WorldWideScience

Sample records for superconducting gap energy

  1. Subharmonic energy-gap structure in superconducting weak links

    DEFF Research Database (Denmark)

    Flensberg, K.; Hansen, Jørn Bindslev; Octavio, M.

    1988-01-01

    We present corrected calculations of the subharmonic energy-gap structure using the model of Octavio, Tinkham, Blonder, and Klapwijk, which includes the effect of normal scattering in the weak link. We show that while the overall predictions of this model do not change qualitatively, the details ...

  2. Subharmonic energy-gap structure and heating effects in superconducting niobium point contacts

    DEFF Research Database (Denmark)

    Flensberg, K.; Hansen, Jørn Bindslev

    1989-01-01

    We present experimental data of the temperature-dependent subharmonic energy-gap structure (SGS) in the current-voltage (I-V) curves of superconducting niobium point contacts. The observed SGS is modified by heating effects. We construct a model of the quasiparticle conductance of metallic...

  3. Bulk superconducting gap of V{sub 3}Si studied by low-energy ultrahigh-resolution photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sato, T., E-mail: t-sato@arpes.phys.tohoku.ac.jp [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Souma, S. [WPI Research Center, Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Nakayama, K. [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Sugawara, K. [WPI Research Center, Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Toyota, N. [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Takahashi, T. [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); WPI Research Center, Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2016-04-15

    Highlights: • We report ultrahigh-resolution photoemission spectroscopy of A15 compound V{sub 3}Si. • We found a sharp quasiparticle peak due to superconducting-gap opening. • The surface metallic component is negligibly small in the bulk-sensitive measurement. • We show that V{sub 3}Si is a single-gap s-wave superconductor. - Abstract: We have performed low-energy ultrahigh-resolution photoemission spectroscopy (PES) of A15 compound V{sub 3}Si with a xenon-plasma discharge lamp to elucidate the bulk superconducting gap. Below the superconducting transition temperature (T{sub c} = 15.9 K), we found a sharp quasiparticle peak at the Fermi level in the PES spectrum. The gap spectrum is well fitted by a single s-wave superconducting-gap function together with a dip structure at ∼30 meV suggestive of a strong electron-phonon coupling. The anomalous in-gap state previously observed in the PES measurement with high-energy photons is absent or negligibly small in the present bulk-sensitive measurement. The present PES result shows that V{sub 3}Si is a single-gap s-wave superconductor.

  4. Subharmonic energy gap structure in the Josephson radiation at 35 GHz from a superconducting thin-film microbridge

    DEFF Research Database (Denmark)

    Hansen, Jørn Bindslev; Levinsen, M. T.; Lindelof, Poul Erik;

    1979-01-01

    Nonresonant detection of the Josephson radiation 35 GHz from a superconducting thin-film microbridge is reported. The high frequency and the accuracy of these measurements lead to a new important observation: subharmonic energy gap structure in the detected integral power. The maximum integral po...... power measured was as large as 8×10−11 W. Applied Physics Letters is copyrighted by The American Institute of Physics....

  5. Superconducting gap anomaly in heavy fermion systems

    Indian Academy of Sciences (India)

    G C Rout; M S Ojha; S N Behera

    2008-04-01

    The heavy fermion system (HFS) is described by the periodic Anderson model (PAM), treating the Coulomb correlation between the -electrons in the mean-field Hartree-Fock approximation. Superconductivity is introduced by a BCS-type pairing term among the conduction electrons. Within this approximation the equation for the superconducting gap is derived, which depends on the effective position of the energy level of the -electrons relative to the Fermi level. The latter in turn depends on the occupation probability f of the -electrons. The gap equation is solved self-consistently with the equation for f; and their temperature dependences are studied for different positions of the bare -electron energy level, with respect to the Fermi level. The dependence of the superconducting gap on the hybridization leads to a re-entrant behaviour with increasing strength. The induced pairing between the -electrons and the pairing of mixed conduction and -electrons due to hybridization are also determined. The temperature dependence of the hybridization parameter, which characterizes the number of electrons with mixed character and represents the number of heavy electrons is studied. This number is shown to be small. The quasi-particle density of states (DOS) shows the existence of a pseudo-gap due to superconductivity and the signature of a hybridization gap at the Fermi level. For the choice of the model parameters, the DOS shows that the HFS is a metal and undergoes a transition to the gap-less superconducting state.

  6. Photoemission search for the superconducting energy gap of high-T/sub c/YBa/sub 2/Cu/sub 3/O/sub 7/

    Energy Technology Data Exchange (ETDEWEB)

    Moog, E.R.; Bader, S.D.; Arko, A.J.; Flandermeyer, B.K.

    1987-10-01

    Photoemission data (h..nu.. = 21.2 eV) are reported for the high-T/sub c/ superconductor YBa/sub 2/Cu/sub 3/O/sub 7/ above and well below T/sub c/ and examined for effects due to the formation of the superconducting energy gap. To guide expectations, simulations are also presented based on a BCS quasiparticle excitation expression broadened by a 30-meV experimental resolution. Comparison of the experimental Fermi-edge spectra with the calculations indicates either that the surface region probed is not superconducting or that the superconductivity is in the extreme gapless limit.

  7. Microwave dependence of subharmonic gap structure in superconducting junctions

    DEFF Research Database (Denmark)

    Sørensen, O. Hoffman; Kofoed, Bent; Pedersen, Niels Falsig

    1974-01-01

    with the superconducting energy gap itself. The location in voltage of all these structures is given by eV=(2Δ±nh ν) / m, where 2Δ is the superconducting energy gap, ν is the applied frequency, h is Planck's constant, e is the magnitude of the electronic charge, V is the dc voltage drop across the junction, and m and n...

  8. Superconducting gap structure of FeSe.

    Science.gov (United States)

    Jiao, Lin; Huang, Chien-Lung; Rößler, Sahana; Koz, Cevriye; Rößler, Ulrich K; Schwarz, Ulrich; Wirth, Steffen

    2017-03-07

    The microscopic mechanism governing the zero-resistance flow of current in some iron-based, high-temperature superconducting materials is not well understood up to now. A central issue concerning the investigation of these materials is their superconducting gap symmetry and structure. Here we present a combined study of low-temperature specific heat and scanning tunnelling microscopy measurements on single crystalline FeSe. The results reveal the existence of at least two superconducting gaps which can be represented by a phenomenological two-band model. The analysis of the specific heat suggests significant anisotropy in the gap magnitude with deep gap minima. The tunneling spectra display an overall "U"-shaped gap close to the Fermi level away as well as on top of twin boundaries. These results are compatible with the anisotropic nodeless models describing superconductivity in FeSe.

  9. Superconducting energy recovery linacs

    Science.gov (United States)

    Ben-Zvi, Ilan

    2016-10-01

    High-average-power and high-brightness electron beams from a combination of laser photocathode electron guns and a superconducting energy recovery linac (ERL) is an emerging accelerator science with applications in ERL light sources, high repetition rate free electron lasers , electron cooling, electron ion colliders and more. This paper reviews the accelerator physics issues of superconducting ERLs, discusses major subsystems and provides a few examples of superconducting ERLs.

  10. Tuning the Gap of a Superconducting Flux Qubit

    NARCIS (Netherlands)

    Paauw, F.G.; Fedorov, A.; Harmans, C.J.P.M.; Mooij, J.E.

    2009-01-01

    We experimentally demonstrate the in situ tunability of the minimum energy splitting (gap) of a superconducting flux qubit by means of an additional flux loop. Pulses applied via a local control line allow us to tune the gap over a range of several GHz on a nanosecond time scale. The strong flux sen

  11. Angle-resolved photoemission studies of the superconducting gap symmetry in Fe-based superconductors

    Directory of Open Access Journals (Sweden)

    Y.-B. Huang

    2012-12-01

    Full Text Available The superconducting gap is the fundamental parameter that characterizes the superconducting state, and its symmetry is a direct consequence of the mechanism responsible for Cooper pairing. Here we discuss about angle-resolved photoemission spectroscopy measurements of the superconducting gap in the Fe-based high-temperature superconductors. We show that the superconducting gap is Fermi surface dependent and nodeless with small anisotropy, or more precisely, a function of the momentum location in the Brillouin zone. We show that while this observation seems inconsistent with weak coupling approaches for superconductivity in these materials, it is well supported by strong coupling models and global superconducting gaps. We also suggest that a smaller lifetime of the superconducting Cooper pairs induced by the momentum dependent interband scattering inherent to these materials could affect the residual density of states at low energies, which is critical for a proper evaluation of the superconducting gap.

  12. Development of Tunneling Spectroscopy Apparatus for Kelvin and Sub-Kelvin Measurements of Superconducting Energy Gaps by Multi-disciplinary students at a Liberal Arts University

    Science.gov (United States)

    Eckhardt, Matt

    2014-03-01

    Tunneling spectroscopy is an important technique used to measure the superconducting energy gap, a feature that is at the heart of the nature of superconductivity in various materials. In this presentation, we report the progress and results in developing high-resolution tunneling spectroscopy experimental platforms in a helium three cryostat, a 3 Kelvin cryocooler and a helium dip-tester. The experimental team working in a liberal arts university is a multi-disciplinary group consisting of one physics major, chemisty majors and a biology major. Students including non-physics majors learned and implemented current-voltage measurement techniques, vacuum system engineering, built electronic boxes and amplifier circuits from scratch, built custom multi-conductor cables for thermometry and current-voltage measurements, and performed conductance measurements. We report preliminary results. Acknowledgments: We acknowledge support from National Science Foundation Grant # DMR-1206561.

  13. Direct observation of the superconducting energy-gap opening in the optical conductivity spectra of LuNi{sub 2}B{sub 2}C

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Theo; Pronin, A.V.; Stehr, D.; Wosnitza, J. [Hochfeld-Magnetlabor Dresden (HLD) and Institute of Ion Beam Physics and Materials Research, HZ Dresden-Rossendorf, 01314 Dresden (Germany); Niemeier, T.; Holzapfel, B. [IFW Dresden, Leibniz Institute for Solid State and Materials Research (Germany)

    2012-07-01

    At frequencies between 100 GHz and 2.5 THz, we have accurately measured the complex transmission coefficient of LuNi{sub 2}B{sub 2}C films on MgO substrates using two different setups: a time-domain terahertz spectrometer and a setup based on backward-wave oscillators. For the first time, the development of the superconducting energy gap is directly observed in the optical spectra. From the measured data, we have calculated the optical conductivity and the penetration depth. We have compared the results with the BCS theory, and found an additional absorption at low frequencies. The origin of this absorption may be related to the complex gap structure of the compound with possible nodes. Theoretical calculations are currently under way.

  14. Josephson Effect in MgB2: Large IcRlN Product and Superconducting Energy Gap

    Institute of Scientific and Technical Information of China (English)

    宣毅; 李壮志; 陶宏杰; 任治安; 车广灿; 赵柏儒; 赵忠贤

    2001-01-01

    We report on the observation of the Josephson effect on the newly discovered superconductor MgB2 with the breakjunction technique. Similar to conventional superconductors, the I - V curve can be fitted with the resistively shunted junction model including the noise effect, and a large characteristic voltage Vc = IcRN = 9.6meV was obtained. The energy gap determined by the Ambegaokar-Baratoff relation with the fitted Vc is very consistent with the Bardeen-Cooper-Schrieffer weak-coupling value. Our result implies that the superconductor MgB2 is a promising material for Josephson device applications.

  15. Crossover from pseudogap to superconducting gap

    CERN Document Server

    De Cao, Tian

    2010-01-01

    The pseudogap is one of the most pervasive phenomena of high temperature superconductors [1, 2]. There exist two main theoretical scenarios for the explanation of the pseudogap. One is based upon the model of Cooper pairs formation already above the critical temperature of superconducting transition [3, 4], while another assumes that the appearance of the pseudogap state is due to the other orders [5, 6, 7]. Here we find that the particular electronic structure of cuprates confines Cooper pairs to be firstly formed around the antinodal region which is far from the Fermi surface, and these pairs are incoherent and result in the pseudogap state. With the change of doping or temperature, some pairs are transferred toward the nodal region which is on the Fermi surface, thus these pairs are coherent and lead to superconductivity. Thus the coexistence of the pseudogap and the superconducting gap is explained when these two kinds of gaps are not all on the Fermi surface. It is also shown that the symmetry of the pse...

  16. Normal state electronic structure and the superconducting energy gap in HTSC's as determined from photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Arko, A.J.; List, R.S.; Bartlett, R.J.; Cheong, S.W.; Fisk, Z.; Thompson, J.D. (Los Alamos National Lab., NM (USA)); Olson, C.G.; Yang, A.B.; Liu, R.; Gu, C. (Ames Lab., IA (USA)); Veal, B.W.; Liu, J.Z.; Paulikas, A.P.; Vandervoort, K.; Claus, H.; Campuzano, J.C. (Argonne National Lab., IL (USA))

    1989-01-01

    Photoemission spectroscopy has been utilized to determine the electronic structure of high-T{sub c} materials. The observation of dispersive bands at E{sub F} suggests a Fermi surface similar to that obtained from a band calculation. The results apparently are not inconsistent with the notion of a correlated Fermi liquid consisting of hybridized p-d bands. However, it is becoming more and more difficult to distinguish between Fermi liquid behavior in the new high-T{sub c} superconductors and behavior expected on the basis of the novel new non-Fermi liquid theories. The differences are now predicted to be on an energy scale smaller than our experimental resolution. We point out that, while deviations from simple band theory certainly do exist in the form of core and valence band satellites, band narrowing, and rapid photoemission peak broadening away from E{sub F}, there are sufficient agreements with the overall DOS that it should be considered a good starting point for the electronic structure. For example, the calculated Fermi surface for both the 123 and 2212 structures is reasonably well reproduced experimentally and the bands at E{sub F} consist of p-d hybridized orbitals just as predicted by local density functional theory. Our spectra clearly show that a BCS-like DOS is obtained at the Fermi energy as a gap opens up below T{sub c}. This is just one more indication that the old conventional models should be considered more seriously. 18 refs., 6 figs.

  17. Superconducting energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Giese, R.F.

    1993-10-01

    This report describes the status of energy storage involving superconductors and assesses what impact the recently discovered ceramic superconductors may have on the design of these devices. Our description is intended for R&D managers in government, electric utilities, firms, and national laboratories who wish an overview of what has been done and what remains to be done. It is assumed that the reader is acquainted with superconductivity, but not an expert on the topics discussed here. Indeed, it is the author`s aim to enable the reader to better understand the experts who may ask for the reader`s attention, support, or funding. This report may also inform scientists and engineers who, though expert in related areas, wish to have an introduction to our topic.

  18. Energy gap evolution across the superconductivity dome in single crystals of (Ba1−xKx)Fe2As2

    Science.gov (United States)

    Cho, Kyuil; Kończykowski, Marcin; Teknowijoyo, Serafim; Tanatar, Makariy A.; Liu, Yong; Lograsso, Thomas A.; Straszheim, Warren E.; Mishra, Vivek; Maiti, Saurabh; Hirschfeld, Peter J.; Prozorov, Ruslan

    2016-01-01

    The mechanism of unconventional superconductivity in iron-based superconductors (IBSs) is one of the most intriguing questions in current materials research. Among non-oxide IBSs, (Ba1−xKx)Fe2As2 has been intensively studied because of its high superconducting transition temperature and fascinating evolution of the superconducting gap structure from being fully isotropic at optimal doping (x ≈ 0.4) to becoming nodal at x > 0.8. Although this marked evolution was identified in several independent experiments, there are no details of the gap evolution to date because of the lack of high-quality single crystals covering the entire K-doping range of the superconducting dome. We conducted a systematic study of the London penetration depth, λ(T), across the full phase diagram for different concentrations of point-like defects introduced by 2.5-MeV electron irradiation. Fitting the low-temperature variation with the power law, Δλ ~ Tn, we find that the exponent n is the highest and the Tc suppression rate with disorder is the smallest at optimal doping, and they evolve with doping being away from optimal, which is consistent with increasing gap anisotropy, including an abrupt change around x ≃ 0.8, indicating the onset of nodal behavior. Our analysis using a self-consistent t-matrix approach suggests the ubiquitous and robust nature of s± pairing in IBSs and argues against a previously suggested transition to a d-wave state near x = 1 in this system. PMID:27704046

  19. The origin of multiple superconducting gaps in MgB2.

    Science.gov (United States)

    Souma, S; Machida, Y; Sato, T; Takahashi, T; Matsui, H; Wang, S-C; Ding, H; Kaminski, A; Campuzano, J C; Sasaki, S; Kadowaki, K

    2003-05-01

    Magnesium diboride, MgB2, has the highest transition temperature (T(c) = 39 K) of the known metallic superconductors. Whether the anomalously high T(c) can be described within the conventional BCS (Bardeen-Cooper-Schrieffer) framework has been debated. The key to understanding superconductivity lies with the 'superconducting energy gap' associated with the formation of the superconducting pairs. Recently, the existence of two kinds of superconducting gaps in MgB2 has been suggested by several experiments; this is in contrast to both conventional and high-T(c) superconductors. A clear demonstration of two gaps has not yet been made because the previous experiments lacked the ability to resolve the momentum of the superconducting electrons. Here we report direct experimental evidence for the two-band superconductivity in MgB2, by separately observing the superconducting gaps of the sigma and pi bands (as well as a surface band). The gaps have distinctly different sizes, which unambiguously establishes MgB2 as a two-gap superconductor.

  20. Induced spectral gap and pairing correlations from superconducting proximity effect

    Science.gov (United States)

    Chiu, Ching-Kai; Cole, William S.; Das Sarma, S.

    2016-09-01

    We theoretically consider superconducting proximity effect, using the Bogoliubov-de Gennes (BdG) theory, in heterostructure sandwich-type geometries involving a normal s -wave superconductor and a nonsuperconducting material with the proximity effect being driven by Cooper pairs tunneling from the superconducting slab to the nonsuperconducting slab. Applications of the superconducting proximity effect may rely on an induced spectral gap or induced pairing correlations without any spectral gap. We clarify that in a nonsuperconducting material the induced spectral gap and pairing correlations are independent physical quantities arising from the proximity effect. This is a crucial issue in proposals to create topological superconductivity through the proximity effect. Heterostructures of three-dimensional topological insulator (TI) slabs on conventional s -wave superconductor (SC) substrates provide a platform, with proximity-induced topological superconductivity expected to be observed on the "naked" top surface of a thin TI slab. We theoretically study the induced superconducting gap on this naked surface. In addition, we compare against the induced spectral gap in heterostructures of SC with a normal metal or a semiconductor with strong spin-orbit coupling and a Zeeman splitting potential (another promising platform for topological superconductivity). We find that for any model for the non-SC metal (including metallic TI) the induced spectral gap on the naked surface decays as L-3 as the thickness (L ) of the non-SC slab is increased in contrast to the slower 1 /L decay of the pairing correlations. Our distinction between proximity-induced spectral gap (with its faster spatial decay) and pairing correlation (with its slower spatial decay) has important implications for the currently active search for topological superconductivity and Majorana fermions in various superconducting heterostructures.

  1. Superconductivity by kinetic energy saving?

    NARCIS (Netherlands)

    Van der Marel, D; Molegraaf, HJA; Presura, C; Santoso, [No Value; Hewson, AC; Zlatic,

    2003-01-01

    A brief introduction is given in the generic microscopic framework of superconductivity. The consequences for the temperature dependence of the kinetic energy, and the correlation energy are discussed for two cases: The BCS scenario and the non-Fermi liquid scenario. A quantitative comparison is mad

  2. Superconductivity by kinetic energy saving?

    NARCIS (Netherlands)

    Van der Marel, D; Molegraaf, HJA; Presura, C; Santoso, [No Value; Hewson, AC; Zlatic,

    2003-01-01

    A brief introduction is given in the generic microscopic framework of superconductivity. The consequences for the temperature dependence of the kinetic energy, and the correlation energy are discussed for two cases: The BCS scenario and the non-Fermi liquid scenario. A quantitative comparison is

  3. Superconductivity by kinetic energy saving?

    NARCIS (Netherlands)

    Van der Marel, D; Molegraaf, HJA; Presura, C; Santoso, [No Value; Hewson, AC; Zlatic,

    2003-01-01

    A brief introduction is given in the generic microscopic framework of superconductivity. The consequences for the temperature dependence of the kinetic energy, and the correlation energy are discussed for two cases: The BCS scenario and the non-Fermi liquid scenario. A quantitative comparison is mad

  4. Evidence for two superconducting gaps in MgB2.

    Science.gov (United States)

    Chen, X K; Konstantinovic, M J; Irwin, J C; Lawrie, D D; Franck, J P

    2001-10-01

    We have measured the Raman spectra of polycrystalline MgB2 from 25 to 1200 cm(-1). A superconductivity-induced redistribution in the electronic Raman continuum was observed. Two pair-breaking peaks appear in the spectra, suggesting the presence of two superconducting gaps. The measured spectra were analyzed using a quasi-two-dimensional model in which two s-wave superconducting gaps open on two sheets of Fermi surface. For the gap values we have obtained Delta(1) = 22 cm(-1) ( 2.7 meV) and Delta(2) = 50 cm(-1) ( 6.2 meV). Our results suggest that a conventional phonon-mediated pairing mechanism occurs in the planar boron sigma bands and is responsible for the superconductivity of MgB2.

  5. Hard Superconducting Gap in InSb Nanowires

    Science.gov (United States)

    Gül, Önder; Zhang, Hao; de Vries, Folkert K.; van Veen, Jasper; Zuo, Kun; Mourik, Vincent; Conesa-Boj, Sonia; Nowak, Michał P.; van Woerkom, David J.; Quintero-Pérez, Marina; Cassidy, Maja C.; Geresdi, Attila; Koelling, Sebastian; Car, Diana; Plissard, Sébastien R.; Bakkers, Erik P. A. M.; Kouwenhoven, Leo P.

    2017-04-01

    Topological superconductivity is a state of matter that can host Majorana modes, the building blocks of a topological quantum computer. Many experimental platforms predicted to show such a topological state rely on proximity-induced superconductivity. However, accessing the topological properties requires an induced hard superconducting gap, which is challenging to achieve for most material systems. We have systematically studied how the interface between an InSb semiconductor nanowire and a NbTiN superconductor affects the induced superconducting properties. Step by step, we improve the homogeneity of the interface while ensuring a barrier-free electrical contact to the superconductor, and obtain a hard gap in the InSb nanowire. The magnetic field stability of NbTiN allows the InSb nanowire to maintain a hard gap and a supercurrent in the presence of magnetic fields (~ 0.5 Tesla), a requirement for topological superconductivity in one-dimensional systems. Our study provides a guideline to induce superconductivity in various experimental platforms such as semiconductor nanowires, two dimensional electron gases and topological insulators, and holds relevance for topological superconductivity and quantum computation.

  6. Far-infrared optical conductivity gap in superconducting MgB2 films.

    Science.gov (United States)

    Kaindl, Robert A; Carnahan, Marc A; Orenstein, Joseph; Chemla, Daniel S; Christen, Hans M; Zhai, Hong-Ying; Paranthaman, Mariappan; Lowndes, Doug H

    2002-01-14

    We report the first study of the optical conductivity of MgB2 covering the range of its lowest-energy superconducting gap. Terahertz time-domain spectroscopy is utilized to determine the complex, frequency-dependent conductivity sigma(omega) of thin films. The imaginary part reveals an inductive response due to the emergence of the superconducting condensate. The real part exhibits a strong depletion of oscillator strength near 5 meV resulting from the opening of a superconducting energy gap. The gap ratio of 2Delta0/k(B)TC approximately 1.9 is well below the weak-coupling value, pointing to complex behavior in this novel superconductor.

  7. Superconducting magnetic energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, J.D.

    1976-01-01

    Fusion power production requires energy storage and transfer on short time scales to create confining magnetic fields and for heating plasmas. The theta-pinch Scyllac Fusion Test Reactor (SFTR) requires 480 MJ of energy to drive the 5-T compression field with a 0.7-ms rise time. Tokamak Experimental Power Reactors (EPR) require 1 to 2 GJ of energy with a 1 to 2-s rise time for plasma ohmic heating. The design, development, and testing of four 300-kJ energy storage coils to satisfy the SFTR needs are described. Potential rotating machinery and homopolar energy systems for both the Reference Theta-Pinch Reactor (RTPR) and tokamak ohmic-heating are presented.

  8. Tunable sub-gap radiation detection with superconducting resonators

    Science.gov (United States)

    Dupré, O.; Benoît, A.; Calvo, M.; Catalano, A.; Goupy, J.; Hoarau, C.; Klein, T.; Le Calvez, K.; Sacépé, B.; Monfardini, A.; Levy-Bertrand, F.

    2017-04-01

    We have fabricated planar amorphous indium oxide superconducting resonators ({T}{{c}}∼ 2.8 K) that are sensitive to frequency-selective radiation in the range of 7–10 GHz. Those values lay far below twice the superconducting gap that is worth about 200 GHz. The photon detection consists in a shift of the fundamental resonance frequency. We show that the detected frequency can be adjusted by modulating the total length of the superconducting resonator. We attribute those observations to the excitation of higher-order resonance modes. The coupling between the fundamental lumped and the higher order distributed resonance is due to the kinetic inductance nonlinearity with current. These devices, that we have called sub-gap kinetic inductance detectors, are to be distinguished from the standard kinetic inductance detectors in which quasi-particles are generated when incident light breaks down Cooper pairs.

  9. Theories of subharmonic gap structures in superconducting junctions

    DEFF Research Database (Denmark)

    Hasselberg, L.E.; Levinsen, M. T.; Samuelsen, Mogens Rugholm

    1974-01-01

    The two theories of subharmonic gap structures in superconducting junctions, multiparticle tunneling and self-coupling due to an electromagnetic field set up by the ac Josephson current, are analyzed when microwaves are applied. Both theories give the same location in voltage for the microwave......-induced satellites and the same microwave-power dependence for the subharmonic gap structure and the satellites. Therefore other properties than these are to be considered in order to distinguish between the two theories. We suggest that self-coupling is the main cause of the subharmonic gap structure....

  10. Superconducting gap in Bi-Sr-Ca-Cu-O by high-resolution angle-resolved photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Olson, C.G.; Liu, R.; Yang, A.B.; Lynch, D.W. (Iowa State Univ., Ames (USA)); Arko, A.J.; List, R.S. (Los Alamos National Lab., NM (USA)); Veal, B.W.; Chang, Y.C.; Jiang, P.Z.; Paulikas, A.P. (Argonne National Lab., IL (USA))

    1989-08-18

    Detailed studies indicate a superconducting gap in the high-temperature superconductor Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8}. Photoemission measurements with high energy and angle resolution isolate the behavior of a single band as it crosses the Fermi level in both the normal and superconducting states, giving support to the Fermi liquid picture. The magnitude of the gap is 24 millielectron volts. 18 refs., 3 figs.

  11. Superconducting gap symmetry determined by the electron density

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Luis A. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico (UNAM), A.P. 20-364, C.P. 01000, Mexico D.F. (Mexico)]. E-mail: lperez@fisica.unam.mx; Millan, J. Samuel [Facultad de Ingenieria, UNACAR, C.P. 24180, Cd. del Carmen, Campeche, Mexico. (Mexico); Wang Chumin [Instituto de Investigaciones en Materiales, UNAM, A.P. 70-360, C.P. 04510, Mexico D.F. (Mexico)

    2006-05-01

    In this work, a comparative study of pairing and superconducting states in square lattices with s-, p- and d-symmetries is performed within the BCS formalism and a generalized Hubbard model, in which correlated-hopping interactions are considered in addition to the repulsive Coulomb interactions. The two-particle analysis reveals the importance of the van Hove singularity in the formation of pairs and then the two-particle states with different pairing symmetry have their maximum binding energies at the same hopping strength. This feature is confirmed by the superconducting critical temperature (T {sub c}) calculation at the low-density regime. However, a different picture is found for the high-density regime, i.e., the maxima of the s- and d-channel T {sub c} split from the expected value and no p-wave superconducting state is found. This study suggests that the three superconducting symmetries can be analyzed within a single framework.

  12. Superconducting transistor

    Science.gov (United States)

    Gray, Kenneth E.

    1979-01-01

    A superconducting transistor is formed by disposing three thin films of superconducting material in a planar parallel arrangement and insulating the films from each other by layers of insulating oxides to form two tunnel junctions. One junction is biased above twice the superconducting energy gap and the other is biased at less than twice the superconducting energy gap. Injection of quasiparticles into the center film by one junction provides a current gain in the second junction.

  13. Superconducting Vacuum-Gap Crossovers for High Performance Microwave Applications

    CERN Document Server

    Denis, Kevin L; Chang, Meng-Ping; Hu, Ron; U-Yen, Kongpop; Wollack, Edward

    2016-01-01

    The design and fabrication of low-loss wide-bandwidth superconducting vacuum-gap crossovers for high performance millimeter wave applications are described. In order to reduce ohmic and parasitic losses at millimeter wavelengths a vacuum gap is preferred relative to dielectric spacer. Here, vacuum-gap crossovers were realized by using a sacrificial polymer layer followed by niobium sputter deposition optimized for coating coverage over an underlying niobium signal layer. Both coplanar waveguide and microstrip crossover topologies have been explored in detail. The resulting fabrication process is compatible with a bulk micro-machining process for realizing waveguide coupled detectors, which includes sacrificial wax bonding, and wafer backside deep reactive ion etching for creation of leg isolated silicon membrane structures. Release of the vacuum gap structures along with the wax bonded wafer after DRIE is implemented in the same process step used to complete the detector fabrication

  14. The Solution to the BCS Gap Equation for Superconductivity and Its Temperature Dependence

    Directory of Open Access Journals (Sweden)

    Shuji Watanabe

    2013-01-01

    Full Text Available From the viewpoint of operator theory, we deal with the temperature dependence of the solution to the BCS gap equation for superconductivity. When the potential is a positive constant, the BCS gap equation reduces to the simple gap equation. We first show that there is a unique nonnegative solution to the simple gap equation, that it is continuous and strictly decreasing, and that it is of class with respect to the temperature. We next deal with the case where the potential is not a constant but a function. When the potential is not a constant, we give another proof of the existence and uniqueness of the solution to the BCS gap equation, and show how the solution varies with the temperature. We finally show that the solution to the BCS gap equation is indeed continuous with respect to both the temperature and the energy under a certain condition when the potential is not a constant.

  15. Smeared gap equations in crystalline color superconductivity

    CERN Document Server

    Ruggieri, M

    2006-01-01

    In the framework of HDET, we discuss an averaging procedure of the NJL quark-quark interaction lagrangian, treated in the mean field approximation, for the two flavor LOFF phase of QCD. This procedure gives results which are valid in domains where Ginzburg-Landau results may be questionable. We compute and compare the free energy for different LOFF crystalline structures.

  16. Downsized superconducting magnetic energy storage systems

    Science.gov (United States)

    Palmer, David N.

    Scaled-down superconductive magnetic energy storage systems (DSMES) and superconductive magnetic energy power sources (SMEPS) are proposed for residential, commercial/retail, industrial off-peak and critical services, telephone and other communication systems, computer operations, power back-up/energy storages, power sources for space stations, and in-field military logistics/communication systems. Recent advances in high-Tc superconducting materials technology are analyzed. DSMES/SMEPS concepts are presented, and design, materials, and systems requirements are discussed. Problems ar identified, and possible solutions are offered. Comparisons are made with mechanical and primary and secondary energy storage and conversion systems.

  17. Superconductivity

    CERN Document Server

    Poole, Charles P; Farach, Horacio A

    1995-01-01

    Superconductivity covers the nature of the phenomenon of superconductivity. The book discusses the fundamental principles of superconductivity; the essential features of the superconducting state-the phenomena of zero resistance and perfect diamagnetism; and the properties of the various classes of superconductors, including the organics, the buckministerfullerenes, and the precursors to the cuprates. The text also describes superconductivity from the viewpoint of thermodynamics and provides expressions for the free energy; the Ginzburg-Landau and BCS theories; and the structures of the high

  18. Temperature-dependence of the superconducting condensate and gap in Bi 2Sr 2Ca 1Cu 2O 8+ z

    Science.gov (United States)

    Ma, Jian; Quitmann, C.; Kelley, R. J.; Alméras, P.; Berger, H.; Margaritondo, G.; Onellion, M.

    1994-12-01

    Using high energy resolution angle-resolved photoemission, we have measured both the superconducting gap and the photoemission superconducting condensate spectral area of Bi 2Sr 2Ca 1Cu 1O 8+ z as a function of temperature in two different locations of the Brillouin zone. We found that the size of superconducting gap along the Γ- X direction decreases to values indistinguishable from zero for which the gap retains virtually full value along the Γ - M¯ direction. The increased gap anisotropy with increasing temperature is in contrast to what happens for conventional anisotropic superconductors such as lead.

  19. Temperature-dependence of the superconducting condensate and gap in Bi2Sr2Ca1Cu2O8+x

    Science.gov (United States)

    Quitmann, C.; Kelly, R. J.; Onellion, M.; Alméras, P.; Berger, H.; Margaritondo, G.

    1994-12-01

    Using high energy resolution angle-resolved photoemission, we have measured both the superconducting gap and the photoemission superconducting condensate spectral area of Bi2Sr2Ca1Cu1O8+x as a function of temperature in two different locations of the Brillouin zone. We found that the size of superconducting gap along the Γ - X direction decreases to values indistinguishable from zero for which the gap retains virtually full value along the Γ - M direction. The increased gap anisotropy with increasing temperature is in contrast to what happens for conventional anisotropic superconductors such as lead.>

  20. Numerical renormalization group calculation of near-gap peaks in spectral functions of the Anderson model with superconducting leads

    Science.gov (United States)

    Hecht, T.; Weichselbaum, A.; von Delft, J.; Bulla, R.

    2008-07-01

    We use the numerical renormalization group method (NRG) to investigate a single-impurity Anderson model with a coupling of the impurity to a superconducting host. Analysis of the energy flow shows that, contrary to previous belief, NRG iterations can be performed up to a large number of sites, corresponding to energy differences far below the superconducting gap Δ. This allows us to calculate the impurity spectral function A(ω) very accurately for frequencies |ω|~Δ, and to resolve, in a certain parameter regime, sharp peaks in A(ω) close to the gap edge.

  1. Numerical renormalization group calculation of near-gap peaks in spectral functions of the Anderson model with superconducting leads

    Energy Technology Data Exchange (ETDEWEB)

    Hecht, T; Weichselbaum, A; Delft, J von [Physics Department, Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universitaet Muenchen (Germany); Bulla, R [Theoretische Physik III, Elektronische Korrelationen und Magnetismus, Universitaet Augsburg (Germany)], E-mail: Theresa.Hecht@physik.uni-muenchen.de

    2008-07-09

    We use the numerical renormalization group method (NRG) to investigate a single-impurity Anderson model with a coupling of the impurity to a superconducting host. Analysis of the energy flow shows that, contrary to previous belief, NRG iterations can be performed up to a large number of sites, corresponding to energy differences far below the superconducting gap {delta}. This allows us to calculate the impurity spectral function A({omega}) very accurately for frequencies |{omega}|{approx}{delta}, and to resolve, in a certain parameter regime, sharp peaks in A({omega}) close to the gap edge.

  2. Upper critical field, superconducting energy gaps, and Seebeck coefficient in La0.8Th0.2OFeAs

    OpenAIRE

    2009-01-01

    We report the synthesis and characterization of a new electron-doped La-oxypnictide superconductor by partial substitution of lanthanum by thorium. The superconducting transition temperature at about 30.3 K was observed in La0.8Th0.2OFeAs which is the highest in La-based oxypnictide superconductors synthesized at ambient pressure. We find that the decrease in lattice parameters with Th doping in LaOFeAs is more drastic as compared to that obtained by high pressure (6 GPa) synthesis of oxygen ...

  3. Superconductivity

    CERN Document Server

    Thomas, D B

    1974-01-01

    A short general review is presented of the progress made in applied superconductivity as a result of work performed in connection with the high-energy physics program in Europe. The phenomenon of superconductivity and properties of superconductors of Types I and II are outlined. The main body of the paper deals with the development of niobium-titanium superconducting magnets and of radio-frequency superconducting cavities and accelerating structures. Examples of applications in and for high-energy physics experiments are given, including the large superconducting magnet for the Big European Bubble Chamber, prototype synchrotron magnets for the Super Proton Synchrotron, superconducting d.c. beam line magnets, and superconducting RF cavities for use in various laboratories. (0 refs).

  4. High speed superconducting flywheel system for energy storage

    Science.gov (United States)

    Bornemann, H. J.; Urban, C.; Boegler, P.; Ritter, T.; Zaitsev, O.; Weber, K.; Rietschel, H.

    1994-12-01

    A prototype of a flywheel system with auto stable high temperature superconducting bearings was built and tested. The bearings offered good vertical and lateral stability. A metallic flywheel disk, ø 190 mm x 30 mm, was safely rotated at speeds up to 15000 rpm. The disk was driven by a 3 phase synchronous homopolar motor/generator. Maximum energy capacity was 3.8 Wh, maximum power was 1.5 KW. The dynamic behavior of the prototype was tested, characterized and evaluated with respect to axial and lateral stiffness, decay torques (bearing drag), vibrational modes and critical speeds. The bearings supports a maximum weight of 65 N at zero gap, axial and lateral stiffness at 1 mm gap were 440 N/cm and 130 N/cm, respectively. Spin down experiments were performed to investigate the energy efficiency of the system. The decay rate was found to depend upon background pressure in the vacuum chamber and upon the gap width in the bearing. At a background pressure of 5x10 -4 Torr, the coefficient of friction (drag-to-lift ratio) was measured to be 0.000009 at low speeds for 6 mm gap width in the bearing. Our results indicate that further refinement of this technology will allow operation of higly efficient superconducting flywheels in the kWh range.

  5. Ultrafast quenching of electron-boson interaction and superconducting gap in a cuprate superconductor.

    Science.gov (United States)

    Zhang, Wentao; Hwang, Choongyu; Smallwood, Christopher L; Miller, Tristan L; Affeldt, Gregory; Kurashima, Koshi; Jozwiak, Chris; Eisaki, Hiroshi; Adachi, Tadashi; Koike, Yoji; Lee, Dung-Hai; Lanzara, Alessandra

    2014-01-01

    Ultrafast spectroscopy is an emerging technique with great promise in the study of quantum materials, as it makes it possible to track similarities and correlations that are not evident near equilibrium. Thus far, however, the way in which these processes modify the electron self-energy--a fundamental quantity describing many-body interactions in a material--has been little discussed. Here we use time- and angle-resolved photoemission to directly measure the ultrafast response of self-energy to near-infrared photoexcitation in high-temperature cuprate superconductor. Below the critical temperature of the superconductor, ultrafast excitations trigger a synchronous decrease of electron self-energy and superconducting gap, culminating in a saturation in the weakening of electron-boson coupling when the superconducting gap is fully quenched. In contrast, electron-boson coupling is unresponsive to ultrafast excitations above the critical temperature of the superconductor and in the metallic state of a related material. These findings open a new pathway for studying transient self-energy and correlation effects in solids.

  6. Energy Extraction for the LHC Superconducting Circuits

    CERN Document Server

    Dahlerup-Petersen, K; Schmidt, R; Sonnemann, F

    2001-01-01

    The superconducting magnets of the LHC will be powered in about 1700 electrical circuits. The energy stored in circuits, up to 1.3 GJ, can potentially cause severe damage of magnets, bus bars and current leads. In order to protect the superconducting elements after a resistive transition, the energy is dissipated into a dump resistor installed in series with the magnet chain that is switched into the circuit by opening current breakers. Experiments and simulation studies have been performed to identify the LHC circuits that need energy extraction. The required values of the extraction resistors have been computed. The outcome of the experimental results and the simulation studies are presented and the design of the different energy extraction systems that operate at 600 A and at 13 kA is described.

  7. Andreev spectroscopy of FeSe: Evidence for two-gap superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Ponomarev, Ya. G.; Kuzmichev, S. A.; Mikheev, M. G.; Sudakova, M. V.; Tchesnokov, S. N.; Shanygina, T. E.; Volkova, O. S.; Vasiliev, A. N., E-mail: vasil@mig.phys.msu.ru [Moscow State University, Low Temperature Physics and Superconductivity Department (Russian Federation); Wolf, Th. [Institut fur Festkoerperphysik, Karlsruher Institut fuer Technologie (Germany)

    2011-09-15

    Current-voltage characteristics (CVCs) of Andreev superconductor-constriction-superconductor (ScS) contacts in polycrystalline samples of FeSe with the critical temperature T{sub C} = (12 {+-} 1) K have been measured using the break-junction technique. In Sharvin-type nanocontacts, two sets of subharmonic gap structures were detected due to multiple Andreev reflections, indicating the existence of two nodeless superconducting gaps {Delta}{sub L} = (2.75 {+-} 0.3) meV and {Delta}{sub S} = (0.8 {+-} 0.2) meV. Well-shaped CVCs for stacks of Andreev contacts with up to five contacts were observed due to the layered structure of FeSe (the intrinsic multiple Andreev reflections effect). An additional fine structure in the CVCs of Andreev ScS nanocontacts is attributed to the existence of a Leggett mode. A linear relation between the superconducting gap {Delta}{sub L} and the magnetic resonance energy E{sub magres} Almost-Equal-To 2{Delta}{sub L} is found to be valid for layered iron pnictides.

  8. Superconductivity

    Science.gov (United States)

    1989-07-01

    SUPERCONDUCTIVITY HIGH-POWER APPLICATIONS Electric power generation/transmission Energy storage Acoustic projectors Weapon launchers Catapult Ship propulsion • • • Stabilized...temperature superconductive shields could be substantially enhanced by use of high-Tc materials. 27 28 NRAC SUPERCONDUCTIVITY SHIP PROPULSION APPLICATIONS...motor shown in the photograph. As a next step in the evolution of electric-drive ship propulsion technology, DTRC has proposed to scale up the design

  9. Anti-Correlation between Energy-Gap and Phonon Energy for Cuprate Bi2212 Superconductor

    Institute of Scientific and Technical Information of China (English)

    FAN Wei

    2008-01-01

    Using the electron-phonon mechanism, we explain the spatial anti-correlation between the energy-gap and the energy of phonon mode for cuprate superconductor found in tunnelling spectrum by STM measurements of Bi2212, which is the direct effect of an important relationship (or constraint) I =const, where I is superconducting parameters. By relaxing above constraint, we study the correlation of energy gap and phonon energy when I has a distribution. We calculate a map of transition temperature in space constructing by phonon energy and the parameter of electron-phonon interaction, which is helpful for understanding of the relation.

  10. Condensation energy of the superconducting bilayer cuprates

    Indian Academy of Sciences (India)

    Govind; Ajay; S K Joshi

    2002-05-01

    In the present work, we report the interplay of single particle and Cooper pair tunnelings on the superconducting state of layered high-c cuprate superconductors. For this we have considered a model Hamiltonian incorporating the intra-planar interactions and the contributions arising due to the coupling between the planes. The interplanar interactions include the single particle tunneling as well as the Josephson tunneling of Cooper pairs between the two layers. The expression of the out-of-plane correlation parameter which describes the hopping of a particle from one layer to another layer in the superconducting state is obtained within a Bardeen–Cooper–Schriefer (BCS) formalism using the Green’s function technique. This correlation is found to be sensitive to the various parameter of the model Hamiltonian. We have calculated the out-of-plane contribution to the superconducting condensation energy. The calculated values of condensation energy are in agreement with those obtained from the specific heat and the -axis penetration depth measurements on bilayer cuprates.

  11. Cosmological constraints on superconducting dark energy models

    CERN Document Server

    Keresztes, Zoltán; Harko, Tiberiu; Liang, Shi-Dong

    2015-01-01

    We consider cosmological tests of a scalar-vector-tensor gravitational model, in which the dark energy is included in the total action through a gauge invariant, electromagnetic type contribution. The ground state of dark energy, corresponding to a constant potential $V$ is a Bose-Einstein type condensate with spontaneously broken U(1) symmetry. In another words dark energy appears as a massive vector field emerging from a superposition of a massless vector and a scalar field, the latter corresponding to the Goldstone boson. Two particular cosmological models, corresponding to pure electric and pure magnetic type potentials, respectively are confronted with Type IA Supernovae and Hubble parameter data. In the electric case good fit is obtained along a narrow inclined stripe in the $\\Omega _{m}-\\Omega _{V}$ parameter plane, which includes the $\\Lambda $CDM limit. The other points on this admissible region represent superconducting dark energy as a sum of a cosmological constant and a time-evolving contribution...

  12. Observation of the crossover from two-gap to single-gap superconductivity through specific heat measurements in neutron-irradiated MgB2.

    Science.gov (United States)

    Putti, M; Affronte, M; Ferdeghini, C; Manfrinetti, P; Tarantini, C; Lehmann, E

    2006-02-24

    We report specific heat measurements on neutron-irradiated MgB2 samples, for which the critical temperature is lowered to 8.7 K, but the superconducting transition remains extremely sharp, indicative of a defect structure extremely homogeneous. Our results evidence the presence of two superconducting gaps in the temperature range above 21 K, while single-gap superconductivity is well established as a bulk property, not associated with local disorder fluctuations, when Tc decreases to 11 K.

  13. Energy losses of superconducting power transmission cables in the grid

    DEFF Research Database (Denmark)

    Østergaard, Jacob; Okholm, Jan; Lomholt, Karin

    2001-01-01

    One of the obvious motives for development of superconducting power transmission cables is reduction of transmission losses. Loss components in superconducting cables as well as in conventional cables have been examined. These losses are used for calculating the total energy losses of conventional...... as well as superconducting cables when they are placed in the electric power transmission network. It is concluded that high load connections are necessary to obtain energy saving by the use of HTSC cables. For selected high load connections, an energy saving of 40% is expected. It is shown...... that the thermal insulation and cooling machine efficiency are the most important loss element in a superconducting cable system...

  14. Research for superconducting energy storage patterns and its practical countermeasures

    Science.gov (United States)

    Lin, D. H.; Cui, D. J.; Li, B.; Teng, Y.; Zheng, G. L.; Wang, X. Q.

    2013-10-01

    In this paper, we attempt to introduce briefly the significance, the present status, as well as the working principle of the primary patterns of the superconducting energy storage system, first of all. According to the defect on the lower energy storage density of existed superconducting energy storage device, we proposed some new ideas and strategies about how to improve the energy storage density, in which, a brand-new but a tentative proposal regarding the concept of energy compression was emphasized. This investigation has a certain reference value towards the practical application of the superconducting energy storage.

  15. Low-energy phonons and superconductivity in Sn0.8In0.2Te

    Science.gov (United States)

    Xu, Zhijun; Schneeloch, J. A.; Zhong, R. D.; Rodriguez-Rivera, J. A.; Harriger, L. W.; Birgeneau, R. J.; Gu, G. D.; Tranquada, J. M.; Xu, Guangyong

    2015-02-01

    We present neutron scattering measurements on low-energy phonons from a superconducting (Tc=2.7 K ) Sn0.8In0.2Te single-crystal sample. The longitudinal acoustic phonon mode and one transverse acoustic branch have been mapped out around the (002) Bragg peak for temperatures of 1.7 and 4.2 K. We observe a substantial energy width of the transverse phonons at energies comparable to twice the superconducting gap; however, there is no change in this width between the superconducting and normal states, and the precise origin of this energy width anomaly is not entirely clear. We also confirm that the compound is well ordered, with no indications of structural instability.

  16. Flywheel energy storage using superconducting magnetic bearings

    Science.gov (United States)

    Abboud, R. G.; Uherka, K.; Hull, J.; Mulcahy, T.

    Storage of electrical energy on a utility scale is currently not practicable for most utilities, preventing the full utilization of existing base-load capacity. A potential solution to this problem is Flywheel Energy Storage (FES), made possible by technological developments in high-temperature superconducting materials. Commonwealth Research Corporation (CRC), the research arm of Commonwealth Edison Company, and Argonne National Laboratory are implementing a demonstration project to advance the state of the art in high temperature superconductor (HTS) bearing performance and the overall demonstration of efficient Flywheel Energy Storage. Currently, electricity must be used simultaneously with its generation as electrical energy storage is not available for most utilities. Existing storage methods either are dependent on special geography, are too expensive, or are too inefficient. Without energy storage, electric utilities, such as Commonwealth Edison Company, are forced to cycle base load power plants to meet load swings in hourly customer demand. Demand can change by as much as 30% over a 12-hour period and result in significant costs to utilities as power plant output is adjusted to meet these changes. HTS FES systems can reduce demand-based power plant cycling by storing unused nighttime capacity until it is needed to meet daytime demand.

  17. Studying temperature dependence of pairing gap parameter in a nucleus as a small superconducting system

    Science.gov (United States)

    Rahmatinejad, A.; Razavi, R.; Kakavand, T.

    2016-07-01

    In this paper, we have taken the effect of small size of nucleus and static fluctuations into account in the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity calculations of 45Ti nucleus. Thermodynamic quantities of 45Ti have been extracted within the BCS model with the inclusion of the average value of the pairing gap square, extracted by the modified Ginzburg-Landau (MGL) method for small systems. Calculated values of the excitation energy and entropy within the MGL+BCS method improve the extracted results within the usual BCS model and show a smooth behavior around the critical temperature with a very good agreement with the semi-empirical values. The result of using MGL+BCS method for the heat capacity of 45Ti is compared with the corresponding semi-empirical values and the calculated values within the BCS, static path approximation (SPA) and Modified Pairing gap BCS (MPBCS) which is a method that was proposed in our previous publications. Both MGL+BCS and MPBCS avoid the discontinuity of the heat capacity curve, which is observed in the usual BCS method, and lead to an S-shaped curve with a good agreement with the semi-empirical results.

  18. Magnetic-field and temperature dependence of the energy gap in InN nanobelt

    Directory of Open Access Journals (Sweden)

    K. Aravind

    2012-03-01

    Full Text Available We present tunneling measurements on an InN nanobelt which shows signatures of superconductivity. Superconducting transition takes place at temperature of 1.3K and the critical magnetic field is measured to be about 5.5kGs. The energy gap extrapolated to absolute temperature is about 110μeV. As the magnetic field is decreased to cross the critical magnetic field, the device shows a huge zero-bias magnetoresistance ratio of about 400%. This is attributed to the suppression of quasiparticle subgap tunneling in the presence of superconductivity. The measured magnetic-field and temperature dependence of the superconducting gap agree well with the reported dependences for conventional metallic superconductors.

  19. Observation of multiple superconducting gaps in Fe1+yTe1-xSex via a nano-scale approach to point-contact spectroscopy

    OpenAIRE

    Peng, Haibing; De, Debtanu; Wu, Zheng; Diaz-Pinto, Carlos

    2012-01-01

    We report a distinct experimental approach to point-contact Andreev reflection spectroscopy with diagnostic capability via a unique design of nano-scale normal metal/superconductor devices with excellent thermo-mechanical stability, and have employed this method to unveil the existence of two superconducting energy gaps in iron chalcogenide Fe1+yTe1-xSex which is crucial for understanding its pairing mechanism. This work opens up new opportunities to study gap structures in superconductors an...

  20. Refractive Indices of Semiconductors from Energy gaps

    CERN Document Server

    Tripathy, S K

    2015-01-01

    An empirical relation based on energy gap and refractive index data has been proposed in the present study to calculate the refractive index of semiconductors. The proposed model is then applied to binary as well as ternary semiconductors for a wide range of energy gap. Using the relation, dielectric constants of some III-V group semiconductors are calculated. The calculated values for different group of binary semiconductors, alkali halides and ternary semiconductors fairly agree with other calculations and known values over a wide range of energy gap. The temperature variation of refractive index for some binary semiconductors have been calculated.

  1. Evaluation of superconducting magnetic energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Little, A. D.

    1979-11-01

    Superconducting magnetic energy storage (SMES) systems differ from other storage systems presently in use, or considered for use, by the electric utility industry, principally because of the radically different technology involved. SMES also has certain unique advantages: it appears to be able to store and deliver energy at very high efficiency, and it can switch from the charge to discharge mode in a few tens of milliseconds. The combination of these two desirable characteristics distinguishes SMES from almost all other energy storage systems. This investigation was undertaken to discover if the nation and the electric utility industry might benefit sufficiently from the use of SMES systems to justify continued research and development support by DOE. At present, systems development is in a relatively early stage, and much component development for many of the major subsystems remains to be performed. It appears each SMES unit will be large and therefore expensive; also that the investment in research and development required to achieve final commercial success may be substantial.

  2. Determination of gap solution and critical temperature in doped graphene superconductivity

    Science.gov (United States)

    Xu, Chenmei; Yang, Yisong

    2017-04-01

    It is shown that the gap solution and critical transition temperature are significantly enhanced by doping in a recently developed BCS formalism for graphene superconductivity in such a way that positive gap and transition temperature both occur in arbitrary pairing coupling as far as doping is present. The analytic construction of the BCS gap and transition temperature offers highly effective globally convergent iterative methods for the computation of these quantities. A series of numerical examples are presented as illustrations which are in agreement with the theoretical and experimental results obtained in the physics literature and consolidate the analytic understanding achieved.

  3. Development of superconducting magnetic bearing with superconducting coil and bulk superconductor for flywheel energy storage system

    Science.gov (United States)

    Arai, Y.; Seino, H.; Yoshizawa, K.; Nagashima, K.

    2013-11-01

    We have been developing superconducting magnetic bearing for flywheel energy storage system to be applied to the railway system. The bearing consists of a superconducting coil as a stator and bulk superconductors as a rotor. A flywheel disk connected to the bulk superconductors is suspended contactless by superconducting magnetic bearings (SMBs). We have manufactured a small scale device equipped with the SMB. The flywheel was rotated contactless over 2000 rpm which was a frequency between its rigid body mode and elastic mode. The feasibility of this SMB structure was demonstrated.

  4. Effective Gap Equation for the Inhomogeneous LOFF Superconductive Phase

    CERN Document Server

    Casalbuoni, R; Gatto, R; Mannarelli, M; Nardulli, G; Ruggieri, M

    2004-01-01

    We present an approximate gap equation for different crystalline structures of the LOFF phase of high density QCD at T=0. This equation is derived by using an effective condensate term obtained by averaging the inhomogeneous condensate over distances of the order of the crystal lattice size. The approximation is expected to work better far off any second order phase transition. As a function of the difference of the chemical potentials of the up and down quarks, $\\delta\\mu$, we get that the octahedron is energetically favored from $\\delta\\mu=\\Delta_0/\\sqrt 2$ to $0.95\\Delta_0$, where $\\Delta_0$ is the gap for the homogeneous phase, while in the range $0.95\\Delta_0-1.32\\Delta_0$ the face centered cube prevails. At $\\delta\\mu=1.32\\Delta_0$ a first order phase transition to the normal phase occurs.

  5. Superconducting Gap Anisotropy vs Doping Level in High- Tc Cuprates

    Science.gov (United States)

    Kendziora, C.; Kelley, R. J.; Onellion, M.

    1996-07-01

    We report the results of electronic Raman scattering in Bi2Sr2CaCu2O8+δ (Bi2212) and Tl2Ba2CuO6+δ (Tl2201) high-Tc superconductors with variations in the oxygen content. Near optimal doping, both materials show gap anisotropy, with 2Δ/kBTc values of 7.2 ( B1g) vs 5.8 ( A1g) in Tl2201 and 8.5 ( B1g) vs 6.2 ( A1g) in Bi2212. However, overdoped samples exhibit a symmetry independent gap with 2Δ/kBTc ranging from 5.2 for Bi2212 ( Tc = 57 K) to 3.9 in Tl2201 ( Tc = 37 K). We compare the data with calculations using both isotropic s-wave and d-wave order parameters.

  6. Localized electronic states and the superconducting gap in Bi 2Sr 2CaCu 2O 8+y

    Science.gov (United States)

    Quitmann, C.; Ma, Jian; Kelley, R. J.; Margaritondo, G.; Onellion, M.

    1994-12-01

    Angle-resolved photoemission data taken on some Bi 2Sr 2CaCu 2O 8+y single crystals exhibit the formation of a superconducting gap in the absence of a quasiparticle normal state band. We observe the opening of the superconducting gap in the same regions of the Brillouin zone for which it is observed for samples that do exhibit a quasiparticle normal state. The absence of a dispersing quasiparticle normal state indicates that the normal state electronic states in these samples are almost localized in real space. Our data suggest that two types of carriers can coexist, and contribute to forming a superconducting gap, in these materials.

  7. Casimir Energy and Vacua vor Superconducting Ball in Supergravity

    CERN Document Server

    Burinskii, A

    2002-01-01

    Casimir energy for solid conducting ball is considered on the base of some finite models. One model is physical and built of a battery of parallel metallic plates. Two finite models are based on the Higgs model of superconductivity. One of them is supersymmetric and based on the Witten field model for superconducting strings. Treatment shows that contribution of Casimir energy can be very essential for superdence state in the neutron stars and nuclear matter.

  8. Symmetry of the gap in superconducting URu[sub 2]Si[sub 2

    Energy Technology Data Exchange (ETDEWEB)

    Hasselbach, K.; Kirtley, J.R. (IBM Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598 (United States)); Flouquet, J. (Departement de Recherche Fondamentale de la Matiere Condensee, Centre d' Etudes Nucleaires de Grenoble, Boite Postale 85X, 38041 Grenoble CEDEX (France))

    1993-01-01

    We have modeled the specific heat in the superconducting state of the heavy-fermion compound URu[sub 2]Si[sub 2], considering all symmetry-allowed gap functions. The best agreement with experiment occurs for a single line of zeroes. In this case there is excellent agreement on the size of the step in specific heat at the critical temperature and good agreement on the power law of the temperature dependence below [ital T][sub [ital c

  9. STM/STS study of the superconducting gap in SmFeAsO1-xFx

    Science.gov (United States)

    Kawashima, Yuki; Ichimura, Koichi; Katono, Kazuhiro; Kurosawa, Tohru; Oda, Migaku; Tanda, Satoshi; Kamihara, Yoichi; Hosono, Hideo

    2015-02-01

    We report an electron tunneling study of SmFeAsO1-xFx in the low doping region (x=0, 0.045, 0.046, 0.069) by low temperature UHV-STM/STS. Superconducting gaps are observed for each superconducting sample x=0.045 (Tc=12.9 K), x=0.046 (Tc=32.9 K) and x=0.069 (Tc=46.9 K). We obtained corresponding superconducting gap size of ΔSC = 9.5 ± 0.5 meV, 9.75±0.25 meV and 11±1 meV. While Tc increases, ΔSC is kept the same. This suggests that the effective attractive interaction is the same and that there is some mechanism that suppresses the superconductivity in the low doping region. On the other hand, similar gap structures were found in a non-superconducting sample with x=0 at 7.8 K. The obtained gap size was ΔN = 8.5 ± 1.5 meV, which is almost the same as the superconducting gap in the superconducting samples (x=0.045, 0.046, 0.069).

  10. Energy Gaps in a Spacetime Crystal

    CERN Document Server

    Horwitz, L P

    2009-01-01

    This paper presents an analysis of the band structure of a spacetime potential lattice created by a standing electromagnetic wave. We show that there are energy band gaps. We estimate the effect, and propose a measurement that could confirm the existence of such phenomena.

  11. Temperature Dependence of the Superconducting Gap Anistropy in Bi_2 Sr_2CaCu_2O8+x

    Science.gov (United States)

    Ma, Jian; Quitmann, C.; Kelley, R. J.; Berger, H.; Margaritondo, G.; Onellion, M.

    1995-02-01

    Detailed data on the momentum-resolved temperature dependence of the superconducting gap of Bi_2Sr_2CaCu_2O8+x are presented, complemented by similar data on the intensity of the photoemission superconducting condensate spectral area. The gap anisotropy between the Gamma-overline{M} and Gamma-X directions increases markedly with increasing temperature, contrary to what happens for conventional anisotropic-gap superconductors, such as lead. Specifically, the size of the superconducting gap along the Gamma-X direction decreases to values indistinguishable from zero at temperatures for which the gap retains virtually full value along the Gamma-overline{M} direction. These data rule out the simplest type of d-wave order parameter.

  12. Order, disorder, and tunable gaps in the spectrum of Andreev bound states in a multiterminal superconducting device

    Science.gov (United States)

    Yokoyama, Tomohiro; Reutlinger, Johannes; Belzig, Wolfgang; Nazarov, Yuli V.

    2017-01-01

    We consider the spectrum of Andreev bound states (ABSs) in an exemplary four-terminal superconducting structure where four chaotic cavities are connected by quantum point contacts to the terminals and to each other forming a ring. We nickname the resulting device 4T-ring. Such a tunable device can be realized in a 2D electron gas-superconductor or a graphene-based hybrid structure. We concentrate on the limit of a short structure and large conductance of the point contacts where there are many ABS in the device forming a quasicontinuous spectrum. The energies of the ABS can be tuned by changing the superconducting phases of the terminals. We observe the opening and closing of gaps in the spectrum upon changing the phases. This concerns the usual proximity gap that separates the levels from zero energy as well as less usual "smile" gaps that split the levels of the quasicontinuous spectrum. We demonstrate a remarkable crossover in the overall spectrum that occurs upon changing the ratio of conductances of the inner and outer point contacts. At big values of the ratio (closed limit), the levels exhibit a generic behavior expected for the spectrum of a disordered system manifesting level repulsion and Brownian "motion" upon changing the phases. At small values of the ratio (open limit), the levels are squeezed into narrow bunches separated by wide smile gaps. Each bunch consists of almost degenerate ABS formed by Andreev reflection between two adjacent terminals. We study in detail the properties of the spectrum in the limit of a small ratio, paying special attention to the crossings of bunches. We distinguish two types of crossings: (i) with a regular phase dependence of the levels and (ii) crossings where the Brownian motion of the levels leads to an apparently irregular phase dependence. We work out a perturbation theory that explains the observations both at a detailed level of random scattering in the device and at a phenomenological level of positively defined

  13. Battery energy storage and superconducting magnetic energy storage for utility applications: A qualitative analysis

    Energy Technology Data Exchange (ETDEWEB)

    Akhil, A.A.; Butler, P.; Bickel, T.C.

    1993-11-01

    This report was prepared at the request of the US Department of Energy`s Office of Energy Management for an objective comparison of the merits of battery energy storage with superconducting magnetic energy storage technology for utility applications. Conclusions are drawn regarding the best match of each technology with these utility application requirements. Staff from the Utility Battery Storage Systems Program and the superconductivity Programs at Sandia National contributed to this effort.

  14. Enhanced superconductivity of fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Washington, II, Aaron L.; Teprovich, Joseph A.; Zidan, Ragaiy

    2017-06-20

    Methods for enhancing characteristics of superconductive fullerenes and devices incorporating the fullerenes are disclosed. Enhancements can include increase in the critical transition temperature at a constant magnetic field; the existence of a superconducting hysteresis over a changing magnetic field; a decrease in the stabilizing magnetic field required for the onset of superconductivity; and/or an increase in the stability of superconductivity over a large magnetic field. The enhancements can be brought about by transmitting electromagnetic radiation to the superconductive fullerene such that the electromagnetic radiation impinges on the fullerene with an energy that is greater than the band gap of the fullerene.

  15. Antiferromagnetic and superconducting gaps and their interrelation in high-T sub c cuprates

    CERN Document Server

    Arrigoni, E; Eckl, T; Hanke, W

    2003-01-01

    We propose a phenomenological model, comprising a microscopic SO(5) model plus the on-site Hubbard interaction U (projected SO(5) model) to understand the interrelation between the d-wave-gap modulation observed by recent angle-resolved photoemission experiments in the insulating antiferromagnet Ca sub 2 CuO sub 2 Cl sub 2 and the d-wave gap of high-T sub c superconducting materials. The on-site interaction U is important in order to produce a Mott gap of the correct order of magnitude, which would be absent in an exact SO(5) theory. The projected SO(5)-model explains the gap characteristics, namely both the symmetry and the different order of magnitude of the gap modulations between the AF and the SCc phases. Furthermore, it is shown that the projected SO(5) theory can provide an explanation for a recent observation [E. Pavarini et al., Phys. Rev. Lett. 87, 47003 (2001)], i. e. that the maximum T sub c observed in a large variety of high-T sub c cuprates scales with the next-nearest-neighbor hopping matrix e...

  16. Raising gradient limitations in 2.1 GHz superconducting photonic band gap accelerator cavities

    Energy Technology Data Exchange (ETDEWEB)

    Simakov, Evgenya I., E-mail: smirnova@lanl.gov; Arsenyev, Sergey A.; Haynes, W. Brian; Shchegolkov, Dmitry Yu.; Suvorova, Natalya A.; Tajima, Tsuyoshi [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545 (United States); Boulware, Chase H.; Grimm, Terry L. [Niowave, Inc., 1012 North Walnut Street, Lansing, Michigan 48906 (United States)

    2014-06-16

    We report results from recent 2.1 GHz superconducting radio frequency (SRF) photonic band gap (PBG) resonator experiments at Los Alamos. Two 2.1 GHz PBG cells with elliptical rods were fabricated and tested at high power in a liquid helium bath at the temperatures of 4 K and below 2 K. The described SRF PBG cells were designed with a particular emphasis on changing the shape of the PBG rods to reduce peak surface magnetic fields and at the same time to preserve its effectiveness at damping higher-order-modes. The superconducting PBG cavities have great potential for damping long-range wakefields in SRF accelerator structures without affecting the fundamental accelerating mode. The cells performed in accordance with simulation's predictions and the maximum achieved accelerating gradient was 18.3 MV/m. This represents a 30% increase over gradients previously demonstrated in superconducting PBG cavities with round rods.

  17. Analysis of Photonic Band Gaps in a Two-Dimensional Triangular Lattice with Superconducting Hollow Rods

    Science.gov (United States)

    Diaz-Valencia, B. F.; Calero, J. M.

    2017-02-01

    In this work, we use the plane wave expansion method to calculate photonic band structures in two-dimensional photonic crystals which consist of high-temperature superconducting hollow rods arranged in a triangular lattice. The variation of the photonic band structure with respect to both, the inner radius and the system temperature, is studied, taking into account temperatures below the critical temperature of the superconductor in the low frequencies regime and assuming E polarization of the incident light. Permittivity contrast and nontrivial geometry of the hollow rods lead to the appearance of new band gaps as compared with the case of solid cylinders. Such band gaps can be modulated by means of the inner radius and system temperature.

  18. Superconducting gap closing and Zero-bias peak in InSb nanowire

    Science.gov (United States)

    Yu, Peng; Chen, Jun; Hocevar, Moïra; Plissard, Sébastien; Car, Diana; Bakkers, Erik; Frolov, Sergey

    In a 1D superconductor-nanowire-normal contact system, Majorana bound states are expected to appear after topological phase transition. Although there are many experiments reported possible zero-bias conductance peak from Majorana bound states, mapping out of the topological phase diagram is still missing.In our InSb nanowire hybrid devices, we observed possible superconducting gap closing and re-opening with magnetic field. These gap closings appear near conductance resonances which show some feature of 1D subband edges. Interestingly, zero-bias conductance peak appears inside the split regime of crossings at finite magnetic field. The magnetic field onset of the zero-bias peak can be tuned by gates underneath the superconductor, which may result from the changing of chemical potential.

  19. Superconducting Magnetic Energy Storage:. Conventional and Trapped Field

    Science.gov (United States)

    Rabinowitz, Mario

    Superconducting magnetic energy storage (SMES) is a most efficient system for energy storage because it stores energy directly in electrical form. The SMES concept is described and analyzed with an examination of its economic viability. The impact of high-temperature supeconductivity on SMES is explored, and a trapped energy storage (TES) innovation that may have beneficial technical and economic ramifications is introduced. In addition to presenting a broad overview, this paper may be of help to those making an evaluation of the potential impact of SMES/TES on the development of new energy sources, and to determine for which energy sources it is most appropriate.

  20. Distinct fermi surface topology and nodeless superconducting gap in a (Tl0.58Rb0.42)Fe1.72Se2 superconductor.

    Science.gov (United States)

    Mou, Daixiang; Liu, Shanyu; Jia, Xiaowen; He, Junfeng; Peng, Yingying; Zhao, Lin; Yu, Li; Liu, Guodong; He, Shaolong; Dong, Xiaoli; Zhang, Jun; Wang, Hangdong; Dong, Chiheng; Fang, Minghu; Wang, Xiaoyang; Peng, Qinjun; Wang, Zhimin; Zhang, Shenjin; Yang, Feng; Xu, Zuyan; Chen, Chuangtian; Zhou, X J

    2011-03-11

    High resolution angle-resolved photoemission measurements have been carried out to study the electronic structure and superconducting gap of the (Tl0.58Rb0.42)Fe1.72Se2 superconductor with a T(c) = 32  K. The Fermi surface topology consists of two electronlike Fermi surface sheets around the Γ point which is distinct from that in all other iron-based superconductors reported so far. The Fermi surface around the M point shows a nearly isotropic superconducting gap of ∼12  meV. The large Fermi surface near the Γ point also shows a nearly isotropic superconducting gap of ∼15  meV, while no superconducting gap opening is clearly observed for the inner tiny Fermi surface. Our observed new Fermi surface topology and its associated superconducting gap will provide key insights and constraints into the understanding of the superconductivity mechanism in iron-based superconductors.

  1. Test equipment for a flywheel energy storage system using a magnetic bearing composed of superconducting coils and superconducting bulks

    Science.gov (United States)

    Ogata, M.; Matsue, H.; Yamashita, T.; Hasegawa, H.; Nagashima, K.; Maeda, T.; Matsuoka, T.; Mukoyama, S.; Shimizu, H.; Horiuchi, S.

    2016-05-01

    Energy storage systems are necessary for renewable energy sources such as solar power in order to stabilize their output power, which fluctuates widely depending on the weather. Since ‘flywheel energy storage systems’ (FWSSs) do not use chemical reactions, they do not deteriorate due to charge or discharge. This is an advantage of FWSSs in applications for renewable energy plants. A conventional FWSS has capacity limitation because of the mechanical bearings used to support the flywheel. Therefore, we have designed a superconducting magnetic bearing composed of a superconducting coil stator and a superconducting bulk rotor in order to solve this problem, and have experimentally manufactured a large scale FWSS with a capacity of 100 kWh and an output power of 300 kW. The superconducting magnetic bearing can levitate 4 tons and enables the flywheel to rotate smoothly. A performance confirmation test will be started soon. An overview of the superconducting FWSS is presented in this paper.

  2. Development of superconducting magnetic bearing for flywheel energy storage system

    Science.gov (United States)

    Miyazaki, Yoshiki; Mizuno, Katsutoshi; Yamashita, Tomohisa; Ogata, Masafumi; Hasegawa, Hitoshi; Nagashima, Ken; Mukoyama, Shinichi; Matsuoka, Taro; Nakao, Kengo; Horiuch, Shinichi; Maeda, Tadakazu; Shimizu, Hideki

    2016-12-01

    We have been developing a superconducting magnetic bearing (SMB) that has high temperature superconducting (HTS) coils and bulks for a flywheel energy storage system (FESS) that have an output capability of 300 kW and a storage capacity of 100 kW h (Nagashima et al., 2008, Hasegawa et al., 2015) [1,2]. The world largest-class FESS with a SMB has been completed and test operation has started. A CFRP flywheel rotor that had a diameter of 2 m and weight of 4000 kg had a capability to be rotated at a maximum speed of 6000 min-1. The SMB using superconducting material both for its rotor and stator is capable of supporting the flywheel that had the heavy weight and the high seed rotation mentioned above. This paper describes the design of the SMB and results of the cooling test of the SMB.

  3. Direct evidence for a pressure-induced nodal superconducting gap in the Ba0.65Rb0.35Fe2As2 superconductor

    Science.gov (United States)

    Guguchia, Z.; Amato, A.; Kang, J.; Luetkens, H.; Biswas, P. K.; Prando, G.; von Rohr, F.; Bukowski, Z.; Shengelaya, A.; Keller, H.; Morenzoni, E.; Fernandes, Rafael M.; Khasanov, R.

    2015-01-01

    The superconducting gap structure in iron-based high-temperature superconductors (Fe-HTSs) is non-universal. In contrast to other unconventional superconductors, in the Fe-HTSs both d-wave and extended s-wave pairing symmetries are close in energy. Probing the proximity between these very different superconducting states and identifying experimental parameters that can tune them is of central interest. Here we report high-pressure muon spin rotation experiments on the temperature-dependent magnetic penetration depth in the optimally doped nodeless s-wave Fe-HTS Ba0.65Rb0.35Fe2As2. Upon pressure, a strong decrease of the penetration depth in the zero-temperature limit is observed, while the superconducting transition temperature remains nearly constant. More importantly, the low-temperature behaviour of the inverse-squared magnetic penetration depth, which is a direct measure of the superfluid density, changes qualitatively from an exponential saturation at zero pressure to a linear-in-temperature behaviour at higher pressures, indicating that hydrostatic pressure promotes the appearance of nodes in the superconducting gap. PMID:26548650

  4. Competition between superconductivity and magnetic/nematic order as a source of anisotropic superconducting gap in underdoped Ba1-xKxFe2As2

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H [Ames Laboratory; Tanatar, M A [Ames Laboratory; Straszheim, W E [Ames Laboratory; Cho, K [Ames Laboratory; Murphy, J [Iowa State University; Spyrison, N [Iowa State University; Reid, J -Ph [Universite de Sherbrooke; Shen, Bing [Nanjing University; Wen, Hai-Hu [Nanjing University; Fernandes, R M [University of Minnesota; Prozorov, R [Ames Laboratory

    2014-07-01

    The in-plane London penetration depth Δλ(T) was measured using a tunnel diode resonator technique in single crystals of Ba1-xKxFe2As2 with doping levels x ranging from heavily underdoped, x=0.16 (Tc=7K), to nearly optimally doped, x=0.34 (Tc=39K). Exponential saturation of Δλ(T) in the T→0 limit is found in optimally doped samples, with the superfluid density ρs(T)≡[λ(0)/λ(T)]2 quantitatively described by a self-consistent γ model with two nodeless isotropic superconducting gaps. As the doping level is decreased towards the extreme end of the superconducting dome at x=0.16, the low-temperature behavior of Δλ(T) becomes nonexponential and is best described by the power law Δλ(T)∝T2, characteristic of strongly anisotropic gaps. The change between the two regimes happens within the range of coexisting magnetic/nematic order and superconductivity, x<0.25, and is accompanied by a rapid rise in the absolute value of Δλ(T) with underdoping. This effect, characteristic of the competition between superconductivity and other ordered states, is very similar to but of significantly smaller magnitude than what is observed in the electron-doped Ba(Fe1-xCox)2As2 compounds. Our study suggests that the competition between superconductivity and magnetic/nematic order in hole-doped compounds is weaker than in electron-doped compounds, and that the anisotropy of the superconducting state in the underdoped iron pnictides is a consequence of the anisotropic changes in the pairing interaction and in the gap function promoted by both magnetic and nematic long-range orders.

  5. Energy gap in concentrated spin glasses

    Energy Technology Data Exchange (ETDEWEB)

    Liao, S.B.; Bhagat, S.M.; Manheimer, M.A.; Moorjani, K.

    1988-04-15

    Using magnetic resonance data at several frequencies, we have obtained the temperature dependence of the field-induced magnetization (M) in three concentrated spin glasses. At every frequency, M is independent of T for Tapprox. gap energy with values close to the corresponding Curie--Weiss temperatures theta/sub p/ but much larger than the respective spin-glass transition temperatures T/sub SG/.

  6. Two energy scales and two quasiparticle dynamics in the superconducting state of under-doped cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Le Tacon, M.; Sacuto, A. [Paris-7 Univ., Lab. Mat riaux et Ph nom nes Quantiques (UMR 7162 CNRS), 75 (France); Laboratoire de Physique du Solide, ESPCI, 75 - Paris (France); Georges, A. [Centre de Physique Theorique, Ecole Polytechnique, 91 - Palaiseau (France); Kotliar, G. [Centre de Physique Theorique, Ecole Polytechnique, 91 - Palaiseau (France); Rutgers Univ., Serin Physics Lab. (United States); Gallais, Y. [Columbia Univ. New York, Dept. of Physics and Applied Physics, NY (United States); Colson, D.; Forget, A. [CEA Saclay, Service de Physique de l' Etat Condense, 91 - Gif-sur-Yvette (France)

    2006-07-01

    The superconducting state of under-doped cuprates is often described in terms of a single energy scale, associated with the maximum of the (d-wave) gap. Here, we report on electronic Raman scattering results, which show that the gap function in the under-doped regime is characterized by two energy scales, depending on doping in opposite manners. Their ratios to the maximum critical temperature are found to be universal in cuprates. Our experimental results also reveal two different quasiparticle dynamics in the under-doped superconducting state, associated with two regions of momentum space: nodal regions near the zeros of the gap and anti-nodal regions. While anti-nodal quasiparticles quickly loose coherence as doping is reduced, coherent nodal quasiparticles persist down to low doping levels. A theoretical analysis using a new sum-rule allows us to relate the low-frequency-dependence of the Raman response to the temperature-dependence of the superfluid density, both controlled by nodal excitations. (authors)

  7. Evolution of multigap superconductivity in the atomically thin limit: Strain-enhanced three-gap superconductivity in monolayer MgB2

    Science.gov (United States)

    Bekaert, J.; Aperis, A.; Partoens, B.; Oppeneer, P. M.; Milošević, M. V.

    2017-09-01

    Starting from first principles, we show the formation and evolution of superconducting gaps in MgB2 at its ultrathin limit. Atomically thin MgB2 is distinctly different from bulk MgB2 in that surface states become comparable in electronic density to the bulklike σ and π bands. Combining the ab initio electron-phonon coupling with the anisotropic Eliashberg equations, we show that monolayer MgB2 develops three distinct superconducting gaps, on completely separate parts of the Fermi surface due to the emergent surface contribution. These gaps hybridize nontrivially with every extra monolayer added to the film owing to the opening of additional coupling channels. Furthermore, we reveal that the three-gap superconductivity in monolayer MgB2 is robust over the entire temperature range that stretches up to a considerably high critical temperature of 20 K. The latter can be boosted to >50 K under biaxial tensile strain of ˜4 % , which is an enhancement that is stronger than in any other graphene-related superconductor known to date.

  8. Superconducting gap and order parameter in Bi2Sr2CaCu2O8+x

    Science.gov (United States)

    Kelley, R. J.; Ma, Jian; Quitmann, C.; Margaritondo, G.; Onellion, M.

    1994-07-01

    Using angle-resolved photoemission, we observed a nonzero superconducting gap and the presence of a superconducting condensate along all three major symmetry directions. We find that the gap is highly anisotropic, with a gap as small as 1-2 meV along Γ-Y, 4-8 meV along Γ-X, and 14-20 meV along Γ-M. We argue that our data imply either an anisotropic s-wave order parameter or an unconventional, two-component order parameter, and that measuring the size of the gap does not by itself distinguish between the two possibilities. We propose a phenomenological unconventional order parameter, and note the quantitative agreement between theory and experiment.

  9. New power-conditioning systems for superconducting magnetic energy storage

    Science.gov (United States)

    Han, Byung Moon

    1992-06-01

    This dissertation presents the development of new power-conditioning systems for superconducting magnetic energy storage (SMES), which can regulate fast and independently the active and reactive powers demanded in the ac network. Three new power-conditioning systems were developed through a systematic approach to match the requirements of the superconducting coil and the ac power network. Each of these new systems is composed of ten 100-MW modules connected in parallel to handle the large current through the superconducting coil. The first system, which was published in the IEEE Transactions on Energy Conversion, consists of line-commutated 24-pulse converter, a thyristor-switched tap-changing transformer, and a thyristor-switched capacitor bank. The second system, which was accepted for publication in the IEEE Transactions on Energy Conversion, consists of a 12-pulse GTO (gate turn-off thyristor) converter and a thyristor-switched tap-changing transformer. The third system, which was submitted to the International Journal of Energy System, consists of a dc chopper and a voltage-source PWM (pulse width modulation) converter. The operational concept of each new system is verified through mathematical analyses and computer simulations. The dynamic interaction of each new system with the ac network and the superconducting coil is analyzed using a simulation model with EMTP (electro-magnetic transients program). The analysis results prove that each new system is feasible and realizable. Each system can regulate the active and reactive powers of the utility network rapidly and independently, and each offer a significant reduction of the system rating by reducing the reactive power demand in the converter. Feasible design for each new system was introduced using a modular design approach based on the 1000 MW/5000 MWH plant, incorporating commercially available components and proven technologies.

  10. Pushing the Gradient Limitations of Superconducting Photonic Band Gap Structure Cells

    Energy Technology Data Exchange (ETDEWEB)

    Simakov, Evgenya I. [Los Alamos National Laboratory; Haynes, William B. [Los Alamos National Laboratory; Kurennoy, Sergey S. [Los Alamos National Laboratory; Shchegolkov, Dmitry [Los Alamos National Laboratory; O' Hara, James F. [Los Alamos National Laboratory; Olivas, Eric R. [Los Alamos National Laboratory

    2012-06-07

    Superconducting photonic band gap resonators present us with unique means to place higher order mode couples in an accelerating cavity and efficiently extract HOMs. An SRF PBG resonator with round rods was successfully tested at LANL demonstrating operation at 15 MV/m. Gradient in the SRF PBG resonator was limited by magnetic quench. To increase the quench threshold in PBG resonators one must design the new geometry with lower surface magnetic fields and preserve the resonator's effectiveness for HOM suppression. The main objective of this research is to push the limits for the high-gradient operation of SRF PBG cavities. A NCRF PBG cavity technology is established. The proof-of-principle operation of SRF PBG cavities is demonstrated. SRF PBG resonators are effective for outcoupling HOMs. PBG technology can significantly reduce the size of SRF accelerators and increase brightness for future FELs.

  11. Utilization of superconductivity in energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, J.T.; Mikkonen, R.; Lahtinen, M.; Paasi, J. [Tampere Univ. of Technology (Finland). Laboratory of Electricity and Magnetism

    1998-12-31

    The technical potential of high temperature superconductors has been demonstrated in energy power applications. The magnetisation coils of the constructed 1.5 kW synchronous motor are made of bismuth-based material, the efficiency of the motor being 82 %. The same material is utilised in a 5 kJ magnetic energy storage in order to compensate for a short-term loss of power. Fast activation time and high efficiency are the benefits compared to traditional UPS systems. The operation temperature of 20-30 K enables the usage of mechanical cooling which is one major advantage compared to conventional liquid helium cooled systems. (orig.)

  12. Scaling of Superconducting Switches for Extraction of Magnetic Energy

    CERN Document Server

    Ballarino, A

    2010-01-01

    In certain cases it is necessary to extract the energy from a superconducting magnet when it quenches, in order to limit the heat generated by the event and thus prevent irreversible damage. This is usually achieved by opening a contact breaker across a resistor in the circuit feeding the magnet. For the heavy currents used to excite large magnets such switches incorporate sophisticated devices to limit arcing during the operation; besides being quite large and expensive, such switches have a limited lifetime. It is therefore interesting to consider the use of superconducting switches to perform this function, the advantage being that such switches would (i) not require maintenance and (ii) would be housed within the cryogenic environment of the magnet, and thus avoid permanent diversion of the current in and out of that environment to the mechanical switch (which operates at room temperature). However, practical switches for such an application are made up of superconductor in a metal matrix, and it is conve...

  13. Energy storage via high temperature superconductivity (SMES)

    Energy Technology Data Exchange (ETDEWEB)

    Mikkonen, R. [Tampere Univ. of Technology (Finland)

    1998-10-01

    The technology concerning high temperature superconductors (HTS) is matured to enabling different kind of prototype applications including SMES. Nowadays when speaking about HTS systems, attention is focused on the operating temperature of 20-30 K, where the critical current and flux density are fairly close to 4.2 K values. In addition by defining the ratio of the energy content of a novel HTS magnetic system and the required power to keep the system at the desired temperature, the optimum settles to the above mentioned temperature range. In the frame of these viewpoints a 5 kJ HTS SMES system has been designed and tested at Tampere University of Technology with a coil manufactured by American Superconductor (AMSC). The HTS magnet has inside and outside diameters of 252 mm and 317 mm, respectively and axial length of 66 mm. It operates at 160 A and carries a total of 160 kA-turns to store the required amount of energy. The effective magnetic inductance is 0.4 H and the peak axial field is 1.7 T. The magnet is cooled to the operating temperature of 20 K with a two stage Gifford-McMahon type cryocooler with a cooling power of 60 W at 77 K and 8 W at 20 K. The magnetic system has been demonstrated to compensate a short term loss of power of a sensitive consumer

  14. Time-resolved photoexcitation of the superconducting two-gap state in MgB2 thin films.

    Science.gov (United States)

    Xu, Y; Khafizov, M; Satrapinsky, L; Kús, P; Plecenik, A; Sobolewski, Roman

    2003-11-01

    Femtosecond pump-probe studies show that carrier dynamics in MgB2 films is governed by the sub-ps electron-phonon (e-ph) relaxation present at all temperatures, the few-ps e-ph process well pronounced below 70 K, and the sub-ns superconducting relaxation below T(c). The amplitude of the superconducting component versus temperature follows the superposition of the isotropic dirty gap and the three-dimensional pi gap dependences, closing at two different T(c) values. The time constant of the few-ps relaxation exhibits a double divergence at temperatures corresponding to the T(c)'s of the two gaps.

  15. The role of engineered materials in superconducting tunnel junction X-ray detectors - Suppression of quasiparticle recombination losses via a phononic band gap

    Science.gov (United States)

    Rippert, Edward D.; Ketterson, John B.; Chen, Jun; Song, Shenian; Lomatch, Susanne; Maglic, Stevan R.; Thomas, Christopher; Cheida, M. A.; Ulmer, Melville P.

    1992-01-01

    An engineered structure is proposed that can alleviate quasi-particle recombination losses via the existence of a phononic band gap that overlaps the 2-Delta energy of phonons produced during recombination of quasi-particles. Attention is given to a 1D Kronig-Penny model for phonons normally incident to the layers of a multilayered superconducting tunnel junction as an idealized example. A device with a high density of Bragg resonances is identified as desirable; both Nb/Si and NbN/SiN superlattices have been produced, with the latter having generally superior performance.

  16. Two-gap superconductivity in R2Fe3Si5 (R=Lu, Sc and Sc5Ir4Si10

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Tamegai, Yasuyuki Nakajima, Tsuyoshi Nakagawa, Guoji Li and Hisatomo Harima

    2008-01-01

    Full Text Available R2Fe3Si5 (R= Sc, Y, Lu contains nonmagnetic iron and has a relatively high superconducting transition temperature Tc among iron-containing superconductors. An anomalous temperature dependence of specific heat C(T has been reported for polycrystalline samples down to 1 K. We have grown R2Fe3Si5 single crystals, confirmed the anomalous C(T dependence, and found a second drop in specific heat below 1 K. In Lu2Fe3Si5, we can reproduce C(T below Tc, assuming two distinct energy gaps 2Δ 1/kBTc = 4.4 and 2Δ 2/kBTc = 1.1, with nearly equal weights, indicating that Lu2Fe3Si5 is a two-gap superconductor similar to MgB2. Hall coefficient measurements and band structure calculation also support the multiband contributions to the normal-state properties. The specific heat in the Sc2Fe3Si5 single crystals also shows the two-gap feature. R5Ir4Si10 (R = Sc, rare earth is also a superconductor where competition between superconductivity and the charge-density wave is known for rare earths but not for Sc. We have performed detailed specific heat measurements on Sc5Ir4Si10 single crystals and found that C(T deviates slightly from the behavior expected for weak-coupling superconductors. C(T for these superconductors can also be reproduced well by assuming two superconducting gaps.

  17. Superconductivity

    CERN Document Server

    Ketterson, John B

    2008-01-01

    Conceived as the definitive reference in a classic and important field of modern physics, this extensive and comprehensive handbook systematically reviews the basic physics, theory and recent advances in the field of superconductivity. Leading researchers, including Nobel laureates, describe the state-of-the-art in conventional and unconventional superconductors at a particularly opportune time, as new experimental techniques and field-theoretical methods have emerged. In addition to full-coverage of novel materials and underlying mechanisms, the handbook reflects continued intense research into electron-phone based superconductivity. Considerable attention is devoted to high-Tc superconductivity, novel superconductivity, including triplet pairing in the ruthenates, novel superconductors, such as heavy-Fermion metals and organic materials, and also granular superconductors. What’s more, several contributions address superconductors with impurities and nanostructured superconductors. Important new results on...

  18. Neutron Scattering Study of Low Energy Magnetic Excitation in superconducting Te-vapor annealed under-doped FeTeSe

    Science.gov (United States)

    Xu, Zhijun; Yi, Ming; Xu, Guangyong; Shneeloch, J. A.; Matsuda, Masaaki; Chi, Songxue; Gu, Genda; Tranquada, J. M.; Birgeneau, R. J.

    To study the interplay between magnetism and superconductivity, we have performed neutron scattering and magnetization measurements on a Te vapor annealed single crystal Fe1 +yTe0.8Se0.2 (Tc~13K) sample. Te vapor annealed process is found to reduce/remove the excess Fe in the as-grown sample and make the under-doped originally non-superconducting sample become good superconducting sample. Our neutron scattering studies show both spin gap and spin resonance found in the Te vapor annealed superconducting sample. Comparing to commensurate spin resonance in as-grown optimal-doped sample, the spin resonance of Te annealed sample only shows up at the clearly incommensurate positions. The temperature and energy dependence of low energy magnetic excitations are also measured in the sample. This work is supported by the Office of Basic Energy Sciences, DOE.

  19. Energy gap of novel edge-defected graphene nanoribbons

    Science.gov (United States)

    Yuan, Weiqing; Wen, Zhongquan; Li, Min; Chen, Li; Chen, Gang; Ruan, Desheng; Gao, Yang

    2016-08-01

    Herein, the effects of width and boundary defects on the energy gap of graphene nanoribbons (GNRs) have been explored and theoretically investigated by means of semi-empirical atomic basis Extended Hückel method. Due to the existence of boundary defects, the energy gap of GNRs is mainly determined by the width of graphene nanoribbons for armchair graphene nanoribbons (AGNRs) or zigzag graphene nanoribbons (ZGNRs). Interestingly, the energy gap of AGNRs with a 120° V-type defect displays the monotone decreasing tendency when the width reaches to 2 nm, while the energy gap of intrinsic AGNRs is oscillatory. At the same time, the energy gap of U-type defected ZGNRs is opened, which differs from the zero energy gap characteristics of the intrinsic zigzag graphene. Furthermore, the size of energy gap of the defected AGNRs and ZGNRs with the same width is proved to be very close. Calculation results demonstrate that the energy gap of GNRs is just inversely proportional to the width and has little to do with the crystallographic direction. All the findings above provide a basis for energy gap engineering with different edge defects in GNRs and signify promising prospects in graphene-based semiconductor electronic devices.

  20. ORNL Superconducting Technology Program for Electric Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hawsey, R.A. (comp.)

    1993-02-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy's (DOE's) Office of Conservation and Renewable Energy to develop the technology base needed by US industry for commercial development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and systems development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from information prepared for the FY 1992 Peer Review of Projects, conducted by DOE's Office of Program Analysis, Office of Energy Research. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer to US industry. Working together, the collaborative teams are making tremendous progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire products.

  1. Annealing condition dependence of the superconducting property and the pseudo-gap in the protect-annealed electron-doped cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Woo Been; Cho, Su Hyun; Kim, Chang Young [Center for Correlated Electron Systems, Institute for Basic Science, Seoul (Korea, Republic of); Song, Dong Joon [National Institute of Advanced Industrial Science and Technology, Tsukuba (Japan); Park, Seung Ryong [Dept. of Physics, Research Institute of Basic Sciences, Incheon National University, Incheon (Korea, Republic of)

    2016-06-15

    Annealing as-grown electron-doped cuprates under a low oxygen-partial-pressure condition is a necessary step to achieve superconductivity. It has been recently found that the so-called protect annealing results in much better superconducting properties in terms of the superconducting transition temperature and volume fraction. In this article, we report on angle-resolved photoemission spectroscopy studies of a protect-annealed electron-doped cuprate Pr0.9La1.0Ce0.1CuO4 on annealing condition dependent superconducting and pseudo-gap properties. Remarkably, we found that the one showing a better superconducting property possesses almost no pseudo-gap while others have strong pseudo-gap feature due to an anti-ferromagnetic order.

  2. Electron tunneling in single layer graphene with an energy gap

    Institute of Scientific and Technical Information of China (English)

    Xu Xu-Guang; Zhang Chao; Xu Gong-Jie; Cao Jun-Cheng

    2011-01-01

    When a single layer graphene is epitaxially grown on silicon carbide, it will exhibit a finite energy gap like a conventional semiconductor, and its energy dispersion is no longer linear in momentum in the low energy regime. In this paper, we have investigated the tunneling characteristics through a two-dimensional barrier in a single layer graphene with an energy gap. It is found that when the electron is at a zero angle of incidence, the transmission probability as a function of incidence energy has a gap. Away from the gap the transmission coefficient oscillates with incidence energy which is analogous to that of a conventional semiconductor. The conductance under zero temperature has a gap. The properties of electron transmission may be useful for developing graphene-based nano-electronics.

  3. Superconducting Gap Symmetry of LaFeP(O,F Observed by Impurity Doping Effect

    Directory of Open Access Journals (Sweden)

    Shigeki Miyasaka

    2016-08-01

    Full Text Available We have investigated Mn, Co and Ni substitution effects on polycrystalline samples of LaFePO0.95F0.05 by resistivity and magnetoresistance measurements. In LaFe1-xMxPO0.95F0.05 (M = Mn, Co and Ni, the superconducting transition temperature (Tc monotonously decreases with increasing the impurity doping level of x. There is a clear difference of Tc suppression rates among Mn, Co and Ni doping cases, and the decreasing rate of Tc by Mn doping as a magnetic impurity is larger than those by the nonmagnetic doping impurities (Co/Ni. This result indicates that in LaFePO0.95F0.05, Tc is rapidly suppressed by the pair-breaking effect of magnetic impurities, and the pairing symmetry is a full-gapped s-wave. In the nonmagnetic impurity-doped systems, the residual resistivity in the normal state has nearly the same value when Tc becomes zero. The residual resistivity value is almost consistent with the universal value of sheet resistance for two-dimensional superconductors, suggesting that Tc is suppressed by electron localization in Co/Ni-doped LaFePO0.95F0.05.

  4. Superconductivity

    CERN Document Server

    Poole, Charles P; Creswick, Richard J; Prozorov, Ruslan

    2014-01-01

    Superconductivity, Third Edition is an encyclopedic treatment of all aspects of the subject, from classic materials to fullerenes. Emphasis is on balanced coverage, with a comprehensive reference list and significant graphics from all areas of the published literature. Widely used theoretical approaches are explained in detail. Topics of special interest include high temperature superconductors, spectroscopy, critical states, transport properties, and tunneling. This book covers the whole field of superconductivity from both the theoretical and the experimental point of view. This third edition features extensive revisions throughout, and new chapters on second critical field and iron based superconductors.

  5. Nanoscale superconducting-gap variations and lack of phase separation in optimally doped BaFe1.86Co0.14As2

    NARCIS (Netherlands)

    F. Massee; Y. Huang; R. Huisman; S. de Jong; J.B. Goedkoop; M.S. Golden

    2009-01-01

    We present tunneling data from superconducting BaFe1.86Co0.14As2 and its parent compound, BaFe2As2. In the superconductor, clear coherencelike peaks are seen across the whole field of view, and their analysis reveals nanoscale variations in the superconducting gap value, Δ. The average peak-to-peak

  6. Superconducting cables: Long distance energy transmission. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The bibliography contains citations concerning the design, development, and evaluation of superconducting cables and power transmission lines for long distance energy transmission. Topics include methods of cryogenic refrigeration and electrical insulation, fabrication and development of niobium alloy conductors, energy loss analysis, and dielectric design of superconducting power transmission systems. Government research reports on superconducting technology for electric power transmission and distribution are also reviewed.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  7. The energy-service gap: What does it mean?

    Energy Technology Data Exchange (ETDEWEB)

    Backlund, Sandra; Thollander, Patrik (Department of Management and Engineering, Division of Energy Systems, Linkoeping University (Sweden))

    2011-07-01

    Through the formulation of the 2020-targets, the EU has set as an objective to reduce the use of primary energy with 20 % by 2020. The target is supposed to be reached through increased energy efficiency. Despite a large potential for energy efficiency, cost effective measures are not always implemented which is explained by market failures and barriers to energy efficiency. This difference between potential energy-efficiency and what is actually implemented, is referred to as the energy-efficiency gap. Energy service companies (ESCOs) have been put forth as a potential means of overcoming this gap to energy-efficiency. Well-functioning markets for ESCOs are therefore addressed as one of the key elements in the Energy Services Directive (ESD), a tool for the economy to move towards increased energy efficiency and sustainability. In other words, the development of the energy service market is of crucial importance if a Member State is to achieve the ambitious 2020-target. The aim of this article is to analyse the market for energy services towards industrial small- and medium sized Enterprises (SMEs). Focus will be on the Swedish market, however general conclusions may be drawn from this example. A large part of the potential for energy services is not being implemented today - this is identified as the energy-service gap. The gap is explained by transaction cost economics; relatively high transaction costs for consulting ESCOs inhibit further market development. The ESCO market in Sweden is estimated, by the Swedish state, to still be immature but have potential for further development. A government report does not identify the market barriers on the energy service market as market failures. By introducing market development mechanisms (e.g. standardized contracts and an accreditation system) the state could decrease the transaction and thus the energy service gap. Reducing the energy-service gap could be a cost effective way of reducing the energy efficiency gap

  8. Effects of doping on superconducting gap anisotropy in Bi_2Sr2 CaCu_2O8+x

    Science.gov (United States)

    Onellion, Marshall; Ma, Jian; Quitmann, Christoph; Kelley, R. J.; Kendziora, C.; Larosa, S.; Berger, H.; Margaritondo, G.

    1996-03-01

    We report on recent fabrication of Bi_2Sr_2CaCu_2O_8+x single crystals that span the phase diagram from insulators, all of the underdoped part, and as far into the overdoped part as a superconducting transition temperature, T_c=55K.[1,2] Optimally doped and overdoped samples exhibit narrow susceptibility transition widths. However, the c-axis between insulators-underdoped-optimally doped materials is almost identical, indicating that oxygen is added and removed from different part of the unit cell.[1,2] We have studied the superconducting gap anisotropy for optimally doped and overdoped samples. We find that the ratio gap along the (0,π)direction to that along the (π,π) is 20:1 for optimally doped or slightly underdoped samples, consistent with earlier report. The gap along the (π,π) direction is indistiguishable from zero. However, for somewhat overdoped samples, the gap anisotropy is 2:1, with the smaller gap 10meV, definitely non-zero.

  9. Conductors with small Fermi energies and small gap energies

    Energy Technology Data Exchange (ETDEWEB)

    Thorn, R.J.

    1993-09-01

    If the Fermi energy is of the order of meV`s, the usual treatment of the density of free electrons is not valid, but use can be made of an averaged density of states that depends weakly on temperature, so that the temperature variation of the conductivity can be expressed by the equation: {sigma} {congruent} CT{sup (1-s)} 1n{l_brace}[(exp({beta}E{sub f}) + 1)/2][exp({minus}{beta}(E{sub g} {minus} E{sub f})) + 1)]{r_brace} in which E{sub f} is the Fermi energy, E{sub g} is the top of the energy gap for thermal activation, s is the exponent of the temperature-dependent scattering. This equation serves to define a class of solids consisting of a microcomposite with a narrow conduction band for which E{sub f} of the order of ceV`s or less and a thermal activated conduction for which E{sub g} is of the order of ceV`s. It describes quantitatively the conductivity, {sigma}(T;{Delta}, for YBa{sub 2}Cu{sub 3}O{sub 7-{Delta}} and {sigma}(T;p) as the hydrostatic pressure p is varied for {kappa}-(BEDT-TTF){sub 2}CuN(CN){sub 2}Br.

  10. Department of Energy`s Wire Development Workshop - Superconductivity program for electric systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    The 1996 High-Temperature Superconducting Wire Development Workshop was held on January 31--February 1 at the Crown Plaza Tampa Westshore in Tampa, Florida. The meeting was hosted by Tampa Electric Company and sponsored by the Department of Energy`s Superconductivity Program for Electric Systems. The meeting focused on recent high-temperature superconducting wire development activities in the Department of Energy`s Superconductivity Systems program. Tampa Electric`s Greg Ramon began the meeting by giving a perspective on the changes now occurring in the utility sector. Major program wire development accomplishments during the past year were then highlighted, particularly the world record achievements at Los Alamos and Oak Ridge National Laboratories. The meeting then focussed on three priority technical issues: thallium conductors; AC losses in HTS conductors; and coated conductors on textured substrates. Following in-depth presentations, working groups were formed in each technology area to discuss and critique the most important current research and development issues. The working groups identified research areas that have the potential for greatly enhancing the wire development effort. These areas are discussed in the summary reports from each of the working groups. This document is a compilation of the workshop proceedings including all general session presentations and summary reports from the working groups.

  11. Anisotropic evolution of energy gap in Bi2212 superconductor

    Science.gov (United States)

    Durajski, A. P.

    2016-10-01

    We present a systematic analysis of the energy gap in underdoped Bi2212 superconductor as a function of temperature and hole doping level. Within the framework of the theoretical model containing the electron-phonon and electron-electron-phonon pairing mechanism, we reproduced the measurement results of modern ARPES experiments with very high accuracy. We showed that the energy-gap amplitude is very weakly dependent on the temperature but clearly dependent on the level of doping. The evidence for a non-zero energy gap above the critical temperature, referred to as a pseudogap, was also obtained.

  12. Upper critical field of KFe2As2 under pressure: A test for the change in the superconducting gap structure

    Energy Technology Data Exchange (ETDEWEB)

    Taufour, Valentin [Ames Laboratory; Foroozani, Neda [Washington University; Tanatar, Makariy A. [Ames Laboratory; Lim, Jinhyuk [Washington University; Kaluarachchi, Udhara [Iowa State University; Kim, Stella K. [Ames Laboratory; Liu, Yong [Ames Laboratory; Lograsso, Thomas A. [Ames Laboratory; Kogan, Vladimir G. [Ames Laboratory; Prozorov, Ruslan [Ames Laboratory; Bud' ko, Sergey L. [Ames Laboratory; Schilling, James S. [Washington University; Canfield, Paul C. [Ames Laboratory

    2014-06-01

    We report measurements of electrical resistivity under pressure to 5.8 GPa, magnetization to 6.7 GPa, and ac susceptibility to 7.1 GPa in KFe2As2. The previously reported change of slope in the pressure dependence of the superconducting transition temperature Tc(p) at a pressure p*~1.8 GPa is confirmed, and Tc(p) is found to be nearly constant above p* up to 7.1 GPa. The T-p phase diagram is very sensitive to the pressure conditions as a consequence of the anisotropic uniaxial pressure dependence of Tc. Across p*, a change in the behavior of the upper critical field is revealed through a scaling analysis of the slope of Hc2 with the effective mass as determined from the A coefficient of the T2 term of the temperature-dependent resistivity. We show that this scaling provides a quantitative test for the changes of the superconducting gap structure and suggests the development of a kz modulation of the superconducting gap above p* as a most likely explanation.

  13. Low cost composite structures for superconducting magnetic energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Rix, C. (General Dynamics Space Magnetics, San Diego, CA (United States)); McColskey, D. (National Inst. of Standards and Technology, Boulder, CO (United States)); Acree, R. (Phillips Lab., Edwards Air Force Base, CA (United States))

    1994-07-01

    As part of the Superconducting Magnetic Energy Storage/Engineering Test Model (SMES-ETM) programs, design, analysis, fabrication and test programs were conducted to evaluate the low cost manufacturing of Fiberglass Reinforced Plastic (FRP) beams for usage as major components of the structural and electrical insulation systems. These studies utilized pultrusion process technologies and vinylester resins to produce large net sections at costs significantly below that of conventional materials. Demonstration articles incorporating laminate architectures and design details representative of SMES-ETM components were fabricated using the pultrusion process and epoxy, vinylester, and polyester resin systems. The mechanical and thermal properties of these articles were measured over the temperature range from 4 K to 300 K. The results of these tests showed that the pultruded, vinylester components have properties comparable to those of currently used materials, such as G-10, and are capable of meeting the design requirements for the SMES-ETM system.

  14. Gap distributions and spatial variation of electronic states in superconducting and pseudogap states of Bi{sub 2}Sr{sub 2}Ca{sub 2}CuO{sub 8+{delta}}

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, K.K.; Pasupathy, A.; Pushp, A. [Department of Physics, Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (United States); Ono, S.; Ando, Y. [Central Research Institute of Electric Power Industry, Komae, Tokyo 201-8511 (Japan); Yazdani, A. [Department of Physics, Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (United States)], E-mail: yazdani@princeton.edu

    2007-09-01

    High-resolution scanning tunneling microscopy has been used to study the tunneling density of states in lightly underdoped samples of the high-T{sub c} superconductor Bi{sub 2}Sr{sub 2}Ca{sub 2}CuO{sub 8+{delta}} in both the superconducting and pseudogap states. We demonstrate that the tunneling gaps observed in these two states have identical spatial distributions and correlation lengths. This observation suggests that the two gaps, and hence the two phenomena, cannot have a competing origin. In addition, we present measurements that show that in contrast to the superconducting state, in which low energy quasi-particles are homogenous in real space, the states near the Fermi level are spatially inhomogeneous in the pseudogap state. The variation of the low-energy electronic states is spatially correlated with local changes in the pseudogap.

  15. Optimizing the configuration of a superconducting photonic band gap accelerator cavity to increase the maximum achievable gradients

    Science.gov (United States)

    Simakov, Evgenya I.; Kurennoy, Sergey S.; O'Hara, James F.; Olivas, Eric R.; Shchegolkov, Dmitry Yu.

    2014-02-01

    We present a design of a superconducting rf photonic band gap (SRF PBG) accelerator cell with specially shaped rods in order to reduce peak surface magnetic fields and improve the effectiveness of the PBG structure for suppression of higher order modes (HOMs). The ability of PBG structures to suppress long-range wakefields is especially beneficial for superconducting electron accelerators for high power free-electron lasers (FELs), which are designed to provide high current continuous duty electron beams. Using PBG structures to reduce the prominent beam-breakup phenomena due to HOMs will allow significantly increased beam-breakup thresholds. As a result, there will be possibilities for increasing the operation frequency of SRF accelerators and for the development of novel compact high-current accelerator modules for the FELs.

  16. Correlation-driven d -wave superconductivity in Anderson lattice model: Two gaps

    Science.gov (United States)

    Wysokiński, Marcin M.; Kaczmarczyk, Jan; Spałek, Józef

    2016-07-01

    Superconductivity in heavy-fermion systems has an unconventional nature and is considered to originate from the universal features of the electronic structure. Here, the Anderson lattice model is studied by means of the full variational Gutzwiller wave function incorporating nonlocal effects of the on-site interaction. We show that the d -wave superconducting ground state can be driven solely by interelectronic correlations. The proposed microscopic mechanism leads to a multigap superconductivity with the dominant contribution due to f electrons and in the dx2-y2-wave channel. Our results rationalize several important observations for CeCoIn5.

  17. The role of gap analyses in energy assurance planning.

    Science.gov (United States)

    Shea, Katherine

    2013-01-01

    Energy-related emergencies, such as power outages or interruptions to other energy supplies, can arise from a number of factors. Common causes include severe weather events--such as snowstorms, hurricanes, or summer storms with strong winds--as well as energy infrastructure that is overburdened, aging, or in need of repair. As past experience indicates, jurisdictions will continue to experience severe weather events, as well as confront infrastructure issues that make future power outages likely. As a result, state and local governments have turned to energy assurance planning, an energy-specific form of planning that helps jurisdictions prepare for and recover from energy emergencies. Energy assurance recognizes that power loss/disruption cannot be eradicated completely, but jurisdictions can mitigate the impact of power loss through effective planning. This article discusses the role of energy assurance planning and provides a description of what energy assurance means and why developing such plans at the state and local levels is important. In addition, this article discusses the role of statutory gap analyses in energy assurance planning and discusses how a gap analysis can be used by planners to identify trends and gaps in energy assurance. To provide context, a recently conducted statutory gap analysis analyzing national emergency backup power trends is provided as a case study. A summary of this project and key findings is included. Finally, this article briefly touches on legislation as an alternative to energy assurance planning, and provides summaries of recent legislative proposals introduced in the aftermath of Hurricane Sandy.

  18. Nuclear energy in Malaysia - closing the gaps

    Science.gov (United States)

    >Malaysian Nuclear Society (Mns,

    2013-06-01

    This article is prepared by the Malaysian Nuclear Society (MNS) to present the views of the Malaysian scientific community on the need for Malaysia to urgently upgrade its technical know-how and expertise to support the nuclear energy industry for future sustainable economic development of the country. It also present scientific views that nuclear energy will bring economic growth as well as technically sound industry, capable of supporting nuclear energy industry needs in the country, and recommend action items for timely technical upgrading of Malaysian expertise related to nuclear energy industry.

  19. Electron energy-loss spectroscopy of branched gap plasmon resonators

    Science.gov (United States)

    Raza, Søren; Esfandyarpour, Majid; Koh, Ai Leen; Mortensen, N. Asger; Brongersma, Mark L.; Bozhevolnyi, Sergey I.

    2016-12-01

    The miniaturization of integrated optical circuits below the diffraction limit for high-speed manipulation of information is one of the cornerstones in plasmonics research. By coupling to surface plasmons supported on nanostructured metallic surfaces, light can be confined to the nanoscale, enabling the potential interface to electronic circuits. In particular, gap surface plasmons propagating in an air gap sandwiched between metal layers have shown extraordinary mode confinement with significant propagation length. In this work, we unveil the optical properties of gap surface plasmons in silver nanoslot structures with widths of only 25 nm. We fabricate linear, branched and cross-shaped nanoslot waveguide components, which all support resonances due to interference of counter-propagating gap plasmons. By exploiting the superior spatial resolution of a scanning transmission electron microscope combined with electron energy-loss spectroscopy, we experimentally show the propagation, bending and splitting of slot gap plasmons.

  20. Wind energy availability above gaps in a forest

    DEFF Research Database (Denmark)

    Sogachev, Andrey; Mann, Jakob; Dellwik, Ebba

    2009-01-01

    There is a lack of data on availability of wind energy above a forest disturbed by clear-cuts, where a wind energy developer may find an opportunity to install a wind farm. Computational fluid dynamics (CFD) models can provide spatial patterns of wind and turbulence, and help to develop optimal...... installation strategies. The canopy-planetary boundary-layer model SCADIS is used to investigate the effect of forest gap size (within the diameter range of 3 - 75 tree heights, h) on wind energy related variables. A wind turbine was assumed with following features: the hub height and rotor diameter of 3.5h...... were estimated from modelled data. The results show that the effect of the forest gaps with diameters smaller than 55h on wind energy captured by the assumed wind turbine and located in the centre of round low-roughness gap is practically insignificant. The high level of spatial variation of considered...

  1. STRIPES AND SUPERCONDUCTIVITY IN CUPRATE SUPERCONDUCTORS

    Energy Technology Data Exchange (ETDEWEB)

    TRANQUADA, J.M.

    2005-08-22

    One type of order that has been observed to compete with superconductivity in cuprates involves alternating charge and antiferromagnetic stripes. Recent neutron scattering studies indicate that the magnetic excitation spectrum of a stripe-ordered sample is very similar to that observed in superconducting samples. In fact, it now appears that there may be a universal magnetic spectrum for the cuprates. One likely implication of this universal spectrum is that stripes of a dynamic form are present in the superconducting samples. On cooling through the superconducting transition temperature, a gap opens in the magnetic spectrum, and the weight lost at low energy piles up above the gap; the transition temperature is correlated with the size of the spin gap. Depending on the magnitude of the spin gap with respect to the magnetic spectrum, the enhanced magnetic scattering at low temperature can be either commensurate or incommensurate. Connections between stripe correlations and superconductivity are discussed.

  2. Stripes and superconductivity in cuprate superconductors

    Science.gov (United States)

    Tranquada, J. M.

    2005-08-01

    One type of order that has been observed to compete with superconductivity in cuprates involves alternating charge and antiferromagnetic stripes. Recent neutron scattering studies indicate that the magnetic excitation spectrum of a stripe-ordered sample is very similar to that observed in superconducting samples. In fact, it now appears that there may be a universal magnetic spectrum for the cuprates. One likely implication of this universal spectrum is that stripes of a dynamic form are present in the superconducting samples. On cooling through the superconducting transition temperature, a gap opens in the magnetic spectrum, and the weight lost at low energy piles up above the gap; the transition temperature is correlated with the size of the spin gap. Depending on the magnitude of the spin gap with respect to the magnetic spectrum, the enhanced magnetic scattering at low temperature can be either commensurate or incommensurate. Connections between stripe correlations and superconductivity are discussed.

  3. Angular position of nodes in the superconducting gap of quasi-2D heavy-fermion superconductor CeCoIn5.

    Science.gov (United States)

    Izawa, K; Yamaguchi, H; Matsuda, Y; Shishido, H; Settai, R; Onuki, Y

    2001-07-30

    The thermal conductivity of the heavy-fermion superconductor CeCoIn5 has been studied in a magnetic field rotating within the 2D planes. A clear fourfold symmetry of the thermal conductivity which is characteristic of a superconducting gap with nodes along the ( +/- pi,+/- pi) directions is resolved. The thermal conductivity measurement also reveals a first-order transition at H(c2), indicating a Pauli limited superconducting state. These results indicate that the symmetry most likely belongs to d(x(2)-y(2)), implying that the anisotropic antiferromagnetic fluctuation is relevant to the superconductivity.

  4. Tests of the nuclear equation of state and superfluid and superconducting gaps using the Cassiopeia A neutron star

    CERN Document Server

    Ho, Wynn C G; Heinke, Craig O; Potekhin, Alexander Y

    2014-01-01

    The observed rapid cooling of the Cassiopeia A neutron star can be interpreted as being caused by neutron and proton transitions from normal to superfluid and superconducting states in the stellar core. Here we present two new Chandra ACIS-S Graded observations of this neutron star and measurements of the neutron star mass M and radius R found from consistent fitting of both the X-ray spectra and cooling behavior. This comparison is only possible for individual nuclear equations of state. We test phenomenological superfluid and superconducting gap models which mimic many of the known theoretical models against the cooling behavior. Our best-fit solution to the Cassiopeia A data is one in which the (M,R) = (1.43 Msun,12.6 km) neutron star is built with the BSk21 equation of state, strong proton superconductor and moderate neutron triplet superfluid gap models, and a pure iron envelope or a thin carbon layer on top of an iron envelope, although there are still large observational and theoretical uncertainties.

  5. Closing the Gap GEF Experiences in Global Energy Efficiency

    CERN Document Server

    Yang, Ming

    2013-01-01

    Energy efficiency plays and will continue to play an important role in the world to save energy and mitigate greenhouse gas (GHG) emissions. However, little is known on how much additional capital should be invested to ensure using energy efficiently as it should be, and very little is known which sub-areas, technologies, and countries shall achieve maximum greenhouse gas emissions mitigation per dollar of investment in energy efficiency worldwide. Analyzing completed and slowly moving energy efficiency projects by the Global Environment Facility during 1991-2010, Closing the Gap: GEF Experiences in Global Energy Efficiency evaluates impacts of multi-billion-dollar investments in the world energy efficiency. It covers the following areas: 1.       Reviewing the world energy efficiency investment and disclosing the global energy efficiency gap and market barriers that cause the gap; 2.       Leveraging private funds with public funds and other resources in energy efficiency investments; using...

  6. Tip Heater for Minimum Quench Energy Measurements on Superconducting Strands

    CERN Document Server

    Bauer, P; Oberli, L R

    1999-01-01

    Superconducting strands can be characterized by their Minimum Quench Energy (MQE), i.e. the minimum heat pulse needed to trigger a quench in operation conditions (field, temperature, current), in the limit of a (temporally and spatially) d-shaped disturbance. The sub-mm/µs range of perturbation space has only recently been achieved using the electrical graphite-paste heater technique [1]. The present work has put this technique into practice for the strands of the LHC main magnets, which are designed to operate at 1.9K in peak fields of up to 9T [1]. No way has been found yet to calibrate MQE measurements. To make relative statements on the MQE of different samples possible, the reproducibility of the measurements was emphasized. First heater prototypes did not come up to this stipulation. Finally the tip-heater configuration was found to meet the requirements. It generates a heat pulse in a thin resistive graphite paste deposit on top of a small tip that is pressed against the sample with a clamp. The clamp...

  7. The power processor of a high temperature superconducting energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Ollila, J. [Power Electronics, Tampere University of Technology, Tampere (Finland)

    1997-12-31

    This report introduces the structure and properties of a power processor unit for a high temperature superconducting magnetic energy storage system which is bused in an UPS demonstration application. The operation is first demonstrated using simulations. The software based operating and control system utilising combined Delta-Sigma and Sliding-Mode control is described shortly. Preliminary test results using a conventional NbTi superconducting energy y storage magnet operating at 4.2 K is shown. (orig.)

  8. Probing the superconducting gap of UPt{sub 3} by very low-temperature thermal conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Suderow, H. [CEA Centre d`Etudes de Grenoble, 38 (France). Dept. de Recherche Fondamentale sur la Matiere Condensee; Brison, J.P. [Centre National de la Recherche Scientifique (CNRS), 38 - Grenoble (France). Centre de Recherches sur les Tres Basses Temperatures; Huxley, A.D. [CEA Centre d`Etudes de Grenoble, 38 (France). Dept. de Recherche Fondamentale sur la Matiere Condensee; Flouquet, J. [CEA Centre d`Etudes de Grenoble, 38 (France). Dept. de Recherche Fondamentale sur la Matiere Condensee

    1996-07-01

    We present new measurements of the thermal conductivity of UPt{sub 3} at very low temperature (T{>=}16 mK) and under magnetic field. We discuss in detail how our measurements (in zero field and finite fields) may help to determine the symmetry of the superconducting order parameter. (orig.).

  9. The calculation of band gap energy in zinc oxide films

    Science.gov (United States)

    Arif, Ali; Belahssen, Okba; Gareh, Salim; Benramache, Said

    2015-01-01

    We investigated the optical properties of undoped zinc oxide thin films as the n-type semiconductor; the thin films were deposited at different precursor molarities by ultrasonic spray and spray pyrolysis techniques. The thin films were deposited at different substrate temperatures ranging between 200 and 500 °C. In this paper, we present a new approach to control the optical gap energy of ZnO thin films by concentration of the ZnO solution and substrate temperatures from experimental data, which were published in international journals. The model proposed to calculate the band gap energy with the Urbach energy was investigated. The relation between the experimental data and theoretical calculation suggests that the band gap energies are predominantly estimated by the Urbach energies, film transparency, and concentration of the ZnO solution and substrate temperatures. The measurements by these proposal models are in qualitative agreements with the experimental data; the correlation coefficient values were varied in the range 0.96-0.99999, indicating high quality representation of data based on Equation (2), so that the relative errors of all calculation are smaller than 4%. Thus, one can suppose that the undoped ZnO thin films are chemically purer and have many fewer defects and less disorder owing to an almost complete chemical decomposition and contained higher optical band gap energy.

  10. Development of Low Energy Gap and Fully Regioregular Polythienylenevinylene Derivative

    Directory of Open Access Journals (Sweden)

    Tanya M. S. David

    2014-01-01

    Full Text Available Low energy gap and fully regioregular conjugated polymers find its wide use in solar energy conversion applications. This paper will first briefly review this type of polymers and also report synthesis and characterization of a specific example new polymer, a low energy gap, fully regioregular, terminal functionalized, and processable conjugated polymer poly-(3-dodecyloxy-2,5-thienylene vinylene or PDDTV. The polymer exhibited an optical energy gap of 1.46 eV based on the UV-vis-NIR absorption spectrum. The electrochemically measured highest occupied molecular orbital (HOMO level is −4.79 eV, resulting in the lowest unoccupied molecular orbital (LUMO level of −3.33 eV based on optical energy gap. The polymer was synthesized via Horner-Emmons condensation and is fairly soluble in common organic solvents such as tetrahydrofuran and chloroform with gentle heating. DSC showed two endothermic peaks at 67°C and 227°C that can be attributed to transitions between crystalline and liquid states. The polymer is thermally stable up to about 300°C. This polymer appears very promising for cost-effective solar cell applications.

  11. Global Gaps in Clean Energy RD and D

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This report seeks to inform decision makers seeking to prioritise RD&D investments in a time of financial uncertainty. It is an update of the December 2009 IEA report Global Gaps in Clean Energy Research, Development and Demonstration, which examined whether rates of LCET investment were sufficient to achieve shared global energy and environmental goals (IEA,2009). It discusses the impact of the green stimulus spending announcements, and provides private sector perspectives on priorities for government RD&D spending. Finally, it includes a revised assessment of the gaps in public RD&D, together with suggestions for possible areas for expanded international collaboration on specific LCETs. The conclusion re-affirms the first Global Gaps study finding that governments and industry need to dramatically increase their spending on RD&D for LCETs.

  12. Thermal conductivity and gap structure of the superconducting phases of UPt{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Suderow, H.; Huxley, A.; Flouquet, J. [CEA, Grenoble (France); Brison, J.P. [CNRS, Grenoble (France)

    1997-07-01

    We present new measurements of the thermal conductivity ({kappa}) of Upt{sub 3} down to very low temperatures (16 mK) and under magnetic fields (up to 4 T) which cover all the superconducting phases of Upt{sub 3}. The measurements in zero field are compared with recent theoretical predictions for the thermal conductivity, which is dominated by impurity states at the lowest temperatures studied. The measurements under magnetic field at low temperatures are surprising since they don`t show the expected low field square root dependence, {kappa} {proportional_to} {radical}B. The discontinuity of d{kappa}/dT at T{sub c} changes drastically when passing from the high field low temperature C phase to the low field high temperature A phase: this is related to the change of the symmetry of the superconducting order parameter when crossing the A {yields} C phase transition.

  13. Energy gaps in Bi(2)Sr(2)CaCu(2)O(8+δ) cuprate superconductors.

    Science.gov (United States)

    Ren, J K; Zhu, X B; Yu, H F; Tian, Ye; Yang, H F; Gu, C Z; Wang, N L; Ren, Y F; Zhao, S P

    2012-01-01

    The relationship between the cuprate pseudogap (Δ(p)) and superconducting gap (Δ(s)) remains an unsolved mystery. Here, we present a temperature- and doping-dependent tunneling study of submicron Bi(2)Sr(2)CaCu(2)O(8+δ) intrinsic Josephson junctions, which provides a clear evidence that Δ(s) closes at a temperature T(c) (0) well above the superconducting transition temperature T(c) but far below the pseudogap opening temperature T*. We show that the superconducting pairing first occurs predominantly on a limited Fermi surface near the node below T(c) (0), accompanied by a Fermi arc due to the lifetime effects of quasiparticles and Cooper pairs. The arc length has a linear temperature dependence, and as temperature decreases below T(c) it reduces to zero while pairing spreads to the antinodal region of the pseudogap leading to a d-wave superconducting gap on the entire Fermi surface at lower temperatures.

  14. Electron energy-loss spectroscopy of branched gap plasmon resonators

    DEFF Research Database (Denmark)

    Raza, Søren; Esfandyarpour, Majid; Koh, Ai Leen

    2016-01-01

    The miniaturization of integrated optical circuits below the diffraction limit for high-speed manipulation of information is one of the cornerstones in plasmonics research. By coupling to surface plasmons supported on nanostructured metallic surfaces, light can be confined to the nanoscale...... microscope combined with electron energy-loss spectroscopy, we experimentally show the propagation, bending and splitting of slot gap plasmons....

  15. Momentum Dependence of Superconducting Gap, Strong-Coupling Dispersion Kink, And Tightly Bound Cooper Pairs in the High-T(C)(Sr,Ba)(1-X)(K,Na)(X)Fe(2) As(2) Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Wray, L.; Qian, D.; Hsieh, D.; Xia, Y.; Li, L.; Checkelsky, J.G.; Pasupathy, A.; Gomes, K.K.; Parker, C.V.; Fedorov, A.V.; Chen, G.F.; Luo, J.L.; Yazdani, A.; Ong, N.P.; Wang, N.L.; Hasan, M.Z.

    2009-05-28

    We present a systematic angle-resolved photoemission spectroscopic study of the high-T{sub c} superconductor class (Sr/Ba){sub 1-x}K{sub x}Fe{sub 2}As{sub 2}. By utilizing a photon-energy-modulation contrast and scattering geometry we report the Fermi surface and the momentum dependence of the superconducting gap, {triangle}(k{open_square}). A prominent quasiparticle dispersion kink reflecting strong scattering processes is observed in a binding-energy range of 25--55 meV in the superconducting state, and the coherence length or the extent of the Cooper pair wave function is found to be about 20 {angstrom}, which is uncharacteristic of a superconducting phase realized by the BCS-phonon-retardation mechanism. The observed 40{+-}15 meV kink likely reflects contributions from the frustrated spin excitations in a J{sub 1}-J{sub 2} magnetic background and scattering from the soft phonons. Results taken collectively provide direct clues to the nature of the pairing potential including an internal phase-shift factor in the superconducting order parameter which leads to a Brillouin zone node in a strong-coupling setting.

  16. Gap filling strategies for long term energy flux data sets

    DEFF Research Database (Denmark)

    Falge, E.; Baldocchi, D.; Olson, R.

    2001-01-01

    At present a network of over 100 field sites are measuring carbon dioxide, water vapor and sensible heat fluxes between the biosphere and atmosphere, on a nearly continuous basis. Gaps in the long term measurements of evaporation and sensible heat flux must be filled before these data can be used...... for hydrological and meteorological applications. We adapted methods of gap filling for NEE (net ecosystem exchange of carbon) to energy fluxes and applied them to data sets available from the EUROFLUX and AmeriFlux eddy covariance databases. The average data coverage for the sites selected was 69% and 75...

  17. Quasiparticle Gaps and Exciton Coulomb Energies in Si Nanoshells

    Energy Technology Data Exchange (ETDEWEB)

    Frey, K. [University of Illinois, Chicago; Idrobo Tapia, Juan C [ORNL; Tiago, Murilo L [ORNL; Reboredo, Fernando A [ORNL; Ogut, Serdar [University of Illinois, Chicago

    2009-01-01

    Quasiparticle gaps and exciton Coulomb energies of H-passivated spherical Si nanoshells are computed using rst principles SCF and GW methods. We nd that the quasiparticle gap of a nanoshell depends on both its inner radius R1 (weakly) and outer radius R2 (strongly). These dependences on R1 and R2 are mostly consistent with electrostatics of a metallic shell. We also nd that the unscreened Coulomb energy ECoul in Si nanoshells has a somewhat unexpected size dependence at xed outer radius R2: ECoul decreases as the nanoshell becomes more conning, contrary to what one would expect from quantum connement eects. We show that this is a consequence of an increase in the average electron-hole distance, giving rise to reduced exciton Coulomb energies in spite of the reduction in the conning nanoshell volume.

  18. Robust Energy Hub Management Using Information Gap Decision Theory

    DEFF Research Database (Denmark)

    Javadi, Mohammad Sadegh; Anvari-Moghaddam, Amjad; Guerrero, Josep M.

    2017-01-01

    tools in order to deal with uncertainties and to provide reliable operating conditions. On a broader scale, an energy hub includes diverse energy sources for supplying both electrical load and heating/cooling demands with stochastic behaviors. Therefore, this paper utilizes the Information Decision Gap...... Theory (IGDT) to tackle this uncertainty as an efficient robust optimization tool with low complexity to ensure the optimal operation of the system according to the priorities of the decision maker entity. The proposed optimization framework is also implemented on a benchmark energy hub which includes...

  19. Results of the studies on energy deposition in IR6 superconducting magnets from continuous beam loss on the TCDQ system

    CERN Document Server

    Bracco, C; Presland, A; Redaelli, S; Sarchiapone, L; Weiler, T

    2007-01-01

    A single sided mobile graphite diluter block TCDQ, in combination with a two-sided secondary collimator TCS and an iron shield TCDQM, will be installed in front of the superconducting quadrupole Q4 magnets in IR6, in order to protect it and other downstream LHC machine elements from destruction in the event of a beam dump that is not synchronised with the abort gap. The TCDQ will be positioned close to the beam, and will intercept the particles from the secondary halo during low beam lifetime. Previous studies (1-4) have shown that the energy deposited in the Q4 magnet coils can be close to or above the quench limit. In this note the results of the latest FLUKA energy deposition simulations for Beam 2 are described, including an upgrade possibility for the TCDQ system with an additional shielding device. The results are discussed in the context of the expected performance levels for the different phases of LHC operation.

  20. Public perceptions and information gaps in solar energy in Texas

    Science.gov (United States)

    Rai, Varun; Beck, Ariane L.

    2015-07-01

    Studying the behavioral aspects of the individual decision-making process is important in identifying and addressing barriers in the adoption of residential solar photovoltaic (PV). However, there is little systematic research focusing on these aspects of residential PV in Texas, an important, large, populous state, with a range of challenges in the electricity sector including increasing demand, shrinking reserve margins, constrained water supply, and challenging emissions reduction targets under proposed federal regulations. This paper aims to address this gap through an empirical investigation of a new survey-based dataset collected in Texas on solar energy perceptions and behavior. The results of this analysis offer insights into the perceptions and motivations influencing intentions and behavior toward solar energy in a relatively untapped market and help identify information gaps that could be targeted to alleviate key barriers to adopting solar, thereby enabling significant emissions reductions in the residential sector in Texas.

  1. Inter-band phase fluctuations in macroscopic quantum tunneling of multi-gap superconducting Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Asai, Hidehiro, E-mail: hd-asai@aist.go.jp [Electronics and Photonics Research Institute (ESPRIT), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Ota, Yukihiro [CCSE, Japan Atomic Energy Agency, Kashiwa, Chiba 277-8587 (Japan); Kawabata, Shiro [Electronics and Photonics Research Institute (ESPRIT), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Nori, Franco [CEMS, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Physics Department, University of Michigan, Ann Arbor, MI 48109-1040 (United States)

    2014-09-15

    Highlights: • We study MQT in Josephson junctions composed of multi-gap superconductors. • We derive a formula of the MQT escape rate for multiple phase differences. • We investigate the effect of inter-band phase fluctuation on MQT. • The MQT escape rate is significantly enhanced by the inter-band phase fluctuation. - Abstract: We theoretically investigate macroscopic quantum tunneling (MQT) in a hetero Josephson junction formed by a conventional single-gap superconductor and a multi-gap superconductor. In such Josephson junctions, phase differences for each tunneling channel are defined, and the fluctuation of the relative phase differences appear which is referred to as Josephson–Leggett’s mode. We take into account the effect of the fluctuation in the tunneling process and calculate the MQT escape rate for various junction parameters. We show that the fluctuation of relative phase differences drastically enhances the escape rate.

  2. The Binding Energy, Spin-Excitation Gap, and Charged Gap in the Boson-Fermion Model

    Institute of Scientific and Technical Information of China (English)

    YANG Kai-Hua; TIAN Guang-Shan; HAN Ru-Qi

    2003-01-01

    In this paper, by applying a simplified version of Lieb 's spin-refleetion-positivity method, which was recentlydeveloped by one of us [G.S. Tian and J.G. Wang, J. Phys. A: Math. Gen. 35 (2002) 941], we investigate some generalproperties of the boson-fermion Hamiltonian, which has been widely used as a phenomenological model to describe thereal-space pairing of electrons. On a mathematically rigorous basis, we prove that for either negative or positive couplingV, which represents the spontaneous decay and recombination process between boson and fermion in the model, thepairing energy of electrons is nonzero. Furthermore, we also show that the spin-excitation gap of the boson-fermionHamiltonian is always larger than its charged gap, as predicted by the pre-paired electron theory.

  3. The Binding Energy, Spin-Excitation Gap, and Charged Gap in the Boson-Fermion Model

    Institute of Scientific and Technical Information of China (English)

    YANGKai-Hua; Guang-Shan; HANRu-Qi

    2003-01-01

    In this paper, by applying a simplified version of Lieb's spin-reflection-positivity method, which was recently developed by one of us [G.S. Tian and J.G. Wang, J. Phys. A: Math. Gen. 35 (2002) 941], we investigate some general properties of the boeon-fermion Hamiltonlan, which has been widely used as a phenomenological model to describe the real-space pairing of electrons. On a mathematically rigorous basis, we prove that for either negative or positive couping V, which represents the spontaneous decay and recombination process between boson and fermion in the model, the pairing energy of electrons is nonzero. Furthermore, we also show that the spin-excitation gap of the boson-fermion Hamiltonian is always larger than its charged gap, as predicted by the pre-palred electron theory.

  4. Size and symmetry of the superconducting gap in the f.c.c. Cs3C60 polymorph close to the metal-Mott insulator boundary.

    Science.gov (United States)

    Potočnik, Anton; Krajnc, Andraž; Jeglič, Peter; Takabayashi, Yasuhiro; Ganin, Alexey Y; Prassides, Kosmas; Rosseinsky, Matthew J; Arčon, Denis

    2014-03-03

    The alkali fullerides, A(3)C(60) (A = alkali metal) are molecular superconductors that undergo a transition to a magnetic Mott-insulating state at large lattice parameters. However, although the size and the symmetry of the superconducting gap, Δ, are both crucial for the understanding of the pairing mechanism, they are currently unknown for superconducting fullerides close to the correlation-driven magnetic insulator. Here we report a comprehensive nuclear magnetic resonance (NMR) study of face-centred-cubic (f.c.c.) Cs(3)C(60) polymorph, which can be tuned continuously through the bandwidth-controlled Mott insulator-metal/superconductor transition by pressure. When superconductivity emerges from the insulating state at large interfullerene separations upon compression, we observe an isotropic (s-wave) Δ with a large gap-to-superconducting transition temperature ratio, 2Δ0/k(B)T(c) = 5.3(2) [Δ0 = Δ(0 K)]. 2Δ0/k(B)T(c) decreases continuously upon pressurization until it approaches a value of ~3.5, characteristic of weak-coupling BCS theory of superconductivity despite the dome-shaped dependence of Tc on interfullerene separation. The results indicate the importance of the electronic correlations for the pairing interaction as the metal/superconductor-insulator boundary is approached.

  5. Spectral Gap Energy Transfer in Atmospheric Boundary Layer

    Science.gov (United States)

    Bhushan, S.; Walters, K.; Barros, A. P.; Nogueira, M.

    2012-12-01

    Experimental measurements of atmospheric turbulence energy spectra show E(k) ~ k-3 slopes at synoptic scales (~ 600 km - 2000 km) and k-5/3 slopes at the mesoscales (transfer, energy arrest at macroscales must be introduced. The most commonly used turbulence models developed to mimic the above energy transfer include the energy backscatter model for 2D turbulence in the horizontal plane via Large Eddy Simulation (LES) models, dissipative URANS models in the vertical plane, and Ekman friction for the energy arrest. One of the controversial issues surrounding the atmospheric turbulence spectra is the explanation of the generation of the 2D and 3D spectra and transition between them, for energy injection at the synoptic scales. Lilly (1989) proposed that the existence of 2D and 3D spectra can only be explained by the presence of an additional energy injection in the meso-scale region. A second issue is related to the observations of dual peak spectra with small variance in meso-scale, suggesting that the energy transfer occurs across a spectral gap (Van Der Hoven, 1957). Several studies have confirmed the spectral gap for the meso-scale circulations, and have suggested that they are enhanced by smaller scale vertical convection rather than by the synoptic scales. Further, the widely accepted energy arrest mechanism by boundary layer friction is closely related to the spectral gap transfer. This study proposes an energy transfer mechanism for atmospheric turbulence with synoptic scale injection, wherein the generation of 2D and 3D spectra is explained using spectral gap energy transfer. The existence of the spectral gap energy transfer is validated by performing LES for the interaction of large scale circulation with a wall, and studying the evolution of the energy spectra both near to and far from the wall. Simulations are also performed using the Advanced Weather and Research Forecasting (WRF-ARW) for moist zonal flow over Gaussian ridge, and the energy spectra close

  6. Minimum Quench Energy and Early Quench Development in NbTi Superconducting Strands

    CERN Document Server

    Breschi, M; Boselli, M; Bottura, Luca; Devred, Arnaud; Ribani, P L; Trillaud, F

    2007-01-01

    The stability of superconducting wires is a crucial task in the design of safe and reliable superconducting magnets. These magnets are prone to premature quenches due to local releases of energy. In order to simulate these energy disturbances, various heater technologies have been developed, such as coated tips, graphite pastes, and inductive coils. The experiments studied in the present work have been performed using a single-mode diode laser with an optical fiber to illuminate the superconducting strand surface. Minimum quench energies and voltage traces at different magnetic flux densities and transport currents have been measured on an LHC-type, Cu/NbTi wire bathed in pool boiling helium I. This paper deals with the numerical analysis of the experimental data. In particular, a coupled electromagnetic and thermal model has been developed to study quench development and propagation, focusing on the influence of heat exchange with liquid helium.

  7. Basic Research Needs for Superconductivity. Report of the Basic Energy Sciences Workshop on Superconductivity, May 8-11, 2006

    Energy Technology Data Exchange (ETDEWEB)

    Sarrao, J.; Kwok, W-K; Bozovic, I.; Mazin, I.; Seamus, J. C.; Civale, L.; Christen, D.; Horwitz, J.; Kellogg, G.; Finnemore, D.; Crabtree, G.; Welp, U.; Ashton, C.; Herndon, B.; Shapard, L.; Nault, R. M.

    2006-05-11

    As an energy carrier, electricity has no rival with regard to its environmental cleanliness, flexibility in interfacing with multiple production sources and end uses, and efficiency of delivery. In fact, the electric power grid was named ?the greatest engineering achievement of the 20th century? by the National Academy of Engineering. This grid, a technological marvel ingeniously knitted together from local networks growing out from cities and rural centers, may be the biggest and most complex artificial system ever built. However, the growing demand for electricity will soon challenge the grid beyond its capability, compromising its reliability through voltage fluctuations that crash digital electronics, brownouts that disable industrial processes and harm electrical equipment, and power failures like the North American blackout in 2003 and subsequent blackouts in London, Scandinavia, and Italy in the same year. The North American blackout affected 50 million people and caused approximately $6 billion in economic damage over the four days of its duration. Superconductivity offers powerful new opportunities for restoring the reliability of the power grid and increasing its capacity and efficiency. Superconductors are capable of carrying current without loss, making the parts of the grid they replace dramatically more efficient. Superconducting wires carry up to five times the current carried by copper wires that have the same cross section, thereby providing ample capacity for future expansion while requiring no increase in the number of overhead access lines or underground conduits. Their use is especially attractive in urban areas, where replacing copper with superconductors in power-saturated underground conduits avoids expensive new underground construction. Superconducting transformers cut the volume, weight, and losses of conventional transformers by a factor of two and do not require the contaminating and flammable transformer oils that violate urban safety

  8. Superconductivity in graphite intercalation compounds

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Robert P. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Weller, Thomas E.; Howard, Christopher A. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Dean, Mark P.M. [Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973 (United States); Rahnejat, Kaveh C. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Saxena, Siddharth S. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Ellerby, Mark, E-mail: mark.ellerby@ucl.ac.uk [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom)

    2015-07-15

    Highlights: • Historical background of graphite intercalates. • Superconductivity in graphite intercalates and its place in the field of superconductivity. • Recent developments. • Relevant modeling of superconductivity in graphite intercalates. • Interpretations that pertain and questions that remain. - Abstract: The field of superconductivity in the class of materials known as graphite intercalation compounds has a history dating back to the 1960s (Dresselhaus and Dresselhaus, 1981; Enoki et al., 2003). This paper recontextualizes the field in light of the discovery of superconductivity in CaC{sub 6} and YbC{sub 6} in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how these relate to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity, and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.

  9. submitter Superconducting transmission lines – Sustainable electric energy transfer with higher public acceptance?

    CERN Document Server

    Thomas, Heiko; Chervyakov, Alexander; Stückrad, Stefan; Salmieri, Delia; Rubbia, Carlo

    2016-01-01

    Despite the extensive research and development investments into superconducting science and technology, both at the fundamental and at the applied levels, many benefits of superconducting transmission lines (SCTL) remain unknown to the public and decision makers at large. This paper aims at informing about the progress in this important research field. Superconducting transmission lines have a tremendous size advantage and lower total electrical losses for high capacity transmission plus a number of technological advantages compared to solutions based on standard conductors. This leads to a minimized environmental impact and enables an overall more sustainable transmission of electric energy. One of the direct benefits may be an increased public acceptance due to the low visual impact with a subsequent reduction of approval time. The access of remote renewable energy (RE) sources with high-capacity transmission is rendered possible with superior efficiency. That not only translates into further reducing $CO_2...

  10. A double-superconducting axial bearing system for an energy storage flywheel model

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Z; Lin, Q; Ma, G; Zheng, J; Zhang, Y; Wang, S; Wang, J [Applied Superconductivity Laboratory, Mail Stop 152, Southwest Jiaotong University, Chengdu, 610031 (China)], E-mail: jsywang@home.swjtu.edu.cn

    2008-02-15

    The bulk high temperature superconductors (HTSCs) with unique flux-pinning property have been applied to fabricate two superconducting axial bearings for an energy storage flywheel model. The two superconducting axial bearings are respectively fixed at two ends of the vertical rotational shaft, whose stator is composed of seven melt-textured YBa{sub 2}Cu{sub 3}O{sub 7-x} (YBCO) bulks with diameter of 30 mm, height of 18 mm and rotor is made of three cylindrical axial-magnetized NdFeB permanent magnets (PM) by superposition with diameter of 63 mm, height of 27 mm. The experimental results show the total levitation and lateral force produced by the two superconducting bearings are enough to levitate and stabilize the 2.4 kg rotational shaft. When the two YBCO stators were both field cooled to the liquid nitrogen temperature at respective axial distances above or below the PM rotor, the shaft could be automatically levitated between the two stators without any contact. In the case of a driving motor, it can be stably rotated along the central axis besides the resonance frequency. This double-superconducting axial bearing system can be used to demonstrate the flux-pinning property of bulk HTSC for stable levitation and suspension and the principle of superconducting flywheel energy storage system to visitors.

  11. The energy gap of the compound FeSe0.5Te0.5 determined by specific heat and Point Contact Spectroscopy

    Science.gov (United States)

    Escudero, Roberto; López-Romero, Rodolfo E.

    2015-10-01

    The superconductor FeSe0.5Te0.5 was studied with Point Contact spectroscopy and specific heat in polycrystalline samples. The transition temperature determined by magnetic measurement was TC=14.5 K. The size of the energy gap measured by junctions is Δ = 1.9 meV, whereas the gap determined by the specific heat measurements was Δ = 2.3 meV. The gap evolution with temperature follows BCS, the ratio 2Δ/KBTC has values between 2.88 ≤ 2 Δ /KBTC ≤ 3.04. The compound was grown by solid state synthesis in quartz ampoules under vacuum at 950 °C. Crystal structure was characterized by X-ray diffraction. The superconducting properties were characterized by magnetization, resistivity and specific heat. This superconductor shows an isotropic energy gap as observed with the fitting of the specific heat at low temperature.

  12. Peak power reduction and energy efficiency improvement with the superconducting flywheel energy storage in electric railway system

    Science.gov (United States)

    Lee, Hansang; Jung, Seungmin; Cho, Yoonsung; Yoon, Donghee; Jang, Gilsoo

    2013-11-01

    This paper proposes an application of the 100 kWh superconducting flywheel energy storage systems to reduce the peak power of the electric railway system. The electric railway systems have high-power characteristics and large amount of regenerative energy during vehicles’ braking. The high-power characteristic makes operating cost high as the system should guarantee the secure capacity of electrical equipment and the low utilization rate of regenerative energy limits the significant energy efficiency improvement. In this paper, it had been proved that the peak power reduction and energy efficiency improvement can be achieved by using 100 kWh superconducting flywheel energy storage systems with the optimally controlled charging or discharging operations. Also, economic benefits had been assessed.

  13. CZTS stoichiometry effects on the band gap energy

    Energy Technology Data Exchange (ETDEWEB)

    Malerba, Claudia, E-mail: claudia.malerba-1@ing.unitn.it [University of Trento, Department of Civil, Environmental and Mechanical Engineering, via Mesiano 77, 38123 Trento (Italy); ENEA, Casaccia Research Center, via Anguillarese 301, 00123 Roma (Italy); Biccari, Francesco [ENEA, Casaccia Research Center, via Anguillarese 301, 00123 Roma (Italy); Azanza Ricardo, Cristy Leonor [University of Trento, Department of Civil, Environmental and Mechanical Engineering, via Mesiano 77, 38123 Trento (Italy); Valentini, Matteo [Sapienza – University of Rome, Department of Physics, p.le A. Moro 5, 00185 Roma (Italy); ENEA, Casaccia Research Center, via Anguillarese 301, 00123 Roma (Italy); Chierchia, Rosa [ENEA, Casaccia Research Center, via Anguillarese 301, 00123 Roma (Italy); Müller, Melanie [University of Trento, Department of Civil, Environmental and Mechanical Engineering, via Mesiano 77, 38123 Trento (Italy); Max Planck Institute for Solid State Research, Heisenberg str. 1, 70569 Stuttgart (Germany); Santoni, Antonino [ENEA, Frascati Research Center, via E. Fermi 45, 00044 Frascati (Italy); Esposito, Emilia [ENEA, Portici Research Center, Piazzale E. Fermi, 80055 Portici (Napoli) (Italy); Mangiapane, Pietro [ENEA, Casaccia Research Center, via Anguillarese 301, 00123 Roma (Italy); Scardi, Paolo [University of Trento, Department of Civil, Environmental and Mechanical Engineering, via Mesiano 77, 38123 Trento (Italy); Mittiga, Alberto [ENEA, Casaccia Research Center, via Anguillarese 301, 00123 Roma (Italy)

    2014-01-05

    Highlights: • CZTS films with different compositions were grown from stacked-layer precursors. • The band-gap energy varies from 1.48 to 1.63 eV as the [Sn]/[Cu] ratio increases. • The Zn content seems not to be a critical parameter for the optical properties. • PDS data show an increase of the sub-gap absorption as the Sn content is reduced. • Formation of defects at low Sn content was proposed to explain the Eg variation. -- Abstract: The considerable spread of Cu{sub 2}ZnSnS{sub 4} (CZTS) optical properties reported in the literature is discussed in terms of material stoichiometry. To this purpose, kesterite thin films were prepared by sulfurization of multilayered precursors of ZnS, Cu and Sn, changing the relative amounts to obtain CZTS layers with different compositions. X-Ray Diffraction (XRD), Energy Dispersive X-Ray (EDX) spectroscopy, X-Ray Photoelectron Spectroscopy (XPS) and Raman spectroscopy were used for structural and compositional analysis. XRD quantitative phase analysis provides the amount of spurious phases and information on Sn-site occupancy. The optical properties were investigated by spectrophotometric and Photothermal Deflection Spectroscopy (PDS) measurements to assess the absorption coefficient of samples with different compositions. The PDS data show an increase of the sub-band absorption as the Sn content decreases. The results are interpreted assuming the formation of additional defects as the tin content is reduced. Those defects can also be responsible for the decrease of the band gap energy value as the Sn/Cu ratio is decreased.

  14. Design of Anti-windup Compensator for Superconducting Magnetic Energy Storage

    DEFF Research Database (Denmark)

    Fang, Jiakun; Chen, Zhe; Su, Chi

    2013-01-01

    -windup compensator (AWC) is applied to the controller of the superconducting magnetic energy storage (SMES) system to improve power system stability. First, power system with actuator saturation is described to formulate the problem mathematically. Then, uniform anti-windup scheme is studied and compensator...

  15. Double pancake superconducting coil design for maximum magnetic energy storage in small scale SMES systems

    Science.gov (United States)

    Hekmati, Arsalan; Hekmati, Rasoul

    2016-12-01

    Electrical power quality and stability is an important issue nowadays and technology of Superconducting Magnetic Energy Storage systems, SMES, has brought real power storage capability to power systems. Therefore, optimum SMES design to achieve maximum energy with the least length of tape has been quite a matter of concern. This paper provides an approach to design optimization of solenoid and toroid types of SMES, ensuring maximum possible energy storage. The optimization process, based on Genetic Algorithm, calculates the operating current of superconducting tapes through intersection of a load line with the surface indicating the critical current variation versus the parallel and perpendicular components of magnetic flux density. FLUX3D simulations of SMES have been utilized for energy calculations. Through numerical analysis of obtained data, formulations have been obtained for the optimum dimensions of superconductor coil and maximum stored energy for a given length and cross sectional area of superconductor tape.

  16. Massive polarons in large-energy-gap polymers

    Science.gov (United States)

    McCall, R. P.; Ginder, J. M.; Roe, M. G.; Asturias, G. E.; Scherr, E. M.; MacDiarmid, A. G.; Epstein, A. J.

    1989-05-01

    We present evidence for the existence of defect states with large mass and low mobility in the conducting polymer polyaniline. This large-energy-gap polymer has been shown to have properties significantly different from many other conducting polymers. Photoinduced infrared absorption studies presented here are consistent with the photogeneration of charged polarons. Analysis within the amplitude mode (Peierls) formalism indicates that these polarons are massive (Mpol~60me), while use of a bond-order or Holstein polaron formalism leads to even larger estimates of Mpol.

  17. Anisotropic superconducting gap and elongated vortices with Caroli-De Gennes-Matricon states in the new superconductor Ta4Pd3Te16.

    Science.gov (United States)

    Du, Zengyi; Fang, Delong; Wang, Zhenyu; Li, Yufeng; Du, Guan; Yang, Huan; Zhu, Xiyu; Wen, Hai-Hu

    2015-01-01

    The superconducting state is formed by the condensation of a large number of Cooper pairs. The normal state electronic properties can give significant influence on the superconducting state. For usual type-II superconductors, the vortices are cylinder like with a round cross-section. For many two dimensional superconductors, such as Cuprates, albeit the in-plane anisotropy, the vortices generally have a round shape. In this paper we report results based on the scanning tunnelling microscopy/spectroscopy measurements on a newly discovered superconductor Ta4Pd3Te16. The chain-like conducting channels of PdTe2 in Ta4Pd3Te16 make a significant anisotropy of the in-plane Fermi velocity. We suggest at least one anisotropic superconducting gap with gap minima or possible node exists in this multiband system. In addition, elongated vortices are observed with an anisotropy of ξ||b/ξ&bottom⊥b ≈ 2.5. Clear Caroli-de Gennes-Matricon states are also observed within the vortex cores. Our results will initiate the study on the elongated vortices and superconducting mechanism in the new superconductor Ta4Pd3Te16.

  18. Concepts of flywheels for energy storage using autostable high-T(sub c) superconducting magnetic bearings

    Science.gov (United States)

    Bornemann, Hans J.; Zabka, R.; Boegler, P.; Urban, C.; Rietschel, H.

    1994-01-01

    A flywheel for energy storage using autostable high-T(sub c) superconducting magnetic bearings has been built. The rotating disk has a total weight of 2.8 kg. The maximum speed is 9240 rpm. A process that allows accelerated, reliable and reproducible production of melt-textured superconducting material used for the bearings has been developed. In order to define optimum configurations for radial and axial bearings, interaction forces in three dimensions and vertical and horizontal stiffness have been measured between superconductors and permanent magnets in different geometries and various shapes. Static as well as dynamic measurements have been performed. Results are being reported and compared to theoretical models.

  19. Status of the Argonne superconducting-linac heavy-ion energy booster

    Energy Technology Data Exchange (ETDEWEB)

    Aron, J.; Benaroya, R.; Bollinger, L.M.; Clifft, B.E.; Henning, W.; Johnson, K.W.; Nixon, J.M.; Markovich, P.; Shepard, K.W.

    1979-01-01

    A superconducting linac is being constructed to provide an energy booster for heavy ions from an FN tandem. By late 1980 the linac will consist of 24 independently-phased superconducting resonators, and will provide an effective accelerating potential of more than 25 MV. While the linac is under construction, completed sections are being used to provide useful beam for nuclear physics experiments. In the most recent run with beam (June 1979), an eight resonator array provided an effective accelerating potential of 9.3 MV. Operation of a 12 resonator array is scheduled to begin in October 1979.

  20. Emergent Higgsless Superconductivity

    Directory of Open Access Journals (Sweden)

    Cristina Diamantini M.

    2017-01-01

    Full Text Available We present a new Higgsless model of superconductivity, inspired from anyon superconductivity but P- and T-invariant and generalizable to any dimension. While the original anyon superconductivity mechanism was based on incompressible quantum Hall fluids as average field states, our mechanism involves topological insulators as average field states. In D space dimensions it involves a (D-1-form fictitious pseudovector gauge field which originates from the condensation of topological defects in compact lowenergy effective BF theories. There is no massive Higgs scalar as there is no local order parameter. When electromagnetism is switched on, the photon acquires mass by the topological BF mechanism. Although the charge of the gapless mode (2 and the topological order (4 are the same as those of the standard Higgs model, the two models of superconductivity are clearly different since the origins of the gap, reflected in the high-energy sectors are totally different. In 2D thi! s type of superconductivity is explicitly realized as global superconductivity in Josephson junction arrays. In 3D this model predicts a possible phase transition from topological insulators to Higgsless superconductors.

  1. Cryogenic testing of the 2.1 GHz five-cell superconducting RF cavity with a photonic band gap coupler cell

    Energy Technology Data Exchange (ETDEWEB)

    Arsenyev, Sergey A., E-mail: arsenyev@mit.edu; Temkin, Richard J. [Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, Massachusetts 02139 (United States); Haynes, W. Brian; Shchegolkov, Dmitry Yu.; Simakov, Evgenya I.; Tajima, Tsuyoshi [Los Alamos National Laboratory, PO Box 1663, Los Alamos, New Mexico 87545 (United States); Boulware, Chase H.; Grimm, Terrence L.; Rogacki, Adam R. [Niowave, Inc., 1012 North Walnut Street, Lansing, Michigan 48906 (United States)

    2016-05-30

    We present results from cryogenic tests of the multi-cell superconducting radio frequency (SRF) cavity with a photonic band gap (PBG) coupler cell. Achieving high average beam currents is particularly desirable for future light sources and particle colliders based on SRF energy-recovery-linacs (ERLs). Beam current in ERLs is limited by the beam break-up instability, caused by parasitic higher order modes (HOMs) interacting with the beam in accelerating cavities. A PBG cell incorporated in an accelerating cavity can reduce the negative effect of HOMs by providing a frequency selective damping mechanism, thus allowing significantly higher beam currents. The multi-cell cavity was designed and fabricated of niobium. Two cryogenic (vertical) tests were conducted. The high unloaded Q-factor was demonstrated at a temperature of 4.2 K at accelerating gradients up to 3 MV/m. The measured value of the unloaded Q-factor was 1.55 × 10{sup 8}, in agreement with prediction.

  2. Majorana modes in InSb nanowires (I): zero bias peaks in hybrid devices with low-disorder and hard induced superconducting gap

    Science.gov (United States)

    Gül, Ö.; Zhang, H.; de Moor, M. W. A.; de Vries, F.; van Veen, J.; van Woerkom, D. J.; Zuo, K.; Mourik, V.; Cassidy, M.; Geresdi, A.; Car, D.; Bakkers, E. P. A. M.; Goswami, S.; Watanabe, K.; Taniguchi, T.; Kouwenhoven, L. P.

    Majorana modes in hybrid superconductor-semiconductor nanowire devices can be probed via tunnelling spectroscopy which shows a zero bias peak (ZBP) in differential conductance (1). However, alternative mechanisms such as disorder or formation of quantum dots can also give rise to ZBPs, and obscure experimental studies of Majoranas. Further, a soft induced superconducting gap commonly observed in experiments presents an outstanding challenge for the demonstration of their topological protection. In this talk we show that with device improvements, we reach low-disorder transport regime with clear quantized conductance plateaus and Andreev enhancement approaching the theoretical limit. Tunnelling spectroscopy shows a hard induced superconducting gap and no formation of quantum dots. Together with extremely stable ZBPs observed in large gate voltage and magnetic field ranges, we exclude various alternative theories besides the formation of localized Majorana modes for our observations.

  3. Use of a High-Temperature Superconducting Coil for Magnetic Energy Storage

    Science.gov (United States)

    Fagnard, J.-F.; Crate, D.; Jamoye, J.-F.; Laurent, Ph; Mattivi, B.; Cloots, R.; Ausloos, M.; Genon, A.; Vanderbemden, Ph

    2006-06-01

    A high temperature superconducting magnetic energy storage device (SMES) has been realised using a 350 m-long BSCCO tape wound as a ''pancake'' coil. The coil is mounted on a cryocooler allowing temperatures down to 17.2 K to be achieved. The temperature dependence of coil electrical resistance R(T) shows a superconducting transition at T = 102.5 K. Measurements of the V(I) characteristics were performed at several temperatures between 17.2 K and 101.5 K to obtain the temperature dependence of the critical current (using a 1 µV/cm criterion). Critical currents were found to exceed 100 A for T power supply as bridge input voltage. The coil current, the bridge input and output voltages were recorded simultaneously. Using a 10 A setpoint current in the superconducting coil, the whole system (coil + DC-DC converter) can provide a stable output voltage showing uninterruptible power supply (UPS) capabilities over 1 s.

  4. The focusing properties of both normal and superconducting low energy CW proton Linacs

    CERN Document Server

    Zhihui, Li

    2016-01-01

    The continue wave (CW) high current proton linac has wide applications as the front end of the high power proton machines. The low energy part is the most difficult one and there is no widely accepted solution yet. Both normal conducting and superconducting acceleration structures are thought to be the possible solutions. Although the characteristics of normal conducting structures and superconducting ones are quite different, such as acceleration voltage, maximum electric field and so on, we found the focusing properties of the lattice composed by these two acceleration structures are quite similar for different reasons. The advantages and disadvantages of lattices composed of both the normal conducting and superconducting structures are analysed from the beam dynamics point of view, and their constraints on beam main parameters are discussed.

  5. ``Hybrid'' multi-gap/single-gap Josephson junctions: Evidence of macroscopic quantum tunneling in superconducting-to-normal switching experiments on MgB2/I/Pb and MgB2/I/Sn junctions

    Science.gov (United States)

    Carabello, Steve; Lambert, Joseph; Dai, Wenqing; Li, Qi; Chen, Ke; Cunnane, Daniel; Xi, X. X.; Ramos, Roberto

    We report results of superconducting-to-normal switching experiments on MgB2/I/Pb and MgB2/I/Sn junctions, with and without microwaves. These results suggest that the switching behavior is dominated by quantum tunneling through the washboard potential barrier, rather than thermal excitations or electronic noise. Evidence includes a leveling in the standard deviation of the switching current distribution below a crossover temperature, a Lorentzian shape of the escape rate enhancement peak upon excitation by microwaves, and a narrowing in the histogram of escape counts in the presence of resonant microwave excitation relative to that in the absence of microwaves. These are the first such results reported in ``hybrid'' Josephson tunnel junctions, consisting of multi-gap and single-gap superconducting electrodes.

  6. Superconducting energy scales and anomalous dissipative conductivity in thin films of molybdenum nitride

    Science.gov (United States)

    Simmendinger, Julian; Pracht, Uwe S.; Daschke, Lena; Proslier, Thomas; Klug, Jeffrey A.; Dressel, Martin; Scheffler, Marc

    2016-08-01

    We report investigations of molybdenum nitride (MoN) thin films with different thickness and disorder and with superconducting transition temperature 9.89 K ≥Tc≥2.78 K . Using terahertz frequency-domain spectroscopy we explore the normal and superconducting charge carrier dynamics for frequencies covering the range from 3 to 38 cm-1 (0.1 to 1.1 THz). The superconducting energy scales, i.e., the critical temperature Tc, the pairing energy Δ , and the superfluid stiffness J , and the superfluid density ns can be well described within the Bardeen-Cooper-Schrieffer theory for conventional superconductors. At the same time, we find an anomalously large dissipative conductivity, which cannot be explained by thermally excited quasiparticles, but rather by a temperature-dependent normal-conducting fraction, persisting deep into the superconducting state. Our results on this disordered system constrain the regime, where discernible effects stemming from the disorder-induced superconductor-insulator transition possibly become relevant, to MoN films with a transition temperature lower than at least 2.78 K.

  7. Absence of an energy gap in measurements of Cu-O superconductors with high-resolution electron-energy-loss spectroscopy

    Science.gov (United States)

    Phelps, R. B.; Akavoor, P.; Kesmodel, L. L.; Barr, A. L.; Markert, J. T.; Ma, J.; Kelley, R. J.; Onellion, M.

    1994-09-01

    We report extensive measurements of Bi2Sr2CaCu2O8 (Bi 2:2:1:2) and YBa2Cu3O7 (Y 1:2:3) single crystals with high-resolution electron-energy-loss spectroscopy (HREELS). Both as-grown and oxygen-annealed Bi 2:2:1:2 samples were studied. In all cases, peaks due to surface optical phonons were observed at loss energies from 24 to 80 meV. We see no evidence for the weak feature near 60 meV which has been previously reported and attributed to the superconducting energy gap. Our results demonstrate that the optical conductivity of high-temperature superconductors deduced from HREELS, like that deduced from infrared spectroscopy, does not exhibit the gaplike structure expected for a BCS superconductor.

  8. Absence of an energy gap in measurements of Cu-O superconductors with high-resolution electron-energy-loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Phelps, R.B.; Akavoor, P.; Kesmodel, L.L. (Physics Department and Materials Research Institute, Indiana University, Bloomington, Indiana 47405 (United States)); Barr, A.L.; Markert, J.T. (Department of Physics, University of Texas, Austin, Texas 78712 (United States)); Ma, J.; Kelley, R.J.; Onellion, M. (Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States))

    1994-09-01

    We report extensive measurements of Bi[sub 2]Sr[sub 2]CaCu[sub 2]O[sub 8] (Bi 2:2:1:2) and YBa[sub 2]Cu[sub 3]O[sub 7] (Y 1:2:3) single crystals with high-resolution electron-energy-loss spectroscopy (HREELS). Both as-grown and oxygen-annealed Bi 2:2:1:2 samples were studied. In all cases, peaks due to surface optical phonons were observed at loss energies from 24 to 80 meV. We see no evidence for the weak feature near 60 meV which has been previously reported and attributed to the superconducting energy gap. Our results demonstrate that the optical conductivity of high-temperature superconductors deduced from HREELS, like that deduced from infrared spectroscopy, does not exhibit the gaplike structure expected for a BCS superconductor.

  9. CW Superconducting RF Photoinjector Development for Energy Recovery Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Neumann A.; Rao T.; Anders, W.; Dirsat, M.; Frahm, A. Jankowiak, A.; Kamps, T.; Knobloch, J.; Kugeler, O.; Quast, T.; Rudolph, J.; Schenk, M.; Schuster, M.; Smedley, J.; Sekutowicz, J.; Kneisel, P.; Nietubyc, R.; Will, I.

    2010-10-31

    ERLs have the powerful potential to provide very high current beams with exceptional and tailored parameters for many applications, from next-generation light sources to electron coolers. However, the demands placed on the electron source are severe. It must operate CW, generating a current of 100 mA or more with a normalized emittance of order 1 {micro}m rad. Beyond these requirements, issues such as dark current and long-term reliability are critical to the success of ERL facilities. As part of the BERLinPro project, Helmholtz Zentrum Berlin (HZB) is developing a CWSRF photoinjector in three stages, the first of which is currently being installed at HZB's HoBiCaT facility. It consists of an SRF-cavity with a Pb cathode and a superconducting solenoid. Subsequent development stages include the integration of a high-quantum-efficiency cathode and RF components for high-current operation. This paper discusses the first stage towards an ERL-suitable SRF photoinjector, the present status of the facility and first cavity tests.

  10. Canted-Cosine-Theta Superconducting Accelerator Magnets for High Energy Physics and Ion Beam Cancer Therapy

    Science.gov (United States)

    Brouwer, Lucas Nathan

    Advances in superconducting magnet technology have historically enabled the construction of new, higher energy hadron colliders. Looking forward to the needs of a potential future collider, a significant increase in magnet field and performance is required. Such a task requires an open mind to the investigation of new design concepts for high field magnets. Part I of this thesis will present an investigation of the Canted-Cosine-Theta (CCT) design for high field Nb3Sn magnets. New analytic and finite element methods for analysis of CCT magnets will be given, along with a discussion on optimization of the design for high field. The design, fabrication, and successful test of the 2.5 T NbTi dipole CCT1 will be presented as a proof-of-principle step towards a high field Nb3Sn magnet. Finally, the design and initial steps in the fabrication of the 16 T Nb3Sn dipole CCT2 will be described. Part II of this thesis will investigate the CCT concept extended to a curved magnet for use in an ion beam therapy gantry. The introduction of superconducting technology in this field shows promise to reduce the weight and cost of gantries, as well as open the door to new beam optics solutions with high energy acceptance. An analytic approach developed for modeling curved CCT magnets will be presented, followed by a design study of a superconducting magnet for a proton therapy gantry. Finally, a new magnet concept called the "Alternating Gradient CCT" (AG-CCT) will be introduced. This concept will be shown to be a practical magnet solution for achieving the alternating quadrupole fields desired for an achromatic gantry, allowing for the consideration of treatment with minimal field changes in the superconducting magnets. The primary motivation of this thesis is to share new developments for Canted-Cosine-Theta superconducting magnets, with the hope this design will improve technology for high energy physics and ion beam cancer therapy.

  11. Design of energy-recovery transport for the JAERI FEL driven by a superconducting linac

    CERN Document Server

    Hajima, R; Nagai, R; Kikuzawa, N; Nishimori, N; Shizuma, T; Minehara, E J; Vinokurov, N A

    2000-01-01

    A high-average power free-electron laser driven by a superconducting linac has been developed in Japan Atomic Energy Research Institute (JAERI), and stable laser output over 0.1 kW in infrared region is now available. For further increasing of FEL output power, installing energy-recovery transport has been planned. The lattice design for the energy-recovery transport is discussed in the present paper. It is found that a recirculation transport, which fulfills the requirements for energy acceptance and isochronicity, can be realized by adding another triple-bend arc to the existing beam line.

  12. Topological superconductivity induced by ferromagnetic metal chains

    Science.gov (United States)

    Li, Jian; Chen, Hua; Drozdov, Ilya K.; Yazdani, A.; Bernevig, B. Andrei; MacDonald, A. H.

    2014-12-01

    Recent experiments have provided evidence that one-dimensional (1D) topological superconductivity can be realized experimentally by placing transition-metal atoms that form a ferromagnetic chain on a superconducting substrate. We address some properties of this type of system by using a Slater-Koster tight-binding model to account for important features of the electronic structure of the transition-metal chains on the superconducting substrate. We predict that topological superconductivity is nearly universal when ferromagnetic transition-metal chains form straight lines on superconducting substrates and that it is possible for more complex chain structures. When the chain is weakly coupled to the substrate and is longer than superconducting coherence lengths, its proximity-induced superconducting gap is ˜Δ ESO/J where Δ is the s -wave pair potential on the chain, ESO is the spin-orbit splitting energy induced in the normal chain state bands by hybridization with the superconducting substrate, and J is the exchange splitting of the ferromagnetic chain d bands. Because of the topological character of the 1D superconducting state, Majorana end modes appear within the gaps of finite length chains. We find, in agreement with the experiment, that when the chain and substrate orbitals are strongly hybridized, Majorana end modes are substantially reduced in amplitude when separated from the chain end by less than the coherence length defined by the p -wave superconducting gap. We conclude that Pb is a particularly favorable substrate material for ferromagnetic chain topological superconductivity because it provides both strong s -wave pairing and strong Rashba spin-orbit coupling, but that there is an opportunity to optimize properties by varying the atomic composition and structure of the chain. Finally, we note that in the absence of disorder, a new chain magnetic symmetry, one that is also present in the crystalline topological insulators, can stabilize multiple

  13. Gauge Invariance and Symmetry Breaking by Topology and Energy Gap

    Directory of Open Access Journals (Sweden)

    Franco Strocchi

    2015-10-01

    Full Text Available For the description of observables and states of a quantum system, it may be convenient to use a canonical Weyl algebra of which only a subalgebra A, with a non-trivial center Z, describes observables, the other Weyl operators playing the role of intertwiners between inequivalent representations of A. In particular, this gives rise to a gauge symmetry described by the action of Z. A distinguished case is when the center of the observables arises from the fundamental group of the manifold of the positions of the quantum system. Symmetries that do not commute with the topological invariants represented by elements of Z are then spontaneously broken in each irreducible representation of the observable algebra, compatibly with an energy gap; such a breaking exhibits a mechanism radically different from Goldstone and Higgs mechanisms. This is clearly displayed by the quantum particle on a circle, the Bloch electron and the two body problem.

  14. Optical signature of sub-gap absorption in the superconducting state of Ba(Fe1-x Cox)2 As 2

    Science.gov (United States)

    Nagel, Urmas; Rõõm, T.; Lobo, R. P. S. M.; Dai, Y. M.; Carbotte, J.; Timusk, T.; Colson, D.

    2011-03-01

    The optical conductivity of Ba(Fe 0.92 Co 0.08)2 As 2 shows a clear signature of the superconducting gap, but a simple s -wave description fails in accounting for the low frequency response. This task is achieved by introducing an extra Drude peak in the superconducting state representing sub-gap absorption, other than thermally broken pairs. This extra peak and the coexisting s -wave response respect the total sum rule indicating a common origin for the carriers. We discuss the possible origins for this absorption as (i) quasiparticles due to pair-breaking from interband impurity scattering in a two band s+/- gap symmetry model, which includes (ii) the possible existence of impurity levels within an isotropic gap model; or (iii) an indication that one of the bands in is highly anisotropic. The results are published in Phys. Rev B vol 82, 100506(R) (2010). Work in Tallinn was supported by the Estonian Ministry of Education and Research (SF0690029s09) and Estonian Science Foundation (ETF7011, ETF8170).

  15. Superconducting resonator used as a phase and energy detector for linac setup

    Science.gov (United States)

    Lobanov, Nikolai R.

    2016-07-01

    Booster linacs for tandem accelerators and positive ion superconducting injectors have matured into standard features of many accelerator laboratories. Both types of linac are formed as an array of independently-phased resonators operating at room temperature or in a superconducting state. Each accelerating resonator needs to be individually set in phase and amplitude for optimum acceleration efficiency. The modularity of the linac allows the velocity profile along the structure to be tailored to accommodate a wide range charge to mass ratio. The linac setup procedure, described in this paper, utilizes a superconducting resonator operating in a beam bunch phase detection mode. The main objective was to derive the full set of phase distributions for quick and efficient tuning of the entire accelerator. The phase detector was operated in overcoupling mode in order to minimize de-tuning effects of microphonic background. A mathematical expression was derived to set a limit on resonator maximum accelerating field during the crossover search to enable extracting unambiguous beam phase data. A set of equations was obtained to calculate the values of beam phase advance and energy gain produced by accelerating resonators. An extensive range of linac setting up configurations was conducted to validate experimental procedures and analytical models. The main application of a superconducting phase detector is for fast tuning for beams of ultralow intensities, in particular in the straight section of linac facilities.

  16. Novel anisotropy in the superconducting gap structure of Bi2Sr2CaCu2O(8+delta) probed by quasiparticle heat transport.

    Science.gov (United States)

    Ando, Yoichi; Takeya, J; Abe, Yasushi; Sun, X F; Lavrov, A N

    2002-04-08

    Since the nature of pairing interactions is manifested in the superconducting gap symmetry, the exact gap structure, particularly any deviation from the simple d(x(2)-y(2)) symmetry, would help in elucidating the pairing mechanism in high- T(c) cuprates. Anisotropic heat transport measurement in Bi(2)Sr(2)CaCu(2)O(8+delta) reveals that the quasiparticle populations are different for the two nodal directions and thus the gap structure must be uniquely anisotropic, suggesting that pairing is governed by interactions with a rather complicated anisotropy. Intriguingly, it is found that the "plateau" in the magnetic-field dependence of the thermal conductivity is observed only in the b-axis transport.

  17. Free energy surfaces in the superconducting mixed state

    Science.gov (United States)

    Finnemore, D. K.; Fang, M. M.; Bansal, N. P.; Farrell, D. E.

    1989-01-01

    The free energy surface for Tl2Ba2Ca2Cu3O1O has been measured as a function of temperature and magnetic field to determine the fundamental thermodynamic properties of the mixed state. The change in free energy, G(H)-G(O), is found to be linear in temperature over a wide range indicating that the specific heat is independent of field.

  18. Power system stabilization by superconducting magnetic energy storage with solid-state phase shifter

    Energy Technology Data Exchange (ETDEWEB)

    Mitani, Y.; Uranaka, T.; Tsuji, K. [Osaka Univ., Suita, Osaka (Japan). Dept. of Electrical Engineering

    1995-08-01

    In this paper, a new configuration of power system controller with a combination of superconducting magnetic energy storage and phase shifter, is proposed to improve the stability of a long distance bulk power transmission system. A power system stabilizing control scheme is also proposed. A related simulation shows that the proposed controller is effective for enhancement of power system stability independent of the location of controller in a long distance bulk power transmission system.

  19. Urbach's rule derived from thermal fluctuations in the band-gap energy

    DEFF Research Database (Denmark)

    Skettrup, Torben

    1978-01-01

    The exponential absorption edge (known as Urbach's rule) observed in most materials is interpreted in terms of thermal fluctuations in the band-gap energy. The main contribution to the temperature shift of the band-gap energy is due to the temperature-dependent self-energies of the electrons...... and holes interacting with the phonons. Since the phonon number is fluctuating in thermal equilibrium, the band-gap energy is also fluctuating resulting in an exponential absorption tail below the average band-gap energy. These simple considerations are applied to derive Urbach's rule at high temperatures...

  20. Load test of Superconducting Magnetic Bearing for MW-class Flywheel Energy Storage System

    Science.gov (United States)

    Mukoyama, S.; Nakao, K.; Sakamoto, H.; Nagashima, K.; Ogata, M.; Yamashita, T.; Miyazaki, K.; Shimizu, H.; Sawamura, H.

    2017-07-01

    A flywheel energy storage system (FESS) stores electrical power as kinetic energy of a rotating flywheel rotor. Since the storage energy of the FESS is proportional to the weight of the rotor and the square of the rotating speed, the heavy weight and high speed rotor leads a FESS to a high power and a high capacity. However a conventional FESS limits in both the rotor weight and the rotating speed because of using mechanical bearings. A superconducting FESS (SFESS) utilizes a superconducting magnetic bearing (SMB) to levitate and rotate the flywheel rotor that has ton class weight and high speed rotation without mechanical contact. As the SFESS with 300 kW demonstrated at Mt. Komekura in Yamanashi prefecture, the SMB in the SFESS levitated the 4-ton rotor. The SMB consisted of a high temperature superconducting magnet (HTS magnet) and a HTS bulk, and utilized a repulsive force between the HTS magnet and the HTS bulk. The demonstration of the SFESS has been carried out successfully at Mt. Komekura. Now the next step development was started to aim a MW-class SFESS. The MW-class SFESS needs the SMB levitated and withstood a 10 ton-class load. This paper describes a design of the 10 ton-class SMB and the result of the load test of the developed SMB

  1. Pseudogap and Superconducting Gap in SmFeAs(O1-xFx) Superconductor from Photoemission Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    LIU Hai-Yun; CHEN Xian-Hui; REN Zhi-An; YI Wei; CHE Guang-Can; CHEN Gen-Fu; WANG Nan-Lin; WANG Gui-Ling; ZHOU Yong; ZHU Yong; WANG Xiao-Yang; JIA Xiao-Wen; ZHAO Zhong-Xian; XU Zu-Yan; CHEN Chuang-Tian; ZHOU Xing-Jiang; ZHANG Wen-Tao; ZHAO Lin; MENG Jian-Qiao; LIU Guo-Dong; DONG Xiao-Li; WU Gang; LIU Rong-Hua

    2008-01-01

    High resolution photoemission measurements are carried out on non-superconducting SmOFeAs parent compound and superconducting SmFeAs(O1-xFx) (x=0.12, and 0.15) compounds. The momentum-integrated spectra exhibit a clear Fermi cutoff that shows little leading-edge shift in the superconducting state. A robust feature at 13 meV is identified in all these samples. Spectral weight suppression near EF with decreasing temperature is observed in both undoped and doped samples that points to a possible existence of a pseudogap in these Fe-based compounds.

  2. FLYWHEEL ENERGY STORAGE SYSTEMS WITH SUPERCONDUCTING BEARINGS FOR UTILITY APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Michael Strasik; Mr. Arthur Day; Mr. Philip Johnson; Dr. John Hull

    2007-10-26

    This project’s mission was to achieve significant advances in the practical application of bulk high-temperature superconductor (HTS) materials to energy-storage systems. The ultimate product was planned as an operational prototype of a flywheel system on an HTS suspension. While the final prototype flywheel did not complete the final offsite demonstration phase of the program, invaluable lessons learned were captured on the laboratory demonstration units that will lead to the successful deployment of a future HTS-stabilized, composite-flywheel energy-storage system (FESS).

  3. Electrode Erosion of a High Energy Impulse Spark Gap Switch

    Institute of Scientific and Technical Information of China (English)

    Yao Xueling; Zeng Zhengzhong; Chen Jinliang

    2005-01-01

    Based on the principle of thermal conduction, three metal alloys (stainless steel,copper-tungsten and graphite) were chosen as the material of the high impulse current discharging switch. Experimental results indicate that the mass loss and surface erosion morphology of the electrode are related with the electrode material (conductivity σ, melting point Tm, density ρ and thermal capacity c) and the impulse transferred charge (or energy) per impulse for the same total impulse transferred charge. The experimental results indicate that the mass loss of stainless steel,copper-tungsten and graphite are 380.10 μg/C, 118.10 μg/C and 81.90 μg/C respectively under the condition of a total impulse transferred charge of 525 C and a transferred charge per impulse of 10.5 C. Under the same impulse transferred charge, the mass loss of copper-tungsten(118.10 μg/C)with the transferred charge per impulse at 10.5 C is far larger than the mass loss (38.61μg/C)at a 1.48 C transferred charge per impulse. The electrode erosion mechanism under high energy impulse arcs is analyzed briefly and it is suggested that by selecting high conductive metal or metal alloy as the electrode material of a high energy impulse spark gap switch and setting high erosion resistance material at the top of the electrode, the mass loss of the electrode can be reduced and the life of the switch prolonged.

  4. Superconducting Magnet Technology for Future High Energy Proton Colliders

    Science.gov (United States)

    Gourlay, Stephen

    2017-01-01

    Interest in high field dipoles has been given a boost by new proposals to build a high-energy proton-proton collider to follow the LHC and programs around the world are taking on the task to answer the need. Studies aiming toward future high-energy proton-proton colliders at the 100 TeV scale are now being organized. The LHC and current cost models are based on technology close to four decades old and point to a broad optimum of operation using dipoles with fields between 5 and 12T when site constraints, either geographical or political, are not a factor. Site geography constraints that limit the ring circumference can drive the required dipole field up to 20T, which is more than a factor of two beyond state-of-the-art. After a brief review of current progress, the talk will describe the challenges facing future development and present a roadmap for moving high field accelerator magnet technology forward. This work was supported by the Director, Office of Science, High Energy Physics, US Department of Energy, under contract No. DE-AC02-05CH11231.

  5. Superconducting High Energy Resolution Gamma-ray Spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Chow, D T

    2002-02-22

    We have demonstrated that a bulk absorber coupled to a TES can serve as a good gamma-ray spectrometer. Our measured energy resolution of 70 eV at 60 keV is among the best measurements in this field. We have also shown excellent agreement between the noise predictions and measured noise. Despite this good result, we noted that our detector design has shortcomings with a low count rate and vulnerabilities with the linearity of energy response. We addressed these issues by implementation of an active negative feedback bias. We demonstrated the effects of active bias such as additional pulse shortening, reduction of TES change in temperature during a pulse, and linearization of energy response at low energy. Linearization at higher energy is possible with optimized heat capacities and thermal conductivities of the microcalorimeter. However, the current fabrication process has low control and repeatability over the thermal properties. Thus, optimization of the detector performance is difficult until the fabrication process is improved. Currently, several efforts are underway to better control the fabrication of our gamma-ray spectrometers. We are developing a full-wafer process to produce TES films. We are investigating the thermal conductivity and surface roughness of thicker SiN membranes. We are exploring alternative methods to couple the absorber to the TES film for reproducibility. We are also optimizing the thermal conductivities within the detector to minimize two-element phonon noise. We are experimenting with different absorber materials to optimize absorption efficiency and heat capacity. We are also working on minimizing Johnson noise from the E S shunt and SQUID amplifier noise. We have shown that our performance, noise, and active bias models agree very well with measured data from several microcalorimeters. Once the fabrication improvements have been implemented, we have no doubt that our gamma-ray spectrometer will achieve even more spectacular results.

  6. A study of energy gap, refractive index and electronic polarizability of ternary chalcopyrite semiconductors

    Directory of Open Access Journals (Sweden)

    A Ahmad

    2014-12-01

    Full Text Available A simple relation between the optical electronegativity, energy gap, refractive index and electronic polarizability is given for ternary chalcopyrite semiconductors. Energy gap has been evaluated from the optical electronegativity whereas refractive index and electronic polarizability values have been evaluated from the energy gap by proposing a linear relation between them. The calculated values are in fair agreement with the experimental values and earlier researchers. This work highlights the significance of interrelation between these parameters.

  7. Determining the band gap and mean kinetic energy of atoms from reflection electron energy loss spectra

    Energy Technology Data Exchange (ETDEWEB)

    Vos, M. [Atomic and Molecular Physics Laboratories, Research School of Physics and Engineering, Australian National University, Canberra ACT (Australia); Marmitt, G. G. [Atomic and Molecular Physics Laboratories, Research School of Physics and Engineering, Australian National University, Canberra ACT (Australia); Instituto de Fisica da Universidade Federal do Rio Grande do Sul, Avenida Bento Goncalves 9500, 91501-970 Porto Alegre, RS (Brazil); Finkelstein, Y. [Nuclear Research Center — Negev, Beer-Sheva 84190 (Israel); Moreh, R. [Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel)

    2015-09-14

    Reflection electron energy loss spectra from some insulating materials (CaCO{sub 3}, Li{sub 2}CO{sub 3}, and SiO{sub 2}) taken at relatively high incoming electron energies (5–40 keV) are analyzed. Here, one is bulk sensitive and a well-defined onset of inelastic excitations is observed from which one can infer the value of the band gap. An estimate of the band gap was obtained by fitting the spectra with a procedure that includes the recoil shift and recoil broadening affecting these measurements. The width of the elastic peak is directly connected to the mean kinetic energy of the atom in the material (Doppler broadening). The experimentally obtained mean kinetic energies of the O, C, Li, Ca, and Si atoms are compared with the calculated ones, and good agreement is found, especially if the effect of multiple scattering is taken into account. It is demonstrated experimentally that the onset of the inelastic excitation is also affected by Doppler broadening. Aided by this understanding, we can obtain a good fit of the elastic peak and the onset of inelastic excitations. For SiO{sub 2}, good agreement is obtained with the well-established value of the band gap (8.9 eV) only if it is assumed that the intensity near the edge scales as (E − E{sub gap}){sup 1.5}. For CaCO{sub 3}, the band gap obtained here (7 eV) is about 1 eV larger than the previous experimental value, whereas the value for Li{sub 2}CO{sub 3} (7.5 eV) is the first experimental estimate.

  8. Strain energy minimization in SSC (Superconducting Super Collider) magnet winding

    Energy Technology Data Exchange (ETDEWEB)

    Cook, J.M.

    1990-09-24

    Differential geometry provides a natural family of coordinate systems, the Frenet frame, in which to specify the geometric properties of magnet winding. By a modification of the Euler-Bernoulli thin rod model, the strain energy is defined with respect to this frame. Then it is minimized by a direct method from the calculus of variations. The mathematics, its implementation in a computer program, and some analysis of an SSC dipole by the program will be described. 16 refs.

  9. Increasing energy relaxation time of superconducting qubits with nonmagnetic infrared filter and shield

    Science.gov (United States)

    Yuhao, Liu; Mengmeng, Li; Dong, Lan; Guangming, Xue; Xinsheng, Tan; Haifeng, Yu; Yang, Yu

    2016-05-01

    One of the primary origins of the energy relaxation in superconducting qubits is the quasiparticle loss. The quasiparticles can be excited remarkably by infrared radiation. In order to minimize the density of quasiparticle and increase the qubit relaxation time, we design and fabricate the infrared filter and shield for superconducting qubits. In comparison with previous filters and shields, a nonmagnetic dielectric is used as the infrared absorbing material, greatly suppressing the background magnetic fluctuations. The filters can be made to impedance-match with other microwave devices. Using the as-fabricated infrared filter and shield, we increased the relaxation time of a transmon qubit from 519 ns to 1125 ns. Project supported by the National Natural Science Foundation of China (Grant Nos. 91321310, 11274156, 11474152, 11474153, 61521001, and 11504165) and the State Key Program for Basic Research of China (Grant Nos. 2011CB922104 and 2011CBA00205).

  10. Enhancing the design of a superconducting coil for magnetic energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Indira, Gomathinayagam, E-mail: gindu80@gmail.com [EEE Department, Prince Shri Venkateshwara Padmavathy Engineering College, Chennai (India); UmaMaheswaraRao, Theru, E-mail: umesh.theru@gmail.com [Divison of Power Engineering and Management, Anna University, Chennai (India); Chandramohan, Sankaralingam, E-mail: cdramo@gmail.com [Divison of Power Engineering and Management, Anna University, Chennai (India)

    2015-01-15

    Highlights: • High magnetic flux density of SMES coil to reduce the size. • YBCO Tapes for the construction of HTS magnets. • Relation between energy storage and length of the coil wound by various materials. • Design with a certain length of second-generation HTS. - Abstract: Study and analysis of a coil for Superconducting Magnetic Energy Storage (SMES) system is presented in this paper. Generally, high magnetic flux density is adapted in the design of superconducting coil of SMES to reduce the size of the coil and to increase its energy density. With high magnetic flux density, critical current density of the coil is degraded and so the coil is wound with High Temperature Superconductors (HTS) made of different materials. A comparative study is made to emphasize the relationship between the energy storage and length of the coil wound by Bi2223, SF12100, SCS12100 and YBCO tapes. Recently for the construction of HTS magnets, YBCO tapes have been used. Simulation models for various designs have been developed to analyze the magnetic field distribution for the optimum design of energy storage. The design which gives the maximum stored energy in the coil has been used with a certain length of second-generation HTS. The performance analysis and the results of comparative study are done.

  11. In situ electrical transport measurement of superconductive ultrathin films

    Institute of Scientific and Technical Information of China (English)

    刘灿华; 贾金锋

    2015-01-01

    The discovery of an extraordinarily superconductive large energy gap in SrTiO3 supported single-layer FeSe films has recently initiated a great deal of research interests in surface-enhanced superconductivity and superconductive ultrathin films fabricated on crystal surfaces. On account of the instability of ultra-thin films in air, it is desirable to perform elec-trical transport measurement in ultra-high vaccum (UHV). Here we review the experimental techniques of in situ electrical transport measurement and their applications on superconductive ultrathin films.

  12. Dynamic characteristics of a flywheel energy storage system using superconducting magnetic bearings

    CERN Document Server

    Kim, J S

    2003-01-01

    The high-temperature superconducting magnetic bearing flywheel energy storage system (SMB-FESS) is proposed as an efficient energy storage system. It is important to identify the dynamic behaviour and the characteristics of the SMB-FESS. First, a new method for identifying SMB characteristics has been suggested. The suggested modelling method is verified by comparing the experimental and analytical frequency response functions. In this study, the analyses of critical speed and unbalance response are performed using the analytical model. The experimental test has been carried out to verify the result of simulation. A good agreement has been observed between the experiment and the simulation result.

  13. Kinetic Energy Driven Superconductivity in the Electron Doped Cobaltate NaxCoO2 · yH2O

    Institute of Scientific and Technical Information of China (English)

    LIU Bin; LIANG Ying; FENG Shi-Ping; CHEN Wei-Yeu

    2005-01-01

    Within the charge-spin separation fermion-spin theory, we show that the mechanism of superconductivity in the electron doped cobaltate Nax CoO2. yH2 O is ascribed to its kinetic energy. The dressed fermions interact occurring directly through the kinetic energy by exchanging magnetic excitations. This interaction leads to a net attractive force between dressed fermions, then the electron Cooper pairs originating from the dressed fermion pairing state are due to the charge-spin recombination, and their condensation reveals the superconducting ground state. The superconducting transition temperature is identical to the dressed fermion pair transition temperature, and is suppressed to a lower temperature due to the strong magnetic frustration. The optimal superconducting transition temperature occurs in the electron doping concentration δ≈ 0.29, and then decreases for both underdoped and overdoped regimes, in qualitative agreement with the experimental results.

  14. Revisiting orbital-fluctuation-mediated superconductivity in LiFeAs: Nontrivial spin-orbit interaction effects on the band structure and superconducting gap function

    Science.gov (United States)

    Saito, Tetsuro; Yamakawa, Youichi; Onari, Seiichiro; Kontani, Hiroshi

    2015-10-01

    The precise gap structure in LiFeAs (Tc=18 K) given by ARPES studies offers significant information that helps us understand the pairing mechanism in iron-based superconductors. The most remarkable characteristic in the LiFeAs gap structure would be that "the largest gap emerges on the tiny hole-pockets around the Z point." This result has been naturally explained in terms of the orbital-fluctuation scenario [T. Saito et al., Phys. Rev. B 90, 035104 (2014)], 10.1103/PhysRevB.90.035104, whereas the opposite result is obtained by the spin-fluctuation scenario. In this paper, we study the gap structure in LiFeAs by taking the spin-orbit interaction (SOI) into account, motivated by the recent ARPES studies that revealed a significant SOI-induced modification of the Fermi surface topology. For this purpose, we construct two possible tight-binding models with finite SOI by referring the band structures given by different ARPES groups. In addition, we extend the gap equation for multiorbital systems with finite SOI, and calculate the gap functions by applying the orbital-spin fluctuation theory. On the basis of both SOI-induced band structures, the main characteristics of the gap structure in LiFeAs are naturally reproduced only in the presence of strong interorbital interactions between (dx z /y z-dx y) orbitals. Thus the experimental gap structure in LiFeAs is a strong evidence for the orbital-fluctuation pairing mechanism.

  15. Sensing with Superconducting Point Contacts

    Directory of Open Access Journals (Sweden)

    Argo Nurbawono

    2012-05-01

    Full Text Available Superconducting point contacts have been used for measuring magnetic polarizations, identifying magnetic impurities, electronic structures, and even the vibrational modes of small molecules. Due to intrinsically small energy scale in the subgap structures of the supercurrent determined by the size of the superconducting energy gap, superconductors provide ultrahigh sensitivities for high resolution spectroscopies. The so-called Andreev reflection process between normal metal and superconductor carries complex and rich information which can be utilized as powerful sensor when fully exploited. In this review, we would discuss recent experimental and theoretical developments in the supercurrent transport through superconducting point contacts and their relevance to sensing applications, and we would highlight their current issues and potentials. A true utilization of the method based on Andreev reflection analysis opens up possibilities for a new class of ultrasensitive sensors.

  16. Technical Barriers, Gaps,and Opportunities Related to Home Energy Upgrade Market Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, Marcus V.A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2011-11-01

    This report outlines the technical barriers, gaps, and opportunities that arise in executing home energy upgrade market delivery approaches, as identified through research conducted by the U.S. Department of Energy's Building America program.

  17. Superconducting, energy variable heavy ion linac with constant β, multicell cavities of CH-type

    Directory of Open Access Journals (Sweden)

    S. Minaev

    2009-12-01

    Full Text Available An energy variable ion linac consisting of multigap, constant-β cavities was developed. The effect of phase sliding, unavoidable in any constant-β section, is leading to a coherent rf phase motion, which fits well to the H-type structures with their long π-mode sections and separated lenses. The exact periodicity of the cell lengths within each cavity results in technical advantages, such as higher calculation accuracy when only one single period can be simulated, simpler manufacturing, and tuning. This is most important in the case of superconducting cavities. By using this concept, an improved design for a 217 MHz cw superconducting heavy ion linac with energy variation has been worked out. The small output energy spread of ±3  AkeV is provided over the whole range of energy variation from 3.5 to 7.3 AMeV. These capabilities would allow for a competitive research in the field of radiochemistry and for a production of super heavy elements (SHE, especially. A first 19-cell cavity of that type was designed, built, and rf tested successfully at the Institute for Applied Physics (IAP Frankfurt. A 325.224 MHz, seven-cell cavity with constant β=0.16 is under development and will be operated in a frequency controlled mode. It will be equipped with a power coupler and beam tests with Unilac beams at GSI are foreseen.

  18. ORNL Superconducting Technology Program for Electric Energy Systems. Annual report for FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    Hawsey, R.A. [comp.

    1993-02-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy`s (DOE`s) Office of Conservation and Renewable Energy to develop the technology base needed by US industry for commercial development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and systems development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from information prepared for the FY 1992 Peer Review of Projects, conducted by DOE`s Office of Program Analysis, Office of Energy Research. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer to US industry. Working together, the collaborative teams are making tremendous progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire products.

  19. Doping-Induced Change of Superconducting Gap Anisotropy in Bi_2Sr_2Ca_1Cu_2O8+δ

    Science.gov (United States)

    Kelley, R. J.; Quitmann, C.; Onellion, M.; Berger, H.; Almeras, P.; Margaritondo, G.

    1996-03-01

    High-resolution angle-resolved photoemission measurements were performed on single crystals of Bi_2Sr_2Ca_1Cu_2O8+δ with different oxygen stoichiometries. The data establish that the gap anisotropy (ratio of the gap along Gamma-M to the gap along Gamma-X) can be reversibly changed from ~20:1 (optimal or underdoped) to ~2:1 (overdoped). Differences in sample doping explain the conflicting reports on gap anisotropy in the literature. Possible effects of this change in gap anisotropy on the symmetry of the order parameter are discussed. There remains some ambiguity as to the relation between the order parameter and doping.

  20. Optimization of a Superconducting Magnetic Energy Storage Device via a CPU-Efficient Semi-Analytical Simulation

    CERN Document Server

    Dimitrov, I K; Solovyov, V F; Chubar, O; Li, Qiang

    2014-01-01

    Recent advances in second generation (YBCO) high temperature superconducting wire could potentially enable the design of super high performance energy storage devices that combine the high energy density of chemical storage with the high power of superconducting magnetic storage. However, the high aspect ratio and considerable filament size of these wires requires the concomitant development of dedicated optimization methods that account for both the critical current density and ac losses in type II superconductors. Here, we report on the novel application and results of a CPU-efficient semi-analytical computer code based on the Radia 3D magnetostatics software package. Our algorithm is used to simulate and optimize the energy density of a superconducting magnetic energy storage device model, based on design constraints, such as overall size and number of coils. The rapid performance of the code is pivoted on analytical calculations of the magnetic field based on an efficient implementation of the Biot-Savart...

  1. Eddy Current Analysis and Optimization for Superconducting Magnetic Bearing of Flywheel Energy Storage System

    Science.gov (United States)

    Arai, Yuuki; Yamashita, Tomohisa; Hasegawa, Hitoshi; Matsuoka, Taro; Kaimori, Hiroyuki; Ishihara, Terumasa

    Levitation and guidance force is electromagnetic generated between a superconducting coil and zero field cooled bulk superconductors used in our flywheel energy storage system (FESS). Because the magnetic field depends on the configuration of the coil and the bulks, the eccentricity and the vibration of a rotor cause fluctuation in the magnetic field which induces eddy current and consequent Joule heat on electric conductors such as cooling plates. Heat generation in the cryogenic region critically reduces the efficiency of the FESS. In this paper, we will report the result of the electromagnetic analysis of the SMB and propose an optimal divided cooling plate for reducing the eddy current and Joule heat.

  2. Resistivity changes in superconducting-cavity-grade Nb following high-energy proton irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Snead, C.L. Jr.; Hanson, A.; Greene, G.A. [and others

    1997-12-01

    Niobium superconducting rf cavities are proposed for use in the proton LINAC accelerators for spallation-neutron applications. Because of accidental beam loss and continual halo losses along the accelerator path, concern for the degradation of the superconducting properties of the cavities with accumulating damage arises. Residual-resistivity-ratio (RRR) specimens of Nb, with a range of initial RRR`s were irradiated at room temperature with protons at energies from 200 to 2000 MeV. Four-probe resistance measurements were made at room temperature and at 4.2 K both prior to and after irradiation. Nonlinear increases in resistivity simulate expected behavior in cavity material after extended irradiation, followed by periodic anneals to room temperature: For RRR = 316 material, irradiations to (2 - 3) x 10{sup 15} p/cm{sup 2} produce degradations up to the 10% level, a change that is deemed operationally acceptable. Without. periodic warming to room temperature, the accumulated damage energy would be up to a factor of ten greater, resulting in unacceptable degradations. Likewise, should higher-RRR material be used, for the same damage energy imparted, relatively larger percentage changes in the RRR will result.

  3. Optimized use of superconducting magnetic energy storage for electromagnetic rail launcher powering

    Science.gov (United States)

    Badel, Arnaud; Tixador, Pascal; Arniet, Michel

    2012-01-01

    Electromagnetic rail launchers (EMRLs) require very high currents, from hundreds of kA to several MA. They are usually powered by capacitors. The use of superconducting magnetic energy storage (SMES) in the supply chain of an EMRL is investigated, as an energy buffer and as direct powering source. Simulations of direct powering are conducted to quantify the benefits of this method in terms of required primary energy. In order to enhance further the benefits of SMES powering, a novel integration concept is proposed, the superconducting self-supplied electromagnetic launcher (S3EL). In the S3EL, the SMES is used as a power supply for the EMRL but its coil serves also as an additional source of magnetic flux density, in order to increase the thrust (or reduce the required current for a given thrust). Optimization principles for this new concept are presented. Simulations based on the characteristics of an existing launcher demonstrate that the required current could be reduced by a factor of seven. Realizing such devices with HTS cables should be possible in the near future, especially if the S3EL concept is used in combination with the XRAM principle, allowing current multiplication.

  4. ELASTIC-SCATTERING AND THE CURRENT-VOLTAGE CHARACTERISTICS OF SUPERCONDUCTING NB-INAS-NB JUNCTIONS

    NARCIS (Netherlands)

    VANDERPOST, N; NITTA, J; TAKAYANAGI, H

    1993-01-01

    Superconducting niobium contacts are attached to a 0.8-mum-long epitaxially grown InAs channel sandwiched between insulating InGaAs layers. The current-voltage characteristics show nonlinearities at submultiples of the superconducting energy gap indicative of multiple-Andreev reflections. We demonst

  5. Superconducting tunnel junction array development for high-resolution energy-dispersive x-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Barfknecht, A. T.; Cramer, S. P; Frank, M.; Friedrich, S.; Hiller, L. J.; Labov, S. E.; Mears, C. A.; Niderost, B.

    1998-07-01

    Cryogenic energy-dispersive x-ray detectors are being developed because of their superior energy resolution ((less than or equal to) 10 eV FWHM for keV x rays) compared to semiconductor EDS systems. So far, their range of application is limited due to their comparably small size and low count rate. We present data on the development of superconducting tunnel junction (STJ) detector arrays to address both of these issues. A single STJ detector has a resolution around 10 eV below 1 keV and can be operated at count rates of order 10,000 counts/s. We show that the simultaneous operation of several STJ detectors does not diminish their energy resolution significantly, while increasing the detector area and the maximum count rate by a factor given by the total number of independent channels.

  6. Relationship between orbital energy gaps and excitation energies for long-chain systems.

    Science.gov (United States)

    Tsuneda, Takao; Singh, Raman K; Nakata, Ayako

    2016-06-15

    The difference between the excitation energies and corresponding orbital energy gaps, the exciton binding energy, is investigated based on time-dependent (TD) density functional theory (DFT) for long-chain systems: all-trans polyacetylenes and linear oligoacenes. The optimized geometries of these systems indicate that bond length alternations significantly depend on long-range exchange interactions. In TDDFT formalism, the exciton binding energy comes from the two-electron interactions between occupied and unoccupied orbitals through the Coulomb-exchange-correlation integral kernels. TDDFT calculations show that the exciton binding energy is significant when long-range exchange interactions are involved. Spin-flip (SF) TDDFT calculations are then carried out to clarify double-excitation effects in these excitation energies. The calculated SF-TDDFT results indicate that double-excitation effects significantly contribute to the excitations of long-chain systems. The discrepancies between the vertical ionization potential minus electron affinity (IP-EA) values and the HOMO-LUMO excitation energies are also evaluated for the infinitely long polyacetylene and oligoacene using the least-square fits to estimate the exciton binding energy of infinitely long systems. It is found that long-range exchange interactions are required to give the exciton binding energy of the infinitely long systems. Consequently, it is concluded that long-range exchange interactions neglected in many DFT calculations play a crucial role in the exciton binding energies of long-chain systems, while double-excitation correlation effects are also significant to hold the energy balance of the excitations. © 2016 Wiley Periodicals, Inc.

  7. Conduction bands and invariant energy gaps in alkali bromides

    NARCIS (Netherlands)

    Boer, P.K. de; Groot, R.A. de

    1998-01-01

    Electronic structure calculations of the alkali bromides LiBr, NaBr, KBr, RbBr and CsBr are reported. It is shown that the conduction band has primarily bromine character. The size of the band gaps of bromides and alkali halides in general is reinterpreted.

  8. Gap filling strategies for long term energy flux data sets

    NARCIS (Netherlands)

    Falge, E.; Baldocchi, D.; Olson, R.; Anthoni, P.; Aubinet, M.; Bernhofer, C.; Burba, G.; Ceulemans, R.; Clement, R.; Dolman, H.; Granier, A.; Gross, P.; Grünwald, T.; Hollinger, D.; Jensen, N.O.; Katul, G.; Keronen, P.; Kowalski, A.; Lai, C.T.; Law, B.E.; Meyers, T.; Moncrieff, J.; Moors, E.J.; Munger, J.W.; Pilegaard, K.; Rebmann, C.; Suyker, A.; Tenhunen, J.; Tu, K.

    2001-01-01

    At present a network of over 100 field sites are measuring carbon dioxide, water vapor and sensible heat fluxes between the biosphere and atmosphere, on a nearly continuous basis. Gaps in the long term measurements of evaporation and sensible heat flux must be filled before these data can be used fo

  9. Gap filling strategies for long term energy flux data sets

    NARCIS (Netherlands)

    Falge, E.; Baldocchi, D.; Olson, R.; Anthoni, P.; Aubinet, M.; Bernhofer, C.; Burba, G.; Ceulemans, R.; Clement, R.; Dolman, H.; Granier, A.; Gross, P.; Grünwald, T.; Hollinger, D.; Jensen, N.O.; Katul, G.; Keronen, P.; Kowalski, A.; Lai, C.T.; Law, B.E.; Meyers, T.; Moncrieff, J.; Moors, E.J.; Munger, J.W.; Pilegaard, K.; Rebmann, C.; Suyker, A.; Tenhunen, J.; Tu, K.

    2001-01-01

    At present a network of over 100 field sites are measuring carbon dioxide, water vapor and sensible heat fluxes between the biosphere and atmosphere, on a nearly continuous basis. Gaps in the long term measurements of evaporation and sensible heat flux must be filled before these data can be used fo

  10. Quantification of the energy gap in young overweight children. the PIAMA birth cohort study

    NARCIS (Netherlands)

    S.W. Berg (Saskia); J.M. Boer (Judith); S. Scholtens (Salome); J.C. de Jongste (Johan); B. Brunekreef (Bert); H.A. Smit (Henk); A.H. Wijga (Alet)

    2011-01-01

    textabstractBackground: Overweight develops gradually as a result of a long term surplus on the balance between energy intake and energy expenditure. Aim of this study was to quantify the positive energy balance responsible for excess body weight gain (energy gap) in young overweight children.

  11. A novel theoretical model for the temperature dependence of band gap energy in semiconductors

    Science.gov (United States)

    Geng, Peiji; Li, Weiguo; Zhang, Xianhe; Zhang, Xuyao; Deng, Yong; Kou, Haibo

    2017-10-01

    We report a novel theoretical model without any fitting parameters for the temperature dependence of band gap energy in semiconductors. This model relates the band gap energy at the elevated temperature to that at the arbitrary reference temperature. As examples, the band gap energies of Si, Ge, AlN, GaN, InP, InAs, ZnO, ZnS, ZnSe and GaAs at temperatures below 400 K are calculated and are in good agreement with the experimental results. Meanwhile, the band gap energies at high temperatures (T  >  400 K) are predicted, which are greater than the experimental results, and the reasonable analysis is carried out as well. Under low temperatures, the effect of lattice expansion on the band gap energy is very small, but it has much influence on the band gap energy at high temperatures. Therefore, it is necessary to consider the effect of lattice expansion at high temperatures, and the method considering the effect of lattice expansion has also been given. The model has distinct advantages compared with the widely quoted Varshni’s semi-empirical equation from the aspect of modeling, physical meaning and application. The study provides a convenient method to determine the band gap energy under different temperatures.

  12. Roles of superconducting magnetic bearings and active magnetic bearings in attitude control and energy storage flywheel

    Science.gov (United States)

    Tang, Jiqiang; Fang, Jiancheng; Ge, Shuzhi Sam

    2012-12-01

    Compared with conventional energy storage flywheel, the rotor of attitude control and energy storage flywheel (ACESF) used in space not only has high speed, but also is required to have precise and stable direction. For the presented superconducting magnetic bearing (SMB) and active magnetic bearing (AMB) suspended ACESF, the rotor model including gyroscopic couples is established originally by taking the properties of SMB and AMB into account, the forces of SMB and AMB are simplified by linearization within their own neighbors of equilibrium points. For the high-speed rigid discal rotor with large inertia, the negative effect of gyroscopic effect of rotor is prominent, the radial translation and tilting movement of rotor suspended by only SMB, SMB with equivalent PMB, or SMB together with PD controlled AMB are researched individually. These analysis results proved originally that SMB together with AMB can make the rotor be stable and make the radial amplitude of the vibration of rotor be small while the translation of rotor suspended by only SMB or SMB and PM is not stable and the amplitude of this vibration is large. For the stability of the high-speed rotor in superconducting ACESF, the AMB can suppress the nutation and precession of rotor effectively by cross-feedback control based on the separated PD type control or by other modern control methods.

  13. COMMERCIALIZATION DEMONSTRATION OF MID-SIZED SUPERCONDUCTING MAGNETIC ENERGY STORAGE TECHNOLOGY FOR ELECTRIC UTILITYAPPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    CHARLES M. WEBER

    2008-06-24

    As an outgrowth of the Technology Reinvestment Program of the 1990’s, an Agreement was formed between BWXT and the DOE to promote the commercialization of Superconducting Magnetic Energy Storage (SMES) technology. Business and marketing studies showed that the performance of electric transmission lines could be improved with this SMES technology by stabilizing the line thereby allowing the reserved stability margin to be used. One main benefit sought was to double the capacity and the amount of energy flow on an existing transmission line by enabling the use of the reserved stability margin, thereby doubling revenue. Also, electrical disturbances, power swings, oscillations, cascading disturbances and brown/black-outs could be mitigated and rendered innocuous; thereby improving power quality and reliability. Additionally, construction of new transmission lines needed for increased capacity could be delayed or perhaps avoided (with significant savings) by enabling the use of the reserved stability margin of the existing lines. Two crucial technical aspects were required; first, a large, powerful, dynamic, economic and reliable superconducting magnet, capable of oscillating power flow was needed; and second, an electrical power interface and control to a transmission line for testing, demonstrating and verifying the benefits and features of the SMES system was needed. A project was formed with the goals of commercializing the technology by demonstrating SMES technology for utility applications and to establish a domestic capability for manufacturing large superconducting magnets for both commercial and defense applications. The magnet had very low AC losses to support the dynamic and oscillating nature of the stabilizing power flow. Moreover, to economically interface to the transmission line, the magnet had the largest operating voltage ever made. The manufacturing of that design was achieved by establishing a factory with newly designed and acquired equipment

  14. The energy trilogy: An integrated sustainability model to bridge wastewater treatment plant energy and emissions gaps

    Science.gov (United States)

    Al-Talibi, A. Adhim

    An estimated 4% of national energy consumption is used for drinking water and wastewater services. Despite the awareness and optimization initiatives for energy conservation, energy consumption is on the rise owing to population and urbanization expansion and to commercial and industrial business advancement. The principal concern is since energy consumption grows, the higher will be the energy production demand, leading to an increase in CO2 footprints and the contribution to global warming potential. This research is in the area of energy-water nexus, focusing on wastewater treatment plant (WWTP) energy trilogy -- the group of three related entities, which includes processes: (1) consuming energy, (2) producing energy, and (3) the resulting -- CO2 equivalents. Detailed and measurable energy information is not readily obtained for wastewater facilities, specifically during facility preliminary design phases. These limitations call for data-intensive research approach on GHG emissions quantification, plant efficiencies and source reduction techniques. To achieve these goals, this research introduced a model integrating all plant processes and their pertinent energy sources. In a comprehensive and "Energy Source-to-Effluent Discharge" pattern, this model is capable of bridging the gaps of WWTP energy, facilitating plant designers' decision-making for meeting energy assessment, sustainability and the environmental regulatory compliance. Protocols for estimating common emissions sources are available such as for fuels, whereas, site-specific emissions for other sources have to be developed and are captured in this research. The dissertation objectives were met through an extensive study of the relevant literature, models and tools, originating comprehensive lists of processes and energy sources for WWTPs, locating estimation formulas for each source, identifying site specific emissions factors, and linking the sources in a mathematical model for site specific CO2 e

  15. Tunable coupling in circuit quantum electrodynamics using a superconducting charge qubit with a V-shaped energy level diagram.

    Science.gov (United States)

    Srinivasan, S J; Hoffman, A J; Gambetta, J M; Houck, A A

    2011-02-25

    We introduce a new type of superconducting charge qubit that has a V-shaped energy spectrum and uses quantum interference to provide independently tunable qubit energy and coherent coupling to a superconducting cavity. Dynamic access to the strong coupling regime is demonstrated by tuning the coupling strength from less than 200 kHz to greater than 40 MHz. This tunable coupling can be used to protect the qubit from cavity-induced relaxation and avoid unwanted qubit-qubit interactions in a multiqubit system.

  16. Robustness Improvement of Superconducting Magnetic Energy Storage System in Microgrids Using an Energy Shaping Passivity-Based Control Strategy

    Directory of Open Access Journals (Sweden)

    Rui Hou

    2017-05-01

    Full Text Available Superconducting magnetic energy storage (SMES systems, in which the proportional-integral (PI method is usually used to control the SMESs, have been used in microgrids for improving the control performance. However, the robustness of PI-based SMES controllers may be unsatisfactory due to the high nonlinearity and coupling of the SMES system. In this study, the energy shaping passivity (ESP-based control strategy, which is a novel nonlinear control based on the methodology of interconnection and damping assignment (IDA, is proposed for robustness improvement of SMES systems. A step-by-step design of the ESP-based method considering the robustness of SMES systems is presented. A comparative analysis of the performance between ESP-based and PI control strategies is shown. Simulation and experimental results prove that the ESP-based strategy achieves the stronger robustness toward the system parameter uncertainties than the conventional PI control. Besides, the use of ESP-based control method can reduce the eddy current losses of a SMES system due to the significant reduction of 2nd and 3rd harmonics of superconducting coil DC current.

  17. Load frequency stabilization of four area hydro thermal system using Superconducting Magnetic Energy Storage system

    Directory of Open Access Journals (Sweden)

    A.Ruby meena

    2014-07-01

    Full Text Available Automatic generation control in electric power system design is a major concern nowadays due to its rising size, varying structure, integration of renewable-energy sources and distributed generators to meet the growing demand. In this paper, automatic generation control of an interconnected four area hydro thermal system examined. Each area equipped with reheat turbine for thermal system and hydro turbine with electric governor for hydro system. Load frequency stabilization gained by including Superconducting Magnetic Energy Storage system (SMES in all areas. A comparative analysis made between Proportional and Integral (PI controller with Fuzzy Logic controller with and without including SMES in the four area power system. The designed Fuzzy Logic Controller can generate best dynamic performance for step load perturbations given in all areas. The system simulation realized by using MATLAB software.

  18. Evolution of superconducting gaps in Th-substituted Sm1 -xThxOFeAs studied by multiple Andreev reflection spectroscopy

    Science.gov (United States)

    Kuzmicheva, T. E.; Kuzmichev, S. A.; Pervakov, K. S.; Pudalov, V. M.; Zhigadlo, N. D.

    2017-03-01

    Using intrinsic multiple Andreev reflections effect spectroscopy, we studied SnS contacts in the layered oxypnictide superconductors Sm1 -xThxOFeAs with various thorium doping and critical temperatures TC=21 -54 K. We observe a scaling between both superconducting gaps and TC. The determined BCS ratio for the large gap 2 ΔL/kBTC=5.0 -5.7 and its eigen-BCS ratio (in a hypothetical case of zero interband coupling) 2 ΔL/kBTCL=4.1 -4.6 both exceeding the weak-coupling limit 3.52, and for the small gap 2 ΔS/kBTC=1.2 -1.6 , remain nearly constant within all the TC range studied. The temperature dependences ΔL ,S(T ) agree well with a two-band BCS-like Moskalenko and Suhl model. We prove intraband coupling to be stronger than interband coupling, whereas Coulomb repulsion constants μ* are finite in Sm-based oxypnictides.

  19. Superconductivity in the two-dimensional electron gas induced by high-energy optical phonon mode and large polarization of the SrTiO3 substrate

    Science.gov (United States)

    Rosenstein, Baruch; Shapiro, B. Ya.; Shapiro, I.; Li, Dingping

    2016-07-01

    Pairing in one-atomic-layer-thick two-dimensional electron gas (2DEG) by a single flat band of high-energy longitudinal optical phonons is considered. The polar dielectric SrTiO3 (STO) exhibits such an energetic phonon mode and the 2DEG is created both when one unit cell FeSe layer is grown on its (100 ) surface and on the interface with another dielectric like LaAlO3 (LAO). We obtain a quantitative description of both systems solving the gap equation for Tc for arbitrary Fermi energy ɛF, electron-phonon coupling λ , and the phonon frequency Ω , and direct (random-phase approximation) electron-electron repulsion strength α . The focus is on the intermediate region between the adiabatic, ɛF>>Ω , and the nonadiabatic, ɛF<<Ω , regimes. The high-temperature superconductivity in single-unit-cell FeSe/STO is possible due to a combination of three factors: high-longitudinal-optical phonon frequency, large electron-phonon coupling λ ˜0.5 , and huge dielectric constant of the substrate suppression the Coulomb repulsion. It is shown that very low density electron gas in the interfaces is still capable of generating superconductivity of the order of 0.1 K in LAO/STO.

  20. CHINA PARTNERS WITH KENYA TO HELP BRIDGE ENERGY GAP

    Institute of Scientific and Technical Information of China (English)

    Liu Weiqiang

    2010-01-01

    @@ Kenya's energy sector will be a key enabler for Vision 2030,with opportunities in petroleum,Liquefied Petroleum Gas(LPG),the electricity sub-sector,coal,and renewable energies,including geothermal and hydropower.Currently,the country depends on biomass(68 percent),hydrocarbons(22 percent),electricity(9 percent),solar,and other forms of energy(1 percent)for its energy needs,with petroleum and electricity dominating the commercial sector.Energy Minister Kiraitu Murungi and the Kibaki government are keen to reach out to Chinese investors to help bring the sector up to its full potential.

  1. Experimental and analytical study of the DC breakdown characteristics of polypropylene laminated paper with a butt gap condition considering the insulation design of superconducting cable

    Science.gov (United States)

    Seo, In-jin; Choi, Won; Seong, Jae-gyu; Lee, Bang-wook; Koo, Ja-yoon

    2014-08-01

    It has been reported that the insulation design under DC stress is considered as one of the critical factors in determining the performance of high-voltage direct current (HVDC) superconducting cable. Therefore, it is fundamentally necessary to investigate the DC breakdown characteristics of the composite insulation system consisting of liquid nitrogen (LN2)/polypropylene-laminated-paper (PPLP). In particular, the insulation characteristics under DC polarity reversal condition should be verified to understand the polarity effect of the DC voltage considering the unexpected incidents taking place at line-commutated-converters (LCC) under service at a DC power grid. In this study, to examine the variation of DC electric field strength, the step voltage and polarity reversal breakdown tests are performed under DC stress. Also, we investigate the electric field distributions in a butt gap of the LN2/PPLP condition considering the DC polarity reversal by using simulation software.

  2. Nodal Superconductivity with Multiple Gaps in SmFeAsO$_{0.9}$F$_{0.1}$

    OpenAIRE

    Wang, Yonglei; Shan, Lei; Fang, Lei; Cheng, Peng; Ren, Cong; Wen, Hai-Hu

    2008-01-01

    We report the observation of two gaps in the superconductor SmFeAsO$_{0.9}$F$_{0.1}$ (F-SmFeAsO) with $T_c=51.5K$ as measured by point-contact spectroscopy. Both gaps decrease with temperature and vanish at $T_c$ and the temperature dependence of the gaps are described by the theoretical prediction of the Bardeen-Cooper-Schrieffer (BCS) theory. A zero-bias conductance peak (ZBCP) was observed, indicating the presence of Andreev bound states at the surface of F-SmFeAsO. Our results strongly su...

  3. Plugging the Energy Efficiency Gap with Climate Finance

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    The role of International Financial Institutions (IFIs) and the Green Climate Fund to realise the potential of energy efficiency in developing countries. This report examines the current role of climate finance in funding EE projects and the potential to channel funds to relevant EE projects in developing countries under the new Green Climate Fund (GCF). The objectives of the report are to examine: 1) the share of climate finance currently being channelled to energy efficiency measures, and 2) how the design of climate finance can better facilitate energy efficiency projects. Improving energy efficiency (EE) can deliver a range of benefits such as improved air quality, enhanced economic competitiveness and, at the national scale, a higher degree of energy security. Significant improvements in energy efficiency in developing countries could provide greater opportunity for economic growth while also providing broader access to energy and related services even from limited energy resources. However, several barriers limit the scaling-up of funding of EE projects in developing countries (some are common also to developed countries). The report focuses primarily on public climate finance flows from 'north' to 'south', probing the current use of funds from multi-lateral development banks (MDBs), bi-lateral financial institutions (BFIs) and carbon markets for energy efficiency projects and the design of the future climate financial mechanisms such as the Green Climate Fund to encourage energy efficiency improvements in developing countries.

  4. Summary of Gaps and Barriers for Implementing Residential Building Energy Efficiency Strategies

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2010-08-01

    This report presents the key gaps and barriers to implementing residential energy efficiency strategies in the U.S. market, as identified in sessions at the U.S. Department of Energy's Building America 2010 Residential Energy Efficiency Meeting held in Denver, Colorado, on July 20-22, 2010.

  5. Summary of Gaps and Barriers for Implementing Residential Building Energy Efficiency Strategies

    Energy Technology Data Exchange (ETDEWEB)

    2010-08-01

    This report presents the key gaps and barriers to implementing residential energy efficiency strategies in the U.S. market, as identified in sessions at the U.S. Department of Energy's Building America 2010 Residential Energy Efficiency Meeting held in Denver, Colorado, on July 20-22, 2010.

  6. Facilities management added value in closing the energy performance gap

    Directory of Open Access Journals (Sweden)

    Zaw Min

    2016-12-01

    Full Text Available Existing non-domestic buildings tend to use more energy than expected. This paper investigates how the operational strategies of facilities management can contribute to reducing building energy use. A longitudinal case study of a higher education (HE campus which was conceptualised with the objective of being environmentally friendly and energy efficient is presented. The paper reflects on the energy performance of the campus since its operation in 2001, based on 14 years of energy data and a detailed record of all initiatives undertaken by the campus’s facilities management (FM team in order to optimise energy performance. The integrated FM strategy composed of low- and no-cost strategies, continuous improvements, ongoing commissioning and retrofits succeeded in reducing campus energy intensity from 174 to 87 kWh/(m2*yr, now outperforming most relevant benchmarks. This finding highlights the importance of operations and maintenance in reducing the energy usage of existing buildings. This presented findings draw on a single case only, which excels through a very detailed longitudinal dataset. Going forwards, the analysis of further cases is recommended to corroborate the findings. The presented results suggest that proactive operations and maintenance strategies in existing buildings can contribute towards significantly improving energy performance. The profile and competency level of facilities management personnel should consequently be raised strategically at the organisational and national/industrial policy level, whilst integrated design processes should be further expanded to include FM’s operational control and management in a holistically fashion.

  7. Topological superconductivity in bilayer Rashba system.

    Science.gov (United States)

    Nakosai, Sho; Tanaka, Yukio; Nagaosa, Naoto

    2012-04-06

    We theoretically study a possible topological superconductivity in the interacting two layers of Rashba systems, which can be fabricated by the heterostructures of semiconductors and oxides. The hybridization, which induces the gap in the single particle dispersion, and the electron-electron interaction between the two layers leads to the novel phase diagram of the superconductivity. It is found that the topological superconductivity without breaking time-reversal symmetry is realized when (i) the Fermi energy is within the hybridization gap, and (ii) the interlayer interaction is repulsive, both of which can be satisfied in realistic systems. Edge channels are studied in a tight-binding model numerically, and the several predictions on experiments are also given.

  8. Energy Factors in Commercial Mortgages: Gaps and Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Mathew, Paul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Coleman, Philip [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wallace, Nancy [Univ. of California, Berkeley, CA (United States); Issler, Paulo [Univ. of California, Berkeley, CA (United States); Kolstad, Lenny [Inst. for Market Transformation, Washington, DC (United States); Sahadi, Robert [Inst. for Market Transformation, Washington, DC (United States)

    2016-09-01

    The commercial real estate mortgage market is enormous, with almost half a trillion dollars in deals originated in 2015. Relative to other energy efficiency financing mechanisms, very little attention has been paid to the potential of commercial mortgages as a channel for promoting energy efficiency investments. The valuation and underwriting elements of the business are largely driven by the “net operating income” (NOI) metric – essentially, rents minus expenses. While NOI ostensibly includes all expenses, energy factors are in several ways given short shrift in the underwriting process. This is particularly interesting when juxtaposed upon a not insignificant body of research revealing that there are in fact tangible benefits (such as higher valuations and lower vacancy and default rates) for energy-efficient and “green” commercial buildings. This scoping report characterizes the current status and potential interventions to promote greater inclusion of energy factors in the commercial mortgage process.

  9. Superconducting transport in single and parallel double InAs quantum dot Josephson junctions with Nb-based superconducting electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Shoji, E-mail: baba@meso.t.u-tokyo.ac.jp; Sailer, Juergen [Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Deacon, Russell S. [Center for Emergent Matter Science (CEMS), RIKEN, Wako, Saitama 351-0198 (Japan); RIKEN Advanced Science Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Oiwa, Akira [The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Shibata, Kenji [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Department of Electronics and Intelligent Systems, Tohoku Institute of Technology, Sendai 982-8577 (Japan); Hirakawa, Kazuhiko [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); JST CREST, 4-1-8 Hon-cho, Kawaguchi-shi, Saitama 332-0012 (Japan); Tarucha, Seigo [Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Center for Emergent Matter Science (CEMS), RIKEN, Wako, Saitama 351-0198 (Japan); INQIE, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); QPEC, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku 113-8656 (Japan)

    2015-11-30

    We report conductance and supercurrent measurements for InAs single and parallel double quantum dot Josephson junctions contacted with Nb or NbTiN superconducting electrodes. Large superconducting gap energy, high critical field, and large switching current are observed, all reflecting the features of Nb-based electrodes. For the parallel double dots, we observe an enhanced supercurrent when both dots are on resonance, which may reflect split Cooper pair tunneling.

  10. Power flow control and damping enhancement of a large wind farm using a superconducting magnetic energy storage unit

    DEFF Research Database (Denmark)

    Chen, S. S.; Wang, L.; Lee, W. J.

    2009-01-01

    A novel scheme using a superconducting magnetic energy storage (SMES) unit to perform both power flow control and damping enhancement of a large wind farm (WF) feeding to a utility grid is presented. The studied WF consisting of forty 2 MW wind induction generators (IGs) is simulated by an equiva...

  11. Automatic generation control with thyristor controlled series compensator including superconducting magnetic energy storage units

    Directory of Open Access Journals (Sweden)

    Saroj Padhan

    2014-09-01

    Full Text Available In the present work, an attempt has been made to understand the dynamic performance of Automatic Generation Control (AGC of multi-area multi-units thermal–thermal power system with the consideration of Reheat turbine, Generation Rate Constraint (GRC and Time delay. Initially, the gains of the fuzzy PID controller are optimized using Differential Evolution (DE algorithm. The superiority of DE is demonstrated by comparing the results with Genetic Algorithm (GA. After that performance of Thyristor Controlled Series Compensator (TCSC has been investigated. Further, a TCSC is placed in the tie-line and Superconducting Magnetic Energy Storage (SMES units are considered in both areas. Finally, sensitivity analysis is performed by varying the system parameters and operating load conditions from their nominal values. It is observed that the optimum gains of the proposed controller need not be reset even if the system is subjected to wide variation in loading condition and system parameters.

  12. Superconducting qubit in a nonstationary transmission line cavity: Parametric excitation, periodic pumping, and energy dissipation

    Science.gov (United States)

    Zhukov, A. A.; Shapiro, D. S.; Remizov, S. V.; Pogosov, W. V.; Lozovik, Yu. E.

    2017-02-01

    We consider a superconducting qubit coupled to the nonstationary transmission line cavity with modulated frequency taking into account energy dissipation. Previously, it was demonstrated that in the case of a single nonadiabatical modulation of a cavity frequency there are two channels of a two-level system excitation which are due to the absorption of Casimir photons and due to the counterrotating wave processes responsible for the dynamical Lamb effect. We show that the parametric periodical modulation of the resonator frequency can increase dramatically the excitation probability. Remarkably, counterrotating wave processes under such a modulation start to play an important role even in the resonant regime. Our predictions can be used to control qubit-resonator quantum states as well as to study experimentally different channels of a parametric qubit excitation.

  13. Magnetic Anisotropic Energy Gap and Strain Effect in Au Nanoparticles

    Directory of Open Access Journals (Sweden)

    Shih Po-Hsun

    2009-01-01

    Full Text Available Abstract We report on the observation of the size effect of thermal magnetization in Au nanoparticles. The thermal deviation of the saturation magnetization departs substantially from that predicted by the Bloch T3/2-law, indicating the existence of magnetic anisotropic energy. The results may be understood using the uniaxial anisotropy Heisenberg model, in which the surface atoms give rise to polarized moments while the magnetic anisotropic energy decreases as the size of the Au nanoparticles is reduced. There is a significant maximum magnetic anisotropic energy found for the 6 nm Au nanoparticles, which is associated with the deviation of the lattice constant due to magnetocrystalline anisotropy.

  14. Low energy excitations in superconducting La1.86Sr0.14CuO4

    DEFF Research Database (Denmark)

    Mason, T.E.; Aeppli, G.; Hayden, S.M.

    1993-01-01

    We present magnetic neutron scattering and specific heat data on the high-T(c) superconductor La1.86Sr0.14CuO4. Even when the samples are superconducting and the magnetic response, chi'', is suppressed, there are excitations with energies well below 3.5k(B)T(c). The wave-vector dependence of chi......'' is identical to that for the normal state, which implies that the low frequency excitations in our crystals are not those associated with the nodes of a clean d-wave superconductor. However, the data are consistent with gapless superconductivity induced by localized magnetic impurities, clearly observed...

  15. Analysis of an HTS coil for large scale superconducting magnetic energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Young; Lee, Se Yeon; Choi, Kyeong Dal; Park, Sang Ho; Hong, Gye Won; Kim, Sung Soo; Kim, Woo Seok [Korea Polytechnic University, Siheung (Korea, Republic of); Lee, Ji Kwang [Woosuk University, Wanju (Korea, Republic of)

    2015-06-15

    It has been well known that a toroid is the inevitable shape for a high temperature superconducting (HTS) coil as a component of a large scale superconducting magnetic energy storage system (SMES) because it is the best option to minimize a magnetic field intensity applied perpendicularly to the HTS wires. Even though a perfect toroid coil does not have a perpendicular magnetic field, for a practical toroid coil composed of many HTS pancake coils, some type of perpendicular magnetic field cannot be avoided, which is a major cause of degradation of the HTS wires. In order to suggest an optimum design solution for an HTS SMES system, we need an accurate, fast, and effective calculation for the magnetic field, mechanical stresses, and stored energy. As a calculation method for these criteria, a numerical calculation such as an finite element method (FEM) has usually been adopted. However, a 3-dimensional FEM can involve complicated calculation and can be relatively time consuming, which leads to very inefficient iterations for an optimal design process. In this paper, we suggested an intuitive and effective way to determine the maximum magnetic field intensity in the HTS coil by using an analytic and statistical calculation method. We were able to achieve a remarkable reduction of the calculation time by using this method. The calculation results using this method for sample model coils were compared with those obtained by conventional numerical method to verify the accuracy and availability of this proposed method. After the successful substitution of this calculation method for the proposed design program, a similar method of determining the maximum mechanical stress in the HTS coil will also be studied as a future work.

  16. Energy band gap and optical transition of metal ion modified double crossover DNA lattices.

    Science.gov (United States)

    Dugasani, Sreekantha Reddy; Ha, Taewoo; Gnapareddy, Bramaramba; Choi, Kyujin; Lee, Junwye; Kim, Byeonghoon; Kim, Jae Hoon; Park, Sung Ha

    2014-10-22

    We report on the energy band gap and optical transition of a series of divalent metal ion (Cu(2+), Ni(2+), Zn(2+), and Co(2+)) modified DNA (M-DNA) double crossover (DX) lattices fabricated on fused silica by the substrate-assisted growth (SAG) method. We demonstrate how the degree of coverage of the DX lattices is influenced by the DX monomer concentration and also analyze the band gaps of the M-DNA lattices. The energy band gap of the M-DNA, between the lowest unoccupied molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO), ranges from 4.67 to 4.98 eV as judged by optical transitions. Relative to the band gap of a pristine DNA molecule (4.69 eV), the band gap of the M-DNA lattices increases with metal ion doping up to a critical concentration and then decreases with further doping. Interestingly, except for the case of Ni(2+), the onset of the second absorption band shifts to a lower energy until a critical concentration and then shifts to a higher energy with further increasing the metal ion concentration, which is consistent with the evolution of electrical transport characteristics. Our results show that controllable metal ion doping is an effective method to tune the band gap energy of DNA-based nanostructures.

  17. Unusual temperature evolution of superconductivity in LiFeAs

    Energy Technology Data Exchange (ETDEWEB)

    Nag, Pranab Kumar; Schlegel, Ronny; Baumann, Danny; Grafe, Hans-Joachim; Beck, Robert [Leibniz Institute for Solid State and Materials Research Dresden, IFW Dresden (Germany); Wurmehl, Sabine [Leibniz Institute for Solid State and Materials Research Dresden, IFW Dresden (Germany); Institute for Solid State Physics, TU Dresden (Germany); Buechner, Bernd [Leibniz Institute for Solid State and Materials Research Dresden, IFW Dresden (Germany); Institute for Solid State Physics, TU Dresden (Germany); Center for Transport and Devices, TU Dresden (Germany); Hess, Christian [Leibniz Institute for Solid State and Materials Research Dresden, IFW Dresden (Germany); Center for Transport and Devices, TU Dresden (Germany)

    2016-07-01

    We have performed temperature dependent scanning tunneling spectroscopy on an impurity-free surface area of a LiFeAs single crystal. Our data reveal a highly unusual temperature evolution of superconductivity: at T{sub c}{sup *}=18 K a partial superconducting gap opens, as is evidenced by subtle, yet clear features in the tunneling spectra, i.e. particle-hole symmetric coherence peaks and dip-hump structures. At T{sub c}=16 K, these features substantiate dramatically and become characteristic of full superconductivity. Remarkably, this is accompanied by an almost jump-like increase of the gap energy at T{sub c} to about 87% of its low-temperature gap value. The energy of the dip as measured by its distance to the coherence peak remains practically constant in the whole temperature regime T ≤ T{sub c}{sup *}. We compare these findings with established experimental and theoretical results.

  18. Coordinated Control of Superconducting Fault Current Limiter and Superconducting Magnetic Energy Storage for Transient Performance Enhancement of Grid-Connected Photovoltaic Generation System

    Directory of Open Access Journals (Sweden)

    Lei Chen

    2017-01-01

    Full Text Available In regard to the rapid development of renewable energy sources, more and more photovoltaic (PV generation systems have been connected to main power networks, and it is critical to enhance their transient performance under short-circuit faults conditions. This paper proposes and studies the coordinated control of a flux-coupling-type superconducting fault current limiter (SFCL and a superconducting magnetic energy storage (SMES, to improve the fault ride through (FRT capability and smooth the power fluctuation of a grid-connected PV generation system. Theoretical analyses of the device structure, operating principle and control strategy are conducted, and a detailed simulation model of 100 kW class PV generation system is built in MATLAB/SIMULINK. During the simulations of the symmetrical and asymmetrical faults, the maximum power point tracking (MPPT control is disabled, and four different cases including without auxiliary, with SFCL, with SMES, and with SFCL-SMES, are compared. From the demonstrated results, the combination of without MPPT and with SFCL-SMES can more efficiently improve the point of common coupling (PCC voltage sag, inhibit the DC-link overvoltage and alleviate the power fluctuation. Finally, a preliminary parameter optimization method is suggested for the SFCL and the SMES, and it is helpful to promote their future application in the real PV projects.

  19. Development of an abort gap monitor for high-energy proton rings

    Energy Technology Data Exchange (ETDEWEB)

    Beche, Jean-Francois; Byrd, John; De Santis, Stefano; Denes, Peter; Placidi, Massimo; Turner, William; Zolotorev, Max

    2004-05-03

    The fill pattern in proton synchrotrons usually features an empty gap, longer than the abort kicker raise time, for machine protection. This gap is referred to as the ''abort gap'' and any particles, which may accumulate in it due to injection errors and diffusion between RF buckets, would be lost inside the ring, rather than in the beam dump, during the kicker firing. In large proton rings, due to the high energies involved, it is vital to monitor the build up of charges in the abort gap with a high sensitivity. We present a study of an abort gap monitor based on a photomultiplier with a gated microchannel plate, which would allow for detecting low charge densities by monitoring the synchrotron radiation emitted. We show results of beam test experiments at the Advanced Light Source using a Hamamatsu 5916U MCP-PMT and compare them to the specifications for the Large Hadron Collider

  20. Development of an Abort Gap Monitor for High-Energy Proton Rings

    Science.gov (United States)

    Beche, J.-F.; Byrd, J.; De Santis, S.; Denes, P.; Placidi, M.; Turner, W.; Zolotorev, M.

    2004-11-01

    The fill pattern in proton synchrotrons usually features an empty gap, longer than the abort kicker raise time, for machine protection. This gap is referred to as the "abort gap," and any particles, which may accumulate in it due to injection errors and diffusion between RF buckets, would be lost inside the ring, rather than in the beam dump, during the kicker firing. In large proton rings, due to the high energies involved, it is vital to monitor the build up of charges in the abort gap with a high sensitivity. We present a study of an abort gap monitor based on a photomultiplier with a gated microchannel plate, which would allow for detecting low charge densities by monitoring the synchrotron radiation emitted. We show results of beam test experiments at the Advanced Light Source using a Hamamatsu 5916U MCP-PMT and compare them to the specifications for the Large Hadron Collider.

  1. Development of an abort gap monitor for high-energy proton rings

    CERN Document Server

    Beche, J F; De Santis, S; Denes, P; Placidi, Massimo; Turner, W; Zolotorev, M S

    2004-01-01

    The fill pattern in proton synchrotrons usually features an empty gap, longer than the abort kicker raise time, for machine protection. This gap is referred to as the "abort gap", and any particles, which may accumulate in it due to injection errors and diffusion between RF buckets, would be lost inside the ring, rather than in the beam dump, during the kicker firing. In large proton rings, due to the high energies involved, it is vital to monitor the build up of charges in the abort gap with a high sensitivity. We present a study of an abort gap monitor based on a photomultiplier with a gated microchannel plate, which would allow for detecting low charge densities by monitoring the synchrotron radiation emitted. We show results of beam test experiments at the Advanced Light Source using a Hamamatsu 5916U MCP-PMT and compare them to the specifications for the Large Hadron Collider.

  2. Possible Nodeless Superconducting Gaps in Bi2Sr2CaCu2O8+δ and YBa2Cu3O7-x Revealed by Cross-Sectional Scanning Tunneling Spectroscopy

    Science.gov (United States)

    Ren, Ming-Qiang; Yan, Ya-Jun; Zhang, Tong; Feng, Dong-Lai

    2016-12-01

    Pairing in the cuprate high-temperature superconductors and its origin remain among the most enduring mysteries in condensed matter physics. With cross-sectional scanning tunneling microscopy/ spectroscopy, we clearly reveal the spatial-dependence or inhomogeneity of the superconducting gap structure of Bi$_2$Sr$_2$CaCu$_2$O$_{8+\\delta}$ (Bi2212) and YBa$_2$Cu$_3$O$_{7-x}$ (YBCO) along their $c$-axes on a scale shorter than the interlayer spacing. By tunneling into the (100) plane of a Bi2212 single crystal and a YBCO film, we observe both U-shaped tunneling spectra with extended flat zero-conductance bottoms, and V-shaped gap structures, in different regions of each sample. On the YBCO film, tunneling into a (110) surface only reveals a U-shaped gap without any zero-bias peak. Our analysis suggests that the U-shaped gap is likely a nodeless superconducting gap. The V-shaped gap has a very small amplitude, and is likely proximity-induced by regions having the larger U-shaped gap.

  3. Electrostatic energy harvesting device with out-of-the-plane gap closing scheme

    DEFF Research Database (Denmark)

    Wang, Fei; Hansen, Ole

    2013-01-01

    In this paper, we report on an electrostatic energy harvester with an out-of-the-plane gap closing scheme. Using advanced MEMS technology, energy harvesting devices with a four wafer stack are batch fabricated and fully packaged at wafer scale. CYTOP polymer is used both as an electret material...

  4. Electrostatic energy harvesting device with out-of-the-plane gap closing scheme

    DEFF Research Database (Denmark)

    Wang, Fei; Hansen, Ole

    2014-01-01

    In this paper, we report on an electrostatic energy harvester with an out-of-the-plane gap closing scheme. Using advanced MEMS technology, energy harvesting devices formed by a four wafer stack are batch fabricated and fully packaged at wafer scale. A spin coated CYTOP polymer is used both...

  5. Photoemission and density functional theory study of Ir(111); energy band gap mapping.

    Science.gov (United States)

    Pletikosić, I; Kralj, M; Sokčević, D; Brako, R; Lazić, P; Pervan, P

    2010-04-07

    We have performed combined angle-resolved photoemission spectroscopy (ARPES) experiments and density functional theory (DFT) calculations of the electronic structure of the Ir(111) surface, with the focus on the existence of energy band gaps. The investigation was motivated by the experimental results suggesting Ir(111) as an ideal support for the growth of weakly bonded graphene. Therefore, our prime interest was electronic structure around the [Formula: see text] symmetry point. In accordance with DFT calculations, ARPES has shown a wide energy band gap with the shape of a parallelogram centred around the [Formula: see text] point. Within the gap three surface states were identified; one just below the Fermi level and two spin-orbit split surface states at the bottom of the gap.

  6. Intrinsic superconductivity in ABA-stacked trilayer graphene

    Directory of Open Access Journals (Sweden)

    Haiwen Liu

    2012-12-01

    Full Text Available We study the phonon-mediated superconductivity in light doped ABA-stacked trilayer graphene system by means of two theoretical models. We find superconducting transition temperature TC can be greatly enlarged by tuning the Fermi energy away from neutral point. Utilizing realistic parameters, we find Tc is approximately 1 K even under weak doping condition EF = 0.1 eV. Specifically, we give out the analytical expression for superconductivity gap △ and superconducting transition temperature Tc for negative-U Hubbard model. Further, we consider the thermal fluctuation and calculate the Berezinskii-Kosterlitz-Thouless critical temperature TBKT. Besides, we consider a two-band BCS model in comparision with the negative-U Hubbard model. The results for both models are qualitatively consistent. Our study provides a promising possibility for realizing intrinsic superconductivity in multilayer graphene systems.

  7. Linear and field-independent relation between vortex core state energy and gap in Bi(2)Sr(2)CaCu(2)O(8+delta).

    Science.gov (United States)

    Hoogenboom, B W; Kadowaki, K; Revaz, B; Li, M; Renner, C; Fischer, Ø

    2001-12-24

    We present a scanning tunneling spectroscopy study on quasiparticle states in vortex cores in Bi(2)Sr(2)CaCu(2)O(8+delta). The energy of the observed vortex core states shows an approximately linear scaling with the superconducting gap in the region just outside the core. This clearly distinguishes them from conventional localized core states and is a signature of the mechanism responsible for their discrete appearance in high-temperature superconductors. The energy scaling of the vortex core states also suggests a common nature of vortex cores in Bi(2)Sr(2)CaCu(2)O(8+delta) and YBa(2)Cu(3)O(7-delta). Finally, these states do not show any dependence on the applied magnetic field between 1 and 6 T.

  8. Pressure dependence of the band-gap energy in BiTeI

    OpenAIRE

    Güler-Kılıç, Sümeyra; Kılıç, Çetin

    2016-01-01

    The evolution of the electronic structure of BiTeI, a layered semiconductor with a van der Waals gap, under compression is studied by employing semilocal and dispersion-corrected density-functional calculations. Comparative analysis of the results of these calculations shows that the band-gap energy of BiTeI decreases till it attains a minimum value of zero at a critical pressure, after which it increases again. The critical pressure corresponding to the closure of the band gap is calculated,...

  9. Superconductivity in MgB2

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In January of 2001 the superconductivity of the compound MgB2 with a critical temperature Tc of up to 39 K was discovered. This Tc is the highest in all intermetallic compound and alloy superconductors. MgB2 has a simple structure and its manufacturing capital cost is lower, therefore it could become a practical superconductor in the future. The recent progress is reviewed here which covers the progress in electronic structure, high Tc mechanism, superconducting parameters (Debye temperature, specific heat coefficient of electron, critical fields, coherent length, penetration depth, energy gap, critical current and relaxation rate of flux). Moreover the issue on power transmission is discussed.

  10. Superconductivity of small metal grains

    Institute of Scientific and Technical Information of China (English)

    ZHENG; Renrong; CHEN; Zhiqian; ZHU; Shunquan

    2005-01-01

    The formulas of the energy gap and superconducting critical temperature appropriate for systems with both odd and even number of electrons are derived; the bases of the derivations are BCS theory and energy level statistics. Numerical results qualitatively agree with the experimental phenomena. i.e., the superconductivity of small metallic grains will first enhance then decrease to zero when the grain are getting smaller and smaller. The calculations indicate that the above phenomena happen in the metallic grains belonging to Gaussian Orthogonal Ensemble (GOE) and Gaussian Unitary ensemble (GUE) with zero spin; The superconductivity of small metallic grains in Gaussian Symplectic Ensemble (GSE) will monotonically decrease to zero with the decreasing of the grain size. The analyses suggest that the superconductivity enhancements come from pairing and the balance of the strengths between spin-orbital coupling and external magnetic field. In order to take the latter into account, it is necessary to include the level statistics given by Random Matrix Theory (RMT) in describing small metallic grains.

  11. An overview of Boeing flywheel energy storage systems with high-temperature superconducting bearings

    Science.gov (United States)

    Strasik, M.; Hull, J. R.; Mittleider, J. A.; Gonder, J. F.; Johnson, P. E.; McCrary, K. E.; McIver, C. R.

    2010-03-01

    An overview summary of recent Boeing work on high-temperature superconducting (HTS) bearings is presented. A design is presented for a small flywheel energy storage system that is deployable in a field installation. The flywheel is suspended by a HTS bearing whose stator is conduction cooled by connection to a cryocooler. At full speed, the flywheel has 5 kW h of kinetic energy, and it can deliver 3 kW of three-phase 208 V power to an electrical load. The entire system, which includes a containment structure, is compatible with transportation by forklift or crane. Laboratory measurements of the bearing loss are combined with the parasitic loads to estimate the efficiency of the system. Improvements in structural composites are expected to enable the operation of flywheels with very high rim velocities. Small versions of such flywheels will be capable of very high rotational rates and will likely require the low loss inherent in HTS bearings to achieve these speeds. We present results of experiments with small-diameter rotors that use HTS bearings for levitation and rotate in vacuum at kHz rates. Bearing losses are presented as a function of rotor speed.

  12. Few-photon color imaging using energy-dispersive superconducting transition-edge sensor spectrometry

    Science.gov (United States)

    Niwa, Kazuki; Numata, Takayuki; Hattori, Kaori; Fukuda, Daiji

    2017-01-01

    Highly sensitive spectral imaging is increasingly being demanded in bioanalysis research and industry to obtain the maximum information possible from molecules of different colors. We introduce an application of the superconducting transition-edge sensor (TES) technique to highly sensitive spectral imaging. A TES is an energy-dispersive photodetector that can distinguish the wavelength of each incident photon. Its effective spectral range is from the visible to the infrared (IR), up to 2800 nm, which is beyond the capabilities of other photodetectors. TES was employed in this study in a fiber-coupled optical scanning microscopy system, and a test sample of a three-color ink pattern was observed. A red–green–blue (RGB) image and a near-IR image were successfully obtained in the few-incident-photon regime, whereas only a black and white image could be obtained using a photomultiplier tube. Spectral data were also obtained from a selected focal area out of the entire image. The results of this study show that TES is feasible for use as an energy-dispersive photon-counting detector in spectral imaging applications. PMID:28374801

  13. Few-photon color imaging using energy-dispersive superconducting transition-edge sensor spectrometry.

    Science.gov (United States)

    Niwa, Kazuki; Numata, Takayuki; Hattori, Kaori; Fukuda, Daiji

    2017-04-04

    Highly sensitive spectral imaging is increasingly being demanded in bioanalysis research and industry to obtain the maximum information possible from molecules of different colors. We introduce an application of the superconducting transition-edge sensor (TES) technique to highly sensitive spectral imaging. A TES is an energy-dispersive photodetector that can distinguish the wavelength of each incident photon. Its effective spectral range is from the visible to the infrared (IR), up to 2800 nm, which is beyond the capabilities of other photodetectors. TES was employed in this study in a fiber-coupled optical scanning microscopy system, and a test sample of a three-color ink pattern was observed. A red-green-blue (RGB) image and a near-IR image were successfully obtained in the few-incident-photon regime, whereas only a black and white image could be obtained using a photomultiplier tube. Spectral data were also obtained from a selected focal area out of the entire image. The results of this study show that TES is feasible for use as an energy-dispersive photon-counting detector in spectral imaging applications.

  14. Multi-band Eilenberger Theory of Superconductivity: Systematic Low-Energy Projection

    Science.gov (United States)

    Nagai, Yuki; Nakamura, Hiroki

    2016-07-01

    We propose the general multi-band quasiclassical Eilenberger theory of superconductivity to describe quasiparticle excitations in inhomogeneous systems. With the use of low-energy projection matrix, the M-band quasiclassical Eilenberger equations are systematically obtained from N-band Gor'kov equations. Here M is the internal degrees of freedom in the bands crossing the Fermi energy and N is the degree of freedom in a model. Our framework naturally includes inter-band off-diagonal elements of Green's functions, which have usually been neglected in previous multi-band quasiclassical frameworks. The resultant multi-band Eilenberger and Andreev equations are similar to the single-band ones, except for multi-band effects. The multi-band effects can exhibit the non-locality and the anisotropy in the mapped systems. Our framework can be applied to an arbitrary Hamiltonian (e.g., a tight-binding Hamiltonian derived by the first-principle calculation). As examples, we use our framework in various kinds of systems, such as noncentrosymmetric superconductor CePt3Si, three-orbital model for Sr2RuO4, heavy fermion CeCoIn5/YbCoIn5 superlattice, a topological superconductor with the strong spin-orbit coupling CuxBi2Se3, and a surface system on a topological insulator.

  15. Initial studies of Bremsstrahlung energy deposition in small-bore superconducting undulator structures in linac environments

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, T.; Tatchyn, R. [Stanford Univ., CA (United States)

    1995-12-31

    One of the more promising technologies for developing minimal-length insertion devices for linac-driven, single-pass Free Electron Lasers (FELs) operating in the x-ray range is based on the use of superconducting (SC) materials. In recent FEL simulations, for example, a bifilar helical SC device with a 2 cm period and 1.8 T field was found to require a 30 m saturation length for operation at 1.5{Angstrom} on a 15 GeV linac, more than 40% shorter than an alternative hybrid/permanent magnet (hybrid/PM) undulator. AT the same time, however, SC technology is known to present characteristic difficulties for insertion device design, both in engineering detail and in operation. Perhaps the most critical problem, as observed, e.g., by Madey and co-workers in their initial FEL experiments, was the frequent quenching induced by scattered electrons upstream of their (bifilar) device. Postulating that this quenching was precipitated by directly-scattered or bremsstrahlung-induced particle energy deposited into the SC material or into material contiguous with it, the importance of numerical and experimental characterizations of this phenomenon for linac-based, user-facility SC undulator design becomes evident. In this paper we discuss selected prior experimental results and report on initial EGS4 code studies of scattered and bremsstrahlung induced particle energy deposition into SC structures with geometries comparable to a small-bore bifilar helical undulator.

  16. Pressure dependence of the band-gap energy in BiTeI

    Science.gov (United States)

    Güler-Kılıç, Sümeyra; Kılıç, ćetin

    2016-10-01

    The evolution of the electronic structure of BiTeI, a layered semiconductor with a van der Waals gap, under compression is studied by employing semilocal and dispersion-corrected density-functional calculations. Comparative analysis of the results of these calculations shows that the band-gap energy of BiTeI decreases till it attains a minimum value of zero at a critical pressure, after which it increases again. The critical pressure corresponding to the closure of the band gap is calculated, at which BiTeI becomes a topological insulator. Comparison of the critical pressure to the pressure at which BiTeI undergoes a structural phase transition indicates that the closure of the band gap would not be hindered by a structural transformation. Moreover, the band-gap pressure coefficients of BiTeI are computed, and an expression of the critical pressure is devised in terms of these coefficients. Our findings indicate that the semilocal and dispersion-corrected approaches are in conflict about the compressibility of BiTeI, which result in overestimation and underestimation, respectively. Nevertheless, the effect of pressure on the atomic structure of BiTeI is found to be manifested primarily as the reduction of the width of the van der Waals gap according to both approaches, which also yield consistent predictions concerning the interlayer metallic bonding in BiTeI under compression. It is consequently shown that the calculated band-gap energies follow qualitatively and quantitatively the same trend within the two approximations employed here, and the transition to the zero-gap state occurs at the same critical width of the van der Waals gap.

  17. The Potential United Kingdom Energy Gap and Creep Life Prediction Methodologies

    Science.gov (United States)

    Evans, Mark

    2013-01-01

    The United Kingdom faces a looming energy gap with around 20 pct of its generating capacity due for closure in the next 10 to 15 years as a result of plant age and new European legislation on environmental protection and safety at work. A number of solutions exist for this problem including the use of new materials so that new plants can operate at higher temperatures, new technologies related to carbon capture and gasification, development of renewable resources, and less obviously the use of accurate models for predicting creep life. This article reviews, with illustrations, some of the more applicable and successful creep prediction methodologies used by academics and industrialists and highlights how these techniques can help alleviate the looming energy gap. The role that these approaches can play in solving the energy gap is highlighted throughout.

  18. Effect of Microstructure of TiO2 Thin Films on Optical Band Gap Energy

    Institute of Scientific and Technical Information of China (English)

    TIAN Guang-Lei; HE Hong-Bo; SHAO Jian-Da

    2005-01-01

    @@ TiO2 coatings are prepared on fused silica with conventional electron beam evaporation deposition. After annealed at different temperatures for four hours, the spectra and XRD patterns of TiO2 thin film are obtained. XRD patterns reveal that only anatase phase can be observed in TiO2 coatings regardless of the different annealing temperatures, and with the increasing annealing temperature, the grain size gradually increases. The relationship between the energy gap and microstructure of anatase is determined and discussed. The quantum confinement effect is observed that with the increasing grain size of TiO2 thin film, the band gap energy shifts from 3.4eV to 3.21 eV. Moreover, other possible influence of the TiO2 thin-film microstructure, such as surface roughness and thin film absorption, on band gap energy is also expected.

  19. Energy gap of extended states in SiC-doped graphene nanoribbon: Ab initio calculations

    Science.gov (United States)

    Liu, Xiaoshi; Wu, Yong; Li, Zhongyao; Gao, Yong

    2017-04-01

    The energy gap of extended states in zigzag graphene nanoribbons (ZGNRs) was examined on the basis of density-functional theory. In isolated ZGNRs, the energy gap is inversely proportional to the width of ribbon. It agrees well with the results from the Dirac equation in spin-unpolarized ZGNRs, although the considered ZGNRs have spin-polarized edges. However, the energy gap in SiC-doped ZGNRs cannot be modeled by effective width approximation. The doping also lifts the spin-degenerate of edge states and results in a metallic-like band structure near the Fermi level in SiC-doped ZGNRs. Our calculations may be helpful for understanding the origin of the reported single-channel ballistic transport in epitaxial graphene nanoribbons.

  20. Vacancy Induced Energy Band Gap Changes of Semiconducting Zigzag Single Walled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    DERELI, G.

    2017-08-01

    Full Text Available In this work, we have examined how the multi-vacancy defects induced in the horizontal direction change the energetics and the electronic structure of semiconducting Single-Walled Carbon Nanotubes (SWCNTs. The electronic structure of SWCNTs is computed for each deformed configuration by means of real space, Order(N Tight Binding Molecular Dynamic (O(N TBMD simulations. Energy band gap is obtained in real space through the behavior of electronic density of states (eDOS near the Fermi level. Vacancies can effectively change the energetics and hence the electronic structure of SWCNTs. In this study, we choose three different kinds of semiconducting zigzag SWCNTs and determine the band gap modifications. We have selected (12,0, (13,0 and (14,0 zigzag SWCNTs according to n (mod 3 = 0, n (mod 3 = 1 and n (mod 3 = 2 classification. (12,0 SWCNT is metallic in its pristine state. The application of vacancies opens the electronic band gap and it goes up to 0.13 eV for a di-vacancy defected tube. On the other hand (13,0 and (14,0 SWCNTs are semiconductors with energy band gap values of 0.44 eV and 0.55 eV in their pristine state, respectively. Their energy band gap values decrease to 0.07 eV and 0.09 eV when mono-vacancy defects are induced in their horizontal directions. Then the di-vacancy defects open the band gap again. So in both cases, the semiconducting-metallic ¬- semiconducting transitions occur. It is also shown that the band gap modification exhibits irreversible characteristics, which means that band gap values of the nanotubes do not reach their pristine values with increasing number of vacancies.

  1. Mind the gap. Quantifying principal-agent problems in energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-10-15

    Energy efficiency presents a unique opportunity to address three energy-related challenges in IEA member countries: energy security, climate change, and economic development. Yet an energy-efficiency gap exists between actual and optimal energy use. That is, significant cost-effective energy efficiency potential is wasted because market barriers prevent countries from achieving optimal levels. Market barriers take many forms, from inadequate access to capital, isolation from price signals, information asymmetry, and split-incentives. Though many studies have reported the existence of such market barriers, none so far have attempted to quantify the magnitude of their effect on energy use and efficiency. This publication is an unprecedented attempt to quantify the size of one of the most pervasive barriers to energy efficiency - principal-agent problems, or in common parlance, variations on the 'landlord-tenant' problem. In doing so, the book provides energy analysts and economists with unique insights into the amount of energy affected by principal-agent problems. Using an innovative methodology applied to eight case studies (covering commercial and residential sectors, and end-use appliances) from five different IEA countries, the analysis identifies over 3,800 PJ/year of affected energy use - that is, around 85% of the annual energy use of a country the size of Spain. The book builds on these findings to suggest a range of possible policy solutions that can reduce the impact of principal-agent problems and help policy makers mind the energy efficiency gap.

  2. Empirical determination of the energy band gap narrowing in highly doped n+ silicon

    Science.gov (United States)

    Yan, Di; Cuevas, Andres

    2013-07-01

    Highly doped regions in silicon devices should be analyzed using Fermi-Dirac statistics, taking into account energy band gap narrowing (BGN). An empirical expression for the BGN as a function of dopant concentration is derived here by matching the modeled and measured thermal recombination current densities J0 of a broad range of n+ dopant concentration profiles prepared by phosphorus diffusion. The analysis is repeated with Boltzmann statistics in order to determine a second empirical expression for the apparent energy band gap narrowing, which is found to be in good agreement with previous work.

  3. Optical and electronic properties of some binary semiconductors from energy gaps

    CERN Document Server

    Tripathy, Sunil K

    2015-01-01

    II-VI and III-V tetrahedral semiconductors have significant potential for novel optoelectronic applications. In the present work, some of the optical and electronic properties of these groups of semiconductors have been studied using a recently proposed empirical relationship for refractive index from energy gap. The calculated values of these properties are also compared with those calculated from some well known relationships. From an analysis of the calculated electronic polarisability of these tetrahedral binary semiconductors from different formulations, we have proposed an empirical relation for its calculation. The predicted values of electronic polarisability of these semiconductors agree fairly well with the known values over a wide range of energy gap.

  4. Color superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Wilczek, F. [Institute for Advanced Study, Princeton, NJ (United States)

    1997-09-22

    The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken.

  5. Energy-resolved detection of single infrared photons with {\\lambda} = 8 {\\mu}m using a superconducting microbolometer

    CERN Document Server

    Karasik, Boris S; Soibel, Alexander; Santavicca, Daniel F; Prober, Daniel E; Olaya, David; Gershenson, Michael E

    2012-01-01

    We report on the detection of single photons with {\\lambda} = 8 {\\mu}m using a superconducting hot-electron microbolometer. The sensing element is a titanium transition-edge sensor with a volume ~ 0.1 {\\mu}m^3 fabricated on a silicon substrate. Poisson photon counting statistics including simultaneous detection of 3 photons was observed. The width of the photon-number peaks was 0.11 eV, 70% of the photon energy, at 50-100 mK. This achieved energy resolution is the best figure reported so far for superconducting devices. Such devices can be suitable for single photon calorimetric spectroscopy throughout the mid-infrared and even the far-infrared.

  6. Strain-Induced Energy Band Gap Opening in Two-Dimensional Bilayered Silicon Film

    Science.gov (United States)

    Ji, Z.; Zhou, R.; Lew Yan Voon, L. C.; Zhuang, Y.

    2016-10-01

    This work presents a theoretical study of the structural and electronic properties of bilayered silicon film (BiSF) under in-plane biaxial strain/stress using density functional theory (DFT). Atomic structures of the two-dimensional (2-D) silicon films are optimized by using both the local-density approximation (LDA) and generalized gradient approximation (GGA). In the absence of strain/stress, five buckled hexagonal honeycomb structures of the BiSF with triangular lattice have been obtained as local energy minima, and their structural stability has been verified. These structures present a Dirac-cone shaped energy band diagram with zero energy band gaps. Applying a tensile biaxial strain leads to a reduction of the buckling height. Atomically flat structures with zero buckling height have been observed when the AA-stacking structures are under a critical biaxial strain. Increase of the strain between 10.7% and 15.4% results in a band-gap opening with a maximum energy band gap opening of ˜0.17 eV, obtained when a 14.3% strain is applied. Energy band diagrams, electron transmission efficiency, and the charge transport property are calculated. Additionally, an asymmetric energetically favorable atomic structure of BiSF shows a non-zero band gap in the absence of strain/stress and a maximum band gap of 0.15 eV as a -1.71% compressive strain is applied. Both tensile and compressive strain/stress can lead to a band gap opening in the asymmetric structure.

  7. Static synchronous compensator with superconducting magnetic energy storage for high power utility applications

    Energy Technology Data Exchange (ETDEWEB)

    Molina, Marcelo G.; Mercado, Pedro E. [CONICET, Instituto de Energia Electrica, Universidad Nacional de San Juan (Argentina); Watanabe, Edson H. [COPPE, Grupo de Eletronica de Potencia, Universidade Federal do Rio de Janeiro (Brazil)

    2007-08-15

    Power systems security in the case of contingencies is ensured by maintaining adequate 'short-term generation reserve'. This reserve must be appropriately activated by means of the primary frequency control (PFC). Because the generation is an electro-mechanical process, the primary control reserve controllability is not as fast as required, especially by modern power systems. Since the new improvements achieved on the conventional control methods have not been enough to satisfy the high requirements established, the necessity of enhancing the performance of the PFC has arisen. At present, the new energy storage systems (ESS) are a feasible alternative to store excess energy for substituting for the primary control reserve. In this way, it is possible to combine this new ESS with power converter based flexible ac transmission systems (FACTS). This allows an effective exchange of active power with the electric grid and, thus, enhances the PFC. This paper presents an improved PFC scheme incorporating a static synchronous compensator (STATCOM) coupled with a superconducting magnetic energy storage (SMES) device. A detailed full model and a control algorithm based on a decoupled current control strategy of the enhanced compensator are proposed. The integrated STATCOM/SMES controller topology includes three level, multi-pulse, voltage source inverters (VSI) with phase control and incorporates a two quadrant, three level, dc-dc chopper as the interface between the STATCOM and the SMES coil. A novel three level control scheme is proposed by using concepts of instantaneous power in the synchronous rotating d-q reference frame. The dynamic performance of the presented control algorithms is evaluated through digital simulation performed by using SimPowerSystems of SIMULINK/MATLAB {sup trademark}, and technical analysis is performed to obtain conclusions about the benefits of using SMES devices in the PFC of the electric system. Presently, a laboratory scale

  8. Energy Gap in the Aetiology of Body Weight Gain and Obesity: A Challenging Concept with a Complex Evaluation and Pitfalls

    Directory of Open Access Journals (Sweden)

    Yves Schutz

    2014-01-01

    Full Text Available The concept of energy gap(s is useful for understanding the consequence of a small daily, weekly, or monthly positive energy balance and the inconspicuous shift in weight gain ultimately leading to overweight and obesity. Energy gap is a dynamic concept: an initial positive energy gap incurred via an increase in energy intake (or a decrease in physical activity is not constant, may fade out with time if the initial conditions are maintained, and depends on the ‘efficiency' with which the readjustment of the energy imbalance gap occurs with time. The metabolic response to an energy imbalance gap and the magnitude of the energy gap(s can be estimated by at least two methods, i.e. i assessment by longitudinal overfeeding studies, imposing (by design an initial positive energy imbalance gap; ii retrospective assessment based on epidemiological surveys, whereby the accumulated endogenous energy storage per unit of time is calculated from the change in body weight and body composition. In order to illustrate the difficulty of accurately assessing an energy gap we have used, as an illustrative example, a recent epidemiological study which tracked changes in total energy intake (estimated by gross food availability and body weight over 3 decades in the US, combined with total energy expenditure prediction from body weight using doubly labelled water data. At the population level, the study attempted to assess the cause of the energy gap purported to be entirely due to increased food intake. Based on an estimate of change in energy intake judged to be more reliable (i.e. in the same study population and together with calculations of simple energetic indices, our analysis suggests that conclusions about the fundamental causes of obesity development in a population (excess intake vs. low physical activity or both is clouded by a high level of uncertainty.

  9. Field Dependence of π-Band Superconducting Gap in MgB2 Thin Films from Point-Contact Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    HUANG Yan; XI Xiao-Xing; WANG Yong-Lei; SHAN Lei; JIA Ying; YANG Huan; WEN Hai-Hu; ZHUANG Cheng-Gang; LI Qi; CUI Yi

    2008-01-01

    We present the results of point-contact spectroscopy measurements on high-quality epitaxial MgB2 thin films with injected current along the c-axis. The temperature and field dependences of л-band properties with the field parallel to (H‖) or perpendicular to (H┴ ) the c-axis are investigated in detail. When a magnetic field is applied, either parallel or perpendicular to the c-axis, the density of the quasiparticle state (DOS) of the л-band proliferates quickly with increasing field, while the gap amplitude of the л-band decreases slowly, which is different from the recent theoretical calculations, showing a field dependent competition between the interband scattering and the pair-breaking effects.

  10. Edge multi-energy soft x-ray diagnostic in Experimental Advanced Superconducting Tokamak

    Science.gov (United States)

    Li, Y. L.; Xu, G. S.; Tritz, K.; Zhu, Y. B.; Wan, B. N.; Lan, H.; Liu, Y. L.; Wei, J.; Zhang, W.; Hu, G. H.; Wang, H. Q.; Duan, Y. M.; Zhao, J. L.; Wang, L.; Liu, S. C.; Ye, Y.; Li, J.; Lin, X.; Li, X. L.

    2015-12-01

    A multi-energy soft x-ray (ME-SXR) diagnostic has been built for electron temperature profile in the edge plasma region in Experimental Advanced Superconducting Tokamak (EAST) after two rounds of campaigns. Originally, five preamplifiers were mounted inside the EAST vacuum vessel chamber attached to five vertically stacked compact diode arrays. A custom mechanical structure was designed to protect the detectors and electronics under constraints of the tangential field of view for plasma edge and the allocation of space. In the next experiment, the mechanical structure was redesigned with a barrel structure to absolutely isolate it from the vacuum vessel. Multiple shielding structures were mounted at the pinhole head to protect the metal foils from lithium coating. The pre-amplifiers were moved to the outside of the vacuum chamber to avoid introducing interference. Twisted copper cooling tube was embedded into the back-shell near the diode to limit the temperature of the preamplifiers and diode arrays during vacuum vessel baking when the temperature reached 150 °C. Electron temperature profiles were reconstructed from ME-SXR measurements using neural networks.

  11. Edge multi-energy soft x-ray diagnostic in Experimental Advanced Superconducting Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y. L.; Xu, G. S.; Wan, B. N.; Lan, H.; Liu, Y. L.; Wei, J.; Zhang, W.; Hu, G. H.; Wang, H. Q.; Duan, Y. M.; Zhao, J. L.; Wang, L.; Liu, S. C.; Ye, Y.; Li, J.; Lin, X.; Li, X. L. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Tritz, K. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Zhu, Y. B. [Department of Physics and Astronomy, University of California, Irvine, California 92697-4575 (United States)

    2015-12-15

    A multi-energy soft x-ray (ME-SXR) diagnostic has been built for electron temperature profile in the edge plasma region in Experimental Advanced Superconducting Tokamak (EAST) after two rounds of campaigns. Originally, five preamplifiers were mounted inside the EAST vacuum vessel chamber attached to five vertically stacked compact diode arrays. A custom mechanical structure was designed to protect the detectors and electronics under constraints of the tangential field of view for plasma edge and the allocation of space. In the next experiment, the mechanical structure was redesigned with a barrel structure to absolutely isolate it from the vacuum vessel. Multiple shielding structures were mounted at the pinhole head to protect the metal foils from lithium coating. The pre-amplifiers were moved to the outside of the vacuum chamber to avoid introducing interference. Twisted copper cooling tube was embedded into the back-shell near the diode to limit the temperature of the preamplifiers and diode arrays during vacuum vessel baking when the temperature reached 150 °C. Electron temperature profiles were reconstructed from ME-SXR measurements using neural networks.

  12. Mechanism Analysis and Experimental Validation of Employing Superconducting Magnetic Energy Storage to Enhance Power System Stability

    Directory of Open Access Journals (Sweden)

    Xiaohan Shi

    2015-01-01

    Full Text Available This paper investigates the mechanism analysis and the experimental validation of employing superconducting magnetic energy storage (SMES to enhance power system stability. The models of the SMES device and the single-machine infinite-bus (SMIB system with SMES are deduced. Based on the model of the SMIB system with SMES, the action mechanism of SMES on a generator is analyzed. The analysis takes the impact of SMES location and the system operating point into consideration, as well. Based on the mechanism analysis, the P-controller and Q-controller are designed utilizing the phase compensation method to improve the damping of the SMIB system. The influence of factors, such as SMES location, transmission system reactance, the dynamic characteristics of SMES and the system operating point, on the damping improvement of SMES, is investigated through root locus analysis. The simulation results of the SMIB test system verify the analysis conclusions and controller design method. The laboratory results of the 150-kJ/100-kW high-temperature SMES (HT-SMES device validate that the SMES device can effectively enhance the damping, as well as the transient stability of the power system.

  13. Energy losses in mixed matrix superconducting wires under fast pulsed conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wollan, J.J.

    1976-08-17

    Energy losses have been measured on a set of mixed matrix (CuNi, Cu, NbTi) superconducting wires at B's up to 1.5 x 10/sup 7/ G/s. The losses have been measured as a function of wire diameter, twist pitch, maximum applied field, and B. Both static and dynamic losses were measured for a field applied perpendicularly to the wire axis. The dynamic losses were measured by slowly applying an external field to a sample and then causing the field to decay exponentially in roughly 1 ms to 10 ms. Under low B (9 kG) and B (10/sup 6/ G/s) conditions the hysteretic loss dominated. At high B (21 kG) and B (1.5 x 10/sup 7/ G/s) the matrix losses became dominant. The systematic variation of the losses with the mentioned parameters will be presented and will be compared to theoretical predictions.

  14. Cryogenic Tests of 30 m Flexible Hybrid Energy Transfer Line with Liquid Hydrogen and Superconducting MgB2 Cable

    Science.gov (United States)

    Vysotsky, V. S.; Antyukhov, I. V.; Firsov, V. P.; Blagov, E. V.; Kostyuk, V. V.; Nosov, A. A.; Fetisov, S. S.; Zanegin, S. Yu.; Rachuk, V. S.; Katorgin, B. I.

    Recently we reported about first in the world test of 10 m hybrid energy transfer line with liquid hydrogen and MgB2 superconducting cable. In this paper we present the new development of our second hybrid energy transfer line with 30 m length. The flexible 30 m hydrogen cryostat has three sections with different types of thermal insulation in each section: simple vacuum superinsulation, vacuum superinsulation with liquid nitrogen shield and active evaporating cryostatting (AEC) system. We performed thermo-hydraulic tests of the cryostat to compare three thermo-insulating methods. The tests were performed at temperatures from 20 to 26 K, hydrogen flow from 100 to 450 g/s and pressure from 0.25 to 0.5 MPa. It was found that AEC thermal insulation practically eliminated completely heat transfer from room temperature to liquid hydrogen in the 10 m section. AEC thermal insulation method can be used for long superconducting power cables. High voltage current leads were developed as well. The current leads and superconducting MgB2 cable have been passed high voltage DC test up to 50 kV DC. Critical current of the cable at ∼21 K was ∼3500 A. The 30 m hybrid energy system developed is able to deliver up to 135 MW of chemical and electrical power in total.

  15. Superconductivity applications for infrared and microwave devices; Proceedings of the Meeting, Orlando, FL, Apr. 19, 20, 1990

    Science.gov (United States)

    Bhasin, Kul B. (Editor); Heinen, Vernon O. (Editor)

    1990-01-01

    Various papers on superconductivity applications for IR and microwave devices are presented. The individual topics addressed include: pulsed laser deposition of Tl-Ca-Ba-Cu-O films, patterning of high-Tc superconducting thin films on Si substrates, IR spectra and the energy gap in thin film YBa2Cu3O(7-delta), high-temperature superconducting thin film microwave circuits, novel filter implementation utilizing HTS materials, high-temperature superconductor antenna investigations, high-Tc superconducting IR detectors, high-Tc superconducting IR detectors from Y-Ba-Cu-O thin films, Y-Ba-Cu0-O thin films as high-speed IR detectors, fabrication of a high-Tc superconducting bolometer, transition-edge microbolometer, photoresponse of YBa2Cu3O(7-delta) granular and epitaxial superconducting thin films, fast IR response of YBCO thin films, kinetic inductance effects in high-Tc microstrip circuits at microwave frequencies.

  16. The Convergence Analysis on the Economic Growth and Energy Intensity Gap between Regional Sectors%The Convergence Analysis on the Economic Growth and Energy Intensity Gap between Regional Sectors

    Institute of Scientific and Technical Information of China (English)

    Qi Shaozhou; Li Kai

    2011-01-01

    In this paper, the authors have analyzed the relationship between energy intensity gap and GDP per worker gap of China's western and eastern provinces over the period 1997 2006. Using panel data model with lag adjustment, taking the above provinces and six industrial sectors (agriculture, forestry, animal husbandry, and fisheries, industry, construction industry, transport, storage and post & telecommunications, wholesale and retail trades & catering industry, and other sectors of tertiary industry.) as the investigated subjects, the authors have conducted empirical study on the convergence of GDP per worker gap and the convergence of energy intensity gap with respect to the variation of GDP per worker gap, and have concluded that: First, the GDP per worker gap of the six industrial sectors and provinces are convergent, and of this, the convergence rate of GDP per worker gap of Construction Industry is the fastest, while that of Industry is the slowest. Second, the overall energy intensity gap between eastern and western provinces is convergent, that is, with the narrowing of GDP per worker gap between eastern and western provinces, the energy intensity gap converges, but its convergence rate is slower than that of GDP per worker gap. Third, energy intensity gap between various industrial sectors of the east and the west is either convergent or divergent, and there are differences. The energy intensity gap of agriculture, forestry, animal husbandry, and fisheries, industry, and construction industry is convergent, while that of the other three industrial sectors is divergent. Fourth, the convergence of the overall energy intensity of the western provinces is not in conformity with the convergence of the various industrial sectors, and there are significant differences, indicating that the western provinces and autonomous regions should take measures to more effectively improve their overall energy utilization efficiency at the industrial sector level.

  17. Bias dependence of the response of superconducting tunnel junctions used as photon detectors

    CERN Document Server

    Poelaert, A; Peacock, A; Kozorezov, A; Wigmore, J K

    2000-01-01

    In the last decade, several research groups have developed superconducting tunnel junctions (STJ) for photon detection in astronomy. Despite extensive studies, the behavior of multi-layered devices, subject to the superconducting proximity effect (proximized devices), has remained difficult to model. Recently, a new model has been presented, leading to a more realistic approach for the photon detection within an STJ. This model is based on the existence of local traps in the superconducting electrodes of the STJ. In this paper, we show that the new model is successful in predicting the bias dependence of the response of an STJ. The bias dependence also demonstrates that the quasiparticles, i.e. the charge carriers created as a result of the photon absorption process, cannot relax down to the superconducting energy gap. This result is important, since most theoretical developments to date (implicitly) assume that quasiparticle relax to the gap energy. crystal-structure; energy-levels; tantalum-; traps cooper-p...

  18. Technical Barriers, Gaps, and Opportunities Related to Home Energy Upgrade Market Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, M. V. A.

    2011-11-01

    This report outlines the technical barriers, gaps, and opportunities that arise in executing home energy upgrade market delivery approaches, as identified through research conducted by the U.S. Department of Energy's Building America program. The objective of this report is to outline the technical1 barriers, gaps, and opportunities that arise in executing home energy upgrade market delivery approaches, as identified through research conducted by the U.S. Department of Energy's (DOE) Building America program. This information will be used to provide guidance for new research necessary to enable the success of the approaches. Investigation for this report was conducted via publications related to home energy upgrade market delivery approaches, and a series of interviews with subject matter experts (contractors, consultants, program managers, manufacturers, trade organization representatives, and real estate agents). These experts specified technical barriers and gaps, and offered suggestions for how the technical community might address them. The potential benefits of home energy upgrades are many and varied: reduced energy use and costs; improved comfort, durability, and safety; increased property value; and job creation. Nevertheless, home energy upgrades do not comprise a large part of the overall home improvement market. Residential energy efficiency is the most complex climate intervention option to deliver because the market failures are many and transaction costs are high (Climate Change Capital 2009). The key reasons that energy efficiency investment is not being delivered are: (1) The opportunity is highly fragmented; and (2) The energy efficiency assets are nonstatus, low-visibility investments that are not properly valued. There are significant barriers to mobilizing the investment in home energy upgrades, including the 'hassle factor' (the time and effort required to identify and secure improvement works), access to financing, and the

  19. Nanoscale mapping of optical band gaps using monochromated electron energy loss spectroscopy

    Science.gov (United States)

    Zhan, W.; Granerød, C. S.; Venkatachalapathy, V.; Johansen, K. M. H.; Jensen, I. J. T.; Kuznetsov, A. Yu; Prytz, Ø.

    2017-03-01

    Using monochromated electron energy loss spectroscopy in a probe-corrected scanning transmission electron microscope we demonstrate band gap mapping in ZnO/ZnCdO thin films with a spatial resolution below 10 nm and spectral precision of 20 meV.

  20. Experimental Observation of Non-'S-Wave' Superconducting Behavior in Bulk Superconducting Tunneling Junctions of Yba2Cu3O7-δ

    Directory of Open Access Journals (Sweden)

    Leandro Jose Guerra

    1998-06-01

    Full Text Available Evidence of non-s-wave superconductivity from normal tunneling experiments in bulk tunneling junctions of YBa2Cu3O7-δ is presented. The I-V and dI/dV characteristics of bulk superconducting tunneling junctions of YBa2Cu3O7-δ have been measured at 77.0K and clear deviation from s-wave superconducting behavior has been observed. The result agrees with d-wave symmetry, and interpreting the data in this way, the magnitude of the superconducting energy gap, 2Δ, is found to be (0.038 ± 0.002 eV. Comparing this energy gap with Tc (2Δ/kB Tc = 5.735, indicates that these high-Tc superconductors are strongly correlated materials, which in contrast with BCS-superconductors are believed to be weakly correlated.

  1. Optical and electrical energy gaps of the n-type impure silicon at 300 K

    Science.gov (United States)

    Van Cong, H.; Brunet, S.; Charar, S.; Birman, J. L.; Averous, M.

    1983-02-01

    The band-gap narrowing Δ Eg, opt and Δ Eg, elec (or Δ Eg, eff ) for optical and electrical energy gaps of the n-type impure silicon at 300 K, are investigated based on simplified models of heavily doped semiconductors. It is suggested that, for 4 × 10 19cm-3 ⪕ n 0 ⪕ 3 × 10 20cm-3, ΔE g, elec (or ΔE g, eff) is significantly larger than Δ Eg, opt , in good agreement with observed results. This difference is caused especially by the effect of the polaron.

  2. Higgsless superconductivity from topological defects in compact BF terms

    Directory of Open Access Journals (Sweden)

    M. Cristina Diamantini

    2015-02-01

    Full Text Available We present a new Higgsless model of superconductivity, inspired from anyon superconductivity but P- and T-invariant and generalisable to any dimension. While the original anyon superconductivity mechanism was based on incompressible quantum Hall fluids as average field states, our mechanism involves topological insulators as average field states. In D space dimensions it involves a (D−1-form fictitious pseudovector gauge field which originates from the condensation of topological defects in compact low-energy effective BF theories. In the average field approximation, the corresponding uniform emergent charge creates a gap for the (D−2-dimensional branes via the Magnus force, the dual of the Lorentz force. One particular combination of intrinsic and emergent charge fluctuations that leaves the total charge distribution invariant constitutes an isolated gapless mode leading to superfluidity. The remaining massive modes organise themselves into a D-dimensional charged, massive vector. There is no massive Higgs scalar as there is no local order parameter. When electromagnetism is switched on, the photon acquires mass by the topological BF mechanism. Although the charge of the gapless mode (2 and the topological order (4 are the same as those of the standard Higgs model, the two models of superconductivity are clearly different since the origins of the gap, reflected in the high-energy sectors are totally different. In 2D this type of superconductivity is explicitly realised as global superconductivity in Josephson junction arrays. In 3D this model predicts a possible phase transition from topological insulators to Higgsless superconductors.

  3. Higgsless superconductivity from topological defects in compact BF terms

    Science.gov (United States)

    Diamantini, M. Cristina; Trugenberger, Carlo A.

    2015-02-01

    We present a new Higgsless model of superconductivity, inspired from anyon superconductivity but P- and T-invariant and generalisable to any dimension. While the original anyon superconductivity mechanism was based on incompressible quantum Hall fluids as average field states, our mechanism involves topological insulators as average field states. In D space dimensions it involves a (D - 1)-form fictitious pseudovector gauge field which originates from the condensation of topological defects in compact low-energy effective BF theories. In the average field approximation, the corresponding uniform emergent charge creates a gap for the (D - 2)-dimensional branes via the Magnus force, the dual of the Lorentz force. One particular combination of intrinsic and emergent charge fluctuations that leaves the total charge distribution invariant constitutes an isolated gapless mode leading to superfluidity. The remaining massive modes organise themselves into a D-dimensional charged, massive vector. There is no massive Higgs scalar as there is no local order parameter. When electromagnetism is switched on, the photon acquires mass by the topological BF mechanism. Although the charge of the gapless mode (2) and the topological order (4) are the same as those of the standard Higgs model, the two models of superconductivity are clearly different since the origins of the gap, reflected in the high-energy sectors are totally different. In 2D this type of superconductivity is explicitly realised as global superconductivity in Josephson junction arrays. In 3D this model predicts a possible phase transition from topological insulators to Higgsless superconductors.

  4. GAPS - Dark matter search with low-energy cosmic-ray antideuterons and antiprotons

    CERN Document Server

    von Doetinchem, P; Boggs, S; Fuke, H; Hailey, C J; Mognet, S I; Ong, R A; Perez, K; Zweerink, J

    2015-01-01

    The GAPS experiment is foreseen to carry out a dark matter search by measuring low-energy cosmic-ray antideuterons and antiprotons with a novel detection approach. It will provide a new avenue to access a wide range of different dark matter models and masses from about 10GeV to 1TeV. The theoretically predicted antideuteron flux resulting from secondary interactions of primary cosmic rays is very low. Well-motivated theories beyond the Standard Model contain viable dark matter candidates, which could lead to a significant enhancement of the antideuteron flux due to annihilation or decay of dark matter particles. This flux contribution is believed to be especially large at low energies, which leads to a high discovery potential for GAPS. The GAPS low-energy antiproton search will provide some of the most stringent constraints on ~30GeV dark matter, will provide the best limits on primordial black hole evaporation on galactic length scales, and explore new discovery space in cosmic-ray physics. GAPS is designed...

  5. On the ``massless gap`` adjustment of detected energy for passive material in front of a calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Trost, H.J.

    1992-01-31

    I have designed a correction scheme for energy losses in passive material in front of a calorimeter based on the ``massless gap`` idea. I use a flexible geometry model of a calorimeter design for SDC outside of a solenoidal coil made of aluminium cylinders of adjustable thickness. The signal from the first radiation length of active calorimetry is scaled dependent on the incoming and observed energies of the shower. A reasonable recovery of the resolution of an unobstructed calorimeter is achieved using correction factors that depend only upon the total thickness of passive material. Thus a useful correction may be built into the hardware by increasing the amount of scintillator in the first radiation length of the active calorimeter. The distribution of correction factors determined event-by-event indicate that an additional dependence on the observed signal in the massless gap and total incident energy is clearly present.

  6. Band gap energy and optical transitions in polyenes formed by thermal decomposition of polyvinyl alcohol

    Science.gov (United States)

    Kulak, A. I.; Bondarava, G. V.; Shchurevich, O. A.

    2013-07-01

    The band gap of the ensemble of oligoene clusters formed by thermocatalytic decomposition of polyvinyl alcohol is parametrized using optical absorption spectra. A band gap energy of E gm =1.53 ± 0.02 eV at the end of an infinite polyene chain is found by extrapolating the energies of π → π* transitions in clusters with a number of double bonds varying from 4 to 12. This value is close to the band gap of trans-polyacetylene and the lower bound for the Tauc energy E gT =1.50 eV, which characterizes the minimum interband transition energy. E gT is essentially independent of the concentration of oligoene clusters, which is determined by the concentration of the AlCl3 thermal decomposition catalyst. The Urbach energy determined from the long wavelength edge of the spectrum falls from 2.21 to 0.66 eV as the AlCl3 concentration is raised from 11.1 to 41.7 mmol per mol of polyvinyl alcohol structural units.

  7. Incoherent ellipsometry below energy gap of TlInS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Yonggu [Department of Physics and Electronics, Graduate School of Engineering, Osaka Prefecture University, Gakuen-cho 1-1, Sakai, Osaka 599-8531 (Japan)]. E-mail: shim@pe.osakafu-u.ac.jp; Okada, Wataru [Department of Physics and Electronics, Graduate School of Engineering, Osaka Prefecture University, Gakuen-cho 1-1, Sakai, Osaka 599-8531 (Japan); Mamedov, Nazim [Institute of Physics, National Academy of Sciences of Azerbaijan, Javid ave. 33, Baku, AZ-1143 (Azerbaijan)

    2006-06-19

    The layered material TlInS{sub 2} was studied by spectroscopic phase modulated ellipsometry in the energy range 0.75-2.00 eV at room temperature. By using an incoherent reflection model and assuming that optic axis (c*) of TlInS{sub 2} is normal to the layer plane, the refractive indices in E // c* and E -perpendicular c* orientations of the electrical vector, E , of the incident light were obtained for a region of photon energies below the energy gap of this material. A remarkable increase of the birefringence at photon energies approaching energy gap (2.4 eV) was observed to be a good illustration of the fact that band gap exciton transitions in TlInS{sub 2} at room temperature are allowed in E // c* and forbidden in E -perpendicular c* orientation, respectively. It is shown that biaxial effects in TlInS{sub 2} are small and sample-dependent.

  8. The crystallography of color superconductivity

    CERN Document Server

    Bowers, J A; Bowers, Jeffrey A.; Rajagopal, Krishna

    2003-01-01

    We describe the crystalline phase of color superconducting quark matter. This phase may occur in quark matter at densities relevant for compact star physics, with possible implications for glitch phenomena in pulsars. We use a Ginzburg-Landau approach to determine that the crystal has a face-centered-cubic (FCC) structure. Moreover, our results indicate that the phase is robust, with gaps, critical temperature, and free energy comparable to those of the color-flavor-locked (CFL) phase. Our calculations also predict ``crystalline superfluidity'' in ultracold gases of fermionic atoms.

  9. Importance of the Kinetic Energy Density for Band Gap Calculations in Solids with Density Functional Theory.

    Science.gov (United States)

    Tran, Fabien; Blaha, Peter

    2017-05-04

    Recently, exchange-correlation potentials in density functional theory were developed with the goal of providing improved band gaps in solids. Among them, the semilocal potentials are particularly interesting for large systems since they lead to calculations that are much faster than with hybrid functionals or methods like GW. We present an exhaustive comparison of semilocal exchange-correlation potentials for band gap calculations on a large test set of solids, and particular attention is paid to the potential HLE16 proposed by Verma and Truhlar. It is shown that the most accurate potential is the modified Becke-Johnson potential, which, most noticeably, is much more accurate than all other semilocal potentials for strongly correlated systems. This can be attributed to its additional dependence on the kinetic energy density. It is also shown that the modified Becke-Johnson potential is at least as accurate as the hybrid functionals and more reliable for solids with large band gaps.

  10. Energy gap in tunneling spectroscopy: effect of the chemical potential shift

    Science.gov (United States)

    Fedotov, N. I.; Zaitsev-Zotov, S. V.

    2016-12-01

    We study the effect of a shift of the chemical potential level on the tunneling conductance spectra. In the systems with gapped energy spectra, significant chemical-potential dependent distortions of the differential tunneling conductance curves, dI/dV, arise in the gap region. An expression is derived for the correction of the dI/dV, which in a number of cases was found to be large. The sign of the correction depends on the chemical potential level position with respect to the gap. The correction of the dI/dV associated with the chemical potential shift has a nearly linear dependence on the tip-sample separation z and vanishes at z → 0.

  11. Intelligently controlled superconducting magnetic energy storage for improved load frequency control

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, S.J.; Mufti, M.D.; Lone, S.A. [National Inst. of Technology, Kazratbal, Kashmir (India). Dept. of Electrical Engineering; Mushtaq, I. [ALSTOM Projects India Ltd., Maharashtra (India)

    2009-07-01

    Small load perturbations disturb the normal operation of a power system. Whenever there is a change in customer load demand, control engineers are faced with the problem of continuous electromechanical oscillations to which the tie-lines are subjected. This paper proposed a method to solve the load frequency control (LFC) problem in multi-area power systems with steam reheat constraint and governor dead band nonlinearity. The approach consisted of a nonlinear neural adaptive predictive control for active modulation of a superconducting magnetic energy storage system (SMES) equipped with an insulated gate bipolar transistor (IGBT) converter. The SMES is a fast acting device that can absorb the oscillations and help reduce the frequency and tie-power deviations. A two-layer nonlinear network with tapped delay line (TDL) inputs was used for online nonlinear identification of each control area of the power system. A one-step ahead prediction of the new area control error (NACE) was then used to generate an optimal power command for SMES. The NACE was a newly introduced variable in this paper. It consisted of area control error (ACE), a term proportional to derivative of ACE and a term proportional to SMES coil current deviation. The resulting control signal had an anticipatory character and met the control objectives. The power conditioning system (PCS) for the SMES included an IGBT-based voltage source converter (VSC) and a two-quadrant DC chopper. This paper presented simulation results for various components of the hybrid system. The S-function code in MATLAB was used to build 2 special blocks, one for the SMES unit and its PCS and the other for adaptive neural identification, prediction and control. These blocks were used together with other standard blocks in SIMULINK to demonstrate the effectiveness of the proposed scheme. 23 refs., 21 figs.

  12. Gaps in tools assessing the energy implications of renovation versus rebuilding decisions

    DEFF Research Database (Denmark)

    Goldstein, Benjamin Paul; Herbøl, Mads; Meza, Maria Josefina Figueroa

    2013-01-01

    The state of building stocks changes over time. Owners and municipalities face the choice to renovate or rebuild buildings to improve energy efficiency. This review addresses how current sustainability assessment tools support these decisions. It finds that advanced tools are better tailored...... to evaluate project level energy-related decisions than at larger scales. Information gaps identified within assessment tools lead to uncertainty for decision makers about which option improves energy efficiency. In the case of a number of large-scale EU building renovating/renewing projects these tools have...

  13. Interfacial superconductivity in a bi-collinear antiferromagnetically ordered FeTe monolayer on a topological insulator

    DEFF Research Database (Denmark)

    Manna, S; Kamlapure, A; Cornils, L;

    2017-01-01

    on bulk topological insulators. Surprisingly, we find an energy gap at the Fermi level, indicating superconducting correlations up to Tc∼6 K for one unit cell FeTe grown on Bi2Te3, in contrast to the non-superconducting bulk FeTe. The gap spatially coexists with bi-collinear AFM order. This finding opens...... perspectives for theoretical studies of competing orders in Fe-based superconductors and for experimental investigations of exotic phases in superconducting layers on topological insulators....

  14. LHC Abort Gap Monitoring and Cleaning

    CERN Document Server

    Meddahi, M; Boccardi, A; Butterworth, A; Fisher, A S; Gianfelice-Wendt, E; Goddard, B; Hemelsoet, G H; Höfle, W; Jacquet, D; Jaussi, M; Kain, V; Lefevre, T; Shaposhnikova, E; Uythoven, J; Valuch, D

    2010-01-01

    Unbunched beam is a potentially serious issue in the LHC as it may quench the superconducting magnets during a beam abort. Unbunched particles, either not captured by the RF system at injection or leaking out of the RF bucket, will be removed by using the existing damper kickers to excite resonantly the particles in the abort gap. Following beam simulations, a strategy for cleaning the abort gap at different energies was proposed. The plans for the commissioning of the beam abort gap cleaning are described and first results from the beam commissioning are presented.

  15. Possible explanations for the gap between calculated and measured energy consumption of new houses

    DEFF Research Database (Denmark)

    Kragh, Jesper; Rose, Jørgen; Knudsen, Henrik N.

    2017-01-01

    ’s “careless” energy behavior. However, this may not be the full explanation and there may be other reasons for the difference. Or more specifically: Does the theoretical calculated energy demand, based on standard assumptions and without taking into account the effect of variations in e.g. hot water...... based on standard assumptions and the real-life registered measured energy consumption for new houses. It includes an evaluation of the possible impact on the energy demand caused by deviations from the standard assumptions for a series of parameters like indoor temperature, hot water consumption...... at regular intervals state that new houses do not perform as expected with regard to energy consumption based on a simple comparison to the building class (energy frame). The gap is sometimes explained by a higher indoor temperature than used in the standard calculation or more generally by resident...

  16. Tuning the energy gap of bilayer α-graphyne by applying strain and electric field

    Science.gov (United States)

    Yang, Hang; Wu, Wen-Zhi; Jin, Yu; Wan-Lin, Guo

    2016-02-01

    Our density functional theory calculations show that the energy gap of bilayer α-graphyne can be modulated by a vertically applied electric field and interlayer strain. Like bilayer graphene, the bilayer α-graphyne has electronic properties that are hardly changed under purely mechanical strain, while an external electric field can open the gap up to 120 meV. It is of special interest that compressive strain can further enlarge the field induced gap up to 160 meV, while tensile strain reduces the gap. We attribute the gap variation to the novel interlayer charge redistribution between bilayer α-graphynes. These findings shed light on the modulation of Dirac cone structures and potential applications of graphyne in mechanical-electric devices. Project supported by the National Key Basic Research Program of China (Grant Nos. 2013CB932604 and 2012CB933403), the National Natural Science Foundation of China (Grant Nos. 51472117 and 51535005), the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures, China (Grant No. 0414K01), the Nanjing University of Aeronautics and Astronautics (NUAA) Fundamental Research Funds, China (Grant No. NP2015203), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

  17. The calculation of the optical gap energy of ZnXO (X = Bi, Sn and Fe

    Directory of Open Access Journals (Sweden)

    Benramache Said

    2016-01-01

    Full Text Available In this paper, a new mathematical model has been developed to calculate the optical properties of nano materials a function of their size and structure. ZnO has good characterizatics in optical, electrical, and structural crystallisation; We will demonstrate that the direct optical gap energy of ZnO films grown by US and SP spray deposition can be calculated by investigating the correlation between solution molarity, doping levels of doped films and their Urbache energy. A simulation model has been developed to calculate the optical band gap energy of undoped and Bi, Sn and Fe doped ZnO thin films. The measurements by thus proposed models are in agreement with experimental data, with high correlation coefficients in the range 0.94-0.99. The maximum calculated enhancement of the optical gap energy of Sn doped ZnO thin films is always higher than the enhancement attainable with an Fe doped film, where the minimum error was found for Bi and Sn doped ZnO thin films to be 2,345 and 3,072%, respectively. The decrease in the relative errors from undoped to doped films can be explained by the good optical properties which can be observed in the fewer number of defects as well as less disorder.

  18. SUPERCONDUCTING PHOTOCATHODES.

    Energy Technology Data Exchange (ETDEWEB)

    SMEDLEY, J.; RAO, T.; WARREN, J.; SEKUTOWICZ, LANGNER, J.; STRZYZEWSKI, P.; LEFFERS, R.; LIPSKI, A.

    2005-10-09

    We present the results of our investigation of lead and niobium as suitable photocathode materials for superconducting RF injectors. Quantum efficiencies (QE) have been measured for a range of incident photon energies and a variety of cathode preparation methods, including various lead plating techniques on a niobium substrate. The effects of operating at ambient and cryogenic temperatures and different vacuum levels on the cathode QE have also been studied.

  19. Investigation of the superconducting gap structure in κ-(BEDT-TTF)2Cu(NCS)2 and κ-(BEDT-TTF)2Cu[N(CN)2]Br by means of thermal-conductivity measurements

    Science.gov (United States)

    Kühlmorgen, S.; Schönemann, R.; Green, E. L.; Müller, J.; Wosnitza, J.

    2017-10-01

    We report temperature-dependent thermal-conductivity, κ, measurements on the layered quasi-two-dimensional organic superconductors κ-(BEDT-TTF)2Cu(NCS)2 and κ-(BEDT-TTF)2Cu[N(CN)2]Br down to 160 mK. The results for κ-(BEDT-TTF)2Cu(NCS)2 may be consistent with a nodal superconducting (SC) gap structure as indicated by a non-negligible remnant linear contribution when κ/T \\propto T2 is extrapolated to T = 0 . For κ-(BEDT-TTF)2Cu[N(CN)2]Br, contrary to expectations, higher κ values are observed in the superconducting regime as compared to the normal, high-field state evidencing a dominant phonon contribution to κ in the superconducting state. The strong increase of κ in the normal state below T c for both samples indicates strong electron–phonon scattering. Our results highlight the need for thermal-conductivity measurements performed down to significantly lower temperatures to determine the symmetry of the SC gap.

  20. The effects of gap parameter and spin polarization on electronic Hartree and correlation energies of doped graphene nanoribbon

    Science.gov (United States)

    Rezania, Hamed; Abdi, Ameneh

    2017-04-01

    We study the behaviors of both Hartree and correlation energies of undoped gapped armchair graphene nanoribbon using random phase approximation in the context of Hubbard model Hamiltonian. Specially, the effects of spin polarization and gap parameter on electron density dependence of Hartree and correlation energies of armchair graphene nanoribbon has been addressed. Our results show the variation of gap parameter leads to considerable effect on correlation and Hartree energy behavior of spin unpolarized gapped graphene in the middle electron density region. However local Hubbard interaction parameter affects the behaviors of Hartree and correlation energy on the whole range of electron density in zero magnetization case. We also show that a considerable reduction has been observed for density dependence of Hartree and correlation energies of spin polarized gapped graphene nanoribbon.

  1. Position resolution of a double junction superconductive detector based on a single material

    Science.gov (United States)

    Samedov, V. V.

    2008-02-01

    The Naples group from Istituto Nazionale di Fisica Nucleare presented the results of theoretical investigations of a new class of superconductive radiation detectors - double junction superconductive detector based on a single material [1]. In such detectors, the absorption of energy occurs in a long superconductive strip while two superconductive tunnel junctions positioned at the ends of the strip provide the readout of the signals. The main peculiarity of this type of detectors is that they are based on a single superconducting material, i.e., without trapping layers at the ends of the strip. In this paper, general approach to the position resolution of this type of detectors has been attempted. The formula for the position resolution is derived. It is shown that the application of the aluminium for the absorber may be the best possible way not only due to the small gap energy, but also mainly for STJ fabrication technology based on the aluminium oxide tunnel barrier.

  2. Superconductivity from insulating elements under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Katsuya

    2015-07-15

    Highlights: • Even insulating molecule can become metal and superconductor by pressure with relatively high T{sub c}. • The highest T{sub c} is observed in sulfur with 17 K at 160 GPa. • Hydrogen is the best candidate of the highest T{sub c} element. - Abstract: The insulating and superconducting states would seem to have very different characteristics. Can any insulator become a superconductor? One proven method, doping an insulating material with carriers, can create itinerant states inside the gap between the conduction and valence bands. Another method is to squeeze the structure by applying pressure. Pressure can expand the bandwidth and also narrow the energy band gap. So the first step to turn an insulator into a superconductor is to make it metallic. Here we review our experimental research and results on superconductivity induced by applying pressure to insulating molecular systems such as elemental molecules.

  3. Energy Band Gap Study of Semiconducting Single Walled Carbon Nanotube Bundle

    Science.gov (United States)

    Elkadi, Asmaa; Decrossas, Emmanuel; El-Ghazaly, Samir

    2013-01-01

    The electronic properties of multiple semiconducting single walled carbon nanotubes (s-SWCNTs) considering various distribution inside a bundle are studied. The model derived from the proposed analytical potential function of the electron density for an individual s-SWCNT is general and can be easily applied to multiple nanotubes. This work demonstrates that regardless the number of carbon nanotubes, the strong coupling occurring between the closest neighbours reduces the energy band gap of the bundle by 10%. As expected, the coupling is strongly dependent on the distance separating the s-SWCNTs. In addition, based on the developed model, it is proposed to enhance this coupling effect by applying an electric field across the bundle to significantly reduce the energy band gap of the bundle by 20%.

  4. Energy Band Gap Study of Semiconducting Single Walled Carbon Nanotube Bundle

    Science.gov (United States)

    Elkadi, Asmaa; Decrossas, Emmanuel; El-Ghazaly, Samir

    2013-01-01

    The electronic properties of multiple semiconducting single walled carbon nanotubes (s-SWCNTs) considering various distribution inside a bundle are studied. The model derived from the proposed analytical potential function of electron density for na individual s-SWCNT is general and can be easily applied to multiple nanotubes. This work demonstrates that regardless the number of carbon nanotubes, the strong coupling occurring between the closet neighbors reduces the energy band gap of the bundle by 10%. As expected, the coupling is strongly dependent on the distance separating the s-SWCNTs. In addition, based on the developed model, it is proposed to enhance this coupling effect by applying an electric field across the bundle to significantly reduce the energy band gap of the bundle by 20%.

  5. Energy Band Gap Study of Semiconducting Single Walled Carbon Nanotube Bundle

    Science.gov (United States)

    Elkadi, Asmaa; Decrossas, Emmanuel; El-Ghazaly, Samir

    2013-01-01

    The electronic properties of multiple semiconducting single walled carbon nanotubes (s-SWCNTs) considering various distribution inside a bundle are studied. The model derived from the proposed analytical potential function of the electron density for an individual s-SWCNT is general and can be easily applied to multiple nanotubes. This work demonstrates that regardless the number of carbon nanotubes, the strong coupling occurring between the closest neighbours reduces the energy band gap of the bundle by 10%. As expected, the coupling is strongly dependent on the distance separating the s-SWCNTs. In addition, based on the developed model, it is proposed to enhance this coupling effect by applying an electric field across the bundle to significantly reduce the energy band gap of the bundle by 20%.

  6. Evolution of the N=50 shell gap energy towards $^{78}$Ni

    CERN Document Server

    Hakala, J; Elomaa, V -V; Eronen, T; Hager, U; Jokinen, A; Kankainen, A; Moore, I D; Pentillä, H; Rinta-Antila, S; Rissanen, J; Saastamoinen, A; Sonoda, T; Weber, C; Äystö, J

    2008-01-01

    Atomic masses of the neutron-rich isotopes $^{76-80}$Zn, $^{78-83}$Ga, $^{80-85}Ge, $^{81-87}$As and $^{84-89}$Se have been measured with high precision using the Penning trap mass spectrometer JYFLTRAP at the IGISOL facility. The masses of $^{82,83}$Ga, $^{83-85}$Ge, $^{84-87}$As and $^{89}$Se were measured for the first time. These new data represent a major improvement in the knowledge of the masses in this neutron-rich region. Two-neutron separation energies provide evidence for the reduction of the N=50 shell gap energy towards germanium Z=32 and a subsequent increase at gallium (Z=31). The data are compared with a number of theoretical models. An indication of the persistent rigidity of the shell gap towards nickel (Z=28) is obtained.

  7. Localized description of surface energy gap effects in the resonant charge exchange between atoms and surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Iglesias-Garcia, A; Garcia, Evelina A; Goldberg, E C, E-mail: aiglesiasg@santafe-conicet.gov.ar [Instituto de Desarrollo Tecnologico para la Industria Quimica (INTEC-CONICET-UNL), Gueemes 3450, CC91, (S3000GLN) Santa Fe (Argentina)

    2011-02-02

    The resonant charge exchange between atoms and surfaces is described by considering a localized atomistic view of the solid within the Anderson model. The presence of a surface energy gap is treated within a simplified tight-binding model of the solid, and a proper calculation of the Hamiltonian terms based on a LCAO expansion of the solid eigenstates is performed. It is found that interference terms jointly with a surface projected gap maximum at the {Gamma} point and the Fermi level inside it, lead to hybridization widths negligible around the Fermi level. This result can explain experimental observations related to long-lived adsorbate states and anomalous neutral fractions of low energy ions in alkali/Cu(111) systems.

  8. High Energy Emission from the Polar Cap The Slot Gap Revisited

    CERN Document Server

    Muslimov, A G

    2003-01-01

    The characteristics of the high-energy emission from polar cap accelerators will be discussed. Particles accelerated in the "slot gap" near the polar cap rim will reach altitudes of several stellar radii before initiating pair cascades, producing a wide hollow cone of emission in young pulsars and some millisecond pulsars. Model X-ray and gamma-ray spectra and pulse profiles, based on Monte-Carlo simulations of polar cap pair cascades, will be presented.

  9. Bridging the Gap: The Role of DOD in Clean Energy Commercialization: DOD Installations as Living Laboratories

    Science.gov (United States)

    2010-08-17

    is an agreement established between Federal laboratories and commercial , academic, or non- profit partners to facilitate technology transfer between...ER D C/ CE RL T R- 10 -1 3 Bridging the Gap: The Role of DOD in Clean Energy Commercialization DOD Installations as “Living... Commercialization DOD Installations as “Living Laboratories” Harold Sanborn Construction Engineering Research Laboratory (CERL) U.S. Army Engineer

  10. Impact of pseudo-gap states on the pinning energy and irreversibility field of high temperature superconductors

    Directory of Open Access Journals (Sweden)

    Guy Deutscher

    2014-09-01

    Full Text Available The existence of pseudo-gap states at energies larger than the coherence energy scale is shown to be at the origin of the difficulties encountered in achieving strong vortex pinning in the high Tc cuprates. Reduction or elimination of the pseudo-gap states by overdoping is effective in increasing the condensation energy and the irreversibility field. In YBa2Cu3O7, a full BCS state, with a single energy scale, can be restored, leading to the highest known irreversibility field and pinning strength. In the bismuthates, the detrimental effect of the pseudo-gap states can only be mitigated to some extent by overdoping.

  11. The importance of gap states for energy level alignment at hybrid interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Racke, D.A.; Kelly, L.L.; Monti, O.L.A., E-mail: monti@u.arizona.edu

    2015-10-01

    Highlights: • The electronic structure of CuPc on related layered van der Waals materials is compared. • Gap states need to be considered to understand energy level alignment. • Hybrid interfaces require new models of the interfacial electronic structure. - Abstract: Energy level alignment and electronic structure at organic semiconductor interfaces must be controlled to ensure efficient carrier harvesting or injection in next-generation organic optoelectronic technologies. In this context, hybrid organic/inorganic semiconductor interfaces exhibit particularly rich physics. Here, we show that states in the band gap of the inorganic layered van der Waals dichalcogenide SnS{sub 2} play an important role in determining energy level alignment at the hybrid interface with copper phthalocyanine (CuPc). By taking advantage of the closely related CuPc film growth on SnS{sub 2} and the well-studied interface of CuPc/HOPG, we are able to trace spectroscopic differences to the fundamentally different electronic interactions across the two interfaces. We provide a detailed picture of the role of gap states at the hybrid interface and shed light on the electronic properties of inorganic semiconductors in general and metal dichalcogenides in particular.

  12. High Temperature Superconducting Magnetic Energy Storage and Its Power Control Technology

    Institute of Scientific and Technical Information of China (English)

    Xiao-Yuan Chen; Jian-Xun Jin; Kai-Meng Ma; Ju Wen; Ying Xin; Wei-Zhi Gong; An-Lin Ren; Jing-Yin Zhang

    2008-01-01

    High temperature superconducting (HTS) power inductor and its control technology have been studied and analyzed in the paper. Based on the results of simulations and practical experiments, a controlled release scheme has been proposed and verified for developing a practical HTS SMES prototype.

  13. Energy Gap Dependence on Mn Content in a Diluted Magnetic Quantum Dot

    Institute of Scientific and Technical Information of China (English)

    P.Nalini; A.John Peter

    2011-01-01

    @@ Positively charged donor exciton binding energy is computed as a function of quantum-dot size within the single band effective mass approximation for different Mn contents in Cd1-xin Mnxin Te/C1-xoutMnxoutTe.The exciton bound polaron is computed for 0energy gap using the mean field approximation and incorporate the exchange interaction between the carrier and the magnetic impurity.The interband emission energy is studied with the height and radius of the cylindrical quantum dot.Valence-band anisotropy is included in our theoretical model using different hole masses in different spatial directions.Spin polaronic shifts as functions of quantum-dot radius and Mn concentration are estimated using the mean field theory.It is found that(i)the energy gap depends on the Mn mole fraction,(ii)it increases linearly with an increase in Mn content, and(iii)the effect is more pronounced for a narrow dot, showing the quantum size effects.Our results are in good agreement with other recent by published reports.%Positively charged donor exciton binding energy is computed as a function of quantum-dot size within the single band effective mass approximation for different Mn contents in Cd1-xin Mnxin Te/Cd1-xout Mnxout Te. The exciton bound polaron is computed for 0 ≤ x ≤ 0.08, on the Mn mole fraction. We determine the energy gap using the mean field approximation and incorporate the exchange interaction between the carrier and the magnetic impurity.The interband emission energy is studied with the height and radius of the cylindrical quantum dot. Valence-band anisotropy is included in our theoretical model using different hole masses in different spatial directions. Spin polaronic shifts as functions of quantum-dot radius and Mn concentration are estimated using the mean field theory. It is found that (i) the energy gap depends on the Mn mole fraction, (ii) it increases linearly with an increase in Mn content, and (iii) the

  14. Applied superconductivity

    CERN Document Server

    Newhouse, Vernon L

    1975-01-01

    Applied Superconductivity, Volume II, is part of a two-volume series on applied superconductivity. The first volume dealt with electronic applications and radiation detection, and contains a chapter on liquid helium refrigeration. The present volume discusses magnets, electromechanical applications, accelerators, and microwave and rf devices. The book opens with a chapter on high-field superconducting magnets, covering applications and magnet design. Subsequent chapters discuss superconductive machinery such as superconductive bearings and motors; rf superconducting devices; and future prospec

  15. Superconductivity in an electron band just above the Fermi level: possible route to BCS-BEC superconductivity.

    Science.gov (United States)

    Okazaki, K; Ito, Y; Ota, Y; Kotani, Y; Shimojima, T; Kiss, T; Watanabe, S; Chen, C-T; Niitaka, S; Hanaguri, T; Takagi, H; Chainani, A; Shin, S

    2014-02-28

    Conventional superconductivity follows Bardeen-Cooper-Schrieffer(BCS) theory of electrons-pairing in momentum-space, while superfluidity is the Bose-Einstein condensation(BEC) of atoms paired in real-space. These properties of solid metals and ultra-cold gases, respectively, are connected by the BCS-BEC crossover. Here we investigate the band dispersions in FeTe(0.6)Se(0.4)(Tc = 14.5 K ~ 1.2 meV) in an accessible range below and above the Fermi level(EF) using ultra-high resolution laser angle-resolved photoemission spectroscopy. We uncover an electron band lying just 0.7 meV (~8 K) above EF at the Γ-point, which shows a sharp superconducting coherence peak with gap formation below Tc. The estimated superconducting gap Δ and Fermi energy [Symbol: see text]F indicate composite superconductivity in an iron-based superconductor, consisting of strong-coupling BEC in the electron band and weak-coupling BCS-like superconductivity in the hole band. The study identifies the possible route to BCS-BEC superconductivity.

  16. Interface high-temperature superconductivity

    Science.gov (United States)

    Wang, Lili; Ma, Xucun; Xue, Qi-Kun

    2016-12-01

    Cuprate high-temperature superconductors consist of two quasi-two-dimensional (2D) substructures: CuO2 superconducting layers and charge reservoir layers. The superconductivity is realized by charge transfer from the charge reservoir layers into the superconducting layers without chemical dopants and defects being introduced into the latter, similar to modulation-doping in the semiconductor superlattices of AlGaAs/GaAs. Inspired by this scheme, we have been searching for high-temperature superconductivity in ultra-thin films of superconductors epitaxially grown on semiconductor/oxide substrates since 2008. We have observed interface-enhanced superconductivity in both conventional and unconventional superconducting films, including single atomic layer films of Pb and In on Si substrates and single unit cell (UC) films of FeSe on SrTiO3 (STO) substrates. The discovery of high-temperature superconductivity with a superconducting gap of ∼20 meV in 1UC-FeSe/STO has stimulated tremendous interest in the superconductivity community, for it opens a new avenue for both raising superconducting transition temperature and understanding the pairing mechanism of unconventional high-temperature superconductivity. Here, we review mainly the experimental progress on interface-enhanced superconductivity in the three systems mentioned above with emphasis on 1UC-FeSe/STO, studied by scanning tunneling microscopy/spectroscopy, angle-resolved photoemission spectroscopy and transport experiments. We discuss the roles of interfaces and a possible pairing mechanism inferred from these studies.

  17. Energy Dependence and Scaling Property of Localization Length near a Gapped Flat Band

    CERN Document Server

    Ge, Li

    2015-01-01

    Using a tight-binding model for a one-dimensional Lieb lattice, we show that the localization length near a gapped flat band behaves differently from the typical Urbach tail in a band gap: instead of reducing monotonically as the energy E moves away from the flat band energy E_{FB}, the presence of the flat band causes a nonmonotonic energy dependence of the localization length. This energy dependence follows a scaling property when the energy is within the spread (W) of uniformly distributed diagonal disorder, i.e. the localization length is only a function of (E-E_{FB})/W. Several other lattices are compared to distinguish the effect of the flat band on the localization length, where we eliminate, shift, or duplicate the flat band, without changing the dispersion relations of other bands. Using the top right element of the Green's matrix, we derive an analytical relation between the density of states and the localization length, which shines light on these properties of the latter, including a summation rul...

  18. An outer gap model of high-energy emission from rotation-powered pulsars

    CERN Document Server

    Chiang, J

    1994-01-01

    We describe a refined calculation of high energy emission from rotation-powered pulsars based on the Outer Gap model of Cheng, Ho \\&~Ruderman (1986a,b). We have improved upon previous efforts to model the spectra from these pulsars (e. g. Cheng, et al. 1986b; Ho 1989) by following the variation in particle production and radiation properties with position in the outer gap. Curvature, synchrotron and inverse-Compton scattering fluxes vary significantly over the gap and their interactions {\\it via} photon-photon pair production build up the radiating charge populations at varying rates. We have also incorporated an approximate treatment of the transport of particle and photon fluxes between gap emission zones. These effects, along with improved computations of the particle and photon distributions, provide very important modifications of the model gamma-ray flux. In particular, we attempt to make specific predictions of pulse profile shapes and spectral variations as a function of pulse phase and suggest fu...

  19. The importance of temperature dependent energy gap in the understanding of high temperature thermoelectric properties

    Science.gov (United States)

    Singh, Saurabh; Pandey, Sudhir K.

    2016-10-01

    In this work, we show the importance of temperature dependent energy band gap, E g (T), in understanding the high temperature thermoelectric (TE) properties of material by considering LaCoO3 (LCO) and ZnV2O4 (ZVO) compounds as a case study. For the fix value of band gap, E g , deviation in the values of α has been observed above 360 K and 400 K for LCO and ZVO compounds, respectively. These deviation can be overcomed by consideration of temperature dependent band gap. The change in used value of E g with respect to temperature is ∼4 times larger than that of In As. This large temperature dependence variation in E g can be attributed to decrement in the effective on-site Coulomb interaction due to lattice expansion. At 600 K, the value of ZT for n and p-doped, LCO is ∼0.35 which suggest that it can be used as a potential material for TE device. This work clearly suggest that one should consider the temperature dependent band gap in predicting the high temperature TE properties of insulating materials.

  20. Superconductivity Bordering Rashba Type Topological Transition

    Science.gov (United States)

    Jin, M. L.; Sun, F.; Xing, L. Y.; Zhang, S. J.; Feng, S. M.; Kong, P. P.; Li, W. M.; Wang, X. C.; Zhu, J. L.; Long, Y. W.; Bai, H. Y.; Gu, C. Z.; Yu, R. C.; Yang, W. G.; Shen, G. Y.; Zhao, Y. S.; Mao, H. K.; Jin, C. Q.

    2017-01-01

    Strong spin orbital interaction (SOI) can induce unique quantum phenomena such as topological insulators, the Rashba effect, or p-wave superconductivity. Combining these three quantum phenomena into a single compound has important scientific implications. Here we report experimental observations of consecutive quantum phase transitions from a Rashba type topological trivial phase to topological insulator state then further proceeding to superconductivity in a SOI compound BiTeI tuned via pressures. The electrical resistivity measurement with V shape change signals the transition from a Rashba type topological trivial to a topological insulator phase at 2 GPa, which is caused by an energy gap close then reopen with band inverse. Superconducting transition appears at 8 GPa with a critical temperature TC of 5.3 K. Structure refinements indicate that the consecutive phase transitions are correlated to the changes in the Bi-Te bond and bond angle as function of pressures. The Hall Effect measurements reveal an intimate relationship between superconductivity and the unusual change in carrier density that points to possible unconventional superconductivity.

  1. Superconductivity Bordering Rashba Type Topological Transition

    Energy Technology Data Exchange (ETDEWEB)

    Jin, M. L.; Sun, F.; Xing, L. Y.; Zhang, S. J.; Feng, S. M.; Kong, P. P.; Li, W. M.; Wang, X. C.; Zhu, J. L.; Long, Y. W.; Bai, H. Y.; Gu, C. Z.; Yu, R. C.; Yang, W. G.; Shen, G. Y.; Zhao, Y. S.; Mao, H. K.; Jin, C. Q.

    2017-01-04

    Strong spin orbital interaction (SOI) can induce unique quantum phenomena such as topological insulators, the Rashba effect, or p-wave superconductivity. Combining these three quantum phenomena into a single compound has important scientific implications. Here we report experimental observations of consecutive quantum phase transitions from a Rashba type topological trivial phase to topological insulator state then further proceeding to superconductivity in a SOI compound BiTeI tuned via pressures. The electrical resistivity measurement with V shape change signals the transition from a Rashba type topological trivial to a topological insulator phase at 2 GPa, which is caused by an energy gap close then reopen with band inverse. Superconducting transition appears at 8 GPa with a critical temperature TC of 5.3 K. Structure refinements indicate that the consecutive phase transitions are correlated to the changes in the Bi–Te bond and bond angle as function of pressures. The Hall Effect measurements reveal an intimate relationship between superconductivity and the unusual change in carrier density that points to possible unconventional superconductivity.

  2. Focal point analysis of the singlet-triplet energy gap of octacene and larger acenes.

    Science.gov (United States)

    Hajgató, Balázs; Huzak, Matija; Deleuze, Michael S

    2011-08-25

    A benchmark theoretical study of the electronic ground state and of the vertical and adiabatic singlet-triplet (ST) excitation energies of n-acenes (C(4n+2)H(2n+4)) ranging from octacene (n = 8) to undecacene (n = 11) is presented. The T1 diagnostics of coupled cluster theory and further energy-based criteria demonstrate that all investigated systems exhibit predominantly a (1)A(g) singlet closed-shell electronic ground state. Singlet-triplet (S(0)-T(1)) energy gaps can therefore be very accurately determined by applying the principle of a focal point analysis (FPA) onto the results of a series of single-point and symmetry-restricted calculations employing correlation consistent cc-pVXZ basis sets (X = D, T, Q, 5) and single-reference methods [HF, MP2, MP3, MP4SDQ, CCSD, and CCSD(T)] of improving quality. According to our best estimates, which amount to a dual extrapolation of energy differences to the level of coupled cluster theory including single, double, and perturbative estimates of connected triple excitations [CCSD(T)] in the limit of an asymptotically complete basis set (cc-pV∞Z), the S(0)-T(1) vertical (adiabatic) excitation energies of these compounds amount to 13.40 (8.21), 10.72 (6.05), 8.05 (3.67), and 7.10 (2.58) kcal/mol, respectively. In line with the absence of Peierls distortions (bond length alternations), extrapolations of results obtained at this level for benzene (n = 1) and all studied n-acenes so far (n = 2-11) indicate a vanishing S(0)-T(1) energy gap, in the limit of an infinitely large polyacene, within an uncertainty of 1.5 kcal/mol (0.06 eV). Lacking experimental values for the S(0)-T(1) energy gaps of n-acenes larger than hexacene, comparison is made with recent optical and electrochemical determinations of the HOMO-LUMO band gap. Further issues such as scalar relativistic, core correlation, and diagonal Born-Oppenheimer corrections (DBOCs) are tentatively examined.

  3. Optical band gap energy and ur bach tail of CdS:Pb2+ thin films

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, M.; Juarez, H.; Pacio, M. [Universidad Autonoma de Puebla, Instituto de Ciencias, Centro de Investigacion en Dispositivos Semiconductores, Av. 14 Sur, Col. Jardines de San Manuel, Ciudad Universitaria, Puebla, Pue. (Mexico); Gutierrez, R.; Chaltel, L.; Zamora, M.; Portillo, O. [Universidad Autonoma de Puebla, Facultad de Ciencias Quimicas, Laboratorio de Materiales, Apdo. Postal 1067, 72001 Puebla, Pue. (Mexico); Mathew, X., E-mail: osporti@yahoo.mx [UNAM, Instituto de Energias Renovables, Temixco, Morelos (Mexico)

    2016-11-01

    Pb S-doped CdS nano materials were successfully synthesized using chemical bath. Transmittance measurements were used to estimate the optical band gap energy. Tailing in the band gap was observed and found to obey Ur bach rule. The diffraction X-ray show that the size of crystallites is in the ∼33 nm to 12 nm range. The peaks belonging to primary phase are identified at 2θ = 26.5 degrees Celsius and 2θ = 26.00 degrees Celsius corresponding to CdS and Pb S respectively. Thus, a shift in maximum intensity peak from 2θ = 26.4 to 28.2 degrees Celsius is clear indication of possible transformation of cubic to hexagonal phase. Also peaks at 2θ = 13.57, 15.9 degrees Celsius correspond to lead perchlorate thiourea. The effects on films thickness and substrate doping on the band gap energy and the width on tail were investigated. Increasing doping give rise to a shift in optical absorption edge ∼0.4 eV. (Author)

  4. The General Antiparticle Spectrometer (GAPS) - Hunt for dark matter using low-energy antideuterons

    CERN Document Server

    von Doetinchem, Ph; Boggs, St; Craig, W; Fuke, H; Gahbauer, F; Hailey, Ch; Koglin, J; Madden, N; Mognet, I; Mori, K; Ong, R; Yoshida, T; Zhang, T; Zweerink, J

    2010-01-01

    The GAPS experiment is foreseen to carry out a dark matter search using a novel detection approach to detect low-energy cosmic-ray antideuterons. The theoretically predicted antideuteron flux resulting from secondary interactions of primary cosmic rays with the interstellar medium is very low. So far not a single cosmic antideuteron has been detected by any experiment, but well-motivated theories beyond the standard model of particle physics, e.g., supersymmetry or universal extra dimensions, contain viable dark matter candidates, which could led to a significant enhancement of the antideuteron flux due to self-annihilation of the dark matter particles.This flux contribution is believed to be especially large at small energies, which leads to a high discovery potential for GAPS. GAPS is designed to achieve its goals via a series of ultra-long duration balloon flights at high altitude in Antarctica, starting in 2014. The detector itself will consist of 13 planes of Si(Li) solid state detectors and a time of fl...

  5. Three-flavor color superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Malekzadeh, H.

    2007-12-15

    I investigate some of the inert phases in three-flavor, spin-zero color-superconducting quark matter: the CFL phase (the analogue of the B phase in superfluid {sup 3}He), the A and A{sup *} phases, and the 2SC and sSC phases. I compute the pressure of these phases with and without the neutrality condition. Without the neutrality condition, after the CFL phase the sSC phase is the dominant phase. However, including the neutrality condition, the CFL phase is again the energetically favored phase except for a small region of intermediate densities where the 2SC/A{sup *} phase is favored. It is shown that the 2SC phase is identical to the A{sup *} phase up to a color rotation. In addition, I calculate the self-energies and the spectral densities of longitudinal and transverse gluons at zero temperature in color-superconducting quark matter in the CFL phase. I find a collective excitation, a plasmon, at energies smaller than two times the gap parameter and momenta smaller than about eight times the gap. The dispersion relation of this mode exhibits a minimum at some nonzero value of momentum, indicating a van Hove singularity. (orig.)

  6. Nanoscience and Engineering in Superconductivity

    CERN Document Server

    Moshchalkov, Victor; Lang, Wolfgang

    2010-01-01

    For emerging energy saving technologies, superconducting materials with superior performance are needed. Such materials can be developed by manipulating the 'elementary building blocks' through nanostructuring. For superconductivity the 'elementary blocks' are Cooper pair and fluxon (vortex). This book presents new ways how to modify superconductivity and vortex matter through nanostructuring and the use of nanoscale magnetic templates. The basic nano-effects, vortex and vortex-antivortex patterns, vortex dynamics, Josephson phenomena, critical currents, and interplay between superconductivity

  7. Orbital Feshbach resonances with a small energy gap between open and closed channels

    Science.gov (United States)

    Cheng, Yanting; Zhang, Ren; Zhang, Peng

    2016-04-01

    Recently, a new type of Feshbach resonance, i.e., orbital Feshbach resonance (OFR), was proposed for the ultracold alkaline-earth-metal-like atoms and was experimentally observed in the ultracold gases of 173Yb atoms. Unlike most of the magnetic Feshbach resonances of ultracold alkali atoms, when the OFR of 173Yb atoms appears, the energy gap between the thresholds of the open channel (OC) and the closed channel (CC) is much smaller than the characteristic energy of the interatomic interaction, i.e., the van der Waals energy. In this paper we study the OFR in systems with a small CC-OC threshold gap. We show that in these systems the OFR can be induced by the coupling between the OC and either an isolated bound state of the CC or the scattering states of the CC. Moreover, we also show that in each case the two-channel Huang-Yang pesudopotential is always applicable for the approximate calculation of the low-energy scattering amplitude. Our results imply that in the two-channel theoretical calculations for these systems it is appropriate to take into account the contributions from the scattering states of the CC.

  8. Probing Critical Point Energies of Transition Metal Dichalcogenides: Surprising Indirect Gap of Single Layer WSe 2

    KAUST Repository

    Zhang, Chendong

    2015-09-21

    By using a comprehensive form of scanning tunneling spectroscopy, we have revealed detailed quasi-particle electronic structures in transition metal dichalcogenides, including the quasi-particle gaps, critical point energy locations, and their origins in the Brillouin zones. We show that single layer WSe surprisingly has an indirect quasi-particle gap with the conduction band minimum located at the Q-point (instead of K), albeit the two states are nearly degenerate. We have further observed rich quasi-particle electronic structures of transition metal dichalcogenides as a function of atomic structures and spin-orbit couplings. Such a local probe for detailed electronic structures in conduction and valence bands will be ideal to investigate how electronic structures of transition metal dichalcogenides are influenced by variations of local environment.

  9. Probing Critical Point Energies of Transition Metal Dichalcogenides: Surprising Indirect Gap of Single Layer WSe2.

    Science.gov (United States)

    Zhang, Chendong; Chen, Yuxuan; Johnson, Amber; Li, Ming-Yang; Li, Lain-Jong; Mende, Patrick C; Feenstra, Randall M; Shih, Chih-Kang

    2015-10-14

    By using a comprehensive form of scanning tunneling spectroscopy, we have revealed detailed quasi-particle electronic structures in transition metal dichalcogenides, including the quasi-particle gaps, critical point energy locations, and their origins in the Brillouin zones. We show that single layer WSe2 surprisingly has an indirect quasi-particle gap with the conduction band minimum located at the Q-point (instead of K), albeit the two states are nearly degenerate. We have further observed rich quasi-particle electronic structures of transition metal dichalcogenides as a function of atomic structures and spin-orbit couplings. Such a local probe for detailed electronic structures in conduction and valence bands will be ideal to investigate how electronic structures of transition metal dichalcogenides are influenced by variations of local environment.

  10. Gate-independent energy gap in noncovalently intercalated bilayer graphene on SiC(0001)

    Science.gov (United States)

    Li, Yuanchang

    2016-12-01

    Our first-principles calculations show that an energy gap around 0.12-0.25 eV can be engineered in epitaxial graphene on SiC(0001) through the noncovalent intercalation of transition or alkali metals but originated from the distinct mechanisms. The former is attributed to the combined effects of a metal-induced perpendicular electric field and interaction, while the latter is solely attributed to the built-in electric field. A great advantage of this scheme is that the gap size is almost independent of the gate voltage up to 1 V/nm, thus reserving the electric means to tune the Fermi level of graphene when configured as field-effect transistors. Given the recent progress in experimental techniques for intercalated graphene, our findings provide a practical way to incorporate graphene in the current semiconductor industry.

  11. Estimation of CE–CVM energy parameters from miscibility gap data

    Indian Academy of Sciences (India)

    G Srinivasa Gupta; G Vamsi Madhav; A Pandey; B Nageswara Sarma; S Lele

    2005-04-01

    The powerful framework of cluster expansion–cluster variation methods (CE–CVM) expresses alloy free energy in terms of energy (model) parameters, macroscopic variables (composition and temperature) and microscopic variables (correlation functions). A simultaneous optimization of thermodynamic and phase equilibria data using CE–CVM is critically dependent on giving good initial values of energy parameters, macroscopic and microscopic variables, respectively. No standard method for obtaining the initial values of the energy parameters is available in literature. As a starting point, a method has been devised to estimate the values of energy parameters from consolute point (miscibility gap maximum) data. Empirical relations among energy parameters, temperature (c), composition (c) and 2}/2 at the consolute point, have been developed using CE–CVM free energy functions for bcc and fcc structures in the tetrahedron and tetrahedron–octahedron approximations, respectively. Thus from the observed data of c, c and 2}/2 in the above relations, good initial values of energy parameters can be obtained. Further, a necessary modification to the classical NR method for solving simultaneous nonlinear/transcendental equations with a double root in one variable and a simple root in the other has been presented.

  12. Electron-phonon interaction and pairing mechanism in superconducting Ca-intercalated bilayer graphene

    Science.gov (United States)

    Margine, E. R.; Lambert, Henry; Giustino, Feliciano

    2016-01-01

    Using the ab initio anisotropic Eliashberg theory including Coulomb interactions, we investigate the electron-phonon interaction and the pairing mechanism in the recently-reported superconducting Ca-intercalated bilayer graphene. We find that C6CaC6 can support phonon-mediated superconductivity with a critical temperature Tc = 6.8–8.1 K, in good agreement with experimental data. Our calculations indicate that the low-energy Caxy vibrations are critical to the pairing, and that it should be possible to resolve two distinct superconducting gaps on the electron and hole Fermi surface pockets. PMID:26892805

  13. Laser-excited photoemission spectroscopy study of superconducting boron-doped diamond

    Directory of Open Access Journals (Sweden)

    K. Ishizaka, R. Eguchi, S. Tsuda, T. Kiss, T. Shimojima, T. Yokoya, S. Shin, T. Togashi, S. Watanabe, C.-T. Chen, C.Q. Zhang, Y. Takano, M. Nagao, I. Sakaguchi, T. Takenouchi and H. Kawarada

    2006-01-01

    Full Text Available We have investigated the low-energy electronic state of boron-doped diamond thin film by the laser-excited photoemission spectroscopy. A clear Fermi-edge is observed for samples doped above the semiconductor–metal boundary, together with the characteristic structures at 150×n meV possibly due to the strong electron–lattice coupling effect. In addition, for the superconducting sample, we observed a shift of the leading edge below Tc indicative of a superconducting gap opening. We discuss the electron–lattice coupling and the superconductivity in doped diamond.

  14. High resolution electron energy loss spectroscopy of narrow gap III-V semiconductor surfaces and interfaces

    CERN Document Server

    Veal, T D

    2002-01-01

    The electronic properties of n-type narrow gap III-V semiconductor surfaces and interfaces are investigated using high-resolution electron-energy-loss spectroscopy (HREELS). Changing the incident electron energy, alters the wave-vector transfer parallel to the surface, allowing the probing depth to be varied over typical space-charge layer widths (100 - 2000 A). Semi-classical dielectric theory simulations of the HREEL spectra are performed to extract quantitative information from the probing energy-dependence of the surface plasmon and phonon peaks. The plasma frequency used in the simulations is related to the electron concentration and effective mass using the Kane model of the non-parabolic conduction band. Space-charge layer parameters are obtained by comparing calculated smooth charge profiles with the histogram profiles that are used in the simulations. Complementary experimental techniques are employed to correlate the reconstruction, chemical composition and morphology of the surface with the electro...

  15. Comparison and Optimization of Neural Networks and Network Ensembles for Gap Filling of Wind Energy Data

    Directory of Open Access Journals (Sweden)

    Andres Schmidt

    2014-01-01

    Full Text Available Wind turbines play an important role in providing electrical energy for an ever-growing demand. Due to climate change driven by anthropogenic emissions of greenhouse gases, the exploration and use of sustainable energy sources is essential with wind energy covering a significant portion. Data of existing wind turbines is needed to reduce the uncertainty of model predictions of future energy yields for planned wind farms. Due to maintenance routines and technical issues, data gaps of reference wind parks are unavoidable. Here, we present real-world case studies using multilayer perceptron networks and radial basis function networks to reproduce electrical energy outputs of wind turbines at 3 different locations in Germany covering a range of landscapes with varying topographic complexity. The results show that the energy output values of the turbines could be modeled with high correlations ranging from 0.90 to 0.99. In complex terrain, the RBF networks outperformed the MLP networks. In addition, rare extreme values were better captured by the RBF networks in most cases. By using wind meteorological variables and operating data recorded by the wind turbines in addition to the daily energy output values, the error could be further reduced to more than 20%.

  16. A New Insight into Energy Distribution of Electrons in Fuel-Rod Gap in VVER-1000 Nuclear Reactor

    Science.gov (United States)

    Fereshteh, Golian; Ali, Pazirandeh; Saeed, Mohammadi

    2015-06-01

    In order to calculate the electron energy distribution in the fuel rod gap of a VVER-1000 nuclear reactor, the Fokker-Planck equation (FPE) governing the non-equilibrium behavior of electrons passing through the fuel-rod gap as an absorber has been solved in this paper. Besides, the Monte Carlo Geant4 code was employed to simulate the electron migration in the fuel-rod gap and the energy distribution of electrons was found. As for the results, the accuracy of the FPE was compared to the Geant4 code outcomes and a satisfactory agreement was found. Also, different percentage of the volatile and noble gas fission fragments produced in fission reactions in fuel rod, i.e. Krypton, Xenon, Iodine, Bromine, Rubidium and Cesium were employed so as to investigate their effects on the electrons' energy distribution. The present results show that most of the electrons in the fuel rod's gap were within the thermal energy limitation and the tail of the electron energy distribution was far from a Maxwellian distribution. The interesting outcome was that the electron energy distribution is slightly increased due to the accumulation of fission fragments in the gap. It should be noted that solving the FPE for the energy straggling electrons that are penetrating into the fuel-rod gap in the VVER-1000 nuclear reactor has been carried out for the first time using an analytical approach.

  17. Competition between the pseudogap and superconductivity in the high-T(c) copper oxides.

    Science.gov (United States)

    Kondo, Takeshi; Khasanov, Rustem; Takeuchi, Tsunehiro; Schmalian, Jörg; Kaminski, Adam

    2009-01-15

    In a classical Bardeen-Cooper-Schrieffer superconductor, pairing and coherence of electrons are established simultaneously below the critical transition temperature (T(c)), giving rise to a gap in the electronic energy spectrum. In the high-T(c) copper oxide superconductors, however, a pseudogap extends above T(c). The relationship between the pseudogap and superconductivity is one of the central issues in this field. Spectral gaps arising from pairing precursors are qualitatively similar to those caused by competing electronic states, rendering a standard approach to their analysis inconclusive. The issue can be settled, however, by studying the correlation between the weights associated with the pseudogap and superconductivity spectral features. Here we report a study of two spectral weights using angle-resolved photoemission spectroscopy. The weight of the superconducting coherent peak increases away from the node following the trend of the superconducting gap, but starts to decrease in the antinodal region. This striking non-monotonicity reveals the presence of a competing state. We demonstrate a direct correlation, for different values of momenta and doping, between the loss in the low-energy spectral weight arising from the opening of the pseudogap and a decrease in the spectral weight associated with superconductivity. We therefore conclude that the pseudogap competes with the superconductivity by depleting the spectral weight available for pairing.

  18. Mechanical Design of a High Energy Beam Absorber for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Baffes, C.; Church, M.; Leibfritz, J.; Oplt, S.; Rakhno, I.; /Fermilab

    2012-05-10

    A high energy beam absorber has been built for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab. In the facility's initial configuration, an electron beam will be accelerated through 3 TTF-type or ILC-type SRF cryomodules to an energy of 750MeV. The electron beam will be directed to one of multiple downstream experimental and diagnostic beam lines and then deposited in one of two beam absorbers. The facility is designed to accommodate up to 6 cryomodules, which would produce a 75kW beam at 1.5GeV; this is the driving design condition for the beam absorbers. The beam absorbers consist of water-cooled graphite, aluminum and copper layers contained in a helium-filled enclosure. This paper describes the mechanical implementation of the beam absorbers, with a focus on thermal design and analysis. The potential for radiation-induced degradation of the graphite is discussed.

  19. Mechanical Design of a High Energy Beam Absorber for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab

    CERN Document Server

    Baffes, C; Leibfritz, J; Oplt, S; Rakhno, I

    2013-01-01

    A high energy beam absorber has been built for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab. In the facility's initial configuration, an electron beam will be accelerated through 3 TTF-type or ILC-type RF cryomodules to an energy of 750MeV. The electron beam will be directed to one of multiple downstream experimental and diagnostic beam lines and then deposited in one of two beam absorbers. The facility is designed to accommodate up to 6 cryomodules, which would produce a 75kW beam at 1.5GeV; this is the driving design condition for the beam absorbers. The beam absorbers consist of water-cooled graphite, aluminum and copper layers contained in a Helium-filled enclosure. This paper describes the mechanical implementation of the beam absorbers, with a focus on thermal design and analysis. In addition, the potential for radiation-induced degradation of the graphite is discussed.

  20. Superconducting gap function in the organic superconductor (TMTSF)2ClO4 with anion ordering; First-principles calculations and quasiclassical analysis for angle-resolved heat capacity

    Science.gov (United States)

    Nagai, Yuki; Nakamura, Hiroki; Machida, Masahiko

    2011-03-01

    We calculate angle-dependent heat capacity in a low magnetic field range on the basis of the Kramer-Pesch approximation together with an electronic structure obtained by first-principles calculations to determine a superconducting gap function of (TMTSF)2ClO4 through its comparisons with experiments. The present comparative studies reveal that a nodal d-wave gap function consistently explains the experimental results for (TMTSF)2ClO4. It is especially emphasized that the observed unusual axis asymmetry of the angle dependence eliminates the possibility of s-wave and nodeless d-wave functions. It is also found that the directional ordering of ClO4 anions does not have any significant effects on the Fermi surface structure contrary to the previous modelings since the two Fermi surfaces obtained by the band calculations almost cross within the present full accuracy in first-principles calculations.

  1. Charge sensitivity of superconducting single-electron transistor

    Science.gov (United States)

    Korotkov, Alexander N.

    1996-10-01

    It is shown that the noise-limited charge sensitivity of a single-electron transistor using superconductors (of either SISIS- or NISIN-type) operating near the threshold of quasiparticle tunneling, can be considerably higher than that of a similar transistor made of normal metals or semiconductors. The reason is that the superconducting energy gap, in contrast to the Coulomb blockade, is not smeared by the finite temperature. We also discuss the increase of the maximum operation temperature due to superconductivity and the peaklike features on the I-V curve of SISIS structures.

  2. Superconducting cable connections and methods

    Energy Technology Data Exchange (ETDEWEB)

    van der Laan, Daniel Cornelis

    2017-09-05

    Superconducting cable connector structures include a terminal body (or other structure) onto which the tapes from the superconducting cable extend. The terminal body (or other structure) has a diameter that is sufficiently larger than the diameter of the former of the superconducting cable, so that the tapes spread out over the outer surface of the terminal body. As a result, gaps are formed between tapes on the terminal body (or other structure). Those gaps are filled with solder (or other suitable flowable conductive material), to provide a current path of relatively high conductivity in the radial direction. Other connector structures omit the terminal body.

  3. Anomalous thickness-dependent optical energy gap of ALD-grown ultra-thin CuO films

    Science.gov (United States)

    Tripathi, T. S.; Terasaki, I.; Karppinen, M.

    2016-11-01

    Usually an inverse square relation between the optical energy gap and the size of crystallites is observed for semiconducting materials due to the strong quantum localization effect. Coulomb attraction that may lead to a proportional dependence is often ignored or considered less important to the optical energy gap when the crystallite size or the thickness of a thin film changes. Here we report a proportional dependence between the optical energy gap and the thickness of ALD-grown CuO thin films due to a strong Coulomb attraction. The ultrathin films deposited in the thickness range of 9-81 nm show a p-type semiconducting behavior when analyzed by Seebeck coefficient and electrical resistivity measurements. The indirect optical energy gap nature of the films is verified from UV-vis spectrophotometric measurements. A progressive increase in the indirect optical energy gap from 1.06 to 1.24 eV is observed with the increase in the thickness of the films. The data are analyzed in the presence of Coulomb attractions using the Brus model. The optical energy gap when plotted against the cubic root of the thickness of the films shows a linear dependence.

  4. Imaging atomic-scale effects of high-energy ion irradiation on superconductivity and vortex pinning in Fe(Se,Te).

    Science.gov (United States)

    Massee, Freek; Sprau, Peter Oliver; Wang, Yong-Lei; Davis, J C Séamus; Ghigo, Gianluca; Gu, Genda D; Kwok, Wai-Kwong

    2015-05-01

    Maximizing the sustainable supercurrent density, J C, is crucial to high-current applications of superconductivity. To achieve this, preventing dissipative motion of quantized vortices is key. Irradiation of superconductors with high-energy heavy ions can be used to create nanoscale defects that act as deep pinning potentials for vortices. This approach holds unique promise for high-current applications of iron-based superconductors because J C amplification persists to much higher radiation doses than in cuprate superconductors without significantly altering the superconducting critical temperature. However, for these compounds, virtually nothing is known about the atomic-scale interplay of the crystal damage from the high-energy ions, the superconducting order parameter, and the vortex pinning processes. We visualize the atomic-scale effects of irradiating FeSe x Te1-x with 249-MeV Au ions and find two distinct effects: compact nanometer-sized regions of crystal disruption or "columnar defects," plus a higher density of single atomic site "point" defects probably from secondary scattering. We directly show that the superconducting order is virtually annihilated within the former and suppressed by the latter. Simultaneous atomically resolved images of the columnar crystal defects, the superconductivity, and the vortex configurations then reveal how a mixed pinning landscape is created, with the strongest vortex pinning occurring at metallic core columnar defects and secondary pinning at clusters of point-like defects, followed by collective pinning at higher fields.

  5. Energy Behavior Change and Army Net Zero Energy; Gaps in the Army’s Approach to Changing Energy Behavior

    Science.gov (United States)

    2014-06-13

    Strategy including energy security, job creation, investment in innovation, and fighting climate change . The Assistant Secretary of the Army for...company (Energy Trust of Oregon 2014). Energy behavior change efforts at Fort Carson, Colorado are part of a large information campaign and...behavior changes . Information they used included awareness on climate change and energy conservation. The researchers established a website to share

  6. Closing data gaps for LCA of food products: estimating the energy demand of food processing.

    Science.gov (United States)

    Sanjuán, Neus; Stoessel, Franziska; Hellweg, Stefanie

    2014-01-21

    Food is one of the most energy and CO2-intensive consumer goods. While environmental data on primary agricultural products are increasingly becoming available, there are large data gaps concerning food processing. Bridging these gaps is important; for example, the food industry can use such data to optimize processes from an environmental perspective, and retailers may use this information for purchasing decisions. Producers and retailers can then market sustainable products and deliver the information demanded by governments and consumers. Finally, consumers are increasingly interested in the environmental information of foods in order to lower their consumption impacts. This study provides estimation tools for the energy demand of a representative set of food process unit operations such as dehydration, evaporation, or pasteurization. These operations are used to manufacture a variety of foods and can be combined, according to the product recipe, to quantify the heat and electricity demand during processing. In combination with inventory data on the production of the primary ingredients, this toolbox will be a basis to perform life cycle assessment studies of a large number of processed food products and to provide decision support to the stakeholders. Furthermore, a case study is performed to illustrate the application of the tools.

  7. Band Gap Energies and Refractive Indices of Epitaxial Pb1-xSrxTe Thin Films

    Institute of Scientific and Technical Information of China (English)

    WENG Bin-Bin; WU Hui-Zhen; SI Jian-Xiao; XU Tian-Ning

    2008-01-01

    Pb1-xSrx Te thin films with different strontium (St) compositions are grown on BaF2 (111) substrates by molecular beam epitaxy (MBE). Using high resolution x-ray diffraction (HRXRD), we obtain Pb1-xSrx Te lattice constants,which vary in the range 6.462-6.492 A. According to the Vegard law and HRXRD data, Sr compositions in Pb1-xSrxTe thin films range from 0.0-8.0%. The Pb1-xSrx Te refractive index dispersions are attained from infrared transmission spectrum characterized by Fourier transform infrared (FTIR) transmission spectroscopy.It is found that refractive index decreases while Sr content increases in Pb1-xSrx Te. We also simulate the Pb1-xSrx Te transmission spectra theoretically to obtain the optical band gap energies which range between0.320 e V and 0.449 e V. The simulated results are in good agreement with the FTIR data. Finally, we determine the relation between Ph1-xSrx Te band gap energies and Sr compositions (Eg = 0.320+0.510x- 0.930x2 + 184x3 (e V) ).

  8. Observation of Low-Energy Einstein Phonon and Superconductivity in Single-Crystalline LaBe13

    Science.gov (United States)

    Hidaka, Hiroyuki; Shimizu, Yusei; Yamazaki, Seigo; Miura, Naoyuki; Nagata, Ryoma; Tabata, Chihiro; Mombetsu, Shota; Yanagisawa, Tatsuya; Amitsuka, Hiroshi

    2017-02-01

    The thermal and electrical transport properties of single-crystalline LaBe13 have been investigated by specific-heat (C) and electrical-resistivity (ρ) measurements. The specific-heat measurements in a wide temperature range revealed the presence of a hump anomaly near 40 K in the C(T)/T curve, indicating that LaBe13 has a low-energy Einstein-like-phonon mode with a characteristic temperature of ˜177 K. In addition, a superconducting transition was observed in the ρ measurements at the transition temperature of 0.53 K, which is higher than the value of 0.27 K reported previously by Bonville et al. Furthermore, an unusual T3 dependence was found in ρ(T) below ˜50 K, in contrast to the behavior expected from the electron-electron scattering or the electron-Debye phonon scattering.

  9. HOM damping properties of fundamental power couplers in the superconducting electron gun of the energy recovery LINAC at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Hammons, L.; Hahn, H.

    2011-03-28

    Among the accelerator projects under construction at the Relativistic Heavy Ion Collider (RHIC) is an R and D energy recovery LINAC (ERL) test facility. The ERL includes both a five-cell superconducting cavity as well as a superconducting, photoinjector electron gun. Because of the high-charge and high-current demands, effective higher-order mode (HOM) damping is essential, and several strategies are being pursued. Among these is the use of the fundamental power couplers as a means for damping some HOMs. Simulation studies have shown that the power couplers can play a substantial role in damping certain HOMs, and this presentation discusses these studies along with measurements.

  10. The Shifts of Band Gap and Binding Energies of Titania/Hydroxyapatite Material

    Directory of Open Access Journals (Sweden)

    Nguyen Thi Truc Linh

    2014-01-01

    Full Text Available The titania/hydroxyapatite (TiO2/HAp product was prepared by precipitating hydroxyapatite in the presence of TiO(OH2 gel in the hydrothermal system. The characteristics of the material were determined by using the measurements such as X-ray photoemission spectroscopy (XPS, X-ray diffraction (XRD, diffuse reflectance spectra (DRS, transmission electron microscopy (TEM, scanning electron microscopy (SEM, and energy dispersive X-ray (EDX. The XPS analysis showed that the binding energy values of Ca (2p1/2, 2p3/2, P (2p1/2, 2p3/2, and O 1s levels related to hydroxyapatite phase whereas those of Ti (2p3/2, 2p1/2 levels corresponded with the characterization of titanium (IV in TiO2. The XRD result revealed that TiO2/HAp sample had hydroxyapatite phase, but anatase or rutile phases were not found out. TEM image of TiO2/HAp product showed that the surface of the plate-shaped HAp particles had a lot of smaller particles which were considered as the compound of Ti. The experimental band gap of TiO2/HAp material calculated by the DRS measurement was 3.6 eV, while that of HAp pure was 5.3 eV and that of TiO2 pure was around 3.2 eV. The shift of the band gap energy of TiO2 in the range of 3.2–3.6 eV may be related to the shifts of Ti signals of XPS spectrum.

  11. Caffeine-containing energy drinks: beginning to address the gaps in what we know.

    Science.gov (United States)

    Sorkin, Barbara C; Coates, Paul M

    2014-09-01

    Energy drinks are relatively new to the United States but are the fastest growing segment of the beverage market. Humans have a long history of consuming caffeine in traditional beverages, such as cocoa, coffee, tea, and yerba maté, but 2 workshops held at the Institute of Medicine (http://www.iom.edu/Activities/Nutrition/PotentialHazardsCaffeineSupplements/2013-AUG-05.aspx) and the NIH (http://ods.od.nih.gov/News/EnergyDrinksWorkshop2013.aspx) in 2013 highlighted many critical gaps in understanding the biologic and behavioral effects of the mixtures of caffeine, vitamins, herbs, sugar or other sweeteners, and other ingredients that typify caffeine-containing energy drinks (CCEDs). For example, different surveys over the same 2010–2012 timeframe report discrepant prevalence of CCED use by teenagers, ranging from 10.3% in 13–17 y olds to >30% of those in grades 10 and 12. Understanding of functional interactions between CCED ingredients, drivers of use, and biologic and behavioral effects is limited. The 4 speakers in the Experimental Biology 2014 symposium titled “Energy Drinks: Current Knowledge and Critical Research Gaps” described recent progress by their groups in extending our understanding of prevalence of CCED use, sources of caffeine in the United States, drivers of CCED use, and behavioral correlations and effects of CCEDs, including effects on attractiveness of both alcoholic and non-alcoholic beverages.

  12. Superconductivity-induced phononic effects in high-temperature superconductors: Raman study

    Energy Technology Data Exchange (ETDEWEB)

    Limonov, M. [Ioffe Physico-Technical Institute, Politekhnicheskaya 26, 194021 St. Petersburg (Russian Federation); Superconductivity Research Laboratory, International Superconductivity Technology Center, 10-13, Shinonome 1-Chome, Koto-ku, Tokyo 135-0062 (Japan); Lee, S.; Masui, T.; Uchiyama, H.; Tajima, S. [Superconductivity Research Laboratory, International Superconductivity Technology Center, 10-13, Shinonome 1-Chome, Koto-ku, Tokyo 135-0062 (Japan); Yamanaka, A. [Chitose Institute of Science and Technology, Chitose, Hokkaido 066-8655 (Japan)

    2004-11-01

    Raman scattering spectra of (123) and Bi-based high-temperature superconductors (HTSC) with different doping levels have been investigated. It is demonstrated that phonons in HTSC can provide unique information on energy, symmetry, temperature- and doping-dependencies of the superconducting gap and pseudogap. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Exponential vanishing of the ground-state gap of the quantum random energy model via adiabatic quantum computing

    Energy Technology Data Exchange (ETDEWEB)

    Adame, J.; Warzel, S., E-mail: warzel@ma.tum.de [Zentrum Mathematik, TU München, Boltzmannstr. 3, 85747 Garching (Germany)

    2015-11-15

    In this note, we use ideas of Farhi et al. [Int. J. Quantum. Inf. 6, 503 (2008) and Quantum Inf. Comput. 11, 840 (2011)] who link a lower bound on the run time of their quantum adiabatic search algorithm to an upper bound on the energy gap above the ground-state of the generators of this algorithm. We apply these ideas to the quantum random energy model (QREM). Our main result is a simple proof of the conjectured exponential vanishing of the energy gap of the QREM.

  14. Esaki Diodes in van der Waals Heterojunctions with Broken-Gap Energy Band Alignment.

    Science.gov (United States)

    Yan, Rusen; Fathipour, Sara; Han, Yimo; Song, Bo; Xiao, Shudong; Li, Mingda; Ma, Nan; Protasenko, Vladimir; Muller, David A; Jena, Debdeep; Xing, Huili Grace

    2015-09-09

    van der Waals (vdW) heterojunctions composed of two-dimensional (2D) layered materials are emerging as a solid-state materials family that exhibits novel physics phenomena that can power a range of electronic and photonic applications. Here, we present the first demonstration of an important building block in vdW solids: room temperature Esaki tunnel diodes. The Esaki diodes were realized in vdW heterostructures made of black phosphorus (BP) and tin diselenide (SnSe2), two layered semiconductors that possess a broken-gap energy band offset. The presence of a thin insulating barrier between BP and SnSe2 enabled the observation of a prominent negative differential resistance (NDR) region in the forward-bias current-voltage characteristics, with a peak to valley ratio of 1.8 at 300 K and 2.8 at 80 K. A weak temperature dependence of the NDR indicates electron tunneling being the dominant transport mechanism, and a theoretical model shows excellent agreement with the experimental results. Furthermore, the broken-gap band alignment is confirmed by the junction photoresponse, and the phosphorus double planes in a single layer of BP are resolved in transmission electron microscopy (TEM) for the first time. Our results represent a significant advance in the fundamental understanding of vdW heterojunctions and broaden the potential applications of 2D layered materials.

  15. Determining the Energy Gap Between the sd-pf Neutron Shells in 25O

    Science.gov (United States)

    Jones, Michael; Frank, Nathan; Deyoung, Paul; Baumann, Thomas; Kohley, Zach; Smith, Jenna; Spyrou, Artemis; Stiefel, Krystin; Kuchera, Anthony; Thoennessen, Michael; MoNA Collaboration

    2014-09-01

    The excited states of 25O, particularly those of negative parity, are of great interest for determining the evolution of the sd-pf shell gap in and around the ``island of inversion.'' Shell Model (WBBS) calculations tuned to nearby 27Ne predict the 3/2- state in 25O to be only 500 keV above the ground state, implying the sd-pf shell gap to be small. Hence it is likely for nuclei beyond N = 16 to have mixing between the 0d3/2 and 1p3/2 orbitals. A recent experiment, performed at the NSCL, populated 25O through use of a (d , p) reaction. Using the Ursinus College Liquid Hydrogen Target, an 24O beam impinged on a deuterium target cell with a thickness of 400 mg/cm2 at a rate of approximately 30 pps to produce 25O, which decayed immediately by neutron emission. The resulting charged fragments were bent by the Sweeper magnet into a suite of charged particle detectors, while the neutrons traveled unimpeded towards MoNA (Modular Neutron Array) and LISA (Large multi-Institutional Scintillator Array). Together, MoNA-LISA and the Sweeper provide a full kinematic measurement from which the decay energy of the 2-body system can be determined. Preliminary results will be discussed.

  16. Critical analysis of soft point contact Andreev reflection spectra between superconducting films and pressed In

    Science.gov (United States)

    Parab, Pradnya; Chauhan, Prashant; Muthurajan, H.; Bose, Sangita

    2017-04-01

    We present a critical analysis of an alternative technique of point contact Andreev reflection (PCAR) spectroscopy used to extract energy resolved information of superconductors which is based on making ‘soft-contacts’ between superconductors and indium. This technique is not sensitive to mechanical vibrations and hence can be used in a cryogen free platform increasing its accessibility to users having no access to cryogenic liquids. Through our experiments on large number of superconducting films we show that the PCAR spectra below the T c of In show sub-harmonic gap structures consistent with the theory of multiple Andreev reflection (MAR) and a zero bias conductance (ZBC) anomaly associated with the Josephson supercurrent. Furthermore, we demonstrate that large contact resistance with low transparency ballistic contacts in the PCAR regime are required to obtain reliable spectroscopic data. One limitation of the technique arises for low contact resistance junctions where the superconducting proximity effect (SPE) reduces the value of the superconducting energy gap.

  17. Scaling Universality between Band Gap and Exciton Binding Energy of Two-Dimensional Semiconductors

    Science.gov (United States)

    Jiang, Zeyu; Liu, Zhirong; Li, Yuanchang; Duan, Wenhui

    2017-06-01

    Using first-principles G W Bethe-Salpeter equation calculations and the k .p theory, we unambiguously show that for two-dimensional (2D) semiconductors, there exists a robust linear scaling law between the quasiparticle band gap (Eg) and the exciton binding energy (Eb), namely, Eb≈Eg/4 , regardless of their lattice configuration, bonding characteristic, as well as the topological property. Such a parameter-free universality is never observed in their three-dimensional counterparts. By deriving a simple expression for the 2D polarizability merely with respect to Eg, and adopting the screened hydrogen model for Eb, the linear scaling law can be deduced analytically. This work provides an opportunity to better understand the fantastic consequence of the 2D nature for materials, and thus offers valuable guidance for their property modulation and performance control.

  18. Band Gap, Molecular Energy and Electrochromic Characterization of Electrosynthesized Hydroxymethyl 3,4-Ethylenedioxythiophene

    Science.gov (United States)

    Co, Thien Thanh; Tran, Tri Quoc; Le, Hai Viet; Ho, Vu Anh Pham; Tran, Lam Dai

    2016-12-01

    Hydroxymethyl functionalized 3,4-ethylenedioxythiophene (EDOT-MeOH) monomer was synthesized according to a previously reported procedure. Electropolymerization of EDOT-MeOH was performed in acetonitrile (ACN) containing tetrabutylammonium perchlorate (Bu4NClO4) as the supporting electrolyte by chronoamperometry on platinum (Pt) and fluorine-doped tin oxide-coated glass substrates. The resulting conjugated polymer (PEDOT-MeOH) was characterized by cyclic voltammetry and UV-Vis spectrophotometer techniques. The polymer showed a deep HOMO energy level of -5.31 eV with a very low band gap of 1.54 eV. Spectroelectrochemical study revealed that the PEDOT-MeOH has interesting electrochromic properties.

  19. Band Gap, Molecular Energy and Electrochromic Characterization of Electrosynthesized Hydroxymethyl 3,4-Ethylenedioxythiophene

    Science.gov (United States)

    Co, Thien Thanh; Tran, Tri Quoc; Le, Hai Viet; Ho, Vu Anh Pham; Tran, Lam Dai

    2017-03-01

    Hydroxymethyl functionalized 3,4-ethylenedioxythiophene (EDOT-MeOH) monomer was synthesized according to a previously reported procedure. Electropolymerization of EDOT-MeOH was performed in acetonitrile (ACN) containing tetrabutylammonium perchlorate (Bu4NClO4) as the supporting electrolyte by chronoamperometry on platinum (Pt) and fluorine-doped tin oxide-coated glass substrates. The resulting conjugated polymer (PEDOT-MeOH) was characterized by cyclic voltammetry and UV-Vis spectrophotometer techniques. The polymer showed a deep HOMO energy level of -5.31 eV with a very low band gap of 1.54 eV. Spectroelectrochemical study revealed that the PEDOT-MeOH has interesting electrochromic properties.

  20. Wind Energy Industry Eagle Detection and Deterrents: Research Gaps and Solutions Workshop Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, Karin [National Renewable Energy Lab. (NREL), Golden, CO (United States); DeGeorge, Elise [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-04-13

    The Bald and Golden Eagle Protection Act (BGEPA) prohibits the 'take' of these birds. The act defines take as to 'pursue, shoot, shoot at, poison, wound, kill, capture, trap, collect, destroy, molest or disturb.' The 2009 Eagle Permit Rule (74 FR 46836) authorizes the U.S. Fish and Wildlife Service (USFWS) to issue nonpurposeful (i.e., incidental) take permits, and the USFWS 2013 Eagle Conservation Plan Guidance provides a voluntary framework for issuing programmatic take permits to wind facilities that incorporate scientifically supportable advanced conservation practices (ACPs). Under these rules, the Service can issue permits that authorize individual instances of take of bald and golden eagles when the take is associated with, but not the purpose of, an otherwise lawful activity, and cannot practicably be avoided. To date, the USFWS has not approved any ACPs, citing the lack of evidence for 'scientifically supportable measures.' The Eagle Detection and Deterrents Research Gaps and Solutions Workshop was convened at the National Renewable Energy Laboratory in December 2015 with a goal to comprehensively assess the current state of technologies to detect and deter eagles from wind energy sites and the key gaps concerning reducing eagle fatalities and facilitating permitting under the BGEPA. During the workshop, presentations and discussions focused primarily on existing knowledge (and limitations) about the biology of eagles as well as technologies and emerging or novel ideas, including innovative applications of tools developed for use in other sectors, such as the U.S. Department of Defense and aviation. The main activity of the workshop was the breakout sessions, which focused on the current state of detection and deterrent technologies and novel concepts/applications for detecting and minimizing eagle collisions with wind turbines. Following the breakout sessions, participants were asked about their individual impressions of the

  1. Band Gap Engineering in a 2D Material for Solar-to-Chemical Energy Conversion.

    Science.gov (United States)

    Hu, Jun; Guo, Zhenkun; Mcwilliams, Peter E; Darges, John E; Druffel, Daniel L; Moran, Andrew M; Warren, Scott C

    2016-01-13

    The electronic structure of 2D semiconductors depends on their thickness, providing new opportunities to engineer semiconductors for energy conversion, electronics, and catalysis. Here we show how a 3D semiconductor, black phosphorus, becomes active for solar-to-chemical energy conversion when it is thinned to a 2D material. The increase in its band gap, from 0.3 eV (3D) to 2.1 eV (2D monolayer), is accompanied by a 40-fold enhancement in the formation of chemical products. Despite this enhancement, smaller flakes also have shorter excited state lifetimes. We deduce a mechanism in which recombination occurs at flake edges, while the "van der Waals" surface of black phosphorus bonds to chemical intermediates and facilitates electron transfer. The unique properties of black phosphorus highlight its potential as a customizable material for solar energy conversion and catalysis, while also allowing us to identify design rules for 2D photocatalysts that will enable further improvements in these materials.

  2. Superconducting Magnets for Particle Accelerators

    CERN Document Server

    Rossi, L

    2012-01-01

    Superconductivity has been the most influential technology in the field of accelerators in the last 30 years. Since the commissioning of the Tevatron, which demonstrated the use and operability of superconductivity on a large scale, superconducting magnets and rf cavities have been at the heart of all new large accelerators. Superconducting magnets have been the invariable choice for large colliders, as well as cyclotrons and large synchrotrons. In spite of the long history of success, superconductivity remains a difficult technology, requires adequate R&D and suitable preparation, and has a relatively high cost. Hence, it is not surprising that the development has also been marked by a few setbacks. This article is a review of the main superconducting accelerator magnet projects; it highlights the main characteristics and main achievements, and gives a perspective on the development of superconducting magnets for the future generation of very high energy colliders.

  3. Lifetime Effects in Color Superconductivity at Weak Coupling

    CERN Document Server

    Manuel, C

    2000-01-01

    Present computations of the gap of color superconductivity in weak coupling assume that the quarks which participate in the condensation process are infinitely long-lived. However, the quasiparticles in a plasma are characterized by having a finite lifetime. In this article we take into account this fact to evaluate its effect in the computation of the color gap. By first considering the Schwinger-Dyson equations in weak coupling, when one-loop self-energy corrections are included, a general gap equation is written in terms of the spectral densities of the quasiparticles. To evaluate lifetime effects, we then model the spectral density by a Lorentzian function. We argue that the decay of the quasiparticles limits their efficiency to condense. The value of the gap at the Fermi surface is then reduced. To leading order, these lifetime effects can be taken into account by replacing the coupling constant of the gap equation by a reduced effective one.

  4. Superconductivity and superconductive electronics

    Science.gov (United States)

    Beasley, M. R.

    1990-12-01

    The Stanford Center for Research on Superconductivity and Superconductive Electronics is currently focused on developing techniques for producing increasingly improved films and multilayers of the high-temperature superconductors, studying their physical properties and using these films and multilayers in device physics studies. In general the thin film synthesis work leads the way. Once a given film or multilayer structure can be made reasonably routinely, the emphasis shifts to studying the physical properties and device physics of these structures and on to the next level of film quality or multilayer complexity. The most advanced thin films synthesis work in the past year has involved developing techniques to deposit a-axis and c-axis YBCO/PBCO superlattices and related structures. The in-situ feature is desirable because no solid state reactions with accompanying changes in volume, morphology, etc., that degrade the quality of the film involved.

  5. Superconductivity versus bound-state formation in a two-band superconductor with small Fermi energy: Applications to Fe pnictides/chalcogenides and doped SrTiO3

    Science.gov (United States)

    Chubukov, Andrey V.; Eremin, Ilya; Efremov, Dmitri V.

    2016-05-01

    We analyze the interplay between superconductivity and the formation of bound pairs of fermions (BCS-BEC crossover) in a 2D model of interacting fermions with small Fermi energy EF and weak attractive interaction, which extends to energies well above EF. The 2D case is special because a two-particle bound state forms at arbitrary weak interaction, and already at weak coupling, one has to distinguish between the bound-state formation and superconductivity. We briefly review the situation in the one-band model and then consider two different two-band models: one with one hole band and one electron band and another with two hole or two electron bands. In each case, we obtain the bound-state energy 2 E0 for two fermions in a vacuum and solve the set of coupled equations for the pairing gaps and the chemical potentials to obtain the onset temperature of the pairing Tins and the quasiparticle dispersion at T =0 . We then compute the superfluid stiffness ρs(T =0 ) and obtain the actual Tc. For definiteness, we set EF in one band to be near zero and consider different ratios of E0 and EF in the other band. We show that at EF≫E0 , the behavior of both two-band models is BCS-like in the sense that Tc≈Tins≪EF and Δ ˜Tc . At EF≪E0 , the two models behave differently: in the model with two hole/two electron bands, Tins˜E0/lnE/0EF , Δ ˜(E0EF) 1 /2 , and Tc˜EF , like in the one-band model. In between Tins and Tc, the system displays a preformed pair behavior. In the model with one hole and one electron bands, Tc remains of order Tins, and both remain finite at EF=0 and of the order of E0. The preformed pair behavior still does exist in this model because Tc is numerically smaller than Tins. For both models, we reexpress Tins in terms of the fully renormalized two-particle scattering amplitude by extending to the two-band case (the method pioneered by Gorkov and Melik-Barkhudarov back in 1961). We apply our results for the model with a hole and an electron band to

  6. Predicting energy consumption and savings in the housing stock: A performance gap analysis in the Netherlands

    Directory of Open Access Journals (Sweden)

    Dasa Majcen

    2016-03-01

    Full Text Available Research methods The research used several large datasets, about dwellings theoretical energy performance, most of which were related to energy label certificates. All the datasets containing theoretical performance were merged with actual energy data. In addition to that, some were also enriched with socioeconomic and behaviour related data from Statistics Netherlands (CBS or from surveys which were designed for the purpose of this research. Simple descriptive statistics were used to compare average theoretical and actual consumptions. Advanced statistical tests were used for detecting correlations, followed by several regression analyses. In a separate scenario study, the resulting averages of both theoretical and actual consumptions were extrapolated nation-wide in order to be compared with the existing policy targets.Due to low predictive power of the variables in regression analyses, a sensitivity analysis of the theoretical gas use was performed on six assumptions made in the theoretical calculation to show how an increment in one of the assumptions affects the final theoretical gas consumption and whether this can explain the performance gap.Last but not least, longitudinal data of the social housing dwelling stock between 2010 and 2013 was analysed, focusing on dwellings that had undergone renovation. The goal was to find out whether the theoretical reduction of consumption materialised and to what extent. A comparison of the actual reduction of different renovation measures was made in order to show what renovation practices lower the consumptions most effectively. The discrepancies between actual and theoretical heating energy consumption in Dutch dwellings.Discrepancies between theoretical and actual gas and electricity consumptionOn average, the total theoretical primary energy use seems to be in accordance with actual primary energy consumption but when looking at more detailed data, one can see that the contribution of gas to the

  7. Athermal Energy Loss from X-Rays Deposited in Thin Superconducting Bilayers on Solid Substrates

    Science.gov (United States)

    Bandler, Simon R.; Kozorezov, Alexander; Balvin, Manuel A.; Busch, Sarah E.; Nagler, Peter N.; Porst, Jan-Patrick; Smith, Stephen J.; Stevenson, Thomas R.; Sadleir, John E.; Seidel, George M.

    2012-01-01

    An important feature that determines the energy resolution of any type of thin film microcalorimeter is the fraction of athermal energy that can be lost to the heat bath prior to the device coming into thermal equilibrium.

  8. Broadband illumination of superconducting pair breaking photon detectors

    Science.gov (United States)

    Guruswamy, T.; Goldie, D. J.; Withington, S.

    2016-04-01

    Understanding the detailed behaviour of superconducting pair breaking photon detectors such as Kinetic Inductance Detectors (KIDs) requires knowledge of the nonequilibrium quasiparticle energy distributions. We have previously calculated the steady state distributions resulting from uniform absorption of monochromatic sub gap and above gap frequency radiation by thin films. In this work, we use the same methods to calculate the effect of illumination by broadband sources, such as thermal radiation from astrophysical phenomena or from the readout system. Absorption of photons at multiple above gap frequencies is shown to leave unchanged the structure of the quasiparticle energy distribution close to the superconducting gap. Hence for typical absorbed powers, we find the effects of absorption of broadband pair breaking radiation can simply be considered as the sum of the effects of absorption of many monochromatic sources. Distribution averaged quantities, like quasiparticle generation efficiency η, match exactly a weighted average over the bandwidth of the source of calculations assuming a monochromatic source. For sub gap frequencies, however, distributing the absorbed power across multiple frequencies does change the low energy quasiparticle distribution. For moderate and high absorbed powers, this results in a significantly larger η-a higher number of excess quasiparticles for a broadband source compared to a monochromatic source of equal total absorbed power. Typically in KIDs the microwave power absorbed has a very narrow bandwidth, but in devices with broad resonance characteristics (low quality factors), this increase in η may be measurable.

  9. Cryogenic Fiber Optic Sensors for Superconducting Magnets and Power Transmission Lines in High Energy Physics Applications

    CERN Document Server

    AUTHOR|(CDS)2081689; Bajko, Marta

    In the framework of the Luminosity upgrade of the Large Hadron Collider (HL - LHC), a remarkable R&D effort is now ongoing at the European Organization for Nuclear Research (CERN) in order to develop a new generation of accelerator magnets and superconducting power transmission lines. The magnet technology will be based on Nb3Sn enabling to operate in the 11 - 13 T range. In parallel, in order to preserve the power converters from the increasing radiation level, high power transmission lines are foreseen to feed the magnets from free - radiation zones. These will be based on high temperature superconductors cooled down with helium gas in the range 5 - 30 K. The new technologies will require advanced design and fabrication approaches as well as adapted instrumentation for monitoring both the R&D phase and operation. Resistive sensors have been used so far for voltage, temperature and strain monitoring but their integration still suffers from the number of electrical wires and the complex compensation o...

  10. A review of the regulatory energy performance gap and its underlying causes in non-domestic buildings

    Directory of Open Access Journals (Sweden)

    Chris van Dronkelaar

    2016-01-01

    Full Text Available This paper reviews the discrepancy between predicted and measured energy use in non-domestic buildings in a UK context with outlook to global studies. It explains differences between energy performance quantification and classifies this energy performance gap as a difference between compliance or performance modelling with measured energy use. Literary sources are reviewed in order to signify the magnitude between predicted and measured energy use, which is found to deviate by +34% with a standard deviation of 55% based on 62 buildings. It proceeds in describing the underlying causes for the performance gap, existent in all stages of the building life cycle, and identifies the dominant factors to be related to specification uncertainty in modelling, occupant behaviour and poor operational practices having an estimated effect of 20-60%, 10-80% and 15-80% on energy use respectively. Other factors that have a high impact are related to establishing the energy performance target, impact of early design decisions, heuristic uncertainty in modelling and occupant behaviour. Finally action measures and feedback processes in order to reduce the performance gap are discussed, indicating the need for energy in-use legislation, insight into design stage models, accessible energy data and expansion of research efforts towards building performance in-use in relation to predicted performance

  11. Evidence for Intertwining of Superconductivity and Antiferromagnetism in a Cuprate

    Science.gov (United States)

    Tranquada, John; Xu, Zhijun; Stock, C.; Chi, S. X.; Kolesnikov, A. I.; Xu, G. Y.; Gu, G. D.

    2014-03-01

    We have used inelastic neutron scattering to measure the low-energy, incommensurate antiferromagnetic spin excitations both above and below the superconducting transition temperature (Tc = 32 K) of La1.905Ba0.095CuO4. While the magnetic excitations in optimally-doped cuprates typically show the development of a spin gap and magnetic resonance below Tc, our sample shows no such effect. Instead strong, gapless spin excitations coexist with bulk superconductivity. To understand this, we note that previous transport measurements have shown that the superconducting layers are decoupled by a magnetic field applied along the c-axis, resulting in a state with frustrated interlayer Josephson coupling, similar to LBCO with x = 1 / 8 , where it has been proposed that pair-density-wave superconductivity occurs. This suggests that, in a similar fashion, the spatially modulated antiferromagnetic correlations (which we see directly in the x = 0 . 095 sample) are intertwined with a spatially modulated superconducting pair wave function. Work at BNL supported by Office of Basic Energy Sciences, US DOE, under Contract No. DE-AC02-98CH10886.

  12. LHC Abort Gap Cleaning with the Transverse Damper

    CERN Document Server

    Gianfelice-Wendt, E; Höfle, Wolfgang; Kain, V; Meddahi, M; Shaposhnikova, E; Koschik, A

    2010-01-01

    In the Large Hadron Collider, LHC, particles not captured by the RF system at injection or leaking out of the RF bucket may quench the superconducting magnets during beam abort. The problem, common to other superconducting machines, is particularly serious for the LHC due to the very large stored energy in the beam. For the LHC a way of removing the unbunched beam has been studied and it uses the existing damper kickers to excite resonantly the particles travelling along the abort gap. In this paper we describe the results of simulations performed with MAD X for various LHC optics configurations, including the estimated multipolar errors.

  13. Topology Comparison of Superconducting Generators for 10-MW Direct-Drive Wind Turbines: Cost of Energy Based

    DEFF Research Database (Denmark)

    Liu, Dong; Polinder, Henk; Abrahamsen, Asger Bech

    2017-01-01

    This paper aims at finding feasible electromagnetic designs of superconducting synchronous generators (SCSGs) for a 10-MW direct-drive wind turbine. Since a lower levelized cost of energy (LCoE) increases the feasibility of SCSGs in this application, 12 generator topologies are compared regarding...... their LCoE in a simplified form of levelized equipment cost of energy (LCoE$_{\\text{eq}}$). MgB$_2$ wires are employed in the field winding. Based on the current unit cost and critical current density capability of the MgB $_2$ wire at 20 K, the topologies with more iron have a much lower LCo......E$_{\\text{eq}}$ than the topologies with more nonmagnetic cores. The fully iron-cored topology with salient poles has the lowest LCoE $_{\\text{eq}}$. Then a scenario study shows that the difference of LCoE$_{\\text{eq}}$ between the topologies will become much smaller when the unit cost of the MgB$_2$ wire drops...

  14. Temperature-Dependent Energy Gap Shift and Thermally Activated Transition in Multilayer CdTe/ZnTe Quantum Dots.

    Science.gov (United States)

    Man, Minh Tan; Lee, Hong Seok

    2015-10-01

    We investigated the influence of growth conditions on carrier dynamics in multilayer CdTe/ZnTe quantum dots (QDs) by monitoring the temperature dependence of the photoluminescence emission energy. The results were analyzed using the empirical Varshni and O'Donnell relations for temperature variation of the energy gap shift. Best fit values showed that the thermally activated transition between two different states occurs due to band low-temperature quenching with values separated by 5.0-6.5 meV. The addition of stack periods in multilayer CdTe/ZnTe QDs plays an important role in the energy gap shift, where the exciton binding energy is enhanced, and, conversely, the exciton-phonon coupling strength is suppressed with an average energy of 19.3-19.8 meV.

  15. Rapidity gaps and jets as a new-physics signature in very-high-energy hadron-hadron collisions

    Science.gov (United States)

    Bjorken, J. D.

    1993-01-01

    In hadron-hadron collisions, production of Higgs bosons and other color-singlet systems can occur via fusion of electroweak bosons, occasionally leaving a ``rapidity gap'' in the underlying-event structure. This observation, due to Dokshitzer, Khoze, and Troyan, is studied to see whether it serves as a signature for detection of the Higgs bosons, etc. We find it is a very strong signature at subprocess c.m. energies in excess of a few TeV. The most serious problem with this strategy is the estimation of the fraction of events containing the rapidity gap; most of the time the gap is filled by soft interactions of spectator degrees of freedom. We also study this question and estimate this ``survival probability of the rapidity gap'' to be of order 5%, with an uncertainty of a factor 3. Ways of testing this estimate and further discussion of the underlying hard-diffraction physics are presented.

  16. Prospects for the medium- and long-term development of China`s electric power industry and analysis of the potential market for superconductivity technology

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z. [Bob Lawrence and Associates, Inc., Alexandria, VA (United States)

    1998-05-01

    First of all, overall economic growth objectives in China are concisely and succinctly specified in this report. Secondly, this report presents a forecast of energy supply and demand for China`s economic growth for 2000--2050. In comparison with the capability of energy construction in China in the future, a gap between supply and demand is one of the important factors hindering the sustainable development of Chain`s economy. The electric power industry is one of China`s most important industries. To adopt energy efficiency through high technology and utilizing energy adequately is an important technological policy for the development of China`s electric power industry in the future. After briefly describing the achievements of China`s electric power industry, this report defines the target areas and policies for the development of hydroelectricity and nuclear electricity in the 2000s in China, presents the strategic position of China`s electric power industry as well as objectives and relevant plans of development for 2000--2050. This report finds that with the discovery of superconducting electricity, the discovery of new high-temperature superconducting (HTS) materials, and progress in materials techniques, the 21st century will be an era of superconductivity. Applications of superconductivity in the energy field, such as superconducting storage, superconducting transmission, superconducting transformers, superconducting motors, its application in Magneto-Hydro-Dynamics (MHD), as well as in nuclear fusion, has unique advantages. Its market prospects are quite promising. 12 figs.

  17. Tuning the superconductivity in single-layer FeSe/oxides by interface engineering

    Science.gov (United States)

    Peng, Rui

    2015-03-01

    The discovery of high Tc in single-layer FeSe films has enormous implications for both searching new high Tc superconductors and exploring the important factors for high temperature superconductivity. In this talk, I will show our recent angle-resolved photoemission studies on various FeSe-based heterostructures grown by molecular beam epitaxy. We systematically studied the electronic structures and superconducting properties of FeSe with varied strain, different interfacial oxide materials and different thicknesses, and uncover that electronic correlations and superconducting gap-closing temperatures are tuned by interfacial effects. We exclude the direct relation between superconductivity and tensile strain, or the energy of an interfacial phonon mode, and demonstrate the crucial and non-trivial role of FeSe/oxide interface on the high pairing temperature. By tuning the interface, superconducting pairing temperature reaches up to 75K in FeSe/Nb:BaTiO3/KTaO3 with the in-plane lattice of 3.99 Å, which sets a new superconducting-gap-closing temperature record for iron-based superconductors, and may paves the way to more cost-effective applications of ultra-thin superconductors. Besides, in extremely tensile-strained single-layer FeSe films, we found that the Fermi surfaces consist of two elliptical electron pockets at the zone corner, without detectable hybridization. The lifting of degeneracy is clearly observed for the first time for the iron-based superconductors with only electron Fermi surfaces. Intriguingly, the superconducting gap distribution is anisotropic but nodeless around the electron pockets, with minima at the crossings of the two pockets. Our results provide important experimental foundations for understanding the interfacial superconductivity and the pairing symmetry puzzle of iron-based superconductors, and also provide clues for further enhancing Tc through interface engineering.

  18. Unconventional superconductivity in Ba(0.6)K(0.4)Fe2As2 from inelastic neutron scattering.

    Science.gov (United States)

    Christianson, A D; Goremychkin, E A; Osborn, R; Rosenkranz, S; Lumsden, M D; Malliakas, C D; Todorov, I S; Claus, H; Chung, D Y; Kanatzidis, M G; Bewley, R I; Guidi, T

    2008-12-18

    A new family of superconductors containing layers of iron arsenide has attracted considerable interest because of their high transition temperatures (T(c)), some of which are >50 K, and because of similarities with the high-T(c) copper oxide superconductors. In both the iron arsenides and the copper oxides, superconductivity arises when an antiferromagnetically ordered phase has been suppressed by chemical doping. A universal feature of the copper oxide superconductors is the existence of a resonant magnetic excitation, localized in both energy and wavevector, within the superconducting phase. This resonance, which has also been observed in several heavy-fermion superconductors, is predicted to occur when the sign of the superconducting energy gap takes opposite values on different parts of the Fermi surface, an unusual gap symmetry which implies that the electron pairing interaction is repulsive at short range. Angle-resolved photoelectron spectroscopy shows no evidence of gap anisotropy in the iron arsenides, but such measurements are insensitive to the phase of the gap on separate parts of the Fermi surface. Here we report inelastic neutron scattering observations of a magnetic resonance below T(c) in Ba(0.6)K(0.4)Fe(2)As(2), a phase-sensitive measurement demonstrating that the superconducting energy gap has unconventional symmetry in the iron arsenide superconductors.

  19. Band gap and defect states of MgO thin films investigated using reflection electron energy loss spectroscopy

    Directory of Open Access Journals (Sweden)

    Sung Heo

    2015-07-01

    Full Text Available The band gap and defect states of MgO thin films were investigated by using reflection electron energy loss spectroscopy (REELS and high-energy resolution REELS (HR-REELS. HR-REELS with a primary electron energy of 0.3 keV revealed that the surface F center (FS energy was located at approximately 4.2 eV above the valence band maximum (VBM and the surface band gap width (EgS was approximately 6.3 eV. The bulk F center (FB energy was located approximately 4.9 eV above the VBM and the bulk band gap width was about 7.8 eV, when measured by REELS with 3 keV primary electrons. From a first-principles calculation, we confirmed that the 4.2 eV and 4.9 eV peaks were FS and FB, induced by oxygen vacancies. We also experimentally demonstrated that the HR-REELS peak height increases with increasing number of oxygen vacancies. Finally, we calculated the secondary electron emission yields (γ for various noble gases. He and Ne were not influenced by the defect states owing to their higher ionization energies, but Ar, Kr, and Xe exhibited a stronger dependence on the defect states owing to their small ionization energies.

  20. Band gap and defect states of MgO thin films investigated using reflection electron energy loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Sung [Analytical Engineering Group, Samsung Advanced Institute of Technology, 130, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, S. Korea, 443-803 (Korea, Republic of); College of Information and Communication Engineering, Sungkyunkwan University, Cheoncheon-dong 300, Jangan-gu, Suwon 440-746, S. Korea (Korea, Republic of); Cho, Eunseog [CAE Group, Samsung Advanced Institute of Technology, 130, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, S. Korea, 443-803 (Korea, Republic of); Lee, Hyung-Ik; Park, Gyeong Su [Analytical Engineering Group, Samsung Advanced Institute of Technology, 130, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, S. Korea, 443-803 (Korea, Republic of); Kang, Hee Jae [Department of Physics, Chungbuk National University, Cheongju, S. Korea (Korea, Republic of); Nagatomi, T. [Analysis & Simulation Center, Asahi Kasei Corporation, 2-1 Samejima, Fuji, Shizuoka 416-8501 (Japan); Choi, Pyungho; Choi, Byoung-Deog, E-mail: bdchoi@skku.edu [College of Information and Communication Engineering, Sungkyunkwan University, Cheoncheon-dong 300, Jangan-gu, Suwon 440-746, S. Korea (Korea, Republic of)

    2015-07-15

    The band gap and defect states of MgO thin films were investigated by using reflection electron energy loss spectroscopy (REELS) and high-energy resolution REELS (HR-REELS). HR-REELS with a primary electron energy of 0.3 keV revealed that the surface F center (FS) energy was located at approximately 4.2 eV above the valence band maximum (VBM) and the surface band gap width (E{sub g}{sup S}) was approximately 6.3 eV. The bulk F center (F{sub B}) energy was located approximately 4.9 eV above the VBM and the bulk band gap width was about 7.8 eV, when measured by REELS with 3 keV primary electrons. From a first-principles calculation, we confirmed that the 4.2 eV and 4.9 eV peaks were F{sub S} and F{sub B}, induced by oxygen vacancies. We also experimentally demonstrated that the HR-REELS peak height increases with increasing number of oxygen vacancies. Finally, we calculated the secondary electron emission yields (γ) for various noble gases. He and Ne were not influenced by the defect states owing to their higher ionization energies, but Ar, Kr, and Xe exhibited a stronger dependence on the defect states owing to their small ionization energies.

  1. Athermal Energy Loss from X-rays Deposited in Thin Superconducting Films on Solid Substrates

    Science.gov (United States)

    Kozorezov, Alexander G.; Lambert, Colin J.; Bandler, Simon R.; Balvin, Manuel A.; Busch, Sarah E.; Sagler, Peter N.; Porst, Jan-Patrick; Smith, Stephen J.; Stevenson, Thomas R.; Sadleir, John E.

    2013-01-01

    When energy is deposited in a thin-film cryogenic detector, such as from the absorption of an X-ray, an important feature that determines the energy resolution is the amount of athermal energy that can be lost to the heat bath prior to the elementary excitation systems coming into thermal equilibrium. This form of energy loss will be position-dependent and therefore can limit the detector energy resolution. An understanding of the physical processes that occur when elementary excitations are generated in metal films on dielectric substrates is important for the design and optimization of a number of different types of low temperature detector. We have measured the total energy loss in one relatively simple geometry that allows us to study these processes and compare measurements with calculation based upon a model for the various di.erent processes. We have modeled the athermal phonon energy loss in this device by finding an evolving phonon distribution function that solves the system of kinetic equations for the interacting system of electrons and phonons. Using measurements of device parameters such as the Debye energy and the thermal di.usivity we have calculated the expected energy loss from this detector geometry, and also the position-dependent variation of this loss. We have also calculated the predicted impact on measured spectral line-shapes, and shown that they agree well with measurements. In addition, we have tested this model by using it to predict the performance of a number of other types of detector with di.erent geometries, where good agreement is also found.

  2. Odd-parity superconductivity in Weyl semimetals

    Science.gov (United States)

    Wei, Huazhou; Chao, Sung-Po; Aji, Vivek

    2014-01-01

    Unconventional superconducting states of matter are realized in the presence of strong spin-orbit coupling. In particular, nondegenerate bands can support odd-parity superconductivity with rich topological content. Here we study whether this is the case for Weyl semimetals. These are systems whose low-energy sector, in the absence of interactions, is described by linearly dispersing chiral fermions in three dimensions. The energy spectrum has nodes at an even number of points in the Brillouin zone. Consequently both intranodal finite momentum pairing and internodal BCS superconductivity are allowed. For local attractive interaction the finite momentum pairing state with chiral p-wave symmetry is found to be most favorable at finite chemical potential. The state is an analog of the superfluid 3He A phase, with Cooper pairs having finite center-of-mass momentum. For chemical potential at the node the state is preempted by a fully gapped charge density wave. For nonlocal attraction the BCS state wins out for all values of the chemical potential.

  3. High-pressure superconducting state in hydrogen

    Science.gov (United States)

    Duda, A. M.; Szczȩśniak, R.; Sowińska, M. A.; Kosiacka, A. H.

    2016-10-01

    The paper determines the thermodynamic parameters of the superconducting state in the metallic atomic hydrogen under the pressure at 1 TPa, 1.5 TPa, and 2.5 TPa. The calculations were conducted in the framework of the Eliashberg formalism. It has been shown that the critical temperature is very high (in the range from 301.2 K to 437.3 K), as well as high are the values of the electron effective mass (from 3.43me to 6.88me), where me denotes the electron band mass. The ratio of the low-temperature energy gap to the critical temperature explicitly violates the predictions of the BCS theory: 2 Δ (0) /kB TC ∈ . Additionally, the free energy difference between the superconducting and normal state, the thermodynamic critical field, and the specific heat of the superconducting state have been determined. Due to the significant strong-coupling and retardation effects those quantities cannot be correctly described in the framework of the BCS theory.

  4. Synthesis and Exciton Dynamics of Donor-Orthogonal Acceptor Conjugated Polymers: Reducing the Singlet–Triplet Energy Gap

    KAUST Repository

    Freeman, David M. E.

    2017-06-09

    The presence of energetically low-lying triplet states is a hallmark of organic semiconductors. Even though they present a wealth of interesting photophysical properties, these optically dark states significantly limit optoelectronic device performance. Recent advances in emissive charge-transfer molecules have pioneered routes to reduce the energy gap between triplets and

  5. Synthesis, characterization and band gap energy of poly(ɛ-caprolactone)/Sr-MSA nano-composite

    Science.gov (United States)

    Kannammal, L.; Palanikumar, S.; Meenarathi, B.; Yelilarasi, A.; Anbarasan, R.

    2014-04-01

    A mercaptosuccinic acid (MSA) decorated Sr nano-particle (NP) was prepared and characterized by using various analytical techniques and was used as a chemical initiator for the ring opening polymerization (ROP) of ɛ-caprolactone (CL). The ROP of CL was carried out at various experimental conditions under N2 atmosphere with mild stirring. The initiating efficiency of MSA-decorated Sr NP was tested in terms of Fourier transform infrared-relative intensity, melting temperature (Tm), degradation temperature (Td) and molecular weight (Mw) of poly(ɛ-caprolactone) (PCL), differential scanning calorimetry, UV-visible spectroscopy, field emission scanning electron microscopy, thermogravimetric analysis and gel permeation chromatography analytical techniques. The nuclear magnetic resonance spectrum confirms the chemical structure of PCL. While increasing the [M/I] ratio, the Mw of PCL was linearly increased. The band gap energy of Sr was determined from the UV-visible spectrum. The reflectance study proves the hydrophobic nature of the Sr-hybrid and its nano-composite formation with PCL.

  6. Cosmic ray antiproton measurements in the 4-19 GeV energy range using the NMSU/WiZard-matter antimatter superconducting spectrometer 2 (MASS2)

    Energy Technology Data Exchange (ETDEWEB)

    Basini, G.; Bongiorno, F. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Brunetti, M.T.; Codini, A.; Grimani, C. [Perugia Univ. (Italy)]|[INFN, Perugia (Italy); De Pascale, M.P. [Rome Univ. `Tor Vergata` (Italy)]|[INFN, Rome (Italy); Hof, M. [Siegen Univ. (Germany). Fachbereich Physik; Golden, R.L.; Stochaj, S.J. [New Mexico State Univ., Las Cruces, NM (United States). Particle Astrophysics Lab.; Brancaccio, F.M. [Florence Univ. (Italy)]|[INFN, Florence (Italy)

    1995-09-01

    The p/p-ratio from 4 to 19 GeV has been measured using the NMSU/WiZard balloon borne matter antimatter superconducting spectrometer (MASS2) instrument. This is the first confirmation of the cosmic ray antiproton component made in this energy range since their discovery in 1979. The MASS2 instrument is an updated version of the instrument flown in 1979. The p/p- ratio is 1.52x10{sup -}4.

  7. Ultrathin two-dimensional superconductivity with strong spin–orbit coupling

    Science.gov (United States)

    Nam, Hyoungdo; Chen, Hua; Liu, Tijiang; Kim, Jisun; Zhang, Chendong; Yong, Jie; Lemberger, Thomas R.; Kratz, Philip A.; Kirtley, John R.; Moler, Kathryn; Adams, Philip W.; MacDonald, Allan H.; Shih, Chih-Kang

    2016-01-01

    We report on a study of epitaxially grown ultrathin Pb films that are only a few atoms thick and have parallel critical magnetic fields much higher than the expected limit set by the interaction of electron spins with a magnetic field, that is, the Clogston–Chandrasekhar limit. The epitaxial thin films are classified as dirty-limit superconductors because their mean-free paths, which are limited by surface scattering, are smaller than their superconducting coherence lengths. The uniformity of superconductivity in these thin films is established by comparing scanning tunneling spectroscopy, scanning superconducting quantum interference device (SQUID) magnetometry, double-coil mutual inductance, and magneto-transport, data that provide average superfluid rigidity on length scales covering the range from microscopic to macroscopic. We argue that the survival of superconductivity at Zeeman energies much larger than the superconducting gap can be understood only as the consequence of strong spin–orbit coupling that, together with substrate-induced inversion-symmetry breaking, produces spin splitting in the normal-state energy bands that is much larger than the superconductor’s energy gap. PMID:27601678

  8. Ultrathin two-dimensional superconductivity with strong spin-orbit coupling.

    Science.gov (United States)

    Nam, Hyoungdo; Chen, Hua; Liu, Tijiang; Kim, Jisun; Zhang, Chendong; Yong, Jie; Lemberger, Thomas R; Kratz, Philip A; Kirtley, John R; Moler, Kathryn; Adams, Philip W; MacDonald, Allan H; Shih, Chih-Kang

    2016-09-20

    We report on a study of epitaxially grown ultrathin Pb films that are only a few atoms thick and have parallel critical magnetic fields much higher than the expected limit set by the interaction of electron spins with a magnetic field, that is, the Clogston-Chandrasekhar limit. The epitaxial thin films are classified as dirty-limit superconductors because their mean-free paths, which are limited by surface scattering, are smaller than their superconducting coherence lengths. The uniformity of superconductivity in these thin films is established by comparing scanning tunneling spectroscopy, scanning superconducting quantum interference device (SQUID) magnetometry, double-coil mutual inductance, and magneto-transport, data that provide average superfluid rigidity on length scales covering the range from microscopic to macroscopic. We argue that the survival of superconductivity at Zeeman energies much larger than the superconducting gap can be understood only as the consequence of strong spin-orbit coupling that, together with substrate-induced inversion-symmetry breaking, produces spin splitting in the normal-state energy bands that is much larger than the superconductor's energy gap.

  9. Bridging the implementation gap : Combining backcasting and policy analysis to study renewable energy in urban road transport

    OpenAIRE

    Olsson, Linda; Hjalmarsson, Linnea; Wikström, Martina; Larsson, Mårten

    2015-01-01

    This paper combines backcasting and policy analysis to identify the opportunities for and barriers to the increased use of renewable energy and energy-efficient vehicles in an urban road transport system, namely, that of Stockholm, Sweden, in 2030. The combination of methods could bridge the implementation gap between scenario-based research and actual policy implementation and thus increase the chances of research being implemented in practice. In the case study, backcasting identifies a nee...

  10. Unconventional superconductivity near inhomogeneities

    Energy Technology Data Exchange (ETDEWEB)

    Poenicke, A.F.

    2008-01-25

    After the presentation of a quasi-classical theory the specific heat of Sr{sub 2}RuO{sub 4} is considered. Then tunneling spectroscopy on cuprate superconductors is discussed. Thereafter the subharmonic gap structure in d-wave superconductors is considered. Finally the application of the S-matrix in superconductivity is discussed with spin mixing, CrO{sub 2} as example, and an interface model. (HSI)

  11. Scanning Josephson tunneling microscopy of single-crystal Bi_{2}Sr_{2}CaCu_{2}O_{8+delta} with a conventional superconducting tip.

    Science.gov (United States)

    Kimura, Hikari; Barber, R P; Ono, S; Ando, Yoichi; Dynes, R C

    2008-07-18

    We have performed both Josephson and quasiparticle tunneling in vacuum tunnel junctions formed between a conventional superconducting scanning tunneling microscope tip and overdoped Bi_{2}Sr_{2}CaCu_{2}O_{8+delta} single crystals. A Josephson current is observed with a peak centered at a small finite voltage due to the thermal-fluctuation-dominated superconducting phase dynamics. Josephson measurements at different surface locations yield local values for the Josephson I_{C}R_{N} product. Corresponding energy gap measurements were also performed and a surprising inverse correlation was observed between the local I_{C}R_{N} product and the local energy gap.

  12. Energy Deposition and DPA in the Superconducting Links for the HILUMI LHC Project at the LHC Interaction Points

    CERN Document Server

    AUTHOR|(CDS)2092158; Broggi, Francesco; Santini, C; Ballarino, Amalia; Cerutti, Francesco; Esposito, Luigi Salvatore

    2015-01-01

    In the framework of the upgrade of the LHC machine, the powering of the LHC magnets foresees the removal of the power converters and distribution feedboxes from the tunnel and its location at the surface[1]. The Magnesium Diboride (MgB2) connecting lines in the tunnel will be exposed to the debris from 7+7 TeV p-p interaction. The Superconducting (SC) Links will arrive from the surface to the tunnel near the separation dipole, at about 80 m from the Interaction Point at IP1 and IP5. The Connection Box (where the cables of the SC Links are connected to the NbTi bus bar) will be close to the beam pipe. The debris and its effect on the MgB2 SC links in the connection box (energy deposition and displacement per atom) are presented. The effect of thermal neutrons on the Boron consumption and the contribution of the lithium nucleus and the alpha particle on the DPA are evaluated. The results are normalized to an integrated luminosity of 3000 fb-1, value that represents the LHC High Luminosity lifetime. The dose de...

  13. Energy Impacts of Wide Band Gap Semiconductors in U.S. Light-Duty Electric Vehicle Fleet.

    Science.gov (United States)

    Warren, Joshua A; Riddle, Matthew E; Graziano, Diane J; Das, Sujit; Upadhyayula, Venkata K K; Masanet, Eric; Cresko, Joe

    2015-09-01

    Silicon carbide and gallium nitride, two leading wide band gap semiconductors with significant potential in electric vehicle power electronics, are examined from a life cycle energy perspective and compared with incumbent silicon in U.S. light-duty electric vehicle fleet. Cradle-to-gate, silicon carbide is estimated to require more than twice the energy as silicon. However, the magnitude of vehicle use phase fuel savings potential is comparatively several orders of magnitude higher than the marginal increase in cradle-to-gate energy. Gallium nitride cradle-to-gate energy requirements are estimated to be similar to silicon, with use phase savings potential similar to or exceeding that of silicon carbide. Potential energy reductions in the United States vehicle fleet are examined through several scenarios that consider the market adoption potential of electric vehicles themselves, as well as the market adoption potential of wide band gap semiconductors in electric vehicles. For the 2015-2050 time frame, cumulative energy savings associated with the deployment of wide band gap semiconductors are estimated to range from 2-20 billion GJ depending on market adoption dynamics.

  14. Korea's developmental program for superconductivity

    Science.gov (United States)

    Hong, Gye-Won; Won, Dong-Yeon; Kuk, Il-Hyun; Park, Jong-Chul

    1995-01-01

    Superconductivity research in Korea was firstly carried out in the late 70's by a research group in Seoul National University (SNU), who fabricated a small scale superconducting magnetic energy storage system under the financial support from Korea Electric Power Company (KEPCO). But a few researchers were involved in superconductivity research until the oxide high Tc superconductor was discovered by Bednorz and Mueller. After the discovery of YBaCuO superconductor operating above the boiling point of liquid nitrogen (77 K)(exp 2), Korean Ministry of Science and Technology (MOST) sponsored a special fund for the high Tc superconductivity research to universities and national research institutes by recognizing its importance. Scientists engaged in this project organized 'High Temperature Superconductivity Research Association (HITSRA)' for effective conducting of research. Its major functions are to coordinate research activities on high Tc superconductivity and organize the workshop for active exchange of information. During last seven years the major superconductivity research has been carried out through the coordination of HITSRA. The major parts of the Korea's superconductivity research program were related to high temperature superconductor and only a few groups were carrying out research on conventional superconductor technology, and Korea Atomic Energy Research Institute (KAERI) and Korea Electrotechnology Research Institute (KERI) have led this research. In this talk, the current status and future plans of superconductivity research in Korea will be reviewed based on the results presented in interim meeting of HITSRA, April 1-2, 1994. Taejeon, as well as the research activity of KAERI.

  15. Superconducting bearings for flywheel applications

    DEFF Research Database (Denmark)

    Abrahamsen, A.B.

    2001-01-01

    A literature study on the application of superconducting bearings in energy storage flywheel systems. The physics of magnetic levitation and superconductors are presented in the first part of the report, followed by a discussion of the literature found onthe applications of superconducting bearings...

  16. Fast-cycling superconducting synchrotrons and possible path to the future of US experimental high-energy particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Piekarz, Henryk; /Fermilab

    2008-02-01

    The authors outline primary physics motivation, present proposed new arrangement for Fermilab accelerator complex, and then discuss possible long-range application of fast-cycling superconducting synchrotrons at Fermilab.

  17. A Study of Energy Band Gap Temperature Relationships for Cu2ZnSnS4 Thin Films

    OpenAIRE

    2011-01-01

    The temperature dependent band gap energy of Cu2ZnSnS4 thin film was studied in the temperature range of 77 to 410 K. Various relevant parameters which explain the temperature variation of the fundamental band gap have been calculated using empirical and semi-empirical models. Amongst the models evaluated, the Varshni and P\\"assler models show the best agreement with experimental data in the middle temperature range. However, the Bose-Einstein model fits reasonably well over the entire temper...

  18. The effect of a pseudogap on the superconducting critical temperature and on the superconducting order parameter of the same symmetry

    Energy Technology Data Exchange (ETDEWEB)

    RodrIguez-Nunez, J J [Departamento de FIsica-FACYT, Universidad de Carabobo, Valencia 2001, Edo. Carabobo (Venezuela); Schmidt, A A [Departamento de Matematica, CCNE, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS (Brazil); Beck, H [Institut de Physique, Universite de Neuchatel, Ch-2000 Neuchatel (Switzerland)

    2005-01-19

    We study numerically the superconductivity in a system whose normal state is characterized by the presence of a phenomenological pseudogap, E{sub g}/t, in the energy spectrum, for 0 {<=} T {<=} T*. T* is called the crossover temperature and it is defined in the high-temperature superconductors (HTSC) where the static spin susceptibility, {chi}(T), is a maximum. At T* one also observes the formation of a pseudogap in the density of states around the chemical potential (Maier et al 2002 Preprint cond-mat/0208419). In order to fix ideas, we have chosen the pseudogap and the superconducting gap to have the same symmetry. We have adopted the scenario where the pseudogap and the superconducting gap are independent of each other (Tallon and Loram 2001 Physica C 349 53), for which the pseudogap enters in the superconducting phase going down to zero at zero temperature. We have found that for all E{sub g}/t {ne}0 we require a critical value of the superconducting interaction, V/t, to produce a finite superconducting critical temperature, T{sub c}/t, and the superconductor order parameter at T/t = 0, {delta}{sub 0}/t. These results have been obtained for both {mu}/t = 0 and {mu}/t {ne} 0. We have obtained a phase diagram, namely, V/t versus E{sub g}/t, at half-filling. We have compared our results with the analytical calculations of Tifrea et al (2002 Physica C 371 104), the recent work of Tifrea and Moca (2003 Preprint cond-mat/0307362 (2004 Europhys. J. B, at press)) and other relevant theoretical results.

  19. Superconducting Magnetic Energy Storage (SMES-ETM) System. Environmental Impact Assessment Process Implementation Plan

    Science.gov (United States)

    1989-11-28

    ETM system. These five sites are: White Sands Missile Range (WSMR) Site, New Mexico Badger Army Ammunition Plant (BAAP) Site, Wisconsin BPA Hanford ...Geological Conditions: Hazards, energy and mineral resources and soil resources; and ■ Seismic Conditions: Physiography, stratigraphy, geologic...structure, and regional seismicity . This work plan identifies requirements for producing an analysis of water resources to be examined during SMES

  20. On the massless gap'' adjustment of detected energy for passive material in front of a calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Trost, H.J.

    1992-01-31

    I have designed a correction scheme for energy losses in passive material in front of a calorimeter based on the massless gap'' idea. I use a flexible geometry model of a calorimeter design for SDC outside of a solenoidal coil made of aluminium cylinders of adjustable thickness. The signal from the first radiation length of active calorimetry is scaled dependent on the incoming and observed energies of the shower. A reasonable recovery of the resolution of an unobstructed calorimeter is achieved using correction factors that depend only upon the total thickness of passive material. Thus a useful correction may be built into the hardware by increasing the amount of scintillator in the first radiation length of the active calorimeter. The distribution of correction factors determined event-by-event indicate that an additional dependence on the observed signal in the massless gap and total incident energy is clearly present.

  1. UH-FLUX: Compact, Energy Efficient Superconducting Asymmetric Energy Recovery LINAC for Ultra-high Fluxes of X-ray and THz Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Konoplev, Ivan [Univ. of Oxford (United Kingdom). JAI, Dept. of Physics; Ainsworth, Robert [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Burt, Graeme [Lancaster Univ. (United Kingdom). Cockcroft Inst.; Seryi, Andrei [Univ. of Oxford (United Kingdom). JAI, Dept. of Physics

    2016-06-01

    The conventional ERLs have limited peak beam current because increasing the beam charge and repetition rate leads to appearance of the beam break-up instabilities. At this stage the highest current, from the SRF ERL, is around 300 mA. A single-turn (the beam will be transported through the accelerating section, interaction point and deceleration section of the AERL only once) Asymmetric Energy Recovery LINAC (AERL) is proposed. The RF cells in different sections of the cavity are tuned in such a way that only operating mode is uniform inside all of the cells. The AERL will drive the electron beams with typical energies of 10 - 30 MeV and peak currents above 1 A, enabling the generation of high flux UV/X-rays and high power coherent THz radiation. We aim to build a copper prototype of the RF cavity for a compact AERL to study its EM properties. The final goal is to build AERL based on the superconducting RF cavity. Preliminary design for AERL's cavity has been developed and will be presented. The results of numerical and analytical models and the next steps toward the AERL operation will also be discussed.

  2. UH-FLUX: Compact, Energy Efficient Superconducting Asymmetric Energy Recovery LINAC for Ultra-high Fluxes of X-ray and THz Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Konoplev, Ivan [JAI, UK; Ainsworth, Robert [Fermilab; Burt, Graeme [Lancaster U.; Seryi, Andrei [JAI, UK

    2016-06-01

    The conventional ERLs have limited peak beam current because increasing the beam charge and repetition rate leads to appearance of the beam break-up instabilities. At this stage the highest current, from the SRF ERL, is around 300 mA. A single turn (the beam will be transported through the accelerating section, interaction point and deceleration section of the AERL only once) Asymmetric Energy Recovery LINAC (AERL) is proposed. The RF cells in different sections of the cavity are tuned in such a way that only operating mode is uniform inside all of the cells. The AERL will drive the electron beams with typical energies of 10 - 30 MeV and peak currents above 1 A, enabling the generation of high flux UV/X-rays and high power coherent THz radiation. We aim to build a copper prototype of the RF cavity for a compact AERL to study its EM properties. The final goal is to build AERL based on the superconducting RF cavity. Preliminary design for AERL's cavity has been developed and will be presented. The results of numerical and analytical models and the next steps toward the AERL operation will also be discussed.

  3. Disappearance of nodal gap across the insulator-superconductor transition in a copper-oxide superconductor.

    Science.gov (United States)

    Peng, Yingying; Meng, Jianqiao; Mou, Daixiang; He, Junfeng; Zhao, Lin; Wu, Yue; Liu, Guodong; Dong, Xiaoli; He, Shaolong; Zhang, Jun; Wang, Xiaoyang; Peng, Qinjun; Wang, Zhimin; Zhang, Shenjin; Yang, Feng; Chen, Chuangtian; Xu, Zuyan; Lee, T K; Zhou, X J

    2013-01-01

    The parent compound of the copper-oxide high-temperature superconductors is a Mott insulator. Superconductivity is realized by doping an appropriate amount of charge carriers. How a Mott insulator transforms into a superconductor is crucial in understanding the unusual physical properties of high-temperature superconductors and the superconductivity mechanism. Here we report high-resolution angle-resolved photoemission measurement on heavily underdoped Bi₂Sr₂-xLaxCuO(₆+δ) system. The electronic structure of the lightly doped samples exhibit a number of characteristics: existence of an energy gap along the nodal direction, d-wave-like anisotropic energy gap along the underlying Fermi surface, and coexistence of a coherence peak and a broad hump in the photoemission spectra. Our results reveal a clear insulator-superconductor transition at a critical doping level of ~0.10 where the nodal energy gap approaches zero, the three-dimensional antiferromagnetic order disappears, and superconductivity starts to emerge. These observations clearly signal a close connection between the nodal gap, antiferromagnetism and superconductivity.

  4. Data Analysis of Transient Energy Releases in the LHC Superconducting Dipole Magnets

    CERN Document Server

    Calvi, M; Bottura, L; Di Castro, M; Masi, A; Siemko, A

    2007-01-01

    Premature training quenches are caused by transient energy released within the LHC dipole magnet coils while it is energized. Voltage signals recorded across the magnet coils and on the so-called quench antenna carry information about these disturbances. The transitory events correlated to transient energy released are extracted making use of continuous wavelet transform. Several analyses are performed to understand their relevance to the so called training phenomenon. The statistical distribution of the signals amplitude, the number of events occurring at a given current level, the average frequency content of the events are the main parameters on which the analysis have been focalized. Comparisons among different regions of the magnet, among different quenches in the same magnet and among magnets made by different builders are reported. Conclusions about the efficiency of the raw data treatment and the relevance of the parameters developed with respect to the magnet global behavior are finally given.

  5. High Temperature Superconducting Magnets for Efficient Low Energy Beam Transport Systems

    CERN Document Server

    Popovic, M; Johnson, R P; Nipper, J H

    2013-01-01

    Modern ion accelerators and ion implantation systems need very short, highly versatile, Low Energy Beam Transport (LEBT) systems. The need for reliable and continuous operation requires LEBT designs to be simple and robust. The energy efficiency of available high temperature superconductors (HTS), with efficient and simple cryocooler refrigeration, is an additional attraction. Innovative, compact LEBT systems based on solenoids designed and built with high-temperature superconductor will be developed using computer models and prototyped. The parameters will be chosen to make this type of LEBT useful in a variety of ion accelerators, ion implantation systems, cancer therapy synchrotrons, and research accelerators, including the ORNL SNS. The benefits of solenoids made with HTS will be evaluated with analytical and numerical calculations for a two-solenoid configuration, as will be used in the SNS prototype LEBT that will replace the electrostatic one at SNS, and a single solenoid configuration, as was proposed...

  6. On p-Wave Pairing Superconductivity under Cubic Symmetry : Condensed Matter and Statistical Physics

    OpenAIRE

    Masa-aki, OZAKI; Kazushige, MACHIDA; Tetsuo, OHMI; Department of Physics, Kyoto University

    1985-01-01

    A group theoretical classification of p-wave pairing superconducting states is made for a system with cubic crystalline symmetry in the absence of the spin-orbit coupling. The 15 inert p-pairing states which make the Ginzburg-Landau free energy stationary are enumerated and characterized, indicating that the energy gap vanishes along lines on the Fermi surface in some of those states. This is contrasted with the strong spin-orbit coupling case by others.

  7. Restoration of the Derivative Discontinuity in Kohn-Sham Density Functional Theory: An Efficient Scheme for Energy Gap Correction

    CERN Document Server

    Chai, Jeng-Da

    2012-01-01

    Based on a simple and physically motivated approximation to an expression for the derivative discontinuity (DD) of the exchange-correlation (XC) energy functional in Kohn-Sham density functional theory (KS-DFT), we show that the DD can be approximately expressed as an explicit universal functional of the ground-state density and the KS lowest unoccupied molecular orbital density, allowing the direct evaluation of the DD in the standard KS method without extra computational cost. The fundamental gap can be predicted by adding the estimated DD to the KS gap. This scheme is shown to be accurate in the prediction of the fundamental gaps for a wide variety of atoms and molecules. In addition, possible extensions of this scheme for improved accuracy are also discussed.

  8. Nickel(II-oxaloyldihydrazone complexes: Characterization, indirect band gap energy and antimicrobial evaluation

    Directory of Open Access Journals (Sweden)

    Ayman H. Ahmed

    2016-12-01

    Full Text Available A series of oxaloyldihydrazone ligands was prepared essentially by the usual condensation reaction between oxaloyldihydrazide and different aldehydes e.g. salicylaldehyde, 2-hydroxy-1-naphthaldehyde, 2-hydroxyacetophenone and 2-methoxy-benzaldehyde in 1:2 M ratio. The formed compounds were purified to give bis(salicylaldehydeoxaloyldihydrazone (L1, bis(2-hydroxy-1-naphthaldehydeoxaloyldihydrazone (L2, bis(2-hydroxyacetophenoneoxaloyldihydrazone(L3 and bis(2-methoxy-benzaldehydeoxaloyldihydrazone (L4. All the oxaloyldihydrazones (L1–L4 and their relevant solid nickel(II complexes have been prepared and structurally characterized on the basis of the elemental analyses, spectral (UV–vis, IR, mass and 1H NMR, magnetism and thermal (TG measurements. The dihydrazones coordinate to the metal center forming mononuclear complexes with L1, L3 and L4 in addition to binuclear complex with L2. The metal center prefers tetrahedral stereochemistry upon chelation. The optical indirect band gap energy for all compounds underlies the range of semiconductor materials. The prepared ligands and their metal complexes have been assayed for their antimicrobial activity against fungi as well as Gram-positive and Gram-negative bacteria. The resulting data indicate the ability of the investigated compounds to inhibit the growth of some micro-organisms, where L2 showed the highest activity among all the compounds. Minimum inhibitory concentration (MIC of L2 against the growth of five micro-organisms was determined which gives better response against Aspergillus fumigatus and Bacillis subtilis compared with some selected standard drugs.

  9. Determination of band gap energy (Eg) of Cu2ZnSnSe4 thin films: On the discrepancies of reported band gap values

    Science.gov (United States)

    Ahn, SeJin; Jung, Sunghun; Gwak, Jihye; Cho, Ara; Shin, Keeshik; Yoon, Kyunghoon; Park, Doyoung; Cheong, Hyeonsik; Yun, Jae Ho

    2010-07-01

    We demonstrate experimental data to elucidate the reason for the discrepancies of reported band gap energy (Eg) of Cu2ZnSnSe4 (CZTSe) thin films, i.e., 1.0 or 1.5 eV. Eg of the coevaporated CZTSe film synthesized at substrate temperature (Tsub) of 370 °C, which was apparently phase pure CZTSe confirmed by x-ray diffraction (XRD) and Raman spectroscopy, is found to be around 1 eV regardless of the measurement techniques. However, depth profile of the same sample reveals the formation of ZnSe at CZTSe/Mo interface. On the other hand, Eg of the coevaporated films increases with Tsub due to the ZnSe formation, from which we suggest that the existence of ZnSe, which is hardly distinguishable from CZTSe by XRD, is the possible reason for the overestimation of overall Eg.

  10. Superconducting electronics

    NARCIS (Netherlands)

    Rogalla, Horst

    1994-01-01

    During the last decades superconducting electronics has been the most prominent area of research for small scale applications of superconductivity. It has experienced quite a stormy development, from individual low frequency devices to devices with high integration density and pico second switching

  11. Combinative energy,oxygen deficiency and superconductivity in LnBa2Cu3O7-x (Ln=Nd,Er,Sm)

    Institute of Scientific and Technical Information of China (English)

    王淑霞; 刘文利; 韩圣浩; 张酣

    2003-01-01

    The correlation among the combinative energy, superconductivity, oxygen content, the position of holes in different planes, and the position of holes in the Cu(2)-O plane in LnBa2Cu3O7-x (Ln= Nd, Er, and Sm) has been investigated on the basis of a block model. The results indicate that the combinative energy decreases with increasing Tc in all of these compounds. And also, the combinative energies are obviously different with holes at different positions in the Cu(2)-O plane when the oxygen deficiency is low. However, this difference becomes less with increasing the oxygen deficiency.The effect of the holes in different positions on the combinative energy supplies some clue to the understanding of an unresolved problem, i.e. whether the distribution of carriers in the CuO2 plane is uniform or inhomogeneous. The results not only show that the structural characters, the combinative energy between two structural blocks and the superconductivity are closely interrelated in this class of compounds, but also reveal some differences among these systems. The relationship between the combinative energy and the Tc value in NdBa2Cu3O7-x shows some features different from the systems containing Er or Sm.

  12. Baryon number violation and nonperturbative weak processes at Superconducting Super Collider energies

    Science.gov (United States)

    Shuryak, E. V.; Verbaarschot, J. J. M.

    1992-04-01

    Baryon number violation and multiple production of W and Higgs bosons are described semiclassically in terms of the instanton-anti-instanton valley. We find (i) two saddle points, one describing reflection from a barrier and the other describing tunneling through it. We find (ii) a critical energy Ec~35 TeV where the cross section is suppressed as exp(-const/g2w), but the formulas are no longer valid; (iii) however, depending on the (still uncertain) Higgs bosson action, the cross section at this point may be large enough to be observable.

  13. Theoretical and Experimental Evidence for a Nodal Energy Gap in MgB2

    Science.gov (United States)

    2017-02-17

    temperatures attributed to Andreev bound states [4]. This increase is only visible on the expanded scale of the main plot. -0.001 0 0.001 0.002 0.003...Superconductivity Sci . Tech. 14 (2001) R115. [3] Y. D. Agassi, D. E. Oates, B. H. Moeckly Phys. Rev. B 80 (2009) 174522. [4] Y. D. Agassi, D. E...J. Kelly, T. Tan, X. X. Xi, Supercond. Sci . Technol. 25 (2012) 095006. [7] A. S. Alexandrov, Phys. Rev. B 77 (2008) 094502. [8] N. N. Bogoliubov

  14. Evidence for conventional superconducting behavior in noncentrosymmetric Mo3Al2C

    Science.gov (United States)

    Bonalde, I.; Kim, H.; Prozorov, R.; Rojas, C.; Rogl, P.; Bauer, E.

    2011-10-01

    We report on measurements of the magnetic penetration depth of polycrystalline samples of nonmagnetic Mo3Al2C (Tc=9 K) without inversion symmetry. Two previous specific-heat measurements in this compound found different anomalous peaks in the low-temperature limit. One of these peaks was attributed to the superconducting transition at 3 K of the impurity phase Mo2C. We argue here that the second anomalous peak may be caused by the superconducting transition of SiC:Al at 1.45 K, another impurity phase possibly present in Mo3Al2C samples. The temperature-independent behavior of the penetration depth observed below 0.5 K is taken as firm evidence for the presence of a nodeless superconducting gap in Mo3Al2C. Numerical calculations using the BCS expression for the penetration depth give qualitative support for an isotropic energy gap in Mo3Al2C. The present results suggest that Mo3Al2C is a conventional s-wave superconductor, although two-gap or anisotropic-gap superconductivity cannot be ruled out.

  15. Advanced superconducting power conditioning system with SMES for effective use of renewable energy

    Science.gov (United States)

    Hamajima, T.; Tsuda, M.; Miyagi, D.; Amata, H.; Iwasaki, T.; Son, K.; Atomura, N.; Shintomi, T.; Makida, Y.; Takao, T.; Munakata, K.; Kajiwara, M.

    Since it is an urgent issue to reduce the global Carbon-dioxide in the world, renewable energy should be supplied as a large amount of the electric power. However, if a large amount of fluctuating renewable energy becomes more than adjustable amount of a utility grid capacity, instabilities such as frequency deviation might occur. We propose a system that is composed of SMES and FC-H2-Electrolyzer and also installed adjacent to Liquid Hydrogen station to cool down the SMES. Since the SMES has potentials of quick response and large I/O power, and Fuel Cell has potentials of slow response and steady power supplied from a large amount of hydrogen, we combine both storage devices and apply them to suppress the fluctuating power. We convert the fluctuating power to the constant power by using a developed prediction technology of Kalman filter to predict a trend of the fluctuating power. While the trend power should be supplied by FC or absorbed by the electrolyzer to produce hydrogen, the power difference between the renewable power and the trend power should be stored by the SMES. We simulate the power balance and analyze the required SMES capacity, design the concept of the SMES, and propose an operation algorithm for the SMES to estimate the electric efficiency of the system. It is found that the electric efficiency of the ASPCS can become greater than that of a pumped hydro-machine.

  16. Scoping study for compact high-field superconducting net energy tokamaks

    Science.gov (United States)

    Mumgaard, R. T.; Greenwald, M.; Freidberg, J. P.; Wolfe, S. M.; Hartwig, Z. S.; Brunner, D.; Sorbom, B. N.; Whyte, D. G.

    2016-10-01

    The continued development and commercialization of high temperature superconductors (HTS) may enable the construction of compact, net-energy tokamaks. HTS, in contrast to present generation low temperature superconductors, offers improved performance in high magnetic fields, higher current density, stronger materials, higher temperature operation, and simplified assembly. Using HTS along with community-consensus confinement physics (H98 =1) may make it possible to achieve net-energy (Q>1) or burning plasma conditions (Q>5) in DIII-D or ASDEX-U sized, conventional aspect ratio tokamaks. It is shown that, by operating at high plasma current and density enabled by the high magnetic field (B>10T), the required triple products may be achieved at plasma volumes under 20m3, major radii under 2m, with external heating powers under 40MW. This is at the scale of existing devices operated by laboratories, universities and companies. The trade-offs in the core heating, divertor heat exhaust, sustainment, stability, and proximity to known plasma physics limits are discussed in the context of the present tokamak experience base and the requirements for future devices. The resulting HTS-based design space is compared and contrasted to previous studies on high-field copper experiments with similar missions. The physics exploration conducted with such HTS devices could decrease the real and perceived risks of ITER exploitation, and aid in quickly developing commercially-applicable tokamak pilot plants and reactors.

  17. The Plateau of Moment of Inertia and the Energy Gap in 161-168Yb

    Institute of Scientific and Technical Information of China (English)

    HUANG Li-Xun; QI Yan-Jun; LI Tao; LIU Shu-Xin

    2011-01-01

    The influence of the gap at Z = 70 on the alignment in 161 168Yb is studied using the particle number conserving method. If there is a gap at the Fermi surface, the occupation probability of the [523)7/2 proton orbital does not change as much as when there is no gap. The formation of the plateau of moment of inertia is sensitive to the relative position of the orbital tt[404]7/2, tt[411]1/2 and tt[523]7/2. A third backbending caused by tt[541]1/2 is predicted.%@@ The influence of the gap at Z=70 on the alignment in 161-168Yb is studied using the particle number conserving method.If there is a gap at the Fermi surface,the occupation probability of the[523]7/2 proton orbital does not change as much as when there is no gap.The formation of the plateau of moment of inertia is sensitive to the relative position of the orbital π[404]7/2,π[411]1/2 and π[523]7/2.A third backbending caused by π[541]1/2 is predicted.

  18. Japan. Superconductivity for Smart Grids

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, K.

    2012-11-15

    Currently, many smart grid projects are running or planned worldwide. These aim at controlling the electricity supply more efficiently and more stably in a new power network system. In Japan, especially superconductivity technology development projects are carried out to contribute to the future smart grid. Japanese cable makers such as Sumitomo Electric and Furukawa Electric are leading in the production of high-temperature superconducting (HTS) power cables. The world's largest electric current and highest voltage superconductivity proving tests have been started this year. Big cities such as Tokyo will be expected to introduce the HTS power cables to reduce transport losses and to meet the increased electricity demand in the near future. Superconducting devices, HTS power cables, Superconducting Magnetic Energy Storage (SMES) and flywheels are the focus of new developments in cooperations between companies, universities and research institutes, funded by the Japanese research and development funding organization New Energy and Industrial Technology Development Organization (NEDO)

  19. Anisotropic superconductivity driven by kinematic interaction

    Science.gov (United States)

    Ivanov, V. A.

    2000-11-01

    We have analysed the effect of kinematic pairing on the symmetry of superconducting order parameter for a square lattice in the frame of the strongly correlated Hubbard model. It is argued that in the first perturbation order the kinematic interaction renormalizes the Hubbard-I dispersions and provides at low doping the mixed singlet (s + s*)-wave superconductivity, giving way at higher doping to the triplet p-wave superconductivity. The obtained phase diagram depends only on the hopping integral parameter. The influence of the Coulomb repulsion on the kinematic superconducting pairing has been estimated. The (s + s*)-wave gap and the thermodynamic critical magnetic field have been derived.

  20. Superconducting LiFeAs as seen by scanning tunneling microscopy/spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pohle, Rico; Scheffler, Martha; Schlegel, Ronny; Haenke, Torben; Baumann, Danny; Bachmann, Anne; Bombor, Dirk; Sykora, Steffen; Harnagea, Luminita; Wurmehl, Sabine; Hess, Christian; Buechner, Bernd [Institut fuer Festkoerperforschung IFW Dresden (Germany)

    2012-07-01

    Among the entire class of iron-based superconductors the material LiFeAs is of particular interest since an absence of nesting between electron and hole pockets suggests an unconventional type of pairing in this material. Using Scanning Tunnelling Microscopy (STM) and Spectroscopy (STS) we investigate topographic properties of the surface as well as the temperature dependency of the superconducting gap. The good agreement of our results with model calculations for the tunnelling conductance allows us to draw conclusions about the low energy properties of the superconducting system. Furthermore, we compare our results with Transport- and NMR-measurements.

  1. Theoretical study of superconducting proximity effect in single and multi-layered graphene

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Masahiko, E-mail: m-hayashi@ed.akita-u.ac.j [Faculty of Education and Human Studies, Akita University, Akita 010-8502 (Japan); JST-CREST, Kawaguchi, Saitama 332-0012 (Japan); Yoshioka, Hideo [Department of Physics, Nara Women' s University, Nara 630-8506 (Japan); Kanda, Akinobu [Institute of Physics, University of Tsukuba, Tsukuba 305-8571 (Japan)

    2010-12-15

    Theoretical analysis of superconducting current in graphite thin films (or graphene) in proximity to superconductors is presented, especially paying attention to the band structure. We derive the general formula to calculate the free energy of the superconductor-graphite film-superconductor junction, which enable us to calculate the critical current of the junction. We introduce two models for the band structures: (1) Fermi point type (characteristic to monolayer case) and (2) zero-gap semiconductor type (characteristic to bilayer case). Then we calculate the superconducting critical current as a function of junction length and temperature.

  2. Effects of low-lying excitations on ground-state energy and energy gap of the Sherrington-Kirkpatrick model in a transverse field

    Science.gov (United States)

    Koh, Yang Wei

    2016-04-01

    We present an extensive numerical study of the Sherrington-Kirkpatrick model in a transverse field. Recent numerical studies of quantum spin glasses have focused on exact diagonalization of the full Hamiltonian for small systems (≈20 spins). However, such exact numerical treatments are difficult to apply on larger systems. We propose making an approximation by using only a subspace of the full Hilbert space spanned by low-lying excitations consisting of one-spin-flipped and two-spin-flipped states. The approximation procedure is carried out within the theoretical framework of the Hartree-Fock approximation and configuration interaction. Although not exact, our approach allows us to study larger system sizes comparable to that achievable by state-of-the-art quantum Monte Carlo simulations. We calculate two quantities of interest due to recent advances in quantum annealing, the ground-state energy and the energy gap between the ground and first excited states. For the energy gap, we derive a formula that enables it to be calculated using just the ground-state wave function, thereby circumventing the need to diagonalize the Hamiltonian. We calculate the scalings of the energy gap and the leading correction to the extensive part of the ground-state energy with system size, which are difficult to obtain with current methods.

  3. Power system stabilizing control by superconducting magnetic energy storage using neural network; Newral network wo mochiita chodendo energy chozo sochi ni yoru keito anteika seigyo

    Energy Technology Data Exchange (ETDEWEB)

    Osawa, Y.; Kanemitsu, T.; Kawakami, T.; Shintaku, M.; Arai, K. [Kobe University, Kobe (Japan)

    1993-10-20

    In order to solve the difficulty of realizing power system stabilization using non-linear optimal control, this paper discusses a power system stabilization control by superconducting magnetic energy storage (SMES) using a neural network. This system consists of a kind of feedback control system that derives an optimal stabilizing control on various initial system operating conditions and failure conditions applied with the maximum principles, and learns the best stabilization using the control as tutorial signals and using the neural network. The object model system is a one-unit infinite busbar system, whose generator terminal is installed with the SMES. With respect to the system learning using the neural network, the network output to the learned failure patterns has agreed with the tutorial signals nearly completely. As a result of simulating example systems, it was confirmed that the operating conditions within a reasonable range and failure conditions were learned well, control effects close to the optimal control were shown, and the oscillation suppressing effect of the SMES can be utilized effectively. 11 refs., 13 figs., 4 tabs.

  4. Superconductivity in doped Dirac semimetals

    Science.gov (United States)

    Hashimoto, Tatsuki; Kobayashi, Shingo; Tanaka, Yukio; Sato, Masatoshi

    2016-07-01

    We theoretically study intrinsic superconductivity in doped Dirac semimetals. Dirac semimetals host bulk Dirac points, which are formed by doubly degenerate bands, so the Hamiltonian is described by a 4 ×4 matrix and six types of k -independent pair potentials are allowed by the Fermi-Dirac statistics. We show that the unique spin-orbit coupling leads to characteristic superconducting gap structures and d vectors on the Fermi surface and the electron-electron interaction between intra and interorbitals gives a novel phase diagram of superconductivity. It is found that when the interorbital attraction is dominant, an unconventional superconducting state with point nodes appears. To verify the experimental signature of possible superconducting states, we calculate the temperature dependence of bulk physical properties such as electronic specific heat and spin susceptibility and surface state. In the unconventional superconducting phase, either dispersive or flat Andreev bound states appear between point nodes, which leads to double peaks or a single peak in the surface density of states, respectively. As a result, possible superconducting states can be distinguished by combining bulk and surface measurements.

  5. Edge effects on band gap energy in bilayer 2H-MoS{sub 2} under uniaxial strain

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Liang; Wang, Jin; Dongare, Avinash M., E-mail: dongare@uconn.edu [Department of Materials Science and Engineering and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269 (United States); Namburu, Raju [Computational and Information Sciences Directorate, U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005 (United States); O' Regan, Terrance P.; Dubey, Madan [Sensors and Electron Devices Directorate, U.S. Army Research Laboratory, Adelphi, Maryland 20783 (United States)

    2015-06-28

    The potential of ultrathin MoS{sub 2} nanostructures for applications in electronic and optoelectronic devices requires a fundamental understanding in their electronic structure as a function of strain. Previous experimental and theoretical studies assume that an identical strain and/or stress state is always maintained in the top and bottom layers of a bilayer MoS{sub 2} film. In this study, a bilayer MoS{sub 2} supercell is constructed differently from the prototypical unit cell in order to investigate the layer-dependent electronic band gap energy in a bilayer MoS{sub 2} film under uniaxial mechanical deformations. The supercell contains an MoS{sub 2} bottom layer and a relatively narrower top layer (nanoribbon with free edges) as a simplified model to simulate the as-grown bilayer MoS{sub 2} flakes with free edges observed experimentally. Our results show that the two layers have different band gap energies under a tensile uniaxial strain, although they remain mutually interacting by van der Waals interactions. The deviation in their band gap energies grows from 0 to 0.42 eV as the uniaxial strain increases from 0% to 6% under both uniaxial strain and stress conditions. The deviation, however, disappears if a compressive uniaxial strain is applied. These results demonstrate that tensile uniaxial strains applied to bilayer MoS{sub 2} films can result in distinct band gap energies in the bilayer structures. Such variations need to be accounted for when analyzing strain effects on electronic properties of bilayer or multilayered 2D materials using experimental methods or in continuum models.

  6. Valence band gaps and plasma energies for galena, sphalerite, and chalcopyrite natural minerals using differential optical reflectance spectroscopy

    Science.gov (United States)

    Todoran, R.; Todoran, D.; Szakacs, Zs.

    2015-12-01

    The paper presents the determinations of the valence band gaps and plasma energies of the galena, sphalerite and chalcopyrite natural minerals. The work was carried out using differential optical reflectance spectroscopy of the clean mineral surfaces. The determination of the optical properties such as refractive index, real part of the complex dielectric constant and the location of certain van Hove singularities, was carried out using the Kramers-Kronig formalism.

  7. The Correlation between the Energy Gap and the Pseudogap Temperature in Cuprates: The YCBCZO and LSHCO Case

    Directory of Open Access Journals (Sweden)

    R. Szczȩśniak

    2015-01-01

    Full Text Available The paper analyzes the influence of the hole density, the out-of-plane or in-plane disorder, and the isotopic oxygen mass on the zero temperature energy gap (2Δ(0 Y1-xCaxBa2Cu1-yZny3O7-δ (YCBCZO and La1.96-xSrxHo0.04CuO4 (LSHCO superconductors. It has been found that the energy gap is visibly correlated with the value of the pseudogap temperature (T⋆. On the other hand, no correlation between 2Δ(0 and the critical temperature (TC has been found. The above results mean that the value of the dimensionless ratio 2Δ0/kBTC can vary very strongly together with the chemical composition, while the parameter 2Δ(0/kBT⋆ does not change significantly. In the paper, the analytical formula which binds the zero temperature energy gap and the pseudogap temperature has been also presented.

  8. Precision Measurement of Low-Energy Antiprotons with GAPS for Dark Matter and Primordial Black Hole Physics

    CERN Document Server

    Aramaki, T; von Doetinchem, P; Fuke, H; Hailey, C J; Mognet, S A I; Ong, R A; Perez, K M; Zweerink, J

    2014-01-01

    The general antiparticle spectrometer (GAPS) experiment is an indirect dark matter search focusing on antiparticles produced by WIMP annihilation and decay in the Galactic halo. In addition to the very powerful search channel provided by antideuterons, GAPS has a strong capability to measure low-energy antiprotons (0.07 $\\le$ E $\\le$ 0.25 GeV) as dark matter signatures. This is an especially effective means for probing light dark matter, whose existence has been hinted at in the direct dark matter searches, including the recent result from the CDMS-II experiment. While severely constrained by LUX and other direct dark matter searches, light dark matter candidates are still viable in an isospin- violating dark matter scenario and halo-independent analysis. Along with the excellent antideuteron sensitivity, GAPS will be able to detect an order of magnitude more low-energy antiprotons, compared to BESS and PAMELA, providing a precision measurement of low-energy antiproton flux and a unique channel for probing li...

  9. Development of Energy-Efficient Cryogenic Leads with High Temperature Superconducting Films on Ceramic Substrates

    Science.gov (United States)

    Pan, A. V.; Fedoseev, S. A.; Shcherbakova, O. V.; Golovchanskiy, I. A.; Zhou, S.; Dou, S. X.; Webber, R. J.; Mukhanov, O. A.; Yamashita, T.; Taylor, R.

    High temperature superconductor (HTS) material can be used for the implementation of high-speed low-heat conduction data links to transport digital data from 4 K superconductor integrated circuits to higher-temperature parts of computing systems. In this work, we present a conceptual design of energy efficient interface and results in fabricating such HTS leads. Initial calculations have shown that the microstrip line cable geometry for typical materials employed in production of HTS thin films can be a two-layered film for which the two layers of about 10 cm long are separated by an insulation layer with as low permittivity as possible. With this architecture in mind, the pulsed laser deposition process has been designed in a 45 cm diameter vacuum chamber to incorporate an oscillating sample holder with homogeneous substrate heating up to 900°C, while the laser plume is fixed. This design has allowed us to produce 200 nm to 500 nm thick, 7 cm to 10 cm long YBa2Cu3O7 thin films with the homogeneous critical temperature (Tc) of about 90 K. The critical current density (Jc) of the short samples obtained from the long sample is of (2 ± 1) × 1010 A/m2. Lines of 3-100 μm wide have been successfully patterned along the length of the samples in order to directly measure the Tc and Jc values over the entire length of the samples, as well as to attempt the structuring of multichannel data lead prototype.

  10. LEP superconducting cavity

    CERN Multimedia

    1995-01-01

    Engineers work in a clean room on one of the superconducting cavities for the upgrade to the LEP accelerator, known as LEP-2. The use of superconductors allow higher electric fields to be produced so that higher beam energies can be reached.

  11. LHC Superconducting Magnets

    CERN Document Server

    Jean Leyder

    2000-01-01

    The LHC is the next step in CERN's quest to unravel the mysteries of the Universe. It will accelerate protons to energies never before achieved in laboratories, and to hold them on course it will use powerful superconducting magnets on an unprecedented scale.

  12. Nonequilibrium superconducting detectors

    Science.gov (United States)

    Cristiano, R.; Ejrnaes, M.; Esposito, E.; Lisitskyi, M. P.; Nappi, C.; Pagano, S.; Perez de Lara, D.

    2006-03-01

    Nonequilibrium superconducting detectors exploit the early stages of the energy down cascade which occur after the absorption of radiation. They operate on a short temporal scale ranging from few microseconds down to tens of picoseconds. In such a way they provide fast counting capability, high time discrimination and also, for some devices, energy sensitivity. Nonequilibrium superconducting detectors are developed for their use both in basic science and in practical applications for detection of single photons or single ionized macromolecules. In this paper we consider two devices: distributed readout imaging detectors (DROIDs) based on superconducting tunnel junctions (STJs), which are typically used for high-speed energy spectroscopy applications, and hot-electron superconductive detectors (HESDs), which are typically used as fast counters and time discriminators. Implementation of the DROID geometry to use a single superconductor is discussed. Progress in the fabrication technology of NbN nanostructured HESDs is presented. The two detectors share the high sensitivity that makes them able to efficiently detect even single photons down to infrared energy.

  13. Nonequilibrium superconducting detectors

    Energy Technology Data Exchange (ETDEWEB)

    Cristiano, R [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Ejrnaes, M [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); INFN Sezione di Napoli, 80126 Naples (Italy); Esposito, E [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Lisitskyi, M P [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Nappi, C [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Pagano, S [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Dipartimento di Fisica, Universita di Salerno, 84081 Baronissi (Saudi Arabia) (Italy); Perez de Lara, D [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy)

    2006-03-15

    Nonequilibrium superconducting detectors exploit the early stages of the energy down cascade which occur after the absorption of radiation. They operate on a short temporal scale ranging from few microseconds down to tens of picoseconds. In such a way they provide fast counting capability, high time discrimination and also, for some devices, energy sensitivity. Nonequilibrium superconducting detectors are developed for their use both in basic science and in practical applications for detection of single photons or single ionized macromolecules. In this paper we consider two devices: distributed readout imaging detectors (DROIDs) based on superconducting tunnel junctions (STJs), which are typically used for high-speed energy spectroscopy applications, and hot-electron superconductive detectors (HESDs), which are typically used as fast counters and time discriminators. Implementation of the DROID geometry to use a single superconductor is discussed. Progress in the fabrication technology of NbN nanostructured HESDs is presented. The two detectors share the high sensitivity that makes them able to efficiently detect even single photons down to infrared energy.

  14. LHC superconducting strand

    CERN Multimedia

    Patrice Loiez

    1999-01-01

    This cross-section through a strand of superconducting matieral as used in the LHC shows the 8000 Niobium-Titanium filaments embedded like a honeycomb in copper. When cooled to 1.9 degrees above absolute zero in the LHC accelerator, these filaments will have zero resistance and so will carry a high electric current with no energy loss.

  15. Fingerprints of Mott Superconductivity

    Institute of Scientific and Technical Information of China (English)

    王强华

    2003-01-01

    We improve a previous theory of doped Mott insulators with duality between pairing and magnetism by a further duality transform. As the result we obtained a quantum Ginzburg-Landau theory describing the Cooper pair condensate and the dual of spin condensate. We address the superconductivity by doping a Mott insulator,which we call the Mott superconductivity. Some fingerprints of such novelty in cuprates are the scaling between neutron resonance energy and superfluid density, and the induced quantized spin moment by vortices or Zn impurity (together with circulating charge super-current to be checked by experiments).

  16. High temperature superconductivity induced by incipient magnetism

    Science.gov (United States)

    Weger, M.; Pereg, Y.

    1990-10-01

    We consider the BCS gap equation, with an attractive interaction λ with an upper cutoff ω 0 and lower cutoff ω 1, and a repulsive interaction μ with cutoffΓ. We consider parameters such that a superconducting solution does not exist. We add a repulsive interaction ν eith cutoff ω1 ( ω1 < ω0), and show that this repulsive interaction (that we attribute to incipient magnetism) induces a superconducting state possessing a high transition temperature. In this state, the gap function Δ(ɛ) oscillates as function of ɛ, with a period of order ω 0. We also find solutions antisymmetric in energy [ Δ( ɛ) = - Δ(- ɛ) ], which turn out to be almost degenerate with the normal, symmetric ones. We discuss the physical implications of this model. Our model thus combines a low frequency repulsion due to antiferromagnetic interactions, with excitonic attraction at intermediate frequencies, and ordinary Coulomb repulsion above that. All frequency ranges, and coupling strengths, are comparable with the bandwidth.

  17. On the universality of the ''smile''-gap in the density of states of a chaotic Josephson junction

    Energy Technology Data Exchange (ETDEWEB)

    Reutlinger, Johannes; Belzig, Wolfgang [University of Konstanz, Department of Physics (Germany); Nazarov, Yuli [Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft (Netherlands); Glazman, Leonid [Department of Physics, Yale University, New Haven, CT (United States)

    2015-07-01

    The superconducting proximity effect strongly modifies the local density of states in chaotic Josephson junctions. Recently we found that besides the well-known minigap a secondary gap appears just below the superconducting gap edge Δ in the limit of a large Thouless energy E{sub Th} >or similar Δ. To check the universality of this novel gap phenomenon we study the effect of nonideal contacts and show that the ''smile''-gap crucially depends on the transmission eigenvalue distribution. In a next step we use the random matrix method to investigate the ''smile''-gap. This allows us to approach the statistics of Andreev levels, going beyond the quasiclassical Greens function method. It turns out that the hard gap edge softens similar to what is already known from the minigap.

  18. Executive summary of NIH workshop on the Use and Biology of Energy Drinks: Current Knowledge and Critical Gaps.

    Science.gov (United States)

    Sorkin, Barbara C; Camp, Kathryn M; Haggans, Carol J; Deuster, Patricia A; Haverkos, Lynne; Maruvada, Padma; Witt, Ellen; Coates, Paul M

    2014-10-01

    Sales of energy drinks in the United States reached $12.5 billion in 2012. Emergency department visits related to consumption of these products have increased sharply, and while these numbers remain small relative to product sales, they raise important questions regarding biological and behavioral effects. Although some common ingredients of energy drinks have been extensively studied (e.g., caffeine, B vitamins, sugars, inositol), data on other ingredients (e.g., taurine) are limited. Summarized here are data presented elsewhere in this issue on the prevalence and patterns of caffeine-containing energy drink use, the effects of these products on alertness, fatigue, cognitive functions, sleep, mood, homeostasis, as well as on exercise physiology and metabolism, and the biological mechanisms mediating the observed effects. There are substantial data on the effects of some energy drink ingredients, such as caffeine and sugars, on many of these outcomes; however, even for these ingredients many controversies and gaps remain, and data on other ingredients in caffeine-containing energy drinks, and on ingredient interactions, are sparse. This summary concludes with a discussion of critical gaps in the data and potential next steps.

  19. Observation of pseudogap in the normal state of superconducting Mo{sub 3}Sb{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Tran, V.H. [Polish Academy of Sciences, Institute of Low Temperature and Structure Research, 50-422 Wroclaw (Poland); Batkova, M.; Batko, I.; Pribulova, Z. [Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice (Slovakia); Bukowski, Z. [Laboratory for Solid State Physics, ETH Zuerich, 8093 Zuerich (Switzerland)

    2010-03-15

    Using electron tunneling spectroscopy, we investigated density of states of Mo{sub 3}Sb{sub 7} in the temperature range 1.7-60 K. The differential conductance dI/dV vs. V curve at 4.2 K shows that an energy pseudogap of 2{delta}{proportional_to} 15(2) meV is formed in the density of states. In the superconducting state, the tunneling spectra exhibit the presence of a BCS-type superconducting gap of {delta}{sub sc} (0) {proportional_to} 0.24 meV. Future investigations of the interplay between superconductivity and possible SDW ordering, and the anisotropic nature of the nesting of the Fermi surface in Mo{sub 3}Sb{sub 7} are highly desired. Tunneling spectra of Mo{sub 3}Sb{sub 7} measured in the normal state (a) and in the superconducting state (b). (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  20. Extended Acceleration in Slot Gaps and Pulsar High-Energy Emission

    CERN Document Server

    Muslimov, A G; Muslimov, Alex G.; Harding, Alice K.

    2003-01-01

    We revise the physics of primary electron acceleration in the "slot gap" (SG) above the pulsar polar caps (PCs), a regime originally proposed by Arons and Scharlemann (1979) in their electrodynamic model of pulsar PCs. We employ the standard definition of the SG as a pair-free space between the last open field lines and the boundary of the pair plasma column which is expected to develop above the bulk of the PC. The rationale for our revision is that the proper treatment of primary acceleration within the pulsar SGs should take into account the effect of the narrow geometry of the gap on the electrodynamics within the gap and also to include the effect of inertial frame dragging on the particle acceleration. The combination of the effects of frame dragging and geometrical screening in the gap region naturally gives rise to a regime of extended acceleration, that is not limited to "favorably curved" field lines as in earlier models, and the possibility of multiple-pair production by curvature photons at very h...

  1. The excitation energy spectrum for a system with electron pairs tunneling in a two-leg ladder has a doping depended gap

    CERN Document Server

    Voroshilov, Valentin

    2016-01-01

    A new model with a new Hamiltonian and a new canonical transformation is offered as the means for studying properties of a system of strongly correlated electrons. Consideration of the simplest possible situation, namely a system on non-interacting electrons in a two-leg ladder, leads to an expression for the excitation energy spectrum with no energy gap at the half-filling and with an energy gap away from the half filling.

  2. Large Superconducting Magnet Systems

    CERN Document Server

    Védrine, P.

    2014-07-17

    The increase of energy in accelerators over the past decades has led to the design of superconducting magnets for both accelerators and the associated detectors. The use of Nb−Ti superconducting materials allows an increase in the dipole field by up to 10 T compared with the maximum field of 2 T in a conventional magnet. The field bending of the particles in the detectors and generated by the magnets can also be increased. New materials, such as Nb3Sn and high temperature superconductor (HTS) conductors, can open the way to higher fields, in the range 13–20 T. The latest generations of fusion machines producing hot plasma also use large superconducting magnet systems.

  3. Andreev reflections at interfaces between delta-doped GaAs and superconducting Al films

    DEFF Research Database (Denmark)

    Taboryski, Rafael Jozef; Clausen, Thomas; Hansen, Jørn Bindslev;

    1996-01-01

    By placing several Si delta-doped layers close to the surface of a GaAs molecular beam epitaxy-grown crystal, we achieve a compensation of the Schottky barrier and obtain a good Ohmic contact between an in situ deposited (without breaking the vacuum) Al metallization layer and a highly modulation...... in a planar geometry where the Al has been removed in a thin stripe. We find a manifestation of the superconducting energy gap and a rich fine structure at injection energies both below and above the gap. (C) 1996 American Institute of Physics....

  4. Foreword: Focus on Superconductivity in Semiconductors

    Directory of Open Access Journals (Sweden)

    Yoshihiko Takano

    2008-01-01

    Full Text Available Since the discovery of superconductivity in diamond, much attention has been given to the issue of superconductivity in semiconductors. Because diamond has a large band gap of 5.5 eV, it is called a wide-gap semiconductor. Upon heavy boron doping over 3×1020 cm−3, diamond becomes metallic and demonstrates superconductivity at temperatures below 11.4 K. This discovery implies that a semiconductor can become a superconductor upon carrier doping. Recently, superconductivity was also discovered in boron-doped silicon and SiC semiconductors. The number of superconducting semiconductors has increased. In 2008 an Fe-based superconductor was discovered in a research project on carrier doping in a LaCuSeO wide-gap semiconductor. This discovery enhanced research activities in the field of superconductivity, where many scientists place particular importance on superconductivity in semiconductors.This focus issue features a variety of topics on superconductivity in semiconductors selected from the 2nd International Workshop on Superconductivity in Diamond and Related Materials (IWSDRM2008, which was held at the National Institute for Materials Science (NIMS, Tsukuba, Japan in July 2008. The 1st workshop was held in 2005 and was published as a special issue in Science and Technology of Advanced Materials (STAM in 2006 (Takano 2006 Sci. Technol. Adv. Mater. 7 S1.The selection of papers describe many important experimental and theoretical studies on superconductivity in semiconductors. Topics on boron-doped diamond include isotope effects (Ekimov et al and the detailed structure of boron sites, and the relation between superconductivity and disorder induced by boron doping. Regarding other semiconductors, the superconducting properties of silicon and SiC (Kriener et al, Muranaka et al and Yanase et al are discussed, and In2O3 (Makise et al is presented as a new superconducting semiconductor. Iron-based superconductors are presented as a new series of high

  5. d-Wave Superconductivity and s-Wave Charge Density Waves: Coexistence between Order Parameters of Different Origin and Symmetry

    Directory of Open Access Journals (Sweden)

    Alexander I. Voitenko

    2011-10-01

    Full Text Available A review of the theory describing the coexistence between d-wave superconductivity and s-wave charge-density-waves (CDWs is presented. The CDW gapping is identified with pseudogapping observed in high-Tc oxides. According to the cuprate specificity, the analysis is carried out for the two-dimensional geometry of the Fermi surface (FS. Phase diagrams on the σ0 − α plane—here, σ0 is the ratio between the energy gaps in the parent pure CDW and superconducting states, and the quantity 2α is connected with the degree of dielectric (CDW FS gapping—were obtained for various possible configurations of the order parameters in the momentum space. Relevant tunnel and photoemission experimental data for high-Tc oxides are compared with theoretical predictions. A brief review of the results obtained earlier for the coexistence between s-wave superconductivity and CDWs is also given.

  6. Mapping Dimensionality and Directionality of Electronic Behavior in CeCoIn5: the Superconducting State

    Science.gov (United States)

    Feldman, Benjamin E.; Gyenis, Andras; Randeria, Mallika T.; Peterson, Gabriel A.; Aynajian, Pegor; Bauer, Eric D.; Yazdani, Ali

    Unconventional superconductors often exhibit anisotropic physical properties that arise from the directional dependence of their order parameters. A prime example is CeCoIn5, a heavy fermion d-wave superconductor with a rich low-temperature phase diagram consisting of competing and coexisting magnetic and superconducting orders. Here we present dilution refrigerator scanning tunneling microscopy of CeCoIn5 cleaved perpendicular to its basal plane. We study superconductivity on the (100) surface, whose normal vector points along the antinode of the superconducting energy gap. The gap magnitude is similar to that observed in the basal plane, with a key difference: it does not exhibit any suppression near step edges. Application of a magnetic field along the [100] direction leads to the formation of anisotropic vortices, and the vortex lattice undergoes a transition at high field before the superconducting state gives way to a pseudogap phase. Our measurements illustrate the directional dependence of the superconducting properties in CeCoIn5, and more generally, demonstrate the utility of imaging d-wave superconductors along their nodal and antinodal directions.

  7. Thickness-dependent dispersion parameters, energy gap and nonlinear refractive index of ZnSe thin films

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, Deo [School of Computer Science & Engineering, Faculty of Engineering, SMVD University, Kakryal, Katra 182320, J& K (India); Shaaban, E.R., E-mail: esam_ramadan2008@yahoo.com [Physics Department, Faculty of Science, Al-Azhar University, Assiut 71542 (Egypt); Shapaan, M. [Department of Physics, Faculty of Science, Al-Azahar University, Cairo (Egypt); Mohamed, S.H. [Physics Department, Faculty of Science, Sohag University, 82524 Sohag (Egypt); Othman, A.A. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt); Verma, K.D., E-mail: kdverma1215868@gmail.com [Material Science Research Laboratory, Department of Physics, S. V. College, Aligarh 202001, U.P. (India)

    2016-08-15

    Highlights: • Combined experimental and theoretical researches on ZnSe Thin Films. • The film thickness and refractive index were determined using envelope method. • The absorption coefficient and the energy gap were calculated. • Dispersion parameters were determined using Wemple-DiDomenico relation. • The third order susceptibility and nonlinear refractive index were calculated. - Abstract: Zinc selenide (ZnSe) thin films with different thicknesses were evaporated onto glass substrates using the thermal evaporation technique. X-ray diffraction analysis confirmed that both the film and powder have cubic zinc-blende structure. The fundamental optical parameters like absorption coefficient, extinction coefficient and band gap were evaluated in transparent region of transmittance and reflectance spectrum. The optical transition of the films was found to be allowed, where the energy gap increased from 2.576 to 2.702 eV with increasing film thickness. Also, the refractive index value increase with increasing film thickness. The refractive indices evaluated through envelope method were extrapolated by Cauchy dispersion relationship over the whole spectra range. Additionally, the dispersion of refractive index was determined in terms of Wemple-DiDomenico single oscillator model. Third order susceptibility and nonlinear refractive index were determined for different thickness of ZnSe thin films.

  8. Interfacial superconductivity in a bi-collinear antiferromagnetically ordered FeTe monolayer on a topological insulator

    Science.gov (United States)

    Manna, S.; Kamlapure, A.; Cornils, L.; Hänke, T.; Hedegaard, E. M. J.; Bremholm, M.; Iversen, B. B.; Hofmann, Ph.; Wiebe, J.; Wiesendanger, R.

    2017-01-01

    The discovery of high-temperature superconductivity in Fe-based compounds triggered numerous investigations on the interplay between superconductivity and magnetism, and on the enhancement of transition temperatures through interface effects. It is widely believed that the emergence of optimal superconductivity is intimately linked to the suppression of long-range antiferromagnetic (AFM) order, although the exact microscopic picture remains elusive because of the lack of atomically resolved data. Here we present spin-polarized scanning tunnelling spectroscopy of ultrathin FeTe1-xSex (x=0, 0.5) films on bulk topological insulators. Surprisingly, we find an energy gap at the Fermi level, indicating superconducting correlations up to Tc~6 K for one unit cell FeTe grown on Bi2Te3, in contrast to the non-superconducting bulk FeTe. The gap spatially coexists with bi-collinear AFM order. This finding opens perspectives for theoretical studies of competing orders in Fe-based superconductors and for experimental investigations of exotic phases in superconducting layers on topological insulators.

  9. A study of energy band gap versus temperature for Cu 2ZnSnS 4 thin films

    Science.gov (United States)

    Sarswat, Prashant K.; Free, Michael L.

    2012-01-01

    The temperature dependent band gap energy of Cu 2ZnSnS 4 thin film was studied in the temperature range of 77-410 K. Various relevant parameters, which explain the temperature variation of the fundamental band gap, have been calculated using empirical and semi-empirical models. Amongst the models evaluated, the Varshni and Pässler models show the best agreement with experimental data in the middle temperature range. However, the Bose-Einstein model fits reasonably well over the entire temperature range evaluated. The calculated fitting parameters are in good agreement with the estimated value of the Debye temperature calculated using the Madelung-Einstein approximation and the Hailing method.

  10. Effect of topological defects and Coulomb charge on the low energy quantum dynamics of gapped graphene

    CERN Document Server

    Chakraborty, Baishali; Sen, Siddhartha

    2012-01-01

    We study the combined effect of a conical topological defect and a Coulomb charge impurity on the dynamics of Dirac fermions in gapped graphene. Beyond a certain strength of the Coulomb charge, quantum instability sets in, which demarcates the boundary between sub and supercritical values of the charge. In the subcritical regime, for certain values of the system parameters, the allowed boundary conditions in gapped graphene cone can be classified in terms of a single real parameter. We show that the observables such as local density of states, scattering phase shifts and the bound state spectra are sensitive to the value of this real parameter, which is interesting from an empirical point of view. For a supercritical Coulomb charge, we analyze the system with a regularized potential as well as with a zigzag boundary condition and find the effect of the sample topology on the observable features of the system.

  11. Band gap opening in strongly compressed diamond observed by x-ray energy loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gamboa, E. J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Fletcher, L. B. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Lee, H. J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); MacDonald, M. J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Univ. of Michigan, Ann Arbor, MI (United States); Zastrau, U. [High-Energy Density Science Group, Hamburg (Germany); Gauthier, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Gericke, D. O. [Univ. of Warwick (United Kingdom); Vorberger, J. [Helmholtz Association of German Research Centres, Dresden (Germany); Granados, E. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hastings, J. B. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Glenzer, S. H. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2016-01-25

    The extraordinary mechanical and optical properties of diamond are the basis of numerous technical applications and make diamond anvil cells a premier device to explore the high-pressure behavior of materials. However, at applied pressures above a few hundred GPa, optical probing through the anvils becomes difficult because of the pressure-induced changes of the transmission and the excitation of a strong optical emission. Such features have been interpreted as the onset of a closure of the optical gap in diamond, and can significantly impair spectroscopy of the material inside the cell. In contrast, a comparable widening has been predicted for purely hydrostatic compressions, forming a basis for the presumed pressure stiffening of diamond and resilience to the eventual phase change to BC8. We here present the first experimental evidence of this effect at geo-planetary pressures, exceeding the highest ever reported hydrostatic compression of diamond by more than 200 GPa and any other measurement of the band gap by more than 350 GPa. We here apply laser driven-ablation to create a dynamic, high pressure state in a thin, synthetic diamond foil together with frequency-resolved x-ray scattering as a probe. The frequency shift of the inelastically scattered x-rays encodes the optical properties and, thus, the behavior of the band gap in the sample. Using the ultra-bright x-ray beam from the Linac Coherent Light Source (LCLS), we observe an increasing direct band gap in diamond up to a pressure of 370 GPa. This finding points to the enormous strains in the anvils and the impurities in natural Type Ia diamonds as the source of the observed closure of the optical window. Our results demonstrate that diamond remains an insulating solid to pressures approaching its limit strength.

  12. NLO vertex for a forward jet plus a rapidity gap at high energies

    Science.gov (United States)

    Hentschinski, Martin; Madrigal Martínez, José Daniel; Murdaca, Beatrice; Vera, Agustín Sabio

    2015-04-01

    We present the calculation of the forward jet vertex associated to a rapidity gap (coupling of a hard pomeron to the jet) in the BFKL formalism at next-to-leading order (NLO). Real emission contributions are computed via Lipatov's effective action. The NLO jet vertex turns out to be finite within collinear factorization and allows, together with the NLO non-forward gluon Green's function, to perform NLO studies of jet production in diffractive events (e.g. Mueller-Tang dijets).

  13. NLO Vertex for a Forward Jet plus a Rapidity Gap at High Energies

    CERN Document Server

    Hentschinski, Martin; Murdaca, Beatrice; Vera, Agustín Sabio

    2015-01-01

    We present the calculation of the forward jet vertex associated to a rapidity gap (coupling of a hard pomeron to the jet) in the BFKL formalism at next-to-leading order (NLO). Real emission contributions are computed via Lipatov's effective action. The NLO jet vertex turns out to be finite within collinear factorization and allows, together with the NLO non-forward gluon Green's function, to perform NLO studies of jet production in diffractive events (e.g. Mueller-Tang dijets).

  14. Anisotropic superconducting property studies of single crystal PbTaSe2

    Science.gov (United States)

    Sankar, Raman; Narsinga Rao, G.; Panneer Muthuselvam, I.; Chang, Tay-Rong; Jeng, H. T.; Senthil Murugan, G.; Lee, Wei-Li; Chou, F. C.

    2017-03-01

    The anisotropic superconducting properties of PbTaSe2 single crystal is reported. Superconductivity with T c  =  3.83  ±  0.02 K has been characterized fully with electrical resistivity ρ(T), magnetic susceptibility χ(T), and specific heat C p (T) measurements using single crystal samples. The superconductivity is type-II with lower critical field H c1 and upper critical field H c2 of 65 and 450 Oe (H⊥  to the ab-plane), 140 and 1500 Oe (H|| to the ab-plane), respectively. These results indicate that the superconductivity of PbTaSe2 is anisotropic. The superconducting anisotropy, electron-phonon coupling λ ep, superconducting energy gap Δ0, and the specific heat jump ΔC/γT c at T c confirms that PbTaSe2 can be categorized as a bulk superconductor.

  15. Anisotropic superconducting property studies of single crystal PbTaSe2.

    Science.gov (United States)

    Sankar, Raman; Rao, G Narsinga; Muthuselvam, I Panneer; Chang, Tay-Rong; Jeng, H T; Murugan, G Senthil; Lee, Wei-Li; Chou, F C

    2017-03-08

    The anisotropic superconducting properties of PbTaSe2 single crystal is reported. Superconductivity with T c  =  3.83  ±  0.02 K has been characterized fully with electrical resistivity ρ(T), magnetic susceptibility χ(T), and specific heat C p (T) measurements using single crystal samples. The superconductivity is type-II with lower critical field H c1 and upper critical field H c2 of 65 and 450 Oe (H⊥  to the ab-plane), 140 and 1500 Oe (H|| to the ab-plane), respectively. These results indicate that the superconductivity of PbTaSe2 is anisotropic. The superconducting anisotropy, electron-phonon coupling λ ep, superconducting energy gap Δ0, and the specific heat jump ΔC/γT c at T c confirms that PbTaSe2 can be categorized as a bulk superconductor.

  16. Superconducting and normal state properties of the systems La1 -xMxPt4Ge12 (M = Ce ,Th )

    Science.gov (United States)

    Huang, K.; Yazici, D.; White, B. D.; Jeon, I.; Breindel, A. J.; Pouse, N.; Maple, M. B.

    2016-09-01

    Electrical resistivity, magnetization, and specific heat measurements were performed on polycrystalline samples of the filled-skutterudite systems La1 -xMxPt4Ge12(M =Ce and Th ) . Superconductivity in LaPt4Ge12 was quickly suppressed with Ce substitution and no evidence for superconductivity was found down to 1.1 K for x >0.2 . Temperature-dependent specific heat data at low temperatures for La1 -xCexPt4Ge12 show a change from power-law to exponential behavior, which may be an indication for multiband superconductivity in LaPt4Ge12 . A similar crossover was observed in the Pr1 -xCexPt4Ge12 system. However, the suppression rates of the superconducting transition temperatures Tc(x ) in the two systems are quite disparate, indicating a difference in the nature of superconductivity, which is conventional in LaPt4Ge12 and unconventional in PrPt4Ge12 . In comparison, a nearly linear and smooth evolution of Tc with increasing Th was observed in the La1 -xThxPt4Ge12 system, with no change of the superconducting energy gap in the temperature dependence of the specific heat, suggesting similar types of superconductivity in both the LaPt4Ge12 and ThPt4Ge12 compounds.

  17. Higgsless superconductivity from topological defects in compact BF terms

    CERN Document Server

    Diamantini, M Cristina

    2014-01-01

    We present a new Higgsless model of superconductivity, inspired from anyon superconductivity but P- and T-invariant and generalizable to any dimension. In D space dimensions it involves a (D-1)-form fictitious pseudovector gauge field which originates from the condensation of topological defects in compact low-energy effective BF theories. In the average field approximation, the corresponding uniform emergent charge creates a gap for the (D-2)-dimensional branes via the Magnus force, the dual of the Lorentz force. One particular combination of intrinsic and emergent charge fluctuations that leaves the total charge distribution invariant constitutes an isolated gapless mode leading to superfluidity. The remaining massive modes organise themselves into a D-dimensional charged, massive vector. There is no massive Higgs scalar as there is no local order parameter. When electromagnetism is switched on, a generalised Higgs phenomenon takes place: the photon eats up not only the gapless mode but the massive vector t...

  18. New theory of superconductivity. Method of equilibrium density matrix

    CERN Document Server

    Bondarev, Boris

    2014-01-01

    A new variational method for studying the equilibrium states of an interacting particles system has been proposed. The statistical description of the system is realized by means of a density matrix. This method is used for description of conduction electrons in metals. An integral equation for the electron distribution function over wave vectors has been obtained. The solutions of this equation have been found for those cases where the single-particle Hamiltonian and the electron interaction Hamiltonian can be approximated by a quite simple expression. It is shown that the distribution function at temperatures below the critical value possesses previously unknown features which allow to explain the superconductivity of metals and presence of a gap in the energy spectrum of superconducting electrons.

  19. Probing Andreev bound states in one-atom superconducting contacts

    Energy Technology Data Exchange (ETDEWEB)

    Pothier, Hugues; Janvier, Camille; Tosi, Leandro; Girit, Caglar; Goffman, Marcelo; Esteve, Daniel; Urbina, Cristian [Quantronics Group, SPEC, CEA-Saclay (France)

    2015-07-01

    Superconductors are characterized by a dissipationless current. Since the work of Josephson 50 years ago, it is known that a supercurrent can even flow through tunnel junctions between superconductors. This Josephson effect also occurs through any type of ''weak links'' between superconductors: non-superconducting materials, constrictions,.. A unified understanding of the Josephson effect has emerged from a mesoscopic description of weak links. It relies on the existence of doublets of localized states that have energies below the superconducting gap: the Andreev bound states. I will present experiments performed on the simplest conductor possible, a single-atom contact between superconductors, that illustrate these concepts. The most recent work demonstrates time-domain manipulation of quantum superpositions of Andreev bound states.

  20. Large superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Magnusson, Niklas; Jensen, Bogi Bech

    2012-01-01

    and the rotation speed is lowered in order to limit the tip speed of the blades. The ability of superconducting materials to carry high current densities with very small losses might facilitate a new class of generators operating with an air gap flux density considerably higher than conventional generators...... and thereby having a smaller size and weight [1, 2]. A 5 MW superconducting wind turbine generator forms the basics for the feasibility considerations, particularly for the YBCO and MgB2 superconductors entering the commercial market. Initial results indicate that a 5 MW generator with an active weight of 34...

  1. Superconducting accelerating structures for very low velocity ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Xu, J.; Shepard, K.W.; Ostroumov, P.N.; Fuerst, J.D.; Waldschmidt, G.; /Argonne; Gonin, I.V.; /Fermilab

    2008-01-01

    This paper presents designs for four types of very-low-velocity superconducting accelerating cavity capable of providing several MV of accelerating potential per cavity, and suitable for particle velocities in the range 0.006 < v/c < 0.06. Superconducting TEM-class cavities have been widely applied to CW acceleration of ion beams. SC linacs can be formed as an array of independently-phased cavities, enabling a variable velocity profile to maximize the output energy for each of a number of different ion species. Several laboratories in the US and Europe are planning exotic beam facilities based on SC linacs. The cavity designs presented here are intended for the front-end of such linacs, particularly for the post-acceleration of rare isotopes of low charge state. Several types of SC cavities have been developed recently to cover particle velocities above 0.06c. Superconducting four-gap quarter-wave resonators for velocities 0.008 < {beta} = v/c < 0.05 were developed about two decades ago and have been successfully operated at the ATLAS SC linac at Argonne National Laboratory. Since that time, progress in simulation tools, cavity fabrication and processing have increased SC cavity gradients by a factor of 3-4. This paper applies these tools to optimize the design of a four-gap quarter-wave resonator for exotic beam facilities and other low-velocity applications.

  2. Superconducting accelerating structures for very low velocity ion beams

    Directory of Open Access Journals (Sweden)

    J. Xu

    2008-03-01

    Full Text Available This paper presents designs for four types of very-low-velocity superconducting (SC accelerating cavity capable of providing several MV of accelerating potential per cavity, and suitable for particle velocities in the range 0.006Superconducting TEM-class cavities have been widely applied to cw acceleration of ion beams. SC linacs can be formed as an array of independently phased cavities, enabling a variable velocity profile to maximize the output energy for each of a number of different ion species. Several laboratories in the U.S. and Europe are planning exotic beam facilities based on SC linacs. The cavity designs presented here are intended for the front end of such linacs, particularly for the postacceleration of rare isotopes of low charge state. Several types of SC cavities have been developed recently to cover particle velocities above 0.06c. Superconducting four-gap quarter-wave resonators for velocities 0.008<β=v/c<0.05 were developed about two decades ago and have been successfully operated at the ATLAS SC linac at Argonne National Laboratory. Since that time, progress in simulation tools, cavity fabrication, and processing have increased SC cavity gradients by a factor of 3–4. This paper applies these tools to optimize the design of a four-gap quarter-wave resonator for exotic beam facilities and other low-velocity applications.

  3. Cryogenic design and test results of 30-m flexible hybrid energy transfer line with liquid hydrogen and superconducting MgB2 cable

    Science.gov (United States)

    Kostyuk, V. V.; Blagov, E. V.; Antyukhov, I. V.; Firsov, V. P.; Vysotsky, V. S.; Nosov, A. A.; Fetisov, S. S.; Zanegin, S. Yu.; Svalov, G. G.; Rachuk, V. S.; Katorgin, B. I.

    2015-03-01

    In this paper we present the development of a new hybrid energy transfer line with 30 m length. The line is essentially a flexible 30 m hydrogen cryostat that has three sections with different types of thermal insulation in each section: simple vacuum superinsulation, vacuum superinsulation with liquid nitrogen precooling and active evaporating cryostatting (AEC) system. We performed thermo-hydraulic tests of the cryostat to compare three thermo-insulating methods. The tests were made at temperatures from 20 to 26 K, hydrogen flow from 70 to 450 g/s and pressure from 0.25 to 0.5 MPa. It was found that AEC thermal insulation was the most effective in reducing heat transfer from room temperature to liquid hydrogen in ∼10 m section of the cryostat, indicating that it can be used for long superconducting power cables. High voltage current leads were developed as well. The current leads and superconducting MgB2 cable passed high voltage DC test up to 50 kV DC. Critical current of the cable at ∼21 K was 3500 A. It means that the 30 m hybrid energy system developed is able to deliver ∼50-60 MW of chemical power and ∼50-75 MW of electrical power, i.e. up to ∼135 MW in total.

  4. Field-Angle-Dependent Low-Energy Excitations around a Vortex in the Superconducting Topological Insulator CuxBi2Se3

    Science.gov (United States)

    Nagai, Yuki

    2014-06-01

    We study the quasiparticle excitations around a single vortex in the superconducting topological insulator CuxBi2Se3, focusing on a superconducting state with point nodes. Inspired by the recent Knight shift measurements, we propose two ways to detect the positions of point nodes, using an explicit formula of the density of states with Kramer-Pesch approximation in the quasiclassical treatment. The zero-energy local density of states around a vortex parallel to the c-axis has a twofold shape and splits along the nodal direction with increasing energy; these behaviors can be detected by the scanning tunneling microscopy. An angular dependence of the density of states with a rotating magnetic field on the a-b plane has deep minima when the magnetic field is parallel to the directions of point nodes, which can be detected by angular-resolved heat capacity and thermal conductivity measurements. All the theoretical predictions are detectable via standard experimental techniques in magnetic fields.

  5. Number-Phase Quantization and Deriving Energy-Level Gap of Two LC Circuits with Mutual-Inductance

    Institute of Scientific and Technical Information of China (English)

    MENG Xiang-Guo; WANG Ji-Suo; ZHAI Yun; FAN Hong-Yi

    2008-01-01

    @@ For two LC circuits with mutual-inductance, we introduce a new quantization scheme in the context of numberphase quantization through the standard Lagrangian formalism. The commutative relation between the charge operator and the magnetic flux operator is derived. Then we use the Heisenberg equation of motion to obtain the current and voltage equation across the inductance and capacity. The results clearly show how the current and voltage in a single LC circuit are affected by the circuit parameters and inductance coupling coefficient.In addition, adopting invariant eigen-operator method the energy-level gap of the dynamic Hamiltonian which describes two LC circuits with mutual-inductance is obtained.

  6. On topological phases in disordered p-wave superconducting wires

    Energy Technology Data Exchange (ETDEWEB)

    Rieder, Maria-Theresa

    2015-07-10

    wires end—the Majorana bound state. We study the effect of various geometrical terminations on the low-energy spectrum of such a wire and find that subgap states tend to accumulate around zero energy. In a density-of- states measurement, these states potentially obscure the Majorana state thereby hindering the detection of the topological phase. We further investigate the effect of disorder on a multichannel wire and find that it induces a series of phase transitions with a reentrant topological phase. Due to disorder-localized states accumulating in the superconducting gap, the low-energy spectrum for a disordered wire contains a signature of the topological phase transitions as well: a singularity in the density of states, which is the well-known Dyson-singularity.

  7. Crossover from a pseudogap state to a superconducting state

    Institute of Scientific and Technical Information of China (English)

    Cao Tian-De

    2010-01-01

    This paper deduces that the particular electronic structure of cuprate superconductors confines Cooper pairs to be first formed in the antinodal region which is far from the Fermi surface, and these pairs are incoherent and result in the pseudogap state. With the change of doping or temperature, some pairs are formed in the nodal region which locates the Fermi surface, and these pairs are coherent and lead to superconductivity. Thus the coexistence of the pseudogap and the superconducting gap is explained when the two kinds of gaps are not all on the Fermi surface. It also shows that the symmetry of the pseudogap and the superconducting gap are determined by the electronic structure, and non-s wave symmetry gap favours the high-temperature superconductivity. Why the high-temperature superconductivity occurs in the metal region near the Mott metal-insulator transition is also explained.

  8. An International Comparative Analysis on China's Economic Growth and the Convergence in Energy Intensity Gap and Its Economic Mechanism%An International Comparative Analysis on China's Economic Growth and the Convergence in Energy Intensity Gap and Its Economic Mechanism

    Institute of Scientific and Technical Information of China (English)

    Qi Shaozhou; Yun Bo; Li Kai

    2011-01-01

    In this paper, the authors have empirically analyzed the convergence in per capita GDP gap and the convergence in the variation of energy intensity with respect to the change of per capita GDP between China and eight developed countries. Then, the authors run a regression on the impact of decisive factors of economic growth on energy intensity and its change, so as to find out the economic mechanism of energy intensity gap changing with respect to the variation of economic growth. This study concludes that: First, there is a convergence in per capita GDP gap between China and the eight developed countries. With the convergence in per capita GDP gap, the energy intensity gap between China and eight different countries also converge, and the convergence rate of the latter is faster than that of the former, i.e. if the per capita GDP gap between China and the eight developed countries decreases by 1%, the energy intensity gap between them will correspondingly decrease by 1.552%. Second, the energy intensity decreases with the improvement of industrial structure, the rising of energy prices, the advances of technology, and the expansion of investment in fixed assets, and it slightly increases with the increase of FDI. Third, the energy intensity gap between China and eight developed countries narrows with the lessening of the difference in fixed assets investment, energy prices, and technological progress between China and eight developed countries, yet increases with the narrowing of the difference in FDI, and has no significant correlation with the difference in industrial structure. Fourth, the narrowing of difference in per capita GDP between China and the eight developed countries can result in the lessening of energy intensity gap, whose economic mechanism is that the decisive factors, such as difference in investment, technology, and the competition mechanism of prices, which can determine the difference in economic growth, can significantly affect the energy

  9. Study of superconducting and non-superconducting (Cu, Cr)-1212 compounds by high-resolution TEM and electron energy loss spectroscopy

    CERN Document Server

    Anan, Y; Kurami, H; Hatano, J; Tsutsumi, S; Kimoto, K; Matsui, Y

    2001-01-01

    Structure of YSr/sub 2-x/Ba/sub x/Cu/sub 2.8/Cr/sub 0.2/O/sub y/ (x =0-1.5) superconductors are examined by electron diffraction, HRTEM and electron energy loss spectroscopy (EELS). YSr/sub 2/Cu/sub 2.8/Cr /sub 0.2/O/sub y/ (x=0) shows incommensurate superstructure with 3.67a/sub 0/ due to lattice strain and mixed intergrowth of -(Cr-Cu- Cu-Cu-Cr)- and -(Cr-Cu-Cu-Cr)- sequences. In the h 0 l electron diffraction pattern the wavevector [~0.27, 0, 1/2] due to the incommensurate superstructure disappear in the crystal with high Ba contain (x>or=1.0). This suggests that structural distortion decreases with Ba substitution. At the same time, Cr-L3, L2 edge of EELS spectra shifts toward the low-energy side with increase of Ba content. (13 refs).

  10. Generalized thermoelastic wave band gaps in phononic crystals without energy dissipation

    Science.gov (United States)

    Wu, Ying; Yu, Kaiping; Li, Xiao; Zhou, Haotian

    2016-01-01

    We present a theoretical investigation of the thermoelastic wave propagation in the phononic crystals in the context of Green-Nagdhi theory by taking thermoelastic coupling into account. The thermal field is assumed to be steady. Thermoelastic wave band structures of 3D and 2D are derived by using the plane wave expansion method. For the 2D problem, the anti-plane shear mode is not affected by the temperature difference. Thermoelastic wave bands of the in-plane x-y mode are calculated for lead/silicone rubber, aluminium/silicone rubber, and aurum/silicone rubber phononic crystals. The new findings in the numerical results indicate that the thermoelastic wave bands are composed of the pure elastic wave bands and the thermal wave bands, and that the thermal wave bands can serve as the low boundary of the first band gap when the filling ratio is low. In addition, for the lead/silicone rubber phononic crystals the effects of lattice type (square, rectangle, regular triangle, and hexagon) and inclusion shape (circle, oval, and square) on the normalized thermoelastic bandwidth and the upper/lower gap boundaries are analysed and discussed. It is concluded that their effects on the thermoelastic wave band structure are remarkable.

  11. Negative differential thermal conductance and thermal rectification effects across a graphene-based superconducting junction

    Science.gov (United States)

    Zhou, Xingfei; Zhang, Zhi

    2016-05-01

    We study the heat transport in a graphene-based normal-superconducting junction by solving the Bogoliubov-de Gennes (BdG) equation. There are two effects, the competitive and cooperative effects, which come from the interaction between the temperature-dependent energy-gap function in the superconducting region and the occupation difference of quasiparticles. It is found that the competitive effect can not only bring the negative differential thermal conductance effect but also the thermal rectification effect. By contrast, the cooperative effect just causes the thermal rectification effect. Furthermore, the thermal rectification ratio and the magnitude of heat current should be seen as two inseparable signs for characterizing the thermal rectification effect. These discoveries can add more application for the graphene-based superconducting junction, such as heat diode and heat transistor, at cryogenic temperatures.

  12. Effect of fission fragment on thermal conductivity via electrons with an energy about 0.5 MeV in fuel rod gap

    Directory of Open Access Journals (Sweden)

    F Golian

    2017-02-01

    Full Text Available The heat transfer process from pellet to coolant is one of the important issues in nuclear reactor. In this regard, the fuel to clad gap and its physical and chemical properties are effective factors on heat transfer in nuclear fuel rod discussion. So, the energy distribution function of electrons with an energy about 0.5 MeV in fuel rod gap in Busherhr’s VVER-1000 nuclear reactor was investigated in this paper. Also, the effect of fission fragments such as Krypton, Bromine, Xenon, Rubidium and Cesium on the electron energy distribution function as well as the heat conduction via electrons in the fuel rod gap have been studied. For this purpose, the Fokker- Planck equation governing the stochastic behavior of electrons in absorbing gap element has been applied in order to obtain the energy distribution function of electrons. This equation was solved via Runge-Kutta numerical method. On the other hand, the electron energy distribution function was determined by using Monte Carlo GEANT4 code. It was concluded that these fission fragments have virtually insignificant effect on energy distribution of electrons and therefore, on thermal conductivity via electrons in the fuel to clad gap. It is worth noting that this result is consistent with the results of other experiments. Also, it is shown that electron relaxation in gap leads to decrease in thermal conductivity via electrons

  13. Operational Merits of Maritime Superconductivity

    Science.gov (United States)

    Ross, R.; Bosklopper, J. J.; van der Meij, K. H.

    The perspective of superconductivity to transfer currents without loss is very appealing in high power applications. In the maritime sector many machines and systems exist in the roughly 1-100 MW range and the losses are well over 50%, which calls for dramatic efficiency improvements. This paper reports on three studies that aimed at the perspectives of superconductivity in the maritime sector. It is important to realize that the introduction of superconductivity comprises two technology transitions namely firstly electrification i.e. the transition from mechanical drives to electric drives and secondly the transition from normal to superconductive electrical machinery. It is concluded that superconductivity does reduce losses, but its impact on the total energy chain is of little significance compared to the investments and the risk of introducing a very promising but as yet not proven technology in the harsh maritime environment. The main reason of the little impact is that the largest losses are imposed on the system by the fossil fueled generators as prime movers that generate the electricity through mechanical torque. Unless electric power is supplied by an efficient and reliable technology that does not involve mechanical torque with the present losses both normal as well as superconductive electrification of the propulsion will hardly improve energy efficiency or may even reduce it. One exception may be the application of degaussing coils. Still appealing merits of superconductivity do exist, but they are rather related to the behavior of superconductive machines and strong magnetic fields and consequently reduction in volume and mass of machinery or (sometimes radically) better performance. The merits are rather convenience, design flexibility as well as novel applications and capabilities which together yield more adequate systems. These may yield lower operational costs in the long run, but at present the added value of superconductivity rather seems more

  14. Two-band superconductivity in MgB2.

    Science.gov (United States)

    Iavarone, M; Karapetrov, G; Koshelev, A E; Kwok, W K; Crabtree, G W; Hinks, D G; Kang, W N; Choi, Eun-Mi; Kim, Hyun Jung; Kim, Hyeong-Jin; Lee, S I

    2002-10-28

    The study of the anisotropic superconductor MgB2 using a combination of scanning tunneling microscopy and spectroscopy reveals two distinct energy gaps at Delta(1)=2.3 meV and Delta(2)=7.1 meV at 4.2 K. Different spectral weights of the partial superconducting density of states are a reflection of different tunneling directions in this multiband system. Temperature evolution of the tunneling spectra follows the BCS scenario [Phys. Rev. Lett. 3, 552 (1959)

  15. Exotic Magnetic Orders and Their Interplay with Superconductivity

    DEFF Research Database (Denmark)

    Christensen, Morten Holm

    Superconductivity represents one of the most important scientific discoveries of the 20th century. The practical applications are numerous ranging from clean energy storage and MRI machines to quantum computers. However, the low temperatures required for superconductivity prohibits many practical...

  16. Aspects of Color Superconductivity

    CERN Document Server

    Hong, D K

    2001-01-01

    I discuss some aspects of recent developments in color superconductivity in high density quark matter. I calculate the Cooper pair gap and the critical points at high density, where magnetic gluons are not screened. The ground state of high density QCD with three light flavors is shown to be a color-flavor locking state, which can be mapped into the low-density hadronic phase. The meson mass at the CFL superconductor is also calculated. The CFL color superconductor is bosonized, where the Fermi sea is identified as a $Q$-matter and the gapped quarks as topological excitations, called superqualitons, of mesons. Finally, as an application of color supercoductivity, I discuss the neutrino interactions in the CFL color superconductor.

  17. Impurity bound states in fully gapped d-wave superconductors with subdominant order parameters

    Science.gov (United States)

    Mashkoori, Mahdi; Björnson, Kristofer; Black-Schaffer, Annica M.

    2017-01-01

    Impurities in superconductors and their induced bound states are important both for engineering novel states such as Majorana zero-energy modes and for probing bulk properties of the superconducting state. The high-temperature cuprates offer a clear advantage in a much larger superconducting order parameter, but the nodal energy spectrum of a pure d-wave superconductor only allows virtual bound states. Fully gapped d-wave superconducting states have, however, been proposed in several cuprate systems thanks to subdominant order parameters producing d + is- or d + id′-wave superconducting states. Here we study both magnetic and potential impurities in these fully gapped d-wave superconductors. Using analytical T-matrix and complementary numerical tight-binding lattice calculations, we show that magnetic and potential impurities behave fundamentally different in d + is- and d + id′-wave superconductors. In a d + is-wave superconductor, there are no bound states for potential impurities, while a magnetic impurity produces one pair of bound states, with a zero-energy level crossing at a finite scattering strength. On the other hand, a d + id′-wave symmetry always gives rise to two pairs of bound states and only produce a reachable zero-energy level crossing if the normal state has a strong particle-hole asymmetry. PMID:28281570

  18. Impurity bound states in fully gapped d-wave superconductors with subdominant order parameters.

    Science.gov (United States)

    Mashkoori, Mahdi; Björnson, Kristofer; Black-Schaffer, Annica M

    2017-03-10

    Impurities in superconductors and their induced bound states are important both for engineering novel states such as Majorana zero-energy modes and for probing bulk properties of the superconducting state. The high-temperature cuprates offer a clear advantage in a much larger superconducting order parameter, but the nodal energy spectrum of a pure d-wave superconductor only allows virtual bound states. Fully gapped d-wave superconducting states have, however, been proposed in several cuprate systems thanks to subdominant order parameters producing d + is- or d + id'-wave superconducting states. Here we study both magnetic and potential impurities in these fully gapped d-wave superconductors. Using analytical T-matrix and complementary numerical tight-binding lattice calculations, we show that magnetic and potential impurities behave fundamentally different in d + is- and d + id'-wave superconductors. In a d + is-wave superconductor, there are no bound states for potential impurities, while a magnetic impurity produces one pair of bound states, with a zero-energy level crossing at a finite scattering strength. On the other hand, a d + id'-wave symmetry always gives rise to two pairs of bound states and only produce a reachable zero-energy level crossing if the normal state has a strong particle-hole asymmetry.

  19. Effect of Al Doping on Optical Band Gap Energy of Al-TiO2 Thin Films.

    Science.gov (United States)

    Song, Yo-Seung; Kim, Bae-Yeon; Cho, Nam-Ihn; Lee, Deuk Yong

    2015-07-01

    Al-TiO2 thin films were prepared using a sol-gel derived spin coating by varying the Al/Ti molar ratio from 0 to 0.73 to investigate the effect of Al doping on the optical band gap energy (Eg) of the films. GAXRD results indicated that Al-TiO2 is composed of anatase and FTO phases when the Al/Ti molar ratio was less than 0.18. Above 0.38, no other peaks except FTO were found and transparency of the films was severely deteriorated. Eg of Al-TiO2 decreased from 3.20 eV to 2.07 eV when the Al/Ti ratio was raised from 0 to 0.38. Eg of 2.59 eV was found for the anatase Al-TiO2 films having the Al/Ti ratio of 0.18. The absorption band of Al-TiO2 coatings shifted dramatically from the UV region to the visible region with increasing the amount of Al dopant. The Al doping was mainly attributed to the optical band gap energy of Al-TiO2.

  20. Superconducting Microelectronics.

    Science.gov (United States)

    Henry, Richard W.

    1984-01-01

    Discusses superconducting microelectronics based on the Josephson effect and its advantages over conventional integrated circuits in speed and sensitivity. Considers present uses in standards laboratories (voltage) and in measuring weak magnetic fields. Also considers future applications in superfast computer circuitry using Superconducting…

  1. Picosecond nonradiative processes in neodymium-doped crystals and glasses: mechansim for the energy gap law

    Energy Technology Data Exchange (ETDEWEB)

    Bibeau, C.; Payne, S.A.

    1997-09-29

    We present measurements of the 4G7/2 emission lifetime for 26 Nd-doped materials. A model of nonradiative decay based on dipole-dipole energy transfer is developed and found to be supported by our data.

  2. Superconducting Electric Machines for Ship Propulsion.

    Science.gov (United States)

    1977-02-14

    ship propulsion applications. These concepts evolved from previous work at MIT on superconducting AC machines. The superconducting machines considered were: (1) multipole, low-speed motors, (2) torque compensated motors, (3) high-speed generator, (4) rotating air-gap armature induction motor, (5) thyristor switched AC motors. The first four machine types were studied theoretically while experimental models were constructed of the last two. Preliminary designs were completed...of the five mahcines for an appropriate ship ... propulsion application. In

  3. 基于间接Hamilton化理论的超导储能控制设计%Superconducting Magnetic Energy Storage Controller Design Based on Indirect Hamilton Theory

    Institute of Scientific and Technical Information of China (English)

    陈毅然; 王杰

    2013-01-01

    采用超导储能装置(Superconducting magnetic energy storage,SMES)的二阶模型,得到含SMES的单机无穷大电力系统模型.进而利用Lagrange化和间接Hamilton化理论,构造了该动态系统的Hamilton函数,并提出相应的SMES的稳定控制策略.最后,利用Matlab进行仿真验证了笔者所提出控制律的正确性和有效性.结果表明,在大干扰的情况下,基于间接Hamilton化理论所设计的超导储能控制器能使系统快速地恢复到稳定运行状态,提高电力系统的暂态稳定性.%Considering the second order model of superconducting magnetic energy storage (SMES),this paper builds up a model of the single-machine infinite-bus system (SMIB) with SMES.Then based on the Lagrange theory and indirect Hamilton theory,the Hamiltonian energy function is constructed and corresponding control strategy is proposed.Finally,the correctness and efficiency of the controller is verified using the MATLAB software package.Simulation results manifest,under the large disturbances,that proposed control strategy can quickly make the system back to the stable operation state and improve the transient stability of the power system.

  4. Temperature-dependent energy band gap variation in self-organized InAs quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Yeo, Inah [CEA/CNRS/UJF Joint Team ' ' Nanophysics and Semiconductors,' ' Institut Neel-CNRS, BP 166, 25 rue des Martyrs, 38042 Grenoble Cedex 9 (France); Dong Song, Jin; Lee, Jungil [Nanophotonics Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of)

    2011-10-10

    We investigated the temperature-dependent variation of the photoluminescence emission energy of self-organized InAs/GaAs quantum dots (QDs) grown by conventional Stranski-Krastanov (SK) molecular beam epitaxy and migration-enhanced molecular beam epitaxy (MEMBE) and that of MEMBE InAs QDs in a symmetric and an asymmetric In{sub 0.2}Ga{sub 0.8}As/GaAs well. The temperature-dependent energy variation of each QD is analyzed in low and high temperature regions, including a sigmoidal behavior of conventional SK quantum dots with the well-known Varshni and semi-empirical Fan models.

  5. Investigation of gap-closing interdigitated capacitors for electrostatic vibration energy harvesting

    Science.gov (United States)

    Oxaal, John; Foster, Daniel; Hella, Mona; Borca-Tasciuc, Diana-Andra

    2015-10-01

    This paper reports on the dynamic characteristics of a MEMS electrostatic harvester employing interdigitated gap-closing topology. Devices are fabricated using SOIMUMPS technology and are characterized with and without biasing voltages for a broad range of excitation accelerations. At low vibration amplitudes the presence of a dc bias causes the resonant frequency peak to shift to lower frequencies with increasing bias. At higher vibration amplitudes the dynamic response of the devices exhibits the behavior of a Duffing oscillator with spring softening due to nonlinear stiffness attributed to the effect of electrostatic forces. Specifically, the devices exhibit sweep direction hysteresis with jump phenomena due to the multivaluedness of the response curve. Amplitude sweeps at constant frequency and varying bias voltage also show jump phenomena, highlighting how slight differences in operating conditions dramatically affect device performance. Spring hardening effects are reported for devices contaminated with dust particles. The paper also discusses SOIMUMPS limitations, the importance of reducing off-axis vibration during testing, characterization methods, and the effect of grounding on parasitic capacitance.

  6. The gap between plan and practice: Actual energy performance of the zero-energy refurbishment of a terraced house

    NARCIS (Netherlands)

    Xexakis, G.; Van den Dobbelsteen, A.A.J.F.

    2015-01-01

    Prêt-à-Loger, TU Delft’s entry to the Solar Decathlon Europe 2014 (SDE2014), demonstrated the conversion of a common terraced house to energy neutrality, whilst adding value to its living quality. The house was retrofitted according to principles of smart & bioclimatic design, using local circumstan

  7. Superconducting phase transition in STM tips

    Energy Technology Data Exchange (ETDEWEB)

    Eltschka, Matthias; Jaeck, Berthold; Assig, Maximilian; Etzkorn, Markus; Ast, Christian R. [Max Planck Institute for Solid State Research, Stuttgart (Germany); Kern, Klaus [Max Planck Institute for Solid State Research, Stuttgart (Germany); Ecole Polytechnique Federale de Lausanne (Switzerland)

    2015-07-01

    The superconducting properties of systems with dimensions comparable to the London penetration depth considerably differ from macroscopic systems. We have studied the superconducting phase transition of vanadium STM tips in external magnetic fields. Employing Maki's theory we extract the superconducting parameters such as the gap or the Zeeman splitting from differential conductance spectra. While the Zeeman splitting follows the theoretical description of a system with s=1/2 and g=2, the superconducting gaps as well as the critical fields depend on the specific tip. For a better understanding of the experimental results, we solve a one dimensional Usadel equation modeling the superconducting tip as a cone with the opening angle α in an external magnetic field. We find that only a small region at the apex of the tip is superconducting in high magnetic fields and that the order of the phase transition is directly determined by α. Further, the spectral broadening increases with α indicating an intrinsic broadening mechanism due to the conical shape of the tip. Comparing these calculations to our experimental results reveals the order of the superconducting phase transition of the STM tips.

  8. Electron Energy Distribution in Hotspots of Cygnus A:Filling the Gap with Spitzer Space Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Stawarz, L.; Cheung, C.C.; Harris, D.E.; Ostrowski, M.

    2007-03-06

    Here we present Spitzer Space Telescope imaging of Cyg A with the Infrared Array Camera at 4.5 {micro}m and 8.0 {micro}m, resulting in the detection of the high-energy tails or cut-offs in the synchrotron spectra for all four hotspots of this archetype radio galaxy. When combined with the other data collected (and re-analyzed) from the literature, our observations allow for detailed modeling of the broad-band (radio-to-X-ray) emission for the brightest spots A and D. We confirm that the X-ray flux detected previously from these features is consistent with the synchrotron self-Compton radiation for the magnetic field intensity B {approx} 170 {micro}G in spot A, and B {approx} 270 {micro}G in spot D. We also find that the energy density of the emitting electrons is most likely larger by a factor of a few than the energy density of the hotspots magnetic field. We construct energy spectra of the radiating ultrarelativistic electrons. We find that for both hotspots A and D these spectra are consistent with a broken power-law extending from at least 100MeV up to {approx} 100GeV, and that the spectral break corresponds almost exactly to the proton rest energy of {approx} 1GeV. We argue that the shape of the electron continuum most likely reflects two different regimes of the electron acceleration process taking place at mildly relativistic shocks, rather than resulting from radiative cooling and/or absorption e.ects. In this picture the protons inertia defines the critical energy for the hotspot electrons above which Fermi-type acceleration processes may play a major role, but below which the operating acceleration mechanism has to be of a different type. At energies {approx}> 100 GeV, the electron spectra cut-off/steepen again, most likely as a result of spectral aging due to radiative loss effects. We discuss several implications of the presented analysis for the physics of extragalactic jets.

  9. Electron Energy Distribution in Hotspots of Cygnus A:Filling the Gap with Spitzer Space Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Stawarz, L.; Cheung, C.C.; Harris, D.E.; Ostrowski, M.

    2007-03-06

    Here we present Spitzer Space Telescope imaging of Cyg A with the Infrared Array Camera at 4.5 {micro}m and 8.0 {micro}m, resulting in the detection of the high-energy tails or cut-offs in the synchrotron spectra for all four hotspots of this archetype radio galaxy. When combined with the other data collected (and re-analyzed) from the literature, our observations allow for detailed modeling of the broad-band (radio-to-X-ray) emission for the brightest spots A and D. We confirm that the X-ray flux detected previously from these features is consistent with the synchrotron self-Compton radiation for the magnetic field intensity B {approx} 170 {micro}G in spot A, and B {approx} 270 {micro}G in spot D. We also find that the energy density of the emitting electrons is most likely larger by a factor of a few than the energy density of the hotspots magnetic field. We construct energy spectra of the radiating ultrarelativistic electrons. We find that for both hotspots A and D these spectra are consistent with a broken power-law extending from at least 100MeV up to {approx} 100GeV, and that the spectral break corresponds almost exactly to the proton rest energy of {approx} 1GeV. We argue that the shape of the electron continuum most likely reflects two different regimes of the electron acceleration process taking place at mildly relativistic shocks, rather than resulting from radiative cooling and/or absorption e.ects. In this picture the protons inertia defines the critical energy for the hotspot electrons above which Fermi-type acceleration processes may play a major role, but below which the operating acceleration mechanism has to be of a different type. At energies {approx}> 100 GeV, the electron spectra cut-off/steepen again, most likely as a result of spectral aging due to radiative loss effects. We discuss several implications of the presented analysis for the physics of extragalactic jets.

  10. Integrating superconducting phase and topological crystalline quantum spin Hall effect in hafnium intercalated gallium film

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jian, E-mail: jzhou2@vcu.edu, E-mail: pjena@vcu.edu; Jena, Puru, E-mail: jzhou2@vcu.edu, E-mail: pjena@vcu.edu [Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284 (United States); Zhang, Shunhong [Center for Applied Physics and Technology, College of Engineering, Peking University, Beijing 100871 (China); Wang, Qian [Center for Applied Physics and Technology, College of Engineering, Peking University, Beijing 100871 (China); Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284 (United States)

    2016-06-20

    Motivated by the growth of superconducting atomic hexagonal Ga layers on GaN surface we have calculated the electronic properties of Hf intercalated honeycomb Ga layers using first-principles theory. In contrast to the hexagonal Ga layers where substrate is necessary for their stability, we find the above structure to be dynamically stable in its freestanding form with small formation energy. In particular, six Dirac cones composed of Hf-d{sub xy}/d{sub x2-y2} orbitals are observed in the first Brillouin zone, slightly below the Fermi energy. Spin-orbit coupling opens a large band gap of 177 meV on these Dirac cones. By calculating its mirror Chern number, we demonstrate that this band gap is topologically nontrivial and protected by mirror symmetry. Such mirror symmetry protected band gaps are rare in hexagonal lattice. A large topological crystalline quantum spin Hall conductance σ{sub SH} ∼ −4 e{sup 2}/h is also revealed. Moreover, electron-phonon coupling calculations reveal that this material is superconducting with a transition temperature T{sub c} = 2.4 K, mainly contributed by Ga out-of-plane vibrations. Our results provide a route toward manipulating quantum spin Hall and superconducting behaviors in a single material which helps to realize Majorana fermions and topological superconductors.

  11. Energy gaps, electronic structures, and x-ray spectroscopies of finite semiconductor single-walled carbon nanotubes.

    Science.gov (United States)

    Gao, Bin; Jiang, Jun; Wu, ZiYu; Luo, Yi

    2008-02-28

    We report hybrid density functional theory calculations for electronic structures of hydrogen-terminated finite single-walled carbon nanotubes (6,5) and (8,3) up to 100 nm in length. Gap states that are mainly arisen from the hydrogen-terminated edges have been found in (8,3) tubes, but their contributions to the density of states become invisible when the tube is longer than 10 nm. The electronic structures of (6,5) and (8,3) tubes are found to be converged around 20 nm. The calculated band-gap energies of 100 nm long nanotubes are in good agreement with experimental results. The valence band structures of (6,5), (8,3), as well as (5,5) tubes are also investigated by means of ultraviolet photoelectron spectra (UPS), x-ray emission spectroscopy (XES), and the resonant inelastic x-ray scattering (RIXS) spectra theoretically. The UPS, XES and RIXS spectra become converged already at 10 nm. The length-dependent oscillation behavior is found in the RIXS spectra of (5,5) tubes, indicating that the RIXS spectra may be used to determine the size and length of metallic nanotubes. Furthermore, the chiral dependence observed in the simulated RIXS spectra suggests that RIXS spectra could be a useful technique for the determination of chirality of carbon nanotubes.

  12. Gap energy studied by optical transmittance in lead iodide monocrystals grown by Bridgman's Method

    Directory of Open Access Journals (Sweden)

    Veissid N.

    1999-01-01

    Full Text Available The bandgap energy as a function of temperature has been determined for lead iodide. The monocrystal was obtained in a vacuum sealed quartz ampoule inside a vertical furnace by Bridgman's method. The optical transmittance measurement enables to evaluate the values of Eg. By a fitting procedure of Eg as a function of temperature is possible to extract the parameters that govern its behavior. The variation of Eg with temperature was determined as: Eg(T = Eg(0 - aT2/(a + T, with: Eg(0 = (2.435 ± 0.008 eV, a = (8.7 ± 1.3 x 10-4 eV/K and a = (192 ± 90 K. The bandgap energy of lead iodide at room temperature was found to be 2.277 ± 0.007 eV.

  13. ASC 84: applied superconductivity conference. Final program and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    Abstracts are given of presentations covering: superconducting device fabrication; applications of rf superconductivity; conductor stability and losses; detectors and signal processing; fusion magnets; A15 and Nb-Ti conductors; stability, losses, and various conductors; SQUID applications; new applications of superconductivity; advanced conductor materials; high energy physics applications of superconductivity; electronic materials and characterization; general superconducting electronics; ac machinery and new applications; digital devices; fusion and other large scale applications; in-situ and powder process conductors; ac applications; synthesis, properties, and characterization of conductors; superconducting microelectronics. (LEW)

  14. Benchmark theoretical study of the ionization energies, electron affinities and singlet-triplet energy gaps of azulene, phenanthrene, pyrene, chrysene and perylene

    Energy Technology Data Exchange (ETDEWEB)

    Huzak, M. [Theoretical Chemistry and Molecular Modelling, Hasselt University, Agoralaan, Gebouw D, B-3590 Diepenbeek (Belgium); Hajgato, B. [General Chemistry Division, Free University of Brussels (VUB), Pleinlaan 2, B-1050 Brussels (Belgium); Deleuze, M.S., E-mail: michael.deleuze@uhasselt.be [Theoretical Chemistry and Molecular Modelling, Hasselt University, Agoralaan, Gebouw D, B-3590 Diepenbeek (Belgium)

    2012-10-08

    Highlights: Black-Right-Pointing-Pointer Electronic properties of aromatic hydrocarbons are computed at benchmark levels. Black-Right-Pointing-Pointer Electron correlation has a very strong influence on the computed results. Black-Right-Pointing-Pointer The role of structural relaxation and zero-point vibrations is highlighted. Black-Right-Pointing-Pointer We approach chemical accuracy, using the principles of a focal point analysis. -- Abstract: The vertical and adiabatic singlet-triplet energy gaps, electron affinities and ionization energies of azulene, phenanthrene, pyrene, chrysene, and perylene are computed by applying the principles of a focal point analysis onto a series of single-point calculations at the level of Hartree-Fock theory, second-, third-, and fourth-order Moller-Plesset perturbation theory, as well as coupled cluster theory including single, double and perturbative triple excitations, in conjunction with correlation consistent basis sets of improving quality. Results are supplemented with an extrapolation to the limit of an asymptotically complete basis set. According to our best estimates, azulene, phenanthrene, pyrene, chrysene, and perylene exhibit adiabatic singlet-triplet energy gaps of 1.79, 2.92, 2.22, 2.79 and 1.71 eV, respectively. In the same order, the corresponding adiabatic electron affinities (EAs) amount to 0.71, -0.08, -0.40, 0.24, and 0.87 eV, whereas benchmark values equal to 7.43, 8.01, 7.48, 7.66 and 7.15 eV, are found for the adiabatic ionization energies.

  15. Method for obtaining large levitation pressure in superconducting magnetic bearings

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Hinsdale, IL)

    1996-01-01

    A method and apparatus for compressing magnetic flux to achieve high levitation pressures. Magnetic flux produced by a magnetic flux source travels through a gap between two high temperature superconducting material structures. The gap has a varying cross-sectional area to compress the magnetic flux, providing an increased magnetic field and correspondingly increased levitation force in the gap.

  16. Method for obtaining large levitation pressure in superconducting magnetic bearings

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Hinsdale, IL)

    1997-01-01

    A method and apparatus for compressing magnetic flux to achieve high levitation pressures. Magnetic flux produced by a magnetic flux source travels through a gap between two high temperature superconducting material structures. The gap has a varying cross-sectional area to compress the magnetic flux, providing an increased magnetic field and correspondingly increased levitation force in the gap.

  17. Modeling of Critical Blank Holder Force Based on a Gap Limit and Unbending Strain Energy in Deep Drawing Process

    Directory of Open Access Journals (Sweden)

    Susila Candra

    2015-04-01

    Full Text Available This study is aimed to predict the minimum varying blank holder force (VBHF during the punch stroke, in order to eliminate wrinkle on cup deep drawing product. The slab method was used to develop mathematical modeling of the minimum VBHF base on a gap limit and unbending energy. The mathematical modeling has been validated to FE simulations for the prevention of wrinkling in the same criterion. Steel sheet of SPCD grade with thickness of 0.2 mm is used to generate the cylindrical cupshaped product with 40 mm diameter. Analytical Results of minimum VBHF have a similar trend result compared to FE simulation. However, the minimum VBHF can be quite effective for preventing the occurrence of excessive wrinkle.

  18. Metamorphosis of strain/stress on optical band gap energy of ZAO thin films via manipulation of thermal annealing process

    Energy Technology Data Exchange (ETDEWEB)

    Malek, M.F., E-mail: firz_solarzelle@yahoo.com [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); NANO-SciTech Centre (NST), Institute of Science (IOS), Universiti Teknologi MARA UiTM, 40450 Shah Alam, Selangor (Malaysia); Mamat, M.H. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Musa, M.Z. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM) Pulau Pinang, Jalan Permatang Pauh, 13500 Permatang Pauh, Pulau Pinang (Malaysia); Soga, T. [Department of Frontier Materials, Nagoya Institute of Technology (NITech), Nagoya 466-8555 (Japan); Rahman, S.A. [Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, Universiti Malaya (UM), 50603 Kuala Lumpur (Malaysia); Alrokayan, Salman A.H.; Khan, Haseeb A. [Department of Biochemistry, College of Science, King Saud University (KSU), Riyadh 11451 (Saudi Arabia); Rusop, M. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); NANO-SciTech Centre (NST), Institute of Science (IOS), Universiti Teknologi MARA UiTM, 40450 Shah Alam, Selangor (Malaysia)

    2015-04-15

    We report on the growth of Al-doped ZnO (ZAO) thin films prepared by the sol–gel technique associated with dip-coating onto Corning 7740 glass substrates. The influence of varying thermal annealing (T{sub a}) temperature on crystallisation behaviour, optical and electrical properties of ZAO films has been systematically investigated. All films are polycrystalline with a hexagonal wurtzite structure with a preferential orientation according to the direction 〈0 0 2〉. The metamorphosis of strain/stress effects in ZAO thin films has been investigated using X-ray diffraction. The as growth films have a large compressive stress of 0.55 GPa, which relaxed to 0.25 GPa as the T{sub a} was increased to 500 °C. Optical parameters such as optical transmittance, absorption coefficient, refractive index and optical band gap energy have been studied and discussed with respect to T{sub a}. All films exhibit a transmittance above 80–90% along the visible–NIR range up to 1500 nm and a sharp absorption onset below 400 nm corresponding to the fundamental absorption edge of ZnO. Experimental results show that the tensile stress in the films reveals an incline pattern with the optical band gap energy, while the compressive stress shows opposite relation. - Highlights: • Minimum stress of highly c-axis oriented ZAO was grown at suitable T{sub a} temperature. • The ZAO crystal orientation was influenced by strain/stress of the film. • Minimum stress/strain of ZAO film leads to lower defects. • Bandgap and defects were closely intertwined with strain/stress. • We report additional optical and electrical properties based on T{sub a} temperature.

  19. Effect of energy band gap in graphene on negative refraction through the veselago lens and electron conductance

    Science.gov (United States)

    Dahal, Dipendra; Gumbs, Godfrey

    2017-01-01

    A remarkable property of intrinsic graphene is that upon doping, electrons and holes travel through the monolayer thick material with constant velocity which does not depend on energy up to about 0.3 eV (Dirac fermions), as though the electrons and holes are massless particles and antiparticles which move at the Fermi velocity vF. Consequently, there is Klein tunneling at a p-n junction, in which there is no backscattering at normal incidence of massless Dirac fermions. However, this process yielding perfect transmission at normal incidence is expected to be affected when the group velocity of the charge carriers is energy dependent and there is non-zero effective mass for the target particle. We investigate how away from normal incidence the combined effect of incident electron energy ɛ and band gap parameter Δ can determine whether a p-n junction would allow focusing of an electron beam by behaving like a Veselago lens with negative refractive index. We demonstrate that there is a specific region in ɛ - Δ space where the index of refraction is negative, i.e., where monolayer graphene behaves as a metamaterial. Outside this region, the refractive index may be positive or there may be no refraction at all. We compute the ballistic conductance across a p-n junction as a function of Δ and ɛ and compare our results with those for a single electrostatic potential barrier and multiple barriers.

  20. Numerical simulation and analysis of energy loss in a nanosecond spark gap switch

    Science.gov (United States)

    Lavrinovich, I. V.; Oreshkin, V. I.

    2014-11-01

    A system of differential equations for the RLC circuit of a capacitor-switch assembly was derived being supplemented with an equation for the spark resistance of the switch in accordance with the Braginsky model. The parameters that affect the solutions of equations for the circuit with parallel or series connection of several capacitor-switch assemblies to a common inductive load were determined. Based on numerical solution of the system of equations, a dependence of the energy ES released in the spark within the first halfperiod on the discharge circuit and switch parameters was found.