instrumental drift at calibration experiments based both on absolute and spring gravimeters and how the calibration results improve if drift is considered even in case of absolute gravimeters. The question whether spring gravimeters can reliably support SG calibration is discussed especially under the aspect of appropriate drift modelling. The accuracy which is presently achievable with FG5 absolute gravimeters strongly depends on the drop-to-drop scatter and therefore on the site noise. E.g. at Conrad observatory (Austria) the difference between the mean calibration factor obtained when drift is or is not taken into account turns out to be in the same order of magnitude as the error, i.e. the improvement by a common drift adjustment is just at the error limit. Nevertheless, based on this result, adjusting the instrumental drift is recommended. This will especially hold when further instrumental improvements reduce the drop-to-drop scatter or even presently at low noise stations.

  4. Accurate determination of calibration factor for tidal gravity observation of a GWR-superconducting gravimeter

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    It is recognized widely nowadays that the superconducting gravimeter (SG) is a kind of best relative gravimeter with high observing precision, good continuity and stability. However, it is necessary to calibrate the direct output (change in voltage) by using scale value (calibration factor) before getting the change of the real gravity field. Studies show that the accuracy of the scale value will influence the late analysis and explanation of the observa-tions. By using absolute gravity measurements of a FG5 absolute gravimeter (AG) at Wuhan international tidal gravity fundamental station (two campaigns each for 3 days) and by using known tidal parameters at the same station, the calibration factors of the SG and their precision are studied in detail in this paper.

  5. Superconducting Gravimeter Data for the IRIS Seismology Database: Application to Normal Modes from the Sumatra Earthquake

    Science.gov (United States)

    Crossley, D.; Rivera, L.; Hinderer, J.; Rosat, S.

    2009-04-01

    For several years, it has been the goal of the Global Geodynamics Project (GGP) to convert high rate acceleration data recorded on superconducting gravimeters (SG) to a format compatible with the seismic data archived at IRIS. The problem for the GGP community has been to properly establish the metadata for characterizing the response of the instrument, particularly its phase characteristics. Although SG data exists at IRIS from the Membach GGP station in Belgium, up to now most of the data from the GGP network has been on hold until the response problem was solved. This we have now been able to do, and we hope to show that data from the Strasbourg SG station will be at IRIS and available. We will also upload all the data from the SGs from after the Sumatra earthquake and show some results on normal mode analysis that demonstrates the benefit of the good amplitude calibration feature and high precision of the SG instruments.

  6. Determination of the Calibration Factor of Superconducting Gravimeter 057 at the Lhasa Station: A frequency-Domain Approach

    Directory of Open Access Journals (Sweden)

    Xiaodong Chen

    2013-01-01

    Full Text Available In this paper, the calibration factor of the superconducting gravimeter 057 (SG057 at the Lhasa station is accurately determined for the first time with a frequency-domain approach and the data recorded by the LaCoste Romberg Earth Tides No. 20 (LCR-ET20 gravimeter which is installed nearby SG057. The advantage of the frequency-domain approach is that it eliminates the influence of different gravimeter drifts on the determination of the calibration factor. The determined calibration factor of SG057 is (-77.7358 ± 0.0409 × 10-8 m s-2 V-1, and the relative accuracy is about 0.5‰. The newly determined calibration factor has been calculated with the Wuhan international tidal gravity reference values (ITGRVs based on the data recorded by LCR-ET20 at the Wuhan station before it was installed at the Lhasa station. A high-precision synthesized gravity tide is achieved at the Lhasa station with accurate tidal parameters and theoretical tidal parameters for the long tidal waves from the Dehant-Defraigne-Wahr (DDW earth tide model. The synthesized gravity tide can be used for tidal gravity corrections of future gravity measurements in the Tibetan area. The linear gravimeter drift of SG057 is estimated by gravity records without the effects of land uplift, atmosphere and polar motion yielding a rate of 6.8 × 10-8 m s-2 yr-1.

  7. Testing ocean tide models using GGP superconducting gravimeter observations

    Science.gov (United States)

    Baker, T.; Bos, M.

    2003-04-01

    Observations from the global network of superconducting gravimeters in the Global Geodynamics Project (GGP) are used to test 10 ocean tide models (SCHW; FES94.1, 95.2, 98, 99; CSR3.0, 4.0; TPXO.5; GOT99.2b; and NAO.99b). In addition, observations are used from selected sites with LaCoste and Romberg gravimeters with electrostatic feedback, where special attention has been given to achieving a calibration accuracy of 0.1%. In Europe, there are several superconducting gravimeter stations in a relatively small area and this can be used to advantage in testing the ocean (and body) tide models and in identifying sites with anomalous observations. At some of the superconducting gravimeter sites there are anomalies in the in-phase components of the main tidal harmonics, which are due to calibration errors of up to 0.3%. It is shown that the recent ocean tide models are in better agreement with the tidal gravity observations than were the earlier models of Schwiderski and FES94.1. However, no single ocean tide model gives completely satisfactory results in all areas of the world. For example, for M2 the TPXO.5 and NAO99b models give anomalous results in Europe, whereas the FES95.2, FES98 and FES99 models give anomalous results in China and Japan. It is shown that the observations from this improved set of tidal gravity stations will provide an important test of the new ocean tide models that will be developed in the next few years. For further details see Baker, T.F. and Bos, M.S. (2003). "Validating Earth and ocean tide models using tidal gravity measurements", Geophysical Journal International, 152.

  8. Detection and Evaluation of Episodic Tremor and Slip on Vancouver Island with a Superconducting Gravimeter

    Science.gov (United States)

    Neumeyer, J.; Kim, J.; Kao, R.; Kabirzadeh, H.; Henton, J.; Dragert, H.

    2012-12-01

    In July 2012, the superconducting gravimeter (SG) iGrav001 was installed at the Pacific Geoscience Centre in Sidney, British Columbia, on Vancouver Island. This site is located at the northern part of the Cascadia Subduction Zone where transient surface deformation accompanied by tremor-like seismic signals has been documented with a recurrence interval of 13 to 16 months. This phenomenon, named Episodic Tremor and Slip (ETS), has been interpreted to be associated with slow slip events (silent earthquakes) on the deeper (25-45 km) part of the Cascadia Subduction Zone. Geodetically, these slip events have been indentified primarily via transient horizontal displacements at continuous GPS sites and shear-strain transients recorded by borehole strainmeters of the Plate Boundary Observatory. Absolute gravimeter (AG) measurements have also suggested coincident offsets of several μGals (10-8 m/s2) to be associated with ETS. With continuous and high resolution SG monitoring, new insights into the physical processes involved in ETS are expected. Compared to the AG measurements, continuous SG has a higher resolution in recording gravity (about 0.01μGal in time domain and 1nGal (10-11 m/s2) in frequency domain). With this increased precision and with the fundamental stability of the SG, we hope to resolve low-level gravity transients that may be indicative of mass migration. The next prolonged ETS episode in southern Vancouver Island is expected this fall and the SG will provide the first continuous, stable, high-precision gravity record for an ETS event.

  9. Monitoring water storage variations with a superconducting gravimeter in a field enclosure

    Science.gov (United States)

    Güntner, Andreas; Mikolaj, Michal; Reich, Marvin; Schröder, Stephan; Wziontek, Hartmut

    2016-04-01

    Water storage dynamics are notoriously difficult to monitor in a comprehensive way beyond the point scale. Superconducting gravimeters (SG) measure temporal variations of the Earth's acceleration of gravity with very high precision and temporal resolution. They have been shown to be sensitive to mass variations induced by hydrological processes in their surroundings, typically within a radius of few 100 meters around the instrument. Thus, in turn, SGs are unique instruments for monitoring water storage variations in the landscape in an integrative way, accounting for soil moisture, vadose zone and groundwater storage, snow, and surface water bodies if existent. Nevertheless, hydrological applications of SGs so far have usually been hindered by the instruments being located in observatory buildings. This infrastructure disturbs the local hydrology and causes many uncertainties due to the often poorly known geometry of the construction, non-natural flow paths of water, and unknown water storage variations below and/or on top of the infrastructure. By deploying the SG in a small enclosure, these disturbances and unknowns are minimized. We report on the first experiences with exposing a SG of the latest generation (iGrav) in a small housing of less than 1 m2 footprint to temperate hydro-meteorological conditions. The system has been set up on a grassland site at the Geodetic Observatory in Wettzell, Bavarian Forest, Germany, in early 2015. We present the technical layout and challenges in running the gravimeter system. Additionally, we report on the quality of data acquired so far and present comparisons to in-situ soil moisture monitoring with TDR and TOMST sensors, a lysimeter, and groundwater observations, and two SGs located in nearby observatory buildings. We discuss the value of SG observations for estimating water storage variations, evapotranspiration and groundwater recharge beyond the point scale.

  10. Anomalous Signals Prior to Wenchuan Earthquake Detected by Superconducting Gravimeter and Broadband Seismometers Records

    Institute of Scientific and Technical Information of China (English)

    Wenbin Shen; Dijin Wang; Cheinway Hwang

    2011-01-01

    Using 1 Hz sampling records at one superconducting gravimeter (SG) station and 11 broadband seismometer stations,we found anomalous signals prior to the 2008 Wenchuan(汶川)earthquake event.The tides are removed from the original SG records to obtain the gravity residuals.Applying the Hilbert-Huang transform (HHT) and the wavelet analysis to the SG gravity residuals leads to time-frequency spectra,which suggests that there is an anomalous signal series around 39 h prior to the event.The period and the magnitude of the anomalous signal series are about 8 s and 3×10-8 m/s2 (3 μGal),respectively.In another aspect,applying HHT analysis technique to 11 records at broadband seismometer stations shows that most of them contain anomalous signals prior to the Wenchuan event,and the marginal spectra of 8 inland stations show an apparent characteristic of double peaks in anomalous days compared to the only one peak of the marginal spectra in quiet days.Preliminary investigations suggest that the anomalous signals prior to the earthquake are closely related to the low-frequency earthquake (LFE).We concluded that the SG data as well as the broadband seismometers records might be significant information sources in detecting the anomalous signals prior to large earthquakes.

  11. Optimized strategy for the calibration of superconducting gravimeters at the one per mille level

    Science.gov (United States)

    Van Camp, Michel; Meurers, Bruno; de Viron, Olivier; Forbriger, Thomas

    2016-01-01

    This paper reports on different sources of errors that occur in the calibration process of a superconducting gravimeter (SG), determined by comparison with a ballistic absolute gravimeter (AG); some of them have never been discussed in the literature. We then provide methods to mitigate the impact of those errors, to achieve a robust calibration estimate at the [InlineEquation not available: see fulltext.] level. We demonstrate that a standard deviation at the level of [InlineEquation not available: see fulltext.] can be reached within 48 h by measuring at spring tides and by increasing the AG sampling rate. This is much shorter than what is classically reported in previous empirical studies. Measuring more than 5 days around a tidal extreme does not improve the precision in the calibration factor significantly, as the variation in the error as a function of 1/√{N} does not apply, considering the decrease in signal amplitude due to the tidal modulation. However, we investigate the precision improvement up to 120 days, which can be useful if an AG is run continuously: at mid-latitude it would require 21 days to ensure a calibration factor at the [InlineEquation not available: see fulltext.] level with a 99.7 % confidence interval. We also show that restricting the AG measurement periods to tidal extrema can reduce instrument demand, while this does not affect the precision on the calibration factor significantly. Then, we quantify the effect of high microseismic noise causing aliasing in the AG time series. We eventually discuss the attenuation bias that might be induced by noisy time series of the SG. When experiments are performed at the [InlineEquation not available: see fulltext.] level, 7 are needed to ensure that the error in the calibration estimate will be at the 1 per mille level with a 99 % confidence.

  12. 300-days of parallel gravity record with the gPhone-054 spring gravimeter and the GWR-C026 superconducting gravimeter in Strasbourg (France): a comparative study

    Science.gov (United States)

    Riccardi, Umberto; Rosat, Severine; Hinderer, Jacques

    2010-05-01

    A wide set of geodynamical and hydrological phenomena, involving underground mass redistribution and/or change of the Earth's figure, affects the gravity field, sometimes inducing "slow" and "small" temporal gravity changes, the detection of which relies on instruments with high sensitivity, long-term stability and a very low drift. Here we report on the results of a comparative analysis carried out on more than ten months of co-located record collected with a new generation spring gravimeter, the gPhone-054, owned by the IGN of Madrid (Spain), and the GWR-C026 superconducting gravimeter (SG-C026) at the J9 gravity station in Strasbourg (France). The Microg-LaCoste gPhone is a portable Earth tide gravimeter equipped with a 0.1 µGal resolution feedback. The core sensor is the patented LaCoste & Romberg (LR) zero-length spring suspension system. The gPhone is essentially a LR, model G meter, but with significant upgrades: it has an improved thermal system (a double-oven) for increased temperature stability. Moreover the instrument should have a "true" vacuum seal making it almost insensitive to the buoyancy changes due to atmospheric pressure fluctuations. We test the performances of the gPhone-054 in terms of resolution, accuracy, noise level and long-term stability (drift) with respect to the SG-C026. Our comparative analysis is performed in a wide spectral domain, ranging from the body tides to the seismic band. This study demonstrates that the SGs have better performances in the whole analyzed spectral band. Focusing on the gPhone-054 instrumental drift observed during this study, it still remains a critical point preventing the study of the long-term gravity changes. In fact the drift was large and even not linear, sometimes requiring a high degree (> 4) polynomial fitting to be reduced; the latter makes hard to distinguish real time gravity changes from the instrumental drift. We observed a drift rate evolution characterized by a decrease from 50 µGal/day to

  13. Earth's core and inner-core resonances from analysis of VLBI nutation and superconducting gravimeter data

    Science.gov (United States)

    Rosat, S.; Lambert, S. B.; Gattano, C.; Calvo, M.

    2017-01-01

    Geophysical parameters of the deep Earth's interior can be evaluated through the resonance effects associated with the core and inner-core wobbles on the forced nutations of the Earth's figure axis, as observed by very long baseline interferometry (VLBI), or on the diurnal tidal waves, retrieved from the time-varying surface gravity recorded by superconducting gravimeters (SGs). In this paper, we inverse for the rotational mode parameters from both techniques to retrieve geophysical parameters of the deep Earth. We analyse surface gravity data from 15 SG stations and VLBI delays accumulated over the last 35 yr. We show existing correlations between several basic Earth parameters and then decide to inverse for the rotational modes parameters. We employ a Bayesian inversion based on the Metropolis-Hastings algorithm with a Markov-chain Monte Carlo method. We obtain estimates of the free core nutation resonant period and quality factor that are consistent for both techniques. We also attempt an inversion for the free inner-core nutation (FICN) resonant period from gravity data. The most probable solution gives a period close to the annual prograde term (or S1 tide). However the 95 per cent confidence interval extends the possible values between roughly 28 and 725 d for gravity, and from 362 to 414 d from nutation data, depending on the prior bounds. The precisions of the estimated long-period nutation and respective small diurnal tidal constituents are hence not accurate enough for a correct determination of the FICN complex frequency.

  14. Analysis of observations with dual sensor superconducting gravimeters

    Science.gov (United States)

    Kroner, C.; Dierks, O.; Neumeyer, J.; Wilmes, H.

    2005-12-01

    Among the 21 superconducting gravimeters presently operating worldwide four instruments exist that are equipped with two vertically aligned sensor units. Three of the instruments are installed in Germany (Bad Homburg, Moxa, Wettzell) and one in South Africa (Sutherland). Comparisons of the data sets obtained with the dual sensor systems yield information on instrumental effects and sensitivity as well as on the efficiency of reductions of environmental effects applied to the data. The latter is an important constraint when looking for small geodynamic signals like Slichter and core modes or aperiodic variations. From analyses of the two data sets of each instrument a small but significant difference of 1-3% in the response of the sensor units on barometric pressure variations is found. Likewise, the records of lower and upper sensor vary slightly but not systematically with regard to the noise levels in the different frequency ranges. The tidal analyses yield an agreement of the tidal parameters generally well within the standard deviations determined from the least squares adjustment in the tidal analysis. The deviations are in the range between 0×10-4 and 3×10-4 for the amplitude factor and the phases differ between 0.0005° and 0.01° for the four main tidal constituents O1, K1, M2, and S2. The comparison of the gravity residuals of the two sensors with each other as well as with their sum and difference in the time and frequency domain shows the existence of identical signals in the records of the two sensors in the whole range of observation. This probably means that either the environmental reductions applied are not sufficient or there are additional disturbing effects in the data which have not been taken care of yet. From the study it emerges that it is not possible to get entirely rid of the tidal signals in the data. This is probably also due to the fact that despite reductions the data sets contain additional signals and slightly different noise at

  15. Continuous absolute g monitoring of the mobile LNE-SYRTE Cold Atom Gravimeter - a new tool to calibrate superconducting gravimeters -

    Science.gov (United States)

    Merlet, Sébastien; Gillot, Pierre; Cheng, Bing; Pereira Dos Santos, Franck

    2016-04-01

    Atom interferometry allows for the realization of a new generation of instruments for inertial sensing based on laser cooled atoms. We have developed an absolute gravimeter (CAG) based on this technic, which can perform continuous gravity measurements at a high cycling rate. This instrument, operating since summer 2009, is the new metrological french standard for gravimetry. The CAG has been designed to be movable, so as to participate to international comparisons and on field measurements. It took part to several comparisons since ICAG'09 and operated in both urban environments and low noise underground facilities. The atom gravimeter operates with a high cycling rate of 3 Hz. Its sensitivity is predominantly limited by ground vibration noise which is rejected thanks to isolation platforms and correlation with other sensors, such as broadband accelerometers or sismometers. These developments allow us to perform continuous gravity measurements, no matter what the sismic conditions are and even in the worst cases such as during earthquakes. At best, a sensitivity of 5.6 μGal at 1 s measurement time has been demonstrated. The long term stability averages down to 0.1 μGal for long term measurements. Presently, the measurement accuracy is 4 μGal, which we plan to reduce to 1 μGal or below. I will present the instrument, the principle of the gravity acceleration measurement and its performances. I will focus on continuous gravity measurements performed over several years and compared with our superconducting gravimeter iGrav signal. This comparison allows us to calibrate the iGrav scale factor and follow its evolution. Especially, we demonstrate that, thanks to the CAG very high cycling rate, a single day gravity measurement allows to calibrate the iGrav scaling factor with a relative uncertainty as good as 4.10-4.

  16. Continuous Gravity Monitoring in South America with Superconducting and Absolute Gravimeters: More than 12 years time series at station TIGO/Concepcion (Chile)

    Science.gov (United States)

    Wziontek, Hartmut; Falk, Reinhard; Hase, Hayo; Armin, Böer; Andreas, Güntner; Rongjiang, Wang

    2016-04-01

    As part of the Transportable Integrated Geodetic Observatory (TIGO) of BKG, the superconducting gravimeter SG 038 was set up in December 2002 at station Concepcion / Chile to record temporal gravity variations with highest precision. Since May 2006 the time series was supported by weekly observations with the absolute gravimeter FG5-227, proving the large seasonal variations of up to 30 μGal and establishing a gravity reference station in South America. With the move of the whole observatory to the new location near to La Plata / Argentina the series was terminated. Results of almost continuously monitoring gravity variations for more than 12 years are presented. Seasonal variations are interpreted with respect of global and local water storage changes and the impact of the 8.8 Maule Earthquake in February 2010 is discussed.

  17. Long-term trends of terrestrial water storage in south-east Australia revealed by GRACE and superconducting gravimeter

    Science.gov (United States)

    Hasegawa, Takashi; Fukuda, Yoichi; Yamamoto, Keiko; Nakaegawa, Toshiyuki; Tamura, Yoshiaki; McQueen, Herbert

    2010-05-01

    South-east Australia is experiencing a severe multi-year drought in this decade. In particular, historic drought struck this area in 2006. Australian Bureau of Meteorology reported that the year 2006 was one of the driest years and agriculture suffered extensive damage from the drought. To understand the severity of current water crisis in south-east Australia, monitoring terrestrial water storage (TWS) changes is demanded. For this purpose, we investigated gravity changes associated with the drought in south-east Australia using data from GRACE satellite gravimeter and superconducting gravimeter (SG) at Mt. Stromlo, Canberra, over the period from 2003 to 2008. In 2006 and 2007, GRACE gravity solutions released from CNES/GRGS showed significant TWS decreases at south-east Australia. Areal extent of the TWS decreases showed good consistence with that of rainfall deficiencies. Therefore, it is clear that the TWS decreases estimated from GRACE data are attributed to the 2006 drought. SG data from Canberra also indicated gravity decreases during the 2006 drought period, after correcting for effects of atmosphere, tides, height variations and instrumental drift and steps. Comparison of GRACE and SG data showed good agreements in interannual variations, although some differences were found in seasonal components. Furthermore, both GRACE and SG data indicated that TWS in 2008 still remained at low levels, although annual precipitation returned to average before the drought. It implies TWS is possibly decreasing with longer time scale due to recent climate changes. Finally, the results from GRACE and SG observations were compared with TWS estimates from Noah land surface model, forced by output from the Global Land Data Assimilation System (GLDAS) developed by NASA. The model TWS estimates were the sum of soil moisture (2m column depth) and snow water equivalent. The comparison showed that the model underestimated the TWS decreases due to the 2006 drought. The differences

  18. Development of the superconducting gravimeter using a new type of diaphragm

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, H., E-mail: ikeda@bk.tsukuba.ac.jp [Research Facility Center for Science and Technology, Cryogenics Division, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Aoyama, Y.; Hayakawa, H.; Doi, K.; Shibuya, K. [National Institute of Polar Research, Midori-Machi, Tchikawa-shi, Tokyo 190-8518 (Japan)

    2011-11-15

    During the period from December 2009 to February 2010, a new superconducting gravimeter with a cryocooler was installed to replace the former one at Syowa Station on the Antarctica. It has a high sensitivity of one nano-gal enabling measurement inside the Earth for the Global Geodynamics Project (GGP network). A new type of diaphragm was confirmed to well isolate the vibration from refrigerator cold-head and to prevent the solid air contamination perfectly. The Dewar refrigeration system consists of a newly designed Dewar interfaced with a cryocooler capable of obtaining temperatures below the vaporization point of liquid helium. The system is based on the Coolpower 0.1 W, 4.2 K cryocooler manufactured by Sumitomo Heavy Industries, Ltd. Real time remote monitoring system from Japan was also established. The recent large earthquake in the Republic of Chile was observed at Syowa Station with the superconducting gravimeter.

  19. First analyses of the iOSG-type superconducting gravimeter at the low noise underground laboratory (LSBB URL of Rustrel, France

    Directory of Open Access Journals (Sweden)

    Rosat Séverine

    2016-01-01

    Full Text Available In the last few years, the performance of the cryogenic gravity instruments has been further improved by the development of a new generation of superconducting gravimeter (SG: the so-called iOSG which is a superconducting gravimeter designed for observatory purpose with a heavier sphere than previous SGs. The first iOSG (iOSG-024 has been installed in July 2015 at the LSSB low background noise underground research laboratory in Rustrel (France, funded by the EQUIPEX MIGA (Matter wave-laser based Interferometer Gravitation Antenna project and by the European FEDER 2006-2013 “PFM LSBB – Développement des qualités environnementales du LSBB”. This instrument is operational since September 2015. We present the first tidal analyses of the 7-month time-varying gravity records of this newly installed instrument as well as the calibration results performed by parallel FG5 absolute gravity measurements. We also show the performances of iOSG-024 in terms of noise levels in the seismic (in the millihertz frequency range band using a standardized procedure based on the computation of the residual power spectral densities over a quiet time period. The obtained noise levels are compared with other SG sites and with seismological reference noise models. The combination of the instrumental performance of the iOSG with the LSBB site properties makes this gravimetric station one of the quietest in the world, comparable to the lower sensor of the OSG-56 at BFO, at seismic frequencies.

  20. Detection of the translational oscillations of the Earth's solid inner core based on the international superconducting gravimeter observations

    Institute of Scientific and Technical Information of China (English)

    SUN Heping; XU Jianqiao; B.Ducarme

    2004-01-01

    Based on the 21 series of the high precision tidal gravity observations recorded using superconducting gravimeters (SG) at 14 stations distributed globally (in totally about 86 years), the translational oscillations of the Earth's solid inner core (ESIC) is detected in this paper. All observations are divided into two groups with G-Ⅰ group (8 relatively longer observational series) and G-Ⅱ group (13 relatively shorter observational series). The detailed corrections to minute original observations for each station are carried out, the error data due to the earthquakes, power supply impulses and some perturbations as change in atmospheric pressure and so on are carefully deleted for the first step, the gravity residuals are obtained after removing further synthetic tidal gravity signals. The Fast Fourier Transform analysis is carried out for each residual series, the estimations of the product spectral densities in the sub-tidal band are obtained by using a multi-station staking technique. The 8 common peaks are found after further removing the remaining frequency dependent pressure signals. The eigenperiods, quality factors and resonant strengths for these peaks are simulated. The numerical results show that the discrepancies of the eigenperiods for 3 of 8 peaks, compared to those of theoretical computation given by Smith, are only 0.4%, -0.4% and 1.0%. This coincidence signifies that the dynamical phenomenon of the Earth's solid inner core can be detected by using high precision ground gravity observations. The reliability of the numerical computation is also checked, the spectral peak splitting phenomenon induced by Earth's rotation and ellipticity is preliminary discussed in this paper.

  1. Low-Frequency Centroid Moment Tensor Inversion of the 2015 Illapel Earthquake from Superconducting-Gravimeter Data

    Science.gov (United States)

    Zábranová, Eliška; Matyska, Ctirad

    2016-04-01

    After the 2015 Illapel earthquake the radial and spheroidal modes up to 1 mHz were registered by the network of superconducting gravimeters. These data provide unique opportunity to obtain ultralow-frequency estimates of several centroid moment tensor components. We employ the superconducting-gravimeter records of 60-h lengths and perform the joint inversion for M_{rr}, (M_{\\vartheta \\vartheta }-M_{\\varphi \\varphi })/2 and M_{\\vartheta \\varphi } centroid moment tensor components from spheroidal modes up to 1 mHz. The M_{rr} component is also obtained from independent inversion of the radial modes _0S_0 and _1S_0. Our results are consistent with the published solutions obtained from higher frequency data, suggesting thus negligible slow afterslip phenomenon.

  2. Corrigendum to ``Time stability of spring and superconducting gravimeters through the analysis of very long gravity record'' [J. Geodyn. 80, (2014) 20-33

    Science.gov (United States)

    Calvo, M.; Hinderer, J.; Rosat, S.; Legros, H.; Boy, J.-P.; Ducarme, B.; Zürn, W.

    2017-05-01

    In the paper ;Time stability of spring and superconducting gravimeters through the analysis of very long gravity record; by M. Calvo et al. (J. Geodyn. Vol. 80, pp. 20-33, doi:10.1016/j.jog.2014.04.009), Figs. 13 and 16 are incorrect.

  3. Detection of spheriodal free oscillation excited by Peru 8.2 Ms earthquake with five international superconducting gravimeter data

    Institute of Scientific and Technical Information of China (English)

    LEI; Xiang'e; XU; Houze; SUN; Heping

    2005-01-01

    In this paper, authors obtain the spectral peaks of the earth free oscillation and check all normal modes from 0S0 to 0S48 accurately, with the Fourier analysis and the maximum entropy spectrum method dealing jointly with six groups of the observational residual data from five international superconducting gravimeter stations. By comparing the observational results in this paper with three former groups of observations or models, authors notice an extra discrepancy between two observational 0S2 modes excited separately by Peru earthquake and Alaska earthquake, which probably mirrors the anisotropy of the Earth's inner core. The analysis on the splitting 1S2 mode shows that the asymmetric factor of rotationwise spectral splitting is possible to be different from that of anti-rotationwise spectral splitting.

  4. Least-squares self-coherency analysis of superconducting gravimeter records in search for the Slichter triplet

    Science.gov (United States)

    Pagiatakis, Spiros D.; Yin, Hui; El-Gelil, Mahmoud Abd

    2007-02-01

    We develop a new approach for the spectral analysis of the superconducting gravimeter data to search for the spheroidal oscillation 1S1 of the Earth solid inner core. The new method, which we call least- squares ( LS) self- coherency analysis, is based on the product of the least-squares spectra of segments of the time series under consideration. The statistical foundation of this method is presented in the new least- squares product spectrum theorem that establishes rigorously confidence levels for detecting significant peaks. We apply this approach along with a number of other innovative ideas to a 6-year long gravity series collected at the Canadian Superconducting Gravimeter Installation (CSGI) in Cantley, Canada, by splitting it into 72 statistically independent monthly records. Each monthly record is analysed spectrally and all monthly LS spectra are multiplied to construct the self- coherency spectrum of the 6-year gravity series. The self-coherency spectrum is then used to detect significant peaks in the band 3-7 h at various significant levels with the aim to identify a triplet of periods associated with the rotational/ellipsoidal splitting of 1S1 (Slichter triplet). From all the Slichter periods predicted by various researchers so far, Smylie's triplet appears to be the most supported one, albeit very weakly, both, before and after the atmospheric pressure effect is removed from the series. Using the viscous splitting law [Smylie, D.E., 1992. The inner core translational triplet and the density near Earth's center. Science 255, 1678-1682] as guide, we can also see one interesting and statistically significant triplet with periods A = {4.261 h, 4.516 h, 4.872 h}, which changes slightly to A' = {4.269 h, 4.516 h, 4.889 h} after the atmospheric pressure correction is applied to the gravity series.

  5. Assessing the precision of the iGrav superconducting gravimeter for hydrological models and karstic hydrological process identification

    Science.gov (United States)

    Fores, B.; Champollion, C.; Le Moigne, N.; Bayer, R.; Chéry, J.

    2017-01-01

    In this paper we present the potential of a new compact superconducting gravimeter (GWR iGrav) designed for groundwater monitoring. At first, 3 yr of continuous gravity data are evaluated and the performance of the instrument is investigated. With repeated absolute gravity measurements using a Micro-g Lacoste FG5, the calibration factor (-894.8 nm s-2 V-1) and the long-term drift of this instrument (45 nm s-2 yr-1) are estimated for the first time with a high precision and found to be respectively constant and linear for this particular iGrav. The low noise level performance is found similar to those of previous superconducting gravimeters and leads to gravity residuals coherent with local hydrology. The iGrav is located in a fully instrumented hydrogeophysical observatory on the Durzon karstic basin (Larzac plateau, south of France). Rain gauges and a flux tower (evapo-transpiration measurements) are used to evaluate the groundwater mass balance at the local scale. Water mass balance demonstrates that the karst is only capacitive: all the rainwater is temporarily stored in the matrix and fast transfers to the spring through fractures are insignificant in this area. Moreover, the upper part of the karst around the observatory appears to be representative of slow transfer of the whole catchment. Indeed, slow transfer estimated on the site fully supports the low-flow discharge at the only spring which represents all groundwater outflows from the catchment. In the last part of the paper, reservoir models are used to characterize the water transfer and storage processes. Particular highlights are done on the advantages of continuous gravity data (compared to repeated campaigns) and on the importance of local accurate meteorological data to limit misinterpretation of the gravity observations. The results are complementary with previous studies at the basin scale and show a clear potential for continuous gravity time-series assimilation in hydrological simulations, even

  6. Assessing the precision of the iGrav superconducting gravimeter for hydrological models and karstic hydrological process identification

    Science.gov (United States)

    Fores, B.; Champollion, C.; Moigne, N. Le; Bayer, R.; Chéry, J.

    2016-10-01

    In this paper we present the potential of a new compact superconducting gravimeter (GWR iGrav) designed for groundwater monitoring. At first, three years of continuous gravity data are evaluated and the performance of the instrument is investigated. With repeated absolute gravity measurements using a Micro-g Lacoste FG5, the calibration factor (-894.8 nm.s-2.V-1) and the long term drift of this instrument (45 nm.s-2 per year) are estimated for the first time with a high precision and found to be respectively constant and linear for this particular iGrav. The low noise level performance is found similar to those of previous superconducting gravimeters and leads to gravity residuals coherent with local hydrology. The iGrav is located in a fully instrumented hydro-geophysical observatory on the Durzon karstic basin (Larzac plateau, south of France). Rain gauges and a flux tower (evapo-transpiration measurements) are used to evaluate the groundwater mass balance at the local scale. Water mass balance demonstrates that the karst is only capacitive: all the rainwater is temporarily stored in the matrix and fast transfers to the spring through fractures are insignificant in this area. Moreover, the upper part of the karst around the observatory appears to be representative of slow transfer of the whole catchment. Indeed, slow transfer estimated on the site fully supports the low-flow discharge at the only spring which represents all groundwater outflows from the catchment. In the last part of the paper, reservoir models are used to characterize the water transfer and storage processes. Particular highlights are done on the advantages of continuous gravity data (compared to repeated campaigns) and on the importance of local accurate meteorological data to limit misinterpretation of the gravity observations. The results are complementary with previous studies at the basin scale and show a clear potential for continuous gravity time series assimilation in hydrological

  7. Comparison of Superconducting and Spring Gravimeters at the Mizusawa VLBI Observatory of the National Astronomical Observatory of Japan

    Science.gov (United States)

    Miura, Satoshi; Ikeda, Hiroshi; Kim, Tae-Hee; Tamura, Yoshiaki

    2017-04-01

    Continuous microgravity monitoring is utilized to gain new insights into changes in the subsurface distribution of magma and/or fluid that commonly occur beneath active volcanoes. Rather new superconducting and spring gravimeters, iGrav#003 and gPhone#136 are collocated with a superconducting gravimeter, TT#70 at the Mizusawa VLBI Observatory of the National Astronomical Observatory of Japan, since the end of September, 2016 in order to evaluate those performances before field deployment planned in 2017. Calibration of iGrav#003 was carried out by collocation with an absolute gravimeter FG5 of the Earthquake Research Institute, University of Tokyo (Okubo, 2016, personal comm.) at a Fundamental Gravity Station in Sendai in July, 2016. Based on the scale factors of iGrav#003 obtained by the calibration and of gPhone#136 provided by the manufacturer (Micro-g LaCoste, Inc.), tidal analyses are performed by means of BAYTAP-G (Tamura et al., 1991, GJI). Amplitudes and phases of each major tidal constituent mutually agree well within ±4 % and ±3 degrees, respectively. The instrumental drift rate of iGrav#003 is very low, about 5 micro-Gal/month, whereas that of gPhone#136 is very high, about 500 micro-Gal/month. The high drift rate of gPhone#136, however, is well approximated by a quadratic function at present and can be removed. The detrended time series of gPhone#136 shows good agreement with iGrav#003 time series in the overall feature: gravity fluctuations with amplitudes of about a few micro-Gal and with durations of a few days, which may be due to variations in the moisture content of the topmost unsaturated sedimentary layer and the water table height. It suggests that both instruments may capture volcanic signals associated with pressure changes in magma chambers, dike intrusion/withdrawing, and so on. iGrav#003 will be installed in the Zao volcanological observatory of Tohoku University located at about 3 km from the summit crater, and gPhone#136 will be

  8. Check of Main Fracture Characteristics of the Wenchuan 8.0Ms Earthquake with EFO Modes Recorded by Three Superconducting Gravimeters

    Science.gov (United States)

    Lei, Xiange; Sun, Heping; Xu, Houze; Shi, Yaolin

    2010-05-01

    There was a large earthquake 8.0 Ms suddenly happened in the Wenchuan area of the Sichuan Province in China on May 12, 2008, which was one of the largest nature hazards in China in recent thirty years and resulted in the death of about seventy thousands of people. The effective rescue work needed to know the real position of the heavy disaster areas. As the geological structure is very complex in the area of the earthquake faults and the effect of possible multi-resolution problem, it was difficult to quickly determine the main fracture zones of the large earthquake with the seismic data of high-frequency P and S waves. Considering that the earthquake sources excited the Earth's free oscillations (EFO), we attempted to investigated the main fracture characteristics of the Wenchuan earthquake with the EFO modes recorded by the GGP superconducting gravimeters(SG). There was a distance of about 1242 km between the start epicenter of Wenchuan earthquake (30.94°N, 103.47°E)and the Wuhan SG station, which did not arrive at the near-earthquake condition for the P and S wave observation but satisfied the condition for the check of EFO modes. After the correction of gravity tides and atmospheric pressure, we gained the EFO data coming from the Wuhan SG station. The spectral peaks of EFO modes were obtained by applying the FFT technique to the EFO data. The spectral signals were very strong for the mid-class normal modes from 0S20 to 0S30 and we accurately investigated the frequencies and qualities of the mid-class modes, which were basically according to the predictions provided by PREM model. The epicenter of Wenchuan earthquake was an exciting pole for the Earth's free oscillations. If a station was located in the wave ridge of an EFO mode namely the epicentral distance of N+1/4 or N+3/4 multiple of wave length , the EFO mode would have the higher peak than other modes nearby. It was noticed that both 0S22 and 0S28 modes had this kind of phenomena at Wuhan station

  9. Analysis and comparison of the tidal gravity observations obtained with LCR-ET20 spring gravimeter

    Institute of Scientific and Technical Information of China (English)

    孙和平; 陈晓东; 刘明; 周百力

    2002-01-01

    Based on the tidal gravity observations recorded with LCR-ET20 spring gravimeter at Wuhan international fundamental tidal gravity station, the characteristics of the ET20 and the atmospheric and oceanic gravity signals are studied systematically by using international standard data pre-processing and analysis methods, and by comparing the results with those obtained using superconducting gravimeter (SG) at same station. The numerical results indicate that the identical tidal gravity parameters same as those with the SG are obtained, the instrument can be used effectively to record temporal change of the gravity field, though the accuracy of the ET20 is one order lower than that of the SG, and has also the large drift induced by the spring creep character.

  10. Direct measurement of evapotranspiration from a forest using a superconducting gravimeter

    Science.gov (United States)

    Van Camp, Michel; Viron, Olivier; Pajot-Métivier, Gwendoline; Casenave, Fabien; Watlet, Arnaud; Dassargues, Alain; Vanclooster, Marnik

    2016-10-01

    Evapotranspiration (ET) controls the flux between the land surface and the atmosphere. Assessing the ET ecosystems remains a key challenge in hydrology. We have found that the ET water mass loss can be directly inferred from continuous gravity measurements: as water evaporates and transpires from terrestrial ecosystems, the mass distribution of water decreases, changing the gravity field. Using continuous superconducting gravity measurements, we were able to identify daily gravity changes at the level of, or smaller than, 10-9 nm s-2 (or 10-10 g) per day. This corresponds to 1.7 mm of water over an area of 50 ha. The strength of this method is its ability to enable a direct, traceable and continuous monitoring of actual ET for years at the mesoscale with a high accuracy.

  11. Gravimeter using high-temperature superconductor bearing.

    Energy Technology Data Exchange (ETDEWEB)

    Hull, J. R.

    1998-09-11

    We have developed a sensitive gravimeter concept that uses an extremely low-friction bearing based on a permanent magnet (PM) levitated over a high-temperature superconductor (HTS). A mass is attached to the PM by means of a cantilevered beam, and the combination of PM and HTS forms a bearing platform that has low resistance to rotational motion but high resistance to horizontal, vertical, or tilting motion. The combination acts as a low-loss torsional pendulum that can be operated in any orientation. Gravity acts on the cantilevered beam and attached mass, accelerating them. Variations in gravity can be detected by time-of-flight acceleration, or by a control coil or electrode that would keep the mass stationary. Calculations suggest that the HTS gravimeter would be as sensitive as present-day superconducting gravimeters that need cooling to liquid helium temperatures, but the HTS gravimeter needs cooling only to liquid nitrogen temperatures.

  12. Solid pole tide in global GPS and superconducting gravimeter observations: Signal retrieval and inference for mantle anelasticity

    Science.gov (United States)

    Ding, Hao; Chao, Benjamin F.

    2017-02-01

    The mantle anelasticity plays an important role in Earth's interior dynamics. Here we seek to determine the lower-mantle anelasticity through the solution of the complex Love numbers at the Chandler wobble period. The Love numbers h21, l21, δ21 and k21 are obtained in the frequency domain by dividing off the observed polar motion, or more specifically the pole tide potential, from the observed GPS 3-D displacement field and SG gravity variation. The latter signals are obtained through the array processing method of OSE (optimal sequence estimation) that results in greatly enhanced signals to be extracted from global array data. The resultant Love number estimates h21 = 0.6248 (± 5 e - 4) - 0.013 (± 5 e - 3) i, l21 = 0.0904 (± 8 e - 4) - 0.0008 (± 2 e - 3) i, δ21 = 1.156 (± 2 e - 3) - 0.003 (± 1 e - 3) i and k21 = 0.3125 (± 2 e - 3) - 0.0069 (± 3 e - 3) i are thus well-constrained in comparison to past estimates that vary considerably. They further lead to estimates of the corresponding mantle anelastic parameters fr and fi, which in turn determines, under the single-absorption band assumption, the dispersion exponent of α = 0.21 ± 0.02 with respect to the reference frequency of 5 mHz. We believe our estimate is robust and hence can better constrain the mantle anelasticity and attenuation models of the Earth interior.

  13. Measurement of the Earth tides with a MEMS gravimeter

    Science.gov (United States)

    Middlemiss, R. P.; Samarelli, A.; Paul, D. J.; Hough, J.; Rowan, S.; Hammond, G. D.

    2016-03-01

    The ability to measure tiny variations in the local gravitational acceleration allows, besides other applications, the detection of hidden hydrocarbon reserves, magma build-up before volcanic eruptions, and subterranean tunnels. Several technologies are available that achieve the sensitivities required for such applications (tens of microgal per hertz1/2): free-fall gravimeters, spring-based gravimeters, superconducting gravimeters, and atom interferometers. All of these devices can observe the Earth tides: the elastic deformation of the Earth’s crust as a result of tidal forces. This is a universally predictable gravitational signal that requires both high sensitivity and high stability over timescales of several days to measure. All present gravimeters, however, have limitations of high cost (more than 100,000 US dollars) and high mass (more than 8 kilograms). Here we present a microelectromechanical system (MEMS) device with a sensitivity of 40 microgal per hertz1/2 only a few cubic centimetres in size. We use it to measure the Earth tides, revealing the long-term stability of our instrument compared to any other MEMS device. MEMS accelerometers—found in most smart phones—can be mass-produced remarkably cheaply, but none are stable enough to be called a gravimeter. Our device has thus made the transition from accelerometer to gravimeter. The small size and low cost of this MEMS gravimeter suggests many applications in gravity mapping. For example, it could be mounted on a drone instead of low-flying aircraft for distributed land surveying and exploration, deployed to monitor volcanoes, or built into multi-pixel density-contrast imaging arrays.

  14. Response functions of atom gravimeters

    CERN Document Server

    Nagornyi, V D

    2012-01-01

    Atom gravimeters are equivalent to non-multi-level corner-cube gravimeters in translating the gravity signal into the measurement result. This enables description of atom gravimeters as LTI systems. The system's impulse responses by acceleration, velocity, and displacement are found to have the shape of triangle, meander, and the Dirac comb resp. The effects of inhomogeneous gravity field are studied for constant and linear vertical gradients and self-attraction of the instrument. For the constant gradient the effective measurement height is below the top of the trajectory at 1/6 and 7/24 of its length for the fountain and the release types of the instruments resp. The analysis is expanded to the gravimeters implementing the Bloch oscillations at the apex of the trajectory. In filtering the vibrations these instruments are equivalent to the first-order low-pass filters, while other atom gravimeters are equivalent to the second-order low-pass filters.

  15. Atom chip gravimeter

    Science.gov (United States)

    Schubert, Christian; Abend, Sven; Gebbe, Martina; Gersemann, Matthias; Ahlers, Holger; Müntinga, Hauke; Matthias, Jonas; Sahelgozin, Maral; Herr, Waldemar; Lämmerzahl, Claus; Ertmer, Wolfgang; Rasel, Ernst

    2016-04-01

    Atom interferometry has developed into a tool for measuring rotations [1], accelerations [2], and testing fundamental physics [3]. Gravimeters based on laser cooled atoms demonstrated residual uncertainties of few microgal [2,4] and were simplified for field applications [5]. Atomic gravimeters rely on the interference of matter waves which are coherently manipulated by laser light fields. The latter can be interpreted as rulers to which the position of the atoms is compared. At three points in time separated by a free evolution, the light fields are pulsed onto the atoms. First, a coherent superposition of two momentum states is produced, then the momentum is inverted, and finally the two trajectories are recombined. Depending on the acceleration the atoms experienced, the number of atoms detected in the output ports will change. Consequently, the acceleration can be determined from the output signal. The laser cooled atoms with microkelvin temperatures used in state-of-the-art gravimeters impose limits on the accuracy [4]. Therefore, ultra-cold atoms generated by Bose-Einstein condensation and delta-kick collimation [6,7] are expected to be the key for further improvements. These sources suffered from a low flux implying an incompatible noise floor, but a competitive performance was demonstrated recently with atom chips [8]. In the compact and robust setup constructed for operation in the drop tower [6] we demonstrated all steps necessary for an atom chip gravimeter with Bose-Einstein condensates in a ground based operation. We will discuss the principle of operation, the current performance, and the perspectives to supersede the state of the art. The authors thank the QUANTUS cooperation for contributions to the drop tower project in the earlier stages. This work is supported by the German Space Agency (DLR) with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under grant numbers DLR 50WM

  16. Superconducting Gravimeters Detect Gravity Fluctuations Induced by Mw 5.7 Earthquake Along South Pacific Rise Few Hours Before the 2011 Mw 9.0 Tohoku-Oki Earthquake

    Directory of Open Access Journals (Sweden)

    Keliang Zhang Jin Ma

    2014-01-01

    Full Text Available Gravity changes sometimes appear before a big earthquake. To determine the possible sources is important for recognizing the mechanism and further geodynamic studies. During the first two hours on March 11 before the Mw 9.0 Tohoku-Oki earthquake, the non-tidal gravity time series of superconducting gravimeters worldwide showed low-frequency (< 0.10 Hz fluctuations with amplitude of ~1 to 4 × 10-8 ms-2 lasting ~10 - 20 minutes. Through comparing global seismicity with the arrival times of seismic waves, we find that the fluctuations were induced by the Mw 5.7 earthquake that occurred at 0:14:54.68 at (53.27°S, 118.18°W along the eastern South Pacific Rise. Several body waves such as P, S are clearly recorded in the station with ~400 km distance to the hypocenter. The fluctuations are in response to the waves that propagate with a velocity of about 4 km s-1. Their amplitudes are proportional to the inverse of the epicentral distances even though the fluctuations of European sites were overlapped with waves associated with a smaller, i.e., Mw 2.6, event in Europe during this period. That is, the Mw 5.7 earthquake induced remarkable gravity fluctuations over long distances at stations all over the world. As such, the foreshocks with larger magnitudes occurred before the Mw 9.0 earthquake would have more significant influence on the gravity recordings and the seismic-wave induced component should be removed during the analysis of anomalies prior to a great earthquake in future studies.

  17. Superconducting Gravimeters Detect Gravity Fluctuations Induced by Mw 5.7 Earthquake Along South Pacific Rise Few Hours Before the 2011 Mw 9.0 Tohoku-Oki Earthquake

    Directory of Open Access Journals (Sweden)

    Keliang Zhang and Jin Ma

    2014-01-01

    Full Text Available Gravity changes sometimes appear before a big earthquake. To determine the possible sources is important for recognizing the mechanism and further geodynamic studies. During the first two hours on March 11 before the Mw 9.0 Tohoku-Oki earthquake, the non-tidal gravity time series of superconducting gravimeters worldwide showed low-frequency (< 0.10 Hz fluctuations with amplitude of ~1 to 4 ×× 10-8 ms-2 lasting ~10 - 20 minutes. Through comparing global seismicity with the arrival times of seismic waves, we find that the fluctuations were induced by the Mw 5.7 earthquake that occurred at 0:14:54.68 at (53.27°S,(53.27°S, 118.18°W118.18°W along the eastern South Pacific Rise. Several body waves such as P, S are clearly recorded in the station with ~400 km distance to the hypocenter. The fluctuations are in response to the waves that propagate with a velocity of about 4 km s-1. Their amplitudes are proportional to the inverse of the epicentral distances even though the fluctuations of European sites were overlapped with waves associated with a smaller, i.e., Mw 2.6, event in Europe during this period. That is, the Mw 5.7 earthquake induced remarkable gravity fluctuations over long distances at stations all over the world. As such, the foreshocks with larger magnitudes occurred before the Mw 9.0 earthquake would have more significant influence on the gravity recordings and the seismic-wave induced component should be removed during the analysis of anomalies prior to a great earthquake in future studies.

  18. 武汉九峰地震台超导重力仪观测分析研究%Observation of superconducting gravimeter at Jiufeng seismic station

    Institute of Scientific and Technical Information of China (English)

    韦进; 李辉; 刘子维; 康开轩; 郝洪涛

    2012-01-01

    The relationship between the mass transfer beneath the earth surface and the vertical deformation could be studied using continuous relative gravimetry and continuous GPS observation. Compared to mobile relative gravimetry and absolute gravimetry, continuous relative gravimetry could be used to monitor the whole process of gravity changes and mass transfer, avoiding low measurement precision and temporal resolution. In this paper, more than 13000 hours gravity data recorded at Jiufeng seismic station using superconducting gravimetry (SGC053) are analyzed along with co-located absolute gravimetry data, air pressure, vertical displacement of surrounding GPS stations, WUHN IGS site and WHJF site, GRACE monthly time-variable gravity and two global continental water storage models (GLDAS, CPC). Gravity variations induced by solid earth tide, air pressure, pole tide and continental water loading are corrected using harmonic analysis method, atmospheric pressure admittance model, pole tide model and the correlation analysis with GRACE results and/or water storage models, then instrument drift is also corrected using co-located absolute gravity measurements. Based on the above processing, the relationship between the residual gravity time series and GPS vertical deformation is addressed. The harmonic analysis result for SGC053 gravity records, spanning about one and half years, shows that the white noise is about 1. 14~1. 40 × 10~8m· s-z and the tidal factor errors of dominant tidal groups reach about 0. l%o. Compared to ocean tide loading (3×10-8m·s-2) , the gravity due to air pressure (12×10-8m·s-2) and pole tide (10×lCT8m·s-2) is much larger. The drift of SGC053, about 2. 18X l(T8(m ?s"2)/a, is estimated using 4 absolute gravity co-located records of FG5-232. The result shows that the residual gravity caused by continental water loading in summer and autumn is about (6~8)×10~8m·s~2, by comparing residual gravity variations with both GARCE result and global

  19. The benefits of gravimeter observations for modelling water storage changes at the field scale

    Directory of Open Access Journals (Sweden)

    B. Creutzfeldt

    2010-04-01

    Full Text Available Water storage is the fundamental state variable of hydrological systems. However, comprehensive data on total water storage changes (WSC are practically inaccessible by hydrological measurement techniques at the field or catchment scale, and hydrological models are highly uncertain in representing the storage term due to the lack of adequate validation or calibration data. In this study, we assess the benefit of temporal gravimeter measurements for modelling WSC at the field scale. A simple conceptual hydrological model is calibrated and evaluated against records of a superconducting gravimeter, soil moisture and groundwater time series. The model is validated against independently estimated WSC data. Using gravimeter data as a calibration constraint improves the model results substantially in terms of predictive capability and variation of the behavioural model runs. Thanks to their capacity to integrate over different storage components and a larger area, gravimeters provide generalised information on total WSC that is useful to constrain the overall status of the hydrological system in a model. The general problem of specifying the internal model structure or individual parameter sets can, however, not be solved with gravimeters alone.

  20. Superconductivity

    CERN Document Server

    Poole, Charles P; Farach, Horacio A

    1995-01-01

    Superconductivity covers the nature of the phenomenon of superconductivity. The book discusses the fundamental principles of superconductivity; the essential features of the superconducting state-the phenomena of zero resistance and perfect diamagnetism; and the properties of the various classes of superconductors, including the organics, the buckministerfullerenes, and the precursors to the cuprates. The text also describes superconductivity from the viewpoint of thermodynamics and provides expressions for the free energy; the Ginzburg-Landau and BCS theories; and the structures of the high

  1. Superconductivity

    CERN Document Server

    Thomas, D B

    1974-01-01

    A short general review is presented of the progress made in applied superconductivity as a result of work performed in connection with the high-energy physics program in Europe. The phenomenon of superconductivity and properties of superconductors of Types I and II are outlined. The main body of the paper deals with the development of niobium-titanium superconducting magnets and of radio-frequency superconducting cavities and accelerating structures. Examples of applications in and for high-energy physics experiments are given, including the large superconducting magnet for the Big European Bubble Chamber, prototype synchrotron magnets for the Super Proton Synchrotron, superconducting d.c. beam line magnets, and superconducting RF cavities for use in various laboratories. (0 refs).

  2. Superconductivity

    Science.gov (United States)

    1989-07-01

    SUPERCONDUCTIVITY HIGH-POWER APPLICATIONS Electric power generation/transmission Energy storage Acoustic projectors Weapon launchers Catapult Ship propulsion • • • Stabilized...temperature superconductive shields could be substantially enhanced by use of high-Tc materials. 27 28 NRAC SUPERCONDUCTIVITY SHIP PROPULSION APPLICATIONS...motor shown in the photograph. As a next step in the evolution of electric-drive ship propulsion technology, DTRC has proposed to scale up the design

  3. Superconductivity

    CERN Document Server

    Ketterson, John B

    2008-01-01

    Conceived as the definitive reference in a classic and important field of modern physics, this extensive and comprehensive handbook systematically reviews the basic physics, theory and recent advances in the field of superconductivity. Leading researchers, including Nobel laureates, describe the state-of-the-art in conventional and unconventional superconductors at a particularly opportune time, as new experimental techniques and field-theoretical methods have emerged. In addition to full-coverage of novel materials and underlying mechanisms, the handbook reflects continued intense research into electron-phone based superconductivity. Considerable attention is devoted to high-Tc superconductivity, novel superconductivity, including triplet pairing in the ruthenates, novel superconductors, such as heavy-Fermion metals and organic materials, and also granular superconductors. What’s more, several contributions address superconductors with impurities and nanostructured superconductors. Important new results on...

  4. Superconductivity

    CERN Document Server

    Poole, Charles P; Creswick, Richard J; Prozorov, Ruslan

    2014-01-01

    Superconductivity, Third Edition is an encyclopedic treatment of all aspects of the subject, from classic materials to fullerenes. Emphasis is on balanced coverage, with a comprehensive reference list and significant graphics from all areas of the published literature. Widely used theoretical approaches are explained in detail. Topics of special interest include high temperature superconductors, spectroscopy, critical states, transport properties, and tunneling. This book covers the whole field of superconductivity from both the theoretical and the experimental point of view. This third edition features extensive revisions throughout, and new chapters on second critical field and iron based superconductors.

  5. Double diffraction in an atomic gravimeter

    CERN Document Server

    Malossi, Nicola; Merlet, Sébastien; Landragin, Arnaud; Santos, Franck Pereira Dos

    2009-01-01

    We demonstrate the realization of a new scheme for cold atom gravimetry based on the use of double diffraction beamsplitters recently demonstrated in \\cite{Leveque}, where the use of two retro-reflected Raman beams allows symmetric diffraction in $\\pm \\hbar k_{eff}$ momenta. Though in principle restricted to the case of zero Doppler shift, for which the two pairs of Raman beams are simultaneously resonant, we demonstrate that such diffraction pulses can remain efficient on atoms with non zero velocity, such as in a gravimeter, when modulating the frequency of one of the two Raman laser sources. We use such pulses to realize an interferometer insensitive to laser phase noise and some of the dominant systematics. This reduces the technical requirements and would allow the realization of a simple atomic gravimeter. We demonstrate a sensitivity of $1.2\\times10^{-7}g$ per shot.

  6. The new Absolute Quantum Gravimeter (AQG): first results and perspectives

    Science.gov (United States)

    Bonvalot, Sylvain; Le Moigne, Nicolas; Merlet, Sebastien; Desruelle, Bruno; Lautier-Gaud, Jean; Menoret, Vincent; Vermeulen, Pierre

    2016-04-01

    Cold atom gravimetry represents one of the most innovative evolution in gravity instrumentation since the last 20 years. The concept of measuring the gravitational acceleration by dropping atoms and the development of the first instrumental devices during this last decade quickly revealed the promising perspectives of this new generation of gravity meters enabling accurate and absolute measurements of the Earth's gravity field for a wide range of applications (geophysics, geodesy, metrology, etc.). The Absolute Quantum Gravimeter (AQG) gravity meter, developed by MUQUANS (Talence, France - http://www.muquans.com/) with the support of RESIF, the French Seismologic and Geodetic Network (http://www.resif.fr/) belongs to this new generation of instruments. It also represents the first commercial device based on the utilization of advanced matter-wave interferometry techniques, which allow to characterize precisely the vertical acceleration experienced by a cloud of cold atoms. Recently, the first operational unit (AQG01) has been achieved as a compact transportable gravimeter with the aim of satisfying absolute gravity measurements in laboratory conditions under the following specifications: measurements the μGal level at a few Hz cycling frequency, sensitivity of 50μGal/√Hz, immunity to ground vibrations, easy and quickness of operation, automated continuous data acquisition for several months, etc. In order to evaluate the current performances of the AQG01, several experiments are carried out in collaboration between RESIF user's teams and the MUQUANS manufacturer on different reference gravity sites and laboratories in France. These measurements performed in indoor conditions including simultaneous observations with classical reference gravity instruments (corner-cube absolute gravity meters, relative superconducting meters) as well with the Cold Atom Gravity meter (CAG) developed by LNE-SYRTE, lead to a first objective characterization of the performances of

  7. Stability comparison of two absolute gravimeters: optical versus atomic interferometers

    CERN Document Server

    Gillot, Pierre; Landragin, Arnaud; Santos, Franck Pereira Dos; Merlet, Sébastien

    2014-01-01

    We report the direct comparison between the stabilities of two mobile absolute gravimeters of different technology: the LNE-SYRTE Cold Atom Gravimeter and FG5X\\#216 of the Universit\\'e du Luxembourg. These instruments rely on two different principles of operation: atomic and optical interferometry. The comparison took place in the Walferdange Underground Laboratory for Geodynamics in Luxembourg, at the beginning of the last International Comparison of Absolute Gravimeters, ICAG-2013. We analyse a 2h10 duration common measurement, and find that the CAG shows better immunity with respect to changes in the level of vibration noise, as well as a slightly better short term stability.

  8. Performances and capabilities of the mobile LNE-SYRTE Cold Atom Gravimeter

    Science.gov (United States)

    Merlet, S.; Farah, T.; Lautier, J.; Landragin, A.; Pereira Dos Santos, F.

    2013-12-01

    Atom interferometry technics allow for the realization of a new generation of instruments for inertial sensing based on laser cooled atoms. We have developped an absolute gravimeter (CAG) based on these technics, which can perform continuous gravity measurements at high cycling rate. This instrument, operating since summer 2009 is the new metrological french standard for gravimetry. The CAG has been developped to be movable to participate to international comparisons and on field measurement. It took part to several comparisons such as ICAG'09 and ECAG'11 and operated in urban environment and low noise underground laboratory. The atom gravimeter operates with a high cycling rate of 3 Hz. Its sensitivity is predominantly limited by ground vibration noise which can be rejected thanks to isolation platforms and/or correlation with other sensors such as broadband accelerometers or sismometers. These developments allow us to perform continuous gravity measurements, no matter what the sismic conditions are and even in the worst cases such as during earthquakes. At best, a sensitivity below 1 μGal after only 100 s measurement time without any ground vibration isolation system have been obtained. Presently, the measurement accuracy is 4 μGal, which we plan to reduce to 1 μGal or below. I will present the instrument, the principle of gravity acceleration measurement and its performances and results during comparisons, in different environmental conditions such as at LSBB, an underground laboratory, or during earthquakes. Comparison with our superconducting gravimeter iGrav recently installed in our laboratory will also be presented. Then I will be able to present other geometries for different applications.

  9. Muonic hydrogen as a quantum gravimeter

    CERN Document Server

    Onofrio, Roberto

    2015-01-01

    High precision spectroscopy of muonic hydrogen has recently led to an anomaly in the Lamb shift, which has been parametrized in terms of a proton charge radius differing by seven standard deviations from the CODATA value. We show how this anomaly may be explained, within about a factor of three, in the framework of an effective Yukawian gravitational potential related to charged weak interactions, without additional free parameters with respect to the ones of the standard model. The residual discrepancy from the experimental result in this model should be attributable to the approximations introduced in the calculation, the uncertainty in the exact value of the Fermi scale relevant to the model and the lack of detailed knowledge on the gravitational radius of the proton. The latter cannot be inferred with electromagnetic probes due to the unknown gluonic contribution to the proton mass distribution. In this context, we argue that muonic hydrogen acts like a microscopic gravimeter suitable for testing a possib...

  10. Superconducting Gravity Effects of Earthquake at Cascadia Subduction Zone on Vancouver Island, Canada

    Science.gov (United States)

    Kim, Jeong Woo; Neumeyer, Juergen; Kao, Ricky; Kabirzadeh, Hojjat; Henton, Joseph; Dragert, Herb; Lambert, Anthony

    2013-04-01

    Superconducting gravimeter (SG) iGrav #01 was deployed at NRCan's Pacific Geoscience Centre (PGC) on Vancouver Island near Sidney in British Columbia, Canada, in July 2012. The PGC is situated in the forearc of the northern Cascadia Subduction Zone (CSZ) and is equipped with FG-5 and A-10 absolute gravimeters, a borehole strainmeter, and a GPS network. In this area, a transient surface deformation accompanied by tremor-like seismic signals has been documented with a recurrence interval of 13 to 16 months. This phenomenon, named Episodic Tremor and Slip (ETS), has been interpreted to be associated with slow slip events (silent earthquakes) in the deeper (25-45 km) part of the CSZ. These slip events have been detected by transient horizontal displacements. The SG is not sensitive to horizontal displacements but it has the largest sensitivity in vertical direction. For detecting of ETS, the continuous SG recordings at the PGC site were reduced for the Earth and ocean tides, polar motion, atmospheric pressure and soil moisture, and, then were band-pass filtered and analyzed in the time and frequency domains and compared with the GPS-detected ETS. Furthermore, we present the gravity effect of the Haida Gwaii earthquake, which occurred near the plate boundary between the Pacific and North America plates (52.788N, 132.101W, 136 km south of Masset, Canada, on October 28th 2012 at 03:04:09 GMT with a magnitude 7.8 at a depth of 14 km). During the observation, a large co-seismic gravity change of -2.6 microGal was recorded at the onset of the Haida Gwaii earthquake. In addition, a significant decrease of gravity was observed from the 15 days prior to the earthquake, and the decrease lasted for 11 days after the earthquake. The analysis of other earthquakes, e.g. the southwestern Alaska earthquake (55.28N, 134.87W, January 5th 2013 with a magnitude 7.5) is also presented.

  11. Absolute Gravity Datum in the Age of Cold Atom Gravimeters

    Science.gov (United States)

    Childers, V. A.; Eckl, M. C.

    2014-12-01

    The international gravity datum is defined today by the International Gravity Standardization Net of 1971 (IGSN-71). The data supporting this network was measured in the 1950s and 60s using pendulum and spring-based gravimeter ties (plus some new ballistic absolute meters) to replace the prior protocol of referencing all gravity values to the earlier Potsdam value. Since this time, gravimeter technology has advanced significantly with the development and refinement of the FG-5 (the current standard of the industry) and again with the soon-to-be-available cold atom interferometric absolute gravimeters. This latest development is anticipated to provide improvement in the range of two orders of magnitude as compared to the measurement accuracy of technology utilized to develop ISGN-71. In this presentation, we will explore how the IGSN-71 might best be "modernized" given today's requirements and available instruments and resources. The National Geodetic Survey (NGS), along with other relevant US Government agencies, is concerned about establishing gravity control to establish and maintain high order geodetic networks as part of the nation's essential infrastructure. The need to modernize the nation's geodetic infrastructure was highlighted in "Precise Geodetic Infrastructure, National Requirements for a Shared Resource" National Academy of Science, 2010. The NGS mission, as dictated by Congress, is to establish and maintain the National Spatial Reference System, which includes gravity measurements. Absolute gravimeters measure the total gravity field directly and do not involve ties to other measurements. Periodic "intercomparisons" of multiple absolute gravimeters at reference gravity sites are used to constrain the behavior of the instruments to ensure that each would yield reasonably similar measurements of the same location (i.e. yield a sufficiently consistent datum when measured in disparate locales). New atomic interferometric gravimeters promise a significant

  12. Enabling linear model for the IMGC-02 absolute gravimeter

    CERN Document Server

    Nagornyi, V D; Svitlov, S

    2013-01-01

    Measurement procedures of most rise-and-fall absolute gravimeters has to resolve singularity at the apex of the trajectory caused by the discrete fringe counting in the Michelson-type interferometers. Traditionally the singularity is addressed by implementing non-linear models of the trajectory, but they introduce problems of their own, such as biasness, non-uniqueness, and instability of the gravity estimates. Using IMGC-02 gravimeter as example, we show that the measurement procedure of the rise-and-fall gravimeters can be based on the linear models which successfully resolve the singularity and provide rigorous estimates of the gravity value. The linear models also facilitate further enhancements of the instrument, such as accounting for new types of disturbances and active compensation for the vibrations.

  13. Shallow-water loading tides in Japan from superconducting gravimetry

    DEFF Research Database (Denmark)

    Khan, Shfaqat Abbas; Hoyer, J.L.

    2004-01-01

    Gravity observations from superconducting gravimeters are used to observe loading effects from shallow-water tides on the Japanese cast and west coasts. Non-linear third-diurnal and higher-frequency shallow-water tides are identified in the tide-gauge observations from these coastal areas. The most...

  14. Shallow-water loading tides in Japan from superconducting gravimetry

    DEFF Research Database (Denmark)

    Khan, Shfaqat Abbas; Hoyer, J.L.

    2004-01-01

    Gravity observations from superconducting gravimeters are used to observe loading effects from shallow-water tides on the Japanese cast and west coasts. Non-linear third-diurnal and higher-frequency shallow-water tides are identified in the tide-gauge observations from these coastal areas. The mo...

  15. SGA-WZ: A New Strapdown Airborne Gravimeter

    Directory of Open Access Journals (Sweden)

    Kaidong Zhang

    2012-07-01

    Full Text Available Inertial navigation systems and gravimeters are now routinely used to map the regional gravitational quantities from an aircraft with mGal accuracy and a spatial resolution of a few kilometers. However, airborne gravimeter of this kind is limited by the inaccuracy of the inertial sensor performance, the integrated navigation technique and the kinematic acceleration determination. As the GPS technique developed, the vehicle acceleration determination is no longer the limiting factor in airborne gravity due to the cancellation of the common mode acceleration in differential mode. A new airborne gravimeter taking full advantage of the inertial navigation system is described with improved mechanical design, high precision time synchronization, better thermal control and optimized sensor modeling. Apart from the general usage, the Global Positioning System (GPS after differentiation is integrated to the inertial navigation system which provides not only more precise altitude information along with the navigation aiding, but also an effective way to calculate the vehicle acceleration. Design description and test results on the performance of the gyroscopes and accelerations will be emphasized. Analysis and discussion of the airborne field test results are also given.

  16. Development of an atomic gravimeter based on atom interferometer

    Science.gov (United States)

    Kwon, Taeg Yong; Lee, Sang-Bum; Park, Sang Eon; Heo, Myoung-Sun; Hong, Hyun-Gue; Park, Chang Yong; Lee, Won-Kyu; Yu, Dai-Hyuk

    2015-05-01

    We present an atomic gravimeter under development at KRISS in Korea for precise measurement of absolute gravity. It is based on atomic interference of laser cooled 87Rb atoms in free fall. The temperature of the atoms is cooled to about 5 μK in a magneto-optic trap. Three Raman light pulses are applied for splitting, reflecting and recombining the atoms clouds while the atoms are in free fall. The pulse width and spacing time of Raman pulses is 40 μs and about 50 ms, respectively. During the interferometry, the frequency difference between the two counter-propagating Raman beams is chirped to compensate for Doppler shift induced by gravitational acceleration. The interference signals are measured at different spacing times to find the chirping rate at which the phase of interference fringe is independent of the spacing time. The chirping rate (~ 25.1 MHz/s) corresponds to g .keff/2 π, where keff = k1 +k2 (k1 and k2 are wave numbers for two Raman beams). At present, we are going to introduce an anti-vibration platform and a magnetic shield for accuracy evaluation of the gravimeter. In the presentation, the preliminary results of the KRISS gravimeter will be discussed.

  17. Development of a portable matter-wave gravimeter

    Science.gov (United States)

    Desruelle, B.; Menoret, V.; Bouyer, P.; Landragin, A.

    2013-12-01

    This paper presents the results of the research activities conducted by our company for the development of its Absolute Quantum Gravimeter. This instrument relies on the utilization of a free-falling cloud of cold rubidium atoms, whose vertical acceleration is characterized using advanced matter-wave interferometry techniques. In order to meet the tight requirements expressed by geophysicists for field utilization, we have implemented several technological innovations, which allow us to combine state-of-the-art performance with simple operation and excellent transportability. The architecture of our gravimeter is based on the following innovations: - a hollow pyramidal reflector allows us to achieve all the functions (trapping, cooling, atomic state selection, interferometry and detection) with a single laser beam [1]. This scheme leads to a drastic simplification of the sensor head, and a strong reduction of its mass and volume. - An all-fibered laser system based on the frequency doubling of a seed laser operating at 1560 nm [2]. With this approach, we are able to obtain a very compact, reliable and easy to use laser source capable of generating two optical frequencies in the 780.23 nm range with an output power in excess of 250 mW, an excellent polarization extinction ratio and a fast tunability. - a real-time system dedicated to the compensation of ground vibrations [3]. This technique is based on the operation of a low noise seismometer, whose AC acceleration signal is used to correct the atomic interferometer signal. We give a detailed presentation of the instrument architecture and summarize the experimental results we have obtained with our first generation prototype. [1] A cold atom pyramidal gravimeter with a single laser beam, Q. Bodart et al, Appl. Phys. Lett. 96, 134101 (2010) [2] "Light-pulse atom interferometry in microgravity", G. Stern et al, Eur. Phys. J. D 53, 353-357 (2009) [3]. "Limits in the sensitivity of a compact atomic interferometer ", J

  18. A cold atom pyramidal gravimeter with a single laser beam

    Science.gov (United States)

    Bodart, Q.; Merlet, S.; Malossi, N.; Dos Santos, F. Pereira; Bouyer, P.; Landragin, A.

    2010-03-01

    We demonstrate a scheme for realizing a compact cold atom gravimeter. The use of a hollow pyramidal configuration allows to achieve all functions: trapping, interferometer and detection with a unique laser beam leading to a drastic reduction in complexity and volume. In particular, we demonstrate a relative sensitivity to acceleration of gravity (g) of 1.7×10-7 at one second, with a moderate laser power of 50 mW. This simple geometry combined to such a high sensitivity opens wide perspectives for practical applications.

  19. A cold atom pyramidal gravimeter with a single laser beam

    CERN Document Server

    Bodart, Quentin; Malossi, Nicola; Santos, Franck Pereira Dos; Bouyer, Philippe; Landragin, Arnaud

    2010-01-01

    We demonstrate a scheme for realizing a compact cold atom gravimeter. The use of a hollow pyramidal configuration allows to achieve all functions: trapping, interferometer and detection with a unique laser beam leading to a drastic reduction in complexity and volume. In particular, we demonstrate a relative sensitivity to acceleration of gravity (g) of 1.7 x 10-7 at one second, with a moderate laser power of 50 mW. This simple geometry combined to such a high sensitivity opens wide perspectives for practical applications (P. Bouyer and A. Landragin, patent number FR2009/000252, 2009).

  20. High tilt susceptibility of the Scintrex CG-5 relative gravimeters

    Science.gov (United States)

    Reudink, R.; Klees, R.; Francis, O.; Kusche, J.; Schlesinger, R.; Shabanloui, A.; Sneeuw, N.; Timmen, L.

    2014-06-01

    We report on the susceptibility of the Scintrex CG-5 relative gravimeters to tilting, that is the tendency of the instrument of providing incorrect readings after being tilted (even by small angles) for a moderate period of time. Tilting of the instrument can occur when in transit between sites usually on the backseat of a car even using the specially designed transport case. Based on a series of experiments with different instruments, we demonstrate that the readings may be offset by tens of Gal. In addition, it may take hours before the first reliable readings can be taken, with the actual time depending on how long the instrument had been tilted. This sensitivity to tilt in combination with the long time required for the instrument to provide reliable readings has not yet been reported in the literature and is not addressed adequately in the Scintrex CG-5 user manual. In particular, the inadequate instrument state cannot easily be detected by checking the readings during the observation or by reviewing the final data before leaving a site, precautions suggested by Scintrex Ltd. In regional surveys with car transportation over periods of tens of minutes to hours, the gravity measurements can be degraded by some 10 Gal. To obtain high-quality results in line with the CG-5 specifications, the gravimeters must remain in upright position to within a few degrees during transits. This requirement may often be unrealistic during field observations, particularly when observing in hilly terrain or when walking with the instrument in a backpack.

  1. Spring gravimeter calibration experiment with an inertial acceleration platform

    CERN Document Server

    Zhu, Ping; Noel, Jean-Phillippe

    2014-01-01

    This experiment tested an automatically calibrate the relatively gravimeter with an absolute inertial force. The whole calibration system was controlled by microprocessor and low frequency oscillations were generated by a step motor. It could produce different period low frequency sinusoid inertial force. A LVDT (Linear Variable Differential Transformer) sensor was introduced to determine the frequency transfer function and the stability of platform vertical motion. The error of vertical displacement induced by the mechanical part of platform is less than 0.01 mm. Two LCR gravimeters (G336, G906) were settled on the platform. G336 was in the centre of platform and G906 was in the left side. A calibration program has been integrated in the micro processor which could send calibrate signal once a week. During the more than 7 moths experiment, the scale factor of G336 is 8128.647 nm/s2/v with 1.1% uncertainties and G906 is 9421.017 nm/s2/v with 2.7% fluctuations.

  2. Monitoring Groundwater Variations Using a Portable Absolute Gravimeter

    Science.gov (United States)

    Fukuda, Yoichi; Nishijima, Jun; Hasegawa, Takashi; Sofyan, Yayan; Taniguchi, Makoto; Abidin, Hasanuddin Z.; Delinom, Robert M.

    2010-05-01

    In urbanized areas, one of the urgent problems is to monitor the groundwater variations especially connected with land subsidence. Although the groundwater variations are usually measured by water level meters, gravity measurements can provide us additional information about the water mass movements which should be beneficial for the analyses of groundwater flow and the managements of water resources as well. Therefore, in order to establish a new technique to monitor the groundwater variations by means of the gravity measurements, we investigated the applicability of a portable type absolute gravimeter (Micro-G LaCoste Inc. A10-017). We will report the results of some test measurements in Japan, and the outline of the surveys in Jakarta, Indonesia. As for the absolute gravity measurements, FG-5 of MGL would be more popular. FG-5 is a high precision absolute gravimeter with a 2ugal-accuracy for laboratory use, while the nominal accuracy of A-10 is 10ugal (measurement precision: ±5ugal). In spite of the disadvantage, A-10 is well suited for the field surveys because it is much smaller than FG-5 and can be operated with 12VDC power. The repeated measurements using A10-017 in Kyushu University show good correlations between the measured gravity values and the groundwater levels in nearby observation wells. In a geothermal plant of Takigami, we also observed the gravity changes associated with the cycle of the geothermal fluid. All these test measurements have proved that the gravimeter can achieve a 10ugal (10nm/s2) or better accuracy in the field surveys. In Jakarta, Indonesia, excess groundwater pumping is going on and it causes land subsidence. To reveal the associated gravity changes, we conducted the first gravity survey in August 2008 and the second survey in July 2009. Mainly due to the instrumental troubles during the 2008 surveys, we have not obtained enough reliable data yet. Nevertheless the result obtained so far suggested the gravity increases in the

  3. The influence of transverse motion within an atomic gravimeter

    Energy Technology Data Exchange (ETDEWEB)

    Louchet-Chauvet, Anne; Farah, Tristan; Bodart, Quentin; Clairon, Andre; Landragin, Arnaud; Merlet, Sebastien; Santos, Franck Pereira Dos, E-mail: franck.pereira@obspm.fr [LNE-SYRTE, Observatoire de Paris, CNRS and UPMC, 61 avenue de l' Observatoire de Paris, F-75014 Paris (France)

    2011-06-15

    Limits on the long-term stability and accuracy of a second generation cold atom gravimeter are investigated. We demonstrate a measurement protocol based on four interleaved measurement configurations, which allows rejection of most of the systematic effects, but not those related to Coriolis acceleration and wave-front distortions. Both are related to the transverse motion of the atomic cloud. Carrying out measurements with opposite orientations with respect to the Earth's rotation vector direction allows us to separate the effects and correct for the Coriolis shift. Finally, measurements at different atomic temperatures are presented and analyzed. In particular, we show the difficulty of extrapolating these measurements to zero temperature, which is required in order to correct for the bias due to wave-front distortions.

  4. Self-attraction effect and correction on three absolute gravimeters

    CERN Document Server

    Biolcati, Emanuele; Germak, Alessandro

    2012-01-01

    The perturbations of the gravitational field due to the mass distribution of an absolute gravimeter have been studied. The so called Self Attraction Effect (SAE) is crucial for the measurement accuracy, especially for the International Comparisons, and for the uncertainty budget evaluation. Three instruments have been analysed: MPG-2, FG5-238 and IMPG-02. The SAE has been calculated using a numerical method based on FEM simulation. The observed effect has been treated as an additional vertical gravity gradient. The correction (SAC) to be applied to the computed g value has been associated with the specific height level, where the measurement result is typically reported. The magnitude of the obtained corrections is of order 1E-8 m/s2.

  5. Correction due to finite speed of light in absolute gravimeters

    CERN Document Server

    Nagornyi, V D; Zanimonskiy, Y Y

    2010-01-01

    Correction due to finite speed of light is among the most inconsistent ones in absolute gravimetry. Formulas reported by different authors yield corrections scattered up to 8 $\\mu$Gal with no obvious reasons. The problem, though noted before, has never been studied, and nowadays the correction is rather postulated than rigorously proven. In this paper we investigate the problem from several prospectives, find the corrections for different types of absolute gravimeters, and establish relationships between different ways of implement them. The obtained results enabled us to analyze and understand the discrepancies in the results of other authors. We found that the correction derived from the Doppler effect is accountable only for $\\tfrac{2}{3}$ of the total correction due to finite speed of light, if no signal delays are considered. Another major source of inconsistency was found in the tacit use of simplified trajectory models.

  6. Calculating the Finite-Speed-of-Light Effect in Atom Gravimeters with General Relativity

    CERN Document Server

    Tan, Yu-Jie

    2016-01-01

    This work mainly presents a relativistic analytical calculating method for the finite speed-of-light effect in atom gravimeters, which can simplify the deriva- tion and give a more complete expression for the associated correction.

  7. Marine gravimetry using the strapdown gravimeter SGA-WZ

    Science.gov (United States)

    Cai, Shaokun; Tie, Junbo; Zhang, Kaidong; Cao, Juliang; Wu, Meiping

    2017-06-01

    Gravity can be measured in many ways, from static-point observations to dynamic measurement using land vehicles, ships, aircrafts and satellites. China has developed a gravimetry system based on SINS (Strapdown Inertial Navigation System) named SGA-WZ. This system is the first strapdown gravimetry system in China. Some airborne gravimetry campaigns have been implemented using SGA-WZ. The flight tests indicate that the accuracy of SGA-WZ is 1.5 mGal at a 4.8 km resolution. To test the performance of SGA-WZ when installed on a ship, a marine gravimetry campaign was conducted in the South China Sea in August 2013. In the test, a state-of-the-art commercial sea gravimeter, the LaCoste & Romberg (L&R), was mounted side by side with SGA-WZ. The test contained 30 survey lines in the west-east direction and four groups of repeat lines in four directions; the evaluation of the repeatability was based on repeat lines. The measurement and in-movement alignment algorithm for strapdown gravimeters in the sea are discussed, and the results and analysis of this test are presented. The results from the repeated lines and the comparison with L&R showed that the accuracy of SGA-WZ is at the level of 1 mGal with a resolution between 0.4 and 0.8 km for shipborne gravimetry. These results indicate that the strapdown gravimetry system SGA-WZ can be used in marine gravimetry and the moving base alignment method can improve the computation efficiency greatly when using the strapdown gravimetry system.

  8. Concept of an induction-dynamic catapult for a ballistic laser gravimeter

    OpenAIRE

    Bolyukh, V.F.; Vinnichenko, A. I.

    2014-01-01

    A design is proposed for an inductive-dynamic catapult in a ballistic laser gravimeter with a fixed inductor and an electrically conducting armature that moves together with the test object along a vertical axis. The catapult ensures improved accuracy of the gravimeter through direct conversion of electrical into kinetic energy. The electrical circuit of the catapult provides two successive current pulses to the inductor for launching and braking of the armature during the operating cycle.

  9. Holographic ballistic gravimeter with the fixation of the angular position of a test mass

    Science.gov (United States)

    Dmitriev, A. L.; Kotova, E. I.; Nagibin, Yu. T.

    2016-10-01

    We have reported on the results of an experimental simulation of a holographic absolute ballistic gravimeter with the minimal (down to 0.5 mm) length of the trajectory of a falling test mass and rigid stabilization of its angular position. Gravimeters of this type ensure the mobile measurement of the free fall acceleration and are intended for the application in a new field of research, i.e., HF gravimetry.

  10. Results of the first North American comparison of absolute gravimeters, NACAG-2010

    Science.gov (United States)

    Schmerge, David; Francis, Olvier; Henton, J.; Ingles, D.; Jones, D.; Kennedy, Jeffrey R.; Krauterbluth, K.; Liard, J.; Newell, D.; Sands, R.; Schiel, J.; Silliker, J.; van Westrum, D.

    2012-01-01

    The first North American Comparison of absolute gravimeters (NACAG-2010) was hosted by the National Oceanic and Atmospheric Administration at its newly renovated Table Mountain Geophysical Observatory (TMGO) north of Boulder, Colorado, in October 2010. NACAG-2010 and the renovation of TMGO are part of NGS’s GRAV-D project (Gravity for the Redefinition of the American Vertical Datum). Nine absolute gravimeters from three countries participated in the comparison. Before the comparison, the gravimeter operators agreed to a protocol describing the strategy to measure, calculate, and present the results. Nine sites were used to measure the free-fall acceleration of g. Each gravimeter measured the value of g at a subset of three of the sites, for a total set of 27 g-values for the comparison. The absolute gravimeters agree with one another with a standard deviation of 1.6 µGal (1 Gal = 1 cm s-2). The minimum and maximum offsets are -2.8 and 2.7 µGal. This is an excellent agreement and can be attributed to multiple factors, including gravimeters that were in good working order, good operators, a quiet observatory, and a short duration time for the experiment. These results can be used to standardize gravity surveys internationally.

  11. Investigation of the thermal adaptability for a mobile cold atom gravimeter

    Science.gov (United States)

    Wang, Qi-Yu; Wang, Zhao-Ying; Fu, Zhi-Jie; Lin, Qiang

    2016-12-01

    The cold atom gravimeter offers the prospect of a new generation of inertial sensors for field applications. We accomplish a mobile atom gravimeter. With the compact and stable system, a sensitivity of 1.4×10-7 g·Hz-1/2 is achieved. Moreover, a continuous gravity monitoring of 80 h is carried out. However, the harsh outdoor environment is a big challenge for the atom gravimeter when it is for field applications. In this paper, we present the preliminary investigation of the thermal adaptability for our mobile cold atom gravimeter. Here, we focus on the influence of the air temperature on the performance of the atom gravimeter. The responses to different factors (such as laser power, fiber coupling efficiency, etc.) are evaluated when there is a great temperature shift of 10 °C. The result is that the performances of all the factors deteriorate to different extent, nevertheless, they can easily recover as the temperature comes back. Finally, we conclude that the variation of air temperature induces the increase of noise and the system error of the atom gravimeter as well, while the process is reversible with the recovery of the temperature. Project supported by the National Natural Science Foundation of China (Grant Nos. 11174249 and 61475139), the National High Technology Research and Development Program of China (Grant No. 2011AA060504), the National Basic Research Program of China (Grant No. 2013CB329501), and the Fundamental Research Funds for the Central Universities, China (Grant No. 2016FZA3004).

  12. Using absolute gravimeter data to determine vertical gravity gradients

    Science.gov (United States)

    Robertson, D.S.

    2001-01-01

    The position versus time data from a free-fall absolute gravimeter can be used to estimate the vertical gravity gradient in addition to the gravity value itself. Hipkin has reported success in estimating the vertical gradient value using a data set of unusually good quality. This paper explores techniques that may be applicable to a broader class of data that may be contaminated with "system response" errors of larger magnitude than were evident in the data used by Hipkin. This system response function is usually modelled as a sum of exponentially decaying sinusoidal components. The technique employed here involves combining the x0, v0 and g parameters from all the drops made during a site occupation into a single least-squares solution, and including the value of the vertical gradient and the coefficients of system response function in the same solution. The resulting non-linear equations must be solved iteratively and convergence presents some difficulties. Sparse matrix techniques are used to make the least-squares problem computationally tractable.

  13. A gyro-stabilized platform leveling loop for marine gravimeter

    Science.gov (United States)

    Wu, P. F.; Liu, L. T.; Wang, L.; Wang, Y.; Zhong, M.; Zhou, Z. B.; Zou, Z.

    2017-06-01

    An ultra-low-frequency platform leveling loop based on a mixed sensitivity H∞ approach, which considers both the system bandwidth and response speed, was designed and applied to a prototype, two-axis gyro-stabilized platform marine gravimeter CHZ-II. The instrument was developed for regional surveys in deep ocean areas where high-resolution gravity measurements with accuracy 1 mGal are required. Horizontal accelerations in the surge and sway directions are suppressed about 60 dB in the frequency range 0.05 to 0.5 Hz. This typically improves the quality of the gravity data before any processing corrections. The time required for stabilizing the platform at the beginning of a survey line or course change is about 3 min, which improves the data collection efficiency. In May 2015, the first test was conducted in open sea conditions aboard the Chinese State Oceanic Administration's R/V Xiangyanghong 10. Sixteen traverses were run in the South China Sea to evaluate the loop performance. Platform motion tracks and gravity data from the survey were of satisfactory quality. According to analyses of 16 sets of calculated errors, the root mean square repeatability of the pitch and roll off-level angles were less than 10 and 20 arc sec, respectively, with a horizontal acceleration of about 50 Gal. Errors derived from the inability of the platform to maintain perfect sensor leveling during the survey cruise were less than 0.3 mGal.

  14. Self-attraction effect and correction on the T-1 absolute gravimeter

    Science.gov (United States)

    Li, Z.; Hu, H.; Wu, K.; Li, G.; Wang, G.; Wang, L. J.

    2015-12-01

    The self-attraction effect (SAE) in an absolute gravimeter is a kind of systematic error due to the gravitation of the instrument to the falling object. This effect depends on the mass distribution of the gravimeter, and is estimated to be a few microgals (1 μGal  =  10-8 m s-2) for the FG5 gravimeter. In this paper, the SAE of a home-made T-1 absolute gravimeter is analyzed and calculated. Most of the stationary components, including the dropping chamber, the laser interferometer, the vibration isolation device and two tripods, are finely modelled, and the related SAEs are computed. In addition, the SAE of the co-falling carriage inside the dropping chamber is carefully calculated because the distance between the falling object and the co-falling carriage varies during the measurement. In order to get the correction of the SAE, two different methods are compared. One is to linearize the SAE curve, the other one is to calculate the perturbed trajectory. The results from these two methods agree with each other within 0.01 μGal. With an uncertainty analysis, the correction of the SAE of the T-1 gravimeter is estimated to be (-1.9  ±  0.1) μGal.

  15. Adaptability of the ocean and earth tidal models based on global observations of the superconducting gravimeters

    Institute of Scientific and Technical Information of China (English)

    SUN; Heping; Ducarme; Bernard; XU; Houze; Vandercoilden

    2005-01-01

    The adaptability of recent ocean tidal models and Earth tidal models is investigated comprehensively by means of 22 high precision tidal gravity observation series at 20 stations of the Global Geodynamics Project. Careful preprocessing of the original observations was carried out using international standard algorithms and the tidal gravity parameters were computed. The gravity load vectors of 8 main constituents are obtained based on loading computation theory and various global ocean models. The loading corrections of 14 secondary constituents are obtained based on a two-dimensional interpolation technique. Considering different characteristics of the wave amplitude, a method of "non-identical weighted mean" is developed for computing the averaged observed residual and remaining residual vectors at each station. The efficiency of the loading correction and the discrepancy between corrected amplitude factors and theoretical ones are analyzed. Meanwhile the calibration problem of the instruments is also discussed. After loading correction, the averaged tidal gravity parameters for all stations are obtained. The results show that the discrepancies between the global mean amplitude factors and theoretical values are less than 0.3%, the largest calibration error of the instruments is less than 0.5%. On the other hand, there are indications that the slight phase advance of K1 with respect to O1 in Mathews' theory could be verified by ground based tidal gravity observations.

  16. Applied superconductivity

    CERN Document Server

    Newhouse, Vernon L

    1975-01-01

    Applied Superconductivity, Volume II, is part of a two-volume series on applied superconductivity. The first volume dealt with electronic applications and radiation detection, and contains a chapter on liquid helium refrigeration. The present volume discusses magnets, electromechanical applications, accelerators, and microwave and rf devices. The book opens with a chapter on high-field superconducting magnets, covering applications and magnet design. Subsequent chapters discuss superconductive machinery such as superconductive bearings and motors; rf superconducting devices; and future prospec

  17. Monitoring water storage variations in the vadose zone with gravimeters - quantifying the influence of observatory buildings

    Science.gov (United States)

    Reich, Marvin; Güntner, Andreas; Mikolaj, Michal; Blume, Theresa

    2016-04-01

    Time-lapse ground-based measurements of gravity have been shown to be sensitive to water storage variations in the surroundings of the gravimeter. They thus have the potential to serve as an integrative observation of storage changes in the vadose zone. However, in almost all cases of continuous gravity measurements, the gravimeter is located within a building which seals the soil beneath it from natural hydrological processes like infiltration and evapotranspiration. As water storage changes in close vicinity of the gravimeter have the strongest influence on the measured signal, it is important to understand the hydrology in the unsaturated soil zone just beneath the impervious building. For this reason, TDR soil moisture sensors were installed in several vertical profiles up to a depth of 2 m underneath the planned new gravimeter building at the Geodetic Observatory Wettzell (southeast Germany). In this study, we assess the influence of the observatory building on infiltration and subsurface flow patterns and thus the damping effect on gravimeter data in a two-way approach. Firstly, soil moisture time series of sensors outside of the building area are correlated with corresponding sensors of the same depth beneath the building. The resulting correlation coefficients, time lags and signal to noise relationships are used to find out how and where infiltrating water moves laterally beneath the building and towards its centre. Secondly, a physically based hydrological model (HYDRUS) with high discretization in space and time is set up for the 20 by 20 m area around and beneath the gravimeter building. The simulated spatial distribution of soil moisture in combination with the observed point data help to identify where and to what extent water storage changes and thus mass transport occurs beneath the building and how much this differs to the dynamics of the surroundings. This allows to define the umbrella space, i.e., the volume of the vadose zone where no mass

  18. Set standard deviation, repeatability and offset of absolute gravimeter A10-008

    Science.gov (United States)

    Schmerge, D.; Francis, O.

    2006-01-01

    The set standard deviation, repeatability and offset of absolute gravimeter A10-008 were assessed at the Walferdange Underground Laboratory for Geodynamics (WULG) in Luxembourg. Analysis of the data indicates that the instrument performed within the specifications of the manufacturer. For A10-008, the average set standard deviation was (1.6 0.6) ??Gal (1Gal ??? 1 cm s -2), the average repeatability was (2.9 1.5) ??Gal, and the average offset compared to absolute gravimeter FG5-216 was (3.2 3.5) ??Gal. ?? 2006 BIPM and IOP Publishing Ltd.

  19. Final report on the Seventh International Comparison of Absolute Gravimeters (ICAG 2005)

    Science.gov (United States)

    Jiang, Z.; Francis, O.; Vitushkin, L.; Palinkas, V.; Germak, A.; Becker, M.; D'Agostino, G.; Amalvict, M.; Bayer, R.; Bilker-Koivula, M.; Desogus, S.; Faller, J.; Falk, R.; Hinderer, J.; Gagnon, C.; Jakob, T.; Kalish, E.; Kostelecky, J.; Lee, C.; Liard, J.; Lokshyn, Y.; Luck, B.; Makinen, J.; Mizushima, S.; Le, Moigne N.; Origlia, C.; Pujol, E.R.; Richard, P.; Robertsson, L.; Ruess, D.; Schmerge, D.; Stus, Y.; Svitlov, S.; Thies, S.; Ullrich, C.; Van Camp, M.; Vitushkin, A.; Ji, W.; Wilmes, H.

    2011-01-01

    The Bureau International des Poids et Mesures (BIPM), S??vres, France, hosted the 7th International Comparison of Absolute Gravimeters (ICAG) and the associated Relative Gravity Campaign (RGC) from August to September 2005. ICAG 2005 was prepared and performed as a metrological pilot study, which aimed: To determine the gravity comparison reference values; To determine the offsets of the absolute gravimeters; and As a pilot study to accumulate experience for the CIPM Key Comparisons. This document presents a complete and extensive review of the technical protocol and data processing procedures. The 1st ICAG-RGC comparison was held at the BIPM in 1980-1981 and since then meetings have been organized every 4 years. In this paper, we present an overview of how the meeting was organized, the conditions of BIPM gravimetric sites, technical specifications, data processing strategy and an analysis of the final results. This 7th ICAG final report supersedes all previously published reports. Readings were obtained from participating instruments, 19 absolute gravimeters and 15 relative gravimeters. Precise levelling measurements were carried out and all measurements were performed on the BIPM micro-gravity network which was specifically designed for the comparison. ?? 2011 BIPM & IOP Publishing Ltd.

  20. A flight test of the strapdown airborne gravimeter SGA-WZ in Greenland

    DEFF Research Database (Denmark)

    Zhao, Lei; Forsberg, René; Wu, Meiping;

    2015-01-01

    An airborne gravimeter is one of the most important tools for gravity data collection over large areas with mGal accuracy and a spatial resolution of several kilometers. In August 2012, a flight test was carried out to determine the feasibility and to assess the accuracy of the new Chinese SGA-WZ...

  1. Superconducting transistor

    Science.gov (United States)

    Gray, Kenneth E.

    1979-01-01

    A superconducting transistor is formed by disposing three thin films of superconducting material in a planar parallel arrangement and insulating the films from each other by layers of insulating oxides to form two tunnel junctions. One junction is biased above twice the superconducting energy gap and the other is biased at less than twice the superconducting energy gap. Injection of quasiparticles into the center film by one junction provides a current gain in the second junction.

  2. Superconductivity and superconductive electronics

    Science.gov (United States)

    Beasley, M. R.

    1990-12-01

    The Stanford Center for Research on Superconductivity and Superconductive Electronics is currently focused on developing techniques for producing increasingly improved films and multilayers of the high-temperature superconductors, studying their physical properties and using these films and multilayers in device physics studies. In general the thin film synthesis work leads the way. Once a given film or multilayer structure can be made reasonably routinely, the emphasis shifts to studying the physical properties and device physics of these structures and on to the next level of film quality or multilayer complexity. The most advanced thin films synthesis work in the past year has involved developing techniques to deposit a-axis and c-axis YBCO/PBCO superlattices and related structures. The in-situ feature is desirable because no solid state reactions with accompanying changes in volume, morphology, etc., that degrade the quality of the film involved.

  3. Experimental assessment of the speed of light perturbation in free-fall absolute gravimeters

    CERN Document Server

    Baumann, H; Blas, D.; Sibiryakov, S.; Eichenberger, A.; Klingelé, E.E.

    2015-01-01

    Precision absolute gravity measurements are growing in importance, especially in the context of the new definition of the kilogram. For the case of free-fall absolute gravimeters with a Michelson-type interferometer tracking the position of a free falling body, one of the effects that needs to be taken into account is the speed of light perturbation due to the finite speed of propagation of light. This effect has been extensively discussed in the past, and there is at present a disagreement between different studies. In this work, we present the analysis of new data and confirm the result expected from the theoretical analysis applied nowadays in free-fall gravimeters. We also review the standard derivations of this effect (by using phase shift or Doppler effect arguments) and show their equivalence.

  4. Experimental assessment of the speed of light perturbation in free-fall absolute gravimeters

    Science.gov (United States)

    Baumann, H.; Pythoud, F.; Blas, D.; Sibiryakov, S.; Eichenberger, A.; Klingelé, E. E.

    2015-10-01

    Precision absolute gravity measurements are growing in importance, especially in the context of the new definition of the kilogram. For the case of free fall absolute gravimeters with a Michelson-type interferometer tracking the position of a free falling body, one of the effects that needs to be taken into account is the ‘speed of light perturbation’ due to the finite speed of propagation of light. This effect has been extensively discussed in the past, and there is at present a disagreement between different studies. In this work, we present the analysis of new data and confirm the result expected from the theoretical analysis applied nowadays in free-fall gravimeters. We also review the standard derivations of this effect (by using phase shift or Doppler effect arguments) and show their equivalence.

  5. Can corner-cube absolute gravimeters sense the effects of Special Relativity?

    CERN Document Server

    Nagornyi, V D; Zanimonskiy, Y Y

    2012-01-01

    Relativistic treatment of the finite speed of light correction in absolute gravimeters, as evolved by Rothleitner and Francis in Metrologia 2011, 48 442-445, following the initial publication in Metrologia 2011, 48 187-195, leads to spurious conclusions. The double Doppler shift implemented in the gravimeters obliterates the difference between its relativistic and non-relativistic formulation. Optical heterodyning used in Michelson-type interferometers makes the quadratic Lorenz-like term of the double Doppler shift discernable against the linear term, while in relativistic experiments the quadratic term has to be detected against the unit. The disturbance of the registered trajectory caused by the finite speed of light includes tracking signal delay as intrinsic part not reducible to the Doppler shifts.

  6. Measurements by Ocean Bottom Gravimeter at Harima-nada in Seto Inland Sea, Japan

    Science.gov (United States)

    Joshima, Masato; Ishihara, Takemi; Koizumi, Kin-Ichiro; Seama, Nobukazu; Oshida, Atsushi; Fujimoto, Hiromi; Kanazawa, Toshihiko

    Gravity measurements on the sea bottom using an ocean bottom gravimeter(OBG) and a small survey vessel of 8.5 tons were performed at Harima-nada, in the Seto Inland Sea, Japan. Measurements at one bottom station were completed in about 30 minutes including 2 mile transit from the previous station, and 23 new data were obtained during 4 days. The measurement noise on the shallow sea-bottom was reduced considerably by attaching an anchor to the rope between the deployed ocean bottom gravimeter and the ship, and by keeping the ship almost fixed to the deployed anchor. The measurement accuracy is better than 0.005 mgal at the base station and is better than 0.05 mgal for the sea bottom measurements with the anchor. The new measurements combined with old data revealed the presence of high gravity anomaly zone running in Harima-nada sub-parallel to the Median Tectonic Line.

  7. Test of the uplift of Tibetan Plateau by FG5 absolute gravimeter at Lhasa station

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The uplift of the Tibetan Plateau has been monitored by the FG5 absolute gravimeter, whose observing accuracy is as high as 2×10-8 m/s2. The analysis of the gravity observation results at the Lhasa station in 1999 and 1993 shows that the gravity value has decreased by 12×10-8 m/s2, and it is confirmed that the Lhasa region is uplifting at a rate of 10 mm/a.

  8. On the effect of distortion and dispersion in fringe signal of the FG5 absolute gravimeters

    Science.gov (United States)

    Křen, Petr; Pálinkáš, Vojtech; Mašika, Pavel

    2016-02-01

    The knowledge of absolute gravity acceleration at the level of 1  ×  10-9 is needed in geosciences (e.g. for monitoring crustal deformations and mass transports) and in metrology for watt balance experiments related to the new SI definition of the unit of kilogram. The gravity reference, which results from the international comparisons held with the participation of numerous absolute gravimeters, is significantly affected by qualities of instruments prevailing in the comparisons (i.e. at present, FG5 gravimeters). Therefore, it is necessary to thoroughly investigate all instrumental (particularly systematic) errors. This paper deals with systematic errors of the FG5#215 coming from the distorted fringe signal and from the electronic dispersion at several electronic components including cables. In order to investigate these effects, we developed a new experimental system for acquiring and analysing the data parallel to the FG5 built-in system. The new system based on the analogue-to-digital converter with digital waveform processing using the FFT swept band pass filter is developed and tested on the FG5#215 gravimeter equipped with a new fast analogue output. The system is characterized by a low timing jitter, digital handling of the distorted swept signal with determination of zero-crossings for the fundamental frequency sweep and also for its harmonics and can be used for any gravimeter based on the laser interferometry. Comparison of the original FG5 system and the experimental systems is provided on g-values, residuals and additional measurements/models. Moreover, advanced approach for the solution of the free-fall motion is presented, which allows to take into account a non-linear gravity change with height.

  9. Comment on 'Simultaneous gravity and gradient measurements from a recoil-compensated absolute gravimeter'

    CERN Document Server

    Nagornyi, V D

    2011-01-01

    The article (Niebauer et al. 2011 Metrologia 48 154-163) reports on the important innovations enhancing the ability of absolute gravimeter to measure vertical gravity gradient along with the gravity acceleration. This comment suggests experiments to further assess the improvements and the results obtained with the modified instrument, considers some limitations of non-linear models in metrology and ways to overcome them, and discusses possible applications of the described instrument.

  10. Comment on "Measurement of the speed-of-light perturbation of free-fall absolute gravimeters"

    CERN Document Server

    Nagornyi, V D

    2014-01-01

    The paper (Rothleitner et al. 2014 Metrologia 51, L9) reports on the measurement of the speed-of-light perturbation in absolute gravimeters. The conclusion that the perturbation reaches only 2/3 of the commonly accepted value violates the fundamental limitation on the maximum speed of information transfer. The conclusion was deluded by unaccounted parasitic perturbations, some of which are obvious from the report.

  11. High-precision gravity measurements using absolute and relative gravimeters at Mount Etna (Sicily, Italy

    Directory of Open Access Journals (Sweden)

    Ciro Del Negro

    2011-12-01

    Full Text Available Accurate detection of time gravity changes attributable to the dynamics of volcanoes requires high-precision gravity measurements. With the aim of improving the quality of data from the Mount Etna gravity network, we used both absolute and relative gravimeters in a hybrid method. In this report, some of the techniques for gravity surveys are reviewed, and the results related to each method are compared. We show how the total uncertainty estimated for the gravity measurements performed with this combined use of absolute and relative gravimeters is roughly comparable to that calculated when the measurements are acquired using only relative gravimeters (the traditional method. However, the data highlight how the hybrid approach improves the measurement capabilities for surveying the Mount Etna volcanic area. This approach enhances the accuracy of the data, and then of the four-dimensional surveying, which minimizes ambiguities inherent in the gravity measurements. As a case study, we refer to two gravity datasets acquired in 2005 and 2010 from the western part of the Etna volcano, which included five absolute and 13 relative stations of the Etna gravity network.

  12. Correction of vibration for classical free-fall gravimeters with correlation-analysis

    Science.gov (United States)

    Wang, G.; Hu, H.; Wu, K.; Wang, L. J.

    2017-03-01

    In a free-fall absolute gravimeter, a laser interferometer is used to track the falling retro-reflector. To buffer the reference retro-reflector from seismic noise, a low-frequency vertical vibration isolator is traditionally used. However, an isolation device is usually complicated and expensive. A strap-down system using a seismometer to record the vibration and correct the measurement resolves the issue, but the actual recorded vibration cannot be directly used because of signal transfer delay and amplitude attenuation. Nevertheless, by quadratically fitting the trajectory of the falling retro-reflector and the motion of the reference retro-reflector, we find that their residuals are significantly correlated. Moreover, the transfer delay and the amplitude attenuation can be calculated using correlation analysis. With this capability, a vibration correction method for absolute gravimeters is proposed and demonstrated. The transfer delay and the gain attenuation are determined from data of only 25 drops, and can be used to correct subsequent measurements. The method is also applied in the T-1 absolute gravimeter. The standard deviation of the measurement results is improved by a factor of 20 after correction in a noisy environment, and improved by a factor of 5 in a quiet environment. Compared with vibration isolators, the strap-down system using this correction method is much more compact, enabling its use in field conditions or even dynamic environments not suitable for vibration isolators.

  13. The new IMGC-02 transportable absolute gravimeter: measurement apparatus and applications in geophysics and volcanology

    Directory of Open Access Journals (Sweden)

    V. D’errico

    2008-06-01

    Full Text Available The research carried out at the Istituto Nazionale di Ricerca Metrologica (formerly Istituto di Metrologia «G. Colonnetti» aiming to develop a transportable ballistic absolute gravimeter ended with a new version of the instrument, called the IMGC-02. It uses laser interferometry to measure the symmetrical free rising and falling motion of a test mass in the gravity field. Providing the same accuracy achieved with previous versions, the instrumental improvements mainly concern size, weight, data processing algorithms and operational simplicity. An uncertainty of 9 ?Gal (1 ?Gal=1×10–8 m·s?2 can be achieved within a single observation session, lasting about 12 h, while the time series of several observation sessions show a reproducibility of 4 ?Gal. At this level, gravity measurements provide useful information in Geophysics and Volcanology. A wide set of dynamic phenomena, i.e. seismicity and volcanic activity, can produce temporal gravity changes, often quite small, with an amplitude ranging from a few to hundreds of microgals. Therefore the IMGC absolute gravimeter has been employed since 1986 in surveying the Italian active volcanoes. A brief history of the gravimeter and the description of the new apparatus, together with the main results of ongoing applications in Geophysics and Volcanology are presented.

  14. Method and apparatus for measuring gravitational acceleration utilizing a high temperature superconducting bearing

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Downers Grove, IL)

    2000-01-01

    Gravitational acceleration is measured in all spatial dimensions with improved sensitivity by utilizing a high temperature superconducting (HTS) gravimeter. The HTS gravimeter is comprised of a permanent magnet suspended in a spaced relationship from a high temperature superconductor, and a cantilever having a mass at its free end is connected to the permanent magnet at its fixed end. The permanent magnet and superconductor combine to form a bearing platform with extremely low frictional losses, and the rotational displacement of the mass is measured to determine gravitational acceleration. Employing a high temperature superconductor component has the significant advantage of having an operating temperature at or below 77K, whereby cooling may be accomplished with liquid nitrogen.

  15. Method and Apparatus for measuring Gravitational Acceleration Utilizing a high Temperature Superconducting Bearing

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R.

    1998-11-06

    Gravitational acceleration is measured in all spatial dimensions with improved sensitivity by utilizing a high temperature superconducting (HTS) gravimeter. The HTS gravimeter is comprised of a permanent magnet suspended in a spaced relationship from a high temperature superconductor, and a cantilever having a mass at its free end is connected to the permanent magnet at its fixed end. The permanent magnet and superconductor combine to form a bearing platform with extremely low frictional losses, and the rotational displacement of the mass is measured to determine gravitational acceleration. Employing a high temperature superconductor component has the significant advantage of having an operative temperature at or below 77K, whereby cooling maybe accomplished with liquid nitrogen.

  16. Superconducting electronics

    NARCIS (Netherlands)

    Rogalla, Horst

    1994-01-01

    During the last decades superconducting electronics has been the most prominent area of research for small scale applications of superconductivity. It has experienced quite a stormy development, from individual low frequency devices to devices with high integration density and pico second switching

  17. Optimized Design of the SGA-WZ Strapdown Airborne Gravimeter Temperature Control System

    Directory of Open Access Journals (Sweden)

    Juliang Cao

    2015-12-01

    Full Text Available The temperature control system is one of the most important subsystems of the strapdown airborne gravimeter. Because the quartz flexible accelerometer based on springy support technology is the core sensor in the strapdown airborne gravimeter and the magnet steel in the electromagnetic force equilibrium circuits of the quartz flexible accelerometer is greatly affected by temperature, in order to guarantee the temperature control precision and minimize the effect of temperature on the gravimeter, the SGA-WZ temperature control system adopts a three-level control method. Based on the design experience of the SGA-WZ-01, the SGA-WZ-02 temperature control system came out with a further optimized design. In 1st level temperature control, thermoelectric cooler is used to conquer temperature change caused by hot weather. The experiments show that the optimized stability of 1st level temperature control is about 0.1 °C and the max cool down capability is about 10 °C. The temperature field is analyzed in the 2nd and 3rd level temperature control using the finite element analysis software ANSYS. The 2nd and 3rd level temperature control optimization scheme is based on the foundation of heat analysis. The experimental results show that static accuracy of SGA-WZ-02 reaches 0.21 mGal/24 h, with internal accuracy being 0.743 mGal/4.8 km and external accuracy being 0.37 mGal/4.8 km compared with the result of the GT-2A, whose internal precision is superior to 1 mGal/4.8 km and all of them are better than those in SGA-WZ-01.

  18. Underground operation at best sensitivity of the mobile LNE-SYRTE Cold Atom Gravimeter

    CERN Document Server

    Farah, Tristan; Landragin, Arnaud; Bouyer, Philippe; Gaffet, Stéphane; Santos, Franck Pereira Dos; Merlet, Sébastien

    2014-01-01

    Low noise underground environments offer conditions allowing to assess ultimate performance of high sensitivity sensors such as accelerometers, gyrometers, seismometers... Such facilities are for instance ideal for observing the tiny signals of interest for geophysical studies. Laboratoire Souterrain \\`a Bas Bruit (LSBB) in which we have installed our cold atom gravimeter, provides such an environment. We report here the best short term sensitivity ever obtained without any ground vibration isolation system with such an instrument: $10^{-8}$m.s$^{-2}$ in 100 s measurement time.

  19. The absolute gravity measurement by FG5 gravimeter at Great Wall Station, Antarctica

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Gravity measurement is of great importance to the height datum in Antarctica.The absolute gravity measurement was carried out at Great Wall Station, Antarctica, using FG5 absolute gravity instrument.The gravity data was processed with corrections of earth tide, ocean tide, polar motion and the atmospher, and the RMS is within +3 x 10 -s ms-2.The vertical and horizontal gravity gradients were measured using 2 LaCoaste & Romberg (LCR) gravimeters.The absolute gravity measurement provides the fundamental data for the validation and calibration of the satellite gravity projects such as CHAMP, GRACE and GOCE, and for the high accuracy geoid model.

  20. Compact atomic gravimeter based on a pulsed and accelerated optical lattice

    CERN Document Server

    Andia, Manuel; Nez, François; Biraben, François; Guellati-Khélifa, Saïda; Cladé, Pierre

    2013-01-01

    We present a new scheme of compact atomic gravimeter based on atom interferometry. Atoms are maintained against gravity using a sequence of coherent accelerations performed by the Bloch oscillations technique. We demonstrate a sensitivity of 4.8$\\times 10^{-8}$ with an integration time of 4 min. Combining this method with an atomic elevator allows to measure the local gravity at different positions in the vacuum chamber. This method can be of relevance to improve the measurement of the Newtonian gravitational constant $G$.

  1. Comparison of 3 absolute gravimeters based on different methods for the e-MASS project

    CERN Document Server

    Louchet-Chauvet, A; Bodart, Q; Landragin, A; Santos, F Pereira Dos; Baumann, H; D'Agostino, G; Origlia, C

    2010-01-01

    We report on the comparison between three absolute gravimeters that took place in April 2010 at Laboratoire National de M\\'etrologie et d'Essais. The three instruments (FG5#209 from METAS, Switzerland, IMGC-02 from INRIM, Italy, and CAG from LNE-SYRTE, France) rely on different methods: optical and atomic interferometry. We discuss their differences as well as their similarities. We compare their measurements of the gravitational acceleration in 4 points of the same pillar, in the perspective of an absolute determination of g for a watt balance experiment

  2. Impact of ambient temperature on spring-based relative gravimeter measurements

    Science.gov (United States)

    Fores, B.; Champollion, C.; Moigne, N. Le; Chery, J.

    2016-10-01

    In this paper, we investigate the impact of ambient temperature changes on the gravity reading of spring-based relative gravimeters. Controlled heating experiments using two Scintrex CG5 gravimeters allowed us to determine a linear correlation (R 2> 0.9) between ambient temperature and gravity variations. The relation is stable and constant for the two CG5 we used: -5 nm/s2/° C. A linear relation is also seen between gravity and residual sensor temperature variations (R 2> 0.75), but contrary to ambient temperature, this relation is neither constant over time nor similar between the two instruments. The linear correction of ambient temperature on the controlled heating time series reduced the standard deviation at least by a factor of 2, to less than 10 nm/s2 . The laboratory results allowed for reprocessing the data gathered on a field survey that originally aimed to characterize local hydrological heterogeneities on a karstic area. The correction of two years of monthly CG5 measurements from ambient temperature variations halved the standard deviation (from 62 to 32 nm/s2 ) and led us to a better hydrological interpretation. Although the origin of this effect is uncertain, we suggest that an imperfect control of the sensor temperature may be involved, as well as a change of the properties of an electronic component.

  3. The gravimeter "B-grave" for the in-situ surface gravity measurements of an asteroid

    Science.gov (United States)

    van Ruymbeke, Michel; karatekin, ozgur; rasson, jean; wielant, françois; dumont, Phillipe; Ritter, Birgit; zhu, Ping

    2016-04-01

    In the context of the preliminary study phase for the CubeSats supporting ESA's Asteroid Impact Mission (AIM) to the Didymos, we investigate a miniaturized gravimeter as part of the geophysical instrument package for the Asteroid Geophysical Explorer (AGEX). AGEX intends to land a CubeSat on the secondary object in the Didymos system, Didymoon in order to characterize the asteroid surface and internal structure A 3D compact gravimeter is developed at the Royal Observatory of Belgium. Its design allows to meter a weak 50 μm/sec² gravity field corresponding to 5 ppm of Earth gravity in a harsh environment. A system with three components mounted in an orthogonal geometry allows obtaining the gravity field in amplitude and in angular position without any requirement of levelling. B-GRAVES will use a in-situ calibration and multi-parameter approach for validation of the measurements. A laboratory simulation is induced with centrifugal forces applied to the pendulum set-up in a vertical position to reject the Earth gravity field. Signal treatment and uncertainties are discussed keeping in mind questions of thermal and vibration influence. The B-GRAVES can serve as a novel and robust instrument for future lander and rover missions .

  4. Joint observation of long period tremor signals with broadband seismometer, tiltmeter and gravimeter

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yan-bin; JIANG Jun; LIAO Ying-chun; LI Sheng-le; ZHONG Tie-tao

    2008-01-01

    We report here the observation result of joint observation of long period tremor signals with broadband seismometer, tiltmeter and gravimeter at the HUST (Huazhong University of Science and Technology) station. The observed data were compared and analyzed. Since 2005, the several tens of abnormal tremor signals which are weak, complex and duration of 2 to 3 days have been synchronously recorded by the different instruments. The tremor signals have the periodic domain in the range of 3 to 5 minutes, 20 to 30 minutes and even more than 1 hour. The observation shows such tremors are a physical existence. The analysis indicates that a part of the tremors caused by the typhoon from the western Pacific Ocean. These tremors have a close relationship with wind velocity of typhoon and distance between the typhoon center and the station. Except these, the cause of others is still unclear.

  5. An introduction to Bragg diffraction-based cold atom interferometry gravimeter

    Institute of Scientific and Technical Information of China (English)

    HU; Qingqing; YANG; Jun; LUO; Yukun; JIA; Aiai; WEI; Chunhua; LI; Zehuan

    2015-01-01

    This paper presents a new type of cold atom interferometry gravimeter based on Bragg diffraction,w hich is able to increase the gravity m easurem ent sensitivity and stability of com m on Ram an atom gravim eters significantly. By com paring w ith Ram an transition,the principles and advantages of Bragg diffraction-based atom gravim eters have been introduced. The theoretical m odel for a tim e-dom ain Bragg atom gravim eter has been constructed. Som e key technical requirem ents for an n-order Bragg diffraction-based atom gravim eter have been deduced,including the tem perature of atom cloud,the diam eter,curvature radius,frequency,intensity,and tim ing sequence of Bragg lasers,etc. The analysis results are verified by the existing experim ental data in discussion. The present study provides a good reference for the understanding and construction of a Bragg atom gravim eter.

  6. Seasonal changes in the European gravity field from GRACE: A comparison with superconducting gravimeters and hydrology model predictions

    DEFF Research Database (Denmark)

    Hinderer, J.; Andersen, Ole Baltazar; Lemoine, F.

    2006-01-01

    This paper is devoted to the investigation of seasonal changes of the Earth's gravity field from GRACE satellites and the comparison with surface gravity measurements in Europe from the Global Geodynamics Project (GGP) sub-network, as well as with recent hydrology models for continental soil......-derived and ground gravity changes due to continental hydrology is studied and we also compute the theoretical ratio of gravity versus radial displacement (in mu Gal/mm) involved in the hydrological loading process. The 'mean' value (averaged in time and in space over Europe) from hydrologic forward modeling...... is found to be close to - 1.0 mu Gal/mm and we show that this value can be explained by a strong low degree (n = 5-6) peak in the hydrology amplitude spectrum. The dominant time-variable signal from GRACE is found to be annual with an amplitude and a phase both of which are in fair agreement...

  7. Seasonal changes in the European gravity field from GRACE: A comparison with superconducting gravimeters and hydrology model predictions

    DEFF Research Database (Denmark)

    Hinderer, J.; Andersen, Ole Baltazar; Lemoine, F.

    2006-01-01

    is found to be close to - 1.0 mu Gal/mm and we show that this value can be explained by a strong low degree (n = 5-6) peak in the hydrology amplitude spectrum. The dominant time-variable signal from GRACE is found to be annual with an amplitude and a phase both of which are in fair agreement......This paper is devoted to the investigation of seasonal changes of the Earth's gravity field from GRACE satellites and the comparison with surface gravity measurements in Europe from the Global Geodynamics Project (GGP) sub-network, as well as with recent hydrology models for continental soil......-derived and ground gravity changes due to continental hydrology is studied and we also compute the theoretical ratio of gravity versus radial displacement (in mu Gal/mm) involved in the hydrological loading process. The 'mean' value (averaged in time and in space over Europe) from hydrologic forward modeling...

  8. Superconducting Microelectronics.

    Science.gov (United States)

    Henry, Richard W.

    1984-01-01

    Discusses superconducting microelectronics based on the Josephson effect and its advantages over conventional integrated circuits in speed and sensitivity. Considers present uses in standards laboratories (voltage) and in measuring weak magnetic fields. Also considers future applications in superfast computer circuitry using Superconducting…

  9. Color superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Wilczek, F. [Institute for Advanced Study, Princeton, NJ (United States)

    1997-09-22

    The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken.

  10. SUPERCONDUCTING PHOTOCATHODES.

    Energy Technology Data Exchange (ETDEWEB)

    SMEDLEY, J.; RAO, T.; WARREN, J.; SEKUTOWICZ, LANGNER, J.; STRZYZEWSKI, P.; LEFFERS, R.; LIPSKI, A.

    2005-10-09

    We present the results of our investigation of lead and niobium as suitable photocathode materials for superconducting RF injectors. Quantum efficiencies (QE) have been measured for a range of incident photon energies and a variety of cathode preparation methods, including various lead plating techniques on a niobium substrate. The effects of operating at ambient and cryogenic temperatures and different vacuum levels on the cathode QE have also been studied.

  11. Monitoring and modeling of water storage in karstic area (Larzac, France) with a continuous supraconducting gravimeter

    Science.gov (United States)

    Benjamin, Fores; Cédric, Champollion; Nicolas, Lemoigne; Jean, Chéry

    2014-05-01

    Quantitative knowledge of the groundwater storage and transfer in karstic area is crucial for water resources management and protection. As the karst hydro-geological properties are highly heterogeneous and scale dependent, geophysical observations such as time dependant gravity could be helpful to fill the gap between local (based on boreholes, moisture sensors, …) and global (based on chemistry, river flow, …) studies. Since more than 2 years, the iGrav #002 supraconducting gravimeter is continuously operating in the French GEK observatory(Géodésie de l'Environnement Karstique, OSU OREME, SNO H+) in the Larzac karstic plateau (south of France). The observatory is surrounding more than 250m karstified dolomite, with an unsaturated zone of ~150m thickness. First, the evaluation of the iGrav data (calibration, steps and drift) will be presented. Then a careful analysis of the global, topographic and building effects will be done to evaluate the local water storage only. The gravity data will be integrated with the water level data in nearby boreholes and petrophysical data from core samples. Finally, simple hydrological models will be presented to help the interpretation on the karst groundwater storage and transfer and to merge the whole dataset.

  12. Monitoring the performance of relative gravimeters for quality control in Mexico's gravity data

    Science.gov (United States)

    Avalos, D.

    2013-05-01

    Gravimetric surveying is the fundamental data source for geodetic and geophysical processes like gravity field modeling, geoid modeling and prospection among others. These applications require and often assume that the accuracy of all field data is homogeneous to the uncertainty level of a few microGal. Nonetheless, after taking care of the methodology, the data obtained can be systematically contaminated with errors at the level of hundreds of microGal due to sudden devise miss-calibration. At the Mexico's National Institute of Statistics and Geography, the program of gravimetric surveying targets to obtain a 100% of national coverage for geoid modeling while recent procedures are implemented to monitor the performance of measuring devices. By regularly testing the ability of relative gravimeters to obtain accurate results it has been proven that the data quality can be maintained at a regular level for the convenience of users. Activities like the re-calculation of scale factors, drift and tide corrections ensure not only the present and future databases but even allow improvement of past records.

  13. Itinerant Ferromagnetism and Superconductivity

    OpenAIRE

    Karchev, Naoum

    2004-01-01

    Superconductivity has again become a challenge following the discovery of unconventional superconductivity. Resistance-free currents have been observed in heavy-fermion materials, organic conductors and copper oxides. The discovery of superconductivity in a single crystal of $UGe_2$, $ZrZn_2$ and $URhGe$ revived the interest in the coexistence of superconductivity and ferromagnetism. The experiments indicate that: i)The superconductivity is confined to the ferromagnetic phase. ii)The ferromag...

  14. 100 years of superconductivity

    CERN Document Server

    Rogalla, Horst

    2011-01-01

    Even a hundred years after its discovery, superconductivity continues to bring us new surprises, from superconducting magnets used in MRI to quantum detectors in electronics. 100 Years of Superconductivity presents a comprehensive collection of topics on nearly all the subdisciplines of superconductivity. Tracing the historical developments in superconductivity, the book includes contributions from many pioneers who are responsible for important steps forward in the field.The text first discusses interesting stories of the discovery and gradual progress of theory and experimentation. Emphasizi

  15. High field superconducting magnets

    Science.gov (United States)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  16. Theory of superconductivity

    CERN Document Server

    Crisan, Mircea

    1989-01-01

    This book discusses the most important aspects of the theory. The phenomenological model is followed by the microscopic theory of superconductivity, in which modern formalism of the many-body theory is used to treat most important problems such as superconducting alloys, coexistence of superconductivity with the magnetic order, and superconductivity in quasi-one-dimensional systems. It concludes with a discussion on models for exotic and high temperature superconductivity. Its main aim is to review, as complete as possible, the theory of superconductivity from classical models and methods up t

  17. Simple Superconducting "Permanent" Electromagnet

    Science.gov (United States)

    Israelson, Ulf E.; Strayer, Donald M.

    1992-01-01

    Proposed short tube of high-temperature-superconducting material like YBa2Cu3O7 acts as strong electromagnet that flows as long as magnetic field remains below critical value and temperature of cylinder maintained sufficiently below superconducting-transition temperature. Design exploits maximally anisotropy of high-temperature-superconducting material.

  18. Basic principle of superconductivity

    OpenAIRE

    De Cao, Tian

    2007-01-01

    The basic principle of superconductivity is suggested in this paper. There have been two vital wrong suggestions on the basic principle, one is the relation between superconductivity and the Bose-Einstein condensation (BEC), and another is the relation between superconductivity and pseudogap.

  19. Superconductivity in Medicine

    Science.gov (United States)

    Alonso, Jose R.; Antaya, Timothy A.

    2012-01-01

    Superconductivity is playing an increasingly important role in advanced medical technologies. Compact superconducting cyclotrons are emerging as powerful tools for external beam therapy with protons and carbon ions, and offer advantages of cost and size reduction in isotope production as well. Superconducting magnets in isocentric gantries reduce their size and weight to practical proportions. In diagnostic imaging, superconducting magnets have been crucial for the successful clinical implementation of magnetic resonance imaging. This article introduces each of those areas and describes the role which superconductivity is playing in them.

  20. Enhanced superconductivity of fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Washington, II, Aaron L.; Teprovich, Joseph A.; Zidan, Ragaiy

    2017-06-20

    Methods for enhancing characteristics of superconductive fullerenes and devices incorporating the fullerenes are disclosed. Enhancements can include increase in the critical transition temperature at a constant magnetic field; the existence of a superconducting hysteresis over a changing magnetic field; a decrease in the stabilizing magnetic field required for the onset of superconductivity; and/or an increase in the stability of superconductivity over a large magnetic field. The enhancements can be brought about by transmitting electromagnetic radiation to the superconductive fullerene such that the electromagnetic radiation impinges on the fullerene with an energy that is greater than the band gap of the fullerene.

  1. Superconducting microfabricated ion traps

    CERN Document Server

    Wang, Shannon X; Labaziewicz, Jaroslaw; Dauler, Eric; Berggren, Karl; Chuang, Isaac L

    2010-01-01

    We fabricate superconducting ion traps with niobium and niobium nitride and trap single 88Sr ions at cryogenic temperatures. The superconducting transition is verified and characterized by measuring the resistance and critical current using a 4-wire measurement on the trap structure, and observing change in the rf reflection. The lowest observed heating rate is 2.1(3) quanta/sec at 800 kHz at 6 K and shows no significant change across the superconducting transition, suggesting that anomalous heating is primarily caused by noise sources on the surface. This demonstration of superconducting ion traps opens up possibilities for integrating trapped ions and molecular ions with superconducting devices.

  2. Superconducting material development

    Science.gov (United States)

    1987-09-01

    A superconducting compound was developed that showed a transition to a zero-resistance state at 65 C, or 338 K. The superconducting material, which is an oxide based on strontium, barium, yttrium, and copper, continued in the zero-resistance state similar to superconductivity for 10 days at room temperature in the air. It was also noted that measurements of the material allowed it to observe a nonlinear characteristic curve between current and voltage at 65 C, which is another indication of superconductivity. The research results of the laboratory experiment with the superconducting material will be published in the August edition of the Japanese Journal of Applied Physics.

  3. Protective link for superconducting coil

    Science.gov (United States)

    Umans, Stephen D.

    2009-12-08

    A superconducting coil system includes a superconducting coil and a protective link of superconducting material coupled to the superconducting coil. A rotating machine includes first and second coils and a protective link of superconducting material. The second coil is operable to rotate with respect to the first coil. One of the first and second coils is a superconducting coil. The protective link is coupled to the superconducting coil.

  4. Superconductivity in transition metals.

    Science.gov (United States)

    Slocombe, Daniel R; Kuznetsov, Vladimir L; Grochala, Wojciech; Williams, Robert J P; Edwards, Peter P

    2015-03-13

    A qualitative account of the occurrence and magnitude of superconductivity in the transition metals is presented, with a primary emphasis on elements of the first row. Correlations of the important parameters of the Bardeen-Cooper-Schrieffer theory of superconductivity are highlighted with respect to the number of d-shell electrons per atom of the transition elements. The relation between the systematics of superconductivity in the transition metals and the periodic table high-lights the importance of short-range or chemical bonding on the remarkable natural phenomenon of superconductivity in the chemical elements. A relationship between superconductivity and lattice instability appears naturally as a balance and competition between localized covalent bonding and so-called broken covalency, which favours d-electron delocalization and superconductivity. In this manner, the systematics of superconductivity and various other physical properties of the transition elements are related and unified.

  5. Experimental Investigations of Signals of a New Nature with the aid of two High Precision Stationary Quartz Gravimeters

    CERN Document Server

    Baurov, Yu A; Baurov, Yu.A.

    2001-01-01

    In consequence of long-term (2000) observation of a system of two high-precision quartz gravimeters (one of them with an attached magnet) placed in a special (at a depth of $\\sim $10m) gravimetric laboratory on a common base separated from the foundation of the building, signals of a new nature were detected. They were of a smooth peak-type shape, several minutes duration, and with amplitudes often more than that of the moon tide. The nature of the signals cannot be explained in the framework of traditional physical views but can be qualitatively described with the aid of a supposed new interaction connected with the hypothesis about the existence of the cosmological vectorial potential A_g, a new presumed fundamental vectorial constant.

  6. Frontiers in Superconducting Materials

    CERN Document Server

    Narlikar, Anant V

    2005-01-01

    Frontiers in Superconducting Materials gives a state-of-the-art report of the most important topics of the current research in superconductive materials and related phenomena. It comprises 30 chapters written by renowned international experts in the field. It is of central interest to researchers and specialists in Physics and Materials Science, both in academic and industrial research, as well as advanced students. It also addresses electronic and electrical engineers. Even non-specialists interested in superconductivity might find some useful answers.

  7. Superconducting energy recovery linacs

    Science.gov (United States)

    Ben-Zvi, Ilan

    2016-10-01

    High-average-power and high-brightness electron beams from a combination of laser photocathode electron guns and a superconducting energy recovery linac (ERL) is an emerging accelerator science with applications in ERL light sources, high repetition rate free electron lasers , electron cooling, electron ion colliders and more. This paper reviews the accelerator physics issues of superconducting ERLs, discusses major subsystems and provides a few examples of superconducting ERLs.

  8. High-Temperature Superconductivity

    Science.gov (United States)

    Tanaka, Shoji

    2006-12-01

    A general review on high-temperature superconductivity was made. After prehistoric view and the process of discovery were stated, the special features of high-temperature superconductors were explained from the materials side and the physical properties side. The present status on applications of high-temperature superconductors were explained on superconducting tapes, electric power cables, magnets for maglev trains, electric motors, superconducting quantum interference device (SQUID) and single flux quantum (SFQ) devices and circuits.

  9. Fundamentals of Superconducting Nanoelectronics

    CERN Document Server

    Sidorenko, Anatolie

    2011-01-01

    This book demonstrates how the new phenomena in superconductivity on the nanometer scale (FFLO state, triplet superconductivity, Crossed Andreev Reflection, synchronized generation etc.) serve as the basis for the invention and development of novel nanoelectronic devices and systems. It demonstrates how rather complex ideas and theoretical models, like odd-pairing, non-uniform superconducting state, pi-shift etc., adequately describe the processes in real superconducting nanostructues and novel devices based on them. The book is useful for a broad audience of readers, researchers, engineers, P

  10. Superconductive imaging surface magnetometer

    Science.gov (United States)

    Overton, Jr., William C.; van Hulsteyn, David B.; Flynn, Edward R.

    1991-01-01

    An improved pick-up coil system for use with Superconducting Quantum Interference Device gradiometers and magnetometers involving the use of superconducting plates near conventional pick-up coil arrangements to provide imaging of nearby dipole sources and to deflect environmental magnetic noise away from the pick-up coils. This allows the practice of gradiometry and magnetometry in magnetically unshielded environments. One embodiment uses a hemispherically shaped superconducting plate with interior pick-up coils, allowing brain wave measurements to be made on human patients. another embodiment using flat superconducting plates could be used in non-destructive evaluation of materials.

  11. Superconducting optical modulator

    Science.gov (United States)

    Bunt, Patricia S.; Ference, Thomas G.; Puzey, Kenneth A.; Tanner, David B.; Tache, Nacira; Varhue, Walter J.

    2000-12-01

    An optical modulator based on the physical properties of high temperature superconductors has been fabricated and tested. The modulator was constructed form a film of Yttrium Barium Copper Oxide (YBCO) grown on undoped silicon with a buffer layer of Yttria Stabilized Zirconia. Standard lithographic procedures were used to pattern the superconducting film into a micro bridge. Optical modulation was achieved by passing IR light through the composite structure normal to the micro bridge and switching the superconducting film in the bridge region between the superconducting and non-superconducting states. In the superconducting state, IR light reflects from the superconducting film surface. When a critical current is passed through the micro bridge, it causes the film in this region to switch to the non-superconducting state allowing IR light to pass through it. Superconducting materials have the potential to switch between these two states at speeds up to 1 picosecond using electrical current. Presently, fiber optic transmission capacity is limited by the rate at which optical data can be modulated. The superconducting modulator, when combined with other components, may have the potential to increase the transmission capacity of fiber optic lines.

  12. Basic Study of Superconductive Actuator

    OpenAIRE

    涌井, 和也; 荻原, 宏康

    2000-01-01

    There are two kinds of electromagnetic propulsion ships : a superconductive electromagnetic propulsion ship and a superconductive electricity propulsion ship. A superconductive electromagnetic propulsion ship uses the electromagnetic force (Lorenz force) by the interaction between a magnetic field and a electric current. On the other hand, a superconductive electricity propulsion ship uses screws driven by a superconductive motor. A superconductive propulsion ship technique has the merits of ...

  13. Gravity Change in Finland 1962-2010 from the Comparison of Legacy Relative Measurements with New Absolute Measurements Using the A10-020 Gravimeter

    Science.gov (United States)

    Raja-Halli, A.; Makinen, J.; Sekowski, M.; Krynski, J. S.; Kuokkanen, J.; Naranen, J.; Ruotsalainen, H. E. O.; Virtanen, H.; Bilker-Koivula, M.

    2014-12-01

    The gravity change associated with the Fennoscandian Postglacial Rebound (PGR) has been studied for 50 years now, with both relative and absolute gravity measurements. High-precision relative gravity measurements on the specially designed Fennoscandian Land Uplift Gravity Lines began in 1966. First absolute-gravity measurements with laboratory-type instruments were made in 1976. Here we report on a new regionally dense dataset: the comparison of legacy relative measurements in the Finnish First Order Gravity Net (FOGN) with absolute-gravity measurements with the A10-020 gravimeter. The FOGN was first measured in 1962 using a Worden Master gravimeter, and re-surveyed in 1988 using two LaCoste&Romberg model G gravimeters. It was re-measured in 2009-2010 using the A10-020 free-fall gravimeter of the Institute of Geodesy and Cartography. The FOGN covers the whole country and consists of 50 outdoor stations in public buildings, typically on church steps. About 30 stations from 1962 were still intact in 2009/10, and at some additional stations there is a history of local relative ties to replacement sites now occupied with the A10-020. The vertical PGR rates at the sites are up to 1 cm/yr, and thus the total gravity change in the 47 years can amount to 80 microgals. Since the legacy measurements are relative, only the differences of gravity change are estimable, and consequently the expected maximum signal is less, about 60 microgals. We compare the observed gravity change in the FOGN with estimates of vertical motion from continuous GNSS, from repeated precise leveling and from tide gauges, and with gravity change predicted from PGR models. At seven locations the gravity change estimated from the FOGN can also be compared with time series of absolute-gravity measurements with laboratory-type instruments.

  14. Preface to the Special Issue on "Geophysical and Climate Change Studies in Tibet, Xinjiang, and Siberia (TibXS from Satellite Geodesy"

    Directory of Open Access Journals (Sweden)

    Cheinway Hwang

    2013-01-01

    Full Text Available This special issue publishes papers on recent results in geophysical and climate change studies over Tibet, Xinjiang and Siberia (TibXS based upon some of the key sensors used in satellite geodesy, including satellite gravimetric sensors (GRACE and GOCE, satellite altimeters (TOPEX, Jason-1 and -2, and ENVISAT, and Global Positioning System satellites. Results from ground- and airborne-based geodetic observations, notably those based on airborne gravimeter, superconducting gravimeter (SG and seismometers are also included in the special issue. In all, 22 papers were submitted for this special issue; 17 papers were accepted.

  15. Graphene: Carbon's superconducting footprint

    Science.gov (United States)

    Vafek, Oskar

    2012-02-01

    Graphene exhibits many extraordinary properties, but superconductivity isn't one of them. Two theoretical studies suggest that by decorating the surface of graphene with the right species of dopant atoms, or by using ionic liquid gating, superconductivity could yet be induced.

  16. Superconducting cavities for LEP

    CERN Multimedia

    1983-01-01

    Above: a 350 MHz superconducting accelerating cavity in niobium of the type envisaged for accelerating electrons and positrons in later phases of LEP. Below: a small 1 GHz cavity used for investigating the surface problems of superconducting niobium. Albert Insomby stays on the right. See Annual Report 1983 p. 51.

  17. Academic training: Applied superconductivity

    CERN Multimedia

    2007-01-01

    LECTURE SERIES 17, 18, 19 January from 11.00 to 12.00 hrs Council Room, Bldg 503 Applied Superconductivity : Theory, superconducting Materials and applications E. PALMIERI/INFN, Padova, Italy When hearing about persistent currents recirculating for several years in a superconducting loop without any appreciable decay, one realizes that we are dealing with a phenomenon which in nature is the closest known to the perpetual motion. Zero resistivity and perfect diamagnetism in Mercury at 4.2 K, the breakthrough during 75 years of several hundreds of superconducting materials, the revolution of the "liquid Nitrogen superconductivity"; the discovery of still a binary compound becoming superconducting at 40 K and the subsequent re-exploration of the already known superconducting materials: Nature discloses drop by drop its intimate secrets and nobody can exclude that the last final surprise must still come. After an overview of phenomenology and basic theory of superconductivity, the lectures for this a...

  18. Superconductivity in carbon nanomaterials

    Science.gov (United States)

    Dlugon, Katarzyna

    The purpose of this thesis is to explain the phenomenon of superconductivity in carbon nanomaterials such as graphene, fullerenes and carbon nanotubes. In the introductory chapter, there is a description of superconductivity and how it occurs at critical temperature (Tc) that is characteristic and different to every superconducting material. The discovery of superconductivity in mercury in 1911 by Dutch physicist Heike Kamerlingh Onnes is also mentioned. Different types of superconductors, type I and type II, low and high temperatures superconductors, as well as the BCS theory that was developed in 1957 by Bardeen, Cooper, and Schrieffer, are also described in detail. The BCS theory explains how Cooper's pairs are formed and how they are responsible for the superconducting properties of many materials. The following chapters explain superconductivity in doped fullerenes, graphene and carbon nanotubes, respectively. There is a thorough explanation followed by many examples of different types of carbon nanomaterials in which small changes in chemical structure cause significant changes in superconducting properties. The goal of this research was not only to take into consideration well known carbon based superconductors but also to search for the newest available materials such as the fullerene nanowhiskers discovered quite recently. There is also a presentation of fairly new ideas about inducing superconductivity in a monolayer of graphene which is more challenging than inducing superconductivity in graphite by simply intercalating metal atoms between its graphene sheets. An effort has been taken to look for any available information about carbon nanomaterials that have the potential to superconduct at room temperature, mainly because discovery of such materials would be a real revolution in the modern world, although no such materials have been discovered yet.

  19. The 8th International Comparison of Absolute Gravimeters 2009: the first Key Comparison (CCM.G-K1) in the field of absolute gravimetry

    Science.gov (United States)

    Jiang, Z.; Pálinkáš, V.; Arias, F. E.; Liard, J.; Merlet, S.; Wilmes, H.; Vitushkin, L.; Robertsson, L.; Tisserand, L.; Pereira Dos Santos, F.; Bodart, Q.; Falk, R.; Baumann, H.; Mizushima, S.; Mäkinen, J.; Bilker-Koivula, M.; Lee, C.; Choi, I. M.; Karaboce, B.; Ji, W.; Wu, Q.; Ruess, D.; Ullrich, C.; Kostelecký, J.; Schmerge, D.; Eckl, M.; Timmen, L.; Le Moigne, N.; Bayer, R.; Olszak, T.; Ågren, J.; Del Negro, C.; Greco, F.; Diament, M.; Deroussi, S.; Bonvalot, S.; Krynski, J.; Sekowski, M.; Hu, H.; Wang, L. J.; Svitlov, S.; Germak, A.; Francis, O.; Becker, M.; Inglis, D.; Robinson, I.

    2012-12-01

    The 8th International Comparison of Absolute Gravimeters (ICAG2009) took place at the headquarters of the International Bureau of Weights and Measures (BIPM) from September to October 2009. It was the first ICAG organized as a key comparison in the framework of the CIPM Mutual Recognition Arrangement of the International Committee for Weights and Measures (CIPM MRA) (CIPM 1999). ICAG2009 was composed of a Key Comparison (KC) as defined by the CIPM MRA, organized by the Consultative Committee for Mass and Related Quantities (CCM) and designated as CCM.G-K1. Participating gravimeters and their operators came from national metrology institutes (NMIs) or their designated institutes (DIs) as defined by the CIPM MRA. A Pilot Study (PS) was run in parallel in order to include gravimeters and their operators from other institutes which, while not signatories of the CIPM MRA, nevertheless play important roles in international gravimetry measurements. The aim of the CIPM MRA is to have international acceptance of the measurement capabilities of the participating institutes in various fields of metrology. The results of CCM.G-K1 thus constitute an accurate and consistent gravity reference traceable to the SI (International System of Units), which can be used as the global basis for geodetic, geophysical and metrological observations of gravity. The measurements performed afterwards by the KC participants can be referred to the international metrological reference, i.e. they are SI-traceable. The ICAG2009 was complemented by a number of associated measurements: the Relative Gravity Campaign (RGC2009), high-precision levelling and an accurate gravity survey in support of the BIPM watt balance project. The major measurements took place at the BIPM between July and October 2009. Altogether 24 institutes with 22 absolute gravimeters (one of the 22 AGs was ultimately withdrawn) and nine relative gravimeters participated in the ICAG/RGC campaign. This paper is focused on the

  20. Superconductivity in aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Kubozono, Yoshihiro, E-mail: kubozono@cc.okayama-u.ac.jp [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Research Center of New Functional Materials for Energy Production, Storage and Transport, Okayama University, Okayama 700-8530 (Japan); Japan Science and Technology Agency, ACT-C, Kawaguchi 332-0012 (Japan); Goto, Hidenori; Jabuchi, Taihei [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Yokoya, Takayoshi [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Research Center of New Functional Materials for Energy Production, Storage and Transport, Okayama University, Okayama 700-8530 (Japan); Kambe, Takashi [Department of Physics, Okayama University, Okayama 700-8530 (Japan); Sakai, Yusuke; Izumi, Masanari; Zheng, Lu; Hamao, Shino; Nguyen, Huyen L.T. [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Sakata, Masafumi; Kagayama, Tomoko; Shimizu, Katsuya [Center of Science and Technology under Extreme Conditions, Osaka University, Osaka 560-8531 (Japan)

    2015-07-15

    Highlights: • Aromatic superconductor is one of core research subjects in superconductivity. Superconductivity is observed in certain metal-doped aromatic hydrocarbons. Some serious problems to be solved exist for future advancement of the research. This article shows the present status of aromatic superconductors. - Abstract: ‘Aromatic hydrocarbon’ implies an organic molecule that satisfies the (4n + 2) π-electron rule and consists of benzene rings. Doping solid aromatic hydrocarbons with metals provides the superconductivity. The first discovery of such superconductivity was made for K-doped picene (K{sub x}picene, five benzene rings). Its superconducting transition temperatures (T{sub c}’s) were 7 and 18 K. Recently, we found a new superconducting K{sub x}picene phase with a T{sub c} as high as 14 K, so we now know that K{sub x}picene possesses multiple superconducting phases. Besides K{sub x}picene, we discovered new superconductors such as Rb{sub x}picene and Ca{sub x}picene. A most serious problem is that the shielding fraction is ⩽15% for K{sub x}picene and Rb{sub x}picene, and it is often ∼1% for other superconductors. Such low shielding fractions have made it difficult to determine the crystal structures of superconducting phases. Nevertheless, many research groups have expended a great deal of effort to make high quality hydrocarbon superconductors in the five years since the discovery of hydrocarbon superconductivity. At the present stage, superconductivity is observed in certain metal-doped aromatic hydrocarbons (picene, phenanthrene and dibenzopentacene), but the shielding fraction remains stubbornly low. The highest priority research area is to prepare aromatic superconductors with a high superconducting volume-fraction. Despite these difficulties, aromatic superconductivity is still a core research target and presents interesting and potentially breakthrough challenges, such as the positive pressure dependence of T{sub c} that is clearly

  1. The superconducting spin valve and triplet superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Garifullin, I.A., E-mail: ilgiz_garifullin@yahoo.com [Zavoisky Physical-Technical Institute, Kazan Scientific Center of Russian Academy of Sciences, 420029 Kazan (Russian Federation); Leksin, P.V.; Garif' yanov, N.N.; Kamashev, A.A. [Zavoisky Physical-Technical Institute, Kazan Scientific Center of Russian Academy of Sciences, 420029 Kazan (Russian Federation); Fominov, Ya.V. [L. D. Landau Institute for Theoretical Physics RAS, 119334 Moscow (Russian Federation); Moscow Institute of Physics and Technology, 141700 Dolgoprudny (Russian Federation); Schumann, J.; Krupskaya, Y.; Kataev, V.; Schmidt, O.G. [Leibniz Institute for Solid State and Materials Research IFW Dresden, D-01171 Dresden (Germany); Büchner, B. [Leibniz Institute for Solid State and Materials Research IFW Dresden, D-01171 Dresden (Germany); Institut für Festkörperphysik, Technische Universität Dresden, D-01062 Dresden (Germany)

    2015-01-01

    A review of our recent results on the spin valve effect is presented. We have used a theoretically proposed spin switch design F1/F2/S comprising a ferromagnetic bilayer (F1/F2) as a ferromagnetic component, and an ordinary superconductor (S) as the second interface component. Based on it we have prepared and studied in detail a set of multilayers CoO{sub x}/Fe1/Cu/Fe2/S (S=In or Pb). In these heterostructures we have realized for the first time a full spin switch effect for the superconducting current, have observed its sign-changing oscillating behavior as a function of the Fe2-layer thickness and finally have obtained direct evidence for the long-range triplet superconductivity arising due to noncollinearity of the magnetizations of the Fe1 and Fe2 layers. - Highlights: • We studied a spin switch design F1/F2/S. • We prepared a set of multilayers CoOx/Fe1/Cu/Fe2/S (S=In or Pb). • The full spin switch effect for the superconducting current was realized. • We observed its oscillating behavior as a function of the Fe2-layer thickness. • We obtained direct evidence for the long-range triplet superconductivity.

  2. Tunneling in superconducting structures

    Science.gov (United States)

    Shukrinov, Yu. M.

    2010-12-01

    Here we review our results on the breakpoint features in the coupled system of IJJ obtained in the framework of the capacitively coupled Josephson junction model with diffusion current. A correspondence between the features in the current voltage characteristics (CVC) and the character of the charge oscillations in superconducting layers is demonstrated. Investigation of the correlations of superconducting currents in neighboring Josephson junctions and the charge correlations in neighboring superconducting layers reproduces the features in the CVC and gives a powerful method for the analysis of the CVC of coupled Josephson junctions. A new method for determination of the dissipation parameter is suggested.

  3. Superconductivity in doped insulators

    Energy Technology Data Exchange (ETDEWEB)

    Emery, V.J. [Brookhaven National Lab., Upton, NY (United States); Kivelson, S.A. [California Univ., Los Angeles, CA (United States). Dept. of Physics

    1995-12-31

    It is shown that many synthetic metals, including high temperature superconductors are ``bad metals``, with such a poor conductivity that the usual meanfield theory of superconductivity breaks down because of anomalously large classical and quantum fluctuations of the phase of the superconducting order parameter. It is argued that the supression of a first order phase transition (phase separation) by the long-range Coulomb interaction leads to high temperature superconductivity accompanied by static or dynamical charge inhomogeneIty. Evidence in support of this picture for high temperature superconductors is described.

  4. Superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Mijatovic, Nenad; Seiler, Eugen

    2010-01-01

    , the main challenge of the superconducting direct drive technology is to prove that the reliability is superior to the alternative drive trains based on gearboxes or permanent magnets. A strategy of successive testing of superconducting direct drive trains in real wind turbines of 10 kW, 100 kW, 1 MW and 10...... offshore turbines of 8 and 10 MW have been determined from an up-scaling of an existing 5 MW turbine and the necessary properties of the superconducting drive train are discussed. We have found that the absence of the gear box is the main benefit and the reduced weight and size is secondary. However...... MW generator and it is concluded that the present production capacity of coated conductors must be increased by a factor of 36 by 2020, resulting in a ten times lower price of the tape in order to reach a realistic price level for the superconducting drive train....

  5. Magnetic and superconducting nanowires

    DEFF Research Database (Denmark)

    Piraux, L.; Encinas, A.; Vila, L.

    2005-01-01

    magnetic and superconducting nanowires. Using different approaches entailing measurements on both single wires and arrays, numerous interesting physical properties have been identified in relation to the nanoscopic dimensions of these materials. Finally, various novel applications of the nanowires are also...

  6. Superconductivity fundamentals and applications

    CERN Document Server

    Buckel, Werner

    2004-01-01

    This is the second English edition of what has become one of the definitive works on superconductivity in German -- currently in its sixth edition. Comprehensive and easy to understand, this introductory text is written especially with the non-specialist in mind. The authors, both long-term experts in this field, present the fundamental considerations without the need for extensive mathematics, describing the various phenomena connected with the superconducting state, with liberal insertion of experimental facts and examples for modern applications. While all fields of superconducting phenomena are dealt with in detail, this new edition pays particular attention to the groundbreaking discovery of magnesium diboride and the current developments in this field. In addition, a new chapter provides an overview of the elements, alloys and compounds where superconductivity has been observed in experiments, together with their major characteristics. The chapter on technical applications has been considerably expanded...

  7. Superconductivity and symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Sarasua, L.G., E-mail: sarasua@fisica.edu.uy [Instituto de Fisica, Facultad de Ciencias, Universidad de la Republica, Montevideo (Uruguay)

    2012-02-15

    In the present work we consider the relation between superconductivity and spontaneous gauge symmetry breaking (SGBS). We show that ODLRO does not require in principle SBGS, even in the presence of particle number fluctuations, by examining exact solutions of a fermionic pairing model. The criteria become equivalent if a symmetry breaking field is allowed, which can be attributed to the interaction with the environment. However, superconducting states without SBGS are not forbidden.

  8. Photoemission, Correlation and Superconductivity:

    Science.gov (United States)

    Abrecht, M.; Ariosa, D.; Cloëtta, D.; Pavuna, D.; Perfetti, L.; Grioni, M.; Margaritondo, G.

    We review some of the problems still affecting photoemission as a probe of high-temperature superconductivity, as well as important recent results concerning their solution. We show, in particular, some of the first important results on thin epitaxial films grown by laser ablation, which break the monopoly of cleaved BCSCO in this type of experiments. Such results, obtained on thin LSCO, may have general implications on the theory of high-temperature superconductivity.

  9. Emergent Higgsless Superconductivity

    Directory of Open Access Journals (Sweden)

    Cristina Diamantini M.

    2017-01-01

    Full Text Available We present a new Higgsless model of superconductivity, inspired from anyon superconductivity but P- and T-invariant and generalizable to any dimension. While the original anyon superconductivity mechanism was based on incompressible quantum Hall fluids as average field states, our mechanism involves topological insulators as average field states. In D space dimensions it involves a (D-1-form fictitious pseudovector gauge field which originates from the condensation of topological defects in compact lowenergy effective BF theories. There is no massive Higgs scalar as there is no local order parameter. When electromagnetism is switched on, the photon acquires mass by the topological BF mechanism. Although the charge of the gapless mode (2 and the topological order (4 are the same as those of the standard Higgs model, the two models of superconductivity are clearly different since the origins of the gap, reflected in the high-energy sectors are totally different. In 2D thi! s type of superconductivity is explicitly realized as global superconductivity in Josephson junction arrays. In 3D this model predicts a possible phase transition from topological insulators to Higgsless superconductors.

  10. Superconducting Fullerene Nanowhiskers

    Directory of Open Access Journals (Sweden)

    Yoshihiko Takano

    2012-04-01

    Full Text Available We synthesized superconducting fullerene nanowhiskers (C60NWs by potassium (K intercalation. They showed large superconducting volume fractions, as high as 80%. The superconducting transition temperature at 17 K was independent of the K content (x in the range between 1.6 and 6.0 in K-doped C60 nanowhiskers (KxC60NWs, while the superconducting volume fractions changed with x. The highest shielding fraction of a full shielding volume was observed in the material of K3.3C60NW by heating at 200 °C. On the other hand, that of a K-doped fullerene (K-C60 crystal was less than 1%. We report the superconducting behaviors of our newly synthesized KxC60NWs in comparison to those of KxC60 crystals, which show superconductivity at 19 K in K3C60. The lattice structures are also discussed, based on the x-ray diffraction (XRD analyses.

  11. High temperature interfacial superconductivity

    Science.gov (United States)

    Bozovic, Ivan [Mount Sinai, NY; Logvenov, Gennady [Port Jefferson Station, NY; Gozar, Adrian Mihai [Port Jefferson, NY

    2012-06-19

    High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting per se, is described. Depending upon the layering sequence of the bilayers, T.sub.c may be either .about.15 K or .about.30 K. This highly robust phenomenon is confined to within 2-3 nm around the interface. After exposing the bilayer to ozone, T.sub.c exceeds 50 K and this enhanced superconductivity is also shown to originate from a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi two-dimensional high T.sub.c phases and to significantly enhance superconducting properties in other superconductors. The superconducting interface may be implemented, for example, in SIS tunnel junctions or a SuFET.

  12. The superconducting spin valve and triplet superconductivity

    Science.gov (United States)

    Garifullin, I. A.; Leksin, P. V.; Garif`yanov, N. N.; Kamashev, A. A.; Fominov, Ya. V.; Schumann, J.; Krupskaya, Y.; Kataev, V.; Schmidt, O. G.; Büchner, B.

    2015-01-01

    A review of our recent results on the spin valve effect is presented. We have used a theoretically proposed spin switch design F1/F2/S comprising a ferromagnetic bilayer (F1/F2) as a ferromagnetic component, and an ordinary superconductor (S) as the second interface component. Based on it we have prepared and studied in detail a set of multilayers CoOx/Fe1/Cu/Fe2/S (S=In or Pb). In these heterostructures we have realized for the first time a full spin switch effect for the superconducting current, have observed its sign-changing oscillating behavior as a function of the Fe2-layer thickness and finally have obtained direct evidence for the long-range triplet superconductivity arising due to noncollinearity of the magnetizations of the Fe1 and Fe2 layers.

  13. Perturbations of the local gravity field due to mass distribution on precise measuring instruments: a numerical method applied to a cold atom gravimeter

    CERN Document Server

    D'Agostino, G; Landragin, A; Santos, F Pereira Dos

    2011-01-01

    We present a numerical method, based on a FEM simulation, for the determination of the gravitational field generated by massive objects, whatever geometry and space mass density they have. The method was applied for the determination of the self gravity effect of an absolute cold atom gravimeter which aims at a relative uncertainty of 10-9. The deduced bias, calculated with a perturbative treatment, is finally presented. The perturbation reaches (1.3 \\pm 0.1) \\times 10-9 of the Earth's gravitational field.

  14. Nanoscience and Engineering in Superconductivity

    CERN Document Server

    Moshchalkov, Victor; Lang, Wolfgang

    2010-01-01

    For emerging energy saving technologies, superconducting materials with superior performance are needed. Such materials can be developed by manipulating the 'elementary building blocks' through nanostructuring. For superconductivity the 'elementary blocks' are Cooper pair and fluxon (vortex). This book presents new ways how to modify superconductivity and vortex matter through nanostructuring and the use of nanoscale magnetic templates. The basic nano-effects, vortex and vortex-antivortex patterns, vortex dynamics, Josephson phenomena, critical currents, and interplay between superconductivity

  15. Interface high-temperature superconductivity

    Science.gov (United States)

    Wang, Lili; Ma, Xucun; Xue, Qi-Kun

    2016-12-01

    Cuprate high-temperature superconductors consist of two quasi-two-dimensional (2D) substructures: CuO2 superconducting layers and charge reservoir layers. The superconductivity is realized by charge transfer from the charge reservoir layers into the superconducting layers without chemical dopants and defects being introduced into the latter, similar to modulation-doping in the semiconductor superlattices of AlGaAs/GaAs. Inspired by this scheme, we have been searching for high-temperature superconductivity in ultra-thin films of superconductors epitaxially grown on semiconductor/oxide substrates since 2008. We have observed interface-enhanced superconductivity in both conventional and unconventional superconducting films, including single atomic layer films of Pb and In on Si substrates and single unit cell (UC) films of FeSe on SrTiO3 (STO) substrates. The discovery of high-temperature superconductivity with a superconducting gap of ∼20 meV in 1UC-FeSe/STO has stimulated tremendous interest in the superconductivity community, for it opens a new avenue for both raising superconducting transition temperature and understanding the pairing mechanism of unconventional high-temperature superconductivity. Here, we review mainly the experimental progress on interface-enhanced superconductivity in the three systems mentioned above with emphasis on 1UC-FeSe/STO, studied by scanning tunneling microscopy/spectroscopy, angle-resolved photoemission spectroscopy and transport experiments. We discuss the roles of interfaces and a possible pairing mechanism inferred from these studies.

  16. Connectivity and superconductivity

    CERN Document Server

    Rubinstein, Jacob

    2000-01-01

    The motto of connectivity and superconductivity is that the solutions of the Ginzburg--Landau equations are qualitatively influenced by the topology of the boundaries, as in multiply-connected samples. Special attention is paid to the "zero set", the set of the positions (also known as "quantum vortices") where the order parameter vanishes. The effects considered here usually become important in the regime where the coherence length is of the order of the dimensions of the sample. It takes the intuition of physicists and the awareness of mathematicians to find these new effects. In connectivity and superconductivity, theoretical and experimental physicists are brought together with pure and applied mathematicians to review these surprising results. This volume is intended to serve as a reference book for graduate students and researchers in physics or mathematics interested in superconductivity, or in the Schrödinger equation as a limiting case of the Ginzburg--Landau equations.

  17. Large Superconducting Magnet Systems

    CERN Document Server

    Védrine, P.

    2014-07-17

    The increase of energy in accelerators over the past decades has led to the design of superconducting magnets for both accelerators and the associated detectors. The use of Nb−Ti superconducting materials allows an increase in the dipole field by up to 10 T compared with the maximum field of 2 T in a conventional magnet. The field bending of the particles in the detectors and generated by the magnets can also be increased. New materials, such as Nb3Sn and high temperature superconductor (HTS) conductors, can open the way to higher fields, in the range 13–20 T. The latest generations of fusion machines producing hot plasma also use large superconducting magnet systems.

  18. Failed theories of superconductivity

    CERN Document Server

    Schmalian, Joerg

    2010-01-01

    Almost half a century passed between the discovery of superconductivity by Kammerlingh Onnes and the theoretical explanation of the phenomenon by Bardeen, Cooper and Schrieffer. During the intervening years the brightest minds in theoretical physics tried and failed to develop a microscopic understanding of the effect. A summary of some of those unsuccessful attempts to understand superconductivity not only demonstrates the extraordinary achievement made by formulating the BCS theory, but also illustrates that mistakes are a natural and healthy part of the scientific discourse, and that inapplicable, even incorrect theories can turn out to be interesting and inspiring.

  19. Superconducting magnetic quadrupole

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.W.; Shepard, K.W.; Nolen, J.A.

    1995-08-01

    A design was developed for a 350 T/m, 2.6-cm clear aperture superconducting quadrupole focussing element for use in a very low q/m superconducting linac as discussed below. The quadrupole incorporates holmium pole tips, and a rectangular-section winding using standard commercially-available Nb-Ti wire. The magnet was modeled numerically using both 2D and 3D codes, as a basis for numerical ray tracing using the quadrupole as a linac element. Components for a prototype singlet are being procured during FY 1995.

  20. Fingerprints of Mott Superconductivity

    Institute of Scientific and Technical Information of China (English)

    王强华

    2003-01-01

    We improve a previous theory of doped Mott insulators with duality between pairing and magnetism by a further duality transform. As the result we obtained a quantum Ginzburg-Landau theory describing the Cooper pair condensate and the dual of spin condensate. We address the superconductivity by doping a Mott insulator,which we call the Mott superconductivity. Some fingerprints of such novelty in cuprates are the scaling between neutron resonance energy and superfluid density, and the induced quantized spin moment by vortices or Zn impurity (together with circulating charge super-current to be checked by experiments).

  1. Hydrology Induced Gravity Variation Observed at Vienna and Conrad Observatory

    Science.gov (United States)

    Mikolaj, Michal; Meurers, Bruno

    2013-04-01

    Mass transport associated with hydrological processes induces gravity variations observed by superconducting gravimeter (SG) and thus can mask essential geodynamical signals. The presented study analyses time series acquired by superconducting gravimeter GWR C025 with a focus on hydrological effects. This gravimeter was transported from Vienna to Conrad Observatory in the end of year 2007. The gravimeter was in both cases installed in an underground laboratory, but Conrad Observatory is located in a mountain area, while Vienna represents an urbanized area. This affords an opportunity to study the hydrological gravity response for two different environments. Several global hydrological models are used to estimate the contribution of global hydrology to gravity variations. Local hydrology is analysed using in-situ meteorological measurements. Significant influence of heavy rain on gravity is observed for both underground stations. The gravity variation observed at Conrad Observatory is additionally strongly affected by snow accumulation and melting phase. The SG installation in an underground laboratory together with a specific topographic situation at the place of observation may lead to an interference of local and global hydrological effect.

  2. Superconducting Magnets for Particle Accelerators

    CERN Document Server

    Rossi, L

    2012-01-01

    Superconductivity has been the most influential technology in the field of accelerators in the last 30 years. Since the commissioning of the Tevatron, which demonstrated the use and operability of superconductivity on a large scale, superconducting magnets and rf cavities have been at the heart of all new large accelerators. Superconducting magnets have been the invariable choice for large colliders, as well as cyclotrons and large synchrotrons. In spite of the long history of success, superconductivity remains a difficult technology, requires adequate R&D and suitable preparation, and has a relatively high cost. Hence, it is not surprising that the development has also been marked by a few setbacks. This article is a review of the main superconducting accelerator magnet projects; it highlights the main characteristics and main achievements, and gives a perspective on the development of superconducting magnets for the future generation of very high energy colliders.

  3. Spin-orbit-coupled superconductivity.

    Science.gov (United States)

    Lo, Shun-Tsung; Lin, Shih-Wei; Wang, Yi-Ting; Lin, Sheng-Di; Liang, C-T

    2014-06-25

    Superconductivity and spin-orbit (SO) interaction have been two separate emerging fields until very recently that the correlation between them seemed to be observed. However, previous experiments concerning SO coupling are performed far beyond the superconducting state and thus a direct demonstration of how SO coupling affects superconductivity remains elusive. Here we investigate the SO coupling in the critical region of superconducting transition on Al nanofilms, in which the strength of disorder and spin relaxation by SO coupling are changed by varying the film thickness. At temperatures T sufficiently above the superconducting critical temperature T(c), clear signature of SO coupling reveals itself in showing a magneto-resistivity peak. When T superconductivity. By studying such magneto-resistivity peaks under different strength of spin relaxation, we highlight the important effects of SO interaction on superconductivity.

  4. AC/RF Superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, Gianluigi [JLAB

    2015-02-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  5. Superconducting Technology Assessment

    Science.gov (United States)

    2005-08-01

    of Nb/Al- Nx /NbTiN junctions for SIS mixer applications,” IEEE Trans. Appl. Superconduct., vol. 11, pp. 76–79, Mar. 2001. [48] M. Gurvitch, W. A...Another connector developed by IBM for commercial applications using a dendritic interposer technology. A “beam-on-pad” approach developed by Siemens

  6. Hybrid superconducting neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Merlo, V.; Lucci, M.; Ottaviani, I. [Dipartimento di Fisica, Università Tor Vergata, Via della Ricerca Scientifica, I-00133 Roma (Italy); Salvato, M.; Cirillo, M. [Dipartimento di Fisica, Università Tor Vergata, Via della Ricerca Scientifica, I-00133 Roma (Italy); CNR SPIN Salerno, Università di Salerno, Via Giovanni Paolo II, n.132, 84084 Fisciano (Italy); Scherillo, A. [Science and Technology Facility Council, ISIS Facility Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Celentano, G. [ENEA Frascati Research Centre, Via. E. Fermi 45, 00044 Frascati (Italy); Pietropaolo, A., E-mail: antonino.pietropaolo@enea.it [ENEA Frascati Research Centre, Via. E. Fermi 45, 00044 Frascati (Italy); Mediterranean Institute of Fundamental Physics, Via Appia Nuova 31, 00040 Marino, Roma (Italy)

    2015-03-16

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, {sup 10}B + n → α + {sup 7}Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current I{sub c}, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  7. Levitation Kits Demonstrate Superconductivity.

    Science.gov (United States)

    Worthy, Ward

    1987-01-01

    Describes the "Project 1-2-3" levitation kit used to demonstrate superconductivity. Summarizes the materials included in the kit. Discusses the effect demonstrated and gives details on how to obtain kits. Gives an overview of the documentation that is included. (CW)

  8. LEP superconducting cavity

    CERN Multimedia

    1995-01-01

    Engineers work in a clean room on one of the superconducting cavities for the upgrade to the LEP accelerator, known as LEP-2. The use of superconductors allow higher electric fields to be produced so that higher beam energies can be reached.

  9. Niobium superconducting cavity

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    This 5-cell superconducting cavity, made from bulk-Nb, stems from the period of general studies, not all directed towards direct use at LEP. This one is dimensioned for 1.5 GHz, the frequency used at CEBAF and also studied at Saclay (LEP RF was 352.2 MHz). See also 7908227, 8007354, 8209255, 8210054, 8312339.

  10. LHC Superconducting Magnets

    CERN Document Server

    Jean Leyder

    2000-01-01

    The LHC is the next step in CERN's quest to unravel the mysteries of the Universe. It will accelerate protons to energies never before achieved in laboratories, and to hold them on course it will use powerful superconducting magnets on an unprecedented scale.

  11. Coupled superconducting flux qubits

    NARCIS (Netherlands)

    Plantenberg, J.H.

    2007-01-01

    This thesis presents results of theoretical and experimental work on superconducting persistent-current quantum bits. These qubits offer an attractive route towards scalable solid-state quantum computing. The focus of this work is on the gradiometer flux qubit which has a special geometric design, t

  12. Superconducting Quantum Circuits

    NARCIS (Netherlands)

    Majer, J.B.

    2002-01-01

    This thesis describes a number of experiments with superconducting cir- cuits containing small Josephson junctions. The circuits are made out of aluminum islands which are interconnected with a very thin insulating alu- minum oxide layer. The connections form a Josephson junction. The current trough

  13. Checking BEBC superconducting magnet

    CERN Multimedia

    1974-01-01

    The superconducting coils of the magnet for the 3.7 m Big European Bubble Chamber (BEBC) had to be checked, see Annual Report 1974, p. 60. The photo shows a dismantled pancake. By December 1974 the magnet reached again the field design value of 3.5 T.

  14. Nonequilibrium superconducting detectors

    Science.gov (United States)

    Cristiano, R.; Ejrnaes, M.; Esposito, E.; Lisitskyi, M. P.; Nappi, C.; Pagano, S.; Perez de Lara, D.

    2006-03-01

    Nonequilibrium superconducting detectors exploit the early stages of the energy down cascade which occur after the absorption of radiation. They operate on a short temporal scale ranging from few microseconds down to tens of picoseconds. In such a way they provide fast counting capability, high time discrimination and also, for some devices, energy sensitivity. Nonequilibrium superconducting detectors are developed for their use both in basic science and in practical applications for detection of single photons or single ionized macromolecules. In this paper we consider two devices: distributed readout imaging detectors (DROIDs) based on superconducting tunnel junctions (STJs), which are typically used for high-speed energy spectroscopy applications, and hot-electron superconductive detectors (HESDs), which are typically used as fast counters and time discriminators. Implementation of the DROID geometry to use a single superconductor is discussed. Progress in the fabrication technology of NbN nanostructured HESDs is presented. The two detectors share the high sensitivity that makes them able to efficiently detect even single photons down to infrared energy.

  15. Nonequilibrium superconducting detectors

    Energy Technology Data Exchange (ETDEWEB)

    Cristiano, R [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Ejrnaes, M [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); INFN Sezione di Napoli, 80126 Naples (Italy); Esposito, E [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Lisitskyi, M P [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Nappi, C [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Pagano, S [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Dipartimento di Fisica, Universita di Salerno, 84081 Baronissi (Saudi Arabia) (Italy); Perez de Lara, D [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy)

    2006-03-15

    Nonequilibrium superconducting detectors exploit the early stages of the energy down cascade which occur after the absorption of radiation. They operate on a short temporal scale ranging from few microseconds down to tens of picoseconds. In such a way they provide fast counting capability, high time discrimination and also, for some devices, energy sensitivity. Nonequilibrium superconducting detectors are developed for their use both in basic science and in practical applications for detection of single photons or single ionized macromolecules. In this paper we consider two devices: distributed readout imaging detectors (DROIDs) based on superconducting tunnel junctions (STJs), which are typically used for high-speed energy spectroscopy applications, and hot-electron superconductive detectors (HESDs), which are typically used as fast counters and time discriminators. Implementation of the DROID geometry to use a single superconductor is discussed. Progress in the fabrication technology of NbN nanostructured HESDs is presented. The two detectors share the high sensitivity that makes them able to efficiently detect even single photons down to infrared energy.

  16. LHC superconducting strand

    CERN Multimedia

    Patrice Loiez

    1999-01-01

    This cross-section through a strand of superconducting matieral as used in the LHC shows the 8000 Niobium-Titanium filaments embedded like a honeycomb in copper. When cooled to 1.9 degrees above absolute zero in the LHC accelerator, these filaments will have zero resistance and so will carry a high electric current with no energy loss.

  17. Superconducting doped topological materials

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Satoshi, E-mail: sasaki@sanken.osaka-u.ac.jp [Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Mizushima, Takeshi, E-mail: mizushima@mp.es.osaka-u.ac.jp [Department of Materials Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Department of Physics, Okayama University, Okayama 700-8530 (Japan)

    2015-07-15

    Highlights: • Studies on both normal- and SC-state properties of doped topological materials. • Odd-parity pairing systems with the time-reversal-invariance. • Robust superconductivity in the presence of nonmagnetic impurity scattering. • We propose experiments to identify the existence of Majorana fermions in these SCs. - Abstract: Recently, the search for Majorana fermions (MFs) has become one of the most important and exciting issues in condensed matter physics since such an exotic quasiparticle is expected to potentially give rise to unprecedented quantum phenomena whose functional properties will be used to develop future quantum technology. Theoretically, the MFs may reside in various types of topological superconductor materials that is characterized by the topologically protected gapless surface state which are essentially an Andreev bound state. Superconducting doped topological insulators and topological crystalline insulators are promising candidates to harbor the MFs. In this review, we discuss recent progress and understanding on the research of MFs based on time-reversal-invariant superconducting topological materials to deepen our understanding and have a better outlook on both the search for and realization of MFs in these systems. We also discuss some advantages of these bulk systems to realize MFs including remarkable superconducting robustness against nonmagnetic impurities.

  18. Nonlinearities in Microwave Superconductivity

    OpenAIRE

    Ledenyov, Dimitri O.; Ledenyov, Viktor O.

    2012-01-01

    The research is focused on the modeling of nonlinear properties of High Temperature Superconducting (HTS) thin films, using Bardeen, Cooper, Schrieffer and Lumped Element Circuit theories, with purpose to enhance microwave power handling capabilities of microwave filters and optimize design of microwave circuits in micro- and nano- electronics.

  19. Coupled superconducting flux qubits

    NARCIS (Netherlands)

    Plantenberg, J.H.

    2007-01-01

    This thesis presents results of theoretical and experimental work on superconducting persistent-current quantum bits. These qubits offer an attractive route towards scalable solid-state quantum computing. The focus of this work is on the gradiometer flux qubit which has a special geometric design, t

  20. Applications of Superconductivity

    Science.gov (United States)

    Goodkind, John M.

    1971-01-01

    Presents a general review of current practical applications of the properties of superconducters. The devices are classified into groups according to the property that is of primary importance. The article is inteded as a first introduction for students and professionals. (Author/DS)

  1. Levitation Kits Demonstrate Superconductivity.

    Science.gov (United States)

    Worthy, Ward

    1987-01-01

    Describes the "Project 1-2-3" levitation kit used to demonstrate superconductivity. Summarizes the materials included in the kit. Discusses the effect demonstrated and gives details on how to obtain kits. Gives an overview of the documentation that is included. (CW)

  2. ISR Superconducting Quadrupoles

    CERN Multimedia

    1977-01-01

    Michel Bouvier is preparing for curing the 6-pole superconducting windings inbedded in the cylindrical wall separating liquid helium from vacuum in the quadrupole aperture. The heat for curing the epoxy glue was provided by a ramp of infrared lamps which can be seen above the slowly rotating cylinder. See also 7703512X, 7702690X.

  3. High temperature interface superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Gozar, A., E-mail: adrian.gozar@yale.edu [Yale University, New Haven, CT 06511 (United States); Bozovic, I. [Yale University, New Haven, CT 06511 (United States); Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2016-02-15

    Highlight: • This review article covers the topic of high temperature interface superconductivity. • New materials and techniques used for achieving interface superconductivity are discussed. • We emphasize the role played by the differences in structure and electronic properties at the interface with respect to the bulk of the constituents. - Abstract: High-T{sub c} superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-T{sub c} Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed. We conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.

  4. Superconductivity an introduction

    CERN Document Server

    Kleiner, Reinhold

    2016-01-01

    The third edition of this proven text has been developed further in both scope and scale to reflect the potential for superconductivity in power engineering to increase efficiency in electricity transmission or engines. The landmark reference remains a comprehensive introduction to the field, covering every aspect from fundamentals to applications, and presenting the latest developments in organic superconductors, superconducting interfaces, quantum coherence, and applications in medicine and industry. Due to its precise language and numerous explanatory illustrations, it is suitable as an introductory textbook, with the level rising smoothly from chapter to chapter, such that readers can build on their newly acquired knowledge. The authors cover basic properties of superconductors and discuss stability and different material groups with reference to the latest and most promising applications, devoting the last third of the book to applications in power engineering, medicine, and low temperature physics. An e...

  5. Superconducting Accelerator Magnets

    CERN Document Server

    Mess, K H; Wolff, S

    1996-01-01

    The main topic of the book are the superconducting dipole and quadrupole magnets needed in high-energy accelerators and storage rings for protons, antiprotons or heavy ions. The basic principles of low-temperature superconductivity are outlined with special emphasis on the effects which are relevant for accelerator magnets. Properties and fabrication methods of practical superconductors are described. Analytical methods for field calculation and multipole expansion are presented for coils without and with iron yoke. The effect of yoke saturation and geometric distortions on field quality is studied. Persistent magnetization currents in the superconductor and eddy currents the copper part of the cable are analyzed in detail and their influence on field quality and magnet performance is investigated. Superconductor stability, quench origins and propagation and magnet protection are addressed. Some important concepts of accelerator physics are introduced which are needed to appreciate the demanding requirements ...

  6. Statistical mechanics of superconductivity

    CERN Document Server

    Kita, Takafumi

    2015-01-01

    This book provides a theoretical, step-by-step comprehensive explanation of superconductivity for undergraduate and graduate students who have completed elementary courses on thermodynamics and quantum mechanics. To this end, it adopts the unique approach of starting with the statistical mechanics of quantum ideal gases and successively adding and clarifying elements and techniques indispensible for understanding it. They include the spin-statistics theorem, second quantization, density matrices, the Bloch–De Dominicis theorem, the variational principle in statistical mechanics, attractive interaction, and bound states. Ample examples of their usage are also provided in terms of topics from advanced statistical mechanics such as two-particle correlations of quantum ideal gases, derivation of the Hartree–Fock equations, and Landau’s Fermi-liquid theory, among others. With these preliminaries, the fundamental mean-field equations of superconductivity are derived with maximum mathematical clarity based on ...

  7. Superconducting switch pack

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, V.C.; Wollan, J.J.

    1990-07-24

    This patent describes a superconducting switch pack at least one switch element. The switch element including a length of superconductive wire having a switching portion and two lead portions, the switching portion being between the lead portions; means for supporting the switching portion in a plane in a common mold; hardened resin means encapsulating the switching portion in the plane in a solid body; wherein the solid body has an exterior surface which is planar and substantially parallel with and spaced apart from the plane in which the switching portion is positioned. The exterior surface being exposed to the exterior of the switch pack and the resin means filling the space between the exterior surface and the plane of the switching portion so as to provide uninterrupted thermal communication between the plane of the switching portion and the exterior of the switch pack; and a heater element in thermal contact with the switching portion.

  8. Tunable superconducting nanoinductors

    Energy Technology Data Exchange (ETDEWEB)

    Annunziata, Anthony J; Santavicca, Daniel F; Frunzio, Luigi; Rooks, Michael J; Prober, Daniel E [Department of Applied Physics, Yale University, New Haven, CT 06511 (United States); Catelani, Gianluigi [Department of Physics, Yale University, New Haven, CT 06511 (United States); Frydman, Aviad, E-mail: anthony.annunziata@yale.edu, E-mail: daniel.prober@yale.edu [Department of Physics, Bar-Ilan University, Ramat Gan 52900 (Israel)

    2010-11-05

    We characterize inductors fabricated from ultra-thin, approximately 100 nm wide strips of niobium (Nb) and niobium nitride (NbN). These nanowires have a large kinetic inductance in the superconducting state. The kinetic inductance scales linearly with the nanowire length, with a typical value of 1 nH {mu}m{sup -1} for NbN and 44 pH {mu}m{sup -1} for Nb at a temperature of 2.5 K. We measure the temperature and current dependence of the kinetic inductance and compare our results to theoretical predictions. We also simulate the self-resonant frequencies of these nanowires in a compact meander geometry. These nanowire inductive elements have applications in a variety of microwave frequency superconducting circuits.

  9. Time ripe for superconductivity?

    Directory of Open Access Journals (Sweden)

    George Marsh

    2002-04-01

    But there is a crucial deadline and failure to meet it could send superconductivity back to the commercial shadows (at least outside the medical and scientific niches where it is a key enabler in analytical instruments, magnetic resonance imaging, and particle accelerators for another 30 years. Later this decade, the vintage infrastructure of dense copper conductors that supports power distribution in developed countries, in particular in the US, will become due for renewal. (Recent power problems in California were largely those of distribution infrastructure. At the same time, boosting capacity to serve the needs of increasingly affluent populations will pose a challenge. Superconductivity could provide the answer — if the technology matures in time and cost targets are met.

  10. Relativistic Model for two-band Superconductivity

    OpenAIRE

    Ohsaku, Tadafumi

    2003-01-01

    To understand the superconductivity in MgB2, several two-band models of superconductivity were proposed. In this paper, by using the relativistic fermion model, we clearize the effect of the lower band in the superconductivity.

  11. Stabilized Laser Gravimeter

    Science.gov (United States)

    1976-11-01

    Eisley [24J, Tseng and Dugundji [25, 26], Srinivasan [27] and Lurie [28]. The resulting equations of motion obtained by the above authors 34 are...Tseng and Dugundji [25, 26] using Galerkin’s method and a solution of the resulting Duffing equation by the harmonic balance method; and by Srinivasan [27... Dugundji are of particular interest since in addition to simple harmonic motion they address sub- and superharmonic motion. Other papers that also

  12. Topological confinement and superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Al-hassanieh, Dhaled A [Los Alamos National Laboratory; Batista, Cristian D [Los Alamos National Laboratory

    2008-01-01

    We derive a Kondo Lattice model with a correlated conduction band from a two-band Hubbard Hamiltonian. This mapping allows us to describe the emergence of a robust pairing mechanism in a model that only contains repulsive interactions. The mechanism is due to topological confinement and results from the interplay between antiferromagnetism and delocalization. By using Density-Matrix-Renormalization-Group (DMRG) we demonstrate that this mechanism leads to dominant superconducting correlations in aID-system.

  13. Unconventional superconductivity near inhomogeneities

    Energy Technology Data Exchange (ETDEWEB)

    Poenicke, A.F.

    2008-01-25

    After the presentation of a quasi-classical theory the specific heat of Sr{sub 2}RuO{sub 4} is considered. Then tunneling spectroscopy on cuprate superconductors is discussed. Thereafter the subharmonic gap structure in d-wave superconductors is considered. Finally the application of the S-matrix in superconductivity is discussed with spin mixing, CrO{sub 2} as example, and an interface model. (HSI)

  14. Helical superconducting black holes.

    Science.gov (United States)

    Donos, Aristomenis; Gauntlett, Jerome P

    2012-05-25

    We construct novel static, asymptotically five-dimensional anti-de Sitter black hole solutions with Bianchi type-VII(0) symmetry that are holographically dual to superconducting phases in four spacetime dimensions with a helical p-wave order. We calculate the precise temperature dependence of the pitch of the helical order. At zero temperature the black holes have a vanishing entropy and approach domain wall solutions that reveal homogenous, nonisotropic dual ground states with an emergent scaling symmetry.

  15. Silicon superconducting quantum interference device

    Energy Technology Data Exchange (ETDEWEB)

    Duvauchelle, J. E.; Francheteau, A.; Marcenat, C.; Lefloch, F., E-mail: francois.lefloch@cea.fr [Université Grenoble Alpes, CEA - INAC - SPSMS, F-38000 Grenoble (France); Chiodi, F.; Débarre, D. [Université Paris-sud, CNRS - IEF, F-91405 Orsay - France (France); Hasselbach, K. [Université Grenoble Alpes, CNRS - Inst. Néel, F-38000 Grenoble (France); Kirtley, J. R. [Center for probing at nanoscale, Stanford University, Palo Alto, California 94305-4045 (United States)

    2015-08-17

    We have studied a Superconducting Quantum Interference Device (SQUID) made from a single layer thin film of superconducting silicon. The superconducting layer is obtained by heavily doping a silicon wafer with boron atoms using the gas immersion laser doping technique. The SQUID is composed of two nano-bridges (Dayem bridges) in a loop and shows magnetic flux modulation at low temperature and low magnetic field. The overall behavior shows very good agreement with numerical simulations based on the Ginzburg-Landau equations.

  16. Superconducting Qubit Optical Transducer (SQOT)

    Science.gov (United States)

    2015-08-05

    SECURITY CLASSIFICATION OF: The SQOT (Superconducting Qubit Optical Transducer ) project proposes to build a novel electro-optic system which can...Apr-2015 Approved for Public Release; Distribution Unlimited Final Report: "Superconducting Qubit Optical Transducer " (SQOT) The views, opinions and...journals: Number of Papers published in non peer-reviewed journals: Final Report: "Superconducting Qubit Optical Transducer " (SQOT) Report Title The

  17. Cross-Coupling Correction for LaCoste & Romberg Airborne Gravimeter%LaCoste&Romberg航空重力仪的交叉耦合改正

    Institute of Scientific and Technical Information of China (English)

    孙中苗; 夏哲仁; 李迎春

    2007-01-01

    The cross-coupling corrections for the LaCoste & Romberg airborne gravimeter are computed as a linear combination of 5 so-called cross-coupling monitors. The weight factors (coefficients) determined from marine gravity data by the factory are obviously not optimal for airborne application. These coefficients are recalibrated by minimizing the difference between airborne data and upward continued surface data (external calibration) and by minimizing the errors at line crossings(internal calibration) respectively. An integrating method to recalibrate the above-mentioned coefficients and the beam scale factor simultaneously is also presented. Experimental results show that the systemic errors in the airborne gravity anomalies can be greatly reduced by using any of the recalibrated coefficients. For example, the systemic error is reduced from 4.8 mGal to 1.8 mGal in Datongtest.

  18. Hybrid Superconducting Neutron Detectors

    CERN Document Server

    Merlo, V; Cirillo, M; Lucci, M; Ottaviani, I; Scherillo, A; Celentano, G; Pietropaolo, A

    2014-01-01

    A new neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction 10B+n $\\rightarrow$ $\\alpha$+ 7Li , with $\\alpha$ and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current Ic, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the supercond...

  19. Navy superconductivity efforts

    Science.gov (United States)

    Gubser, D. U.

    1990-04-01

    Both the new high temperature superconductors (HTS) and the low temperature superconductors (LTS) are important components of Navy's total plan to integrate superconductivity into field operational systems. Fundamental research is an important component of the total Navy program and focuses on the HTS materials. Power applications (ship propulsion, etc.) use LTS materials while space applications (MMW electronics, etc.) use HTS materials. The Space Experiment being conducted at NRL will involve space flight testing of HTS devices built by industry and will demonstrate the ability to engineer and space qualify these devices for systems use. Another important component of the Navy's effort is the development of Superconducting Quantum Interference Device (SQUID) magnetometers. This program will use LTS materials initially, but plans to implement HTS materials as soon as possible. Hybrid HTS/LTS systems are probable in many applications. A review of the status of the Navy's HTS materials research is given as well as an update on the Navy's development efforts in superconductivity, with particular emphasis on the related SDIO sponsored program on HTS applications.

  20. US Navy superconductivity program

    Science.gov (United States)

    Gubser, Donald U.

    1991-01-01

    Both the new high temperature superconductors (HTS) and the low temperature superconductors (LTS) are important components of the Navy's total plan to integrate superconductivity into field operational systems. Fundamental research is an important component of the total Navy program and focuses on the HTS materials. Power applications (ship propulsion) use LTS materials while space applications (millimeter wave electronics) use HTS materials. The Space Experiment to be conducted at NRL will involve space flight testing of HTS devices built by industry and will demonstrate the ability to engineer and space qualify these devices for systems use. Another important component of the Navy's effort is the development of Superconducting Quantum Interference Device (SQUID) magnetometers. This program will use LTS materials initially, but plans to implement HTS materials as soon as possible. Hybrid HTS/LTS systems are probable in many applications. A review of the status of the Navy's HTS materials research is given as well as an update on the Navy's development efforts in superconductivity.

  1. Navy superconductivity efforts

    Science.gov (United States)

    Gubser, D. U.

    1990-01-01

    Both the new high temperature superconductors (HTS) and the low temperature superconductors (LTS) are important components of Navy's total plan to integrate superconductivity into field operational systems. Fundamental research is an important component of the total Navy program and focuses on the HTS materials. Power applications (ship propulsion, etc.) use LTS materials while space applications (MMW electronics, etc.) use HTS materials. The Space Experiment being conducted at NRL will involve space flight testing of HTS devices built by industry and will demonstrate the ability to engineer and space qualify these devices for systems use. Another important component of the Navy's effort is the development of Superconducting Quantum Interference Device (SQUID) magnetometers. This program will use LTS materials initially, but plans to implement HTS materials as soon as possible. Hybrid HTS/LTS systems are probable in many applications. A review of the status of the Navy's HTS materials research is given as well as an update on the Navy's development efforts in superconductivity, with particular emphasis on the related SDIO sponsored program on HTS applications.

  2. Superconductivity in CVD diamond films.

    Science.gov (United States)

    Takano, Yoshihiko

    2009-06-24

    A beautiful jewel of diamond is insulator. However, boron doping can induce semiconductive, metallic and superconducting properties in diamond. When the boron concentration is tuned over 3 × 10(20) cm(-3), diamonds enter the metallic region and show superconductivity at low temperatures. The metal-insulator transition and superconductivity are analyzed using ARPES, XAS, NMR, IXS, transport and magnetic measurements and so on. This review elucidates the physical properties and mechanism of diamond superconductor as a special superconductivity that occurs in semiconductors.

  3. Unconventional superconductivity in honeycomb lattice

    Directory of Open Access Journals (Sweden)

    P Sahebsara

    2013-03-01

    Full Text Available   ‎ The possibility of symmetrical s-wave superconductivity in the honeycomb lattice is studied within a strongly correlated regime, using the Hubbard model. The superconducting order parameter is defined by introducing the Green function, which is obtained by calculating the density of the electrons ‎ . In this study showed that the superconducting order parameter appears in doping interval between 0 and 0.5, and x=0.25 is the optimum doping for the s-wave superconductivity in honeycomb lattice.

  4. Superconductivity in graphite intercalation compounds

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Robert P. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Weller, Thomas E.; Howard, Christopher A. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Dean, Mark P.M. [Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973 (United States); Rahnejat, Kaveh C. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Saxena, Siddharth S. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Ellerby, Mark, E-mail: mark.ellerby@ucl.ac.uk [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom)

    2015-07-15

    Highlights: • Historical background of graphite intercalates. • Superconductivity in graphite intercalates and its place in the field of superconductivity. • Recent developments. • Relevant modeling of superconductivity in graphite intercalates. • Interpretations that pertain and questions that remain. - Abstract: The field of superconductivity in the class of materials known as graphite intercalation compounds has a history dating back to the 1960s (Dresselhaus and Dresselhaus, 1981; Enoki et al., 2003). This paper recontextualizes the field in light of the discovery of superconductivity in CaC{sub 6} and YbC{sub 6} in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how these relate to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity, and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.

  5. Korea's developmental program for superconductivity

    Science.gov (United States)

    Hong, Gye-Won; Won, Dong-Yeon; Kuk, Il-Hyun; Park, Jong-Chul

    1995-01-01

    Superconductivity research in Korea was firstly carried out in the late 70's by a research group in Seoul National University (SNU), who fabricated a small scale superconducting magnetic energy storage system under the financial support from Korea Electric Power Company (KEPCO). But a few researchers were involved in superconductivity research until the oxide high Tc superconductor was discovered by Bednorz and Mueller. After the discovery of YBaCuO superconductor operating above the boiling point of liquid nitrogen (77 K)(exp 2), Korean Ministry of Science and Technology (MOST) sponsored a special fund for the high Tc superconductivity research to universities and national research institutes by recognizing its importance. Scientists engaged in this project organized 'High Temperature Superconductivity Research Association (HITSRA)' for effective conducting of research. Its major functions are to coordinate research activities on high Tc superconductivity and organize the workshop for active exchange of information. During last seven years the major superconductivity research has been carried out through the coordination of HITSRA. The major parts of the Korea's superconductivity research program were related to high temperature superconductor and only a few groups were carrying out research on conventional superconductor technology, and Korea Atomic Energy Research Institute (KAERI) and Korea Electrotechnology Research Institute (KERI) have led this research. In this talk, the current status and future plans of superconductivity research in Korea will be reviewed based on the results presented in interim meeting of HITSRA, April 1-2, 1994. Taejeon, as well as the research activity of KAERI.

  6. Optimization of superconducting tiling pattern for superconducting bearings

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Hinsdale, IL)

    1996-01-01

    An apparatus and method for reducing magnetic field inhomogeneities which produce rotational loss mechanisms in high temperature superconducting magnetic bearings. Magnetic field inhomogeneities are reduced by dividing high temperature superconducting structures into smaller structures, and arranging the smaller structures into tiers which stagger the magnetic field maximum locations of the smaller structures.

  7. The Danish Superconducting Cable Project

    DEFF Research Database (Denmark)

    Tønnesen, Ole

    1997-01-01

    The design and construction of a superconducting cable is described. The cable has a room temperature dielectric design with the cryostat placed inside the electrical insulation.BSCCO 2223 superconducting tapes wound in helix form around a former are used as the cable conductor. Results from...

  8. Superconducting bearings for flywheel applications

    DEFF Research Database (Denmark)

    Abrahamsen, A.B.

    2001-01-01

    A literature study on the application of superconducting bearings in energy storage flywheel systems. The physics of magnetic levitation and superconductors are presented in the first part of the report, followed by a discussion of the literature found onthe applications of superconducting bearings...

  9. A superconducting magnetic gear

    Science.gov (United States)

    Campbell, A. M.

    2016-05-01

    A comparison is made between a magnetic gear using permanent magnets and superconductors. The objective is to see if there are any fundamental reasons why superconducting magnets should not provide higher power densities than permanent magnets. The gear is based on the variable permeability design of Attilah and Howe (2001 IEEE Trans. Magn. 37 2844-46) in which a ring of permanent magnets surrounding a ring of permeable pole pieces with a different spacing gives an internal field component at the beat frequency. Superconductors can provide much larger fields and forces but will saturate the pole pieces. However the gear mechanism still operates, but in a different way. The magnetisation of the pole pieces is now constant but rotates with angle at the beat frequency. The result is a cylindrical Halbach array which produces an internal field with the same symmetry as in the linear regime, but has an analytic solution. In this paper a typical gear system is analysed with finite elements using FlexPDE. It is shown that the gear can work well into the saturation regime and that the Halbach array gives a good approximation to the results. Replacing the permanent magnets with superconducting tapes can give large increases in torque density, and for something like a wind turbine a combined gear and generator is possible. However there are major practical problems. Perhaps the most fundamental is the large high frequency field which is inevitably present and which will cause AC losses. Also large magnetic fields are required, with all the practical problems of high field superconducting magnets in rotating machines. Nevertheless there are ways of mitigating these difficulties and it seems worthwhile to explore the possibilities of this technology further.

  10. Superconductivity in a chiral nanotube

    Science.gov (United States)

    Qin, F.; Shi, W.; Ideue, T.; Yoshida, M.; Zak, A.; Tenne, R.; Kikitsu, T.; Inoue, D.; Hashizume, D.; Iwasa, Y.

    2017-02-01

    Chirality of materials are known to affect optical, magnetic and electric properties, causing a variety of nontrivial phenomena such as circular dichiroism for chiral molecules, magnetic Skyrmions in chiral magnets and nonreciprocal carrier transport in chiral conductors. On the other hand, effect of chirality on superconducting transport has not been known. Here we report the nonreciprocity of superconductivity--unambiguous evidence of superconductivity reflecting chiral structure in which the forward and backward supercurrent flows are not equivalent because of inversion symmetry breaking. Such superconductivity is realized via ionic gating in individual chiral nanotubes of tungsten disulfide. The nonreciprocal signal is significantly enhanced in the superconducting state, being associated with unprecedented quantum Little-Parks oscillations originating from the interference of supercurrent along the circumference of the nanotube. The present results indicate that the nonreciprocity is a viable approach toward the superconductors with chiral or noncentrosymmetric structures.

  11. Japan. Superconductivity for Smart Grids

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, K.

    2012-11-15

    Currently, many smart grid projects are running or planned worldwide. These aim at controlling the electricity supply more efficiently and more stably in a new power network system. In Japan, especially superconductivity technology development projects are carried out to contribute to the future smart grid. Japanese cable makers such as Sumitomo Electric and Furukawa Electric are leading in the production of high-temperature superconducting (HTS) power cables. The world's largest electric current and highest voltage superconductivity proving tests have been started this year. Big cities such as Tokyo will be expected to introduce the HTS power cables to reduce transport losses and to meet the increased electricity demand in the near future. Superconducting devices, HTS power cables, Superconducting Magnetic Energy Storage (SMES) and flywheels are the focus of new developments in cooperations between companies, universities and research institutes, funded by the Japanese research and development funding organization New Energy and Industrial Technology Development Organization (NEDO)

  12. Superconducting dipole electromagnet

    Science.gov (United States)

    Purcell, John R.

    1977-07-26

    A dipole electromagnet of especial use for bending beams in particle accelerators is wound to have high uniformity of magnetic field across a cross section and to decrease evenly to zero as the ends of the electromagnet are approached by disposing the superconducting filaments of the coil in the crescent-shaped nonoverlapping portions of two intersecting circles. Uniform decrease at the ends is achieved by causing the circles to overlap increasingly in the direction of the ends of the coil until the overlap is complete and the coil is terminated.

  13. 100 years of superconductivity

    CERN Multimedia

    Globe Info

    2011-01-01

    Public lecture by Philippe Lebrun, who works at CERN on applications of superconductivity and cryogenics for particle accelerators. He was head of CERN’s Accelerator Technology Department during the LHC construction period. Centre culturel Jean Monnet, route de Gex Tuesday 11 October from 8.30 p.m. to 10.00 p.m. » Suitable for all – Admission free - Lecture in French » Number of places limited For further information: +33 (0)4 50 42 29 37

  14. TOPICAL REVIEW: Superconducting bearings

    Science.gov (United States)

    Hull, John R.

    2000-02-01

    The physics and technology of superconducting bearings is reviewed. Particular attention is given to the use of high-temperature superconductors (HTSs) in rotating bearings. The basic phenomenology of levitational forces is presented, followed by a brief discussion of the theoretical models that can be used for conceptual understanding and calculations. The merits of various HTS bearing designs are presented, and the behaviour of HTS bearings in typical situations is discussed. The article concludes with a brief survey of various proposed applications for HTS bearings.

  15. Conventional and unconventional superconductivity

    Science.gov (United States)

    Fernandes, R. M.

    2012-02-01

    Superconductivity has been one of the most fruitful areas of research in condensed matter physics, bringing together researchers with distinct interests in a collaborative effort to understand from its microscopic basis to its potential for unprecedented technological applications. The concepts, techniques, and methods developed along its centennial history have gone beyond the realm of condensed matter physics and influenced the development of other fascinating areas, such as particle physics and atomic physics. These notes, based on a set of lectures given at the 2011 Advanced Summer School of Cinvestav, aim to motivate the young undergraduate student in getting involved in the exciting world of conventional and unconventional superconductors.

  16. Superconductivity from correlated hopping

    CERN Document Server

    Batista, C D; Aligia, A A

    1995-01-01

    We consider a chain described by a next-nearest-neighbor hopping combined with a nearest-neighbor spin flip. In two dimensions this three-body term arises from a mapping of the three-band Hubbard model for CuO$_2$ planes to a generalized $t-J$ model and for large O-O hopping favors resonance-valence-bond superconductivity of predominantly $d$-wave symmetry. Solving the ground state and low-energy excitations by analytical and numerical methods we find that the chain is a Luther-Emery liquid with correlation exponent $K_{\\rho} = (2-n)^2/2$, where $n$ is the particle density.

  17. Superconductivity in nanowires

    CERN Document Server

    Bezryadin, Alexey

    2012-01-01

    The importance and actuality of nanotechnology is unabated and will be for years to come. A main challenge is to understand the various properties of certain nanostructures, and how to generate structures with specific properties for use in actual applications in Electrical Engineering and Medicine.One of the most important structures are nanowires, in particular superconducting ones. They are highly promising for future electronics, transporting current without resistance and at scales of a few nanometers. To fabricate wires to certain defined standards however, is a major challenge, and so i

  18. Introduction to superconductivity

    CERN Document Server

    Rose-Innes, AC

    1978-01-01

    Introduction to Superconductivity differs from the first edition chiefly in Chapter 11, which has been almost completely rewritten to give a more physically-based picture of the effects arising from the long-range coherence of the electron-waves in superconductors and the operation of quantum interference devices. In this revised second edition, some further modifications have been made to the text and an extra chapter dealing with """"high-temperature"""" superconductors has been added. A vast amount of research has been carried out on these since their discovery in 1986 but the results, both

  19. Superconducting Electronic Film Structures

    Science.gov (United States)

    1991-02-14

    cubic, yttria stabilized, zirconia (YSZ) single crystals with (100) orientation and ao = 0.512 to 0.516 nm. Films were magnetron-sputtered... Crown by Solid-State and Vapor-Phase Epitaxy," IEEE Trans. Uagn. 25(2), 2538 (1989). 6. J. H. Kang, R. T. Kampwirth, and K. E. Gray, "Superconductivity...summarized in Fig. 1, are too high for SrTiO3 or yttria- stabilized zirconia (YSZ) to be used in rf applications. MgO, LaAIO 3 , and LaGaO3 have a tan 6

  20. Heavy fermion superconductivity

    Science.gov (United States)

    Brison, Jean-Pascal; Glémot, Loı̈c; Suderow, Hermann; Huxley, Andrew; Kambe, Shinsaku; Flouquet, Jacques

    2000-05-01

    The quest for a precise identification of the symmetry of the order parameter in heavy fermion systems has really started with the discovery of the complex superconducting phase diagram in UPt 3. About 10 years latter, despite numerous experiments and theoretical efforts, this is still not achieved, and we will quickly review the present status of knowledge and the main open question. Actually, the more forsaken issue of the nature of the pairing mechanism has been recently tackled by different groups with macroscopic or microscopic measurement, and significant progress have been obtained. We will discuss the results emerging from these recent studies which all support non-phonon-mediated mechanisms.

  1. Overview on superconducting photoinjectors

    CERN Document Server

    Arnold, A

    2011-01-01

    The success of most of the proposed energy recovery linac (ERL) based electron accelerator projects for future storage ring replacements (SRR) and high power IR–free-electron lasers (FELs) largely depends on the development of an appropriate source. For example, to meet the FEL specifications [J.W. Lewellen, Proc. SPIE Int. Soc. Opt. Eng. 5534, 22 (2004)] electron beams with an unprecedented combination of high brightness, low emittance (0.1 µmrad), and high average current (hundreds of mA) are required. An elegant way to create a beam of such quality is to combine the high beam quality of a normal conducting rf photoinjector with the superconducting technology, i.e., to build a superconducting rf photoinjector (SRF gun). SRF gun R&D programs based on different approaches have been launched at a growing number of institutes and companies (AES, Beijing University, BESSY, BNL, DESY, FZD, TJNAF, Niowave, NPS, Wisconsin University). Substantial progress was achieved in recent years and the first long term ...

  2. Overview of Superconducting Photoinjectors

    CERN Document Server

    Arnold, A

    2009-01-01

    The success of most of the proposed ERL based electron accelerator projects for future storage ring replacements (SRR) and high power IR-FELs is contingent upon the development of an appropriate source. Electron beams with an unprecedented combination of high brightness, low emittance (0.1 µm rad) and high average current (hundreds of mA) are required to meet the FEL specification [1]. An elegant way to create such an unique beam is to combine the high beam quality of a normal conducting RF photo injector with the superconducting technology to get a superconducting RF photo injector (SRF gun). SRF gun R&D programs based on different approaches are under investigation at a growing number of institutes and companies (AES, Beijing University, BESSY, BNL, DESY, FZD, JLab, Niowave, NPS, Wisconsin University). Lot of progress could be achieved during the last years and first long term operation was demonstrated at the FZD [2]. In the near future, this effort will lead to SRF guns, which are indispensab...

  3. Superconducting magnets for MRI

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J.E.

    1984-08-01

    Three types of magnets are currently used to provide the background field required for magnet resonance imaging (MRI). (i) Permanent magnets produce fields of up to 0.3 T in volumes sufficient for imaging the head or up to 0.15 T for whole body imaging. Cost and simplicity of operation are advantages, but relatively low field, weight (up to 100 tonnes) and, to a small extent, instability are limitations. (ii) Water-cooled magnets provide fields of up to 0.25 T in volumes suitable for whole body imaging, but at the expense of power (up to 150 kW for 0.25 T) and water-cooling. Thermal stability of the field requires the maintenance of constant temperature through periods both of use and of quiescence. (iii) Because of the limitations imposed by permanent and resistive magnets, particularly on field strength, the superconducting magnet is now most widely used to provide background fields of up to 2 T for whole body MRI. It requires very low operating power and that only for refrigeration. Because of the constant low temperature, 4.2 K, at which its stressed structure operates, its field is stable. The following review deals principally with superconducting magnets for MRI. However, the sections on field analysis apply to all types of magnet and the description of the source terms of circular coils and of the principals of design of solenoids apply equally to resistive solenoidal magnets.

  4. Superconductivity in doped Dirac semimetals

    Science.gov (United States)

    Hashimoto, Tatsuki; Kobayashi, Shingo; Tanaka, Yukio; Sato, Masatoshi

    2016-07-01

    We theoretically study intrinsic superconductivity in doped Dirac semimetals. Dirac semimetals host bulk Dirac points, which are formed by doubly degenerate bands, so the Hamiltonian is described by a 4 ×4 matrix and six types of k -independent pair potentials are allowed by the Fermi-Dirac statistics. We show that the unique spin-orbit coupling leads to characteristic superconducting gap structures and d vectors on the Fermi surface and the electron-electron interaction between intra and interorbitals gives a novel phase diagram of superconductivity. It is found that when the interorbital attraction is dominant, an unconventional superconducting state with point nodes appears. To verify the experimental signature of possible superconducting states, we calculate the temperature dependence of bulk physical properties such as electronic specific heat and spin susceptibility and surface state. In the unconventional superconducting phase, either dispersive or flat Andreev bound states appear between point nodes, which leads to double peaks or a single peak in the surface density of states, respectively. As a result, possible superconducting states can be distinguished by combining bulk and surface measurements.

  5. Meissner effect in superconducting microtraps

    Energy Technology Data Exchange (ETDEWEB)

    Cano, Daniel

    2009-04-30

    This thesis investigates the impact of the Meissner effect on magnetic microtraps for ultracold atoms near superconducting microstructures. This task has been accomplished both theoretically and experimentally. The Meissner effect distorts the magnetic fields near superconducting surfaces, thus altering the parameters of magnetic microtraps. Both computer simulations and experimental measurements demonstrate that the Meissner effect shortens the distance between the magnetic microtrap and the superconducting surface, reduces the magnetic-field gradients and dramatically lowers the trap depth. A novel numerical method for calculating magnetic fields in atom chips with superconducting microstructures has been developed. This numerical method overcomes the geometrical limitations of other calculation techniques and can solve superconducting microstructures of arbitrary geometry. The numerical method has been used to calculate the parameters of magnetic microtraps in computer-simulated chips containing thin-film wires. Simulations were carried out for both the superconducting and the normal-conducting state, and the differences between the two cases were analyzed. Computer simulations have been contrasted with experimental measurements. The experimental apparatus generates a magnetic microtrap for ultracold Rubidium atoms near a superconducting Niobium wire of circular cross section. The design and construction of the apparatus has met the challenge of integrating the techniques for producing atomic quantum gases with the techniques for cooling solid bodies to cryogenic temperatures. By monitoring the position of the atom cloud, one can observe how the Meissner effect influences the magnetic microtrap. (orig.)

  6. Operational Merits of Maritime Superconductivity

    Science.gov (United States)

    Ross, R.; Bosklopper, J. J.; van der Meij, K. H.

    The perspective of superconductivity to transfer currents without loss is very appealing in high power applications. In the maritime sector many machines and systems exist in the roughly 1-100 MW range and the losses are well over 50%, which calls for dramatic efficiency improvements. This paper reports on three studies that aimed at the perspectives of superconductivity in the maritime sector. It is important to realize that the introduction of superconductivity comprises two technology transitions namely firstly electrification i.e. the transition from mechanical drives to electric drives and secondly the transition from normal to superconductive electrical machinery. It is concluded that superconductivity does reduce losses, but its impact on the total energy chain is of little significance compared to the investments and the risk of introducing a very promising but as yet not proven technology in the harsh maritime environment. The main reason of the little impact is that the largest losses are imposed on the system by the fossil fueled generators as prime movers that generate the electricity through mechanical torque. Unless electric power is supplied by an efficient and reliable technology that does not involve mechanical torque with the present losses both normal as well as superconductive electrification of the propulsion will hardly improve energy efficiency or may even reduce it. One exception may be the application of degaussing coils. Still appealing merits of superconductivity do exist, but they are rather related to the behavior of superconductive machines and strong magnetic fields and consequently reduction in volume and mass of machinery or (sometimes radically) better performance. The merits are rather convenience, design flexibility as well as novel applications and capabilities which together yield more adequate systems. These may yield lower operational costs in the long run, but at present the added value of superconductivity rather seems more

  7. Spinon Superconductivity and Superconductivities Mediated by Spin-Waves and Phonons in Cuprates

    OpenAIRE

    Mourachkine, A.

    1998-01-01

    The disclosure of spinon superconductivity and superconductivity mediated by spin-waves in hole-doped Bi2212 cuprate raises the question about the origin of the superconductivity in other cuprates and specially in an electron-doped NCCO cuprate.

  8. Superconducting interfaces between insulating oxides.

    Science.gov (United States)

    Reyren, N; Thiel, S; Caviglia, A D; Kourkoutis, L Fitting; Hammerl, G; Richter, C; Schneider, C W; Kopp, T; Rüetschi, A-S; Jaccard, D; Gabay, M; Muller, D A; Triscone, J-M; Mannhart, J

    2007-08-31

    At interfaces between complex oxides, electronic systems with unusual electronic properties can be generated. We report on superconductivity in the electron gas formed at the interface between two insulating dielectric perovskite oxides, LaAlO3 and SrTiO3. The behavior of the electron gas is that of a two-dimensional superconductor, confined to a thin sheet at the interface. The superconducting transition temperature of congruent with 200 millikelvin provides a strict upper limit to the thickness of the superconducting layer of congruent with 10 nanometers.

  9. Antiferromagnetic hedgehogs with superconducting cores

    Energy Technology Data Exchange (ETDEWEB)

    Goldbart, P.M.; Sheehy, D.E. [Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    1998-09-01

    Excitations of the antiferromagnetic state that resemble antiferromagnetic hedgehogs at large distances but are predominantly superconducting inside a core region are discussed within the context of Zhang{close_quote}s SO(5)-symmetry-based approach to the physics of high-temperature superconducting materials. Nonsingular, in contrast with their hedgehog cousins in pure antiferromagnetism, these texture excitations are what hedgehogs become when the antiferromagnetic order parameter is permitted to {open_quotes}escape{close_quotes} into superconducting directions. The structure of such excitations is determined in a simple setting, and a number of their experimental implications are examined. {copyright} {ital 1998} {ital The American Physical Society}

  10. Superconducting cable connections and methods

    Energy Technology Data Exchange (ETDEWEB)

    van der Laan, Daniel Cornelis

    2017-09-05

    Superconducting cable connector structures include a terminal body (or other structure) onto which the tapes from the superconducting cable extend. The terminal body (or other structure) has a diameter that is sufficiently larger than the diameter of the former of the superconducting cable, so that the tapes spread out over the outer surface of the terminal body. As a result, gaps are formed between tapes on the terminal body (or other structure). Those gaps are filled with solder (or other suitable flowable conductive material), to provide a current path of relatively high conductivity in the radial direction. Other connector structures omit the terminal body.

  11. Domain wall description of superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Brito, F.A. [Departamento de Física, Universidade Federal de Campina Grande, Caixa Postal 10071, 58109-970 Campina Grande, Paraíba (Brazil); Freire, M.L.F. [Departamento de Física, Universidade Estadual da Paraíba, 58109-753 Campina Grande, Paraíba (Brazil); Mota-Silva, J.C. [Departamento de Física, Universidade Federal de Campina Grande, Caixa Postal 10071, 58109-970 Campina Grande, Paraíba (Brazil); Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-970 João Pessoa, Paraíba (Brazil)

    2014-01-20

    In the present work we shall address the issue of electrical conductivity in superconductors in the perspective of superconducting domain wall solutions in the realm of field theory. We take our set up made out of a dynamical complex scalar field coupled to gauge field to be responsible for superconductivity and an extra scalar real field that plays the role of superconducting domain walls. The temperature of the system is interpreted through the fact that the soliton following accelerating orbits is a Rindler observer experiencing a thermal bath.

  12. Aspects of Color Superconductivity

    CERN Document Server

    Hong, D K

    2001-01-01

    I discuss some aspects of recent developments in color superconductivity in high density quark matter. I calculate the Cooper pair gap and the critical points at high density, where magnetic gluons are not screened. The ground state of high density QCD with three light flavors is shown to be a color-flavor locking state, which can be mapped into the low-density hadronic phase. The meson mass at the CFL superconductor is also calculated. The CFL color superconductor is bosonized, where the Fermi sea is identified as a $Q$-matter and the gapped quarks as topological excitations, called superqualitons, of mesons. Finally, as an application of color supercoductivity, I discuss the neutrino interactions in the CFL color superconductor.

  13. Superconducting Hadron Linacs

    CERN Document Server

    Ostroumov, Peter

    2013-01-01

    This article discusses the main building blocks of a superconducting (SC) linac, the choice of SC resonators, their frequencies, accelerating gradients and apertures, focusing structures, practical aspects of cryomodule design, and concepts to minimize the heat load into the cryogenic system. It starts with an overview of design concepts for all types of hadron linacs differentiated by duty cycle (pulsed or continuous wave) or by the type of ion species (protons, H-, and ions) being accelerated. Design concepts are detailed for SC linacs in application to both light ion (proton, deuteron) and heavy ion linacs. The physics design of SC linacs, including transverse and longitudinal lattice designs, matching between different accelerating–focusing lattices, and transition from NC to SC sections, is detailed. Design of high-intensity SC linacs for light ions, methods for the reduction of beam losses, preventing beam halo formation, and the effect of HOMs and errors on beam quality are discussed. Examples are ta...

  14. Superconducting energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Giese, R.F.

    1993-10-01

    This report describes the status of energy storage involving superconductors and assesses what impact the recently discovered ceramic superconductors may have on the design of these devices. Our description is intended for R&D managers in government, electric utilities, firms, and national laboratories who wish an overview of what has been done and what remains to be done. It is assumed that the reader is acquainted with superconductivity, but not an expert on the topics discussed here. Indeed, it is the author`s aim to enable the reader to better understand the experts who may ask for the reader`s attention, support, or funding. This report may also inform scientists and engineers who, though expert in related areas, wish to have an introduction to our topic.

  15. Anyon Superconductivity of Sb

    Science.gov (United States)

    Maksoed, Wh-; Parengkuan, August

    2016-10-01

    In any permutatives to Pedro P. Kuczhynski from Peru, for anyon superconductivity sought EZ Kuchinskii et al.: ``Anion height dependence of Tc & d.o.s of Fe-based Superconductors'', 2010 as well as ``on the basis of electron microscopy & AFM measurements, these phenomena are quantified with focus on fractal dimension, particle perimeter & size of the side branch(tip width) in bert Stegemann et al.:Crystallization of Sb nanoparticles-Pattern Formation & Fractal Growth'', J.PhysChem B., 2004. For dendritic & dendrimer fractal characters shown further: ``antimony denrites were found to be composed of well-crystallized nanoflakes with size 20-4 nm''- Bou Zhau, et al., MaterialLetters, 59 (2005). The alkyl triisopropyl attached in TIPSb those includes in DNA, haemoglobin membrane/fixed-bed reactor for instance quotes in Dragony Fu, Nature Review Cancer, 12 (Feb 2012). Heartfelt Gratitudes to HE. Mr. Prof. Ir. Handojo.

  16. Superconductivity of columbium

    Energy Technology Data Exchange (ETDEWEB)

    Cook, D.B.; Zemansky, M.W.; Boorse, H.A.

    1950-11-15

    Isothermal critical magnetic field curves and zero field transitions for several annealed specimens of columbium have been measured by an a.c. mutual inductance method at temperatures from 5.1 deg K to the zero field transition temperature. The H-T curve was found to fit the usual parabolic relationship H = H{sub 0}(1-T(2)/T(2){sub 0}) with H{sub 0} = 8250 oersteds and T{sub 0} = 8.65 deg K. The initial slope of the curve was 1910 oersteds/deg. The electronic specific heat in the normal state calculated from the thermodynamic equations is 0.0375T and the approximate Debye characteristic temperature in the superconducting state, 67 deg K. Results on a different grade of columbium with a tantalum impurity of 0.4 percent, according to neutron scattering measurements, were in agreement, with the data obtained from columbium of 0.2 percent maximum tantalum impurity.

  17. Superconducting pulsed magnets

    CERN Document Server

    CERN. Geneva

    2006-01-01

    Lecture 1. Introduction to Superconducting Materials Type 1,2 and high temperature superconductors; their critical temperature, field & current density. Persistent screening currents and the critical state model. Lecture 2. Magnetization and AC Loss How screening currents cause irreversible magnetization and hysteresis loops. Field errors caused by screening currents. Flux jumping. The general formulation of ac loss in terms of magnetization. AC losses caused by screening currents. Lecture 3. Twisted Wires and Cables Filamentary composite wires and the losses caused by coupling currents between filaments, the need for twisting. Why we need cables and how the coupling currents in cables contribute more ac loss. Field errors caused by coupling currents. Lecture 4. AC Losses in Magnets, Cooling and Measurement Summary of all loss mechanisms and calculation of total losses in the magnet. The need for cooling to minimize temperature rise in a magnet. Measuring ac losses in wires and in magnets. Lecture 5. Stab...

  18. Overview on superconducting photoinjectors

    Directory of Open Access Journals (Sweden)

    A. Arnold

    2011-02-01

    Full Text Available The success of most of the proposed energy recovery linac (ERL based electron accelerator projects for future storage ring replacements (SRR and high power IR–free-electron lasers (FELs largely depends on the development of an appropriate source. For example, to meet the FEL specifications [J. W. Lewellen, Proc. SPIE Int. Soc. Opt. Eng. 5534, 22 (2004PSISDG0277-786X10.1117/12.557378] electron beams with an unprecedented combination of high brightness, low emittance (0.1  μmrad, and high average current (hundreds of mA are required. An elegant way to create a beam of such quality is to combine the high beam quality of a normal conducting rf photoinjector with the superconducting technology, i.e., to build a superconducting rf photoinjector (SRF gun. SRF gun R&D programs based on different approaches have been launched at a growing number of institutes and companies (AES, Beijing University, BESSY, BNL, DESY, FZD, TJNAF, Niowave, NPS, Wisconsin University. Substantial progress was achieved in recent years and the first long term operation was demonstrated at FZD [R. Xiang et al., in Proceedings of the 31st International Free Electron Laser Conference (FEL 09, Liverpool, UK (STFC Daresbury Laboratory, Warrington, 2009, p. 488]. In the near future SRF guns are expected to play an important role for linac-driven FEL facilities. In this paper we will review the concepts, the design parameters, and the status of the major SRF gun projects.

  19. Superconducting Aero Propulsion Motor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Superconducting electric propulsion systems will yield improvements in total ownership costs due to the simplicity of electric drive when compared with gas turbine...

  20. Mixed-mu superconducting bearings

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Hinsdale, IL); Mulcahy, Thomas M. (Western Springs, IL)

    1998-01-01

    A mixed-mu superconducting bearing including a ferrite structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet structure. The ferrite structure is levitated by said stationary permanent magnet structure.

  1. Superconductivity in all its states

    CERN Multimedia

    Globe Info

    2011-01-01

    Temporary exhibition at the Saint-Genis-Pouilly Tourist Office. For the 100th anniversary of its discovery, take a plunge into the amazing world of superconductivity. Some materials, when cooled down to extreme temperatures, acquire a remarkable property -  they become superconducting. Superconductivity is a rare example of a quantum effect that can be witnessed on the macroscopic scale and is today at the heart of much research. In laboratories, researchers try to gain a better understanding of its origins, study new superconducting materials, explore the phenomenon at the nanometric scale and pursue their indefatigable search for new applications. Monday to Friday: 09:00 a.m. to 12:00 and 2:30 p.m. to 6:30 p.m. Saturday: 10:00 a.m. to 12:00 noon » Open to all – Admission free For further information: +33 (0)4 50 42 29 37

  2. Search for superconductivity in micrometeorites.

    Science.gov (United States)

    Guénon, S; Ramírez, J G; Basaran, Ali C; Wampler, J; Thiemens, M; Taylor, S; Schuller, Ivan K

    2014-12-05

    We have developed a very sensitive, highly selective, non-destructive technique for screening inhomogeneous materials for the presence of superconductivity. This technique, based on phase sensitive detection of microwave absorption is capable of detecting 10(-12) cc of a superconductor embedded in a non-superconducting, non-magnetic matrix. For the first time, we apply this technique to the search for superconductivity in extraterrestrial samples. We tested approximately 65 micrometeorites collected from the water well at the Amundsen-Scott South pole station and compared their spectra with those of eight reference materials. None of these micrometeorites contained superconducting compounds, but we saw the Verwey transition of magnetite in our microwave system. This demonstrates that we are able to detect electro-magnetic phase transitions in extraterrestrial materials at cryogenic temperatures.

  3. Advanced Superconducting Test Accelerator (ASTA)

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Superconducting Test Accelerator (ASTA) facility will be based on upgrades to the existing NML pulsed SRF facility. ASTA is envisioned to contain 3 to 6...

  4. Superconductivity in Layered Organic Metals

    Directory of Open Access Journals (Sweden)

    Jochen Wosnitza

    2012-04-01

    Full Text Available In this short review, I will give an overview on the current understanding of the superconductivity in quasi-two-dimensional organic metals. Thereby, I will focus on charge-transfer salts based on bis(ethylenedithiotetrathiafulvalene (BEDT-TTF or ET for short. In these materials, strong electronic correlations are clearly evident, resulting in unique phase diagrams. The layered crystallographic structure leads to highly anisotropic electronic as well as superconducting properties. The corresponding very high orbital critical field for in-plane magnetic-field alignment allows for the occurrence of the Fulde–Ferrell– Larkin–Ovchinnikov state as evidenced by thermodynamic measurements. The experimental picture on the nature of the superconducting state is still controversial with evidence both for unconventional as well as for BCS-like superconductivity.

  5. Advanced Superconducting Test Accelerator (ASTA)

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Superconducting Test Accelerator (ASTA) facility will be based on upgrades to the existing NML pulsed SRF facility. ASTA is envisioned to contain 3 to...

  6. Cryogenic Systems and Superconductive Power

    Science.gov (United States)

    The report defines, investigates, and experimentally evaluates the key elements of a representative crogenic turborefrigerator subsystem suitable for providing reliable long-lived cryogenic refrigeration for a superconductive ship propulsion system.

  7. Recent advances in fullerene superconductivity

    CERN Document Server

    Margadonna, S

    2002-01-01

    Superconducting transition temperatures in bulk chemically intercalated fulleride salts reach 33 K at ambient pressure and in hole-doped C sub 6 sub 0 derivatives in field-effect-transistor (FET) configurations, they reach 117 K. These advances pose important challenges for our understanding of high-temperature superconductivity in these highly correlated organic metals. Here we review the structures and properties of intercalated fullerides, paying particular attention to the correlation between superconductivity and interfullerene separation, orientational order/disorder, valence state, orbital degeneracy, low-symmetry distortions, and metal-C sub 6 sub 0 interactions. The metal-insulator transition at large interfullerene separations is discussed in detail. An overview is also given of the exploding field of gate-induced superconductivity of fullerenes in FET electronic devices.

  8. The superconducting bending magnets 'CESAR'

    CERN Document Server

    Pérot, J

    1978-01-01

    In 1975, CERN decided to build two high precision superconducting dipoles for a beam line in the SPS north experimental area. The aim was to determine whether superconducting magnets of the required accuracy and reliability can be built and what their economies and performances in operation will be. Collaboration between CERN and CAE /SACLAY was established in order to make use of the knowledge and experience already acquired in the two laboratories. (0 refs).

  9. Y-Ba Superconducting Ceramics

    Science.gov (United States)

    Shunbao, Tian; Xiaofei, Li; Tinglian, Wen; Zuxiang, Lin; Shichun, Li; Huijun, Yu

    Polycrystalline Y-Ba-Cu-O superconducting materials have been studied. It was found that chemical composition and processing condition may play an important role in the final structure and superconducting properties. The density has been determined and compared with the calculated value according to the structure model reported by Bell Labs. The grain size and the morphology of the materials were observed by SEM.

  10. Composite conductor containing superconductive wires

    Energy Technology Data Exchange (ETDEWEB)

    Larson, W.L.; Wong, J.

    1974-03-26

    A superconductor cable substitute made by coworking multiple rods of superconductive niobium--titanium or niobium--zirconium alloy with a common copper matrix to extend the copper and rods to form a final elongated product which has superconductive wires distributed in a reduced cross-section copper conductor with a complete metallurgical bond between the normal-conductive copper and the superconductor wires contained therein is described. The superconductor cable can be in the form of a tube.

  11. Entanglement witnessing in superconducting beamsplitters

    Science.gov (United States)

    Soller, H.; Hofstetter, L.; Reeb, D.

    2013-06-01

    We analyse a large class of superconducting beamsplitters for which the Bell parameter (CHSH violation) is a simple function of the spin detector efficiency. For these superconducting beamsplitters all necessary information to compute the Bell parameter can be obtained in Y-junction setups for the beamsplitter. Using the Bell parameter as an entanglement witness, we propose an experiment which allows to verify the presence of entanglement in Cooper pair splitters.

  12. Superconductivity in domains with corners

    DEFF Research Database (Denmark)

    Bonnaillie-Noel, Virginie; Fournais, Søren

    2007-01-01

    We study the two-dimensional Ginzburg-Landau functional in a domain with corners for exterior magnetic field strengths near the critical field where the transition from the superconducting to the normal state occurs. We discuss and clarify the definition of this field and obtain a complete...... asymptotic expansion for it in the large $\\kappa$ regime. Furthermore, we discuss nucleation of superconductivity at the boundary....

  13. Recent developments in superconducting materials including ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Tachikawa, Kyoji

    1987-06-01

    This report describes the history of superconduction starting in 1911, when the superconducting phenomenon was first observed in murcury, until the recent discovery of superconducting materials with high critical temperatures. After outlining the BCS theory, basic characteristics are discussed including the critical temperature, magnetic field and current density to be reached for realizing the superconducting state. Various techniques for practical superconducting materials are discussed, including methods for producing extra fine multiconductor wires from such superconducting alloys as Nb-Ti, intermetallic Nb/sub 3/Sn compound and V/sub 3/Ga, as well as methods for producing wires of Nb/sub 3/Al, Nb/sub 3/(Al, Ge) and Nb/sub 3/Ge such as continuous melt quenching, electron beam irradiation, laser beam irradiation and chemical evaporation. Characteristics of superconducting ceramics are described, along with their applications including superconducting magnets and superconducting elements. (15 figs, 1 tab, 19 refs)

  14. Designing sgRNAs with CRISPy web

    DEFF Research Database (Denmark)

    Blin, Kai; Lee, Sang Yup; Weber, Tilmann

    2017-01-01

    Tilmann Weber’s group at the Novo Nordisk Foundation Center for Biosustainability developed a user-friendly, web server implementation of the sgRNA prediction software, CRISPy, for non-computer scientists.......Tilmann Weber’s group at the Novo Nordisk Foundation Center for Biosustainability developed a user-friendly, web server implementation of the sgRNA prediction software, CRISPy, for non-computer scientists....

  15. The road to superconducting spintronics

    Science.gov (United States)

    Eschrig, Matthias

    Energy efficient computing has become a major challenge, with the increasing importance of large data centres across the world, which already today have a power consumption comparable to that of Spain, with steeply increasing trend. Superconducting computing is progressively becoming an alternative for large-scale applications, with the costs for cooling being largely outweighed by the gain in energy efficiency. The combination of superconductivity and spintronics - ``superspintronics'' - has the potential and flexibility to develop into such a green technology. This young field is based on the observation that new phenomena emerge at interfaces between superconducting and other, competing, phases. The past 15 years have seen a series of pivotal predictions and experimental discoveries relating to the interplay between superconductivity and ferromagnetism. The building blocks of superspintronics are equal-spin Cooper pairs, which are generated at the interface between superconducting and a ferromagnetic materials in the presence of non-collinear magnetism. Such novel, spin-polarised Cooper pairs carry spin-supercurrents in ferromagnets and thus contribute to spin-transport and spin-control. Geometric Berry phases appear during the singlet-triplet conversion process in structures with non-coplanar magnetisation, enhancing functionality of devices, and non-locality introduced by superconducting order leads to long-range effects. With the successful generation and control of equal-spin Cooper pairs the hitherto notorious incompatibility of superconductivity and ferromagnetism has been not only overcome, but turned synergistic. I will discuss these developments and their extraordinary potential. I also will present open questions posed by recent experiments and point out implications for theory. This work is supported by the Engineering and Physical Science Research Council (EPSRC Grant No. EP/J010618/1).

  16. Superconductivity of lead

    Energy Technology Data Exchange (ETDEWEB)

    Boorse, H.A.; Cook, D.B.; Zemansky, W.M.

    1950-06-01

    Numerous determinations of the zero-field transition temperature of lead have been made. All of these observations except that of Daunt were made by the direct measurement of electrical resistance. Daunt`s method involved the shielding effect of persistent currents in a hollow cylinder. In the authors work on columbium to be described in a forthcoming paper an a.c. induction method was used for the measurement of superconducting transitions. The superconductor was mounted as a cylindrical core of a coil which functioned as the secondary of a mutual inductance. The primary coil was actuated by an oscillator which provided a maximum a.c. field within the secondary of 1.5 oersteds at a frequency of 1000 cycles per second. The secondary e.m.f. which was dependent for its magnitude on the permeability of the core was amplified, rectifie, and observed on a recording potentiometer. During the application of this method to the study of columbium it appeared that a further check on the zero-field transition temperature of lead would be worth while especially if agreement between results for very pure samples could be obtained using this method. Such result would help in establishing the lead transition temperature as a reasonably reproducible reference point in the region between 4 deg and 10 deg K.

  17. High temperature superconducting compounds

    Science.gov (United States)

    Goldman, Allen M.

    1992-11-01

    The major accomplishment of this grant has been to develop techniques for the in situ preparation of high-Tc superconducting films involving the use of ozone-assisted molecular beam epitaxy. The techniques are generalizable to the growth of trilayer and multilayer structures. Films of both the DyBa2Cu3O(7-x) and YBa2Cu3O(7-x) compounds as well as the La(2-x)Sr(x)CuO4 compound have been grown on the usual substrates, SrTiO3, YSZ, MgO, and LaAlO3, as well as on Si substrates without any buffer layer. A bolometer has been fabricated on a thermally isolated SiN substrate coated with YSZ, an effort carried out in collaboration with Honeywell Inc. The deposition process facilitates the fabrication of very thin and transparent films creating new opportunities for the study of superconductor-insulator transitions and the investigation of photo-doping with carriers of high temperature superconductors. In addition to a thin film technology, a patterning technology has been developed. Trilayer structures have been developed for FET devices and tunneling junctions. Other work includes the measurement of the magnetic properties of bulk single crystal high temperature superconductors, and in collaboration with Argonne National Laboratory, measurement of electric transport properties of T1-based high-Tc films.

  18. The Superconducting TESLA Cavities

    CERN Document Server

    Aune, B.; Bloess, D.; Bonin, B.; Bosotti, A.; Champion, M.; Crawford, C.; Deppe, G.; Dwersteg, B.; Edwards, D.A.; Edwards, H.T.; Ferrario, M.; Fouaidy, M.; Gall, P-D.; Gamp, A.; Gössel, A.; Graber, J.; Hubert, D.; Hüning, M.; Juillard, M.; Junquera, T.; Kaiser, H.; Kreps, G.; Kuchnir, M.; Lange, R.; Leenen, M.; Liepe, M.; Lilje, L.; Matheisen, A.; Möller, W-D.; Mosnier, A.; Padamsee, H.; Pagani, C.; Pekeler, M.; Peters, H-B.; Peters, O.; Proch, D.; Rehlich, K.; Reschke, D.; Safa, H.; Schilcher, T.; Schmüser, P.; Sekutowicz, J.; Simrock, S.; Singer, W.; Tigner, M.; Trines, D.; Twarowski, K.; Weichert, G.; Weisend, J.; Wojtkiewicz, J.; Wolff, S.; Zapfe, K.

    2000-01-01

    The conceptional design of the proposed linear electron-positron colliderTESLA is based on 9-cell 1.3 GHz superconducting niobium cavities with anaccelerating gradient of Eacc >= 25 MV/m at a quality factor Q0 > 5E+9. Thedesign goal for the cavities of the TESLA Test Facility (TTF) linac was set tothe more moderate value of Eacc >= 15 MV/m. In a first series of 27industrially produced TTF cavities the average gradient at Q0 = 5E+9 wasmeasured to be 20.1 +- 6.2 MV/m, excluding a few cavities suffering fromserious fabrication or material defects. In the second production of 24 TTFcavities additional quality control measures were introduced, in particular aneddy-current scan to eliminate niobium sheets with foreign material inclusionsand stringent prescriptions for carrying out the electron-beam welds. Theaverage gradient of these cavities at Q0 = 5E+9 amounts to 25.0 +- 3.2 MV/mwith the exception of one cavity suffering from a weld defect. Hence only amoderate improvement in production and preparation technique...

  19. Superconductivity basics and applications to magnets

    CERN Document Server

    Sharma, R G

    2015-01-01

    This book presents the basics and applications of superconducting magnets. It explains the phenomenon of superconductivity, theories of superconductivity, type II superconductors and high-temperature cuprate superconductors. The main focus of the book is on the application to superconducting magnets to accelerators and fusion reactors and other applications of superconducting magnets. The thermal and electromagnetic stability criteria of the conductors and the present status of the fabrication techniques for future magnet applications are addressed. The book is based on the long experience of the author in studying superconducting materials, building magnets and numerous lectures delivered to scholars. A researcher and graduate student will enjoy reading the book to learn various aspects of magnet applications of superconductivity. The book provides the knowledge in the field of applied superconductivity in a comprehensive way.

  20. Superconductive articles including cerium oxide layer

    Science.gov (United States)

    Wu, Xin D.; Muenchausen, Ross E.

    1993-01-01

    A ceramic superconductor comprising a metal oxide substrate, a ceramic high temperature superconductive material, and a intermediate layer of a material having a cubic crystal structure, said layer situated between the substrate and the superconductive material is provided, and a structure for supporting a ceramic superconducting material is provided, said structure comprising a metal oxide substrate, and a layer situated over the surface of the substrate to substantially inhibit interdiffusion between the substrate and a ceramic superconducting material deposited upon said structure.

  1. 4. MESOSCOPIC SUPERCONDUCTIVITY: Proximity Action theory of superconductive nanostructures

    Science.gov (United States)

    Skvortsov, M. A.; Larkin, A. I.; Feigel'man, M. V.

    2001-10-01

    We review a novel approach to the superconductive proximity effect in disordered normal-superconducting (N-S) structures. The method is based on the multicharge Keldysh action and is suitable for the treatment of interaction and fluctuation effects. As an application of the formalism, we study the subgap conductance and noise in two-dimensional N-S systems in the presence of the electron-electron interaction in the Cooper channel. It is shown that singular nature of the interaction correction at large scales leads to a nonmonotonuos temperature, voltage and magnetic field dependence of the Andreev conductance.

  2. Superconducting Metallic Glass Transition-Edge-Sensors

    Science.gov (United States)

    Hays, Charles C. (Inventor)

    2013-01-01

    A superconducting metallic glass transition-edge sensor (MGTES) and a method for fabricating the MGTES are provided. A single-layer superconducting amorphous metal alloy is deposited on a substrate. The single-layer superconducting amorphous metal alloy is an absorber for the MGTES and is electrically connected to a circuit configured for readout and biasing to sense electromagnetic radiation.

  3. Gifts from the superconducting curiosity shop

    Institute of Scientific and Technical Information of China (English)

    David Mandrus

    2011-01-01

    Superconductivity has just celebrated its 100th birthday,and yet despite its advanced age it has never been more alive.Given that most subfields of materials physics have a half-life of about seven years,what accounts for the enduring popularity of superconductivity? What is it about superconductivity that continues to fascinate?

  4. LLNL superconducting magnets test facility

    Energy Technology Data Exchange (ETDEWEB)

    Manahan, R; Martovetsky, N; Moller, J; Zbasnik, J

    1999-09-16

    The FENIX facility at Lawrence Livermore National Laboratory was upgraded and refurbished in 1996-1998 for testing CICC superconducting magnets. The FENIX facility was used for superconducting high current, short sample tests for fusion programs in the late 1980s--early 1990s. The new facility includes a 4-m diameter vacuum vessel, two refrigerators, a 40 kA, 42 V computer controlled power supply, a new switchyard with a dump resistor, a new helium distribution valve box, several sets of power leads, data acquisition system and other auxiliary systems, which provide a lot of flexibility in testing of a wide variety of superconducting magnets in a wide range of parameters. The detailed parameters and capabilities of this test facility and its systems are described in the paper.

  5. Superconductivity, antiferromagnetism, and neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Tranquada, John M., E-mail: jtran@bnl.gov; Xu, Guangyong; Zaliznyak, Igor A.

    2014-01-15

    High-temperature superconductivity in both the copper-oxide and the iron–pnictide/chalcogenide systems occurs in close proximity to antiferromagnetically ordered states. Neutron scattering has been an essential technique for characterizing the spin correlations in the antiferromagnetic phases and for demonstrating how the spin fluctuations persist in the superconductors. While the nature of the spin correlations in the superconductors remains controversial, the neutron scattering measurements of magnetic excitations over broad ranges of energy and momentum transfers provide important constraints on the theoretical options. We present an overview of the neutron scattering work on high-temperature superconductors and discuss some of the outstanding issues. - Highlights: • High-temperature superconductivity is closely associated with antiferromagnetism. • Antiferromagnetic spin fluctuations coexist with the superconductivity. • Neutron scattering is essential for characterising the full spectrum of spin excitations.

  6. Sensing with Superconducting Point Contacts

    Directory of Open Access Journals (Sweden)

    Argo Nurbawono

    2012-05-01

    Full Text Available Superconducting point contacts have been used for measuring magnetic polarizations, identifying magnetic impurities, electronic structures, and even the vibrational modes of small molecules. Due to intrinsically small energy scale in the subgap structures of the supercurrent determined by the size of the superconducting energy gap, superconductors provide ultrahigh sensitivities for high resolution spectroscopies. The so-called Andreev reflection process between normal metal and superconductor carries complex and rich information which can be utilized as powerful sensor when fully exploited. In this review, we would discuss recent experimental and theoretical developments in the supercurrent transport through superconducting point contacts and their relevance to sensing applications, and we would highlight their current issues and potentials. A true utilization of the method based on Andreev reflection analysis opens up possibilities for a new class of ultrasensitive sensors.

  7. Domain wall description of superconductivity

    CERN Document Server

    Brito, F A; Silva, J C M

    2012-01-01

    In the present work we shall address the issue of electrical conductivity in superconductors in the perspective of superconducting domain wall solutions in the realm of field theory. We take our set up made out of a dynamical complex scalar field coupled to gauge field to be responsible for superconductivity and an extra scalar real field that plays the role of superconducting domain walls. The temperature of the system is interpreted as the parameter to move type I to type II domain walls. Alternatively, this means that the domain wall surface is suffering an acceleration as one goes from one type to another. On the other hand, changing from type I to type II state means a formation of a condensate what is in perfect sense of lowering the temperature around the superconductor. One can think of this scenario as an analog of holographic scenarios where this set up is replaced by a black hole near the domain wall.

  8. Determination of beam-position dependent transfer functions of LCR-G gravimeters by means of moving mass calibration device in the Mátyáshegy Gravity and Geodynamical Observatory, Budapest

    Science.gov (United States)

    Koppán, András; Kis, Márta; Merényi, László; Papp, Gábor; Benedek, Judit; Meurers, Bruno

    2017-04-01

    In this presentation authors propose a method for the determination of transfer characteristics and fine calibration of LCR relative gravimeters used for earth-tide recordings, by means of the moving-mass gravimeter calibration device of Budapest-Mátyáshegy Gravity and Geodynamical Observatory. Beam-position dependent transfer functions of four relative LCR G type gravimeters were determined and compared. In order to make these instruments applicable for observatory tidal recordings, there is a need for examining the unique characteristics of equipments and adequately correcting these inherent distorting effects. Thus, the sensitivity for the tilting, temporal changes of scale factors and beam-position dependent transfer characteristics are necessary to be determined for observatory use of these instruments. During the calibration a cylindrical ring of 3200 kg mass is vertically moving around the equipment, generating gravity variations. The effect of the moving mass can be precisely calculated from the known mass and geometrical parameters. The maximum theoretical gravity variation produced by the vertical movement of the mass is ab. 110 microGal, so it provides excellent possibility for the fine calibration of gravimeters in the tidal range. Magnetic experiments were also carried out on the pillar of the calibration device as well, in order to analyse the magnetic effect of the moving stainless steel-mass. According to the magnetic measurements, a correction for the magnetic effect was applied on the measured gravimetric data series. The calibration process is aided by intelligent controller electronics. A PLC-based system has been developed to allow easy control of the movement of the calibrating mass and to measure the mass position. It enables also programmed steps of movements (waiting positions and waiting times) for refined gravity changes. All parameters (position of the mass, CPI data, X/Y leveling positions) are recorded with 1/sec. sampling rate. The

  9. CONCURRENT FLIGHT TEST OF LaCoste & Romberg(LCR) AIRBORNE GRAVIMETER Ⅱ AND Ⅰ SYSTEM%LCRⅡ型和Ⅰ型航空重力仪的同机飞行试验

    Institute of Scientific and Technical Information of China (English)

    孙中苗; 翟振和; 李迎春; 肖云

    2012-01-01

    为检验和评价LCRⅡ型航空重力仪的精度和性能,与LCR Ⅰ型航空重力仪进行了同机飞行试验.试验结果表明,Ⅱ型与Ⅰ型航空重力仪相比,采样点重力异常之差值的标准差为4.0×10-5ms-2,单套重力仪的测量精度约为2.8×10-5ms-2;5’×5’格网平均重力异常之差的标准差为4.9×10-5 ms-2,每套系统获得的5’×5’格网平均重力异常的精度为3.5×10-5ms-2,剔除两个可疑值后,精度为2.9×10-5ms-2.总体上,LCRⅡ型航空重力仪与Ⅰ型精度相当,但具有更快的仪器稳定速度.%In order to validate the accuracy and the performance of the LaCoste & Romberg (LCRⅡ ) , a con-current flight test over a mountain area was undertaken. The LCR gravimeter E and an LCR gravimeter I system side by side. The results of the flight test show that the standard deviation of the gravity anomalies difference measured with the two systems is about 4.0×10-5 ms-2 namely the accuracy of the single system is about 2. 8 x 10-5 ms-2 if we assumed the two systems have the same accuracy. They also indicate that the standard deviation of the 5' × 5' grid mean gravity anomalies difference from the two systems is about 4.9 xl0-5ms-2 namely the related accu-racy of the single system is about 3.5 x 10-5ms-2 and 2.9 × 10-5ms-2 after two outliers were eliminated. In gener-al, LCR gravimeter Ⅱ system has the identical accuracy as the LCR gravimeter I system, but it can be quickly leveling off.

  10. Stripes and superconductivity in cuprates

    Science.gov (United States)

    Tranquada, John M.

    2012-06-01

    Holes doped into the CuO2 planes of cuprate parent compounds frustrate the antiferromagnetic order. The development of spin and charge stripes provides a compromise between the competing magnetic and kinetic energies. Static stripe order has been observed only in certain particular compounds, but there are signatures which suggest that dynamic stripe correlations are common in the cuprates. Though stripe order is bad for superconducting phase coherence, stripes are compatible with strong pairing. Ironically, magnetic-field-induced stripe order appears to enhance the stability of superconducting order within the planes.

  11. Stripes and superconductivity in cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Tranquada, John M., E-mail: jtran@bnl.gov [Condensed Matter Physics and Materials Science Dept., Brookhaven National Laboratory, Upton, NY 11973-5000 (United States)

    2012-06-01

    Holes doped into the CuO{sub 2} planes of cuprate parent compounds frustrate the antiferromagnetic order. The development of spin and charge stripes provides a compromise between the competing magnetic and kinetic energies. Static stripe order has been observed only in certain particular compounds, but there are signatures which suggest that dynamic stripe correlations are common in the cuprates. Though stripe order is bad for superconducting phase coherence, stripes are compatible with strong pairing. Ironically, magnetic-field-induced stripe order appears to enhance the stability of superconducting order within the planes.

  12. Large superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Magnusson, Niklas; Jensen, Bogi Bech

    2012-01-01

    and the rotation speed is lowered in order to limit the tip speed of the blades. The ability of superconducting materials to carry high current densities with very small losses might facilitate a new class of generators operating with an air gap flux density considerably higher than conventional generators...... and thereby having a smaller size and weight [1, 2]. A 5 MW superconducting wind turbine generator forms the basics for the feasibility considerations, particularly for the YBCO and MgB2 superconductors entering the commercial market. Initial results indicate that a 5 MW generator with an active weight of 34...

  13. Hierarchic Models of Turbulence, Superfluidity and Superconductivity

    CERN Document Server

    Kaivarainen, A

    2000-01-01

    New models of Turbulence, Superfluidity and Superconductivity, based on new Hierarchic theory, general for liquids and solids (physics/0102086), have been proposed. CONTENTS: 1 Turbulence. General description; 2 Mesoscopic mechanism of turbulence; 3 Superfluidity. General description; 4 Mesoscopic scenario of fluidity; 5 Superfluidity as a hierarchic self-organization process; 6 Superfluidity in 3He; 7 Superconductivity: General properties of metals and semiconductors; Plasma oscillations; Cyclotron resonance; Electroconductivity; 8. Microscopic theory of superconductivity (BCS); 9. Mesoscopic scenario of superconductivity: Interpretation of experimental data in the framework of mesoscopic model of superconductivity.

  14. High-$T_{c}$ superconductivity

    CERN Document Server

    Ott, Hans Rudolf

    1996-01-01

    Previously, motivation for enhanced b -> sg from new flavor physics has centered on discrepancies between theory and experiment. Here two experimental hints are considered: (1) updated measurements of the charm multiplicity and BR(Bbar -> X_{ccbars}) at the Upsilon (4S) imply BR(B -> Xnocharm}) \\approx 12.4 \\pm 5.6 %, (2) the Bbar} -> K- X and Bbar -> K+/K- X branching fractions are in excess of conventional Bbar -> Xc -> KX yields by about 16.9 \\pm 5.6 % and 18 \\pm 5.3 %, respectively. JETSET 7.4 was used to estimate kaon yields from ssbar popping in Bbar -> Xcubard decays. JETSET 7.4 Monte Carlos for BR(Bbar -> Xsg) \\sim 15 % imply that the additional kaon production would lead to 1 \\sigma agreement with observed charged and neutral kaon yields. The Ks momentum spectrum would be consistent with recent CLEO bounds in the end point region. Search strategies for enhanced b -> sg are discussed in light of large theoretical uncertainty in the standard model fast kaon background from b -> s penguin operators.

  15. Superconductivity in highly disordered dense carbon disulfide.

    Science.gov (United States)

    Dias, Ranga P; Yoo, Choong-Shik; Struzhkin, Viktor V; Kim, Minseob; Muramatsu, Takaki; Matsuoka, Takahiro; Ohishi, Yasuo; Sinogeikin, Stanislav

    2013-07-16

    High pressure plays an increasingly important role in both understanding superconductivity and the development of new superconducting materials. New superconductors were found in metallic and metal oxide systems at high pressure. However, because of the filled close-shell configuration, the superconductivity in molecular systems has been limited to charge-transferred salts and metal-doped carbon species with relatively low superconducting transition temperatures. Here, we report the low-temperature superconducting phase observed in diamagnetic carbon disulfide under high pressure. The superconductivity arises from a highly disordered extended state (CS4 phase or phase III[CS4]) at ~6.2 K over a broad pressure range from 50 to 172 GPa. Based on the X-ray scattering data, we suggest that the local structural change from a tetrahedral to an octahedral configuration is responsible for the observed superconductivity.

  16. Phase slips in superconducting weak links

    Energy Technology Data Exchange (ETDEWEB)

    Kimmel, Gregory; Glatz, Andreas; Aranson, Igor S.

    2017-01-01

    Superconducting vortices and phase slips are primary mechanisms of dissipation in superconducting, superfluid, and cold-atom systems. While the dynamics of vortices is fairly well described, phase slips occurring in quasi-one- dimensional superconducting wires still elude understanding. The main reason is that phase slips are strongly nonlinear time-dependent phenomena that cannot be cast in terms of small perturbations of the superconducting state. Here we study phase slips occurring in superconducting weak links. Thanks to partial suppression of superconductivity in weak links, we employ a weakly nonlinear approximation for dynamic phase slips. This approximation is not valid for homogeneous superconducting wires and slabs. Using the numerical solution of the time-dependent Ginzburg-Landau equation and bifurcation analysis of stationary solutions, we show that the onset of phase slips occurs via an infinite period bifurcation, which is manifested in a specific voltage-current dependence. Our analytical results are in good agreement with simulations.

  17. A unified theory of superconductivity

    CERN Document Server

    Huang, Xiuqing

    2008-01-01

    In this work, we argue that the phonon-mediated BCS theory may be incorrect. Two kinds of glues, pairing (pseudogap) glue and superconducting glue, are suggested based on a real space Coulomb confinement effect. The scenarios provide a unified explanation of the pairing symmetry, pseudogap and superconducting states, spin--charge stripe order, magic doping fractions and vortex structures in conventional and unconventional (the high-Tc cuprates, MgB2 and the newly-discovered Fe-based family) superconductors. The theory agrees with the existence of a pseudogap in high-temperature superconductors, while no pseudogap feature could be observed in MgB2, iron-based and most of the conventional superconductors. Our results indicate that the superconducting phase can coexist with a triangular vortex lattice in pure MgB2 single crystal with a charge carrier density n=1.49*10^22/cm3. For iron-based superconductors, the relationship between the superconducting vortex phases and the optimal doping levels are analytically ...

  18. Power applications for superconducting cables

    DEFF Research Database (Denmark)

    Tønnesen, Ole; Hansen, Steen; Jørgensen, Preben

    2000-01-01

    High temperature superconducting (HTS) cables for use in electric ac power systems are under development around the world today. There are two main constructions under development: the room temperature dielectric design and the cryogenic dielectric design. However, theoretical studies have shown...

  19. Superconductivity by kinetic energy saving?

    NARCIS (Netherlands)

    Van der Marel, D; Molegraaf, HJA; Presura, C; Santoso, [No Value; Hewson, AC; Zlatic,

    2003-01-01

    A brief introduction is given in the generic microscopic framework of superconductivity. The consequences for the temperature dependence of the kinetic energy, and the correlation energy are discussed for two cases: The BCS scenario and the non-Fermi liquid scenario. A quantitative comparison is mad

  20. Superconducting cavity model for LEP

    CERN Multimedia

    1979-01-01

    A superconducting cavity model is being prepared for testing in a vertical cryostat.At the top of the assembly jig is H.Preis while A.Scharding adjusts some diagnostic equipment to the cavity. See also photo 7912501X.

  1. Superconductivity of small metal grains

    Institute of Scientific and Technical Information of China (English)

    ZHENG; Renrong; CHEN; Zhiqian; ZHU; Shunquan

    2005-01-01

    The formulas of the energy gap and superconducting critical temperature appropriate for systems with both odd and even number of electrons are derived; the bases of the derivations are BCS theory and energy level statistics. Numerical results qualitatively agree with the experimental phenomena. i.e., the superconductivity of small metallic grains will first enhance then decrease to zero when the grain are getting smaller and smaller. The calculations indicate that the above phenomena happen in the metallic grains belonging to Gaussian Orthogonal Ensemble (GOE) and Gaussian Unitary ensemble (GUE) with zero spin; The superconductivity of small metallic grains in Gaussian Symplectic Ensemble (GSE) will monotonically decrease to zero with the decreasing of the grain size. The analyses suggest that the superconductivity enhancements come from pairing and the balance of the strengths between spin-orbital coupling and external magnetic field. In order to take the latter into account, it is necessary to include the level statistics given by Random Matrix Theory (RMT) in describing small metallic grains.

  2. Superconductivity by kinetic energy saving?

    NARCIS (Netherlands)

    Van der Marel, D; Molegraaf, HJA; Presura, C; Santoso, [No Value; Hewson, AC; Zlatic,

    2003-01-01

    A brief introduction is given in the generic microscopic framework of superconductivity. The consequences for the temperature dependence of the kinetic energy, and the correlation energy are discussed for two cases: The BCS scenario and the non-Fermi liquid scenario. A quantitative comparison is

  3. Discovering superconductivity an investigative approach

    CERN Document Server

    Ireson, Gren

    2012-01-01

    The highly-illustrated text will serve as excellent introduction for students, with and without a physics background, to superconductivity. With a strong practical, experimental emphasis, it will provide readers with an overview of the topic preparing them for more advanced texts used in more advanced undergraduate and post-graduate courses.

  4. Collaring of Po Superconducting Dipole

    CERN Multimedia

    1983-01-01

    The picture shows the placing of a stack of stainless steel collars around the superconducting coils.Pre-assembled collar stacks were placed under and on top of the coils,the collars interleaving as comb teeth. During the following collaring operation of compression under a press the collars were locked together by means of side wedges. See also photos 8211532X, 7903168

  5. Superconductivity resulting from antiferromagnetic states

    Energy Technology Data Exchange (ETDEWEB)

    Feng Shi-Ping (Department of Physics, Beijing Normal University (CN))

    1989-09-01

    When the dopping is low enough, the holes obey Bose statistics, Bose-Einstein condensation of these holes may lead to occurance of superconductivity. In this framework, we have calculated some physical quantities, the results are in qualitative agreement with experiments.

  6. Superconductivity by kinetic energy saving?

    NARCIS (Netherlands)

    Van der Marel, D; Molegraaf, HJA; Presura, C; Santoso, [No Value; Hewson, AC; Zlatic,

    2003-01-01

    A brief introduction is given in the generic microscopic framework of superconductivity. The consequences for the temperature dependence of the kinetic energy, and the correlation energy are discussed for two cases: The BCS scenario and the non-Fermi liquid scenario. A quantitative comparison is mad

  7. Nonlinear diffusion and superconducting hysteresis

    Energy Technology Data Exchange (ETDEWEB)

    Mayergoyz, I.D. [Univ. of Maryland, College Park, MD (United States)

    1996-12-31

    Nonlinear diffusion of electromagnetic fields in superconductors with ideal and gradual resistive transitions is studied. Analytical results obtained for linear and nonlinear polarizations of electromagnetic fields are reported. These results lead to various extensions of the critical state model for superconducting hysteresis.

  8. Fireballs from Superconducting Cosmic Strings

    CERN Document Server

    Gruzinov, Andrei

    2016-01-01

    Thermalized fireballs should be created by cusp events on superconducting cosmic strings. This simple notion allows to reliably estimate particle emission from the cusps in a given background magnetic field. With plausible assumptions about intergalactic magnetic fields, the cusp events can produce observable fluxes of high-energy photons and neutrinos with unique signatures.

  9. Fireballs from superconducting cosmic strings

    Science.gov (United States)

    Gruzinov, Andrei; Vilenkin, Alexander

    2017-01-01

    Thermalized fireballs should be created by cusp events on superconducting cosmic strings. This simple notion allows to reliably estimate particle emission from the cusps in a given background magnetic field. With plausible assumptions about intergalactic magnetic fields, the cusp events can produce observable fluxes of high-energy photons and neutrinos with unique signatures.

  10. Superconducting Qubits and Quantum Resonators

    NARCIS (Netherlands)

    Forn-Díaz, P.

    2010-01-01

    Superconducting qubits are fabricated "loss-free" electrical circuits on a chip with size features of tens of nanometers. If cooled to cryogenic temperatures below -273 °C they behave as quantum elements, similar to atoms and molecules. Such a qubit can be manipulated by fast-oscillating magnetic fi

  11. Tutorial on Superconducting Accelerator Magnets

    Science.gov (United States)

    Ball, M. J. Penny; Goodzeit, Carl L.

    1997-05-01

    A multimedia CD-ROM tutorial on the physics and engineering concepts of superconducting magnets for particle accelerators is being developed under a U.S. Dept. of Energy SBIR grant. The tutorial, scheduled for distribution this summer, is targeted to undergraduate junior or senior level science students. However, its unified presentation of the broad range of issues involved in the design of superconducting magnets for accelerators and the extensive detail about the construction process (including animations and video clips) will also be of value to staff of research institutes and industrial concerns with an interest in applied superconductivity or magnet development. The source material, which is based on the world-wide R and D programs to develop superconducting accelerator magnets, is organized in five units with the following themes: Introduction to magnets and accelerators; (2) Superconductors for accelerator magnets; (3) Magnetic design methods for accelerator magnets; (4) Electrical, mechanical, and cryogenic considerations for the final magnet package; (5) Performance characteristics and measurement methods. A detailed outline and examples will be shown.

  12. Demonstration of superconducting micromachined cavities

    Energy Technology Data Exchange (ETDEWEB)

    Brecht, T., E-mail: teresa.brecht@yale.edu; Reagor, M.; Chu, Y.; Pfaff, W.; Wang, C.; Frunzio, L.; Devoret, M. H.; Schoelkopf, R. J. [Department of Applied Physics, Yale University, New Haven, Connecticut 06511 (United States)

    2015-11-09

    Superconducting enclosures will be key components of scalable quantum computing devices based on circuit quantum electrodynamics. Within a densely integrated device, they can protect qubits from noise and serve as quantum memory units. Whether constructed by machining bulk pieces of metal or microfabricating wafers, 3D enclosures are typically assembled from two or more parts. The resulting seams potentially dissipate crossing currents and limit performance. In this letter, we present measured quality factors of superconducting cavity resonators of several materials, dimensions, and seam locations. We observe that superconducting indium can be a low-loss RF conductor and form low-loss seams. Leveraging this, we create a superconducting micromachined resonator with indium that has a quality factor of two million, despite a greatly reduced mode volume. Inter-layer coupling to this type of resonator is achieved by an aperture located under a planar transmission line. The described techniques demonstrate a proof-of-principle for multilayer microwave integrated quantum circuits for scalable quantum computing.

  13. Photon-detecting superconducting resonators

    NARCIS (Netherlands)

    Barends, R.

    2009-01-01

    One of the greatest challenges in astronomy is observing star and planetary formation, redshifted distant galaxies and molecular spectral ‘fingerprints’ in the far-infrared spectrum of light, using highly sensitive and large cameras. In this thesis we investigate superconducting resonators for

  14. Superconductivity: The persistence of pairs

    Energy Technology Data Exchange (ETDEWEB)

    Edelman, Alex; Littlewood, Peter

    2015-05-20

    Superconductivity stems from a weak attraction between electrons that causes them to form bound pairs and behave much like bosons. These so-called Cooper pairs are phase coherent, which leads to the astonishing properties of zero electrical resistance and magnetic flux expulsion typical of superconducting materials. This coherent state may be qualitatively understood within the Bose–Einstein condensate (BEC) model, which predicts that a gas of interacting bosons will become unstable below a critical temperature and condense into a phase of matter with a macroscopic, coherent population in the lowest energy state, as happens in 4He or cold atomic gases. The successful theory proposed by Bardeen, Cooper and Schrieffer (BCS) predicts that at the superconducting transition temperature Tc, electrons simultaneously form pairs and condense, with no sign of pairing above Tc. Theorists have long surmised that the BCS and BEC models are opposite limits of a single theory and that strong interactions or low density can, in principle, drive the system to a paired state at a temperature Tpair higher than Tc, making the transition to the superconducting state BEC-like (Fig. 1). Yet most superconductors to date are reasonably well described by BCS theory or its extensions, and there has been scant evidence in electronic materials for the existence of pairing independent of the full superconducting state (though an active debate rages over the cuprate superconductors). Writing in Nature, Jeremy Levy and colleagues have now used ingenious nanostructured devices to provide evidence for electron pairing1. Perhaps surprisingly, the material they have studied is a venerable, yet enigmatic, low-temperature superconductor, SrTiO3.

  15. The potential of hybrid gravimetry for hydrology; application to a sudanian catchment (West Africa)

    Science.gov (United States)

    Hector, B.; Hinderer, J.; Séguis, L.

    2014-12-01

    The temporal and spatial variations of water storage are major unknowns of the hydrological cycle. They define the state of a hydrological system, which is critical for budget and process studies, like for instance threshold-governed subsurface redistribution, or water availability for evapotranspiration. Ground-based gravity measurements provide integrated (on a few tens of meters radius, the 'plot' scale) response to water storage changes (WSC) signal, which depends on mass and location changes of underground water. This information may be used for instance for process identification, for budget estimates, for specific yield retrieval, or for hypothesis testing through hydrological modeling. We try to address some of these issues based on our experience of a small catchment in the hard-rock Sudanian area of West-Africa (Djougou, northern Benin), where three state-of-art gravimeters have been deployed: a GWR superconducting gravimeter (SG), a Micro-g FG5 absolute gravimeter and a Scintrex CG5 microgravimeter. Spatial (i.e. at the catchment scale) distribution of WSC may be obtained using a hybrid gravimetry (CG5 + SG) approach. Significant hydrological information may be gained from gravity measurements, as long as these are analyzed in a joint approach, together with near-surface geophysics and hydrological monitoring for instance.

  16. Surface superconductivity in thin cylindrical Bi nanowire.

    Science.gov (United States)

    Tian, Mingliang; Wang, Jian; Ning, Wei; Mallouk, Thomas E; Chan, Moses H W

    2015-03-11

    The physical origin and the nature of superconductivity in nanostructured Bi remains puzzling. Here, we report transport measurements of individual cylindrical single-crystal Bi nanowires, 20 and 32 nm in diameter. In contrast to nonsuperconducting Bi nanoribbons with two flat surfaces, cylindrical Bi nanowires show superconductivity below 1.3 K. However, their superconducting critical magnetic fields decrease with their diameter, which is the opposite of the expected behavior for thin superconducting wires. Quasiperiodic oscillations of magnetoresistance were observed in perpendicular fields but were not seen in the parallel orientation. These results can be understood by a model of surface superconductivity with an enhanced surface-to-bulk volume in small diameter wires, where the superconductivity originates from the strained surface states of the nanowires due to the surface curvature-induced stress.

  17. Superconducting Josephson vortex flow transistors

    CERN Document Server

    Tavares, P A C

    2002-01-01

    The work reported in this thesis focuses on the development of high-temperature superconducting Josephson vortex-flow transistors (JVFTs). The JVFT is a particular type of superconducting transistor, i.e. an electromagnetic device capable of delivering gain while keeping the control and output circuits electrically isolated. Devices were fabricated from (100) YBa sub 2 Cu sub 3 O sub 7 sub - subdelta thin films grown by Pulsed Laser Deposition on 24 deg magnesium oxide and strontium titanate bicrystals. The design of the JVFTs was guided by numerical simulations and the devices were optimised for current gain. Improvements were made to the fabrication process in order to accurately pattern the small structures required. The devices exhibited current gains higher than 60 in liquid nitrogen. Gains measured at lower temperatures were significantly higher. As part of the work a data acquisition suite was developed for the characterisation of three-terminal devices and, in particular, of JVFTs.

  18. Superconductivity in the Tungsten Bronzes

    Science.gov (United States)

    Wu, Phillip; Ishii, Satoshi; Tanabe, Kenji; Munakata, Ko; Hammond, Robert H.; Tokiwa, Kazuyasu; Geballe, Theodore H.; Beasley, Malcolm R.

    2015-03-01

    Via pulsed laser deposition and post-annealing, high quality K-doped WO3-y films with reproducible transport properties are obtained. A home built two-coil mutual inductance setup is used to probe the behavior of the films in the superconducting and normal state. The inverse penetration depths and dissipation peaks are measured as a function of temperature and field. Separately, via thin film deposition techniques, we report for the first time stable crystalline hexagonal WO3 on substrates. In order to tune the physical properties of the undoped material, we utilized an ionic liquid gating technique. We observe an insulator-to-metal transition, showing the ionic liquid gate to be a viable technique to alter the electrical transport properties of this material. By comparing the alkali and ionic liquid gated WO3, we conclude with some remarks regarding how superconductivity arises in this system.

  19. Superconducting wires and fractional flux

    Science.gov (United States)

    Sá de Melo, C. A. R.

    1996-05-01

    The quantization of flux quanta in superconductors is revisited and analyzed in a new geometry. The system analyzed is a superconducting wire. The geometry is such that the superconducting wire winds N times around an insulating cylinder and that the wire has its end connected back to its beginning, thus producing an N-loop short circuited solenoid. The winding number N acts as a topological index that controls flux quantization. In this case, fractional flux quanta can be measured through the center of the insulating cylinder, provided that the cylinder radius is small enough. The Little-Parks experiment for an identical geometry is discussed. The period of oscillation of the transition temperature of the wire is found to vary as 1/N in units of flux Φ relative to the flux quantum Φ0. When a SQUID is made in such a geometry the maximal current through the SQUID varies with period Φ0/N.

  20. Stripes and Superconductivity in Cuprates

    OpenAIRE

    Tranquada, John M.

    2011-01-01

    Holes doped into the CuO2 planes of cuprate parent compounds frustrate the antiferromagnetic order. The development of spin and charge stripes provides a compromise between the competing magnetic and kinetic energies. Static stripe order has been observed only in certain particular compounds, but there are signatures which suggest that dynamic stripe correlations are common in the cuprates. Though stripe order is bad for superconducting phase coherence, stripes are compatible with strong pair...

  1. Superconducting Qubits: A Short Review

    OpenAIRE

    Devoret, M. H.; Wallraff, A.; Martinis, J. M.

    2004-01-01

    Superconducting qubits are solid state electrical circuits fabricated using techniques borrowed from conventional integrated circuits. They are based on the Josephson tunnel junction, the only non-dissipative, strongly non-linear circuit element available at low temperature. In contrast to microscopic entities such as spins or atoms, they tend to be well coupled to other circuits, which make them appealling from the point of view of readout and gate implementation. Very recently, new designs ...

  2. Inelastic tunneling in superconducting junctions

    Energy Technology Data Exchange (ETDEWEB)

    Hlobil, Patrik Christian

    2016-06-10

    In this dissertation a theoretical formalism of elastic and inelastic tunneling spectroscopy is developed for superconductors. The underlying physical processes behind the different two tunneling channels and their implications for the interpretation of experimental tunneling data are investigated in detail, which can explain the background conductance seen in the cuprate and iron-based superconductors. Further, the properties of the emitted light from a superconducting LED are investigated.

  3. Stimulated Superconductivity at Strong Coupling

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Ning; Dong, Xi; Silverstein, Eva; Torroba, Gonzalo; /Stanford U., ITP /Stanford U., Phys. Dept. /SLAC

    2011-08-12

    Stimulating a system with time dependent sources can enhance instabilities, thus increasing the critical temperature at which the system transitions to interesting low-temperature phases such as superconductivity or superfluidity. After reviewing this phenomenon in non-equilibrium BCS theory (and its marginal fermi liquid generalization) we analyze the effect in holographic superconductors. We exhibit a simple regime in which the transition temperature increases parametrically as we increase the frequency of the time-dependent source.

  4. RF Characterization of Superconducting Samples

    CERN Document Server

    Junginger, T; Welsch, C

    2009-01-01

    At CERN a compact Quadrupole Resonator has been re-commissioned for the RF characterization of superconducting materials at 400 MHz. In addition the resonator can also be excited at multiple integers of this frequency. Besides Rs it enables determination of the maximum RF magnetic field, the thermal conductivity and the penetration depth of the attached samples, at different temperatures. The features of the resonator will be compared with those of similar RF devices and first results will be presented.

  5. Activities on RF superconductivity at DESY

    Energy Technology Data Exchange (ETDEWEB)

    Matheisen, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); TESLA Collaboration

    1996-01-01

    At DESY the HERA electron storage ring is supplied with normal and superconducting cavities. The superconducting system transfers up to 1 MW klystron power to the beam. Experiences are reported on luminosity and machine study runs. Since 1993 one major activity in the field of RF superconducting cavities is the installation of the TESLA Test Facility. Set-up of hardware and first tests of s.c. resonators are presented. (R.P.). 11 refs.

  6. Superconducting electron and hole lenses

    Science.gov (United States)

    Cheraghchi, H.; Esmailzadeh, H.; Moghaddam, A. G.

    2016-06-01

    We show how a superconducting region (S), sandwiched between two normal leads (N), in the presence of barriers, can act as a lens for propagating electron and hole waves by virtue of the so-called crossed Andreev reflection (CAR). The CAR process, which is equivalent to Cooper pair splitting into two N electrodes, provides a unique possibility of constructing entangled electrons in solid state systems. When electrons are locally injected from an N lead, due to the CAR and normal reflection of quasiparticles by the insulating barriers at the interfaces, sequences of electron and hole focuses are established inside another N electrode. This behavior originates from the change of momentum during electron-hole conversion beside the successive normal reflections of electrons and holes due to the barriers. The focusing phenomena studied here are fundamentally different from the electron focusing in other systems, such as graphene p-n junctions. In particular, due to the electron-hole symmetry of the superconducting state, the focusing of electrons and holes is robust against thermal excitations. Furthermore, the effects of the superconducting layer width, the injection point position, and barrier strength are investigated on the focusing behavior of the junction. Very intriguingly, it is shown that by varying the barrier strength, one can separately control the density of electrons or holes at the focuses.

  7. Attenuation in Superconducting Circular Waveguides

    Directory of Open Access Journals (Sweden)

    K. H. Yeap

    2016-09-01

    Full Text Available We present an analysis on wave propagation in superconducting circular waveguides. In order to account for the presence of quasiparticles in the intragap states of a superconductor, we employ the characteristic equation derived from the extended Mattis-Bardeen theory to compute the values of the complex conductivity. To calculate the attenuation in a circular waveguide, the tangential fields at the boundary of the wall are first matched with the electrical properties (which includes the complex conductivity of the wall material. The matching of fields with the electrical properties results in a set of transcendental equations which is able to accurately describe the propagation constant of the fields. Our results show that although the attenuation in the superconducting waveguide above cutoff (but below the gap frequency is finite, it is considerably lower than that in a normal waveguide. Above the gap frequency, however, the attenuation in the superconducting waveguide increases sharply. The attenuation eventually surpasses that in a normal waveguide. As frequency increases above the gap frequency, Cooper pairs break into quasiparticles. Hence, we attribute the sharp rise in attenuation to the increase in random collision of the quasiparticles with the lattice structure.

  8. Ballistic superconductivity in semiconductor nanowires

    Science.gov (United States)

    Zhang, Hao; Gül, Önder; Conesa-Boj, Sonia; Nowak, Michał P.; Wimmer, Michael; Zuo, Kun; Mourik, Vincent; de Vries, Folkert K.; van Veen, Jasper; de Moor, Michiel W. A.; Bommer, Jouri D. S.; van Woerkom, David J.; Car, Diana; Plissard, Sébastien R.; Bakkers, Erik P. A. M.; Quintero-Pérez, Marina; Cassidy, Maja C.; Koelling, Sebastian; Goswami, Srijit; Watanabe, Kenji; Taniguchi, Takashi; Kouwenhoven, Leo P.

    2017-07-01

    Semiconductor nanowires have opened new research avenues in quantum transport owing to their confined geometry and electrostatic tunability. They have offered an exceptional testbed for superconductivity, leading to the realization of hybrid systems combining the macroscopic quantum properties of superconductors with the possibility to control charges down to a single electron. These advances brought semiconductor nanowires to the forefront of efforts to realize topological superconductivity and Majorana modes. A prime challenge to benefit from the topological properties of Majoranas is to reduce the disorder in hybrid nanowire devices. Here we show ballistic superconductivity in InSb semiconductor nanowires. Our structural and chemical analyses demonstrate a high-quality interface between the nanowire and a NbTiN superconductor that enables ballistic transport. This is manifested by a quantized conductance for normal carriers, a strongly enhanced conductance for Andreev-reflecting carriers, and an induced hard gap with a significantly reduced density of states. These results pave the way for disorder-free Majorana devices.

  9. Interfacing superconducting qubits and single optical photons

    CERN Document Server

    Das, Sumanta; Sørensen, Anders S

    2016-01-01

    We propose an efficient light-matter interface at optical frequencies between a superconducting qubit and a single photon. The desired interface is based on a hybrid architecture composed of an organic molecule embedded inside an optical waveguide and electrically coupled to a superconducting qubit far from the optical axis. We show that high fidelity, photon-mediated, entanglement between distant superconducting qubits can be achieved with incident pulses at the single photon level. Such low light level is highly sought for to overcome the decoherence of the superconducting qubit caused by absorption of optical photons.

  10. Anisotropic superconductivity driven by kinematic interaction

    Science.gov (United States)

    Ivanov, V. A.

    2000-11-01

    We have analysed the effect of kinematic pairing on the symmetry of superconducting order parameter for a square lattice in the frame of the strongly correlated Hubbard model. It is argued that in the first perturbation order the kinematic interaction renormalizes the Hubbard-I dispersions and provides at low doping the mixed singlet (s + s*)-wave superconductivity, giving way at higher doping to the triplet p-wave superconductivity. The obtained phase diagram depends only on the hopping integral parameter. The influence of the Coulomb repulsion on the kinematic superconducting pairing has been estimated. The (s + s*)-wave gap and the thermodynamic critical magnetic field have been derived.

  11. Superconducting fault current limiter for railway transport

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, L. M., E-mail: LMFisher@niitfa.ru; Alferov, D. F.; Akhmetgareev, M. R.; Budovskii, A. I.; Evsin, D. V.; Voloshin, I. F.; Kalinov, A. V. [National Technical Physics and Automation Research Institute (Russian Federation)

    2015-12-15

    A resistive switching superconducting fault current limiter (SFCL) for DC networks with voltage of 3.5 kV and nominal current of 2 kA is developed. The SFCL consists of two series-connected units: block of superconducting modules and high-speed vacuum breaker with total disconnection time not more than 8 ms. The results of laboratory tests of superconducting SFCL modules in current limiting mode are presented. The recovery time of superconductivity is experimentally determined. The possibility of application of SFCL on traction substations of Russian Railways is considered.

  12. Foreword: Focus on Superconductivity in Semiconductors

    Directory of Open Access Journals (Sweden)

    Yoshihiko Takano

    2008-01-01

    Full Text Available Since the discovery of superconductivity in diamond, much attention has been given to the issue of superconductivity in semiconductors. Because diamond has a large band gap of 5.5 eV, it is called a wide-gap semiconductor. Upon heavy boron doping over 3×1020 cm−3, diamond becomes metallic and demonstrates superconductivity at temperatures below 11.4 K. This discovery implies that a semiconductor can become a superconductor upon carrier doping. Recently, superconductivity was also discovered in boron-doped silicon and SiC semiconductors. The number of superconducting semiconductors has increased. In 2008 an Fe-based superconductor was discovered in a research project on carrier doping in a LaCuSeO wide-gap semiconductor. This discovery enhanced research activities in the field of superconductivity, where many scientists place particular importance on superconductivity in semiconductors.This focus issue features a variety of topics on superconductivity in semiconductors selected from the 2nd International Workshop on Superconductivity in Diamond and Related Materials (IWSDRM2008, which was held at the National Institute for Materials Science (NIMS, Tsukuba, Japan in July 2008. The 1st workshop was held in 2005 and was published as a special issue in Science and Technology of Advanced Materials (STAM in 2006 (Takano 2006 Sci. Technol. Adv. Mater. 7 S1.The selection of papers describe many important experimental and theoretical studies on superconductivity in semiconductors. Topics on boron-doped diamond include isotope effects (Ekimov et al and the detailed structure of boron sites, and the relation between superconductivity and disorder induced by boron doping. Regarding other semiconductors, the superconducting properties of silicon and SiC (Kriener et al, Muranaka et al and Yanase et al are discussed, and In2O3 (Makise et al is presented as a new superconducting semiconductor. Iron-based superconductors are presented as a new series of high

  13. Topological superconductivity induced by ferromagnetic metal chains

    Science.gov (United States)

    Li, Jian; Chen, Hua; Drozdov, Ilya K.; Yazdani, A.; Bernevig, B. Andrei; MacDonald, A. H.

    2014-12-01

    Recent experiments have provided evidence that one-dimensional (1D) topological superconductivity can be realized experimentally by placing transition-metal atoms that form a ferromagnetic chain on a superconducting substrate. We address some properties of this type of system by using a Slater-Koster tight-binding model to account for important features of the electronic structure of the transition-metal chains on the superconducting substrate. We predict that topological superconductivity is nearly universal when ferromagnetic transition-metal chains form straight lines on superconducting substrates and that it is possible for more complex chain structures. When the chain is weakly coupled to the substrate and is longer than superconducting coherence lengths, its proximity-induced superconducting gap is ˜Δ ESO/J where Δ is the s -wave pair potential on the chain, ESO is the spin-orbit splitting energy induced in the normal chain state bands by hybridization with the superconducting substrate, and J is the exchange splitting of the ferromagnetic chain d bands. Because of the topological character of the 1D superconducting state, Majorana end modes appear within the gaps of finite length chains. We find, in agreement with the experiment, that when the chain and substrate orbitals are strongly hybridized, Majorana end modes are substantially reduced in amplitude when separated from the chain end by less than the coherence length defined by the p -wave superconducting gap. We conclude that Pb is a particularly favorable substrate material for ferromagnetic chain topological superconductivity because it provides both strong s -wave pairing and strong Rashba spin-orbit coupling, but that there is an opportunity to optimize properties by varying the atomic composition and structure of the chain. Finally, we note that in the absence of disorder, a new chain magnetic symmetry, one that is also present in the crystalline topological insulators, can stabilize multiple

  14. Superconducting integrated submillimeter receiver for TELIS

    NARCIS (Netherlands)

    Koshelets, Valery P.; Ermakov, Andrey B.; Filippenko, Lyudmila V.; Khudchenko, Andrey V.; Kiselev, Oleg S.; Sobolev, Alexander S.; Torgashin, Mikhail Yu.; Yagoubov, Pavel A.; Hoogeveen, Ruud W. M.; Wild, Wolfgang

    2007-01-01

    In this report an overview of the results on the development of a single-chip superconducting integrated receiver for the Terahertz Limb Sounder (TELIS) balloon project intended to measure a variety of stratosphere trace gases is presented. The Superconducting Integrated Receiver (SIR) comprises in

  15. Insulation systems for superconducting transmission cables

    DEFF Research Database (Denmark)

    Tønnesen, Ole

    1996-01-01

    the electrical insulation is placed outside both the superconducting tube and the cryostat. The superconducting tube is cooled by liquid nitrogen which is pumped through the hollow part of the tube.2) The cryogenic dielectric design, where the electrical insulation is placed inside the cryostat and thus is kept...

  16. 17th International Conference on RF Superconductivity

    CERN Document Server

    2015-01-01

    RF superconductivity is the key technology of accelerators for particle physics, nuclear physics and light sources. SRF 2015 covered the latest advances in the science, technology, and applications of superconducting RF. There was also an industrial exhibit during the conference with the key vendors in the community available to discuss their capabilities and products.

  17. Superconducting magnets. Citations from NTIS data base

    Science.gov (United States)

    Reimherr, G. W.

    1980-10-01

    The cited reports discuss research on materials studies, theory, design and applications of superconducting magnets. Examples of applications include particle accelerators, MHD power generation, superconducting generators, nuclear fusion research devices, energy storage systems, and magnetic levitation. This updated bibliography contains 218 citations, 88 of which are new entries to the previous edition.

  18. Superconducting Materials, Magnets and Electric Power Applications

    Science.gov (United States)

    Crabtree, George

    2011-03-01

    The surprising discovery of superconductivity a century ago launched a chain of convention-shattering innovations and discoveries in superconducting materials and applications that continues to this day. The range of large-scale applications grows with new materials discoveries - low temperature NbTi and Nb3 Sn for liquid helium cooled superconducting magnets, intermediate temperature MgB2 for inexpensive cryocooled applications including MRI magnets, and high temperature YBCO and BSSCO for high current applications cooled with inexpensive liquid nitrogen. Applications based on YBCO address critical emerging challenges for the electricity grid, including high capacity superconducting cables to distribute power in urban areas; transmission of renewable electricity over long distances from source to load; high capacity DC interconnections among the three US grids; fast, self-healing fault current limiters to increase reliability; low-weight, high capacity generators enabling off-shore wind turbines; and superconducting magnetic energy storage for smoothing the variability of renewable sources. In addition to these grid applications, coated conductors based on YBCO deposited on strong Hastelloy substrates enable a new generation of all superconducting high field magnets capable of producing fields above 30 T, approximately 50% higher than the existing all superconducting limit based on Nb3 Sn . The high fields, low power cost and the quiet electromagnetic and mechanical operation of such magnets could change the character of high field basic research on materials, enable a new generation of high-energy colliding beam experiments and extend the reach of high density superconducting magnetic energy storage.

  19. Superconducting chip receivers for imaging application

    NARCIS (Netherlands)

    Shitov, SV; Koshelets, VP; Ermakov, AB; Filippenko, LV; Baryshev, AM; Luinge, W; Gao, [No Value

    1999-01-01

    Experimental details of a unique superconducting imaging array receiver are discussed. Each pixel contains an internally pumped receiver chip mounted on the back of the elliptical microwave lens. Each chip comprises a quasi-optical SIS mixer integrated with a superconducting flux-flow oscillator (FF

  20. Diagram of a LEP superconducting cavity

    CERN Multimedia

    1991-01-01

    This diagram gives a schematic representation of the superconducting radio-frequency cavities at LEP. Liquid helium is used to cool the cavity to 4.5 degrees above absolute zero so that very high electric fields can be produced, increasing the operating energy of the accelerator. Superconducting cavities were used only in the LEP-2 phase of the accelerator, from 1996 to 2000.

  1. 17th International Conference on RF Superconductivity

    CERN Document Server

    Laxdal, Robert E.; Schaa, Volker R.W.

    2015-01-01

    RF superconductivity is the key technology of accelerators for particle physics, nuclear physics and light sources. SRF 2015 covered the latest advances in the science, technology, and applications of superconducting RF. There was also an industrial exhibit during the conference with the key vendors in the community available to discuss their capabilities and products.

  2. Josephson plasma resonance in superconducting multilayers

    DEFF Research Database (Denmark)

    Pedersen, Niels Falsig; Sakai, S

    1998-01-01

    We derive an analytical solution for the Josephson plasma resonance of superconducting multilayers. This analytical solution is derived mainly for low-T-c systems with magnetic coupling between the superconducting layers. but many features of our results are more general, and thus an application...

  3. Research progresses shed light on superconductivity mechanism

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ The spring of 2008 saw substantial breakthroughs in superconductivity research. Four groups of physicists, one after another, achieved remarkable progresses in the study of iron-based materials after the breakthrough made by H. Hosono's group in Japan, providing renewed insights into the fundamental mechanism of high-temperature superconductivity (HTSC), a perplexing enigma on the frontier of condensed matter physics.

  4. Josephson plasma resonance in superconducting multilayers

    DEFF Research Database (Denmark)

    Pedersen, Niels Falsig

    1999-01-01

    We derive an analytical solution for the josephson plasma resonance of superconducting multilayers. This analytical solution is derived mainly for low T-c systems with magnetic coupling between the superconducting layers, but many features of our results are more general, and thus an application...

  5. Interfacing superconducting qubits and single optical photons

    NARCIS (Netherlands)

    Das, Sumanta; Faez, Sanli; Sørensen, Anders S.

    2016-01-01

    We propose an efficient light-matter interface at optical frequencies between a superconducting qubit and a single photon. The desired interface is based on a hybrid architecture composed of an organic molecule embedded inside an optical waveguide and electrically coupled to a superconducting qubit

  6. Interaction between ionic lattices and superconducting condensates

    OpenAIRE

    2007-01-01

    The interaction of the ionic lattice with the superconducting condensate is treated in terms of the electrostatic force in superconductors. It is shown that this force is similar but not identical to the force suggested by the volume difference of the normal and superconducting states. The BCS theory shows larger deviations than the two-fluid model.

  7. Atom gravimeters and gravitational redshift

    CERN Document Server

    Wolf, Peter; Borde, Christian J; Reynaud, Serge; Salomon, Christophe; Cohen-Tannoudji, Claude; 10.1038/nature09340

    2010-01-01

    In a recent paper, H. Mueller, A. Peters and S. Chu [A precision measurement of the gravitational redshift by the interference of matter waves, Nature 463, 926-929 (2010)] argued that atom interferometry experiments published a decade ago did in fact measure the gravitational redshift on the quantum clock operating at the very high Compton frequency associated with the rest mass of the Caesium atom. In the present Communication we show that this interpretation is incorrect.

  8. Relativistic effects in atom gravimeters

    Science.gov (United States)

    Tan, Yu-Jie; Shao, Cheng-Gang; Hu, Zhong-Kun

    2017-01-01

    Atom interferometry is currently developing rapidly, which is now reaching sufficient precision to motivate laboratory tests of general relativity. Thus, it is extremely significant to develop a general relativistic model for atom interferometers. In this paper, we mainly present an analytical derivation process and first give a complete vectorial expression for the relativistic interferometric phase shift in an atom interferometer. The dynamics of the interferometer are studied, where both the atoms and the light are treated relativistically. Then, an appropriate coordinate transformation for the light is performed crucially to simplify the calculation. In addition, the Bordé A B C D matrix combined with quantum mechanics and the "perturbation" approach are applied to make a methodical calculation for the total phase shift. Finally, we derive the relativistic phase shift kept up to a sensitivity of the acceleration ˜1 0-14 m/s 2 for a 10 -m -long atom interferometer.

  9. Relativity, Doppler shifts, and retarded times in deriving the correction for the finite speed of light: a comment on 'Second-order Doppler-shift corrections in free-fall absolute gravimeters'

    CERN Document Server

    Nagornyi, V D; Zanimonskiy, Y Y

    2011-01-01

    In the article (Rothleitner and Francis 2011 Metrologia 48 187-195) the correction due to the finite speed of light in absolute gravimeters is analyzed from the viewpoint of special relativity. The relativistic concepts eventually lead to the two classical approaches to the problem: analysis of the beat frequency, and introduction of the retarded times. In the first approach, an additional time delay has to be assumed, because the frequency of the beam bounced from the accelerated reflector differs at the point of reflection from that at the point of interference. The retarded times formalism is equivalent to a single Doppler shift, but results in the same correction as the beat frequency approach, even though the latter is explicitly combines two Doppler shifts. In our comments we discuss these and other problems we found with the suggested treatment of the correction.

  10. Superconductivity in compensated and uncompensated semiconductors.

    Science.gov (United States)

    Yanase, Youichi; Yorozu, Naoyuki

    2008-12-01

    We investigate the localization and superconductivity in heavily doped semiconductors. The crossover from the superconductivity in the host band to that in the impurity band is described on the basis of the disordered three-dimensional attractive Hubbard model for binary alloys. The microscopic inhomogeneity and the thermal superconducting fluctuation are taken into account using the self-consistent 1-loop order theory. The superconductor-insulator transition accompanies the crossover from the host band to the impurity band. We point out an enhancement of the critical temperature Tc around the crossover. Further localization of electron wave functions leads to the localization of Cooper pairs and induces the pseudogap. We find that both the doping compensation by additional donors and the carrier increase by additional acceptors suppress the superconductivity. A theoretical interpretation is proposed for the superconductivity in the boron-doped diamond, SiC, and Si.

  11. Superconductivity in compensated and uncompensated semiconductors

    Directory of Open Access Journals (Sweden)

    Youichi Yanase and Naoyuki Yorozu

    2008-01-01

    Full Text Available We investigate the localization and superconductivity in heavily doped semiconductors. The crossover from the superconductivity in the host band to that in the impurity band is described on the basis of the disordered three-dimensional attractive Hubbard model for binary alloys. The microscopic inhomogeneity and the thermal superconducting fluctuation are taken into account using the self-consistent 1-loop order theory. The superconductor-insulator transition accompanies the crossover from the host band to the impurity band. We point out an enhancement of the critical temperature Tc around the crossover. Further localization of electron wave functions leads to the localization of Cooper pairs and induces the pseudogap. We find that both the doping compensation by additional donors and the carrier increase by additional acceptors suppress the superconductivity. A theoretical interpretation is proposed for the superconductivity in the boron-doped diamond, SiC, and Si.

  12. Method for producing substrates for superconducting layers

    DEFF Research Database (Denmark)

    2013-01-01

    There is provided a method for producing a substrate (600) suitable for supporting an elongated superconducting element, wherein, e.g., a deformation process is utilized in order to form disruptive strips in a layered solid element, and where etching is used to form undercut volumes (330, 332......) between an upper layer (316) and a lower layer (303) of the layered solid element. Such relatively simple steps enable providing a substrate which may be turned into a superconducting structure, such as a superconducting tape, having reduced AC losses, since the undercut volumes (330, 332) may be useful...... for separating layers of material. In a further embodiment, there is placed a superconducting layer on top of the upper layer (316) and/or lower layer (303), so as to provide a superconducting structure with reduced AC losses....

  13. Superconducting Radio Frequency Technology: An Overview

    Energy Technology Data Exchange (ETDEWEB)

    Peter Kneisel

    2003-06-01

    Superconducting RF cavities are becoming more often the choice for larger scale particle accelerator projects such as linear colliders, energy recovery linacs, free electron lasers or storage rings. Among the many advantages compared to normal conducting copper structures, the superconducting devices dissipate less rf power, permit higher accelerating gradients in CW operation and provide better quality particle beams. In most cases these accelerating cavities are fabricated from high purity bulk niobium, which has superior superconducting properties such as critical temperature and critical magnetic field when compared to other superconducting materials. Research during the last decade has shown, that the metallurgical properties--purity, grain structure, mechanical properties and oxidation behavior--have significant influence on the performance of these accelerating devices. This contribution attempts to give a short overview of the superconducting RF technology with emphasis on the importance of the material properties of the high purity niobium.

  14. STRIPES AND SUPERCONDUCTIVITY IN CUPRATE SUPERCONDUCTORS

    Energy Technology Data Exchange (ETDEWEB)

    TRANQUADA, J.M.

    2005-08-22

    One type of order that has been observed to compete with superconductivity in cuprates involves alternating charge and antiferromagnetic stripes. Recent neutron scattering studies indicate that the magnetic excitation spectrum of a stripe-ordered sample is very similar to that observed in superconducting samples. In fact, it now appears that there may be a universal magnetic spectrum for the cuprates. One likely implication of this universal spectrum is that stripes of a dynamic form are present in the superconducting samples. On cooling through the superconducting transition temperature, a gap opens in the magnetic spectrum, and the weight lost at low energy piles up above the gap; the transition temperature is correlated with the size of the spin gap. Depending on the magnitude of the spin gap with respect to the magnetic spectrum, the enhanced magnetic scattering at low temperature can be either commensurate or incommensurate. Connections between stripe correlations and superconductivity are discussed.

  15. Stripes and superconductivity in cuprate superconductors

    Science.gov (United States)

    Tranquada, J. M.

    2005-08-01

    One type of order that has been observed to compete with superconductivity in cuprates involves alternating charge and antiferromagnetic stripes. Recent neutron scattering studies indicate that the magnetic excitation spectrum of a stripe-ordered sample is very similar to that observed in superconducting samples. In fact, it now appears that there may be a universal magnetic spectrum for the cuprates. One likely implication of this universal spectrum is that stripes of a dynamic form are present in the superconducting samples. On cooling through the superconducting transition temperature, a gap opens in the magnetic spectrum, and the weight lost at low energy piles up above the gap; the transition temperature is correlated with the size of the spin gap. Depending on the magnitude of the spin gap with respect to the magnetic spectrum, the enhanced magnetic scattering at low temperature can be either commensurate or incommensurate. Connections between stripe correlations and superconductivity are discussed.

  16. Free-standing oxide superconducting articles

    Science.gov (United States)

    Wu, Xin D.; Muenchausen, Ross E.

    1993-01-01

    A substrate-free, free-standing epitaxially oriented superconductive film including a layer of a template material and a layer of a ceramic superconducting material is provided together with a method of making such a substrate-free ceramic superconductive film by coating an etchable material with a template layer, coating the template layer with a layer of a ceramic superconductive material, coating the layer of ceramic superconductive material with a protective material, removing the etchable material by an appropriate means so that the etchable material is separated from a composite structure including the template lay This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).

  17. Development of Superconducting Wind Turbine Generators

    DEFF Research Database (Denmark)

    Jensen, Bogi Bech; Mijatovic, Nenad; Abrahamsen, Asger Bech

    2012-01-01

    (HTS); and one is a fully superconducting generator based on MgB2. It is concluded that there is large commercial interest in superconducting machines, with an increasing patenting activity. Such generators are however not without their challenges. The superconductors have to be cooled down......In this paper the commercial activities in the field of superconducting machines, particularly superconducting wind turbine generators, are reviewed and presented. Superconducting generators have the potential to provide a compact and light weight drive train at high torques and slow rotational...... to somewhere between 4K and 50K, depending on what type of superconductor is employed, which poses a significant challenge both from a construction and operation point of view. The high temperature superconductors can facilitate a higher operation temperature and simplified cooling, but the current price...

  18. Quantum Memristors with Superconducting Circuits

    Science.gov (United States)

    Salmilehto, J.; Deppe, F.; di Ventra, M.; Sanz, M.; Solano, E.

    2017-02-01

    Memristors are resistive elements retaining information of their past dynamics. They have garnered substantial interest due to their potential for representing a paradigm change in electronics, information processing and unconventional computing. Given the advent of quantum technologies, a design for a quantum memristor with superconducting circuits may be envisaged. Along these lines, we introduce such a quantum device whose memristive behavior arises from quasiparticle-induced tunneling when supercurrents are cancelled. For realistic parameters, we find that the relevant hysteretic behavior may be observed using current state-of-the-art measurements of the phase-driven tunneling current. Finally, we develop suitable methods to quantify memory retention in the system.

  19. Superconductivity in Metals and Alloys

    Science.gov (United States)

    1963-02-01

    sintered material (Reed, Gatos , LaFleur, and Roddy, 1962). It has great importance for any materials work, since generalizations based only on stoichio...1961),Phys. Rev. Letters 6, 597. Goodman, B. B., (1962) IBM J. Research and Development 6, 63. Gor’kov, L. P., (1960), Soy . Phys. JETP 10, 998...34Superconductivity in Metals and Alloys-Technical Documentary Report No. ASD-TDR-62-269, Contract No. AF 33(616)-640 5. Reed, T. B., Gatos , H. C., LaFleur, W. j

  20. The crystallography of color superconductivity

    CERN Document Server

    Bowers, J A; Bowers, Jeffrey A.; Rajagopal, Krishna

    2003-01-01

    We describe the crystalline phase of color superconducting quark matter. This phase may occur in quark matter at densities relevant for compact star physics, with possible implications for glitch phenomena in pulsars. We use a Ginzburg-Landau approach to determine that the crystal has a face-centered-cubic (FCC) structure. Moreover, our results indicate that the phase is robust, with gaps, critical temperature, and free energy comparable to those of the color-flavor-locked (CFL) phase. Our calculations also predict ``crystalline superfluidity'' in ultracold gases of fermionic atoms.

  1. Superconductivity, antiferromagnetism, and neutron scattering

    Science.gov (United States)

    Tranquada, John M.; Xu, Guangyong; Zaliznyak, Igor A.

    2014-01-01

    High-temperature superconductivity in both the copper-oxide and the iron-pnictide/chalcogenide systems occurs in close proximity to antiferromagnetically ordered states. Neutron scattering has been an essential technique for characterizing the spin correlations in the antiferromagnetic phases and for demonstrating how the spin fluctuations persist in the superconductors. While the nature of the spin correlations in the superconductors remains controversial, the neutron scattering measurements of magnetic excitations over broad ranges of energy and momentum transfers provide important constraints on the theoretical options. We present an overview of the neutron scattering work on high-temperature superconductors and discuss some of the outstanding issues.

  2. Superconductivity a very short introduction

    CERN Document Server

    Blundell, Stephen

    2009-01-01

    Superconductivity is one of the most exciting areas of research in physics today. Outlining the history of its discovery, and the race to understand its many mysterious and counter-intuitive phenomena, this Very Short Introduction explains in accessible terms the theories that have been developed, and how they have influenced other areas of science, including the Higgs boson of particle physics and ideas about the early Universe. It is an engaging and informative accountof a fascinating scientific detective story, and an intelligible insight into some deep and beautiful ideas of physics

  3. Quantum Memristors with Superconducting Circuits

    Science.gov (United States)

    Salmilehto, J.; Deppe, F.; Di Ventra, M.; Sanz, M.; Solano, E.

    2017-01-01

    Memristors are resistive elements retaining information of their past dynamics. They have garnered substantial interest due to their potential for representing a paradigm change in electronics, information processing and unconventional computing. Given the advent of quantum technologies, a design for a quantum memristor with superconducting circuits may be envisaged. Along these lines, we introduce such a quantum device whose memristive behavior arises from quasiparticle-induced tunneling when supercurrents are cancelled. For realistic parameters, we find that the relevant hysteretic behavior may be observed using current state-of-the-art measurements of the phase-driven tunneling current. Finally, we develop suitable methods to quantify memory retention in the system. PMID:28195193

  4. Superconductive Signal-Processing Circuits

    Science.gov (United States)

    1994-08-01

    September 1991. 13. P. H. Xiao, E. Charbon , A. Sangiovanni-Vincentelli, T. Van Duzer,and S.W. Whiteley, "INDEX: An inductance extractor for superconducting...wideband analog-to-digital to a useful binary representation. In order to achieve an N-bit converter reported earlier [1]. The original design has been...rises, the SQUID Parameter Original Modified switches to the voltage state, and the output goes high. Ic(J1) 337 367 I tA S gaicGate: The comparator

  5. Fermionic models with superconducting circuits

    Energy Technology Data Exchange (ETDEWEB)

    Las Heras, Urtzi; Garcia-Alvarez, Laura; Mezzacapo, Antonio; Lamata, Lucas [University of the Basque Country UPV/EHU, Department of Physical Chemistry, Bilbao (Spain); Solano, Enrique [University of the Basque Country UPV/EHU, Department of Physical Chemistry, Bilbao (Spain); IKERBASQUE, Basque Foundation for Science, Bilbao (Spain)

    2015-12-01

    We propose a method for the efficient quantum simulation of fermionic systems with superconducting circuits. It consists in the suitable use of Jordan-Wigner mapping, Trotter decomposition, and multiqubit gates, be with the use of a quantum bus or direct capacitive couplings. We apply our method to the paradigmatic cases of 1D and 2D Fermi-Hubbard models, involving couplings with nearest and next-nearest neighbours. Furthermore, we propose an optimal architecture for this model and discuss the benchmarking of the simulations in realistic circuit quantum electrodynamics setups. (orig.)

  6. Terahertz superconducting plasmonic hole array

    CERN Document Server

    Tian, Zhen; Han, Jiaguang; Gu, Jianqiang; Xing, Qirong; Zhang, Weili

    2010-01-01

    We demonstrate thermally tunable superconductor hole array with active control over their resonant transmission induced by surface plasmon polaritons . The array was lithographically fabricated on high temperature YBCO superconductor and characterized by terahertz-time domain spectroscopy. We observe a clear transition from the virtual excitation of the surface plasmon mode to the real surface plasmon mode. The highly tunable superconducting plasmonic hole arrays may have promising applications in the design of low-loss, large dynamic range amplitude modulation, and surface plasmon based terahertz devices.

  7. Synthesis, characterization and optical properties of low nuclearity liganded silver clusters: Ag31(SG)19 and Ag15(SG)11

    Science.gov (United States)

    Bertorelle, Franck; Hamouda, Ramzi; Rayane, Driss; Broyer, Michel; Antoine, Rodolphe; Dugourd, Philippe; Gell, Lars; Kulesza, Alexander; MitrićPresent Address: Institut Für Physikalische Und Theoretische Chemie, Julius-Maximilians Universität Würzburg, Emil-Fischer-Straße 42, 97074 Würzburg, Germany, Roland; Bonačić-Koutecký, Vlasta

    2013-05-01

    We report a simple synthesis of silver:glutathione (Ag:SG) clusters using a cyclic reduction under oxidative conditions. Two syntheses are described which lead to solutions containing well-defined Ag31(SG)19 and Ag15(SG)11 clusters that have been characterized by mass spectrometry. The optical properties of silver:glutathione (Ag:SG) cluster solutions have been investigated experimentally. In particular, the solution containing Ag15(SG)11 clusters shows a bright and photostable emission. For Ag31(SG)19 and Ag15(SG)11 clusters, the comparison of experimental findings with DFT and TDDFT calculations allowed us to reveal the structural and electronic properties of such low nuclearity liganded silver clusters.We report a simple synthesis of silver:glutathione (Ag:SG) clusters using a cyclic reduction under oxidative conditions. Two syntheses are described which lead to solutions containing well-defined Ag31(SG)19 and Ag15(SG)11 clusters that have been characterized by mass spectrometry. The optical properties of silver:glutathione (Ag:SG) cluster solutions have been investigated experimentally. In particular, the solution containing Ag15(SG)11 clusters shows a bright and photostable emission. For Ag31(SG)19 and Ag15(SG)11 clusters, the comparison of experimental findings with DFT and TDDFT calculations allowed us to reveal the structural and electronic properties of such low nuclearity liganded silver clusters. Electronic supplementary information (ESI) available: Optimal settings for the MS instrument; schematic diagrams for syntheses A and B; ESI mass spectra of silver clusters from ``synthesis A'' in different solvent mixtures, at different pH values and with different synthesis protocols; excitation and emission spectra of clusters from ``synthesis B'' in water and of the separated band after PAGE separation; lifetime measurements of silver clusters from a solution of ``synthesis B'' in water; the structure and absorption spectrum of the two lowest-energy isomers

  8. FG5/240绝对重力仪成套设备的检定测量分析%Analysis of the Calibration Measurements of the Whole-Set Absolute Gravimeter FG5/240

    Institute of Scientific and Technical Information of China (English)

    纪立东; 张宏伟; 王应建; 肖凡; 李建国

    2012-01-01

    详细介绍了FG5/240绝对重力仪的技术特点、测量原理和白家疃的试验观测,并就相配套的用于测量梯度的2台CG5相对重力仪(442、444)的检定项目和结果进行说明和分析,结果表明:2台CG5相对重力仪完全满足规范要求,FG5/240绝对重力仪的试验测量结果的标准偏差优于士2.0×10^-8ms^-2,能够用于陆态网络工程任务中部分基准站的绝对重力测量。%In the paper the technological features, measuring principle and the test observations at Baijiatong were introduced in detail. At the same time, the calibration items along with the calibrations of two more relative gravimeters for gradient measurement, CG5/442 and CG5/444, which are applied to form a complete set of the absolute gravimeter, were also described and analyzed. Results show that, 2 sets of CG5 can fully satisfy the demands of specifications, and the standard deviation of FG5 test measurements is better than 2.0 ×10^-8ms^-2, which means that the whole set of the FG5 absolute gra vimeter can be applied in the absolute gravimetry of a part of bench stations in the Land Gravity Network Project.

  9. Characterization of superconducting multilayers samples

    CERN Document Server

    Antoine, C Z; Berry, S; Bouat, S; Jacquot, J F; Villegier, J C; Lamura, G; Gurevich, A

    2009-01-01

    Best RF bulk niobium accelerating cavities have nearly reached their ultimate limits at rf equatorial magnetic field H  200 mT close to the thermodynamic critical field Hc. In 2006 Gurevich proposed to use nanoscale layers of superconducting materials with high values of Hc > HcNb for magnetic shielding of bulk niobium to increase the breakdown magnetic field inside SC RF cavities [1]. Depositing good quality layers inside a whole cavity is rather difficult but we have sputtered high quality samples by applying the technique used for the preparation of superconducting electronics circuits and characterized these samples by X-ray reflectivity, dc resistivity (PPMS) and dc magnetization (SQUID). Dc magnetization curves of a 250 nm thick Nb film have been measured, with and without a magnetron sputtered coating of a single or multiple stack of 15 nm MgO and 25 nm NbN layers. The Nb samples with/without the coating clearly exhibit different behaviors. Because SQUID measurements are influenced by edge an...

  10. Recent developments in superconducting receivers

    Science.gov (United States)

    Richards, Paul L.

    1990-09-01

    A description is given of recent work at Berkeley on superconducting mixers and detectors for infrared and millimeter wavelengths. The first report is a review article which summarizes the status of development of superconducting components for infrared and millimeter wave receivers. The next report describes accurate measurements and also theoretical modeling of an SIS quasiparticle waveguide mixer for W-band which uses very high quality Ta junctions. The best mixer noise is only 1.3 times the quantum limit. Both the mixer gain and the noise are in quantitative agreement with the quantum theory. Next, a report is given on measurements and theoretical modeling of the absorptivity (surface resistance) of high quality epitaxial films of the high Tc superconductor YBCO from 750 GHz to 21 THz. Finally, there are reports on the design and experimental performance of two different types of high Tc bolometric detectors. One is a conventional bolometer with a gold-black absorber. The other is an antenna coupled microbolometer.

  11. Superconducting rf development at ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.; Kedzie, M.; Clifft, B.E. [Argonne National Lab., IL (United States); Roy, A.; Potukuchi, P. [Nuclear Science Centre, New Delhi (India); Givens, J.; Potter, J.; Crandall, K. [AccSys Technology, Inc., Pleasanton, CA (United States); Added, N. [Sao Paulo Univ., SP (Brazil)

    1993-12-31

    The ATLAS superconducting heavy-ion linac began operation in 1978 and has operated nearly continuously since that time, while undergoing a series of upgrades and expansions, the most recent being the ``uranium upgrade`` completed earlier this year and described below. In its present configuration the ATLAS linac consists of an array of 64 resonant cavities operating from 48 to 145 MHz, which match a range of particle velocities .007 < {beta} = v/c < .2. The linac provides approximately 50 MV of effective accelerating potential for ions of q/m > 1/10 over the entire periodic table. Delivered beams include 5 {minus} 7 pnA of {sup 238}U{sup 39+} at 1535 MeV. At present more than 10{sup 6} cavity-hours of operation at surface electric fields of 15 MV/m have been accumulated. Superconducting structure development at ATLAS is aimed at improving the cost/performance of existing low velocity structures both for possible future ATLAS upgrades, and also for heavy-ion linacs at other institutions. An application of particular current interest is to develop structures suitable for accelerating radioactive ion beams. Such structures must accelerate very low charge to mass ratio beams and must also have very large transverse acceptance.

  12. DC superconducting fault current limiter

    Science.gov (United States)

    Tixador, P.; Villard, C.; Cointe, Y.

    2006-03-01

    There is a lack of satisfying solutions for fault currents using conventional technologies, especially in DC networks, where a superconducting fault current limiter could play a very important part. DC networks bring a lot of advantages when compared to traditional AC ones, in particular within the context of the liberalization of the electric market. Under normal operation in a DC network, the losses in the superconducting element are nearly zero and only a small, i.e. a low cost, refrigeration system is then required. The absence of zero crossing of a DC fault current favourably accelerates the normal zone propagation. The very high current slope at the time of the short circuit in a DC grid is another favourable parameter. The material used for the experiments is YBCO deposited on Al2O3 as well as YBCO coated conductors. The DC limitation experiments are compared to AC ones at different frequencies (50-2000 Hz). Careful attention is paid to the quench homogenization, which is one of the key issues for an SC FCL. The University of Geneva has proposed constrictions. We have investigated an operating temperature higher than 77 K. As for YBCO bulk, an operation closer to the critical temperature brings a highly improved homogeneity in the electric field development. The material can then absorb large energies without degradation. We present tests at various temperatures. These promising results are to be confirmed over long lengths.

  13. High Temperature Superconducting Underground Cable

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, Roger, A.

    2010-02-28

    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the world’s first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  14. Three-flavor color superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Malekzadeh, H.

    2007-12-15

    I investigate some of the inert phases in three-flavor, spin-zero color-superconducting quark matter: the CFL phase (the analogue of the B phase in superfluid {sup 3}He), the A and A{sup *} phases, and the 2SC and sSC phases. I compute the pressure of these phases with and without the neutrality condition. Without the neutrality condition, after the CFL phase the sSC phase is the dominant phase. However, including the neutrality condition, the CFL phase is again the energetically favored phase except for a small region of intermediate densities where the 2SC/A{sup *} phase is favored. It is shown that the 2SC phase is identical to the A{sup *} phase up to a color rotation. In addition, I calculate the self-energies and the spectral densities of longitudinal and transverse gluons at zero temperature in color-superconducting quark matter in the CFL phase. I find a collective excitation, a plasmon, at energies smaller than two times the gap parameter and momenta smaller than about eight times the gap. The dispersion relation of this mode exhibits a minimum at some nonzero value of momentum, indicating a van Hove singularity. (orig.)

  15. Superconductivity in Ca-doped graphene laminates

    Science.gov (United States)

    Chapman, J.; Su, Y.; Howard, C. A.; Kundys, D.; Grigorenko, A. N.; Guinea, F.; Geim, A. K.; Grigorieva, I. V.; Nair, R. R.

    2016-01-01

    Despite graphene’s long list of exceptional electronic properties and many theoretical predictions regarding the possibility of superconductivity in graphene, its direct and unambiguous experimental observation has not been achieved. We searched for superconductivity in weakly interacting, metal decorated graphene crystals assembled into so-called graphene laminates, consisting of well separated and electronically decoupled graphene crystallites. We report robust superconductivity in all Ca-doped graphene laminates. They become superconducting at temperatures (Tc) between ≈4 and ≈6 K, with Tc’s strongly dependent on the confinement of the Ca layer and the induced charge carrier concentration in graphene. We find that Ca is the only dopant that induces superconductivity in graphene laminates above 1.8 K among several dopants used in our experiments, such as potassium, caesium and lithium. By revealing the tunability of the superconducting response through doping and confinement of the metal layer, our work shows that achieving superconductivity in free-standing, metal decorated monolayer graphene is conditional on an optimum confinement of the metal layer and sufficient doping, thereby bringing its experimental realization within grasp. PMID:26979564

  16. Superconductivity in Ca-doped graphene laminates

    Science.gov (United States)

    Chapman, J.; Su, Y.; Howard, C. A.; Kundys, D.; Grigorenko, A. N.; Guinea, F.; Geim, A. K.; Grigorieva, I. V.; Nair, R. R.

    2016-03-01

    Despite graphene’s long list of exceptional electronic properties and many theoretical predictions regarding the possibility of superconductivity in graphene, its direct and unambiguous experimental observation has not been achieved. We searched for superconductivity in weakly interacting, metal decorated graphene crystals assembled into so-called graphene laminates, consisting of well separated and electronically decoupled graphene crystallites. We report robust superconductivity in all Ca-doped graphene laminates. They become superconducting at temperatures (Tc) between ≈4 and ≈6 K, with Tc’s strongly dependent on the confinement of the Ca layer and the induced charge carrier concentration in graphene. We find that Ca is the only dopant that induces superconductivity in graphene laminates above 1.8 K among several dopants used in our experiments, such as potassium, caesium and lithium. By revealing the tunability of the superconducting response through doping and confinement of the metal layer, our work shows that achieving superconductivity in free-standing, metal decorated monolayer graphene is conditional on an optimum confinement of the metal layer and sufficient doping, thereby bringing its experimental realization within grasp.

  17. Visualizing domain wall and reverse domain superconductivity.

    Science.gov (United States)

    Iavarone, M; Moore, S A; Fedor, J; Ciocys, S T; Karapetrov, G; Pearson, J; Novosad, V; Bader, S D

    2014-08-28

    In magnetically coupled, planar ferromagnet-superconductor (F/S) hybrid structures, magnetic domain walls can be used to spatially confine the superconductivity. In contrast to a superconductor in a uniform applied magnetic field, the nucleation of the superconducting order parameter in F/S structures is governed by the inhomogeneous magnetic field distribution. The interplay between the superconductivity localized at the domain walls and far from the walls leads to effects such as re-entrant superconductivity and reverse domain superconductivity with the critical temperature depending upon the location. Here we use scanning tunnelling spectroscopy to directly image the nucleation of superconductivity at the domain wall in F/S structures realized with Co-Pd multilayers and Pb thin films. Our results demonstrate that such F/S structures are attractive model systems that offer the possibility to control the strength and the location of the superconducting nucleus by applying an external magnetic field, potentially useful to guide vortices for computing application.

  18. Sample of superconducting wiring (Niobium Titanium)

    CERN Multimedia

    About NbTi cable: The cable consists of 36 strands of superconducting wire, each strand has a diameter of 0.825 mm and houses 6300 superconducting filaments of niobium-titanium (Nb-Ti, a superconducting alloy). Each filament has a diameter of about 0.006 mm, i.e. 10 times smaller than a typical human hair. The filaments are embedded in a high-purity copper matrix. Copper is a normal conducting material. The filaments are in the superconductive state when the temperature is below about -263ºC (10.15 K). When the filaments leave the superconductive state, the copper acts as conductor transports the electrical current. Each strand of The NbTi cable (at superconducting state) has a current density of up to above 2000 A/mm2 at 9 T and -271ºC (2.15 K). A cable transport a current of about 13000 A at 10 T and -271ºC (2.15 K). About LHC superconducting wiring: The high magnetic fields needed for the LHC can only be reached using superconductors. At very low temperatures, superconductors have no electrical resista...

  19. Sample of superconducting wiring (Niobium Titanium)

    CERN Multimedia

    About NbTi cable: The cable consists of 36 strands of superconducting wire, each strand has a diameter of 0.825 mm and houses 6300 superconducting filaments of niobium-titanium (Nb-Ti, a superconducting alloy). Each filament has a diameter of about 0.006 mm, i.e. 10 times smaller than a typical human hair. The filaments are embedded in a high-purity copper matrix. Copper is a normal conducting material. The filaments are in the superconductive state when the temperature is below about -263ºC (10.15 K). When the filaments leave the superconductive state, the copper acts as conductor transports the electrical current. Each strand of The NbTi cable (at superconducting state) has a current density of up to above 2000 A/mm2 at 9 T and -271ºC (2.15 K). A cable transport a current of about 13000 A at 10 T and -271ºC (2.15 K). About LHC superconducting wiring: The high magnetic fields needed for the LHC can only be reached using superconductors. At very low temperatures, superconductors have no electrical resistan...

  20. Superconducting phase transition in STM tips

    Energy Technology Data Exchange (ETDEWEB)

    Eltschka, Matthias; Jaeck, Berthold; Assig, Maximilian; Etzkorn, Markus; Ast, Christian R. [Max Planck Institute for Solid State Research, Stuttgart (Germany); Kern, Klaus [Max Planck Institute for Solid State Research, Stuttgart (Germany); Ecole Polytechnique Federale de Lausanne (Switzerland)

    2015-07-01

    The superconducting properties of systems with dimensions comparable to the London penetration depth considerably differ from macroscopic systems. We have studied the superconducting phase transition of vanadium STM tips in external magnetic fields. Employing Maki's theory we extract the superconducting parameters such as the gap or the Zeeman splitting from differential conductance spectra. While the Zeeman splitting follows the theoretical description of a system with s=1/2 and g=2, the superconducting gaps as well as the critical fields depend on the specific tip. For a better understanding of the experimental results, we solve a one dimensional Usadel equation modeling the superconducting tip as a cone with the opening angle α in an external magnetic field. We find that only a small region at the apex of the tip is superconducting in high magnetic fields and that the order of the phase transition is directly determined by α. Further, the spectral broadening increases with α indicating an intrinsic broadening mechanism due to the conical shape of the tip. Comparing these calculations to our experimental results reveals the order of the superconducting phase transition of the STM tips.

  1. Superconductivity in Ca-doped graphene laminates.

    Science.gov (United States)

    Chapman, J; Su, Y; Howard, C A; Kundys, D; Grigorenko, A N; Guinea, F; Geim, A K; Grigorieva, I V; Nair, R R

    2016-03-16

    Despite graphene's long list of exceptional electronic properties and many theoretical predictions regarding the possibility of superconductivity in graphene, its direct and unambiguous experimental observation has not been achieved. We searched for superconductivity in weakly interacting, metal decorated graphene crystals assembled into so-called graphene laminates, consisting of well separated and electronically decoupled graphene crystallites. We report robust superconductivity in all Ca-doped graphene laminates. They become superconducting at temperatures (Tc) between ≈4 and ≈6 K, with Tc's strongly dependent on the confinement of the Ca layer and the induced charge carrier concentration in graphene. We find that Ca is the only dopant that induces superconductivity in graphene laminates above 1.8 K among several dopants used in our experiments, such as potassium, caesium and lithium. By revealing the tunability of the superconducting response through doping and confinement of the metal layer, our work shows that achieving superconductivity in free-standing, metal decorated monolayer graphene is conditional on an optimum confinement of the metal layer and sufficient doping, thereby bringing its experimental realization within grasp.

  2. A study of austenitization of SG iron

    Indian Academy of Sciences (India)

    Uma Batra; Pankaj Tandon; Kulbir Kaur

    2000-10-01

    Austenitization process of three SG irons with varying compositions and as cast matrix microstructure has been studied at three austenitization temperatures of 850, 900 and 950C for different time periods. Microstructure, hardness and X-ray diffraction have been used to reveal the nature of dependence of the process on austenitization temperature, time and as cast structure. The optimum austenitization time is maximum for ferritic and minimum for pearlitic matrix.

  3. The cold wars a history of superconductivity

    CERN Document Server

    Matricon, Jean

    1994-01-01

    Among the most peculiar of matter¡¦s behaviors is superconductivity„oelectric current without resistance. Since the 1986 discovery that superconductivity is possible at temperatures well above absolute zero, research into practical applications has flourished. The Cold Wars tells the history of superconductivity, providing perspective on the development of the field and its relationship with the rest of physics. Superconductivity offers an excellent example of the evolution of physics in the twentieth century: the science itself, its foundations, and its social context. The authors also introduce the reader to the fascinating scientific personalities, including 2003 Nobel Prize winners Alexei Alexeievich Abrikosov and Vitali Ginzburg, and political struggles behind this research.

  4. Dimensionality of high temperature superconductivity in oxides

    Science.gov (United States)

    Chu, C. W.

    1989-01-01

    Many models have been proposed to account for the high temperature superconductivity observed in oxide systems. Almost all of these models proposed are based on the uncoupled low dimensional carrier Cu-O layers of the oxides. Results of several experiments are presented and discussed. They suggest that the high temperature superconductivity observed cannot be strictly two- or one-dimensional, and that the environment between the Cu-O layers and the interlayer coupling play an important role in the occurrence of such high temperature superconductivity. A comment on the very short coherence length reported is also made.

  5. Downsized superconducting magnetic energy storage systems

    Science.gov (United States)

    Palmer, David N.

    Scaled-down superconductive magnetic energy storage systems (DSMES) and superconductive magnetic energy power sources (SMEPS) are proposed for residential, commercial/retail, industrial off-peak and critical services, telephone and other communication systems, computer operations, power back-up/energy storages, power sources for space stations, and in-field military logistics/communication systems. Recent advances in high-Tc superconducting materials technology are analyzed. DSMES/SMEPS concepts are presented, and design, materials, and systems requirements are discussed. Problems ar identified, and possible solutions are offered. Comparisons are made with mechanical and primary and secondary energy storage and conversion systems.

  6. Proximity Action theory of superconductive nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Skvortsov, M A; Larkin, A I; Feigel' man, M V [L D Landau Institute for Theoretical Physics, Russian Academy of Sciences, ul. Kosygina 2, 117940 Moscow (Russian Federation)

    2001-10-01

    We review a novel approach to the superconductive proximity effect in disordered normal-superconducting (N-S) structures. The method is based on the multicharge Keldysh action and is suitable for the treatment of interaction and fluctuation effects. As an application of the formalism, we study the subgap conductance and noise in two-dimensional N-S systems in the presence of the electron-electron interaction in the Cooper channel. It is shown that singular nature of the interaction correction at large scales leads to a nonmonotonuos temperature, voltage and magnetic field dependence of the Andreev conductance. (4. mesoscopic superconductivity)

  7. Energizer keep going: 100 years of superconductivity

    Institute of Scientific and Technical Information of China (English)

    Pengcheng Dai; Xing-jiang Zhou; Dao-xin Yao

    2011-01-01

    It has been 100 years since Heike Kamerlingh Onnes discovered superconductivity on April 8,1911.Amazingly,this field is still very active and keeps booming,like a magic.A lot of new phenomena and materials have been found,and superconductors have been used in many different fields to improve our lives.Onnes won the Nobel Prize for this incredible discovery in 1913 and used the word superconductivity for the first time.Onnes believed that quantum mechanics would explain the effect,but he could not produce a theory at that time.Now we know superconductivity is a macroscopic quantum phenomenon.

  8. Magnetism and superconductivity in heavy fermion systems

    Energy Technology Data Exchange (ETDEWEB)

    Flouquet, J. (DRFMC, C.E.N.G., 38 - Grenoble (France)); Brison, J.P.; Hasselbach, K.; Taillefer, L. (C.N.R.S., 38 - Grenoble (France)); Behnia, K.; Jaccard, D. (DPMC, Geneva Univ. (Switzerland)); Visser, A. de (Natuurkundig Lab., Univ. van Amsterdam (Netherlands))

    1991-12-01

    The normal and superconducting properties of heavy fermion compounds are reviewed. The discussion is focus on the three uranium compounds: UBe{sub 13}, UPt{sub 3} and URu{sub 2}Si{sub 2}. Special attention is given: 1) to unusual (H.T) superconducting phase diagram as discovered in UPt{sub 3} where two successive superconducting phases seem to occur in zero magnetic field; 2) to the role of long range ordering as found in URu{sub 2}Si{sub 2} and UPt{sub 3}. (orig.).

  9. DC Characterization of the Coaxial Superconducting Cable

    Science.gov (United States)

    Šouc, J.; Gömöry, F.; Vojenčiak, M.; Frolek, L.; Isfort, D.; Ehrenberg, J.; Bock, J.

    2008-01-01

    Coaxial cable model with superconducting core and superconducting shield conductor was constructed and tested in DC regime. While the core was already examined in our previous works, in this contribution the detailed study of the superconducting shield conductor in DC conditions is presented. It consists of 16 ReBCO coated tapes with critical current 35 A each connected in parallel. Using shunts with known values placed in series the currents in individual tapes were possible to measure. Distribution of the total cable current into the individual tapes was monitored and its influence on critical current of the cable is discussed.

  10. Thermodynamic Green functions in theory of superconductivity

    Directory of Open Access Journals (Sweden)

    N.M.Plakida

    2006-01-01

    Full Text Available A general theory of superconductivity is formulated within the thermodynamic Green function method for various types of pairing mediated by phonons, spin fluctuations, and strong Coulomb correlations in the Hubbard and t-J models. A rigorous Dyson equation for matrix Green functions is derived in terms of a self-energy as a many-particle Green function. By applying the noncrossing approximation for the self-energy, a closed self-consistent system of equations is obtained, similar to the conventional Eliashberg equations. A brief discussion of superconductivity mediated by kinematic interaction with an estimation of a superconducting transition temperature in the Hubbard model is given.

  11. Coherent controlization using superconducting qubits.

    Science.gov (United States)

    Friis, Nicolai; Melnikov, Alexey A; Kirchmair, Gerhard; Briegel, Hans J

    2015-01-01

    Coherent controlization, i.e., coherent conditioning of arbitrary single- or multi-qubit operations on the state of one or more control qubits, is an important ingredient for the flexible implementation of many algorithms in quantum computation. This is of particular significance when certain subroutines are changing over time or when they are frequently modified, such as in decision-making algorithms for learning agents. We propose a scheme to realize coherent controlization for any number of superconducting qubits coupled to a microwave resonator. For two and three qubits, we present an explicit construction that is of high relevance for quantum learning agents. We demonstrate the feasibility of our proposal, taking into account loss, dephasing, and the cavity self-Kerr effect.

  12. Pairing theory of striped superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Loder, Florian; Kampf, Arno P.; Kopp, Thilo; Graser, Siegfried [Center for Electronic Correlations and Magnetism, Institute of Physics, Augsburg (Germany)

    2011-07-01

    Striped high-T{sub c} superconductors such as La{sub 7/8}Ba{sub 1/8}CuO{sub 4} show a fascinating competition between spin and charge order on the one hand and superconductivity on the other. A theory for these systems therefore has to capture both the spin correlations in an antiferromagnet and the pair-correlation of a superconductor. For this purpose we have developed an effective Hartree-Fock theory by merging electron pairing with finite center-of-mass momentum and antiferromagnetism. We show that this theory reproduces the key experimental features such as the formation of the antiferromagnetic stripe patterns at 7/8 band filling or the quasi one-dimensional electronic structure observed by photoemission spectroscopy.

  13. Advanced Manufacturing of Superconducting Magnets

    Science.gov (United States)

    Senti, Mark W.

    1996-01-01

    The development of specialized materials, processes, and robotics technology allows for the rapid prototype and manufacture of superconducting and normal magnets which can be used for magnetic suspension applications. Presented are highlights of the Direct Conductor Placement System (DCPS) which enables automatic design and assembly of 3-dimensional coils and conductor patterns using LTS and HTS conductors. The system enables engineers to place conductors in complex patterns with greater efficiency and accuracy, and without the need for hard tooling. It may also allow researchers to create new types of coils and patterns which were never practical before the development of DCPS. The DCPS includes a custom designed eight-axis robot, patented end effector, CoilCAD(trademark) design software, RoboWire(trademark) control software, and automatic inspection.

  14. Feeding helium to superconducting magnets

    CERN Multimedia

    1979-01-01

    The photo shows two of the 3 superconducting magnets (two MBS dipoles (CESAR) of 150 mm bore and 4.5 T, and one quadrupole (CASTOR) of 90 mm bore and 54 T/m) which were installed in the hall EHN1 (Annual Report 1978 p. 134) and ran until 1985. They formed a section of the beam H6 travelling from target T4 (down the bottom of the photo) towards the NA30 setup followed by the NA11 setup. The two big transversal pipelines are the quench lines of the two magnets (on the right, one quadrupole and one dipole, the other dipole lays down the photo and is not visible). The Jura side of the hall is on the right.

  15. Towards inducing superconductivity into graphene

    Science.gov (United States)

    Efetov, Dmitri K.

    Graphenes transport properties have been extensively studied in the 10 years since its discovery in 2004, with ground-breaking experimental observations such as Klein tunneling, fractional quantum Hall effect and Hofstadters butterfly. Though, so far, it turned out to be rather poor on complex correlated electronic ground states and phase transitions, despite various theoretical predictions. The purpose of this thesis is to help understanding the underlying theoretical and experimental reasons for the lack of strong electronic interactions in graphene, and, employing graphenes high tunability and versatility, to identify and alter experimental parameters that could help to induce stronger correlations. In particular graphene holds one last, not yet experimentally discovered prediction, namely exhibiting intrinsic superconductivity. With its vanishingly small Fermi surface at the Dirac point, graphene is a semi-metal with very weak electronic interactions. Though, if it is doped into the metallic regime, where the size of the Fermi surface becomes comparable to the size of the Brillouin zone, the density of states becomes sizeable and electronic interactions are predicted to be dramatically enhanced, resulting in competing correlated ground states such as superconductivity, magnetism and charge density wave formation. Following these predictions, this thesis first describes the creation of metallic graphene at high carrier doping via electrostatic doping techniques based on electrolytic gates. Due to graphenes surface only properties, we are able to induce carrier densities above n>1014 cm-2 (epsilonF>1eV) into the chemically inert graphene. While at these record high carrier densities we yet do not observe superconductivity, we do observe fundamentally altered transport properties as compared to semi-metallic graphene. Here, detailed measurements of the low temperature resistivity reveal that the electron-phonon interactions are governed by a reduced, density

  16. Durability Evaluation of Superconducting Magnets

    Science.gov (United States)

    Inoue, Akihiko; Ogata, Masafumi; Nakauchi, Masahiko; Asahara, Tetsuo; Herai, Toshiki; Nishikawa, Yoichi

    2006-06-01

    It is one of the most essential things to verify the durability of devices and components of JR-Maglev system to realize the system into the future inauguration. Since the load requirements were insufficient in terms of the durability under vibrations under mere running tests carried out on Yamanashi Maglev Test Line hereinafter referred to YMTL, we have developed supplemental method with bench tests. Superconducting magnets hereinafter referred to SCM as used in the experimental running for the last seven years on the YMTL were brought to Kunitachi Technical Research Institute; we conducted tests to evaluate the durability of SCM up to a period of the service life in commercial use. The test results have indicated that no irregularity in each part of SCM proving that SCM are sufficiently durable for the practical application.

  17. Nonclassical correlations in superconducting circuits

    Energy Technology Data Exchange (ETDEWEB)

    Migliore, Rosanna [Dipartimento di Scienze Fisiche ed Astronomiche, Universita di Palermo (Italy); CNR-INFM, UdR CNISM di Palermo, Palermo (Italy); Scala, Matteo [Dipartimento di Scienze Fisiche ed Astronomiche, Universita di Palermo (Italy); Departamento de Optica, Facultad de Fisica, Universidad Complutense, Madrid (Spain); Guccione, Marina; Sanchez-Soto, Luis L. [Dipartimento di Scienze Fisiche ed Astronomiche, Universita di Palermo (Italy); Messina, Antonino [Departamento de Optica, Facultad de Fisica, Universidad Complutense, Madrid (Spain)

    2009-05-15

    A key step on the road map to solid-state quantum information processing (and to a deeper understanding of many counterintuitive aspects of quantum mechanics) is the generation and manipulation of nonclassical correlations between different quantum systems. Within this framework, we analyze the possibility of generating maximally entangled states in a system of two superconducting flux qubits, as well as the effectof their own environments on the entanglement dynamics. The analysis reported here confirms that the phenomena of sudden birth and sudden death of the entanglement do not depend on the particular measure of the entanglement adopted (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Gapless superconductivity and string theory

    CERN Document Server

    Khlebnikov, S

    2014-01-01

    Coexistence of superconducting and normal components in nanowires at currents below the critical (a "mixed" state) would have important consequences for the nature and range of potential applications of these systems. From the theoretical perspective, it represents a genuine interaction effect, not seen in the mean-field theory. Here we consider properties of such a state in the gravity dual of a strongly coupled superconductor constructed from D3 and D5 branes. We find numerically uniform gapless solutions containing both components but argue that they are unstable against phase separation, as their free energies are not convex. We speculate on the possible nature of the resulting non-uniform sate ("emulsion") and draw analogies between that state and the familiar mixed state of a type II superconductor in a magnetic field.

  19. Superconducting magnets and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J.E.C. (Massachusetts Inst. of Tech., Cambridge, MA (USA). Francis Bitter National Magnet Lab.)

    1989-08-01

    Superconducting magnets are now being used in applications as diverse as medical imaging, fusion research, and power conditioning. The steady improvement in the understanding of instability and quenching has allowed increases in current density and compactness of winding. The reduction in winding size that has thus followed has allowed the construction of economic magnets for imaging, for acceleration, and for high-resolution spectrometers. Large magnets for fusion and energy applications have been made possible by composite conductors containing large fractions of copper or aluminum. The advent of high-temperature superconductors may hold the promise, eventually, of very-high-field magnets. Meanwhile low-temperature superconductors capable of generating fields up to 30 T have been developed.

  20. An experimental superconducting helical undulator

    Energy Technology Data Exchange (ETDEWEB)

    Caspi, S.; Taylor, C. [Lawrence Berkeley Lab., CA (United States)

    1995-12-31

    Improvements in the technology of superconducting magnets for high energy physics and recent advancements in SC materials with the artificial pinning centers (APC){sup 2}, have made a bifilar helical SC device an attractive candidate for a single-pass free electron laser (FEL){sup 3}. Initial studies have suggested that a 6.5 mm inner diameter helical device, with a 27 mm period, can generate a central field of 2-2.5 Tesla. Additional studies have also suggested that with a stored energy of 300 J/m, such a device can be made self-protecting in the event of a quench. However, since the most critical area associated with high current density SC magnets is connected with quenching and training, a short experimental device will have to be built and tested. In this paper we discuss technical issues relevant to the construction of such a device, including a conceptual design, fields, and forces.

  1. More superconductivity questions than answers.

    Science.gov (United States)

    Robinson, A L

    1987-07-17

    Although making liquid nitrogen-temperature superconductors is easy enough that high school science projects already feature them, researchers still have little idea how the new ceramic oxides work and therefore little guidance for improving them. At the International Workshop on Novel Mechanisms of Superconductivity, held from 22 to 26 June in Berkeley, California, theorists reviewed a host of competing explanations of how these materials come by their remarkable properties, but they could not, get far in sifting through the candidates for the best one. One cause of the unsettled situation is that theorists have not yet pushed their models far enough to make many specific predictions about physical properties and therefore to provide a reason to choose one theory over another. But experimental data for comparison with theory are lacking, too. For example, experimentalists are just now succeeding in being able to grow single crystals and thin films of the ceramic oxide superconductors, whose properties were shown at the workshop to be highly anisotropic. Measurements already made on the polycrystalline sintered material available up to now are difficult to interpret and therefore need to be repeated on good-quality crystals and films, where the variation of properties with crystallographic orientation can be mapped out. Given the high level of Japanese activity in the field, it was surprising that no researchers from industrial laboratories in Japan presented their findings at the workshop. In the light of a budding international competition in commercializing superconductors, some American scientists interpreted the absence as an attempt to protect proprietary advances. A more pleasant surprise was the attendance of a delegation of six Soviet scientists, although one of the fathers of superconductivity theory, Vitaly Ginzburg of the P.N.Lebedev Institute of Physics in Moscow, who was expected, did not come.

  2. High Tc superconducting small loop antenna

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Z.; Mehler, M.J.; Maclean, T.S.M.; Lancaster, M.J.; Gough, C.E. (Univ. of Birmingham (UK)); Alford, N. (I.C.I. Advanced Materials Div., Runcorn (UK))

    1989-12-01

    The improvement in the radiation efficiency of an electrically small loop antenna is analysed when it is fabricated from a superconductor, and experimental results for a liquid nitrogen cooled, ceramic superconducting loop at 450MHz are presented. (orig.).

  3. Superconducting inductive displacement detection of a microcantilever

    Energy Technology Data Exchange (ETDEWEB)

    Vinante, A., E-mail: anvinante@fbk.eu [Istituto di Fotonica e Nanotecnologie, CNR - Fondazione Bruno Kessler, I-38123 Povo, Trento (Italy)

    2014-07-21

    We demonstrate a superconducting inductive technique to measure the displacement of a micromechanical resonator. In our scheme, a type I superconducting microsphere is attached to the free end of a microcantilever and approached to the loop of a dc Superconducting Quantum Interference Device (SQUID) microsusceptometer. A local magnetic field as low as 100 μT, generated by a field coil concentric to the SQUID, enables detection of the cantilever thermomechanical noise at 4.2 K. The magnetomechanical coupling and the magnetic spring are in good agreement with image method calculations assuming pure Meissner effect. These measurements are relevant to recent proposals of quantum magnetomechanics experiments based on levitating superconducting microparticles.

  4. Superconducting gap structure of FeSe.

    Science.gov (United States)

    Jiao, Lin; Huang, Chien-Lung; Rößler, Sahana; Koz, Cevriye; Rößler, Ulrich K; Schwarz, Ulrich; Wirth, Steffen

    2017-03-07

    The microscopic mechanism governing the zero-resistance flow of current in some iron-based, high-temperature superconducting materials is not well understood up to now. A central issue concerning the investigation of these materials is their superconducting gap symmetry and structure. Here we present a combined study of low-temperature specific heat and scanning tunnelling microscopy measurements on single crystalline FeSe. The results reveal the existence of at least two superconducting gaps which can be represented by a phenomenological two-band model. The analysis of the specific heat suggests significant anisotropy in the gap magnitude with deep gap minima. The tunneling spectra display an overall "U"-shaped gap close to the Fermi level away as well as on top of twin boundaries. These results are compatible with the anisotropic nodeless models describing superconductivity in FeSe.

  5. Simulation of an HTS Synchronous Superconducting Generator

    DEFF Research Database (Denmark)

    In this work we present a simulation of a synchronous generator with superconducting rotor windings. As many other electrical rotating machines, superconducting generators are exposed to ripple fields that could be produced from a wide variety of sources: short circuit, load change, etc. Unlike...... regular conductors, superconductors, experience high losses when exposed to AC fields. Thus, calculation of such losses is relevant for machine design to avoid quenches and increase performance. Superconducting coated conductors are well known to exhibit nonlinear resistivity, thus making the computation...... of heating losses a cumbersome task. Furthermore, the high aspect ratio of the superconducting materials involved adds a penalty in the time required to perform simulations. The chosen strategy for simulation is as follows: A mechanical torque signal together with an electric load is used to drive the finite...

  6. Simulation of an HTS Synchronous Superconducting Generator

    DEFF Research Database (Denmark)

    Rodriguez Zermeno, Victor Manuel; Abrahamsen, Asger Bech; Mijatovic, Nenad

    2012-01-01

    In this work we present a simulation of a synchronous generator with superconducting rotor windings. As many other,electrical rotating machines, superconducting generators are exposed to ripple fields that could be produced from a wide variety of sources: short circuit, load change, mechanical...... torque fluctuations, etc. Unlike regular conductors, superconductors, experience high losses when exposed to AC fields. Thus, calculation of such losses is relevant for machine design to avoid quenches and increase performance. Superconducting coated conductors are well known to exhibit nonlinear...... resistivity, thus making the computation of heating losses a cumbersome task. Furthermore, the high aspect ratio of the superconducting materials involved adds a penalty in the time required to perform simulations. The chosen strategy for simulation is as follows: A mechanical torque signal together...

  7. The first LHC superconducting magnet is unloaded

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    The first superconducting magnet is moved into position using a transfer table. This must be performed with great precision so that the LHC ring is correctly aligned, allowing the beams to travel along the correct paths.

  8. The Establishment of National TC of Superconduction

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ National standardization technical committee of superconduction was established on Aug 26th, 2003. The committee contains 22 experts, of which the percentage of professors and researchers reaches up to 77.3%.

  9. Superconducting quantum circuits theory and application

    Science.gov (United States)

    Deng, Xiuhao

    Superconducting quantum circuit models are widely used to understand superconducting devices. This thesis consists of four studies wherein the superconducting quantum circuit is used to illustrate challenges related to quantum information encoding and processing, quantum simulation, quantum signal detection and amplification. The existence of scalar Aharanov-Bohm phase has been a controversial topic for decades. Scalar AB phase, defined as time integral of electric potential, gives rises to an extra phase factor in wavefunction. We proposed a superconducting quantum Faraday cage to detect temporal interference effect as a consequence of scalar AB phase. Using the superconducting quantum circuit model, the physical system is solved and resulting AB effect is predicted. Further discussion in this chapter shows that treating the experimental apparatus quantum mechanically, spatial scalar AB effect, proposed by Aharanov-Bohm, can't be observed. Either a decoherent interference apparatus is used to observe spatial scalar AB effect, or a quantum Faraday cage is used to observe temporal scalar AB effect. The second study involves protecting a quantum system from losing coherence, which is crucial to any practical quantum computation scheme. We present a theory to encode any qubit, especially superconducting qubits, into a universal quantum degeneracy point (UQDP) where low frequency noise is suppressed significantly. Numerical simulations for superconducting charge qubit using experimental parameters show that its coherence time is prolong by two orders of magnitude using our universal degeneracy point approach. With this improvement, a set of universal quantum gates can be performed at high fidelity without losing too much quantum coherence. Starting in 2004, the use of circuit QED has enabled the manipulation of superconducting qubits with photons. We applied quantum optical approach to model coupled resonators and obtained a four-wave mixing toolbox to operate photons

  10. ISR Superconducting Quadrupole in its cryostat

    CERN Multimedia

    1978-01-01

    The picture shows a superconducting quadrupole for the ISR high luminosity (low beta) insertion in its cryostat during final tests before installation in the ISR.The person is W.Burgess. See also photo 7702690X.

  11. Superfluidity and Superconductivity in Neutron Stars

    Indian Academy of Sciences (India)

    N. Chamel

    2017-09-01

    Neutron stars, the compact stellar remnants of core-collapse supernova explosions, are unique cosmic laboratories for exploring novel phases of matter under extreme conditions. In particular, the occurrence of superfluidity and superconductivity in neutron stars will be briefly reviewed.

  12. Superconducting magnets in physics: problems and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Bronca, G.; Parain, J.

    1974-10-01

    The present status of solutions for the construction of magnets using superconducting windings is given. A review is given of achievements and projects using superconductors for the production of magnetic fields.

  13. Chromatographic determination of radiochemical purity. Replacement of ITLC SG; Chromatographische Bestimmung der radiochemischen Reinheit von Radiopharmaka. Alternativen zu ITLC SG

    Energy Technology Data Exchange (ETDEWEB)

    Wunderlich, G.; Herrling, P.; Kotzerke, J. [Universitaetsklinikum Carl Gustav Carus, Technische Univ. Dresden (Germany). Klinik und Poliklinik fuer Nuklearmedizin; Zuern, A.; Anders, P. [ROTOP Pharmaka AG, Radeberg (Germany)

    2010-07-01

    Thin layer chromatography is well established for quality control of radiopharmaceuticals. A convenient and widely used stationary phase are ITLC SG strips. However, the Pall Corporation stopped manufacturing of the silica gel impregnated glass fibre strips (ITLC SG). Material, Methods: As a replacement we tested silicic acid impregnated glass fibre strips from Varian (ITLC SA) and sufficient mobile phases. Results: The chromatography with these strips takes two to three times longer than with ITLC SG, but it is in an acceptable range. Only three mobile phases are necessary to test most of the common in-house made radiopharmaceuticals. Conclusion: The proposed method is suitable for routinely measuring the radiochemical purity of radiophamaceuticals.

  14. Superconducting linear accelerator system for NSC

    Indian Academy of Sciences (India)

    P N Prakash; T S Datta; B P Ajith Kumar; J Antony; P Barua; J Chacko; A Choudhury; G K Chadhari; S Ghosh; S Kar; S A Krishnan; Manoj Kumar; Rajesh Kumar; A Mandal; D S Mathuria; R S Meena; R Mehta; K K Mistri; A Pandey; M V Suresh Babu; B K Sahu; A Sarkar; S S K Sonti; A Rai; S Venkatramanan; J Zacharias; R K Bhowmik; A Roy

    2002-11-01

    This paper reports the construction of a superconducting linear accelerator as a booster to the 15 UD Pelletron accelerator at Nuclear Science Centre, New Delhi. The LINAC will use superconducting niobium quarter wave resonators as the accelerating element. Construction of the linear accelerator has progressed sufficiently. Details of the entire accelerator system including the cryogenics facility, RF electronics development, facilities for fabricating niobium resonators indigenously, and present status of the project are presented.

  15. Electrothermal simulation of superconducting nanowire avalanche photodetectors

    Science.gov (United States)

    Marsili, Francesco; Najafi, Faraz; Herder, Charles; Berggren, Karl K.

    2011-02-01

    We developed an electrothermal model of NbN superconducting nanowire avalanche photodetectors (SNAPs) on sapphire substrates. SNAPs are single-photon detectors consisting of the parallel connection of N superconducting nanowires. We extrapolated the physical constants of the model from experimental data and we simulated the time evolution of the device resistance, temperature and current by solving two coupled electrical and thermal differential equations describing the nanowires. The predictions of the model were in good quantitative agreement with the experimental results.

  16. ZGS roots of superconductivity: People and devices

    Energy Technology Data Exchange (ETDEWEB)

    Pewitt, E.G.

    1994-12-31

    The ZGS community made basic contributions to the applications of superconducting magnets to high energy physics as well as to other technological areas. ZGS personnel pioneered many significant applications until the time the ZGS was shutdown in 1979. After the shutdown, former ZGS personnel developed magnets for new applications in high energy physics, fusion, and industrial uses. The list of superconducting magnet accomplishments of ZGS personnel is impressive.

  17. Stripes and superconductivity in cuprate superconductors

    OpenAIRE

    Tranquada, J. M.

    2005-01-01

    One type of order that has been observed to compete with superconductivity in cuprates involves alternating charge and antiferromagnetic stripes. Recent neutron scattering studies indicate that the magnetic excitation spectrum of a stripe-ordered sample is very similar to that observed in superconducting samples. In fact, it now appears that there may be a universal magnetic spectrum for the cuprates. One likely implication of this universal spectrum is that stripes of a dynamic form are pres...

  18. 13th European Conference on Applied Superconductivity

    CERN Document Server

    2017-01-01

    EUCAS is a worldwide forum for scientists and engineers, and provides an ideal platform to share knowledge and the most recent advances in all areas of applied superconductivity: from large-scale applications to miniature electronics devices, with a traditional focus on advanced materials and conductors. The broad scope is at the same time a challenge and an opportunity to foster novel, inter-disciplinary approaches and promote cross-fertilization among the various fields of applied superconductivity.

  19. Statistic Ensemble Theory of Small Superconducting Grains

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhi-Qian; ZHENG Ren-Rong

    2001-01-01

    We apply the random matrix theory to small metallic grains in different spin states of S = 0, 1/2, 1, 3/2, 2, 5/2, .., and find that there exist theoretical critical level spacings de at which the superconductivity would breakdown. We also find that the higher the spin state, the smaller the critical level spacing, and for the state of S = 0superconducting enhancement actually exists.

  20. High Temperature Superconducting Maglev Measurement System

    OpenAIRE

    Wang, Jia-Su; Wang, Su-Yu

    2010-01-01

    Three high temperature superconducting (HTS) Maglev measurement systems were successfully developed in the Applied Superconductivity Laboratory (ASCLab) of Southwest Jiaotong University, P. R. China. These systems include liquid nitrogen vessel, Permanent Magnet Guideway (PMG), data collection and processing, mechanical drive and Autocontrol features. This chapter described the three different measuring systems along with their theory of operations and workflow. The SCML-01 HTS Maglev measure...

  1. Superconducting Electric Machines for Ship Propulsion.

    Science.gov (United States)

    1977-02-14

    ship propulsion applications. These concepts evolved from previous work at MIT on superconducting AC machines. The superconducting machines considered were: (1) multipole, low-speed motors, (2) torque compensated motors, (3) high-speed generator, (4) rotating air-gap armature induction motor, (5) thyristor switched AC motors. The first four machine types were studied theoretically while experimental models were constructed of the last two. Preliminary designs were completed...of the five mahcines for an appropriate ship ... propulsion application. In

  2. Experimenting with a Superconducting Levitation Train

    Science.gov (United States)

    Miryala, Santosh; Koblischka, M. R.

    2014-01-01

    The construction and operation of a prototype high-"Tc" superconducting train model is presented. The train is levitated by a melt-processed GdBa[subscript 2]Cu[subscript 3]O[subscript x] (Gd-123) superconducting material over a magnetic rail (track). The oval shaped track is constructed in S-N-S or PM3N configuration arranged on an iron…

  3. A current limiter with superconducting coil for magnetic field shielding

    Science.gov (United States)

    Kaiho, K.; Yamaguchi, H.; Arai, K.; Umeda, M.; Yamaguchi, M.; Kataoka, T.

    2001-05-01

    The magnetic shield type superconducting fault current limiter have been built and successfully tested in ABB corporate research and so on. The device is essentially a transformer in which the secondary winding is the superconducting tube. However, due to the large AC losses and brittleness of the superconducting bulk tube, they have not yet entered market. A current limiter with superconducting coil for the magnetic field shielding is considered. By using the superconducting coil made by the multi-filamentary high Tc superconductor instead of the superconducting bulk tube, the AC losses can be reduced due to the reduced superconductor thickness and the brittleness of the bulk tube can be avoidable. This paper presents a preliminary consideration of the magnetic shield type superconducting fault current limiter with superconducting coil as secondary winding and their AC losses in comparison to that of superconducting bulk in 50 Hz operation.

  4. Accelerator Technology: Magnets, Normal and Superconducting

    CERN Document Server

    Bottura, L

    2013-01-01

    This document is part of Subvolume C 'Accelerators and Colliders' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the the Section '8.1 Magnets, Normal and Superconducting' of the Chapter '8 Accelerator Technology' with the content: 8.1 Magnets, Normal and Superconducting 8.1.1 Introduction 8.1.2 Normal Conducting Magnets 8.1.2.1 Magnetic Design 8.1.2.2 Coils 8.1.2.3 Yoke 8.1.2.4 Costs 8.1.2.5 Undulators, Wigglers, Permanent Magnets 8.1.2.6 Solenoids 8.1.3 Superconducting Magnets 8.1.3.1 Superconducting Materials 8.1.3.2 Superconducting Cables 8.1.3.3 Stability and Margins, Quench and Protection 8.1.3.4 Magnetization, Coupling and AC Loss 8.1.3.5 Magnetic Design of Superconducting Accelerator Magnets 8.1.3.6 Current Leads 8.1.3.7 Mechanics, Insulation, Cooling and Manufacturing Aspects

  5. Controlling superconductivity by tunable quantum critical points.

    Science.gov (United States)

    Seo, S; Park, E; Bauer, E D; Ronning, F; Kim, J N; Shim, J-H; Thompson, J D; Park, Tuson

    2015-03-04

    The heavy fermion compound CeRhIn5 is a rare example where a quantum critical point, hidden by a dome of superconductivity, has been explicitly revealed and found to have a local nature. The lack of additional examples of local types of quantum critical points associated with superconductivity, however, has made it difficult to unravel the role of quantum fluctuations in forming Cooper pairs. Here, we show the precise control of superconductivity by tunable quantum critical points in CeRhIn5. Slight tin-substitution for indium in CeRhIn5 shifts its antiferromagnetic quantum critical point from 2.3 GPa to 1.3 GPa and induces a residual impurity scattering 300 times larger than that of pure CeRhIn5, which should be sufficient to preclude superconductivity. Nevertheless, superconductivity occurs at the quantum critical point of the tin-doped metal. These results underline that fluctuations from the antiferromagnetic quantum criticality promote unconventional superconductivity in CeRhIn5.

  6. ASC 84: applied superconductivity conference. Final program and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    Abstracts are given of presentations covering: superconducting device fabrication; applications of rf superconductivity; conductor stability and losses; detectors and signal processing; fusion magnets; A15 and Nb-Ti conductors; stability, losses, and various conductors; SQUID applications; new applications of superconductivity; advanced conductor materials; high energy physics applications of superconductivity; electronic materials and characterization; general superconducting electronics; ac machinery and new applications; digital devices; fusion and other large scale applications; in-situ and powder process conductors; ac applications; synthesis, properties, and characterization of conductors; superconducting microelectronics. (LEW)

  7. Ac loss measurements on a superconducting transformer for a 25 kA superconducting rectifier

    NARCIS (Netherlands)

    ten Kate, Herman H.J.; Mulders, J.M.; de Reuver, J.L.; van de Klundert, L.J.M.

    1984-01-01

    Ac loss measurements have been performed on a superconducting transformer. The transformer is a part of a 25 kA thermally switched superconducting rectifier operating at a frequency of 0.1 Hz. The loss measurements have been automatized by means of a microcomputer sampling four relevant signals and

  8. Design Study of Superconducting Coil of 230 MeV Superconducting Cyclotron

    Institute of Scientific and Technical Information of China (English)

    WANG; Chuan; YIN; Meng; ZHANG; Su-ping; LI; Ming; CUI; Tao; LIN; Jun; LV; Yin-long; GE; Tao; YIN; Zhi-guo; ZHANG; Tian-jue

    2015-01-01

    The superconducting coil system of CYCIAE-230superconducting proton cyclotron consists of two coil windings,cryostat,GM coolers,and the liquid helium condenser(Fig.1),along with multiple thermometers,pressure gauges,liquid level gauges,load cells,a vacuum pump,a

  9. 方位捷联平台重力仪分布式Kalman滤波初始对准算法%Distributed Kalman filter initial alignment algorithm for azimuth strapdown platform gravimeter

    Institute of Scientific and Technical Information of China (English)

    杨晔; 毋兴涛; 杨建林; 高巍; 裴志

    2014-01-01

    为充分利用分布式架构重力仪各处理器并行计算的能力,解决单个处理器运行整体式 Kalman滤波所遇到的非实时性问题,设计了一种分布式 Kalman 滤波对准算法。首先,给出了方位捷联平台重力仪的误差方程,建立了系统的状态方程和观测方程。然后,用协方差分析法对系统初始对准滤波方程进行处理,将原系统分解成维数相同的两个子系统,得到由两个子滤波器构成的初始对准滤波器。最后,利用Matlab建立了方位捷联平台惯导模型,分别应用整体式滤波和分布式滤波进行静基座初始对准。仿真结果表明,分布式滤波算法与整体式滤波算法具有相同的滤波精度,并且分布式滤波用时只有整体式滤波的60%,更有利于保证滤波算法的实时性。%A distributed Kalman filter alignment algorithm is developed in order to use the parallel computing ability of the distributed architecture gravimeter to solve the non real-time implementation of filtering based on one single processor. Firstly, the error equations of the azimuth strapdown platform gravimeter are deduced, and the state equations and observation equations are built. Secondly, an error covariance analytical method is applied to the filtering equations, and the system is decentralised into two subsystems with the same dimension. In this way we get the initial alignment filter formed by the two subfilters. Finally, the azimuth strapdown platform model is built by using Matlab, and stationary base alignment is implemented by using global Kalman filter and distributed Kalman filter separately. The simulation results show that the distributed filter has the same filtering accuracy and costs only 60%of time compared with the global one, which is favorable to ensure the real-time performance of the algorithm.

  10. Superconducting materials suitable for magnets

    CERN Document Server

    CERN. Geneva. Audiovisual Unit

    2002-01-01

    The range of materials available for superconducting magnets is steadily expanding, even as the choice of material becomes potentially more complex. When virtually all magnets were cooled by helium at ~2-5 K it was easy to separate the domain of Nb-Ti from those of Nb3Sn applications and very little surprise that more than 90% of all magnets are still made from Nb-Ti. But the development of useful conductors of the Bi-Sr-Ca-Cu-O and YBa2Cu3Ox high temperature superconductors, coupled to the recent discovery of the 39 K superconductor MgB2 and the developing availability of cryocoolers suggests that new classes of higher temperature, medium field magnets based on other than Nb-based conductors could become available in the next 5-10 years. My talks will discuss the essential physics and materials science of these 5 classes of material - Nb-Ti, Nb3Sn, MgB2, Bi-Sr-Ca-Cu-O and YBa2Cu3Ox - in the context of those aspects of their science, properties and fabrication properties, which circumscribe their applications...

  11. Superconducting Coil of Po Dipole

    CERN Multimedia

    1983-01-01

    The Po superconducting dipole was built as a prototype beam transport magnet for the SPS extracted proton beam P0. Its main features were: coil aperture 72 mm, length 5 m, room-temperature yoke, NbTi cable conductor impregnated with solder, nominal field 4.2 T at 4.7 K (87% of critical field). It reached its nominal field without any quench.After this successful test up to its nominal field of 4.2 T, the power was not raised to reach a quench. The magnet was not installed in a beam and had no other further use. Nevertheless its construction provided knowledges and experience which became useful in the design and construction of the LHC magnets. The photo shows a detail of the inner layer winding before superposing the outer layer to form the complete coil of a pole. Worth noticing is the interleaved glass-epoxy sheet (white) with grooved channels for the flow of cooling helium. See also 8211532X.

  12. Free electron laser and superconductivity

    CERN Document Server

    Iwata, A

    2003-01-01

    The lasing of the first free-electron laser (FEL) in the world was successfully carried out in 1977, so the history of FELs as a light source is not so long. But FELs are now utilized for research in many scientific and engineering fields owing to such characteristics as tunability of the wavelength, and short pulse and high peak power, which is difficult utilizing a common light source. Research for industrial applications has also been carried out in some fields, such as life sciences, semiconductors, nano-scale measurement, and others. The task for the industrial use of FEL is the realization of high energy efficiency and high optical power. As a means of promoting realization, the combining of an FEL and superconducting linac is now under development in order to overcome the thermal limitations of normal-conducting linacs. Further, since tuning the wavelength is carried out by changing the magnetic density of the undulator, which is now induced by moving part of the stack of permanent magnets, there is un...

  13. Superconducting magnet system for PERC

    Energy Technology Data Exchange (ETDEWEB)

    Drescher, Carmen [Physikalisches Institut, Universitaet Heidelberg (Germany); Collaboration: PERC-Collaboration

    2012-07-01

    The new PERC (Proton Electron Radiation Channel) instrument will be an extremely bright and versatile source of neutron decay products. It will feed several novel precision experiments of spectra and correlation measurements in neutron decay. Its main component is a more than 11 m long superconducting magnet system. The neutron decay volume is located inside an 8 m long neutron guide in a strong longitudinal magnetic field of 1.5 T. A variable magnetic barrier of 3 T to 6 T serves to precisely limit the phase space of the emerging electrons and protons to control systematic errors on the 10{sup -4}level. The instrument is currently under development and will be installed at the neutron-beamline Mephisto at the FRM II, Garching. In this talk we give an overview on the special characteristics and advantages of PERC's field design. We show that with our design we can prevent magnetic traps in magnetic field and achieve a clean separation of neutrons and decay-products.

  14. Design of Tunable Superconducting Metamaterials

    Science.gov (United States)

    Trepanier, Melissa; Zhang, Daimeng; Anlage, Steven

    2013-03-01

    Our goal is to create a superconducting metamaterial utilizing deep sub-wavelength meta-atoms with a quickly-tunable index of refraction. To accomplish this we will combine two different materials: an array of rf SQUIDs (with tunable effective permeability) and an array of thin wires interrupted by Josephson junctions (with tunable effective permittivity). These materials have been designed to maximize tunablility in the range easily measured via X-band, Ku-band, and K-band waveguides. Various sizes of rf SQUIDs were designed to be non-hysteretic, be sufficiently insensitive to noise, and to have resonant frequencies ranging from 6.5 - 22 GHz. The wire array was designed so that the inductance of the Josephson junctions can completely cancel the geometric and kinetic inductance of the wires, giving rise to strong tunability. We will present the design considerations and simulation results for this new class of metamaterials. This work is supported by the NSF-GOALI program through grant # ECCS-1158644, and CNAM.

  15. TESLA superconducting RF cavity development

    Energy Technology Data Exchange (ETDEWEB)

    Koepke, K. [Fermi National Accelerator Lab., Batavia, IL (United States); TESLA Collaboration

    1995-05-01

    The TESLA collaboration has made steady progress since its first official meeting at Cornell in 1990. The infrastructure necessary to assemble and test superconducting rf cavities has been installed at the TESLA Test Facility (TTF) at DESY. 5-cell, 1.3 GHz cavities have been fabricated and have reached accelerating fields of 25 MV/m. Full sized 9-cell copper cavities of TESLA geometry have been measured to verify the higher order modes present and to evaluate HOM coupling designs. The design of the TESLA 9-cell cavity has been finalized and industry has started delivery. Two prototype 9-cell niobium cavities in their first tests have reached accelerating fields of 10 MV/m and 15 MV/m in a vertical dewar after high peak power (HPP) conditioning. The first 12 m TESLA cryomodule that will house 8 9-cell cavities is scheduled to be delivered in Spring 1995. A design report for the TTF is in progress. The TTF test linac is scheduled to be commissioned in 1996/1997. (orig.).

  16. Superconductivity in Fe-chalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C.C.; Chen, T.K. [Institute of Physics, Academia Sinica, Taipei, Taiwan (China); Lee, W.C. [Department of Physics, Applied Physics, and Astronomy, Binghamton University – SUNY (United States); Lin, P.H. [National Synchrotron Research Center, Hsinchu, Taiwan (China); Wang, M.J. [Institute of Astrophysics and Astronomy, Academia Sinica, Taipei, Taiwan (China); Wen, Y.C. [Institute of Physics, Academia Sinica, Taipei, Taiwan (China); Wu, P.M. [Deparment of Applied Physics and Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA (United States); Wu, M.K., E-mail: mkwu@mail.ndhu.edu.tw [Institute of Physics, Academia Sinica, Taipei, Taiwan (China); National Donghwa University, Hualien, Taiwan (China)

    2015-07-15

    FeSe, which has the simplest crystal structure among the Fe based superconductors, and related chalcogenide superconductors are ideal candidates for investigating the detailed mechanism of the iron-based superconductors. Here, we summarize recent studies on the Fe-chalcogenides, with the goal to address some unresolved questions such as what is the influence of chemical stoichiometry on the phase diagram, what is the exact parent phase of FeSe system, and why can T{sub c}s be so dramatically enhanced in FeSe based superconductors? Recent developments in novel synthesis to prepare chalcogenide crystals, nano-materials and thin films allow the community to begin to address these issues. Then we review physical properties of the Fe chalcogenides, specifically focusing on optical properties, scanning tunneling spectroscopy and angle-resolved photoemission spectroscopy (ARPES) results. These measurements along with recent theories provide a framework for better understanding the origin of superconductivity in FeSe and Fe-chalcogenides.

  17. Brookhaven superconducting cable test facility

    Energy Technology Data Exchange (ETDEWEB)

    Forsyth, E.B.; Gibbs, R.J.

    1976-08-17

    Construction has started on an outdoor testing station for flexible ac superconducting power transmission cables. It is intended to serve as an intermediate step between laboratory-scale experiments and qualification testing of prototype-scale cables. The permanent equipment includes a 500 W supercritical helium refrigerator using a screw compressor and multistage turbine expanders. Helium storage for 250,000 cu ft of helium at 250 psi is provided. Initially, the cables will be tested in a horizontal cryostat some 250 ft long. High-voltage 60 Hz tests will be performed with the cable in a series resonant mode with a maximum line to ground capability of 240 kV, this is adequate for a 138 kV system design. Impulse testing up to about 650 kV is planned. The cable conductor will be energized by current transformers, initially at about 4 kA and later up to fault levels of 40 kA. The refrigerator is now at the site and testing on a dummy load will commence in the Fall of 1976. The cryostat will be installed in 1977 followed about a year later by the first cable tests.

  18. Economical Aspects of Superconducting Cable

    Science.gov (United States)

    Ohya, Masayoshi

    High-temperature superconducting (HTS) cables are expected to resolve technical problems with power grids because they put large-capacity, low-loss power transmission into a compact package. One problem is replacing old 275-kV oil filled (OF) cables with cross-linked polyethylene insulated vinyl sheath cables (XLPE cables). This is difficult because XLPE cable has a lower transmission capacity than OF cable. In addition, the high concentration of public infrastructure underground makes it extremely difficult to build new ones. However, if 66-kV HTS cables can be installed inside existing underground conduits and can achieve a power capacity equivalent to conventional 275-kV cables, construction costs could be significantly reduced. Moreover, if XLPE cables are used for a 1,000 MVA-class transmission line, then three circuits of nine 275-kV single-core cables would be required, which would incur a transmission loss of 90 W/m/cct. Three circuits of three 66-kV Three-in-One HTS cables, however, with an AC loss of 1 W/m/ph@3 kA, heat invasion of 2 W/m, and cooling system efficiency of 0.1, would reduce transmission loss to less than three-fifths that of XLPE cables.

  19. Selection of highly efficient sgRNAs for CRISPR/Cas9-based plant genome editing.

    Science.gov (United States)

    Liang, Gang; Zhang, Huimin; Lou, Dengji; Yu, Diqiu

    2016-02-19

    The CRISPR/Cas9-sgRNA system has been developed to mediate genome editing and become a powerful tool for biological research. Employing the CRISPR/Cas9-sgRNA system for genome editing and manipulation has accelerated research and expanded researchers' ability to generate genetic models. However, the method evaluating the efficiency of sgRNAs is lacking in plants. Based on the nucleotide compositions and secondary structures of sgRNAs which have been experimentally validated in plants, we instituted criteria to design efficient sgRNAs. To facilitate the assembly of multiple sgRNA cassettes, we also developed a new strategy to rapidly construct CRISPR/Cas9-sgRNA system for multiplex editing in plants. In theory, up to ten single guide RNA (sgRNA) cassettes can be simultaneously assembled into the final binary vectors. As a proof of concept, 21 sgRNAs complying with the criteria were designed and the corresponding Cas9/sgRNAs expression vectors were constructed. Sequencing analysis of transgenic rice plants suggested that 82% of the desired target sites were edited with deletion, insertion, substitution, and inversion, displaying high editing efficiency. This work provides a convenient approach to select efficient sgRNAs for target editing.

  20. Exotic Magnetic Orders and Their Interplay with Superconductivity

    DEFF Research Database (Denmark)

    Christensen, Morten Holm

    Superconductivity represents one of the most important scientific discoveries of the 20th century. The practical applications are numerous ranging from clean energy storage and MRI machines to quantum computers. However, the low temperatures required for superconductivity prohibits many practical...

  1. Superconducting gap anomaly in heavy fermion systems

    Indian Academy of Sciences (India)

    G C Rout; M S Ojha; S N Behera

    2008-04-01

    The heavy fermion system (HFS) is described by the periodic Anderson model (PAM), treating the Coulomb correlation between the -electrons in the mean-field Hartree-Fock approximation. Superconductivity is introduced by a BCS-type pairing term among the conduction electrons. Within this approximation the equation for the superconducting gap is derived, which depends on the effective position of the energy level of the -electrons relative to the Fermi level. The latter in turn depends on the occupation probability f of the -electrons. The gap equation is solved self-consistently with the equation for f; and their temperature dependences are studied for different positions of the bare -electron energy level, with respect to the Fermi level. The dependence of the superconducting gap on the hybridization leads to a re-entrant behaviour with increasing strength. The induced pairing between the -electrons and the pairing of mixed conduction and -electrons due to hybridization are also determined. The temperature dependence of the hybridization parameter, which characterizes the number of electrons with mixed character and represents the number of heavy electrons is studied. This number is shown to be small. The quasi-particle density of states (DOS) shows the existence of a pseudo-gap due to superconductivity and the signature of a hybridization gap at the Fermi level. For the choice of the model parameters, the DOS shows that the HFS is a metal and undergoes a transition to the gap-less superconducting state.

  2. Superconductivity Bordering Rashba Type Topological Transition

    Science.gov (United States)

    Jin, M. L.; Sun, F.; Xing, L. Y.; Zhang, S. J.; Feng, S. M.; Kong, P. P.; Li, W. M.; Wang, X. C.; Zhu, J. L.; Long, Y. W.; Bai, H. Y.; Gu, C. Z.; Yu, R. C.; Yang, W. G.; Shen, G. Y.; Zhao, Y. S.; Mao, H. K.; Jin, C. Q.

    2017-01-01

    Strong spin orbital interaction (SOI) can induce unique quantum phenomena such as topological insulators, the Rashba effect, or p-wave superconductivity. Combining these three quantum phenomena into a single compound has important scientific implications. Here we report experimental observations of consecutive quantum phase transitions from a Rashba type topological trivial phase to topological insulator state then further proceeding to superconductivity in a SOI compound BiTeI tuned via pressures. The electrical resistivity measurement with V shape change signals the transition from a Rashba type topological trivial to a topological insulator phase at 2 GPa, which is caused by an energy gap close then reopen with band inverse. Superconducting transition appears at 8 GPa with a critical temperature TC of 5.3 K. Structure refinements indicate that the consecutive phase transitions are correlated to the changes in the Bi-Te bond and bond angle as function of pressures. The Hall Effect measurements reveal an intimate relationship between superconductivity and the unusual change in carrier density that points to possible unconventional superconductivity.

  3. Superconductivity in alkali-metal-doped picene.

    Science.gov (United States)

    Mitsuhashi, Ryoji; Suzuki, Yuta; Yamanari, Yusuke; Mitamura, Hiroki; Kambe, Takashi; Ikeda, Naoshi; Okamoto, Hideki; Fujiwara, Akihiko; Yamaji, Minoru; Kawasaki, Naoko; Maniwa, Yutaka; Kubozono, Yoshihiro

    2010-03-04

    Efforts to identify and develop new superconducting materials continue apace, motivated by both fundamental science and the prospects for application. For example, several new superconducting material systems have been developed in the recent past, including calcium-intercalated graphite compounds, boron-doped diamond and-most prominently-iron arsenides such as LaO(1-x)F(x)FeAs (ref. 3). In the case of organic superconductors, however, no new material system with a high superconducting transition temperature (T(c)) has been discovered in the past decade. Here we report that intercalating an alkali metal into picene, a wide-bandgap semiconducting solid hydrocarbon, produces metallic behaviour and superconductivity. Solid potassium-intercalated picene (K(x)picene) shows T(c) values of 7 K and 18 K, depending on the metal content. The drop of magnetization in K(x)picene solids at the transition temperature is sharp (<2 K), similar to the behaviour of Ca-intercalated graphite. The T(c) of 18 K is comparable to that of K-intercalated C(60) (ref. 4). This discovery of superconductivity in K(x)picene shows that organic hydrocarbons are promising candidates for improved T(c) values.

  4. Superconductivity Bordering Rashba Type Topological Transition

    Energy Technology Data Exchange (ETDEWEB)

    Jin, M. L.; Sun, F.; Xing, L. Y.; Zhang, S. J.; Feng, S. M.; Kong, P. P.; Li, W. M.; Wang, X. C.; Zhu, J. L.; Long, Y. W.; Bai, H. Y.; Gu, C. Z.; Yu, R. C.; Yang, W. G.; Shen, G. Y.; Zhao, Y. S.; Mao, H. K.; Jin, C. Q.

    2017-01-04

    Strong spin orbital interaction (SOI) can induce unique quantum phenomena such as topological insulators, the Rashba effect, or p-wave superconductivity. Combining these three quantum phenomena into a single compound has important scientific implications. Here we report experimental observations of consecutive quantum phase transitions from a Rashba type topological trivial phase to topological insulator state then further proceeding to superconductivity in a SOI compound BiTeI tuned via pressures. The electrical resistivity measurement with V shape change signals the transition from a Rashba type topological trivial to a topological insulator phase at 2 GPa, which is caused by an energy gap close then reopen with band inverse. Superconducting transition appears at 8 GPa with a critical temperature TC of 5.3 K. Structure refinements indicate that the consecutive phase transitions are correlated to the changes in the Bi–Te bond and bond angle as function of pressures. The Hall Effect measurements reveal an intimate relationship between superconductivity and the unusual change in carrier density that points to possible unconventional superconductivity.

  5. Overview of Superconductivity and Challenges in Applications

    Science.gov (United States)

    Flükiger, Rene

    2012-01-01

    Considerable progress has been achieved during the last few decades in the various fields of applied superconductivity, while the related low temperature technology has reached a high level. Magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR) are so far the most successful applications, with tens of thousands of units worldwide, but high potential can also be recognized in the energy sector, with high energy cables, transformers, motors, generators for wind turbines, fault current limiters and devices for magnetic energy storage. A large number of magnet and cable prototypes have been constructed, showing in all cases high reliability. Large projects involving the construction of magnets, solenoids as well as dipoles and quadrupoles are described in the present book. A very large project, the LHC, is currently in operation, demonstrating that superconductivity is a reliable technology, even in a device of unprecedented high complexity. A project of similar complexity is ITER, a fusion device that is presently under construction. This article starts with a brief historical introduction to superconductivity as a phenomenon, and some fundamental properties necessary for the understanding of the technical behavior of superconductors are described. The introduction of superconductivity in the industrial cycle faces many challenges, first for the properties of the base elements, e.g. the wires, tapes and thin films, then for the various applied devices, where a number of new difficulties had to be resolved. A variety of industrial applications in energy, medicine and communications are briefly presented, showing how superconductivity is now entering the market.

  6. Exotic Magnetic Orders and Their Interplay with Superconductivity

    DEFF Research Database (Denmark)

    Christensen, Morten Holm

    applications. The more recent discovery of high-temperature superconductors, with superconducting transition temperatures above 100~K, has led to the hope that superconductivity at room-temperature might be achievable, although a complete theoretical understanding of the high-temperature superconductors......Superconductivity represents one of the most important scientific discoveries of the 20th century. The practical applications are numerous ranging from clean energy storage and MRI machines to quantum computers. However, the low temperatures required for superconductivity prohibits many practical...

  7. Global and local superconductivity in boron-doped granular diamond.

    Science.gov (United States)

    Zhang, Gufei; Turner, Stuart; Ekimov, Evgeny A; Vanacken, Johan; Timmermans, Matias; Samuely, Tomás; Sidorov, Vladimir A; Stishov, Sergei M; Lu, Yinggang; Deloof, Bart; Goderis, Bart; Van Tendeloo, Gustaaf; Van de Vondel, Joris; Moshchalkov, Victor V

    2014-04-02

    Strong granularity-correlated and intragrain modulations of the superconducting order parameter are demonstrated in heavily boron-doped diamond situated not yet in the vicinity of the metal-insulator transition. These modulations at the superconducting state (SC) and at the global normal state (NS) above the resistive superconducting transition, reveal that local Cooper pairing sets in prior to the global phase coherence.

  8. The advantages and challenges of superconducting magnets in particle therapy

    Science.gov (United States)

    Gerbershagen, Alexander; Calzolaio, Ciro; Meer, David; Sanfilippo, Stéphane; Schippers, Marco

    2016-08-01

    This paper provides an overview of the current developments in superconducting magnets for applications in proton and ion therapy. It summarizes the benefits and challenges regarding the utilization of these magnets in accelerating systems (e.g. superconducting cyclotrons) and gantries. The paper also provides examples of currently used superconducting particle therapy systems and proposed designs.

  9. Superconducting Dome in a Gate-Tuned Band Insulator

    NARCIS (Netherlands)

    Ye, J. T.; Zhang, Y. J.; Akashi, R.; Bahramy, M. S.; Arita, R.; Iwasa, Y.

    2012-01-01

    A dome-shaped superconducting region appears in the phase diagrams of many unconventional superconductors. In doped band insulators, however, reaching optimal superconductivity by the fine-tuning of carriers has seldom been seen. We report the observation of a superconducting dome in the temperature

  10. Development and testing of a 50 KA, pulsed superconducting cable

    Energy Technology Data Exchange (ETDEWEB)

    Wollan; DeClerc, J.; Hamilton, W.; Zeitlin, B.

    1983-05-01

    Prototype cables for 7.5 T, pulsed field application in tokamak poloidal field coils have been designed, fabricated, and evaluated. Successful fabrication of a 10 m superconducting sample represents the largest superconducting cable ever made. Details of the fabrication, the problems expected and encountered, and the solutions to those problems are discussed. Results of stability measurements on the superconducting prototype also are presented.

  11. A superconducting large-angle magnetic suspension

    Science.gov (United States)

    Downer, James R.; Anastas, George V., Jr.; Bushko, Dariusz A.; Flynn, Frederick J.; Goldie, James H.; Gondhalekar, Vijay; Hawkey, Timothy J.; Hockney, Richard L.; Torti, Richard P.

    1992-01-01

    SatCon Technology Corporation has completed a Small Business Innovation Research (SBIR) Phase 2 program to develop a Superconducting Large-Angle Magnetic Suspension (LAMS) for the NASA Langley Research Center. The Superconducting LAMS was a hardware demonstration of the control technology required to develop an advanced momentum exchange effector. The Phase 2 research was directed toward the demonstration for the key technology required for the advanced concept CMG, the controller. The Phase 2 hardware consists of a superconducting solenoid ('source coils') suspended within an array of nonsuperconducting coils ('control coils'), a five-degree-of-freedom positioning sensing system, switching power amplifiers, and a digital control system. The results demonstrated the feasibility of suspending the source coil. Gimballing (pointing the axis of the source coil) was demonstrated over a limited range. With further development of the rotation sensing system, enhanced angular freedom should be possible.

  12. Topological superconductivity in bilayer Rashba system.

    Science.gov (United States)

    Nakosai, Sho; Tanaka, Yukio; Nagaosa, Naoto

    2012-04-06

    We theoretically study a possible topological superconductivity in the interacting two layers of Rashba systems, which can be fabricated by the heterostructures of semiconductors and oxides. The hybridization, which induces the gap in the single particle dispersion, and the electron-electron interaction between the two layers leads to the novel phase diagram of the superconductivity. It is found that the topological superconductivity without breaking time-reversal symmetry is realized when (i) the Fermi energy is within the hybridization gap, and (ii) the interlayer interaction is repulsive, both of which can be satisfied in realistic systems. Edge channels are studied in a tight-binding model numerically, and the several predictions on experiments are also given.

  13. Method for Producing Substrates for Superconducting Layers

    DEFF Research Database (Denmark)

    2015-01-01

    There is provided a method for producing a substrate suitable for supporting an elongated superconducting element, wherein one or more elongated strips of masking material are placed on a solid element (202) so as to form one or more exposed elongated areas being delimited on one or two sides...... by elongated strip of masking material, and placing filling material on the solid element so that each exposed elongated area within the one or more exposed elongated areas is covered by a portion of filling material (318a-c) where each portion of filling material also covers at least a portion of the adjacent...... the portion of filling material and the solid element. The method may further comprise placing buffer material (640) and or superconducting material (642, 644, 646)) on the substrate, so as to provide a superconducting structure (601) with reduced AC losses....

  14. Superconducting homopolar motor and conductor development

    Science.gov (United States)

    Gubser, Donald U.

    1996-10-01

    The U.S. Navy has been developing superconducting homopolar motors for ship applications since 1969; a successful at-sea demonstration of the first motor, using NbTi wire for the magnet, was achieved in the early 1980s. Recently, this same motor was used as a test bed to demonstrate progress in high-critical-temperature superconducting magnet technology using bismuth-strontium- calcium-copper-oxide (BSCCO) compounds. In the fall of 1995, this motor achieved a performance of 124 kW operating at a temperature of 4.2 K and 91 kW while operating at 28 K. Future tests are scheduled using new magnets with conductors of both the 2223 and the 2212 BSCCO phases. This article describes the advantages of superconducting propulsion and recent progress in the development of BSCCO conductors for use in Navy power systems.

  15. International Workshop on Novel Mechanisms of Superconductivity

    CERN Document Server

    Wolf, Stuart A; Novel superconductivity

    1987-01-01

    The Novel Mechanisms of Superconductivity Conference was initially conceived in the early part of 1986 as a small, 2-1/2 day workshop of 40-70 scientists, both theorists and experimentalists interested in exploring the possible evidence for exotic, non phononic superconductivity. Of course, the historic discoveries of high temperature oxide superconductors by Bednorz and Mftller and the subsequent enhancements by the Houston/Alabama groups made such a small conference impractical. The conference necessarily had to expand, 2-1/2 days became 4-1/2 days and superconductivity in the high Tc oxides became the largest single topic in the workshop. In fact, this conference became the first major conference on this topic and thus, these proceedings are also the first maj or publication. However, heavy fermion, organic and low carrier concentration superconductors remained a very important part of this workshop and articles by the leaders in these fields are included in these proceedings. Ultimately the work...

  16. Applied superconductivity handbook on devices and applications

    CERN Document Server

    2015-01-01

    This wide-ranging presentation of applied superconductivity, from fundamentals and materials right up to the latest applications, is an essential reference for physicists and engineers in academic research as well as in the field. Readers looking for a systematic overview on superconducting materials will expand their knowledge and understanding of both low and high Tc superconductors, including organic and magnetic materials. Technology, preparation and characterization are covered for several geometries, but the main benefit of this work lies in its broad coverage of significant applications in power engineering or passive devices, such as filter and antenna or magnetic shields. The reader will also find information on superconducting magnets for diverse applications in mechanical engineering, particle physics, fusion research, medicine and biomagnetism, as well as materials processing. SQUIDS and their usage in medicine or geophysics are thoroughly covered as are applications in quantum metrology, and, las...

  17. Deterministic phase slips in mesoscopic superconducting rings

    Science.gov (United States)

    Petković, I.; Lollo, A.; Glazman, L. I.; Harris, J. G. E.

    2016-11-01

    The properties of one-dimensional superconductors are strongly influenced by topological fluctuations of the order parameter, known as phase slips, which cause the decay of persistent current in superconducting rings and the appearance of resistance in superconducting wires. Despite extensive work, quantitative studies of phase slips have been limited by uncertainty regarding the order parameter's free-energy landscape. Here we show detailed agreement between measurements of the persistent current in isolated flux-biased rings and Ginzburg-Landau theory over a wide range of temperature, magnetic field and ring size; this agreement provides a quantitative picture of the free-energy landscape. We also demonstrate that phase slips occur deterministically as the barrier separating two competing order parameter configurations vanishes. These results will enable studies of quantum and thermal phase slips in a well-characterized system and will provide access to outstanding questions regarding the nature of one-dimensional superconductivity.

  18. NATO Advanced Study Institute on Superconducting Electronics

    CERN Document Server

    Nisenhoff, Martin; Superconducting Electronics

    1989-01-01

    The genesis of the NATO Advanced Study Institute (ASI) upon which this volume is based, occurred during the summer of 1986 when we came to the realization that there had been significant progress during the early 1980's in the field of superconducting electronics and in applications of this technology. Despite this progress, there was a perception among many engineers and scientists that, with the possible exception of a limited number of esoteric fundamental studies and applications (e.g., the Josephson voltage standard or the SQUID magnetometer), there was no significant future for electronic systems incorporating superconducting elements. One of the major reasons for this perception was the aversion to handling liquid helium or including a closed-cycle helium liquefier. In addition, many critics felt that IBM's cancellation of its superconducting computer project in 1983 was "proof" that superconductors could not possibly compete with semiconductors in high-speed signal processing. From our persp...

  19. Antiferromagnetic spin wave and the superconductivity

    Science.gov (United States)

    Koh, Shun-ichiro

    2000-07-01

    The neutron scattering of UPd 2Al 3 showed that a sharp peak, which is absent in the normal phase, appears in the superconducting phase (Metoki et al., J. Phys. Soc. Japan 66 (1997) 2560; Bernhoeft et al., Phys. Rev. Lett. 81 (1998) 4244). Assuming this excitation to be an antiferromagnetic (AFM) spin-wave, this paper deals with its enhancement by the superconductivity. Applying the slave-boson formalism, we consider the AFM ordering as a spin-density-wave (Koh, Phys. Lett. A 253 (1999) 98). Above Tc, the spin-wave suffers an energy dissipation due to the conduction electron. Below Tc, the superconductivity suppresses the dissipation, resulting in the growth of the AFM spin-wave.

  20. Power applications for superconducting cables in Denmark

    DEFF Research Database (Denmark)

    Tønnesen, Ole; Østergaard, Jacob; Olsen, S. Krüger

    1999-01-01

    In Denmark a growing concern for environmental protection has lead to wishes that the open country is kept free of overhead lines as far as possible. New lines under 100 kV and existing 60/50 kV lines should be established as underground cables. Superconducting cables represent an interesting...... alternative to conventional cables, as they are able to transmit two or more times the energy than a conventional cable. HTS cables with a room temperature dielectric design are especially interesting as a target for replacing overhead lines. Superconducting cables in the overall network are of interest...... in cases such as transmission of energy into cities and through areas of special interest. The planned large groups of windmills in Denmark generating up to 2000 MVA or more both on dry land and off-shore will be an obvious case for the application of superconducting AC or DC cables. These opportunities...

  1. Superconductivity in carrier-doped silicon carbide

    Directory of Open Access Journals (Sweden)

    Takahiro Muranaka, Yoshitake Kikuchi, Taku Yoshizawa, Naoki Shirakawa and Jun Akimitsu

    2008-01-01

    Full Text Available We report growth and characterization of heavily boron-doped 3C-SiC and 6H-SiC and Al-doped 3C-SiC. Both 3C-SiC:B and 6H-SiC:B reveal type-I superconductivity with a critical temperature Tc=1.5 K. On the other hand, Al-doped 3C-SiC (3C-SiC:Al shows type-II superconductivity with Tc=1.4 K. Both SiC:Al and SiC:B exhibit zero resistivity and diamagnetic susceptibility below Tc with effective hole-carrier concentration n higher than 1020 cm−3. We interpret the different superconducting behavior in carrier-doped p-type semiconductors SiC:Al, SiC:B, Si:B and C:B in terms of the different ionization energies of their acceptors.

  2. Electromagnetic radiation of superconducting cosmic strings

    Science.gov (United States)

    Rogozin, D. A.; Zadorozhna, L. V.

    2013-12-01

    Cosmic strings are relics of the early Universe which can be formed during the phase transitions of fields with spontaneously broken symmetry in the early Universe. Their existence finds support in modern superstrings theories, both in compactification models and in theories with extended additional dimensions. Strings can hold currents, effectively become electrically superconducting wires of astrophysical dimensions. Superconducting cosmic strings can serve as powerful sources of non-thermal radiation in wide energy range. Mechanisms of radiation are synchrotron, synchrotron self-Compton and inverse-Compton on CMB photons radiation of electrons accelerated by bow shock wave, created by magnetosphere of relativistically moving string in intergalactic medium (IGM). Expected fluxes of radiation from the shocked plasma around superconducting cosmic strings are calculated for strings with various tensions and for different cases of their location. Possibilities of strings detection by existing facilities are estimated.

  3. Future of IT, PT and superconductivity technology

    Science.gov (United States)

    Tanaka, Shoji

    2003-10-01

    Recently the Information Technology is developing very rapidly and the total traffic on the Internet is increasing dramatically. The numerous equipments connected to the Internet must be operated at very high-speed and the electricity consumed in the Internet is also increasing. Superconductivity devices of very high-speed and very low power consumption must be introduced. These superconducting devices will play very important roles in the future information society. Coated conductors will be used to generate extremely high magnetic fields of beyond 20 T at low temperatures. At the liquid nitrogen temperature they can find many applications in a wide range of Power Technology and other industries, since we have already large critical current and brilliant magnetic field dependences in some prototypes of coated conductors. It is becoming certain that the market for the superconductivity technology will be opened between the years of 2005 and 2010.

  4. Nonlocal transport in superconducting oxide nanostructures

    Science.gov (United States)

    Veazey, Joshua; Cheng, Guanglei; Lu, Shicheng; Tomczyk, Michelle; Irvin, Patrick; Huang, Mengchen; Wung Bark, Chung; Ryu, Sangwoo; Eom, Chang-Beom; Levy, Jeremy

    2013-03-01

    We report nonlocal transport signatures in the superconducting state of nanostructures formed[2] at the LaAlO3/SrTiO3 interface using conductive AFM lithography. Nonlocal resistances (nonlocal voltage divided by current) are as large as 200 Ω when 2-10 μm separate the current-carrying segments from the voltage-sensing leads. The nonlocal resistance reverses sign at the local critical current of the superconducting state. Features observed in the nonlocal V-I curves evolve with back gate voltage and magnetic field, and are correlated with the local four-terminal V-I curves. We discuss how nonlocal and local transport effects in LaAlO3/SrTiO3 nanostructures may result from the electronic phase separation and superconducting inhomogeneity reported by others in planar structures[3]. This work is supported by AFOSR (FA9550-10-1-0524) and NSF DMR-0906443

  5. Development of superconducting magnetic bearing with superconducting coil and bulk superconductor for flywheel energy storage system

    Science.gov (United States)

    Arai, Y.; Seino, H.; Yoshizawa, K.; Nagashima, K.

    2013-11-01

    We have been developing superconducting magnetic bearing for flywheel energy storage system to be applied to the railway system. The bearing consists of a superconducting coil as a stator and bulk superconductors as a rotor. A flywheel disk connected to the bulk superconductors is suspended contactless by superconducting magnetic bearings (SMBs). We have manufactured a small scale device equipped with the SMB. The flywheel was rotated contactless over 2000 rpm which was a frequency between its rigid body mode and elastic mode. The feasibility of this SMB structure was demonstrated.

  6. The insulating-to-superconducting transition in europium high-temperature superconducting ceramics

    CERN Document Server

    Rosenbaum, R

    1997-01-01

    Experiment resistivity data on high-temperature superconducting ceramics of fully oxygenated EuBa sub 2 Cu sub 3 sub - sub x Co sub x O sub y show that the insulating-to-superconducting transitions take place at liquid-helium temperature, provided that the cobalt fraction x exceeds 0.3. The resistivity follows a simple power-law dependence rho propor to T sup - sup 1 sup / sup 2 , attributed to electron-electron interactions. A model based upon intrinsic Josephson tunnelling junctions is suggested to explain the transition from insulating to superconducting states. (author)

  7. Can doping graphite trigger room temperature superconductivity? Evidence for granular high-temperature superconductivity in water-treated graphite powder.

    Science.gov (United States)

    Scheike, T; Böhlmann, W; Esquinazi, P; Barzola-Quiquia, J; Ballestar, A; Setzer, A

    2012-11-14

    Granular superconductivity in powders of small graphite grains (several tens of micrometers) is demonstrated after treatment with pure water. The temperature, magnetic field and time dependence of the magnetic moment of the treated graphite powder provides evidence for the existence of superconducting vortices with some similarities to high-temperature granular superconducting oxides but even at temperatures above 300 K. Room temperature superconductivity in doped graphite or at its interfaces appears to be possible.

  8. Spontaneous fluxoid formation in superconducting loops

    DEFF Research Database (Denmark)

    Monaco, R.; Mygind, Jesper; Rivers, R.

    2009-01-01

    a scaling relation on the quenching time τQ, as one would expect if the transition took place as fast as causality permits. However, the observed Zurek-Kibble scaling exponent σ=0.62±0.15 is two times larger than anticipated for large loops. Assuming Gaussian winding number densities we show......We report on the experimental verification of the Zurek-Kibble scenario in an isolated superconducting ring over a wide parameter range. The probability of creating a single flux quantum spontaneously during the fast normal-superconducting phase transition of a wide Nb loop clearly follows...

  9. Magnetic and Superconducting Materials at High Pressures

    Energy Technology Data Exchange (ETDEWEB)

    Struzhkin, Viktor V. [Carnegie Inst. of Washington, Washington, DC (United States)

    2015-03-24

    The work concentrates on few important tasks in enabling techniques for search of superconducting compressed hydrogen compounds and pure hydrogen, investigation of mechanisms of high-Tc superconductivity, and exploring new superconducting materials. Along that route we performed several challenging tasks, including discovery of new forms of polyhydrides of alkali metal Na at very high pressures. These experiments help us to establish the experimental environment that will provide important information on the high-pressure properties of hydrogen-rich compounds. Our recent progress in RIXS measurements opens a whole field of strongly correlated 3d materials. We have developed a systematic approach to measure major electronic parameters, like Hubbard energy U, and charge transfer energy Δ, as function of pressure. This technique will enable also RIXS studies of magnetic excitations in iridates and other 5d materials at the L edge, which attract a lot of interest recently. We have developed new magnetic sensing technique based on optically detected magnetic resonance from NV centers in diamond. The technique can be applied to study superconductivity in high-TC materials, to search for magnetic transitions in strongly correlated and itinerant magnetic materials under pressure. Summary of Project Activities; development of high-pressure experimentation platform for exploration of new potential superconductors, metal polyhydrides (including newly discovered alkali metal polyhydrides), and already known superconductors at the limit of static high-pressure techniques; investigation of special classes of superconducting compounds (high-Tc superconductors, new superconducting materials), that may provide new fundamental knowledge and may prove important for application as high-temperature/high-critical parameter superconductors; investigation of the pressure dependence of superconductivity and magnetic/phase transformations in 3d transition metal compounds, including

  10. Safety and reliability in superconducting MHD magnets

    Energy Technology Data Exchange (ETDEWEB)

    Laverick, C.; Powell, J.; Hsieh, S.; Reich, M.; Botts, T.; Prodell, A.

    1979-07-01

    This compilation adapts studies on safety and reliability in fusion magnets to similar problems in superconducting MHD magnets. MHD base load magnet requirements have been identified from recent Francis Bitter National Laboratory reports and that of other contracts. Information relevant to this subject in recent base load magnet design reports for AVCO - Everett Research Laboratories and Magnetic Corporation of America is included together with some viewpoints from a BNL workshop on structural analysis needed for superconducting coils in magnetic fusion energy. A summary of design codes used in large bubble chamber magnet design is also included.

  11. Superconductivity in MgB2

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In January of 2001 the superconductivity of the compound MgB2 with a critical temperature Tc of up to 39 K was discovered. This Tc is the highest in all intermetallic compound and alloy superconductors. MgB2 has a simple structure and its manufacturing capital cost is lower, therefore it could become a practical superconductor in the future. The recent progress is reviewed here which covers the progress in electronic structure, high Tc mechanism, superconducting parameters (Debye temperature, specific heat coefficient of electron, critical fields, coherent length, penetration depth, energy gap, critical current and relaxation rate of flux). Moreover the issue on power transmission is discussed.

  12. Quantum Magnetomechanics with Levitating Superconducting Microspheres

    CERN Document Server

    Romero-Isart, O; Navau, C; Sanchez, A; Cirac, J I

    2011-01-01

    We show that by magnetically trapping a superconducting microsphere close to a quantum circuit, it is experimentally feasible to perform ground state cooling and to prepare quantum superpositions of the center-of-mass motion of the microsphere. Due to the absence of clamping losses and time dependent electromagnetic fields, the mechanical motion of micrometer-sized metallic spheres in the Meissner state is predicted to be extremely well isolated from the environment. Hence, we propose to combine the technology of magnetic mictrotraps and superconducting qubits to bring relatively large objects to the quantum regime.

  13. Superconducting LINAC booster for the Mumbai pelletron

    Indian Academy of Sciences (India)

    B Srinivasan; S K Singh; R G Pillay; M P Kurup; M K Pandey

    2001-08-01

    We are in the process of constructing a superconducting linear accelerator (LINAC), to boost the energy of heavy ion beams from the 14UD Pelletron accelerator, at Tata Institute of Fundamental Research, Mumbai. The accelerating structures in the LINAC are quarter wave resonators (QWR) coated with lead which is superconducting at liquid helium temperature. With feasibility studies having been completed during the course of the 4th and 5th five-year plan periods, culminating with the demonstration of beam acceleration using one accelerating module, the construction of the LINAC is now under way.

  14. Superconducting DC homopolar motors for ship propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Heiberger, M.; Reed, M.R.; Creedon, W.P.; O' Hea, B.J. [General Atomic (United States)

    2000-07-01

    Superconducting DC homopolar motors have undergone recent advances in technology, warranting serious consideration of their use for ship propulsion. Homopolar motor propulsion is now practical because of two key technology developments: cryogen-free superconducting refrigeration and high performance motor fiber brushes. These compact motors are ideal for podded applications, where reduced drag and fuel consumption are predicted. In addition, the simple DC motor controller is more efficient and reliable compared with AC motor controllers. Military ships also benefit from increased stealth implicit in homopolar DC excitation, which also allows the option for direct hull or pod mounting. (authors)

  15. Superconducting coil development and motor demonstration: Overview

    Science.gov (United States)

    Gubser, D. U.

    1995-12-01

    Superconducting bismuth-cuprate wires, coils, and magnets are being produced by industry as part of a program to test the viability of using such magnets in Naval systems. Tests of prototype magnets, coils, and wires reveal progress in commercially produced products. The larger magnets will be installed in an existing superconducting homopolar motor and operated initially at 4.2K to test the performance. It is anticipated that approximately 400 Hp will be achieved by the motor. This article reports on the initial tests of the magnets, coils, and wires as well as the development program to improve their performance.

  16. Superconductivity and magnetism: Materials properties and developments

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, N.H.; Bay, N.; Grivel, J.C. (eds.) [and others

    2003-07-01

    The 24th Risoe International Symposium on Materials Science focuses on development of new materials, devices and applications, as well as experimental and theoretical studies of novel and unexplained phenomena in superconductivity and magnetism, e.g. within high.T{sub c} superconductivity, magnetic superconductors, MgB{sub 2}, CMR materials, nanomagnetism and spin-tronics. The aim is to stimulate exchange of ideas and establish new collaborations between leading Danish and international scientists. The topics are addressed by presentations from 24 invited speakers and by 41 contributed papers. (ln)

  17. Midwest Superconductivity Consortium: 1994 Progress report

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    The mission of the Midwest Superconductivity Consortium, MISCON, is to advance the science and understanding of high {Tc} superconductivity. During the past year, 27 projects produced over 123 talks and 139 publications. Group activities and interactions involved 2 MISCON group meetings (held in August and January); with the second MISCON Workshop held in August; 13 external speakers; 79 collaborations (with universities, industry, Federal laboratories, and foreign research centers); and 48 exchanges of samples and/or measurements. Research achievements this past year focused on understanding the effects of processing phenomena on structure-property interrelationships and the fundamental nature of transport properties in high-temperature superconductors.

  18. Superconducting circuits for quantum information: an outlook.

    Science.gov (United States)

    Devoret, M H; Schoelkopf, R J

    2013-03-08

    The performance of superconducting qubits has improved by several orders of magnitude in the past decade. These circuits benefit from the robustness of superconductivity and the Josephson effect, and at present they have not encountered any hard physical limits. However, building an error-corrected information processor with many such qubits will require solving specific architecture problems that constitute a new field of research. For the first time, physicists will have to master quantum error correction to design and operate complex active systems that are dissipative in nature, yet remain coherent indefinitely. We offer a view on some directions for the field and speculate on its future.

  19. Compact superconducting coplanar microwave beam splitters

    Energy Technology Data Exchange (ETDEWEB)

    Baust, Alexander; Haeberlein, Max; Goetz, Jan; Hoffmann, Elisabeth; Menzel, Edwin P.; Schwarz, Manuel J.; Wulschner, Friedrich; Zhong, Ling; Deppe, Frank; Marx, Achim; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TUM, Garching (Germany); Kalb, Norbert; Losinger, Thomas [Physik-Department, TUM, Garching (Germany)

    2012-07-01

    The recent evolution of circuit quantum electrodynamics systems making use of standing-wave microwave modes towards setups for propagating quantum microwaves has triggered the need for low-loss superconducting microwave beam splitters. Such a device should have ports compatible with the coplanar geometry relevant for circuit QED and, at the same time, be compact allowing for scalability. This combination presents fundamental and technological challenges. In this work, we present the fabrication and characterization of various compact superconducting coplanar microwave beam splitters. In addition, we discuss efforts towards a tunable beam splitter.

  20. Superconductivity in single wall carbon nanotubes

    Directory of Open Access Journals (Sweden)

    H Yavari

    2009-08-01

    Full Text Available   By using Greens function method we first show that the effective interaction between two electrons mediated by plasmon exchange can become attractive which in turn can lead to superconductivity at a high critical temperature in a singl wall carbon nanotubes (SWCNT. The superconducting transition temperature Tc for the SWCNT (3,3 obtained by this mechanism agrees with the recent experimental result. We also show as the radius of SWCNT increases, plasmon frequency becomes lower and leads to lower Tc.

  1. Synthesis of Bulk Superconducting Magnesium Diboride

    Directory of Open Access Journals (Sweden)

    Margie Olbinado

    2002-06-01

    Full Text Available Bulk polycrystalline superconducting magnesium diboride, MgB2, samples were successfully prepared via a one-step sintering program at 750°C, in pre Argon with a pressure of 1atm. Both electrical resistivity and magnetic susceptibility measurements confirmed the superconductivity of the material at 39K, with a transition width of 5K. The polycrystalline nature, granular morphology, and composition of the sintered bulk material were confirmed using X-ray diffractometry (XRD, scanning electron microscopy (SEM, and energy dispersive X-ray analysis (EDX.

  2. Study on the transport by superconducting elevators

    Energy Technology Data Exchange (ETDEWEB)

    Ona, K. [Technov Inc., Tokyo (Japan)

    1999-02-01

    A study on the development of a transport system using the pinning effect of a superconducting bulk structure was undertaken and a model of a flywheel for electric power storage was manufactured by introducing a bearing applying the pinning effect to investigate the feasibility through its operation. The operation behavior of vertical transport combining the superconducting bulk structure and the electromagnetic coils reproduced the predictions of simulation. As for the electric power storage via flywheel, it was confirmed that the lighting duration of a indicating lamp was elongated from the ordinary interval, 1 min., to 4 min. (H. Baba)

  3. Induced Magnetism in Color-Superconducting Media

    CERN Document Server

    Ferrer, Efrain J

    2009-01-01

    The dense core of compact stars is the natural medium for the realization of color superconductivity. A common characteristic of such astrophysical objects is their strong magnetic fields, especially those of the so called magnetars. In this talk, I discuss how a color superconducting core can generate or/and enhance the stellar magnetic field independently of a magnetohydrodynamic dynamo mechanism. The magnetic field generator is in this case a gluonic current which circulates to stabilize the color superconductor in the presence of a strong magnetic field or under the pairing stress produced in the medium by the neutrality and $\\beta$-equilibrium constraints.

  4. Ultrafast response of superconducting transmission lines

    Energy Technology Data Exchange (ETDEWEB)

    Chwalek, J.M.; Dykaar, D.R.; Whitaker, J.F.; Sobolewski, R.; Grupta, S.; Hsiang, T.Y.; Mourou, G.A.

    1989-03-01

    The authors report investigations of picosecond transient propagation on normal and superconducting transmission lines and new results for a variety of lines that include YBa/sub 2/Cu/sub 3/O/sub 7-x/ (YBCO) coplanar lines, a superconducting coaxial cable, and a dielectric-matched gold-line structure. A previously developed algorithm for analyzing transient propagation was used to identify the dominant mechanisms for signal distortion in most of these cases, and the essential properties of all lines tested to date are summarized for a direct comparison.

  5. Superconducting Detectors for Superlight Dark Matter.

    Science.gov (United States)

    Hochberg, Yonit; Zhao, Yue; Zurek, Kathryn M

    2016-01-08

    We propose and study a new class of superconducting detectors that are sensitive to O(meV) electron recoils from dark matter-electron scattering. Such devices could detect dark matter as light as the warm dark-matter limit, m(X)≳1  keV. We compute the rate of dark-matter scattering off of free electrons in a (superconducting) metal, including the relevant Pauli blocking factors. We demonstrate that classes of dark matter consistent with terrestrial and cosmological or astrophysical constraints could be detected by such detectors with a moderate size exposure.

  6. Demonstrating superconductivity at liquid nitrogen temperatures

    Science.gov (United States)

    Early, E. A.; Seaman, C. L.; Yang, K. N.; Maple, M. B.

    1988-07-01

    This article describes two demonstrations of superconductivity at the boiling temperature of liquid nitrogen (77 K) using the 90 K superconductor YBa2Cu3O7-δ(δ≊0.2). Both demonstrations involve the repulsion of a permanent magnet by a superconductor due to the expulsion of the magnetic field from the interior of the latter. In the first demonstration, the repulsion is manifested in the separation of a permanent magnet and a superconductor that are suspended from separate threads, while in the second it results in the levitation of a permanent magnet above a flat superconducting disk.

  7. Study on the transport by superconducting elevators

    Energy Technology Data Exchange (ETDEWEB)

    Ona, K. [Technov Inc., Tokyo (Japan)

    1999-02-01

    A study on the development of a transport system using the pinning effect of a superconducting bulk structure was undertaken and a model of a flywheel for electric power storage was manufactured by introducing a bearing applying the pinning effect to investigate the feasibility through its operation. The operation behavior of vertical transport combining the superconducting bulk structure and the electromagnetic coils reproduced the predictions of simulation. As for the electric power storage via flywheel, it was confirmed that the lighting duration of a indicating lamp was elongated from the ordinary interval, 1 min., to 4 min. (H. Baba)

  8. Manufacturing of superconductive silver/ceramic composites

    DEFF Research Database (Denmark)

    Seifi, Behrouz; Bech, Jakob Ilsted; Eriksen, Morten

    2000-01-01

    Manufacturing of superconducting metal/ceramic composites is a rather new discipline within materials forming processes. High Temperature SuperConductors, HTSC, are manufactured applying the Oxide-Powder-In-Tube process, OPIT. A ceramic powder containing lead, calcium, bismuth, strontium...... and current leading properties of the final superconducting fibres. The present work describes studies on alternative packing geometries and process parameters in the flat rolling operations. The aim is to obtain homogenous filaments with advantageous geometry and good texture while avoiding potential defects...

  9. Integrated design of superconducting accelerator magnets

    CERN Document Server

    Russenschuck, Stephan; Ramberger, S; Rodríguez-Mateos, F; Wolf, R

    1999-01-01

    This chapter introduces the main features of the ROXIE program which has been developed for the design of the superconducting magnets for the Large Hadron Collider (LHC) at CERN. The program combines numerical field calculation with a reduced vector-potential formulation, the application of vector-optimization methods, and the use of genetic as well as deterministic minimization algorithms. Together with the applied concept of features, the software is used as an approach towards integrated design of superconducting magnets. The main quadrupole magnet for the LHC, was chosen as an example for the integrated design process. (17 refs).

  10. Low Loss and Magnetic Field-tuned Superconducting THz Metamaterial

    CERN Document Server

    Jin, Biaobing; Engelbrecht, Sebastian; Pimenov, Andrei; Wu, Jingbo; Xu, Qinyin; Cao, Chunhai; Chen, Jian; Xu, Weiwei; Kang, Lin; Wu, Peiheng

    2010-01-01

    Superconducting terahertz (THz) metamaterial (MM) made from superconducting Nb film has been investigated using a continuous-wave THz spectroscopy with a superconducting split-coil magnet. The obtained quality factors of the resonant modes at 132 GHz and 450 GHz are about three times as large as those calculated for a metal THz MM operating at 1 K, which indicates that superconducting THz MM is a very nice candidate to achieve low loss performance. In addition, the magnetic field-tuning on superconducting THz MM is also demonstrated, which offer an alternative tuning method apart from the existed electric, optical and thermal tuning on THz MM.

  11. Color-symmetric superconductivity in a phenomenological QCD model

    DEFF Research Database (Denmark)

    Bohr, Henrik; Providencia, C.; Providencia, J. da

    2009-01-01

    In this paper, we construct a theory of the NJL type where superconductivity is present, and yet the superconducting state remains, in the average, color symmetric. This shows that the present approach to color superconductivity is consistent with color singletness. Indeed, quarks are free...... in the deconfined phase, but the deconfined phase itself is believed to be a color singlet. The usual description of the color superconducting state violates color singletness. On the other hand, the color superconducting state here proposed is color symmetric in the sense that an arbitrary color rotation leads...

  12. Gossamer high-temperature bulk superconductivity in FeSe

    Science.gov (United States)

    Sinchenko, A. A.; Grigoriev, P. D.; Orlov, A. P.; Frolov, A. V.; Shakin, A.; Chareev, D. A.; Volkova, O. S.; Vasiliev, A. N.

    2017-04-01

    Using the anisotropic electron transport and susceptibility measurements we demonstrate the appearance of inhomogeneous gossamer superconductivity in FeSe single crystals at ambient pressure and at temperature five times higher than its zero resistance Tc. We also find and quantitatively describe a general property: If inhomogeneous superconductivity in a anisotropic conductor first appears in the form of isolated superconducting islands, it reduces electric resistivity anisotropically with maximal effect along the least conducting axis. This gives a simple tool to study inhomogeneous superconductivity in various anisotropic compounds, which helps to investigate the onset of high-temperature superconductivity.

  13. Characterization of a superconducting Pb photocathode in a superconducting rf photoinjector cavity

    CERN Document Server

    Barday, R; Jankowiak, A; Kamps, T; Knobloch, J; Kugeler, O; Matveenko, A; Neumann, A; Schmeißer, M; Volker, J; Kneisel, P; Nietubyc, R; Schubert S; Smedley J; Sekutowicz, J; Will, I

    2014-01-01

    Photocathodes are a limiting factor for the next generation of ultrahigh brightness photoinjectors. We studied the behavior of a superconducting Pb cathode in the cryogenic environment of a superconducting rf gun cavity to measure the quantum efficiency, its spatial distribution, and the work function. We will also discuss how the cathode surface contaminants modify the performance of the photocathode as well as the gun cavity and we discuss the possibilities to remove these contaminants.

  14. Coexistence of ferromagnetism and superconductivity in YBCO nanoparticles.

    Science.gov (United States)

    Zhu, Zhonghua; Gao, Daqiang; Dong, Chunhui; Yang, Guijin; Zhang, Jing; Zhang, Jinlin; Shi, Zhenhua; Gao, Hua; Luo, Honggang; Xue, Desheng

    2012-03-21

    Nanoparticles of superconducting YBa(2)Cu(3)O(7-δ) were synthesized via a citrate pyrolysis technique. Room temperature ferromagnetism was revealed in the samples by a vibrating sample magnetometer. Electron spin resonance spectra at selected temperatures indicated that there is a transition from the normal to the superconducting state at temperatures below 100 K. The M-T curves with various applied magnetic fields showed that the superconducting transition temperatures are 92 K and 55 K for the air-annealed and the post-annealed samples, respectively. Compared to the air-annealed sample, the saturation magnetization of the sample by reheating the air-annealed one in argon atmosphere is enhanced but its superconductivity is weakened, which implies that the ferromagnetism maybe originates from the surface oxygen defects. By superconducting quantum interference device measurements, we further confirmed the ferromagnetic behavior at high temperatures and interesting upturns in field cooling magnetization curves within the superconducting region are found. We attributed the upturn phenomena to the coexistence of ferromagnetism and superconductivity at low temperatures. Room temperature ferromagnetism of superconducting YBa(2)Cu(3)O(7-δ) nanoparticles has been observed in some previous related studies, but the issue of the coexistence of ferromagnetism and superconductivity within the superconducting region is still unclear. In the present work, it will be addressed in detail. The cooperation phenomena found in the spin-singlet superconductors will help us to understand the nature of superconductivity and ferromagnetism in more depth.

  15. Superconducting fault current-limiter with variable shunt impedance

    Science.gov (United States)

    Llambes, Juan Carlos H; Xiong, Xuming

    2013-11-19

    A superconducting fault current-limiter is provided, including a superconducting element configured to resistively or inductively limit a fault current, and one or more variable-impedance shunts electrically coupled in parallel with the superconducting element. The variable-impedance shunt(s) is configured to present a first impedance during a superconducting state of the superconducting element and a second impedance during a normal resistive state of the superconducting element. The superconducting element transitions from the superconducting state to the normal resistive state responsive to the fault current, and responsive thereto, the variable-impedance shunt(s) transitions from the first to the second impedance. The second impedance of the variable-impedance shunt(s) is a lower impedance than the first impedance, which facilitates current flow through the variable-impedance shunt(s) during a recovery transition of the superconducting element from the normal resistive state to the superconducting state, and thus, facilitates recovery of the superconducting element under load.

  16. Superconductivity in LiFeAs probed with quasiparticle interference

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Zhixiang; Nag, Pranab Kumar; Baumann, Danny; Kappenberger, Rhea [Leibniz Institute for Solid State and Materials Research Dresden, IFW Dresden (Germany); Wurmehl, Sabine [Leibniz Institute for Solid State and Materials Research Dresden, IFW Dresden (Germany); Institute for Solid State Physics, TU Dresden (Germany); Buechner, Bernd [Leibniz Institute for Solid State and Materials Research Dresden, IFW Dresden (Germany); Institute for Solid State Physics, TU Dresden (Germany); Center for Transport and Devices, TU Dresden (Germany); Hess, Christian [Leibniz Institute for Solid State and Materials Research Dresden, IFW Dresden (Germany); Center for Transport and Devices, TU Dresden (Germany)

    2016-07-01

    In spite of many theoretical and experimental efforts on studying the superconductivity of iron-based high temperature superconductors, the puzzle about LiFeAs's superconducting mechanism and pairing symmetry are still not clear. Here we want to present our low temperature scanning tunneling microscopy results on probing the superconductivity of LiFeAs. By taking conductance spectroscopic maps for both the superconducting state and normal state, we identify the scatterings due to the electron and hole bands close to the Fermi level. We observe a strong indication that the superconducting behavior in the hole bands are important for the formation of superconductivity in LiFeAs. Our results may also shine light on understanding the superconductivity in other iron pnictide superconductors.

  17. Superconducting Submm Integrated Receiver for TELIS

    NARCIS (Netherlands)

    Koshelets, V. P.; Ermakov, A. B.; Filippenko, L. V.; Koryukin, O. V.; Khudchenko, A. V.; Sobolev, A. S.; Torgashin, M. Yu; Yagoubov, P. A.; Hoogeveen, R. W. M.; Vreeling, W. J.; Wild, W.; Pylypenko, O. M.

    2006-01-01

    In this report we present design and first experimental results for development of the submm superconducting integrated receiver spectrometer for Terahertz Limb Sounder (TELIS). TELIS is a collaborative European project to build up a three-channel heterodyne balloon-based spectrometer for measuring

  18. Superconductivity from valence fluctuations with finite u

    Energy Technology Data Exchange (ETDEWEB)

    Brandow, B.H.

    1989-01-01

    The finite-U paring mechanism of Newns is found to be opposed by a magnetic tendency arising from Gutzwiller renormalization of the hybridization. This competition restricts superconductivity and also reproduces the parabolic rise and fall of T/sub c/ in La/sub 2/minus//chi//Sr/sub /chi//CuO/sub 4/ with increasing x. 9 refs.

  19. High temperature superconducting fault current limiter

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Hinsdale, IL)

    1997-01-01

    A fault current limiter (10) for an electrical circuit (14). The fault current limiter (10) includes a high temperature superconductor (12) in the electrical circuit (14). The high temperature superconductor (12) is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter (10).

  20. Amorphous molybdenum silicon superconducting thin films

    Directory of Open Access Journals (Sweden)

    D. Bosworth

    2015-08-01

    Full Text Available Amorphous superconductors have become attractive candidate materials for superconducting nanowire single-photon detectors due to their ease of growth, homogeneity and competitive superconducting properties. To date the majority of devices have been fabricated using WxSi1−x, though other amorphous superconductors such as molybdenum silicide (MoxSi1−x offer increased transition temperature. This study focuses on the properties of MoSi thin films grown by magnetron sputtering. We examine how the composition and growth conditions affect film properties. For 100 nm film thickness, we report that the superconducting transition temperature (Tc reaches a maximum of 7.6 K at a composition of Mo83Si17. The transition temperature and amorphous character can be improved by cooling of the substrate during growth which inhibits formation of a crystalline phase. X-ray diffraction and transmission electron microscopy studies confirm the absence of long range order. We observe that for a range of 6 common substrates (silicon, thermally oxidized silicon, R- and C-plane sapphire, x-plane lithium niobate and quartz, there is no variation in superconducting transition temperature, making MoSi an excellent candidate material for SNSPDs.

  1. Development of superconducting power devices in Europe

    Science.gov (United States)

    Tixador, Pascal

    2010-11-01

    Europe celebrated last year (2008) the 100-year anniversary of the first liquefaction of helium by H. Kammerling Onnes in Leiden. It led to the discovery of superconductivity in 1911. Europe is still active in the development of superconducting (SC) devices. The discovery of high critical temperature materials in 1986, again in Europe, has opened a lot of opportunities for SC devices by broking the 4 K cryogenic bottleneck. Electric networks experience deep changes due to the emergence of dispersed generation (renewable among other) and to the advances in ICT (Information Communication Technologies). The networks of the future will be “smart grids”. Superconductivity will offer “smart” devices for these grids like FCL (Fault Current Limiter) or VLI (Very Low Inductance) cable and would certainly play an important part. Superconductivity also will participate to the required sustainable development by lowering the losses and enhancing the mass specific powers. Different SC projects in Europe will be presented (Cable, FCL, SMES, Flywheel and Electrical Machine) but the description is not exhaustive. Nexans has commercialized the first two FCLs without public funds in the European grid (UK and Germany). The Amsterdam HTS cable is an exciting challenge in term of losses for long SC cables. European companies (Nexans, Air Liquide, Siemens, Converteam, …) are also very active for projects outside Europe (LIPA, DOE FCL, …).

  2. Hot Isostatic Pressing of Superconducting Ceramics

    Science.gov (United States)

    1990-10-01

    MONITORING AGENCY NAME & ADDRESS Ifffer’ from Contr/.ng Offe) 115 SECURITY CLASS ., ,r’ni Unclassified ISa. DECLASSIFICATION/DOWNGRADING SCHEDULE 16...Jr., ii. M.. GAL iAGIi IE;R. 1’. K.. Si N:RWOOD. R. C., and JIN. S. warer Interaction with thec superconducting YIia2CuiOi Phbase. Appi. i’hys. Il

  3. Feedback control of superconducting quantum circuits

    NARCIS (Netherlands)

    Ristè, D.

    2014-01-01

    Superconducting circuits have recently risen to the forefront of the solid-state prototypes for quantum computing. Reaching the stage of robust quantum computing requires closing the loop between measurement and control of quantum bits (qubits). This thesis presents the realization of feedback contr

  4. Photoemission studies of high-temperature superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Margaritondo, G. (Inst. de Physique Appliquee, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (CH))

    1990-11-01

    Photoemission spectroscopy has recently emerged as one of the leading techniques in the study of high-temperature superconductors. Relevant successes include the direct detection of the superconductivity gap, tests for departure from Fermi-liquid behavior, and many interface chemical studies with technological interest. The authors present a review of the fundamental and applied aspects of this technique.

  5. CERN tests largest superconducting solenoid magnet

    CERN Multimedia

    2006-01-01

    "CERN's Compacts Muon Solenoid (CMS) - the world's largest superconducting solenoid magnet - has reached full field in testing. The instrument is part of the proton-proton Large Hadron Collider (LHC) project, located in a giant subterranean chamber at Cessy on the Franco-Swiss border." (1 page)

  6. Development of superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Jensen, Bogi Bech; Mijatovic, Nenad; Abrahamsen, Asger Bech

    2013-01-01

    speeds, because high magnetic fields can be produced by coils with very little loss. Three different superconducting wind turbine generator topologies have been proposed by three different companies. One is based on low temperature superconductors; one is based on high temperature superconductors...

  7. Superconducting generators for wind turbines: design considerations

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Abrahamsen, Asger Bech; Træholt, Chresten

    2010-01-01

    The harmonic content of high temperature superconductors (HTS) field winding in air-core high temperature superconducting synchronous machine (HTS SM) has been addressed in order to investigate tendency of HTS SM towards mechanical oscillation and additional loss caused by higher flux harmonic...

  8. Relaxation of polarized nuclei in superconducting rhodium

    DEFF Research Database (Denmark)

    Knuuttila, T.A.; Tuoriniemi, J.T.; Lefmann, K.

    2000-01-01

    Nuclear spin lattice relaxation rates were measured in normal and superconducting (sc) rhodium with nuclear polarizations up to p = 0.55. This was sufficient to influence the sc state of Rh, whose T, and B-c, are exceptionally low. Because B-c

  9. Critical fields of liquid superconducting metallic hydrogen

    Science.gov (United States)

    Jaffe, J.; Ashcroft, N. W.

    1983-01-01

    Liquid metallic hydrogen, in a fully dissociated state, is predicted at certain densities to pass from dirty to clean and from type II to type I superconducting behavior as temperature is lowered. Previously announced in STAR as N82-29374

  10. Superconducting RFQs in the PIAVE Injector

    CERN Document Server

    Bisoffi, G; Bezzon, G; Calore, A; Canella, S; Chiurlotto, F; Lombardi, A; Modanese, P; Porcellato, A M; Stark, S

    2004-01-01

    The PIAVE superconducting RFQs were installed on the linac line and connected to the TCF50 cryogenic system. First results on the on-line resonator performance (e.g. Q-curves, amplitude and phase locking) are described as well as the behaviour of the fast tuners.

  11. Local Electronic Structure and High Temperature Superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Emery, V. J.; Kivelson, S. A.

    1999-02-08

    It is argued that a new mechanism and many-body theory of superconductivity are required for doped correlated insulators. Here they review the essential features of and the experimental support for such a theory, in which the physics is driven by the kinetic energy.

  12. Superconducting vortex pinning with artificial magnetic nanostructures.

    Energy Technology Data Exchange (ETDEWEB)

    Velez, M.; Martin, J. I.; Villegas, J. E.; Hoffmann, A.; Gonzalez, E. M.; Vicent, J. L.; Schuller, I. K.; Univ. de Oviedo-CINN; Unite Mixte de Physique CNRS/Thales; Univ. Paris-Sud; Univ.Complutense de Madrid; Univ. California at San Diego

    2008-11-01

    This review is dedicated to summarizing the recent research on vortex dynamics and pinning effects in superconducting films with artificial magnetic structures. The fabrication of hybrid superconducting/magnetic systems is presented together with the wide variety of properties that arise from the interaction between the superconducting vortex lattice and the artificial magnetic nanostructures. Specifically, we review the role that the most important parameters in the vortex dynamics of films with regular array of dots play. In particular, we discuss the phenomena that appear when the symmetry of a regular dot array is distorted from regularity towards complete disorder including rectangular, asymmetric, and aperiodic arrays. The interesting phenomena that appear include vortex-lattice reconfigurations, anisotropic dynamics, channeling, and guided motion as well as ratchet effects. The different regimes are summarized in a phase diagram indicating the transitions that take place as the characteristic distances of the array are modified respect to the superconducting coherence length. Future directions are sketched out indicating the vast open area of research in this field.

  13. Infrared Superconducting Single-Photon Detectors

    Science.gov (United States)

    2012-10-05

    group realized small microstrip devices, the next iteration of which may narrow the line width to below 100 nm, entering the single-photon detection...and will explore superconducting detectors with integrated waveguide circuits and novel deposition techniques. 15. SUBJECT...world record quantum cryptography demonstrations [9] and operation of quantum waveguide circuits at telecom wavelengths [10]. Beyond the quantum

  14. Controllable proximity effect in superconducting hybrid devices

    NARCIS (Netherlands)

    Bakurskiy, Sergey

    2015-01-01

    This thesis is devoted to the study of controllable proximity effects in superconductors, both in terms of fundamental aspects and applications. As a part of this thesis theoretical description was suggested for a number of structures with superconducting electrodes and multiple interlayers. These s

  15. Anharmonic phonons and high-temperature superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Crespi, V.H.; Cohen, M.L. (Department of Physics, University of California at Berkeley, and Materials Sciences Division, Lawrence Berkeley Laboratory, Berkeley, California 94720 (United States))

    1993-07-01

    We examine a simple model of anharmonic phonons with application to the superconducting isotope effect. Linear and quadratic electron-phonon coupling are considered for various model potentials. The results of the model calculations are compared with the high-temperature superconductors La[sub 2[minus][ital x

  16. Studying superconducting Nb3Sn wire

    CERN Multimedia

    AUTHOR|(CDS)2099575

    2015-01-01

    Studying superconducting Nb3Sn wire. From the current experience from LHC and HL-LHC we know that the performance requirements for Nb3Sn conductor for future circular collider are challenging and should exceed that of present state-of-the-art materials.

  17. Suspended carbon nanotubes coupled to superconducting circuits

    NARCIS (Netherlands)

    Schneider, B.H.

    2014-01-01

    Carbon nanotubes are unique candidates to study quantum mechanical properties of a nanomechanical resonator. However to access this quantum regime, present detectors are not yet sensitive enough. In this thesis we couple a carbon nanotube CNT mechanical resonator to a superconducting circuit which i

  18. Centenary of the discovery of superconductivity

    CERN Multimedia

    Anaïs Vernède

    2011-01-01

    To mark the centenary of the discovery of the phenomenon of superconductivity, MANEP and the University of Geneva are organising open days at the PhysiScope between 8 and 15 April 2011. On 13 April CERN will make a contribution to the series of events with a lecture on superconductivity followed by a demonstration of the phenomenon at the Globe   Historic graph showing the superconducting transition of mercury, measured in Leiden in 1911 by H. Kamerlingh Onnes. On 8 April 2011 it will be a hundred years since the discovery of superconductivity by the Dutch physicist Kamerlingh Onnes. To mark the occasion, the University of Geneva and MANEP are organising a week-long interactive workshop at the PhysiScope. “The purpose of this initiative is to introduce the general public to this spectacular phenomenon by giving them an opportunity to take part in entertaining experiments”, explains Adriana Aleman, Head of Communications of the University of Geneva. As its contribution to the e...

  19. Superconducting phase domains for memory applications

    NARCIS (Netherlands)

    Bakurskiy, S.V.; Klenov, N.V.; Soloviev, I.I.; Kupriyanov, M..Y.; Golubov, A.

    2016-01-01

    In this work, we study theoretically the properties of S-F/N-sIS type Josephson junctions in the frame of the quasiclassical Usadel formalism. The structure consists of two superconducting electrodes (S), a tunnel barrier (I), a combined normal metal/ferromagnet (N/F) interlayer, and a thin supercon

  20. Model of an LHC superconducting quadrupole magnet

    CERN Multimedia

    Laurent Guiraud

    2000-01-01

    Model of a superconducting quadrupole magnet for the LHC project. These magnets are used to focus the beam by squeezing it into a smaller cross-section, a similar effect to a lens focusing light. However, each magnet only focuses the beam in one direction so alternating magnet arrangements are required to produce a fully focused beam.