WorldWideScience

Sample records for superconducting gap energy

  1. Tunnelling determined superconducting energy gap of bulk single crystal aluminum

    International Nuclear Information System (INIS)

    Civiak, R.L.

    1974-01-01

    A procedure has been developed for fabricating Giaver tunnel junctions on bulk aluminum. Al-I-Ag junctions were prepared, where I is the naturally formed oxide on the polished, chemically treated aluminum surface. The aluminum energy gap was determined from tunneling conductance curves obtained from samples oriented in three different crystal directions, and as a function of magnetic field in each of these orientations. In contrast to the results of microwave absorption measurements on superconducting aluminum, no magnetic field dependence could be measured for either the average gap or the spread in gap values of the tunneling electrons. This is consistent with commonly accepted tunneling selection rules, and Garfunkel's interpretation of the microwave behavior which depended upon adjusting the energy spectrum of only the electrons traveling parallel to the surface in the presence of a magnetic field. The energy gaps measured for samples oriented in the 100, 110 and 111 directions are 3.52, 3.50 and 3.39 kT/sub c/, respectively. The trend in the anisotropy is the same as in the calculation of Leavens and Carbotte, however, the magnitude of the anisotropy is smaller than in their calculation and that which previous measurements have indicated

  2. Superconducting energy gap of YB6 studied by point-contact spectroscopy

    International Nuclear Information System (INIS)

    Szabo, Pavol; Kacmarcik, Jozef; Samuely, Peter; Girovsky, Jan; Gabani, Slavomir; Flachbart, Karol; Mori, Takao

    2007-01-01

    Yttrium hexaboride has the second highest critical temperature, T c ∼ 8 K, among all borides. The presented paper deals with the experimental study of its superconducting energy gap established by the method of the point-contact spectroscopy. The temperature dependence of the energy gap and the strength of the superconducting coupling is presented

  3. Abrupt onset of a second energy gap at the superconducting transition of underdoped Bi2212

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Zahid; Lee, W.S.; Vishik, I.M.; Tanaka, K.; Lu, D.H.; Sasagawa, T.; Nagaosa, N.; Devereaux, T.P.; Hussain, Z.; Shen, Z.-X.

    2007-05-26

    he superconducting gap--an energy scale tied to the superconducting phenomena--opens on the Fermi surface at the superconducting transition temperature (Tc) in conventional BCS superconductors. In underdoped high-Tc superconducting copper oxides, a pseudogap (whose relation to the superconducting gap remains a mystery) develops well above Tc (refs 1, 2). Whether the pseudogap is a distinct phenomenon or the incoherent continuation of the superconducting gap above Tc is one of the central questions in high-Tc research3, 4, 5, 6, 7, 8. Although some experimental evidence suggests that the two gaps are distinct9, 10, 11, 12, 13, 14, 15, 16, 17, 18, this issue is still under intense debate. A crucial piece of evidence to firmly establish this two-gap picture is still missing: a direct and unambiguous observation of a single-particle gap tied to the superconducting transition as function of temperature. Here we report the discovery of such an energy gap in underdoped Bi2Sr2CaCu2O8+delta in the momentum space region overlooked in previous measurements. Near the diagonal of Cu?O bond direction (nodal direction), we found a gap that opens at Tc and has a canonical (BCS-like) temperature dependence accompanied by the appearance of the so-called Bogoliubov quasi-particles, a classical signature of superconductivity. This is in sharp contrast to the pseudogap near the Cu?O bond direction (antinodal region) measured in earlier experiments19, 20, 21.

  4. The MgB2 superconducting energy gaps measured by Raman spectroscopy

    International Nuclear Information System (INIS)

    Quilty, James William

    2003-01-01

    Understanding the nature of the superconducting energy gap in magnesium diboride is an essential part of understanding this unusual superconductor, and Raman scattering is a convenient and powerful technique which is able to directly measure the key physical properties of the gap. The Raman spectra of MgB 2 show clear superconductivity induced renormalisations and evidence is found for two superconducting gaps residing on the σ and π Fermi surfaces with maximum magnitudes of around 110 and 30 cm -1 . The larger gap appears as a sharp peak in the electronic Raman scattering continuum while the smaller gap manifests itself as a threshold in the low-frequency spectral intensity, indicating that the gaps form in different electronic environments. The physical properties of the gaps favour explanations of the extraordinarily high T c in MgB 2 within strong coupling theory

  5. Search for Superconducting Energy Gap in UPt3 by Point-Contact Spectroscopy

    International Nuclear Information System (INIS)

    Gouchi, Jun; Sumiyama, Akihiko; Yamaguchi, Akira; Motoyama, Gaku; Kimura, Noriaki; Yamamoto, Etsuji; Haga, Yoshinori; Ōnuki, Yoshichika

    2015-01-01

    We have investigated the differential resistance of the point contacts between heavy-fermion superconductor UPt 3 and a normal metal Pt, which were fabricated using a commercial piezo-electric actuator, and retried the observation of the energy gap of UPt 3 . A V-shaped dip is observed in both normal and superconducting states and disappeared around T K ∼ 20 K, suggesting that it is related to the Kondo effect. Below the superconducting transition temperature, a shallow double-minimum structure, which indicates the energy gap, has been observed for the contacts on the faces perpendicular to the a-, b- and c-axes of UPt 3

  6. Subharmonic energy-gap structure in superconducting weak links

    DEFF Research Database (Denmark)

    Flensberg, K.; Hansen, Jørn Bindslev; Octavio, M.

    1988-01-01

    We present corrected calculations of the subharmonic energy-gap structure using the model of Octavio, Tinkham, Blonder, and Klapwijk, which includes the effect of normal scattering in the weak link. We show that while the overall predictions of this model do not change qualitatively, the details...... of the predicted curves are different and in better agreement with experiment. We also present calculation of the current-voltage characteristics and of the excess currents for T=0, as the normal scattering parameter Z is varied. We also show how the calculation can be shortened using symmetry arguments...

  7. Subharmonic energy-gap structure and heating effects in superconducting niobium point contacts

    DEFF Research Database (Denmark)

    Flensberg, K.; Hansen, Jørn Bindslev

    1989-01-01

    We present experimental data of the temperature-dependent subharmonic energy-gap structure (SGS) in the current-voltage (I-V) curves of superconducting niobium point contacts. The observed SGS is modified by heating effects. We construct a model of the quasiparticle conductance of metallic...

  8. Energy gap and surface structure of superconducting diamond films probed by scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Nishizaki, Terukazu; Takano, Yoshihiko; Nagao, Masanori; Takenouchi, Tomohiro; Kawarada, Hiroshi; Kobayashi, Norio

    2007-01-01

    We have performed scanning tunneling microscopy/spectroscopy (STM/STS) experiments on (1 1 1)-oriented epitaxial films of heavily boron-doped diamond at T = 0.47 K. The STM topography shows two kinds of atomic structures: a hydrogenated 1 x 1 structure, C(1 1 1)1 x 1:H, and an amorphous structure. On the C(1 1 1)1 x 1:H region, the tunneling spectra show superconducting property with the energy gap Δ = 0.83 meV. The obtained gap ratio 2Δ/k B T c = 3.57 is consistent with the weak-coupling BCS theory

  9. Phonon-induced enhancement of the energy gap and critical current of superconducting aluminum films

    International Nuclear Information System (INIS)

    Seligson, D.; Clarke, J.

    1983-01-01

    Enhancements of the energy gap Δ and the critical current I/sub c/ have been induced in thin superconducting aluminum films near the transition temperature T/sub c/ by pulses of phonons at approximately 9 GHz. In terms of the change in temperature Vertical BardeltaT/T/sub c/Vertical Bar necessary to produce the same enhancement in equilibrium, the gap enhancement increased smoothly with phonon power at fixed temperature and decreasing temperature at fixed phonon power; however, very close to T/sub c/ the enhancement rolled off. At relatively low phonon powers, the data were in good agreement with the theory of Eckern, Schmid, Schmutz, and Schoen, but at higher power levels the data fell markedly below the predictions of the theory. The critical-current enhancements in terms of Vertical BardeltaT/T/sub c/Vertical Bar were always larger than the gap enhancements at the same temperature and phonon power. At fixed phonon power the critical-current enhancements were nearly independent of temperature, except very close to T/sub c/ where the enhancement became small. The inclusion of the nonequilibrium quasiparticle distribution and the kinetic energy of the supercurrent in the theory relating the critical-current enhancement to the gap enhancement did not resolve the discrepancies between the two enhancements. It appears likely that there is an additional mechanism for critical-current enhancement that has not yet been identified

  10. Bulk superconducting gap of V{sub 3}Si studied by low-energy ultrahigh-resolution photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sato, T., E-mail: t-sato@arpes.phys.tohoku.ac.jp [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Souma, S. [WPI Research Center, Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Nakayama, K. [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Sugawara, K. [WPI Research Center, Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Toyota, N. [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Takahashi, T. [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); WPI Research Center, Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2016-04-15

    Highlights: • We report ultrahigh-resolution photoemission spectroscopy of A15 compound V{sub 3}Si. • We found a sharp quasiparticle peak due to superconducting-gap opening. • The surface metallic component is negligibly small in the bulk-sensitive measurement. • We show that V{sub 3}Si is a single-gap s-wave superconductor. - Abstract: We have performed low-energy ultrahigh-resolution photoemission spectroscopy (PES) of A15 compound V{sub 3}Si with a xenon-plasma discharge lamp to elucidate the bulk superconducting gap. Below the superconducting transition temperature (T{sub c} = 15.9 K), we found a sharp quasiparticle peak at the Fermi level in the PES spectrum. The gap spectrum is well fitted by a single s-wave superconducting-gap function together with a dip structure at ∼30 meV suggestive of a strong electron-phonon coupling. The anomalous in-gap state previously observed in the PES measurement with high-energy photons is absent or negligibly small in the present bulk-sensitive measurement. The present PES result shows that V{sub 3}Si is a single-gap s-wave superconductor.

  11. Bulk superconducting gap of V_3Si studied by low-energy ultrahigh-resolution photoemission spectroscopy

    International Nuclear Information System (INIS)

    Sato, T.; Souma, S.; Nakayama, K.; Sugawara, K.; Toyota, N.; Takahashi, T.

    2016-01-01

    Highlights: • We report ultrahigh-resolution photoemission spectroscopy of A15 compound V_3Si. • We found a sharp quasiparticle peak due to superconducting-gap opening. • The surface metallic component is negligibly small in the bulk-sensitive measurement. • We show that V_3Si is a single-gap s-wave superconductor. - Abstract: We have performed low-energy ultrahigh-resolution photoemission spectroscopy (PES) of A15 compound V_3Si with a xenon-plasma discharge lamp to elucidate the bulk superconducting gap. Below the superconducting transition temperature (T_c = 15.9 K), we found a sharp quasiparticle peak at the Fermi level in the PES spectrum. The gap spectrum is well fitted by a single s-wave superconducting-gap function together with a dip structure at ∼30 meV suggestive of a strong electron-phonon coupling. The anomalous in-gap state previously observed in the PES measurement with high-energy photons is absent or negligibly small in the present bulk-sensitive measurement. The present PES result shows that V_3Si is a single-gap s-wave superconductor.

  12. Influence of Superconducting Leads Energy Gap on Electron Transport Through Double Quantum Dot by Markovian Quantum Master Equation Approach

    International Nuclear Information System (INIS)

    Afsaneh, E.; Yavari, H.

    2014-01-01

    The superconducting reservoir effect on the current carrying transport of a double quantum dot in Markovian regime is investigated. For this purpose, a quantum master equation at finite temperature is derived for the many-body density matrix of an open quantum system. The dynamics and the steady-state properties of the double quantum dot system for arbitrary bias are studied. We will show that how the populations and coherencies of the system states are affected by superconducting leads. The energy parameter of system contains essentially four contributions due to dots system-electrodes coupling, intra dot coupling, two quantum dots inter coupling and superconducting gap. The coupling effect of each energy contribution is applied to currents and coherencies results. In addition, the effect of energy gap is studied by considering the amplitude and lifetime of coherencies to get more current through the system. (author)

  13. Role of superconducting energy gap in extended BCS-Bose crossover theory

    Science.gov (United States)

    Chávez, I.; García, L. A.; de Llano, M.; Grether, M.

    2017-10-01

    The generalized Bose-Einstein condensation (GBEC) theory of superconductivity (SC) is briefly surveyed. It hinges on three distinct new ingredients: (i) Treatment of Cooper pairs (CPs) as actual bosons since they obey Bose statistics, in contrast to BCS pairs which do not obey Bose commutation relations; (ii) inclusion of two-hole Cooper pairs (2hCPs) on an equal footing with two-electron Cooper pairs (2eCPs), thus making this a complete boson-fermion (BF) model; and (iii) inclusion in the resulting ternary ideal BF gas with particular BF vertex interactions that drive boson formation/disintegration processes. GBEC subsumes as special cases both BCS (having its 50-50 symmetry of both kinds of CPs) and ordinary BEC theories (having no 2hCPs), as well as the now familiar BCS-Bose crossover theory. We extended the crossover theory with the explicit inclusion of 2hCPs and construct a phase diagram of Tc/TF versus n/nf, where Tc and TF are the critical and Fermi temperatures, n is the total number density and nf that of unbound electrons at T = 0. Also, with this extended crossover one can construct the energy gap Δ(T)/Δ(0) versus T/Tc for some elemental SCs by solving at least two equations numerically: a gap-like and a number equation. In 50-50 symmetry, the energy gap curve agrees quite well with experimental data. But ignoring 2hCPs altogether leads to the gap curve falling substantially below that with 50-50 symmetry which already fits the data quite well, showing that 2hCPs are indispensable to describe SCs.

  14. Phonon-induced enhancements of the energy gap and critical current in superconducting aluminum

    International Nuclear Information System (INIS)

    Seligson, D.

    1983-01-01

    The enhancement of the energy gap, Δ, and critical current, i/sub c/, in superconducting aluminum thin films were under the influence of 8 to 10 GHz phonons. The phonons were generated by piezoelectric transduction of a 1 kW microwave pulse of about 1 μsec duration. By means of a quartz delay line, the phonons were allowed to enter the aluminum only after the microwaves had long since disappeared. The critical current was measured in long narrow Al strips, in which the current flow is 1-dimensional and well described by Ginsburg-Landau theory. To measure Δ the Al film was used as one electrode in a superconductor-insulator-superconductor tunnel junction whose current-voltage characteristic gave Δ directly. For the measurements of i/sub c/, the total critical current was measured in the presence of the phonon perturbation. For the measurements of Δ the change of Δ away from its equilibrium value was measured. In both cases the first measurements of enhancement of these macroscopic variables under phonon irradiation is reported. The gap-enhancement was found to be in good agreement with theory, but only for relatively and surprisingly low input power. The critical current measurements are predicted to be in rough agreement with the Δ measurements but this was not observed

  15. Superconducting energy gap of BaPb/sub 1-//sub x/Bi/sub x/O3

    International Nuclear Information System (INIS)

    Schlesinger, Z.; Collins, R.T.; Scott, B.A.; Calise, J.A.

    1988-01-01

    We report the first infrared measurement of the superconducting energy gap of BaPb/sub 1-//sub x/Bi/sub x/O 3 . In our polycrystalline samples with T/sub c/≅9.5 K (x≅0.2) we obtain 2Δ≅3.2kT/sub c/, roughly in agreement with the weak-coupling Bardeen-Cooper-Schrieffer prediction, 2Δ = 3.5kT/sub c/, and with tunneling measurements of the gap. We do not observe any structure above the gap energy associated with strong coupling

  16. Superconducting gap anomaly in heavy fermion systems

    International Nuclear Information System (INIS)

    Rout, G.C.; Ojha, M.S.; Behera, S.N.

    2008-01-01

    The heavy fermion system (HFS) is described by the periodic Anderson model (PAM), treating the Coulomb correlation between the f-electrons in the mean-field Hartree-Fock approximation. Superconductivity is introduced by a BCS-type pairing term among the conduction electrons. Within this approximation the equation for the superconducting gap is derived, which depends on the effective position of the energy level of the f-electrons relative to the Fermi level. The latter in turn depends on the occupation probability n f of the f-electrons. The gap equation is solved self-consistently with the equation for n f ; and their temperature dependences are studied for different positions of the bare f-electron energy level, with respect to the Fermi level. The dependence of the superconducting gap on the hybridization leads to a re-entrant behaviour with increasing strength. The induced pairing between the f-electrons and the pairing of mixed conduction and f-electrons due to hybridization are also determined. The temperature dependence of the hybridization parameter, which characterizes the number of electrons with mixed character and represents the number of heavy electrons is studied. This number is shown to be small. The quasi-particle density of states (DOS) shows the existence of a pseudo-gap due to superconductivity and the signature of a hybridization gap at the Fermi level. For the choice of the model parameters, the DOS shows that the HFS is a metal and undergoes a transition to the gap-less superconducting state. (author)

  17. S-I-N tunneling spectroscopy of MgB2 superconductor: evidence of two superconducting energy gaps

    International Nuclear Information System (INIS)

    Sen, Shashwati; Aswal, D.K.; Singh, Ajay; Gadkari, S.C.; Shah, K.; Gupta, S.K.; Sahni, V.C.

    2002-01-01

    The tunneling spectra of polycrystalline MgB 2 , have been recorded, at different temperatures between 29 K and T c , using planar superconductor- insulating-normal (S-I-N) tunneling spectroscopy. The planar S-I-N tunnel junctions have been fabricated by thermally evaporating Ag electrodes on MgB 2 surface. The naive layer, which forms at the surface of MgB 2 , due to atmospheric degradation, was employed as an insulating layer between Ag electrodes and MgB 2 . We have found presence of two clear superconducting energy gaps in MgB 2 . The magnitudes of these gaps at 29.5 K are 1.8 and 5.9 MeV, respectively. In the vicinity of T c , while larger energy gap obeyed BCS temperature dependence, the smaller energy gap deviated from BCS dependence. All the spectra exhibited zero-bias conductance, which decreased linearly with temperature and vanished at T c . (author)

  18. Anisotropic energy-gaps of iron-based superconductivity from intra-band quasiparticle interference in LiFeAs

    Energy Technology Data Exchange (ETDEWEB)

    Rost, A.W. [LASSP, Department of Physics, Cornell, Ithaca, NY 14853 (United States); SUPA, School of Physics and Astronomy, Univ. of St Andrews, St Andrews, Fife KY16 9SS (United Kingdom); Allan, M.P. [LASSP, Department of Physics, Cornell, Ithaca, NY 14853 (United States); SUPA, School of Physics and Astronomy, Univ. of St Andrews, St Andrews, Fife KY16 9SS (United Kingdom); CMPMS Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Mackenzie, A.P. [SUPA, School of Physics and Astronomy, Univ. of St Andrews, St Andrews, Fife KY16 9SS (United Kingdom); Xie, Y. [CMPMS Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Davis, J.C. [LASSP, Department of Physics, Cornell, Ithaca, NY 14853 (United States); SUPA, School of Physics and Astronomy, Univ. of St Andrews, St Andrews, Fife KY16 9SS (United Kingdom); CMPMS Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Kavli Institute at Cornell for Nanoscale Science, Cornell, Ithaca, NY 14853 (United States); Kihou, K.; Lee, C.H.; Iyo, A.; Eisaki, H. [AIST, Tsukuba, Ibaraki 305-8568 (Japan); Chuang, T.M. [LASSP, Department of Physics, Cornell, Ithaca, NY 14853 (United States); CMPMS Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Inst. of Physics, Academica Sinica, Nankang, Taipei 11529, Taiwan (China)

    2012-07-01

    Cooper pairing in the Fe-based superconductors is thought to occur due to the projection of the antiferromagnetic interactions between iron atoms onto the complex momentum-space electronic structure. A key consequence is that distinct anisotropic energy gaps {Delta}{sub i}(k) with specific relative orientations should occur on the different electronic bands i. To determine this previously unresolved gap structure high-precision spectroscopy is required. Here we introduce the STM technique of intra-band Bogolyubov quasiparticle scattering interference (QPI) to iron-based superconductor studies, focusing on LiFeAs. We identify the QPI signatures of three hole-like dispersions and, by introducing a new QPI technique, determine the magnitude and relative orientations of corresponding anisotropic {Delta}{sub i}(k). Intra-band Bogolyubov QPI therefore yields the spectroscopic information required to identify the mechanism of superconductivity in Fe-based superconductors.

  19. Superconducting gap anomaly in heavy fermion systems

    Indian Academy of Sciences (India)

    of a pseudo-gap due to superconductivity and the signature of a hybridization gap at the. Fermi level. For the choice of the model parameters, the DOS shows that the HFS is a metal and undergoes a transition to the gap-less superconducting state. Keywords. Heavy fermion superconductor; Narrow band system; Valence ...

  20. Model Evidence of a Superconducting State with a Full Energy Gap in Small Cuprate Islands

    Science.gov (United States)

    Black-Schaffer, Annica M.; Golubev, Dmitri S.; Bauch, Thilo; Lombardi, Floriana; Fogelström, Mikael

    2013-05-01

    We investigate subdominant order parameters stabilizing at low temperatures in nanoscale high-Tc cuprate islands, motivated by the recent observation of a fully gapped state in nanosized YBa2Cu3O7-δ [D. Gustafsson et al., Nature Nanotech. 8, 25 (2013)]. Using complementary quasiclassical and tight-binding Bogoliubov-de Gennes methods, we show on distinctly different properties dependent on the symmetry being dx2-y2+is or dx2-y2+idxy. We find that a surface-induced dx2-y2+is phase creates a global spectroscopic gap which increases with an applied magnetic field, consistent with experimental observation.

  1. Phonon-induced enhancements of the energy gap and critical current in superconducting aluminum

    International Nuclear Information System (INIS)

    Seligson, D.

    1983-05-01

    8 to 10 GHz phonons were generated by piezoelectric transduction of a microwave and by means of a quartz delay line, were allowed to enter the aluminum only after the microwaves had long since disappeared. The maximum enhancements detected were [deltaT/T/sub c/] = -0.07, for i/sub c/ and [deltaT/T/sub c/] = -0.03 for Δ. The power- and temperature-dependence (0.82 less than or equal to T/T/sub c/ less than or equal to 0.994) of the enhancements were compared with the prediction of a theory given by Eliashberg. The gap-enhancement was in good agreement with the theory only for low input lower. The critical current measurements are predicted to be in rough agreement with the Δ measurements but this was not observed. The magnitude of the critical current enhancements was typically more than twice the observed gap enhancements. The measured critical current enhancement was relatively independent of temperature whereas the gap enhancement decreased rapidly as the temperature was lowered

  2. Angle-resolved photoemission studies of the superconducting gap symmetry in Fe-based superconductors

    Directory of Open Access Journals (Sweden)

    Y.-B. Huang

    2012-12-01

    Full Text Available The superconducting gap is the fundamental parameter that characterizes the superconducting state, and its symmetry is a direct consequence of the mechanism responsible for Cooper pairing. Here we discuss about angle-resolved photoemission spectroscopy measurements of the superconducting gap in the Fe-based high-temperature superconductors. We show that the superconducting gap is Fermi surface dependent and nodeless with small anisotropy, or more precisely, a function of the momentum location in the Brillouin zone. We show that while this observation seems inconsistent with weak coupling approaches for superconductivity in these materials, it is well supported by strong coupling models and global superconducting gaps. We also suggest that a smaller lifetime of the superconducting Cooper pairs induced by the momentum dependent interband scattering inherent to these materials could affect the residual density of states at low energies, which is critical for a proper evaluation of the superconducting gap.

  3. Superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Rogers, J.D.; Boenig, H.J.

    1978-01-01

    Superconducting inductors provide a compact and efficient means of storing electrical energy without an intermediate conversion process. Energy storage inductors are under development for diurnal load leveling and transmission line stabilization in electric utility systems and for driving magnetic confinement and plasma heating coils in fusion energy systems. Fluctuating electric power demands force the electric utility industry to have more installed generating capacity than the average load requires. Energy storage can increase the utilization of base-load fossil and nuclear power plants for electric utilities. Superconducting magnetic energy storage (SMES) systems, which will store and deliver electrical energy for load leveling, peak shaving, and the stabilization of electric utility networks are being developed. In the fusion area, inductive energy transfer and storage is also being developed by LASL. Both 1-ms fast-discharge theta-pinch and 1-to-2-s slow tokamak energy transfer systems have been demonstrated. The major components and the method of operation of an SMES unit are described, and potential applications of different size SMES systems in electric power grids are presented. Results are given for a 1-GWh reference design load-leveling unit, for a 30-MJ coil proposed stabilization unit, and for tests with a small-scale, 100-kJ magnetic energy storage system. The results of the fusion energy storage and transfer tests are also presented. The common technology base for the systems is discussed

  4. Superconducting energy store

    International Nuclear Information System (INIS)

    Elsel, W.

    1986-01-01

    The advantages obtained by the energy store device according to the invention with a superconducting solenoid system consist of the fact that only relatively short superconducting forward and return leads are required, which are collected into cables as far as possible. This limits the coolant losses of the cables. Only one relatively expensive connecting part with a transition of its conductors from room temperature to a low temperature is required, which, like the normal conducting current switch, is easily accessible. As the continuation has to be cooled independently of the upper part solenoid, cooling of this continuation part can prevent the introduction of large quantities of heat into the connected part solenoid. Due to the cooling of the forward and return conductors of the connecting cable with the coolant of the lower part solenoid, there are relatively few separations between the coolant spaces of the part solenoids. (orig./MM) [de

  5. Superconducting Magnetic Energy Storage

    International Nuclear Information System (INIS)

    Hassenzahl, W.

    1989-01-01

    Recent programmatic developments in Superconducting Magnetic Energy Storage (SMES) have prompted renewed and widespread interest in this field. In mid 1987 the Defense Nuclear Agency, acting for the Strategic Defense Initiative Office issued a request for proposals for the design and construction of SMES Engineering Test Model (ETM). Two teams, one led by Bechtel and the other by Ebasco, are now engaged in the first phase of the development of a 10 to 20 MWhr ETM. This report presents the rationale for energy storage on utility systems, describes the general technology of SMES, and explains the chronological development of the technology. The present ETM program is outlined; details of the two projects for ETM development are described in other papers in these proceedings. The impact of high Tc materials on SMES is discussed

  6. Coupling between magnetic and superconducting order parameters and evidence for the spin excitation gap in the superconducting state of a heavy fermion superconductor UPd2Al3

    International Nuclear Information System (INIS)

    Metoki, Naoto; Haga, Yoshinori; Koike, Yoshihiro; Aso, Naofumi; Onuki, Yoshichika

    1997-01-01

    Neutron scattering experiments have been carried out in order to study the interplay between magnetism and superconductivity in a heavy fermion superconductor, UPd 2 Al 3 . We have observed 1% suppression of the (0 0 0.5) magnetic peak intensity below the superconducting transition temperature T c . This is direct evidence for the coupling of the magnetic order parameter with the superconducting one. Furthermore, we have observed a spin excitation gap associated with superconductivity. The gap energy ΔE g increases continuously from ΔE g =0 to 0.4 meV with decreasing temperature from T c to 0.4 K. This gap energy corresponds to 2k B T c , which is smaller than the superconducting gap expected from the BCS theory (3.5k B T c ). These results are indicative of the strong interplay between magnetism and superconductivity. (author)

  7. Infrared studies of the superconducting energy gap and normal-state dynamics of the high-Tc superconductor YBa2Cu3O7

    International Nuclear Information System (INIS)

    Schlesinger, Z.; Collins, R.T.; Holtzberg, F.; Feild, C.; Koren, G.; Gupta, A.

    1990-01-01

    A detailed study of infrared properties (reflectivity, conductivity, and dielectric response), emphasizing reproducible results from fully oxygenated YBa 2 Cu 3 O 7 crystals (T c congruent 93 K) and films, is presented. The extrapolated values of σ 1 (ω) at low frequency are roughly consistent with the measured temperature-dependent dc resistivity. Although not well understood, this infrared conductivity can be interpreted in terms of a frequency-dependent scattering rate of ∼kT+ℎω, with a low-frequency mass enhancement of roughly 2 to 4 associated with a carrier-spin related interaction. Infrared measurements polarized along the c axis suggest a conductivity anisotropy of roughly 40:1 near T c in the normal state. In the superconducting state an energy scale of 2Δ c congruent 3kT c is suggested by c-axis polarized measurements, while a much larger characteristic energy of 2Δ a-b congruent 8kT c is evident in the (a-b)-plane conductivity. From the area missing from the conductivity up to this very large gap, a reasonable estimate (congruent 1700 A) for the (a-b)-plane penetration depth is obtained. Evidence for non-BCS temperature dependence, strong pair breaking scattering, and possible fluctuation effects is discussed. A comparison to infrared data from Bi 2 Sr 2 CaCu 2 O 8-y shows a similarly large energy scale, 2Δ a-b congruent 8kT c ; for the cubic Ba 0.6 K 0.4 BiO 3 superconductor a more conventional energy scale, 2Δ congruent 4kT c is observed

  8. Superconductive energy storage magnet study

    International Nuclear Information System (INIS)

    Rhee, S.W.

    1982-01-01

    Among many methods of energy storages the superconducting energy storage has been considered as the most promising method. Many related technical problems are still unsolved. One of the problems is the magnetizing and demagnetizing loss of superconducting coil. This loss is mainly because of hysteresis of pinning force. In this paper the hysteresis loss is calculated and field dependence of the a.c. losses is explained. The ratio of loss and stored energy is also calculated. (Author)

  9. Superconductivity, energy storage and switching

    International Nuclear Information System (INIS)

    Laquer, H.L.

    1974-01-01

    The phenomenon of superconductivity can contribute to the technology of energy storage and switching in two distinct ways. On one hand the zero resistivity of the superconductor can produce essentially infinite time constants so that an inductive storage system can be charged from very low power sources. On the other hand, the recovery of finite resistivity in a normal-going superconducting switch can take place in extremely short times, so that a system can be made to deliver energy at a very high power level. Topics reviewed include: physics of superconductivity, limits to switching speed of superconductors, physical and engineering properties of superconducting materials and assemblies, switching methods, load impedance considerations, refrigeration economics, limitations imposed by present day and near term technology, performance of existing and planned energy storage systems, and a comparison with some alternative methods of storing and switching energy. (U.S.)

  10. Observation of gap inhomogeneity in superconducting aluminum tunnel junctions

    International Nuclear Information System (INIS)

    Gilmartin, H.R.

    1982-01-01

    Experiments using a novel technique to investigate spatial variations in the superconducting gap parameter of aluminum films driven out of equilibrium by intense tunnel injection are described. The technique features fine spatial and energy resolution of the gap parameter. The experiments employed a finely focused laser spot scanned across the surface of a double tunnel junction sandwich to produce a very weak electrical signal that was analyzed to determine the gap parameter as a function of position in the plane of the device. Technical aspects of the problem are emphasized, since a new technique is presented. An elaborate explanation of the origin and analysis of the laser induced signal is given, as well as a detailed description of the experimental apparatus. Very briefly, the principle of operation is that a large flux of quasiparticles is injected through the lower junction of the sandwich into the middle aluminum film, and the upper junction serves to detect the effects of that injection. The middle film takes on two or more values of the gap parameter under injection, presumably indicating spatial variation. The presence of a small laser spot on a given point on the device perturbs the potential on the detector junction very slightly. That perturbation is measured as a function of bias current to determine the gap parameter of the middle film at that point. The spot is scanned in a raster pattern to produce a picture of the space dependence of the gap parameter

  11. Heat Transport as a Probe of Superconducting Gap Structure

    International Nuclear Information System (INIS)

    Petrovic, C.; Shakeripour, H.; Taillefer, L.

    2009-01-01

    The structure of the superconducting gap provides important clues on the symmetry of the order parameter and the pairing mechanism. The presence of nodes in the gap function imposed by symmetry implies an unconventional order parameter, other than s-wave. Here we show how measurements of the thermal conductivity at very low temperature can be used to determine whether such nodes are present in a particular superconductor, and shed light on their nature and location. We focus on the residual linear term at T → 0. A finite value in zero magnetic field is strong evidence for symmetry-imposed nodes, and the dependence on impurity scattering can distinguish between a line of nodes or point nodes. Application of a magnetic field probes the low-energy quasiparticle excitations, whether associated with nodes or with a small value of the gap on some part of the Fermi surface, as in a multi-band superconductor. We frame our discussion around archetypal materials: Nb for s-wave, Tl 2 Ba 2 CuO 6+δ for d-wave, Sr 2 RuO 4 for p-wave, and NbSe 2 for multi-band superconductivity. In that framework, we discuss three heavy-fermion superconductors: CeIrIn 5 , CeCoIn 5 and UPt 3 .

  12. Superconducting energy storage magnet

    Science.gov (United States)

    Boom, Roger W. (Inventor); Eyssa, Yehia M. (Inventor); Abdelsalam, Mostafa K. (Inventor); Huang, Xianrui (Inventor)

    1993-01-01

    A superconducting magnet is formed having composite conductors arrayed in coils having turns which lie on a surface defining substantially a frustum of a cone. The conical angle with respect to the central axis is preferably selected such that the magnetic pressure on the coil at the widest portion of the cone is substantially zero. The magnet structure is adapted for use as an energy storage magnet mounted in an earthen trench or tunnel where the strength the surrounding soil is lower at the top of the trench or tunnel than at the bottom. The composite conductor may be formed having a ripple shape to minimize stresses during charge up and discharge and has a shape for each ripple selected such that the conductor undergoes a minimum amount of bending during the charge and discharge cycle. By minimizing bending, the working of the normal conductor in the composite conductor is minimized, thereby reducing the increase in resistance of the normal conductor that occurs over time as the conductor undergoes bending during numerous charge and discharge cycles.

  13. Superconducting energy storage magnet

    International Nuclear Information System (INIS)

    Eyssa, Y.M.; Boom, R.W.; Young, W.C.; McIntosh, G.E.; Abdelsalam, M.K.

    1986-01-01

    A superconducting magnet is described comprising: (a) a first, outer coil of one layer of conductor including at least a superconducting composite material; (b) a second, inner coil of one layer of conductor including at least a superconducting composite material. The second coil disposed adjacent to the first coil with each turn of the second inner coil at substantially the same level as a turn on the first coil; (c) an inner support structure between the first and second coils and engaged to the conductors thereof, including support rails associated with each turn of conductor in each coil and in contact therewith along its length at positions on the inwardly facing periphery of the conductor. The rail associated with each conductor is electrically isolated from other rails in the inner support structure. The magnetic field produced by a current flowing in the same direction through the conductors of the first and second coils produces a force on the conductors that are directed inwardly toward the inner support structure

  14. Critical energy of superconducting composites

    International Nuclear Information System (INIS)

    Jayakumar, R.

    1987-01-01

    The stability of superconducting composites is studied in one-dimensional geometry and critical quench energies are calculated by solving for the steady state temperature profile which gives the minimum energy. The present calculations give lower values for the critical energy than previous estimates. The calculations are shown to be applicable to both direct cooled and impregnated conductors. Critical energies are also calculated including the effect of temperature dependence of conductor properties. (author)

  15. Effect of anitiferromagnetism on superconducting gap of cuprates

    International Nuclear Information System (INIS)

    Rout, G.C.; Panda, B.N.; Bishoyi, K.C.

    2000-01-01

    The interplay between superconductivity (SC) and antiferromagnetism (AF) is studied in strongly correlated systems: R 2-x M x CuO 4 (R = Nd, La, Pr, Gd; M = Sr, Ge). It is assumed that superconductivity arises due to BCS pairing mechanism in presence of AF in Cu lattices of Cu-O planes. Temperature dependence of SC gap as well as staggered magnetic field are calculated analytically and solved self-consistently with respect to half-filled band situation for different model parameters λ 1 , and λ 2 being SC and AF coupling parameters respectively. The SC gap is studied in the coexistent phase of SC and AFM. (author)

  16. Superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Rogers, J.D.

    1976-01-01

    Fusion power production requires energy storage and transfer on short time scales to create confining magnetic fields and for heating plasmas. The theta-pinch Scyllac Fusion Test Reactor (SFTR) requires 480 MJ of energy to drive the 5-T compression field with a 0.7-ms rise time. Tokamak Experimental Power Reactors (EPR) require 1 to 2 GJ of energy with a 1 to 2-s rise time for plasma ohmic heating. The design, development, and testing of four 300-kJ energy storage coils to satisfy the SFTR needs are described. Potential rotating machinery and homopolar energy systems for both the Reference Theta-Pinch Reactor (RTPR) and tokamak ohmic-heating are presented

  17. Energy-gap spectroscopy of superconductors using a tunneling microscope

    International Nuclear Information System (INIS)

    Le Duc, H.G.; Kaiser, W.J.; Stern, J.A.

    1987-01-01

    A unique scanning tunneling microscope (STM) system has been developed for spectroscopy of the superconducting energy gap. High-resolution control of tunnel current and voltage allows for measurement of superconducting properties at tunnel resistance levels 10 2 --10 3 greater than that achieved in prior work. The previously used STM methods for superconductor spectroscopy are compared to those developed for the work reported here. Superconducting energy-gap spectra are reported for three superconductors, Pb, PbBi, and NbN, over a range of tunnel resistance. The measured spectra are compared directly to theory

  18. Energy applications of superconductivity

    International Nuclear Information System (INIS)

    Schneider, T.R.; Dale, S.J.; Wolf, S.M.

    1991-01-01

    Recent progress in developing high-temperature superconductors has enhanced the economic viability of energy applications such as power systems, motors, material processing and handling, refrigeration, transportation, and power electronics. This paper discusses the technical and economic issues associated with these applications

  19. On Pokrovskii's anisotropic gap equations in superconductivity theory

    Science.gov (United States)

    Yang, Yisong

    2003-11-01

    An existence and uniqueness theorem for Pokrovskii's zero-temperature anisotropic gap equation is proved. Furthermore, it is shown that Pokrovskii's finite-temperature equation is inconsistent with the Bardeen-Cooper-Schrieffer (BCS) theory. A reformulation of the anisotropic gap equation is presented along the line of Pokrovskii and it is shown that the new equation is consistent with the BCS theory for the whole temperature range. As an application, the Markowitz-Kadanoff model for anisotropic superconductivity is considered and a rigorous proof of the half-integer-exponent isotope effect is obtained. Furthermore, a sharp estimate of the gap solution near the transition temperature is established.

  20. Superconductivity in energy technologies

    International Nuclear Information System (INIS)

    1990-01-01

    Four years after the sensational discovery the purpose of this book is to show the current state of the art, the technical-physical concepts and new aspects of the technical application and use of superconductors, in the field of energy technologies. The book will focus primarily on the following topics: general introductions; materials: requirements, properties, manufacture, processing; cryotechnology; machines, cables, switches, transformers; energy storage; magnetic engineering for fusion, transport and mass separation; magnets for particle accelerators; promotional activities, economy, patents. This book has been written by and for scientists and engineers working in industry, large-scale research institutions, universities and other research and application fields to help further their knowledge in this field. Apart from the current state of the art, the book also describes future application and development possibilities for the superconductor in power engineering. (orig.)

  1. Multi-gap superconductivity in MgB2: Magneto-Raman spectroscopy

    International Nuclear Information System (INIS)

    Blumberg, G.; Mialitsin, A.; Dennis, B.S.; Zhigadlo, N.D.; Karpinski, J.

    2007-01-01

    Electronic Raman scattering studies on MgB 2 single crystals as a function of excitation and polarization have revealed three distinct superconducting features: a clean gap below 37 cm -1 and two coherence peaks at 109 and 78 cm -1 which we identify as the superconducting gaps in π- and σ-bands and as the Leggett's collective mode arising from the fluctuation in the relative phase between two superconducting condensates residing on corresponding bands. The temperature and field dependencies of the superconducting features have been established. A phononic Raman scattering study of the E 2g boron stretching mode anharmonicity and of superconductivity induced self-energy effects is presented. We show that anharmonic two phonon decay is mainly responsible for the unusually large linewidth of the E 2g mode. We observe ∼2.5% hardening of the E 2g phonon frequency upon cooling into the superconducting state and estimate the electron-phonon coupling strength associated with this renormalization

  2. Gap features of layered iron-selenium-tellurium compound below and above the superconducting transition temperature by break-junction spectroscopy combined with STS

    Science.gov (United States)

    Ekino, T.; Sugimoto, A.; Gabovich, A. M.

    2018-05-01

    We studied correlations between the superconducting gap features of Te-substituted FeSe observed by scanning tunnelling spectroscopy (STS) and break-junction tunnelling spectroscopy (BJTS). At bias voltages outside the superconducting gap-energy range, the broad gap structure exists, which becomes the normal-state gap above the critical temperature, T c. Such behaviour is consistent with the model of the partially gapped density-wave superconductor involving both superconducting gaps and pseudogaps, which has been applied by us earlier to high-Tc cuprates. The similarity suggests that the parent electronic spectrum features should have much in common for these classes of materials.

  3. A new perspective on anisotropy and multiple energy gaps in superconductors

    International Nuclear Information System (INIS)

    Milkove, K.R.; Bostock, J.; MacVicar, M.L.A.

    1976-01-01

    New perspective on superconducting anisotropy and multiple energy gaps: direct experimental evidence shows that widely accepted anisotropy and multiple energy gap interpretations of tunneling data are consistent with a voltage divider model and may not relate to intrinsic superconducting properties. The model also accounts for other common data anomalies. (author)

  4. Superconducting magnetic energy storage, possibilities and limitations

    International Nuclear Information System (INIS)

    Bace, M.; Knapp, V.

    1981-01-01

    Energy storage is of great importance for the exploitation of new energy sources as well as for the better utilisation of conventional ones. Several proposals in recent years have suggested that superconducting magnets could be used as energy storage in large electricity networks. It is a purpose of this note to point out that the requirements which have to be met by energy storage in a large electricity network place serious limitation on the possible use of superconducting energy storage. (author)

  5. Superconductivity

    CERN Document Server

    Poole, Charles P; Farach, Horacio A

    1995-01-01

    Superconductivity covers the nature of the phenomenon of superconductivity. The book discusses the fundamental principles of superconductivity; the essential features of the superconducting state-the phenomena of zero resistance and perfect diamagnetism; and the properties of the various classes of superconductors, including the organics, the buckministerfullerenes, and the precursors to the cuprates. The text also describes superconductivity from the viewpoint of thermodynamics and provides expressions for the free energy; the Ginzburg-Landau and BCS theories; and the structures of the high

  6. Superconducting magnets in high energy physics

    International Nuclear Information System (INIS)

    Prodell, A.G.

    1978-01-01

    The applications of superconducting magnets in high energy physics in the last ten years have made feasible developments which are vital to high energy research. These developments include high magnetic field, large volume detectors, such as bubble chambers, required for effective resolution of high energy particle trajectories, particle beam transport magnets, and superconducting focusing and bending magnets for the very high energy accelerators and storage rings needed to pursue the study of interactions between elementary particles. The acceptance of superconductivity as a proven technology in high energy physics was reinforced by the recognition that the existing large accelerators using copper-iron magnets had reached practical limits in terms of magnetic field intensity, cost, space, and energy usage, and that large-volume, high-field, copper-iron magnets were not economically feasible. Some of the superconducting magnets and associated systems being used in and being developed for high energy physics are described

  7. A new singularity in the coherent coupling in Al/GaAs/Al SNS junctions at the bias voltage corresponding to the superconducting energy gap

    DEFF Research Database (Denmark)

    Taboryski, Rafael Jozef; Kutchinsky, Jonatan; Kuhn, Oliver

    1998-01-01

    Particularly high transmittivity superconductor-semiconductor barriers formed by MBE growth have been used to form short Josephson planar type Superconductor-Normal-metal-Superconductor (SNS) Josephson junctions with lengths down to 1 mu m. In these junctions the quasiparticles move diffusively...... across the normal region and carry along the phase information given to them by Andreev reflections at both SN boundaries. In order to probe the importance of the coherent transport of quasiparticles in the normal region, we formed one of the superconducting electrodes of the junction as an open loop i...

  8. Superconductivity in high energy particle accelerators

    International Nuclear Information System (INIS)

    Schmueser, P.

    2002-08-01

    The basics of superconductivity are outlined with special emphasis on the features which are relevant for the application in magnets and radio frequency cavities for high energy particle accelerators. The special properties of superconducting accelerator magnets are described in detail: design principles, magnetic field calculations, magnetic forces, quench performance, persistent magnetization currents and eddy currents. The design principles and basic properties of superconducting cavities are explained as well as the observed performance limitations and the countermeasures. The ongoing research efforts towards maximum accelerating fields are addressed and the coupling of radio frequency power to the particle beam is treated. (orig.)

  9. Design Tool for Liquid-Nitrogen Gaps in Superconducting Apparatus

    International Nuclear Information System (INIS)

    Pace, Marshall O.; Sauers, Isidor; James, David Randy; Tuncer, Enis; Polyzos, Georgios

    2011-01-01

    For designers of high temperature superconducting equipment with liquid nitrogen as a dielectric, an expedient universal curve is sought that provides breakdown strength for a specified class of electrode shapes, with any practical sizes of electrodes and gap; thus the universal curve fills in missing experimental data. Universal breakdown strength curves at pressures of or slightly above 100 kPa, are being developed for AC, DC or impulse stress for the class with sphere-sphere, plane-plane and sphere-plane gaps, with three independent parameters: the size of each electrode and gap. A user can normalize his parameters and find the corresponding breakdown strength, even though no data were available for his exact dimensions. For AC and DC stresses the geometrical effects of stressed area/volume are incorporated from most published AC and DC experimental data of the last 50 years, by plotting breakdown field versus new geometrical quantities, such that all data fall approximately on or near one normalized universal curve. This avoids the usual difficult task of calculating stressed area and volume effects on the breakdown values for the graph ordinate. For impulse stress a more traditional plot suffices to produce a universal curve. This suggests that area/volume effects might not be so important with impulse stress. If the method proves reliable, it may be possible to determine design parameters for a broad range of geometries, help unify seemingly disparate breakdown data in the literature, and provide easily used, practical guidance for designers.

  10. Superconductivity

    CERN Document Server

    Thomas, D B

    1974-01-01

    A short general review is presented of the progress made in applied superconductivity as a result of work performed in connection with the high-energy physics program in Europe. The phenomenon of superconductivity and properties of superconductors of Types I and II are outlined. The main body of the paper deals with the development of niobium-titanium superconducting magnets and of radio-frequency superconducting cavities and accelerating structures. Examples of applications in and for high-energy physics experiments are given, including the large superconducting magnet for the Big European Bubble Chamber, prototype synchrotron magnets for the Super Proton Synchrotron, superconducting d.c. beam line magnets, and superconducting RF cavities for use in various laboratories. (0 refs).

  11. Superconducting RF for energy-recovery linacs

    International Nuclear Information System (INIS)

    Liepe, M.; Knobloch, J.

    2006-01-01

    Since superconducting RF for particle accelerators made its first appearance in the 1970s, it has found highly successful application in a variety of machines. Recent progress in this technology has made so-called Energy-Recovery Linacs (ERLs)-originally proposed in 1965-feasible, and interest in this type of machine has increased enormously. A superconducting linac is the driving heart of ERLs, and emittance preservation and cost efficiency is of utmost importance. The resulting challenges for the superconducting cavity technology and RF field control are manifold. In March 2005 the first international workshop on ERLs was held at Newport News, VA, to explore the potential of ERLs and to discuss machine-physics and technology challenges and their solutions. This paper reviews the state-of-the-art in superconducting RF and RF control for ERLs, and summarizes the discussions of the SRF working group on this technology during the ERL2005 workshop

  12. Dependence of the quasiparticle recombination rate on the superconducting gap and TC

    Science.gov (United States)

    Carr, G. L.; Xi, Xiaoxiang; Hwang, J.; Tashiro, H.; Reitze, D. H.; Tanner, D. B.

    2010-03-01

    The relaxation of excess quasiparticles in a BCS superconductor is known to depend on quantities such as the quasiparticle & phonon density of states, and their coupling (Kaplan et al, Phys. Rev. B 14 4854, 1976). Disorder or an applied field can disrupt superconductivity, as evidenced by a reduced TC. We consider some simple modifications to the quasiparticle density of states consistent with a suppressed energy gap and TC, leading to changes in the intrinsic and effective (measured) rates for excess quasiparticles to recombine into pairs. We review some results for disordered MoGe and discuss the magnetic-field dependence of the recombination process.

  13. High speed superconducting flywheel system for energy storage

    Science.gov (United States)

    Bornemann, H. J.; Urban, C.; Boegler, P.; Ritter, T.; Zaitsev, O.; Weber, K.; Rietschel, H.

    1994-12-01

    A prototype of a flywheel system with auto stable high temperature superconducting bearings was built and tested. The bearings offered good vertical and lateral stability. A metallic flywheel disk, ø 190 mm x 30 mm, was safely rotated at speeds up to 15000 rpm. The disk was driven by a 3 phase synchronous homopolar motor/generator. Maximum energy capacity was 3.8 Wh, maximum power was 1.5 KW. The dynamic behavior of the prototype was tested, characterized and evaluated with respect to axial and lateral stiffness, decay torques (bearing drag), vibrational modes and critical speeds. The bearings supports a maximum weight of 65 N at zero gap, axial and lateral stiffness at 1 mm gap were 440 N/cm and 130 N/cm, respectively. Spin down experiments were performed to investigate the energy efficiency of the system. The decay rate was found to depend upon background pressure in the vacuum chamber and upon the gap width in the bearing. At a background pressure of 5x10 -4 Torr, the coefficient of friction (drag-to-lift ratio) was measured to be 0.000009 at low speeds for 6 mm gap width in the bearing. Our results indicate that further refinement of this technology will allow operation of higly efficient superconducting flywheels in the kWh range.

  14. Kinetics-Driven Superconducting Gap in Underdoped Cuprate Superconductors Within the Strong-Coupling Limit

    Directory of Open Access Journals (Sweden)

    Yucel Yildirim

    2011-09-01

    Full Text Available A generic theory of the quasiparticle superconducting gap in underdoped cuprates is derived in the strong-coupling limit, and found to describe the experimental “second gap” in absolute scale. In drastic contrast to the standard pairing gap associated with Bogoliubov quasiparticle excitations, the quasiparticle gap is shown to originate from anomalous kinetic (scattering processes, with a size unrelated to the pairing strength. Consequently, the k dependence of the gap deviates significantly from the pure d_{x^{2}-y^{2}} wave of the order parameter. Our study reveals a new paradigm for the nature of the superconducting gap, and is expected to reconcile numerous apparent contradictions among existing experiments and point toward a more coherent understanding of high-temperature superconductivity.

  15. High Tc superconducting energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Werfel, Frank [Adelwitz Technologiezentrum GmbH (ATZ), Arzberg-Adelwitz (Germany)

    2012-07-01

    Electric energy is basic to heat and light our homes, to power our businesses and to transport people and goods. Powerful storage techniques like SMES, Flywheel, Super Capacitor, and Redox - Flow batteries are needed to increase the overall efficiency, stability and quality of electrical grids. High-Tc superconductors (HTS) possess superior physical and technical properties and can contribute in reducing the dissipation and losses in electric machines as motors and generators, in electric grids and transportation. The renewable energy sources as solar, wind energy and biomass will require energy storage systems even more as a key technology. We survey the physics and the technology status of superconducting flywheel energy storage (FESS) and magnetic energy storage systems (SMES) for their potential of large-scale commercialization. We report about a 10 kWh / 250 kW flywheel with magnetic stabilization of the rotor. The progress of HTS conductor science and technological engineering are basic for larger SMES developments. The performance of superconducting storage systems is reviewed and compared. We conclude that a broad range of intensive research and development in energy storage is urgently needed to produce technological options that can allow both climate stabilization and economic development.

  16. Playing catch with energy between two superconducting coils

    International Nuclear Information System (INIS)

    Masuda, Masayoshi; Shintomi, Takakazu; Asaji, Kiyoyuki.

    1979-03-01

    The first performance of playing catch with energy between two 100 kJ superconducting magnets has been presented. The mechanism of the energy transfer as an interface between the superconducting coils is a thyristorized DC-AC-DC converter. The obtained experimental efficiency of energy transfer has been compared with the theory and good agreement has been obtained. The method will offer a versatile extension of superconductive technique in energy problems. (author)

  17. Transformation of the superconducting gap to an insulating pseudogap at a critical hole density in the cuprates

    Science.gov (United States)

    Liu, Ye-Hua; Wang, Wan-Sheng; Wang, Qiang-Hua; Zhang, Fu-Chun; Rice, T. M.

    2017-07-01

    We apply the recent wave-packet formalism developed by Ossadnik to describe the origin of the short-range ordered pseudogap state as the hole doping is lowered through a critical density in cuprates. We argue that the energy gain that drives this precursor state to Mott localization, follows from maximizing umklapp scattering near the Fermi energy. To this end, we show how energy gaps driven by umklapp scattering can open on an appropriately chosen surface, as proposed earlier by Yang, Rice, and Zhang. The key feature is that the pairing instability includes umklapp scattering, leading to an energy gap not only in the single-particle spectrum but also in the pair spectrum. As a result the superconducting gap at overdoping is turned into an insulating pseudogap in the antinodal parts of the Fermi surface.

  18. Coupler Development and Gap Field Analysis for the 352 MHz Superconducting CH-Cavity

    CERN Document Server

    Liebermann, H; Ratzinger, U; Sauer, A C

    2004-01-01

    The cross-bar H-type (CH) cavity is a multi-gap drift tube structure based on the H-210 mode currently under development at IAP Frankfurt and in collaboration with GSI. Numerical simulations and rf model measurements showed that the CH-type cavity is an excellent candidate to realize s.c. multi-cell structures ranging from the RFQ exit energy up to the injection energy into elliptical multi-cell cavities. The reasonable frequency range is from about 150 MHz up to 800 MHz. A 19-cell, β=0.1, 352 MHz, bulk niobium prototype cavity is under development at the ACCEL-Company, Bergisch-Gladbach. This paper will present detailed MicroWave Studio simulations and measurements for the coupler development of the 352 MHz superconducting CH cavity. It will describe possibilities for coupling into the superconducting CH-Cavity. The development of the coupler is supported by measurement on a room temperature CH-copper model. We will present the first results of the measurements of different couplers, e.g. capacitiv...

  19. Superconductivity: Phenomenology

    International Nuclear Information System (INIS)

    Falicov, L.M.

    1988-08-01

    This document discusses first the following topics: (a) The superconducting transition temperature; (b) Zero resistivity; (c) The Meissner effect; (d) The isotope effect; (e) Microwave and optical properties; and (f) The superconducting energy gap. Part II of this document investigates the Ginzburg-Landau equations by discussing: (a) The coherence length; (b) The penetration depth; (c) Flux quantization; (d) Magnetic-field dependence of the energy gap; (e) Quantum interference phenomena; and (f) The Josephson effect

  20. New superconducting coil configuration for energy storage

    International Nuclear Information System (INIS)

    Tokorabet, M.; Mailfert, A.; Colteu, A.

    1998-01-01

    Energy storage using superconducting coils involves the problem of electromagnetic field pollution outside the considered system. Different configurations are widely studied: the torus, the alone solenoid and multiple parallel solenoids enclosed in one container. A new configuration which minimizes the external pollution is studied in this paper. The theoretical system is composed of two spherical distributions of the current which are concentric. The analytical study uses solution of Laplace equations. Parametric study covers energy, flux density and geometrical data. The second study concerns the numerical approach of this design using coaxial solenoids. A comparison between this new system and the known systems is presented as a conclusion. (orig.)

  1. Direct observation of superconducting gaps in MgB 2 by angle-resolved photoemission spectroscopy

    Science.gov (United States)

    Souma, S.; Machida, Y.; Sato, T.; Takahashi, T.; Matsui, H.; Wang, S.-C.; Ding, H.; Kaminski, A.; Campuzano, J. C.; Sasaki, S.; Kadowaki, K.

    2004-08-01

    High-resolution angle-resolved photoemission spectroscopy has been carried out to clarify the anomalous superconductivity of MgB 2. We observed three bands crossing the Fermi level, which are ascribed to B2p-σ, π and surface bands. We have succeeded for the first time in directly observing the superconducting gaps of these bands separately. We have found that the superconducting-gap sizes of σ and surface bands are 6.5 ± 0.5 and 6.0 ± 0.5 meV, respectively, while that of the π band is much smaller (1.5 ± 0.5 meV). The present experimental result unambiguously demonstrates the validity of the two-band superconductivity in MgB 2.

  2. Direct observation of superconducting gaps in MgB2 by angle-resolved photoemission spectroscopy

    International Nuclear Information System (INIS)

    Souma, S.; Machida, Y.; Sato, T.; Takahashi, T.; Matsui, H.; Wang, S.-C.; Ding, H.; Kaminski, A.; Campuzano, J.C.; Sasaki, S.; Kadowaki, K.

    2004-01-01

    High-resolution angle-resolved photoemission spectroscopy has been carried out to clarify the anomalous superconductivity of MgB 2 . We observed three bands crossing the Fermi level, which are ascribed to B2p-σ, π and surface bands. We have succeeded for the first time in directly observing the superconducting gaps of these bands separately. We have found that the superconducting-gap sizes of σ and surface bands are 6.5 ± 0.5 and 6.0 ± 0.5 meV, respectively, while that of the π band is much smaller (1.5 ± 0.5 meV). The present experimental result unambiguously demonstrates the validity of the two-band superconductivity in MgB 2

  3. Rigorous study of the gap equation for an inhomogeneous superconducting state near T/sub c/

    International Nuclear Information System (INIS)

    Hu, C.

    1975-01-01

    A rigorous analytic study of the self-consistent gap equation (symobolically Δ=F/sub T/Δ), for an inhomogeneous superconducting state, is presented in the Bogoliubov formulation. The gap function Δ (r) is taken to simulate a planar normal-superconducting phase boundary: Δ (r) =Δ/sub infinity/ tanh(αΔ/sub infinity/z/v/sub F/) THETA (z), where Δ/sub infinity/(T) is the equilibrium gap, v/subF/ is the Fermi velocity, and THETA (z) is a unit step function. First a special space integral of the gap equation proportional∫ 0 /sub +//sup infinity/(F/sub T/-Δ)(dΔ/dz) dz is evaluated essentially exactly, except for a nonperturbative WKBJ approximation used in solving the Bogoliubov--de Gennes equations. It is then expanded near the transition temperature T/sub c/ in power of Δ/sub infinity/proportional (1-T/T/sub c/) 1 / 2 , demonstrating an exact cancellation of a subseries of ''anomalous-order'' terms. The leading surviving term is found to agree in order, but not in magnitude, with the Ginzburg-Landau-Gor'kov (GLG) approximation. The discrepancy is found to be linked to the slope discontinuity in our chosen Δ. A contour-integral technique in a complex-energy plane is then devised to evaluate the local value of F/sub T/-Δ exactly. Our result reveals that near T/sub c/ this method can reproduce the GLG result essentially everywhere, except within a BCS coherence length not xi (T) exclamation from a singularity in Δ, where F/sub T/-Δ can have a singular contribution with an ''anomalous'' local magnitude, not expected from the GLG approach. This anomalous term precisely accounts for the discrepancy found in the special integral of the gap equation as mentioned above, and likely explains the ultimate origin of the anomalous terms found in the free energy of an isolated vortex line by Cleary

  4. Two gap superconductivity in Ba0.55K0.45Fe2As2 single crystals studied by the directional point-contact Andreev reflection spectroscopy

    International Nuclear Information System (INIS)

    Szabo, P.; Pribulova, Z.; Pristas, G.; Bud'ko, S.L.; Canfield, P.C.; Samuely, P.

    2009-01-01

    First directional point-contact Andreev reflection spectroscopy on the Ba 0.55 K 0.45 Fe 2 As 2 single crystals is presented. The spectra show significant differences when measured in the ab plane in comparison with those measured in the c direction. In the latter case no traces of superconducting energy gap could be found, just a reduced point-contact conductance persisting up to about 100 K and indicating reduced density of states. On the other hand within the ab plane two nodeless superconducting energy gaps Δ S ∼2-5 meV and Δ L ∼9-11 meV are detected.

  5. Multiple superconducting gaps in MgB2 single crystals from magnetic torque

    International Nuclear Information System (INIS)

    Atsumi, Toshiyuki; Xu, Mingxiang; Kitazawa, Hideaki; Ishida, Takekazu

    2004-01-01

    We have measured the magnetic torque of an MgB 2 single crystal in the various different fields below 10 kG by using a torque magnetometer and a 4 K closed cycle refrigerator. The MgB 2 single crystal was synthesized by the vapor transport method. The torque can be measured as an off-balance signal of the Wheatstone bridge of the four piezoresistors on a Si cantilever. The torque curves are analyzed by the Kogan model. The superconducting anisotropy γ is rather independent of temperature in 5 and 10 kG, but is dependent on field up to 60 kG. We consider that the field dependence of γ comes from the nature of the multiple superconducting gaps. The experimental results show that the π-band superconducting gaps have been deteriorated gradually up to a crossover field H * (π) ∼ 20 kG at 10 K when the magnetic field increases

  6. Mathematical analysis of the multiband BCS gap equations in superconductivity

    Science.gov (United States)

    Yang, Yisong

    2005-01-01

    In this paper, we present a mathematical analysis for the phonon-dominated multiband isotropic and anisotropic BCS gap equations at any finite temperature T. We establish the existence of a critical temperature T so that, when TT, the only nonnegative gap solution is the zero solution, representing the normal phase. Furthermore, when T=T, we prove that the only gap solution is the zero solution and that the positive gap solution depend on the temperature TMarkowitz-Kadanoff model and we prove that the presence of anisotropic fluctuations enhances T as in the single-band case. A special consequence of these results is that the half-unity exponent isotope effect may rigorously be proved in the multiband BCS theory, isotropic or anisotropic.

  7. Two-gap superconductivity in Mo8Ga41 and its evolution upon vanadium substitution

    Science.gov (United States)

    Verchenko, V. Yu.; Khasanov, R.; Guguchia, Z.; Tsirlin, A. A.; Shevelkov, A. V.

    2017-10-01

    Zero-field and transverse-field muon spin rotation/relaxation (μ SR ) experiments were undertaken in order to elucidate the microscopic properties of a strongly coupled superconductor Mo8Ga41 with Tc=9.8 K. The upper critical field extracted from the transverse-field μ SR data exhibits significant reduction with respect to the data from thermodynamic measurements indicating the coexistence of two independent length scales in the superconducting state. Accordingly, the temperature-dependent magnetic penetration depth of Mo8Ga41 is described using a model in which two s wave superconducting gaps are assumed. A V for Mo substitution in the parent compound leads to the complete suppression of one superconducting gap, and Mo7VGa41 is well described within the single s wave gap scenario. The reduction in the superfluid density and the evolution of the low-temperature resistivity upon V substitution indicate the emergence of a competing state in Mo7VGa41 that may be responsible for the closure of one of the superconducting gaps.

  8. Research for superconducting energy storage patterns and its practical countermeasures

    International Nuclear Information System (INIS)

    Lin, D.H.; Cui, D.J.; Li, B.; Teng, Y.; Zheng, G.L.; Wang, X.Q.

    2013-01-01

    Highlights: • Proposed some new ideas and strategies about how to improve the energy storage density for SMES system. • Increasing the effective current density in the superconducting coils or optimizing the configuration of the SMES coil could improve the energy storage density. • A new conceive of energy compression is also proposed. -- Abstract: In this paper, we attempt to introduce briefly the significance, the present status, as well as the working principle of the primary patterns of the superconducting energy storage system, first of all. According to the defect on the lower energy storage density of existed superconducting energy storage device, we proposed some new ideas and strategies about how to improve the energy storage density, in which, a brand-new but a tentative proposal regarding the concept of energy compression was emphasized. This investigation has a certain reference value towards the practical application of the superconducting energy storage

  9. Research for superconducting energy storage patterns and its practical countermeasures

    Energy Technology Data Exchange (ETDEWEB)

    Lin, D.H., E-mail: lindehua_cn@yahoo.com.cn [College of Physics, Chongqing University, JD Duz (USA)-CQU Institute for Superconductivity, Chongqing 400030 (China); Cui, D.J.; Li, B.; Teng, Y.; Zheng, G.L. [College of Physics, Chongqing University, JD Duz (USA)-CQU Institute for Superconductivity, Chongqing 400030 (China); Wang, X.Q. [College of Physics, Chongqing University, JD Duz (USA)-CQU Institute for Superconductivity, Chongqing 400030 (China); State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400030 (China)

    2013-10-15

    Highlights: • Proposed some new ideas and strategies about how to improve the energy storage density for SMES system. • Increasing the effective current density in the superconducting coils or optimizing the configuration of the SMES coil could improve the energy storage density. • A new conceive of energy compression is also proposed. -- Abstract: In this paper, we attempt to introduce briefly the significance, the present status, as well as the working principle of the primary patterns of the superconducting energy storage system, first of all. According to the defect on the lower energy storage density of existed superconducting energy storage device, we proposed some new ideas and strategies about how to improve the energy storage density, in which, a brand-new but a tentative proposal regarding the concept of energy compression was emphasized. This investigation has a certain reference value towards the practical application of the superconducting energy storage.

  10. Superconducting gap symmetry in the superconductor BaFe1.9Ni0.1As2

    Science.gov (United States)

    Kuzmicheva, T. E.; Kuzmichev, S. A.; Sadakov, A. V.; Gavrilkin, S. Yu.; Tsvetkov, A. Yu.; Lu, X.; Luo, H.; Vasiliev, A. N.; Pudalov, V. M.; Chen, Xiao-Jia; Abdel-Hafiez, Mahmoud

    2018-06-01

    We report on the Andreev spectroscopy and specific heat of high-quality single crystals of BaFe1.9Ni0.1As2 . The intrinsic multiple Andreev reflection spectroscopy reveals two anisotropic superconducting gaps ΔL≈3.2 -4.5 meV , ΔS≈1.2 -1.6 meV (the ranges correspond to the minimum and maximum value of the coupling energy in the kxky plane). The 25 %-30 % anisotropy shows the absence of nodes in the superconducting gaps. Using a two-band model with s -wave-like gaps ΔL≈3.2 meV and ΔS≈1.6 meV , the temperature dependence of the electronic specific heat can be well described. A linear magnetic field dependence of the low-temperature specific heat offers further support of s -wave type of the order parameter. We find that a d -wave or single-gap BCS theory under the weak-coupling approach cannot describe our experiments.

  11. Superconducting magnets for high energy storage rings

    International Nuclear Information System (INIS)

    Sampson, W.B.

    1977-01-01

    Superconducting dipole and quadrupole magnets were developed for the proton-proton intersecting storage accelerator ISABELLE. Full size prototypes of both kinds of magnets were constructed and successfully tested. The coils are fabricated from a single layer of wide braided superconductor and employ a low temperature iron core. This method of construction leads to two significant performance advantages; little or no training, and the ability of the coil to absorb its total magnetic stored energy without damage. A high pressure (15 atm) helium gas system is used for cooling. Measurements of the random field errors are compared with the expected field distribution. Three magnets (two dipoles and one quadrupole) were assembled into a segment of the accelerator ring structure (half cell). The performance of this magnet array, which is coupled in series both electrically and cryogenically, is also summarized

  12. Full-gap superconductivity with strong electron correlations in the β-pyrochlore KOs2O6

    International Nuclear Information System (INIS)

    Kasahara, Y.; Shimono, Y.; Kato, T.; Hashimoto, K.; Shibauchi, T.; Matsuda, Y.; Yonezawa, S.; Muraoka, Y.; Yamaura, J.; Nagao, Y.; Hiroi, Z.

    2008-01-01

    To elucidate the superconducting gap structure and the influence of rattling motion on quasiparticle dynamics in the superconducting state of KOs 2 O 6 , the thermal conductivity and microwave surface impedance were measured at low temperatures. The magnetic field dependence of thermal conductivity and temperature dependence of penetration depth demonstrate full-gap superconductivity in KOs 2 O 6 . The quasiparticle scattering time is strongly enhanced in the superconducting state, indicating a strong electron inelastic scattering in the normal state. These results highlight that KOs 2 O 6 is unique among superconductors with strong electron correlations

  13. Magnetic-field and temperature dependence of the energy gap in InN nanobelt

    Directory of Open Access Journals (Sweden)

    K. Aravind

    2012-03-01

    Full Text Available We present tunneling measurements on an InN nanobelt which shows signatures of superconductivity. Superconducting transition takes place at temperature of 1.3K and the critical magnetic field is measured to be about 5.5kGs. The energy gap extrapolated to absolute temperature is about 110μeV. As the magnetic field is decreased to cross the critical magnetic field, the device shows a huge zero-bias magnetoresistance ratio of about 400%. This is attributed to the suppression of quasiparticle subgap tunneling in the presence of superconductivity. The measured magnetic-field and temperature dependence of the superconducting gap agree well with the reported dependences for conventional metallic superconductors.

  14. Superconducting magnetic energy storage for asynchronous electrical systems

    Science.gov (United States)

    Boenig, Heinrich J.

    1986-01-01

    A superconducting magnetic energy storage coil connected in parallel between converters of two or more ac power systems provides load leveling and stability improvement to any or all of the ac systems. Control is provided to direct the charging and independently the discharging of the superconducting coil to at least a selected one of the ac power systems.

  15. Gap enhancement in phonon-irradiated superconducting tin films

    International Nuclear Information System (INIS)

    Miller, N.D.; Rutledge, J.E.

    1982-01-01

    We have measured the current-voltage (I-V) characteristics of tin-tin tunnel junctions driven out of equilibrium by a flux of near-thermal phonons from a heater. The reduced ambient temperature was T/T/sub c/ = 0.41. The nonequilibrium I-V curves are compared to equilibrium thermal I-V curves at an elevated temperature chosen to match the total number of quasiparticles. The nonequilibrium curves show a smaller current near zero bias and a larger gap than the thermal curves. This is the first experimental evidence of phonon-induced gap enhancement far below T/sub c/. The results are discussed in terms of the coupled kinetic equations of Chang and Scalapino

  16. Energy losses of superconducting power transmission cables in the grid

    DEFF Research Database (Denmark)

    Østergaard, Jacob; Okholm, Jan; Lomholt, Karin

    2001-01-01

    One of the obvious motives for development of superconducting power transmission cables is reduction of transmission losses. Loss components in superconducting cables as well as in conventional cables have been examined. These losses are used for calculating the total energy losses of conventional...... as well as superconducting cables when they are placed in the electric power transmission network. It is concluded that high load connections are necessary to obtain energy saving by the use of HTSC cables. For selected high load connections, an energy saving of 40% is expected. It is shown...

  17. Beam energy reduction in an acceleration gap

    International Nuclear Information System (INIS)

    Rhee, M.J.

    1990-01-01

    The subject of high-current accelerators has recently attracted considerable attention. The high-current beam accompanies a substantial amount of field energy in the space between the beam and the drift tube wall, as it propagates through a conducting drift tube of accelerator system. While such a beam is being accelerated in a gap, this field energy is subject to leak through the opening of the gap. The amount of energy lost in the gap is replenished by the beam at the expense of its kinetic energy. In this paper, the authors present a simple analysis of field energy loss in an acceleration gap for a relativistic beam for which beam particle velocity equals to c. It is found that the energy loss, which in turn reduces the beam kinetic energy, is ΔV = IZ 0 : the beam current times the characteristic impedance of the acceleration gap. As a result, the apparent acceleration voltage of the gap is reduced from the applied voltage by ΔV. This effect, especially for generation of high-current beam accelerated by a multigap accelerator, appears to be an important design consideration. The energy reduction mechanism and a few examples are presented

  18. Doping dependence of low-energy quasiparticle excitations in superconducting Bi2212.

    Science.gov (United States)

    Ino, Akihiro; Anzai, Hiroaki; Arita, Masashi; Namatame, Hirofumi; Taniguchi, Masaki; Ishikado, Motoyuki; Fujita, Kazuhiro; Ishida, Shigeyuki; Uchida, Shinichi

    2013-12-05

    : The doping-dependent evolution of the d-wave superconducting state is studied from the perspective of the angle-resolved photoemission spectra of a high-Tc cuprate, Bi2Sr2CaCu2 O8+δ (Bi2212). The anisotropic evolution of the energy gap for Bogoliubov quasiparticles is parametrized by critical temperature and superfluid density. The renormalization of nodal quasiparticles is evaluated in terms of mass enhancement spectra. These quantities shed light on the strong coupling nature of electron pairing and the impact of forward elastic or inelastic scatterings. We suggest that the quasiparticle excitations in the superconducting cuprates are profoundly affected by doping-dependent screening.

  19. Fermi-Dirac function and energy gap

    OpenAIRE

    Bondarev, Boris

    2013-01-01

    Medium field method is applied for studying valence electron behavior in metals. When different wave-vector electrons are attracted at low temperatures, distribution function gets discontinued. As a result, a specific energy gap occurs.

  20. Superconducting magnetic energy storage and superconducting self-supplied electromagnetic launcher

    Science.gov (United States)

    Ciceron, Jérémie; Badel, Arnaud; Tixador, Pascal

    2017-10-01

    Superconductors can be used to build energy storage systems called Superconducting Magnetic Energy Storage (SMES), which are promising as inductive pulse power source and suitable for powering electromagnetic launchers. The second generation of high critical temperature superconductors is called coated conductors or REBCO (Rare Earth Barium Copper Oxide) tapes. Their current carrying capability in high magnetic field and their thermal stability are expanding the SMES application field. The BOSSE (Bobine Supraconductrice pour le Stockage d'Energie) project aims to develop and to master the use of these superconducting tapes through two prototypes. The first one is a SMES with high energy density. Thanks to the performances of REBCO tapes, the volume energy and specific energy of existing SMES systems can be surpassed. A study has been undertaken to make the best use of the REBCO tapes and to determine the most adapted topology in order to reach our objective, which is to beat the world record of mass energy density for a superconducting coil. This objective is conflicting with the classical strategies of superconducting coil protection. A different protection approach is proposed. The second prototype of the BOSSE project is a small-scale demonstrator of a Superconducting Self-Supplied Electromagnetic Launcher (S3EL), in which a SMES is integrated around the launcher which benefits from the generated magnetic field to increase the thrust applied to the projectile. The S3EL principle and its design are presented. Contribution to the topical issue "Electrical Engineering Symposium (SGE 2016)", edited by Adel Razek

  1. Robust determination of the superconducting gap sign structure via quasiparticle interference

    Energy Technology Data Exchange (ETDEWEB)

    Altenfeld, Dustin [Institut fuer Theoretische Physik III, Ruhr-Universitaet Bochum, D-44801 Bochum (Germany); Hirschfeld, Peter [Department of Physics, University of Florida, Gainesville, Florida 32611 (United States); Eremin, Ilya [Institut fuer Theoretische Physik III, Ruhr-Universitaet Bochum, D-44801 Bochum (Germany); Kazan Federal University, Kazan 420008 (Russian Federation); Mazin, Igor [Naval Research Laboratory, Code 6393, Washington, DC 20375 (United States)

    2016-07-01

    Using an electronic theory, we present a qualitative description to identify sign changes of the superconducting order parameter via quasiparticle interference (QPI) measurement in Fe-based superconductors (FeSc). In particular, we point out that the temperature dependence of the momentum-integrated QPI data can be used to differentiate between s{sub +-} and s{sub ++} states in a system with typical iron pnictide Fermi surface. We show that the signed symmetrized and antisymmetrized QPI maps are useful to obtain a characteristic signature of a gap sign change or lack thereof, starting from two-band model up to ab initio based band structure calculation. We further suggest this method as a robust way of the determination of the superconducting gap sign structure in experiment and discuss its application to the LiFeAs compounds.

  2. Superconductivity

    International Nuclear Information System (INIS)

    Taylor, A.W.B.; Noakes, G.R.

    1981-01-01

    This book is an elementray introduction into superconductivity. The topics are the superconducting state, the magnetic properties of superconductors, type I superconductors, type II superconductors and a chapter on the superconductivity theory. (WL)

  3. Specific heat of FeSe: Two gaps with different anisotropy in superconducting state

    Science.gov (United States)

    Muratov, A. V.; Sadakov, A. V.; Gavrilkin, S. Yu.; Prishchepa, A. R.; Epifanova, G. S.; Chareev, D. A.; Pudalov, V. M.

    2018-05-01

    We present detailed study of specific heat of FeSe single crystals with critical temperature Tc = 8.45 K at 0.4 - 200 K in magnetic fields 0 - 9 T. Analysis of the electronic specific heat at low temperatures shows the coexistence of isotropic s-wave gap and strongly anisotropic extended s-wave gap without nodes. It was found two possibilities of superconducting gap parameters which give equally description of experimental data: (i) two gaps with approximately equal amplitudes and weight contribution to specific heat: isotropic Δ1 = 1.7 meV (2Δ1 /kBTc =4.7) and anisotropic gap with the amplitude Δ2max = 1.8 meV (2 Δ2max /kBTc =4.9 and anisotropy parameter m = 0.85); (ii) two gaps with substantially different values: isotropic large gap Δ1 = 1.65 meV (2Δ1 /kBTc = 4.52) and anisotropic small gap Δ2max = 0.75 meV (2Δ2max /kBTc = 2) with anisotropy parameter m = 0.71 . These results are confirmed by the field behavior of the residual electronic specific heat γr.

  4. Energy gap of ferromagnet-superconductor bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Halterman, Klaus; Valls, Oriol T

    2003-10-15

    The excitation spectrum of clean ferromagnet-superconductor bilayers is calculated within the framework of the self-consistent Bogoliubov-de Gennes theory. Because of the proximity effect, the superconductor induces a gap in the ferromagnet spectrum, for thin ferromagnetic layers. The effect depends strongly on the exchange field in the ferromagnet. We find that as the thickness of the ferromagnetic layer increases, the gap disappears, and that its destruction arises from those quasiparticle excitations with wave vectors mainly along the interface. We discuss the influence that the interface quality and Fermi energy mismatch between the ferromagnet and superconductor have on the calculated energy gap. We also evaluate the density of states in the ferromagnet, and we find it in all cases consistent with the gap results.

  5. Globally optimal, minimum stored energy, double-doughnut superconducting magnets.

    Science.gov (United States)

    Tieng, Quang M; Vegh, Viktor; Brereton, Ian M

    2010-01-01

    The use of the minimum stored energy current density map-based methodology of designing closed-bore symmetric superconducting magnets was described recently. The technique is further developed to cater for the design of interventional-type MRI systems, and in particular open symmetric magnets of the double-doughnut configuration. This extends the work to multiple magnet domain configurations. The use of double-doughnut magnets in MRI scanners has previously been hindered by the ability to deliver strong magnetic fields over a sufficiently large volume appropriate for imaging, essentially limiting spatial resolution, signal-to-noise ratio, and field of view. The requirement of dedicated interventional space restricts the manner in which the coils can be arranged and placed. The minimum stored energy optimal coil arrangement ensures that the field strength is maximized over a specific region of imaging. The design method yields open, dual-domain magnets capable of delivering greater field strengths than those used prior to this work, and at the same time it provides an increase in the field-of-view volume. Simulation results are provided for 1-T double-doughnut magnets with at least a 50-cm 1-ppm (parts per million) field of view and 0.7-m gap between the two doughnuts. Copyright (c) 2009 Wiley-Liss, Inc.

  6. A chopper circuit for energy transfer between superconducting magnets

    International Nuclear Information System (INIS)

    Onishi, Toshitada; Tateishi, Hiroshi; Takeda, Masatoshi; Matsuura, Toshiaki; Nakatani, Toshio.

    1986-01-01

    It has been suggested that superconducting magnets could provide a medium for storing energy and supplying the large energy pulses needed by experimental nuclear-fusion equipment and similar loads. Based on this concept, tests on energy transfer between superconducting magnets are currently being conducted at the Agency of Industrial Science and Technology's Electrotechnical Laboratory. Mitsubishi Electric has pioneered the world's first chopper circuit for this application. The circuit has the advantages of being simple and permitting high-speed, bipolar energy transfer. The article describes this circuit and its testing. (author)

  7. Realization of a mixed-symmetry superconducting gap in correlated organic metals

    Science.gov (United States)

    Altmeyer, Michaela; Guterding, Daniel; Jeschke, Harald O.; Diehl, Sandra; Methfessel, Torsten; Tutsch, Ulrich; Schubert, Harald; Lang, Michael; Müller, Jens; Huth, Michael; Jourdan, Martin; Elmers, Hans-Joachim; Valenti, Roser

    Recent scanning tunneling spectroscopy measurements on the organic charge tranfer salt κ-(BEDT-TTF)2Cu[N(CN)2]Br show clear evidence of a highly anisotropic gap structure. Based on an ab initio derived model Hamiltonian we employ random phase approximation spin fluctuation theory yielding a composite order parameter of (extended) s+dx2-y2 symmetry. Taking explicitly also the shape of the Fermi surface into account we calculate STS spectra that are in excellent agreement to the experimental observations [1]. Moreover we determine the minimal tight binding model to describe the general lattice structure of these compounds accurately and generate a phase diagram for the gap symmetry by varying the hopping parameters. Based on ab initio derived parameter sets we predict the gap symmetry of other superconducting κ charge transfer salts. This work was supported by Deutsche Forschungsgemeinschaft under Grant No. SFB/TR 49.

  8. Rigorous study of the gap equation for an inhomogeneous superconducting state near T/sub c/

    International Nuclear Information System (INIS)

    Hu, C.R.

    1975-01-01

    An analytical study of the gap equation in the Bogoliubov formulation is presented. The normal-superconducting phase boundary is simulated by the expression Δ (R/sup =/) = Δ/sub infinity/ tanh / α Δ/sub infinity/z/v/sub f/) theta(z) where Δ/sub infinity/(t) is the equilibrium gap, theta (z) a unit step function and v/sub f/ the Fermi velocity. The Bogoliubov-de Gennes equations are solved in a nonperturbative WKBJ approximation. The gap equation is expanded near T/sub c/ in powers of Δ/sub infinity/ and the major term is of the same order as that given by the Ginzburg-Landau-Gor'kov approximation. Discrepancies in the two values are discussed in detail. It is concluded that the present technique reproduces the Ginzburg-Landau-Gor'kov results except within a BCS coherence length. 25 references

  9. Superconducting gap anisotropy and d-wave pairing in YBa2Cu3O7-δ

    Science.gov (United States)

    Verma, Sanjeev K.; Gupta, Anushri; Kumari, Anita; Indu, B. D.

    2018-02-01

    Considering Born-Mayer-Huggins potential as a most suitable potential to study the dynamical properties of high-temperature superconductors (HTS), the many-body quantum dynamics to obtain phonon Green’s functions has been developed via a Hamiltonian that incorporates the contributions of harmonic electron and phonon fields, phonon field anharmonicities, defects and electron-phonon interactions without considering BCS structure. This enables one to develop the quasiparticle renormalized frequency dispersion in the representative high-temperature cuprate superconductor YBa2Cu3O7-δ. The superconducting gap shows substantial changes with increased doping. The in-plane gap study revealed a v-shape gap with a nodal point along kx = ±ky direction for optimum doping (δ = 0.16) and the nodal point vanished in underdoped and overdoped regimes. The dx2-y2 pairing symmetry is observed at optimum doping with the presence of s or dxy components ( < 3%) in underdoped and overdoped regimes.

  10. Feature of the energy gap in YBa2 Cu3 O7 from break junction measurements

    International Nuclear Information System (INIS)

    Ekino, T.; Minami, T.; Fujii, H.

    1995-01-01

    Superconducting energy gap in YBa 2 Cu 3 O 7 have been investigated using break junctions. The tunneling conductance, dI/dV, at T=4.2 K shows no leakage around zero bias, while the gap edge peaks are broadened compared to the simple BCS density of states. These features suggest the spatial distribution of the energy gap or the anisotropic s-wave pairing. The observed largest gap value, determined by the peak-to-peak (p-p) separation in dI/dV, is 140 meV, which corresponds to the 4 δ p-p of an SIS junction. The observed tunneling density of states is fairly well expressed by the probability distribution of the energy gap using the BCS density of states

  11. Anisotropy in superconducting gap in YBa2Cu3O7-δ

    Science.gov (United States)

    Verma, Sanjeev K.; Kumari, Anita; Gupta, Anushri; Indu, B. D.

    2018-04-01

    Taking into account the modified form of Born-Mayer-Huggins potential (MBMHP) and many body quantum dynamics based Green's function theory via a modified Hamiltonian which includes the effects of electrons, phonons, anharmonicities, defects and electron-phonon interactions; the quasiparticle renormalized frequency has been obtained and numerically analyzed for high temperature superconductor (HTS) cuprate YBa2Cu3O7-δ. This evaluation enables one to calculate superconducting gap (SG) in [100] and [010] direction through the dispersion of renormalized mode. A higher SG found in [010] than [100] direction at different doping level establishing its anisotropic nature.

  12. Enhanced superconductivity of fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Washington, II, Aaron L.; Teprovich, Joseph A.; Zidan, Ragaiy

    2017-06-20

    Methods for enhancing characteristics of superconductive fullerenes and devices incorporating the fullerenes are disclosed. Enhancements can include increase in the critical transition temperature at a constant magnetic field; the existence of a superconducting hysteresis over a changing magnetic field; a decrease in the stabilizing magnetic field required for the onset of superconductivity; and/or an increase in the stability of superconductivity over a large magnetic field. The enhancements can be brought about by transmitting electromagnetic radiation to the superconductive fullerene such that the electromagnetic radiation impinges on the fullerene with an energy that is greater than the band gap of the fullerene.

  13. Direct observation of superconducting gaps in MgB{sub 2} by angle-resolved photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Souma, S.; Machida, Y.; Sato, T.; Takahashi, T.; Matsui, H.; Wang, S.-C.; Ding, H.; Kaminski, A.; Campuzano, J.C.; Sasaki, S.; Kadowaki, K

    2004-08-01

    High-resolution angle-resolved photoemission spectroscopy has been carried out to clarify the anomalous superconductivity of MgB{sub 2}. We observed three bands crossing the Fermi level, which are ascribed to B2p-{sigma}, {pi} and surface bands. We have succeeded for the first time in directly observing the superconducting gaps of these bands separately. We have found that the superconducting-gap sizes of {sigma} and surface bands are 6.5 {+-} 0.5 and 6.0 {+-} 0.5 meV, respectively, while that of the {pi} band is much smaller (1.5 {+-} 0.5 meV). The present experimental result unambiguously demonstrates the validity of the two-band superconductivity in MgB{sub 2}.

  14. Antiferromagnetic and superconducting gaps and their interrelation in high-T sub c cuprates

    CERN Document Server

    Arrigoni, E; Eckl, T; Hanke, W

    2003-01-01

    We propose a phenomenological model, comprising a microscopic SO(5) model plus the on-site Hubbard interaction U (projected SO(5) model) to understand the interrelation between the d-wave-gap modulation observed by recent angle-resolved photoemission experiments in the insulating antiferromagnet Ca sub 2 CuO sub 2 Cl sub 2 and the d-wave gap of high-T sub c superconducting materials. The on-site interaction U is important in order to produce a Mott gap of the correct order of magnitude, which would be absent in an exact SO(5) theory. The projected SO(5)-model explains the gap characteristics, namely both the symmetry and the different order of magnitude of the gap modulations between the AF and the SCc phases. Furthermore, it is shown that the projected SO(5) theory can provide an explanation for a recent observation [E. Pavarini et al., Phys. Rev. Lett. 87, 47003 (2001)], i. e. that the maximum T sub c observed in a large variety of high-T sub c cuprates scales with the next-nearest-neighbor hopping matrix e...

  15. Antiferromagnetic and superconducting gaps and their interrelation in high-Tc cuprates

    International Nuclear Information System (INIS)

    Arrigoni, E.; Zacher, M.G.; Eckl, T.; Hanke, W.

    2003-01-01

    We propose a phenomenological model, comprising a microscopic SO(5) model plus the on-site Hubbard interaction U (projected SO(5) model) to understand the interrelation between the d-wave-gap modulation observed by recent angle-resolved photoemission experiments in the insulating antiferromagnet Ca 2 CuO 2 Cl 2 and the d-wave gap of high-T c superconducting materials. The on-site interaction U is important in order to produce a Mott gap of the correct order of magnitude, which would be absent in an exact SO(5) theory. The projected SO(5)-model explains the gap characteristics, namely both the symmetry and the different order of magnitude of the gap modulations between the AF and the SCc phases. Furthermore, it is shown that the projected SO(5) theory can provide an explanation for a recent observation [E. Pavarini et al., Phys. Rev. Lett. 87, 47003 (2001)], i. e. that the maximum T c observed in a large variety of high-T c cuprates scales with the next-nearest-neighbor hopping matrix element t'. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  16. Superconductivity

    International Nuclear Information System (INIS)

    Langone, J.

    1989-01-01

    This book explains the theoretical background of superconductivity. Includes discussion of electricity, material fabrication, maglev trains, the superconducting supercollider, and Japanese-US competition. The authors reports the latest discoveries

  17. Superconductivity

    International Nuclear Information System (INIS)

    Onnes, H.K.

    1988-01-01

    The author traces the development of superconductivity from 1911 to 1986. Some of the areas he explores are the Meissner Effect, theoretical developments, experimental developments, engineering achievements, research in superconducting magnets, and research in superconducting electronics. The article also mentions applications shown to be technically feasible, but not yet commercialized. High-temperature superconductivity may provide enough leverage to bring these applications to the marketplace

  18. Higher order mode damping in a five-cell superconducting rf cavity with a photonic band gap coupler cell

    Science.gov (United States)

    Arsenyev, Sergey A.; Temkin, Richard J.; Shchegolkov, Dmitry Yu.; Simakov, Evgenya I.; Boulware, Chase H.; Grimm, Terry L.; Rogacki, Adam R.

    2016-08-01

    We present a study of higher order mode (HOM) damping in the first multicell superconducting radio-frequency (SRF) cavity with a photonic band gap (PBG) coupler cell. Achieving higher average beam currents is particularly desirable for future light sources and particle colliders based on SRF energy-recovery linacs (ERLs). Beam current in ERLs is limited by the beam breakup instability, caused by parasitic HOMs interacting with the beam in accelerating cavities. A PBG cell incorporated in an accelerating cavity can reduce the negative effect of HOMs by providing a frequency selective damping mechanism, thus allowing significantly higher beam currents. The five-cell cavity with a PBG cell was designed and optimized for HOM damping. Monopole and dipole HOMs were simulated. The SRF cavity was fabricated and tuned. External quality factors for some HOMs were measured in a cold test. The measurements agreed well with the simulations.

  19. Higher order mode damping in a five-cell superconducting rf cavity with a photonic band gap coupler cell

    Directory of Open Access Journals (Sweden)

    Sergey A. Arsenyev

    2016-08-01

    Full Text Available We present a study of higher order mode (HOM damping in the first multicell superconducting radio-frequency (SRF cavity with a photonic band gap (PBG coupler cell. Achieving higher average beam currents is particularly desirable for future light sources and particle colliders based on SRF energy-recovery linacs (ERLs. Beam current in ERLs is limited by the beam breakup instability, caused by parasitic HOMs interacting with the beam in accelerating cavities. A PBG cell incorporated in an accelerating cavity can reduce the negative effect of HOMs by providing a frequency selective damping mechanism, thus allowing significantly higher beam currents. The five-cell cavity with a PBG cell was designed and optimized for HOM damping. Monopole and dipole HOMs were simulated. The SRF cavity was fabricated and tuned. External quality factors for some HOMs were measured in a cold test. The measurements agreed well with the simulations.

  20. Energy Gap, Microwave-Assisted Tunneling, and Josephson Steps in Thin-Film Weak Links at 63 and 302 GHz

    DEFF Research Database (Denmark)

    Kofoed, Bent; Særmark, Knud

    1973-01-01

    We present experimental evidence for the occurrence of energy-gap structure and microwave-assisted tunneling in the IV curves for superconducting thin-film weak links. From measurements of the power and the temperature dependence of the Josephson steps we argue that also the Riedel peak is observ......We present experimental evidence for the occurrence of energy-gap structure and microwave-assisted tunneling in the IV curves for superconducting thin-film weak links. From measurements of the power and the temperature dependence of the Josephson steps we argue that also the Riedel peak...

  1. Superconductivity

    International Nuclear Information System (INIS)

    2007-01-01

    During 2007, a large amount of the work was centred on the ITER project and related tasks. The activities based on low-temperature superconducting (LTS) materials included the manufacture and qualification of ITER full-size conductors under relevant operating conditions, the design of conductors and magnets for the JT-60SA tokamak and the manufacture of the conductors for the European dipole facility. A preliminary study was also performed to develop a new test facility at ENEA in order to test long-length ITER or DEMO full-size conductors. Several studies on different superconducting materials were also started to create a more complete database of superconductor properties, and also for use in magnet design. In this context, an extensive measurement campaign on transport and magnetic properties was carried out on commercially available NbTi strands. Work was started on characterising MgB 2 wire and bulk samples to optimise their performance. In addition, an intense experimental study was started to clarify the effect of mechanical loads on the transport properties of multi-filamentary Nb 3 Sn strands with twisted or untwisted superconducting filaments. The experimental activity on high-temperature superconducting (HTS) materials was mainly focussed on the development and characterisation of YBa 2 Cu 3 O 7-X (YBCO) based coated conductors. Several characteristics regarding YBCO deposition, current transport performance and tape manufacture were investigated. In the framework of chemical approaches for YBCO film growth, a new method, developed in collaboration with the Technical University of Cluj-Napoca (TUCN), Romania, was studied to obtain YBCO film via chemical solution deposition, which modifies the well-assessed metallic organic deposition trifluoroacetate (MOD-TFA) approach. The results are promising in terms of critical current and film thickness values. YBCO properties in films with artificially added pinning sites were characterised in collaboration with

  2. Superconductivity

    International Nuclear Information System (INIS)

    Andersen, N.H.; Mortensen, K.

    1988-12-01

    This report contains lecture notes of the basic lectures presented at the 1st Topsoee Summer School on Superconductivity held at Risoe National Laboratory, June 20-24, 1988. The following lecture notes are included: L.M. Falicov: 'Superconductivity: Phenomenology', A. Bohr and O. Ulfbeck: 'Quantal structure of superconductivity. Gauge angle', G. Aeppli: 'Muons, neutrons and superconductivity', N.F. Pedersen: 'The Josephson junction', C. Michel: 'Physicochemistry of high-T c superconductors', C. Laverick and J.K. Hulm: 'Manufacturing and application of superconducting wires', J. Clarke: 'SQUID concepts and systems'. (orig.) With 10 tabs., 128 figs., 219 refs

  3. Tunneling observation at very low temperature of impurity bands within the gap of the Kondo superconducting system CuFe/Pb(T(K)>T(c))

    International Nuclear Information System (INIS)

    Dumoulin, Louis; Le Fur, Daniel

    1976-01-01

    Very low temperature superconducting tunneling experiments on CuFe(12.10 -6 ) backed by superconducting lead show a band of localized states next to the gap edge. There is no quantitative agreement with the perturbative approach of Mueller-Hartmann Zittartz in this system where the Kondo temperature is larger than the superconductive T(c) [fr

  4. Impurity energy level in the Haldane gap

    International Nuclear Information System (INIS)

    Wang Wei; Lu Yu

    1995-11-01

    An impurity bond J' in a periodic 1D antiferromagnetic spin 1 chain with exchange J is considered. Using the numerical density matrix renormalization group method, we find an impurity energy level in the Haldane gap, corresponding to a bound state near the impurity bond. When J' J. The impurity level appears only when the deviation dev = (J'- J)/J' is greater than B c , which is close to 0.3 in our calculation. (author). 15 refs, 4 figs

  5. Superconductivity

    International Nuclear Information System (INIS)

    Palmieri, V.

    1990-01-01

    This paper reports on superconductivity the absence of electrical resistance has always fascinated the mind of researchers with a promise of applications unachievable by conventional technologies. Since its discovery superconductivity has been posing many questions and challenges to solid state physics, quantum mechanics, chemistry and material science. Simulations arrived to superconductivity from particle physics, astrophysic, electronics, electrical engineering and so on. In seventy-five years the original promises of superconductivity were going to become reality: a microscopical theory gave to superconductivity the cloth of the science and the level of technological advances was getting higher and higher. High field superconducting magnets became commercially available, superconducting electronic devices were invented, high field accelerating gradients were obtained in superconductive cavities and superconducting particle detectors were under study. Other improvements came in a quiet progression when a tornado brought a revolution in the field: new materials had been discovered and superconductivity, from being a phenomenon relegated to the liquid Helium temperatures, became achievable over the liquid Nitrogen temperature. All the physics and the technological implications under superconductivity have to be considered ab initio

  6. Detailed modeling of superconducting magnetic energy storage (SMES) system

    NARCIS (Netherlands)

    Chen, L.; Liu, Y.; Arsoy, A.B.; Ribeiro, P.F.; Steurer, M.; Iravani, M.R.

    2006-01-01

    This paper presents a detailed model for simulation of a Superconducting Magnetic Energy Storage (SMES) system. SMES technology has the potential to bring real power storage characteristic to the utility transmission and distribution systems. The principle of SMES system operation is reviewed in

  7. Test equipment for a flywheel energy storage system using a magnetic bearing composed of superconducting coils and superconducting bulks

    International Nuclear Information System (INIS)

    Ogata, M; Matsue, H; Yamashita, T; Hasegawa, H; Nagashima, K; Maeda, T; Matsuoka, T; Mukoyama, S; Shimizu, H; Horiuchi, S

    2016-01-01

    Energy storage systems are necessary for renewable energy sources such as solar power in order to stabilize their output power, which fluctuates widely depending on the weather. Since ‘flywheel energy storage systems’ (FWSSs) do not use chemical reactions, they do not deteriorate due to charge or discharge. This is an advantage of FWSSs in applications for renewable energy plants. A conventional FWSS has capacity limitation because of the mechanical bearings used to support the flywheel. Therefore, we have designed a superconducting magnetic bearing composed of a superconducting coil stator and a superconducting bulk rotor in order to solve this problem, and have experimentally manufactured a large scale FWSS with a capacity of 100 kWh and an output power of 300 kW. The superconducting magnetic bearing can levitate 4 tons and enables the flywheel to rotate smoothly. A performance confirmation test will be started soon. An overview of the superconducting FWSS is presented in this paper. (paper)

  8. High-energy neutron irradiation of superconducting compounds

    International Nuclear Information System (INIS)

    Sweedler, A.R.; Snead, C.L.; Newkirk, L.; Valencia, F.; Geballe, T.H.; Schwall, R.H.; Matthias, B.T.; Corenswit, E.

    1975-01-01

    The effect of high-energy neutron irradiation (E greater than 1 MeV) at ambient reactor temperatures on the superconducting properties of a variety of superconducting compounds is reported. The materials studied include the A-15 compounds Nb 3 Sn, Nb 3 Al, Nb 3 Ga, Nb 3 Ge and V 3 Si, the C-15 Laves phase HfV 2 , the ternary molybdenum sulfide Mo 3 Pb 0 . 5 S 4 and the layered dichalcogenide NbSe 2 . The superconducting transition temperature has been measured for all of the above materials for neutron fluences up to 5 x 10 19 n/cm 2 . The critical current for multifilamentary Nb 3 Sn has also been determined for fields up to 16 T and fluences between 3 x 10 17 n/cm 2 and 1.1 x 10 19 n/cm 2

  9. Research and development of superconductivity for energy technology in electrotechnical laboratory

    International Nuclear Information System (INIS)

    Koyama, K.

    1984-01-01

    Superconductivity is a physical effect wherein the electrical resistivity disappears at cryogenic temperatures. Superconductivity has the advantage of following large current densities and high magnetic fields, which are stable and homogeneous. There are many applications of superconductivity which take advantage of these merits. It is of special importance to apply superconductors to alternative energy and energy saving technology. This paper presents briefly some of the research and development efforts to apply superconductivity to energy technology in the Electrotechnical Laboratory

  10. Superconductivity

    International Nuclear Information System (INIS)

    Kakani, S.L.; Kakani, Shubhra

    2007-01-01

    The monograph provides readable introduction to the basics of superconductivity for beginners and experimentalists. For theorists, the monograph provides nice and brief description of the broad spectrum of experimental properties, theoretical concepts with all details, which theorists should learn, and provides a sound basis for students interested in studying superconducting theory at the microscopic level. Special chapter on the theory of high-temperature superconductivity in cuprates is devoted

  11. Vertical Line Nodes in the Superconducting Gap Structure of Sr_{2}RuO_{4}

    Directory of Open Access Journals (Sweden)

    E. Hassinger

    2017-03-01

    Full Text Available There is strong experimental evidence that the superconductor Sr_{2}RuO_{4} has a chiral p-wave order parameter. This symmetry does not require that the associated gap has nodes, yet specific heat, ultrasound, and thermal conductivity measurements indicate the presence of nodes in the superconducting gap structure of Sr_{2}RuO_{4}. Theoretical scenarios have been proposed to account for the existence of deep minima or accidental nodes (minima tuned to zero or below by material parameters within a p-wave state. Other scenarios propose chiral d-wave and f-wave states, with horizontal and vertical line nodes, respectively. To elucidate the nodal structure of the gap, it is essential to know whether the lines of nodes (or minima are vertical (parallel to the tetragonal c axis or horizontal (perpendicular to the c axis. Here, we report thermal conductivity measurements on single crystals of Sr_{2}RuO_{4} down to 50 mK for currents parallel and perpendicular to the c axis. We find that there is substantial quasiparticle transport in the T=0 limit for both current directions. A magnetic field H immediately excites quasiparticles with velocities both in the basal plane and in the c direction. Our data down to T_{c}/30 and down to H_{c2}/100 show no evidence that the nodes are in fact deep minima. Relative to the normal state, the thermal conductivity of the superconducting state is found to be very similar for the two current directions, from H=0 to H=H_{c2}. These findings show that the gap structure of Sr_{2}RuO_{4} consists of vertical line nodes. This rules out a chiral d-wave state. Given that the c-axis dispersion (warping of the Fermi surface in Sr_{2}RuO_{4} varies strongly from sheet to sheet, the small a-c anisotropy suggests that the line nodes are present on all three sheets of the Fermi surface. If imposed by symmetry, vertical line nodes would be inconsistent with a p-wave order parameter for Sr_{2}RuO_{4}. To reconcile the gap structure

  12. Hole superconductivity

    International Nuclear Information System (INIS)

    Hirsch, J.E.; Marsiglio, F.

    1989-01-01

    The authors review recent work on a mechanism proposed to explain high T c superconductivity in oxides as well as superconductivity of conventional materials. It is based on pairing of hole carriers through their direct Coulomb interaction, and gives rise to superconductivity because of the momentum dependence of the repulsive interaction in the solid state environment. In the regime of parameters appropriate for high T c oxides this mechanism leads to characteristic signatures that should be experimentally verifiable. In the regime of conventional superconductors most of these signatures become unobservable, but the characteristic dependence of T c on band filling survives. New features discussed her include the demonstration that superconductivity can result from repulsive interactions even if the gap function does not change sign and the inclusion of a self-energy correction to the hole propagator that reduces the range of band filling where T c is not zero

  13. Quantum Theory of Conducting Matter Superconductivity and Quantum Hall Effect

    CERN Document Server

    Fujita, Shigeji; Godoy, Salvador

    2009-01-01

    Explains major superconducting properties including zero resistance, Meissner effect, sharp phase change, flux quantization, excitation energy gap, and Josephson effects using quantum statistical mechanical calculations. This book covers the 2D superconductivity and the quantum Hall effects

  14. Numerical analysis of magnetic field in superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Kanamaru, Y.; Amemiya, Y.

    1991-01-01

    This paper reports that the superconducting magnetic energy storage (SMES) is more useful than the other systems of electric energy storage because of larger stored energy and higher efficiency. The other systems are the battery, the flywheel, the pumped-storage power station. Some models of solenoid type SMES are designed in U.S.A. and Japan. But a high magnetic field happens by the large scale SMES in the living environment, and makes the erroneous operations of the computer display, the pacemaker of the heart and the electronic equipments. We study some fit designs of magnetic shielding of the solenoidal type SMES for reduction of the magnetic field in living environment. When some superconducting shielding coils are over the main storage coil, magnetic field reduces remarkably than the case of non shielding coil. The calculated results of the magnetic field are obtained y the finite element method

  15. Two energy scales and two quasiparticle dynamics in the superconducting state of under-doped cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Le Tacon, M.; Sacuto, A. [Paris-7 Univ., Lab. Mat riaux et Ph nom nes Quantiques (UMR 7162 CNRS), 75 (France); Laboratoire de Physique du Solide, ESPCI, 75 - Paris (France); Georges, A. [Centre de Physique Theorique, Ecole Polytechnique, 91 - Palaiseau (France); Kotliar, G. [Centre de Physique Theorique, Ecole Polytechnique, 91 - Palaiseau (France); Rutgers Univ., Serin Physics Lab. (United States); Gallais, Y. [Columbia Univ. New York, Dept. of Physics and Applied Physics, NY (United States); Colson, D.; Forget, A. [CEA Saclay, Service de Physique de l' Etat Condense, 91 - Gif-sur-Yvette (France)

    2006-07-01

    The superconducting state of under-doped cuprates is often described in terms of a single energy scale, associated with the maximum of the (d-wave) gap. Here, we report on electronic Raman scattering results, which show that the gap function in the under-doped regime is characterized by two energy scales, depending on doping in opposite manners. Their ratios to the maximum critical temperature are found to be universal in cuprates. Our experimental results also reveal two different quasiparticle dynamics in the under-doped superconducting state, associated with two regions of momentum space: nodal regions near the zeros of the gap and anti-nodal regions. While anti-nodal quasiparticles quickly loose coherence as doping is reduced, coherent nodal quasiparticles persist down to low doping levels. A theoretical analysis using a new sum-rule allows us to relate the low-frequency-dependence of the Raman response to the temperature-dependence of the superfluid density, both controlled by nodal excitations. (authors)

  16. Superconductivity

    International Nuclear Information System (INIS)

    Caruana, C.M.

    1988-01-01

    Despite reports of new, high-temperature superconductive materials almost every day, participants at the First Congress on Superconductivity do not anticipate commercial applications with these materials soon. What many do envision is the discovery of superconducting materials that can function at much warmer, perhaps even room temperatures. Others hope superconductivity will usher in a new age of technology as semiconductors and transistors did. This article reviews what the speakers had to say at the four-day congress held in Houston last February. Several speakers voiced concern that the Reagan administration's apparent lack of interest in funding superconductivity research while other countries, notably Japan, continue to pour money into research and development could hamper America's international competitiveness

  17. Energy and Climate. Bridging the Geopolitical Gaps

    Energy Technology Data Exchange (ETDEWEB)

    Slingerland, S.; Van den Heuvel, S.

    2009-07-01

    Climate change is a 'hot' subject as an international political topic, and finding more superlatives about climate change after last year' presentation of Al Gore's Inconvenient Truths is difficult. At the 2009 UN Climate Change Conference in Copenhagen a successor has to be found to the present Kyoto Protocol. It is now generally recognized that man-made greenhouse gas emissions have a detrimental effect on the global climate, and emissions seem to increase even more rapidly than when the most pessimistic climate change scenarios are taken into account.1 Fossil energy use is mainly responsible for these emissions. However, despite increasing worldwide recognition that climate change is indeed a serious global problem and mounting rhetoric from political leaders, there is still little evidence that the fundamental changes needed to prevent the potential dangers of climate change are being addressed. This chapter argues that there are at least three geopolitical gaps that need to be closed in order to reach an effective agreement in Copenhagen in 2009. The gaps are closely related to the global political and economic structure of energy supply and demand. They concern a divide, firstly between the United States and Europe, secondly between industrialised and developing countries, and thirdly between fossil fuel exporting and importing countries.

  18. Energy and Climate. Bridging the Geopolitical Gaps

    International Nuclear Information System (INIS)

    Slingerland, S.; Van den Heuvel, S.

    2009-01-01

    Climate change is a 'hot' subject as an international political topic, and finding more superlatives about climate change after last year' presentation of Al Gore's Inconvenient Truths is difficult. At the 2009 UN Climate Change Conference in Copenhagen a successor has to be found to the present Kyoto Protocol. It is now generally recognized that man-made greenhouse gas emissions have a detrimental effect on the global climate, and emissions seem to increase even more rapidly than when the most pessimistic climate change scenarios are taken into account.1 Fossil energy use is mainly responsible for these emissions. However, despite increasing worldwide recognition that climate change is indeed a serious global problem and mounting rhetoric from political leaders, there is still little evidence that the fundamental changes needed to prevent the potential dangers of climate change are being addressed. This chapter argues that there are at least three geopolitical gaps that need to be closed in order to reach an effective agreement in Copenhagen in 2009. The gaps are closely related to the global political and economic structure of energy supply and demand. They concern a divide, firstly between the United States and Europe, secondly between industrialised and developing countries, and thirdly between fossil fuel exporting and importing countries.

  19. Superconducting magnetic energy storage for electric utilities and fusion systems

    International Nuclear Information System (INIS)

    Rogers, J.D.; Boenig, H.J.; Hassenzahl, W.V.

    1978-01-01

    Superconducting inductors provide a compact and efficient means of storing electrical energy without an intermediate conversion process. Energy storage inductors are under development for load leveling and transmission line stabilization in electric utility systems and for driving magnetic confinement and plasma heating coils in fusion energy systems. Fluctuating electric power demands force the electric utility industry to have more installed generating capacity than the average load requires. Energy storage can increase the utilization of base-load fossil and nuclear power plants for electric utilities. The Los Alamos Scientific Laboratory and the University of Wisconsin are developing superconducting magnetic energy storage (SMES) systems, which will store and deliver electrical energy for load leveling, peak shaving, and the stabilization of electric utility networks. In the fusion area, inductive energy transfer and storage is being developed. Both 1-ms fast-discharge theta-pinch systems and 1-to-2-s slow energy transfer tokamak systems have been demonstrated. The major components and the method of operation of a SMES unit are described, and potential applications of different size SMES systems in electric power grids are presented. Results are given of a reference design for a 10-GWh unit for load leveling, of a 30-MJ coil proposed for system stabilization, and of tests with a small-scale, 100-kJ magnetic energy storage system. The results of the fusion energy storage and transfer tests are presented. The common technology base for the various storage systems is discussed

  20. Condensation energy of the superconducting bilayer cuprates

    Indian Academy of Sciences (India)

    cuprates also depends on the number of CuO2 layers per unit cell and the extent of doping. In a bilayer or ... unit cell is smaller than the adjacent layers in a single layer system; therefore it is natural to include interlayer .... energy conservation principle, the change in the kinetic energy of the electrons in the out- of-plane ...

  1. Superconducting magnets in nuclear and high energy physics

    International Nuclear Information System (INIS)

    Hamelin, J.; Parain, J.; Perot, J.; Lesmond, C.

    1976-01-01

    A few examples of superconducting magnets developped at Saclay for high energy physics are presented. The OGA doublet is a large acceptance optical system consisting of two quadrupoles with maximum field gradients of 35 and 23 teslas per meter giving an increase of the beam acceptance by a factor 4. The ALEC dipole is a synchrotron magnet with a length of 1.5 meter and a field of 5 teslas, operating in pulse made at a frequency of 0.1 Hertz and entirely constructed in industry. The ECO project is a demonstration of electrical energy saving by means of superconductors. It consists in the replacement of conventional copper of a classical beam transport magnet by superconducting windings. The use of superconductors for polarized target magnets allows a large variety of configurations to be obtained in order to satisfy the acceptance and space requirements to the detectors around the targets [fr

  2. A new power supply for superconductive magnetic energy storage system

    International Nuclear Information System (INIS)

    Karady, G.G.; Han, B.M.

    1992-01-01

    In this paper a new power supply for a superconductive magnetic energy storage system, which permits a fast independent regulation of the active and reactive power, is presented. The power supply is built with several units connected in parallel. Each unit consists of a 24-pulse bridge converter, thyristor-switched tap-changing transformer, and thyristor-switched capacitor bank. Its system operation is analyzed by computer simulation and a feasible system realization is shown. A superconductive magnetic energy storage system with the proposed power supply has the capability of leveling the load variation, damping the low-frequency oscillation, and improving the transient stability in the power system. This power supply can be built with commercially available components using well-proven technologies

  3. Superconducting magnetic energy storage apparatus structural support system

    Science.gov (United States)

    Withers, Gregory J.; Meier, Stephen W.; Walter, Robert J.; Child, Michael D.; DeGraaf, Douglas W.

    1992-01-01

    A superconducting magnetic energy storage apparatus comprising a cylindrical superconducting coil; a cylindrical coil containment vessel enclosing the coil and adapted to hold a liquid, such as liquefied helium; and a cylindrical vacuum vessel enclosing the coil containment vessel and located in a restraining structure having inner and outer circumferential walls and a floor; the apparatus being provided with horizontal compression members between (1) the coil and the coil containment vessel and (2) between the coil containment vessel and the vacuum vessel, compression bearing members between the vacuum vessel and the restraining structure inner and outer walls, vertical support members (1) between the coil bottom and the coil containment vessel bottom and (2) between the coil containment vessel bottom and the vacuum vessel bottom, and external supports between the vacuum vessel bottom and the restraining structure floor, whereby the loads developed by thermal and magnetic energy changes in the apparatus can be accommodated and the structural integrity of the apparatus be maintained.

  4. Magnet field design considerations for a high energy superconducting cyclotron

    International Nuclear Information System (INIS)

    Botman, J.I.M.; Craddock, M.K.; Kost, C.J.; Richardson, J.R.

    1983-08-01

    This paper reports the pole shape designs for a two stage superconducting isochronous cyclotron combination (CANUCK) to accelerate 100 μA proton beams to 15 GeV. The pole shape of the 15 sectors of the first stage 3.5 GeV proton cyclotron provides isochronism over the full energy range and a constant axial tune over all but the lowest energies. Progress on the pole design of the 42 sector 15 GeV second stage is also reported. The magnetic fields are computed from the current distribution of the superconducting coils and the infinitely thin current sheets simulating the fully saturated poles. A least squares method is used to minimize deviations from isochronism by adjusting the size of various elemental shim coils placed around the main coil. The method to obtain the desired axial tune is described

  5. Energy of magnetic moment of superconducting current in magnetic field

    International Nuclear Information System (INIS)

    Gurtovoi, V.L.; Nikulov, A.V.

    2015-01-01

    Highlights: • Quantization effects observed in superconducting loops are considered. • The energy of magnetic moment in magnetic field can not be deduced from Hamiltonian. • This energy is deduced from a history of the current state in the classical case. • It can not be deduced directly in the quantum case. • Taking this energy into account demolishes agreement between theory and experiment. - Abstract: The energy of magnetic moment of the persistent current circulating in superconducting loop in an externally produced magnetic field is not taken into account in the theory of quantization effects because of identification of the Hamiltonian with the energy. This identification misleads if, in accordance with the conservation law, the energy of a state is the energy expended for its creation. The energy of magnetic moment is deduced from a creation history of the current state in magnetic field both in the classical and quantum case. But taking this energy into account demolishes the agreement between theory and experiment. Impartial consideration of this problem discovers the contradiction both in theory and experiment

  6. Pulsed energy conversion with a dc superconducting magnet

    International Nuclear Information System (INIS)

    Cowan, M.; Cnare, E.C.; Leisher, W.B.; Tucker, W.K.; Wessenberg, D.L.

    1976-01-01

    A generator system for pulsed power is described which employs a dc superconducting magnet in a magnetic flux compression scheme. Experience with a small-scale generator together with projections of numerical models indicate potential applications to fusion research and commercial power generation. When the system is large enough pulse energy can exceed that stored in the magnet and pulse rise time can range from several microseconds to tens of milliseconds. (author)

  7. APPLICATION OF NONLINEAR PID CONTROLLER IN SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    OpenAIRE

    PENG, Xiaotao; CHENG, Shijie

    2011-01-01

    As a new control strategy, Nonlinear PID(NLPID) controller has been introduced in the power system successfully. The controller is free of planting model foundation in the design procedure and realized simply. In this paper, a nonlinear PID controller used for superconducting magnetic energy storage (SMES) unit connected to a power system is proposed. Purpose of designing such controller is to improve the stability of the power system in a relatively wide operation range. The design procedure...

  8. Development and operation of the JAERI superconducting energy recovery linacs

    Science.gov (United States)

    Minehara, Eisuke J.

    2006-02-01

    The Japan Atomic Energy Research Institute free-electron laser (JAERI FEL) group at Tokai, Ibaraki, Japan has successfully developed one of the most advanced and newest accelerator technologies named "superconducting energy recovery linacs (ERLs)" and some applications in near future using the ERLs. In the text, the current operation and high power JAERI ERL-FEL 10 kW upgrading program, ERL-light source design studies, prevention of the stainless-steel cold-worked stress-corrosion cracking failures and decommissioning of nuclear power plants in nuclear energy industries were reported and discussed briefly as a typical application of the ERL-FEL.

  9. Operation of multiple superconducting energy doubler magnets in series

    International Nuclear Information System (INIS)

    Kalbfleisch, G.; Limon, P.J.; Rode, C.

    1977-01-01

    In order to understand the operational characteristics of the Energy Doubler, a series of experiments were begun which were designed to be a practical test of running superconducting accelerator magnets in series. Two separate tests in which two Energy Doubler dipoles were powered in series are described. Of particular interest are the static losses of the cryostats and the behavior of the coils and cryostats during quenches. The results of the tests show that Energy Doubler magnets can be safely operated near their short sample limit, and that the various safety devices used are adequate to protect the coils and the cryostats from damage

  10. Effect of external magnetic field on superconducting and spin density wave gaps of high-T{sub c} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, B., E-mail: brunda@iopb.res.i [Govt. Science College, Malkangiri 764 048 (India); Raj, B.K. [B.J.B. College, Bhubaneswar 751 014 (India); Rout, G.C., E-mail: gcr@iopb.res.i [Condensed Matter Physics Group P.G. Dept. of Applied Physics and Ballistics, F.M. University, Balasore 756 019 (India)

    2009-07-01

    A theoretical model is addressed here to study the interplay of the superconductivity (SC) and the spin density wave (SDW) long range orders in underdoped region in the vicinity of on-set of superconductivity in presence of an external magnetic field. The order parameters are calculated by using Zubarev's technique of Green's functions and determined numerically self-consistently. The gap parameters are found to be strongly coupled to each other through their coupling constants. The interplay displays BCS type two gaps in the quasi-particle density of states (DOS) which resemble the tunneling conductance of STM experiments. The gap edges in the DOS appear at +-(z+z{sub 1}) and +-(z-z{sub 1}). The applied magnetic field further induces Zeeman splitting which is explained on the basis of spin-filter effect of tunneling experiment.

  11. Effect of external magnetic field on superconducting and spin density wave gaps of high-Tc superconductors

    International Nuclear Information System (INIS)

    Pradhan, B.; Raj, B.K.; Rout, G.C.

    2009-01-01

    A theoretical model is addressed here to study the interplay of the superconductivity (SC) and the spin density wave (SDW) long range orders in underdoped region in the vicinity of on-set of superconductivity in presence of an external magnetic field. The order parameters are calculated by using Zubarev's technique of Green's functions and determined numerically self-consistently. The gap parameters are found to be strongly coupled to each other through their coupling constants. The interplay displays BCS type two gaps in the quasi-particle density of states (DOS) which resemble the tunneling conductance of STM experiments. The gap edges in the DOS appear at ±(z+z 1 ) and ±(z-z 1 ). The applied magnetic field further induces Zeeman splitting which is explained on the basis of spin-filter effect of tunneling experiment.

  12. Exotic superconductivity with enhanced energy scales in materials with three band crossings

    Science.gov (United States)

    Lin, Yu-Ping; Nandkishore, Rahul M.

    2018-04-01

    Three band crossings can arise in three-dimensional quantum materials with certain space group symmetries. The low energy Hamiltonian supports spin one fermions and a flat band. We study the pairing problem in this setting. We write down a minimal BCS Hamiltonian and decompose it into spin-orbit coupled irreducible pairing channels. We then solve the resulting gap equations in channels with zero total angular momentum. We find that in the s-wave spin singlet channel (and also in an unusual d-wave `spin quintet' channel), superconductivity is enormously enhanced, with a possibility for the critical temperature to be linear in interaction strength. Meanwhile, in the p-wave spin triplet channel, the superconductivity exhibits features of conventional BCS theory due to the absence of flat band pairing. Three band crossings thus represent an exciting new platform for realizing exotic superconducting states with enhanced energy scales. We also discuss the effects of doping, nonzero temperature, and of retaining additional terms in the k .p expansion of the Hamiltonian.

  13. Superconductivity

    CERN Document Server

    Ketterson, John B

    2008-01-01

    Conceived as the definitive reference in a classic and important field of modern physics, this extensive and comprehensive handbook systematically reviews the basic physics, theory and recent advances in the field of superconductivity. Leading researchers, including Nobel laureates, describe the state-of-the-art in conventional and unconventional superconductors at a particularly opportune time, as new experimental techniques and field-theoretical methods have emerged. In addition to full-coverage of novel materials and underlying mechanisms, the handbook reflects continued intense research into electron-phone based superconductivity. Considerable attention is devoted to high-Tc superconductivity, novel superconductivity, including triplet pairing in the ruthenates, novel superconductors, such as heavy-Fermion metals and organic materials, and also granular superconductors. What’s more, several contributions address superconductors with impurities and nanostructured superconductors. Important new results on...

  14. Utilization of superconductivity in energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, J.T.; Mikkonen, R.; Lahtinen, M.; Paasi, J. [Tampere Univ. of Technology (Finland). Laboratory of Electricity and Magnetism

    1998-12-31

    The technical potential of high temperature superconductors has been demonstrated in energy power applications. The magnetisation coils of the constructed 1.5 kW synchronous motor are made of bismuth-based material, the efficiency of the motor being 82 %. The same material is utilised in a 5 kJ magnetic energy storage in order to compensate for a short-term loss of power. Fast activation time and high efficiency are the benefits compared to traditional UPS systems. The operation temperature of 20-30 K enables the usage of mechanical cooling which is one major advantage compared to conventional liquid helium cooled systems. (orig.)

  15. The role of engineered materials in superconducting tunnel junction X-ray detectors - Suppression of quasiparticle recombination losses via a phononic band gap

    Science.gov (United States)

    Rippert, Edward D.; Ketterson, John B.; Chen, Jun; Song, Shenian; Lomatch, Susanne; Maglic, Stevan R.; Thomas, Christopher; Cheida, M. A.; Ulmer, Melville P.

    1992-01-01

    An engineered structure is proposed that can alleviate quasi-particle recombination losses via the existence of a phononic band gap that overlaps the 2-Delta energy of phonons produced during recombination of quasi-particles. Attention is given to a 1D Kronig-Penny model for phonons normally incident to the layers of a multilayered superconducting tunnel junction as an idealized example. A device with a high density of Bragg resonances is identified as desirable; both Nb/Si and NbN/SiN superlattices have been produced, with the latter having generally superior performance.

  16. Directionally independent energy gap formation due to the hyperfine interaction

    NARCIS (Netherlands)

    Miyashita, Seiji; Raedt, Hans De; Michielsen, Kristel

    We study energy gap formation at the level-crossing point due to the hyperfine interaction. In contrast to the energy gap induced by the Dzyaloshinskii-Moriya interaction, the gap induced by the hyperfine interaction is independent of the direction of the magnetic field. We also study the dynamics

  17. Protection of large-stored-energy superconducting coils

    International Nuclear Information System (INIS)

    Kircher, F.

    1975-11-01

    When the stored energy of superconducting magnets increases, the problem of the protection of the coil when a quench occurs becomes more and more important, especially if the structure of the coil is such that the energy can be dissipated only in a small part of the coil. The aim of this paper is first to describe a program which enables to predict the increase of temperature inside the coil for several kinds of protection and to give results for KEK pulsed dipoles (under construction and planned for TRISTAN). (auth.)

  18. A feasibility demonstration program for superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Filios, P.G.

    1988-01-01

    The Defense Nuclear Agency, as the agent of the Strategic Defense Initiative (SDI) Office, has begun a program to build an engineering test model (ETM) of a superconducting magnetic energy storage (SMES) system. The ETM will serve to demonstrate the feasibility of using SMES technology to meet both SDI and public utility requirements for electric energy storage. SMES technology characteristics are reviewed and related to SDI and electric utility requirements. Program structure and schedule are related to specific objectives, and critical issues are defined

  19. Energy storage via high temperature superconductivity (SMES)

    Energy Technology Data Exchange (ETDEWEB)

    Mikkonen, R. [Tampere Univ. of Technology (Finland)

    1998-10-01

    The technology concerning high temperature superconductors (HTS) is matured to enabling different kind of prototype applications including SMES. Nowadays when speaking about HTS systems, attention is focused on the operating temperature of 20-30 K, where the critical current and flux density are fairly close to 4.2 K values. In addition by defining the ratio of the energy content of a novel HTS magnetic system and the required power to keep the system at the desired temperature, the optimum settles to the above mentioned temperature range. In the frame of these viewpoints a 5 kJ HTS SMES system has been designed and tested at Tampere University of Technology with a coil manufactured by American Superconductor (AMSC). The HTS magnet has inside and outside diameters of 252 mm and 317 mm, respectively and axial length of 66 mm. It operates at 160 A and carries a total of 160 kA-turns to store the required amount of energy. The effective magnetic inductance is 0.4 H and the peak axial field is 1.7 T. The magnet is cooled to the operating temperature of 20 K with a two stage Gifford-McMahon type cryocooler with a cooling power of 60 W at 77 K and 8 W at 20 K. The magnetic system has been demonstrated to compensate a short term loss of power of a sensitive consumer

  20. Hydrocarbon deposition in gaps of tungsten and graphite tiles in Experimental Advanced Superconducting Tokamak edge plasma parameters

    International Nuclear Information System (INIS)

    Xu Qian; Yang Zhongshi; Luo Guangnan

    2015-01-01

    The three-dimensional (3D) Monte Carlo code PIC-EDDY has been utilized to investigate the mechanism of hydrocarbon deposition in gaps of tungsten tiles in the Experimental Advanced Superconducting Tokamak (EAST), where the sheath potential is calculated by the 2D in space and 3D in velocity particle-in-cell method. The calculated results for graphite tiles using the same method are also presented for comparison. Calculation results show that the amount of carbon deposited in the gaps of carbon tiles is three times larger than that in the gaps of tungsten tiles when the carbon particles from re-erosion on the top surface of monoblocks are taken into account. However, the deposition amount is found to be larger in the gaps of tungsten tiles at the same CH 4 flux. When chemical sputtering becomes significant as carbon coverage on tungsten increases with exposure time, the deposition inside the gaps of tungsten tiles would be considerable. (author)

  1. Laser activated superconducting switch

    International Nuclear Information System (INIS)

    Wolf, A.A.

    1976-01-01

    A superconducting switch or bistable device is described consisting of a superconductor in a cryogen maintaining a temperature just below the transition temperature, having a window of the proper optical frequency band for passing a laser beam which may impinge on the superconductor when desired. The frequency of the laser is equal to or greater than the optical absorption frequency of the superconducting material and is consistent with the ratio of the gap energy of the switch material to Planck's constant, to cause depairing of electrons, and thereby normalize the superconductor. Some embodiments comprise first and second superconducting metals. Other embodiments feature the two superconducting metals separated by a thin film insulator through which the superconducting electrons tunnel during superconductivity

  2. Superconductivity

    CERN Document Server

    Poole, Charles P; Creswick, Richard J; Prozorov, Ruslan

    2014-01-01

    Superconductivity, Third Edition is an encyclopedic treatment of all aspects of the subject, from classic materials to fullerenes. Emphasis is on balanced coverage, with a comprehensive reference list and significant graphics from all areas of the published literature. Widely used theoretical approaches are explained in detail. Topics of special interest include high temperature superconductors, spectroscopy, critical states, transport properties, and tunneling. This book covers the whole field of superconductivity from both the theoretical and the experimental point of view. This third edition features extensive revisions throughout, and new chapters on second critical field and iron based superconductors.

  3. Superconducting Gap Symmetry of LaFeP(O,F Observed by Impurity Doping Effect

    Directory of Open Access Journals (Sweden)

    Shigeki Miyasaka

    2016-08-01

    Full Text Available We have investigated Mn, Co and Ni substitution effects on polycrystalline samples of LaFePO0.95F0.05 by resistivity and magnetoresistance measurements. In LaFe1-xMxPO0.95F0.05 (M = Mn, Co and Ni, the superconducting transition temperature (Tc monotonously decreases with increasing the impurity doping level of x. There is a clear difference of Tc suppression rates among Mn, Co and Ni doping cases, and the decreasing rate of Tc by Mn doping as a magnetic impurity is larger than those by the nonmagnetic doping impurities (Co/Ni. This result indicates that in LaFePO0.95F0.05, Tc is rapidly suppressed by the pair-breaking effect of magnetic impurities, and the pairing symmetry is a full-gapped s-wave. In the nonmagnetic impurity-doped systems, the residual resistivity in the normal state has nearly the same value when Tc becomes zero. The residual resistivity value is almost consistent with the universal value of sheet resistance for two-dimensional superconductors, suggesting that Tc is suppressed by electron localization in Co/Ni-doped LaFePO0.95F0.05.

  4. Two-gap superconductivity with line nodes in CsCa2Fe4As4F2

    Science.gov (United States)

    Kirschner, Franziska K. K.; Adroja, Devashibhai T.; Wang, Zhi-Cheng; Lang, Franz; Smidman, Michael; Baker, Peter J.; Cao, Guang-Han; Blundell, Stephen J.

    2018-02-01

    We report the results of a muon-spin rotation (μ SR ) experiment to determine the superconducting ground state of the iron-based superconductor CsCa2Fe4As4F2 with Tc≈28.3 K . This compound is related to the fully gapped superconductor CaCsFe4As4 , but here the Ca-containing spacer layer is replaced with one containing Ca2F2 . The temperature evolution of the penetration depth strongly suggests the presence of line nodes and is best modeled by a system consisting of both an s - and a d -wave gap. We also find a potentially magnetic phase which appears below ≈10 K but does not appear to compete with the superconductivity. This compound contains the largest alkali atom in this family of superconductors, and our results yield a value for the in-plane penetration depth of λa b(T =0 ) =244 (3 ) nm .

  5. ORNL superconducting technology program for electric energy systems

    Science.gov (United States)

    Hawsey, R. A.

    1993-02-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy's (DOE's) Office of Conservation and Renewable Energy to develop the technology base needed by US industry for commercial development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and systems development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from information prepared for the FY-92 Peer Review of Projects, which was conducted by DOE's Office of Program Analysis, Office of Energy Research. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer to US industry. Working together, the collaborative teams are making tremendous progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire products.

  6. The energy gap and the fast reactor

    International Nuclear Information System (INIS)

    Hill, J.

    1977-01-01

    The background to the development of fast reactors is summarized. In Britain, the results of the many experiments performed, the operation of the Dounreay Fast Reactor for the past 18 years and the first year's operation of the larger Prototype Fast Reactor have all been very encouraging, in that they demonstrated that the performance corresponded well with predictions, breeding is possible, and the system is exceptionally stable in operation. The next step in fast reactor engineering is to build a full-scale fast reactor power station. There would seem to be little reason to expect more trouble than could reasonably be expected in constructing any large project of this general nature. However, from an engineering point of view continuity of experience is required. If a decision to build a commercial fast reactor were taken today there would be a 14-year gap between strating this and the start of the Prototype Fast Reactor. This is already much too long. From an environmental standpoint we have to demonstrate that we can manufacture and reprocess fast reacctor fuel for a substantial programme in a way that does not lead to pollution of the environment, and that plutonium-containing fuel can be transported in the quantities required in safety and in a way that does not attract terrorists or require a private army to ensure its security. Finally, we have to find a way to allow many countries to obtain the energy they need from fast reactors, without leading to the proliferation of nuclear weapons or weapons capability. (author)

  7. Superconductivity

    International Nuclear Information System (INIS)

    Narlikar, A.V.

    1993-01-01

    Amongst the numerous scientific discoveries that the 20th century has to its credit, superconductivity stands out as an exceptional example of having retained its original dynamism and excitement even for more than 80 years after its discovery. It has proved itself to be a rich field by continually offering frontal challenges in both research and applications. Indeed, one finds that a majority of internationally renowned condensed matter theorists, at some point of their career, have found excitement in working in this important area. Superconductivity presents a unique example of having fetched Nobel awards as many as four times to date, and yet, interestingly enough, the field still remains open for new insights and discoveries which could undeniably be of immense technological value. 1 fig

  8. Superconductivity

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This book profiles the research activity of 42 companies in the superconductivity field, worldwide. It forms a unique and comprehensive directory to this emerging technology. For each research site, it details the various projects in progress, analyzes the level of activity, pinpoints applications and R and D areas, reviews strategies and provides complete contact information. It lists key individuals, offers international comparisons of government funding, reviews market forecasts and development timetables and features a bibliography of selected articles on the subject

  9. Superconductivity

    International Nuclear Information System (INIS)

    Buller, L.; Carrillo, F.; Dietert, R.; Kotziapashis, A.

    1989-01-01

    Superconductors are materials which combine the property of zero electric resistance with the capability to exclude any adjacent magnetic field. This leads to many large scale applications such as the much publicized levitating train, generation of magnetic fields in MHD electric generators, and special medical diagnostic equipment. On a smaller-scale, superconductive materials could replace existing resistive connectors and decrease signal delays by reducing the RLC time constants. Thus, a computer could operate at much higher speeds, and consequently at lower power levels which would reduce the need for heat removal and allow closer spacing of circuitry. Although technical advances and proposed applications are constantly being published, it should be recognized that superconductivity is a slowly developing technology. It has taken scientists almost eighty years to learn what they now know about this material and its function. The present paper provides an overview of the historical development of superconductivity and describes some of the potential applications for this new technology as it pertains to the electronics industry

  10. Universal doping evolution of the superconducting gap anisotropy in single crystals of electron-doped Ba(Fe1‑x Rh x )2As2 from London penetration depth measurements

    Science.gov (United States)

    Kim, Hyunsoo; Tanatar, M. A.; Martin, C.; Blomberg, E. C.; Ni, Ni; Bud’ko, S. L.; Canfield, P. C.; Prozorov, R.

    2018-06-01

    Doping evolution of the superconducting gap anisotropy was studied in single crystals of 4d-electron doped Ba(Fe1‑x Rh x )2As2 using tunnel diode resonator measurements of the temperature variation of the London penetration depth . Single crystals with doping levels representative of an underdoped regime x  =  0.039 ( K), close to optimal doping x  =  0.057 ( K) and overdoped x  =  0.079 ( K) and x  =  0.131( K) were studied. Superconducting energy gap anisotropy was characterized by the exponent, n, by fitting the data to the power-law, . The exponent n varies non-monotonically with x, increasing to a maximum n  =  2.5 for x  =  0.079 and rapidly decreasing towards overdoped compositions to 1.6 for x  =  0.131. This behavior is qualitatively similar to the doping evolution of the superconducting gap anisotropy in other iron pnictides, including hole-doped (Ba,K)Fe2As2 and 3d-electron-doped Ba(Fe,Co)2As2 superconductors, finding a full gap near optimal doping and strong anisotropy toward the ends of the superconducting dome in the T-x phase diagram. The normalized superfluid density in an optimally Rh-doped sample is almost identical to the temperature-dependence in the optimally doped Ba(Fe,Co)2As2 samples. Our study supports the universal superconducting gap variation with doping and pairing at least in iron based superconductors of the BaFe2As2 family.

  11. Maximum field capability of energy saver superconducting magnets

    International Nuclear Information System (INIS)

    Turkot, F.; Cooper, W.E.; Hanft, R.; McInturff, A.

    1983-01-01

    At an energy of 1 TeV the superconducting cable in the Energy Saver dipole magnets will be operating at ca. 96% of its nominal short sample limit; the corresponding number in the quadrupole magnets will be 81%. All magnets for the Saver are individually tested for maximum current capability under two modes of operation; some 900 dipoles and 275 quadrupoles have now been measured. The dipole winding is composed of four individually wound coils which in general come from four different reels of cable. As part of the magnet fabrication quality control a short piece of cable from both ends of each reel has its critical current measured at 5T and 4.3K. In this paper the authors describe and present the statistical results of the maximum field tests (including quench and cycle) on Saver dipole and quadrupole magnets and explore the correlation of these tests with cable critical current

  12. Dipolon theory of energy gap parameters at finite temperature and transition temperatures Tc and T* in high-temperature superconductors

    International Nuclear Information System (INIS)

    Sharma, R.R.

    2006-01-01

    First temperature dependent regular and pseudo-energy gap parameters and regular and pseudo-transition temperatures arising from the same physical origin have been calculated in the strong coupling formalism. Temperature dependent many-body field-theoretic techniques have been developed, as an extension of our previous zero-temperature formalism, to derive temperature dependent general expressions for the renormalized energy gap parameter Δ(k->,ω), the gap renormalization parameter Z(k->,ω) and energy band renormalization parameter χ(k->,ω) for momentum k-> and frequency ω making use of dipolon propagator and electron Green's function taking into account explicitly the dressed dipolons as mediators of superconductivity, the screened Coulomb repulsion and nonrigid electron energy bands considering retardation and damping effects and electron-hole asymmetry. The theory takes into account all necessary and important correlations. Our self-consistent calculations utilize the previously symmetry predicted two energy gap parameters for superconducting cuprates, one being antisymmetric (''as'') with respect to the exchange of the k x and k y components of vector k-> and the other being symmetric (''s'') with respect to the exchange of k x and k y . Our present temperature dependent self-consistent solutions of the real and imaginary parts of the Δ(k->,ω), Z(k->,ω) and χ(k->,ω) confirm the existence of these two (different) solutions and conclude that the antisymmetric solution of the gap parameter corresponds to the observed regular (''reg'') superconducting energy gap whereas the symmetric solution corresponds to the observed pseudo-(''pse-'') energy gap. Explicit temperature dependent self-consistent calculations have been performed here for Bi 2 Sr 2 CaCu 2 O 8+δ as well as Bi 2 Sr 2 CaCu 2 O 8 giving temperature dependent energy gap parameters and corresponding transition temperatures. The calculated results are consistent with the available experimental

  13. Design optimization of superconducting magnetic energy storage coil

    Energy Technology Data Exchange (ETDEWEB)

    Bhunia, Uttam, E-mail: ubhunia@vecc.gov.in; Saha, Subimal; Chakrabarti, Alok

    2014-05-15

    Highlights: • We modeled the optimization formulation that minimizes overall refrigeration load into the SMES cryostat. • Higher the operating current reduces the dynamic load but increases static heat load into the cryostat. • Higher allowable hoop stress reduces both coil volume and refrigeration load. • The formulation can be in general be utilized for any arbitrary specification of SMES coil and conductor type. - Abstract: An optimization formulation has been developed for a superconducting magnetic energy storage (SMES) solenoid-type coil with niobium titanium (Nb–Ti) based Rutherford-type cable that minimizes the cryogenic refrigeration load into the cryostat. Minimization of refrigeration load reduces the operating cost and opens up the possibility to adopt helium re-condensing system using cryo-cooler especially for small-scale SMES system. Dynamic refrigeration load during charging or discharging operational mode of the coil dominates over steady state load. The paper outlines design optimization with practical design constraints like actual critical characteristics of the superconducting cable, maximum allowable hoop stress on winding, etc., with the objective to minimize refrigeration load into the SMES cryostat. Effect of design parameters on refrigeration load is also investigated.

  14. Survey of domestic research on superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Dresner, L.

    1991-09-01

    This report documents the results of a survey of domestic research on superconducting magnetic energy storage (SMES) undertaken with the support of the Oak Ridge National Laboratory (ORNL) Superconductivity Pilot Center. Each survey entry includes the following: Name, address, and other telephone and facsimile numbers of the principal investigator and other staff members; funding for fiscal year 1991, 1992, 1993; brief descriptions of the program, the technical progress to date, and the expected technical progress; a note on any other collaboration. Included with the survey are recommendations intended to help DOE decide how best to support SMES research and development (R ampersand D). To summarize, I would say that important elements of a well-rounded SMES research program for DOE are as follows. (1) Construction of a large ETM. (2) Development of SMES as an enabling technology for solar and wind generation, especially in conjunction with the ETM program, if possible. (3) Development of small SMES units for electric networks, for rapid transit, and as noninterruptible power supplies [uses (2), (3), and (4) above]. In this connection, lightweight, fiber-reinforced polymer structures, which would be especially advantageous for space and transportation applications, should be developed. (4) Continued study of the potential impacts of high-temperature superconductors on SMES, with construction as soon as feasible of small SMES units using high-temperature superconductors (HTSs)

  15. Two gap superconductivity in Ba{sub 0.55}K{sub 0.45}Fe{sub 2}As{sub 2} single crystals studied by the directional point-contact Andreev reflection spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Szabo, P.; Pribulova, Z. [Centre of Low Temperature Physics, IEP Slovak Academy of Sciences and P.J.Safarik University, Watsonova 47, SK-04001 Kosice (Slovakia); Pristas, G.; Bud' ko, S.L.; Canfield, P.C. [Ames Laboratory and Iowa State University, Ames, IA 50011 (United States); Samuely, P., E-mail: samuely@saske.s [Centre of Low Temperature Physics, IEP Slovak Academy of Sciences and P.J.Safarik University, Watsonova 47, SK-04001 Kosice (Slovakia)

    2009-10-15

    First directional point-contact Andreev reflection spectroscopy on the Ba{sub 0.55}K{sub 0.45}Fe{sub 2}As{sub 2} single crystals is presented. The spectra show significant differences when measured in the ab plane in comparison with those measured in the c direction. In the latter case no traces of superconducting energy gap could be found, just a reduced point-contact conductance persisting up to about 100 K and indicating reduced density of states. On the other hand within the ab plane two nodeless superconducting energy gaps DELTA{sub S}approx2-5 meV and DELTA{sub L}approx9-11 meV are detected.

  16. Conductors with small Fermi energies and small gap energies

    International Nuclear Information System (INIS)

    Thorn, R.J.

    1993-01-01

    If the Fermi energy is of the order of meV's, the usual treatment of the density of free electrons is not valid, but use can be made of an averaged density of states that depends weakly on temperature, so that the temperature variation of the conductivity can be expressed by the equation: σ congruent CT (1-s) 1n{[(exp(βE f ) + 1)/2][exp(-β(E g - E f )) + 1)]} in which E f is the Fermi energy, E g is the top of the energy gap for thermal activation, s is the exponent of the temperature-dependent scattering. This equation serves to define a class of solids consisting of a microcomposite with a narrow conduction band for which E f of the order of ceV's or less and a thermal activated conduction for which E g is of the order of ceV's. It describes quantitatively the conductivity, σ(T;Δ, for YBa 2 Cu 3 O 7-Δ and σ(T;p) as the hydrostatic pressure p is varied for κ-(BEDT-TTF) 2 CuN(CN) 2 Br

  17. LT-STM/STS observation of definite superconducting gap states on the multistage crystal surface of Bi2Sr2CaCu2O8+x

    International Nuclear Information System (INIS)

    Murakami, Hironaru; Aoki, Ryozo

    1996-01-01

    Low temperature STM/STS observations have been carried out on cleaved BSCCO crystal surfaces. The authors have succeeded in detection of a special layer, probably a CuO 2 or Ca layer exposed on the surface. The STS spectrum which was reproducibly observed on this special site shows a considerably anisotropic but distinct superconducting gap structure with a definite and flat gap bottom region. This gap structure shows significantly different characteristic from another gap structure observed on the BiO layer, which shows a rounded shape at the gap bottom region without any indication of a finite gap state

  18. U.S. program to develop superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Schoenung, S.M.; Hassenzahl, W.V.; Filios, P.G.

    1988-01-01

    The United States Government, along with the Electric Power Research Institute (EPRI), has initiated a program to develop Superconducting Magnetic Energy Storage (SMES). This program is designed to answer questions of technical and economic viability by the mid-1990s, thereby paving the way to commercialization. EPRI has supported this technology since 1981 and is interested in its potential use in diurnal electric load-leveling. The U.S. Government has an additional interest in the potential of SMES to power ground-based lasers for Strategic Defense purposes. This paper presents a brief description of SMES technology, a review of the programmatic aspects of the ongoing program, including EPRI and DoD objectives, critical issues, and program milestones. The potential impact of high temperature superconductors on SMES is also discussed

  19. Energy transfer from a superconducting magnet to an inductive load

    International Nuclear Information System (INIS)

    Onishi, Toshitada; Miura, Akinori.

    1977-01-01

    Experiments on energy transfer between two superconducting magnets have been carried out using an inductive energy transfer system similar to the flying capacitor system developed at the Karlsruhe Institute. In the present system the capacitor is grounded and diodes are used instead of thyristors, and a fraction of stored energy is transferred to the capacitor only when the relay connected in parallel to the magnet is switched off. The capacitor is expected to have no constraint in size, while in the flying capacitor system the capacitor is required to exceed a threshold size. Consequently it is possible to shorten the transfer time to some extent in comparison with the one in the flying capacitor system. Transfer experiments have been carried out using a storage magnet with inductance of 1.2H and a load of 0.41H. The capacitance is 200μF. It is possible to transfer 80.1% of the stored energy of 221 J into the load in less than about 0.35 seconds. (auth.)

  20. Optimization of HTS superconducting magnetic energy storage magnet volume

    Science.gov (United States)

    Korpela, Aki; Lehtonen, Jorma; Mikkonen, Risto

    2003-08-01

    Nonlinear optimization problems in the field of electromagnetics have been successfully solved by means of sequential quadratic programming (SQP) and the finite element method (FEM). For example, the combination of SQP and FEM has been proven to be an efficient tool in the optimization of low temperature superconductors (LTS) superconducting magnetic energy storage (SMES) magnets. The procedure can also be applied for the optimization of HTS magnets. However, due to a strongly anisotropic material and a slanted electric field, current density characteristic high temperature superconductors HTS optimization is quite different from that of the LTS. In this paper the volumes of solenoidal conduction-cooled Bi-2223/Ag SMES magnets have been optimized at the operation temperature of 20 K. In addition to the electromagnetic constraints the stress caused by the tape bending has also been taken into account. Several optimization runs with different initial geometries were performed in order to find the best possible solution for a certain energy requirement. The optimization constraints describe the steady-state operation, thus the presented coil geometries are designed for slow ramping rates. Different energy requirements were investigated in order to find the energy dependence of the design parameters of optimized solenoidal HTS coils. According to the results, these dependences can be described with polynomial expressions.

  1. Superconducting magnetic energy storage (SMES) program, January 1-December 31, 1981

    International Nuclear Information System (INIS)

    Rogers, J.D.

    1982-02-01

    Work reported is on the development of a 30 MJ superconducting magnetic energy storage (SMES) unit for use by the Bonneville Power Administration (BPA) to stabilize power oscillations on their Pacific AC Intertie. The 30 MJ superconducting coil manufacture was completed. Design of the seismic mounting of the coil to the nonconducting dewar lid and a concrete foundation is complete. The superconducting application VAR (SAVAR) control study indicated a low economic advantage and the SAVAR program was terminated. An economic and technological evaluation of superconducting fault current limiter (SFCL) was completed and the results are reported

  2. Superconducting energy stabilizer with charging and discharging DC-DC converters

    International Nuclear Information System (INIS)

    Kim, S.H.; Kostecki, E.L.; DeWinkel, C.C.

    1992-01-01

    This patent describes a superconducting energy stabilizer having multiple load connections and employing DC-DC conversion for storing energy in a superconducting inductive energy storage device having a first end and a second end, and for releasing the stored energy from the superconducting inductive energy storage device to a load or loads or to a utility or an industrial electrical distribution system, the superconducting energy stabilizer having multiple load connections and employing DC-DC conversion. It comprises: energy storage cell means for supplying energy to the load, discharging DC-DC converter means for releasing energy from the superconducting inductive energy storage device to the energy storage cell means, the discharging DC-DC converter means having input terminals, output terminals, and a discharging control line means for carrying signals controlling the operation of the discharging DC-DC converter means, one of the input terminals of the discharging DC-DC converter means coupled to the first end of the superconducting energy storage device

  3. Effect of superconducting electrons on the energy splitting of tunneling systems

    International Nuclear Information System (INIS)

    Yu, C.C.; Granato, A.V.

    1985-01-01

    We consider the effect of superconducting electrons on the magnitude of the energy splitting of a tunneling system. A specific example is a hydrogen atom tunneling in niobium. We find that in this case the splitting is roughly 20% smaller in the normal state than in the superconducting state. This difference in the splitting should be observable in neutron scattering and ultrasonic measurements

  4. Coexistence of Superconductivity and Ferromagnetism in ...

    African Journals Online (AJOL)

    KBHEEMA

    Ferromagnetic alignment can be expected to be strongly opposed by superconductivity. .... To obtain temperature dependent of energy gap of equation (23), we used the same techniques to solve the integral .... band metal ZrZn2. Nature, 412: ...

  5. Elliptical superconducting RF cavities for FRIB energy upgrade

    Science.gov (United States)

    Ostroumov, P. N.; Contreras, C.; Plastun, A. S.; Rathke, J.; Schultheiss, T.; Taylor, A.; Wei, J.; Xu, M.; Xu, T.; Zhao, Q.; Gonin, I. V.; Khabiboulline, T.; Pischalnikov, Y.; Yakovlev, V. P.

    2018-04-01

    The multi-physics design of a five cell, βG = 0 . 61, 644 MHz superconducting elliptical cavity being developed for an energy upgrade in the Facility for Rare Isotope Beams (FRIB) is presented. The FRIB energy upgrade from 200 MeV/u to 400 MeV/u for heaviest uranium ions will increase the intensities of rare isotope beams by nearly an order of magnitude. After studying three different frequencies, 1288 MHz, 805 MHz, and 644 MHz, the 644 MHz cavity was shown to provide the highest energy gain per cavity for both uranium and protons. The FRIB upgrade will include 11 cryomodules containing 5 cavities each and installed in 80-meter available space in the tunnel. The cavity development included extensive multi-physics optimization, mechanical and engineering analysis. The development of a niobium cavity is complete and two cavities are being fabricated in industry. The detailed design of the cavity sub-systems such as fundamental power coupler and dynamic tuner are currently being pursued. In the overall design of the cavity and its sub-systems we extensively applied experience gained during the development of 650 MHz low-beta cavities at Fermi National Accelerator Laboratory (FNAL) for the Proton Improvement Plan (PIP) II.

  6. Ultrasonic attenuation in superconducting zinc

    International Nuclear Information System (INIS)

    Auluck, S.

    1978-01-01

    The differences in the Zn ultrasonic attenuation data of different workers are analyzed. The superconducting energy gaps deduced from our analysis of the ultrasonic-attenuation data of Cleavelin and Marshall are consistent with the gaps deduced from the knowledge of the Fermi surface and the electron-phonon mass enhancement factor

  7. Cryogenic testing of the 2.1 GHz five-cell superconducting RF cavity with a photonic band gap coupler cell

    Science.gov (United States)

    Arsenyev, Sergey A.; Temkin, Richard J.; Haynes, W. Brian; Shchegolkov, Dmitry Yu.; Simakov, Evgenya I.; Tajima, Tsuyoshi; Boulware, Chase H.; Grimm, Terrence L.; Rogacki, Adam R.

    2016-05-01

    We present results from cryogenic tests of the multi-cell superconducting radio frequency (SRF) cavity with a photonic band gap (PBG) coupler cell. Achieving high average beam currents is particularly desirable for future light sources and particle colliders based on SRF energy-recovery-linacs (ERLs). Beam current in ERLs is limited by the beam break-up instability, caused by parasitic higher order modes (HOMs) interacting with the beam in accelerating cavities. A PBG cell incorporated in an accelerating cavity can reduce the negative effect of HOMs by providing a frequency selective damping mechanism, thus allowing significantly higher beam currents. The multi-cell cavity was designed and fabricated of niobium. Two cryogenic (vertical) tests were conducted. The high unloaded Q-factor was demonstrated at a temperature of 4.2 K at accelerating gradients up to 3 MV/m. The measured value of the unloaded Q-factor was 1.55 × 108, in agreement with prediction.

  8. Superconducting magnetic energy storage for electric utility load leveling: A study of cost vs. stored energy

    International Nuclear Information System (INIS)

    Luongo, C.A.; Loyd, R.J.

    1987-01-01

    Superconducting Magnetic Energy Storage (SMES) is a promising technology for electric utility load leveling. This paper presents the results of a study to establish the capital cost of SMES as a function of stored energy. Energy-related coil cost and total installed plant cost are given for construction in nominal soil and in competent rock. Economic comparisons are made between SMES and other storage technologies and peaking gas turbines. SMES is projected to be competitive at stored energies as low as 1000 MWh

  9. Generation and detection of high-energy phonons by superconducting junctions

    International Nuclear Information System (INIS)

    Singer, I.L.

    1976-01-01

    Superconducting tunnel junctions are used to investigate the dynamics of energy exchange that takes place in superconductors driven out of equilibrium. In a Sn junction biased at a voltage V much greater than 2Δ(Sn)/e, the tunneling current sustains a continual energy exchange amongst the quasiparticles, phonons, and Cooper pairs. Repeatedly, high-energy quasiparticles decay, emitting phonons; and phonons with energy greater than 2Δ(Sn) break pairs, producing quasiparticles. The phonon-induced component of the current is recovered by synchronously detecting the full tunneling current with respect to a small modulation current in the generator. Sharp onsets observed at intervals of the gap energies require that the escaping phonons are produced by the direct decay of the injected quasiparticles and are not merely the high-energy tail of the thermalized phonons. Both primary and secondary phonons can be abserved distinctly. Theoretical transconductance curves have been computed. The experimental and theoretical curves are in good qualitative agreement. A more detailed comparison suggests that the escape rate of high-energy phonons depends on the energy of the phonons. The dependence of the observed transconductance signal on the temperature and the total junction thickness suggests that the presence of quasiparticles plays a major role in the escape of high-energy phonons. The dependence on temperature can be fitted to exp(b/kT), 0.74 less than b less than 1.05 MeV. It is speculated that the excitation energy is first transported across the superconductor and then carried out of the film by the phonons. It is concluded that high-energy phonons are a sensitive probe of the very reabsorption effects that make their escape so unlikely, and analysis of the detected phonons rich details of the behavior of superconductors removed from equilibrium

  10. Superconducting magnetic energy storage (SMES). Results of a technology assessment

    International Nuclear Information System (INIS)

    Fleischer, T.; Juengst, K.P.; Brandl, V.; Maurer, W.; Nieke, E.

    1995-05-01

    The authors report on results of a Technology Assessment study commissioned by the German Federal Ministry of Education, Science, Research and Technology. The objective of this study was to evaluate the potential of superconducting magnetic energy storage (SMES) technology with respect to the economical, political and organization structures in the Federal Republic of Germany. The main focus of the study was on the technical and economic potential of large-scale SMES for diurnal load levelling applications. It was shown that there is no demand for the development of large SMES in Germany in the short and medium term. A second range of applications investigated is storage of electric energy for immediate delivery or consumption of electric power in case of need or for periodic power supply within the range of seconds. Due to its excellent dynamic properties SMES has substantial advantages over conventional storage technologies in this field. For those so-called dynamic applications SMES of small and medium energy capacity are needed. It was shown that SMES may be economically attractive for the provision of spinning reserve capacity in electrical networks, in particular cases for power quality applications (uninterruptable power supply, UPS) and for the compensation of cyclic loads, as well as in some market niches. The use of SMES for storage of recuperated energy in electrical railway traction systems has been proven to be uneconomical. Mobile SMES applications are unrealistic due to technical and size limitations. In SMES systems the energy is stored in a magnetic field. Biological objects as well as technical systems in the vicinity of a SMES plant are exposed to this field. The knowledge on impacts of magnetic fields on sensitive technical systems as well as on living organisms and especially on effects on human health is rather small and quite uncertain. (orig./MM) [de

  11. Superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Batistoni, Paola; De Marco, Francesco; Pieroni, Leonardo [ed.

    2005-07-01

    Research on superconductivity at ENEA is mainly devoted to projects related to the ITER magnet system. In this framework, ENEA has been strongly involved in the design, manufacturing and test campaigns of the ITER toroidal field model coil (TFMC), which reached a world record in operating current (up to 80 kA). Further to this result, the activities in 2004 were devoted to optimising the ITER conductor performance. ENEA participated in the tasks launched by EFDA to define and produce industrial-scale advanced Nb3Sn strand to be used in manufacturing the ITER high-field central solenoid (CS) and toroidal field (TF) magnets. As well as contributing to the design of the new strand and the final conductor layout, ENEA will also perform characterisation tests, addressing in particular the influence of mechanical stress on the Nb3Sn performance. As a member of the international ITER-magnet testing group, ENEA plays a central role in the measurement campaigns and data analyses for each ITER-related conductor and coil. The next phase in the R and D of the ITER magnets will be their mechanical characterisation in order to define the fabrication route of the coils and structures. During 2004 the cryogenic measurement campaign on the Large Hadron Collider (LHC) by-pass diode stacks was completed. As the diode-test activity was the only LHC contract to be finished on schedule, the 'Centre Europeenne pour la Recherche Nucleaire' (CERN) asked ENEA to participate in an international tender for the cold check of the current leads for the LHC magnets. The contract was obtained, and during 2004, the experimental setup was designed and realised and the data acquisition system was developed. The measurement campaign was successfully started at the end of 2004 and will be completed in 2006.

  12. Energy bands and gaps near an impurity

    Czech Academy of Sciences Publication Activity Database

    Mihóková, Eva; Schulman, L. S.

    2016-01-01

    Roč. 380, č. 41 (2016), s. 3430-3433 ISSN 0375-9601 R&D Projects: GA ČR GA13-09876S Institutional support: RVO:68378271 Keywords : crystal structure * impurity * modeling * energy bands Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.772, year: 2016

  13. Superconducting magnets in the world of energy, especially in fusion power

    International Nuclear Information System (INIS)

    Komarek, P.

    1976-01-01

    Industrial applications of superconducting magnets are only feasible in the near future for superconducting monopolar machines and possible MHD generators. For superconducting synchronous machines, after the successful operation of machines in the MVA range, a new phase of basic investigations has started. Fundamental problems which could not be studied in the MVA machines, but which influence the design of large turbo-alternators, must now be investigated. Fusion power by magnetic confinement will probably be the largest field of application for superconducting magnets in the long run. The present research programmes require large superconducting magnets by the mid-1980s for the experimental reactors envisaged at that time. In addition to dc windings, pulse-operated superconducting windings are required in some systems, such as Tokamak. The high sensitivity of the overall plant efficiency and the active power demand of the pulsed windings require great efficiency from energy storage and transfer systems. Superconducting energy storage systems would be suitable for this, if transfer between inductances could be provided with sufficient efficiency. Basic experiments gave encouraging results. In power plant systems and electric machines an extremely high level of reliability and availability has been achieved. Less reliability will not be accepted for systems with superconducting magnets. This requires great efforts during the development work. (author)

  14. Superconducting systems of advanced sources of electrical energy in the USSR

    International Nuclear Information System (INIS)

    Demirchian, K.S.

    1987-01-01

    Two examples illustrating some of the possible applications of the superconductivity effect are discussed in this presentation. One of these examples, the MHD method of energy conversion, illustrates the use of superconducting magnet systems for raising the efficiency of conversion of organic fuel energy to electrical energy. The other example, the magnet system of Tokamak-type fusion facility, illustrates the use of superconductivity in application to new sources of energy. The choice of these examples is governed by the fact that the availability of superconducting systems is essential in both cases. Furthermore, the development of such systems per se presents a major scientific and technical achievement based on extensive studies in the field of solid state physics, electro- and thermophysics and engineering

  15. Superconductivity - applications

    International Nuclear Information System (INIS)

    The paper deals with the following subjects: 1) Electronics and high-frequency technology, 2) Superconductors for energy technology, 3) Superconducting magnets and their applications, 4) Electric machinery, 5) Superconducting cables. (WBU) [de

  16. Wind energy availability above gaps in a forest

    DEFF Research Database (Denmark)

    Sogachev, Andrey; Mann, Jakob; Dellwik, Ebba

    2009-01-01

    installation strategies. The canopy-planetary boundary-layer model SCADIS is used to investigate the effect of forest gap size (within the diameter range of 3 - 75 tree heights, h) on wind energy related variables. A wind turbine was assumed with following features: the hub height and rotor diameter of 3.5h...... were estimated from modelled data. The results show that the effect of the forest gaps with diameters smaller than 55h on wind energy captured by the assumed wind turbine and located in the centre of round low-roughness gap is practically insignificant. The high level of spatial variation of considered......There is a lack of data on availability of wind energy above a forest disturbed by clear-cuts, where a wind energy developer may find an opportunity to install a wind farm. Computational fluid dynamics (CFD) models can provide spatial patterns of wind and turbulence, and help to develop optimal...

  17. Performance gaps in energy consumption : household groups and building characteristics

    NARCIS (Netherlands)

    van den Brom, P.I.; Meijer, A.; Visscher, H.J.

    2017-01-01

    The difference between actual and calculated energy is called the ‘energy-performance gap’. Possible explanations for this gap are construction mistakes, improper adjusting of equipment, excessive simplification in simulation models and occupant behaviour. Many researchers and governmental

  18. Superconducting Cable Development for Future High Energy Physics Detector Magnets

    Science.gov (United States)

    Horvath, I. L.

    1995-11-01

    Under the leadership of the Swiss Federal Institute of Technology (ETHZ) an international ad hoc collaboration for superconducting cables developed an aluminium stabilised superconducting cable for future detector magnets. With the financial support of the Swiss government, this R&D work was carried out for the European Organisation for Nuclear Research (CERN). In this report the manufacturing process is described and results of the quality control measurements are summarised. These tests showed that the industrial manufacturing of an aluminium stabilised superconducting cable is feasible.

  19. The power processor of a high temperature superconducting energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Ollila, J. [Power Electronics, Tampere University of Technology, Tampere (Finland)

    1997-12-31

    This report introduces the structure and properties of a power processor unit for a high temperature superconducting magnetic energy storage system which is bused in an UPS demonstration application. The operation is first demonstrated using simulations. The software based operating and control system utilising combined Delta-Sigma and Sliding-Mode control is described shortly. Preliminary test results using a conventional NbTi superconducting energy y storage magnet operating at 4.2 K is shown. (orig.)

  20. Demonstration of Protection of a Superconducting Qubit from Energy Decay

    Science.gov (United States)

    Lin, Yen-Hsiang; Nguyen, Long B.; Grabon, Nicholas; San Miguel, Jonathan; Pankratova, Natalia; Manucharyan, Vladimir E.

    2018-04-01

    Long-lived transitions occur naturally in atomic systems due to the abundance of selection rules inhibiting spontaneous emission. By contrast, transitions of superconducting artificial atoms typically have large dipoles, and hence their lifetimes are determined by the dissipative environment of a macroscopic electrical circuit. We designed a multilevel fluxonium artificial atom such that the qubit's transition dipole can be exponentially suppressed by flux tuning, while it continues to dispersively interact with a cavity mode by virtual transitions to the noncomputational states. Remarkably, energy decay time T1 grew by 2 orders of magnitude, proportionally to the inverse square of the transition dipole, and exceeded the benchmark value of T1>2 ms (quality factor Q1>4 ×107) without showing signs of saturation. The dephasing time was limited by the first-order coupling to flux noise to about 4 μ s . Our circuit validated the general principle of hardware-level protection against bit-flip errors and can be upgraded to the 0 -π circuit [P. Brooks, A. Kitaev, and J. Preskill, Phys. Rev. A 87, 052306 (2013), 10.1103/PhysRevA.87.052306], adding protection against dephasing and certain gate errors.

  1. Analysis of energy gap opening in graphene oxide

    International Nuclear Information System (INIS)

    Lundie, Mark; Tomić, Stanko; Šljivančanin, Željko

    2014-01-01

    The utilisation of graphene structures as photonics materials mandates that an optically active electronic energy gap be formed. Opening of a gap in graphene has been demonstrated by functionalisation with H, F, or O atoms, while experimental observations of graphene oxide have hinted at interesting optical properties, with the potential for absorption of visible light. As such, our analysis is focused on O functionalisation of graphene. We present results from extensive ab initio and hybrid DFT calculations, demonstrating the creation of an optically active gap.

  2. Bridging the Gap for High-Coherence, Strongly Coupled Superconducting Qubits

    Science.gov (United States)

    Yoder, Jonilyn; Kim, David; Baldo, Peter; Day, Alexandra; Fitch, George; Holihan, Eric; Hover, David; Samach, Gabriel; Weber, Steven; Oliver, William

    Crossovers can play a critical role in increasing superconducting qubit device performance, as long as device coherence can be maintained even with the increased fabrication and circuit complexity. Specifically, crossovers can (1) enable a fully-connected ground plane, which reduces spurious modes and crosstalk in the circuit, and (2) increase coupling strength between qubits by facilitating interwoven qubit loops with large mutual inductances. Here we will describe our work at MIT Lincoln Laboratory to integrate superconducting air bridge crossovers into the fabrication of high-coherence capacitively-shunted superconducting flux qubits. We will discuss our process flow for patterning air bridges by resist reflow, and we will describe implementation of air bridges within our circuits. This research was funded in part by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) and by the Assistant Secretary of Defense for Research and Engineering under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.

  3. Jump in current at the gap voltage in a superconducting junction

    International Nuclear Information System (INIS)

    Coombes, J.M.; Carbotte, J.P.

    1986-01-01

    For many materials not previously considered, we have calculated the jump, at the gap voltage, in the quasiparticle current of a tunnel junction. An empirical relationship between the jump and the effective electron-phonon coupling λ-μ/sup */ previously established is confirmed. Further, a new and equally as accurate correlation is found with the strong coupling index T/sub c//ω/sub ln/, where T/sub c/ is the critical temperature and ω/sub ln/ a specific characteristic phonon energy. A simple formula for the jump which includes a strong-coupling correction is derived and found to fit the observed correlation well. Finally, we study the effect on the jump of unusual values of Coulomb pseudopotential μ/sup */. Also a δ-function electron-phonon spectral density α 2 F(ω) is used to help in the understanding of the range of values that is possible for the jump when α 2 F(ω) is not restricted to realistic shapes

  4. Closing the Gap GEF Experiences in Global Energy Efficiency

    CERN Document Server

    Yang, Ming

    2013-01-01

    Energy efficiency plays and will continue to play an important role in the world to save energy and mitigate greenhouse gas (GHG) emissions. However, little is known on how much additional capital should be invested to ensure using energy efficiently as it should be, and very little is known which sub-areas, technologies, and countries shall achieve maximum greenhouse gas emissions mitigation per dollar of investment in energy efficiency worldwide. Analyzing completed and slowly moving energy efficiency projects by the Global Environment Facility during 1991-2010, Closing the Gap: GEF Experiences in Global Energy Efficiency evaluates impacts of multi-billion-dollar investments in the world energy efficiency. It covers the following areas: 1.       Reviewing the world energy efficiency investment and disclosing the global energy efficiency gap and market barriers that cause the gap; 2.       Leveraging private funds with public funds and other resources in energy efficiency investments; using...

  5. Second order phase transition in thermodynamic geometry and holographic superconductivity in low-energy stringy black holes

    Science.gov (United States)

    Rizwan, C. L. Ahmed; Vaid, Deepak

    2018-05-01

    We study holographic superconductivity in low-energy stringy Garfinkle-Horowitz-Strominger (GHS) dilaton black hole background. We finds that superconducting properties are much similar to s-wave superconductors. We show that the second-order phase transition indicated from thermodynamic geometry is not different from superconducting phase transition.

  6. Calculation of the band gap energy of ionic crystals

    International Nuclear Information System (INIS)

    Aguado, A.; Lopez, J.M.; Alonso, J.A.; Ayuela, A.; Rivas S, J.F.; Berrondo, M.

    1998-01-01

    The band gap of alkali halides, alkaline-earth oxides, Al 2 O 3 and SiO 2 crystals has been calculated using the perturbed-ion model supplemented with some assumptions for the treatment of excited states. The gap is calculated in several ways: as a difference between one-electron energy eigenvalues and as a difference between the total energies of appropriate electronic states of the crystal, both at the HF level and with inclusion of Coulomb correlation effects. The results compare well with experimental band gap energies and with other theoretical calculations, suggesting that the picture of bonding and excitation given by the model can be useful in ionic materials. (Author)

  7. The Coulomb gap and low energy statistics for Coulomb glasses

    International Nuclear Information System (INIS)

    Glatz, Andreas; Vinokur, Valerii M; Bergli, Joakim; Kirkengen, Martin; Galperin, Yuri M

    2008-01-01

    We study the statistics of local energy minima in the configuration space of two-dimensional lattice Coulomb glasses with site disorder and the behavior of the Coulomb gap depending on the strength of random site energies. At intermediate disorder, i.e., when the typical strength of the disorder is of the same order as the nearest-neighbor Coulomb energy, the high energy tail of the distribution of the local minima is exponential. We furthermore analyze the structure of the local minima and show that most sites of the system have the same occupation numbers in all of these states. The density of states (DOS) shows a transition from the crystalline state at zero disorder (with a hard gap) to an intermediate, probably glassy state with a Coulomb gap. We analyze this Coulomb gap in some detail and show that the DOS deviates slightly from the traditional linear behavior in 2D. For finite systems these intermediate Coulomb gap states disappear for large disorder strengths and only a random localized state in which all electrons are in the minima of the random potential exists. Dedication: This paper is dedicated to Thomas Nattermann, our dearest friend, brilliant colleague, and outstanding teacher

  8. Tidal stresses and energy gaps in microstate geometries

    Science.gov (United States)

    Tyukov, Alexander; Walker, Robert; Warner, Nicholas P.

    2018-02-01

    We compute energy gaps and study infalling massive geodesic probes in the new families of scaling, microstate geometries that have been constructed recently and for which the holographic duals are known. We find that in the deepest geometries, which have the lowest energy gaps, the geodesic deviation shows that the stress reaches the Planck scale long before the probe reaches the cap of the geometry. Such probes must therefore undergo a stringy transition as they fall into microstate geometry. We discuss the scales associated with this transition and comment on the implications for scrambling in microstate geometries.

  9. The role of rare earths in narrow energy gap semiconductors

    International Nuclear Information System (INIS)

    Partin, D.L.; Heremans, J.; Morelli, D.T.; Thrush, C.M.

    1991-01-01

    Narrow energy band gap semiconductors are potentially useful for various devices, including infrared detectors and diode lasers. Rare earth elements have been introduced into lead chalcogenide semiconductors using the molecular beam epitaxy growth process. Europium and ytterbium increase the energy band gap, and nearly lattice-matched heterojunctions have been grown. In some cases, valence changes in the rare earth element cause doping of the alloy. In this paper some initial investigations of the addition of europium to indium antimonide are reported, including the variation of lattice parameter and optical transmission with composition and a negative magnetoresistance effect

  10. ESR spectrometer with a loop-gap resonator for cw and time resolved studies in a superconducting magnet.

    Science.gov (United States)

    Simon, Ferenc; Murányi, Ferenc

    2005-04-01

    The design and performance of an electron spin resonance spectrometer operating at 3 and 9 GHz microwave frequencies combined with a 9-T superconducting magnet are described. The probehead contains a compact two-loop, one gap resonator, and is inside the variable temperature insert of the magnet enabling measurements in the 0-9T magnetic field and 1.5-400 K temperature range. The spectrometer allows studies on systems where resonance occurs at fields far above the g approximately 2 paramagnetic condition such as in antiferromagnets. The low quality factor of the resonator allows time resolved experiments such as, e.g., longitudinally detected ESR. We demonstrate the performance of the spectrometer on the NaNiO2 antiferromagnet, the MgB2 superconductor, and the RbC60 conducting alkaline fulleride polymer.

  11. Spectroscopic evidence for two-gap superconductivity in the quasi-1D chalcogenide Nb2Pd0.81S5

    Science.gov (United States)

    Park, Eunsung; Lee, Sangyun; Ronning, Filip; Thompson, Joe D.; Zhang, Qiu; Balicas, Luis; Lu, Xin; Park, Tuson

    2018-04-01

    Low-dimensional electronic systems with confined electronic wave functions have attracted interest due to their propensity toward novel quantum phases and their use in wide range of nanotechnologies. The newly discovered chalcogenide Nb2PdS5 possesses a quasi-one-dimensional electronic structure and becomes superconducting. Here, we report spectroscopic evidence for two-band superconductivity, where soft point-contact spectroscopic measurements in the superconducting (SC) state reveal Andreev reflection in the differential conductance G. Multiple peaks in G are observed at 1.8 K and explained by the two-band Blonder–Tinkham–Klapwijk model with two gaps Δ1  =  0.61 meV and Δ2  =  1.20 meV. The progressive evolution of G with temperature and magnetic field corroborates the multiple nature of the SC gaps.

  12. Gap analysis of industrial energy management systems in Slovenia

    International Nuclear Information System (INIS)

    Pusnik, Matevz; Al-Mansour, Fouad; Sucic, Boris; Gubina, A.F.

    2016-01-01

    Industrial energy management systems, which comprise software solutions, upfront services, and ongoing monitoring and management, enable industrial companies to actively manage their energy consumption and energy procurement activities. Energy management systems are usually tailored to the specific industrial needs but may offer limited functionalities, mostly as a result of different identified gaps (process simplifications, improper measurement points, a lack of motivation, etc.). A survey was conducted in order to analyse the gaps and use of energy management systems in Slovenian industry. The results of the survey presented in this paper demonstrate that the use of energy management systems in industry is recognised as a potential competitive advantage by most of the addressed companies. Furthermore, motivation was highlighted as an important prerequisite for process and structural improvements and reported to be thus far insufficiently addressed. Furthermore, the importance of strong cooperation with actors at different levels of industry, namely the executive and shop floor levels, is addressed. In the conclusion, possibilities for new opportunities in the exploitation of energy efficiency through the use of industrial energy management systems are discussed. - Highlights: • Investigating gaps and evaluation of EMS use in Slovenian industry. • Analysis based on the developed self-assessment tool 3EMT. • Existing EMS do not include all the requirements for the industrial operations. • Constructive cooperation between all stakeholders is of crucial importance.

  13. Development of Low Energy Gap and Fully Regioregular Polythienylenevinylene Derivative

    Directory of Open Access Journals (Sweden)

    Tanya M. S. David

    2014-01-01

    Full Text Available Low energy gap and fully regioregular conjugated polymers find its wide use in solar energy conversion applications. This paper will first briefly review this type of polymers and also report synthesis and characterization of a specific example new polymer, a low energy gap, fully regioregular, terminal functionalized, and processable conjugated polymer poly-(3-dodecyloxy-2,5-thienylene vinylene or PDDTV. The polymer exhibited an optical energy gap of 1.46 eV based on the UV-vis-NIR absorption spectrum. The electrochemically measured highest occupied molecular orbital (HOMO level is −4.79 eV, resulting in the lowest unoccupied molecular orbital (LUMO level of −3.33 eV based on optical energy gap. The polymer was synthesized via Horner-Emmons condensation and is fairly soluble in common organic solvents such as tetrahydrofuran and chloroform with gentle heating. DSC showed two endothermic peaks at 67°C and 227°C that can be attributed to transitions between crystalline and liquid states. The polymer is thermally stable up to about 300°C. This polymer appears very promising for cost-effective solar cell applications.

  14. Multi-frequency modes in superconducting resonators: Bridging frequency gaps in off-resonant couplings

    Science.gov (United States)

    Andersen, Christian Kraglund; Mølmer, Klaus

    2015-03-01

    A SQUID inserted in a superconducting waveguide resonator imposes current and voltage boundary conditions that makes it suitable as a tuning element for the resonator modes. If such a SQUID element is subject to a periodically varying magnetic flux, the resonator modes acquire frequency side bands. We calculate the multi-frequency eigenmodes and these can couple resonantly to physical systems with different transition frequencies and this makes the resonator an efficient quantum bus for state transfer and coherent quantum operations in hybrid quantum systems. As an example of the application, we determine their coupling to transmon qubits with different frequencies and we present a bi-chromatic scheme for entanglement and gate operations. In this calculation, we obtain a maximally entangled state with a fidelity F = 95 % . Our proposal is competitive with the achievements of other entanglement-gates with superconducting devices and it may offer some advantages: (i) There is no need for additional control lines and dephasing associated with the conventional frequency tuning of qubits. (ii) When our qubits are idle, they are far detuned with respect to each other and to the resonator, and hence they are immune to cross talk and Purcell-enhanced decay.

  15. Global Gaps in Clean Energy RD and D

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This report seeks to inform decision makers seeking to prioritise RD&D investments in a time of financial uncertainty. It is an update of the December 2009 IEA report Global Gaps in Clean Energy Research, Development and Demonstration, which examined whether rates of LCET investment were sufficient to achieve shared global energy and environmental goals (IEA,2009). It discusses the impact of the green stimulus spending announcements, and provides private sector perspectives on priorities for government RD&D spending. Finally, it includes a revised assessment of the gaps in public RD&D, together with suggestions for possible areas for expanded international collaboration on specific LCETs. The conclusion re-affirms the first Global Gaps study finding that governments and industry need to dramatically increase their spending on RD&D for LCETs.

  16. Superconducting Magnetic Energy Storage (SMES). (Latest citations from the NTIS bibliographic database). Published Search

    International Nuclear Information System (INIS)

    1993-09-01

    The bibliography contains citations concerning the technology and use of superconducting magnetic energy storage (SMES). The design, analysis, evaluation, and operation of SMES systems and equipment are discussed. Topics include utility scale SMES plants, SMES for transmission line stabilization, design and protection of superconducting magnets and coils, computer controlled SMES systems, and fusion power reactors. (Contains a minimum of 82 citations and includes a subject term index and title list.)

  17. Superconducting Magnetic Energy Storage (SMES). (Latest citations from the NTIS bibliographic database). Published Search

    International Nuclear Information System (INIS)

    1993-11-01

    The bibliography contains citations concerning the technology and use of superconducting magnetic energy storage (SMES). The design, analysis, evaluation, and operation of SMES systems and equipment are discussed. Topics include utility scale SMES plants, SMES for transmission line stabilization, design and protection of superconducting magnets and coils, computer controlled SMES systems, and fusion power reactors. (Contains a minimum of 82 citations and includes a subject term index and title list.)

  18. Robust Energy Hub Management Using Information Gap Decision Theory

    DEFF Research Database (Denmark)

    Javadi, Mohammad Sadegh; Anvari-Moghaddam, Amjad; Guerrero, Josep M.

    2017-01-01

    This paper proposes a robust optimization framework for energy hub management. It is well known that the operation of energy systems can be negatively affected by uncertain parameters, such as stochastic load demand or generation. In this regard, it is of high significance to propose efficient...... tools in order to deal with uncertainties and to provide reliable operating conditions. On a broader scale, an energy hub includes diverse energy sources for supplying both electrical load and heating/cooling demands with stochastic behaviors. Therefore, this paper utilizes the Information Decision Gap...

  19. Inter-band phase fluctuations in macroscopic quantum tunneling of multi-gap superconducting Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Asai, Hidehiro, E-mail: hd-asai@aist.go.jp [Electronics and Photonics Research Institute (ESPRIT), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Ota, Yukihiro [CCSE, Japan Atomic Energy Agency, Kashiwa, Chiba 277-8587 (Japan); Kawabata, Shiro [Electronics and Photonics Research Institute (ESPRIT), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Nori, Franco [CEMS, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Physics Department, University of Michigan, Ann Arbor, MI 48109-1040 (United States)

    2014-09-15

    Highlights: • We study MQT in Josephson junctions composed of multi-gap superconductors. • We derive a formula of the MQT escape rate for multiple phase differences. • We investigate the effect of inter-band phase fluctuation on MQT. • The MQT escape rate is significantly enhanced by the inter-band phase fluctuation. - Abstract: We theoretically investigate macroscopic quantum tunneling (MQT) in a hetero Josephson junction formed by a conventional single-gap superconductor and a multi-gap superconductor. In such Josephson junctions, phase differences for each tunneling channel are defined, and the fluctuation of the relative phase differences appear which is referred to as Josephson–Leggett’s mode. We take into account the effect of the fluctuation in the tunneling process and calculate the MQT escape rate for various junction parameters. We show that the fluctuation of relative phase differences drastically enhances the escape rate.

  20. Inter-band phase fluctuations in macroscopic quantum tunneling of multi-gap superconducting Josephson junctions

    International Nuclear Information System (INIS)

    Asai, Hidehiro; Ota, Yukihiro; Kawabata, Shiro; Nori, Franco

    2014-01-01

    Highlights: • We study MQT in Josephson junctions composed of multi-gap superconductors. • We derive a formula of the MQT escape rate for multiple phase differences. • We investigate the effect of inter-band phase fluctuation on MQT. • The MQT escape rate is significantly enhanced by the inter-band phase fluctuation. - Abstract: We theoretically investigate macroscopic quantum tunneling (MQT) in a hetero Josephson junction formed by a conventional single-gap superconductor and a multi-gap superconductor. In such Josephson junctions, phase differences for each tunneling channel are defined, and the fluctuation of the relative phase differences appear which is referred to as Josephson–Leggett’s mode. We take into account the effect of the fluctuation in the tunneling process and calculate the MQT escape rate for various junction parameters. We show that the fluctuation of relative phase differences drastically enhances the escape rate

  1. Improving superconducting RF technology for high energy particle accelerators

    International Nuclear Information System (INIS)

    Leconte, P.

    1991-01-01

    A review of the state of the art is given. It shows recent proofs of success of the technology. An important R and D effort remains to be done in order to collect all the expectable benefits of RF superconductivity. (author)

  2. 100 Years of Superconductivity: Perspective on Energy Applications

    Science.gov (United States)

    Grant, Paul

    2011-11-01

    One hundred years ago this past April, in 1911, traces of superconductivity were first detected near 4.2 K in mercury in the Leiden laboratory of Kammerlingh Onnes, followed seventy-five years later in January, 1986, by the discovery of ``high temperature'' superconductivity above 30 K in layered copper oxide perovskites by Bednorz and Mueller at the IBM Research Laboratory in Rueschlikon. Visions of application to the electric power infrastructure followed each event, and the decades following the 1950s witnessed numerous, successful demonstrations to electricity generation, transmission and end use -- rotating machinery, cables, transformers, storage, current limiters and power conditioning, employing both low and high temperature superconductors in the USA, Japan, Europe, and more recently, China. Despite these accomplishments, there has been to date no substantial insertion of superconducting technology in the electric power infrastructure worldwide, and its eventual deployment remains problematic. We will explore the issues delaying such deployment and suggest future electric power scenarios where superconductivity will play an essential central role.

  3. Scientific Affairs Division of NATO Advanced Study Institute: abstracts for nonequilibrium superconductivity, phonons and Kapitza boundaries

    International Nuclear Information System (INIS)

    1980-05-01

    Abstracts of papers presented at the meeting are given. Topics covered include: Kapitza resistance; superconducting tunneling; energy gap enhancement in superconductors; instabilities in nonequilibrium superconducting states; exchange of charge between superconducting pairs and quasiparticles; motion of magnetic flux (flux flow); and other new phenomena

  4. Evidence of a Nonequilibrium Distribution of Quasiparticles in the Microwave Response of a Superconducting Aluminum Resonator

    NARCIS (Netherlands)

    De Visser, P.J.; Goldie, D.J.; Diener, P.; Withington, S.; Baselmans, J.J.A.; Klapwijk, T.M.

    2014-01-01

    In a superconductor, absorption of photons with an energy below the superconducting gap leads to redistribution of quasiparticles over energy and thus induces a strong nonequilibrium quasiparticle energy distribution. We have measured the electrodynamic response, quality factor, and resonant

  5. Gap filling strategies for long term energy flux data sets

    DEFF Research Database (Denmark)

    Falge, E.; Baldocchi, D.; Olson, R.

    2001-01-01

    At present a network of over 100 field sites are measuring carbon dioxide, water vapor and sensible heat fluxes between the biosphere and atmosphere, on a nearly continuous basis. Gaps in the long term measurements of evaporation and sensible heat flux must be filled before these data can be used...... for hydrological and meteorological applications. We adapted methods of gap filling for NEE (net ecosystem exchange of carbon) to energy fluxes and applied them to data sets available from the EUROFLUX and AmeriFlux eddy covariance databases. The average data coverage for the sites selected was 69% and 75......% for latent heat (lambdaE) and sensible heat (H). The methods were based on mean diurnal variations (half-hourly binned means of fluxes based on previous and subsequent days, MDV) and look-up tables for fluxes during assorted meteorological conditions (LookUp), and the impact of different gap filling methods...

  6. Superconductivity in graphite intercalation compounds

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Robert P. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Weller, Thomas E.; Howard, Christopher A. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Dean, Mark P.M. [Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973 (United States); Rahnejat, Kaveh C. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Saxena, Siddharth S. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Ellerby, Mark, E-mail: mark.ellerby@ucl.ac.uk [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom)

    2015-07-15

    Highlights: • Historical background of graphite intercalates. • Superconductivity in graphite intercalates and its place in the field of superconductivity. • Recent developments. • Relevant modeling of superconductivity in graphite intercalates. • Interpretations that pertain and questions that remain. - Abstract: The field of superconductivity in the class of materials known as graphite intercalation compounds has a history dating back to the 1960s (Dresselhaus and Dresselhaus, 1981; Enoki et al., 2003). This paper recontextualizes the field in light of the discovery of superconductivity in CaC{sub 6} and YbC{sub 6} in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how these relate to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity, and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.

  7. Superconductivity in graphite intercalation compounds

    International Nuclear Information System (INIS)

    Smith, Robert P.; Weller, Thomas E.; Howard, Christopher A.; Dean, Mark P.M.; Rahnejat, Kaveh C.; Saxena, Siddharth S.; Ellerby, Mark

    2015-01-01

    Highlights: • Historical background of graphite intercalates. • Superconductivity in graphite intercalates and its place in the field of superconductivity. • Recent developments. • Relevant modeling of superconductivity in graphite intercalates. • Interpretations that pertain and questions that remain. - Abstract: The field of superconductivity in the class of materials known as graphite intercalation compounds has a history dating back to the 1960s (Dresselhaus and Dresselhaus, 1981; Enoki et al., 2003). This paper recontextualizes the field in light of the discovery of superconductivity in CaC 6 and YbC 6 in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how these relate to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity, and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition

  8. Development of large high current density superconducting solenoid magnets for use in high energy physics experiments

    International Nuclear Information System (INIS)

    Green, M.A.

    1977-05-01

    The development of a unique type of large superconducting solenoid magnet, characterized by very high current density windings and a two-phase helium tubular cooling system is described. The development of the magnet's conceptual design and the construction of two test solenoids are described. The successful test of the superconducting coil and its tubular cooling refrigeration system is presented. The safety, environmental and economic impacts of the test program on future developments in high energy physics are shown. Large solid angle particle detectors for colliding beam physics will analyze both charged and neutral particles. In many cases, these detectors will require neutral particles, such as gamma rays, to pass through the magnet coil with minimum interaction. The magnet coils must be as thin as possible. The use of superconducting windings allows one to minimize radiation thickness, while at the same time maximizing charged particle momentum resolution and saving substantial quantities of electrical energy. The results of the experimental measurements show that large high current density solenoid magnets can be made to operate at high stored energies. The superconducting magnet development described has a positive safety and environmental impact. The use of large high current density thin superconducting solenoids has been proposed in two high energy physics experiments to be conducted at the Stanford Linear Accelerator Center and Cornell University as a result of the successful experiments described

  9. Transport Gap and exciton binding energy determination in organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Stefan; Schoell, Achim; Reinert, Friedrich; Umbach, Eberhard [University of Wuerzburg (Germany). Experimental Physics II; Casu, Benedetta [Inst. f. Physik. u. Theor. Chemie, Tuebingen (Germany)

    2008-07-01

    The transport gap of an organic semiconductor is defined as the energy difference between the HOMO and LUMO levels in the presence of a hole or electron, respectively, after relaxation has occurred. Its knowledge is mandatory for the optimisation of electronic devices based on these materials. UV photoelectron spectroscopy (UPS) and inverse photoelectron spectroscopy (IPES) are routinely applied to measure these molecular levels. However, the precise determination of the transport gap on the basis of the respective data is not an easy task. It involves fundamental questions about the properties of organic molecules and their condensates, about their reaction on the experimental probe, and on the evaluation of the spectroscopic data. In particular electronic relaxation processes, which occur on the time scale of the photo excitation, have to be considered adequately. We determined the transport gap for the organic semiconductors PTCDA, Alq3, DIP, CuPc, and PBI-H4. After careful data analysis and comparison to the respective values for the optical gap we obtain values for the exciton binding energies between 0.1-0.5 eV. This is considerably smaller than commonly believed and indicates a significant delocalisation of the excitonic charge over various molecular units.

  10. Results of the studies on energy deposition in IR6 superconducting magnets from continuous beam loss on the TCDQ system

    CERN Document Server

    Bracco, C; Presland, A; Redaelli, S; Sarchiapone, L; Weiler, T

    2007-01-01

    A single sided mobile graphite diluter block TCDQ, in combination with a two-sided secondary collimator TCS and an iron shield TCDQM, will be installed in front of the superconducting quadrupole Q4 magnets in IR6, in order to protect it and other downstream LHC machine elements from destruction in the event of a beam dump that is not synchronised with the abort gap. The TCDQ will be positioned close to the beam, and will intercept the particles from the secondary halo during low beam lifetime. Previous studies (1-4) have shown that the energy deposited in the Q4 magnet coils can be close to or above the quench limit. In this note the results of the latest FLUKA energy deposition simulations for Beam 2 are described, including an upgrade possibility for the TCDQ system with an additional shielding device. The results are discussed in the context of the expected performance levels for the different phases of LHC operation.

  11. Minimum Quench Energy and Early Quench Development in NbTi Superconducting Strands

    CERN Document Server

    Breschi, M; Boselli, M; Bottura, Luca; Devred, Arnaud; Ribani, P L; Trillaud, F

    2007-01-01

    The stability of superconducting wires is a crucial task in the design of safe and reliable superconducting magnets. These magnets are prone to premature quenches due to local releases of energy. In order to simulate these energy disturbances, various heater technologies have been developed, such as coated tips, graphite pastes, and inductive coils. The experiments studied in the present work have been performed using a single-mode diode laser with an optical fiber to illuminate the superconducting strand surface. Minimum quench energies and voltage traces at different magnetic flux densities and transport currents have been measured on an LHC-type, Cu/NbTi wire bathed in pool boiling helium I. This paper deals with the numerical analysis of the experimental data. In particular, a coupled electromagnetic and thermal model has been developed to study quench development and propagation, focusing on the influence of heat exchange with liquid helium.

  12. Basic Research Needs for Superconductivity. Report of the Basic Energy Sciences Workshop on Superconductivity, May 8-11, 2006

    International Nuclear Information System (INIS)

    Sarrao, J.; Kwok, W-K; Bozovic, I.; Mazin, I.; Seamus, J. C.; Civale, L.; Christen, D.; Horwitz, J.; Kellogg, G.; Finnemore, D.; Crabtree, G.; Welp, U.; Ashton, C.; Herndon, B.; Shapard, L.; Nault, R. M.

    2006-01-01

    As an energy carrier, electricity has no rival with regard to its environmental cleanliness, flexibility in interfacing with multiple production sources and end uses, and efficiency of delivery. In fact, the electric power grid was named ?the greatest engineering achievement of the 20th century? by the National Academy of Engineering. This grid, a technological marvel ingeniously knitted together from local networks growing out from cities and rural centers, may be the biggest and most complex artificial system ever built. However, the growing demand for electricity will soon challenge the grid beyond its capability, compromising its reliability through voltage fluctuations that crash digital electronics, brownouts that disable industrial processes and harm electrical equipment, and power failures like the North American blackout in 2003 and subsequent blackouts in London, Scandinavia, and Italy in the same year. The North American blackout affected 50 million people and caused approximately $6 billion in economic damage over the four days of its duration. Superconductivity offers powerful new opportunities for restoring the reliability of the power grid and increasing its capacity and efficiency. Superconductors are capable of carrying current without loss, making the parts of the grid they replace dramatically more efficient. Superconducting wires carry up to five times the current carried by copper wires that have the same cross section, thereby providing ample capacity for future expansion while requiring no increase in the number of overhead access lines or underground conduits. Their use is especially attractive in urban areas, where replacing copper with superconductors in power-saturated underground conduits avoids expensive new underground construction. Superconducting transformers cut the volume, weight, and losses of conventional transformers by a factor of two and do not require the contaminating and flammable transformer oils that violate urban safety

  13. Basic Research Needs for Superconductivity. Report of the Basic Energy Sciences Workshop on Superconductivity, May 8-11, 2006

    Energy Technology Data Exchange (ETDEWEB)

    Sarrao, J.; Kwok, W-K; Bozovic, I.; Mazin, I.; Seamus, J. C.; Civale, L.; Christen, D.; Horwitz, J.; Kellogg, G.; Finnemore, D.; Crabtree, G.; Welp, U.; Ashton, C.; Herndon, B.; Shapard, L.; Nault, R. M.

    2006-05-11

    As an energy carrier, electricity has no rival with regard to its environmental cleanliness, flexibility in interfacing with multiple production sources and end uses, and efficiency of delivery. In fact, the electric power grid was named ?the greatest engineering achievement of the 20th century? by the National Academy of Engineering. This grid, a technological marvel ingeniously knitted together from local networks growing out from cities and rural centers, may be the biggest and most complex artificial system ever built. However, the growing demand for electricity will soon challenge the grid beyond its capability, compromising its reliability through voltage fluctuations that crash digital electronics, brownouts that disable industrial processes and harm electrical equipment, and power failures like the North American blackout in 2003 and subsequent blackouts in London, Scandinavia, and Italy in the same year. The North American blackout affected 50 million people and caused approximately $6 billion in economic damage over the four days of its duration. Superconductivity offers powerful new opportunities for restoring the reliability of the power grid and increasing its capacity and efficiency. Superconductors are capable of carrying current without loss, making the parts of the grid they replace dramatically more efficient. Superconducting wires carry up to five times the current carried by copper wires that have the same cross section, thereby providing ample capacity for future expansion while requiring no increase in the number of overhead access lines or underground conduits. Their use is especially attractive in urban areas, where replacing copper with superconductors in power-saturated underground conduits avoids expensive new underground construction. Superconducting transformers cut the volume, weight, and losses of conventional transformers by a factor of two and do not require the contaminating and flammable transformer oils that violate urban safety

  14. Superconducting magnetic energy storage unit; Supraleitender magnetischer Energiespeicher

    Energy Technology Data Exchange (ETDEWEB)

    Kleimaier, M [RWE Energie AG, Essen (Germany); Prescher, K [Siemens AG, Muehlheim an der Ruhr (Germany); Radtke, U [PreussenElektra AG, Hannover (Germany); Voelzke, R [Siemens AG, Erlangen (Germany)

    1995-07-01

    Superconducting magnetic power storage units are a low-cost alternative to turbine throttling as a means of ensuring active power seconds-range reserve. Advantages are fuel savings, emission reduction and a better utilisation of the available power plant park. With the aid of network simulations, the authors investigate the application conditions of superconducting magnetic power storage units in combination with preheater shut-off for the example of a 10 GW subgrid of the European interconnected grid. (orig.) [Deutsch] Supraleitende magnetische Energiespeicher (SMES) koennten einem Lastverteiler neue Moeglichkeiten bieten, Sekundenreserveleistung kostenguenstig vorzuhalten. Anstelle der heute vorherrschenden Androsselung der Turbinenventile sind bei Ersatz durch einen SMES Brennstoffeinsparungen, Emissionsminderungen und eine hoehere Ausnutzung des bestehenden Kraftwerksparks zu erwarten. Untersucht werden mit Hilfe von Netzsimulationsrechnungen am Beispiel eines 10-GW-Teilnetzes im westeuropaeischen Verbundnetz die Einsatzbedingungen dieser SMES in Kombination mit der Vorwaermeabschaltung. (orig.)

  15. Spectral Gap Energy Transfer in Atmospheric Boundary Layer

    Science.gov (United States)

    Bhushan, S.; Walters, K.; Barros, A. P.; Nogueira, M.

    2012-12-01

    Experimental measurements of atmospheric turbulence energy spectra show E(k) ~ k-3 slopes at synoptic scales (~ 600 km - 2000 km) and k-5/3 slopes at the mesoscales (theory, it is expected that a strong backward energy cascade would develop at the synoptic scale, and that circulation would grow infinitely. To limit this backward transfer, energy arrest at macroscales must be introduced. The most commonly used turbulence models developed to mimic the above energy transfer include the energy backscatter model for 2D turbulence in the horizontal plane via Large Eddy Simulation (LES) models, dissipative URANS models in the vertical plane, and Ekman friction for the energy arrest. One of the controversial issues surrounding the atmospheric turbulence spectra is the explanation of the generation of the 2D and 3D spectra and transition between them, for energy injection at the synoptic scales. Lilly (1989) proposed that the existence of 2D and 3D spectra can only be explained by the presence of an additional energy injection in the meso-scale region. A second issue is related to the observations of dual peak spectra with small variance in meso-scale, suggesting that the energy transfer occurs across a spectral gap (Van Der Hoven, 1957). Several studies have confirmed the spectral gap for the meso-scale circulations, and have suggested that they are enhanced by smaller scale vertical convection rather than by the synoptic scales. Further, the widely accepted energy arrest mechanism by boundary layer friction is closely related to the spectral gap transfer. This study proposes an energy transfer mechanism for atmospheric turbulence with synoptic scale injection, wherein the generation of 2D and 3D spectra is explained using spectral gap energy transfer. The existence of the spectral gap energy transfer is validated by performing LES for the interaction of large scale circulation with a wall, and studying the evolution of the energy spectra both near to and far from the wall

  16. Public perceptions and information gaps in solar energy in Texas

    Science.gov (United States)

    Rai, Varun; Beck, Ariane L.

    2015-07-01

    Studying the behavioral aspects of the individual decision-making process is important in identifying and addressing barriers in the adoption of residential solar photovoltaic (PV). However, there is little systematic research focusing on these aspects of residential PV in Texas, an important, large, populous state, with a range of challenges in the electricity sector including increasing demand, shrinking reserve margins, constrained water supply, and challenging emissions reduction targets under proposed federal regulations. This paper aims to address this gap through an empirical investigation of a new survey-based dataset collected in Texas on solar energy perceptions and behavior. The results of this analysis offer insights into the perceptions and motivations influencing intentions and behavior toward solar energy in a relatively untapped market and help identify information gaps that could be targeted to alleviate key barriers to adopting solar, thereby enabling significant emissions reductions in the residential sector in Texas.

  17. Capacitor energy needed to induce transitions from the superconducting to the normal state

    International Nuclear Information System (INIS)

    Eberhard, P.H.; Ross, R.R.

    1985-08-01

    The purpose of this paper is to describe a technique to turn a long length of superconducting wire normal by dumping a charged capacitor into it and justify some formulae needed in the design. The physical phenomenon is described. A formula for the energy to be stored in the capacitor is given. There are circumstances where the dc in an electrical circuit containing superconducting elements has to be turned off quickly and where the most convenient way to switch the current off is to turn a large portion or all of the superconducting wire normal. Such was the case of the Time Projection Chamber (TPC) superconducting magnet as soon as a quench was detected. The technique used was the discharge of a capacitor into the coil center tap. It turned the magnet winding normal in ten milliseconds or so and provided an adequate quench protection. The technique of discharging a capacitor into a superconducting wire should have many other applications whenever a substantial resistance in a superconducting circuit has to be generated in that kind of time scale. The process involves generating a pulse of large currents in some part of the circuit and heating the wire up by ac losses until the value of the wire critical current is smaller than the dc current. Use of low inductance connections to the circuit is necessary. Then the dc gets turned off due to the resistance of the wire as in a magnet quench

  18. Parametric investigation of nano-gap thermophotovoltaic energy conversion

    Science.gov (United States)

    Lau, Japheth Z.-J.; Bong, Victor N.-S.; Wong, Basil T.

    2016-03-01

    Nano-gap thermophotovoltaic energy converters have the potential to be excellent generators of electrical power due to the near-field radiative effect which enhances the transfer of energy from one medium to another. However, there is still much to learn about this new form of energy converter. This paper seeks to investigate three parameters that affect the performance of nano-gap thermophotovoltaic devices: the emitter material, the thermophotovoltaic cell material, and the cell thickness. Furthermore, the temperature profiles in insulated thin films (cells exposed to below-band gap near-field radiation) are analysed. It was discovered that an effective emitter material is one that has a high generalised emissivity value and is also able to couple with the TPV cell material through surface polaritons while a cell material's electrical properties and its thickness has heavy bearing on its internal quantum efficiency. In regards to the temperature profile, the heat-flux absorbed causes a rise in temperature across the thin film, but is insufficient to generate a temperature gradient across the film.

  19. submitter Superconducting transmission lines – Sustainable electric energy transfer with higher public acceptance?

    CERN Document Server

    Thomas, Heiko; Chervyakov, Alexander; Stückrad, Stefan; Salmieri, Delia; Rubbia, Carlo

    2016-01-01

    Despite the extensive research and development investments into superconducting science and technology, both at the fundamental and at the applied levels, many benefits of superconducting transmission lines (SCTL) remain unknown to the public and decision makers at large. This paper aims at informing about the progress in this important research field. Superconducting transmission lines have a tremendous size advantage and lower total electrical losses for high capacity transmission plus a number of technological advantages compared to solutions based on standard conductors. This leads to a minimized environmental impact and enables an overall more sustainable transmission of electric energy. One of the direct benefits may be an increased public acceptance due to the low visual impact with a subsequent reduction of approval time. The access of remote renewable energy (RE) sources with high-capacity transmission is rendered possible with superior efficiency. That not only translates into further reducing $CO_2...

  20. A double-superconducting axial bearing system for an energy storage flywheel model

    Science.gov (United States)

    Deng, Z.; Lin, Q.; Ma, G.; Zheng, J.; Zhang, Y.; Wang, S.; Wang, J.

    2008-02-01

    The bulk high temperature superconductors (HTSCs) with unique flux-pinning property have been applied to fabricate two superconducting axial bearings for an energy storage flywheel model. The two superconducting axial bearings are respectively fixed at two ends of the vertical rotational shaft, whose stator is composed of seven melt-textured YBa2Cu3O7-x (YBCO) bulks with diameter of 30 mm, height of 18 mm and rotor is made of three cylindrical axial-magnetized NdFeB permanent magnets (PM) by superposition with diameter of 63 mm, height of 27 mm. The experimental results show the total levitation and lateral force produced by the two superconducting bearings are enough to levitate and stabilize the 2.4 kg rotational shaft. When the two YBCO stators were both field cooled to the liquid nitrogen temperature at respective axial distances above or below the PM rotor, the shaft could be automatically levitated between the two stators without any contact. In the case of a driving motor, it can be stably rotated along the central axis besides the resonance frequency. This double-superconducting axial bearing system can be used to demonstrate the flux-pinning property of bulk HTSC for stable levitation and suspension and the principle of superconducting flywheel energy storage system to visitors.

  1. Emergent Higgsless Superconductivity

    Directory of Open Access Journals (Sweden)

    Cristina Diamantini M.

    2017-01-01

    Full Text Available We present a new Higgsless model of superconductivity, inspired from anyon superconductivity but P- and T-invariant and generalizable to any dimension. While the original anyon superconductivity mechanism was based on incompressible quantum Hall fluids as average field states, our mechanism involves topological insulators as average field states. In D space dimensions it involves a (D-1-form fictitious pseudovector gauge field which originates from the condensation of topological defects in compact lowenergy effective BF theories. There is no massive Higgs scalar as there is no local order parameter. When electromagnetism is switched on, the photon acquires mass by the topological BF mechanism. Although the charge of the gapless mode (2 and the topological order (4 are the same as those of the standard Higgs model, the two models of superconductivity are clearly different since the origins of the gap, reflected in the high-energy sectors are totally different. In 2D thi! s type of superconductivity is explicitly realized as global superconductivity in Josephson junction arrays. In 3D this model predicts a possible phase transition from topological insulators to Higgsless superconductors.

  2. Power and reactive power simultaneous control by 0.5 MJ superconducting magnet energy storage

    International Nuclear Information System (INIS)

    Ise, Toshifumi; Tsuji, Kiichiro; Murakami, Yoshishige

    1984-01-01

    Superconducting magnet energy storage (SMES) is expected to be widely applied to the pulsed sources for fusion reactor research and to the energy storage substituting for pumping-up power stations, because of its fast energy storing and discharging and very high efficiency. Some results have been obtained so far. In this paper, however, the simultaneous control of power and reactive power is considered for an energy storage composed of two sets of thyristorized power conversion system and superconducting magnets in series connection, and a direct digital control system is described on the principle, design and configuration including the compensator, and on the experiment using the 0.5 MJ superconducting magnet energy storage installed in the Superconduction Engineering Experiment Center, Osaka University. The results obtained are as follows: (1) P control priority mode and Q control priority mode (in which power and reactive power control has priority, respectively) were proposed as the countermeasures when the simultaneous control of power and reactive power became impossible; (2) the design method was established, by which power and reactive power control loops can independently be designed as a result of simulation; (3) the achievement of the simultaneous control of power and reactive power was confirmed by using P-control priority mode and Q-control priority mode, in the experiment using the control system designed by simulation. The validity of simulation model was also confirmed by actual response waveforms. (Wakatsuki, Y.)

  3. Influence of quasiparticle multi-tunneling on the energy flow through the superconducting tunnel junction

    International Nuclear Information System (INIS)

    Samedov, V. V.; Tulinov, B. M.

    2011-01-01

    Superconducting tunnel junction (STJ) detector consists of two layers of superconducting material separated by thin insulating barrier. An incident particle produces in superconductor excess nonequilibrium quasiparticles. Each quasiparticle in superconductor should be considered as quantum superposition of electron-like and hole-like excitations. This duality nature of quasiparticle leads to the effect of multi-tunneling. Quasiparticle starts to tunnel back and forth through the insulating barrier. After tunneling from biased electrode quasiparticle loses its energy via phonon emission. Eventually, the energy that equals to the difference in quasiparticle energy between two electrodes is deposited in the signal electrode. Because of the process of multi-tunneling, one quasiparticle can deposit energy more than once. In this work, the theory of branching cascade processes was applied to the process of energy deposition caused by the quasiparticle multi-tunneling. The formulae for the mean value and variance of the energy transferred by one quasiparticle into heat were derived. (authors)

  4. First-principles calculation of the superconducting gap function due to electron-electron interaction for YBa2Cu3O/sub 7-//sub x/

    International Nuclear Information System (INIS)

    Chui, S.T.; Kasowski, R.V.; Hsu, W.Y.

    1989-01-01

    We argue that because of the anisotropic nature of YBa 2 Cu 3 O/sub 7-//sub x/, one-dimensional-type charge- and spin-density fluctuations produce an effective attraction that overcomes the electron-electron Coulomb repulsion, but only at large distances. This effective attraction is further enhanced by band-structure effects such that a substantial superconducting transition temperature can be obtained. Without making any assumption of the symmetry of the gap function, we solve the Bardeen-Cooper-Schrieffer (BCS) superconducting gap equation for the six bands closest to the Fermi level. A highly anisotropic gap function with a maximum of about 0.11 eV is found. From the linearized gap equation, a transition temperature of about 0.035 eV is obtained. This is about one-quarter the maximum of the gap function, consistent with the experimental ratio of the transition temperature to the gap determined from tunneling, infrared, and nuclear quadrupole resonance measurements. The important participants to the superconducting pair come from electrons close to planar copper [Cu(2)] and chain oxygen [O(1) and O(4)] sites, consistent with recent quadrupole resonance measurements. Our calculation produces a coherence length of the order of 30 A in the xy direction, the same order of magnitude as the experimental result and considerably smaller than the conventional magnitude of ordinary BCS materials. Similar calculations for YBa 2 Cu 3 O/sub 6.5/ where periodic O vacancies are introduced along the one-dimensional Cu-O chains shows that the transition temperature is reduced by half

  5. Characterization of superconducting thin films by infrared reflection

    International Nuclear Information System (INIS)

    Gervais, F.

    1988-01-01

    Infrared reflectivity spectroscopy is shown to be a powerful tool to characterize the new high-Tc oxide superconductors since it gives information about the superconducting gap, phonons, plasmon and possibly low-energy electronic excitations such as excitons, information relevant to understand the mechanism of superconductivity [fr

  6. SMES [Superconducting Magnetic Energy Storage] systems applications to improve quality service

    Energy Technology Data Exchange (ETDEWEB)

    Esteban, P.; Gutierrez-Iglesias, J.L. [ASINEL (Spain); Bautista, A. [IBERDROLA (Spain); Rodriguez, J.M.; Urretavizcaya, E. [Red Electrica de Espana (Spain)

    1997-12-31

    This article presents the contribution of SMES (Superconducting Magnetic Energy Storage) systems to improvement quality of service, either as a mitigating element or as a power support for critical loads. It also describes these systems and its operation. Finally, a description is shown of the state of the art of this technology in Spain, as developed until now in the AMAS500 project. (Author)

  7. Capital and operating cost estimates for high temperature superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Schoenung, S.M.; Meier, W.R.; Fagaly, R.L.; Heiberger, M.; Stephens, R.B.; Leuer, J.A.; Guzman, R.A.

    1992-01-01

    Capital and operating costs have been estimated for mid-scale (2 to 200 Mwh) superconducting magnetic energy storage (SMES) designed to use high temperature superconductors (HTS). Capital costs are dominated by the cost of superconducting materials. Operating costs, primarily for regeneration, are significantly reduced for HTS-SMES in comparison to low temperature, conventional systems. This cost component is small compared to other O and M and capital components, when levelized annual costs are projected. In this paper, the developments required for HTS-SMES feasibility are discussed

  8. Cryogenic system for production testing and measurement of Fermilab energy saver superconducting magnets

    International Nuclear Information System (INIS)

    Cooper, W.E.; Bianchi, A.J.; Barger, R.K.; Johnson, F.B.; McGuire, K.J.; Pinyan, K.D.; Wilson, F.R.

    1983-03-01

    The cryogenic system of the Fermilab Magnet Test Facility has been used to provide cooling for the testing of approximately 1200 Energy Saver superconducting magnets. The system provides liquid helium, liquid nitrogen, gas purification, and vacuum support for six magnet test stands. It provides for simultaneous high current testing of two superconducting magnets and non-high current cold testing of two additional magnets. The cryogenic system has been in operation for about 32000 hours. The 1200 magnets have taken slightly more than three years to test

  9. Cryogenic system for production testing and measurement of Fermilab energy saver superconducting magnets

    International Nuclear Information System (INIS)

    Cooper, W.E.; Barger, R.K.; Bianchi, A.J.; Cooper, W.E.; Johnson, F.B.; McGuire, K.J.; Pinyan, K.D.; Wilson, F.R.

    1983-01-01

    The cryogenic system of the Fermilab Magnet Test Facility has been used to provide cooling for the testing of approximately 1200 Energy Saver superconducting magnets. The system provides liquid helium, liquid nitrogen, gas purification, and vacuum support for six magnet test stands. It provides for simultaneous high current testing of two superconducting magnets and nonhigh current cold testing of two additional magnets. The cryogenic system has been in operation for about 32000 hours. The 1200 magnets have taken slightly more than three years to test

  10. Beauty physics at the ultrahigh energies of the ELOISATRON [Euroasiatic Long Intersecting Superconducting Accelerator Synchrotron

    International Nuclear Information System (INIS)

    Cox, B.

    1988-02-01

    The potential for experimentally studying B physics at the proposed INFN 100 TeV ELOISATRON (Euroasiatic Long Intersecting Superconducting Accelerator Synchrotron) is compared with possibilities at 40 TeV at the Superconducting Super Collider. The effect of the increase in center of mass energy on the production and decay of B mesons has been investigated, particularly with respect to the accummulation of large samples of B hadron decays necessary for the detection of CP violating effects. 13 refs., 7 figs., 1 tab

  11. Status of the Argonne superconducting-linac heavy-ion energy booster

    Energy Technology Data Exchange (ETDEWEB)

    Aron, J.; Benaroya, R.; Bollinger, L.M.; Clifft, B.E.; Henning, W.; Johnson, K.W.; Nixon, J.M.; Markovich, P.; Shepard, K.W.

    1979-01-01

    A superconducting linac is being constructed to provide an energy booster for heavy ions from an FN tandem. By late 1980 the linac will consist of 24 independently-phased superconducting resonators, and will provide an effective accelerating potential of more than 25 MV. While the linac is under construction, completed sections are being used to provide useful beam for nuclear physics experiments. In the most recent run with beam (June 1979), an eight resonator array provided an effective accelerating potential of 9.3 MV. Operation of a 12 resonator array is scheduled to begin in October 1979.

  12. Status of the Argonne superconducting-linac heavy-ion energy booster

    International Nuclear Information System (INIS)

    Aron, J.; Benaroya, R.; Bollinger, L.M.; Clifft, B.E.; Henning, W.; Johnson, K.W.; Nixon, J.M.; Markovich, P.; Shepard, K.W.

    1979-01-01

    A superconducting linac is being constructed to provide an energy booster for heavy ions from an FN tandem. By late 1980 the linac will consist of 24 independently-phased superconducting resonators, and will provide an effective accelerating potential of more than 25 MV. While the linac is under construction, completed sections are being used to provide useful beam for nuclear physics experiments. In the most recent run with beam (June 1979), an eight resonator array provided an effective accelerating potential of 9.3 MV. Operation of a 12 resonator array is scheduled to begin in October 1979

  13. Peak power reduction and energy efficiency improvement with the superconducting flywheel energy storage in electric railway system

    Science.gov (United States)

    Lee, Hansang; Jung, Seungmin; Cho, Yoonsung; Yoon, Donghee; Jang, Gilsoo

    2013-11-01

    This paper proposes an application of the 100 kWh superconducting flywheel energy storage systems to reduce the peak power of the electric railway system. The electric railway systems have high-power characteristics and large amount of regenerative energy during vehicles’ braking. The high-power characteristic makes operating cost high as the system should guarantee the secure capacity of electrical equipment and the low utilization rate of regenerative energy limits the significant energy efficiency improvement. In this paper, it had been proved that the peak power reduction and energy efficiency improvement can be achieved by using 100 kWh superconducting flywheel energy storage systems with the optimally controlled charging or discharging operations. Also, economic benefits had been assessed.

  14. Energy conservation and environmental benefits that may be realized from Superconducting Magnetic Energy Storage

    International Nuclear Information System (INIS)

    Baumann, P.D.

    1992-01-01

    This paper discusses the Superconducting Magnetic Energy Storage (SMES) technology which has the capability to significantly improve electrical system operations within electric utility systems. This has been demonstrated by Bonneville Power Administration in a 30-MJ SMES demonstration unit. Savings in utility operations from improved system efficiency, increased reliability, and reduced maintenance requirements contribute to the economic justification of SMES. Beyond these benefits, there are additional benefits which in the long run may significantly outweigh the electrical operational benefits. These benefits are the energy conservation and environmental benefits. Since SMES can uncouple generation from load, it can shift generation around, thereby changing the operational characteristics of the system. The technology has the capability of reducing fuel consumption which can in turn reduce emissions. In a regional setting it can potentially shift emissions both in volumes and in physical areas to avoid problem situations. With its capability to strategically shift generation and significantly affect emissions and air quality it can stretch clean energy generation options. With these attributes, SMES can be recognized as an energy and environmental management technology and tool

  15. The Wind Energy Workforce Gap in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Tegen, Suzanne I [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Keyser, David J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-05-14

    There are more than 100,000 jobs in the U.S. wind industry today, and the second-fastest growing job in the United States in 2017 was wind technician. A vibrant wind industry needs workers, and students who graduate from wind energy education and training programs need jobs. The goal of this research is to better understand the needs of wind-related businesses, education and training requirements, and the make-up of current and future domestic workforces. Educators are developing and training future workers. Educational institutions need to know which courses to provide to connect students with potential employers and to justify their wind energy programs by being able to place graduates into well-paying jobs. In interviews with 250 wind energy firms and 50 educational institutions, many respondents reported difficulty hiring qualified candidates, while many educational institutions reported graduates not finding jobs in the wind industry. We refer to this mismatch as the 'workforce gap.' This conference poster explores this gap.

  16. CZTS stoichiometry effects on the band gap energy

    International Nuclear Information System (INIS)

    Malerba, Claudia; Biccari, Francesco; Azanza Ricardo, Cristy Leonor; Valentini, Matteo; Chierchia, Rosa; Müller, Melanie; Santoni, Antonino; Esposito, Emilia; Mangiapane, Pietro; Scardi, Paolo; Mittiga, Alberto

    2014-01-01

    Highlights: • CZTS films with different compositions were grown from stacked-layer precursors. • The band-gap energy varies from 1.48 to 1.63 eV as the [Sn]/[Cu] ratio increases. • The Zn content seems not to be a critical parameter for the optical properties. • PDS data show an increase of the sub-gap absorption as the Sn content is reduced. • Formation of defects at low Sn content was proposed to explain the Eg variation. -- Abstract: The considerable spread of Cu 2 ZnSnS 4 (CZTS) optical properties reported in the literature is discussed in terms of material stoichiometry. To this purpose, kesterite thin films were prepared by sulfurization of multilayered precursors of ZnS, Cu and Sn, changing the relative amounts to obtain CZTS layers with different compositions. X-Ray Diffraction (XRD), Energy Dispersive X-Ray (EDX) spectroscopy, X-Ray Photoelectron Spectroscopy (XPS) and Raman spectroscopy were used for structural and compositional analysis. XRD quantitative phase analysis provides the amount of spurious phases and information on Sn-site occupancy. The optical properties were investigated by spectrophotometric and Photothermal Deflection Spectroscopy (PDS) measurements to assess the absorption coefficient of samples with different compositions. The PDS data show an increase of the sub-band absorption as the Sn content decreases. The results are interpreted assuming the formation of additional defects as the tin content is reduced. Those defects can also be responsible for the decrease of the band gap energy value as the Sn/Cu ratio is decreased

  17. Program NICOLET to integrate energy loss in superconducting coils

    International Nuclear Information System (INIS)

    Vogel, H.F.

    1978-08-01

    A voltage pickup coil, inductively coupled to the magnetic field of the superconducting coil under test, is connected so its output may be compared with the terminal voltage of the coil under test. The integrated voltage difference is indicative of the resistive volt-seconds. When multiplied with the main coil current, the volt-seconds yield the loss. In other words, a hysteresis loop is obtained if the integrated voltage difference phi = ∫ΔVdt is plotted as a function of the coil current, i. First, time functions of the two signals phi(t) and i(t) are recorded on a dual-trace digital oscilloscope, and these signals are then recorded on magnetic tape. On a CDC-6600, the recorded information is decoded and plotted, and the hysteresis loops are integrated by the set of FORTRAN programs NICOLET described in this report. 4 figures

  18. Peak power reduction and energy efficiency improvement with the superconducting flywheel energy storage in electric railway system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hansang, E-mail: hslee80@kiu.ac.kr [School of Railway and Electrical Engineering, Kyungil University, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 712-701 (Korea, Republic of); Jung, Seungmin [School of Electrical Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-712 (Korea, Republic of); Cho, Yoonsung [Department of Electric and Energy Engineering, Catholic University of Daegu, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 712-702 (Korea, Republic of); Yoon, Donghee [Department of New and Renewable Energy, Kyungil University, Hayang-eup, Gyeongsangbuk-do 712-701 (Korea, Republic of); Jang, Gilsoo, E-mail: gjang@korea.ac.kr [School of Electrical Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-712 (Korea, Republic of)

    2013-11-15

    Highlights: •It is important to develop power and energy management system to save operating cost. •An 100 kWh of SFES is effective to decrease peak power and energy consumption. •Operation cost saving can be achieved using superconducting flywheel energy storage. -- Abstract: This paper proposes an application of the 100 kWh superconducting flywheel energy storage systems to reduce the peak power of the electric railway system. The electric railway systems have high-power characteristics and large amount of regenerative energy during vehicles’ braking. The high-power characteristic makes operating cost high as the system should guarantee the secure capacity of electrical equipment and the low utilization rate of regenerative energy limits the significant energy efficiency improvement. In this paper, it had been proved that the peak power reduction and energy efficiency improvement can be achieved by using 100 kWh superconducting flywheel energy storage systems with the optimally controlled charging or discharging operations. Also, economic benefits had been assessed.

  19. Peak power reduction and energy efficiency improvement with the superconducting flywheel energy storage in electric railway system

    International Nuclear Information System (INIS)

    Lee, Hansang; Jung, Seungmin; Cho, Yoonsung; Yoon, Donghee; Jang, Gilsoo

    2013-01-01

    Highlights: •It is important to develop power and energy management system to save operating cost. •An 100 kWh of SFES is effective to decrease peak power and energy consumption. •Operation cost saving can be achieved using superconducting flywheel energy storage. -- Abstract: This paper proposes an application of the 100 kWh superconducting flywheel energy storage systems to reduce the peak power of the electric railway system. The electric railway systems have high-power characteristics and large amount of regenerative energy during vehicles’ braking. The high-power characteristic makes operating cost high as the system should guarantee the secure capacity of electrical equipment and the low utilization rate of regenerative energy limits the significant energy efficiency improvement. In this paper, it had been proved that the peak power reduction and energy efficiency improvement can be achieved by using 100 kWh superconducting flywheel energy storage systems with the optimally controlled charging or discharging operations. Also, economic benefits had been assessed

  20. Nano structures of amorphous silicon: localization and energy gap

    Directory of Open Access Journals (Sweden)

    Z Nourbakhsh

    2013-10-01

    Full Text Available Renewable energy research has created a push for new materials; one of the most attractive material in this field is quantum confined hybrid silicon nano-structures (nc-Si:H embedded in hydrogenated amorphous silicon (a-Si:H. The essential step for this investigation is studying a-Si and its ability to produce quantum confinement (QC in nc-Si: H. Increasing the gap of a-Si system causes solar cell efficiency to increase. By computational calculations based on Density Functional Theory (DFT, we calculated a special localization factor, [G Allan et al., Phys. Rev. B 57 (1997 6933.], for the states close to HOMO and LUMO in a-Si, and found most weak-bond Si atoms. By removing these silicon atoms and passivating the system with hydrogen, we were able to increase the gap in the a-Si system. As more than 8% hydrogenate was not experimentally available, we removed about 2% of the most localized Si atoms in the almost tetrahedral a-Si system. After removing localized Si atoms in the system with 1000 Si atoms, and adding 8% H, the gap increased about 0.24 eV. Variation of the gap as a function of hydrogen percentage was in good agreement with the Tight –Binding results, but about 2 times more than its experimental value. This might come from the fact that in the experimental conditions, it does not have the chance to remove the most localized states. However, by improving the experimental conditions and technology, this value can be improved.

  1. 1-GWh diurnal load-leveling superconducting magnetic energy storage system reference design. Appendix A: energy storage coil and superconductor

    International Nuclear Information System (INIS)

    Schermer, R.I.

    1979-09-01

    The technical aspects of a 1-GWh Superconducting Magnetic Energy Storage (SMES) coil for use as a diurnal load-leveling device in an electric utility system are presented. The superconductor for the coil is analyzed, and costs for the entire coil are developed

  2. Comparison of Levelized Cost of Energy of superconducting direct drive generators for a 10 MW offshore wind turbine

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Liu, Dong; Magnusson, Niklas

    2018-01-01

    A method for comparing the Levelized Cost of Energy (LCoE) of different superconducting drive trains is introduced. The properties of a 10 MW MgB$_{2}$ superconducting direct drive generator are presented in terms weight scaled to a turbine with a rotor diameter up of 280 m and the cost break down...

  3. Frustrated Kinetic Energy, the Optical Sum Rule, and the Mechanism of Superconductivity

    International Nuclear Information System (INIS)

    Chakravarty, S.; Kee, H.; Abrahams, E.

    1999-01-01

    The basis of the interlayer tunneling theory of high-temperature superconductivity is that the electronic kinetic energy in a direction perpendicular to the copper-oxygen planes is a substantial fraction of the condensation energy. This issue is critically examined, and it is argued from a rigorous conductivity sum rule that the consequences of this theory are consistent with recent optical and penetration depth measurements. copyright 1999 The American Physical Society

  4. The configurational energy gap between amorphous and crystalline silicon

    Energy Technology Data Exchange (ETDEWEB)

    Kail, F. [GRMT, Department of Physics, University of Girona, Montilivi Campus, 17071 Girona, Catalonia (Spain); Univ. Barcelona, Dept. Fisica Aplicada and Optica, 08028 Barcelona (Spain); Farjas, J.; Roura, P. [GRMT, Department of Physics, University of Girona, Montilivi Campus, 17071 Girona, Catalonia (Spain); Secouard, C. [Univ. Barcelona, Dept. Fisica Aplicada and Optica, 08028 Barcelona (Spain); Nos, O.; Bertomeu, J. [CEA Grenoble, LTS, 17 rue des Martyrs, 38054 Grenoble cedex (France); Roca i Cabarrocas, P. [LPICM, Ecole Polytechnique, 91128 Palaiseau (France)

    2011-11-15

    The crystallization enthalpy of pure amorphous silicon (a-Si) and hydrogenated a-Si was measured by differential scanning calorimetry (DSC) for a large set of materials deposited from the vapour phase by different techniques. Although the values cover a wide range (200-480 J/g), the minimum value is common to all the deposition techniques used and close to the predicted minimum strain energy of relaxed a-Si (240 {+-} 25 J/g). This result gives a reliable value for the configurational energy gap between a-Si and crystalline silicon. An excess of enthalpy above this minimum value can be ascribed to coordination defects. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Use of a High-Temperature Superconducting Coil for Magnetic Energy Storage

    International Nuclear Information System (INIS)

    Fagnard, J-F; Crate, D; Jamoye, J-F; Laurent, Ph; Mattivi, B; Cloots, R; Ausloos, M; Genon, A; Vanderbemden, Ph

    2006-01-01

    A high temperature superconducting magnetic energy storage device (SMES) has been realised using a 350 m-long BSCCO tape wound as a ''pancake'' coil. The coil is mounted on a cryocooler allowing temperatures down to 17.2 K to be achieved. The temperature dependence of coil electrical resistance R(T) shows a superconducting transition at T = 102.5 K. Measurements of the V(I) characteristics were performed at several temperatures between 17.2 K and 101.5 K to obtain the temperature dependence of the critical current (using a 1 μV/cm criterion). Critical currents were found to exceed 100 A for T < 30 K. An electronic DC-DC converter was built in order to control the energy flow in and out of the superconducting coil. The converter consists of a MOS transistor bridge switching at a 80 kHz frequency and controlled with standard Pulse Width Modulation (PWM) techniques. The system was tested using a 30 V squared wave power supply as bridge input voltage. The coil current, the bridge input and output voltages were recorded simultaneously. Using a 10 A setpoint current in the superconducting coil, the whole system (coil + DC-DC converter) can provide a stable output voltage showing uninterruptible power supply (UPS) capabilities over 1 s

  6. Optimization of the protective energy removal parameters for tokamak HT7-U superconducting magnets

    Energy Technology Data Exchange (ETDEWEB)

    Khvostenko, P.P.; Chudnovsky, A.N.; Posadsky, I.A. [RRC ' Kurchatov Inst.' , Nuclear Fusion Inst., Moscow (Russian Federation); Bi, Y.F.; Cheng, S.M.; He, Y.X. [Academia Sinica, Hefei, Anhui (China). Inst. of Plasma Physics

    1998-07-01

    The design of the HT-7U superconducting tokamak is in progress now. The design incorporates superconducting magnets of the toroidal field and poloidal field systems. Toroidal field system consists of 16 D-shape coils and poloidal field system consists of 12 coils. All coils will be use NbTi/Cu cable-in-conduit conductor cooled with forced-flow supercritical helium at 4.5 K, 4 Bar. Quench in the superconducting magnets is accompanied byconversion of the stored magnetic field energy into a thermal one which is spent on heating of both the coil part which made transition into a normal state and dump resistors. A non-uniform heating of the coil part results in the emergence of thermomechanical stresses which can cause its destruction. The protective removal of a current is realized to prevent the coil destruction at the emergence of the quench. In that case, the faster the current removal occurs, the less the coil heating is. On the other hand, the current removal rate should not be too high in order to avoid an electric breakdown by the excited inductive voltage. Optimization of the protective energy removal parameters both for TF and PF superconducting magnets is presented. (author)

  7. Optimization of the protective energy removal parameters for tokamak HT7-U superconducting magnets

    International Nuclear Information System (INIS)

    Khvostenko, P.P.; Chudnovsky, A.N.; Posadsky, I.A.; Bi, Y.F.; Cheng, S.M.; He, Y.X.

    1998-01-01

    The design of the HT-7U superconducting tokamak is in progress now. The design incorporates superconducting magnets of the toroidal field and poloidal field systems. Toroidal field system consists of 16 D-shape coils and poloidal field system consists of 12 coils. All coils will be use NbTi/Cu cable-in-conduit conductor cooled with forced-flow supercritical helium at 4.5 K, 4 Bar. Quench in the superconducting magnets is accompanied by conversion of the stored magnetic field energy into a thermal one which is spent on heating of both the coil part which made transition into a normal state and dump resistors. A non-uniform heating of the coil part results in the emergence of thermomechanical stresses which can cause its destruction. The protective removal of a current is realized to prevent the coil destruction at the emergence of the quench. In that case, the faster the current removal occurs, the less the coil heating is. On the other hand, the current removal rate should not be too high in order to avoid an electric breakdown by the excited inductive voltage. Optimization of the protective energy removal parameters both for TF and PF superconducting magnets is presented. (author)

  8. 1-GWh diurnal load-leveling superconducting magnetic energy storage system reference design. Appendix D: superconductive magnetic energy storage cavern construction methods and costs

    International Nuclear Information System (INIS)

    1979-09-01

    The excavation and preparation of an underground cavern to contain a 1-GWh diurnal load-leveling Superconducting Magnetic Energy Storage (SMES) unit is examined. The cavern's principal function is to provide a rock structure for supporting the magnetic forces from the charged storage coil. Certain economic considerations indicate the refrigerator cold box for the helium system should also be underground. The study includes such a provision and considers, among other things, rock bolting, water seepage, concrete lining of the walls, steel bearing pads, a system to prevent freezing of the walls, a mining schedule, and costs

  9. Superconducting magnet system for the AGS high energy unseparated beam

    International Nuclear Information System (INIS)

    Morgan, G.; Aggus, J.; Bamberger, J.

    1975-01-01

    A beam line to the Multi-Particle Spectrometer capable of handling 30 GeV/c secondary beams will consist of four large identical superconducting dipoles and a number of room temperature quadrupoles. The total bending angle is 20 0 , 5 0 per magnet, and the room temperature aperture required in the dipoles is 20 cm. The four dipoles will be of the cos theta type and will have an overall length of 2.5 m and nominal maximum field of 4.0 T at 2800 A. The conductor will be a thin, wide metal-impregnated braid. The circular aperture is surrounded by coils which are a six-block approximation to a single-layer cos theta current sheet, and a coaxial cylinder of laminated iron at helium temperature. Each magnet will weigh about 10 tons. The design of the dewar including its heat load is discussed. The system is planned to be operational in Fall 1975. (U.S.)

  10. Study of superconducting magnetic bearing applicable to the flywheel energy storage system that consist of HTS-bulks and superconducting-coils

    International Nuclear Information System (INIS)

    Seino, Hiroshi; Nagashima, Ken; Tanaka, Yoshichika; Nakauchi, Masahiko

    2010-01-01

    The Railway Technical Research Institute conducted a study to develop a superconducting magnetic bearing applicable to the flywheel energy-storage system for railways. In the first step of the study, the thrust rolling bearing was selected for application, and adopted liquid-nitrogen-cooled HTS-bulk as a rotor, and adopted superconducting coil as a stator for the superconducting magnetic bearing. Load capacity of superconducting magnetic bearing was verified up to 10 kN in the static load test. After that, rotation test of that approximately 5 kN thrust load added was performed with maximum rotation of 3000rpm. In the results of bearing rotation test, it was confirmed that position in levitation is able to maintain with stability during the rotation. Heat transfer properties by radiation in vacuum and conductivity by tenuous gas were basically studied by experiment by the reason of confirmation of rotor cooling method. The experimental result demonstrates that the optimal gas pressure is able to obtain without generating windage drag. In the second stage of the development, thrust load capacity of the bearing will be improved aiming at the achievement of the energy capacity of a practical scale. In the static load test of the new superconducting magnetic bearing, stable 20kN-levitation force was obtained.

  11. Research and development project for flywheel energy storage system using high-temperature superconducting magnetic bearing

    International Nuclear Information System (INIS)

    Shinagawa, Jiro; Ishikawa, Fumihiko

    1996-01-01

    Recent progress in the research and development of an yttrium-based oxide high-temperature superconductor has enabled the production of a large-diameter bulk with a strong flux-pinning force. A combination of this superconductor and a permanent magnet makes it feasible to fabricate a non-contact, non-controlled superconducting magnetic bearing with a very small rotational loss. Use of the superconducting magnetic bearing for a flywheel energy storage system may pave the way to the development of a new energy storage system that has great energy storage efficiency. >From relevant data measured with a miniature model of the high-temperature superconducting magnetic bearing, a conceptual design of an 8 MWh flywheel energy storage system was developed, using the new bearing which proved to be potentially capable of achieving a high energy storage efficiency of 84%. A 100 Wh-class experimental system was install that attained a high revolution rate of 17.000 rpm. (author)

  12. A novel transition radiation detector utilizing superconducting microspheres for measuring the energy of relativistic high-energy charged particles

    International Nuclear Information System (INIS)

    Yuan, Luke C.L.; Chen, C.P.; Huang, C.Y.; Lee, S.C.; Waysand, G.; Perrier, P.; Limagne, D.; Jeudy, V.; Girard, T.

    2000-01-01

    A novel transition radiation detector (TRD) utilizing superheated superconducting microspheres of tin of 22-26, 27-32 and 32-38 μm in diameter, respectively, has been constructed which is capable of measuring accurately the energy of relativistic high-energy charged particles. The test has been conducted in a high-energy electron beam facility at the CERN PS in the energy range of 1-10 GeV showing an energy dependence of the TR X-ray photon produced and hence the value γ=E/mc 2 of the charged particle

  13. New Class of Wide Energy Gap Benzotriimidazole Optical Materials

    Directory of Open Access Journals (Sweden)

    Jianmin Shi

    2017-10-01

    Full Text Available A new class of wide energy gap benzotriimidazole materials have been synthesized by a two-step condensation reaction. All of the benzotriimidazole compounds have π-π* absorption bands in the range of 250–400 nm. The photoluminescence (PL quantum efficiency of each benzotriimidazole depends strongly on the presence of electron withdrawing groups. PL quantum efficiencies of benzotriimidazoles without electron withdrawing groups were less than desirable (40–43%, while molecules with electron withdrawing groups displayed much stronger PL with efficiencies in the range of 73–75%. The electron withdrawing groups shift the emission to a longer wavelength, towards a more “true blue” color. This new class of benzotriimidazole optical materials could be used as electron-injecting and electron-transporting blue luminescence materials for potential organic light-emitting diode (OLED applications.

  14. On test results of the superconducting magnetic energy storage (SMES) system in Ariuragawa Power Station

    International Nuclear Information System (INIS)

    Katahira, Osamu; Fukui, Fumihiko; Karano, Koichi; Irie, Fujio; Takeo, Masakatsu; Okada, Hidehiko; Shimojo, Toshikazu.

    1991-01-01

    SMES system is that for storing electric energy in the form of magnetic energy by flowing DC current through a superconducting coil by utilizing the characteristics of its superconductivity. It comprises a superconducting coil for storing energy, an AC-DC converter, the cooling system for maintaining extremely low temperature and so on. The features of SMES are the high efficiency of storing electric energy (more than 90 % in the large scale system), the fast response to store and release electric power, and effective power and reactive power can be independently and arbitrarily controlled. It is expected that SMES can be applied to the stabilization of electric power system, the adjustment of system voltage, the adjustment of varying load and so on. In order to verify the results of the laboratory research in actual power system, the system test was carried out in Ariuragawa Power Station on November 20-22, 1990. The outline of the test, the method of controlling SMES, the test results and the examination of the results are reported. (K.I.)

  15. Superconducting coil configurations, with low flux leakage, for energy storage

    International Nuclear Information System (INIS)

    Vincent-Viry, O.; Mailfert, A.; Trassart, D.

    2001-01-01

    This paper presents two original types of SMES structures for energy storage. These two groups of SMES structures proceeded from an ideal structure: the full toroid, are modeled by the use of purely surface current densities. Their main advantage is to present no flux leakage, they give then satisfactory solution to the problem of energy storage. (orig.)

  16. Assessment of micro-superconducting magnetic energy storage (SMES) utility in railroad applications : a report to Congress

    Science.gov (United States)

    1997-07-01

    At the direction of the U.S. Congress, the Federal Railroad Administration (FRA), with technical support from the Volpe National Transportation Systems Center (Volpe Center), investigated the feasibility of using micro-Superconducting Magnetic Energy...

  17. Superconducting magnetic energy storage (SMES) program. Progress report, January 1-December 31, 1980

    International Nuclear Information System (INIS)

    Rogers, J.D.

    1981-03-01

    Work is reported on the development of two superconducting magnetic energy storage (SMES) units. One is a 30-MJ unit for use by the Bonneville Power Administration (BPA) to stabilize power oscillations on their Pacific AC Intertie, and the second is a 1- to 10-GWh unit for use as a diurnal load leveling device. Emphasis has been on the stabilizing system. The manufacturing phase of the 30-MJ superconducting coil was initiated and the coil fabrication has advanced rapidly. The two converter power transformers were manufactured, successfully factory tested, and shipped. One transformer reached the Tacoma Substation in good condition; the other was dropped enroute and has been returned to the factory for rebuilding. Insulation of the 30-MJ coil has been examined for high voltage effects apt to be caused by transients such as inductive voltage spikes from the protective dump circuit. The stabilizing system converter and protective energy dump system were completed, factory tested, and delivered

  18. Effects of Out-of-Plane Disorder on the Nodal Quasiparticle and Superconducting Gap in Single-Layer Bi_2Sr_1.6Ln_0.4CuO_6 delta (Ln = La, Nd, Gd)

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, M.

    2011-01-04

    How out-of-plane disorder affects the electronic structure has been investigated for the single-layer cuprates Bi{sub 2}Sr{sub 1.6}Ln{sub 0.4}CuO{sub 6+{delta}} (Ln = La, Nd, Gd) by angle-resolved photoemission spectroscopy. We have observed that, with increasing disorder, while the Fermi surface shape and band dispersions are not affected, the quasi-particle width increases, the anti-nodal gap is enhanced and the superconducting gap in the nodal region is depressed. The results indicate that the superconductivity is significantly depressed by out-of-plane disorder through the enhancement of the anti-nodal gap and the depression of the superconducting gap in the nodal region.

  19. Enhancing the utilization of photovoltaic power generation by superconductive magnetic energy storage

    International Nuclear Information System (INIS)

    Tam, K.S.; Kumar, P.; Foreman, M.

    1989-01-01

    This paper demonstrates that a superconductive magnetic energy storage (SMES) system can enhance large scale utilization of PV generation. With SMES support, power generated from PV arrays van be fully utilized under different weather conditions and PV penetrations can be increased to significant levels without causing adverse effects to the power system. Coupled with PV generation, a SMES system is even more effective in performing diurnal load leveling. A coordinated PV/SMES operation scheme is proposed and demonstrated under different weather conditions

  20. Optimization of a Superconducting Magnetic Energy Storage Device via a CPU-Efficient Semi-Analytical Simulation

    OpenAIRE

    Dimitrov, I K; Zhang, X; Solovyov, V F; Chubar, O; Li, Qiang

    2014-01-01

    Recent advances in second generation (YBCO) high temperature superconducting wire could potentially enable the design of super high performance energy storage devices that combine the high energy density of chemical storage with the high power of superconducting magnetic storage. However, the high aspect ratio and considerable filament size of these wires requires the concomitant development of dedicated optimization methods that account for both the critical current density and ac losses in ...

  1. Explaining the energy efficiency gap - expected utility theory versus cumulative prospect theory

    OpenAIRE

    Häckel, Björn; Pfosser, Stefan; Tränkler, Timm

    2017-01-01

    Energy efficiency is one of the key factors in mitigating the impact of climate change and preserving non-renewable resources. Although environmental and economic justifications for energy efficiency investments are compelling, there is a gap between the observable and some notion of optimized energy consumption - the so-called energy efficiency gap. Behavioral biases in individual decision making have been resonated by environmental research to explain this gap. To analyze the influence of b...

  2. Free energy surfaces in the superconducting mixed state

    Science.gov (United States)

    Finnemore, D. K.; Fang, M. M.; Bansal, N. P.; Farrell, D. E.

    1989-01-01

    The free energy surface for Tl2Ba2Ca2Cu3O1O has been measured as a function of temperature and magnetic field to determine the fundamental thermodynamic properties of the mixed state. The change in free energy, G(H)-G(O), is found to be linear in temperature over a wide range indicating that the specific heat is independent of field.

  3. First-principles investigation of strain effects on the energy gaps in silicon nanoclusters

    International Nuclear Information System (INIS)

    Peng, X-H; Alizadeh, A; Bhate, N; Varanasi, K K; Kumar, S K; Nayak, S K

    2007-01-01

    First-principles density functional calculations were performed to study strain effects on the energy gaps in silicon nanoclusters with diameter ranging from 0.6 to 2 nm. Hydrostatic and non-hydrostatic strains have been found to affect the energy gaps differently. For the same strain energy density, non-hydrostatic strain leads to a significantly larger change in the energy gap of silicon clusters compared to that of the hydrostatic strain case. In contrast, hydrostatic and non-hydrostatic strain effects on the energy gaps of bulk Si or larger size Si quantum dots are comparable. Non-hydrostatic strains break the tetrahedral bonding symmetry in silicon, resulting in significant variation in the energy gaps due to the splitting of the degenerate orbitals in the clusters. Our results suggest that the combination of energy gaps and strains permits the engineering of photoluminescence in silicon nanoclusters and offers the possibility of designing novel optical devices and chemical sensors

  4. MgB2 energy gap determination by scanning tunnelling spectroscopy

    International Nuclear Information System (INIS)

    Heitmann, T W; Bu, S D; Kim, D M; Choi, J H; Giencke, J; Eom, C B; Regan, K A; Rogado, N; Hayward, M A; He, T; Slusky, J S; Khalifah, P; Haas, M; Cava, R J; Larbalestier, D C; Rzchowski, M S

    2004-01-01

    We report scanning tunnelling spectroscopy (STS) measurements of the gap properties of both ceramic MgB 2 and c-axis oriented epitaxial MgB 2 thin films. Both show a temperature dependent zero bias conductance peak and evidence for two superconducting gaps. We report tunnelling spectroscopy of superconductor-insulator-superconductor (S-I-S) junctions formed in two ways in addition to normal metal-insulator-superconductor (N-I-S) junctions. We find a gap δ = 2.2-2.8 meV, with spectral features and temperature dependence that are consistent between S-I-S junction types. In addition, we observe evidence of a second, larger gap, δ 7.2 meV, consistent with a proposed two-band model

  5. Scanning tunneling spectroscopy of Co adsorbates on superconducting Pb nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Decker, Regis; Caminale, Michael; Oka, Hirofumi; Stepniak, Agnieszka; Leon Vanegas, Augusto A.; Sander, Dirk; Kirschner, Juergen [Max-Planck-Institut fuer Mikrostrukturphysik, Weinberg 2, 06120 Halle (Germany)

    2015-07-01

    Superconductivity in low-dimensional structures has become an active research area. In order to understand the superconducting pairing, long-standing work has been devoted to the pair breaking effect, where magnetic impurities break Cooper pair singlets. We performed scanning tunneling spectroscopy at low temperature on Co adsorbates on superconducting Pb nanoislands. On the Co adsorbates, we observe spectral features in the superconductor's energy gap, which we attribute to magnetic impurity induced bound states, a hallmark of the pair breaking effect. We discuss the response of the superconducting islands to the presence of Co adsorbates.

  6. FLYWHEEL ENERGY STORAGE SYSTEMS WITH SUPERCONDUCTING BEARINGS FOR UTILITY APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Michael Strasik; Mr. Arthur Day; Mr. Philip Johnson; Dr. John Hull

    2007-10-26

    This project’s mission was to achieve significant advances in the practical application of bulk high-temperature superconductor (HTS) materials to energy-storage systems. The ultimate product was planned as an operational prototype of a flywheel system on an HTS suspension. While the final prototype flywheel did not complete the final offsite demonstration phase of the program, invaluable lessons learned were captured on the laboratory demonstration units that will lead to the successful deployment of a future HTS-stabilized, composite-flywheel energy-storage system (FESS).

  7. FLYWHEEL ENERGY STORAGE SYSTEMS WITH SUPERCONDUCTING BEARINGS FOR UTILITY APPLICATIONS

    International Nuclear Information System (INIS)

    Dr. Michael Strasik; Mr. Arthur Day; Mr. Philip Johnson; Dr. John Hull

    2007-01-01

    This project's mission was to achieve significant advances in the practical application of bulk high-temperature superconductor (HTS) materials to energy-storage systems. The ultimate product was planned as an operational prototype of a flywheel system on an HTS suspension. While the final prototype flywheel did not complete the final offsite demonstration phase of the program, invaluable lessons learned were captured on the laboratory demonstration units that will lead to the successful deployment of a future HTS-stabilized, composite-flywheel energy-storage system (FESS)

  8. Superconductivity in MgB{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Muranaka, Takahiro; Akimitsu, Jun [Aoyama Gakuin Univ., Kanagawa (Japan). Dept. of Physics and Mathematics

    2011-07-01

    We review superconductivity in MgB{sub 2} in terms of crystal and electronic structure, electron-phonon coupling, two-gap superconductivity and application. Finally, we introduce the development of new superconducting materials in related compounds. (orig.)

  9. Design and construction of a resistive energy dump device for bipolar superconducting magnet systems

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, M. J.

    1977-05-01

    When superconducting magnets quench, the resistance of the conductor material rises rapidly to its normal value. This increase in resistance can result in catastrophic heating in the magnet unless stored field energy is quickly removed from the system. Phase inversion is the normal mode of energy removal. SCR's in the power supply are phased back, the output of the supply is inverted, and magnetic field energy is directed back into the utility grid. Under certain conditions, however, the power supply may fail to invert properly, and an alternate energy removal scheme must protect the superconducting magnet system. Composed of an isolation switch, a semiconductor switching module, and a dump resistor, the resistive dump device provides a viable protection scheme. Operationally, several conditions are capable of activating the isolation switch and triggering the bipolar SCR switching module. Manual dump commands, for instance, permit the operator to dump field energy in the event of observed abnormalities. A special voltage tap quench detector senses the aforementioned abnormal power supply output inversion and also fires the dump circuit. Regardless of the nature of the trigger input, however, activation of the energy dump device diverts coil current through the dump resistor. I/sup 2/R losses over time then safely dissipate stored magnetic field energy.

  10. Superconducting Magnet Technology for Future High Energy Proton Colliders

    Science.gov (United States)

    Gourlay, Stephen

    2017-01-01

    Interest in high field dipoles has been given a boost by new proposals to build a high-energy proton-proton collider to follow the LHC and programs around the world are taking on the task to answer the need. Studies aiming toward future high-energy proton-proton colliders at the 100 TeV scale are now being organized. The LHC and current cost models are based on technology close to four decades old and point to a broad optimum of operation using dipoles with fields between 5 and 12T when site constraints, either geographical or political, are not a factor. Site geography constraints that limit the ring circumference can drive the required dipole field up to 20T, which is more than a factor of two beyond state-of-the-art. After a brief review of current progress, the talk will describe the challenges facing future development and present a roadmap for moving high field accelerator magnet technology forward. This work was supported by the Director, Office of Science, High Energy Physics, US Department of Energy, under contract No. DE-AC02-05CH11231.

  11. 1-GWh diurnal load-leveling superconducting magnetic energy storage system reference design

    International Nuclear Information System (INIS)

    Hassenzahl, W.V.; Rogers, J.D.

    1979-01-01

    A point reference design has been completed for a 1-GWh Superconducting Magnetic Energy Storage system. The system is for electric utility dirunal load leveling; however, such a device will function to meet much faster power demands including dynamic stabilization. The study has explored several concepts of design not previously considered in the same detail as treated here. Because the study is for a point design, optimization in all respects is not complete. The study examines aspects of the coil design; superconductor supported off of the dewar shell; the dewar shell, its configuration and stresses; the underground excavation and related construction for holding the superconducting coil and its dewar; the helium refrigeration system; the electrical converter system; the vacuum system; the guard coil; and the costs. The report is a condensation of the more comprehensive study which is in the process of being printed

  12. Design and optimization of superconducting magnet system for energy storage application

    International Nuclear Information System (INIS)

    Bhunia, Uttam

    2015-01-01

    In view of developing superconducting magnetic energy storage system (SMES) technology that will mitigate voltage sag/dip in the utility line, VEC centre has taken up a leading role in the country. In the first phase a solenoid-type 0.6 MJ SMES system using cryo-stable NbTi superconductor has been designed, developed and tested successfully with resistive load to mitigate power line voltage dips. The cryogenic test results of 0.6 MJ SMES coil will be highlighted. Further, effort is underway to develop a 4.5 MJ/1 MW SMES system with toroidal coil configuration. The lecture will also cover the superconducting coil development for SMES application with special emphasis on design aspects and the optimization issue of the toroidal system using NbTi based Rutherford-type cable. (author)

  13. Superconducting magnetic energy storage (SMES) program. January 1--December 31, 1978

    International Nuclear Information System (INIS)

    Rogers, J.D.

    1979-02-01

    Work is reported on the development of two superconducting magnetic energy storage units. One is a 30-MJ unit for use by the Bonneville Power Administration to stabilize power oscillations on their Pacific AC Intertie, and the second is a 1- to 10-GWh unit for use as a diurnal load-leveling device. Emphasis has been placed on the stabilizing system. The engineering specification design of the 30-MJ superconducting coil was completed and a contract will be placed for the coil fabrication design. Bids have been received for the stabilizing system 10-MW converter and coil protective dump resistor. These components will be purchased in 1979. The reference design for the 1- to 10-GWh diurnal load-leveling unit has been totally revised and is being assembled in redrafted report form. Plans are to build a 10- to 30-MWh prototype diurnal load-leveling demonstration unit

  14. Current status of development on superconducting magnetic energy storage systems and magnetic refrigeration

    International Nuclear Information System (INIS)

    Hirano, Naoki

    2010-01-01

    Superconducting magnetic energy storage (SMES) systems have excellent characteristics as energy-storage equipment in power systems such as high efficiency, quick response, and no deterioration in repetitive operations. There are many projects to develop SMES throughout the world. Since 1991, a national project by the Agency for Natural Resources and Energy Japan has been working to develop an SMES system to control power in power systems. Moreover, SMES has been developed to compensate for momentary voltage dips since 2003. To reduce energy consumption due to prolonged operating times, we developed energy-conserving electrical equipment incorporating refrigerating aggregates such as air conditioners. We conduced R and D to convert magnetic refrigeration and highly-efficient, energy-conserving/environmentally friendly technologies, to practical applications. The current status in the development of SMES to control power systems, bridging to deal with instantaneous voltage dips, and magnetic refrigeration technology will be explained in this paper. (author)

  15. Coil protection for a utility scale superconducting magnetic energy storage plant

    International Nuclear Information System (INIS)

    Loyd, R.J.; Schoenung, S.M.; Rogers, J.D.; Hassenzahl, W.V.; Purcell, J.R.

    1986-01-01

    Superconducting Magnetic Energy Storage (SMES) is proposed for electric utility load leveling. Attractive costs, high diurnal energy efficiency (≥ 92%), and rapid response are advantages relative to other energy storage technologies. Recent industry-led efforts have produced a conceptual design for a 5000 MWh/1000 MW energy storage plant which is technically feasible at commercially attractive estimated costs. The SMES plant design includes a protection system which prevents damage to the magnetic coil if events require a rapid discharge of stored energy. This paper describes the design and operation of the coil protection system, which is primarily passive and uses the thermal capacity of the coil itself to absorb the stored electromagnetic energy

  16. Sensing with Superconducting Point Contacts

    Directory of Open Access Journals (Sweden)

    Argo Nurbawono

    2012-05-01

    Full Text Available Superconducting point contacts have been used for measuring magnetic polarizations, identifying magnetic impurities, electronic structures, and even the vibrational modes of small molecules. Due to intrinsically small energy scale in the subgap structures of the supercurrent determined by the size of the superconducting energy gap, superconductors provide ultrahigh sensitivities for high resolution spectroscopies. The so-called Andreev reflection process between normal metal and superconductor carries complex and rich information which can be utilized as powerful sensor when fully exploited. In this review, we would discuss recent experimental and theoretical developments in the supercurrent transport through superconducting point contacts and their relevance to sensing applications, and we would highlight their current issues and potentials. A true utilization of the method based on Andreev reflection analysis opens up possibilities for a new class of ultrasensitive sensors.

  17. Enhancing the design of a superconducting coil for magnetic energy storage systems

    International Nuclear Information System (INIS)

    Indira, Gomathinayagam; UmaMaheswaraRao, Theru; Chandramohan, Sankaralingam

    2015-01-01

    Highlights: • High magnetic flux density of SMES coil to reduce the size. • YBCO Tapes for the construction of HTS magnets. • Relation between energy storage and length of the coil wound by various materials. • Design with a certain length of second-generation HTS. - Abstract: Study and analysis of a coil for Superconducting Magnetic Energy Storage (SMES) system is presented in this paper. Generally, high magnetic flux density is adapted in the design of superconducting coil of SMES to reduce the size of the coil and to increase its energy density. With high magnetic flux density, critical current density of the coil is degraded and so the coil is wound with High Temperature Superconductors (HTS) made of different materials. A comparative study is made to emphasize the relationship between the energy storage and length of the coil wound by Bi2223, SF12100, SCS12100 and YBCO tapes. Recently for the construction of HTS magnets, YBCO tapes have been used. Simulation models for various designs have been developed to analyze the magnetic field distribution for the optimum design of energy storage. The design which gives the maximum stored energy in the coil has been used with a certain length of second-generation HTS. The performance analysis and the results of comparative study are done

  18. Enhancing the design of a superconducting coil for magnetic energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Indira, Gomathinayagam, E-mail: gindu80@gmail.com [EEE Department, Prince Shri Venkateshwara Padmavathy Engineering College, Chennai (India); UmaMaheswaraRao, Theru, E-mail: umesh.theru@gmail.com [Divison of Power Engineering and Management, Anna University, Chennai (India); Chandramohan, Sankaralingam, E-mail: cdramo@gmail.com [Divison of Power Engineering and Management, Anna University, Chennai (India)

    2015-01-15

    Highlights: • High magnetic flux density of SMES coil to reduce the size. • YBCO Tapes for the construction of HTS magnets. • Relation between energy storage and length of the coil wound by various materials. • Design with a certain length of second-generation HTS. - Abstract: Study and analysis of a coil for Superconducting Magnetic Energy Storage (SMES) system is presented in this paper. Generally, high magnetic flux density is adapted in the design of superconducting coil of SMES to reduce the size of the coil and to increase its energy density. With high magnetic flux density, critical current density of the coil is degraded and so the coil is wound with High Temperature Superconductors (HTS) made of different materials. A comparative study is made to emphasize the relationship between the energy storage and length of the coil wound by Bi2223, SF12100, SCS12100 and YBCO tapes. Recently for the construction of HTS magnets, YBCO tapes have been used. Simulation models for various designs have been developed to analyze the magnetic field distribution for the optimum design of energy storage. The design which gives the maximum stored energy in the coil has been used with a certain length of second-generation HTS. The performance analysis and the results of comparative study are done.

  19. Effect of anisotropy on the magnon energy gap in a two-layer ferromagnetic superlattice

    International Nuclear Information System (INIS)

    Qiu Rongke; Liang Jing; Li Qingfeng; Zhang Zhidong; Song Panpan; Hong Xiaomin

    2009-01-01

    The magnon energy bands or spectra in a two-layer ferromagnetic superlattice are studied. It is found that a modulated energy gap exists in the magnon energy band along K x direction perpendicular to the superlattice plane, which is different from the optical magnon gap at K x =0. The anisotropy, the spin quantum numbers and the interlayer exchange couplings all affect the magnon energy gap. If the anisotropy exists, there will be no acoustic energy branch in the system. There is a competition effect of the anisotropy and the spin quantum number on the magnon energy gap. The competition achieves a balance at the zero energy gap, at which the symmetry of the system is higher. The two energy spectra of the two-layer ferromagnetic superlattice are lowered with increasing temperature.

  20. Dynamic characteristics of a flywheel energy storage system using superconducting magnetic bearings

    CERN Document Server

    Kim, J S

    2003-01-01

    The high-temperature superconducting magnetic bearing flywheel energy storage system (SMB-FESS) is proposed as an efficient energy storage system. It is important to identify the dynamic behaviour and the characteristics of the SMB-FESS. First, a new method for identifying SMB characteristics has been suggested. The suggested modelling method is verified by comparing the experimental and analytical frequency response functions. In this study, the analyses of critical speed and unbalance response are performed using the analytical model. The experimental test has been carried out to verify the result of simulation. A good agreement has been observed between the experiment and the simulation result.

  1. A design study of superconducting energy storage system for a tokamak fusion reactor

    International Nuclear Information System (INIS)

    Ueda, Kazuo

    1979-01-01

    A design study of a superconducting inductive energy storage system (SC-IES) has been carried out in commission with JAERI. The SC-IES is to be applied to the power supply system for a tokamak experimental fusion reactor. The study was initiated with the definition of the requirement for the SC-IES and selection of the coil shape. The design of the coil and the cryostat has been followed. The design parameters are: stored energy 10 GJ, B max 8 T, conductor Nb-Ti, overall size 18 m (diameter) x 10 m (height). Technical problems and usefullness of SC-IES are discussed also. (author)

  2. Mott transition: Low-energy excitations and superconductivity

    International Nuclear Information System (INIS)

    Ioffe, L.B.; Larkin, A.I.

    1988-09-01

    It is possible that metal-dielectric transition does not result in changes of magnetic or crystallographic symmetry. In this case a fermionic spectrum is not changed at the transition, but additional low-energy excitations appear which can be described as a gauge field that has the same symmetry as an electromagnetic one. In the case of a non half-filled band gapless scalar Bose excitations also appear. Due to the presence of additional gauge field the physical conductivity is determined by the lowest conductivity of the Fermi or Bose subsystems. (author). 11 refs

  3. Pair Fermi contour and high-temperature superconductivity

    CERN Document Server

    Belyavsky, V I

    2002-01-01

    The holes superconducting coupling with the pair high summarized pulse and the relative motion low pulses is considered with an account of the quasi-two-dimensional electron structure of the HTSC-cuprates with the clearly-pronounced nesting of the Fermi contour. The superconducting energy gap and the condensation energy are determined and their dependences on the doping level are qualitatively studied. It is shown that the energy gap takes place in some holes concentration area, limited on both sides. The superconducting state, whereby the condensation energy is positive, originates in the more narrower doping interval inside this area. The hole pair redistribution in the pulse space constitutes the cause of the superconducting state origination by the holes repulsive screened Coulomb interaction. The coupling mechanism discussed hereby, males it possible to explain qualitatively not only the phase diagram basic peculiarities but also the key experimental facts, related to the cuprate HTSC-materials

  4. Determining the band gap and mean kinetic energy of atoms from reflection electron energy loss spectra

    Energy Technology Data Exchange (ETDEWEB)

    Vos, M. [Atomic and Molecular Physics Laboratories, Research School of Physics and Engineering, Australian National University, Canberra ACT (Australia); Marmitt, G. G. [Atomic and Molecular Physics Laboratories, Research School of Physics and Engineering, Australian National University, Canberra ACT (Australia); Instituto de Fisica da Universidade Federal do Rio Grande do Sul, Avenida Bento Goncalves 9500, 91501-970 Porto Alegre, RS (Brazil); Finkelstein, Y. [Nuclear Research Center — Negev, Beer-Sheva 84190 (Israel); Moreh, R. [Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel)

    2015-09-14

    Reflection electron energy loss spectra from some insulating materials (CaCO{sub 3}, Li{sub 2}CO{sub 3}, and SiO{sub 2}) taken at relatively high incoming electron energies (5–40 keV) are analyzed. Here, one is bulk sensitive and a well-defined onset of inelastic excitations is observed from which one can infer the value of the band gap. An estimate of the band gap was obtained by fitting the spectra with a procedure that includes the recoil shift and recoil broadening affecting these measurements. The width of the elastic peak is directly connected to the mean kinetic energy of the atom in the material (Doppler broadening). The experimentally obtained mean kinetic energies of the O, C, Li, Ca, and Si atoms are compared with the calculated ones, and good agreement is found, especially if the effect of multiple scattering is taken into account. It is demonstrated experimentally that the onset of the inelastic excitation is also affected by Doppler broadening. Aided by this understanding, we can obtain a good fit of the elastic peak and the onset of inelastic excitations. For SiO{sub 2}, good agreement is obtained with the well-established value of the band gap (8.9 eV) only if it is assumed that the intensity near the edge scales as (E − E{sub gap}){sup 1.5}. For CaCO{sub 3}, the band gap obtained here (7 eV) is about 1 eV larger than the previous experimental value, whereas the value for Li{sub 2}CO{sub 3} (7.5 eV) is the first experimental estimate.

  5. Determining the band gap and mean kinetic energy of atoms from reflection electron energy loss spectra

    International Nuclear Information System (INIS)

    Vos, M.; Marmitt, G. G.; Finkelstein, Y.; Moreh, R.

    2015-01-01

    Reflection electron energy loss spectra from some insulating materials (CaCO 3 , Li 2 CO 3 , and SiO 2 ) taken at relatively high incoming electron energies (5–40 keV) are analyzed. Here, one is bulk sensitive and a well-defined onset of inelastic excitations is observed from which one can infer the value of the band gap. An estimate of the band gap was obtained by fitting the spectra with a procedure that includes the recoil shift and recoil broadening affecting these measurements. The width of the elastic peak is directly connected to the mean kinetic energy of the atom in the material (Doppler broadening). The experimentally obtained mean kinetic energies of the O, C, Li, Ca, and Si atoms are compared with the calculated ones, and good agreement is found, especially if the effect of multiple scattering is taken into account. It is demonstrated experimentally that the onset of the inelastic excitation is also affected by Doppler broadening. Aided by this understanding, we can obtain a good fit of the elastic peak and the onset of inelastic excitations. For SiO 2 , good agreement is obtained with the well-established value of the band gap (8.9 eV) only if it is assumed that the intensity near the edge scales as (E − E gap ) 1.5 . For CaCO 3 , the band gap obtained here (7 eV) is about 1 eV larger than the previous experimental value, whereas the value for Li 2 CO 3 (7.5 eV) is the first experimental estimate

  6. Measurement of the band gap by reflection electron energy loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Vos, Maarten, E-mail: maarten.vos@anu.edu.au [Electronic Materials Engineering Department, Research School of Physics and Engineering, The Australian National University, Canberra 0200 (Australia); King, Sean W. [Logic Technology Development, Intel Corporation, Hillsboro, OR 97124 (United States); French, Benjamin L. [Ocotillo Materials Laboratory, Intel Corporation, Chandler, AZ 85248 (United States)

    2016-10-15

    Highlights: • Semiconductors are measured (without surface preparation) using REELS. • At low beam energies it is difficult to measure band gap due to surface impurities. • At very high energies it is difficult to measure band gap due to recoil effect. • At intermediate energies (around 5 keV) one obtains a good estimate of the band gap. - Abstract: We investigate the possibilities of measuring the band gap of a variety of semiconductors and insulators by reflection electron energy loss spectroscopy without additional surface preparation. The band gap is a bulk property, whereas reflection energy loss spectroscopy is generally considered a surface sensitive technique. By changing the energy of the incoming electrons, the degree of surface sensitivity can be varied. Here, we present case studies to determine the optimum condition for the determination of the band gap. At very large incoming electron energies recoil effects interfere with the band gap determination, whereas at very low energies surface effects are obscuring the band gap without surface preparation. Using an incoming energy of 5 keV a reasonable estimate of the band gap is obtained in most cases.

  7. Measurement of the band gap by reflection electron energy loss spectroscopy

    International Nuclear Information System (INIS)

    Vos, Maarten; King, Sean W.; French, Benjamin L.

    2016-01-01

    Highlights: • Semiconductors are measured (without surface preparation) using REELS. • At low beam energies it is difficult to measure band gap due to surface impurities. • At very high energies it is difficult to measure band gap due to recoil effect. • At intermediate energies (around 5 keV) one obtains a good estimate of the band gap. - Abstract: We investigate the possibilities of measuring the band gap of a variety of semiconductors and insulators by reflection electron energy loss spectroscopy without additional surface preparation. The band gap is a bulk property, whereas reflection energy loss spectroscopy is generally considered a surface sensitive technique. By changing the energy of the incoming electrons, the degree of surface sensitivity can be varied. Here, we present case studies to determine the optimum condition for the determination of the band gap. At very large incoming electron energies recoil effects interfere with the band gap determination, whereas at very low energies surface effects are obscuring the band gap without surface preparation. Using an incoming energy of 5 keV a reasonable estimate of the band gap is obtained in most cases.

  8. Superconducting accelerator technology

    International Nuclear Information System (INIS)

    Grunder, H.A.; Hartline, B.K.

    1986-01-01

    Modern and future accelerators for high energy and nuclear physics rely increasingly on superconducting components to achieve the required magnetic fields and accelerating fields. This paper presents a practical overview of the phenomenon of superconductivity, and describes the design issues and solutions associated with superconducting magnets and superconducting rf acceleration structures. Further development and application of superconducting components promises increased accelerator performance at reduced electric power cost

  9. Liquid neon heat intercept for superconducting energy storage magnets

    International Nuclear Information System (INIS)

    Khalil, A.; McIntosh, G.E.

    1982-01-01

    Previous analyses of heat intercept solutions are extended to include both insulation and strut heat leaks. The impact of using storable, boiling cryogens for heat intercept fluids, specifically liquid neon and nitrogen, is also examined. The selection of fluid for the heat intercepts is described. Refrigeration power for 1000 and 5000 MWhr SMES units is shown with optimum refrigeration power for each quantity shown in tables. Nitrogen and Neon cooled intercept location for minimum total refrigeration power for a 5000 MWhr SMES are each shown, as well as the location of nitrogen and neon cooled intercepts for minimum total refrigeration power for 5000 MWhr SMES. Cost comparisons are itemized and neon cost and availability discussed. For a large energy storage magnet system, liquid neon is a more effective heat intercept fluid than liquid nitrogen. Reasons and application of the conclusion are amplified

  10. Intralayer and interlayer spin-singlet pairing and energy gap functions with different possible symmetries in high-Tc layered superconductors

    International Nuclear Information System (INIS)

    Jha, S.S.; Rajagopal, A.K.

    1997-01-01

    Anisotropy and the wave-vector dependence of the energy gap function determine many important properties of a superconductor. Starting from first principles, we present here a complete analysis of possible symmetries of the superconducting gap function E g (k) at the Fermi surface in high-T c layered superconductors with either a simple orthorhombic or a tetragonal unit cell. This is done within the framework of Gorkov close-quote s mean-field theory of superconductivity in the so-called open-quotes layer representationclose quotes introduced by us earlier. For N conducting cuprate layers, J=1,2,hor-ellipsis,N, in each unit cell, the spin-singlet order parameters Δ JJ (k) can be expanded in terms of possible basis functions of all the irreducible representations relevant to layered crystals, which are obtained here. In layered materials, the symmetry is restricted to the translational lattice periodicity in the direction perpendicular to the layers and the residual point group and translational symmetries for the two-dimensional unit cell in each layer of the three-dimensional unit cell. We derive an exact general relation to determine different branches of the energy gap function E g (k) at the Fermi surface in terms of Δ JJ (k), which include both intralayer and interlayer order parameters. For N=2, we also obtain an exact expression for quasiparticle energies E p (k), p=1,2, in the superconducting state in the presence of intralayer and complex interlayer order parameters as well as complex tunneling matrix elements between the two layers in the unit cell, which need not be equivalent. The form of the possible basis functions are also listed in terms of cylindrical coordinates k t ,φ,k z to take advantage of the orthogonality of functions with respect to φ integrations. (Abstract Truncated)

  11. The superconducting gaps of C-substituted and Al-substituted MgB2 single crystals by point-contact spectroscopy

    International Nuclear Information System (INIS)

    Daghero, D.; Gonnelli, R.S.; Ummarino, G.A.; Calzolari, A.; Dellarocca, Valeria; Stepanov, V.A.; Zhigadlo, N.; Kazakov, S.M.; Karpinski, J.

    2005-01-01

    We studied the effects of carbon and aluminum substitutions on the gaps of the two-band superconductor MgB 2 by means of point-contact measurements in Mg(B 1-x C x ) 2 and Mg 1-y Al y B 2 single crystals with 0≤x≤0.132 and 0≤y≤0.21. The gap amplitudes, Δ ω and Δ π , were determined by fitting the conductance curves of the point contacts with the standard Blonder-Tinkham-Klapwijk (BTK) model generalized to the two-band case. Whenever possible, their values were confirmed by the independent fit (with a single-band BTK model) of the partial contribution of the two bands to the conductance, separated by means of a suitable magnetic field B*. In C-substituted crystals, the two gaps remain clearly distinct up to x∝0.10, but at x=0.132 we observed for the first time their merging into a single gap Δ≅3 meV with a gap ratio 2Δ=k B T c close to the standard BCS value. In Al-substituted crystals, we found no evidence of this gap merging. Instead, Δ π reaches the value 0.4 meV at y=0.21, where Δ π saturates at about 4 meV. These results are compared with other recent experimental findings in polycrystals and with the predictions of the models for multiband superconductivity. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Energy Performance Certification of Faculty Buildings in Spain: The gap between estimated and real energy consumption

    International Nuclear Information System (INIS)

    Herrando, María; Cambra, David; Navarro, Marcos; Cruz, Lucio de la; Millán, Gema; Zabalza, Ignacio

    2016-01-01

    Highlights: • Most of the Faculty Buildings studied are within the average of CO_2 emissions. • Academic and Research buildings have a similar simulated energy consumption. • Several restrictions found in the official Energy Performance Certification tool. • Average deviation of 30% between estimated and real energy consumption. • Electrical equipment and user behaviour notably increase the energy performance gap. - Abstract: A systematic method has been established to perform and analyse in detail the Energy Performance Certification of 21 Faculty Buildings located at the University of Zaragoza (Spain), according to the transposition of Directive 2010/31/EU. First of all, the problem background and a review of the state-of-the-art of the energy certification in buildings is outlined, regarding both the actual state of the Government regulations and the studies undertaken in several countries to assess the energy performance of different types of buildings, residential and non-residential. A summary of the causes found in other studies for the discrepancies between the estimated (by simulation) and actual energy consumption is shown which is afterwards tested and compared with the results found in the present study. Thereafter, the method followed to undertake the buildings’ Energy Performance Certification is explained, and the main results found together with the discussion are detailed, comparing actual vs. estimated energy consumption in the different case studies and proposing reasons for these deviations. The energy consumption breakdown by uses for several buildings is also analysed, and potential improvements for the simulation software are assessed.

  13. Electron energy-loss spectroscopy of branched gap plasmon resonators

    DEFF Research Database (Denmark)

    Raza, Søren; Esfandyarpour, Majid; Koh, Ai Leen

    2016-01-01

    The miniaturization of integrated optical circuits below the diffraction limit for high-speed manipulation of information is one of the cornerstones in plasmonics research. By coupling to surface plasmons supported on nanostructured metallic surfaces, light can be confined to the nanoscale......, enabling the potential interface to electronic circuits. In particular, gap surface plasmons propagating in an air gap sandwiched between metal layers have shown extraordinary mode confinement with significant propagation length. In this work, we unveil the optical properties of gap surface plasmons...... in silver nanoslot structures with widths of only 25 nm. We fabricate linear, branched and cross-shaped nanoslot waveguide components, which all support resonances due to interference of counter-propagating gap plasmons. By exploiting the superior spatial resolution of a scanning transmission electron...

  14. Thermal expansion of coexistence of ferromagnetism and superconductivity

    International Nuclear Information System (INIS)

    Hatayama, Nobukuni; Konno, Rikio

    2010-01-01

    The temperature dependence of thermal expansion of coexistence of ferromag-netism and superconductivity below the superconducting transition temperature T cu of a majority spin conduction band is investigated. Majority spin and minority spin superconducting gaps exist in the coexistent state. We assume that the Curie temperature is much larger than the superconducting transition temperatures. The free energy that Linder et al. [Phys. Rev. B76, 054511 (2007)] derived is used. The thermal expansion of coexistence of ferromagnetism and superconductivity is derived by the application of the method of Takahashi and Nakano [J. Phys.: Condens. Matter 18, 521 (2006)]. We find that we have the anomalies of the thermal expansion in the vicinity of the superconducting transition temperatures.

  15. Technical Barriers, Gaps,and Opportunities Related to Home Energy Upgrade Market Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, Marcus V.A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2011-11-01

    This report outlines the technical barriers, gaps, and opportunities that arise in executing home energy upgrade market delivery approaches, as identified through research conducted by the U.S. Department of Energy's Building America program.

  16. Application of superconducting magnet energy storage to improve power system dynamic performance

    International Nuclear Information System (INIS)

    Mitani, Y.; Tsuji, K.; Murakami, Y.

    1988-01-01

    The application of Superconducting Magnet Energy Storage (SMES) to the stabilization of a power system with long distance bulk power transmission lines which has the problem of poorly damped power oscillations, is presented. Control schemes for stabilization using SMES which is capable of controlling active and reactive power simultaneously in four quadrant ranges, is proposed. The effective locations and the necessary capacities of SMES for power system stabilizing control are discussed in detail. Results of numerical analysis and experiments in an artificial power transmission system demonstrate the significant effect of the control by SMES on the improvement of power system oscillatory performance

  17. A study of the status and future of superconducting magnetic energy storage in power systems

    International Nuclear Information System (INIS)

    Xue, X D; Cheng, K W E; Sutanto, D

    2006-01-01

    Superconducting magnetic energy storage (SMES) systems offering flexible, reliable, and fast acting power compensation are applicable to power systems to improve power system stabilities and to advance power qualities. The authors have summarized researches on SMES applications to power systems. Furthermore, various SMES applications to power systems have been described briefly and some crucial schematic diagrams and equations are given. In addition, this study presents valuable suggestions for future studies of SMES applications to power systems. Hence, this paper is helpful for co-researchers who want to know about the status of SMES applications to power systems. (topical review)

  18. The Zeeman-split superconductivity with Rashba and Dresselhaus spin-orbit coupling

    Science.gov (United States)

    Zhao, Jingxiang; Yan, Xu; Gu, Qiang

    2017-10-01

    The superconductivity with Rashba and Dressehlaus spin-orbit coupling and Zeeman effect is investigated. The energy gaps of quasi-particles are carefully calculated. It is shown that the coexistence of two spin-orbit coupling might suppress superconductivity. Moreover, the Zeeman effect favors spin-triplet Cooper pairs.

  19. Superconducted tour

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1988-09-15

    Superconductivity - the dramatic drop in electrical resistance in certain materials at very low temperatures - has grown rapidly in importance over the past two or three decades to become a key technology for high energy particle accelerators. It was in this setting that a hundred students and 15 lecturers met in Hamburg in June for a week's course on superconductivity in particle accelerators, organized by the CERN Accelerator School and the nearby DESY Laboratory.

  20. Holographic Superconductivity with Gauss-Bonnet gravity

    OpenAIRE

    Gregory, Ruth

    2010-01-01

    I review recent work on holographic superconductivity with Einstein-Gauss-Bonnet gravity, and show how the critical temperature of the superconductor depends on both gravitational backreaction and the Gauss-Bonnet parameter, using both analytic and numerical arguments. I also review computations of the conductivity, finding the energy gap, and demonstrating that there is no universal gap ratio, $\\omega_g/T_c$, for these superconductors.

  1. Optimized use of superconducting magnetic energy storage for electromagnetic rail launcher powering

    Science.gov (United States)

    Badel, Arnaud; Tixador, Pascal; Arniet, Michel

    2012-01-01

    Electromagnetic rail launchers (EMRLs) require very high currents, from hundreds of kA to several MA. They are usually powered by capacitors. The use of superconducting magnetic energy storage (SMES) in the supply chain of an EMRL is investigated, as an energy buffer and as direct powering source. Simulations of direct powering are conducted to quantify the benefits of this method in terms of required primary energy. In order to enhance further the benefits of SMES powering, a novel integration concept is proposed, the superconducting self-supplied electromagnetic launcher (S3EL). In the S3EL, the SMES is used as a power supply for the EMRL but its coil serves also as an additional source of magnetic flux density, in order to increase the thrust (or reduce the required current for a given thrust). Optimization principles for this new concept are presented. Simulations based on the characteristics of an existing launcher demonstrate that the required current could be reduced by a factor of seven. Realizing such devices with HTS cables should be possible in the near future, especially if the S3EL concept is used in combination with the XRAM principle, allowing current multiplication.

  2. Optimized use of superconducting magnetic energy storage for electromagnetic rail launcher powering

    International Nuclear Information System (INIS)

    Badel, Arnaud; Tixador, Pascal; Arniet, Michel

    2012-01-01

    Electromagnetic rail launchers (EMRLs) require very high currents, from hundreds of kA to several MA. They are usually powered by capacitors. The use of superconducting magnetic energy storage (SMES) in the supply chain of an EMRL is investigated, as an energy buffer and as direct powering source. Simulations of direct powering are conducted to quantify the benefits of this method in terms of required primary energy. In order to enhance further the benefits of SMES powering, a novel integration concept is proposed, the superconducting self-supplied electromagnetic launcher (S 3 EL). In the S 3 EL, the SMES is used as a power supply for the EMRL but its coil serves also as an additional source of magnetic flux density, in order to increase the thrust (or reduce the required current for a given thrust). Optimization principles for this new concept are presented. Simulations based on the characteristics of an existing launcher demonstrate that the required current could be reduced by a factor of seven. Realizing such devices with HTS cables should be possible in the near future, especially if the S 3 EL concept is used in combination with the XRAM principle, allowing current multiplication.

  3. Resistivity changes in superconducting-cavity-grade Nb following high-energy proton irradiation

    International Nuclear Information System (INIS)

    Snead, C.L. Jr.; Hanson, A.; Greene, G.A.

    1997-01-01

    Niobium superconducting rf cavities are proposed for use in the proton LINAC accelerators for spallation-neutron applications. Because of accidental beam loss and continual halo losses along the accelerator path, concern for the degradation of the superconducting properties of the cavities with accumulating damage arises. Residual-resistivity-ratio (RRR) specimens of Nb, with a range of initial RRR's were irradiated at room temperature with protons at energies from 200 to 2000 MeV. Four-probe resistance measurements were made at room temperature and at 4.2 K both prior to and after irradiation. Nonlinear increases in resistivity simulate expected behavior in cavity material after extended irradiation, followed by periodic anneals to room temperature: For RRR = 316 material, irradiations to (2 - 3) x 10 15 p/cm 2 produce degradations up to the 10% level, a change that is deemed operationally acceptable. Without. periodic warming to room temperature, the accumulated damage energy would be up to a factor of ten greater, resulting in unacceptable degradations. Likewise, should higher-RRR material be used, for the same damage energy imparted, relatively larger percentage changes in the RRR will result

  4. WORKSHOPS: Radiofrequency superconductivity

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    In the continual push towards higher energy particle beams, superconducting radiofrequency techniques now play a vital role, highlighted in the fifth workshop on radiofrequency superconductivity, held at DESY from 19 - 24 August 1991

  5. WORKSHOPS: Radiofrequency superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1992-01-15

    In the continual push towards higher energy particle beams, superconducting radiofrequency techniques now play a vital role, highlighted in the fifth workshop on radiofrequency superconductivity, held at DESY from 19 - 24 August 1991.

  6. Large high current density superconducting solenoids for use in high energy physics experiments

    International Nuclear Information System (INIS)

    Green, M.A.; Eberhard, P.H.; Taylor, J.D.

    1976-05-01

    Very often the study of high energy physics in colliding beam storage-rings requires a large magnetic field volume in order to detect and analyze charged particles which are created from the collision of two particle beams. Large superconducting solenoids which are greater than 1 meter in diameter are required for this kind of physics. In many cases, interesting physics can be done outside the magnet coil, and this often requires that the amount of material in the magnet coil be minimized. As a result, these solenoids should have high current density (up to 10 9 A m -2 ) superconducting windings. The methods commonly used to stabilize large superconducting magnets cannot be employed because of this need to minimize the amount of material in the coils. A description is given of the Lawrence Berkeley Laboratory program for building and testing prototype solenoid magnets which are designed to operate at coil current densities in excess of 10 9 A m -2 with magnetic stored energies which are as high as 1.5 Megajoules per meter of solenoid length. The coils use intrinsically stable multifilament Nb--Ti superconductors. Control of the magnetic field quench is achieved by using a low resistance aluminum bore tube which is inductively coupled to the coil. The inner cryostat is replaced by a tubular cooling system which carries two phase liquid helium. The magnet coil, the cooling tubes, and aluminum bore tube are cast in epoxy to form a single unified magnet and cryogenic system which is about 2 centimeters thick. The results of the magnet coil tests are discussed

  7. Potential energy efficiency and conservation, economic, and environmental benefits from the implementation of superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Baumann, P.D.

    1992-01-01

    This paper reports on Superconducting Magnetic Energy Storage (SMES) which is a recent technology that has the capability to significantly improve electrical system operations within electric utility systems. The technology has already been demonstrated by Bonneville Power Administration in a 30-MJ SMES test demonstration unit. Savings in utility operations from improved system efficiency, increased reliability, and reduced maintenance requirements contribute to the economic justification of SMES. Beyond these benefits, there are additional benefits which in the long run may equal or outweigh the electrical operational benefits. These benefits are the energy conservation and environmental benefits. The technology has the capability of reducing fuel consumption which can in turn reduce emissions. In a regional setting it can shift emissions both in volumes and in physical. With its capability to strategically shift generation and significantly affect emissions and air quality it can stretch clean energy generation options, thus SMES can be seen as an energy and environmental management technology and tool

  8. Design study of superconducting inductive energy storages for tokamak fusion reactor

    International Nuclear Information System (INIS)

    1977-08-01

    Design of the superconducting inductive energy storages (SC-IES) has been studied. One SC-IES is for the power supply system in a experimental tokamak fusion reactor, and the other in a future practical reactor. Study started with definition of the requirements of SC-IES, followed by optimization of the coil shape and determination of major parameters. Then, the coil and the vessel were designed, including the following: for SC-IES of the experimental reactor, stored energy 10 GJ, B max 8 T, conductor NbTi and size 18 m diameter x 10 m height; for SC-IES of the practical reactor, stored energy 56 GJ, B max 10.5 T, conductor Nb 3 Sn and size 26 m diameter x 15 m height. Design of the coil protection system and an outline of the auxiliary systems (for refrigeration and evacuation) are also given, and further, problems and usefullness of SC-IES. (auth.)

  9. Design fractures and commercial potential of superconducting magnetic energy storage for electric utility application

    International Nuclear Information System (INIS)

    Lloyd, R.J.; Schoenung, S.

    1986-01-01

    Historically, energy storage in the United States has been provided by a few pumped hydroelectric plants, but siting constraints and high cost severely limit the use of this option. Two other options which will soon be in use are batteries and compressed air energy storage. A fourth option, currently being developed for load leveling is Superconducting Magnetic Energy Storage (SMES). This paper reports the design features and estimated costs of utility scale SMES plants. For moderate discharge duration, SMES is projected to have substantially lower revenue requirements and better availability than other load leveling options. The Electric Power Research Institute has prepared a plan for commercialization which could, if aggressively pursued, lead to a demonstrated SMES technology that is available for utility commitment by the late 1990's

  10. Experimental and analytical study of the DC breakdown characteristics of polypropylene laminated paper with a butt gap condition considering the insulation design of superconducting cable

    Science.gov (United States)

    Seo, In-jin; Choi, Won; Seong, Jae-gyu; Lee, Bang-wook; Koo, Ja-yoon

    2014-08-01

    It has been reported that the insulation design under DC stress is considered as one of the critical factors in determining the performance of high-voltage direct current (HVDC) superconducting cable. Therefore, it is fundamentally necessary to investigate the DC breakdown characteristics of the composite insulation system consisting of liquid nitrogen (LN2)/polypropylene-laminated-paper (PPLP). In particular, the insulation characteristics under DC polarity reversal condition should be verified to understand the polarity effect of the DC voltage considering the unexpected incidents taking place at line-commutated-converters (LCC) under service at a DC power grid. In this study, to examine the variation of DC electric field strength, the step voltage and polarity reversal breakdown tests are performed under DC stress. Also, we investigate the electric field distributions in a butt gap of the LN2/PPLP condition considering the DC polarity reversal by using simulation software.

  11. Roles of superconducting magnetic bearings and active magnetic bearings in attitude control and energy storage flywheel

    International Nuclear Information System (INIS)

    Tang Jiqiang; Fang Jiancheng; Ge, Shuzhi Sam

    2012-01-01

    Compared with conventional energy storage flywheel, the rotor of attitude control and energy storage flywheel (ACESF) used in space not only has high speed, but also is required to have precise and stable direction. For the presented superconducting magnetic bearing (SMB) and active magnetic bearing (AMB) suspended ACESF, the rotor model including gyroscopic couples is established originally by taking the properties of SMB and AMB into account, the forces of SMB and AMB are simplified by linearization within their own neighbors of equilibrium points. For the high-speed rigid discal rotor with large inertia, the negative effect of gyroscopic effect of rotor is prominent, the radial translation and tilting movement of rotor suspended by only SMB, SMB with equivalent PMB, or SMB together with PD controlled AMB are researched individually. These analysis results proved originally that SMB together with AMB can make the rotor be stable and make the radial amplitude of the vibration of rotor be small while the translation of rotor suspended by only SMB or SMB and PM is not stable and the amplitude of this vibration is large. For the stability of the high-speed rotor in superconducting ACESF, the AMB can suppress the nutation and precession of rotor effectively by cross-feedback control based on the separated PD type control or by other modern control methods.

  12. Gap filling strategies for long term energy flux data sets

    NARCIS (Netherlands)

    Falge, E.; Baldocchi, D.; Olson, R.; Anthoni, P.; Aubinet, M.; Bernhofer, C.; Burba, G.; Ceulemans, R.; Clement, R.; Dolman, H.; Granier, A.; Gross, P.; Grünwald, T.; Hollinger, D.; Jensen, N.O.; Katul, G.; Keronen, P.; Kowalski, A.; Lai, C.T.; Law, B.E.; Meyers, T.; Moncrieff, J.; Moors, E.J.; Munger, J.W.; Pilegaard, K.; Rebmann, C.; Suyker, A.; Tenhunen, J.; Tu, K.

    2001-01-01

    At present a network of over 100 field sites are measuring carbon dioxide, water vapor and sensible heat fluxes between the biosphere and atmosphere, on a nearly continuous basis. Gaps in the long term measurements of evaporation and sensible heat flux must be filled before these data can be used

  13. Conduction bands and invariant energy gaps in alkali bromides

    NARCIS (Netherlands)

    Boer, P.K. de; Groot, R.A. de

    1998-01-01

    Electronic structure calculations of the alkali bromides LiBr, NaBr, KBr, RbBr and CsBr are reported. It is shown that the conduction band has primarily bromine character. The size of the band gaps of bromides and alkali halides in general is reinterpreted.

  14. COMMERCIALIZATION DEMONSTRATION OF MID-SIZED SUPERCONDUCTING MAGNETIC ENERGY STORAGE TECHNOLOGY FOR ELECTRIC UTILITYAPPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    CHARLES M. WEBER

    2008-06-24

    As an outgrowth of the Technology Reinvestment Program of the 1990’s, an Agreement was formed between BWXT and the DOE to promote the commercialization of Superconducting Magnetic Energy Storage (SMES) technology. Business and marketing studies showed that the performance of electric transmission lines could be improved with this SMES technology by stabilizing the line thereby allowing the reserved stability margin to be used. One main benefit sought was to double the capacity and the amount of energy flow on an existing transmission line by enabling the use of the reserved stability margin, thereby doubling revenue. Also, electrical disturbances, power swings, oscillations, cascading disturbances and brown/black-outs could be mitigated and rendered innocuous; thereby improving power quality and reliability. Additionally, construction of new transmission lines needed for increased capacity could be delayed or perhaps avoided (with significant savings) by enabling the use of the reserved stability margin of the existing lines. Two crucial technical aspects were required; first, a large, powerful, dynamic, economic and reliable superconducting magnet, capable of oscillating power flow was needed; and second, an electrical power interface and control to a transmission line for testing, demonstrating and verifying the benefits and features of the SMES system was needed. A project was formed with the goals of commercializing the technology by demonstrating SMES technology for utility applications and to establish a domestic capability for manufacturing large superconducting magnets for both commercial and defense applications. The magnet had very low AC losses to support the dynamic and oscillating nature of the stabilizing power flow. Moreover, to economically interface to the transmission line, the magnet had the largest operating voltage ever made. The manufacturing of that design was achieved by establishing a factory with newly designed and acquired equipment

  15. Superconducting linac

    International Nuclear Information System (INIS)

    Bollinger, L.M.; Shepard, K.W.; Wangler, T.P.

    1978-01-01

    This project has two goals: to design, build, and test a small superconducting linac to serve as an energy booster for heavy ions from an FN tandem electrostatic accelerator, and to investigate various aspects of superconducting rf technology. The main design features of the booster are described, a status report on various components (resonators, rf control system, linac control system, cryostats, buncher) is given, and plans for the near future are outlined. Investigations of superconducting-linac technology concern studies on materials and fabrication techniques, resonator diagnostic techniques, rf-phase control, beam dynamics computer programs, asymmetry in accelerating field, and surface-treatment techniques. The overall layout of the to-be-proposed ATLAS, the Argonne Tandem-Linac Accelerator System, is shown; the ATLAS would use superconducting technology to produce beams of 5 to 25 MeV/A. 6 figures

  16. Analysis of magnetic energy stored in superconducting coils with and without ferromagnetic inserts

    International Nuclear Information System (INIS)

    Cha, Y.S.

    1993-01-01

    Inductance and energy of superconducting coils are calculated by (1) a long-solenoid approximation, (2) a finite-element model, and (3) working formulas and tables. The results of the finite-element model compare favorably with those of the working formulas. The long-solenoid approximation overpredicts the energy and inductance compared to the other two methods. The difference decreases with increasing length-to-diameter ratio. Energy stored in a coil with a ferromagnetic insert is calculated by using a long-solenoid approximation and a finite-element model. The analysis shows that the gain in energy ratio is equal to the relative permeability of the insert (which decreases with increasing current or current density). Even though large gains can be achieved at relatively low currents, the energy level itself is too low. The stored energy increases with current, but the gain decreases with increasing current because relative permeability decreases. If a coil with a diameter of 0.3 m and a length of 0.3 m is required to store 10 kJ of energy, the current density must equal 4000 A/cm 2 . The gain in energy ratio is equal to 2.55 when the insert is used

  17. Universal transport characteristics of multiple topological superconducting wires with large charging energy

    Energy Technology Data Exchange (ETDEWEB)

    Kashuba, Oleksiy; Trauzettel, Bjoern [Institut fuer Theoretische Physik und Astrophysik, Universitaet Wuerzburg, 97074 Wuerzburg (Germany); Timm, Carsten [Institut fuer Theoretische Physik, TU Dresden, 01062 Dresden (Germany)

    2016-07-01

    The system with multiple Majorana states coupled to the normal lead can potentially support the interaction between Majorana fermions and electrons. Such system can be implemented by several floating topological superconducting wires with large charging energy asymmetrically coupled to two normal leads. The analysis of the renormalization flow shows that there is a single fixed point - the strong coupling limit of isotropic antiferromagnetic Kondo model. The topological Kondo-like interaction leads also to the selective renormalization of the tunneling coefficients, strongly enhancing one component and suppressing others. Thus, charging energy crucially changes the transport properties of the system leading to the universal single-channel conductance independently from the values of the initial leads-wires coupling.

  18. Energy gap subharmonic in characteristics of Y Ba2 Cu3 O7-x microbridges

    International Nuclear Information System (INIS)

    Pogrebnyakov, A.V.; Levinsen, M.T.; Sheng, Yu.K.; Frel'toft, T.

    1996-01-01

    The microbridges formed in thin epitaxial Y Ba 2 Cu 3 O 7-x films were investigated. The characteristics of the microbridges exhibited subharmonic gap structures corresponding to large (2Δ = 49 meV) and small (2Δ 2 = 10.3 meV) components of the energy gap at T = 4.2 K. The appearance of the subharmonic gap structures is attributed to the phenomenon of Andreev reflection

  19. Robustness Improvement of Superconducting Magnetic Energy Storage System in Microgrids Using an Energy Shaping Passivity-Based Control Strategy

    Directory of Open Access Journals (Sweden)

    Rui Hou

    2017-05-01

    Full Text Available Superconducting magnetic energy storage (SMES systems, in which the proportional-integral (PI method is usually used to control the SMESs, have been used in microgrids for improving the control performance. However, the robustness of PI-based SMES controllers may be unsatisfactory due to the high nonlinearity and coupling of the SMES system. In this study, the energy shaping passivity (ESP-based control strategy, which is a novel nonlinear control based on the methodology of interconnection and damping assignment (IDA, is proposed for robustness improvement of SMES systems. A step-by-step design of the ESP-based method considering the robustness of SMES systems is presented. A comparative analysis of the performance between ESP-based and PI control strategies is shown. Simulation and experimental results prove that the ESP-based strategy achieves the stronger robustness toward the system parameter uncertainties than the conventional PI control. Besides, the use of ESP-based control method can reduce the eddy current losses of a SMES system due to the significant reduction of 2nd and 3rd harmonics of superconducting coil DC current.

  20. Graphene field effect transistor without an energy gap.

    Science.gov (United States)

    Jang, Min Seok; Kim, Hyungjun; Son, Young-Woo; Atwater, Harry A; Goddard, William A

    2013-05-28

    Graphene is a room temperature ballistic electron conductor and also a very good thermal conductor. Thus, it has been regarded as an ideal material for postsilicon electronic applications. A major complication is that the relativistic massless electrons in pristine graphene exhibit unimpeded Klein tunneling penetration through gate potential barriers. Thus, previous efforts to realize a field effect transistor for logic applications have assumed that introduction of a band gap in graphene is a prerequisite. Unfortunately, extrinsic treatments designed to open a band gap seriously degrade device quality, yielding very low mobility and uncontrolled on/off current ratios. To solve this dilemma, we propose a gating mechanism that leads to a hundredfold enhancement in on/off transmittance ratio for normally incident electrons without any band gap engineering. Thus, our saw-shaped geometry gate potential (in place of the conventional bar-shaped geometry) leads to switching to an off state while retaining the ultrahigh electron mobility in the on state. In particular, we report that an on/off transmittance ratio of 130 is achievable for a sawtooth gate with a gate length of 80 nm. Our switching mechanism demonstrates that intrinsic graphene can be used in designing logic devices without serious alteration of the conventional field effect transistor architecture. This suggests a new variable for the optimization of the graphene-based device--geometry of the gate electrode.

  1. The energy trilogy: An integrated sustainability model to bridge wastewater treatment plant energy and emissions gaps

    Science.gov (United States)

    Al-Talibi, A. Adhim

    An estimated 4% of national energy consumption is used for drinking water and wastewater services. Despite the awareness and optimization initiatives for energy conservation, energy consumption is on the rise owing to population and urbanization expansion and to commercial and industrial business advancement. The principal concern is since energy consumption grows, the higher will be the energy production demand, leading to an increase in CO2 footprints and the contribution to global warming potential. This research is in the area of energy-water nexus, focusing on wastewater treatment plant (WWTP) energy trilogy -- the group of three related entities, which includes processes: (1) consuming energy, (2) producing energy, and (3) the resulting -- CO2 equivalents. Detailed and measurable energy information is not readily obtained for wastewater facilities, specifically during facility preliminary design phases. These limitations call for data-intensive research approach on GHG emissions quantification, plant efficiencies and source reduction techniques. To achieve these goals, this research introduced a model integrating all plant processes and their pertinent energy sources. In a comprehensive and "Energy Source-to-Effluent Discharge" pattern, this model is capable of bridging the gaps of WWTP energy, facilitating plant designers' decision-making for meeting energy assessment, sustainability and the environmental regulatory compliance. Protocols for estimating common emissions sources are available such as for fuels, whereas, site-specific emissions for other sources have to be developed and are captured in this research. The dissertation objectives were met through an extensive study of the relevant literature, models and tools, originating comprehensive lists of processes and energy sources for WWTPs, locating estimation formulas for each source, identifying site specific emissions factors, and linking the sources in a mathematical model for site specific CO2 e

  2. Raman scattering and luminescence of high-Tc superconducting oxides

    International Nuclear Information System (INIS)

    Eremenko, V.V.; Gnezdilov, V.P.; Fomin, V.I.; Fugol', I.Ya.; Samovarov, V.N.

    1989-01-01

    Raman and luminescence spectra of high-T c superconducting oxides are summarized, mainly YBa 2 Cu 3 O 7-σ and partly La 2-x Ba x CuO 4-σ . In raman spectra we succeeded to distinguish electron scattering to define the energy gap Δ in the superconducting state. The luminescence spectra are due to the emission of oxygen and interaction with conduction electrons. 70 refs.; 13 figs

  3. Superconducting magnetic energy storage (SMES) program. Progress report, January 1-December 31, 1982

    International Nuclear Information System (INIS)

    Rogers, J.D.

    1983-05-01

    Work reported is on the development of a 30 MJ superconducting magnetic energy storage (SMES) unit, its installation at the Bonneville Power Administration (BPA) Tacoma Substation, and the preliminary site tests in preparation for its use to stabilize power oscillations on the BPA Pacific AC Inertie. The seismic mounting of the 30 MJ superconducting coil to the dewar lid was completed. The manufacture and testing of the nonconducting dewar were completed. The 5 kV vapor cooled leads were assembled and tested. The refrigerator was placed in operation at the Tacoma Substation and tested by making liquid helium in a 500 l dewar. The refrigerator was connected to the coil dewar and is now used for cooling the 30 MJ coil and dewar with extended purification of the circulating helium to remove contaminants. All equipment was shipped and installed at the BPA Tacoma Substation. Assembly of the 30 MJ coil into the nonconducting dewar was done at the BPA Covington facility and transported to the Tacoma Substation. Substation preparation was completed by 11-1-82. BPA, at considerable expense, did an excellent job preparing the site and assisting with the SMES unit installation. All equipment is in place and operable except for components of the computer control and for full refrigeration of the 30 MJ coil. The converter was tested with the output shorted with the input transformers connected to the 13.8 kV. A new schedule for the SMES operation was established

  4. 1-GWh diurnal load-leveling Superconducting Magnetic Energy Storage system reference design

    International Nuclear Information System (INIS)

    Rogers, J.D.; Hassenzahl, W.V.; Schermer, R.I.

    1979-09-01

    A point reference design has been completed for a 1-GWh Superconducting Magnetic Energy Storage system. The system is for electric utility diurnal load-leveling but can also function to meet much faster power demands including dynamic stabilization. This study explores several concepts of design not previously considered in the same detail as treated here. Because the study is for a point design, optimization in all respects is not complete. This report examines aspects of the coil, the superconductor supported off of the dewar shell, the dewar shell, and its configuration and stresses, the underground excavation and construction for holding the superconducting coil and its dewar, the helium refrigeration system, the electrical converter system, the vacuum system, the guard coil, and the costs. This report is divided into two major portions. The first is a general treatment of the work and the second is seven detailed technical appendices issued as separate reports. The information presented on the aluminum stabilizer for the conductor, on the excavation, and on the converter is based upon industrial studies contracted for this work

  5. Present state of the perception gap of nuclear energy between Japanese nuclear energy supplying region and an energy consuming region

    International Nuclear Information System (INIS)

    Ohnishi, Teruaki

    2002-01-01

    Public opinion surveys have been carried out since 1998 on what phase and on what extent of the perception of nuclear energy differs between Japanese dwelling in energy supplying region and an energy-consuming region. Southern Fukui rural district where 15 nuclear reactors are now installed and Osaka urban region of about 100 km apart from Fukui were selected as the respective targets for the energy supplying and consuming regions. Analyses of the data of about 3000 samples have revealed the followings. (1) The public in the nuclear energy supplying region are very friendly to nuclear energy so that only about 20 and 39 of the public are resistive to the general promotion of nuclear energy in Japan and to the construction of another nuclear reactor in their dwelling region, respectively. (2) On the other hand, in the energy-consuming region those respective fractions are 41 and 70 implying strong resistance to nuclear energy in the urban region. (3) Both the degree of interest in and the degree of knowledge on nuclear energy are very low, whereas the extent of fear to nuclear is high for the urban public. (4) Not only the fraction of the public who are satisfied with their present life, but the public fraction who is eagerly support the thought of return-to-nature are very high in the urban region. (5) On the other hand, in the energy supplying region, many peoples eagerly want their life to become more convenient than it is now, and 6) all those trends (I)-(5) are revealed more pronouncedly in the woman than the man. The perception gap of nuclear energy thus became clear between Japanese dwelling in rural and urban regions. On the basis of this knowledge, discussions on the nature of the so-called NIMBY will be made from the socio-psychological viewpoint and propositions will also be made on the methods to dissolve the perception gap of that soft. (author)

  6. Plugging the Energy Efficiency Gap with Climate Finance

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    The role of International Financial Institutions (IFIs) and the Green Climate Fund to realise the potential of energy efficiency in developing countries. This report examines the current role of climate finance in funding EE projects and the potential to channel funds to relevant EE projects in developing countries under the new Green Climate Fund (GCF). The objectives of the report are to examine: 1) the share of climate finance currently being channelled to energy efficiency measures, and 2) how the design of climate finance can better facilitate energy efficiency projects. Improving energy efficiency (EE) can deliver a range of benefits such as improved air quality, enhanced economic competitiveness and, at the national scale, a higher degree of energy security. Significant improvements in energy efficiency in developing countries could provide greater opportunity for economic growth while also providing broader access to energy and related services even from limited energy resources. However, several barriers limit the scaling-up of funding of EE projects in developing countries (some are common also to developed countries). The report focuses primarily on public climate finance flows from 'north' to 'south', probing the current use of funds from multi-lateral development banks (MDBs), bi-lateral financial institutions (BFIs) and carbon markets for energy efficiency projects and the design of the future climate financial mechanisms such as the Green Climate Fund to encourage energy efficiency improvements in developing countries.

  7. Bridging the gap between energy and the environment

    International Nuclear Information System (INIS)

    Holland, Robert A.; Scott, Kate; Hinton, Emma D.; Austen, Melanie C.; Barrett, John; Beaumont, Nicola; Blaber-Wegg, Tina; Brown, Gareth; Carter-Silk, Eleanor; Cazenave, Pierre; Eigenbrod, Felix; Hiscock, Kevin; Hooper, Tara; Lovett, Andrew; Papathanasopoulou, Eleni

    2016-01-01

    Meeting the world’s energy demand is a major challenge for society over the coming century. To identify the most sustainable energy pathways to meet this demand, analysis of energy systems on which policy is based must move beyond the current primary focus on carbon to include a broad range of ecosystem services on which human well-being depends. Incorporation of a broad set of ecosystem services into the design of energy policy will differentiates between energy technology options to identify policy options that reconcile national and international obligations to address climate change and the loss of biodiversity and ecosystem services. In this paper we consider our current understanding of the implications of energy systems for ecosystem services and identify key elements of an assessment. Analysis must consider the full life cycle of energy systems, the territorial and international footprint, use a consistent ecosystem service framework that incorporates the value of both market and non-market goods, and consider the spatial and temporal dynamics of both the energy and environmental system. While significant methodological challenges exist, the approach we detail can provide the holistic view of energy and ecosystem services interactions required to inform the future of global energy policy. - Highlights: •Obligations for climate, biodiversity and ecosystem services must be aligned. •Ecosystem service based assessments of energy systems can inform energy policy. •Assessment to incorporate life cycle stages across spatial and temporal scales. •Implications for ecosystem services differentiate between energy options. •Pathways to decarbonisation should be identified based on such a holistic assessment.

  8. Energy gap in S- and D-wave pairing superconductors

    International Nuclear Information System (INIS)

    Dolgov, O.V.; Golubov, A.A.

    1988-01-01

    In this paper the ratio of 2Δ g /T c , where Δ g is the gap edge, T c is the critical temperature, is calculated in the framework of the model of strong electron-phonon coupling. Both isotropic and anisotropic pairing cases are considered. It is shown that the isotropic Eliashberg model can not account for the large values of the ratio 2Δ g /T c for the reasonable values of the electron-phonon coupling parameter λ while anisotropic pairing can resolve this problem

  9. Superconducting magnetic energy storage for the disposal of fast reserve energy at the electrical energy supply. Supraleitende Energiespeicher zur Bereitstellung schneller Reserveleistung in der elektrischen Energieversorgung

    Energy Technology Data Exchange (ETDEWEB)

    Bayer, W [Siemens AG, Erlangen (Germany); Bittihn, R [Varta AG, Hagen (Germany); Kuerten, H [Siemens AG, Erlangen (Germany); Radtke, U [PreussenElektra AG, Hannover (Germany); Taube, W [PreussenElektra AG, Hannover (Germany); Vollmar, H E [Siemens AG, Erlangen (Germany); Willmes, H [Varta Batterie AG, Hagen (Germany)

    1994-04-05

    The authors investigate the economic efficiency of the application of a superconducting magnetic energy storage (SMES) in the field of electrical energy supply taking as example a network of 10 000 MW which is operated in an European interconnected power system. In case of this network the supply of the second reserve energy has become an interesting example of application, especially combined with the disconnection of the pre-heater. The application of SMES could lead to a better utilisation of existing power stations and the fuels along with a reduction of emissions. (orig.)

  10. Overcoming the energy efficiency gap in India's household sector

    International Nuclear Information System (INIS)

    Reddy, B.S.

    2003-01-01

    Energy efficiency generates substantial financial savings while simultaneously improving environmental quality. Despite these benefits, developing countries like India are missing out on energy efficiency opportunities and instead concentrating on increased energy production. This paper identifies the efficient technologies in the household sector in India, and details their benefits to the consumer as well as to the society. It identifies the barriers that prevent the government from achieving its energy efficiency goals, analyses programs that addresses these barriers, and explores the creation of an institutional mechanism

  11. Progress with High-Field Superconducting Magnets for High-Energy Colliders

    Science.gov (United States)

    Apollinari, Giorgio; Prestemon, Soren; Zlobin, Alexander V.

    2015-10-01

    One of the possible next steps for high-energy physics research relies on a high-energy hadron or muon collider. The energy of a circular collider is limited by the strength of bending dipoles, and its maximum luminosity is determined by the strength of final focus quadrupoles. For this reason, the high-energy physics and accelerator communities have shown much interest in higher-field and higher-gradient superconducting accelerator magnets. The maximum field of NbTi magnets used in all present high-energy machines, including the LHC, is limited to ˜10 T at 1.9 K. Fields above 10 T became possible with the use of Nb3Sn superconductors. Nb3Sn accelerator magnets can provide operating fields up to ˜15 T and can significantly increase the coil temperature margin. Accelerator magnets with operating fields above 15 T require high-temperature superconductors. This review discusses the status and main results of Nb3Sn accelerator magnet research and development and work toward 20-T magnets.

  12. Power flow control and damping enhancement of a large wind farm using a superconducting magnetic energy storage unit

    DEFF Research Database (Denmark)

    Chen, S. S.; Wang, L.; Lee, W. J.

    2009-01-01

    A novel scheme using a superconducting magnetic energy storage (SMES) unit to perform both power flow control and damping enhancement of a large wind farm (WF) feeding to a utility grid is presented. The studied WF consisting of forty 2 MW wind induction generators (IGs) is simulated...

  13. Low energy excitations in superconducting La1.86Sr0.14CuO4

    DEFF Research Database (Denmark)

    Mason, T.E.; Aeppli, G.; Hayden, S.M.

    1993-01-01

    We present magnetic neutron scattering and specific heat data on the high-T(c) superconductor La1.86Sr0.14CuO4. Even when the samples are superconducting and the magnetic response, chi'', is suppressed, there are excitations with energies well below 3.5k(B)T(c). The wave-vector dependence of chi...

  14. Unusual temperature evolution of superconductivity in LiFeAs

    Energy Technology Data Exchange (ETDEWEB)

    Nag, Pranab Kumar; Schlegel, Ronny; Baumann, Danny; Grafe, Hans-Joachim; Beck, Robert [Leibniz Institute for Solid State and Materials Research Dresden, IFW Dresden (Germany); Wurmehl, Sabine [Leibniz Institute for Solid State and Materials Research Dresden, IFW Dresden (Germany); Institute for Solid State Physics, TU Dresden (Germany); Buechner, Bernd [Leibniz Institute for Solid State and Materials Research Dresden, IFW Dresden (Germany); Institute for Solid State Physics, TU Dresden (Germany); Center for Transport and Devices, TU Dresden (Germany); Hess, Christian [Leibniz Institute for Solid State and Materials Research Dresden, IFW Dresden (Germany); Center for Transport and Devices, TU Dresden (Germany)

    2016-07-01

    We have performed temperature dependent scanning tunneling spectroscopy on an impurity-free surface area of a LiFeAs single crystal. Our data reveal a highly unusual temperature evolution of superconductivity: at T{sub c}{sup *}=18 K a partial superconducting gap opens, as is evidenced by subtle, yet clear features in the tunneling spectra, i.e. particle-hole symmetric coherence peaks and dip-hump structures. At T{sub c}=16 K, these features substantiate dramatically and become characteristic of full superconductivity. Remarkably, this is accompanied by an almost jump-like increase of the gap energy at T{sub c} to about 87% of its low-temperature gap value. The energy of the dip as measured by its distance to the coherence peak remains practically constant in the whole temperature regime T ≤ T{sub c}{sup *}. We compare these findings with established experimental and theoretical results.

  15. Summary of Gaps and Barriers for Implementing Residential Building Energy Efficiency Strategies

    Energy Technology Data Exchange (ETDEWEB)

    2010-08-01

    This report presents the key gaps and barriers to implementing residential energy efficiency strategies in the U.S. market, as identified in sessions at the U.S. Department of Energy's Building America 2010 Residential Energy Efficiency Meeting held in Denver, Colorado, on July 20-22, 2010.

  16. Report on the production magnet measurement system for the Fermilab Energy-Saver superconducting dipoles and quadrupoles

    International Nuclear Information System (INIS)

    Brown, B.C.; Cooper, W.E.; Garvey, J.D.

    1983-03-01

    The measurement system and procedures used to test more than 900 superconducting dipole magnets and more than 275 superconducting quadrupole magnets for the Fermilab Energy Saver are described. The system is designed to measure nearly all parameters relevant to the use of the magnets in the accelerator including maximum field capability and precision field measurements. The performance of the instrumentation with regard to precision, reliability, and operational needs for high volume testing will be described. Previous reports have described the measurement system used during development of the Saver magnets from which this system has evolved

  17. A low energy muon spin rotation and point contact tunneling study of niobium films prepared for superconducting cavities

    Science.gov (United States)

    Junginger, Tobias; Calatroni, S.; Sublet, A.; Terenziani, G.; Prokscha, T.; Salman, Z.; Suter, A.; Proslier, T.; Zasadzinski, J.

    2017-12-01

    Point contact tunneling and low energy muon spin rotation are used to probe, on the same samples, the surface superconducting properties of micrometer thick niobium films deposited onto copper substrates using different sputtering techniques: diode, dc magnetron and HIPIMS. The combined results are compared to radio-frequency tests performances of RF cavities made with the same processes. Degraded surface superconducting properties are found to correlate to lower quality factors and stronger Q-slope. In addition, both techniques find evidence for surface paramagnetism on all samples and particularly on Nb films prepared by HIPIMS.

  18. Experimental studies of current sharing in parallel driven Graetz bridge units for diurnal superconductive magnetic energy storage

    International Nuclear Information System (INIS)

    Kustom, R.L.; Akita, S.; Okada, H.; Skiles, J.

    1985-01-01

    Superconductive Magnetic Energy Storage (SMES) coils for diurnal load leveling and system peaking are envisioned to operate at hundreds of thousands of amperes and a few kilovolts. The interface between the SMES coil and the electric utility is envisioned to be Graetz bridges using SCR switches. Many parallel SCR switches or bridge units will have to operate in parallel because of the high operating current of the coil. Current balancing on parallel Graetz bridges driving a single 8-hy superconducting coil has been achieved on a laboratory model using delay-angle control with an LSI 11/2 microprocessor and external digital control hardware

  19. Energy Factors in Commercial Mortgages: Gaps and Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Mathew, Paul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Coleman, Philip [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wallace, Nancy [Univ. of California, Berkeley, CA (United States); Issler, Paulo [Univ. of California, Berkeley, CA (United States); Kolstad, Lenny [Inst. for Market Transformation, Washington, DC (United States); Sahadi, Robert [Inst. for Market Transformation, Washington, DC (United States)

    2016-09-01

    The commercial real estate mortgage market is enormous, with almost half a trillion dollars in deals originated in 2015. Relative to other energy efficiency financing mechanisms, very little attention has been paid to the potential of commercial mortgages as a channel for promoting energy efficiency investments. The valuation and underwriting elements of the business are largely driven by the “net operating income” (NOI) metric – essentially, rents minus expenses. While NOI ostensibly includes all expenses, energy factors are in several ways given short shrift in the underwriting process. This is particularly interesting when juxtaposed upon a not insignificant body of research revealing that there are in fact tangible benefits (such as higher valuations and lower vacancy and default rates) for energy-efficient and “green” commercial buildings. This scoping report characterizes the current status and potential interventions to promote greater inclusion of energy factors in the commercial mortgage process.

  20. Household energy studies: the gap between theory and method

    Energy Technology Data Exchange (ETDEWEB)

    Crosbie, T.

    2006-09-15

    At the level of theory it is now widely accepted that energy consumption patterns are a complex technical and socio-cultural phenomenon and to understand this phenomenon, it must be viewed from both engineering and social science perspectives. However, the methodological approaches taken in household energy studies lag behind the theoretical advances made in the last ten or fifteen years. The quantitative research methods traditionally used within the fields of building science, economics, and psychology continue to dominate household energy studies, while the qualitative ethnographic approaches to examining social and cultural phenomena traditionally used within anthropology and sociology are most frequently overlooked. This paper offers a critical review of the research methods used in household energy studies which illustrates the scope and limitations of both qualitative and quantitative research methods in this area of study. In doing so it demonstrates that qualitative research methods are essential to designing effective energy efficiency interventions. [Author].

  1. Analysis of a dc commutator machine for exchange of energy with a superconducting coil

    International Nuclear Information System (INIS)

    Vogel, H.F.

    1978-08-01

    A 500-kW dc commutator machine, C, is analyzed for use in an LC circuit with a ringing period of approximately 4 s with a superconducting coil, L. Electrical measurements and the important design equations and characteristics are listed. Attention is paid to the calculation of the commutating voltage, which is an important design feature because it sets a limit to the current allowable in the LC circuit, amounting to 6 times rated machine current. The equations for the energy loss components of the generator are given and fitted to experimental coast-down data. With a fitting accuracy of 1.2%, the loss coefficients for the bearing loss, brush loss, windage loss, and tooth eddy current loss in the remanent stator field are thus determined

  2. Simulation of backgrounds in detectors and energy deposition in superconducting magnets at μ+μ- colliders

    International Nuclear Information System (INIS)

    Mokhov, N.V.; Striganov, S.I.

    1996-01-01

    A calculational approach is described to study beam induced radiation effects in detector and storage ring components at high-energy high-luminosity μ + μ - colliders. The details of the corresponding physics process simulations used in the MARS code are given. Contributions of electromagnetic showers, synchrotron radiation, hadrons and daughter muons to the background rates in a generic detector for a 2 x 2 TeV μ + μ - collider are investigated. Four configurations of the inner triplet and a detector are examined for two sources: muon decays and beam halo interactions in the lattice elements. The beam induced power density in superconducting magnets is calculated and ways to reduce it are proposed

  3. Digital control of the superconducting cavities for the LEP energy upgrade

    International Nuclear Information System (INIS)

    Gavallari, G.; Ciapala, E.

    1992-01-01

    The superconducting (SC) cavities for the LEP200 energy upgrade will be installed in units of 16 as for the present copper cavity system. Similar equipment will be used for RF power generation and distribution, for the low-level RF system and for digital control. The SC cavities and their associated equipment however require different interface hardware and new control software. To simplify routine operation control of the SC cavity units is made to resemble as closely as possible that of the existing units. Specific controls for the SC cavities at the equipment level, the facilities available and the integration of the SC cavity units into the LEP RF control system are described. (author)

  4. Energy losses in mixed matrix superconducting wires under fast pulsed conditions

    International Nuclear Information System (INIS)

    Wollan, J.J.

    1976-01-01

    Energy losses have been measured on a set of mixed matrix (CuNi, Cu, NbTi) superconducting wires at B's up to 1.5 x 10 7 G/s. The losses have been measured as a function of wire diameter, twist pitch, maximum applied field, and B. Both static and dynamic losses were measured for a field applied perpendicularly to the wire axis. The dynamic losses were measured by slowly applying an external field to a sample and then causing the field to decay exponentially in roughly 1 ms to 10 ms. Under low B (9 kG) and B (10 6 G/s) conditions the hysteretic loss dominated. At high B (21 kG) and B (1.5 x 10 7 G/s) the matrix losses became dominant. The systematic variation of the losses with the mentioned parameters will be presented and will be compared to theoretical predictions

  5. Design of Anti-windup Compensator for Superconducting Magnetic Energy Storage

    DEFF Research Database (Denmark)

    Fang, Jiakun; Chen, Zhe; Su, Chi

    2013-01-01

    -windup compensator (AWC) is applied to the controller of the superconducting magnetic energy storage (SMES) system to improve power system stability. First, power system with actuator saturation is described to formulate the problem mathematically. Then, uniform anti-windup scheme is studied and compensator...... is designed with method of linear matrix inequality (LMI). Instead of replacing the original controller with a new one, the anti-windup compensation make use of the difference between the controller’s and the actuator’s output to mitigate the adverse influence of saturation, which leaves the original...... controller unaffected. Hence, this method can be used to enhance power system stability under the same capacity with its unsaturated controller so that SMES is utilized more efficiently....

  6. Adaptive automatic generation control with superconducting magnetic energy storage in power systems

    International Nuclear Information System (INIS)

    Tripathy, S.C.; Balasubramanian, R.; Nair, P.S.C.

    1992-01-01

    An improved automatic generation control (AGC) employing self-tuning adaptive control for both main AGC loop and superconducting magnetic energy storage (SMES) is presented in this paper. Computer simulations on a two-area interconnected power system show that the proposed adaptive control scheme is very effective in damping out oscillations caused by load disturbances and its performance is quite insensitive to controller gain parameter changes of SMES. A comprehensive comparative performance evaluation of control schemes using adaptive and non-adaptive controllers in the main AGC and in the SMES control loops is presented. The improvement in performance brought in by the adaptive scheme is particularly pronounced for load changes of random magnitude and duration. The proposed controller can be easily implemented using microprocessors

  7. Automatic generation control with thyristor controlled series compensator including superconducting magnetic energy storage units

    Directory of Open Access Journals (Sweden)

    Saroj Padhan

    2014-09-01

    Full Text Available In the present work, an attempt has been made to understand the dynamic performance of Automatic Generation Control (AGC of multi-area multi-units thermal–thermal power system with the consideration of Reheat turbine, Generation Rate Constraint (GRC and Time delay. Initially, the gains of the fuzzy PID controller are optimized using Differential Evolution (DE algorithm. The superiority of DE is demonstrated by comparing the results with Genetic Algorithm (GA. After that performance of Thyristor Controlled Series Compensator (TCSC has been investigated. Further, a TCSC is placed in the tie-line and Superconducting Magnetic Energy Storage (SMES units are considered in both areas. Finally, sensitivity analysis is performed by varying the system parameters and operating load conditions from their nominal values. It is observed that the optimum gains of the proposed controller need not be reset even if the system is subjected to wide variation in loading condition and system parameters.

  8. Automatic generation control of an interconnected hydrothermal power system considering superconducting magnetic energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, Rajesh Joseph; Das, D.; Patra, Amit [Department of Electrical Engineering, Indian Institute of Technology, Kharagpur 721 302 (India)

    2007-10-15

    This paper presents the analysis of automatic generation control (AGC) of an interconnected hydrothermal power system in the presence of generation rate constraints (GRCs). The improvement of AGC with the addition of a small capacity superconducting magnetic energy storage (SMES) unit in either, as well as in both the areas are studied. Time domain simulations are used to study the performance of the power system and control logic. The optimal values of the integral gain settings are obtained using integral squared error (ISE) technique by minimising a quadratic performance index. Suitable method for controlling the SMES unit is described. Analysis reveals that SMES unit fitted in either of the areas is as effective as SMES units fitted in both the areas and improves the dynamic performances to a considerable extent following a load disturbance in either of the areas. (author)

  9. Heat transfer from aluminum to He II: application to superconductive magnetic energy storage

    International Nuclear Information System (INIS)

    Van Sciver, S.W.; Boom, R.W.

    1979-01-01

    Heat transfer problems associated with large scale Superconductive Magnetic Energy Storage (SMES) are unique due to the proposed size of a unit. The Wisconsin design consists of a cryogenically stable magnet cooled with He II at 1.8 K. The special properties of He II (T 2 at 1.91 K and a recovery at 0.7 W/cm 2 . The advantages of operating the magnet under subcooled conditions are exemplified by improved heat transfer. The maximum at 1.89 K and 1.3 atm pressure is 2.3 W/cm 2 with recovery enhanced to 1.9 W/cm 2 . A conservative maximum heat flux of 0.5 W/cm 2 with an associated temperature difference of 0.5 K has been chosen for design. Elements of the experimental study as well as the design will be discussed

  10. Energy gap in MgB2 superconductor: Andreev reflection studies

    International Nuclear Information System (INIS)

    Aswal, D.K.

    2003-01-01

    To investigate the nature of energy gap in MgB 2 superconductor, we have performed Andreev-reflection studies on MgB 2 / Ag planar junctions. The differential resistance (dV/dI) versus voltage (V) characteristics were recorded as a function of temperature, magnetic field and junction-type. The dV/dI vs V characteristic recorded at low temperature and zero-field for a clean MgB 2 / Ag planar junction exhibited several interesting features, such as, zero bias anomaly, a distinct double-minima, sharp resonance peaks near the energy gap etc. The data, however, could not be explained using Blonder-Tinkham-Klapwijk theory of isotropic superconductor, which indicated that energy gap in MgB 2 is not consistent with the weak-coupling BCS theory. This is further supported by unusual temperature and magnetic field dependence of the tunneling characteristics. The results indicate several possibilities for the energy gap in MgB 2 , such as, an anisotropic energy gap, two-energy or an unconventional gap scenario. (author)

  11. Analysis of an HTS coil for large scale superconducting magnetic energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Young; Lee, Se Yeon; Choi, Kyeong Dal; Park, Sang Ho; Hong, Gye Won; Kim, Sung Soo; Kim, Woo Seok [Korea Polytechnic University, Siheung (Korea, Republic of); Lee, Ji Kwang [Woosuk University, Wanju (Korea, Republic of)

    2015-06-15

    It has been well known that a toroid is the inevitable shape for a high temperature superconducting (HTS) coil as a component of a large scale superconducting magnetic energy storage system (SMES) because it is the best option to minimize a magnetic field intensity applied perpendicularly to the HTS wires. Even though a perfect toroid coil does not have a perpendicular magnetic field, for a practical toroid coil composed of many HTS pancake coils, some type of perpendicular magnetic field cannot be avoided, which is a major cause of degradation of the HTS wires. In order to suggest an optimum design solution for an HTS SMES system, we need an accurate, fast, and effective calculation for the magnetic field, mechanical stresses, and stored energy. As a calculation method for these criteria, a numerical calculation such as an finite element method (FEM) has usually been adopted. However, a 3-dimensional FEM can involve complicated calculation and can be relatively time consuming, which leads to very inefficient iterations for an optimal design process. In this paper, we suggested an intuitive and effective way to determine the maximum magnetic field intensity in the HTS coil by using an analytic and statistical calculation method. We were able to achieve a remarkable reduction of the calculation time by using this method. The calculation results using this method for sample model coils were compared with those obtained by conventional numerical method to verify the accuracy and availability of this proposed method. After the successful substitution of this calculation method for the proposed design program, a similar method of determining the maximum mechanical stress in the HTS coil will also be studied as a future work.

  12. Analysis of an HTS coil for large scale superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Lee, Ji Young; Lee, Se Yeon; Choi, Kyeong Dal; Park, Sang Ho; Hong, Gye Won; Kim, Sung Soo; Kim, Woo Seok; Lee, Ji Kwang

    2015-01-01

    It has been well known that a toroid is the inevitable shape for a high temperature superconducting (HTS) coil as a component of a large scale superconducting magnetic energy storage system (SMES) because it is the best option to minimize a magnetic field intensity applied perpendicularly to the HTS wires. Even though a perfect toroid coil does not have a perpendicular magnetic field, for a practical toroid coil composed of many HTS pancake coils, some type of perpendicular magnetic field cannot be avoided, which is a major cause of degradation of the HTS wires. In order to suggest an optimum design solution for an HTS SMES system, we need an accurate, fast, and effective calculation for the magnetic field, mechanical stresses, and stored energy. As a calculation method for these criteria, a numerical calculation such as an finite element method (FEM) has usually been adopted. However, a 3-dimensional FEM can involve complicated calculation and can be relatively time consuming, which leads to very inefficient iterations for an optimal design process. In this paper, we suggested an intuitive and effective way to determine the maximum magnetic field intensity in the HTS coil by using an analytic and statistical calculation method. We were able to achieve a remarkable reduction of the calculation time by using this method. The calculation results using this method for sample model coils were compared with those obtained by conventional numerical method to verify the accuracy and availability of this proposed method. After the successful substitution of this calculation method for the proposed design program, a similar method of determining the maximum mechanical stress in the HTS coil will also be studied as a future work

  13. A framework to bridge the energy efficiency gap in shipping

    International Nuclear Information System (INIS)

    Jafarzadeh, Sepideh; Utne, Ingrid Bouwer

    2014-01-01

    Environmental concerns, emission regulations, fuel prices, and emission taxes increase the demand to improve energy efficiency in shipping. However, several barriers prevent the adoption of cost-effective energy saving measures. In this article a framework is offered to overcome the barriers encountered in shipping. 12 participants from five ship owners in Norway, two equipment suppliers, and a research institute have provided input to this study. The framework makes the barriers evident to ship owners and (energy) managers. It helps them to prioritize and overcome the critical barriers to improve energy efficiency in a consistent manner. Researchers and policy makers can also utilize the framework as it makes challenges to energy efficiency apparent. Finally, due to its generic structure it can be applied to industries other than shipping. - Highlights: • The article offers a framework for overcoming barriers to energy efficiency. • The framework is developed based on input from five ship owners in Norway, two equipment suppliers, and a research institute. • The article presents challenges and barriers to energy efficiency in shipping. • Possible measures for overcoming barriers in shipping are suggested. • The framework is generic in nature and can be applied to other industries

  14. Analysis of superconducting magnetic energy storage applications at a proposed wind farm site near Browning, Montana

    Science.gov (United States)

    Gaustad, K. L.; Desteese, J. G.

    1993-07-01

    A computer program was developed to analyze the viability of integrating superconducting magnetic energy storage (SMES) with proposed wind farm scenarios at a site near Browning, Montana. The program simulated an hour-by-hour account of the charge/discharge history of a SMES unit for a representative wind-speed year. Effects of power output, storage capacity, and power conditioning capability on SMES performance characteristics were analyzed on a seasonal, diurnal, and hourly basis. The SMES unit was assumed to be charged during periods when power output of the wind resource exceeded its average value. Energy was discharged from the SMES unit into the grid during periods of low wind speed to compensate for below-average output of the wind resource. The option of using SMES to provide power continuity for a wind farm supplemented by combustion turbines was also investigated. Levelizing the annual output of large wind energy systems operating in the Blackfeet area of Montana was found to require a storage capacity too large to be economically viable. However, it appears that intermediate-sized SMES economically levelize the wind energy output on a seasonal basis.

  15. Calculation of Energy Diagram of Asymmetric Graded-Band-Gap Semiconductor Superlattices.

    Science.gov (United States)

    Monastyrskii, Liubomyr S; Sokolovskii, Bogdan S; Alekseichyk, Mariya P

    2017-12-01

    The paper theoretically investigates the peculiarities of energy diagram of asymmetric graded-band-gap superlattices with linear coordinate dependences of band gap and electron affinity. For calculating the energy diagram of asymmetric graded-band-gap superlattices, linearized Poisson's equation has been solved for the two layers forming a period of the superlattice. The obtained coordinate dependences of edges of the conduction and valence bands demonstrate substantial transformation of the shape of the energy diagram at changing the period of the lattice and the ratio of width of the adjacent layers. The most marked changes in the energy diagram take place when the period of lattice is comparable with the Debye screening length. In the case when the lattice period is much smaller that the Debye screening length, the energy diagram has the shape of a sawtooth-like pattern.

  16. Proposal of 99.99%-aluminum/7N01-Aluminum clad beam tube for high energy booster of Superconducting Super Collider

    International Nuclear Information System (INIS)

    Ishimaru, Hajime

    1994-01-01

    Proposal of 99.99% pure aluminum/7N01 aluminum alloy clad beam tube for high energy booster in Superconducting Super Collider is described. This aluminum clad beam tube has many good performances, but a eddy current effect is large in superconducting magnet quench collapse. The quench test result for aluminum clad beam tube is basically no problem against magnet quench collapse. (author)

  17. Superconducting magnets

    International Nuclear Information System (INIS)

    Willen, E.

    1996-01-01

    Superconducting dipole magnets for high energy colliders are discussed. As an example, the magnets recently built for the Relativistic Heavy Ion Collider at Brookhaven are reviewed. Their technical performance and the cost for the industry-built production dipoles are given. The cost data is generalized in order to extrapolate the cost of magnets for a new machine

  18. Possible explanations for the gap between calculated and measured energy consumption of new houses

    DEFF Research Database (Denmark)

    Kragh, Jesper; Rose, Jørgen; Knudsen, Henrik N.

    2017-01-01

    The overall aim to reduce CO2 emissions has brought the energy requirements for new houses into focus. The question is whether the stepwise tightening of the energy requirements for new houses has had the expected impact on the actual realized energy consumption. In the news media, headlines...... at regular intervals state that new houses do not perform as expected with regard to energy consumption based on a simple comparison to the building class (energy frame). The gap is sometimes explained by a higher indoor temperature than used in the standard calculation or more generally by resident...... data show that a significant share of the houses consumes more energy in a simple comparison with the theoretical energy frame based on standard assumptions. The objective of the study was to find and evaluate possible explanations/reasons for this gap between the theoretical calculated energy demand...

  19. Superconducting cyclotrons

    International Nuclear Information System (INIS)

    Blosser, H.G.; Johnson, D.A.; Burleigh, R.J.

    1976-01-01

    Superconducting cyclotrons are particularly appropriate for acceleration of heavy ions. A review is given of design features of a superconducting cyclotron with energy 440 (Q 2 /A) MeV. A strong magnetic field (4.6 tesla average) leads to small physical size (extraction radius 65 cm) and low construction costs. Operating costs are also low. The design is based on established technology (from present cyclotrons and from large bubble chambers). Two laboratories (in Chalk River, Canada and in East Lansing, Michigan) are proceeding with construction of full-scale prototype components for such cyclotrons

  20. Energy-efficient electrical machines by new materials. Superconductivity in large electrical machines

    International Nuclear Information System (INIS)

    Frauenhofer, Joachim; Arndt, Tabea; Grundmann, Joern

    2013-01-01

    The implementation of superconducting materials in high-power electrical machines results in significant advantages regarding efficiency, size and dynamic behavior when compared to conventional machines. The application of HTS (high-temperature superconductors) in electrical machines allows significantly higher power densities to be achieved for synchronous machines. In order to gain experience with the new technology, Siemens carried out a series of development projects. A 400 kW model motor for the verification of a concept for the new technology was followed by a 4000 kV A generator as highspeed machine - as well as a low-speed 4000 kW propeller motor with high torque. The 4000 kVA generator is still employed to carry out long-term tests and to check components. Superconducting machines have significantly lower weight and envelope dimensions compared to conventional machines, and for this reason alone, they utilize resources better. At the same time, operating losses are slashed to about half and the efficiency increases. Beyond this, they set themselves apart as a result of their special features in operation, such as high overload capability, stiff alternating load behavior and low noise. HTS machines provide significant advantages where the reduction of footprint, weight and losses or the improved dynamic behavior results in significant improvements of the overall system. Propeller motors and generators,for ships, offshore plants, in wind turbine and hydroelectric plants and in large power stations are just some examples. HTS machines can therefore play a significant role when it comes to efficiently using resources and energy as well as reducing the CO 2 emissions.

  1. Pair-breaking effects by parallel magnetic field in electric-field-induced surface superconductivity

    International Nuclear Information System (INIS)

    Nabeta, Masahiro; Tanaka, Kenta K.; Onari, Seiichiro; Ichioka, Masanori

    2016-01-01

    Highlights: • Zeeman effect shifts superconducting gaps of sub-band system, towards pair-breaking. • Higher-level sub-bands become normal-state-like electronic states by magnetic fields. • Magnetic field dependence of zero-energy DOS reflects multi-gap superconductivity. - Abstract: We study paramagnetic pair-breaking in electric-field-induced surface superconductivity, when magnetic field is applied parallel to the surface. The calculation is performed by Bogoliubov-de Gennes theory with s-wave pairing, including the screening effect of electric fields by the induced carriers near the surface. Due to the Zeeman shift by applied fields, electronic states at higher-level sub-bands become normal-state-like. Therefore, the magnetic field dependence of Fermi-energy density of states reflects the multi-gap structure in the surface superconductivity.

  2. Energy gap of extended states in SiC-doped graphene nanoribbon: Ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaoshi; Wu, Yong [College of Science, University of Shanghai for Science and Technology, Shanghai 200093 (China); Shanghai Key Lab of Modern Optical System, Shanghai 200093 (China); Li, Zhongyao, E-mail: lizyusst@gmail.com [College of Science, University of Shanghai for Science and Technology, Shanghai 200093 (China); Shanghai Key Lab of Modern Optical System, Shanghai 200093 (China); Gao, Yong [School of Science, Shanghai Second Polytechnic University, Shanghai 201209 (China)

    2017-04-01

    Highlights: • The gap of isolated ribbon is inversely proportional to the width of ribbon. • The gap of doped ribbon cannot be modeled by effective width approximation. • The fitted energy gap can match the experimental observations. • The doping results in a spin-polarized metallic-like band structure. - Abstract: The energy gap of extended states in zigzag graphene nanoribbons (ZGNRs) was examined on the basis of density-functional theory. In isolated ZGNRs, the energy gap is inversely proportional to the width of ribbon. It agrees well with the results from the Dirac equation in spin-unpolarized ZGNRs, although the considered ZGNRs have spin-polarized edges. However, the energy gap in SiC-doped ZGNRs cannot be modeled by effective width approximation. The doping also lifts the spin-degenerate of edge states and results in a metallic-like band structure near the Fermi level in SiC-doped ZGNRs. Our calculations may be helpful for understanding the origin of the reported single-channel ballistic transport in epitaxial graphene nanoribbons.

  3. Development of an abort gap monitor for high-energy proton rings

    International Nuclear Information System (INIS)

    Beche, Jean-Francois; Byrd, John; De Santis, Stefano; Denes, Peter; Placidi, Massimo; Turner, William; Zolotorev, Max

    2004-01-01

    The fill pattern in proton synchrotrons usually features an empty gap, longer than the abort kicker raise time, for machine protection. This gap is referred to as the ''abort gap'' and any particles, which may accumulate in it due to injection errors and diffusion between RF buckets, would be lost inside the ring, rather than in the beam dump, during the kicker firing. In large proton rings, due to the high energies involved, it is vital to monitor the build up of charges in the abort gap with a high sensitivity. We present a study of an abort gap monitor based on a photomultiplier with a gated microchannel plate, which would allow for detecting low charge densities by monitoring the synchrotron radiation emitted. We show results of beam test experiments at the Advanced Light Source using a Hamamatsu 5916U MCP-PMT and compare them to the specifications for the Large Hadron Collider

  4. Development of an Abort Gap Monitor for High-Energy Proton Rings

    International Nuclear Information System (INIS)

    Beche, J.-F.; Byrd, J.; De Santis, S.; Denes, P.; Placidi, M.; Turner, W.; Zolotorev, M.

    2004-01-01

    The fill pattern in proton synchrotrons usually features an empty gap, longer than the abort kicker raise time, for machine protection. This gap is referred to as the 'abort gap', and any particles, which may accumulate in it due to injection errors and diffusion between RF buckets, would be lost inside the ring, rather than in the beam dump, during the kicker firing. In large proton rings, due to the high energies involved, it is vital to monitor the build up of charges in the abort gap with a high sensitivity. We present a study of an abort gap monitor based on a photomultiplier with a gated microchannel plate, which would allow for detecting low charge densities by monitoring the synchrotron radiation emitted. We show results of beam test experiments at the Advanced Light Source using a Hamamatsu 5916U MCP-PMT and compare them to the specifications for the Large Hadron Collider

  5. Color superconductivity

    International Nuclear Information System (INIS)

    Wilczek, F.

    1997-01-01

    The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken

  6. Color superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Wilczek, F. [Institute for Advanced Study, Princeton, NJ (United States)

    1997-09-22

    The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken.

  7. Two methods for decreasing the flexibility gap in national energy systems

    International Nuclear Information System (INIS)

    Batas Bjelić, Ilija; Rajaković, Nikola; Krajačić, Goran; Duić, Neven

    2016-01-01

    More variable renewable energy sources and energy efficiency measures create an additional flexibility gap and require a novel energy planning method for sustainable national energy systems. The firstly presented method uses only EnergyPLAN tool in order to decrease the flexibility gap in a national energy system. Generic Optimization program (GenOpt"®) is an optimization program for the minimization of a cost function that is evaluated by an external simulation program, such as EnergyPLAN, which was used as the second method in this research. Successful strategies to decrease the flexibility gap are verified on the case of the Serbian national energy system using two methods for its structure design: (1) the iterative method, based on heuristics and manual procedure of using only EnergyPLAN, and (2) the optimization method, based on soft-linking of EnergyPLAN with GenOpt"®. The latter method, named EPOPT (EnergyPlan-genOPT), found the solution for the structure of the sustainable national energy system at the total cost of 8190 M€, while the iterative method was only able to find solutions at the cost in the range of 8251–8598 M€ by targeting only one sustainability goal. The advantages of the EPOPT method are its accuracy, user-friendliness and minimal costs, are valuable for planners. - Highlights: • Heuristic and optimization method for sustainable national energy system structure. • The same input assumptions resulting in different energy system structure. • Both methods are successful in decreasing of the flexibility gap. • The EPOPT method advantages are in the speed, accuracy and planner comfort. • Advanced method for the sustainable national energy policy planning.

  8. Comparison of energy flows in deep inelastic scattering events with and without a large rapidity gap

    International Nuclear Information System (INIS)

    Derrick, M.; Krakauer, D.; Magill, S.

    1994-07-01

    Energy flows in deep inelastic electron-proton scattering are investigated at a centre-of-mass energy of 296 GeV for the range Q 2 ≥10 GeV 2 using the ZEUS detector. A comparison is made between events with and without a large rapidity gap between the hadronic system and the proton direction. The energy flows, corrected for detector acceptance and resolution, are shown for these two classes of events in both the HERA laboratory frame and the Breit frame. From the differences in the shapes of these energy flows we conclude that QCD radiation is suppressed in the large-rapidity-gap events compared to the events without a large rapidity gap. (orig.)

  9. Microscopic theory of the superconducting gap in the quasi-one-dimensional organic conductor (TMTSF) 2ClO4 : Model derivation and two-particle self-consistent analysis

    Science.gov (United States)

    Aizawa, Hirohito; Kuroki, Kazuhiko

    2018-03-01

    We present a first-principles band calculation for the quasi-one-dimensional (Q1D) organic superconductor (TMTSF) 2ClO4 . An effective tight-binding model with the TMTSF molecule to be regarded as the site is derived from a calculation based on maximally localized Wannier orbitals. We apply a two-particle self-consistent (TPSC) analysis by using a four-site Hubbard model, which is composed of the tight-binding model and an onsite (intramolecular) repulsive interaction, which serves as a variable parameter. We assume that the pairing mechanism is mediated by the spin fluctuation, and the sign of the superconducting gap changes between the inner and outer Fermi surfaces, which correspond to a d -wave gap function in a simplified Q1D model. With the parameters we adopt, the critical temperature for superconductivity estimated by the TPSC approach is approximately 1 K, which is consistent with experiment.

  10. Mechanical stresses and strains in superconducting dipole magnets for high energy accelerators

    International Nuclear Information System (INIS)

    Greben, L.I.; Mironov, E.S.; Moustafin, H.H.

    1979-01-01

    Stress and strain distributions in superconducting dipole magnets were investigated numerically. A finite element computer program was developed to calculate stresses and displacements due to thermal stress, electromagnetic forces and prestressing of structural elements. Real mechanical and thermal properties of superconducting dipole elements are taken into account. Numerical results of stress and strain patterns in dipole magnets are presented

  11. Theoretical and Experimental Evidence for a Nodal Energy Gap in MgB2

    Science.gov (United States)

    2017-02-17

    the larger gap, the so-called  gap, is a conventional s wave. The model is an extension of the BCS theory that accounts for the elastic anisotropy...obeys the BCS-theory textbook expression that is characterized by an exponential temperature dependence, specifically,[17,18]    2 TS RESR T R C f...that was based on measurement of the IMD [3]. Accounting for the  energy-gap contribution at higher temperatures lies outside the scope of this work

  12. Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings

    International Nuclear Information System (INIS)

    Barnes, W.L.; Preist, T.W.; Kitson, S.C.; Sambles, J.R.

    1996-01-01

    We present an analytic model to describe the existence of photonic energy gaps in the propagation of surface plasmon polaritons on corrugated surfaces. We concentrate on elucidating the physical origin of the band gap, and accordingly we place strong emphasis on the physical reasoning and assumptions that we use. Our model is designed to give direct access to expressions for the electromagnetic field and surface charge distributions associated with modes at the band edges, thus allowing their physical character to be easily appreciated. Having established why a band gap occurs we then find expressions for the central position and width of the gap. We compare the results of our model for the gap width with those already in the literature, and find excellent agreement. Our results for the central position of the gap, notably the prediction that it should fall as the corrugation amplitude rises, contradicts one prediction made in the literature. We also reexamine the comparisons made in the literature between experiment and theory for the gap width, and find them inadequate because the theories have been compared to inappropriate experimental data. Consequently we present our own recent experimental data, enabling us to validate our theoretical results, in particular confirming our prediction that the central position of the gap falls as the corrugation amplitude is increased. The limitations of our model are discussed, as well as possible extensions and areas for future research. copyright 1996 The American Physical Society

  13. Initial studies of Bremsstrahlung energy deposition in small-bore superconducting undulator structures in linac environments

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, T.; Tatchyn, R. [Stanford Univ., CA (United States)

    1995-12-31

    One of the more promising technologies for developing minimal-length insertion devices for linac-driven, single-pass Free Electron Lasers (FELs) operating in the x-ray range is based on the use of superconducting (SC) materials. In recent FEL simulations, for example, a bifilar helical SC device with a 2 cm period and 1.8 T field was found to require a 30 m saturation length for operation at 1.5{Angstrom} on a 15 GeV linac, more than 40% shorter than an alternative hybrid/permanent magnet (hybrid/PM) undulator. AT the same time, however, SC technology is known to present characteristic difficulties for insertion device design, both in engineering detail and in operation. Perhaps the most critical problem, as observed, e.g., by Madey and co-workers in their initial FEL experiments, was the frequent quenching induced by scattered electrons upstream of their (bifilar) device. Postulating that this quenching was precipitated by directly-scattered or bremsstrahlung-induced particle energy deposited into the SC material or into material contiguous with it, the importance of numerical and experimental characterizations of this phenomenon for linac-based, user-facility SC undulator design becomes evident. In this paper we discuss selected prior experimental results and report on initial EGS4 code studies of scattered and bremsstrahlung induced particle energy deposition into SC structures with geometries comparable to a small-bore bifilar helical undulator.

  14. Influence of movement direction on levitation performance and energy dissipation in a superconducting maglev system

    Directory of Open Access Journals (Sweden)

    Chen-Guang Huang

    2017-11-01

    Full Text Available During the regular operation of a maglev system, the superconducting levitation body may move away from the working position due to the external disturbance and the curved part of the guideway. Based on the A − V formulation of magnetoquasistatic Maxwell’s equations, in this paper, a two-dimensional numerical model is applied to study the influence of movement direction on a typical maglev system consisting of an infinitely long high-temperature superconductor and a guideway of two infinitely long parallel permanent magnets with opposite horizontal magnetization. After the highly nonlinear current-voltage characteristic of the superconductor is taken into account, the levitation performance change and the energy dissipation induced by the relative movement of the superconductor and the guideway are discussed. The results show that the levitation force, guidance force and power loss are strongly dependent on the movement direction and speed of the superconductor when it moves away from the working position. If the superconductor moves periodically through the working position, these three physical quantities will change periodically with time. Interestingly, the power loss drastically increases during the first cycle, and after the first cycle it starts to decrease and finally tends to a dynamic steady state. Moreover, an increase in the tilt angle of movement direction will improve the maximum levitation force and, simultaneously, enhance the energy dissipation of the maglev system.

  15. Influence of movement direction on levitation performance and energy dissipation in a superconducting maglev system

    Science.gov (United States)

    Huang, Chen-Guang; Yong, Hua-Dong; Zhou, You-He

    2017-11-01

    During the regular operation of a maglev system, the superconducting levitation body may move away from the working position due to the external disturbance and the curved part of the guideway. Based on the A - V formulation of magnetoquasistatic Maxwell's equations, in this paper, a two-dimensional numerical model is applied to study the influence of movement direction on a typical maglev system consisting of an infinitely long high-temperature superconductor and a guideway of two infinitely long parallel permanent magnets with opposite horizontal magnetization. After the highly nonlinear current-voltage characteristic of the superconductor is taken into account, the levitation performance change and the energy dissipation induced by the relative movement of the superconductor and the guideway are discussed. The results show that the levitation force, guidance force and power loss are strongly dependent on the movement direction and speed of the superconductor when it moves away from the working position. If the superconductor moves periodically through the working position, these three physical quantities will change periodically with time. Interestingly, the power loss drastically increases during the first cycle, and after the first cycle it starts to decrease and finally tends to a dynamic steady state. Moreover, an increase in the tilt angle of movement direction will improve the maximum levitation force and, simultaneously, enhance the energy dissipation of the maglev system.

  16. Penalaan Parameter Superconducting Magnetic Energy Storage (SMES menggunakan Firefly Algorithm (FA pada Sistem Tenaga Listrik Multimesin

    Directory of Open Access Journals (Sweden)

    Herlambang Setiadi

    2014-03-01

    Full Text Available Energi listrik yang disuplai ke konsumen harus mempunyai stabilitas dan keandalan yang tinggi. Jika terjadi sebuah gangguan pada sistem tenaga listrik dapat mengakibatkan ketidakstabilan. Gangguan tersebut dapat berupa putus jaringan (transien maupun perubahan beban (dinamik. Perubahan beban yang terjadi secara tiba-tiba dan periodik tidak dapat direspon dengan baik oleh generator sehingga dapat mempengaruhi kestabilan dinamik sistem. Hal ini menyebabkan timbul osilasi frekuensi pada generator. Respon yang kurang baik dapat menimbulkan osilasi frekuensi dalam periode yang lama. Hal itu akan mengakibatkan pengurangan kekuatan transfer daya yang ada. Pada sistem tenaga listrik multimachine, semua mesin bekerja secara sinkron se­hingga generator harus beroperasi pada frekuensi yang sama. Untuk meredam osilasi frekuensi yang terjadi dibutuhkan kontroler tambahan yaitu Superconducting Magnetic Energy Storage (SMES. Agar mendapatkan koordinasi controler yang baik maka parameter pada SMES dioptimisasi dengan Firefly Algorithm (FA. Tugas Akhir ini mengajukan konsep penalaan parameter SMES menggunakan FA pada sistem tenaga listrik multimesin. Dengan diajukan metode diatas diharapkan permasalahan osilasi frekuensi akibat terdapat perubahan beban dapat diredam.

  17. Superconducting qubit in a nonstationary transmission line cavity: Parametric excitation, periodic pumping, and energy dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Zhukov, A.A. [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); National Research Nuclear University (MEPhI), 115409 Moscow (Russian Federation); Shapiro, D.S., E-mail: shapiro.dima@gmail.com [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); V.A. Kotel' nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 125009 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700 (Russian Federation); National University of Science and Technology MISIS, 119049 Moscow (Russian Federation); Remizov, S.V. [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); V.A. Kotel' nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 125009 Moscow (Russian Federation); Pogosov, W.V. [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700 (Russian Federation); Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412 Moscow (Russian Federation); Lozovik, Yu.E. [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); National Research Nuclear University (MEPhI), 115409 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700 (Russian Federation); Institute of Spectroscopy, Russian Academy of Sciences, 142190 Moscow Region, Troitsk (Russian Federation)

    2017-02-12

    We consider a superconducting qubit coupled to the nonstationary transmission line cavity with modulated frequency taking into account energy dissipation. Previously, it was demonstrated that in the case of a single nonadiabatical modulation of a cavity frequency there are two channels of a two-level system excitation which are due to the absorption of Casimir photons and due to the counterrotating wave processes responsible for the dynamical Lamb effect. We show that the parametric periodical modulation of the resonator frequency can increase dramatically the excitation probability. Remarkably, counterrotating wave processes under such a modulation start to play an important role even in the resonant regime. Our predictions can be used to control qubit-resonator quantum states as well as to study experimentally different channels of a parametric qubit excitation. - Highlights: • Coupled qubit-resonator system under the modulation of a resonator frequency is considered. • Counterrotating terms of the Hamiltonian are of importance even in the resonance. • Qubit excited state population is highest if driving frequency matches dressed-state energy.

  18. Tests of the 30-MJ superconducting magnetic-energy storage unit

    International Nuclear Information System (INIS)

    Boenig, H.J.; Dean, J.W.; Rogers, J.D.; Schermer, R.I.; Hauer, J.F.

    1983-01-01

    A 30-MJ (8.4 kWh) superconducting magnetic energy storage (SMES) unit with a 10-MW converter was installed during the later months of 1982 at the Bonneville Power Administration (BPA) Tacoma substation in Tacoma, Washington. The unit, which is capable of absorbing and releasing up to 10 MJ of energy at a frequency of 0.35 Hz, was designed to damp the dominant power swing mode of the Pacific AC Intertie. Extensive tests were performed with the unit during the first half of 1983. This paper will review the major components of the storage unit and describe the startup and steady state operating experience with the coil, dewar, refrigerator and converter. The unit has absorbed power up to a level of 11.8 Mw. Real power was modulated following a sinusoidal power demand with frequencies from 0.1 to 1.2 Hz and a power level up to +- 8.3 MW. The unit has performed in accordance with design expectations and no major problems have developed

  19. Gaps between Jets in the high energy limit

    International Nuclear Information System (INIS)

    Forshaw, Jeffrey R.; Kyrieleis, Albrecht; Seymour, Michael H.

    2005-01-01

    We use perturbative QCD to calculate the parton level cross section for the production of two jets that are far apart in rapidity, subject to a limitation on the total transverse momentum Q 0 in the interjet region. We specifically address the question of how to combine the approach which sums all leading logarithms in Q/Q 0 (where Q is the jet transverse momentum) with the BFKL approach, in which leading logarithms of the scattering energy are summed. This paper constitutes progress towards the simultaneous summation of all important logarithms. Using an 'all orders' matching, we are able to obtain results for the cross section which correctly reproduce the two approaches in the appropriate limits

  20. Tensile-strain effect of inducing the indirect-to-direct band-gap transition and reducing the band-gap energy of Ge

    Energy Technology Data Exchange (ETDEWEB)

    Inaoka, Takeshi, E-mail: inaoka@phys.u-ryukyu.ac.jp; Furukawa, Takuro; Toma, Ryo; Yanagisawa, Susumu [Department of Physics and Earth Sciences, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213 (Japan)

    2015-09-14

    By means of a hybrid density-functional method, we investigate the tensile-strain effect of inducing the indirect-to-direct band-gap transition and reducing the band-gap energy of Ge. We consider [001], [111], and [110] uniaxial tensility and (001), (111), and (110) biaxial tensility. Under the condition of no normal stress, we determine both normal compression and internal strain, namely, relative displacement of two atoms in the primitive unit cell, by minimizing the total energy. We identify those strain types which can induce the band-gap transition, and evaluate the critical strain coefficient where the gap transition occurs. Either normal compression or internal strain operates unfavorably to induce the gap transition, which raises the critical strain coefficient or even blocks the transition. We also examine how each type of tensile strain decreases the band-gap energy, depending on its orientation. Our analysis clearly shows that synergistic operation of strain orientation and band anisotropy has a great influence on the gap transition and the gap energy.

  1. Frontier applications of rf superconductivity for high energy physics in the TeV range

    International Nuclear Information System (INIS)

    Tigner, M.; Padamsee, H.

    1988-01-01

    The authors present understanding of the fundamental nature of matter is embodied in the standard theory. This theory views all matter as composed of families of quarks and leptons with their interactions mediated by the family of force-carrying particles. Progress in particle accelerators has been a vital element in bringing about this level of understanding. Although the standard theory is successful in relating a wide range of phenomena, it raises deeper questions about the basic nature of matter and energy. Among these are: why are the masses of the various elementary particles and the strengths of the basic forces what they are? It is expected that over the next decade a new generation of accelerators spanning the 100 Gev mass range will shed light on some of these questions. These accelerators, will provide the means to thoroughly explore the energy regime corresponding to the mass scale of the weak interactions to reveal intimate details of the force carrying particles, the weak bosons, Z0 and W+-. Superconducting rf technology will feature in a major way in the electron storage rings. Current theoretical ideas predict that to make further progress towards a more fundamental theory of matter, it will be necessary to penetrate the TeV energy regime. At this scale a whole new range of phenomena will manifest the nature of the symmetry breaking mechanism that must be responsible for the differences they observe in the familiar weak and electromagnetic forces. History has shown that unexpected discoveries made in a new energy regime have proven to be the main engine of progress. The experimental challenge to accelerator designers and builders is clear. 11 references, 3 figures, 1 table

  2. Energy Band Gap Dependence of Valley Polarization of the Hexagonal Lattice

    Science.gov (United States)

    Ghalamkari, Kazu; Tatsumi, Yuki; Saito, Riichiro

    2018-02-01

    The origin of valley polarization of the hexagonal lattice is analytically discussed by tight binding method as a function of energy band gap. When the energy gap decreases to zero, the intensity of optical absorption becomes sharp as a function of k near the K (or K') point in the hexagonal Brillouin zone, while the peak intensity at the K (or K') point keeps constant with decreasing the energy gap. When the dipole vector as a function of k can have both real and imaginary parts that are perpendicular to each other in the k space, the valley polarization occurs. When the dipole vector has only real values by selecting a proper phase of wave functions, the valley polarization does not occur. The degree of the valley polarization may show a discrete change that can be relaxed to a continuous change of the degree of valley polarization when we consider the life time of photo-excited carrier.

  3. Superconductivity applications for infrared and microwave devices; Proceedings of the Meeting, Orlando, FL, Apr. 19, 20, 1990

    Science.gov (United States)

    Bhasin, Kul B.; Heinen, Vernon O.

    1990-10-01

    Various papers on superconductivity applications for IR and microwave devices are presented. The individual topics addressed include: pulsed laser deposition of Tl-Ca-Ba-Cu-O films, patterning of high-Tc superconducting thin films on Si substrates, IR spectra and the energy gap in thin film YBa2Cu3O(7-delta), high-temperature superconducting thin film microwave circuits, novel filter implementation utilizing HTS materials, high-temperature superconductor antenna investigations, high-Tc superconducting IR detectors, high-Tc superconducting IR detectors from Y-Ba-Cu-O thin films, Y-Ba-Cu0-O thin films as high-speed IR detectors, fabrication of a high-Tc superconducting bolometer, transition-edge microbolometer, photoresponse of YBa2Cu3O(7-delta) granular and epitaxial superconducting thin films, fast IR response of YBCO thin films, kinetic inductance effects in high-Tc microstrip circuits at microwave frequencies.

  4. In situ measurement of the energy gap of a semiconductor using a microcontroller-based system

    International Nuclear Information System (INIS)

    Mukaro, R; Taele, B M; Tinarwo, D

    2006-01-01

    This paper describes a microcontroller-based laboratory technique for automatic in situ measurement of the energy gap of germanium. The design is based on the original undergraduate laboratory experiment in which students manually measure the variation of the reverse saturation current of a germanium diode with temperature using a current-to-voltage converter. After collecting the results students later analyse them to determine the energy gap of the semiconductor. The objective of this work was to introduce interfacing and computerized measurement systems in the undergraduate laboratory. The microcontroller-based data acquisition system and its implementation in automatic in situ measurement of the band gap of germanium diode is presented. The system which uses an LM335 temperature sensor for measuring temperature transmits the measured data to the computer via the RS232 serial port while a C++ software program developed to run on the computer monitors the serial port for incoming information sent by the microcontroller. This information is displayed on the computer screen as it comes and automatically saved to a data file. Once all the data are received, the computer performs least-squares fit to the data to compute the energy gap which is displayed on the screen together with its error estimate. For the IN34A germanium diode used the value of the energy gap obtained was 0.50 ± 0.02 eV

  5. In situ measurement of the energy gap of a semiconductor using a microcontroller-based system

    Energy Technology Data Exchange (ETDEWEB)

    Mukaro, R [Department of Physics, Bindura University of Science, P/Bag 1020, Bindura (Zimbabwe); Taele, B M [Department of Physics and Electronics, National University of Lesotho, Roma 180 (Lesotho); Tinarwo, D [Department of Physics, Bindura University of Science, P/Bag 1020, Bindura (Zimbabwe)

    2006-05-01

    This paper describes a microcontroller-based laboratory technique for automatic in situ measurement of the energy gap of germanium. The design is based on the original undergraduate laboratory experiment in which students manually measure the variation of the reverse saturation current of a germanium diode with temperature using a current-to-voltage converter. After collecting the results students later analyse them to determine the energy gap of the semiconductor. The objective of this work was to introduce interfacing and computerized measurement systems in the undergraduate laboratory. The microcontroller-based data acquisition system and its implementation in automatic in situ measurement of the band gap of germanium diode is presented. The system which uses an LM335 temperature sensor for measuring temperature transmits the measured data to the computer via the RS232 serial port while a C++ software program developed to run on the computer monitors the serial port for incoming information sent by the microcontroller. This information is displayed on the computer screen as it comes and automatically saved to a data file. Once all the data are received, the computer performs least-squares fit to the data to compute the energy gap which is displayed on the screen together with its error estimate. For the IN34A germanium diode used the value of the energy gap obtained was 0.50 {+-} 0.02 eV.

  6. Cooper-pair size and binding energy for unconventional superconducting systems

    Science.gov (United States)

    Dinóla Neto, F.; Neto, Minos A.; Salmon, Octavio D. Rodriguez

    2018-06-01

    The main proposal of this paper is to analyze the size of the Cooper pairs composed by unbalanced mass fermions from different electronic bands along the BCS-BEC crossover and study the binding energy of the pairs. We are considering an interaction between fermions with different masses leading to an inter-band pairing. In addiction to the attractive interaction we have an hybridization term to couple both bands, which in general acts unfavorable for the pairing between the electrons. We get first order phase transitions as the hybridization breaks the Cooper pairs for the s-wave symmetry of the gap amplitude. The results show the dependence of the Cooper-pair size as a function of the hybridization for T = 0 . We also propose the structure of the binding energy of the inter-band system as a function of the two-bands quasi-particle energies.

  7. Mind the gap. Quantifying principal-agent problems in energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-10-15

    Energy efficiency presents a unique opportunity to address three energy-related challenges in IEA member countries: energy security, climate change, and economic development. Yet an energy-efficiency gap exists between actual and optimal energy use. That is, significant cost-effective energy efficiency potential is wasted because market barriers prevent countries from achieving optimal levels. Market barriers take many forms, from inadequate access to capital, isolation from price signals, information asymmetry, and split-incentives. Though many studies have reported the existence of such market barriers, none so far have attempted to quantify the magnitude of their effect on energy use and efficiency. This publication is an unprecedented attempt to quantify the size of one of the most pervasive barriers to energy efficiency - principal-agent problems, or in common parlance, variations on the 'landlord-tenant' problem. In doing so, the book provides energy analysts and economists with unique insights into the amount of energy affected by principal-agent problems. Using an innovative methodology applied to eight case studies (covering commercial and residential sectors, and end-use appliances) from five different IEA countries, the analysis identifies over 3,800 PJ/year of affected energy use - that is, around 85% of the annual energy use of a country the size of Spain. The book builds on these findings to suggest a range of possible policy solutions that can reduce the impact of principal-agent problems and help policy makers mind the energy efficiency gap.

  8. Determination of the energy gap in photoconducting insulators through current noise measurements

    International Nuclear Information System (INIS)

    Carbone, A.; Demichelis, F.; Mazzetti, P.

    1989-01-01

    Measurements of the current noise power spectrum of the photoconducting insulators CdS and CdSe irradiated with monochromatic light of different wavelength λ are reported. It is shown that there is an abrupt change of about one order of magnitude in the low frequency power density of the noise when λ crosses the photoconductor gap value λ and the photocurrent and the device conductance are kept constant by varying the light intensity. The effect is explained in terms of an abrupt increase of the carrier recombination rate when the photon energy becomes larger than the energy gap of the photoconductor. Possible applications of these results are briefly discussed

  9. Shift of the gap energy and thermal conductivity in BGaAs/GaAs alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ilahi, S., E-mail: ilehi_soufiene@yahoo.fr [Unité de Recherche de Caractérisation Photothermique, Institut Préparatoire aux Etudes d' Ingénieurs de Nabeul (IPEIN), Université de Carthage (Tunisia); Saidi, F.; Hamila, R. [Université de Monastir, Laboratoire de Micro-Optoélectronique et Nanostructures, Faculté des Sciences de Monastir, Avenue de l' Environnement, Monastir 5019 (Tunisia); Yacoubi, N. [Unité de Recherche de Caractérisation Photothermique, Institut Préparatoire aux Etudes d' Ingénieurs de Nabeul (IPEIN), Université de Carthage (Tunisia); Maaref, H. [Université de Monastir, Laboratoire de Micro-Optoélectronique et Nanostructures, Faculté des Sciences de Monastir, Avenue de l' Environnement, Monastir 5019 (Tunisia); Auvray, L. [Laboratoire Multimateriaux et Interfaces, Université Claude Bernard Lyon I, 43, Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex (France)

    2013-07-15

    Optical and thermal properties of BGaAs/GaAs alloys grown by metal organic chemical vapor deposition (MOCVD) have been studied using both photothermal deflection spectroscopy (PDS) and photoluminescence spectroscopy (PL). It is found that gap energy decrease when increasing the boron composition. Then, the difference between the measured values of gap energies from PDS and PL is linked to the band tails above the conduction band formed by boron clustering in this structure. Indeed, a decrease in thermal conductivity with increasing the boron composition have been also shown and discussed.

  10. Static synchronous compensator with superconducting magnetic energy storage for high power utility applications

    International Nuclear Information System (INIS)

    Molina, Marcelo G.; Mercado, Pedro E.; Watanabe, Edson H.

    2007-01-01

    Power systems security in the case of contingencies is ensured by maintaining adequate 'short-term generation reserve'. This reserve must be appropriately activated by means of the primary frequency control (PFC). Because the generation is an electro-mechanical process, the primary control reserve controllability is not as fast as required, especially by modern power systems. Since the new improvements achieved on the conventional control methods have not been enough to satisfy the high requirements established, the necessity of enhancing the performance of the PFC has arisen. At present, the new energy storage systems (ESS) are a feasible alternative to store excess energy for substituting for the primary control reserve. In this way, it is possible to combine this new ESS with power converter based flexible ac transmission systems (FACTS). This allows an effective exchange of active power with the electric grid and, thus, enhances the PFC. This paper presents an improved PFC scheme incorporating a static synchronous compensator (STATCOM) coupled with a superconducting magnetic energy storage (SMES) device. A detailed full model and a control algorithm based on a decoupled current control strategy of the enhanced compensator are proposed. The integrated STATCOM/SMES controller topology includes three level, multi-pulse, voltage source inverters (VSI) with phase control and incorporates a two quadrant, three level, dc-dc chopper as the interface between the STATCOM and the SMES coil. A novel three level control scheme is proposed by using concepts of instantaneous power in the synchronous rotating d-q reference frame. The dynamic performance of the presented control algorithms is evaluated through digital simulation performed by using SimPowerSystems of SIMULINK/MATLAB T M , and technical analysis is performed to obtain conclusions about the benefits of using SMES devices in the PFC of the electric system. Presently, a laboratory scale prototype device based on

  11. The modified high-energy transport code, HETC, and design calculations for the SSC [Superconducting Super Collider

    International Nuclear Information System (INIS)

    Alsmiller, R.G. Jr.; Alsmiller, F.S.; Gabriel, T.A.; Hermann, O.W.; Bishop, B.L.

    1988-01-01

    The proposed Superconducting Super Collider (SSC) will have two circulating proton beams, each with an energy of 20 TeV. In order to perform detector and shield design calculations at these higher energies that are as accurate as possible, it is necessary to incorporate in the calculations the best available information on differential particle production from hadron-nucleus collisions. In this paper, the manner in which this has been done in the High-Energy Transport Code HETC will be described and calculated results obtained with the modified code will be compared with experimental data. 10 refs., 1 fig

  12. Experimental Observation of Non-'S-Wave' Superconducting Behavior in Bulk Superconducting Tunneling Junctions of Yba2Cu3O7-δ

    Directory of Open Access Journals (Sweden)

    Leandro Jose Guerra

    1998-06-01

    Full Text Available Evidence of non-s-wave superconductivity from normal tunneling experiments in bulk tunneling junctions of YBa2Cu3O7-δ is presented. The I-V and dI/dV characteristics of bulk superconducting tunneling junctions of YBa2Cu3O7-δ have been measured at 77.0K and clear deviation from s-wave superconducting behavior has been observed. The result agrees with d-wave symmetry, and interpreting the data in this way, the magnitude of the superconducting energy gap, 2Δ, is found to be (0.038 ± 0.002 eV. Comparing this energy gap with Tc (2Δ/kB Tc = 5.735, indicates that these high-Tc superconductors are strongly correlated materials, which in contrast with BCS-superconductors are believed to be weakly correlated.

  13. Superconducting state mechanisms and properties

    CERN Document Server

    Kresin, Vladimir Z; Wolf, Stuart A

    2014-01-01

    'Superconducting State' provides a very detailed theoretical treatment of the key mechanisms of superconductivity, including the current state of the art (phonons, magnons, and plasmons). A very complete description is given of the electron-phonon mechanism responsible for superconductivity in the majority of superconducting systems, and the history of its development, as well as a detailed description of the key experimental techniques used to study the superconducting state and determine the mechanisms. In addition, there are chapters describing the discovery and properties of the key superconducting compounds that are of the most interest for science, and applications including a special chapter on the cuprate superconductors. It provides detailed treatments of some very novel aspects of superconductivity, including multiple bands (gaps), the "pseudogap" state, novel isotope effects beyond BCS, and induced superconductivity.

  14. Superconductive energy storage. Final report, January 1, 1976 - September 30, 1981

    International Nuclear Information System (INIS)

    Boom, R.W.

    1982-01-01

    Superconductive Magnetic Energy Storage (SMES) research and development for DOE from 1976-1981 has advanced the design of SMES from one deep tunnel to a 15 tunnel hour-glass design to the present low aspect ratio surface trench large diameter storage solenoid. This final report, which refers to all previous detailed reports and publications, concentrates on the last design of 1981, the low aspect ratio design. The SMES project is an ongoing project which includes the continuous development of designs and components. This report describes conceptual designs and the current state of development for the conductor, struts and cryogenics. Two companion efforts, rock mechanics and electrical systems, have been supported by the Wisconsin Utilities and are given less coverage here, although many references are listed in the 176-item bibliography. The present state of the project is that $15 million dollars is needed to take the next step. The work to be done is to improve the design, complete the component developments, design and test fabrication equipment and undertake credible cost estimates

  15. Coupled superconducting qudit-resonator system: Energy spectrum, state population, and state transition under microwave drive

    Science.gov (United States)

    Liu, W. Y.; Xu, H. K.; Su, F. F.; Li, Z. Y.; Tian, Ye; Han, Siyuan; Zhao, S. P.

    2018-03-01

    Superconducting quantum multilevel systems coupled to resonators have recently been considered in some applications such as microwave lasing and high-fidelity quantum logical gates. In this work, using an rf-SQUID type phase qudit coupled to a microwave coplanar waveguide resonator, we study both theoretically and experimentally the energy spectrum of the system when the qudit level spacings are varied around the resonator frequency by changing the magnetic flux applied to the qudit loop. We show that the experimental result can be well described by a theoretical model that extends from the usual two-level Jaynes-Cummings system to the present four-level system. It is also shown that due to the small anharmonicity of the phase device a simplified model capturing the leading state interactions fits the experimental spectra very well. Furthermore we use the Lindblad master equation containing various relaxation and dephasing processes to calculate the level populations in the simpler qutrit-resonator system, which allows a clear understanding of the dynamics of the system under the microwave drive. Our results help to better understand and perform the experiments of coupled multilevel and resonator systems and can be applied in the case of transmon or Xmon qudits having similar anharmonicity to the present phase device.

  16. Superconducting magnetic energy storage (SMES) program. Progress report, January 1-December 31, 1984

    International Nuclear Information System (INIS)

    Rogers, J.D.

    1985-05-01

    The 30 MJ, 10 MW superconducting magnetic energy storage (SMES) system was devised to interact in the Western US Power System as an alternate means to damp unstable oscillations at 0.35 Hz on the Pacific HVAC Intertie. The SMES unit was installed at the Tacoma Substation of the Bonneville Power Administration (BPA). The operating limits of the 30 MJ SMES unit were established, and different means of controlling real and reactive power were tested. The unit can follow a sinusoidal power demand signal with an amplitude of up to 8.6 MW with the converter working in a 12 pulse mode. When the converter operates in the constant VAR mode, a time varying real power demand signal of up to 5 MW can be met. Experiments showed that the Pacific ac Intertie has current and reactive power variations of the same frequency as the modulating frequency of the SMES device. Endurance tests were run to assess the reliability of the SMES subsystems with a narrow band noise input, which is characteristic of the modulation signal for stabilizer operation. During the endurance tests, parameters of the ac power system were determined. Converter short circuit tests, load tests under various control conditions, dc breaker tests for coil current interruption, and converter failure mode tests were conducted. The experimental operation of the SMES system was concluded and the operation was terminated in early 1984

  17. Solving LFC problem in an interconnected power system using superconducting magnetic energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Farahani, Mohsen, E-mail: mhs.farahani@gmail.com [Sama Technical and Vocational Training College, Islamic Azad University, Karaj Branch, Karaj (Iran, Islamic Republic of); Ganjefar, Soheil [Department of Electrical Engineering, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of)

    2013-04-15

    Highlights: ► Load frequency control of PID type is combined with a SMES. ► Damping speed of frequency and tie-line power flow deviations are considerably increased. ► Optimal parameters of PID and SMES control loop are obtained by PS optimization. -- Abstract: This paper proposes the combination of a load frequency control (LFC) with superconducting magnetic energy storage (SMES) to solve the LFC problem in interconnected power systems. By using this combination, the speed damping of frequency and tie-line power flow deviations is considerably increased. A new control strategy of SMES is proposed in this paper. The problem of determining optimal parameters of PID and SMES control loop is considered as an optimization problem and a pattern search algorithm (PS) optimization is employed to solve it. The simulation results show that if an SMES unit is installed in an interconnected power system, in addition to eliminating oscillations and deviations, the settling time in the frequency and tie-line power flow responses is considerably reduced.

  18. Solving LFC problem in an interconnected power system using superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Farahani, Mohsen; Ganjefar, Soheil

    2013-01-01

    Highlights: ► Load frequency control of PID type is combined with a SMES. ► Damping speed of frequency and tie-line power flow deviations are considerably increased. ► Optimal parameters of PID and SMES control loop are obtained by PS optimization. -- Abstract: This paper proposes the combination of a load frequency control (LFC) with superconducting magnetic energy storage (SMES) to solve the LFC problem in interconnected power systems. By using this combination, the speed damping of frequency and tie-line power flow deviations is considerably increased. A new control strategy of SMES is proposed in this paper. The problem of determining optimal parameters of PID and SMES control loop is considered as an optimization problem and a pattern search algorithm (PS) optimization is employed to solve it. The simulation results show that if an SMES unit is installed in an interconnected power system, in addition to eliminating oscillations and deviations, the settling time in the frequency and tie-line power flow responses is considerably reduced

  19. Edge multi-energy soft x-ray diagnostic in Experimental Advanced Superconducting Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y. L.; Xu, G. S.; Wan, B. N.; Lan, H.; Liu, Y. L.; Wei, J.; Zhang, W.; Hu, G. H.; Wang, H. Q.; Duan, Y. M.; Zhao, J. L.; Wang, L.; Liu, S. C.; Ye, Y.; Li, J.; Lin, X.; Li, X. L. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Tritz, K. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Zhu, Y. B. [Department of Physics and Astronomy, University of California, Irvine, California 92697-4575 (United States)

    2015-12-15

    A multi-energy soft x-ray (ME-SXR) diagnostic has been built for electron temperature profile in the edge plasma region in Experimental Advanced Superconducting Tokamak (EAST) after two rounds of campaigns. Originally, five preamplifiers were mounted inside the EAST vacuum vessel chamber attached to five vertically stacked compact diode arrays. A custom mechanical structure was designed to protect the detectors and electronics under constraints of the tangential field of view for plasma edge and the allocation of space. In the next experiment, the mechanical structure was redesigned with a barrel structure to absolutely isolate it from the vacuum vessel. Multiple shielding structures were mounted at the pinhole head to protect the metal foils from lithium coating. The pre-amplifiers were moved to the outside of the vacuum chamber to avoid introducing interference. Twisted copper cooling tube was embedded into the back-shell near the diode to limit the temperature of the preamplifiers and diode arrays during vacuum vessel baking when the temperature reached 150 °C. Electron temperature profiles were reconstructed from ME-SXR measurements using neural networks.

  20. Economics of superconductive energy storage inductor-converter units in power systems

    International Nuclear Information System (INIS)

    Yadavalli, S.R.

    1975-01-01

    Since the original proposal by Boom and Peterson in 1972, there has been growing interest in superconductive energy storage inductor converter units (IC units) for use in large power systems for peak shaving and load leveling. Different aspects of it are being studied at the University of Wisconsin and elsewhere. An economic study of such IC units shows that large IC units, bigger than about 1000 MWh, are economically competitive with other peaking alternatives, larger units being more economical. External electrical circuit losses in IC units have negligible effect on their storage and power capacities. There are three credits which could be of significant economic value to IC units. These are: (1) transmission credit which varied from about $4 to $60/kW peak power, with a typical value of about $35/kW; (2) pollution credit which varied from about $5 to $160/kW with a typical value of $80/kW; and Spinning Reserve Credit which varied from about $20 to $370/kW with a typical value of $90/kW

  1. Edge multi-energy soft x-ray diagnostic in Experimental Advanced Superconducting Tokamak

    International Nuclear Information System (INIS)

    Li, Y. L.; Xu, G. S.; Wan, B. N.; Lan, H.; Liu, Y. L.; Wei, J.; Zhang, W.; Hu, G. H.; Wang, H. Q.; Duan, Y. M.; Zhao, J. L.; Wang, L.; Liu, S. C.; Ye, Y.; Li, J.; Lin, X.; Li, X. L.; Tritz, K.; Zhu, Y. B.

    2015-01-01

    A multi-energy soft x-ray (ME-SXR) diagnostic has been built for electron temperature profile in the edge plasma region in Experimental Advanced Superconducting Tokamak (EAST) after two rounds of campaigns. Originally, five preamplifiers were mounted inside the EAST vacuum vessel chamber attached to five vertically stacked compact diode arrays. A custom mechanical structure was designed to protect the detectors and electronics under constraints of the tangential field of view for plasma edge and the allocation of space. In the next experiment, the mechanical structure was redesigned with a barrel structure to absolutely isolate it from the vacuum vessel. Multiple shielding structures were mounted at the pinhole head to protect the metal foils from lithium coating. The pre-amplifiers were moved to the outside of the vacuum chamber to avoid introducing interference. Twisted copper cooling tube was embedded into the back-shell near the diode to limit the temperature of the preamplifiers and diode arrays during vacuum vessel baking when the temperature reached 150 °C. Electron temperature profiles were reconstructed from ME-SXR measurements using neural networks

  2. Specific features of designs of superconducting magnets for high-energy synchrotrons

    International Nuclear Information System (INIS)

    Monoszon, N.A.

    1979-01-01

    Distinctive features of designs of synchrotron superconducting magnetic systems (SMS) are considered. Some results of testing the prototypes of the ISABELLE storage ring magnets, the DABLER energy doubler and the accelerating-storage complex project are presented. Designs of di.ooles and quadrupoles are described. It is shown that the design of the DABLER SMS considerably differs from the ISABELLE SMS. The DABLER uses nonsaturated magnetic screens which provide lesser distortions of the magnetic field distribution. For the ISABELLE project a dipole with a two-layer winding has been developed which produced a field of 6.2 T. Magnetization curves as well as training and field distribution curves for a number of DABLER dipoles are presented. To prevent local overheating provision is made for using a heater enclosed in a winding. A 1 m dipole model with a sector winding of the DABLER type has been manufactured and tested in the IHEP. During tests a short-sample current and a total value of calculated field equal to 4.45 T in the chamber centre amd 5.3 T in the winding have been achieved

  3. Status on RF superconductivity at the institute for high energy physics

    International Nuclear Information System (INIS)

    Sevryukova, L.M.

    2003-01-01

    The development of SC cavities started at the Institute for High Energy Physics in September 1980 when the group of technology and study of SC cavities of the Research Institute of Nuclear Physics at Tomsk Polytechnic Institute moved there. At first the group worked at the Linear Accelerator Division, then later, in March 1993 the Federate Problem Laboratory for Technology and Study of the superconducting cavities of the Russian Atomic Ministry was founded at IHEP. The main goal of the SC cavity investigation is to study and develop the suppression methods for emission effects and conditions for thermomagnetic breakdown creation to increase the accelerating fields at SC cavities; also developing the experimental equipment to answer this goal. In this report the following items are enlightened in short: 1. Study and development of methods to suppress emission effects in SC cavities; 2. Study and development of methods to increase the threshold of the thermomagnetic breakdown. 3. Study of new materials and technologies. 4. SVAAP (SC accelerator for the applied purposes) project development. (author)

  4. Optimum design of flywheel energy storage system using superconducting magnetic bearings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Soo Hun; Lee, Jeung Gun; Kim, Jong Soo [Ajou University, Suwon (Korea, Republic of)

    1997-07-01

    Electricity demands changes by as much as 30% over a 12-hour period and results in significant costs for utilities as power output get adjusted to meet these changes. The purpose of High-Temperature Superconducting Flywheel Energy Storage System (HTS FES) is to store unused nighttime electricity until it is needed during the daytime. The HTS FES is designed by using flywheel shape function with uniform stress. Natural frequencies and natural modes are estimated by using Finite Element Analysis and correlated with the experimental results. By performing a vibration test, the stiffness and the damping ratio of the flux line, the flux pinning phenomenon are measured Using the modal parameters of each component and the measured stiffness, damping coefficient, the IDEAS System Dynamics Analysis is performed and frequency response function(FRF) of the joined system is obtained. The effect of tangential torque on flywheel has been studied using cantilever shaft with rotor at free end. To obtain the equation of motion, the Lagrange`s equation and the assumed-mode method are used. As a admissible function, a free vibration mode of clamped-free beam is used. The eigenvalues are computed and the stability boundaries are obtained. 19 refs., 33 figs. (author)

  5. Implementing energy efficiency policy in Croatia: Stakeholder interactions for closing the gap

    International Nuclear Information System (INIS)

    Bukarica, Vesna; Robić, Slavica

    2013-01-01

    Despite the substantial efforts made to develop sound energy efficiency policies, the desired effects in terms of achieved energy savings are lacking. This phenomenon is known as the energy efficiency gap and has been extensively investigated in the literature. Barrier models to explain the gap are primarily oriented towards the technical aspects of energy efficiency and often disregard its social aspects. The aim of our research was to identify the social structures that play a prominent role in moving society towards greater energy efficiency, to investigate their perceptions of the levers for and brakes to greater participation in the implementation of energy efficiency measures and to provide recommendations for policy enhancement. Four groups of stakeholders were identified: public institutions, businesses, civil society organisations and the media. A survey was administered to 93 representatives of these groups in Croatia. The results indicate that to encourage the society to adopt energy efficiency improvements, it is crucial for public institutions to play a leading role with the support of strong and visible political commitment. The level of benefit recognition among all groups is weak, which together with the slow progression of dialogue between and within the analysed groups is preventing full policy uptake. - Highlights: • We analyse attitudes of Croatian stakeholders towards energy efficiency. • Responses are gathered from public institutions, businesses, CSOs and media. • Lacking political will and public dialogue dominantly cause and maintain the gap. • Participative policy making and clear leadership in implementing are needed

  6. Superconductivity of small particles

    International Nuclear Information System (INIS)

    Leavens, C.R.; Fenton, E.W.

    1981-01-01

    The Eliashberg gap equations are used to investigate the contribution of surface-phonon softening to the size dependence of the superconducting transition temperature (T/sub c/) of small metallic particles. Because of our limited quantitative knowledge of phonon spectra and electron-phonon coupling in the surface region, the effect cannot be calculated with certainty. Previous calculations which agree with experiment depend on a fortuitous choice of input parameters which cannot be justified at present. For this reason the absence of any observable size effect for T/sub c/ in Pb is especially important. This null effect is obtained in Pb if the electron-phonon coupling strength is the same in the surface region as in the bulk. This assumption can be tested experimentally because it means that the energy gap of Pb should not be independent of particle size but rather should increase significantly with decreasing radius. Hence, measurement of the size dependence of the energy gap for well-characterized small particles of Pb could provide information regarding the importance of the phonon-softening mechanism, at least for Pb

  7. A modified BCS theory of heavy fermion superconductivity

    International Nuclear Information System (INIS)

    Baral, P.C.; Rout, G.C.

    2012-01-01

    In this paper we derive an expression for the superconducting gap equation for U and Ce based heavy fermion (HF) systems within a modified weak coupling theory of superconductivity. The calculated gap equation presents a mixture of pairing amplitudes of two different quasi-particle bands α and β. These two gap equations are solved numerically and self-consistently within the cut-off energy which arises due to the Kondo energy. It is found that the energy dependence of the enhanced density of states for the HF systems clearly manifests itself in the theory and the Kondo energy naturally takes the role of cut-off energy (ω c ), as long as the effective cut-off energy is large in comparison with the Kondo energy. The numerical analysis confirms this result and shows that superconducting transition temperature is independent of effective cut-off energy employed within this approach. The temperature dependence of gap equations are studied by varying the model parameters like positions of f-level, hybridization and coupling constants of the HF systems. (author)

  8. Hermetically sealed superconducting magnet motor

    Science.gov (United States)

    DeVault, Robert C.; McConnell, Benjamin W.; Phillips, Benjamin A.

    1996-01-01

    A hermetically sealed superconducting magnet motor includes a rotor separated from a stator by either a radial gap, an axial gap, or a combined axial and radial gap. Dual conically shaped stators are used in one embodiment to levitate a disc-shaped rotor made of superconducting material within a conduit for moving cryogenic fluid. As the rotor is caused to rotate when the field stator is energized, the fluid is pumped through the conduit.

  9. Superconductivity in power engineering

    International Nuclear Information System (INIS)

    1989-01-01

    This proceedings volume presents 24 conference papers and 15 posters dealing with the following aspects: 1) Principles and elementary aspects of high-temperature superconductivity (3 plenary lectures); 2) Preparation, properties and materials requirements of metallic or oxide superconductors (critical current behaviour, soldered joints, structural studies); 3) Magnet technology (large magnets for thermonuclear fusion devices; magnets for particle accelerators and medical devices); 4) Magnetic levitation and superconductivity; 5) Cryogenics; 6) Energy storage systems using superconducting coils (SMES); 7) Superconducting power transmission cables, switches, transformers, and generator systems for power plant; 8) Supporting activities, industrial aspects, patents. There are thirty-eight records in the ENERGY database relating to individual conference papers. (MM) [de

  10. Energy Gap in the Aetiology of Body Weight Gain and Obesity: A Challenging Concept with a Complex Evaluation and Pitfalls

    Directory of Open Access Journals (Sweden)

    Yves Schutz

    2014-01-01

    Full Text Available The concept of energy gap(s is useful for understanding the consequence of a small daily, weekly, or monthly positive energy balance and the inconspicuous shift in weight gain ultimately leading to overweight and obesity. Energy gap is a dynamic concept: an initial positive energy gap incurred via an increase in energy intake (or a decrease in physical activity is not constant, may fade out with time if the initial conditions are maintained, and depends on the ‘efficiency' with which the readjustment of the energy imbalance gap occurs with time. The metabolic response to an energy imbalance gap and the magnitude of the energy gap(s can be estimated by at least two methods, i.e. i assessment by longitudinal overfeeding studies, imposing (by design an initial positive energy imbalance gap; ii retrospective assessment based on epidemiological surveys, whereby the accumulated endogenous energy storage per unit of time is calculated from the change in body weight and body composition. In order to illustrate the difficulty of accurately assessing an energy gap we have used, as an illustrative example, a recent epidemiological study which tracked changes in total energy intake (estimated by gross food availability and body weight over 3 decades in the US, combined with total energy expenditure prediction from body weight using doubly labelled water data. At the population level, the study attempted to assess the cause of the energy gap purported to be entirely due to increased food intake. Based on an estimate of change in energy intake judged to be more reliable (i.e. in the same study population and together with calculations of simple energetic indices, our analysis suggests that conclusions about the fundamental causes of obesity development in a population (excess intake vs. low physical activity or both is clouded by a high level of uncertainty.

  11. Superconducting classes in heavy fermions systems

    International Nuclear Information System (INIS)

    Volovik, G.E.; Gor'kov, L.P.

    1985-01-01

    A mathematical method for constructing of the superconductivity classes for nontrivial superconductors is described. All superconducting phases which can arise directly on transition from the normal state for cubic, hexagonal and tetragonal symmetries are enumerated. It is shown that in the triplet case the types of zeros in the energy gap always correspond to points on the Fermi surface, whereas for signlet pairing the whole zero lines are possible. For the phases with zeros on the lines or points, the low-temperature specific heat varies as T 2 on T 3 respectivelty. The superconducting phases which arise from the multydimensional representations may possess a magnetic moment which induces currents on the surface of a monodomain sample even in the absence of an external magnetic field. The specific case of a domain wall is considered and it is shown that large magnetic currents of magnetization are present in the wall

  12. Higgsless superconductivity from topological defects in compact BF terms

    Directory of Open Access Journals (Sweden)

    M. Cristina Diamantini

    2015-02-01

    Full Text Available We present a new Higgsless model of superconductivity, inspired from anyon superconductivity but P- and T-invariant and generalisable to any dimension. While the original anyon superconductivity mechanism was based on incompressible quantum Hall fluids as average field states, our mechanism involves topological insulators as average field states. In D space dimensions it involves a (D−1-form fictitious pseudovector gauge field which originates from the condensation of topological defects in compact low-energy effective BF theories. In the average field approximation, the corresponding uniform emergent charge creates a gap for the (D−2-dimensional branes via the Magnus force, the dual of the Lorentz force. One particular combination of intrinsic and emergent charge fluctuations that leaves the total charge distribution invariant constitutes an isolated gapless mode leading to superfluidity. The remaining massive modes organise themselves into a D-dimensional charged, massive vector. There is no massive Higgs scalar as there is no local order parameter. When electromagnetism is switched on, the photon acquires mass by the topological BF mechanism. Although the charge of the gapless mode (2 and the topological order (4 are the same as those of the standard Higgs model, the two models of superconductivity are clearly different since the origins of the gap, reflected in the high-energy sectors are totally different. In 2D this type of superconductivity is explicitly realised as global superconductivity in Josephson junction arrays. In 3D this model predicts a possible phase transition from topological insulators to Higgsless superconductors.

  13. Behaviour of the energy gap in a model of Josephson coupled Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Tonel, A P; Links, J; Foerster, A

    2005-01-01

    In this work we investigate the energy gap between the ground state and the first excited state in a model of two single-mode Bose-Einstein condensates coupled via Josephson tunnelling. The energy gap is never zero when the tunnelling interaction is non-zero. The gap exhibits no local minimum below a threshold coupling which separates a delocalized phase from a self-trapping phase that occurs in the absence of the external potential. Above this threshold point one minimum occurs close to the Josephson regime, and a set of minima and maxima appear in the Fock regime. Expressions for the position of these minima and maxima are obtained. The connection between these minima and maxima and the dynamics for the expectation value of the relative number of particles is analysed in detail. We find that the dynamics of the system changes as the coupling crosses these points

  14. Interplay between the energy gap and heat capacity in S-wave superconductor

    International Nuclear Information System (INIS)

    Gonczarek, R.; Mulak, M.

    1998-01-01

    Starting from the postulated, generalized form of the BCS gap equation, suitable for a wide class of microscopic models, the thermodynamic properties of S-wave superconductors are studied. The precise analytical formulas for the main thermodynamic quantities are given and discussed in the characteristic temperature limits. In particular the inversion of the equations defining the specific heat as a function of Δ(T), i.e. the temperature dependence of the energy gap in S-wave superconductor is presented. It makes possible a reconstruction of the energy gap as a function of temperature from the heat capacity data. As predicted, in the frame of the model, the other thermodynamic quantities from the Δ(T) function seem also to be interesting. (orig.)

  15. Zn induced in-gap electronic states in La214 probed by uniform magnetic susceptibility: relevance to the suppression of superconducting T c

    Science.gov (United States)

    Islam, R. S.; Naqib, S. H.

    2018-02-01

    Substitution of isovalent non-magnetic defects, such as Zn, in the CuO2 plane strongly modifies the magnetic properties of strongly electron correlated hole doped cuprate superconductors. The reason for enhanced uniform magnetic susceptibility, χ, in Zn substituted cuprates is debatable. Generally the defect induced magnetic behavior has been analyzed mainly in terms of two somewhat contrasting scenarios. The first one is due to independent localized moments appearing in the vicinity of Zn arising because of the strong electronic/magnetic correlations present in the host compound and the second one is due to transfer of quasiparticle (QP) spectral weight and creation of weakly localized low-energy electronic states associated with each Zn atom in place of an in-plane Cu. If the second scenario is correct, one should expect a direct correspondence between Zn induced suppression of the superconducting transition temperature, T c, and the extent of the enhanced magnetic susceptibility at low temperature. In this case, the low-T enhancement of χ would be due to weakly localized QP states at low energy and these electronic states will be precluded from taking part in Cooper pairing. We explore this second possibility by analyzing the χ(T) data for La2-x Sr x Cu1-y Zn y O4 with different hole contents, p (=x), and Zn concentrations (y) in this paper. The results of our analysis support this scenario.

  16. Technical Barriers, Gaps, and Opportunities Related to Home Energy Upgrade Market Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, M. V. A.

    2011-11-01

    This report outlines the technical barriers, gaps, and opportunities that arise in executing home energy upgrade market delivery approaches, as identified through research conducted by the U.S. Department of Energy's Building America program. The objective of this report is to outline the technical1 barriers, gaps, and opportunities that arise in executing home energy upgrade market delivery approaches, as identified through research conducted by the U.S. Department of Energy's (DOE) Building America program. This information will be used to provide guidance for new research necessary to enable the success of the approaches. Investigation for this report was conducted via publications related to home energy upgrade market delivery approaches, and a series of interviews with subject matter experts (contractors, consultants, program managers, manufacturers, trade organization representatives, and real estate agents). These experts specified technical barriers and gaps, and offered suggestions for how the technical community might address them. The potential benefits of home energy upgrades are many and varied: reduced energy use and costs; improved comfort, durability, and safety; increased property value; and job creation. Nevertheless, home energy upgrades do not comprise a large part of the overall home improvement market. Residential energy efficiency is the most complex climate intervention option to deliver because the market failures are many and transaction costs are high (Climate Change Capital 2009). The key reasons that energy efficiency investment is not being delivered are: (1) The opportunity is highly fragmented; and (2) The energy efficiency assets are nonstatus, low-visibility investments that are not properly valued. There are significant barriers to mobilizing the investment in home energy upgrades, including the 'hassle factor' (the time and effort required to identify and secure improvement works), access to financing, and the

  17. Finite-size scaling for quantum chains with an oscillatory energy gap

    International Nuclear Information System (INIS)

    Hoeger, C.; Gehlen, G. von; Rittenberg, V.

    1984-07-01

    We show that the existence of zeroes of the energy gap for finite quantum chains is related to a nonvanishing wavevector. Finite-size scaling ansaetze are formulated for incommensurable and oscillatory structures. The ansaetze are verified in the one-dimensional XY model in a transverse field. (orig.)

  18. Photoemission study of the temperature-dependent energy-gap formation in the Kondo semiconductor CeRhAs

    International Nuclear Information System (INIS)

    Shimada, K.; Arita, M.; Takeda, Y.; Namatame, H.; Taniguchi, M.; Higashiguchi, M.; Oguchi, T.; Sasakawa, T.; Suemitsu, T.; Takabatake, T.

    2004-01-01

    Full text: The orthorhombic CeRhAs, known as a Kondo semiconductor, has attracted much interest for its unusual energy-gap formation associated with the successive 1st order phase transitions. In order to elucidate the mechanism of the energy- gap formation, we have done high-resolution temperature-dependent photoemission spectroscopy on the undulator beamlines of a compact electron-storage ring, HiSOR, at Hiroshima University. We have observed directly the energy-gap formation in the Ce 4f states and in the conduction bands. Comparing with the isostructural Kondo semimetal CeRhSb, we discuss the energy gap formation in CeRhAs

  19. Measuring the critical current in superconducting samples made of NT-50 under pulse irradiation by high-energy particles

    International Nuclear Information System (INIS)

    Vasilev, P.G.; Vladimirova, N.M.; Volkov, V.I.; Goncharov, I.N.; Zajtsev, L.N.; Zel'dich, B.D.; Ivanov, V.I.; Kleshchenko, E.D.; Khvostov, V.B.

    1981-01-01

    The results of tests of superconducting samples of an uninsulated wire of the 0.5 mm diameter, containing 1045 superconducting filaments of the 10 μm diameter made of NT-50 superconductor in a copper matrix, are given. The upper part of the sample (''closed'') is placed between two glass-cloth-base laminate plates of the 50 mm length, and the lower part (''open'') of the 45 mm length is immerged into liquid helium. The sample is located perpendicular to the magnetic field of a superconducting solenoid and it is irradiated by charged particle beams at the energy of several GeV. The measurement results of permissible energy release in the sample depending on subcriticality (I/Isub(c) where I is an operating current through the sample, and Isub(c) is a critical current for lack of the beam) and the particle flux density, as well as of the maximum permissible fluence depending on subcriticality. In case of the ''closed'' sample irradiated by short pulses (approximately 1 ms) for I/Isub(c) [ru

  20. Role of the Band Gap for the Interaction Energy of Coadsorbed Fragments

    DEFF Research Database (Denmark)

    Castelli, Ivano Eligio; Man, Isabela-Costinela; Soriga, Stefan-Gabriel

    2017-01-01

    on semiconductors. We propose here a correlation between the cooperative interaction energy, i.e., the energy difference between the adsorption energies of coadsorbed electron donor–acceptor pair and isolated fragments and the band gap of the clean oxide surface. We demonstrate this effect for a number of oxides...... and donor–acceptor pairs and explain it with the shift in the Fermi level before and after the adsorption. The conclusion is that the adsorption of acceptor–donor pairs is considerably more favorable compared to unpaired fragments,and this energy difference is approximately equal to the value of the band...

  1. Design and construction of the main linac module for the superconducting energy recovery linac project at Cornell

    Energy Technology Data Exchange (ETDEWEB)

    Eichhorn, R.; Bullock, B.; He, Y.; Hoffstaetter, G.; Liepe, M.; O' Connell, T.; Quigley, P.; Sabol, D.; Sears, J.; Smith, E.; Veshcherevich, V. [Cornell Laboratory for Accelerator-based Science and Education (CLASSE), Cornell University, 161 Synchrotron Drive, Ithaca, NY 14853 (United States)

    2014-01-29

    Cornell University has been designing and building superconducting accelerators for various applications for more than 50 years. Currently, an energy-recovery linac (ERL) based synchrotron-light facility is proposed making use of the existing CESR facility. As part of the phase 1 R and D program funded by the NSF, critical challenges in the design were addressed, one of them being a full linac cryo-module. It houses 6 superconducting cavities- operated at 1.8 K in continuous wave (CW) mode - with individual HOM absorbers and one magnet/ BPM section. Pushing the limits, a high quality factor of the cavities (2⋅10{sup 10}) and high beam currents (100 mA accelerated plus 100 mA decelerated) are targeted. We will present the design of the main linac cryo-module (MLC) being finalized recently, its cryogenic features and report on the status of the fabrication which started in late 2012.

  2. Superconductivity and their applications

    OpenAIRE

    Roque, António; Sousa, Duarte M.; Fernão Pires, Vítor; Margato, Elmano

    2017-01-01

    Trabalho apresentado em International Conference on Renewable Energies and Power Quality (ICREPQ’17), 4 a 6 de Abril de 2017, Málaga, Espanha The research in the field of superconductivity has led to the synthesis of superconducting materials with features that allow you to expand the applicability of this kind of materials. Among the superconducting materials characteristics, the critical temperature of the superconductor is framing the range and type of industrial applications that can b...

  3. A bi-annular-gap magnetorheological energy absorber for shock and vibration mitigation

    Science.gov (United States)

    Bai, Xian-Xu; Wereley, Norman M.; Choi, Young-Tai; Wang, Dai-Hua

    2012-04-01

    For semi-active shock and vibration mitigation systems using magnetorheological energy absorbers (MREAs), the minimization of the field-off damper force of the MREA at high speed is of particular significance because the damper force due to the viscous damping at high speed becomes too excessive and thus the controllable dynamic force range that is defined by the ratio of the field-on damper force to the field-off damper force is significantly reduced. In this paper, a bi-annular-gap MREA with an inner-set permanent magnet is proposed to decrease the field-off damper force at high speed while keeping appropriate dynamic force range for improving shock and vibration mitigation performance. In the bi-annular-gap MREA, two concentric annular gaps are configured in parallel so as to decrease the baseline damper force and both magnetic activation methods using the electromagnetic coil winding and the permanent magnet are used to keep holding appropriate magnetic intensity in these two concentric annular gaps in the consideration of failure of the electric power supply. An initial field-on damper force is produced by the magnetic field bias generated from the inner-set permanent magnet. The initial damper force of the MREA can be increased (or decreased) through applying positive (or negative) current to the electromagnetic coil winding inside the bi-annular-gap MREA. After establishing the analytical damper force model of the bi-annular-gap MREA using a Bingham-plastic nonlinear fluid model, the principle and magnetic properties of the MREA are analytically validated and analyzed via electromagnetic finite element analysis (FEA). The performance of the bi-annular-gap MREA is also theoretically compared with that of a traditional single-annular- gap MREA with the constraints of an identical volume by the performance matrix, such as the damper force, dynamic force range, and Bingham number with respect to different excitation velocities.

  4. Topology Comparison of Superconducting Generators for 10-MW Direct-Drive Wind Turbines: Cost of Energy Based

    DEFF Research Database (Denmark)

    Liu, Dong; Polinder, Henk; Abrahamsen, Asger Bech

    2017-01-01

    This paper aims at finding feasible electromagnetic designs of superconducting synchronous generators (SCSGs) for a 10-MW direct-drive wind turbine. Since a lower levelized cost of energy (LCoE) increases the feasibility of SCSGs in this application, 12 generator topologies are compared regarding...... their LCoE in a simplified form of levelized equipment cost of energy (LCoE$_{\\text{eq}}$). MgB$_2$ wires are employed in the field winding. Based on the current unit cost and critical current density capability of the MgB $_2$ wire at 20 K, the topologies with more iron have a much lower LCo...

  5. Anomalous enhancement of the lower critical field deep in the superconducting state of LaRu4As12

    Science.gov (United States)

    Juraszek, J.; Bochenek, Ł.; Wawryk, R.; Henkie, Z.; Konczykowski, M.; Cichorek, T.

    2018-05-01

    LaRu4As12 with the critical temperature Tc = 10.4 K displays several features which point at a non-singlet superconducting order parameter, although the bcc crystal structure of the filled skutterudites does not favour the emergence of multiple energy gaps. LaRu4As12 displays an unexpected enhancement of the lower critical field deep in superconducting state which can be attributed to the existence of two superconducting gaps. At T = 0.4 K, the local magnetization measurements were performed utilizing miniaturized Hall sensors.

  6. LHC Abort Gap Monitoring and Cleaning

    CERN Document Server

    Meddahi, M; Boccardi, A; Butterworth, A; Fisher, A S; Gianfelice-Wendt, E; Goddard, B; Hemelsoet, G H; Höfle, W; Jacquet, D; Jaussi, M; Kain, V; Lefevre, T; Shaposhnikova, E; Uythoven, J; Valuch, D

    2010-01-01

    Unbunched beam is a potentially serious issue in the LHC as it may quench the superconducting magnets during a beam abort. Unbunched particles, either not captured by the RF system at injection or leaking out of the RF bucket, will be removed by using the existing damper kickers to excite resonantly the particles in the abort gap. Following beam simulations, a strategy for cleaning the abort gap at different energies was proposed. The plans for the commissioning of the beam abort gap cleaning are described and first results from the beam commissioning are presented.

  7. A superconducting thrust-bearing system for an energy storage flywheel

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, T.A.; Cansiz, A.; Campbell, A.M. [IRC in Superconductivity, Cambridge (United Kingdom)

    2002-05-01

    We have constructed a bearing system for an energy storage flywheel. This bearing system uses a combination of permanent magnets and superconductors in an arrangement commonly termed as an Evershed bearing. In an Evershed system there are in fact two bearings which act in concert. In our system we have one bearing constructed entirely out of permanent magnets acting in attraction. This system bears the weight of the flywheel (43.6 kg) but would not, on its own, be stable. Stability is provided by a superconducting bearing which is formed by the interaction between the magnetic field of a permanent magnet sited on the rotor and superconductors on the stator. This overall arrangement is stable over a range of levitation heights and has been tested at rotation speeds of up to around 12 Hz (the maximum speed is dictated by the drive system not the bearing system). There is a sharp resonance peaking at between 2 and 3 Hz and spin down tests indicate that the equivalent coefficient of friction is of the order of 10{sup -5}. The rate of change of velocity is, however, not constant so the drag is clearly not solely frictional. The position of the resonance is dictated by the stiffness of the bearing relative to the mass of the flywheel but the amplitude of the resonance is dictated by the variation in magnitude of the magnetic field of the permanent magnets. Large magnets are (at present) fabricated in sections and this leads to a highly inhomogeneous field. The field has been smoothed by using a combination of iron which acts passively and copper which provides magnetic shielding due to the generation of eddy currents and therefore acts as an 'active' component. Calculations based on the spin down tests indicate that the resultant variation in field is of the order of 3% and measurements are being carried out to confirm this. (author)

  8. Gaps in tools assessing the energy implications of renovation versus rebuilding decisions

    DEFF Research Database (Denmark)

    Goldstein, Benjamin Paul; Herbøl, Mads; Meza, Maria Josefina Figueroa

    2013-01-01

    to evaluate project level energy-related decisions than at larger scales. Information gaps identified within assessment tools lead to uncertainty for decision makers about which option improves energy efficiency. In the case of a number of large-scale EU building renovating/renewing projects these tools have......The state of building stocks changes over time. Owners and municipalities face the choice to renovate or rebuild buildings to improve energy efficiency. This review addresses how current sustainability assessment tools support these decisions. It finds that advanced tools are better tailored...... been scarcely used or merely suggested during planning. Recent advances in sustainability assessment tools can begin to close some of the existing knowledge gaps, while incentives and stricter legislation may improve their usage rates....

  9. Conductivity peak, relaxation dynamics, and superconducting gap of YBa2Cu3O7 studied by terahertz and femtosecond optical spectroscopies

    International Nuclear Information System (INIS)

    Frenkel, A.; Gao, F.; Liu, Y.; Whitaker, J.F.; Uher, C.; Hou, S.Y.; Phillips, J.M.

    1996-01-01

    Recent measurements at microwave, terahertz (THz), and infrared frequencies have revealed a peak in σ 1 below T c . Based on our THz measurements, which were performed on high quality, single crystal films of YBCO (900 and 500 A), we have found that σ 1 features a peak which increases in amplitude and shifts to lower temperatures as frequency changes from 1.2 to 0.4 THz. Although the quasiparticle relaxation time extracted from these results using the two-fluid Drude model exhibits an enhancement below T c , the analysis may not be adequate to account for the strong frequency dependence of the conductivity peak by the competition between the drop in scattering rate and the decreasing normal fluid density with temperature. On the contrary, we were able to account for the frequency dependent σ 1 by fitting with Mattis-Bardeen theory (modified to include scattering) using a slower average rate of increase of the anisotropic gap than for the BCS case as temperature decreases below T c . This is consistent with the higher normal fluid density (higher than Gorter-Casimir values) from the two-fluid model interpretation of our THz results. Thus, we have found evidence of BCS coherence factors in a high-T c superconductor with a slower than BCS gap increase below T c . We have discussed the role of coherence factors to account for the presence of the conductivity peak and the absence of the peak in NMR relaxation rate. Furthermore, we have presented a model for the quasiparticle relaxation time measured by the femtosecond pump-probe spectroscopy. This model allowed us to find a fit to the temperature-dependent energy gap function which is also consistent with the slower gap increase below T c

  10. Applied superconductivity

    CERN Document Server

    Newhouse, Vernon L

    1975-01-01

    Applied Superconductivity, Volume II, is part of a two-volume series on applied superconductivity. The first volume dealt with electronic applications and radiation detection, and contains a chapter on liquid helium refrigeration. The present volume discusses magnets, electromechanical applications, accelerators, and microwave and rf devices. The book opens with a chapter on high-field superconducting magnets, covering applications and magnet design. Subsequent chapters discuss superconductive machinery such as superconductive bearings and motors; rf superconducting devices; and future prospec

  11. Influence of Superconductivity on Crystal Electric Field Transitions in La1-xTbxAl2

    DEFF Research Database (Denmark)

    Feile, R.; Loewenhaupt, M.; Kjems, Jørgen

    1981-01-01

    Inelastic neutron scattering from the crystal electric field transitions in La1-xTbxAl2 single crystals has revealed an abrupt increase in the lifetimes of these transitions when the system becomes superconducting. An increase in the integrated intensities is also observed. The lifetime effects...... are quantitatively reproduced by existing theories, which take into account the reduced scattering of the conduction electrons by the magnetic ions due to the creation of the superconducting energy gap 2Δ(T)....

  12. The formation of Cooper pairs and the nature of superconducting currents

    International Nuclear Information System (INIS)

    Weisskopf, V.F.

    1979-12-01

    A simple physical explanation is given for the formation of Cooper pairs in a superconducting metal, for the origin of the attractive force causing the binding of the pairs, for the forming of a degenerate Bose gas by the Cooper pairs, for the finite energy gap that prevents the ensemble of electrons to change its quantum state at low temperatures, and for the existence of permanent currents in a superconducting wire. (orig.)

  13. The formation of Cooper pairs and the nature of superconducting currents

    International Nuclear Information System (INIS)

    Weisskopf, V.F.

    1981-01-01

    A simple physical explanation is given for the formation of Cooper pairs in a superconducting metal, for the origin of the attractive force causing the binding of the pairs, for the forming of a degenerate Bose gas by the Cooper pairs, for the finite energy gap that prevents the ensemble of electrons from changing its quantum state at low temperatures, and for the existence of permanent currents in a superconducting wire. (author)

  14. Tuning the energy gap of bilayer α-graphyne by applying strain and electric field

    Science.gov (United States)

    Yang, Hang; Wu, Wen-Zhi; Jin, Yu; Wan-Lin, Guo

    2016-02-01

    Our density functional theory calculations show that the energy gap of bilayer α-graphyne can be modulated by a vertically applied electric field and interlayer strain. Like bilayer graphene, the bilayer α-graphyne has electronic properties that are hardly changed under purely mechanical strain, while an external electric field can open the gap up to 120 meV. It is of special interest that compressive strain can further enlarge the field induced gap up to 160 meV, while tensile strain reduces the gap. We attribute the gap variation to the novel interlayer charge redistribution between bilayer α-graphynes. These findings shed light on the modulation of Dirac cone structures and potential applications of graphyne in mechanical-electric devices. Project supported by the National Key Basic Research Program of China (Grant Nos. 2013CB932604 and 2012CB933403), the National Natural Science Foundation of China (Grant Nos. 51472117 and 51535005), the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures, China (Grant No. 0414K01), the Nanjing University of Aeronautics and Astronautics (NUAA) Fundamental Research Funds, China (Grant No. NP2015203), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

  15. Energy Flow and Rapidity Gaps Between Jets in Photoproduction at HERA

    CERN Document Server

    Adloff, C.; Andrieu, B.; Anthonis, T.; Arkadov, V.; Astvatsatourov, A.; Babaev, A.; Bahr, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Bate, P.; Becker, J.; Beglarian, A.; Behnke, O.; Beier, C.; Belousov, A.; Benisch, T.; Berger, C.; Berndt, T.; Bizot, J.C.; Boehme, J.; Boudry, V.; Braunschweig, W.; Brisson, V.; Broker, H.B.; Brown, D.P.; Bruckner, W.; Bruncko, D.; Burger, J.; Busser, F.W.; Bunyatyan, A.; Burrage, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cao, Jun; Caron, S.; Cassol-Brunner, F.; Clarke, D.; Collard, C.; Contreras, J.G.; Coppens, Y.R.; Coughlan, J.A.; Cousinou, M.C.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; Davidsson, M.; Delcourt, B.; Delerue, N.; Demirchyan, R.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dingfelder, J.; Dixon, P.; Dodonov, V.; Dowell, J.D.; Droutskoi, A.; Dubak, A.; Duprel, C.; Eckerlin, Guenter; Eckstein, D.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellerbrock, M.; Elsen, E.; Erdmann, M.; Erdmann, W.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Ferron, S.; Fleischer, M.; Fleming, Y.H.; Flugge, G.; Fomenko, A.; Foresti, I.; Formanek, J.; Franke, G.; Gabathuler, E.; Gabathuler, K.; Garvey, J.; Gassner, J.; Gayler, Joerg; Gerhards, R.; Gerlich, C.; Ghazaryan, Samvel; Goerlich, L.; Gogitidze, N.; Grab, C.; Grassler, H.; Greenshaw, T.; Grindhammer, Guenter; Hadig, T.; Haidt, D.; Hajduk, L.; Haller, J.; Haynes, W.J.; Heinemann, B.; Heinzelmann, G.; Henderson, R.C.W.; Hengstmann, S.; Henschel, H.; Heremans, R.; Herrera, G.; Herynek, I.; Hildebrandt, M.; Hilgers, M.; Hiller, K.H.; Hladky, J.; Hoting, P.; Hoffmann, D.; Horisberger, R.; Hurling, S.; Ibbotson, M.; Issever, C .; Jacquet, M.; Jaffre, M.; Janauschek, L.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, C.; Johnson, D.P.; Jones, M.A.S.; Jung, H.; Kant, D.; Kapichine, M.; Karlsson, M.; Karschnick, O.; Keil, F.; Keller, N.; Kennedy, J.; Kenyon, I.R.; Kermiche, S.; Kiesling, Christian M.; Kjellberg, P.; Klein, M.; Kleinwort, C.; Kluge, T.; Knies, G.; Koblitz, B.; Kolya, S.D.; Korbel, V.; Kostka, P.; Kotelnikov, S.K.; Koutouev, R.; Koutov, A.; Krehbiel, H.; Kroseberg, J.; Kruger, K.; Kupper, A.; Kuhr, T.; Kurca, T.; Lamb, D.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Laycock, P.; Lebailly, E.; Lebedev, A.; Leissner, B.; Lemrani, R.; Lendermann, V.; Levonian, S.; Lindstroem, M.; List, B.; Lobodzinska, E.; Lobodzinski, B.; Loginov, A.; Loktionova, N.; Lubimov, V.; Luders, S.; Luke, D.; Lytkin, L.; Mahlke-Kruger, H.; Malden, N.; Malinovski, E.; Malinovski, I.; Maracek, R.; Marage, P.; Marks, J.; Marshall, R.; Martyn, H.U.; Martyniak, J.; Maxfield, S.J.; Meer, D.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Meyer, P.O.; Mikocki, S.; Milstead, D.; Mkrtchyan, T.; Mohr, R.; Mohrdieck, S.; Mondragon, M.N.; Moreau, F.; Morozov, A.; Morris, J.V.; Muller, K.; Murin, P.; Nagovizin, V.; Naroska, B.; Naumann, J.; Naumann, T.; Nellen, G.; Newman, Paul R.; Nicholls, T.C.; Niebergall, F.; Niebuhr, C.; Nix, O.; Nowak, G.; Olsson, J.E.; Ozerov, D.; Panassik, V.; Pascaud, C.; Patel, G.D.; Peez, M.; Perez, E.; Phillips, J.P.; Pitzl, D.; Poschl, R.; Potachnikova, I.; Povh, B.; Radel, G.; Rauschenberger, J.; Reimer, P.; Reisert, B.; Reyna, D.; Risler, C.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rusakov, S.; Rybicki, K.; Sankey, D.P.C.; Schatzel, S.; Scheins, J.; Schilling, F.P.; Schleper, P.; Schmidt, D.; Schmidt, S.; Schmitt, S.; Schneider, M.; Schoeffel, L.; Schoning, A.; Schorner, T.; Schroder, V.; Schultz-Coulon, H.C.; Schwanenberger, C.; Sedlak, K.; Sefkow, F.; Chekelian, V.; Sheviakov, I.; Shtarkov, L.N.; Sirois, Y.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Spitzer, H.; Stamen, R.; Stella, B.; Stiewe, J.; Straumann, U.; Swart, M.; Tasevsky, M.; Tchetchelnitski, S.; Thompson, Graham; Thompson, P.D.; Tobien, N.; Traynor, D.; Truoel, Peter; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Turney, J.E.; Tzamariudaki, E.; Udluft, S.; Urban, Marcel; Usik, A.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vassiliev, S.; Vazdik, Y.; Vichnevski, A.; Wacker, K.; Wagner, J.; Wallny, R.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Werner, C.; Werner, M.; Werner, N.; Wessels, M.; White, G.; Wiesand, S.; Wilksen, T.; Winde, M.; Winter, G.G.; Wissing, C.; Wobisch, M.; Woehrling, E.E.; Wunsch, E.; Wyatt, A.C.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zomer, F.; zur Nedden, M.

    2002-01-01

    Dijet events in photon-proton collisions in which there is a large pseudorapidity separation Delta eta > 2.5 between the two highest E_T jets are studied with the H1 detector at HERA. The inclusive dijet cross sections are measured as functions of the longitudinal momentum fractions of the proton and photon which participate in the production of the jets, x_pjet and x_gjet respectively, Delta eta, the pseudorapidity separation between the two highest E_T jets, and E_T^gap, the total summed transverse energy between the jets. Rapidity gap events are defined as events in which E_T^gap is less than E_T^cut, for E_T^cut varied between 0.5 and 2.0 GeV. The fraction of dijet events with a rapidity gap is measured differentially in Delta eta, x_pjet and x_gjet. An excess of events with rapidity gaps at low values of E_T^cut is observed above the expectation from standard photoproduction processes. This excess can be explained by the exchange of a strongly interacting colour singlet object between the jets.

  16. Superconductivity in technology

    International Nuclear Information System (INIS)

    Komarek, P.

    1976-01-01

    Physics, especially high energy physics and solid state physics was the first area in which superconducting magnets were used but in the long run, the most extensive application of superconductivity will probably be in energy technology. Superconducting power transmission cables, magnets for energy conversion in superconducting electrical machines, MHD-generators and fusion reactors and magnets for energy storage are being investigated. Magnets for fusion reactors will have particularly large physical dimensions, which means that much development effort is still needed, for there is no economic alternative. Superconducting surfaces in radio frequency cavities can give Q-values up to a factor of 10 6 higher than those of conventional resonators. Particle accelerators are the important application. And for telecommunication, simple coaxial superconducting radio frequency cables seem promising. The tunnel effect in superconducting junctions is now being developed commercially for sensitive magnetometers and may soon possibly feature in the memory cells of computer devices. Hence superconductivity can play an important role in the technological world, solving physical and technological problems and showing economic advantages as compared with possible conventional techniques, bearing also in mind the importance of reliability and safety. (author)

  17. The calculation of the optical gap energy of ZnXO (X = Bi, Sn and Fe

    Directory of Open Access Journals (Sweden)

    Benramache Said

    2016-01-01

    Full Text Available In this paper, a new mathematical model has been developed to calculate the optical properties of nano materials a function of their size and structure. ZnO has good characterizatics in optical, electrical, and structural crystallisation; We will demonstrate that the direct optical gap energy of ZnO films grown by US and SP spray deposition can be calculated by investigating the correlation between solution molarity, doping levels of doped films and their Urbache energy. A simulation model has been developed to calculate the optical band gap energy of undoped and Bi, Sn and Fe doped ZnO thin films. The measurements by thus proposed models are in agreement with experimental data, with high correlation coefficients in the range 0.94-0.99. The maximum calculated enhancement of the optical gap energy of Sn doped ZnO thin films is always higher than the enhancement attainable with an Fe doped film, where the minimum error was found for Bi and Sn doped ZnO thin films to be 2,345 and 3,072%, respectively. The decrease in the relative errors from undoped to doped films can be explained by the good optical properties which can be observed in the fewer number of defects as well as less disorder.

  18. Factors responsible for the stability and the existence of a clean energy gap of a silicon nanocluster

    International Nuclear Information System (INIS)

    Liu, Lei; Jayanthi, C. S.; Wu, Shi-Yu

    2001-01-01

    We present a critical theoretical study of electronic properties of silicon nanoclusters, in particular the roles played by symmetry, relaxation, and hydrogen passivation on the stability, the gap states and the energy gap of the system using the order N [O(N)] nonorthogonal tight-binding molecular dynamics and the local analysis of electronic structure. We find that for an unrelaxed cluster with its atoms occupying the regular tetrahedral network, the presence of undistorted local bonding configuration is sufficient for the appearance of a small clean energy gap. However, the energy gap of the unrelaxed cluster does not start at the highest occupied molecular orbital (HOMO). In fact, between the HOMO and the lower edge of the energy gap, localized dangling bond states are found. With hydrogen passivation, the localized dangling bond states are eliminated, resulting in a wider and clean energy gap. Relaxation of these hydrogen passivated clusters does not alter either the structure or the energy gap appreciably. However, if the silicon clusters are allowed to relax first, the majority of the dangling bonds are eliminated but additional defect states due to bond distortion appear, making the energy gap dirty. Hydrogen passivation of these relaxed clusters will further eliminate most of the remnant dangling bonds but no appreciable effect on the defect states associated with bond distortions will take place, thus still resulting in a dirty gap. For the hydrogen-passivated Si N nanoclusters with no bond distortion and no overall symmetry, we have studied the variation of the energy gap as a function of size of the cluster for N in the range of 80< N<6000. The dependence of the energy gap on the size shows similar behavior to that for silicon nanoclusters with no bond distortion but possessing overall symmetry

  19. Energy band theory of heterometal superposed film and relevant comments on superconductivity in heterometal systems

    International Nuclear Information System (INIS)

    Zhang, L.; Yin, D.

    1981-08-01

    A method for calculating the electronic structure of a heterogeneous metal-metal interface is discussed. It combines a series of well-defined interface plane-wave orbitals and the muffin-tin orbitals. The problem of high-Tsub(c) superconductivity in systems containing metal-metal interfaces and the related problem in compounds is addressed

  20. Vibrational effects on surface energies and band gaps in hexagonal and cubic ice

    International Nuclear Information System (INIS)

    Engel, Edgar A.; Needs, Richard J.; Monserrat, Bartomeu

    2016-01-01

    Surface energies of hexagonal and cubic water ice are calculated using first-principles quantum mechanical methods, including an accurate description of anharmonic nuclear vibrations. We consider two proton-orderings of the hexagonal and cubic ice basal surfaces and three proton-orderings of hexagonal ice prism surfaces, finding that vibrations reduce the surface energies by more than 10%. We compare our vibrational densities of states to recent sum frequency generation absorption measurements and identify surface proton-orderings of experimental ice samples and the origins of characteristic absorption peaks. We also calculate zero point quantum vibrational corrections to the surface electronic band gaps, which range from −1.2 eV for the cubic ice basal surface up to −1.4 eV for the hexagonal ice prism surface. The vibrational corrections to the surface band gaps are up to 12% smaller than for bulk ice.

  1. Electronic energy gap of molecular hydrogen from electrical conductivity measurements at high shock pressures

    Science.gov (United States)

    Nellis, W. J.; Mitchell, A. C.; Mccandless, P. C.; Erskine, D. J.; Weir, S. T.

    1992-01-01

    Electrical conductivities were measured for liquid D2 and H2 shock compressed to pressures of 10-20 GPa (100-200 kbar), molar volumes near 8 cu cm/mol, and calculated temperatures of 2900-4600 K. The semiconducting energy gap derived from the conductivities is 12 eV, in good agreement with recent quasi-particle calculations and with oscillator frequencies measured in diamond-anvil cells.

  2. Large superconducting detector magnets with ultra thin coils for use in high energy accelerators and storage rings

    International Nuclear Information System (INIS)

    Green, M.A.

    1977-08-01

    The development of a new class of large superconducting solenoid magnets is described. High energy physics on colliding beam machines sometimes require the use of thin coil solenoid magnets. The development of these magnets has proceeded with the substitution of light materials for heavy materials and by increasing the current density in the coils. The Lawrence Berkeley Laboratory has developed a radical approach to the problem by having the coil operate at very high current densities. This approach and its implications are described in detail

  3. Three-flavor color superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Malekzadeh, H.

    2007-12-15

    I investigate some of the inert phases in three-flavor, spin-zero color-superconducting quark matter: the CFL phase (the analogue of the B phase in superfluid {sup 3}He), the A and A{sup *} phases, and the 2SC and sSC phases. I compute the pressure of these phases with and without the neutrality condition. Without the neutrality condition, after the CFL phase the sSC phase is the dominant phase. However, including the neutrality condition, the CFL phase is again the energetically favored phase except for a small region of intermediate densities where the 2SC/A{sup *} phase is favored. It is shown that the 2SC phase is identical to the A{sup *} phase up to a color rotation. In addition, I calculate the self-energies and the spectral densities of longitudinal and transverse gluons at zero temperature in color-superconducting quark matter in the CFL phase. I find a collective excitation, a plasmon, at energies smaller than two times the gap parameter and momenta smaller than about eight times the gap. The dispersion relation of this mode exhibits a minimum at some nonzero value of momentum, indicating a van Hove singularity. (orig.)

  4. Three-flavor color superconductivity

    International Nuclear Information System (INIS)

    Malekzadeh, H.

    2007-12-01

    I investigate some of the inert phases in three-flavor, spin-zero color-superconducting quark matter: the CFL phase (the analogue of the B phase in superfluid 3 He), the A and A * phases, and the 2SC and sSC phases. I compute the pressure of these phases with and without the neutrality condition. Without the neutrality condition, after the CFL phase the sSC phase is the dominant phase. However, including the neutrality condition, the CFL phase is again the energetically favored phase except for a small region of intermediate densities where the 2SC/A * phase is favored. It is shown that the 2SC phase is identical to the A * phase up to a color rotation. In addition, I calculate the self-energies and the spectral densities of longitudinal and transverse gluons at zero temperature in color-superconducting quark matter in the CFL phase. I find a collective excitation, a plasmon, at energies smaller than two times the gap parameter and momenta smaller than about eight times the gap. The dispersion relation of this mode exhibits a minimum at some nonzero value of momentum, indicating a van Hove singularity. (orig.)

  5. Superconducting Wind Turbine Generators

    Directory of Open Access Journals (Sweden)

    Yunying Pan

    2016-08-01

    Full Text Available Wind energy is well known as a renewable energy because its clean and less polluted characteristic, which is the foundation of development modern wind electricity. To find more efficient wind turbine is the focus of scientists around the world. Compared from conventional wind turbines, superconducting wind turbine generators have advantages at zero resistance, smaller size and lighter weight. Superconducting wind turbine will inevitably become the main trends in this area. This paper intends to introduce the basic concept and principle of superconductivity, and compare form traditional wind turbine to obtain superiority, then to summary three proposed machine concept.While superconductivity have difficulty  in modern technology and we also have proposed some challenges in achieving superconducting wind turbine finally.

  6. Isotope effect on superconductivity and Raman phonons of Pyrochlore Cd2Re2O7

    Science.gov (United States)

    Razavi, F. S.; Hajialamdari, M.; Reedyk, M.; Kremer, R. K.

    2018-06-01

    Cd2Re2O7 is the only α-Pyrochlore exhibiting superconductivity with a transition temperature (Tc) of ∼ 1 K. In this study, we present the effect of oxygen isotope (18O) as well as combined 18O and cadmium isotope (116Cd) substitution on the superconductivity and Raman scattering spectrum of Cd2Re2O7. The change of Tc and the energy gap Δ(T) are reported using various techniques including point contact spectroscopy. The shift in Raman phonon frequencies upon isotope substitution will be compared with measurement of the isotope effect on the superconducting transition temperature.

  7. Laser-excited photoemission spectroscopy study of superconducting boron-doped diamond

    Directory of Open Access Journals (Sweden)

    K. Ishizaka, R. Eguchi, S. Tsuda, T. Kiss, T. Shimojima, T. Yokoya, S. Shin, T. Togashi, S. Watanabe, C.-T. Chen, C.Q. Zhang, Y. Takano, M. Nagao, I. Sakaguchi, T. Takenouchi and H. Kawarada

    2006-01-01

    Full Text Available We have investigated the low-energy electronic state of boron-doped diamond thin film by the laser-excited photoemission spectroscopy. A clear Fermi-edge is observed for samples doped above the semiconductor–metal boundary, together with the characteristic structures at 150×n meV possibly due to the strong electron–lattice coupling effect. In addition, for the superconducting sample, we observed a shift of the leading edge below Tc indicative of a superconducting gap opening. We discuss the electron–lattice coupling and the superconductivity in doped diamond.

  8. Development of high gradient superconducting radio frequency cavities for international linear collider and energy recovery linear accelerator

    International Nuclear Information System (INIS)

    Saito, Kenji; Furuta, Fumio; Saeki, Takayuki

    2009-01-01

    Superconducting radio frequency (SRF) cavities were used for storage rings like TRISTAN at KEK, HERA at DESY and LEP-II at CERN in 1990-2000. This technology has been accepted as a common accelerator technology. In August 2004, ITPR recommended an electron/positron linear collider based on SRF technology for the future high energy physics. ICFA accepted the recommendation and named it ILC (International Linear Collider). SRF cavities have a very unique feature due to its very small surface resistance. Energy recovery is another very exciting application. Many laboratories are proposing ERL (Energy Recovery LINAC) as a next bright photon source. In these accelerators, production of SRF cavities with reliably high performance is the most important issue. In this paper the activities of ILC high gradient cavities will be introduced. ERL activity will be briefly presented. (author)

  9. Development of High Gradient Superconducting Radio Frequency Cavities for International Linear Collider and Energy Recovery Linear Accelerator

    Science.gov (United States)

    Saito, Kenji; Furuta, Fumio; Saeki, Takayuki

    Superconducting radio frequency (SRF) cavities were used for storage rings like TRISTAN at KEK, HERA at DESY and LEP-II at CERN in 1990-2000. This technology has been accepted as a common accelerator technology. In August 2004, ITPR recommended an electron/positron linear collider based on SRF technology for the future high energy physics. ICFA accepted the recommendation and named it ILC (International Linear Collider). SRF cavities have a very unique feature due to its very small surface resistance. Energy recovery is another very exciting application. Many laboratories are proposing ERL (Energy Recovery LINAC) as a next bright photon source. In these accelerators, production of SRF cavities with reliably high performance is the most important issue. In this paper the activities of ILC high gradient cavities will be introduced. ERL activity will be briefly presented.

  10. Oscillations of the energy, magnetic moment, and current with a period equal to the normal or superconducting flux quantum in cyclic systems

    International Nuclear Information System (INIS)

    Svirskii, M.S.

    1985-01-01

    Oscillations with a period equal to the normal or superconducting flux quantum occur in the current density and the orbital parts of the energy and the magnetic moment in cyclic systems. Transitions between these regimes can be induced by changing the number of electrons or by switching between states with different energies

  11. Superconducting proximity effect in topological materials

    Science.gov (United States)

    Reeg, Christopher R.

    In recent years, there has been a renewed interest in the proximity effect due to its role in the realization of topological superconductivity. In this dissertation, we discuss several results that have been obtained in the field of proximity-induced superconductivity and relate the results to the search for Majorana fermions. First, we show that repulsive electron-electron interactions can induce a non-Majorana zero-energy bound state at the interface between a conventional superconductor and a normal metal. We show that this state is very sensitive to disorder, owing to its lack of topological protection. Second, we show that Rashba spin-orbit coupling, which is one of the key ingredients in engineering a topological superconductor, induces triplet pairing in the proximity effect. When the spin-orbit coupling is strong (i.e., when the characteristic energy scale for spin-orbit coupling is comparable to the Fermi energy), the induced singlet and triplet pairing amplitudes can be comparable in magnitude. Finally, we discuss how the size of the proximity-induced gap, which appears in a low-dimensional material coupled to a superconductor, evolves as the thickness of the (quasi-)low-dimensional material is increased. We show that the induced gap can be comparable to the bulk energy gap of the underlying superconductor in materials that are much thicker than the Fermi wavelength, even in the presence of an interfacial barrier and strong Fermi surface mismatch. This result has important experimental consequences for topological superconductivity, as a sizable gap is required to isolate and detect the Majorana modes.

  12. Energy efficiency in existing buildings: investment gap, incentives and supporting measures

    International Nuclear Information System (INIS)

    Varenio, Celine

    2012-01-01

    This PhD dissertation focuses on energy efficiency policies in housing. It aims at evaluating the effectiveness of public incentives designed to increase household's investment in energy efficiency of their dwelling. To reach this objective this research combines the two key dimensions of ex-post evaluation, i.e. summary and formative dimensions. The first one aims at knowing the effectiveness of public policies whereas the other one targets to understand what the public policies' consequences are and to identify ways for improvement. To reach this purpose, the research follows four steps. Firstly, it requires a detailed analysis to understand the origins of the energy efficiency gap. This gap can be explained by markets failures, consequences of bounded rationality and coordination problem between stakeholders, especially in multi-family dwellings. Secondly, the argument progresses by drawing a parallel between results from normative analysis and from observations of actual level of investments in thermal retrofit actions. It aims at identifying investment households' criteria and then at understanding how barriers to energy efficiency raise. Thirdly, thanks to the inventory of these various energy efficiency barriers it becomes possible to examine if the incentives currently implemented in France can remove them all. It appears that the national policy does not significantly reduce the energy efficiency gap. On the one hand, some barriers remain because no tool has been proposed to overcome them. On the other hand, some barriers are only partially eliminated because the practical use of tools differs from their theoretical design. Finally, using the analysis of retrofitting programs implemented on the Grenoble area this research assesses the effectiveness of additional incentives. The objective is to know to what extent these 'reinforced' policies remove barriers still existing after national tools implementation. From these four

  13. Energy Behavior Change and Army Net Zero Energy; Gaps in the Army’s Approach to Changing Energy Behavior

    Science.gov (United States)

    2014-06-13

    efficient technologies, the next step is investigating energy recovery and cogeneration for economic feasibility. Lastly, meet remaining energy loads...by energy efficiency, then energy recovery and cogeneration technologies and last filling the remaining energy requirement with renewable energy ...access to sufficient energy supplies, and reduced adverse impacts on the environment (Army Senior Energy Council 2009, 4). In order to meet these goals

  14. Unconventional superconductivity in a two-dimensional repulsive gas of fermions with spin-orbit coupling

    Science.gov (United States)

    Wang, Luyang; Vafek, Oskar

    2014-02-01

    We investigate the superconducting instability of a two-dimensional repulsive Fermi gas with Rashba spin-orbit coupling αR. Using renormalization group approach, we find the superconducting transition temperature as a function of the dimensionless ratio Θ=1}/{2}mαR2/EF where EF = 0 when the smaller Fermi surface shrinks to a (Dirac) point. The general trend is that superconductivity is enhanced as Θ increases, but in an intermediate regime Θ ∼ 0.1, a dome-like behavior appears. At a very small value of Θ, the angular momentum channel jz in which superconductivity occurs is quite high. With increasing Θ, jz decreases with a step of 2 down to jz = 6, after which we find the sequence jz = 6, 4, 6, 2, the last value of which continues to Θ → ∞. In an extended range of Θ, the superconducting gap predominantly resides on the large Fermi surface, while Josephson coupling induces a much smaller gap on the small Fermi surface. Below the superconducting transition temperature, we apply mean field theory to derive the self-consistent equations and find the condensation energies. The state with the lowest condensation energy is an unconventional superconducting state which breaks time-reversal symmetry, and in which singlet and triplet pairings are mixed. In general, these states are topologically nontrivial, and the Chern number of the state with total angular momentum jz is C = 2jz.

  15. Multi-cell superconducting structures for high energy e+ e- colliders and free electron laser linacs

    CERN Document Server

    Sekutowicz, J

    2008-01-01

    This volume, which is the first in the EuCARD Editorial Series on “Accelerator Science and Technology”, is closely combined with the most advanced particle accelerators – based on Superconducting Radio Frequency (SRF) technology. In general, SRF research includes following areas: high gradient cavities, cavity prototyping, thin film technologies, large grain and mono-crystalline niobium and niobium alloys, quenching effects in superconducting cavities, SRF injectors, photo-cathodes, beam dynamics, quality of electron beams, cryogenics, high power RF sources, low level RF controls, tuners, RF power coupling to cavities, RF test infrastructures, etc. The monograph focuses on TESLA structures used in FLASH machine and planned for XFEL and ILC experiments.

  16. Optical band gap energy and ur bach tail of CdS:Pb2+ thin films

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, M.; Juarez, H.; Pacio, M. [Universidad Autonoma de Puebla, Instituto de Ciencias, Centro de Investigacion en Dispositivos Semiconductores, Av. 14 Sur, Col. Jardines de San Manuel, Ciudad Universitaria, Puebla, Pue. (Mexico); Gutierrez, R.; Chaltel, L.; Zamora, M.; Portillo, O. [Universidad Autonoma de Puebla, Facultad de Ciencias Quimicas, Laboratorio de Materiales, Apdo. Postal 1067, 72001 Puebla, Pue. (Mexico); Mathew, X., E-mail: osporti@yahoo.mx [UNAM, Instituto de Energias Renovables, Temixco, Morelos (Mexico)

    2016-11-01

    Pb S-doped CdS nano materials were successfully synthesized using chemical bath. Transmittance measurements were used to estimate the optical band gap energy. Tailing in the band gap was observed and found to obey Ur bach rule. The diffraction X-ray show that the size of crystallites is in the ∼33 nm to 12 nm range. The peaks belonging to primary phase are identified at 2θ = 26.5 degrees Celsius and 2θ = 26.00 degrees Celsius corresponding to CdS and Pb S respectively. Thus, a shift in maximum intensity peak from 2θ = 26.4 to 28.2 degrees Celsius is clear indication of possible transformation of cubic to hexagonal phase. Also peaks at 2θ = 13.57, 15.9 degrees Celsius correspond to lead perchlorate thiourea. The effects on films thickness and substrate doping on the band gap energy and the width on tail were investigated. Increasing doping give rise to a shift in optical absorption edge ∼0.4 eV. (Author)

  17. Joint density of states of wide-band-gap materials by electron energy loss spectroscopy

    International Nuclear Information System (INIS)

    Fan, X.D.; Peng, J.L.; Bursill, L.A.

    1998-01-01

    Kramers-Kronig analysis for parallel electron energy loss spectroscopy (PEELS) data is developed as a software package. When used with a JEOL 4000EX high-resolution transmission electron microscope (HRTEM) operating at 100 keV this allows us to obtain the dielectric function of relatively wide band gap materials with an energy resolution of approx 1.4 eV. The imaginary part of the dielectric function allows the magnitude of the band gap to be determined as well as the joint-density-of-states function. Routines for obtaining three variations of the joint-density of states function, which may be used to predict the optical and dielectric response for angle-resolved or angle-integration scattering geometries are also described. Applications are presented for diamond, aluminum nitride (AlN), quartz (SiO 2 ) and sapphire (Al 2 O 3 ). The results are compared with values of the band gap and density of states results for these materials obtained with other techniques. (authors)

  18. AmpaCity. Superconducting cables and fault current limiters for the energy supply in conurbations

    International Nuclear Information System (INIS)

    Merschel, F.; Noe, M.; Stemmle, M.; Hobl, A.; Sauerbach, O.

    2013-01-01

    In 2013 RWE Germany is working jointly with cable manufacturer Nexans and with the scientific support of the Karlsruhe Institute of Technology (KIT) to install world's longest superconducting cable in the downtown area electricity grid of Essen. The AmpaCity project is partly funded by the German Federal Ministry of Economics and Technology and is playing an exemplary role in the further development of electricity grids in major cities worldwide. The project consortium presents AmpaCity as a convincing system solution especially with respect to economics and security of supply. Components of the system are a superconducting three-phase AC cable with two terminations and one connection joint in combination with a fault current limiter, which is also based on superconducting materials. The superconducting system is designed for 10 kV nominal voltage and 40 MW nominal power. It will replace a 110 kV cable system of equal capacity. At the same time, the project partners are paving the way for high failsafe performance, as the cable in conjunction with the fault current limiter cannot be overloaded by short circuit currents in the event of faults in the grid. Planning and follow up on the civil works in Essen posed a major challenge. Cable laying in the inner city, with various crossings of major highways, tramways, as well as already dense cable routes necessitated very thorough preparation and coordination. The civil works in Essen started in April 2013. At around the same time, after the cable had passed the type test, it went into production. Cable laying is scheduled for late summer. After commissioning, planned for the end of 2013, the field trial will run for at least two years under real grid conditions, to demonstrate this technology's suitability for wider deployment.

  19. Closing the gap between short- and long-term scenarios for nuclear energy

    International Nuclear Information System (INIS)

    Toth, F. L.; Rogner, H.-H.

    2005-01-01

    Many scenarios published in recent years explore the driving forces and assess plausible ranges of global energy use and the resources they draw on. Some scenarios (e.g., OECD IEA, Organization for Economic Co-operation and Development International Energy Agency, 2004) focus on the next decade or two and project the evolution of world energy demand, supply as well as the resources, technologies, and prices to match them. Other scenarios (e.g., the Special Report on Emissions Scenarios, SRES, prepared by the Intergovernmental Panel on Climate Change, IPCC, 2000) explore the long term with a view to resource availability and depletion, technological transformations, and environmental concerns, predominantly climate change. A persistent gap (see Figure 1) can be observed in the projections for nuclear energy: near-term scenarios typically project a flat or slightly declining contribution of nuclear energy to the world energy supply whereas medium- and long-term scenarios anticipate significant increases. The magnitude of the gap between the OECD IEA (2002) projections and the median of the 40 IPCC SRES scenarios for the year 2020 amounts to almost 300 GWe installed capacity. Reasons for the gap originate in the differences between the analytical frameworks (including projection techniques) adopted by the short- and long-term studies. Another, closely related reason is the difference in the underlying assumptions, particularly their relations to recent trends and the current situation. In addition, near-term projections are heavily influenced by the social context (perceived unpopularity or outright rejection of nuclear power after Chernobyl), political factors (government pronouncements and policies at the national level, diplomacy and balancing of national positions at international organizations), economic aspects (energy market deregulation and liberalization unveiling excess capacities; financial risks), technology matters (the role of learning, definition of

  20. Probing Critical Point Energies of Transition Metal Dichalcogenides: Surprising Indirect Gap of Single Layer WSe 2

    KAUST Repository

    Zhang, Chendong

    2015-09-21

    By using a comprehensive form of scanning tunneling spectroscopy, we have revealed detailed quasi-particle electronic structures in transition metal dichalcogenides, including the quasi-particle gaps, critical point energy locations, and their origins in the Brillouin zones. We show that single layer WSe surprisingly has an indirect quasi-particle gap with the conduction band minimum located at the Q-point (instead of K), albeit the two states are nearly degenerate. We have further observed rich quasi-particle electronic structures of transition metal dichalcogenides as a function of atomic structures and spin-orbit couplings. Such a local probe for detailed electronic structures in conduction and valence bands will be ideal to investigate how electronic structures of transition metal dichalcogenides are influenced by variations of local environment.

  1. Probing Critical Point Energies of Transition Metal Dichalcogenides: Surprising Indirect Gap of Single Layer WSe 2

    KAUST Repository

    Zhang, Chendong; Chen, Yuxuan; Johnson, Amber; Li, Ming-yang; Li, Lain-Jong; Mende, Patrick C.; Feenstra, Randall M.; Shih, Chih Kang

    2015-01-01

    By using a comprehensive form of scanning tunneling spectroscopy, we have revealed detailed quasi-particle electronic structures in transition metal dichalcogenides, including the quasi-particle gaps, critical point energy locations, and their origins in the Brillouin zones. We show that single layer WSe surprisingly has an indirect quasi-particle gap with the conduction band minimum located at the Q-point (instead of K), albeit the two states are nearly degenerate. We have further observed rich quasi-particle electronic structures of transition metal dichalcogenides as a function of atomic structures and spin-orbit couplings. Such a local probe for detailed electronic structures in conduction and valence bands will be ideal to investigate how electronic structures of transition metal dichalcogenides are influenced by variations of local environment.

  2. Effects of high-energy proton irradiation on the superconducting properties of Fe(Se,Te) thin films

    Science.gov (United States)

    Sylva, G.; Bellingeri, E.; Ferdeghini, C.; Martinelli, A.; Pallecchi, I.; Pellegrino, L.; Putti, M.; Ghigo, G.; Gozzelino, L.; Torsello, D.; Grimaldi, G.; Leo, A.; Nigro, A.; Braccini, V.

    2018-05-01

    In this paper we explore the effects of 3.5 MeV proton irradiation on Fe(Se,Te) thin films grown on CaF2. In particular, we carry out an experimental investigation with different irradiation fluences up to 7.30 · 1016 cm‑2 and different proton implantation depths, in order to clarify whether and to what extent the critical current is enhanced or suppressed, what are the effects of irradiation on the critical temperature, resistivity, and critical magnetic fields, and finally what is the role played by the substrate in this context. We find that the effect of irradiation on superconducting properties is generally small compared to the case of other iron-based superconductors. The irradiation effect is more evident on the critical current density Jc, while it is minor on the transition temperature Tc, normal state resistivity ρ, and on the upper critical field Hc2 up to the highest fluences explored in this work. In more detail, our analysis shows that when protons implant in the substrate far from the superconducting film, the critical current can be enhanced up to 50% of the pristine value at 7 T and 12 K; meanwhile, there is no appreciable effect on critical temperature and critical fields together with a slight decrease in resistivity. On the contrary, when the implantation layer is closer to the film–substrate interface, both critical current and temperature show a decrease accompanied by an enhancement of the resistivity and lattice strain. This result evidences that possible modifications induced by irradiation in the substrate may affect the superconducting properties of the film via lattice strain. The robustness of the Fe(Se,Te) system to irradiation-induced damage makes it a promising compound for the fabrication of magnets in high-energy accelerators.

  3. Mechanical Design of a High Energy Beam Absorber for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Baffes, C.; Church, M.; Leibfritz, J.; Oplt, S.; Rakhno, I.; /Fermilab

    2012-05-10

    A high energy beam absorber has been built for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab. In the facility's initial configuration, an electron beam will be accelerated through 3 TTF-type or ILC-type SRF cryomodules to an energy of 750MeV. The electron beam will be directed to one of multiple downstream experimental and diagnostic beam lines and then deposited in one of two beam absorbers. The facility is designed to accommodate up to 6 cryomodules, which would produce a 75kW beam at 1.5GeV; this is the driving design condition for the beam absorbers. The beam absorbers consist of water-cooled graphite, aluminum and copper layers contained in a helium-filled enclosure. This paper describes the mechanical implementation of the beam absorbers, with a focus on thermal design and analysis. The potential for radiation-induced degradation of the graphite is discussed.

  4. Raman scattering spectra of superconducting Bi2Sr2CaCu2O8 single crystals

    International Nuclear Information System (INIS)

    Kirillov, D.; Bozovic, I.; Geballe, T.H.; Kapitulnik, A.; Mitzi, D.B.

    1988-01-01

    Raman spectra of Bi 2 Sr 2 CaCu 2 O 8 single crystals with superconducting phase-transition temperature of 90 K have been studied. The spectra contained phonon lines and electronic continuum. Phonon energies and polarization selection rules were measured. A gap in the electronic continuum spectrum was observed in a superconducting state. Noticeable similarity between Raman spectra of Bi 2 Sr 2 CaCu 2 O 8 and YBa 2 Cu 3 O 7 was found

  5. Raman scattering spectra of superconducting Bi2Sr2CaCu2O8 single crystals

    Science.gov (United States)

    Kirillov, D.; Bozovic, I.; Geballe, T. H.; Kapitulnik, A.; Mitzi, D. B.

    1988-12-01

    Raman spectra of Bi2Sr2CaCu2O8 single crystals with superconducting phase-transition temperature of 90 K have been studied. The spectra contained phonon lines and electronic continuum. Phonon energies and polarization selection rules were measured. A gap in the electronic continuum spectrum was observed in a superconducting state. Noticeable similarity between Raman spectra of Bi2Sr2CaCu2O8 and YBa2Cu3O7 was found.

  6. Variation of the optical energy gap with {gamma}-radiation and thickness in Bi-thin films

    Energy Technology Data Exchange (ETDEWEB)

    Al-Houty, L.; Kassem, M.E.; Abdel Kader, H.I. [Qatar Univ., Doha (Qatar). Dept. of Physics

    1995-02-01

    The effect of {gamma}-radiation and thickness on the optical energy gap of Bi-thin films has been investigated by measuring their optical absorbance. The measurements were carried out on thermally evaporated films having thicknesses in the range 5-20 nm. Different {gamma}-radiation doses were used ranging from 0-300 Mrad. The optical energy gap as well as the absorption coefficient were found to be {gamma}-dose dependent. (author).

  7. Variation of the optical energy gap with γ-radiation and thickness in Bi-thin films

    International Nuclear Information System (INIS)

    Al-Houty, L.; Kassem, M.E.; Abdel Kader, H.I.

    1995-01-01

    The effect of γ-radiation and thickness on the optical energy gap of Bi-thin films has been investigated by measuring their optical absorbance. The measurements were carried out on thermally evaporated films having thicknesses in the range 5-20 nm. Different γ-radiation doses were used ranging from 0-300 Mrad. The optical energy gap as well as the absorption coefficient were found to be γ-dose dependent. (author)

  8. Manipulation of resonant tunneling by substrate-induced inhomogeneous energy band gaps in graphene with square superlattice potentials

    International Nuclear Information System (INIS)

    Li, Guanqiang; Chen, Guangde; Peng, Ping; Cao, Zhenzhou; Ye, Honggang

    2013-01-01

    We investigate the resonant transmission of Dirac electrons through inhomogeneous band gap graphene with square superlattice potentials by transfer matrix method. The effects of the incident angle of the electrons, Fermi energy and substrate-induced Dirac gaps on the transmission are considered. It is found that the Dirac gap of graphene adds another degree of freedom with respect to the incident angle, the Fermi energy and the parameters of periodic superlattice potentials (i.e., the number, width and height of the barriers) for the transmission. In particular, the inhomogeneous Dirac gap induced by staggered substrates can be used to manipulate the transmission. The properties of the conductance and Fano factor at the resonant peaks are found to be affected by the gaps significantly. The results may be helpful for the practical application of graphene-based electronic devices

  9. Spin dynamics in the pseudo-gap state of a high-temperature superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Hinkov, V; Lin, C T; Chen, D P; Keimer, B [Max Planck Inst Solid State Res, D-70569 Stuttgart, (Germany); Bourges, P; Pailhes, S; Sidis, Y [CEA, CNRS, CE Saclay, Lab Leon Brillouin, F-91191 Gif Sur Yvette, (France); Ivanov, A [Inst Max Von Laue Paul Langevin, F-38042 Grenoble, (France); Frost, C D; Perring, T G [Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, (United Kingdom)

    2007-07-01

    The pseudo-gap is one of the most pervasive phenomena of high-temperature superconductors. It is attributed either to incoherent Cooper pairing setting in above the superconducting transition temperature, Tc, or to a hidden order parameter competing with superconductivity. Here, we use inelastic neutron scattering from under-doped YBa{sub 2}Cu{sub 3}O{sub 6.6} to show that the dispersion relations of spin excitations in the superconducting and pseudo-gap states are qualitatively different. Specifically, the extensively studied 'hour glass' shape of the magnetic dispersions in the superconducting state is no longer discernible in the pseudo-gap state and we observe an unusual 'vertical' dispersion with pronounced in-plane anisotropy. The differences between superconducting and pseudo-gap states are thus more profound than generally believed, suggesting a competition between these two states. Whereas the high-energy excitations are common to both states and obey the symmetry of the copper oxide square lattice, the low-energy excitations in the pseudo-gap state may be indicative of collective fluctuations towards a state with broken orientational symmetry predicted in theoretical work. (authors)

  10. Tunneling Spectroscopy of the Energy Gap in MgB2 Under Magnetic Fields

    International Nuclear Information System (INIS)

    Ekino, T.; Takasaki, T.; Fujii, H.; Muranaka, T.; Akimitsu, J.

    2003-01-01

    Effects of magnetic field on the multiple-gap structure in the superconductor MgB 2 have been studied by break junctions. With increasing the field, the gap value decreases with filling up of the states inside of the gap. The gap-closing field B c correlates with the gap size. The extrapolated B c value for the larger gap is almost consistent with the upper critical field of this compound. (author)

  11. Inelastic energy loss of light particles scattered by solid surfaces at low energy: influence of the 'gap'

    International Nuclear Information System (INIS)

    Boudjema, M.; D'bichi, N.; Boudouma, Y.; Chami, A.C.; Arezki, B.; Khalal, K.; Benazeth, C.; Benoit-Cattin, P.

    2000-01-01

    The energy spectra of particles scattered by solid surfaces are used to determine the inelastic energy loss at low energy. Assuming the binary collision approximation, a modified TRIM code provides length distributions which are converted to time-of-flight (TOF) spectra by using the friction coefficient as an adjustable parameter. Owing to the nonlinear effects occurring in this energy range, the theoretical value of the electronic stopping power is performed from electron-particle scattering cross-section using a screened potential and so, the phase shifts, obtained self-consistently in the framework of density functional theory (DFT). In the case of He/a:Si interaction at 4 keV, the standard model leads to a largely overestimated value. This fact has been attributed to the presence of the electron energy gap E G and to the structure of the valence band. We verify this assumption in a non-static model involving all electrons of the valence band with a threshold condition v e '2 >v F 2 +2E G , where v F is the Fermi velocity and v e the electron velocity after scattering (non-static extended collisional model). The theoretical results agree very well with the experimental ones for He colliding three targets: a:Si, a:Ge and polycrystalline Ni at 4 keV. The calculations performed for the velocity range below 1 a.u. confirm the important role of the gap and the band structure in the lowering of stopping power at low velocity

  12. Bridging technology gaps in realizing goals towards peaceful uses of nuclear energy

    International Nuclear Information System (INIS)

    Mohanty, P.R.; Haldar, T.K.

    2009-01-01

    India is committed towards peaceful uses of Nuclear Energy and Nuclear Power occupies its centre stage. In the nuclear fuel cycle, apart from the fuel material itself, the programme needs a host of other materials in specific physical and chemical form. In this context, Heavy Water Board, a constituent unit of DAE, initiated technology development campaigns centering around three broad areas, i.e Specialty chemicals like organo-phosphorus solvents; solvent extraction technology including suitable equipment for use as liquid-liquid contacting device; and stable isotope like Boron-10. In a short span of about 7 years, it has successfully developed, demonstrated and deployed these technologies. This article gives an overview of these activities and the strategy adopted towards bridging technology gaps in realizing goals towards peaceful uses of Nuclear Energy. (author)

  13. Energy transfer between two vacuum-gapped metal plates: Coulomb fluctuations and electron tunneling

    Science.gov (United States)

    Zhang, Zu-Quan; Lü, Jing-Tao; Wang, Jian-Sheng

    2018-05-01

    Recent experimental measurements for near-field radiative heat transfer between two bodies have been able to approach the gap distance within 2 nm , where the contributions of Coulomb fluctuation and electron tunneling are comparable. Using the nonequilibrium Green's function method in the G0W0 approximation, based on a tight-binding model, we obtain for the energy current a Caroli formula from the Meir-Wingreen formula in the local equilibrium approximation. Also, the Caroli formula is consistent with the evanescent part of the heat transfer from the theory of fluctuational electrodynamics. We go beyond the local equilibrium approximation to study the energy transfer in the crossover region from electron tunneling to Coulomb fluctuation based on a numerical calculation.

  14. Electrostatic energy harvesting device with out-of-the-plane gap closing scheme

    DEFF Research Database (Denmark)

    Wang, Fei; Hansen, Ole

    2014-01-01

    In this paper, we report on an electrostatic energy harvester with an out-of-the-plane gap closing scheme. Using advanced MEMS technology, energy harvesting devices formed by a four wafer stack are batch fabricated and fully packaged at wafer scale. A spin coated CYTOP polymer is used both...... as an electret material and an adhesive layer for low temperature wafer bonding. The overall size of the device is about 1.1 cm × 1.3 cm. At an external load resistance of 13.4 MΩ, a power output of 0.15 μW is achieved when vibration at an acceleration amplitude of 1 g (∼9.8 m/s2) is applied at a low frequency...... of 96 Hz. The frequency response of the device is also measured and a broader bandwidth is observed at higher acceleration amplitude....

  15. Electrostatic energy harvesting device with out-of-the-plane gap closing scheme

    DEFF Research Database (Denmark)

    Wang, Fei; Hansen, Ole

    2013-01-01

    In this paper, we report on an electrostatic energy harvester with an out-of-the-plane gap closing scheme. Using advanced MEMS technology, energy harvesting devices with a four wafer stack are batch fabricated and fully packaged at wafer scale. CYTOP polymer is used both as an electret material...... and an adhesive layer for low temperature wafer bonding. The overall size of the device is about 1.1×1.3 cm2. With an external load of 13.4 MΩ, a power output of 0.15 μW is achieved when vibration at an acceleration amplitude of 1 g (9.8 m/s2) is applied at a low frequency of 96 Hz. The frequency response...... of the device is also measured and a broader bandwidth is observed at higher acceleration amplitude. © 2013 IEEE....

  16. Gaps, barriers and conceptual chasms: theories of technology transfer and energy in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Shove, E. [University of Lancaster (United Kingdom). Centre for the Study of Environmental Change

    1998-12-01

    Having shown how much energy might be saved through the use of economically worthwhile measures and technologies, researchers and policy makers then find themselves trying to close the gap between current practice and recognised technical potential. The ensuing process of technology transfer is often seen as a process of overcoming 'non technical barriers' which inhibit the realisation of proven technical potential. This familiar approach depends upon a strong conceptual distinction between the social, on the one hand, and the technical, on the other. But does it make sense to talk of technical potential in the abstract? Do people really have technologies 'transferred' upon them? Drawing upon ideas from the sociology of science and technology and on recent research funded by Britain's Economic and Social Research Council, this paper unpacks conventional beliefs about the diffusion of energy efficient technologies and suggests an alternative approach which acknowledges the social structuring of technical innovation. (author)

  17. Closing data gaps for LCA of food products: estimating the energy demand of food processing.

    Science.gov (United States)

    Sanjuán, Neus; Stoessel, Franziska; Hellweg, Stefanie

    2014-01-21

    Food is one of the most energy and CO2-intensive consumer goods. While environmental data on primary agricultural products are increasingly becoming available, there are large data gaps concerning food processing. Bridging these gaps is important; for example, the food industry can use such data to optimize processes from an environmental perspective, and retailers may use this information for purchasing decisions. Producers and retailers can then market sustainable products and deliver the information demanded by governments and consumers. Finally, consumers are increasingly interested in the environmental information of foods in order to lower their consumption impacts. This study provides estimation tools for the energy demand of a representative set of food process unit operations such as dehydration, evaporation, or pasteurization. These operations are used to manufacture a variety of foods and can be combined, according to the product recipe, to quantify the heat and electricity demand during processing. In combination with inventory data on the production of the primary ingredients, this toolbox will be a basis to perform life cycle assessment studies of a large number of processed food products and to provide decision support to the stakeholders. Furthermore, a case study is performed to illustrate the application of the tools.

  18. Far infrared studies of superconducting V3Si, Nb3Ge and Nb. Final report

    International Nuclear Information System (INIS)

    Perkowitz, S.

    1985-01-01

    Far infrared spectroscopy between 10 and 250 cm -1 is an effective probe of superconductivity because typical gap and phonon energies lie in this region. Between 1979 and 1985, this DOE contract supported far infrared research in homogeneous high-T/sub c/ superconductors and in granular superconductors. Results in both areas are summarized in this report

  19. ESCAR superconducting magnet system

    International Nuclear Information System (INIS)

    Gilbert, W.S.; Meuser, R.B.; Pope, W.L.; Green, M.A.

    1975-01-01

    Twenty-four superconducting dipoles, each about 1 meter long, provide the guide field for the Experimental Superconducting Accelerator Ring proton accelerator--storage ring. Injection of 50 MeV protons corresponds to a 3 kG central dipole field, and a peak proton energy of 4.2 GeV corresponds to a 46 kG central field. Thirty-two quadrupoles provide focusing. The 56 superconducting magnets are contained in 40 cryostats that are cryogenically connected in a novel series ''weir'' arrangement. A single 1500 W refrigeration plant is required. Design and testing of the magnet and cryostat system are described. (U.S.)

  20. Origin of Superconductivity and Latent Charge Density Wave in NbS2

    Science.gov (United States)

    Heil, Christoph; Poncé, Samuel; Lambert, Henry; Schlipf, Martin; Margine, Elena R.; Giustino, Feliciano

    2017-08-01

    We elucidate the origin of the phonon-mediated superconductivity in 2 H -NbS2 using the ab initio anisotropic Migdal-Eliashberg theory including Coulomb interactions. We demonstrate that superconductivity is associated with Fermi surface hot spots exhibiting an unusually strong electron-phonon interaction. The electron-lattice coupling is dominated by low-energy anharmonic phonons, which place the system on the verge of a charge density wave instability. We also provide definitive evidence for two-gap superconductivity in 2 H -NbS2 , and show that the low- and high-energy peaks observed in tunneling spectra correspond to the Γ - and K -centered Fermi surface pockets, respectively. The present findings call for further efforts to determine whether our proposed mechanism underpins superconductivity in the whole family of metallic transition metal dichalcogenides.

  1. Quantitative analysis of Josephson-quasiparticle current in superconducting single-electron transistors

    International Nuclear Information System (INIS)

    Nakamura, Y.; Chen, C.D.; Tsai, J.S.

    1996-01-01

    We have investigated Josephson-quasiparticle (JQP) current in superconducting single-electron transistors in which charging energy E C was larger than superconducting gap energy Δ and junction resistances were much larger than R Q ≡h/4e 2 . We found that not only the shapes of the JQP peaks but also their absolute height were reproduced quantitatively with a theory by Averin and Aleshkin using a Josephson energy of Ambegaokar-Baratoff close-quote s value. copyright 1996 The American Physical Society

  2. Optimal fuzzy logic-based PID controller for load-frequency control including superconducting magnetic energy storage units

    International Nuclear Information System (INIS)

    Pothiya, Saravuth; Ngamroo, Issarachai

    2008-01-01

    This paper proposes a new optimal fuzzy logic-based-proportional-integral-derivative (FLPID) controller for load frequency control (LFC) including superconducting magnetic energy storage (SMES) units. Conventionally, the membership functions and control rules of fuzzy logic control are obtained by trial and error method or experiences of designers. To overcome this problem, the multiple tabu search (MTS) algorithm is applied to simultaneously tune PID gains, membership functions and control rules of FLPID controller to minimize frequency deviations of the system against load disturbances. The MTS algorithm introduces additional techniques for improvement of search process such as initialization, adaptive search, multiple searches, crossover and restarting process. Simulation results explicitly show that the performance of the optimum FLPID controller is superior to the conventional PID controller and the non-optimum FLPID controller in terms of the overshoot, settling time and robustness against variations of system parameters

  3. 1-GWh diurnal load-leveling Superconducting Magnetic Energy Storage System reference design. Appendix G. Design study. Thyristor converter stations for use with superconducting magnetic energy storage systems

    International Nuclear Information System (INIS)

    Lindh, C.B.; Pohl, R.V.; Trojan, H.T.

    1979-09-01

    The cost for the power conversion equipment for four different SMES systems were developed. These were 1- and 5-GWh units for 4- and 8-h charge periods. Only constant power operation of the converter was considered with 10% of the maximum energy remaining in the magnet at the end of the discharge cycle. The cost increases almost linearly with the maximum coil current between 30 kA and 150 kA, and the cost for a 4-h charge system is about 20% lower than for an 8-h charge system. The converter terminal cost is estimated to be $40/kW of installed power for a 1-GWh 4-h charge system at 30 kA maximum current and $60/kW of installed power for a 5-GWh 4-h charge system at 50 kA maximum current

  4. Superconductivity and spin gap in the zigzag-chain t-J model simulating a CuO double chain in Pr2Ba4Cu7O15-δ

    International Nuclear Information System (INIS)

    Sano, Kazuhiro; Ono, Yoshiaki

    2007-01-01

    Using the numerical diagonalization method, we examine the one-dimensional t 1 -t 2 -J 1 -J 2 model (zigzag-chain t-J model) which is an effective model for metallic CuO double chains in the super-conductor Pr 2 Ba 4 Cu 7 O 15-δ . Based on the Tomonaga-Luttinger liquid theory, we calculate the Luttinger liquid parameter K ρ as a function of the electron density n. It is found that superconductivity is realized in the parameter region, which is in accordance with experimental results. We show the phase diagram of a spin gap in the t 2 /|t 1 |-n plane by analyzing the expectation value of the twist operator Z σ in the spin sector. The spin gap appears in the region with a large t 2 /|t 1 |, where the phase boundary at half filling is consistent with that of the known frustrated quantum spin system. The analysis also suggests that the estimated value of the spin gap reaches ∼100 K in the realistic parameter region of Pr 2 Ba 4 Cu 7 O 15-δ . (author)

  5. Program NICOLET to integrate energy loss in superconducting coils. [In FORTRAN for CDC-6600

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, H.F.

    1978-08-01

    A voltage pickup coil, inductively coupled to the magnetic field of the superconducting coil under test, is connected so its output may be compared with the terminal voltage of the coil under test. The integrated voltage difference is indicative of the resistive volt-seconds. When multiplied with the main coil current, the volt-seconds yield the loss. In other words, a hysteresis loop is obtained if the integrated voltage difference phi = ..integral delta..Vdt is plotted as a function of the coil current, i. First, time functions of the two signals phi(t) and i(t) are recorded on a dual-trace digital oscilloscope, and these signals are then recorded on magnetic tape. On a CDC-6600, the recorded information is decoded and plotted, and the hysteresis loops are integrated by the set of FORTRAN programs NICOLET described in this report. 4 figures.

  6. Design of high-energy high-current linac with focusing by superconducting solenoids

    Energy Technology Data Exchange (ETDEWEB)

    Batskikh, G.I.; Belugin, V.M.; Bondarev, B.I. [Moscow Radiotechnical Institute (Russian Federation)] [and others

    1995-10-01

    The advancement of MRTI design for 1.5 GeV and 250 mA ion CW linac was presented in a previous report. In this new linac version all the way from input to output the ions are focused by magnetic fields of superconducting solenoids. The ion limit current is far beyond the needed value. The linac focusing channel offers major advantages over the more conventional ones. The acceptance is 1.7 times as large for such focusing channel as for quadrupole one. Concurrently, a random perturbation sensitivity for such channel is one order of magnitude smaller than in quadrupole channel. These focusing channel features allow to decrease beam matched radius and increase a linac radiation purity without aperture growth. {open_quotes}Regotron{close_quotes} is used as high power generator in linac main part. But D&W cavities need not be divided into sections connected by RF-bridges which denuded them of high coupling factor.

  7. Numerical analyses of magnetic field and force in toroidal superconducting magnetic energy storage using unit coils (abstract)

    International Nuclear Information System (INIS)

    Kanamaru, Y.; Nakayama, T.; Amemiya, Y.

    1997-01-01

    Superconducting magnetic energy storage (SMES) is more useful than other systems of electric energy storage because of its larger amounts of stored energy and its higher efficiency. There are two types of SMES. One is the solenoid type and the other is the toroidal type. Some models of solenoid-type SMES are designed in the U.S. and in Japan. But the large scale SMES causes a high magnetic field in the living environment, and causes the erroneous operation of electronic equipment. The authors studied some suitable designs of magnetic shielding for the solenoidal-type SMES to reduce the magnetic field in the living environment. The toiroidal type SMES is studied in this article. The magnetic leakage flux of the toiroidal-type SMES is generally lower than that of the solenoid-type SMES. The toroidal-type SMES is constructed of unit coils, which are convenient for construction. The magnetic leakage flux occurs between unit coils. The electromagnetic force of the coils is very strong. Therefore analyses of the leakage flux and electromagnetic force are important to the design of SMES. The authors studied the number, radius, and length of unit coils. The storage energy is 5 G Wh. The numerical analyses of magnetic fields in the toroidal type SMES are obtained by analytical solutions. copyright 1997 American Institute of Physics

  8. RADIOFREQUENCY SUPERCONDUCTIVITY: Workshop

    International Nuclear Information System (INIS)

    Lengeler, Herbert

    1989-01-01

    Superconducting radiofrequency is already playing an important role in the beam acceleration system for the TRISTAN electron-positron collider at the Japanese KEK Laboratory and new such systems are being prepared for other major machines. Thus the fourth Workshop on Radiofrequency Superconductivity, organized by KEK under the chairmanship of local specialist Yuzo Kojima and held just before the International Conference on High Energy Accelerators, had much progress to review and even more to look forward to

  9. Superconductivity at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, N B; Ginzburg, N I

    1969-07-01

    Work published during the last 3 or 4 yrs concerning the effect of pressure on superconductivity is reviewed. Superconducting modifications of Si, Ge, Sb, Te, Se, P and Ce. Change of Fermi surface under pressure for nontransition metals. First experiments on the influence of pressure on the tunneling effect in superconductors provide new information on the nature of the change in phonon and electron energy spectra of metals under hydrostatic compression. 78 references.

  10. Electronic properties of graphene nano-flakes: Energy gap, permanent dipole, termination effect, and Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Sandeep Kumar, E-mail: SandeepKumar.Singh@uantwerpen.be; Peeters, F. M., E-mail: Francois.Peeters@uantwerpen.be [Department of Physics, University of Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium); Neek-Amal, M., E-mail: neekamal@srttu.edu [Department of Physics, University of Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium); Department of Physics, Shahid Rajaee Teacher Training University, Lavizan, Tehran 16788 (Iran, Islamic Republic of)

    2014-02-21

    The electronic properties of graphene nano-flakes (GNFs) with different edge passivation are investigated by using density functional theory. Passivation with F and H atoms is considered: C{sub N{sub c}} X{sub N{sub x}} (X = F or H). We studied GNFs with 10 < N{sub c} < 56 and limit ourselves to the lowest energy configurations. We found that: (i) the energy difference Δ between the highest occupied molecular orbital and the lowest unoccupied molecular orbital decreases with N{sub c}, (ii) topological defects (pentagon and heptagon) break the symmetry of the GNFs and enhance the electric polarization, (iii) the mutual interaction of bilayer GNFs can be understood by dipole-dipole interaction which were found sensitive to the relative orientation of the GNFs, (iv) the permanent dipoles depend on the edge terminated atom, while the energy gap is independent of it, and (v) the presence of heptagon and pentagon defects in the GNFs results in the largest difference between the energy of the spin-up and spin-down electrons which is larger for the H-passivated GNFs as compared to F-passivated GNFs. Our study shows clearly the effect of geometry, size, termination, and bilayer on the electronic properties of small GNFs. This study reveals important features of graphene nano-flakes which can be detected using Raman spectroscopy.

  11. Anisotropic two-gap superconductivity and the absence of a Pauli paramagnetic limit in single-crystalline LaO0.5F0.5BiS2

    Science.gov (United States)

    Chan, Y. C.; Yip, K. Y.; Cheung, Y. W.; Chan, Y. T.; Niu, Q.; Kajitani, J.; Higashinaka, R.; Matsuda, T. D.; Yanase, Y.; Aoki, Y.; Lai, K. T.; Goh, Swee K.

    2018-03-01

    Ambient-pressure-grown LaO0.5F0.5BiS2 with a superconducting transition temperature Tc˜3 K possesses a highly anisotropic normal state. By a series of electrical resistivity measurements with a magnetic-field direction varying between the crystalline c axis and the a b plane, we present datasets displaying the temperature dependence of the out-of-plane upper critical field Hc2 ⊥(T ) , the in-plane upper critical field Hc2 ∥(T ) , as well as the angular dependence of Hc 2 at fixed temperatures for ambient-pressure-grown LaO0.5F0.5BiS2 single crystals. The anisotropy of the superconductivity, Hc2 ∥/Hc2 ⊥ , reaches ˜16 on approaching 0 K, but it decreases significantly near Tc. A pronounced upward curvature of Hc2 ∥(T ) is observed near Tc, which we analyze using a two-gap model. Moreover, Hc2 ∥(0 ) is found to exceed the Pauli paramagnetic limit, which can be understood by considering the strong spin-orbit coupling associated with Bi as well as the breaking of the local inversion symmetry at the electronically active BiS2 bilayers. Hence, LaO0.5F0.5BiS2 with a centrosymmetric lattice structure is a unique platform to explore the physics associated with local parity violation in the bulk crystal.

  12. Specific heat of the 38-K superconductor MgB_2 in the normal and superconducting state: bulk evidence for a double gap

    OpenAIRE

    Junod, Alain; Wang, Yuxing; Bouquet, Frederic; Toulemonde, Pierre

    2001-01-01

    The specific heat of two polycrystalline samples of MgB_2 is presented and analyzed (2 - 300 K, 0 - 16 T), together with magnetic properties. The main characteristics are a low density of states at the Fermi level, high phonon frequencies, and an anomalous temperature- and field- dependence of the specific heat at T < T_c. A two-gap model with a gap ratio of 3:1 fits the specific heat in zero field. The smaller gap is washed out by a field of 0.5 T.

  13. ISTS of Fe adatoms in contact to superconducting Ta

    Energy Technology Data Exchange (ETDEWEB)

    Kamlapure, Anand; Cornils, Lasse; Wiebe, Jens; Wiesendanger, Roland [Department of Physics, Hamburg University, Hamburg (Germany); Zhou, Lihui [Department of Physics, Hamburg University, Hamburg (Germany); Max-Planck Institute for Solid State-Research, Stuttgart (Germany); Khajetoorians, Alexander A. [Department of Physics, Hamburg University, Hamburg (Germany); Institute for Molecules and Materials, Radboud University, Nijmegen (Netherlands)

    2015-07-01

    Recent local scale investigations of the competition of superconductivity and magnetism in molecular systems revealed rich physics associated with a quantum phase transition. Here, we experimentally study individual Fe atoms adsorbed on a reconstructed surface of superconducting Ta by inelastic scanning tunneling spectroscopy (ISTS) at a temperature of 1 K and as a function of magnetic field of strength up to 3 T perpendicular to the surface. We observe strong inelastic excitations at three different adsorption sites of the Fe adatoms. The majority site shows a sharp step around 2 meV which is almost independent of the magnetic field. The other two sites exhibit excitations around 1 meV and 4 meV which have a weak magnetic field dependence indicating the magnetic origin of this excitation. In all three cases the superconducting energy gap and coherence peaks are preserved at zero magnetic field indicating very weak coupling between the magnetic moment and the cooper pairs.

  14. Esaki Diodes in van der Waals Heterojunctions with Broken-Gap Energy Band Alignment.

    Science.gov (United States)

    Yan, Rusen; Fathipour, Sara; Han, Yimo; Song, Bo; Xiao, Shudong; Li, Mingda; Ma, Nan; Protasenko, Vladimir; Muller, David A; Jena, Debdeep; Xing, Huili Grace

    2015-09-09

    van der Waals (vdW) heterojunctions composed of two-dimensional (2D) layered materials are emerging as a solid-state materials family that exhibits novel physics phenomena that can power a range of electronic and photonic applications. Here, we present the first demonstration of an important building block in vdW solids: room temperature Esaki tunnel diodes. The Esaki diodes were realized in vdW heterostructures made of black phosphorus (BP) and tin diselenide (SnSe2), two layered semiconductors that possess a broken-gap energy band offset. The presence of a thin insulating barrier between BP and SnSe2 enabled the observation of a prominent negative differential resistance (NDR) region in the forward-bias current-voltage characteristics, with a peak to valley ratio of 1.8 at 300 K and 2.8 at 80 K. A weak temperature dependence of the NDR indicates electron tunneling being the dominant transport mechanism, and a theoretical model shows excellent agreement with the experimental results. Furthermore, the broken-gap band alignment is confirmed by the junction photoresponse, and the phosphorus double planes in a single layer of BP are resolved in transmission electron microscopy (TEM) for the first time. Our results represent a significant advance in the fundamental understanding of vdW heterojunctions and broaden the potential applications of 2D layered materials.

  15. Exponential vanishing of the ground-state gap of the quantum random energy model via adiabatic quantum computing

    Science.gov (United States)

    Adame, J.; Warzel, S.

    2015-11-01

    In this note, we use ideas of Farhi et al. [Int. J. Quantum. Inf. 6, 503 (2008) and Quantum Inf. Comput. 11, 840 (2011)] who link a lower bound on the run time of their quantum adiabatic search algorithm to an upper bound on the energy gap above the ground-state of the generators of this algorithm. We apply these ideas to the quantum random energy model (QREM). Our main result is a simple proof of the conjectured exponential vanishing of the energy gap of the QREM.

  16. Exponential vanishing of the ground-state gap of the quantum random energy model via adiabatic quantum computing

    International Nuclear Information System (INIS)

    Adame, J.; Warzel, S.

    2015-01-01

    In this note, we use ideas of Farhi et al. [Int. J. Quantum. Inf. 6, 503 (2008) and Quantum Inf. Comput. 11, 840 (2011)] who link a lower bound on the run time of their quantum adiabatic search algorithm to an upper bound on the energy gap above the ground-state of the generators of this algorithm. We apply these ideas to the quantum random energy model (QREM). Our main result is a simple proof of the conjectured exponential vanishing of the energy gap of the QREM

  17. Conduction spectroscopy of a proximity induced superconducting topological insulator

    Science.gov (United States)

    Stehno, M. P.; Hendrickx, N. W.; Snelder, M.; Scholten, T.; Huang, Y. K.; Golden, M. S.; Brinkman, A.

    2017-09-01

    The combination of superconductivity and the helical spin-momentum locking at the surface state of a topological insulator (TI) has been predicted to give rise to p-wave superconductivity and Majorana bound states. The superconductivity can be induced by the proximity effect of a s-wave superconductor (S) into the TI. To probe the superconducting correlations inside the TI, dI/dV spectroscopy has been performed across such S-TI interfaces. Both the alloyed Bi1.5Sb0.5Te1.7Se1.3 and the stoichiometric BiSbTeSe2 have been used as three-dimensional TI. In the case of Bi1.5Sb0.5Te1.7Se1.3, the presence of disorder induced electron-electron interactions can give rise to an additional zero-bias resistance peak. For the stoichiometric BiSbTeSe2 with less disorder, tunnel barriers were employed in order to enhance the signal from the interface. The general observations in the spectra of a large variety of samples are conductance dips at the induced gap voltage, combined with an increased sub-gap conductance, consistent with p-wave predictions. The induced gap voltage is typically smaller than the gap of the Nb superconducting electrode, especially in the presence of an intentional tunnel barrier. Additional uncovered spectroscopic features are oscillations that are linearly spaced in energy, as well as a possible second order parameter component.

  18. Crystalline color superconductivity

    International Nuclear Information System (INIS)

    Alford, Mark; Bowers, Jeffrey A.; Rajagopal, Krishna

    2001-01-01

    In any context in which color superconductivity arises in nature, it is likely to involve pairing between species of quarks with differing chemical potentials. For suitable values of the differences between chemical potentials, Cooper pairs with nonzero total momentum are favored, as was first realized by Larkin, Ovchinnikov, Fulde, and Ferrell (LOFF). Condensates of this sort spontaneously break translational and rotational invariance, leading to gaps which vary periodically in a crystalline pattern. Unlike the original LOFF state, these crystalline quark matter condensates include both spin-zero and spin-one Cooper pairs. We explore the range of parameters for which crystalline color superconductivity arises in the QCD phase diagram. If in some shell within the quark matter core of a neutron star (or within a strange quark star) the quark number densities are such that crystalline color superconductivity arises, rotational vortices may be pinned in this shell, making it a locus for glitch phenomena

  19. Scaling Universality between Band Gap and Exciton Binding Energy of Two-Dimensional Semiconductors

    Science.gov (United States)

    Jiang, Zeyu; Liu, Zhirong; Li, Yuanchang; Duan, Wenhui

    2017-06-01

    Using first-principles G W Bethe-Salpeter equation calculations and the k .p theory, we unambiguously show that for two-dimensional (2D) semiconductors, there exists a robust linear scaling law between the quasiparticle band gap (Eg) and the exciton binding energy (Eb), namely, Eb≈Eg/4 , regardless of their lattice configuration, bonding characteristic, as well as the topological property. Such a parameter-free universality is never observed in their three-dimensional counterparts. By deriving a simple expression for the 2D polarizability merely with respect to Eg, and adopting the screened hydrogen model for Eb, the linear scaling law can be deduced analytically. This work provides an opportunity to better understand the fantastic consequence of the 2D nature for materials, and thus offers valuable guidance for their property modulation and performance control.

  20. Wind Energy Industry Eagle Detection and Deterrents: Research Gaps and Solutions Workshop Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, Karin [National Renewable Energy Lab. (NREL), Golden, CO (United States); DeGeorge, Elise [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-04-13

    The Bald and Golden Eagle Protection Act (BGEPA) prohibits the 'take' of these birds. The act defines take as to 'pursue, shoot, shoot at, poison, wound, kill, capture, trap, collect, destroy, molest or disturb.' The 2009 Eagle Permit Rule (74 FR 46836) authorizes the U.S. Fish and Wildlife Service (USFWS) to issue nonpurposeful (i.e., incidental) take permits, and the USFWS 2013 Eagle Conservation Plan Guidance provides a voluntary framework for issuing programmatic take permits to wind facilities that incorporate scientifically supportable advanced conservation practices (ACPs). Under these rules, the Service can issue permits that authorize individual instances of take of bald and golden eagles when the take is associated with, but not the purpose of, an otherwise lawful activity, and cannot practicably be avoided. To date, the USFWS has not approved any ACPs, citing the lack of evidence for 'scientifically supportable measures.' The Eagle Detection and Deterrents Research Gaps and Solutions Workshop was convened at the National Renewable Energy Laboratory in December 2015 with a goal to comprehensively assess the current state of technologies to detect and deter eagles from wind energy sites and the key gaps concerning reducing eagle fatalities and facilitating permitting under the BGEPA. During the workshop, presentations and discussions focused primarily on existing knowledge (and limitations) about the biology of eagles as well as technologies and emerging or novel ideas, including innovative applications of tools developed for use in other sectors, such as the U.S. Department of Defense and aviation. The main activity of the workshop was the breakout sessions, which focused on the current state of detection and deterrent technologies and novel concepts/applications for detecting and minimizing eagle collisions with wind turbines. Following the breakout sessions, participants were asked about their individual impressions of the